SEIBERG-WITTEN INVARIANTS-AN EXPOSITORY ACCOUNT

KAPIL H. PARANJAPE AND V. PATI

We recall some constructions of spin groups in low dimensions.

1. SPiv GROUPS

1.1. Dimension 3. Let W be a vector space of dimension 2. Comsider the repre-
sentation of GL(W) on End" (W), the space of all traceless endomorphisms of W.
There is a natural non-degenerate form {, } on End” (W) given by

{f.g} = Tracew fog

Moreover, we have a sequence of isomorphisms of representations of GL{W),

AEnd* (W) = AEnd(W) = A(W* @ W) = (AW*)®2 @ (AW)®2 =1
where 1 denotes the trivial representation. Thus we obtain a natural homomor-
phism GL{W) — SO(End"{W)). Over the complex nmumbers this identifies GL(2)
with the “Cspin” group of 50(3). The subgroup 5L(2) is identified with the spin
ETOup.
1.2. Dimension 4. Let W, and W_ be two vector spaces of dimension 2 and let

a 2
@ AW_ — AW, be an isomorphism. Then the vector space UV = Hom{ W, W_)
is isomorphic to its dual via a map B : 7 — 7" = Hom({W_, W, ) defined by the
identity

o flavy) o) = wy A B fllw_)
Thus we have a non-degenerate pairing

(f, g) = Tracew, B(f)og = Tracew_go B(f)

which can be seen to be a symmetric form. The group of automorphisms of the

triple (e, W) e
S(GL(W4) x GL(W_)) = {(g, h) | det(g) = det(h)}
We Ligve s science of lsourplismy of representations:of this group
MUY = AWE @ W_) = (AW*)2 @ (AW_)82 222, 4
Thija:wie ot & otk
S(GL(W,) x GL(W_)) — SO(Hom (W, W_))

Over the complex mumbers this identifies the group S{GL(2) = GL(2)) with the
“Capin” group of S0{4) and the subgroup SL{2) x 81{2) is identified with the spin
group of 50(4).
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4
1.3. Dimension 6. Let U/ be a four dimensional vector space and let 40 AT — 1
be a chosen isomorphism so that the proup of automorphisms of the pair (U, 4) is

2
SL(LM). Consider the pairing <, > on ALl given by the composite
2 B o B
ANT@AU — AU —1
This is symmetric and non-degenerate. Moreover, we have a natural sequence of
isomorphisms of representations of SL{LT

AAD) = (AU)RE 22

Thus we have a representation of SL{IT) in HG{EUII. Over the complex mumbers
this identifies SL{4) with the spin group of SO{G).

1.4. Combination of the above. Now consider the situation of (1.3) where [ =

Hom (W, , W_ ). In this situation [V carries a non-degenerate pairing (, ) as described
2

above and hence there is an induced pairing on AL which we ako denote by ().

We then have an automorphism # on .-E-.U defined by the identity (o, 3) =< o, %3 =.
Now the fact that ¥ = ¢ @ ¢ satisfies (1, 7') = 1 implies that +? = 1. Moreover,
one can see that the positive (resp. negative) eigenspace AT (resp. A7) of # is of
dimension 3. Thus the combined representation

S(GL(W, ) x GL{W_)) — SO(U) — SL(U/) — SO(AU)

pives a morphism into SO{A1) x S0(A 7). Now we have natural maps S{GL{W_) =
GL{W_)) — GL{W4). And hence we have representations of §{GL{ W, )« GL{W_))
into SO(End”(W4)). Consider the homomorphisms of representations of S{GL{W, ) x
GL{W_))

2

A — End®(W,) where fAag— B(flog— Blg) o f

and similarly

2
AU — End"(W_) where f Ag— fo B(g) —go B(f)

These induce isomorphisms of End"(W4 ) with A%

1.5. Compact forms. Let us fix hermitian structures iy on W4 so that ¢ is an
isometry. The group of automorphisms then becomes S{U{W, ) =« U(W_)). We
define a C-anti-linear automorphism f — f7 defined by the identity

b flw), w') = by (w, B(F)(w")
One sees that 1T = f. Thus we obtain a real vector space T so that U7 = T+ .T.
Moreover, one sees that the form (| ) restricts to a positive definite form on T'; hence
we obtain a representation S(U{W,) « U(W_)) — 50(T). The above discussion
2
then gives us a decomposition of AT into JI.LI.I.
We have a C-anti-linear endomorphism f — f1 of End”(W4) given by

ha(flw, w') = ha(w, flu')

