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Scale Space Classification Using Area Morphology

Scott T. Acton, Senior Member, IEEE, and Dipti Prasad Mukherjee

Abstraci—We explore the application of area morphology to
image classification. From the input image, a scale space is created
by successive application of an area morphology operator. The
pixels within the scale space corresponding to the same image
location form a scale space vector. A scale space vector therefore
contains the intensity of a particular pixel for a given set of scales,
determined in this approach by image granulometry. Using the
standard A-means algorithm or the fuzzy c-means algorithm,
the image pixels can be classified by clustering the associated
scale space vectors. The scale space classifier presented here is
rooted in the novel area open—close and area close-open scale
spaces. Unlike other scale generating filters, the area operators
affect the image by removing connected components within the
image level sets that do not satisfy the minimum area criterion. To
show that the area open—close and area close—open scale spaces
provide an effective multiscale structure for image classification,
we demonstrate the fidelity, causality, and edge localization prop-
erties for the scale spaces. The analysis also reveals that the area
open—close and area close-open scale spaces improve classification
by clustering members of similar objects more effectively than
the fixed scale classifier. Experimental results are provided that
demonstrate the reduction in intraregion classification error and
in overall classification error given by the scale space classifier
for classification applications where ohject scale is important. In
hoth visnal and ohjective comparisons, the scale space approach
outperforms the traditional fived scale clustering algorithms and
the parametric Bavesian classifier for classification tasks that
depend on ohject scale.

Index Terms—Image classification, nonlinear filters, scale space.

L. INTRODUCTION

N CLASSIFYING image pixels within a digital image, the
I scale of a particular object, as well as the intensity, may
be important in evaluating class membership. Conventional
image classification technigues using the original input image
at a fixved feamre scale may resull in intraobject classification
errors (assigning two different class labels to pixels of the same
object). These technigues can be sensitive o localized image
noise that differs in intensity but is of hmited area. In this
paper, we propose an image classification approach that uulizes
an image scale space, a coarse-w-fine collection of image
representations 1o detect objects at different scales. Vectors in
scale space that define pixel intensity through a range of scales
are used 1o classify the image. The utilization of the scale space
veclors for classification is grounded on the premise that no
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single scale representation is sufficient w properdy label each
pixel for classification.

The scale space used in this approach 15 based on area
morphology operators [18]. The area morphology operators
generate scaled images based on the area of connected com-
ponents within the image level sets (thresholded versions of
the grayscale image). Here, the area open—close and area
close—open scale spaces are introduced and vsed in image clas-
sification. We show that the area open—close and close—open
scale spaces do not introduce new features with increased
scale, so that the multiscale representation does not produce
classification errors due 1o processing artifacts. Moreover,
we prove that edge locations, as defined by boundaries of
connected components, will not move with increased scale,
leading to faithful preservation of region boundaries in the
image classification. This property, in particular, is elusive for
scale spaces gencrated vsing standard morphology. Further,
unlike standard morphology, the area operators do notl impose
any specific shape (as determined by the shape of structuring
element) on the processed mmage. With standard morphology,
the boundaries of connected components within the image level
sets may be distorted according o the shape of the structuring
element used. Boundary distortion can lead to misclassification
in a classification procedure.

Maragos [11] provides a multiscale shape desenplion using
morphological filters. He has used standard morphological
opening and closing [8] with structuring elements of varying
shape and size 0 generale a scale space for shape representa-
tion. For increasing or decreasing scale, specific binary patterns
are self-dilated or eroded and subsequently used in open or
close operations. The scale parameter s governed by the degree
of self dilation or erosion of a given pattem. In contrast, the
area based scaling i our approach depends on the threshold
decomposition of the gray level image into image level sets and
the area of the connected components within these level sets.
This area morphology based processing is used as an effective
precursor to classification in scale space.

Other attermpts in muluscale classificabon hinge on sub-
sampled pyramidal representations and hierarchical processing
technigques. Muluscale, multresolution representations  are
generated by successively filtering and subsampling the image.
Then, a multuscale data structure, such as the gquad tree or
an image pyramid, can be used in image classification. The
multiscale classification is generally performed in a sequential
manner, namely, by utilizing the classification result of a
coarse scale, low-resolution image to guide classification
at a finer scale and higher resolution. Bouman and Lio [3]
report & successful classification scheme for textured images
that utilizes a muluscale, multresolution mepresentation in
a hierarchical approach. Another hierarchical classification
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method 1s developed in [ 14], based on adaptive clusiening. In
this case, the grayscale image 15 modeled as a Markov random
field and a Bavyesian technique, in conjunction with adaptive
multiscale windowing, is used to classify the image. Bouman
and Shapiro also apply a multiscale Markov random field model
for Bayesian image segmentation [4]. In a different context,
a multiscale classification scheme is implemented uwsing a
ruke-based mductive leaming algonthm [10]. Multuresolution,
multiscale classification is explored in [5] for the specific
application of radar signal classification.

Although not common in image classification, watersheds
have been used for image segmentation [7], [ 19]. Typically, the
mmage gradient magnitude 15 viewed as a topogmphic surface
thatis subdivided by ridges. Between the ndges are valleys (wa-
tersheds) that share a common basin or local minimum in gra-
dient magnitude. The watersheds thus define a segmentation of
the 1mage in which closed regions with thin, unbroken bound-
aries are provided. The drawbacks of the watershed approach in-
clude over-segmentation (Loo many watersheds), computational
expense, and sensitivity o nolse/detal. Unlike the area mor-
phology approach deseribed in this paper, the scale or size of
the resultant regions cannol be specified directly in the water-
shed transform, without the use of prefiliering. The regions that
emerge from the watershed segmentation are nol necessarily
connected components within the image level sets, as with the
area morphology method used here.

