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A Robust Self-Tuning Scheme for
PI- and PD-Type Fuzzy Controllers

Rajani K. Mudi and Nikhil R. Pal, Member, IEEE

Abstract— We propose a simple but robust model independent
self-tuning scheme for fuzzy logic controllers (FLC's ). Here,
the output scaling factor (SF) is adjusted on-line by fuzzy rules
according to the current trend of the controlled process. The rule-
hase for tuning the output SF is defined on error (¢ and change
of error {2} of the controlled variable using the most natural
and unbiased membership functions (MF's). The proposed self-
tuning technique is applied to both PI- and PD-type FLC's to
conduct simulation analysis for a wide range of different linear
and nonlinear second-order processes including a marginally
stable system where even the well known Ziegler-Nichols tuned
conventional PI or PID controllers fail to provide an acceptable
performance due to excessively large overshoot. Performances
of the proposed self-tuning FLC's are compared with those
of their corresponding conventional FL.C's in terms of several
performance measures such as peak overshoot, settling time,
rise time, integral absolute error (IAE)} and integral-of-time-
multiplied absolute error (ITAE), in addition to the responses due
to step set-point change and load disturhance and, in each case,
the proposed scheme shows a remarkably improved performance
over its conventional counterpart.

Index Terms—Fuzzy controller, scaling factors, self-tuning con-
troller.

I. INTRODUCTION

UZZY logie controllers (FLC's) have been reported o be
Fsuuuussl'ully used for a number of complex and nonlinear
processes [ 1] Sometimes FLC™s are proved o be more robust
[2] and their performances are less sensitive o0 parametric
vanations [3] than conventional controllers. A comprehensive
review on the design and implementation of FLC's can be
found in [3]-[5]. Different types of adaptive FLC's such
as self-wning and self-organizing controllers have also been
developed [6]-[11] and implemented for varnwous practical
processes. Even equivalence between FLC™s and conventional
controllers have been established [12]-[14]. Recently many
researchers are trying o achieve enhanced performance and
increased robustness of FLC's, using neural networks and
genetic algorithms i designing such controllers [15]-[ 18]

Among the vadous types proporional itegral (PL), pro-
portional derivative (PD), and proportional-integral derivative
(PID) of FLCs, just hke the widely wsed conventional PI
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controllers [19] in process control systems, Pl-type FLC's
are most common and practical followed by the PD-type
FLC s, Becawse proportional (P) and integral (1) actions are
combined in the proportional-integral (P controller 1o take
advantages of the inherent stability of proportional controllers
and the offset elimination ability of integral controllers. The
performance of Pl-type FLC's is known to be guile satis-
factory for lincar first-order systems. But like conventional
Pl-controllers, performance of Pl-type FLC's for higher order
systems, systems with mtegrating elements or large dead time,
and also for nonlinear systems may be very poor due to large
overshool and excessive oscillation. Such systems may be
ultimately uncontrollable [20]. For example, the first overshoot
in the step response of a system with large dead time, may
be too large to be acceptable for many applications. PD-
type FLC's are suitable for a limited class of systems [21].
And they are not recommendable in presence of measurement
noise and sudden load disturbances. PID-type FLC s are rarely
used due to the difficulties associated with the generation of
an efficient rule base and the tuning of its large number of
PATAMELEers.

An FLC has a fixed set of control rles, vsually derived
from experts’ knowledge. The membersip functions (MF s)
of the associated input and output linguistic variables are
generally predefined on a common universe of discourse.
For the successful design of FLC's proper selection of input
and output scaling factors (SFs) andfor wning of the other
controller parameters are crucial jobs, which in many cases
are done through tnal and error or based on some trmining
data. Of the various tunable parameters, SFs have the highest
priority due to their global effect on the control performance.
However, relative importance of the input and output 5F's 1o
the performance of a fuzzy logic control system is yel to be
fully established.

Unlike conventonal control, which i1s based on mathemat-
ical model of a plant, a FLC usually embeds the intition
and experience of a human operator and sometimes those of
designers and researchers. While controlling a plant, a skilled
human operator mampulates the process input (Le., controller
output) based on ¢ and Ae with a view 0 minimizing the
ermor within the shortest possible tme. Foeey logic control
15 a knowledge-based system. By analogy with the human
operator, the output SF should be considered a very important
parameter of the FLC since its function is similar to that of the
controller gain. Moreover, it is directly related w the swbility
of the control system. So the output SF should be determined
very carefully for the successful implementation of a FLC.
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Most of the practical processes under automatic control are
nonlinear higher order systems and may have considerable
dead tme. Sometimes their parameters may be randomly
changed with changes in ambient conditions or with time.
Control  action 15 unavordably delayed moa process with
dead ome. For this reason, dead tme 15 recognized as the
most difficult dynamic element naturally occurring in physical
systems [19]. Therefore, any useful technigque of designing a
control system must be capable of dealing with dead time.
To have a satisfactory pedformance the controller output or
process input should be a nonlinear function of ¢ and A« FLC
tres Lo incorporate this nonlineardty by a limited number of
IF-THEN rules, which may not always be enough to produce
a good approximation to the controller output required for the
optimum performance. In such a siwation, only static or fixed
valued SF's and predefined MF's may not be sufficient to
eliminate this drawback. To overcome this, a lot of research
works on tuning of FLC™s have been reported where either the
input—output SF’s or the definitions of fuzzy sets are tuned {on-
ling or off-line) 10 match the current plant characteristics [6],
[7]. [22]-[28].

