536

A New Network Topology
with Multiple Meshes

Debasish Das, Mallika De, and
Bhabani P. Sinha, Senior Member, IEEE

Abstract—This paper introduces a new network topology, called Multi-Mesh
(MM}, which uses multiple meshes as the basic building blocks interconnected in a
suitable manner. The praposad network consists of o' processors and is d-regular
with a diameier of 2n. Tha network also contains a Hamiltonian cyde. Simple
routing algornifhms for poini-io-point communication, one-to-all broadeast, and
multicast have been described for this network 1t is shown that a simpla o = n*
mash can also be emulated on this netwaork in O 1) ime. Several application
examples have bean discussed for which fhis netwark is found fo be more efficent
with regard to computational ime than the cormesponding meash with the same
number of processors. As examples, O{n) time algorithms for finding the sum,
avaraga, minimum, and maximum of ' data values, located at o' differant
processors have been discussed. Time-efficient implementations of algorithms for
solving nontrivial problems, e.g., Lagrange’s infempolation, matrix transpostion,
matrix muliplication, and Discrete Founar Transform { DFT) computation have also
been discussed. The time complexity of Lagrange’s interpolation on this network is
Q) for »* data points comparad to Q") time on mash of the same size. Matrix
transpose requires Ojn"") time for an «» = » matrix. The fime for multiphying two
n % nmaticas is Ofn"") with an AT-cost of O(»"). DFT of » sample points can be
computed in 3{n'"") time an this network. Papers [§], [7] show that »' data
elements can be sorted on this network in O(n) fima.

Index Terms—Mesh, multimesh, diameiar, Hamiltonian cycle, point-to-paint
communicafion, one-io-all broadcast, mulicast, fault-diameter, Lagrange’s
intarpolation, matrix transpose, matrix multiphication, DFT.

+

1 Introduction

WITH the advances in VLSI technology, it is now possible o use
several thousand processors for constructing a parallel processing
system. The processors may communicate, in general, with each
other through either a shared memory or an interconnecton
network, Among the stabic interconnection networks used for
SIMD computers with an array of processors, one of the oldest and
very popular architectures is a twe-dimernsional-mesh [11]. Mesh is a
simple nebwork with a very regular structure, Also, the fact that the
interconnecting wires occupy only a fixed fraction of the area
independent of the size of the mesh makes it very attractive for
VLS implementation. These features led to the manufacture of
machines, like ILIAC 01 and IV, SOLOMON, CLIP4 MPP, etc.,
built around mesh inkerconnection [11]. Many important algo-
rithims for solving various problems, ez, matix operations,
simultaneous linear equations, graph-theoretic, and image proces-
sing problems, ete. [2], [9], [14], [15], [16], [18] have been efficiently
mapped onto this mesh architecture. In a two-dimersional mesh
with n® processors the degree of (n — 2)° processors is 4, and that
of 4(n — 2} processors is 3, while four corner processors have
degree 2. Identifying each processor by two coordinates + and y
with respect to some chosen origin, let the processor at the position
ix.y) be denoted by Plx.y). The processor Plx.y) is connected to
Plx+1,y4 1), if they exist, where 1 < 2,y < n. The diameter of
this simple mesh is 2(n — 1}, The interconnecion scheme in
ILLIAC IV is a little more complicated, with some additional
wrap-around and end-around connections, bringing down the

o D Das and B.P. Sinha are with the Electronics Unit, Indian Stafisiical
Institufe, Caleutfa 70M35, ndie. E-mail: bhabani@isical.ernef in.
o M. De s with USIC, Universify of Kalyans, Kol 741235, o,

For informuation on obfaining reprints of this arficle, please send e-mail fo:
fe@compu ferory, amd reference IEEECS Log Number 108926,

diameter ton — L Since the diameter of the mesh is @(N'7), where
N is the total number of processors, a lower bound on the time to
solve nontrivial problems that involve manipulation of data
residing in processors farthest apart in a mesh of size Ni=n") s
(WYY In search of an architecture capable of providing faster
soluions o such problems, vet retaining most of the attractive
properties of a mesh, researchers have studied related interconnec-
tion schemes like pyramid [8], [12], mesh-of-trees [13], meshes with
broadcast buses [17], [3], ete.

Inn this paper, we propose a new Multi-Mesh (MM) network
topology using »' processors which is built around » meshes
of size n xn each. The degree of each processor in this MM
network s 4, and the diameter of the network is 2n The
diameter under single node failure is 2n 4 6. A Hamilbonian
cvele also exists in the network, Algorithms for point-to-point
communication, single node broadeast, and multicast have also
been developed on this network. Poinkto-point communication
needs 2n communication steps, while one-to-all broadcast and
multicast for ' processors can be effected in 2n + 8 steps and
it o’ S o~ 1 steps of data communication, respectively.
The wormhole routing for complete exchange in the Multi-
Mesh network has been done in [5].

We show that an »° « o’ mesh can be emulated on the
proposed network in O(1) time. Thus, any algorithm that runs in
O f(n)) Hime in an «* = o mesh can always be solved in less than
or equal to O f{a)) ime. However, this result of emulation merely
gives an upper bound on the rurning time of an algorithm on the
MM network. In practice, many real life problems can be solved on
the proposed network more efficiently than on the corresponding
mesh with the same number of processors. Specifically, the
problems whose time complexities are govemed by the diameter
of the network, Le, when communications among the farthest
processors are necessary for the completion of the algorithms, the
MM network offers a distinet advantage over the mesh. As
examples of real life applicaions, simple problems like those of
finding the sum, average, minimum, maximum of »' data values
with O(n} time on the MM metwork having »' processors have
been discussed. Note that each of these problems would require
Ofw) time on a simple #° » 0° mesh. Among nontrivial problems,
algorithms and their implementations for Lagrange's interpolation,
matrix transpose, matrix multiplication, and discrete Fourier
transform (DFT) computation have been discussed. These algo-
rthms would cover the basic operations in a large class of
numerical problems. The time complexity of Lagrange's interpola-
tion on this network is Ofn) for #* data points compared o Ofn?®)
time on mesh. The algorithm for transposing an w® » #° matrix on
the network requires On) time. The Sme complexity for multi-
plving two p « p matrices on an MM network with »' processors,
where n = p™%, is O(p"), giving an AT-cost of O(p*). We may note
that this problem could be solved on an p = p mesh in $p) Hime,
assuming that only the boundary processors can handle the data
input/output operations, The DFT of p sample points can also be
computed in Ofp™) time on this network with 7 processors.
Also, an algorithm for sorting »' elements in O(n) time on this
network has been proposed in [6], [7]

The paper is organized as follows. In Section 2, we describe the
proposed interconnection scheme. In Section 3, we describe a fow
topological properties of the network. Section 4 shows how the
point to point routing algorithm can be implemented. Sections 5
and & present algorithms for one-to-all broadeast and moulbicast
respectively. In Section 7, we show that a simple #° » #° mesh can
be emulated on the MM network in constant time. Section 8 deals
with the implementations of different algorithms on the proposed
network. Section 9 discusses about the generalized MM network
which can be defined with m*n® processors with a diameter of
(4), where m, v are integers each greater than 2.

IEEE TRAMSACTIONS ON COMPUTERS, WVOL. 48, NO.5 MAY 1980

537

—

T

LJ ‘
+H

wlll
Bt

Fig. 1. An example of a multimesh network with n= 3 [(all interblock inks are not shown).

2 THE MuLTI-MESH (MM) NETWORK

The propesed Multi-Mesh network is an extension over the simple
mesh. In an n = nomesh, the processors are arranged in n rows and
n columrs, We use such a mesh as the basic building block of our
interconnection scheme. The key idea s to use »° such meshes
which themselves are again arranged in the form of an wxn
matrix. Each constituent » » » mesh in this matrix is ermed as a
block. Within each block there are 4w — 2) processors on the four
outer boundaries each of which has three peighbors within that
block. These will be referved to as the boundarny processors. Also, in
each block, there are four comer processors which have only bwo
neighbors within that block. These processors will henceforth be
referred to as the cormer processors, The rest of the (n— 1)
processors in every block, each having 4-neighbors in that block,
will be termed as the intermal processors. We will interconnect
different blocks by inserting suitable links among the boundary
processors so that cach processor will uniformly have four links in
the final topology. To describe the interblock connections we need
o identify each of the ' processors in the MM network uniquely
as follows.