Hierarchical multiscale segmentation approaches have been
proposed that exploit the watershed transform. In this case, both
morphological and nonmorphological appmaches are used o
generate scale spaces [6], [9], [13], [22]. However, these water-
shed-based multiscale representations lack some of the desir-
able scale space properties. In case of the area morphology ap-
proach, we develop a scale space that satisfies both the causality
and edge localization propertes. With the watershed approach,
causality and edge position through scale space are nol guar-
anteed. Furthermore, the area of connected components in the
tmage level sets 1s used as the scale parameter in the area mor-
phology classification method. The multiresolutnon watershed
methods do allow scalng of the image, so as w0 avoid over-seg-
mentation, but do not allow exact specification of object scale
(e.g., watersheds/obpects with area greater than 47 pisels). Fi-
nally, the multiresolutbon walershed segmentation lechnigues
are hierarchical {coarse-to-fine), while the scale space classifi-
cation approach simultaneously utilizes scaled image represen-
tations.

The image classification method developed in this paper dif-
fers from previous multiscale classifiers in that the classifier
does not utilize subsampled image representations (pymmids,
quadtrees), and the classification technigue is not hierarchical.
The major contribution of this paper is the establishment of a
classification paradigm within the area morphology scale space
in which all scale mepresentations are used simultaneously. As
the results and analysis reveal, the scale space classifier yields
reduced intraobject classification error, in comparison Lo tradi-
tional classification methods, for classification tasks where ob-
ject scale 15 important.

The organization of the paper is as follows. First, the theory
and analysis of the area open—close and close—open scale spaces
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are presented in Section 1. The application of the scale space 1o
classification is also discussed in Section 11, along with an anal-
ysis of the scale space classifier properties. As the scale space
classifier can be used in conjunction with any clustering tech-
migue, the fundamental clustenng techmgues are reviewed and
adapted for scale space classification in Section 111 Qualitative
results in the form of images and quantitative results in the form
of tabulated data are given in Section IV that demonstrale the
efficacy of the scale space classifier.

II. SCALE SPACE CLASSIFICATION: THEORY AND ANALYSIS

A. Area Operators

We implement classification on an image scale space that is
generated using area operators that manipulate connected com-
ponents within image level ses. Our processing methods as-
sume both discrete domain and discrete range — digital imagery.
For a set S defined on domain £} © 27, we have members of
the on-ser: (r. ) £ & and members of the aff-ser: {x. y) £ 5°
where 5% is the complement of 5. Two points (w4 ) and
{ra, ya) are members of the same connected component 5; of a
sel.% if both are members of the set, and there exists a connected
path between the two points that only includes members of the
sl

Area open and area close are operators [18] that can be used
Lo generate a scale space. For the on-set 5, the area open open-
tion is denoted by &&x and removes all connected components
S; with area (cardinality) less than s, Area close is the comple-
menlary operation: Ses removes all connected components of
area less than s in the off-set 5%, So, the area » is the scale pa-
rameter of area morphology, similar o the structuring element
size in standard morphology. The shape of an equivalent struc-
turing element for area open and close is not defined. Hence, the
area operators are amorphous.

For images, the area open and close operators are imple-
mented via stacking, In a threshold decomposition of the image
I, an associated level set LOF, #) is a set obtained by thresh-
olding the image intensity: Lo, w) © LIE 8l Ix, vy = &
For a discrete domain of & intensities § & {0, ---. & 1],
e, w = E;iﬁl 'J{_r__: menid iy where 1) is the set indicator

function. The stacking operation also allows I to be defined by

fiw, w1 = max[t: (w0 © LI 4] (1)

To implement the area open and close operators, each level
sel can be processed independently. Then, the result image can
be reconstructed by stacking using (1) Within an area open op-
eration on an image 5y or area close operation on an image
f#s, the order of level sets processed does not affect the final
result. An area open operator on an image will remove all con-
nected components within the level sets Lid, t1of £ that do not
have a minimum areaof 5. Similarly, the area close operator will
remove connecled components of the complemented {off-set)
level sets £.°01. ¢ of  that do not possess the minimum area.
In this way, area open “flattlens™ small bright objects and area
close flattens small dark objects in an image.

The concatenation of the area open and close operators keads
to area open—close (ADC) foves and area close—open ( ACO)
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{ #2535, These operators control the scale of both positive-going
bright obpects and negative-going dark objects. However, AQC
operaion 5 nol identical o the ACO operation. As with the
traditional open—close and close—open operators, the AQC and
ACO are contrast-biased.

AOC and ACO are connected operators [18] that will either
remove or preserve connec led components within the level sets
LX)y and the complemented level sets £°0F, €1, In this way,
two pomts within the same connected component are treated
equally in scale space gencration. This property 18 important
in image classification, where we want two pixels in the same
object to be classified into the same class.

Connected regions of constant intensity are called flar zones
[18]. The AOC and ACO operators increase the area of these
flat zones in the image, while reducing the total number of flat
zones. Thus, the area operators increase the region homogencity
of the image I as 5 is increased. Furthermore, the coarseness or
fineness of an image can be quantified by the nesting of the flat
zones. Given two scaled representations £, and {,, of the same
image, image Iy, is coarser than T, if each flat zone of T, is a
subsetof a single flat zone (of equal or greater area) in the same
position in I,

For classification, the concept of edges is important. We
define edges as connected component boundaries within the
image level sets. Let the neighborhood of (@, v ) be denoted
by Miz-. 40 On the discrete domain &2 (with rectangular
tessellation), the neighborhoods are typically defined via
d4-connectivity or 8-connectivity. A point in the on-set L{F, ¢!
is defined as an edge point if at least one of its neighbors is a
member of the off-set L5{F, #} (for the same level §). Therefore,
we say that an edge exists in the image at {r, } if there exists
an edge within one of the level sets at (w2, o). These definitions
are used in the analysis of the AQC and ACO scale spaces.
Specifically, we need a definition of edge position 1o evaluate
the edge localization properties of the AOC and ACO scale
Spaces.

