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Abstract

The present paper describes a hiermrchical image segmentation scheme keeping in mind its use in image compression.
At each level of hierarchy, the segmentation provides a sub-image consisting of compact, homogeneous regions. A
number of thresholds based on conditional entropy of the image guides the entire process. Small regions are merged.
Ohjective measures based on comrelation and contrast have been proposed for evaluation of the segmentation technique,
and the result of the proposed algorithm has heen compared with those of three different existing multi-level thres-

holding algorithms.
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1. Introduction

Segmentation plays a significant role in image
processing as well as in pattern recognition. Seg-
mented regions along with their contours may be
useful for designing image compression algo-
rithms. This representation is more useful and
effective because region contours are not discon-
nected like edges. Reported works in this area can
be found in (Kunt et al., 1985, 1987; Carlsson,
1988; Shen and Rangayyan, 1997), whereas a
broad over-view of segmentation can be found in
(Gonzalez and Wintz, 1977; Pavlidis, 1977; Ro-
senfeld and Kak, 1982).

To get compact homogeneous regions (or
patches), we have developed a new segmentation
scheme where we have recursively used an object/
background thresholding algorithm (Pal and
Bhandari, 1993). Unlike the region growing (Pav-
lidis, 1982) or adaptive region growing ( Kunt et al.,
1987) technique, it provides a number of compact
regions of similar gray levels for a given threshold.
We call this collection of regions for a given
threshold a swb-image. Thus, the segmentation
scheme produces a number of sub-images de-
pending on the number of computed thresholds. A
strategy for merging small regions has also been
suggested. We propose some quantitative indices
for objective evaluation of the segmented regions.

2. Extraction of compact homogeneous regions

The compression scheme may be thought of as
based on modeling compact homogeneous regions
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or patches using Bezier-Bernstein polynomial
function. Thus, given an image, we extract the
homogeneous sub-images. This can be achieved
through segmentation for which there are many
approaches (Weszka, 1978; Fu and Mui, 1981;
Haralick and Shapiro, 1985). For example, it can
be based on pixel level decision making such as
iterative pixel modification or region growing or
adaptive region growing, or it can be based on
multilevel thresholding. Each of these categories of
algorithms, except multilevel thresholding pro-
duces one region of similar gray levels at a time
and, therefore, it forces local approximation for a
region. Such methods may be called local thres-
holding schemes as decision s made at the pixel
level. It does not provide any information about
other regions of similar gray values. Hence from
the standpoint of compression, segmentation al-
eorithms based on local region growing are not
very attractive. On the other hand, global thres-
holding-based segmentation algorithms, (where
the entire image is partitioned by one or a few
thresholds), such as multilevel thresholding algo-
rithms (Weszka and Rosenfeld, 1978; Deravi and
Pal, 1983; Chanda et al., 1985), depend on the
number of local minima in the one- or two-
dimensional histogram of gray values in the image.
The extraction of these minima from the histo-
eram information sometimes may not be very re-
liable, because all desirable thresholds may not be
reflected as deep valleys in the histogram. Also, the
detection of thresholds is influenced by all pixels in
the image.

Several authors (Abutaleb, 1989; Kapur et al.,
1985; Pal and Pal, 1989a b; Pun, 1980, 1981) have
used entropy as the criterion for object/back-
eround classification. All methods described in
(Kapur et al., 1985; Pun, 1980, 1981) use only the
entropy of the histogram, while the methods in
{Abutaleb, 1989: Pal and Pal, 1989ab) use the
spatial distribution of gray levels, i.e., the higher-
order entropy of the image. For the set of images
reported in (Pal and Bhandari, 1993), authors
claimed that conditional entropy of the objects
and background based on Poisson distribution
produced better results compared to the methods
in (Kapur et al., 1985; Pal and Pal, 198%a b; Pun,
1980, 1981; Kitler and Hlingworth, 1986). All these

methods produce only an object/background (two
level) partitioning of the image. In our problem
such a bi-level thresholding is not adequate. We
propose an algorithm for hierarchical extraction of
homogeneous patches using the conditional
entropy thresholding method. The conditional
entropy is defined in terms of the second-order co-
occurrence matrix.

(a) Co-occurrence matrix. Let F = [f(x,»]] be
an image of size M = N, where f{x,y) is the gray
value at (x, ), flx,y)eGo={0,1,2,..., L—1},
the set of gray levels. The co-occurrence matrix of
the image Fis an L x L-dimensional matrix that
gives an idea about the transition of intensity be-
tween adjacent pixels. In other words, the (i, fith
entry of the matrix gives the number of times the
eray level 'j" follows the gray level %" in a specific
way.

Let ‘a’ denote the (i, fith pixel in F and let ‘b’ be
one of the eight neighboring pixels of ‘o, ie.,

beag={(i,j—1),(i,j+1),i+ 1,7,
(=10, G=1,7—1),(i—1,j+1),

i+ 1j—-10+1.7+1)}

aef htag

where § = 1 if the gray level of 'a” is *7 and that of
‘B is k7, 6 =0 otherwise.

Obviously, #; gives the number of times the
eray level °k’ follows gray level 77 in any one of the
eight directions. The matrix T = [t;],,, is. there-
fore, the co-occurrence matrix of the image F. One
may get different definitions of the co-occurrence
matrix by considering different subsets of ay, ie.,
considering b € a;, where @, C as.

