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Abstract

The present paper, based on a newly introduced sampling scheme called *Multi-stage random-
ized play-the-winner rule’, provides a decision theoretic solution for comparing two treatments in
a clinical trial experiment. Some numerical computations related to the performance of the pro-
posed solution are obtained. Further some asymptotic results are established. A related estimation
problem is also considered.
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1. Introduction

The problem of companson of two treatments, 4 and B, say, in a clinical tnal
is considered by many authors in the recent years. 1 the patients enter in a system
sequentially, the problem of allocating the entering patients between the two reatments
gets much importance. If the subjects are human beings then, from the ethical point
of view, it s required to have a decision with the smallest number of patients being
treated by the worse treatment. Towards this Zelen { 1969) proposed a sampling design
called play-the-winner rule and, as a modification of the rule Wei and Durham (1978)
and Wei (1979) introduced an idea called mndomized play-the-winner (RPW) mle
which can be interpreted by means of an urn. Some further works in this regard are
done by different authors (see, for example, Wei, 1988, Bandyopadhyay and Biswas,
1996, 1997).
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The available literatures on clinical trials are mostly based on the assumption that the
incoming patients are homogeneous. But, in practice, this is seldom true. Because the
entering stages of patients may be distinguished with respect to the intensity of the
disease and, at the same time, there may be several possible outgoing stages. All these
possibilities are incorporated in the present study by introducing a scheme of sampling
called *mulu-stage randomized play-the-winner’ (MSRPW ) rule. Using this rule, a de-
cision theoretic solution for comparing two treatments is provided i the next section.
Some performance charactenistics are studied numerically. Further, some asymplotic re-
sults are obtamed in Section 3, and assuming a simple probability model, an estimation
problem is considered in Section 4. Section 5 ends with numencal computations.

2. Proposed decision rule and relevant probability distributions

Our object in the present investigation is to accept any of the following three deci-
SI0NS:

ap:A=8 ar:A=8B, ay:8B>=A (2.1)

where the symbol * =7 is used to mean that one treatment 15 better than the other one.
We consider the case when a patient may have (k + 2) stages: 0.1,... &k + 1. The
stage “0" 1s for death and the stage (£ + 1) is for complete cure. The possible entering
stages of a patient are 1,2,.. . & (in total & in number) and the possible oulgoing stages
are (01,2, kb + 1 (in total (£ + 2) in number). The distinction between different
stages is done by the expenimenter by consulting a clinician.

Suppose there is a sequential chain of patient’s entrance upto a maximum of n
patients. The patients are treated by treatment 4 or B by using an MSEPW rule which
can be descabed by using an um model as follows: St with an um having wo types
of balls 4 and 8, » of each type. For an entering patient of stage x we treat him/her
by drawing a ball from the urn with replacement. If the outgoing stage 15 v, we add
an additional { v —x + g)f balls of the same kind and (£ + 1 — v+ g)ff balls of the
opposite kind in the urn. This procedure 1s repeated. Here (v — x) may be negative.
Henee g is so choosen that at every moment v —x + g =0, Keeping this in mind we
sel g w be equal to k.

Now, for cach of the entering patients we define the following vanables: 4, = 1 or
0 according as the ith patient is treated by treatment 4 or 8; n,; =1 or 0 according as
the ith patient enters with stage x or not. Clearly, ZLI o = 1 %i. Then our proposed
decision mle can be based on the statistics

=3 ddvi—x+k) =3 (1-6Mw—x+k).
=1 =1
To avoid negative values of 77 and 75 both, we use (v, —x; + &) instead of y; —x; in

the summand. Note that under equivalence T and 75 have the same distnbution and
hence our proposed decision rule would be:
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Take action ay if |T) — 75| =c. Take action a2 or ay according as T} — T2 = ¢ or
= =L

The choiee of *¢” is at the hand of the expenimenter. For example ¢ can be chosen
by fixing the probability of accepting a; when a; is true at a pre-assigned level

Several performance characteristics we consider here are: (1) the probability of cor-
rect selection (PCS), and (1) the proportion of patients treated by treatment A (n(4))
in course of sampling. These performance charmetenstics are computed by 10000 sim-
ulations and by making some particular model assumption and these are considered in
Section 5. Here one could possibly employ eady stopping retaining the same PCS, but
exposing smaller number of patients to get a decision. But such a routine study 15 not
done here.