A processor inside a given block can be unigquely identified
using two coordinates. As the blocks are in turn organized as a
matrix, each block can also be uniquely identified using two
coordinates o and 3 as Bla,). Thus, each of the #' processors can
be uniquely identified using a 4-tuple of the coordinate values. The

first two coordinates are used o describe the block in which the
processor lies and the other two coordinates are used to signify the
position of the processor inside that specific block. For example,
Plec, 4.0, y) 8 a processor lying at the oth row and the gth column
of the block Bla, #). Each of these four coordinates may assume a
value between 1 and « (both inclusive).

A special symbol « will be used for any one of these four
coordinates o denote the set of all processors with all possible
values of the respective coordinates. For example, Pls, «, 1, 1)
signifies the set of the top left comer processors of all the o blocks.

If the processors Plo, 51, 21,) are connected to Plo, F2, 22, ye2)
for all values of o, 1 < o < n, we denote these sets of links by an
interconnection between the sets Pls, &, r, o) and Pls, 3, o, g2
In asimilar manner, a set of blocks can be represented by putting a
« in one or both of the two coordinates of Blo,).

Interblock connections among the boundary processors are
given by the following rules:

1. ¥a.1<3<n, Pla, 4 1, 4 are connected t© Ply, 3, n, a)

where 1 < w, 00 < n, and
2. Wal<a<n Pla, 3, 1) are connected to Plo, x, 3, n),
where 1 < x, < n.

All these links are two-way connections. Hence, in the multi-
mesh network, all processors have a uniform degree of 4. These
interblock connections among the boundary processors will
henceforth be referred to as the interblock finks. Rule 1 interconnects

538

Fig. 2. Data movemants along the horizontal oycles.

two blocks in the vertical direction and, so, the comresponding links
are called vertical interblock links. Similarly, rule 2 defines the
horzontal interblock links.

We note that the processors Pla, =, 1, o) are connected to Plo, «,
n , o) which lie in the same block by means of interblock links.
Similarly, the processors Pls, 4, 3, 1) are connected to P«, 3 3, n),
again in the same block by interblock links. Thus, we see that four
of the boundary processors in each block are connected to some
other boundary processors in the same block. It is also to be noted
that one of these two connectionsg is in the horizontal direction,
while the other is in the vertical direction, which we will specially
refer to as the Jorizontal wraparound connection and the verticnl
wrip-aroind connection, respectively. An example of a multimesh
network for o= 3, is given in Fig. 1, where all the interblock links
are not shown,

IEEE TRHANSACTIONS ON COMPUTERS, VOL. 48, NO. 5 MAY 1980

C

3

3 TopoLoGiCAL PROPERTIES
In this section we explore several topological properties of the
proposed MM network,

3.1 Cycle Structures
The interblock links induce different cyeles in the MM network.

3.1.1 Cycles of Length n

Every wrap-around link in a block induces a cvele of length .
There are two such cveles in each block, one in the horizontal
direction and the other in the vertical direction. There are 2n* such
cveles of length n in the whole network.

3.1.2 Cycles of Length 2n
Due to the horizontal interblock links of the MM network, there is
acvele of length 2n between the Fth row of the block B(:, j) and the

IEEE TRAMSACTIONS ON COMPUTERS, WVOL. 48, NO.5 MAY 1980

539

Fig. 3. Possible paths between source and desfination blodks.

gth row of the block Bi k) for j# &1 < i< n Thus, there are
w(n — 1}/2 such horizontal cyeles of length 20 in a particular row of
processor blocks, Similarly, due to the vertical interblock links of
the MM petwork, there is a cvcle of length 20 between the &th
column of the block Bii. 7) and the ith column of the block Bk, §)
fork # .1 = § < n Also, there are nin — 1} /2 such wertical cycles in
a particular column of processor blocks. In total, there are n®(n — 1)
cveles of length 2n in the MM network.

The presence of these cyeles readily leads o the following
resulbs:

Lemma 1. For a given o, if we shift the data elements in Bio, «) through
n positions along the horizontal cydes, then the ith row elements of
Biex, jh will move to the jth row of Ble i)

Lemma 2. For a given 4, if we shift the data elements in B« 3) through
n positions alorg the vertical cycles, then the ith wlumn dements of
Bij. 3 will move to the gth column of Bii, 3).

Example. An example of dak movements along the horzontal
cveles ina single row of processor blocks is shown in Fig. 2 for
=23

3.1.3 Hamiltonian Cycle
It has been shownin [4] that there exists a Hamiltonian cyvele in the
MM network.

3.2 Diameter

Treating Fig. 1 as a representative topology of the proposed MM
network, we can see that there exist more than one path between
any two processors in the network. We will first show that there
exists a path of length less than or equal to 20 bebween any bwo
processors in the network. MNext, we will show that there exists a
pair of processors such that the shortest distance between them is
2.

Ty Ble.B) i,)| Bla.p)
2l TP}
—L _____ -
0, ' (B, 1}
‘ I B 1) B,
oy 204 -
|
(.) {n, 1)
B(ox,, ﬁ1} (1, w}]]{.[13, ﬁ) (0, o)
‘ T |
I:.B-.* l.:' (ﬁ-.'. nj |
- —_— TH}I lwz
|
I (. n
(B. 1] o od
Tin, o) (0. o)

Let the source processor be designated as Ploa, F, 2, 41, and
the destination processor as Ploe, &, xz, yz). The block Bloa, 51),
which the source processor lies in, will be referred to as the source
bipck. Similarly the block Blos, #.) containing the destination
processor will be referred to as the destination block. From the
discussions in Section 2, it is clear that each of the blocks
represented by Blog, =) and Bls, 3,) is directly connected to the
source block by one interblock link, Similarly, each of the blocks
represented by Blog, =) and B(s, 3) is directly connected to the
destination block by one interblock link, Henee, we claim that if
oy # oo oand #) £ Gy, owe must traverse through at least one
intermediate block to reach the destination processor fom the
source processor. For example, we can use either Blog, 3 or Blog,
) as an intermediate block to reach Blos, 45) from Blog, &), The
situation is clearly explained in Fig. 3.

Theorem 1. There aliays exists a path of length less than or equal to 2n
[from any processor Pley, 3, 2y, i) to another processor Plog, &, s,
wa) i the Mudti-Mesh netoork.

Proof. We join the processors Plog, &, 1, ag) and Plag, 3, o, 00) by
an imaginary vertical line and the processors Plog, 4, &, 1) and
Pleeg, 34, 2, n) by an imaginary hodzontal line in the source
block., These two lines divide the source block into four
quadrants, which we name as 501, 502, 503, and 504, as
shown in Fig. 3 (dotted lines). These four boundary processors
in the source block will be referred to as the source block exits,
Similarly, imaginary lines are drawn in the destination block
also, as shown in Fig. 3. Those lines divide the destination block
into four quadrants DO1, DO2, DO3, and D4 The four
boundary processors through which these imaginary lines are
drawn will be termed as the destination block entrics. From Fig. 3,
it is apparent that there are four processors in an intermed iate
block, out of which two are connected to the source block and

IEEE TRHANSACTIONS ON COMPUTERS, VOL. 48, NO. 5 MAY 1980

T Vil w241y
U o
nf+1.1 ,u'?—.].i (nid+1,m)
P b T
Tn’
W’
L1
11 nd e 1 ([u2Hl. nidf+1)

v’ n| ¥

W X

termed as the imtermediate block eniries, while the other twao,
cormected to the destination block, are termed as the inter
mediate block exits.

Depending on the position of the source and the destination
processors in some specific guadrants, we may have 16
different possibilities. Let us first consider one such case,
namely, where the source processor lies in the first quadrant
01, ie,1 = 5 = Frand 1 < oy = a2 and the destination
processor lies in DO, ie, 1< 52 < S and 1 < 4 < o, The
bwo possible paths PT, and PT; are considered as follows:

. PTy:Ployg, 3,009 = Plog, S, 85, 1) = Ploy, 82, 33,n1)

o Ploeg, B, o) = Plog, 32 1, 0q) = Plos, 32,20, 16).

2. PTz:Plog, 31,35, y1) = Plog, 54, Log) = Plas, 5, noy)

o Ploes, 31, Fa,n) = Ploe, 32 3, 1) = Plos, 3a, 22, 1)

The path lengths d, and d; of PTL and PT2, respectively, are

computed as follows:

di=(y=l+(Bm=m)+l+n=>3)+(rn=m)+14
[z = 1} 4 [eeg — g}

b=(r1=1}+jaz=gu)+1+in=o) +(n=>2)+14
(%1 = 22} + (g2 = 1)

Since (d + dz) /2 = 2n, it follows that there exists a path of length

less than or equal to 2a.