One shows that under the isomorphism between End®(W4) and AT = :"LI + tf"L;{ f
we obtain identifications of J"'L]'{ with the spaces End"( W4 )*" consisting of f = — f1.
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We note that for any pair of elements &0 of W, we have an element o ®, )
of End”(W,) given hy

w e iy {w, W) - b — %h.,.{'ilh LT

When & = ¥ this & an element of End”(W,)*". We identify this with an element
of ﬁi{ :

1.6. Unitary group case. We now further specialise to the case when W, =
1% det W_. For ease of notation we use W for W_. In this case, we have a natural
sequence of identifications

Home (W, , W_ ) =WaW*'=WaW=WearC
Thus we can identify the special orthoponal representation 7' with the underlying

(2.4
real vector space of W. Now let A T denote the underlying real vector space to

2 (1.1] T
MW oand let AT the real vector space such that W aW = A TeRC. We have
a natural decomposition

a (2.0 (1.1]
M= ATa AT

The imaginary part of the hermitian metric on W gives a natural element w of the
latter space. One then computes that

(2.0} [1.1]
J'.I = ATEHR-wand Ag =wln AT

Moreover, under the identification between A and End(W, )*" we obtain identifi-
cations

(2.40)
AT =Homs{(l,det W) =detW and BE=R-w=Ri  1guw

2. SPIN STRUCTURES ON FOUR MANIFOLDS

Let X be a compact oriented four manifold. For any metric g on X we have
the principal S0(4) bundle P on X which consists of oriented orthonormal frames.
This corresponds to a class [P] in H'(X,50(4)). Using the exact sequence

1 — U{1) — Spin (4] — S0{4) — 1
we see that we have an exact sequence
HY{X,U(1)) — H'(X, Spin.(4)) — H'(X, 50(4)) — H}( X, U(1))

we see that the obstruction to giving a reduction of structure group from S0(4) to
Spin,(4) is given by a class in H2{X,U(1)). Moreover, from the exact sequence

1 — Z/2Z — Spin(4) — 50(4) — 1

we see that the obstruction to giving a spin structure lies in H2(X, Z/2E). Under the
natural inchision of Z/2F in U(1), the obstruction for spin maps to the obstruction
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for Capin. In fact comsider the diagram

=
—

1— Z/2E — Spin{d) — 80{4) —1

: I
{ Spin.(4] — S50(4) —1

,_
B
2
Sl

! !
1) = U@
! 1
1 1

By the associated diagram of cohomologies

! ! !
— HYX,Z/2Z) — HY(X,Spin(4)) — HY(X,S0(4)) — H(X,Z/22)
! ! [ !
—~ HYX,U(1)) — HY(X.Spin4)) — HY(X.SO{4)) — H(X, U(1))
1 1 !
HY(X,U(1)) = HY{X, UQ)) H2(X, U(1))
) )

we see that the distinet lifts of a given 50(4) bundle to a Spin, (4) bundle correspond
exactly to the different lifts of the Spin(4) obstruction class in H*(X,Z/28) to a
class in HY{ X, U{1)). We note that the latter is the group of metrised complex line
bundles.

Now we have a natural exact sequence (the exponential sequence) of sheaves

0—=Z—=C"=1(1)—1

which gives the natural somorphisms H'H (X, Z) = H' (X, U(1)). Moreover, under
these isomorphisms the exact sequence

—HYX,U(1) — HY{X,U(1)) — H3(X,Z/22) — H2(X,U(1)) — H3(X,U(1})
is the same as the exact sequence
- H(X,Z) - H(X,E) — H3(X,2/2F) — H}(X,Z) — H*(X,E)

To summarise, the obstruction to giving a Spin.(4) structure is the imape in
H3( X,Z) of the obstruction to a Spin(4) which lies in H*(X,Z/2Z). If the for-
mer is zero then the different Spin.(4) structures correspond to the different lifts
of the Spin(4) obstruction class to H2(X, E).