B. AOC and ACO Scale Spaces

Let an image scale space be denoted by { I} where I, is the
image representation at scale =, [T} is a set of such scaled rep-
resentations £, defined on the discrete (image position) domain
2 and discrete scale domain £, < {10, 1, 2, 3. ---}. The scales
sit] in the scale domain can be parameterized by 1, such that
#il)) is the finest scale and ={|T8,| — 1} is the coarsest scale in
the scale space. In this stody, we create image scale spaces using
AOC and ACO operators. The AOC scale space {4} is given by

foy = Foey Bsit)es(t] i2)
while the ACO scale space 15
Foy = Lo ®s(t)8s(t). (3)

In both cases, {0 = Oand £y = 1. the original input image.
Morel and Solimini [12] list desirable properties for scale
spaces that include fidelity, Euclidean invadance, causalily
and strong cawsality. OF the four properties, the founth, strong
causality, has been elusive for image scale spaces. We will
discuss these properties with respect o the AOQC and ACO

scale spaces and explain the impact of the properties on image
classification.

The fidelity propeny ensures that the finest scale of the scale
space contams the onginal input signal. With the AOQC and ACO
scale spaces, we have Ty = I exactly. This guarantees that each
scale space is unigque for a given unique input £, so that a classi-
fication procedure using the scale space is based on the unigue
input [£}. If a finer representation than { existed in the scale
space, members of the same flat zone in the original image could
be classified into two different classes, which 1s undesirable.

Given a discrete domain scale space, we cannot claim Eu-
clidean mvariance (nvariance 1o translation and motation). Be-
cause the area morphology operators modify the image based on
connected component area along, the scale spaces are Euclidean
invariant in the continuous-domain case, since translation and
rotation do not distort connected component areas. In the dis-
crete case (the case exammed i this paper), the scale spaces
are mvanant o mteger-valued translanons. With rotation, dis-
tortions will occur due to discretization.

In classification, we seek to simplify the image and increase
mtraregion homogeneity through scale. A scale-gencrating
process that introduces new features with increased scale would
be counterproductive and would lead to artificial objects and
possibly emoneous classification. Causality in scale infers that
a coarse scale representation can be recreated from any finer
scale representation. Formally stated, we say that {41 is causal
if I, depends only on I for s = v, v = (v, 5 £ (&, This
property holds for the AOC and the ACO approach since f,
can be reproduced exactly from . by implementing {2) and
(3), respectively.

We now examine the important property of strong causality,
which guarantees the preservation of edge positions through
scale.

FProposition I (Strong Causality): Given an edge at position
{uy. wo ) in T, there exists an edge at (-, ) in Lo if v = 5
within the AOC and ACO scale spaces.

Proaf: Recall the definitions of edges within level sets and
within images presented in Section [1-A for the discrete domain
case assumed in this paper IF there exists an edge at Ceq, gn ) at
scale =, then (i, w, ) is a member of a connected component
[in the level set L{4, #) for some level £] with a minimal area of
5. Consider a neighboring pixel position (o, e © Niag, w0
on the other side of the edge, where (@, iz 18 a member of the
connected component [in the complemented level set L5(F, 1]
with a minimal area of = The only way in which the edge at
ET1s 1 can be removed is o remove either of these connected
components entirely, since area open and area close are con-
nected operators and do not partially remove a connected com-
ponent. But, smee the connected components have a minimal
area of &, they will not be removed at scales v = ». Therefore,
the AQC and ACO scale spaces maintam the strong causality
property.

Because the ADC and ACO scale spaces possess the strong
causality property, two important gqualites are goaranteed.
First, new edges and hence new boundanes will not be created
with increased scale. Second, the positon of edges does not
drift through the scale space. In scale space classification,
edge movement can lead o misclassified pixels near region
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boundanes. It s important o state that existng scale spaces
for images do not maintain the strong cavsality property. The
Gaussian scale space [21] has increased edge localization
error with increased scale. Morphological scale spaces using
standard open and close filiers [15] produce edge movement
due 1o the shape of the structuring element. For example,
morphological filtering of a rectangular object with a circular
structuning element leads w corner munding. Scale spaces
based on anisotropic diffusion [16] cannol guarantee the
position nor causality of edges in the image. As shown in
[1], anisotropic diffusion can produce false edges al increased
scales, such as “staircase”™ artifacts.

C. Scale Space Classification

Given a scale space {T}, with intensity I (x, o) al position
{a. o) and scale & we wish o track f:{x. ¥} through scale.
For fixed (e, w), £ (=, o) defines a one-dimensional signal with
independent variable =, denoted by Iiw, ). This 1-D signal
flr. ) represents the scale space evolution of f{r, ¥} When
sampled at a discrete domain of scales £z, we call Ile, i) the
scale space vector at (. 3. The scale space classifier clusters
pixels via the similarity between scale space veclors.

The assumption of the scale space classifier is that pixels are
classified by intensity at a range of scales. Therefore, we im-
plicitly assume that cach picel 15 a member of a particular of-
Jject at each scale 5 Then, £,0x, v} is the intensity of the object
at location [x, y)and scalke = Here, we assume that objects are
either ascending or descending, bnghter or darker than the sur-
rounding pixels. The scale of an object is defined as follows:

Definition | {Object Scale): The scale of an ascending object
at location (r. -y} is the area of the connected component in the
image with intensity equal to or greater than ¢ = f{x, ), the
mntensily at L, ol

salw, ) = Ao, w)| (4)
where A, 1| is the cardinality of the connected component
sel Aglz, g, defined by

Aiz, 1) = {{m. 0} 3 Pla. 4. m, n),
Wi, 6) 2 Ployom, n), fle, d) = 2h (5)

Likewise, the scale of a descending object at location (. 3} s
the area of the connected component with intensity equal 0 or
less than ¢, the intensity at {z, g

sl gl = [Defe. yl (6)
where

Dyl =i ni: APz, g, e nd,

Fia A e Pla, g, mond o, 6 <tk (7)
In (5) and (7). Fiz, y. #ve. nd is a connected path between
i, y) and (w.ow). In the discrete case assumed here, paths
are defined by d-connectivity or 8-connectivity. Given the
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definitions of object scale and connected components for the
ascending and descending cases, we can define the objects in
the image scale space:

Definition 2 {Ascending and Descending Objects): The ob-
ject at position (i, v} and scale # is defined by A, (&, o) if the
object is ascending and £, (. 3} if the object is descending. An
object is ascending at (v ) if eple, 1) = sale, w) whereas
an object is descending if 5,400, w1 > spia, ). In the case of
equality, the pixel at (=, 3 is 2 boundary point between an as-
cending and descending object.