The co-occurrence matrix may again be either
asymmetric or symmetric. One of the asymmetrical
forms can be defined considering
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with

1 if fli,j)=iand f(i,j+ 1) =k,
5= or f(i,j)=iand f(i+1,j) =k,
0 otherwise

Here only the horizontally right and vertically
lower transitions are considered. The following
definition of f; gives a symmetrical co-occurrence
matrix:

1 if fii,/l=iand fli,j+ 1) =%
or f(i,j)=iand fli,j—1)=k
d = or fli,/)=iand fli+ 1,/ =4k
or fli.fl=iand fli—1,/1 =k,
0  otherwise.

{b) Conditional entropy of a partitioned image.
The entropy of an n-state system as defined by
Shannon and Weaver (1949) is

N~ (1)
Y,

where 377 g =1 and 0 < 1, p is the proba-
bility of the ith state of the system. Such a measure
is claimed to give information about the actual
probability structure of the system. Some draw-
backs of (1) were pointed out by Pal and Pal
{1989a) and the following expression for entropy
was suggesied:

H=Y pexp(l - p), (2)

=1
where > ", p;=1and 0< p; < 1. The term —Inp;,
i.e.. In({1/p) in (1) or exp(l —p) in (2) is called
gain in information from the occurrence of the ith
event. Thus, one can write,

H=Y pAl(p), (3)

where Af{p) = In{l/pm) or, exp({l —p;) depending
on the definition used.

Considering two experiments A{a;. as2,...,a,)
and 8(by, b, ..., b,) with respectively, m and n,
possible outcomes, the conditional entropy of A
given by has occurred in 8 is

o

H(A| ) = plac | b)Al(plax | b)), (4)

k=1

where pla; | b)) is the conditional probability
of occurrence of a; given that b, has occurred.
We can write the entropy of 4 conditioned by
B as

H(d | B) = Zp H{A| By

Ms .Ms

plag | by )AI(plag | b))

plag, bi) Al (plag | b)), (5)

DY
>

1

e

=1

where pla;. b)) is the joint probability of occur-
rence of (a;, B

Let p{i| f) be the probability that a gray value i
belongs to the object, given that the adjacent pixel
with gray value j belongs to the background,
3..pli| ji= 1. Thus, for a given threshold s, the
conditional entropy of the object given the back-
ground, as defined by Pal and Bhandari (1993)
(using (5)) is

H(O|B) =Y Y mi)Aplili)

Feobpel Ebackground

-3 S AGIAGELD, (6

=l j=x+1
where
Pulis) = =l ()
Z::(I Z_:-—-:H By
and
B fofu tij 0

for Di<s and s +1 <7< L — 1. Here t; is the
frequency of occurrence of the pair (i, j).
The conditional entropy of the background given
the object can similarly (using (3)) can be defined as
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H(BlO)= Y > pli JAHpsli] J),
rEbackground Jeokect
(%)
where
? Ii; :
Pl f) = == (10)
Zf—.:]-i-'l Z_.I—III 'FJJ
and
qF (11)
P\l | J) = —F57——
Tt

for s+ 1=<i<l—1 and 0= j<s Then the total
conditional entropy of the partitioned image is

HE = H(0| B) + H,(B| O). (12)

For an image, the conditional entropy of the
object given the background provides a measure of
information about the object when we know about
the existence of the background. Entropy is a
measure of expected gain in information or ex-
pected loss of ignorance with an associated prob-
ability distribution. Thus, H{(Q | 8) can also be
viewed as average loss of ignorance about the
object when we are told about the background.
Similar interpretation is applicable to H{8| O)
also. Hence, maximization of H} is expected to
result in a good threshold. HY can also be viewed
as a measure of contrast.

Let th be the correct threshold for an object/
background segmentation. Now if th is used to
partition the co-occurrence matrix, entries in
quadrants two and four in Fig. 1 will have low
frequencies, but expected to be more or less uni-
formly distributed. Similarly, for one and third
quadrants, frequencies also will be uniformly dis-
tributed but with high values. Because within a
region, frequencies of transition from one level to
another will be high. However, as far as the two-
dimensional probability distribution is concerned,
all cell will have more or less uniform probability
mass function. Now suppose the assumed thresh-
old s is less than th, the second quadrant will have
some high frequencies which are actually transi-
tions within the object. In addition to this, it will
also have actual low frequency transitions from
object to background (i.e., across the boundary).
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Fig. L. Partitioning of the co-occurrence matrix [for threshold-
ing.

Thus, the quadrant two will have a highly skewed
probability distribution resulting in a drastic low-
ering of Hf.

The uniformity of quadrant one will be main-
tained, but that of quadrants three and four will be
affected causing a lowering of entropy of quad-
rants three and four. Similarly, if the assumed
threshold is more than th, A7 will be reduced.
Hence, its maximization with respect to s is ex-
pected to provide a good object/background
segmentation.

Mext, we provide a schematic description of the
algorithm.

Algorithm ( Cond_threshold( X, th)).

begin
Compute Co-occurrence matrix, t = 1], ,.
s = 0; max = 0;
th = 0; th is the threshold for segmentation
while (s <= L — 1) do
compute H} by (12)
if (H}(s) > max) then begin

th = s;
max = Hy(s)
end
s=58+1;
endwhile;

end:;
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In the present investigation, we  use
Al(p;) = exp(l — p) in Eq. (12).