He et af. [6] proposed a scheme for self-tuning of a con-
ventional PID controller using fuzzy rules. The proportional
sensitivity (£, integral time {f7) and derivative time (75}
are initially calculated using Ziegler-Nichols tuning formula
[29]. These three parameters are then modified on-line by a
single parameter, which is updated by a rule base defined
on < and A I is reported [6] that there is a considerable
improvement in the overall performance of the contoller
over is conventonal counterpart. Results in [6] shows a
remarkable reduction in overshoots of second-order processes
with dead time but at the cost of increased rise times. The
self-tuning method of FLC's by Nomura er al. [22] is a well-
known gradient decent echnique o optimize both the fuzey
antecedent and cnsp consequent parts. The controller [22] 1s
tuned itemtively by mimmizing the square error between the
FLC output and the desired outpul given by the training data.
This method simultaneously modifies the crisp consequent
values and, centers and widths of tiangular input fuzzy sets.
This off-line tuning method may be very good for time-
mvanant control systems, but its apphicability 15 limited due
its dependency on the availability of a reliable set of training
data. Zheng [23] suggested o tune the parameters of Pl-type
FLC's in order of their significance; that is, first parameters
with a global effect and then ones with only local effect
and, hence, given the maximum importance o the tuning
of SF's. Zheng did not provide any algorithm for tuning of
FLC’s, but discussed vanous [actors, their inleraction, and
their impact on the controller performance that should be
considered while designing tuning algorithms for FLC's. Input
and output SF's are recommended to be selected from the
knowledge of conventional Pl-controller parameters (£, and
'.!;f_l il available, otherwise through tnal and error. Simulation
result i [23] with tuned MF s shows g marginal improvement
in transient response of a second-order linear process where
tuning resulted m asymmetne (rangle) MEF s with unequal
base for ¢. To be more specific, the width of MF s increased
around ¢ = 0. Such MF's contradicts the usual practice [3],

[5], [30] where the MF's take namow width and become more
crowded near the origin o provide increased sensitivity around
the steady stawe condition. Thus, the proposed ME's tuning
scheme [23] cannot guarantee improved performance under
load disturbance, which is & very important criteria for the
performance evaluation of any control system [19].

The gain tuning method of Yoshida er al [24] assumes all
processes as first-order systems with dead ume. The input
and output SF's are calculated by some empirical relations
involving process parameters. Good conwrol perfformances for
higher order systems cannot be ensured by this echmgue.
Auto-tuning furzy controller of Hayashi [25] considers two
tuning functons. From the approximate parameters of the
identified plant model (fist-order lag with dead time) the
input and output SF's are calculated using the concept of
Chien-Hrones—Reswick (CHR) tuning rules for a conventional
Pl controller. Then the crisp consequent parts are modified
by fuzzy mles using overshoot and rise time to improve the
control performance. Linear first-order plant models with dead
time have also been considered in the auto-tuning scheme of
Iwasaki and Morita [26]. Here, the parameters of an assumed
plant model are teratvely revised through foeey inference
using differences between the actual plant features (rise time
and overshoot) and the plant model features. The overall
performances of these controllers [24]-{26] will be dependent
on the appropriateness of the assumed process model.

FPalm [27] proposed w achieve the optimal adjustment in
the input SF with the help of input—outpul cross-comrelation
function, though he assigned a higher priorty o the tuning
of output 8F over that of input SF's. Here, the input data are
assumed 1o follow a Gaussian distribution whose parameters
are unknown. An optimal mput SF s obtamed by maximizing
the cross-correlation function, which s a measure of the sta-
tstical dependence between imput and output. Ly and Gatland
[28] also have given more emphasis on the tuning of input
and output SF’s than that of MF s or rule base. They basically
suggested a trial and emor method for tuning of input and
output SF's for a fuzzy PID controller developed from two
FLC s in parallel—one 15 a Pl-type and the other 1s a PD-Lype.
Maeda and Murakami [7] proposed fuzzy mle-based schemes
for adjustment of input—output SF's as well as for tuning of
control rules for Takagi-Sugeno (TS) model. The fuzey rule-
base for tuning has three sets of rules, based on three different
performance measures: overshoot, rse time, and amplitude.
Afer the tuning of SF's, the crisp consequent parts of the
control rules are modified in each sampling time considering
a fuzzy pedformance index and the deviation of the actual
control response from a predefined targel response.

With a view o ehimmating the overshool caused by the
accumulation of control input in a fuzzy Pl-type controller,
Lee [20] proposed two augmented versions of the conventional
fuzey Pl controller using resetting factors. The first of the
two fuzzy controllers determines the resetting rate based on
error and error rate, while the second one wuses emor and
control input. The computation of the resetting factor is driven
by a fuzzy rle base. The controller remarkably improves
the transient response of a second-order linear system with
mtegrabng element. But the authors in [31] have clearly shown



with extensive simulation conducted on different types of
second-order linear as well as nonlinear systems with and
without integration that the controller in [20] with reselling
action is almost similar o a conventional fuzzy PD controller.

The preceding discussion shows that many researchers have
tied o improve the wning methods of FLC's to make its
design easy and faster. But unlike conventional controllers
a standard and systematic method for the tuning of FLC's
(PL, PD or PID) is yet o be developed. Sometimes nonfuzey
schemes are used for the tuning of fuzzy controllers [22],
[24] while in other occasions fuzey inference mechanisms are
used for tuning of nonfuzzy controllers [6], [26]. Of course,
there are many fuzzy contollers [7], [20], [25] tuned using
furzy inference mechanisms. Moreover, most of the reported
works on FLC tuning is limited only to the first-order linear
systems with dead dme. But it is very hard to have such
simple and perfect models for practical processes that are
generally nonlinear and higher order systems and sometimes
have large dead tume. Thus, there is a need for a mbust tuning

scheme of FLC s, which would be applicable irwespective of

the natwre of the processes and the structure of the FLC's.
Designing a general wning method for FLC's 1o obtain the
optimal response 15 nol an easy sk becanse the computation
of the optimal values of the tunable pammeters (SFs, MF's,
and rubes) needs the required control objectives as well as the
fixed model of the controller. Unfortunately, FLC's have no
fixed structures like conventional PL PD, and PID controllers
because there is still no well-defined criteda for deciding on:
1) the shape of MF's; 2) the number of linguistic values; 3)
the standard rule-base; and 4) the most appropriate inference
mechanism and defuzzification strategy. Probably due o these
reasons designing an optimal FLC analytically becomes very
difficult.