For the other 15 possible cases of source and destination
processor locations in various quadrants, we can also check that
[4] there always exists a path of length less than or equal o 2e.

Mext, we show that there exists at least one source -
destination pair in the network whose minimum distance is 2n.
For that, let us consider P(1.1.5+ 1.5+ 1) as the source
processor 5 and Pz 4+ 1.3+ L+ L+ 1} as the destinaton

»

processor D as shown in Fig. 4, where o is even. The four
possible paths of length 20 from the source to the destination
are as follows:

Path : sTUVWX D

Path2: ST U VWX D

Fig. 4. Four possible paths of length 2nfroma P[1, 1, 2 + 1, 2 + 1) to Pin2 + 1, n2 + 1, 02 + 1, n'2 + 1) for n= 6.

Path 3: 5P QVWXD

Path & SPQVW X' D

It hag been shown in [4] that, for the other exits from the
block B(L, 1}, the path length from the source to the destination
will not be smaller than 2n.

For odd n, by taking P{1 1.8 21 and Pt of1 ol atl)
as the source and destination processors, respectively, we can
show as above that the minimum path length between them is
0. Hence, the theorem. |

3.3 Fault-Diameter

We corsider the faulb-diameter of the MM network in presence of a
single node failure. If the faulty processor is an intermnal processor
of any block, then it can be bypassed by traversing two extra links.
If the faulty processor is a boundary processor, then the
corresponding interblock link will be affected. For the latter case,
we have the following result.

Lemma 3. If the faulty processor lies on the boundary of some block
Biex, 3y, it may imcrense the path length between any source
destination pair by at most 6.

Proof. Without loss of generality, let Pla, 3000} be the faulty
processor in Blo, F) IF the interblock link from the processor
Ple, #oen) to Plogx, 3.1} is included in the path between any
source-destination pair, then we can always by pass this link to
reach Plo,x, 3, 1) by detouring in the following way:

Pla.B8.an=1) =Pla, o+l n=1)
Pla,S.x+1l,n) = Pla,x+1,51)—
Plar+1. 5+ 1L1)=Plaf+1l,x4+1.n)
Pla, 34+ 1z n) = Ploa,x, 51,1} = Pla.x, 5. 1).
Thus, instead of just two links from Pl 4, 00 — 1), we need
eight links o reach P(a,r, 3. 1), Hence, the proof. o

Theorem 2. The diameter of the MM network in the presence of a single
node failure is 2u 4 6.

IEEE TRAMSACTIONS ON COMPUTERS, WVOL. 48, NO.5 MAY 1980

541

@ ‘ <

I @ i
(e) u
Seriler @ Dorlicsl receiver of cumment processor's dala
[] Curent precesaor Pelayend veveiver ol currenl processor's gl
loterhlock link

Fig. 5. Priarities of sanding data fo different processors. (a) Current processaor is an inlemal processar. (b) Current processor is a boundany processor and sender is an
intemal processor. (¢} Curmant processor is a boundary processor and sender i a boundary processar of fhe same blodk. (d) Current processaor is a boundary processar
and sender is a boundary processor of othar block. {8) Current processor is a comer processor and sender is a boundary processor of some othar block. () Current
processor is a comer processor and sendar is a boundary processor of the same block

Proof. Follows from Lemma 3 and Theorem 1]

Since every processor in the network is of degree 4, any internal
processor in a block will be disconnected from the remaining
nonfaulty processors if all of its four neighbors are faulty.
However, the intkerconnection between any two blocks of the
network is preserved even in presence of 4n — 9 faulty processors.
To show this interblock connectivity in the presence of mulliple
faults, we assume that all the faulty processors appear only on the
boundary of the blocks. The total number of boundary processors
through which a block is connected to other blocks is 4n — 8
[excluding two wrap-around conpections).

If the network has only 4e — 9 faulty nodes and all of them are
located at the boundary of a single block, say Bia,), then there
must be at least one boundary processor of Bl 3) from which an
interblock link can be used to go to some other block. Hence, the
interblock connectivity is preserved.

If, however, all the 4n — O faulty processors are not locaked at
the boundary of the block Bio,), even then each block will be
reachable from every other block because the possible number of
paths between any two blocks is increased if the 4n — 9 faulty

processors are distributed more evenly among different blocks.

4 POINT-TO-POINT COMMUNICATION ALGORITHM

The key idea of the point-to-point communication is based on
routing the message from the source processor to the destination
processor along the restricked path as discussed in the previous
sechon, We describe below the detiled steps for implementing the
idea. We will use a NULL identifier in the algorithm all four of
whose coordinate values are set to "0." Actually, NULL indicates
an invalid processor identifier.

542

B(1,1)

.-‘IL]” . - -
lf"j‘rl'. ‘ﬂ‘luj — " £ .
[i"'!n ‘il"-u.:' —*
() =y &
B(2,1)
Aly, = *
it
I:"J'"-Jﬂ - 'A":g_':.} b 9
['3431 *‘3.;1} A &
{a)
Ay (A A) (AL A (AL A
1 1 1 i
L o ' -
L iy []
B(1.1)
| & &
» L »
I:-&ll: &ITII '.ﬁ] {'Ij"]r- "J—"'_'”_]' tall'iII}
1 1 1
r~
»
B(2,1)
]
- - .
ib)

|IEEE TRANSACTIONS ON COMPUTERS, WOL. 48, NO. 5,

MAY 1900

B(1,2)

e I .]
(ﬂ'll."ﬁ-”) —Y
hh‘l: = T .
(A’ 1 A i) —!
{"I*I'.Ijg ’ 'ﬂ"hl].|} —uil >] -
B(2,2)
{"}'Izz ’ﬁ'l'zl} —
A e % 4

»]
AL (ALALY (ALADAL
1 l l
B(1.2) 1
&
{ilﬁ‘ali} 5‘31 I:-'j‘g;.- ﬂ:;) (i:.:. 34.:J
! 1 1 l
W
[1]
B(2,2)
[4

Fig. 6. (a) Contents of diflerent processors after Step 1. (b) Contents of diferent processors after Step 2.

4.1 Algorithm PP

Step 1: The source processor first determines the quadrant of the
source block it lies in It also finds the quadrant of the destination

block in which the destination processor lies. MNext, the two

possible paths from the source to the destination processor are

determined according to the method discussed in the previous
secion. The bwo paths are enumerated and the path with the
shorter length is chosen. By virtue of Theorem 1, one of these paths
must be of length less than or equal to 2n. The source processor

|IEEE TRANSACTIONS ON COMPUTERS, WOL. 48, MNO. 5 MAY 19932
(Apdy iy Y * i]
(84, 4,04,

A "1") 21 i"'i'a’ i"'-u joE—N 1
(A A LA AL
S | -
A Ay A Ay) ?
LT P L Y ik
; ; %
A Ay A ALY
B(2,1)
I;-'.:ll'l'l''.Ijl"'l'ﬂ".ll'ﬂ'-l- J _}.) 1
A LA LA LA
y r
A A Ay A -
(A LA AL LA
A 7 .'Jkl,” .-’l.l_;:l1 -"1';____.] —}-‘ L L]
(A A .44, — e a »
A I "J"-:_*. -'J"-H. A
N . .
A A LA LA,
; ; : >
P TR WO P 1 T T
Ay B -«4,...
A A, A LA
34 'Y »
54 ' - »

B(1.1)

543
{ '”“u?'- "*“:2'- "*“.1.2'- "*"42=—} » * k|
A Ay Ay A)
3 YR SRR W e 3 T T
{a‘l‘_1ﬁl_l ﬂ"a 'I—"'”_ﬂ—}'.' L L 5
IIIL“"H" &'11 Iﬁ" 5 III1"'-]-'- }
(A 8,8, 4. ' & - .
Ak A A Ay)
B{2.2)
'l"'"|~= ,-".w ﬁ.w ,-". Y T] - »
ﬁI " III1|L’:|"'Iﬁ".|'| ﬁ-l-l '}
(ﬂ'l'z‘ ‘ﬁ.".{‘ ﬂ'ﬁ' ﬂ'-u ¥ .l b
mlr a"""zr “*“12 “*"42'-
III"|'I'3" A‘Z.’i" A"l’i" 'A"_":-} i
(A A A A
el e Y] -
A A A AL
(<)
, P ' '
| CATEL VL W
,.-\I_‘_,.-L ,.-\1”,.-\ —> B : & &
A A A A
T T L . P — |
Y - -)
B(1,2)
(d)

Fig. 6 (continued). (c) Contents of different processors after Step 3. (d) Contents of diflerent processors after Step. 4.

appends three fields, each of four coordinate values, with the data
packet to be sent from the source to the destination processor.
These appended parts are:

I. Field 1: The identifier coordinates of the source block exit
PrOCeSSOE.

2. Field 2: The identifier coordinates of the intermediate block
exit processor,
3. Field 3 The identifier coordinates of the destination

PEOCESSOL,

The augmented data packet is then transmitted along the
intrablock links to the source block exit processor,

Step 2: The current processor reads the first field of the
augmented part of the recieved data packet If this identifier is
MNULL, then go to Step 3. If it is not NULL and not identical with
that of the current processor, then the data packet is transmitted
along the chosen path toward the processor whose identifier is
stored in the first field of the data packet received via one of the
intrablock/interblock links of the current processor. Otherwise, the

Sad

current processor changes the augmented part of the data packet
as follows:

1 field 1+« field 2;
2. field 2 — field 3; and
3. field 3 — NULL.

