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Abatract—Tha (L] knapsack [1] problen is & well-knowin NP-complete problum, There are diffar-
ent algorithme in the litersture to attack this problem, two of them being of specific interest, One is
& peeudn polyoomial algorithm of order ({rK), K being the target of the problem. This algerithm
works nosatBfactorily, as the given tarpot becomes high, Io fact, the compledity mlght become ex-
ponential in that case. The ather scheme i a fully polynemial time appraximation scheme {FPTAR)
whose complexity is slso polynomial time. The present paper augmests a probebilistic heuristic which
i# en evolutionary achame accompanied by the necessary statistical formulation and its theoretical jus-
tifleatlon. Ve have identified parameters responsible for the performance of our evolttlonary scheme
which in turn would keep the option open for improsving the scheme,

Keywords— Almoat sure convergenes, Stoclhastle process, Maimwn likelihood £st inates, Asymp-
totic jolnt distributlon, Knapsack problem, Fully polytomial time approximation schenae, Pscudo-
polynomial algorithm.

1. INTRODUCTION

In recent years, enough research initiative is being directed towardsz exploring evelutionary class
of algorithms that are primarily used for search and optimization [2-4]). Genetic algerithm is an
instance of this evolutionary class. However, the theoretical foundation of these algorithms s not
wel! explored in literature. In the present discussion, after suggesting an evolutionary scheme to
solve the 0-1 knapsack problem, we try to formulate the convergence aspect of the algorithin and
we have identified the parameters responsible for the performance of suck an algorithm. In dus
course, we shell ses that since the performance parameters are unknown so, the guestion of their
statistical estimation iz of preat interest,

We have devoted the next section to glve the idea about an evolutionsry algorithm. In the
following section, we describe the 0-1 knapsack problem along with some real life applications.
There we also show how the problem is mapped intc the svolutionary domain. In Section 4,
we myggest the formulation of our new evolutionary scheme. In Section §, we concentrate on
statistically formulating the questions pertaining to the convergence of an evolutionary algorithm.
Here we have shown how the convergence {& ensured for any member of the evolutionary family
which aaticfy two necessary assumptions and as such, the convergence ia strongest. (almost sure
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convergence) in statistical sense. In this coomection, we have described Kolmogorov's strong law
of large number (5,8} for the sake of convenience and formulated our problem in Kolmogorov's
framework. In Sectipn 6, we located the parameters responsible for the performance of our
alporithin. Since these parameters are unkmown, they require statistical estimation which is
covered in Section 7. The last section contains results in which we shall show that the problem
being properiy mapped to the domaln of stochastic evolution converges in finite number of ateps
almost surely. o the treatment, the number of steps requited to converge to an optimal solution
is & ponnegative integral valued random verieble, Under certain ‘realistic’ assumptions, the
digtribution function of the above random variable kas been found. The expectation and variance
of the random variable are derived, both of which are found to be finite. Kolmogorov's strong
law of large number will then ¢nsurs the almest sure convergence of an evolutionary scheme in
finite number of steps.

2. PERSPECTIVE AND MOTIVATION

Essentially, an evolutionary algorithm s & stochastic alporithm. In an evolutionary schems,
the argument(s) of the objective function (function to be optimized) is/are encoded in a smitable
manner. The search mechanism takes place o the transformed space consisting of the eoded ver-
sion of the arguments of the objective funetion. This choice of coding scheme has been diseussed
in litetature [2,4]. Our formulation iz based on binary coded representation. In other words, the
transformed search space is composed of binary code of the argwmnents. So the problem reduces to
searching the transformed scarch space and obtaining that binary code {string} corresponding to
which the objective function is optimized. It may be mentioned that there is scope of theoretical
formulation where the code has more than two states in its alphabet, but that is beyond the scope
of the present treatinent, which we hope to treat in o separate paper. If the problem domain is
sufficiently eomplex or the search of the domain is rathor vast, even if it is not that much more
complex, the problemn might become very difficnlt to solve. Problems belongiog to NP-completa
ar NP-hard class are the glaring examples of such eventuality [7]. To date, these problems do
not have deterministic polynomisl time algorithms. What is best svailable are the fully polyno-
mial time algorithms and for heuristic schermnes. An evolutionary alporithm iz also a probabilistiz
and heuriatic method to solve an optimization problem, especially one which 1s hard in pature.
These optimization problems include application areas in theoretical computer science, artifieial
intellipence, VLBI design and layout. The stochastic nature of evolutionary schemea have been
found to play an important role with respect to these probiems. However, there are other areas
where probabilistic algorithms have been used with encouraging outcomes. These ereas encom-
pass patiern recognition and classification (3], scheduling [9], computational geometry [10], etc.
But most of the treatment so far has been of empirical nature and little theoratical formuletion
about algorithms of evolutionary class has been renlized so far.