These limitatons of the conventional FLC' s motivated us
to investigate methods of tuning based on experts” knowledge
rather than mathematical models. Our scheme 15 based on
the fact that imespective of the nature of the process o be
controlled and the contmol policy adopted, a skilled human
operator always tnes o manipulate the process inpot, usually
by adjusting the controller gain based on the current process
states (generally ¢ and Ae) o get the process Mopltmally™
controlled. The exact manipulation strategy of an operator is
quite complex in nature and possibly no mathematical model
can replace it accurately. We propose a simple but robust
maodel independent self-luning scheme, where the controller
gain is adjusted continuously with the help of fuzzy rules.
Here, we have concentrated only on the tuning of output SF,
considering that it 15 equivalent o the controller gain. Tuning
of the output SF has been given the highest priority because
of its strong influence on the performance and stability of the
system. Palm [27] also has rightly pointed out this fact. In
our scheme, the FLC 15 tned on-line (while the controller
is in operation) by dynamically adjusting its output SF by
a gain updating factor (o). The value of « is determined
from a rule base defined on ¢ and Ac and derived from the
knowledge of control engineering. Note that our scheme is
significantdy different from others [7], [22]-[28] as it actually
tries o mimic an operator’s strategy. In order o achieve the
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desired performance, our scheme generates subsequent comrec-
tive control actions based on the current process trend only, not
from direct performance measures. The self-tuning mechanism
is applied 1o both Pl- and PD-type FLC's for simulation
experiments with various types of linear as well as nonlinear
processes that are generally encountered in process industries.
The proposed FLC's are also used for marginally stable and
unstable systems where well-known Ziegler-Nichols tuned P1
or PID controllers exhibit very poor performance [32], [33].
The simulation results show that i each case the proposed
scheme outperforms its conventional counterpart.

The rest of the paper is divided into three sections. In
Section 11, the proposed self-uning FLC is described in detail
mentioning different aspects of its design consideration, i.e.,
choice of MF s, selection of SF's, determination of rules and
the self-tuning mechanism. The simulation results for various
types of linear and nonlinear second-order processes, including
an unstable system (system with nonminimum phase pole), are
presented in Section 111 Finally, we conclude with Sectuon 1V,

II. THE PROPOSED SELF-TUNING FUZZY CONTROLLER

Here, we consider both PI- and PD-type FLC's. The gain
(output SF) of these controllers are adjusted on-line according
to the current states of the controlled processes, thereby
making them self-wning FLC's. Although, the charactenstics
of a Pl- or PD-type FLC depends on both input and output
SFs [14], [23] (i.e., for the best performance, simultaneous
adjustment of both input and output 5F's is more justified),
our objective here is w adapt only the output SF for given
input SF's o achieve better control performance. Observe
that a seli-tuning FLC is an adaptive controller but, there
15 no consensus o the hterature on the termimology used in
describing adaptive controllers. We call an FLC adaptive if
any one of its tunable parameters (SF's, MF s, and rules)
changes when the controller 1s being vsed, otherwise 1t 15 a
nonadaptive or conventional FLC [5]. An adaptive FLC that
fine tunes an already working controller by modifying either
its MF's or SFs or, both of them [5]. [7]. [22]. [24]-[26]
is called a self-tuning FLC. On the other hand, when a FLC
15 tuned by automatically changing its rules then it s called a
self-organizing FLC [8]-[ 11]. Since our proposed FLC is tuned
by modifying the output SF of an existing FLC we describe it
as a self-wning FLC. The block diagram of the proposed self-
tuning FLC s shown in Fig. 1. Though the control system
shown in Fig. 1 is a Pl-type FLC, the basic structure of the
proposed self-tuning FLC shown by the dash-dot (--) line in
Fig. 1 remains the same for both Pl- and PD-type FLC's. In
the case of a Pl-type FLC, the acwal value of the controller
output ) is obtained by

ulky =ulk — 10 + Akl (1)

In (1), f+is the sampling instance and Ag®) is the incre-
mental change in controller output. We emphasize here that
this accumulation (1) of controller output takes place outside
the FLC and is not reflected in the rules themselves. On the
other hand, if the output of the FLC is w (not &) and there is
no accumulation of controller output, then Fig. 1 is converted
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to i PD-type FLC. In this paper, PL- and PD-type conventional
FLC’s will be denoted by FPIC and FPDC, respectvely,
and their comesponding self-wning FLC's will be denoted
by STFFIC and STFFDC. Fig. 1 meveals that the ouput SF
(gain) of the controller is modified by a self-tuning mechanism,
which i1s shown by the doued boundary. The detaled design
considerations are discussed next

A. Membership Functions

All membership functions (MF"s) for: 1) controller inputs,
e, error (&) and change of emor [Ae) and 2) incremental
change in controller output { &) for Pl-type FLC or controller
output {a) for PD-type FLC, are defined on the common
inerval [—1, 1]; whereas the MF's for the gain updating factor
(e} is defined on [0, 1], We use symmetric tdangles (except

the two MF's at the extreme ends) with equal base and 50%
overlap with neighboning MFE"s as shown in Fig. 2. This 1s the
most natural and unbiased choice for MFs. Though the MF's
in Fig. 2{a) and (b) are shown separately for the shake of clear
understanding, in actual implementation, only the MF's of
Fig. 2ia) are sufficient. Fig. 2(hb) can be obtained by translating
Fig. 2(a) along the honzontal axis by an amount 1 and then
mapping it on [0, 1] by the following:
a— halw + 11, i2)
Here, o is any point in the closed interval |—1,1]
on the horizontal axis of Fig. 2{a) and y is the come-
sponding point on Fg. 2(b). By this transformation MF's
NBNMNS ZE PSS PM, and I’E of Fg 2(a) are
mapped w0 the MF's SR VA S5 5B MEB H and V8,
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respectively, of Fig. 2(b). Thus, the data-base of the FLC
in Fig. | contams only the gquanutative imformation about the
MF’s of Fig. 2(a). Note that the volume of data-base remains
the same for both the conventional and proposed modified
FLC's, though one more linguistic varable (o) is considered
for the proposed FLC. In this context, we mention that there
is only one fuzzification module in actual implementation.
Because the rule-base for oy is also described in terms of ¢ and
Ae—Ilike the control rule-base. Fig. 1 shows two fuzzification
modules for the ease of understanding.