(Setting any field to NULL will be referred to as nudlification in our
later discussions.)
Repeat step 2.

Step 3: Stop.

It is clear that Step 2 of the algorithm PP will be executed 2n
times at most.

Example 1. Referring to Fig. 3, let the source processor be located
in 501 and the destination processor in D03, Let the chosen
path be Plag, 5, 2,90 — Plog, F1, 1 oag) — Plog, B, n, o) —

Plow, B4, 52, 1) = Plows, B, 5,) = Ploa, 5s, 2,). The data

packet in the source processor is augmented with the three 4-
tuple coordinates as follows

(exg, 5, 1, o) as field 1,

(exz, B4, 32 1) as field 2, and

(s, Bs, 2o, o) as field 3.

The first matkch is obtained at the processor Pleg, 4, 1, o) and,
from there, the packet is ransmitted along the interblock link to
Plewa, 4y, n, o) after the Grst nullification operation. Thus, the
first 4-tuple of the augmented part of the data packet, after this
step, would contain the identifier of the intermediate block exit
processor. The nullificaion operation is again performed by the
processor at Plog, &, F2, 1), where the next match is obtained.
Adter the second nullification operation is executed, the first 4-
tuple would contain the identifier of the destination processor,
Finally, the last match occurs at the destination processor,
which leads to the kermination of the algorithm.

b =

5 OMNE-TO-ALL BROADCAST

Each of the four neighbors of a processor is connected via its four
links which will be referred to as 1) left-link, 2) right-link, 3) up-
link, and 4) dowrnelink, respectively. If Pio. #.2,) is an internal
processor, then it is connecbed to Plo, &ox oy — 1), Plo, Fox, g4 1),
P, 30 — Loy, and Ple, 3.2 4 1,) by its left, right, up, and down
links, respectively. However, if Pio. 7.2, y) is aboundary processor
or a comer processor, then ome or two of these links will be
interblock links. As an example, the leftlink of the boundary
processor Plo, .o, 1) connects it to Plo.x, 3.a).

We assume here a single-port model for communication, i.e,
every processor sends its received data item through only one of its
links at a Hme. The essence of the algorithm is explained as
follows:

The four boundary /eorner processors situated directly along
the up, down, left, and right directions of the source processor
Pla, Bx.y) are Plo. 3. Lyl Plo,Sny), Plo,d.x 1), and
Pee, 4,0, n), respectively. Broadcast is starbed by sending the data
from the source processor along its four links successively in the
order of the nonincreasing distances from these four boundary /
corner processors. Each processor other than the source processor
is activated when it receives the data from one of its four
neighbors, When a processor receives the data for the first time,
it mkes the ollowing action:

(A) If the curent processor is an internal processor, then its
received dak is forwarded in the same direction first.

(B) If the current processor i a boundary processor, then dak is
sent to all the exits of the block at the earliest opportunity. There
may be three different cases as given below.

IEEE TRHANSACTIONS ON COMPUTERS, VOL. 48, NO. 5 MAY 1980

Case 1: Sender is an internal processor.
Case 2: Sender is a boundary processor of the same block.
Case 3: Sender is a boundary processor of some other block.

(C) If the current processor is a corner processor, then there may be
two different cases:

Case 1: Sender is a boundary processor of the same block.
Case 2: Sender is a boundary processor of some other block.

The priorities of sending dak through different links in all these
cases are shown in Figs. 5a through 56

The detailed steps of the broadcast algorithm are given in [4]
and are omitted here due to brevity,

It can be checked that sending of data ina specific direction can
at most be delayed by three units in the source processor. At the
boundary of the source block, the data mav again be delaved by
twio units of Hme after it is received. In the intermediate block, the
data may be delayed by at most one time unit o forward it to
another block. The delay in the destination block is two Hme units.
Hence, the total delay is no more than eight units of time, e, the
broadeast can be completed in 2n 4+ 8 time units starting from the
instant of sending the data from the source processor.

6 MuLTICAST

We now describe the algorithm for all-to-all broadeast in which we
assume that at a particular instant of ime all the processors are
transmiting data in the same direction and to only one of the four
neighbors,

6.1 Algorithm Multicast

Initially, let the data elements Do, 3. a0y} reside in the processors
Ple, 3,0, y) for all values of o, 3.0, and o

& Step L Transmit every data element horizontally along the
right links (intrablock or interblock) of the processors
sucoessively through 2n — 1 links (however, the elements
Dis, 4, 3.#) need to be transmitted only through » — 1
successive links),

Fig. 6a shows the situation for n = 4, where A, denotes
the set of all the » data elements in the £ row of the block
B(i. j).

& Step 2: For 4 # x, transmit vertically the set of » data
elements DNa, J.x.#) currently residing in Pla, 3, 0.9)
along the upward links of the processors successively
through 2n — 1 links (however, the data elements
Do, e, o0} meed 0 be transmitted only through w — 1
liriks).

Fig. 6b shows only the contents Do, 4+, #) and
Diy. 3.« #) in each processor after this step, where A
denotes the set of initial data elements in all the processors
of the block Bii. 7).

& Step 3 The set of o data elements Diy, 4.« #) residing in
Plee, 4, y) for o # yis now transmitted horizontally along
the right links successively through the links of the
respective horizontal oveles of length o or 2n.

Fig. fc shows the contents of each processor at this
point of time.

e Step 4: The set of o data elements D, x, » «) received by
Ple, 3. 2,y) i8 now transmitted vertically through n -1
successive links.

Fig. 6d shows the situaon for n = 4.

62 Time Complexity

Let ¢y be the time required for sending a single data element
through a link. Then, the total time required for multicast is
(et 0 n? = 1y

IEEE TRAMSACTIONS ON COMPUTERS, WVOL. 48, NO.5 MAY 1980

1.1 1.2 1.3 1.6
2] &] L
21 2.2 23 26
® & ® ®
31 32 33 36
e @] L
6.1 6.2 [6.6
[] [] @
3,1 5.2 53 A0
]] & &
4.1 4.2 4,3 306
]]] &
701 7273 74
[] [] & &
A | B2 5.3 .
¢] ® L
9,1 %2 93 05

545

15 14 17 L& 18
9 ¢ o O
25 24 27 28 28
® ¢ o @ ®
35 34 37 38 3e
9 o 9 L
65 64 67 63 68
¢ L] ®
55 54 57 58 A9

® e 0 ¢
45 14 47 48 48

@ e 0 ¢
75 74 7 T8 7%
¢ O e 0 ¢

55 84 %7 %8 Ky

¢ O e O ¢
95 94 97 9K 99
¢ O ® @ ¢

Fig. 7. Initial distribution of elemants of a % =« 9 matix on the MM network for emulating a % = 9 mash.