2.1. Structure of an Evolutionary Algorithm

Io an evolutionary algorithm, we start with a bandivl of coded strings of a particular length that
constitute the initial population, the choles of which is ysually random. However, the strings may
be chosen with some contextual prior knowledpe and intuition. The size of the initial populstion
haz heen dizcussed by Goldberg in [2]. From this initial population, ancther new population of
the same slze [as that of the lnitial population) is generated by gome transition cperation(s).
This new population again gives rise to another new population by the same way. This process
is continued until the termination condltion 13 reached. Since we ars not aware beforehand about
the string{s} that cotrespond(s) to the optitum value of the objective function, the termination
of the alporithm and the convergence of the algerithm continge to be open problems. Heowever,
there are different proposals about the termination condition [2-4]. As for example, De Jong has
sugiested an efittst model in which the best stting yet obtained is kept track of in a buffer so thet
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it does not get lost. What he has suggeated is, we terminate the algorithm if the abowve buffer
remaing unchanged across a sufficiently large number of generations. There mey arise questions
like hew many number of generations to bo set as relaxation Jevel and what is the guarantee that
within that stipulated choice of the level a global optimal is reached. In fact, it may so happen
that the algorithm 13 atuck at some suboptimal solution. This type of a situation is typically
known a3 the problem of ‘premature convergance’.

The most important question thet we face is the choice of transiticn operation(s). In fact, it
plays the most erucial role =o far as the strength of the supgested acheme is concerned. In our
formulation, we use the following notations:

F,; is the population at iteration i,

(2 i= a temporary population;

+{.}) 15 the transition operation of the proposed algorithm;

& and #' are coded strings.

The ahstract structure of the evolutionary algorithm is as follows:
fa— 0

repeat {

@~

forall se F;

{

s"d—ﬂ:s};
Q< Quish
}

E—f41:

P — @

}

until termination condition is attained,

3. THE 0-1 KNAPSACK PROBLEM

3.1, Prelude

The knapsack problem is an old problem that has different versions that defines the (-1 knap-
sack problem later on. As the problem i posed, it may sound rather simple, but interestingly
enoigh, the problein being NP-complete in nature has no deterministic polynomlal time algo-
rithm tili this date. But as such, the problem has been attacked from diferent angles and different
algorithma have been proposed to this effect, of which two are the most accepted in the literature,
One is a pacudo polyoomial algorithm [7] and the other is a fully polynomial time approxima-
tion scheme (FPTAS} [7]. Different hewristic schemes have been proposed for thie purpose. It
has alzo been tried with artificlal neural network methedology [12,13] and getetie algorithm ap-
proach [2,14-16]. Dutta and DuttaMajumder have suggested an evolutionary heuristic in [17]
to this end. We have proposed a mapping of the 0-1 knapsack problem to the domain of our
evolutionary scheme and have developed the alporithm on the basiz of that mapping, The algo-
rithim 3 applied to different randomnly generated data sets and the results obtained are found to
be encouraging enough. For the sake of compisteness, wo consider existing heuristic as well as
g fully polvnemial time approximation scheme (FPTAS) for this purpose and, we compare the
performance with the pseudo polynomisl algorithm at one hand snd the FIPTAS on the other.

3.2. Definition of the Problem

Given positive integers ey, 62, ., cp and & tatget K, does there exizt 2 5 C {1,2,...,r} such
that Ejegﬂj =HK7?

Hem 27:1-r
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To meke things clearer, let us illuatrate an example. Let the integers given be {1,3,7,5,9}
and the targst is 16. Then there can be solutions like {1,3,7,5} or {7,9}. But if the target is 23
lnstead, there cannot be any solution.