In the case when the principal bundle & the one associated with the metrised
tangent bundle as above we have the result that the obstruction to having a spin
structure is given by wa{ X)) in HE{X., Z/2E): the second Stiefel-Whitney class of
X. Then we have Wu's formula which implies that for any y in H‘}'{X.,E.,I’EE:I
we have we(X) Ny = yNy. Now consider the image w of wn(X) in H3( X, Z);
this is a 2-torsion class. Let H2(X,Z), denote the group of torsion elements in
H?(X,Z). There is a natural duality between the 2-torsion in H*(X,Z) and the
group H3(X,Z), @ Z/2Z; this duality & given as follows. Let a € H3(X, E), be
a torsion class and let b € H*(X,Z) be a 2-torsion class. Let ¥ be a class in

H?(X,Z/2Z) whose image is b. Let @' be the image of a in H*(X,Z/2E), then
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i

< a,b == (a', ). By this identification we have
< a,w >= (a', un (X)) = Trace{a’ Nws(X)) = Trace(a’' Na') =0

for all a in H2(X, Z),. But then by the duality we see that w is 0. Hence, in this
case we obtain that ws(X) is the reduction modulo 2 of an ntepral cohomology
class; in other words an oriented compact Riemannian four manifold always has a
Spin (4] structure.

3. MoONOPOLE EQUATIONS AND THEIR MODULI SPACE

In this section we describe the monopole moduli spaces and compute the expected
dimension.

3.1, Connections for Spin structures. Let (X, g, ¢) be a compact oriented Hie-
mannian four manifold with a Spin, structure (denoted by ¢). Let @ denote the
corresponding principal Spin,(4) bundle over X. Then the principal bundle of ori-
ented orthonormal frames on X is given by P = ¢}/ 1{1). We have a natural torsion
free connection on this bundle called the Riemammian connection. The pulkback of
this to ) gives us a 1-form on  with valoes in Lie{S0O(4) which is imariant for the
action of Spin_(4). Now consider the principal U{1) bundle ¢}/ Spin(4) associated
with () which is just the space of all unit vectors in the line bundle L = det{W ).
Let A be connection on this line bundle. We can pull this back to a form on ).
Adding the above two forms together we obtain a connection on ) which we shall
denote by ¥ 4 since the Riemannian connection is unique whereas A can be varied.

3.2. Dirac equation. Fixing A for the time being we have the differential operator
Va Wy — W, ®T*X induced by the comnmection as above. One the one hand
the Riemannian structure gives us a natural (fat) identification between T X and
TX and on the other we have seen that TX can be thoupht of as a subspace of
Home( W4, W_); moreover, this identification is also invariant under the connection
{flat). Thus by contraction we obtain the composite differential operator of order 1

Da=Das Wy = Wi@TX - W, TX — W_

This is called the Dirac operator. As seen earlier we have a natural identifi-
cation Homo(W,, W_) = Home(W__ W,). Thus we also obtain an operator
Dy =—-Dy_ :W_ — W,. We have the identity (see Section 4)

[ h--Das2.9) = [ h(®.Ds )
X X

s0 that we see that D% is the adjoint of D 4. This justifies the notation.
The first monopole equation is the Dirac equation D 4($®) = 0.

3.3, Becond monopole equation. Consider the curvature Fy of the connection
Aon L. This gives a two form with wvalues in the Lie algebra of (1) which is
just B. Let F] denote the projection into AT. We have also defined the map
o: Wy @ W, — End{W, )*". Moreover, we have obtained an identification of A
with the space of skew-Hermitian endomorphisms of W, The second monopole
equation .

Fi =o(®,®)
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3.4, Gauge group. Let G = Map(X,U(1)) and consider the action of this group
on the space N of pairs (A, #) where A is a connection on the line bundle L and &
a section of Wy given hy

g-(A4,®) =(g-A,g-®) = (A~ (1/2mi)g” 'dg, g®)

We see easily that if (A &) satisfies the monopole equation then so does g- (A, &).
In fact we have

