HARDY'S UNCERTAINTY PRINCIPLE
ON SEMISIMPLE GROUPS

M. CowLing, A. SITARAM. aND M. SUNDARI

A theorem of Hardy states that, if f is a function on E such
that |f(z)| < Ce =" for all z in E and |f(£)| < C e PIE” for
all £ in B, where ¢« > 0, 3 > 0, and o3 > 1/4, then f = 0.
Sitaram and Sundari generalised this theorem to semisimple
groups with one conjugacy class of Cartan subgroups and to
the K-invariant case for general semisimple groups. We ex-
tend the theorem to all semisimple groups.

1. Introduction.

The Uncertainty Principle states, roughly speaking, that a nonzero func-
tion f and its Fourier transform f cannot both be sharply localised. This
fact may be manifested in different ways. The version of this phenomenon
described in the abstract is due to Hardy [3]; we call it Hardy’s Uncertainty
Principle. Considerable attention has been devoted recently to discovering
new forms of and new contexts for the Uncertainty Principle (see [2] for a
recent comprehensive survey). In particular, Sitaram and Sundari [4] gen-
eralised Hardy's Uncertainty Principle to connected semisimple Lie groups
with one conjugacy class of Cartan subgroups and to the K-invariant case for
general connected semisimple Lie groups. We extend the theorem of Sitaram
and Sundari [4], and establish a form of Hardy's Uncertainty Principle for
all commected semisimple Lie groups with finite centre.

2. The theorem.

Let (¢ be a connected real semisimple Lie group with finite centre. Let K AN
be an Iwasawa decomposition of 7, and let M AN be the associated minimal
parabolic subgroup of (7. The Lie algebras of ¢ and A are denoted by g
and a. The Killing form of g induces an inner product on a and hence on
the dual a*; in both cases the corresponding norms arve denoted by |-|. Haar
measures on A and 7 are fixed; that on A is normalised so that the total
mass of K iz 1. Integrals over (¢ and K are relative to these Haar measures.

Any irreducible unitary representation g of M may be realised as the left-
translation representation on a finite-dimensional subspace H,, of C'(M), the
space of continuous complex-valued functions om M. For such a g, and A in
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the complexification af. of a*, we define the space ’H:: 4 to be the subspace
of C(G} of all functions £ with the properties that

&(gan) =£(g) exp((iA — p)loga) YgeG YacAd ¥YneN
and

m— E(gm) € Hy, Yy € .

Note that such functions are determined by their restrictions to K, i.e.,
effectively we are dealing with a subspace of C(#’). The representation f}r::: i
of (7 is the left-translation representation of 7 on this space. We define the
inner product (£, 1) of £ and » in ’H:_ ) to be

| etwa)ax

|| - || denotes the associated norm.
Denote by H, » the completion of ?—{lﬁ 5 with this norm, and by 7, s the

extension of rr: s to H,, . The space H,, , may be identified with a subspace
of L-"-’{Ii'}, and ’Hg \ with the space of continuous functions in Hj, ».

For ¢ in M and A in a*, the representation 7, , is unitary. This repre-

sentation lifts to a representation of L'(G) by integration, as follows. First,
for fin L'(G) and £ and 5 in H,, ,, the integral

[ 10) (must)éo b do
e

converges, to B¢(£, n) say. Next, By is a sesquilinear form on H, . Thus
there exists a unique bounded operator, denoted m, 1( f), such that

(T a(F)E) = L F@) iman@)m dg Ve € Hyp

We denote by |- || the operator norm of such operators, relative to the given
norm on Hy a. If A € af '\ a®, then the matrix coefficients g — {r, 2 (g)&, )
need not be bounded, and for general f in L'(G) it may not be possible to
define m, 3 (f). However, for f which decays sufficiently rapidly at infinity
in (7, in particular for f in the theorem below, m, 5 (f) may still be defined
by the procedure above.

Theorem. ‘?i:;rma,-;e that C, a, C,,, 3, are positive constants and a3, > 1/4
for all pin M, and that | is o measurable function on G such that
|f(kak")| < Cexp(—alloga]?) Vk K ecK YacA
and
lrua(Dll < Cuexp(=BuN*)  YneM W¥rea'.
Then f=10.
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Proof. Let & and 7 be irreducible representations of K, with characters v,
and y-. Define frr by the formula

for(g) = dime dimr f f o (k)X (k") flkgk') dk dk'.
KJK
By a straightforward estimate,
\for(kak’)| < C (dim o dim 7)* exp{—a|logal*) Yk, k' e K Waec A

Further, my, A ( fo,7) is the composition FPymy, o( ), where Py and Pr are the
projections of L?(K') onto the o-isotypic and r-isotypic subspaces, so that

Irus(far)ll < Cuexp(—BuA*)  V¥pe M Yiea'

Now the arguments of Section 3 of [4] show that, if o, is chosen such that
0< a, <o and a,3, > 1/4, then

ImuA( )| < Cor f{ﬂ B, o) | (2)] do

‘2 e,
< Cprp€Xp (%) Yue M YAE€ar,
where @;ge(y) denotes the usual elementary spherical function, and hence
that .
T for) =10 Ype M YAeag.

By Harish-Chandra’s subguotient theorem (see G. Warner [5, p. 452]), if = is
any irreducible unitary representation of ¢ on a Hilbert space H ., then there
exist gt in M and ) in ar- and closed subspaces Sy and Sy of Hy, » such that =
is Naimark equivalent to the quotient representation , » of m,» on S1/Sy.
This means that there is an intertwining operator A, with dense domain
and range between (7, H;) and (7,5, 51/Ss). Consequently «(fs-) = 0,
first on the domain of A4, by the intertwining property, and then on all H,;
by continuity. In snmmary,

{ﬂ(fa;r}éu'r?} =0 v&q ne Hm-,
and therefore, summing over o and 7, we see that
{ﬂ{f}‘s 'U} =1 v‘ﬁ!'rf € Hx.
It follows that w(f) = 0 for all 7 in ;. the unitary dual of G, whence f =0

by the Plancherel theorem. O

The argument of this paper may also be applied in other contexts. For
instance, we may show the following: if f is a measurable function on (7,
rapidly decreasing in the sense that for any B in B* there exists A in B
guch that

|f(kak')| < Aexp(—aB|logal) Yk, ¥ € K VacA,
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and it on each principal series induced from the minimal parabolic subgroup,
the group-theoretic Fourier transform vanishes on a set of positive Plancherel
measure, then f is zero. This is a gualitative uncertainty principle related
to [1].
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