3.3. Example of a Real Life Application

A vender car has capacity K kg There are some bundles having respective weights oy, €3,
.+ 0n kg which are to he transported by that vendor cat. The problem is to pick up those
bundles and load them in the car so that the car capacity is maximum utilized, if not fully.

3.4, Mapping the Problem to Evolutionary Domain

We take the length of the coded string to be equal to the cardinality of the knapsack set. Cur
algorithm will produce & binary string in which those positions of the string would contain 'L,
whose corresponding nmumbers come in the subset 5. Thus, in the above example, for target
value 16, 11110, or 00101 are possible solutions.

In thiz context, let us define the following.

DEFINITION. The sum of the numabers in the knapasck corresponding to the positions contaln-
ing '1'in a string ic eailled the evaluation of that string. We represent the evaluatinn of a string s
Dy efs).

The evafuction of the string contsining ‘1 in all the places gives the sum of all the elements
in the knapsack.

This is clear from the above definition that given a target K, the closer the cuslustion e(s)
of the string # to the tarpet, the more progpective it is. On the basis of this observation, we
thoose the objective function. The natural choice could be |K — efs)}|. The objectlvs is to pet
hold of that string s* such that the distance messure |K — e{a*)| is minimam. Now if there is
any string & for which the above expression is zero, then it is inmediately concluded that

(1Y there exista an exact solution to the knapsack problem, and
{iiy s* corresponds to a solution.

4. OUR APPROACH AND THE NEW ALGORITHM

Each location of the string may or may not change which has certain probabilities. Our
proposal is to choose the probability of changing from one status to another, commonly referred
to as the transition probability, on the basia of the distance messure deseribed above. Of course,
ft is reasonable to choose small probability values for amall values of the distance. In other
words, strings with evaluation closer to the target will have a smaller probability to undergo
change. Moreover, if a string s* is reached for which the distance is zero, at a stage the transition
probability becomes zero. This means that this 5 will remain in all the future populations to
come. In pur formulation regarding convergence of the algorithoe, we shall gee that this property
i very essential. Tn that sense, the scheme is inherently elitist in nature. About the choice of the
transition probabifity for a string 5, we toke it equal to 1 — e(s)/K if (5} < K and 1 — K /ela)
if e(s) = K. At the initial stage, the search process is extensive and as penerations pasa on the
search process gradually becomes intensive, We formally deseribe the algorithm az follows.

Input: c1.09.. . 00, K.
Output: & binary string of length n,

begin

Step 1. To randomly creste the initial population Py of strings of a particular size provided
by the user.

Step 2. £+ 0.

Step 3. For all the strings a € Pg do
distance «— min {|e{s) — K|}
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Step 4. Repeat Step 5 through Step 8 yntil either of the following holda:
(i) distance becomes zero,
fii} iteration number exceeds & preassigned positlve ioteger T, the maximum allow-
able iteration number, e, ¢ = T.

Step 5. Q@ — ¢.

Step 6. For all the strings s = P do
{
each location of the string # undergoes chanpe with its corresponding traneition
probability pla);

the new string & thus obtained is put in some temporary population ¢). In other
words, (J — QU {s'}
}
Step T. t+— ¢+ 1.
Step S- PI, — Q..
end

5. STATISTICAL FORMULATION OF OUR NEW ALGORITHM

5.1. A Brief Review of Current Stndy

The ovolotionary algorithms, as we have already pointed out, are cssentially used for the
purpose of search and optimization and till today they lack a thorough comprehensive theoret-
ical formulation, though there have been some treatment about their converpence [18,19]). We
zhall try to give some theoretical justification of vur proposed algorithm, In [20,21], Dutta and
DuttalMajumder have presented the probability mass fonction of the ponnegative integer val-
ued random varfable representing the number of steps required to converge to an optimal nnder
certain conditions. In [22], we have identified the parameters responsible for the performance
of an evolutionary scheme. In the present initlative, we try to solve the statistical question of
estimating these parameters.

5.2. Theoretical Treatment

Hers we will treat the number of steps required to eonverge to an optimal atring {any atring
that correspond to optimum value of the objective function since there could be more than one
string which may give the optimum value) in an evolutionary algoritho as a nonnegative integer
valued random variable. Let X = number of steps required to attain an optimal. Now we shall
find out the expectation E{X) and the variance V(X). In our following discussion, we use the
notations listed below.