2.1 Partitionfdecomposition principle for gray im-
ages

In this section, we explore the possibility of
using the object/background thresholding algo-
rithm (Cond_threshold) for extraction of homoge-
neous patches from a gray level image for image
data compression. For this purpose, we intend to
partition the image into several sub-images keep-
ing in view the following points:

e cach sub-image consisting of different regions
should be approximated well by some low-order
function,

e number of sub-images should be as low as pos-
sible,

¢ homogeneity within a region and contrast be-
tween-regions should be reasonably good.

In order to achieve this goal, one can use either
a muli-level thresholding algorithm (Weszka and
Rosenfeld, 1978; Deravi and Pal, 1983; Chanda
et al., 1985) or an object/background thresholding
algorithm. The multi-level thresholding algorithm
depends on the number of local minima in the
histogram of the image. The extraction of these
minima from the histogram information some-
times may not be very reliable, because some of
them may not be strong enough to be detected by
the objective function being used. The object/
background algorithm, on the other hand, relies
on a single threshold to extract the object from the
background. We propose a scheme which repeat-
edly uses an object/background segmentation al-
gorithm for extraction of homogeneous patches
suitable for image compression.

Consider an L-level image Fy(x.y). The input
eray image F,ix,y) initially provides a threshold, s
on application of the object/background thres-
holding algorithm. The threshold, s partitions the
image F(x. ) into two sub-images Fy(x, 1) and
Fya(x, v). The gray levels in £ (x, y) lies in the in-
terval [0, s] and in Fp (x, ) it is limited to (s, L — 1].
From the standpoint of object/background thres-
holding, £ (x, ¥) can be viewed as the ohject while
Fialx, ) is the background without loss of gener-
ality.

To check the feasibility of global approximation
of the sub-images so obtained, we approximate,
first of all, # (x, ) by a polynomial of order p< g
(g is a predefined upper limit on the order of
polynomials) satisfying a criterion C. It should be
noted that F,(x,¥) may consist of a number of
isolated regions or patches, say, ., ... Q. _If
the approximation satisfies the criterion ¢ then we
accept the sub-image Fy(x,y). Otherwise, even
when a polynomial surface of order g cannot ap-
proximate the sub-image subject to C, we compute
the variance in each of the regions. Next, we fit a
global surface of order g over the entire sub-image
and a local surface of order less than g over the
residual errors (defined with respect to surface of
order g¢) of the most dispersed region. This may
give rise to one of the following four different
situations:

{1) the criterion C is satisfied for the most dis-

persed region (with respect to global and local

surface fitting) and also for rest of the regions

{with respect to global fitting),

{2) C is satisfied for the most dispersed region

but not for rest of the regions,

(3) C s not satisfied for the most dispersed re-

gion but satisfied for rest of the regions,

{4) C is not satisfied for both the most dispersed

region and rest of the regions.

In sitwation (1), both local and global fits are
satisfied. Hence, it implies that all segmented re-
gions or surface patches are homogeneous and we
accept the sub-image.

In sitwation (2), we additionally fit a local
surface of order less than g over the residual er-
rors (defined with respect to surface of order g4) of
the second most dispersed region. The process
may continue for all regions in the sub-image,
only in case of failure for the global surface ap-
proximation. But if the local surface fit fails to
satisfy the criterion C at any stage (cases 3 and 4),
then it indicates the need for further decomposi-
tion and hence, we seek a new threshold for the
sub-image Fyi(x.y). We accept the partition, £y
when both local and global fits satisfy the crite-
rion C.

A new threshold s, divides the image £y into
Fonlx, ) and Fa(x, ¥). The gray levels in Fy; (x, v)
extend from zero to s; while in F2(x, ) they ex-
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tend from s, + 1 to s. In other words, the gray level
bands are [0, 5] and [s;, s] respectively for Fyy; (x.¥)
and Fya(x, y). The image Fp(x, ¥) may likewise be
examined and sepmented if needed. The segmen-
tation, therefore, follows a binary tree structure as
shown in Fig. 2.

The criterion C plays a crucial role in the
determination of polynomial orders. If the seg-
mented regions are more or less uniform, then
low-order polynomials will fit the data reasonably
well. However, if the approximation criterion C is
very strict and if the spatial distribution of gray
values over a region deviates from uniformity,
higher-order polynomial will be required to justify
the fit. This will result in better reconstruction of
image at the cost of compression ratio. Hence, the
choice of C should be made based on a com-
promise between the quality of reconstructed
image and the compression ratio. Sections 22-2.4
provide details of approximation along with a
new approach for the determination of polyno-
mial order. In most of the cases, order is seen to
be 2 but it can go upto 3 or 4 depending on
variations in the segmented regions and the cri-
terion C.

2.2 Approximation problem

First of all, we formulate the approximation
problem using Bezier—Bernstein polynomial and
then we address the issue of polynomial order
determination. We have chosen the Bezier—Bern-
stein polynomial because our segmentation algo-
rithm is basically designed for image compression.
Bezier—Bernstein polynomial provides a number of
merits during reconstruction. However, one can
also use other functions.

