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Abstract

With an introduction [0 solt computing we discoss how the three main ingredients, {uzzy logic, neural networks and
genctic algorithms can play sigmificant roles in the design of successful patiern recegnition systems. Then we conccntrate
only on one aspect of pattern recognition, feature analysis, and discuss various methods using fuzezy logic, neural networks
and genetie algorithms for featre rnking, selection and extraction including strucmire preserving dimensionality reduction.
Finally, the metheds are illustrated with both real and synthetic data,
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1. Introduetdon

A computer can complete a job much more effi-
ciently than a human being when the job involves sub-
slantial amount of routine computation like inversion
of a matrix of large dimension, On the other hand, if
the task requires percepiual power or cognitive capa-
bility of human beings, the Von Neumann machine
is far behind human beings. For example, human be-
1ngs can recognize shapes of different sizes, orenta-
tiong even in an occloded environment much more
efficiently than by a computer. Computers are good for
well structured precisely formulated problems. Typi-
cally, hurnan brams are better for solving real world
ill-defined, imprecisely formulated problems requir-
ing huge computatdons. To overcome the Limitations
of traditional computing paradigm, scientists are in

search of new computational approaches that can be
used to solve real world problems cfficiently. As a re-
sult, in the recent past several novel modes of com-
puting have emerged which are collectively known as
soft compuring |33,46].

As to the understanding of the author, a precise defi-
nition of soft computing is vet to emerge. ITowever, as
of now soft compunng may be viewed as a consortium
of varions computing tools to exploit the 1olerance for
imprecision and uncertainty to achieve tractability, ro-
bustness and low cost [46], Usuatly, it attempts to find
an approximate solution 1o a precisely or itnprecisely
formulated problem. Neuro computing (NC ) is one ol
the major components of soft computing. The other
two important constituents are fuzzy logic (FL) and
probabilistic reasonimg (PR with PR subsuning be-
lief networks, genetic algorithms and chaciic systems.
FL primarily provides a paradigm for dealmyg with im.
precision and approximate reasoning, NC deals with
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learning and curve fitting. PR, on the other hand, deals
with probabilistic uncertainty. propagation of belict,
Bic,

Pallern recognition may involve e types of data.
The first category is called the object data while the
second onge s called relotioned daty. In olgect duta a
pattern or an object (say, a human being, tank, animal
cle ) 15 characierized by a sef of measwements like
height, weight etc. On the gther hand, in relational
represcntiation a sel of 2 objects is veprescnted by an
moon proximity | simmilarity/dissimilarity) relation,
The proximity relation may be computed from the
chject representation or could be obtained by experts
or by some ather means. In this paper, we coneentrate
only on object data.

There are three major tasks of pattern recognition:
Fearure analvsis, Clustering and Classification. Fea-
ture analysis is an cssential and important step towards
desipning effective clustering and classification algo-
rithms, Clustering looks for substruclurcs present in a
data set, i.e.. it partitions the data set into homogeneous
groups. For example, m case of a remotely sensed
image, the goal of clustering may be t group the pix-
els based on gray values and propertics of neighbor-
ing pixels in such a manner that pixels corresponding
1o cach wype of sorface (land, vegetation, water cic. )
form a separate cluster. Note that, for clustering we
do not know the actual {ype of repgon a pixel corre-
sponds to, but we expeet our clustering afgorithm o
wentily such groups. We emphasize that the process
of clostering only finds “homogencous™ proups but
cannot say which proups correspond to what, A clas-
sifier, on the other hand, partitions the feature space
so that any unfabeled daty pont cun be assigned the
appropriate class label. A classifier is designed using
gomme training data for which the actual class labels
are known, For example, to desizn an analysis sys-
rem for remotely sensed images we may be given ong
or more images for which we know the class label of
every pixel: in other wonds, for every pizel we know
whether it corresponds to water, land or vepetation
etc. Based on these (training) images we can devise a
schene 5o that when new images come, we Can assign
possible class label (o every pixel considering “simi-
larity™ of the pixels in the new image with the pixels
in the lraining images.