7 EMULATING AN n° = n° MESH ON THE MM
NETWORK

Many image processing algorithms are mapped onto the mesh
architecture because of one useful property of the mesh. In a
simple »° % n? mesh, a processor designated as Pl y) can know
the data contained in four of its neighbors namely, Pl 4+ 1, ¢ £ 1),
I <, < w?, in constant time, which is a primitive requirement
for most of the image processing algorithms. Henceforth, we will
refer bo this property as the 4-neighbor property of a mesh. It may
appear at first sight that this 4-neighbor property is destroyved in
the MM network because of the boundary processors of each block.
A example will help in understanding the problem more clearly.
In the MM network, the processors Pie, « o0} are directly
connected to the processors Ple,s.x £ Ln) by two intrablock
links in the vertical direction, for x # 1 or w They are also
connected to the processors designated as Ple, s, x.n — 1} by an
intrablock link in the horizontal direction. But, the boundary/
cormer processors of a block are not adjacent to the corresponding
processors of the adjacent block., This restriction could be a
negative point for using the MM network for implementation of
image processing algorthms. However, in this section, we will
show that, for odd 3 the processors P« d.x.n) and
P« 3+ 1,x.n), & < n, can exchange this data in three steps, ie,
(1) time. Thus, for odd & Ps.3.x.n) and Ple F4 1,1, n),
1 < 3 <n, arg, in a sense, neighbors of each other. During the
same time, for even &, the processors Pie 3. 1.1} and
Ple.F~1,2.1), 1 <3< n can simultaneously exchange their
corresponding data. Similarly, the boundary /corner processors
in the vertical direction can also exchange their data in the same
amount of Hme. Thus, the 4-neighbor property of the mesh
interconnection is emulated by the MM network in constant time.
An example showing the initial distribution of data o preserve

desired adjacency among the different dat elements on an MM
network with w = 3 is shown in Fig. 7. The algorithm for such
interblock communication in the horizontal direction in O1) time
is presented below:

7.1 Algorithm E

Step 1 The processors identified as Ple, ¢, x. 0} send their data
elements to Pie, o, «, 1} using the interblock links in the horizontal
direction. At the same time, P« «. x 1) send their data o the
processors Pls.x, eon), ¥, 1 < 5 < n

Step 2: The processors Ple,x, 4.1} exchange their data with the
processors Ple,x, 3 + L 1), for 3= 1, 3, 5, -+, This can be done
because each of the coresponding two processors is directy
connecked by an intrablock link. Similarly, the processors
Pis.x. 4 n) exchange their data with the processors
Ple,x.3 +1,n) for 3=2,4,6, ..

Step 3: The processors Pie. o, «, 1) traremit their daka to Ple, =, o0}
using the interblock links in the horizontal direction and then stop.
Similarly, the processors Ple.r.+.n) transmit their data to
Pis,#,x. 1} and then stop.

This result is significant in the sense that any algorithm that
runs in Of fin)) ime in a simple »° x »° mesh will also run in
order O(gin)) (< O(f(n)) ime in the MM network.

8 APPLICATION EXAMPLES

It should be noted that the result of the emulation merely gives us
an upper bound on the order of the running time of the algorithm.
However, algorithms for many mal-life problems can be suitably
restructured and then mapped on the MM network, resulting in a
time complexity which will be of much lesser order than that when
implemented on an w® % ¥ mesh. This restructuring should

546

exploit the advantage offered by the interblock links which result
in the reduced diameter of the MM network. We illustrate this
point by giving below a few examples of typical real-life
applications,

Some of the algorithms implemented on mesh require data
communication among the diametrically opposite processors at
least once. In such silnations, the diameter of the network will play
the major role in determining the lower bound on the running
tHme, Such algorithms can be easily implemented on the MM
network, giving much smaller lower bounds on the order of the
running time. For example, finding the sum, average, minimum,
maximum, etc, of n! data points, using an n* = »* mesh, cannot be
accomplished in less than O(n®) time units. However, using the
MM network, they can be execuled in Ofn) Hme units only.
Lagrange's interpolation is an example of one nontrivial problem
which also falls in this category. Matrix trarspose is another
problem of this type.

On the other hand, there exist some algorithms for the mesh
where the most distantly located processors may not need to
communicate with each other or the total number of computations
needing to be done overrides this communication time, Matrix
multiplicaion is a representative example of such algorithms.
Even in such cases, it is possible to achieve an improvement on the
Hime complexity by using the MM network, by suitably modifyving
the corresponding algorthm for the mesh. As an example, we will
show, in this section, how two p = p matrices can be multiplied by
using the MM network of a suitable size, in O(p'™") time. Using the
idea of matrix multiplication, discrete Fourier transform of p data
points can also be computed in O™ Hme.

8.1 Summation /Average /Minimum /Maximum Problem

We first discuss the problem of summing up »' data values in »'
processors. The problem of finding the average, minimum and
maximum of »' elements can also be similarly dealt with.

We assume that cach processor will have two registers, referred
to as the H and V registers, for dat communication in the
horizontal and wvertical direcions, respectively. For temporary
storage of the data received along one of these links, it uses bwo
more registers, denoted by T, (for the horizontal direction) and T,
(for the vertical direction). Each processor will be assumed to have
two other emporary registers T1 and T2, It may be noted that all
these registers are not needed for the implementation of this
algorithm.

The algorithm is presented below:

Algorithm §
Step 1:
Yo, Fand y, 1 < o, 5.4 < n do in parallel
for i = n — 1 downto 1do
Vi, Bod) — Vi 364 Ly + Vie, 3,640
Fo Ple, 3.1, y) contains the partial sum of » values «/
Hio. 3, 1. y) ~— Vi 3, I._.l,r{?a
for j = n— 1 downto 1 do
Hin, 3, |._,1'{ — Hio, 3. 1,74 1} + Hle. 3, 1 §);
J# Summing along the first row in each blu:fc, the sum of the
n data values of the block is finally brought to the processor
Pla, 3, 1 1) o/
Vi 3,11}~ Hio. 3,1,1);
Vil.Ana)— Vie 3 1.1);
/ « Using the vertical interblock links the partial sums of the blocks
Bi«. 7} are transmitbed to the wth of the block B(1, 3) «/
Step 2
¥4, 1< 4< ndoin parallel
H(l &.n o) — V(1 8.n,0)
for j =n— 1 downto 1 do
Hil 3.n. g}~ H(L.3nj+ 1) + HEI. g.on, gk)
e P14 0. 1) now contairs the partial sum of the »° elements
which resided in the «° processors of n blocks making a column of
the block matrix «/
V(1. 5.%,1) — H(1. 5.0 1);
VLA L1}~ V(1.3 n 1)/ « using the vertical wrap-around
connection «

IEEE TRHANSACTIONS ON COMPUTERS, VOL. 48, NO. 5 MAY 1980

Hil. 3. 1.1})+~ V(1.5 1,1}
H(l.1,8.n)+~ H(1,5.1.1);
J# The partial sums are brought to the nth column of the block
B(1.1) »/
Step 3:

V(11,5 n) — H(LL 3.n)

for i =n — 1 downto 1 do

V(L 1in)— V(LLi+1n)+ V(1 1ink

J= The final result is computed in P11, 1n) =/

H(L1,1n)~ V(1.1 n)k
J+ Using a horzontal wrap-around connection, the final result is
brought to P(1, 1, 1, 1) «/

H{1, 1,1, 1) — H(1,1,1,n);

The timing analvsis of the algorithm presented above can
readily be done. Let each assignment (communication) operation
take t, time units and one addition operation require t, Hme units.
However, each "+ operation shown in the algorithm consists of
one communication and ore addition suboperation, making the
total time required to be (k- + t.). Hence, Step 1 takes
(2 4 Ljte 4 2(n — 1)t; time units. Steps 2 and 3 ke (0 4+ 4t 4
(= Ljte and (n 4 2}t + (n — 1)}t Hme units, respectively. Hence,
the total time taken is no more than (4o 4 Tt +4(n — 1), time
units, That is, the algorithm runs in O(n) time.

If we want to add kn' elements, then, at the very beginning, &
elements are to be supplied and added in each processor requiring
e 4 [k — 1)ty ime units, The other skeps of the algorithm remain
the same.

82 Lagrange's Interpolation

Let vy, t, ++ 0, vy be the given values of Flu) at w, wa, -
respectively, e, @ = Flu). Then, Filux) at the value @ can be
interpolated using the N-point Lagrange’s interpolation formoula
[10] as follows:

Yo Uy

Fla) = w(a) Z [oif (= = wi)’ (i }}].

where
v = Fla) ml{@) = (= w }(F —)T = wg) o (T = uy),
and
) = (o = w0y Yoy = wa) oo (g = vy Mg = w40} - (o = uy).

821 Parallel implementation Using the MM Network

We would use an MM network of n' processors for N (= n®)-point
Lagrange's interpolation. The basic idea of our propesed algorithm
iz as follows:

Initially, the data elements w, ., and e, are fed o the
processors Pla, Fon. 1) and Pla, 8 Ln), respectively, Ve 3,
1 <a,3<n Also, 7 is fed to the processor P(1, 1, 1, 1). v, qn4a
are fed to the processors Pla, 15,1}, Yo, 8 1 < a3 < n

The differences (w—w)s are computed at the diagonal
processors of the diagonal blocks, which are partially multiplied
in each block. These are then brought to a single block by using the
interblock links, the product kerm =%} is computed there, and
shored in P(1,1,1,1).