5* = Qptimom string (it may not be unique).
G+ = Population in the &*® generation.
-] P[S" € {rg | =" g Gp;_l].

tm = Pl X=m], m =0

rm = PG, ¥0=i<m],m=0,

En [s*# G, V0Zi<m},m>0.
P(s) = 3 n>0Pms™, the generating function of {p.,m = 0}.
R(s) = ¥ g ¥Fms™, the generating funetion of {r,,m = 0}.

In our calculation, we take the following assumptions.
1. One step bomogeneous Markov chaie which means that

Pl € G| € GuVi=0(1}k—1] = Pls" € Gy | 2" ¢ Gea], k21 (1)

Moreover, # = P[s* € Gy | 8 & (F-1] does not depand on the generation k.
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2. Onee an optimal string is attained at o particular genetation, then all the subsequent
generations would eontain that

Ps"E G| 8% e Gyog] =0, Y=l (2)

It comes out that the probability mass function of X belongs to a two parameter family and
ia given by
PIX =k={1—p)8(l -8, k21, (3)

where py = P[X =0]. First, let us note that

{X=k}={s"c G, 3" §G;, i =0{1}k — 1},
pr = PIX = k]
= Pla* & Gy, s* & Gy, ¥i = 0{1)k — 1]
= P[s* € Gy | o" € Gi ¥i = O0(1}k — 1] P[s* & G, ¥4 = O{1) — 1]
= Pla* € Gy |«* € Gy P[s* € Gy ¥i=0{L)k—1], by Assumption 1
= 0PI’ ¢ Gy, Vi = 0(10k — 1)
=9{P[s" € Gy, ¥i = 0{1)k — 2] - P[s* & Gt 8~ € Gy, Vi = O(1)k — 2]}
= frg_z — 1.

Thus,
Pre+Opr—1 = fre_a. {4)

MNote that,
B Z2E 2E D22 Ey 2 Ensr s

This implies that,

R I R R S {5}
Nowr,
=Pl G =1-P ] =1—p. {6}
Again observe that,
e+ B = Ti-1. (7)
Now multiplying both sides of {7} by s*, s € [0,1] and summing over k > 1, we have
Pls) =1— {1 —5)R{s). (8)

Again multiplying both sides of (4) by 5*,5 £ [0,1] and summing over k > 2, we get

P{s) = py — p15 + 0s(P(s) — pn} = 85" R(s),
(1 + 8s)P(5) — {1+ Bs)py — sp1 = 852 R(s),
{14 8531 — {1 — &) R{a)) — {1+ #2)(1 — ro) — 8{rp — r1} = Fa° R{s),
o +rofs — ros + s = {882 + (1 + 85} (1 — 3}] =), or
{1 —({1-faik{s} = (1— (1 - &alrg + ro

Thus,
&

i—(1-6)s (2}
Since a(l — &) € [0, 1), so expanding the right-hand side of (9), we end up at

RI:S} =g+

re=r{l—8)% k2l {10}
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Now from {7),
Pk =Tk-1— Tk, k=1,
= f‘nl:l = H}kﬂl — I"u{l = E]k
= rpf(1 — 81571, k=1,
= (1—po)8(1 — &y*, k>l
Therefore,
PIX=K=({1-po(1 -*, k=1 {11)

New, lim, . R{s) = lims_1-_(1 — P{s)}/(1 — 5} = lim,; {—P'(¢}}/—1 = limy—;- P'{s} =
L1 Fpzy £55* 71 = T limenss - (kpes® ™"} = $iny bpr = B(X). Thus,

E(X)= fim R(a). (12
Here, note that
§=Pls* G |s ¢ Gi] = F[s':PE[?;;j e 1 flpn' R
So,
E(X) = I'-Tp"- te)

To caleulate V(X), we note the fact that since P(s) = 3., ms* 50 PY(1) = E(X{X - 1)}
However, caleulation gives ]
2(1 — (1 -8
Py = TP (15)
This will give

VX = (1 —m}(;;m —8 (16)

5.3. Almost Sure Convergence

We shall be applying the well-knmwn Kolmogorov's Streng Law of Large Numbars [5,23]
as the mnderlying conditions are satisfied.