B. Scaling Factors

The MF s for both scaled inputs (cx and &es ) and output
(S or wyd of the controller have been defined on the
common interval [—1, 1]. The values of the actal inputs
e and Ae are mapped onto [—1, 1] by the input SF's (7,
and & 4., respectively. For conventional FLC's the controller
output {Supy or ux ! is mapped onto the respective actual
output (A or u) domain by the output SF 7,,. On the other
hand, the actual output of the self-uning FLC is obtained by
using the effective 8F {n.(7,) as shown in Fig. 1. Selection
of suitable values for &, G s, and &, are made based on the
knowledge about the process w be controlled and sometimes
through trial and ermor o achieve the best possible control
pedormance. This is so because, unlike conventional nonfuzey
controllers to date, there is no well-defined method for good
setting of SF's for FLC's. We propose o compute o on-ling
using a model independent fuzey rule base defined in terms of
£ and Ae The relationships between the SF's and the input
and output varables of the self-mning FLC are as follows:

£y ={r..% (3)
Ay — o A ()
Ao = e 00, VL Awsy (for STEPIC) (5)
it = oy ey (for STFPDC) (6)

C. The Rufe Basex

The incremental change in conwoller output {Aae) for a
fuzzy Pl controller is determined by the rules of the formm:

B U eas £ and A is AR then Aois AL

The fuzzy PD controller, on the other hand, uses rules of
the form:

Hppr WWeas B oand Aeas S F then ois 0

The rule base for computing Ao 18 shown in Fig, 3a). This
is a very often used rule base designed with a two-dimensional
phase plane in mind where the FLC dnves the system into the
so-called shiding mode [2], [3]. [20], [23], [30]. Note that for
the fuezy PD contmoller we use the same rule-base in Fig. 3ia),
but with the consequent fuzzy memberships defined on {7, not
on Al

The gain updating factor (o) is caleulated using fuzzy rules
of the form:

Hed IWWeis B and & s AR then oois a.
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computation of .

With a view o improving the overall control pedonmance,
we use the rule base in Fig. 3(b) for computation of . It
[Fig. 3(b)] 15 designed in conjunction with the rule base in
Fig. 3(a). Some of the imponant considerations that have been
taken into account for determining the rules are as follows.

1y To make the controller produce a lower overshool and

reduce the settling time (but not at the cost of increased
rse tme) the controller gain 15 set at a small value when
the error is big (it may be —v¢ or —ic), but ¢ and Ac are
of opposite signs. For example, If ¢ is P8 and Aeis &S
then ey 1s V5 oril s VA and Ae s PAT then oris 5.
To minimize the effects of delayed control action due 1o
inherent process dead tme or measunng lag such small
zain is essential o maintain the controller perdformance
within the acceptable limit, especially when the process
dead time becomes considerably large. Observe that
when the emor is big but ¢ and Ae are of the same
sign (L.e., the process is now not only far away from the
sel point but also it is moving farther away from it), the
gain should be made very large 1o prevent from further
worsening the situation. This has been realized by rules
of the form: IF ¢ s PH and A is P8 THEN o is VB
or IF e is MM and Ae s VA THEN o is V8L

2) Depending on the process trend, there should be o wide

vanation of the gain armound the set point (e, when <
15 small) o avoid large overshool and undershoot. For
example, overshool will be reduced by the rule IF = is
ZI and Ae is NAM THEN o is B This rule indicates
that the process has just reached the set point but 1t s
moving away upward from the set point mpidly. In this
situation, large gain will prevent its upwand motion more
severely resulting ina smaller overshoot. Similady, a
large undershoot can be avorded using the rules of the
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form: IF e is &S and Ae s F5 THEN o is V8.
This type of gain varation around the set point will
also prevent excessive oscillation and as a result the
convergence rate of the process to the set point will
be increased. Note that unlike conventional FLOC™ s, here
the gain of the proposed controller around the set point
may vary considerably depending on the trend of the
controlled process. Such a variation further justifies the
need for varable SF

3y Practical processes or systems are often subjected w

load disturbances. A good controller should provide
regulation against changes i load; in other words, 1t
should bnng the system o the stable state within a
short time in the event of load disturbance. This is
accomplished by making the gain of the conwroller
as high as possible. Hence, o improve the control
performance under load disturbance, the gain should be
sufficiently large around the steady-state condition. For
example, IF v is £S5 and Ar is PA THEN o s I
or IF ¢ is &5 and &e is N M THEN o is B. Note
that immediately after a large load disturbance, & may
be small but Ae will be sufficiently large (they will be
of same sign) and, in that case, o is needed o be large
Lo merease the gam. AL steady stale (e, < 22 0 and
A=z 1) controller gain should be very small (eg., IF «
15 A8 and Aeis AF THEN 18 2 R o avord chatlering
problem around the set point.

Further modification of the rule base for & may be required,
depending on the type of response the control system designer
wishes to achieve. IUis very important 1o note that the rule base
for computation of o will always be dependent on the choice
of the rule base for the controller. For example, the rule base
in Fig. 3ib) is justified and defined for the controller rule base
in Fig. 3(a). Any significant change in the controller rule base
may call for changes in the rule base for o accordingly.

D, The Self-Tuning Mechanism

From (3) and {6) it is found that the effective gain of the
self-tuning controller is ce.5,, not simply &, . The value of 5,
is constant for a paricular type of conventional FLC. But the
zain of our self-tuning FLC does not remain fixed while the
controller is in operation, rather it is modified in each sampling
time by the gain updating factor o, depending on the trend of
the controlled process output. The reason behind this on-lne
gain vanation 15 o make the controller respond according 1o
the desired pedormance specifications. We already explained
how the desired variaton in o can be achieved vsing the rule
base in Fig. 3(h). Thus, the proposed controller 1s basically an
adaptive feedback loop controller. The functional relationship
of w can be viewed as

cr(de) = Fle(k) el (7)

where f is a nonlinear function (computational algorithm)
of ¢ and &e, which is described by the rule base shown in
Fig. 3(b) and the associated inferencing scheme. The variation
of e with ¢ and &e is shown in Fig. 4, which is seen 1o be
highly nonlinear. Fig. 4 depicts the desirable chamctenstics

of o as a function of & and Ae For example, if emor is
positive big and change of error is negative big then the
system is moving fast wward the set point and, hence, o
should be kept very small to avord possible large overshoot.
Fig. 4 indeed reflects this. Fig. 4(b), a mtated version of
Fig. 4ia) is provided for a beter visual representation. The
control surfaces (controller output versus & and Ae) for fixed
gain (conventional) and variable gain (self-tuning) FLC's are
depicted in Fig. 5(a) and (b), respectively. Careful inspection
of these two figures reveals that the control surface of the
self-tuning FLC is more nonlinear as well as smooth than
that of its conventional counterpart. For example, observe the
first and third quadrants of both figures. As far as real time
implementation is concerned smoothness of the control surface
is highly desirable due w the limited speed of the actuator
response and 1o avoid the chattering of gears for the plant o
be controlled. Fig. 50a) also indicates that the mited number
of IF-THEN rules using simple MF's and fixed valued SF's
are not sufficient to produce the required nonlinear controller
output for the desired control performance. To eliminate this
shortcommg, onge can increase the number of MF s and there
by increasing the number of rules, but 1t will merease the
design complexity. In the proposed sell-tunmg scheme the
controller output [Fig. 5(b)] 15 generted by the conlinuous
and nonlinear variation of ¢. The most important point Lo
note 15 that o 15 por dependent inoany way, on any process
parameter. The value of o depends only on the instantaneous
process states. Hence, the proposed self-tuning scheme is
madel independent.