Dyalg-®)=g-Da® and Fy 4 = Fy and ao(g®, g¥) = (P, ¥)
Thus we may consider the ‘moduli space’ of monopoles
M=M ={(A®)|D,®=0and F} =a(®,®)}/G
We will show that for ‘pood’ metrics this is a compact orientable manifold. We

shall alzo find out how it depends on this choice of metric.
Now let Wi be the spaces of sections of Wi, We have a map

v N — W_ given by (A, ®) — (DaP)
Let M denote the inverse image v~ and let M* denote the open subset con-
sisting of pairs (A, ) where & # (). The differential of the map (A, &) — Dyd is
given by
(a,¢) — D+ 2miaod
Suppose ¥ i orthogonal to the image. Then we obtain the equations

DY =0 and @0 =0

by orthogonality with the image of vectors of the form {a,0) and (0, ¢) respectively.
Now a solution of an elliptic operator vanishes on an open set only if it is identically
(). Thus we see that 10 = (; in other words @ is a submersion when restricted to the
space A consisting of pairs { A, ®) where & £ 0. Thus M* & a manifold (albeit of
infinite dimension).

The group G acts freely on M* since a solution of an elliptic operator cannot
vanish on an open set unless it is 0. Consider the space 0% consisting of 2-
forms invariant under * with the trivial action of G. The map M — 02t given
by Fi —o(®,®) factors thorugh the quotient M/G. We thus obtain a ‘complex’
G — M* — O* . The moduli space can be thought of as being its ‘cohomology’.

3.5, Virtual dimension of the moduli space. To compute the dimension of the
moduli space we need to compute the cohomology of the complex of differentials of
the complex G — M* — Q%+, The tangent space to G at identity can be identified
with 1" the space of furntions and the tangent space to 2% can be identified with
itself since it is a vector space. We have an exact sequence

0—=TM* = Q' aw, -0 =0

Where we have identified the tangent space of A4 with Q! the space of 1-forms.
Thus the complex of differentials

TG — TM* — 02+
is quasi-isomorphic to the complex

Q' s aw, -0 a W
where the maps are

h— (—dh, 27ih®) and (a, ) — (dta — Sa(®,¢), Dag + 2mwiac ®)
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for h € O, o € 0! and ¢ € W,. Here dt denotes the exterior derivative com-
hined with the projection to 0°t and S (®,¢) denotes the skew-Hermitian part
of a{®, ¢). This complex is homotopic to the complex where the first map is
b (—dh, (1) and the second is (a, @) — (dta, Da¢) since the difference between
these two complexes & given by compact operators. Thus the index of our complex
of differentiaks is the index of the complex

O - e, -tanw
where the maps are
h— (—dh,0) and (a,1) — (dTa, Dag)

This is a topological mvariant for the pair (X, ¢) by the Atiyah-Singer Index the-
orem; we call this the virtual dimension of the moduli space. In case we can find
a point & € 7% which is a regular value for the map M* — 0%t we see that this
index will be the dimension of

Mes ={(A,®) | Da® =0 and F] =a(®, &) + 4}/

We call this the perturbed moduli space. We will show that such a walue of §
exists that M, 5 is a compact orientable manifold whose dimension is the virtual
dimension.

4. IMFFERENTIAL CALCULUS

We derive various identities among differential operators in the context of Spin,
connections.

4.1. The Adjoint of the Dirac operator. We have defined the Dirac operator
as the composite

Dar=Da:W, ZATX @W, — W_
where the latter map & the contraction under the identification of TX ™ with TX
Homq{ W, W_). We have similarly the Dirac operator Dy _ : W_ — W since
we have an identification of Home{ W, W_) with its dual space Home(W_, W, ).
In terms of an orthonormal frame of tangent vectors {e;} we obtain a sequence of
identities:
(Da®,¥) = (&0 V.8,V

and since (fo® U) = (flo® ) =(&, fol) foral fin TX,
(Da®,¥) =) (V. P07

&
Now the fact that ¥ is a metric connection means that

(Ve ®oeio¥) =P, e, 0 W) — (P, V., (e 0T))

Let dr denote the volume form then for any function f and any vector field v we
hiave,

vl fldr = d{ flvadr)) — fd{vodr)

