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Abstract

Analysis of concavities within complex patterns provides a promising approach to structural
shape descriptions. Such concavities are characterized by entrance, exit and height points,
collectively termed as point landmarks, as well as height and width. This paper presents
a scheme for using these characteristics with the Hopfield neural network for matching
structural shape descriptions corresponding to identical regions of interest in images of the
same object obtained from different sensors. Application to biomedical imaging is also dis-
cussed. In these applications, both the shape description and the Hopfield network based
matching scheme are illustrated for matching neuroanatomical shapes of a human brain
obtained from axial slices obtained from CT and MR modalities of the same region.
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L. Introduction

One of the primary tasks of Pattern Recognition is the description of an object in
terms of its shape. This shape description is especially crucial in the processing of
digital binary images and one of the techniques widely adopted is the structural
approach. The description of an object in terms of its parts and spatial relations
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between these parts constitutes structural object descriptions [14] and such descrip-
tions explicitly represent the spatial organization of the primitives forming these
ohjects. Structural descriptions are rotation and translation invariant and are useful
for shape matching [15]. A complex scene can be decomposed into regions with
simpler shapes and described in terms of features of these regions and spatial relations
within these regions. The primitives making up the object can be low level geometric
tokens, like lines, arcs or subparts of different shapes which are characterized by a set
of property-value pairs [3]. Real scenes are ofien extremely complex and cannot
always be decomposed into simpler shapes. An alternative approach is to analyze
a patiern on the basis of its global shape properties like elongation or roundness and
seometric properties like area and moments. Such global features suffer from a high
dezree of imprecision. Location and analysis of concavities within the complex
patierns provides a more promising alternative in structural shape description [4].
These concavities can be used in registration as well as structural shape matching of
binary images. Regisiration is the process of obtaining a point to point correspond-
ence between two images of the same object which might be obtained from two
different sensors, or the same sensor at two different times. Such correspondence can
be obtained by finding a mapping between siructural object descriptions based on the
equivalence of the property-value pairs such that the spatial constraints between the
primitives in one shape are preserved by the matched primitives in the other shape.
Matching an object with an atlas can be conducted similarly. This constitutes
a constraint satisfaction problem. To obtain the best possible maich, a mapping is (o
be determined so as to maximize the match between the common portions of the
siructural descriptions. This 1s essentially a constraint optimization problem and
Hopfield networks [8-10,12] are useful for solving such problems.

In medical imaging applications, one ofien encounters situations where anatomical
regions of interest (ROI) from different images have to be matched. This matching can
be between an image cross-section of the ROI obtained from a sensor and a medical
atlas, or images obtained from two or more different sensors or images acquired by
the same sensor at different times. Object descriptions of the ROl can be obtained
from edge images of the ROL These ROls have a purely geometric representation and
can be extracied from the original image by edge segmentation. The primitives
forming such object descriptions constitute lines and arcs. These lines and arcs form
concavities in the image, which possess entrance and exit points as well as points of
inflexion, which constitute point landmarks or signatures. In addition, concavities are
characterized by their height and width. The selection of such point landmarks is based
on the geometric invariance properties of the point landmarks within the image [2].

In this paper, we describe a technigue for struciural shape matching of concavities
found in 2D edge images of the same object obtained from different sources. These
concavities constitute the primitives comprising the object. The geomeitrically invari-
ant point landmarks described above constitute the equivalent property — value pairs
to be maiched in the different images. This is an inexact matching problem where the
next step is to find a mapping which maximizes the match between the common
portions of the two structural descriptions which are the edge images of the ROI, and
therefore, this is a constraint optimization problem. A Hopfield type network similar
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to the one described in [3] used to solve this problem has a similar architecture as that
used by Lin [11]. The energy function that we have considered caters to problems
related to inexact matching of the descriptions.