The Bezier—Bernstein surface is a tensor prod-
uct surface and is given by

-3 Z bpl10) 6,

.IIII_

_Z ZEFD__,‘,H’{I—H

=l ==l

Spglte, U]

(L= o)W,
(13)

where w,v € [0,1] and B, = g/((p—r)¥¥!), D, =
g/ (g — =)z, p and g define the order of the Be-
zier-Bernstein surface.

To approximate an arbitrary image surface

Fix,y) of size M »x M, fix,y) should be defined in

FD(L ¥)

F (K/ \chx,y:'

Fptx. 72 Amz‘(x ¥)

A
/

Fig. 2. Binary tree structure For hierarchical segmentation.
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terms of a parametric surface (here s,) with the
parameters u,v in [0,1]. Therefore, the function
fix,y) can be thought in terms of glu, v), where
w={i—-1/M-1) i=L2....M and v=
G-1)/M-1),j=12..., M.

We choose the weighted least square technique
for estimation of parameters V. to be used for
reconstruction of the decoded surface. Although,
the total square error for the conventional un-
weighted least square approximation may be less
than that for the weighted least square, the ap-
proximation produced by the latter may be
psychovisually more appealing than that by the
former, provided weights are chosen judiciously.
For an image, edge points are more informative
than the homogeneous regions. Edges are the
distinct features of an image. Thus, edges should
be given more emphasis while approximating an
image patch and this can be done through
weighted least square.

Thus, the weighted squared error can be writien
as

E = Z Z [H‘{u._ v) (glu, v) — splu, u]l_‘]]3
= Z z [H‘{u, v (g{u, v
=% Zdr,p{ullcﬁr;,{vjﬁ-;)] ' (14)

=l ==l

where W{u, v) is the weight associated with the
pixel corresponding to (u, v). For p =g, the sur-
face s, (1, v) 15 defined on a square support. Since
Wi, v) is the weight associated with each pixel, it
can be considered constant for that pixel. There-
fore, one needs to find out the weight matrix be-
fore solving equations for the weighted least
square. Once W{w v) is known, these equations
reduce to a system of linear equations and can be
solved by any conventional technique.

We emphasize that for order determination we
use the unweighted approximation scheme.

2.3, Polynomial order determination

The order of the polynomial can be determined
using either the classical approach or the image

quality index (IQI) ( Biswas et al., 1994). Since 1Q1
reflectis the average contrast (with respect to
background) per pixel in the image, if the original
and approximated image have nearly the same 1Q1
then the approximated image is expected to pre-
serves the boundary contrast in the average sense.
We, therefore, use very small AIQI between the
input and approximated sub-images as an indica-
tor of the adequacy of the polynomial order. In
order to determine optimal polynomial, we in-
crease the order of the polynomial unless the fol-
lowing condition is satisfied

H(1QD) s — (TQI) o ssimatea| S €0y (15)

where €, is a small positive number.

To calculate 1Q1 we find, first of all, the total
contrast K of the image. For an M = N image, K
may be defined as

k=% ¢ (16)

=1 =1

The contrast ¢;;, at the pixel position ({, f) can
be written using the concept of psycho-visual
perception as (Hall, 1979)

__|B—8; |AB
A="m - B

(17)

where B is the immediate surrounding luminance
of the (i, f)th pixel with intensity 8;. Eqs. (16) and
(17) reveal that the contrast of pixels in a perfectly
homogeneous region is zero everywhere except
near the boundary points. The contribution to K
of the image, therefore, comes mainly from its
noisy pixels and contrast regions (edge points).
Thus the image quality index or the average con-
trast per pixel is defined as

1q1=n£, (18)

where ny = MV — nyg, n; = total number of signif-
icant contrast points, n, = total number of sig-
nificant homogeneous points and MN = number
of pixels in the image MNote that the average is
taken over only those pixels which mainly con-
tribute to the contrast measure, K; the pixels of
homogeneous regions being least contributory
have been discarded.
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To find out n, we define the homogeneity, f;; of
the (i, jith pixel as

_ Zf--] EXp _|Eu — &

by = 5

(19)

where B, indicates the intensity of a background
pixel in the 3 x 3 neighborhood, Ns(i, j), of (i, ).
From Eq. (19), it is seen that when each back-
ground pixel is equal to the central pixel, the tiny
region around the central pixel is perfectly homo-
gencous, and the homogeneity measure at the
central pixel is equal to unity. For other cases,
homogeneity value of a pixel drops down expo-
nentially with its difference from the background
intensity.

Therefore, if we compute total homogeneity of
an image as

H=

¥

By, (207

M N
=1 =1

then the major contribution to #f comes only from
the pixels which lie in perfectly homogeneous re-

eions. Thus, f will be a good approximation to ny.
Therefore,

Yl Lo 1ABy| /B
MN — 33 hy

Thus, the condition in Eq. (15) follows a psy-
cho-visual criterion. A low value of e, produces
psycho-visually a good gquality of image. Note
that, for an ordinary least square approximation
using polynomial surface, the error over the
boundary points normally is higher than that over
the interior points. Therefore, any polynomial with
order determined relative to an error function
measured over the boundary points, is expected to
provide approximation good for the interior
points.