Thus we obtain small

(Da®, W)dr = Z d((®, €0 W)eiadr) — Y (®,ei0W)d(esudr) =Y (8, V. (ei0 1))
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For any vector field v we have the identity
d{vadr) = Z{ﬁj, Ve, v)dr
i
Moreover, since (e;,e;) = d; ; is a constant we have
D (@ cioW)d(eindr) =Y (Boei 0W)(ey, Veyei)dr = — 3 (D600 W)( Ve e, ei)dr
i i i
The other term can be written as follows
VeleioW) = (Ve e)o¥ 40V, T

and

{vﬁeﬁij ol = Z{vmﬁhﬁjjﬁj ol
J

Combining the above identities we obtain
(DaP, T) = Zd{{‘lﬁ,m o We,udr) — Z{tlﬁ,ﬁ,- o (Ve V) )dr
Hence

[ (-Dasv9) = [ @D v)

and —Dy4 _ is the adjoint operator of Dy 4.
By an entirely similar chain of reasoning we show that the adjoint ¥V* : TX ®
W_ — W, of V on W, is given by
View®) = (> (s Ve,v)®+ V. ®)
In invariant terms, we can describe this as the composite
TXQW, —=TX*@TX W, ==L, w,

4.2, The Weitzenbock formula. We now compute the composite D% Dy®. As
before we choose a local orthonormal frame {e;} for X. We then have

D4Ds® =) —Daleio Ve, ®) ==Y &0 Ve, (ei0 Ve, ®))
i i
We expand the summand to obtain
ejo Ve e o Ve, @40V, Ve, P
As above the first term above can be expanded apain as

Z{ek, Veeilejoepo Ve, P =— Z{vﬁjﬁ'k,ﬁ'gjﬁ'} oepo V&
K K

We obtain the formula
Dk = Z{vﬁﬁk, eilejoepo Ve, — Z g og0V,V,, 0
Lk b4

Now defining V3., = VvV — Veow,

DiDa® = - ejoe0V: @

L
€.
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Similar ealculations yield the formula

ViVad=-) Vi @

Now the difference gives us
* * — s 2
WDA® — ViV A = ZEJ oeioV; . @
i)
From the definition of V2. we have
Viw—Tiw=Vv¥w — Vo,w = Vw W — Vopr = VvTw = Tw Ty = T

using the fact that the connection is torsion free. Since we have an orthonormal

basis we have ;0 e; = —¢; 0 ¢; 50 that we obtain
ADAP —NVLiVad ==— z ejoe;0 Rle;, e)P
el

where R(V. W) = V-V — ViV — le-Wl s the eurvature tensor.

4.3. The Curvature tensors. The Spin,. connection has been expressed as asum
of the Riemammian connection and the T{1) commection A on L. Thus the curvature
tensor B is also the sum of the Riemann curvature tensor § and the curvature of
A. The former can be expressed as

S(V, W) = Z{S{L’, Wen, exer o g
k.l
Thus we obtain
Z ejoe;o08ie;, ) = Z (Sej ei)ercelejoeioer 0
id ik
By the orthonormality of e;'s we easily resolve the latter to obtain Z‘._j (Sle;.ei)e 55)

which is the negative of the scalar curvature 5. The curvature of A considered as
an operator on W, acts as 2miFy. Thos the final {Weitzenbock) formula reads

DDy —ViVa=5—2miFy

4.4, Extrema. Let x be a point of our manifold where (&, ) attains a mascdmom.
Then for any vector v at z we have v{(®, #))(z) = . Thus consider the following
identity (where R denotes the real part)

R(VAVaA®, &) = -

1
.- Sleied @, @) — (V2. Ve, @) + Ezj;{ﬁ,miﬁ,-jat{mim,m

Since e;(®, $)(x) = 0 the last term vanishes at . Moreover, since r is a local masxi-
mum for (®, ®) the term e;e; (P, ®)(x) is negative. Thus we see that R(VL V4P, )
is positive at T

H. THE SEIBERG-WITTEN INVARIANTS

In this section we construct the Seiberp-Witten imariants. First of all we fix a
four manifold X, a Riemannian metric g and a Spin,_ structure c. At the end of the
section we will discuss the independence of the invariants on the metric considered.
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5.1. Statement of the basic construction. Let M denote the fibre of M /G —
0% gver the point 4. We wish to show that there s a § such that this is a compact
manifold. To show this we need to show

1. There are regular values for M* /G — 02+,

2. There are regular values as above such that the fibre of M/G — 021 is

contained in AM*.
3. The map M /G — 02 is proper.