Similarly, each of the differences (& —w). (o — wy), ete,
required for evaluating (7 — w)r'(e;) for every 4, i=1,2,.. . .0, is
computed in a separate processor. These differences are then
partially multiplied in each block and then brought to a single
block for final multiplication by using the interblock links. Vi, o is
then divided by this product (& — wj7'(w). By using the interblock
links again, these results are brought to a single block, summed up
there, and then multiplied by 7(@) to give the final interpolated
value The detailed skeps of the algorithm, given in (4], run in Ofn)
tirme.

IEEE TRAMSACTIONS ON COMPUTERS, WVOL. 48, NO.5 MAY 1980

o a7 4y

12 Na
ELZ] d
By Byn Hy3day

Ayg gy gy

g et g il gl Uy 5

5oy

Lln.- i.,

36057 Aago

i

479

i

47 741 —15 O

"1 ﬂ ﬂ i ﬂ_,ﬂ

51852 A5y 85y fgs fag O

X ﬂ_
TURE s

Ao B g ey Mg ol

ey py By B B g 8y B B it

A Ry g By A A A B e

aﬁ:‘é WM OM M

547
b,
b, bE
b b, b,
hlﬁ bll"- b::'-' b13
h11 hl"ﬂ b'!ﬁ b.l.'.' h'ﬁ
Ijl.: h-1 h:!S]Ji!‘- I:,Z':-'-' hilﬁ
h:g h;_= h.ﬂ h.ﬁ b::_.a b.'r.' h\-:
h' | hz: h';.i h11 h:’ﬁ bm b—' hw
hll h12 hn hi-i hr‘f b.‘-ﬁ b:-r-' 2t
b, b, b, b, b, b, x x
by b, b, b, b, »x x x
hﬁl hﬁ‘;" h.ﬂ hm B * X *
b, b, b, X x x x x
1] b, x X x ®O% ™
b % m os o o oW %
| -I - - .II - .I ®
s Ty Ve B U Lo
L L]] - - & - -
Wl al . . -l .l Al ..
= 21 = 12 L 4 L = = 5 L 0 ¢ oy L =
]] L ® - L J - -
S - - L
Ca O Uy Uy By Uy Uy Cryg
* > . @ - - - L
Al Al a1 . -l Al a1 3o
= 41 = 42 C 45 C H C 45 C 44 C =5 C 45
o] L -» - -» » &
al Al . . Al . -l .
ehae il el ol € B By
* & © & & = = -
a1 al Al a1 -1 Al 1l ..
ChtCablulu Ca Ty O Cy
» L] - - - - - &
Al el Al -l -1 -l -al ats
ghoodio gt ol el el gl e
- - ® - -] L] -
alt 1l al =l -1 o 1l o
geach e R By €h, Bl 85

- one unil delay
® - A PIOCCSSOT

Fig. 8. Computation of varous parfial products in the block B(1, 1).

If the number of given points is increased by p times, Le, the
values of Flu) are supplied at pV (= po”} different points, then the
algorithm can also be suitably mapped on the MM network to run
in O n) time [4].

As the number of points is increased from N o pV, the number
of terms to be multiplied in computing =%} and ='(x) will also be
increased by p times. Moreover, the number of lerms to be added
to evaluate F@) will also be increased from N to V. But, all the
terms have to be accommodated in the »' processors of the MM
network. This can be done in the following way: The pV input
values are grouped in p sets:
way oo [H:.,. N1t U |

{eeg, v, uw) fuewpn e, e

For a given input set to the V rows, the columns are successively
fed with possible input sets and, each time, the required product
terms are evaluated. Then, the input sets to the rows are
successively changed and the above procedure is repeated to
generate the other partial product components and, finally, the
interpolated value is found at the processor P(1, 1, 1, 1) The

algorithm for V-point Lagrange's interpolation can be suitably
modified for these extra computations by using some more extra
registers. Complexity of the modified algorithm will be O(p"n).

8.3 Matrix Transpose

An noxn matix can be trarsposed on a 2D mesh in 2(n — 1)
communication steps [1]. We show below that an w® » »° matrix
can be transposed on the MM network contining o' elements in
4 communication steps. To describe the algorithm for
transposing a matrix on the MM nebtwork, let us denote the
column j of the given matrix to be transposed by:

B

e,
|:'

cm

where CF k=1.2.... is again a column of » elements

548 IEEE TRHANSACTIONS ON COMPUTERS, VOL. 48, NO. 5 MAY 1980

eyt 1o B it 20+ U 1oy Similarly, the ith row of the Step 3: Move the fnu‘elemmtﬁ of each block through » steps along
matrix can be denoted by: the horizontal cyeles (refer o Lemma 1).

RRE.R Example. The matrix in the above example takes the following

where 5 k= 1,2, is again a row of n elements form after this step:

< 1 @2 3 edd
(k=1 s k= Tnet2s " (1 men - E‘}, | EJJ 2 EJJ 3 {;j: 1
For example, the 4 x 4* matrix in terms of) can be viewed as GloGEroGEroGY
Ch' O O Ot
et B e RO RO Gl O O
CE G G O O G Oy Oy o S L T I §
of f Gfoof Cs? of OF o8 G GY G GY
OfF ot ooyt o ool ot o {','i“j {'_'i“:i {',:]:”: {'_‘iu:
Ci Cu” Cu" Gy
{"”.j Cio Chh Ch Cla Cu Ciy Ci
Cd Ch Ch Ch Chy Ch Ch Cis
Cf o, O Ch O 05, Oh Ch
Oy {'1]'” {'.']'] {';]'3 {']'; {'.'J'I {'.']'_.I {',']'ﬁ

The column elements 7%, €40, %% and 0 will constitute the
initial contents of the processor columns in block B(1, 1). Similarly,
the block B(1, 2) will initially contain the elements of (', O, O,
and O3, and so0 on. In general, the n' elements of the given matrix
will be initially stored in o' processors of the MM network so that Example. It can be checked that, after step 4, the matrix in the
the » columns of the block B{i, j) will contain the elements of

Step 4: Move the column elements of each block through « steps
along the vertical cyeles.

above example takes the following form:

Ol Oy oapyae - Oy respectively. The algorithm for matrix
transpose s now given below. R_i R.:!; Rijg Ri;;
Algorithm T v e L P
Step 1: Move the column elements of each block through o steps BOR Ry Ry
along the vertical cyvcles (refer b Lemma 2). Ry R; Ry Ry
Example. After this step, the 16 = 16 matrix in the above example R R R, R,
takes the form: R RE Ry, Ry,
0 s mEs s s omw wma R} R R R,
L8 1 L L L 1 L8 1 C C 5 L L roRY m, R
{.-3] L {'__25 {.3' {-..,:i] Ce {(i's {-'(il
o ul ol o L o of of o
T oo ST o Ca' OF O oy
Co O G G Chy Ch Ch Ch
'l:--'.]ﬂ:I {-:T:III {-"?I;II {-‘1]III {-"?I {'?I {-"'ilsl {;]II F F
(] 1! {'_"]2] {'__1331 {'__-]I] 'r-":il.'_. {z‘]:'_-. {’;;5__,. {’__‘]l_,‘l Mote that the elements R.;’, M i_, R.;", and R]I are now stored in
c2l o, O Ch Cic Cis Ch Cis block B(l, 1).

Step 2: Transpose each block in parallel as in a 2D mesh. This will ~ Step 5 Transpose each block in parallel using 2(n — 1) steps.
take 2(n — 1) routing steps.