Kolmogorov's strong law of large numbers: (ot X1, Xa, ..., Xy be independent and identicaliy
distributed random wvariable with £(]X,|) < oo. It immediately follows that E{X,} exista and
will be finits. If E{X;) = p, then X, = 1/n(X; + X2+ .-+ X} — ¢ almost surely as n — o0
As a corollary, it follows that if X,, Xs,..., X, are nonnegative and E(X;) exists and is finite,
then X,, — E{X) almost surely as »n — oc. In the pressnt context, the number of steps required
to attain an optimal being a notmegative Integer valied random variable is represented by X.
Our derivation glves that F{X) exista and 1s finite. If the present algorithm is conducted n
meany times on the problem and if the steps required are Xy, Xs, ..., X,, respectively, then
alX, + &5+ -+ X0 — (1 — ppd /8 almost surely as n — o,

5.4, Convergence Viewed s Stochastic Process
Let us define a sequence of random vatiables {Zy, & > 0} as follows:
Z = { 1, ifs €y,

0, otherwise.

(5.1}

So, P(Zy = 1) =P{e" € Cp) = PIX S k) =T W PIX = r) = ¥ o = 1 — e Similarly,
P{Zy =0) = ry. {2k, k = 0} is 2 homogeneous Markov chain of order 1. Clearly, Z; ~ Bernoulli
{1 —rg), ¥k = (. Bince each £ has two states 0 and 1, the transition matrx would look lke
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whers

pm=P[zk=u|Zk-1=ﬂ]=P[S'EG&ls“EGg_l]El—ﬂ,
j}m=P[Z;¢=1|Zj¢_1=ﬂ]=P[S'EGk|S-E‘Gk_1]=E1

for k£ > 1. Moateover,
PlZ,=1|Z2=01=P[s"€G, | 8" €G] =1, aan— oo

Next we try to find out the modified expression of pr. [n the previous model, p, = Pls* €
%] = P[X = k]. There X was the minimum number of steps after which s” belongs to the
population. It was not possible for 5* to go cut of any future generation once it is included in
the population of & particular generation due to the assumption of inherent elitism. But let us
modify the set-up where the transition from &° being present in one generation to it being absent
in the next has a atrictly positive probability. Let Pls" & Gi | 8° € Gpoa] = 7 > 0. We shall
see that under this new set-up, the probability of convergence to an optimal is strictly less than
unity, though It is strictly positive

o = P[s* € Gyl
=Fls" € Gr 8" & Gr1| Pls* & Goi]
4 Pls* € Gy | 8 € G1| Ps* € o] k=1,
=81 - pr-1)+ (1 -7l
=8+ {1 -7 —Tlpp-1.

Solving the above recurrence relation we get the following:

0, ifk=0,

P[g“‘ & Gk} ={ 8 5 [5.2}
e o k s
E+T+E+f“ g-1)% k2L

From this expression, it 1s clear that limg_o P{s* € &) = 8/(f + 1} < 1. Now for the sake of
eonvenience, we use the following notations:

ty=1-{1—8~r)

o ]
T e+
T
'B_E+'r
Let s notice that
o+ 8=
t|}=1,
=84,
lim t, = 1.

T}k 20
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It comes out guickly from this notation that

o = (1—at,,, oty )
Btn 1-p8t, /'
{@"| =1—4%n > 0, ¥r = 1. This means, the determinant goes to #erc as # becomes larger. In
other words,

T r
: d+r1 A4+
Q{@:nlﬂguqﬂz ( T r )
d+r #+471
Thus, ™ is asymptotically singelar.

6. PERFORMANCE ANALYSIS
OF THE SCHEME

It is well known that the performance of a deterministic algorithm is judged by ite computa-
tional complexity. But since an evolutionary algorithm is probabilistic in nature, so ita conver-
gence has some probability associated with it. For the presemt, we try to locate the parameters
that control the performance of our proposed algorithm, In qur present formulation, we made
some assumptions, under which the performance comparieon & possible. We alse propose a no-
tion of characteristic polynomial which gives a measure of the perforrnance of an evolutionary
scheme. An area under the curve of the characterlstic polynomial ever the range {J to 1 has been
equivalently shown to represent the performance criterion.