Q1 = (21)

2.4, Algorithms

Method 12 Variable order global approximation.
Here we determine the order of the global ap-
proximation over data points in each sub-image
obtained under different thresholds. A schematic
description of the globhal approximation scheme is

given below. We assume that there are k& number
of thresholds for an image and N, N>, .. N are
the number of regions in these & sub-images.

Algorithm. global_approx(input_image, th, e, p)

begin
step 1. Compute the weights as the gradients
of the image;
step 2. Find an acceptable sub-image corre-
sponding to a threshold th obtained during
segmentation by Algorithm Cond _threshold
(assuming Wi, j) = 1 ¥i, j);
step 3. Find the value of 1Q1 of the sub-image
using Eq. (21);
step 4. Set the order of the polynomial,
p=1;
it step 5. Approximate the sub-image with
weights as computed in step 1;
step 6. Find 1QI of the approximated image;
3!'3;1 7. 1f H]Q]:I:mh—nnu.gc = {]Q]:Iuppmummlcdl -""{"-
€, then return p and goto step ¥ else set
p=p+1 and go to step 5;
step B stop;

end.

Method 2: Variablelfixed-order local approxi-
mation. If the variable order global approximation
over sub-images does not provide good approxi-
mation for some regions in a sub-image then we do
local correction. The global approximation is
performed over each of the k sub-images using a
variable order polynomial function. The residual
error surface patches are computed using the
globally approximated surface sy(u.v) and the
original input surface (here, the input sub-image).
Let us denote fth error surface patch of the ith sub-
image by &(u,v). Considering N; error surface
patches that need local correction in the ith sub-
image, we see that

el v) = gl v) — syl v),
=120

Each of these error surface patches is approxi-
mated locally using a fixed or variable order

polynomial A schematic description of variable
order local surface approximation is given below.
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Algorithm. [ocal_approx|{inmi_image, th e, q.p)

begin
step 1. find the most dispersed region, ; in
the input_image; find the residual error sur-
face for it with respect to order g;
step 2 find p using the Algorithm global ap-
prox (. thoe,, pl;
step 3.if p = g, a preassigned positive integer
then go to step 4 else assign an index for the
region and return p;
step 4. stop;

end;

To summarize, our scheme is a two-stage
process. In stage |, we first determine a thresh-
old. This threshold partitions an image into two
sub-images, £, and £;;. We determine the order
of a polynomial minimizing wweighted least
square error for approximating a sub-image F£;.
If the order of the polynomial is less than a
predefined order, say. g then we accept the par-
tition &; else we do a local correction for one or
more regions. Local correction is always with
respect to the globhal surface of order g. If the
global approximation together with local correc-
tion{s) is all right, then we accept the sub-image,
Fy else we compute a new threshold to subdivide
Fyp into Ky and Fy2. The process goes on sub-
dividing the sub-images hierarchically until all of
them are approximated by global_approx and
local_approx. The same is also true for £, The
segmentation algorithm may produce some small
isolated patches. Afier the partition of the entire
image, all single pixel and small regions or
patches are merged to the neighboring regions
depending on some criteria which are described
in Section 2.5, Note that all approximations in
stage 1 are unweighted, ie., W(i,j) =1V¥i j in
approximation algorithms. In stage 2, for en-
coding one can approximate the sub-images
minimizing a weighted least square error with a
polynomial of the same order as determined in
stage 1. The same order can be used because the
order (global and also local) of a sub-image or
the nature of approximation is not expected to
change due to merging of small regions. How-
ever, one can once again find the order of ap-
proximation before encoding.

2.5 Merging of small regions

For better segmentation and compression, we
like to merge small non-informative regions. This
raises two issues: which regions are to be merged
and where are to be merged. In order to detect
regions of small size for possible merge to one of
its neighboring regions, we define a merge index
(MI) as the ratio of a measure of within region
interactions to that of between-regions interac-
tions. We assume that for a non-trivial region, the
within-region interaction should be more than that
across the boundary, i.e., MI=1. A very simple
measure of within-region interaction is the number
of transitions within the region. Similarly, the be-
tween-region interaction can be defined as the
number of transitions across the border of the
region. Thus, MI can be computed as

MI = (Mumber of transitions within a region)
J{Number of transitions across the border
of the region).

Mote that, MI cannot be computed directly
from the co-occurrence matrix discussed earlier
because more than one isolated regions may con-
tribute to the computation of t; for a particular
{i.j); and in the present context we need to con-
sider only the transitions with respect to one re-
gion. This is a very simple, yet effective measure of
interaction. Other measures can also be used.

Small regions, detected by MI are the potential
candidates for merge and they are merged if the
magnitude of the average gradient computed over
their region boundaries is less than a preassigned
positive value. This criterion will avoid merging
small but informative regions. High contrast small
regions are usually informative, e.g., the white spot
in the eye ball in a face image. The average gra-
dient over a region, say 4 may be computed as

: Gli. f) on
G= 3 =05, (22)

(i yeded

where p is the perimeter of the region €, and
(i, j) is the gradient at the position (i, /). The
average gradient over other regions can likewise be
computed. We have used the following gradient



140 & Riswas, N.R. Pal | Pattern Recognition Letters 21 {2000 ) 131144

functions. Let g;; and g, ; be two adjacent pixels
belonging to two different regions, say, £, and
then

G(i,j) = max|g; — gl
lk E Q.E'- -k E . 1“‘3{}11_}::'1 {23:|

where Ni(i,j) is the 3 x 3 neighborhood of (7, ;).
Mote that we are not rechecking the segmentation
criteria because we are merging small regions with
low gradients across the boundary positions. It is
expected that the condition will be satisfied and
our computational experience indeed supports this
fact. However, to ensure the validity of the con-
dition one can check once more the thresholding
after merging.