Example. The matrix in the above example takes the following
Example. Denoting the transpose of O by €F * (a row vector), the

; ko k.
matrix elements of the above example are then redistributed as: form, where I, * is the transpose (a column vector) of 1"
i1 2 3 ¢ 4 i1 2 | i
ool gl ooy BB ORT R R, OB ORS R
{’_1]' 2 e j’l z {’,‘-]'js 2 B B R R R' R R? R!
{_3 o {';:J 3 {_?J 5 {_‘}j-: A ' B 2 R Rm* [2 R g
G Gt G 6 R R R® R ' R® &' R
{-_; 1 {-".éli 1 {-_f]“ 1 {'__';_I 1 R;I:s : ‘I—"':J:sj JI1:";“:1:; : 1":':-‘11:5 :
F I o B o T o - RL]I RL]I “14 14
] LI 1 14 .Irlll 1 .Irihl a [Il.' 3 .Irlhl i
i oF? oY ot 15 g o T sy
2 (4] 1 14 .Irlhl 1 .Irlll 2 .Irlll o ﬁl.' I
oSl o b o T 16 16 1 16
Step 6: Move the column elements of each block again through «
steps along the vertical cyeles.
Example. After Step 6, the 16 = 16 matrix in the above example
The elements ¢, %, ¢, %, "% and ¢, ' are the current takes the following form, which is nothing but the trarspose of

contents of the block B(1, 1), and 20 on. the original matrix:

IEEE TRAMSACTIONS ON COMPUTERS, WVOL. 48, NO.5 MAY 1980

549

= R £ ey o N x| s
Bl B(1.2) Bil.3) P l.d) Ril.5) EBl.6) Bl Ril.%}
Clye C, | E Cy c'. Ce L Cﬁt.:c- C'ls.l.c
L £ e e gl S G, o
132.1) 13i2.2) {25} B2, Bi25 B2 B2.7) Bi2.8}
Gl ek El Ch G B 0 S

Fig. 8. Computation of parial produdts in the first and second rows of processor blodks.

mlopt gt g R m! gl Rt
T R R R® R R® R? R?
RS RLY R ORS Ry R ps R
RY RY RY R RY R4 RY R

R:IZS : "rr:ll : "rr:l.- : R:I(i ;

it gt ptogd

R:IZS : "rrl]l : R:I.- . R:I(i :

Mt mt mt mt

Time Complexity: Seps 1, 3, 4, and 6 each require » steps of
data communication, whereas Steps 2 and 5 each require 2(n — 1)
routing steps. Therefore, the total time taken to transpose the o =
n? matrix in an MM network = 4n +2.2(n = 1) = 8n — 4 commu-
nication steps.

8.4 Matrix Multiplication

We now describe the outline of the algorithm for multiplving two
matrices by the MM network. We would multiply two square
matrices A and B, eachofsize p % p, using an MM network with '
processors, such that ° = w" The algorithm aims at exploiting the
advantages of the interblock links in an appropriake way, resulting
in Op") computational time using ¢ processors. We would,
however, assume that each block of the MM network can handle
input/output operations through one of its row boundaries (e.g.,
top row boundary) and one column boundary (eg., left column
boundary). It may be noted that btwo p « p matrices can be
multiplied in a simple 2D mesh in Ofp) time. The AT-cost of the
proposed algorithm is identical with that of matrix multiplication
on a 2D mesh, Le, O(p').

To begin with, let p=m® and let us consider an MM network
containing w" blocks, each block being an w® < m”® mesh In
contrast to the matrix multiplication on a 2D mesh, where only one
processor is fully responsible for computing one element)) of the
product matrix £ = A = B), we plan to compute 7 ; partially in
several processors and then sum these parts together. To be
precise, €' is broken down into m”® parts denoted by 7, €7,
{'.‘-I"J. e {'.‘I":. The scheme is illustrated in Figs. 8 and 9 for p = 32,
ie, m=2 and n==8 (), is computed in four parts on four
processors P(1, 1, 1, 1), (1,2, 1, 1), P(1, 3, 1, 1), and (1, 4, 1, 1),
respecively. The rows of matrix A and the columns of matrix B
have been partitioned accordingly to be input to different blocks of
processors. Fig, 8 shows the necessary data inputs for the block
Bil, 1) of the MM network. The different parts of ', 5, 1 < i < 8§,
L= =32, computed by different processors of the first and
second rows of blocks have been indicated in Fig. 9 (in the figure,
the parts of () s computed only by the top left comer processor
and the bottom right corner processor of every block have been
shown). As shown in Fig. 9, the processor blocks B(1, 1) through

B(l, 4) compute 5, 1 =i <8, 1=7 <8 and the blocks B(1.5)
through B(1.8) compute) 5, 1 =i < 8, 9 < j < 16, Similarly, the
processor blocks B(2.1) through Bi2.4) compute ' 5, 1 <i <8
and 17 = § = 24, while the blocks B(2.5) through B(2,8) compute
s 1 =i < Band 25 < j < 32, Hence, eight such rows are enough
to compube all the O s in parallel.

The motivation behind such a partitioning scheme can be
understood as follows: Computation of % requires m” multi-
plications and " additions. But, computing the partial product
{'.‘IJ'J, 1< k< m® needs only wm® multiplication and wm* additions
and, to obtain) ;| from the {"."Js;, one needs to perform only m?
additions. If all the {'."I")s; can be computed in parallel, each in a
different processor, then the ime needed for computing O will be
reduced from Olm®) to O(m®).

For clarity of understanding, we have introd uced the idea of O-
blocks. We divide the output matrix € into ' smaller blocks, each
of size m® « m®. Each of these blocks will be referred to as an O-
block, which contire m" elements of the product matrix. An
example of such a partitioning into O-blocks has been shown in
Fig. 10 for p=32. Each O-block is designated using two
coordinates r and s 1< r.s<m?, such that the Oblockir.s)
consists of the s for (r=1pn*+1<i=rm® and
{8 = 1pn® 4 1< j < wm®. As described above, all the m” different
partial products of (7, will be computed by m® processors in
parallel. Thus, to compute one O-block, we need m® processors.
One row of blocks in the MM network consisting of m® = m® = m”
processors will be able to compute m O-blocks in parallel. There
are m” rows of blocks in the MM network. Hence, all the m' O-
blocks can be computed in parallel, in a Hime upper bounded by
the time needed for computing m O-blocks by one row of blocks in
the MM network. Again, inside one row, each of these m O-blocks
can be computed in parallel. Finally, we conclude that the time
taken for obtaining all the elements of the product matrix is upper
bounded by the time needed for computing one O-block, Le,
Oim™).

We shall now examine in deail how the interblock links of the
MM network help us in achieving the required parallelism. Any
bwio processors ina row of blocks can communicate bebween them
without using any of the vertical interblock links coming out of
those blocks, This leads to the first stage of parallelism. Computa-
tion of O-blocks in different rows can be carried out in parallel
without interacting with any other row. We use m® blocks in
Bl #) for computing one O-block. The next m® blocks will
compute the next O-block and so on. As an example, let the
processor blocks B, 1) through Bla, m?) compute the elements of
the O-blockir.s}, 1=vs<m* The partial products CF,
1< k< m®, ane computed in the processors situated in different
blocks. Thus, Pla,d.x.y) computes the partial product

550

|IEEE TRANSACTIONS ON COMPUTERS,

Cia C, BN

O-klack (1.1 | O-Mock (1,2)

Cia

C:klock {13}

':'I.

23

O-hlock {1.4)

VOL. 48, NO. 5 MAY 1992

'J.?_l_i‘. L2

LA

ILereat O-Blocks

24, 1

oy G £ B
L Ci Cu. i o
Crblock (2,1 | O-hlack (2,2} Crhlock (2.3 Crblock (2.4)
LB (e G G
£ G € G
O-block (3,1 | O-block (3,2) O-block (3,3 O-block (3.4

ut the DuLEul M

trx :
PRt L:;, i

Cus Cs

L

C:-hlock (4,13 | (3-hlock (4.2}

{"52..3 {"52,. 1§

C

2517

2R A

O-hlock (4.3) Crhlock (4.4

Cap

CEE. 52

Fig. 10. The differant O-blocks in the output matro:.

i

Ot oty Henoe, in each block, w® different partial
products, one each for wm" output elements, can be computed in
parallel.

We need to add these partial products selectively to obtain the
output elements. The m* partial products needed for computing
one oubput element reside in the processors which lie inom?
different processor blocks in the same row of blocks, Hence, we
need to bring the contents of the m® processors, designated as
Plee, do, g, 1= 8 < w®, into one column of a processor block. By
taking advantage of the horizontal cycles of length » and 2w, we
can accomplish this data transfer in m® time. Referring to Fig. 2, as
an example, our goal is to bring each of A5, Bis, Os, Ps, (05, M8,
Xis Vs, and Zs (1 =< 3) to asingle column. The necessary data
movements for bringing the corresponding terms into the same
column of a processor block are performed inthree communication
steps, as shown in the figure.

In general, processor Plo, d.r,) sends its data value to its
adjacent processor Plo, 4.0,y — 1) and receives the data sent by the
processor Plo, 4.,y 4 1), emploving the intrablock link or inter-
block link, whichever is present. This step is repeated m® times by
each processor independently. Finally, the processor in a column
of a particular block in the MM network designated by Pl 3,0),
1 =4, x.y<wm® contains the content of the processor
Plec,e, o — g+ 1) Out of the w?® partial products brought to a
specific column, the set of corsecutive m® partial products are to be
added to generate mn different) s in each column.