6.1. Performance Analysis of the Evolutionary Alporithm

We have seen that the distribotion of X is characterized by two paremetera pg and #. Now

m=1_(1rﬂ)ﬁ an)

ia found to depend on

{i) length L of the strings under the coding methodology;
fii) size N of the population;
fiii) cardinality of S, the collection of strings present in the whaole search space which eorre-
apond{s) to attaining the target value K, in case, if any solution exists andfor going as
cloge of K as possible in case of no solution existing.

It follows that py is very much problem specific and as such does not exactly puide the perfor-
manece of the algorithm propozed to sobve it. It is maore a problem specific parameter rather than
a performance parameter. On the other hand, it is the choice of & which primarily controls the
performance of the algorithm. It is clear from the expression of E{X} that larger the value of 8,
better is the performance expected of the algorithm.

On the basis of the particular coding scheme {which decides L) in the present problem and
atitable population size N, pp becomes fixed. It 18 of course worth mentioning that the term
‘suitable’ is not immune to criticism and as such, it is another difficult pact to ascertaln N, which
we are not dealing with now. We note from (14) and (16) that £{X) and V{X) hoth decrease
with the Increase of # over the range (0, 1]. Thus, it is statistically desirable for the evolttionary
algorithm to have os large & velue as possible in both the senses of

{a} expected steps to converge;

(b) consistency (low variability).
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6.2. Our Algorithm in Terms of Characteristic Polynomial

In the discussion onwards, P{s) is assumed to denote the generating function of {px,k = 0}.
It can be werified that the expression of P(s) is glven as follows:

(1 — )1 —poi(l — s}«

P[sj:m—é—s—pﬂs— {1_5{1_9” ' {18}
then it follows that s }
IR — b

PO = e a2

Now P'{(s) > 0, ¥8 € (0,1], 5 € [0,1] which means that P(s) is monotonically increasing in s
with a particular choice of f. Apgain, P¥(2) = 0, ¥4 € (11,1}, 5 £ [0,1], and P'(s} =0 for ¢ = 1,
s € [0,1]. Thus, P{s) i3 convex ¥s € [0,1] and ¥ € (0,1), and P(s} is linear ¥s € [0,1] and
for § = 1. Also, note that P{0) = pp and P(1} = 1. Moreover, from equation (18), it i5 evident
that P{s) increases with & for a particular choice of ¥. The curve of P(s) against s for different
choice of 6 looks like Figure 1. 'We note that since the increase in § statistically means quicker
convargence which rneans that more the area under P(s) from 0 to 1, the better the performance
of the algorithm expected. This means that ful FP(s)da plays the measure of performance of an

evoiutionary algorichim. In the following discussion, we note some characteristics of f,; Pz} ds

/: P{a)ds = fﬂl (gupks") d3
([

([ 44
=i

4 {Sk+l]1
I

]

t]e I

I

=

I
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]
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i

=0
1
E(x+1)'

{On the ¢ther hand, aince equation (18} gives

I

(- 9 —pol{l — s)s.

Pley=pp+a—ma—-

{1—a(1—48})
therefore, .
oy _fl-my 81 pa}
_/;Pl:s:lds_l (1-3) T logs (20)
Thus, B{1/X + 1} pives the messure of the required area
1Y _ 1-poYy _ &{1 —po)
E(X—H_-+1)_1_(1—$)_(1—E}2 log 8. f21)

7. ESTIMATING THE
PERFORMANCE PARAMETERS

Relation (17) gives us

where

S={s|fls) 2 flth, Vi AL},

f{.) being the fitness of o string and A} being the set of all binary strings of length £. It iz
obvious that for L > 0, & # ¢, and hence, |§ > 0 aud so pg > 0. Moreover, since |Xy| = 2%,
50 whenever & € A, that meane since the objective function is not constant =0 pp < 1. It is
evident from the expression of gy that if we know |S|, then gy is known and there is nothing
to estimate about pg. But unfortunately, we de not know |5, All we have is that the original
search space being lsomorphic to A for sume [, the number of global optimal solutions in the
original aearch space i maore than onc would mean |&] = 1. So, it is necessary to estimate pg
statistically. Similarly, since £ i= also nobt known beforshand, one has to estimate that also. So
our problem essentially boile dowan to estimating both po and & Now it is highly recommendable
from statistical point of view to estimate any unknown paremeter on the hasis of pood number
of obeervations. But unfortunataly, it is a frequent practice to conclude onc algorithm (that too
a probahilistic algorithm) to be performing better then another on the basis of one instance,
If the algorithm is applied = times on the 31 knapsack problem with X,, Xo,..., X, being
the respoctive number of steps required for convergence in these nt experiments, thon these n
observations are statistleally independent and identically distributed. A= we already kmow, each
of these random variables has a underlying probability mass funetion {ps, & = 0}, then the
following holds:

Em - '[1“'?0:'1
&)

{1 —po)(1+po—
V(T) d !