Single pixel merge: Sometimes, single pixel re-
gion can occur in a thresholded image. This is
merged to the neighboring region having the
closest gray value in the 3 x 3 neighborhood of the
single pixel region.

3. Evaluation of segmentation

For the evaluation of segmentation, we focus
our attention to region homogeneity and contrast
along the boundary points. A good segmentation
technique should create homogeneous regions or
patches with high contrast at the inter-region
boundaries. MNote that the type of mergings we
have adopted should have very little effect on the
overall contrast of the image. We use the following
objective measures for quantitative evaluation of
segmentation.

3.4 Correlation

Correlation has already been used as a criterion
for gray level thresholding and evaluation (Brink,
1989). Here, we use it to examine the gray level
similarity between the segmented region/patches
and the original image. Consider the segmented
image where all patches under respective thresh-
olds are replaced by their average value. The cor-
relation between the segmented and input images
provides an idea about how a segmented patch is
nearer to the corresponding region in the original

input image. For a good segmentation, the corre-
lation coefficient between the two images should be
very high. However, if the segmented patches are
not homogeneous, i.e., if they have edges in them,
the variance of the corresponding regions would
be high and as a result the correlation coefficient
would be low. Thus correlation, between the two
different images; input and segmented, can be an
useful measure to evaluate the quality of segmen-
tation. The correlation coefficient can be calculat-
ed in the following way.

The coefficient of correlation p,, for two sets of
data X = {x;, %3, ... ,.1'_.-.,-} and ¥ = ¥, ... 1_],:'.-,‘.}
is given by

¥ ot X — X
I'JXI.'

L VAT R ATY -

where ¥ = L 3" x; and 5= 1 3V 3. The corre-
lation coefficient, p,, takes on values from +1 to
—1, depending on the type and extent of correla-

tion between the sets of data.

(24)

3.2, Contrast

Another requirement for a good segmentation
is that the contrast at inter-region boundaries must
be very high compared to that for the interior
points. This criterion immediately suggests that the
average contrast, i.e., contrast per pixel, say K, of
all inter-region boundary points in all sub-images
should be high compared to that {say, Ky) over all
points enclosed within the boundaries. Therefore,

Ky = Ko

The contrast ¢;;, at the pixel position (7, j) can be
computed as in Eq. (17) which we repeat here as

. _|B-B; |AB|

Cy = T = T, {25)
where B is the immediate surrounding luminance
of the (7, j)th pixel with intensity 8.

Let SB be the set of all boundary points and 51
be the set of all interior points (SBUSI = F,
SB NS = nul! set). Contrast to all boundary
points, Ky and that of interior points, K, are,
therefore,
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K. = Z Cij and Kn= Z Cij-

(&5 [Lnes

Mote that Ky is an indicant of homogeneity
within-regions — lower the value of Ky, higher is
the homogeneity. The contrast per pixel, K, of
all inter-region boundary points and that over
all points enclosed within the boundaries, Ky can
be obtained dividing K, by the number of
boundary points and K, by the number of inte-
rior points.

4. Comparison with multi-level thresholding algo-
rithms

Since the co-occurrence matrix contains infor-
mation regarding the spatial distribution of gray
levels in the image, several workers have used it for
segmentation. For thresholding at gray level ‘s,
Weszka and Rosenfeld ( 1978) defined the busyness
measure as follows:

Busy(s Z Z ti+ Z i:u (26)

=l =541 i=+1 =l

The co-occurrence matrix used in (26) is symmet-
ric. For an image with only two types of regions,
say, object and background, the value of *s” which
minimizes Busy(s). gives the threshold. Similarly,
for an image having more than two regions the
busyness measure provides a set of minima corre-
sponding to different thresholds.

Deravi and Pal (1983) gave a measure which
they called *‘conditional probability of transition™
from one region to another as follows. If
the threshold is at ‘5", the conditional probability
of transition from the region [0,s] to [s+ 1,L— 1]
is

Z::il ZL:.:L'I I’.l'
Z:-_1 Z_:;u &+ Z:_u Z_:_;L 1
and the mnditional probability of transition from
the region [(s +1),(L —1)] to [0,s] is
Po— Z:-_ﬁ'l Z_:;III fU
: Zf—j+] Z.' s+1 I’J + Zf_—_x]-i-'l Zj;il I’J

P = (27)

(28)

p.ls), the conditional probability of transition
across the boundary is then defined as

peds) = (P + P)/2. (29)

Expressions (27)—29) suggest that a minimum of
Pl ) will correspond to a threshold such that most
of the transitions are within the class and few are
across the boundary. Therefore, a set of minima of
pols) would be obtained corresponding to different
thresholds in F.

Chanda et al. {1985) also used the co-occur-
rence matrix for thresholding. They defined an
average contrast measure as

ZJ =} Z_.l 5+1 Iln'* i—jj_

AVC(s) = > Z
Zf 51 Z_.« o fij * J':'j_ (30)
Zl 5+1 Z‘—il

AVC(s) shows a set of maxima corresponding to
the thresholds between various regions in F.