The following steps can be used for tuning of the proposed
controfler.

Step I: Tune the SF's of the self-tuning FLC without the
gain tuning mechanism and assuming o = 1 (L., conventional
FLC) for a given process o achieve a reasonably good control
performance. In doing so first, €7, should be selected in such a
way that the error [y ] almost covers the entire domain [—1,
1] o make efficient use of the rule bases. Then &a, and &,
are 1o be tuned to make the transient response of the system
as good as possible. Since there is no existing well-defined
method (like Ziegler-Nichols tuning formula for conventional
nonfuzzy controllers) for the determination of SF's, suitable
values of 74, and &, are to be selected from the knowledge
of the process o be controlled and sometime through trial
and error, which we have already mentoned. At the end of
this step, we get a good contmoller without self-tuming and
then this controller becomes the starting point (input) for the
self-tuning controller in Step 2.

Step 2: Set the output SF [} of the seli-tuning FLC
nearly three times greater than that oblained in Step 1 keeping
the values of (7. and (74, same as those of the conventional
FLC. We remind that in this step, « # 1, butl is obtained
from the rule base in Fig. 3(b). This nearly three times the
enhancement of 7, for the self-tuning FLC is found empir-
ically with an objective 1o maintain the same nse wme as
that of the conventional FLC. In all our simulations we used it
exactly three times. Little deviation from this factor is found 1o
bring only small changes in the responsiveness of the sysiem.
Observe that for the self-tuning FLC a large value of ¢4, (three
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Fig. 4. (a) Vanaion of gain updating factor o

and change of error {Ac) [90° rotated from Fig, #Ha).

tmes greater than conventional FLC) becomes permissible due
to the factor n which always lies in (0,1]. But such a large
value of €7, for the conventional FLC makes either the control
pedformance unacceptable or the system uncontrollable.

Step 3: Fine wne the mules for e depending on the type of
response wanted o achieve and based on the consideratons
described in Section 11-C. For example if one wants 1o further
reduce the overshoot at the cost of increased rise time then
the value of o should be kept very small up to the medium
values of = This can be achieved by a rule of the form: IF
18 A oand Ave is NS THEN 18 V3 [not 5 as shown in
Fig. 3(b)]. However, for all our simulation results reported in
the next section, we did not require any fine tuning (Step 3).

Observe that, in the presence of some training data, sys-
tematic methods like gradient descent may be developed for

with ermor [+ and change of ermor (M) (h) Variation of gain updating factor (o) with ermor (=)

such wning. In this study, we do NOT wse any tramning data
and do not tune any of the parameters based on data, rather,
we use the most natural type of unbiased MFs. The rle-
base for n is designed based on an intuitive analysis of the
desired system performance and an often wsed control rule
base [Fig. 3(a)]. We shall see in the next section that even
with such rule bases, the proposed self-tuning scheme exhibils

an excellent pedformance for widely different types of systems.

1. RESULTS

In this section, we show the simulation results for some
typical second-order hinear as well as nonlinear processes
using both of the proposed self-wning FLC s, A second-order
process with dead tme 15 fady common and also a wseful
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Fig. 5. (a) Control surface of the conventional FLC. (h) Control surface of the proposed self-nming FLC.

model for many practical processes [29]. The pedomances of

the two proposed FLC™s (STFPIC and STFPDC) are compared
with those of their corresponding conventional FLCs (FPIC
and FFDC). For a clear comparison between the conventional
and sell-tuning FLC™s several performance measures such as,
peak overshoot (W08, settling time (.0, rise tme (4.,
mtegral absolute emor (IAE), and mtegral-of-tume-multpled
absolute emror (ITAE) [32] are wsed. The values of different
pedformance indexes are provided in different tables for each
process separately. Since peak overshool and rise tme vsually
conflict each other they may not be redvced simultaneously.
If one of them 1s made smaller, the other tends o become
larger. Unhike [6], [21], in the mesults o come meaders will
find that, rise times for both conventional and seli-tuning
FLC's are mamtamed almost at the same value but with a
considerably reduced overshoot and much improved overall

performance in case of sell-tuming FLC s, The two integral
critenia IAE and ITAE are considered because mere visual
observations of esponse curves ae not always enough o make
a good comparison between different types of controllers.
Large emrors contribute heavily o IAE; on the other hand ITAE
penalizes heavily emors that occur late in ume. Thos, IAE
and ITAE reflect the transient and steady-state charactenslics
of a control system, respectively. To make a complete study
of the relative performances of the two types of FLC's
(conventional and self-tuming), each process 1s tested with
step set-point change as well as load disturbance. To establish
the robustness of the proposed scheme we use the SAME
rule bases (Fig. 3) and MF's (Fig. 2) for ALL processes
with different values of dead ume. In all cases, Mamdani
type inferencing [8] and height method [5] of defuzzification
are used. We have also used the center of sums method



16k

Raspanse
L
kS

[EEE TRAMSACTIONS ON FUZZY SYSTEMS, VOL. 7, NO. |, FEBRUARY 1999

15

T i i ELd 5 a
tmasee. )
bra(ses.)
{a) {hj
18
™
A |
Fig. 6. (a) Responses of the second-order linear system in (8) with & — 1.1 for FPIC {——" and STFPIC (—). (h) Responses of the second-order linear

system in {8) with £ = 0.2 for FPIC {—=" and STFPIC {—) with coresponding variation of «r (-1 and « {— - =} of FPIC, and u {¢ ¢ ¢ o o] of STEPIC.
fc) Responses of the second-order linear system in (8) with L = (0.3 for FPIC {——] and STFPIC (—).