X being the sample mean of the n observations.
We consider the following transformations:
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anrl

Iﬁlz

q.:-ri 3

Note that, {pa, &) £ { %, ;). Expressed in terms of & and &, we have

E(X) =5 -/,
V{-_} {.Blz r'al .ﬂﬂ"‘ﬂi}‘

i

Going through the relevant caleulations, we get the estimates as follows:

_ nv(_}+E={7'j+E{_]
2E (X)

VE) -E @D+ EX
2F (X)

=

whenee it follows that
WV (%) - B* (%) + (%)
Py = o i
W (D) B (D)1 E(X)

_ 2£ (X)
TV (X)+ E2 (X} + E(X)

Thus, the estimates are obtained vsing the corresponding sample estimates

w () - (%) + 5(%)
av (%) + B2 (X) + E(X)’
25(%)

v (%) + 22 (%) + (%)
7.1. Maximum Likelihood Estimates
The likelthood function is given by

o

I
||

TS Ll PR
L(8,pg | X1, Xo,..., Xp) = pi=t = 11 (1 — pyB(1

=]

whera
1, if A holds,

0, otherwise.

The log-tikelihood function is as follows:

hid
log L{#, po | X1, Xz,..., Xn) = 3 _ Iix;=0y 0B P

iml

=1

— g)%,

i (ﬂ = Zf{xﬁ:ﬂ}) [log(1 ~ po} + log 8] + ¥ _(X; — 1}eg(l — 8}, pny-

fa=]

(22)

(23)

(24)

(25)

(26}

(7.3}

{27)
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The meximum likelihood estimates of # and pg are obtained by solving the following equations:
dlog L

Bpo %
Bleg L

=}

ag *

subject to the Hesslan being negative definite evaluated at the estimates obtzined by solving the
above equations. A emall calculation gives

b Lim e 28)
Lo Kol 200
and s
o Aajm] F X =0
Po= T : (29)
Now,
n
Z Iix, 20y ~ Binomial (n,1 = gy)
i=1
and

n
3 L mor ~ Binomial {n,po).

i=1

7.2. Asymptoiic Behaviour of the Performance Parameters
of the Evglutionary Algorithm

Here we shall study the asymptotic joint distribution of (; ),

()= am((2): tom).

where J{#, p) iz the Flsher's information mateix avaluated at {8, po), and as we know is defined

a8 2
2(-5e) 5(-2m)
g ® Hpp I8

18, pg) =
{#, o) E(_BEL) E(_&?_L)
dppdd e

Again, a trvial calculation will give us the following:

2
¥ (_ gpﬂL‘z) D Pﬂilﬂ_ FD}1 [:3'}}
E (—%) =0 (32)
Therefors, ,. #-8) i
() ~ws| ()
n

If we denote the maximum likelihood estimates of & and pg based on % sample points by é,, and
o, reapectively. Then 8, and gy, are asymptotically independent. Moreover, V (8.} and Vi, )
both will tend to 0 a5 n becomes large. This also gives their consistency.
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8. RESULTS

We have applted our algorithm on different data set of several sizes enlisted and obtained the
remilts which are aymmarized below:
Sy = {21,91,54, 69,51, 46,63, 67, 21, 45, 24, 48, 85, 79,49, 68, 70, 25, 24, T1, 50, 26, 46, 87, 90,
27,57, 44, 46, 24, 55,32, 9,63, 17, 16, 6, 20,61, 56, 37, 55},
&; = {49,79,66, 45,43, 14,43, 67,40, 41, 68,64, 20, 71, 31, 96, 34, 17, 58, 31, 14, 38},
&3 = {29,15, 78 73,35,34, 21,67,29, 89,60, 580, 21,15,11,24, 18,9, 82,91, 78, 08,04, 11, 34,
3%,65,100, 54, 24,85, 96,13, 7,49, 80,82, 17,17, 98, 17. 19, 50, 59, 75, 86,35, 4, 12,55},