In the computation of 1, they considered only
vertical transitions in the downward direction.

4.1 Results

In order to evaluate the quality of segmentation
produced by the proposed algorithm and to com-
pare it with those of the above three different al-
gorithms, we examine in Table 1 the objective
measures discussed in the previous section. We
have used two 32-level images (Figs. 3 and 4), each
of size 64 = 64. Fig. 3(a) is the Lincoln image while
Fig. 4(a) is the Biplane image. Table 1 shows the
values of different ohjective measures in conjunc-
tion with the total number of regions or patches,
say N, produced by different segmentation tech-
niques for the images. MNote that the number of
regions is an important parameter to justify
eoodness of segmentation. For the Lincoln image,
the number of segmented regions obtained by the
proposed algorithm is almost one-fourth of those
obtained by the other algorithms and for Biplane
image the number of regions is roughly half of
those produced by the algorithms of Rosenfeld
and Kak (1982), Deravi and Pal (1983) and
Chanda et al. (1985), respectively.
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Table 1

Evaluation of different segmentation algorithms
Objective measure Proposed Wesrka and Rosenfeld Dreraviand Pal Chanda et al.

(1978) {198 3) (19835)

Lincoln image
Mumbser of regions, Ng 52 187 192 189
Correlation 1L978784 0987864 0987307 0.990799
Boundary contrast/pixel, £, 0,204 0.200 0194
Region contrast/pixel, £ 00294 0.0257 00258 00293
Biplane image
Mumber of regions, Ng 35 59 59 76
Correlation (988588 0989192 0989192 (L98R3E1
Boundary contrast/pixel, £, 01499 0.1866 0.1866 0.1782
Region contrast/pixel, Ko 00151 (L0144 (L0144 00150

Usually, with the increase in number of regions,
correlation is expected to increase. The segmenta-
tion of both Lincoln and Biplane images supports
this fact. But even with a much smaller number of
regions for both the images, produced by the
proposed scheme, the correlation values are com-
parable to those for the segmented images ob-
tained from other algorithms. This indicates
successful merging of small regions to the proper
neighboring regions. Also, due to the merging the
homogeneity of the segmented regions is expected
to increase. For good segmentation, this homo-
zeneity should be very high. In other words, the
average contrast Ky within a region should be low.
The parameter region contrast/pixel, Ky shows
that the average homogeneity is reasonably good.
Finally, the average boundary contrast &, for
both images is very much comparable to all the
cases. Thus, the proposed scheme for segmentation
is hetter than other methods and provides advan-
tage from the standpoint of compression. Different
segmented images along with the input are shown
in Fig. 3({a)}{e)) and Fig. 4(a}e)). For a better
display of segmented regions, all segmented images
are stretched over a gray scale of [0-233].

5. Conclusions and discussion

We have developed a new segmentation scheme,
keeping in mind its use in image data compression.
The segmentation strategy uses the multi-level
thresholding based on conditional entropy. It
partitions an image hierarchically and merges a

small region efficiently. Evaluation of the proposed
segmentation scheme has been performed and its
result has been compared with those of several
existing muli-thresholding schemes.

The proposed algorithm in this paper shows the
possibility of globally approximating many seg-
mented regions or patches by a single polynomial
function. In other words, attempts have been made
to model different regions in an image by a single
polynomial surface. For this, all such regions
should have similar gray levels. The segmented
regions to be approximated by a single polynomial
can be extracted under a single threshold. Thres-
holding-based segmentation thus provides an ad-
vantage over split and merge technique of
segmentation (Pavlidis, 1982). The latter does not
provide any group of patches or regions of similar
eray levels located at different places in an image at
a time. It is, therefore, preferable to choose a
thresholding technique of segmentation for coding
application. Because under such segmentation, a
set of approximation parameters can represent
many regions. This set of parameters represents a
single surface on which different regions are situ-
ated at different locations. Hence we do not need
to code all regions separately for their gray infor-
mation. This is an important reason responsible
for providing advantage to image compression.
However, the gray level distribution over some of
the image surface patches may be such that the
global approximation is not adequate for them.
We call such patches, under a given threshold,
husy patches. To overcome this difficulty, a lower
order (compared to that of the global
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{a)

(b} {c)

{d) {e)

Fig. 3. {a) Input Lincoln image; (b) segmented image by the
proposed method; (¢) seemented image by Chanda et al. {198 5);
(d) segmented  image by Wesrka and Rosenleld (1978);
() segmented image by Deravi and Pal {1983),

approximation) polynomial function can be used
for local approximation of each of the residual
surface patches in the sub-image. Therefore, a sub-
image can be reconstructed using the global sur-
face along with the local residual surfaces for the
busy patches if they are really present. Such a
hybrid approximation scheme helps to improve the
compression ratio. Note that exactly the same kind
of approximation is used to guide the segmenta-
tion process which ensures that the extracted sub-
images can be modeled by low-order polynomials
resulting in better compression.

fa

{(a)
(b} (cl
(d) (e}

Fig. 4 {a) Inputl image of a biplane: (b) segmented image by the
proposed method; (o) segmented image by Chanda et al. (1985);
(d) segmented image by Wesska and Rosenleld (1978);
() segmented image by Deravi and Pal {1983),

To visualize more clearly the advantage pro-
vided by the proposed algorithm to image com-
pression we consider the following example.