5.2. Properness. Let §; be a convergent sequence of elements in Q%+, This means
that the sequence converges in the L Sobolev norm for every k. Let (A, &) be
such that Dy &, = 0 and ‘F:.- —a{d, &) = §. To show properness we need to
find a convergent subsequence of (A;, $,); for which it & enough to show that this
sequence is bounded in the L7 Sobolev norm for every k.

Let B be a fived smooth conmection on L; we express 4; = B + a; where a;
are 1-forms. Consider the function h; = G +d + a; and let g = exp({2wih;). Then
g? - A, = B+ a; —dhy; and we obtain #d # (a; — dhy) = 0. Now we can choose
g so that the Hramonic part of a; lies in the fundamental domain for H'( X, )

in H'(X,R). Thus upto gauge invariance we can replace A; by another so that
#d % a; = 0 and the harmonic part «o; of a; is bounded. Let b; = a; — ay. The
second monopole equation becomes

dth; = a(®;, ;) — Ff + 4,

So that an Li bound on ®; will give an Lf_ bound on d7 b, But now b; = GedsdT b,
by the above construction of b;; here (&7 is the Green's operator. Thus we obtain a
bound on the L?r+1 norm of b; since (7 is 2-smoothing,.

Let us write &; = U; + o; where Dgl; =0 and ¢, is orthogonal to the space of
solutions of D, Hence ¢ = GDEDp®d and the first monopole equation becomes

Dgd; = —(b; + o) o By

a0 that an Li bound on &; and b; pives us an L‘;“ bound on oy, We also need to
find a way to uniformly bound ¥;. We do this by finding a uniform bound for &;.

Let z; be a point where ($;, &) attains a supremum. Applying the Weitzenbock
formula we see that at z; we have

0= RV, Va, by, &) (z) = —R(sDy, ;) (24 + 203 Fa, By, &) ()

Note that Fu, is a skew-Hermitian endomorphism of W, and thus

F(Fa, Ty, ) = (Fa, T, 8,
The second monopole equation gives us

Fa, ®; = a(®;, &), + &,
and the expression for o gives us

o, @) B, = L (B, 8,)®
Combining the above we obtain
(@i, i) (i) < max{0, —s+ | 6]}

Thus we uniformly bound ®; in the C%-norm. This gives us uniform hounds for
U; and ¢; in the CY-norm. Now ¥; are solutions of the Dirac equation Dg¥; = (.
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Thus the set of C"-bounded solutions & a compact set; in particular, we obtain L3
bounds on ¥ for all 4.

The above arpuments applied inductively gives the required result. We note
that the above arguments also prove that the solutions of the monopole equations
are smooth since any solution which is bounded in L7 norm for some k is actually
bounded in all L, norms as above.

5.3. Regular values. Now consider the compact space My of solutions of the
unperturbed monopole equations. For each point (A4, &) of My we have a neigh-
bhourhood [V in A of (A, ®) amd a finite dimensional linear space H © 027 such
that the composite

=N —-=Wn_ x0¥* - gl

is a submersion. By compactness we can find a common H and a saturated (for &)
open set U in A containing the inverse image of My such that the above composite
is a submersion. Since the derivative & a Fredhobn map, the fibre over () is a finite
dimensional manifold N. We now consider the map of finite dimensional manifolds
N — H. By Sard’s theorem we have a dense subset of H which consists of regular
vahies.

Now assume that b} which is the codimension in 02F of the §'s of the form
F} + d*b is greater than zero. Then the collection of those § for which the fibre
is contained in M* is a non-empty open set. If b > 1 then this open set is even
path-wise connected. Thus in this situation the cobordism class of the fibre is
independent of the regular value chosen.

5.4. Dependence on the metric. Let C denote the space of all metrics g on
X under which the fived volume form dr has norm one. We have a natural map
C — (7 where (7 denotes the Grassmannian of rank b3 quotients of H*(X,R). The
corresponding tangent level map i

Hom(A~,A*) =TC — TG = Hom(H],H;¥)

Where a map f: A~ — AT poes to its harmonic projection.