$3 = {457, 3,600, 849, 827, 802, 551, 67, 557, 385, 652, 506, 365, 459, 791, 100, 442, 801, 808,
451,42, 658, 518, 200, 254, 595, 717, 428, 506, 348},
S5 = {417,227, 114, T05, 211, 880, 559, 419, 565, 281, 388, 428, 301, 147, 503, 756, 938, 985,
254,171,570, 530, 414, 323, T8, 765, 525, 684, 114, 348, 407, 740, 959, 847,
149, 576, 622, 677},
Sy = {3045, 2015, 5074, TTB1, 963, 9758, 8730, 4919, 745, 6877, 608D, 5344, 4593, 630, 2683,
8584, 5862, 4077, 9978, 5031, 8334, 142, T538, 8511, 7570, 8511, 5577, 4312, 8366,
9024, 627, 9872, 5573, 9995, 4665, 4108, 1826, 1745, T20, 6928, 9577, 3347, 7926, 361, 8171,
746, 3487, U584, 7304, 7235, 1066, 2725, 6751, 715, 5783, 1977, 9009, 1618, 112, 2269,
4836, 8751, 3647, 3903, 8499, 9536},
s; = 011011100001001111010011001111000001111000,
s3 = 0111011101010100101100,
53 = DUOO1000000010010010100101000111011000000100001 111,
84 = 110000101011101110001001 060D,
85, = 00011111101100011000110011100111010011,
55,4 = 01010111101000010110131011111100011110,
5,1 = 11100110111100011100010000010010011 1300011001001 111101000110010010,
3g,2 = 000001010010101110101¢1001111010101001 1610001001000001 1000 LO00I001.

8.1. Comparison with Qther Schemes

For getting some idea about the comparative performance, Table 2 ia piven which is more or
leas aelf-explanatory. Here the population size 1s 10 and the knapsack set sive is 1000, wheress
the elements of the set are taken randomly from 0 to 100, The number of iterations we allowed to
got, the termination eandition of our evolutionary algorithm has been taken to be 50, The total
sum of elementa comes out to be 49722, Tt jz worth mentioning that all the three alporithme are
implemented on SUN-SPARC 1.

8.2, Conclusion

Wa heve presented an evolutionary scheme a3 a stochastic process with binary coded arguments
of the objective functione to be optimized. Nonbinary coded schemes will be treated seperately.
We have presented a theoretically sound statistical formulation of our algorithm including a
treatment on the number of steps required to converge to an optimal string alonpg with a treatment
showing almost sure convergence viewed in this case a stochastic process.

We have developed a methodolopy for performenee analysls of our algorithm In terma of char-
acteristic polynomial, The performence parameters are estimeted using mexdmum likelibood
eatimate and their asymptotlc bebaviours are establiahed.
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Tabia 1.
Bot Het Targat Population | lterations Targot Htelng
Label | Bize | Provided Size Required Attained Label
=1 4% 1102 13 14 1102 41
By a3 T3 16 108 fives g
Sy 50 GRA 0 08 &G s
Sy 30 48550 10 M5 4855 1]
113 a8 12630 1 100K 12674 85,1
Sy 38 12650 M) 231 12680 85,3
S i 160554 10 104061 160653 861
A 66 160558 20 316 160550 4o
Table 2.
Algorithm | T=get | Tacget Time
ZBuk Attained Requlred
Fasudn 40000 327 sec.
Polynomlal
FPTAS A0 LB 1458 zec.
Evn]ut.i_.nnar].r 4R000 0d wee.
Algorithin

We have applied our algorithm on different sets 5y, &, &4, 54, S5, and 5g of diffevent aize
generated randomly. All of them have boen allowed to work with population size 100 Ad is evident

fro

m Table 1, out of thom on two occasions {Ss and 53) the algorithm did not converge in 2000

steps, though the departure from the target was very small io comparison to the target as well

Bs

the size of the problem. However, when these two sets are tried with the population size 240,

both of them did converge, other parameters remaining the same. We did try with knapsack

=k

& of vast cardinality, we got encouraging results. In case of not exact convergence, it iz not

compotationally feasible to aspertain if the targets in those cases are at all attainable due to the
gheer size of the problem.

oot o

=0~

11.

12
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