The paper is organized as follows. Section 2 formulates the problem. The neitwork
and the energy function which we have used have been described in Section 3 and
results for two case studies for a set of computed tomography (CT) and magnetic
resonance (MR) images are covered in Section 4. Discussions and concluding remarks
are given in Section 3,

2. The problem

Complex scenes such as CT or MR cross sections of the human body contain many
RO1 that can be extracted using standard routines. Location of shapes and determina-
tion of their characteristics are described in [2], so we briefly mention the steps
involved. Canny’s edge extraction operator [7] and edge linking is then applied to
these ROIs to obtain binary images of the edges of the ROls and the entire edge point
set is traced by an edge following algorithm [1]. These binary images generally
contain numerous concavities. For each closed contour, concavities are obtained by
substracting the contour from the convex hull [13]. Entrance and exit points are
obtained from the bitangent to the concavity and the height point is the point of
inflexion and is furthest from this bitangent. The point of intersection of the perpen-
dicular from the concavity height point to the bitangent is the base point. Concavities
within the edges constitute the subparts and these are located and labeled, starting
with the lefimost/topmost concavity and proceeding in a counter clockwise direction.
Each subpart (or primitive) is characterized by its eight atiributes, namely, the
concavity height point, the entrance, exit and base points, height, width, and distances
between the height point and entrance and exit points. Distinction between entrance
and exit point is purely arbitrary and we adopt the convention of taking the lefimost
or uppermost (in that order) point as the entrance point. Distances between the
concavity height points of the different concavities constitute the relational con-
straints between the primitives. These are illustrated in Fig. 1 with the nodes denoting
the attributes (height points) and arcs giving the numerical parameters indicating the
distance. ¢; and E; are, respectively, the entrance and exit points, h is the height point
and b is the intersection of the perpendicular from h to the bitangent of the concavity
isee Fig. 2). ¢y and e; lie on this bitangent. Numeric parameters corresponding to the
distance between the nodes, are assigned to them. There are four numeric parameters:

rl = distance between e; and fi,
r2 = distance between ¢, and h,
r3 = distance between e, and ¢
r4 = length of perpendicular from h to bitangent (b).

Additional numeric parameters are assigned for interconcavity distances. For the
case study presented here, these correspond to

r5 = distance between h of one concavity and those of adjacent concavities.
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Fig 1. Relational constraints between primitives and their attributes.

= N =

Fig. 2. Concavity and its characteristics.

Distances can be calculated using the Euclidian distance. However, the Euclidian
distance demands a lot of resources in terms of time and memory. Also, the points
inodes) are corrupted by noise, and so, an approximation is used. Following Borgefors
[5]. ‘chamfer’ distances are used to approximate the distances between the nodes. The
underlying idea is to obtain global distances by propagating local distance, ie.
distances defined by a 3 x 3 pixel neighborhood surrounding the pixel under consid-
eration. The two local distances have been defined to be the distance between
horizontal/vertical neighbors, assigned a value of 3 units and the distance between
diagonal neighbors, given a value of 4 units, Using these values, the maximum
difference with the Euclidian has been found to be 8% [6]. Our results also confirm
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that the chamfer distance approximately falls within 10%, of the Euclidian distance. In
order (o compute the distances, the pixels corresponding to the nodes within a primi-
tive are set to zero and other pixels are set to infinity for each primitive. The
property-value pairs corresponding to the numeric parameiers characterizing each
distance is thus computed. The interconcavity distance can be computed by seiting
inflexion poinis of two concavities at a time {considered as nodes) (o zero and others
to infinity. Two passes are made over the scene. The first pass is the forward pass made
from left to right and from top to bottom, ie.,

forward
fori=2... rows do
forj=2... columns do

vy =mimmum{e;_y oy 8 vy s R oy e F oo + 30l (1)

where the superscript o denotes old, n denotes new and v; ; denotes the distance value
of the pixel in position (i, j).
The second pass is the backward pass from right to left and from bottom to top, i.e.,

backward
fori= rows —1...1 do
forj= columns —1...1 do

vp = minimumied 5oy + R 0o g+ L O 4 2)

One pass is sufficient to compute these distances. The backward pass is intended as
a check.