For intition into the object and object scale delimitions,
consider a bright, thin spike m the image on a relatively smooth,
dark background. The connected component containing the
spike would be smaller, typically, than that containing the
surrounding background. By Definitions 1 and 2, pixels in the
spike would be members of an ascending object.

The definition of an object { Definition 2) is both scale and
position dependent. Let €2,0r, ¥ denole an object at {&, )
and scale & Note that it is possible that oy, ) & G, wel,
but fwa, w2l ¢ fhisp.ow). The object memberships
(e, 2 iz, we) and (e, g) & (i 3] hold
only when I, [y, 3;_‘:'

To classify pixels based on the intensity of the associated ob-
ject at scale s, the objects within the scaled image I, should
have area greater than or equal to 5. Using Definitions 1-2 and
the definitions of the AQC/ACO scale spaces, we find that this
property holds. By definition, T, is created by an AOC or ACO
on the previous (finer) representation using scale parameter s.
An ADC or ACO operation with area » removes all connected
components within the image level sets of area less than 5. By
Defimtions 1 and 2, any object in £, will have an associated
scale that 15 greater than or equal o s,

Intraregion homogeneity  should increase with increased
scale. If two pixels are members of the same object al a given
scale, the two pixels should also be members of the same object
at a coarser scale.

Propasition 20 I (-, ) and Lep, ye ) are members of the
same object (2, (x|, b at scale s, then at scale sy, (). 310
and [, g are members of the object O ol yr b il 50 = &0

FProaf for AOC and ACO Scale Spaces: Since AQC and
ACO are connected operators, the connecled components
within cach level set and complemented level set are either
preserved or removed in their entirety. Consider an ascending
object (')_.,1{.1'1_, iy at scale 3. Because the object 1s ascending,
Laiws, y2) = Lot woy IF connected components within
the level sets (or complemented level sets) of £, are removed
to create Io, the relationship Ia(irs, yad 2 Laleg, o) is pre-
served. Hence, by Definitions 1 and 2, (@2, 420 © Ol
For the case of a descending object, the argument is similar.

Another assumption of the scale space classifier is that
pixels do not have a single scale. In other words, we cannot
cluster pixels based on the two scalar features of intensity
and scale. For example, consider a multiscale object such as
a three-layer wedding cake. A pixel inside the third (highest)
level, is also a member of the second layer al a coarser scale,
and is & member of the base layer at a still coarser scale.
Finally, every pixel is a member of the background, at an
extreme (coarse) scale.

I, [:;,L'g. arl
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Now, let us analyze the clustering of scale space vectors. The
distance between scale space vector I, w) and a cluster mean
pid) for class { is given by the following p-metric:

Lig

A, yhopil) = 30 LG ) —p P . ®)
v

forp £ [0, o] The particular p-metric used depends on the dis-
tribution of the intensities. For example, if the intensities within
a given class have a Gaussian distribution, the p = 2 metric
(the Ly norm) should be used [17]. For a Laplacian distribution,
pi=1;

A fundamental motivation behind the scale space classifier
is that two points in the same object should not, in general, be
classified into different classes. However, since all points are
members of the same object al ¥ — >, we cannot force mem-
bers of the same object at any scale w be members of the same
class. We can assert that the difference in intensities between
two members of the same class at a given scale is decreasing
with increased scale. Therefore, the two object members are be-
coming more tightly clustered with increasing scale, and the dif -
ference in distances o the nearest cluster center is decreasing.

In analyzing the performance of the scale space classifier, we
compare the clustering of two points for the fixed scale classifier
and the scale space classifier. With respect to a set of class mean
vectors, if two points move closer together, they are more likely
to classified into the same class. If two points move farther apart,
they are less likely o end up in the same class. So, for pairs of
points in the image at a fixed scale s, we can compare the fixed
scale distance of

“
1

deldabey, wd Lo, wal)

= |afr, i) el p2) )0 ©)
with the scale space distance of
i ) Tlwa, a
Lim

=D Meiwr. ) ez, il

¥

(107

The fixed scale distance is the distance at that scale multiplied by
the cardinality of the setof scales [£3, . The scale space distance
is the same form as (8), replacing the class mean vector with
another scale space vector

With the scale space classifier, we desire two characteristic
improvements over the fixed scale classifier operating on the
orginal image Iy = I. These characteristics are formalized by
Propositions 3 and 4:

Proposition  3: 1f points are members of the
same  object,  but  have  different  intensities  initially
(folwn, ) #F 0 folws, we)l, then the area morphology
based scale space classifier clusters the two pixels more closely
than the fxed scale classifier. That is,

Lwi

dotdalis, wi). falwa, w2} = (e ) Llwa, el (11)

FProaof: Alscale 5 = 1), we have

Loy, w1} — Ioixz: go) = [ ol w2} — dala. )] (12)

1

For any scale " = &', using the AOC or ACO scale spaces, we

have

| Loy wid — Lor(az, wod| < | Lorliwy, w3 — Loelza, el

(13)
simece ADC and ACO will the smaller con-
nected  components  until {;,':_: iyl O Dhelrs. g,rg} and
{me, wa) & ooy, ol Infact, for &% =0 Oy, w2l
we have Ie{w,u! = Leiaos, wel, thus reducing
[feim. il fevizg. o) o zero. Combining the equality of
(12) with the inequality of (13), along with the inspection of
the definitions for distance i (9) and (100, we see that (11) 1s
asserted.