MNext we define the concept of outgoing probability matrix. An outgoing probability
matrix, when a patient is treated by A, is a kx(k+2) matnx P* =((p;)), x=1{1)k,
v =0(1)k + 1, where the (x. p)th element p is the probability that a patient of
entering stage “x7 has the outgoing stage ° v when it 1s treated by treatment A, Clearly,
Z"::}, piy =1 ¥x. Similarly, we have an outgoing probability matrix PH={{pf_L.}] for
treatment B.

The conditional probability of d;, = 1 given all the previous entries, responses and
assignments 1s

Pivl

o %+ ﬁ[‘[ﬂ +1+q) +2 Zj‘:l '5_.".121." = Z: I '5.."-15_." _'[u't' +1+4q) Zj‘:l ﬁ'-.." = Zj‘:l .V.."]
2a+ Pk +1+2g)i— Z_ﬂ-=| %] '

(22)

AL present we suppose that x s non-stochastic. From (2.2), the marginal probability
distributions of §;'s can be obtained by the method of induction as

P{éi+| =1']=:L_d1'+|s (2.3)

where d | =0 and for i =1,

f 1L & " LA s
d"'|= i _Z{.uv _‘-3}1'4‘2{“7 +c'r K
4 2a+ ik + 1+ g)— Z,-=| x;) 20 % = Xy ST
—2 (g tk+1+g)M;|. (2.4)
J=1
with ¢ = Zf::lr sp and e = _\_:“ spX. But, under equivalence (iec., under ay),

d;"s are independently distabuted Bemoulli {:.!,} random varables and are distributed
independently of y,’s.



44 U Bandvopadhyay, A, Biswas! Jownal of Statistical Planning and Inference 83 (2000 | #41-448
3. Some asymptotic resulis

In this section we study the following asymptotic results: (1) Asymptotic distribution
of T — T under equivalence, and (1) PCS under a2 or a3 as n goes o infinity.

Solution (1): We first write, after the arrival of the nth patient, n, = %7, #u. which
represents the number of patients at the entering stage “x°. Then, if 7, = Py =
1, x=12,. .k i=12....n (#,... ,¢p—1) has multinomial (n; 7y, ... 7)) distri-
bution with 37| m, = 1. Now, under equivalence, as y; are distributed independently
of d;, we have

ET) —T)=10

From Rosenberger (1993), it is not difficult to find a normalizing sequence {r,} such
that, as n — oo,
1
— (1) = T2) S N, 1),

v/

where {v,} 15 such that, as n — oo,

Uy

Hence the proposed decision rule can be approximated by
Take action a, if [T} — T3 €12/
Take action a» or a3 according as T} — T3 > 1,041, OF < — 7, 24/10. (3.1)
Here “r,57 is the upper 100p/2% point of an N(0, 1) distribution.
Sodution (11): Here we prove the following theorem:

Theorem 3.1. PCS of the decision rule, wunder ax or as, goes to unily as n — 0.

Proof. Here it s enough to prove the result for B = A. Then, for cach x, we have P4
and P¥ for which T 5 T, pi for all g with at least one strict inequality,
implying ¢! < ¢ for all x. From the result in the appendix we immediately have, as
H— o0,

1 ;
(T —T) =g, (3.2)
n

where g i1s given by (A3). Obviously, g <0 or g =0 according as 8 = 4 or 8= 4.
Hence, using (3.1), the result follows.

4. An estimation problem

In this section we consider, under the equivalence of 4 and B, an estimation problem
related to outgoing probability matrix under the simple model

B k 2ES | xf ¥ ; xf! k+1—x .
_Fx.-._ % J;.'+]. _.‘_'+]_ El {-
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where 0 € (0,1) 15 the only unknown parmmeter. Defining n, as m Section 3, if n,(s)
represents the number of patients at outgoing stage “s”, we have, given n,,

(n0),.. . 0 (K)) ~ Multinomial (7, pogs Pets oo Pek )

Takmg the xth row of the outgoing probability mawrix, the likelihood function is

P i vilx) ; <l valx)
= Constant T =
onstant = Tl o .

with vi(x) = Zf:flr sng(s) and va(x) = Zf;ﬂl sk + 1 —s). Here, for cach x and given
Ay, (vi(x), va(x)) is sufficient for 0. Also it can be easily seen that {1..-"njz_f=| v(x)ix
and (1/n) ZL, va(x)/(k+1—x) are both unbiased estimators of (. A suitable weighted
average of these two may be considered.