For any class ¢ = c1(L) in H3(X,R) let S. denote the subvariety of G where the
class ¢ goes to zero in H**. At a point of 5. the tangent space to S, is given hy
the kernel of the evaluation map g — glc). Consider the composite map

Hom(A™,A*) — Hom(H}™ H; 1) — HO*

If we show that this map is surjective, then the space of all metrics under which the
class ¢ becomes +-anti-invariant will be of codimension b7, The argument of the
previows section will apply to show that the Seiberg-Witten invariant is independent
of the metric when b} > 1.

To show that the above map is surjective suppose that d is perpendicular to the
image. We will then obtain that ¢ ® d is identically zero. But now if ¢ # () then it is
represented by a harmonic form which cannot vanish on an open set. Thus d must
vanish on an open set. But we represent d by a harmonic form too. Thus d =0 as
required.

fG. THE casE oF KAHLER MANIFOLDS

We now specialise to the case of Kihler surfaces.
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G.1. Spin structures. For any four manifold with almost complex structure and

2
(hermitian ) metric we have a natural Spin_. structure given by taking i-i”_"]_ = AT X
1 and W' = TX. The inchsion of TX in Homg( H’T_, W) is the natural one as
discussed at the end of section 1. Thus any Spin,. structure on X is given by
2
W, = Mae AmcTX & M and W_ = TX @¢ M. For ease of notation we adopt the

2 ,
standard convention ATX* = Ky,

G.2. Spin. connections. Any U{2) connection on TX pgives a connection on all
associated bundles. In particular we obtain connections on i-i-’_?_. However, in order
that these be Spin. connections it is necessary that the indoced connection on T'X
be the Riemamian (torsion-free) connection. This can only happen if the (almost)
complex structure is parallel with respect to the Riemammian connection; thus in
thiz case the manifold must be Kihler.

To give a connection in the general Spin, structure we need in addition to give
a (1) connection on M.

.3, The First monopole equation. Consider a Spin,. connection as above. We
then obtain a Dirac operator on M & M @ K", By the above discussion we note
that the restriction of this to M is the composite

M-MgpTX"'=MecTX"'aMacTX* - MecTX

Here we have used the identification of TX ™ with TX given by the hermitian
structure. The first map in the above composite & the U(1) connection on M.
Thus we see that the restriction of the Dirac operator to M is ¥, We similarly
show that the restriction of the Dirac operator to M @ K3 is also V(%! for the
induced (1) connection on this line bundle.

.4, The Second Monopole equation. Following Section 1 we compute that the
(2,0) part of o(®, ®) for = (o, 3) s @3 and the (1,1) part of is 3(| 312 — |aP).
Thus the second monopole equation becomes

(F)9) =78 and (1)) = 2(181 - JalPe

6.5, The Weitzenbock formula, We next apply the Weitzenbock formula for
any pair (A, )
DyDa® = ViVag+ s — 2miFf @

to obtain an equality of global inner products

(Da®, Dad)y = (Vad, Va®)x + (s, &) x + 203 F D, @)y
On the other hand we compute the global norm of Fy — o (P, ®) as follows

IFF — o(®, ®)I3=1FF [ + 1o(2, )% ~2R(F},0(®, ®))x
The last term & computed by the intepral of the function

RTracew, (Ff oa(®, @) = —3(Ff &, ¢) + %'Ii'a-:x*{F;_":l | & |2
Now Trace(F}) is 0. Thus adding the above two identities we obtain
IDASIx + | Ff — o(®,8) [x = Va® [k +(s2,®)x + (1 F{ Ix + 1o(®, ®) %)
We note that the right hand side is equal to

IVaa [y + Va8l +(sa,a)x + (s8, Blx +2x | FL % +2n(|al} +81%)*
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which & invariant under a change of sign for o or 3.

Now suppose that (A, &) solve the monopole equations and consider the pair
(A, &) where &) = (o, —3). By the above discussion we see that (A, &) is also a
solution for the monopole equations. But then we must have

(F)?" —&3=-ad =0

Thus we obtain the fact that Fy is a holomorphic comection on M®? @ Ky.
Moreover, by ellipticity of the Dirac operator (and its components) we must have
that either a or 3 is zero according as (FT)0Y i5 a positive or negative multiple
of w. By the first monopole equation it then follows that o and 3 are holomorphic
sections of the corresponding line bundles.
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