[5] of defuzeification (similar to the well-known center-of-
gravity method) while conducting simulaton analysis, but
could not find any significant difference in control perfformance
between these two different defuzzification methods. With a
view Lo maintaining the simplicity of the controller and to
avoid the extra computational burden, the height method of
defuzzification has been used which resulls in a very simple
but reliable and faster algorthm. For the numerical integration
we use fourth-order Runge-Kutta method with an interval of
0.1 s for the simulation of all processes. We now elaborate
the pedormmance analysis of different processes for Pl-type
{i.e., FPIC and STFPIC) as well as PD-type (ie., FPDC and
STFPDC) FLC's.

A. Performance Analysis for the PI-Tyvpe FLC's

1) Second-Ovrder Lincar Process: The  process  transfer
function &8} is
Gl = ™55/ 4540020, (%)

For this process we consider four different values of dead
time (L), te, L= 0, 01, 0.2, and 0.3 with &, = L9 and
(74, = L0 Fig. 6la)—(c), respectively, show the mesponses
of (8) for L (1, 0.2, and 0.3 under STFPIC and FPIC
due to both step set-point change and load disturbance applied

at ¢ = 40 s in each case. Various performance indexes for
(&) with four different values of L are listed in Table L
Fig. 6(b) also includes a typical highly nonlinear variation of
v for the process in (8) with £ = 0.2 and the comesponding
variation of the process input or controller output [u) for
both STFPIC and FPIC. Fig. 6(b) clearly conforms to the
desired variation of « (ie., small value for big error, wide
variation around the set point and large value at the event of
load disturbance) as described earier in Section 11-C. Fig. 6(b)
also shows the marked differences between the outputs of the
two conrollers. The control action of STFPLC is found to be
more aggressive than that of FPIC, especially at the event of
load disturbance (appearing at ¢ — 40 s). As a resull, STFPIC
shows very good regulation against load vanatons compared
to FPIC. Results [Fig. 6(a)—ic) and Table 1] for (8) with large
parametne vanation (dead tme) reveal the consistently better
performance of STFPIC over FPIC.
2) Marginally Stable System: Let us consider a marginally
stable system described by
G ) =r f--'-“..f'[-*.f-*- + 1) 9y
This is a marginally stable system because one of ils
poles is at the origin (= b} [32] and presence of dead
time makes the system further difficult to control. Here also,
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TABLE 1
PERFORMANCE ANALYSE FOR THE LNEAR SECOND-ORDER PROCESS 1N (8)

L G, FLC %05 | tisec) | tisec) TAFE ITAE
0 .02 FPIC 2908 236 55 8052 163 80
.06 STFPIC 1593 207 56 5,968 W23
0.1 0.02 FPIC 3318 284 55 3461 169,43
006 STFPIC 18.30 257 55 {254 100,33
0.2 0.02 FPIC 36.55 297 55 3,933 176,42
005 STFPIC 21,03 50 55 6,648 10719
03 002 FPIC 40,12 352 55 2475 185.10
0,06 STrFPIC 24,07 31.2 55 7187 117.02

TABLE 11

(1) PERFORMANCE ANALYSE OF CONVENTIONAL CoNTROLLERS (Pl axp PIDM axn FLCS (STFPIC axp FPIC) For
THE MARGINALLY STABLE SYSTEM IN {9). {b) PERFORMANCE ANALYSIS FOR THE MARGINALLY STABLE SvSTEM IN {9)

TELC | %08

L | k!G, tisec) | tisec.) IAE ITAE
1. Pl S G 424 1.6 10,329 13478
207 FIDy Tidl 87 i 1.4 2885 7.93
02 0028 FRIC GOLAG 327 4.0 330 1 udge
(.08 STEPIC 2728 25.59 4.7 5027 4 42.1%
050 Pl 6882 24.5 2.9 1 6479 | 486l
0,70 Pl #0206 237 23 L 7360 ¢ 6346
LER
L. | =g FLC mDS | tisee) | tgsec.) l AE | ITAE
0 (.05 FIMEC jrel 151 38 3299 TR
015 5 TERIC 11.50 12.8 34 173 42,44
01 f.035 FrIc 0,64 214 4. # 187 184.58
0105 STFIMC 3 L1401 44 3142 #2589
03 | 0422 §  EPIC 60,72 5.7 5 12373 07 17
0066 | STERIC | 3321 314 5 6.3 149
{hi
four different values of L (ie., 0, 0.1, 0.2, and 0.3) are  such situations, by reducing only the gain (&) of Pl or PID

used for the process o (9) with {7, = 009 and 7,. =
20, Ziegler-Nichols tuning formula (empircally derved) is
a well known scheme for determiming good settmgs of PIL
and PID controllers for a wide range of common industrial
processes [29]. But conventional controllers (PLor PID) can-
not show good pedormance for marginally stable sysiems
(systems with mtegration). Even Ziegler-Nichols-tuned PID
controllers fml w provide a satsfactory performance for such
systems due o excessively large overshool—not acceplable
i most cases [33]0 As an illustratnon, Figo 7a) and (b) and
Table [l{a) show the comparative performance analysis of
Ziegler-Nichols tuned P1 (A, = 153 and T; = 3.00) and
FID (&, 207,14 L&, and 1y (1.45) controllers
with STFPIC and FPIC for (9 with f. 0.2, Fg. T(a)
depicts an excellent pedommance of STFPIC over Ziegler-
Michols tuned Pl controller; even conventional FLC (FPIC)
15 found o provide a reasonably good pedonmance though

the overshoot 1s sull gquite large. We see from Fig. 7(b) that
even the PID (Ziegler—Nichols tuned) controller produces oo
large an overshoot (75%) 1o be accepted, although the other
pedormance measures exhibit improvement over STFPIC. In