Note that if the initial intensities are indeed equal in Propo-
sition 3, the inequality of (11) is altered by replacing =" with
27 Thus, in the case of equal initial intensities within the same
object, the scale space classifier will cluster the two points at
least as closely as the fixed scale classifier

Propasition 4: 1f two points have the same initial intensity
{falzr. a0 = falea. 1) butare members of different objects
of different scales, then the fixed scale classifier clusters the two
pixels more closely than the scale space classifier. That is,

emove

i E (s ) e e )t o ey Uloliey, s Indivey w2l (14)

Proaf: Given that falr. a1 =
Intoz, yay doldnlrg, wody Infrey wa ) 0. Let
the area of the object at (). g1 be defined as | Ag{e) . 323 and
the area of the object at [, we) be defined as | Aofivs, w2l
Then define 5° = win{|Aalw, wi)|. |Aafea, w2)|}. AL scale
s = & + 1 wehave £ (o, ) £ Le(ee, ga) Therefore,
(1d) 15 asserted.

Eadier, we stated that the scale space classifier reduces in-
traobject classification error. We now formally define this error
Measure.

Definition 3 {Intraobject Classification Ervor): For {7, g,r-_:l
and scale =, the intraobject classification emor is defined by
the cardinality of the set of members (2. 420 of the object at
{r:.'l_, iy and scale s where [y, y;} and {anz, g ) are members
of different classes in the final classification:

[4baz, wad o Lrey wad € 0, (g, )

larz, H2) ey L, w0 € 7 e Foead]

iy, W

where v, and =, are homogeneous sets in the final classifica-
tion and ¢ and co are class labels, The total normalized intraoh-
jeet classification error is given by

Z Z Ca ::Ir )

& @
I e

L

(15}

Q



With the scale space classifier, the associated inraobject clas-
sification error is less than or equal to the same error using the
original image or any one scale. The scale space classifier at-
templs o minimize the distance between pixels in the same ob-
jeet through scale. As shown in the proof of Proposition 3, the
difference between two pixel inlensities in the same object will
decrease monotonically until equal. Hence, as members of the
same object are clustered more tightly (relative Lo nonmembers ),
the intraobject classification eror is reduced. In Section 1V, re-
sults are given that demonstrate the reduc ion i intraobject clas-
sification erron

D, Sampling Scale Space

In the discrete case, we need o sample the scale space appro-
priately. Since the scale space {f] is a three-dimensional space,
sampling (and quantization) are performed in each dimension.
Typically, the generation of £2, the sampled (o, i) domain, is
fixed by the initial digitization of the image. Sampling the scale
domain £}, is an open problem.

1) Minimum and Maximum Scale: The absolute mimmum
scale for any image scale space is 5 = (0. Note that in the discrete
case, images at scales » = Uand v = 1 are identical, since every
existing connecled component has a minimum area of one. So,
I; Iy The upper limit of scale is theoretically infinite; how-
ever, a discrete-domain image with |$}] pixels has a maximum
scale of » = L. For the classification problem with € classes,
there should be at least one object for each class. Therefore, the
maximum scake is |£2)/€) in this case.

Given a priori information about the scale of objects in an
image, additional bounds on the scales vsed in classification can
reduce the computational complexity of the scale space classifi-
cation approach. For example, in a classification of blood cells,
we would know the minimum area of a red cell and the max-
imum area of a white cell. Scales beneath the minimum scale
Smin and above the maximum scale $.o 5 could only add ermor
o the classilication process.

2) Sampling Intervaly in Scale:  For a discrete sampling
of scales, the most obvious sampling would include scales
Eoiine T F Loy Hee — L e In this framework, the
scale operator at scale s would reject connecled components
of area less than = pixels, and the next scale would reject all
connected components with area less than s 4+ 1 paxels. There-
fore, given the discretization of the image spatial domain, each
potential scale would be represented (between the mimmum
and maximum scales, inclusive).

Nevertheless, the straightforward sampling of the image scale
may be an example of over-sampling. Consider an application
in which the classification of coins is desired (as in Fig. 1).
Since there are only a few different coin sizes, the classification
process only requires a few scale samples. So, there seems 1o be
a set of important scales in a particular scale space for this ap-
plication. Choosing the scales in an ad hoc fashion is possible,
but we seek an automated method w sample scale.

The idea behind our sampling scheme for the scale parameter
15 based on granulometry. For an AQC operation or an ACO op-
eration, we can track the differences in a given parameter (such
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as total summed intensity) between successive scales. Define
the nommalized granulometry for the scale space {F} by

] J' [ { b
Gls) = gy 3 Meprlw o) Lala, wl. (16)
o

Given a series of scales 5,50, %mia + 1, -0 4 S00. — 1, this fea-
ture tracking provides a granulometry (#(s) that reveals infor-
mation about the image swucture. When a large object disap-
pears in the scale space (when il becomes part of a larger flat
zone), a local maximum in the granulomery may be observed.
Thus, the scale at which the object is the most simplified is the
scale that precedes removal of the object. So, asampling scheme
for scale can be based upon locating the maxima in ({4} and
using these scales in the classification process. Additionally, the
maxima may be filtered based upon the magnitude in change.
For example, at scale =, a maximal point that only represents
a magnitude change in (41 of less than 5T would be rejected
as a sample point. Here, T represents the minimum allowed in-
tensity change between classes. For O classes and K discrete
inlensities, we can assume 7=z KO

Forthe coin classification application of Fig. 1{a), the normal-
ized granulometry using ( 16) is shown in Fig. 2. To facilitate the
location of local maxima, we convert the discrete-domain gran-
ulometry 1o a continuous-domain signal using a polynomial fit,
as shown in Fig. 3. In the granulometry, the o major maxima,
670 and » — 292, correspond Lo the area of the
large coins and the area of the small coins, respectively.

In summary, the area open—close and close—open operators
are used here to create a scale space. The AQC and ACO scale
spaces provide Ndehity, Evclidean invariance, causality, and
strong causality for edge location through scale in contrast to
other scale spaces generated with linear filters or standard mor-
phology. The AOC and ACO scale spaces allow a meaningful
clustering that can be exploited in image classification. Finally,
efficient implementations of scale space classification can be
achieved by sampling the scale space.