3 The network

The Hopfield network [8-107] is a fully interconnected recurrent network with
weighted links. Individual neuronal units have either binary or continuous valued
activation functions, and can receive external bias in addition to inpuis from other
units. The network response is dynamic. For each input, outputs are calculated and
these outpuis constitute the new inputs for the succeeding iteration and this process is
continued until convergence is reached and outputs become constant. The network is
considered stable if the weights are symmetric and there are no self exciting loops. The
energy function normally decreases each time the outputs of the neurons change their
values, considered as a change of staie of the network. The energy function is
minimum when the network attains a minimum. The ability of such a network to
reach a minimum energy function through iterative updating of its uniis has been used
for obtaining good solutions [3] to certain classes of structural matching problems at
various levels of complexity.

We consider two shapes having N primitives each and use a neural network having
N x N neural uniis. Each unit is a possible maich between the primitives of the two
shapes. The lowest energy state of the network, in accordance with an appropriately
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defined energy function, will represent the best mapping between candidate and
prototype shapes satisfying all the constraints of the given problem.
Following [ 3], we assume energy function to be a sum of four terms, viz,,

E=E,+E;+E; +E,. (3)

The first term which is composed of two terms, ensures that only one primitive in the
candidate shape can match the corresponding primitive in the prototype, i.e.

Ey = A."TZ Z Z VipVip + H.'"EZ Z Z FinViy 4)

[ | i pg#*p

with 4 and B being positive constants and V;; representing the state of the (ij)th
neuron in the range [0, 1].

The first term on the RHS of Eq. (4) ensures one eniry in each column whilst the
second term ensures one entry in each row.

The second contribution to the energy function guarantees that the total number of
primitives matched equals N. This term is writien as

2
E,= c‘,-z(z 38 N) (5)

with C being a positive constant. In the perfect matching case this term vanishes. For
shapes with different numbers of primitives N1 and N2, the parameter N must be set
to a minimum of (N1, ¥2) as the network can find a match for the maximum of
min{ N1, N2) primitives. Even in the case of a partial match, a minimum value of this
term ensures the maximum possible number of matches between primitives.

Primitives of the candidate and prototype shapes are characterized by a set of
possible atiributes and values of these atiributes which are to be matched. This is
represented by

A B
E;=D2% %V, % Y WiaP(i.a.b)1 — Cip.a.b)

i p a=1 h=1
+ C(p.a.bX1 — P(i,a. b)) (6)

where W a)is the priority or weight of the atiribute a for the primitive i assumed o be
known a priori, a is the variable representing individual attributes assumed to be
indexed from | to A, and b is the index for individual elements of the possible value
sets of the attributes. The value sets have been assumed to be finite and discrete.
Cardinality of the largest set is assumed (o be B,

Pi,a.b) 15 the selector function which can be either 1 or O, Plia.b)=1 i the
primitive i of the prototype possesses atiribute a with value b, P(i, a,b) =0 other-
wise, C{p, a, b) is the corresponding selector function for the primitives of the candi-
date shape. The fourth term on the RHS of Eq. (4) ensures the existence of identical
spatial constraints between matched primitives of the candidate and prototype



8 Banerjee, 0.0 Majumedar [ Newrocompuring 30 (20060 fi3- 116 ({1
shapes, viz.,

”
E,=ERY Y Y YV, VS WX il — gp.q.0)
=1

i Fp g =
+ gli.j 101 — fi{p. q.0)). !

where E is a positive constant, f is an index for relational attributes, W{r)is the priority
of the rth spatial refation, f{i.j, 1) is the selector function which takes values either 0 or
L, fli,j,t) =1 if the rth relation exists between the ith and jth primitives of the
prototypes and 0 otherwise, and gip, g, 1) is the corresponding selector function for the
primitives of the corresponding candidate shape.