Suppose in a threshold band limited sub-image
F(x,y) we have N surface patches, then for the
local quadratic approximation one requires 6
coefficients. On the other hand, if we have the
elobal quadratic approximation of the sub-image
and local planar approximation of the residual
surface patches, the total number of coefficients is
IN + 6. For an improvement in compression ratio
of the pglobal-local approximation over the
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conventional local approximation we must have
6N = 3N +6, i.e, N = 2. This implies a positive
eain in storage if the sub-image has more than two
surface patches which usually is always the case.
Thus, it is evident that for polynomial approxi-
mation, we need less number of bits for any seg-
mentation-based  lossy  image Compression
technique where regions or patches are approxi-
mated separately. Compression factor, as a result,
would improve (assuming the same contour cod-
ing scheme as in the concerned method).

Performance of a compression algorithm based
on the proposed segmentation scheme will be re-
ported in a forthcoming paper.

References

Abutaleb, AS., 1989, Automatic thresholding of graylevel
pictures using two-dimensional entropy. Computer Graph-
s, Vision and Imapge Processing 47, 22-32,

Biswas, 5., Pal. N.R., Pal, 5. K., 1994 A quantitative index Tor
ermination of iterative imapge smoothing algorithms, In:
Proc. 3rd Internat. Conf. on Automation, Robotes and
Compuler Vision, pp. 11071111

Brink, A.D, [989, Grey-level thresholding of images using o
correlation  criterion.  Pattern  Recognition  Letters 9,
35-MIL

Carlsson, 5., 1988, Sketch based coding of gray level images,
Signal Processing 15 (1), 57-83,

Chanda, B., Choudhuri, B., Majumder, D D, 1985, Minimum
error  threshelding, Pattern Recognition Letters 3 (4),
243251,

Deravi, F.. Pal, SK., 1983 Graylevel threshelding using
second-order statistcs. Pattern Recognition Letters 1 (5),
417422,

Fu, K.5., Mui, LK., [98]. A survey of image segmentation.
Pattern Recognition 13,

Gonzaler, R.C., Wintz, P, 1977 Digital Image Processing.
Addison-Wesley, Reading, MA.

Hall, E.H., 197, Computer Image Processing and Reoognition.
Academic Press, New York.

Haralick, R.M., Shapire, L.G., 1985 [Image sementalion
technigques. Computer Vision, Graphics and Image Process-
ing 29, 100-132

Kapur, JL.M., Shaoo, PK., Wong, A K.C., 1985 Gray level
picture thresholding using the entropy of histogram. Com-
puter Vision, Graphics and Image processing 29, 273285,

Kitler, 1. Nlingworth, J.. 1986, Minimum error thresholding.
Pattern Recognition Letters 19 (1), 97-108.

Kunt, M., Benard, M., Leonardi, B, 1987, Recenl results in
high compression image coding. IEEE Transactions on
Circuils and Svstems 34 (11, 13061330,

Kunt, M., Tkonomopoulos, A, Kocher, M., 1985 Second-
generation image coding techniques. In: Proe. IEEE 73,
U574,

Pal, M.R.. Bhandari, D, 1993 Image thresholding. Signal
Processing 33 (2, 139158

Pal, M.E.. Pal. S K., [98%9. Entropic thresholding. Signal
Processing 16 (2), 97-108.

Pal, M.R., Pal, 5 K., 1989k, Object background segmentation
using new definition of entropy. In: Proc. IEEE, Vol. part E,
pp. 284-295,

Pavlidis, T., 1977, Structural Pattern Recognition. Springer,
Mew York.

Pavlidis, T., 1982, Algorithms [or Graphics and Image
Processing. Springer, New York.

Pun, T.. 1980 A new method lor gray level picture thresholding
using the entropy of the histegram. Signal Processing 2 (3),
223237,

Pun, T., 1981, Entropic thresholding a new method of image
sepmentation. Computer Graphics and Image Processing
16, 210-239,

Rosenfeld, A.. Kak, A.C. 1982, Digital Picture Processing.
Academic Press, Orlando, FL.

Shannon, C.E., Weaver, W, 1949, The Mathematicl Theory of
Communication. University of Hlinois Press, Urbana,

Shen, L., Rangayvan, R.M., 1997 A sepmentation-based
lossless image coding method for high resolution medical
image compression. [EEE Transactions on Pattern Analysis
and Machine Intelligence 16, 301-307.

Wesrka, 1.5, 1978, A survey ol threshold selection technigues.
Computer Graphics and Image Processing 7, 259-265.

Wesrka, 1.5, Rosenfeld, A, 1978 Threshold evaluation
lechniques. IEEE Transactions on Systems, Man and
Cybernetics 8, 622629,



	on hierarchical-1.jpg
	on hierarchical-2.jpg
	on hierarchical-3.jpg
	on hierarchical-4.jpg
	on hierarchical-5.jpg
	on hierarchical-6.jpg
	on hierarchical-7.jpg
	on hierarchical-8.jpg
	on hierarchical-9.jpg
	on hierarchical-10.jpg
	on hierarchical-11.jpg
	on hierarchical-12.jpg
	on hierarchical-13.jpg
	on hierarchical-14.jpg