To achieve a classification from an AQOC or ACO scale space,
a clustering technigque must be applicd. In the next section, two
fundamental clustering methods, fuzzy c-means and k-means,
are reviewed. Also, the Bayesian clustering method is discussed
in omder to provide another comparison 1o the scale space clas-
sification approach.

at scales »

I, CLUSTERING ALGORITHMS

The objective of scale space classification is to group scale
space vectors based on a similanty measure. Standard min-
imum-distance based classifiers are used for this purpose.
The possibility of a single pixel belonging to different ob-
jects at vanous scales suggests the vse of an unsupervised
furey c-means classifier. Hard classifiers such as the unsu-
pervised f-means algorithm can then be posed as a special
case of fuzzy c-means classifier. A brief overview of these
classification schemes is provided here, as the classifiers are
used within the scale space classification paradigm. As a
comparative example, a parmmetric Bayesian classifier that
has recently been used for multiscale clustering is also dis-
cussed.
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(a) Original “coins" image: (h) AOC scale space image at .= — 1000 (o) ADC scale space image at « — G d) 3-class FOM classification of {a); {e)

3eclass FCM classification of (h):(f) 3-class FCM classification of (¢):{g) 3-class scale space classification of (). The scale space is constructed with {a)~c). The
seile space vectors are classified using FCM, (h) 3<class f-means classification of {a), 1) 3<class f-means classification of (h), {j) 3-class &-means ¢lassification
af {c), (k) 3-class scale spoce classification of (a). As with (g), the scale space is constrocted with (a}-{c). Here, the clustering scheme employed is f-means, and

{1} 3-class Bayesian classification of {a).

A, Fuzzy c-means Classification

Within the fuzzy c-means clustering algorithm, the familiar
least-squared error criterion 1s applied [2]:

folL

|
Tl ) =33 (mlr )™z 9% (17)
i t=l
Here, £ s the fueey C-class partition of scale space. Given
a scale space vector I, o) at locaton (w, y), the measure
[[dife, 1) = |flw o)t is the distance between the
scable space vector and the ith cluster center ge,. The distance
15 weighed by the fueey membership value of cach scale space
vector w; e, 1) comesponding to fth class, The fuzzy exponent
are has the range e = |1, 2| . For every feature vector I, i),
the error crterion Jo 007, @) s minimized subject o the
conditions
i
D omlry) =102 wdr oyl < 9 and el g} 2 0.

(e 0

For the scale space vector at Lx, 11, the fuzey membership is
updated according 1o

il 1}

i dilw, y)
— eyl )

il gy =1

(18}

The mmutal fuzey membership value 15 generated using uni-
fommly-distinbuted mndom number generator. For the classified
tmage, the cluster center 1s updated for all the classes at each
ieration according Lo

E (e oy 1)) T (e,
i3
i iV 1
E IS Tk

1]

u)

M= (19}

The algorithm 1s wermmimated for imsignificant (1-2% of the cur-
rent value) changes in g, between consecutive iterations. To
reduce processing tme, the final classified image 1s obtaimed
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byclassilying the pixels based lighest class membership value
for cach pixel.

B. K -Means Classification

In the case of b-means, a so-called hard classifier, the feature
domain is not patitioned into fuzey classes. For a fixed number
of clusters, k-means minimizes the squared error function

&
A=Y 5 |l

o=l

200

An nitial seed vector representing cluster center s arbitmarily
specified for each class. The scale space vectors (or pixel inten-
sities in the fixed scale case) are classified based on the min-
imum Euclidean distance from the cluster centers. A new sel
of cluster centers is then caleulated from this reassignment. The
iterative process continues until the net migration of cluster cen-
ters at yth iteration, el ], is insignificant compared w that of
the previous iteration, whene

i
Al g 2: g — g, (5 — 111

=1

213

C. Bayesian Classification

With the Bayesian classifier, an ideal partition of the image
space is considered as a collection of regions of uniform or
slowly varying intensity. In thiscase, the image intensity 15 mod-
eled by a Markov random field. If the segmentation of the image

|.|iI|....I ;”;Illiill.li:” il
200 200

Tl

BOD T00

400

5

Mormalized granulometry for the “coins™ image.

is denoted by 5, then the a pricvi probability density of the re-
zion segmentation 5 is given by a Gibbs density [14]

: 1
pisy = Z LR 4 — Z Vol u) (22
i

where £ is a normalizing constant. 15 is the weight propor
tional to the homogeneity of a neighborhood, also described
using pixel cliques ¢, around the pisel (>, ).

The conditional density of each observed region 15 modeled
as a white Gaussian process of mean signal intensity pe and noise
with variance o . Each region ¢ is characterized by mean inten-
sity peg. I psi S, 0] F0 gives the conditional probability of re-

gion i at Lr, i) given each observed pixelintensity { (=, y). then

. 1 . 5
el S, 10 £ o o {——| flw, 1) — 1 3} ; (23}
" - - s :;gz - 4

Therefore the combined probability density has the form

2 ::“-1.'::']:: 's":l-'f (“:?] kS
Lo = 1 i ;
o .}JQU:‘I, vl Z Vile, wip . (24)
2 =

The implementation of (24) consists of ilerative maximization
of p;, followed by updating of p using iterated conditional
modes (1CM). The ICM algorithm suffers from dependence
on the selection of mitial estmates and from suboptimal local
minima in the cost function. Specific implementation issues of
the Bayesian classifier are discussed in Section 1V where the
results are compared with those of scale space classifier.

Auodred icensed use imited o IEEE Xploe. Downloaded an Oclaber 18, 2008.a1 1800 kam IEEE Xplare. Resvicions apply.
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IV, RESULTS aND DISCUSSION

In this section, results from standard classifiers and from the
scale space classihier are compared. Note that we emphasizee
classification applications in which object scale is important,
s0 as to highlight the benefits of the scale space derived from
area morphology. The results are given in the form of classified
trmages and tabulated data. Table 1 provides the taditional mea-
sure of classification accuracy, and Table 11 gives the intraobject
classification error (Definition 3). Four real image examples in-
cluding two biomedical applications are supplhed.

Fig. lia) gives the “coins”™ image with the comesponding
ADC scale space images shown in Fig. 1{b) and (c) for scales
100 and 500, respectively. This image contains four coins
of two different sizes and of similar intensity. The objective
of extracting the larger and smaller coins separalely as two
different classes highlights the advantages of the scale space
classifier.