The connection weights are determined as follows. The coefficients of the quadratic
terms correspond to the weights in the connection matrix whereas the coefficients of
the linear terms correspond to the input bias of the neurons. The connection weights
are thus

Tijg = — Ady(l — ) — Bél — 6, — C

-
—EY WINSGLG 00 —glp.g. 1) + glij ol — flp.g. ). ()
=1
with &;; being the Dirac delta function.
Likewise, the input bias to each neuron is

PR
Ly=Cy—D2% Y WalP(i.a.b)l — C(p.a.b)

a=1hb=1
+ Clp.a, b1 — P(i,a. b)), (9)

where Cy is the excitation bias. The attributes of the primitives contribute to the input
bias of the neurons and the relational constraints contribute to the inhibitory con-
straints between the neurons.

4. Methodology and results

In this section we consider two case studies of a contiguous axial CT and MR
sections (Figs. 3 and 5)of the same region of the human brain of the same subject. The
ventricles are the ROI for our case study, and these are extracted and shown in
Figs. 4 and 6; with {a) and (b) denoting CT and MR, respectively In Figs. 4 and 6, the
concavities and their characteristics are given. Table 1 lists the numerical parameters
{with appropriate scaling) corresponding to the property-value pairs of the atiributes
as well as the parameters corresponding to the relational constraints between the
primitives of the candidate (C) and prototype (P). Quantities within parentheses forr3
denote destination concavities. Table 2 gives the percentage agreement of the two
concavities on the basis of these parameters. We find that the right and bottom
concavities give the best match for Fig. 4 and concavity [ of Fig. 6 gives the best
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Fig 3. Ventricle from the same region of the brain of 2 human subjed obtained rom {a) CT modality and
{by MR modality.

Fig 4. Concavities and their characteristics extracted from the convex hull of the edpe imape of {a) CT and
{b) MR of Fig. &
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)

Fig 5 WVentricular section from a contiguous slice obtained from (o) CT and {(b) ME.

possible match. Quantities within parentheses in the columns for r3 denote destina-
tion concavities for the first test case. In the second case only one set of concavities are
considered corresponding to the inner concavity of the ventricular shape.

The network [3] was simulated on a Silicon Graphics Indy machine using n* nodes,
where n is the number of concavities, and a sigmoidal transfer function of the form

gix) = 141 + expl — x/T)). (10)
Initial states of the neurons are given by
U40) = Upyy + 8U; (11}

with Uy, = g7 1/N) due to the constraint that only & neurons corresponding to the
consistent match of N primitives of the candidate will be on, subject to the condition

SY V=N (12

for the singlelayered model. |60, < 0.1U, is a perturbation to the initial states of the
neurons which prevenis the network from getting stuck at the initial configuration.
For the above transfer function Uy, = — Tlog(N — 1},

The property-value pairs of the individual attributes are the width and distance (o
the height point for entrance and exit points, height to width ratios for the base point,
and height and distances to the entrance and exit points for the height point.
Relational constraints are the interconcavity distances measured between height
poinis. Selector functions P{i, a, b), Clp, a, b), (i 1) and gip,q.1) ensured that only the
corresponding concavities between primitive and candidate shapes were taken into
account. Several values of T were experimented with and it was found that the best
result was obtained when T was chosen to be a tenth of the initial state. For larger T,
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Fig 6. Concavities and their characteristics extracted rom the convex hull of the edge image of (a) CT and

by MR of Fig. 5

convergence was slower and the network had a propensity for getting stuck at
spurious local minima for smaller T. Neurons in the network were updated syn-
chronously and so the time step taken was reasonable (0.001) although good resulis
were also achieved for 0,01, Weights of the attributes, relations and relational con-
straints were chosen according to how close the numerical parameters are, based on
the results of Table 2. Lagrange multipliers 4 and B decide the weighiage of domain
constraints, while C and D are associated with the relative significance of the spatial
constrainis among primitives. Choosing larger values of 4 and B as compared with
C and D results in mismatch due to violation of spatial consiraints, whereas a reverse
choice would result in mismatch of domain constrainis and a compromise had o be
made. In the present simulation, 4 =B=1 and C =0 = 10 were chosen. The
goodness of match fcomputed as the average of rl, r2, r3, rd with the ratio rd/r3 from
Table 2) between corresponding primitives of prototype and candidate are given in
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Table 1
Mumericel parameters [or arcs in CT and MR image