controllers, we cannot reduce the overshool o an acceptable
limit. This fact can be justified from Fig. 7ic) and Table 11{a)
where the gain (K} of Pl and PID controllers is reduced
Lo almost one-third of their respective Zegler—Nichols tuned
value. With this reduced gain, for PL the overshool redoces 1o
69%, but for PID it increases from 75-80% which 1s still much
above the overshoot for STFPIC. Moreover, with this reduced
gain, STFPIC 15 better or comparable o the PID controller
with respect o all pedormance indexes excepl rise Lme.
Response characteristics of this system under STFPIC and
FPIC for £ = 0.1 and 0.3 are, respectively, shown in Fig. 7(d)
and (¢). Fig. 7id) mepresents the esponses of (9) due o both
step set pomt and impulse load disturbance inroduced at
£ = 4705 whereas Fig. 7(e) displays the responses only for set
point change. Comparison of performances between FPIC and
STFPIC is provided in Table 1Ik). Here, STFPIC memarkably
reduces the %25 and #,, in each case. Table 1ib) and Fig. 7(d)
and (e} both reveal that due to the self-tuning mechanism
the performance of STFPIC remains within the acceptable
limit even when such a difficult process is associated with
comparatively large dead tme. For example, comesponding 1o
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Fig. 7. {a) Responses of the marginally stable system in (9) with Z = (.2 for Ziegler-Nichols tuned PL{—), FPIC [} and STFPIC (5 5 5 o) (h)
Responses of the marginally stable system in (9) with I, = 0.2 for Ziegler-Nichols tuned PID (—), FPIC [—— and STFPIC (o ¢ ¢ ¢ ¢). (¢) Responses

of the marginally stable system in (9) with & = 0.2 for Pl {—) and PID {

1 with reduced gain {one thind of their rspective Ziegler—Nichols tuned

villue) and STFPIC (2 0 0 0 o). {d) Responses of the marginally stuble system in (9) with . — 1.7 for FPKC (——) and STFPIC {—). {e) Responses of

the marginally stable system in (9) with L = 0,3 for FPIC {—

Lo=1004 ITAE = 20717 and Y035 = 68.72 for FPIC but for
STFPIC they are 7349 and 3321, respectively [Table Hib)].

31 Second-COrder Nonlinear Process: We have tested the
pedformance of STFPLC for several nonlinear processes with
dead time, Since the basic charactenstics of the resulls ane the
same we report here only one of them. Consider the nonlinear

1 and STFPIC {—).

process govemed by

d2yfdt - dyfde 1+ 020507 =it L) (10)
Responses of (10) due to set point as well as load dis-
turbance for L 0.3 and (L3 are, respectively, shown in

Fig. §2a) and (b) with ¢4, = 0.9 and &4, = 11. Load
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TABLE 111
PERFORMANCE ANALYSIS FOR THE SECOND-ORDER Nox-LiNEakr Process v (1)
L G, FLC 2R0% tisec) | 1{sec.) [AE | ITAE
01 | G018 FPIC 21.84 10,6 54 6,87 124.11
0.054 STFPIC 15.17 12.7 54 5,843 R9.51
3 018 FPIC _ 2632 11.1 5.5 7,219 126.81
0.054 STFPIC 20.37 13.3 55 6,173 0,27
() N.O1E FPIC L dnyr 11.3 5.6 T.615 130 15
0.054 STFPIC 25.22 14 80 55 | 6609 92 04
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Fig. 8. (a) Responses of the second-order nonlinear system in {10) with lirmeissa.)
I — Lk for FPIC {——] and STFPIC (—). {b) Responses of the second-omder b
nonlinear system in { 10) with £ = 0.3 for FPIC ( 1 and STFPIC {—). (o)
Fig. 9. (a) Responses of the nonminimum phase system in {11 with L =0

provides the gquantitative performance analysis of STFPIC
and FPIC for (10) with three different values of f.. From
the resulis, here also we find that the overall performance
of STFPIC is always better for different values of L over
is conventonal counterpart (FPIC) though STFPIC produces
little higher undershoot and £,

B. Performance Analysis for PD-Tipe FLC's

1) Nonminimum Phase Svstem (Unstable Svstem): We now
consider an unstable system descnbed by (11)

f_7"j.||:$.] = {?_LE l{r{.ﬁz 1 :: £ (11 ::l

for FPDC [ —— and STFPDC (—). (b) Responses of the nonminimum phase
system in (111 with & = 0.1 for FPDC ( 1and STFPDC {(—).

This system is unstable due to the presence of a nonmin-
imum phase pole at 5 = | 1. Actually, it's a simplified and
lincarized model of an inverted pendulum [34]. So Pl-type
controller 15 not applicable here smee 1t mtroduces a pole at
the origin {4 = ). The PD-type controller introduces a zero
in the lefi-half s plane. Therefore, by pole-zero cancellation
the system may be stable under a PD controller [32]. Fig. 9a)
and (b} depict the responses of the system under STFPDC
and FPDC (with 4, 0.9 and 5., 2.7 for L 0
and 0.1, mespectively., Impulse load disturbances appeared at
£ =T s Fig 9a) while at ¢ = 30 s in Fig. 9b). Note
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TABLE IV

PERFORMANCE ANALYSE FOR THE NOMNMINDUM PHASE SYSTEM (UNSTABRLE) v {11)
L = FLC 208 Liseet | tisec) | TAE ITAE
0 9 FPDC 3916 30 03 | 1153 | 317
27 STErDC 989 1.7 0.3 PR 1.36
i1 4 FPDC 7783 15.6 13 7351 10920
12 STFPC R0 7.7 1.2 2.04 3503
TABLE ¥
PERFORMANCE ANLAYSIS FOR THE NONLINEAR PROCESS 1N {12)
I G FL.C %05 tdsce.) | tlsec) | IAE ITAE
e FPDC 1682 64 | 2% | 3080 2285
2.1 STFRIC 355 3.0 3.0 2.18% 1038
05 |07 FPDC 3031 8.6 28 | 33 | 287
2.1 STEPDC 1540 6 | 28 2.432 1803
that, the perfformance of FPDC becomes unacceptable in the
presence of a very small dead time (L = {113, but in that i
situation oo the performance of STFPDC 1s extremely good o
[Fig. 9ib)]. For further high values of L (say, L 0.3, G - o
the system becomes uncontrollable even with the sell-tuning - I.Ir -
FLC. Table IV shows the pedformance analysis of STFPDC g nE ' 2
and FPDC for (11). Fig. 9a) and (b) and Table IV once again = agl 1
indicate a remarkably improved pedomance of STFPDC over I" !
FPDC both in wansient and sieady-state conditions. O:dL / -
2 Nenlinear Process: Several nonlinear processes are also g i
used for the performance analysis of STFPDC. One such H J|'I
nonlinear process is described by the following: Bleds o i - ah o s
limesec.
drp et | 0 Sy dyddt = wit L0 (12) (a)
The performances of STFPDC and FPDC (with &, = (1.9 g
and (74, = 11} are wested for (12) even with a large dead time i T
. i
1 i i g

iL = L3). Responses of (12) due to both step set point and
tmpulse load disturbances (apphed at £ = 17 share presented in
Fig. 10(a) and (b) for L (b3 and (0.3, respectively. Table V
includes the various performance indexes. Again, we find an
excellent pedormance of STFPDC compared o FPDC.