Fig. 1{d)—({) are the results from fuzzy c-means (FCM) clas-
sification of Fig. 1{a)—(c), respectively. Notce that the integrity
of the coins is sacrificed in the FCM results, and that merging
with the background occurs. In contrast, the scale space clas-
sification, shown in Fig. 1(g), correctly labels the two smaller
coins as one class and the two larger coins as another class. The
classification accuracy (Table 1) for the scale space classifier is
almost 20% higher than that of all fixed scale FCM results. As
an aside, note that all FCM implementations here use a fuezy
exponent o= 2.

The scale space classification result using &-means [Fig. 1(k)]
15 acceptable but does not match the lngh quality result shown in
Fig. 1(g). Fig. 1{h)—j) are the results of f-means classification
of Fig. l{a)—(c), respectively. The scale space classifier outper-

400 aoa

Polynomial fit of the gmnulometry for the “coins” image.

TABLE 1
CoMmPARISON OF CLASSIFICATION
ACCURACY {SSFCMUC: SCALE SPACE CLASSIFICATION USING Fuzzy
e-MEANS, SSKMC: 5CALE SPACE CLASSIFICATION USING k-MEANS, FMC:
FUZZY ¢ -MEANS, KM: E-MEANS, AND BC: BAYESIAN CLASSIFICATION)

Exanmie SSFCMC | S5EMC FoM EM BC

LL.'I:JiI'I‘i.“ TH WA 1.0 i ST | SARas | SA4AT%
YBioc] Cells” 9621 DOSR% | TR23% | TR22% | TalD%

"]"h!_..l:Tna.'I I 02 U6 BT 1 KM% | K125 | B2 ARG
“Conting sed” 98,55 SR42% | 9T4RR | 9TA4E | 97 .40%
“Canresting rod” o AR W% | 93 1% Yl a%e  UTARG:
itruags walll rose |

TABLE 11

INTRACRIECT CLASSIFICATION ERROR {REFER TO DEFINITION 3)

Examplc I SSECKMLC SERNC BCM Kivl BL.

“Cuotns” ] _1_33.5?_ . !}_‘E_?.ﬁ%____l?]._t_i?_ Ib?"."'i' 11‘.-3.[(]
“Blocd Cells™ - 1255 113495 17474 FENC I RER-C

“Plesma™ _f-}ﬁﬁ.i;'!__ i ﬂﬁ-l__a#lﬁﬁ _41?._9_5 ; 463.9'.3.
“Coauzeting rad” | 122.1 120,55 159,98 | 15858 ' 143,22
"Canresting rixl” 165993 =105 N1z M¥53 IBR.EG
iEnge with aoise

forms the f-means classification at any fixed scale in both clas-
sification accuracy (Table 1) and inraobject classification error
(Table 1. Fig. 1(1) displays the 3-class result from the Bayesian
classifier. The Bayesian classifier is not able o match the per-
formance of the scale space classifier in visual quality, classifi-
calion accuracy, or intraobject classification error. For the im-
plementation of the Bayesian classifier in this paper, the pixel
clique 1 defined as the Bconnected neighborhood, and the mi-
tial estimates are supplied from the classification result of fuzey
C- TSNS,

Auodred icensed use imited o IEEE Xploe. Downloaded an Oclaber 18, 2008.a1 1800 kam IEEE Xplare. Resvicions apply.
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(a)

(e)

(g)

Fig. 4.
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(h)

(d)

(n

(h)

{a) Oniginal “blood cells” image: (b) ADC scale space image at » = 2000 {¢) ADC scale space image at 5 = 2000; {d) result of scale space classifier

{3-class) using {b) and {c). Note that the original image is not included in the scale space, and the FCM clustering technigque is used; () result of &-means scale
space classifier (3-class) using (b and {(c); () 3-class FCM classification of {a); {g) 3<lass L-means classification of (a): and (h) 3-class Bayesian classi fication of

{a).

The “blood cells™ image shown in Fig. 4(a) could be used
to label and count different blood cells (1., red cells and white
cells). Fig. 4ib) and (¢) are the AOQC scale space images sampled
at scales 200 and 2000, respectively. Agam, the scale space clas-
sification result of Fig, 4d) (with FCM) and 40e) (with f-means)
are visually superior compared o the classifications of the ong-
inal image as shown in Fig. 4(0)—(h). Note that the blood cells
contain shiny spots of considerable area, probably due 1o spec-
ular reflection. However, with the area morphology based pro-
cessing, these msignilicant regons are removed athigher scales.
The scale space classifier using L-means provides a classifica-
ton accuracy of 99.55%. The infenority of the Nixed scale clas-
sifiers 15 evident in the spunous classes gencerated within the
four cells. The standard FCM, &-means, and Bayesian classi-
fiers essentially create false objects within each cell, which can
be observed in the classified images and the 58% increase min-
traobject classification error (see Table 11).

The pedormance of scale space classifier 15 tested with
another microscopic biomedical image shown in Fig, 5(a).
This image 15 particulady difficult for classification doe to -
regular shapes and nonuniform illumination. The scale space
classifier results i Fig. 5(d) (FCM scale space classifier)

and 3(e) (k-means scale space classifier) yield an amazing
90+% accuracy. Fig. 5(f)—(h) show the failure of the fixed
scale classifiers o preserve the imtegnty of the objects in
the scene and the background. It s noteworthy that inoall
examples provided in the paper, the scale space classifiers
give the highest classification accuracy and the lowest in-
traohject classification error.