Fig Modality Concavity — rl r2 r3 r4 rs rd/r3
54 T L (Left) a8 94 164 44 (B) 138 027
R (Right) 135 153 72 67 (B) 138 025
T (Top) 118 139 223 57 (Ly115 026
B {Bottom) 106 BE 166 440 (Ly138 .24
MR L 140 165 276 it (B) 144 025
R 135 162 279 73 {B) 135 026
T 181 172 301 B2 {Lya2 027
B 114 a1 178 449 (L) 144 0.27
56 T 1 120 116 192 il (192 0.313
1l 100 168 260 k1] n4e2 0215
ME | 156 136 AR B4 (192 0404
1l 160 120 216 L) ne2 0389
Table 2
Agreement between same concavities of CT and MR images
Fig Coneavity — rl r2 r3 r4 r4ir3 rs
4 L 070 0.57 0.59 LAS 092 096
R 1.0 194 097 0492 0194 098
B 0.93 097 093 (LE3 (.89 096
T (L65 (.81 0.74 070 (.96 (180
] I 077 (L85 092 071 077 1.0
I (L63 071 083 91 (1.55 1.0

Table 3

Gomdness of match between corresponding primitives of Fig. 4

Prototvpe candidate L R T B

L 0772 L] 1] 1]

R a 0563 1] L]

T 1] a 0817 a

B 0 1] L] 0919

Tables 3 and 4. Resulis indicate that the right and botiom concavities give the best
maich for Fig. 4 and concavity [ for Fig. 6. The results of these two tables can also be
expressed as neuwral units with 1.0 denoting a perfect maich and 0 denoting a total
mismatch.
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Table 4
Goodness of match betwesn correspond ing primi-
tives of Fig. 6

Prototype candidate | Il
I a9 ]
| L] (Lih

5 Discussion

We presented a scheme for matching corresponding shapes within complex images
of the same object obtained from an atlas and a sensor or those obtained from two
different sensors, by analyzing concavities corresponding o the intersection of the
bitangent with the concavity giving entrance and exit points, and the point of
inflection giving the concavity height point. Other characteristics chosen for the
analysis include the width of the concavity which is the intercept of the bitangent with
the concavity, and the height of the concavity which is the perpendicular from the
point of inflexion to the bitangent. The choice of these point landmarks from the
convex hull is computationally simple and obtained from purely geometric consider-
ations. Distances chosen were chamfer distance measures.

Maiching of shapes constituies a constraint optimization problem, based on an
appropriate expression for the Hopfield network energy function which caters to the
possibilities of partial mismaiches between primitives and their spatial constrainis. In
this scheme a differential criticality factor has also been incorporated between primi-
tives and their spatial relations. Sinee numeric parameters corresponding to distances
have been assigned as property-value pairs of the atiributes, as well as spatial
constrainis, spatial relations are symmetric and the Hopfield network does not have
asymmetric connection weights. In future work, attempis will be made to exploit the
rotational and translational invariances to reduce the number of possible correspon-
dences, specially when the concavities refer to several objects which can vary in
position relative to each other. The network is designed to eliminate the possibility of
false matches between primitives.

A parallel implementation of the network 15 also possible for complex scenes
consisting of a number of concavities. With proper indexing, several concavities can
be assigned to individual processors of a parallel machine. The network need not be
fully interconnected. Thus, this methodology can be applied to biomedical images
containing a number of concavities,
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