5. MNumerical illusirations

Here we consider the following models for computing PCS and m{4). Taking £ =3
and g = 3, the models in the form of P* and P¥ are given below:
Mode! 1:

0 1 2 3 4
L 1 /090 005 005 0 ]
2075 015 005 005 i}
3 V060 020 010 005 005
and
0 1 i 3 4
PR 1 /01 03 04 01 01
2l 0 01 03 04 02
340 0 01 04 05
Model 2:
] 1 ¥ 3 4
ps 1 /07 02 01 0 0
“2l03 03 03 01 0
3I\01l 02 02 04 0l
and
0 1 ) 3 4
pb_ 1 /02 02 03 02 0l
T2l 00 01 05 03 0l
3I\V0 01 02 05 02

MNecessary computations are shown in Table 1 for some selected values of m=(m, 72, 73)

and ¢ taking n =30 and fi/z =1.



440 U Bandvopadhyay, A, Biswas! Jowrnal of Statistical Planning and Inference 83 (2000 #41-448

Tahle 1

(=1, m2,m) PCS

o= 10 c=20 c=230 mA)

Model 1| Model 2 Mode 1| Model 2 Model | Model 2 Model | Model 2

06,0202 1 1 1 (9498 | 0995 0.414 0.447
04,0.1,05 1 0999 1 0997 1 0988 0.480 0.453
1/3,1/3,1/3 1 1 1 0994 1 0994 0.402 0.450
01,0306 1 1 1 (9498 1 0987 0385 0.457
Tahle 2

i PCS mA)

c=5 c=10 c=20

0.2 0.283 0.5549 0.92% 0,500
0.4 0.991 (.94 0777 0.480
0.6 1.000 1000 0.990 0.450
08 1000 1000 1000 0.4 3%
0.95 1000 1000 1000 0418

Maodel 3: The probability model given by (4.1) 15 also used for numerical illustration.
Here P is obtained at #=0.2 and P¥ is obtained at any . The necessary computations
are shown in Table 2 taking m=(0.1,03,0.6) only.

The above computations show that, in each model, the PCS™s are quite high and the
proportion of allocation to the worse weatment are relatively small.
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Appendix A.
Result: As n — oo,
%E{ﬂ —N)—yg (A1)
and

1
—Var(T) — T2) =0, (A.2)
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where

J k i
it E% mi(e] —ef)— del (¢ +¢f)m; —d (ﬂ- = Z%j-n_,.) . (A3)
J= = =

K i)

with d = lim;_ .. ;.

Proof. Here it is enough to prove the result for the case when 8 = 4. Then using
{2.3) and (2.4) it can be ecasily shown that

1 k k
BT —T)m s | Saet = nel
2 el g e i e
1. k k 1. k
- d; Zrz_,e,‘-*+£rz_,t’f — =3 k=3 ).
2 i=l1 J=1 ’ =1 ’ 2 i=l1 J=1 ’
(Ad)
From Bandyopadhyay and Biswas (1996), we have, as n — oo
Pdiad (A.5)
R =]
By (A4) and (A.5), we get (Al). Now to prove (A2), we write
Var(T) — Ta) =4V, + C,). (A6)
where
Vo= V(& — 1) (3 —x + £)).
i=l

Cu= Y Cov[(d: — £)(yi —x + k) (80 — 1)y — 20 + K.
i#i"

As {d.. i=1} is a non-negative monotonic and bounded sequence we have

lim d;=d and lim & =d° exists.

Then, writing w;' = Z{:{L{\ —j+k )Epf.' and wjf = Zf:‘: (s—J +.Hzp_ﬂ., we have, by

Toeplite's lemma, as n — oo,

1
— V’JI =
nt
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Also, it 15 easy to check that for 7 = ', as in Bandyopadhyay and Biswas (1996,
Py =18;=1)=1—d;" (say),

and, for each i, it can be ecasily shown that, as [ — oo,
d M,

Similarly, it can be shown that, for some 4.7 as above

A

P(3r=1]8=0)=3—d;" (say),
and, for cach fixed i,

&9 —d; -0, asl— oo
Now, for i < i, we get

Cov[(8; — Dy — X+ k) (8 — ) yw —x0 + K],

=35 +di)d;" —dir X Dag — Dag)
— (3 —d)(d; " — dir) (Dag — Daa),

where for X, Y = A, B, we havwe

k& k+1 k+1 o
P ZT‘ ?jl e Zﬂ %{.\-—j + NS = R Py
i=li= y=lhx

Then, by Toeplitz’s lemma, as n — oo,
i (A.8)

Hence, combining (A7) and ( A8), (A2) follows from (A.6).
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