Finally, we provide indvstrial inspection application of a
mechanical part in Fig. 6(a). The speculanties and intensity
variabions in the “connecting mod” image make the classi-
fication task challenging. A 2-class classification using the
FCM classification technigue 1s shown in Fig. 6(b). Note the
zaps in the intedor that preclude object/background separa-
tion. For example of the pedormmance of the classifiers in the
presence of noise, 5% salt and pepper noise is added o the
mmage, as shown i Fig, 6(¢), and the cormesponding FCM
classified result 15 shown in Figo 60d). AOQC-scaled versions
are shown in Fig. 6(e) and (g), and Fg. &) and (h) are
the comesponding scale space classified results. We notice
that the scale space classification produces a cohesive me-
gion containing the connecting rod from both the uncorrupted
and comupted imagery. The companson 1s exlended vsing
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(a) Crriginal “plasma’” image: (h) AOC scale spacing image at s — 50 (o) AOC scale space image at = — 1500 (d) 3<class FCM scale space classifier

result where the scale space is constructed with (a)1—c): {e) 3class b-means scale space classifier result with scale space as in d); (£) 3-class FOM classification
of {a); {g) 3-class k-means classification of (a); and (h) 3-class Bayesian classification of {a).

results of k-means and scale space k-means classifiers. Fg.
6(1) and (j) are the results of the g-means and scale space
f-means on Fg. 6(a) and (e), while Fig. 6(k) and (1) are
resultant from Fig. 6(¢) and (g), respectively. Here, the area
morphology based scale space operator 15 able o extrmct the
overall shape of the object without any additional post-pro-
cessing. In this example, the Bayesian classification method
also is successful (see Fg. 6(m) and (n)). Because the con-
necting rod example does not involve classification according
Lo object scale, the f-means, c-means and Bayesian methods
yield high elassification accuracy, as shown m Table L
Although the mesults demonstrate the efflicacy of scale
space classifier, we must also note that the computational
burden 15 increased due o scale space gencration. In the
scale space classifier, the classification process itsell does
not impose any additional computation i clustering. For an
N x & image to be classified to € clusters requires (A2
comparisons. In case of the scale space classifier, the com-
parsons are vector distance measures where the length of
vector depends on the number of scale samples in the scale
space. We have shown that the image granulometry can be
exploited to hmit the number of scales uthzed and o thos
limit the computational overhead. Typically, o generate one
ADCIACO scale space image via level set analysis, ({ K52
compansons are required where K o1s the number of gray
levels (256 for 8-bit imagery). More efficient gqueue-based
implementations of the area operators have been reported

in [20], m which standard open and close filters are wsed
as “marker images” that determine which connected compo-
nents (of the mmage level sets) are retained i the Glienng
process. The marker images are then reconstructed (using
geodesic dilation) to form an approximation of an area open
or area close operation. This queue-based reconstruction step
s O N3

We have implemented the area morphology operations and
the clustering algorithms on a Sun Ulia 10 with 256 MB
of RAM. The ADC/ACO operations were programmed using
the imterpretative Matab 5, while the clustering step was
writlen in the momre expeditious C language. Using the level
set analysis mplementation of (2), the AOC operation on the
69x67 “coins” image required 49 s and 19 5 for Fig. lib) and
(), respectvely. With Vincent's queue-based approximation
of the AOC operation [20], only 2 s and 1 s, respectively,
were used o generate the same scale space images. With
the 901 = 254 “blood cells”™ mmage, Fig. 4b) and (c) wsed
65 5 and 56 s, respectively, of processing time, while the
fast algorithm used 2 s for each. The scaled images for the
Ta w276 “plasma” example needed 102 s [Fig. 5(b)] and
72 5 [Fig. 5(c)] vsing level set analysis and just 2 s wsing
the fast algorthm. Note that, in each case, the image al
the higher scale is generated from that of the immediately
lower scale. In case of the 120 = 120 image in Fig. 6le),
the time uwsed o produce the scaled mmage 15 83 5, and
the cost is 210 s for Fig. 6(g); these times improve o 3 s
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Fig. 6. (a) Original “connecting rod™ image: (b) 2-class FCM classification of {a); (¢) noisy version of (a) with 5% =alt and pepper noise; {(d) 2<class FCM
clussification of (c): (e)AOC scale space image of (o) at 5 = 300 (f) 2-class scale space FOM classification of fe): {g) ACOC scale space image of (o) at s = 300,
(h) Z-class scale space FOM classification of (g ); (i) 2-class &-means classificaion of original image of (a): {j) 2-class E-means scale space classification of {a) at
s = 3000k 2-class L-means classification of {c); (1) 2-class B-means classification of {g); {m) 2-class Bayesian classification of {a); and {n) 2-class Bayesian
classification of {c).

and 5 s, respectively, with the fast algorithm. For the smaller
“coins” image, the scale space classification using both fuzzy
cemeans and f-means mequires less than 1 s, whereas for The paper descnbes an approach o area morphology-hased
the rest of the examples, the classification step requires less  multiscale classification in which vectorsin scale space are clus-
than 2 s on the Ultra 10, tered. In this framework, features from multiple scales are used

V. CONCLUSION




ACTON AND MUKHERJEE: SCALE SPACE CLASSIFICATION USING AREA MORPHOLOGY [ER]

simultaneously, in contrast 1o existing hierarchical approaches.
The AOC and ACO operators provide a well-motivated scale
space for classification wherein the pixels belonging 1o the same
object are clustered more tghtly. The results are observed both
in the image examples as well as the tabulated classification
accuracy and intraobject classification error resulis. In images
with objects of similar intensity and differing scale, the scale
space classifier is able to distinguish between the objects where
the taditional fixed scale classifier fails and produces classifi-
cation ermors. The mesults support the conclusion that the scale
space approach is superior to the fixed scale approach when ob-
ject scale is important in the classification task at hand.

The development of the AOC and ACO scale spacesis initself
an important contribution. The scale spaces are unigue for each
given inpul image and satisfy desirable properties that are useful
for scale space generation and classification. Through scale, the
AOC and ACO operators do not introduce new features such
as additional regions or edges. Furthermore, the AOC and ACO
scale spaces possess the strong causality property, ensuring the
edges do not drift with increased scale. Assertion of the strong
causality property differentiates the AOC and ACO scale spaces
from existing image scale spaces generated via linear and non-
linear filtering. Therefore, the AOC and ACO scale spaces may
prove o be valuable multiscale structures in applications be-
yond classification, such as content based retrieval and segmen-
tation for video coding.

In future work, we wish to extend the scale space classifier
to color imagery and multispeciral imagery. The multispectral
classification process could be applied to important problems in
bromedicing and remole sensing.
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