8.4.1 Exact Timing Analysis

In a block B{a, 7 of the MM network, each of the m" processors
independently computes one partial product. The Hme needed for
computing all these partial products is 3m® — 2 [1]. The required
partial products are brought to the same column of a processor
block in another w® time units. To generate each) |, only (m® ~ 1)
summations are to be performed. Hence, the total time needed will
be (4mn® +m” — 3} In other words, we can multiply two pxp
matrices in Ofp™") time using p™* processors of the MM network.
Thus, the AT-cost of the algorithm is Ofp*), which is identical with
that in the case of a 2D mesh.

8.4.2 Multiplication of Higher Order Matrices

Two square matrices A and 7, each of size kp = kp. & > 1, can also
be multiplied by using an MM-network with only «' processsors.
In this case, (' is broken down into km® parts denoted by (7},
CEe OFY, where 1247 < km® Assuming that the output
matrix (7 is partiioned in & different blocks, each of size p < p, the
3 belonging to each of these i~ blocks are successively computed
in & stages. The kn” different components of each (7 are
computed by m” different blocks, as before, in b successive steps.

Example. Form = 2 and & = 2, each of the matrices 4, B, and Cisa
64« 6 matrin, Oy will now have © L CF L O a8 the eight
components. The blocks B(1, 1) through B(1, 4) will compute 7],
through O in the first step and C7) through O3, in the second
step, which are summed together to compute). Considering
all the & (= 4) blocks of the O matrix, the processor block B(1, 1)
will be responsible for successively computing the following
components of O in four different stages:

Stage 1: O - O3 05, - 0B,

Stage 2: {"]J_.“ Ve f: o {"'j'_.“ - -{";;_III
Stage 3: Coy o Clnw Cing - Clng
Stage & Cpy 4+ Clgayd Gz Clinao

In general, itis thus possible to multiply bwo kp < kp matrices in
O ™) = O kp)™) ime on an MM network having only
! processors.

8.5 Discrete Fourier Transform

Since DFT computation can be formulated in terms of a matrix by
veckor multiplication, it follows from the above technique for
matrix multiplication that the discrete Fourier trarsform of p
sample points can be computed on an MM network containing p*!
processors in Op"") time. This can also be compared to Op) time
on a posop mesh,

9 GENERALZED MM NETWORK

The difference between the number of processors of two successive
MM networks {ie., for two consecutive values of n) is

IEEE TRAMSACTIONS ON COMPUTERS, WVOL. 48, NO.5 MAY 1980

TABLE 1

m { n | Number of || m | n | Number of
Processors Processors
313 g1 417 T84
3|4 144 56 850G
3145 225 4|8 1024
4|4 256 5|7 1225
316 324 G |6 1256
4135 400 5|8 1600
3|7 441 617 1764
318 a76 6|8 2304
4 | 6 876 717 2401
5185 . 625 7|8 3136
319 729 3|8 4096

(n+1)' = nt, which increases as Ofn®). This difference can,
however, be reduced if, instead of taking n = n meshes as the
constituent blocks, we take wm » n meshes for any m.n = 3,
arranging wmn number of such meshes in the form of an n o« m
matrix. The interblock links can be defined in the same manner as
in Section 2 The diameter of such a structure can be found o be
i+ 7. Table 1shows the total number of processors (e, m®ne®) for
different values of m and n. We see that the number of processors
iz 576 for both i = 3.0 = 8 and m = 4.0 = . In such cases where
the number of processors is same for different pairs of values for m
and n, one can choose the structure with m and » closer to each
other so that the diameter is minimum among all such possible
structures. The algorithms for different types of dak commounica-
ton, as well as for various real-life applications, can be suitably
restructured to fit into the generalized version of the MM network.

10 Conclusion

A new topology for processor interconnection, called MM net-
waork, with ! processors and a uniform node degree of four, has
been proposed in this paper. The diameter of the network is 2n
and, under single node failure, the diameter increases only by 6.
The network has a Hamilbonian cvele, Some important commu-
nication algorithms, like point-to-point data communicalion, one-
to-all broadeast, and multicast on this network, have been
discussed. Wormhole routing for complete exchange in this
network has been discussed in [5]. An algorithm for emulating
an n? ¥ 0 mesh by the proposed network has also been presented.
Simple algorithms for finding the sum, average, minimum, and
maximum of »' data values, which involve communicatons
among the farthest processors of the network, has been shown to
be implemented in O(n) time on this network. Algorithms for
nontrivial problems, e.g, Lagrange’s interpolation, matrix brans-
pose, matrix multiplication, DFT, have also been efficiently
implemented on this network. Another paper [6] shows that o'
data elements can be sorted on this network in O(n) time.

551

ACKNOWLEDGMENTS

A preliminary small version of some aspects of this work appeared
in the Procedings of the Intermational Parallel Processing Symiposim
pp. 1721, held in Santa Barbara, Califomia, 25-28 April 1995,

REFERENCES

[5G Akl The Design and Amalisis of Paralld Algoritims. New York: Prentice
Hall International, Inc, 1985,

2] M. Atallah and R. Kesaraju, "Graph Problems on a Mesh Connected
Processar Army,” | ACM, val. 31, pp. 649667, 1983,

[3] 5H. Bokhari, "Finding Maximum on an Array Processor with a Global
Bus," IEEE Trans Compulers, vol 33, no. 2, pp. 13313, Feb. 1984,

Ml ML De, "Design of Efficient Paralle] Algorithmes and Architectures for Some
Mumerk and Mon-Mumeric Problems,” PhD thesis, LU, Caleutla, 1997,

[3] M. De, B. Kundu, and B.P. Sinha, “Womhole Routing for Complete
Exchange in Multi-Mesh,” Prac. Fowrth Int'] Conf. High-Performance
Compading, pp. 432-437, Bangalore, India, 18-21 Drec. 1997,

] ML De D Das, M. Ghesh, and B Sinha, “An Efficient Sorting Algarithm
on the Multi-Mesh Netwaork,” IEEE Trans. Compaders, vol. 46, na. 10, pp.
L1322 1,137, Oet. 1997,

[ML De, D Das, M. Ghesh, and BP. Sinha, "Efficient Sarting on the Multi-
Mesh Topology,” Proc. Second Il Conf High-Performance Compuling,
pp- TO7-712, New Delhi, India, 2-30 Dec. 1995,

Bl CE Dyer, A VLSI Pyramid Machine for Hierarchical Paralle]l Image,”
Proc. IEEE Canf Pallem Recogniton and Image Procesing, 1981,

B WML Gentleman, "Some Complexity Results for Matix Camputations on

Parallel Processars,” [ACM, vol. 25, pp. 112-115, 1978,

EB. Hildeébrand, Itrodiection o Numerial Amalyss. Mew York: MoGraw-

Hill, 1956,

K. Hwang and F.A. Briges, Compuder Archilechure and Parallel Processing,

Mew York: MeGraw-Hill, 1984,

E. Miller and QLF. Stout, “Data Movement Techniques for the Pyramid

Computer,” SIAM | Compueling, val. 16, no. 1, pp. 38-60, Feb. 197,

0. Math, SN, Maheshwari, and PACP. Bhatt, “Efficient V1LSI Metwaorks for

Parallel Processing Based on Orthogonal Trees,” TEEE Trans. Compaders, val.

22, no. & pp. 569-581, June 1983,

VK. Prasanna-Kumar and M. Eshaghian, “Pamllel Geometrc Algorithms

for Digitized Pictures on Mesh af Tmee Organization,” Proc. Il Conf

Parallel Processing, pp. 270-273, Aug. 1986,

VK. Prasanna-Eumar and D. Reisk, “Parallel Image Processing on

Enharced Arrays,” Proc. Inl'l Conf. Parallel Processing. pp. 909912, Aug

1987,

C. Savage, |. Jaj, “Fast Efficient Parallel Algorithms for Some Graph

Problems,” SLAM | Compuding, vol 10, pp. 682681, 191,

CLE. Stout, "Mesh Connected Computers with Broadeasting,” IEEE Trns.

Compiders, vol. 32, pp. 826-330, 1983,

CI. Thompsen and HT. Kung, “Sorting on a Mesh-Connected Pamllel

Computer,” Comne ACM, val. 20, pp. 263-271, 1977

[
]
[17]
3]

{14]

[13]

[16]
[17]
[15]

	a new network-1.jpg
	a new network-2.jpg
	a new network-3.jpg
	a new network-4.jpg
	a new network-5.jpg
	a new network-6.jpg
	a new network-7.jpg
	a new network-8.jpg
	a new network-9.jpg
	a new network-10.jpg
	a new network-11.jpg
	a new network-12.jpg
	a new network-13.jpg
	a new network-14.jpg
	a new network-15.jpg
	a new network-16.jpg