To summarize, the proposed scheme shows much improved
pedformance over the conventional method for a wide variety
of linear as well as nonlinear systems. Even in some cases it is
seen Lo be more effective than the well-known Ziegler-Nichols
tuning formula for conventional nonfuzzy controllers. Though,
it 15 basically designed for tme-invariant systems, it shows
quite satisfactory performance for large parametde (dead time,
the most difficult element among process paramelers) vari-
ation; even when the FLC's remain fixed, ie., withoul any
change of their pammeters including (7, as illustrated in
Secuons 11-ALL, HI-A3, and 111-B.2. This indicates that our
scheme can also work for some processes with lime vary-

ing dead tme as long as its vanation s not oo large. To
handle sitwations with large varnaton in dead-tume  special
technigues hike Smith predictor or analytical predictor (used m
conventional control [29]) are yet o be developed for fuzey

control systems.
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Fig. 10 {a) Responses of the second-order nonlinear system in (12) with
L — 1} for FPDC [——=! and STFPDC (—). (b} Respomses of the
second-order nonlinear system in {12) with . = (1.3 for FPDC {——1 and
STFPDC {—).

IV. CONCLUSION
We proposed a simple but robust model independent seli-
tuning scheme for FLC's. Here, the output SF, which may be
considered equivalent to the controller gain was uned on-linge
by fuzey rules defined on ¢ and A, The most important feature
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of the proposed scheme is that it depends neither on the process
being controlled nor on the controller used. Conceptually, this
scheme differs from others in the literature as it atlempts
to implement the operator’s strategy while runming a plant.
For example, some of the existing schemes atlempt to attain
a targeted levels for some of the performance indexes like
overshoot andfor undershoot, while in the present case the
objective is to mimic the operator’s action which in wm is
expected 1o result in the desired levels for various performance
indexes. The proposed self-tuning scheme was applied 1o both
Pl- and PD-type FLC's for a wide range of different linear and
nonlinear processes. Performances of self-tuning FLC's were
also compared with those of their corresponding conventional
FLCs with respect to several indexes such as peak overshoot,
setthing tme, rise ume, IAE, and ITAE, in addition o the
responses due to sel-point change and load disturbance and, in
each case, the proposed scheme was found to outperdform its
conventional counterpart. Robustness of the proposed scheme
was established by using the same rule bases and MF's for
the simulation of all processes including even nonlinear and
nonminimum phase processes with dead time. ln order to
further establish the effectiveness of the scheme we used the
most natural and unbiased choices for MF's,

We have used two rule bases both defined on = and Ae. This
rmises 4 natural question: “Can we combine them'!” Probably
the answer 15 yes. One might think, this can be done by
defining a different linguistic value for the controller output for
cach distinct combination of linguistic values for w/ S and
2 a8 demanded by Fig. 3(a) and (b). To make it clear, when
& s say, KA and Ae is FS then o /Ay is VS [Fig 3a)]
and ev is 5 [Fig. 3(b)], so the pair (N5, 8} gives o distinct
combination. We can assume a rule of the form: IF ¢ is VA
and Ae is P9 THEN o/ Aw is Y55 where V55 is a new
linguistic value. However, this approach will have several
problems. These linguistic values may not have descent shapes
such as tmangle, ete. Their semantic interpretation as well
as representation for implementation would be very difficult.
Even if we use tdangular membership functions, it may not
be possible w use the most natural and unbiased choice of
symmetne rangles with equal base and 50% overdap with
neighboring MF' s, Moreover, the highly nonlinear controller
output is not only dependent on this { N5, 5% combination, but
also on s meighboring rules in both Fig. 30a) and (h).

Another alternative may be 1o use system identification (51)
technigues through exploratory data analysis [35]-[40] when
the controller outputs for different ¢. Ae combinations are
available. This actually needs data on the controller output
which may be either supplied by an expert {which is difficult)
or generated by our self-tuning scheme. Thus, a possible
scheme may be as follows: first use our self-tuning controller
to generate enough data and then use fuzzy clustering based
schemes [35)-[40] for rule extraction. This will make the
tuning scheme traming data dependent. We plan o mvestigate
this possibility in future.

However, the identification of the combined system would
be much more difficult than that of two separate subsys-
tems defined by the two rule bases. This can be easily
illustrated as follows. Suppose the control surface obtained

by the rule base in Fig. 3(a) is govemed by e Ae) =
iy 4 e AT — aaee A 4 oo 4 ay.Ac 4 ap and the gain
surface (Fig. 4) generated by the rule base in Fg. 3(b) is
defined by fale, A by — b A 4 D A 4 bye +
b e 4+ e Hence, the combined control surface 1s defined
by gl Ae) = file Aed + fole. Ard, which is a fourth-order
polynomial of ¢ and Ae. In this case identification of g™
requires estimation of only 6§ | & = 12 paramelers, while
if we direetly want w identify “o” assuming a fourth-order
polynomial (e, gic, Ach = ce® 4+ e de® 4+ cped Ac +
r".L.ﬁ.&ﬁ:*+c,->.e=;2.&ﬁ2-|-r".r5.-'=."5+r".,—...-je=;:"+ni_¢.ﬁg..ﬂﬁ—m@f..&eaz+
cies e A 4o oig e+ e A4 we have
to identify 15 (i.e., more) parameters. Moreover, simultaneous
estimation of a large number of parameters may increase the
chance of getting stuck W some local minima as well as
numencal mstability.

The proposed self-tuning philosophy may possibly be ap-
plied for the tuning of input SF s or both input and output 5Fs
simultaneously which may kead o achieve FLC s with more
improved performances. Moreover, one may design a hybrid
controller in which a fuzzy rule-based system will modulate
the output of a nonfuzzy controller such as a Ziegler-Nichols
tuned controller. The output modulatnon may be realized vsing
a SF as done in the present case. Bul the same rle base
[Fig. 3ib)] used for tuning the output SF of the fuzey sliding
mode controller may not be satisfactory in such cases because
the control policies of conventional and fuzzy controllers are
not wentical. All these are curmrently under investigation.
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