For clusterimg and classification, as mentoned
earlier, ohjects arc usnally represented by a set of

measurements or feature valuss each of which char-
aclerizes some property of the object. Features could
also be gualitative values like red. blue, good, bad
etc. Success of a clustering algorithim or of a classi-
fier depends heavily on the discnnunating power of
these foatures. A piven set of measured [Catores, us il
1%, may not have enough information o discriminate
hetween differcnt classes, For example, the raw gray
valucs of a digital image are not pood features for
most applications of image processing. In this case
we need to extract features like average gray level,
standard devigtion, gradients cte. cach compueed over
a neighborhood. {We emphasize here that although
image processing 15 a pattern recoghition task, often
it requires some special operations becavse of the
spatial elation of pixel valucs on the digital image.
[n this article we shall not consider these issues),
loo many features are not necessarily good. Some
of the features {obtained as a result of measurements
or compuled [Tom measurements) may be redundant
causing extra computational overhead; some of the
teatures may again result in contusion in the fealure
space leading to degradation in the performance of the
pattern recognition system, Feature analysis addresses
these issues. Tt consists of two tasks: feature selection
and feature cxlraction. Fealwre selection deals with
choosing sorme of the measwable quantities which
are important for the problem at hand, while feature
extraction computes some new atinibutes (features)
based om some selected measurable quantiies,

For the sake of completeness we first briefly intro-
duce the three muin ingredients, FL, NN and GA, of
soft computing and theo explain their role i pattern
recognition. Since it is almost impossible to provide,
in a single paper, the state of the art in the wse of
soft comnputing tools to the main three tasks of partern
recognition we decided to concentrate only on feature
amalysis. We chose feature analysis beeause it plays a
crucial role to the successful design of both classifier
and clustering algorithms,

.1 Artificiaf nenral nefworks

Although the concept of artificial newral networks
{NM) has been inspired by biological neural networks,
the heari of this computing paradigm is rooled in difs
fercnt disciplines. Biological neurons are the structural
constituents of the brain and they are much slower than
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sihcon logic gates. But inferencing in biclogical NIN

is faster than the fastest computer available today, Itis

belicved that the brain compensaies for the relatively

slower operation by a really large number of nenrons

with massive intgreonnections between them. Biolog-

ical neuwral nelworks have the following features:

o They are highly parallel, robust and fault tolerant
nonlinear devices.

+ They have batlt-in capability to adapt their synaptic
woiphls w changes in the suttounding envivonment.

¢ They can easily deal with imprecise, fuzzy, noisy
and probabilistic information.

e They can peneralize from koown tasks or examples

Lo unknown ones.

One of the main motivations of Artificial NN is 10
dosign problem solving devives incorporating some
or all of these characteristics [13.14,36]. Although
the development of neural networks is mspired by
models of brains, the purposc is not just w mimie
biological neurons, bur to use principles trom nee-
vous systems to solve complex problem in an efficient
manner. The neuro-computing paradigm iz different
from programmed instruction sequence. Here infor-
tation 1% stored in the synaptic conngetions, not in
the main memory. A neuron is an elementary proces-
sor with primitive types of operations, like summing
the weighted inputs coming to it and then amplify-
thgr ot thresholding the sum. The computational ney-
ron model proposed by MoCulloch—Pitts is a simple
binary threshold unit. The jth neuron computes the
weighted swm of all fes mputs trom other units and out-
puis a binary value, vero or one, depending on whether
this weighted swm is greater than equal or less than a
Lhresheld &, Thus

it + ly=f Z W) {J,) H

i
where

I ifxzd,

fix)=

i 0 otherwise

I the synaptic weight w,, =0 (from neuron j to i),
then it 15 called an excitatory connection; if wy; <0,
it is viewed as an inhibitory connection. Oflen the [
is replaced with & more general non-linear funetion.
In prineiple a nerwork of such neurons is capable of
doing quite complex tasks.

A negral network is charactenized by the network
topology, connection strength between pairs of neu-
roms {weights ), node characteristics and the stats up-
dating rules. The vpdating o1 learning rules may be
for weights and/or states of the processimg elements
{neurons ). The adaptability ol y neural network comes
ftom its capability of learning from “environmenis™,
There are several models of WIv which are suitable for
differcnt tasks [13. 14, 36). Some cxamples are: Hop-
licld Mel {suitabie Tor patiern storage und recall and for
optimization ), Multilayer Perceptron (classifier and
function approximator ), Self~Organizing Feature Map
(basically does clustering but can be used tor generat-
ing semanlic maps and desiging elassifiers ), Leamn.
ing Yector Cuanuzaton {can be used for clustering ),
and Adaptive Resonance Theary {clustering ) networls,

In aur subsequent discussion, we shall use only the
multilayer pereepiron (ML) nelwork and benee an
adequate description of o will be provided in an ap-
propriute place.

120 Pumzy sty

Fuzzy scts were inroduced in 1963 by Zadeh [43]
% & new way to represent vapueness in cveryvday life.
They allemprt lo model haman reasoning, thinking pro-
cess, Fuzzy sets are generalization of crisp sets and
have greater flexibility to capture faithfully various
aspects of incompleteness or imperfection in informa-
uon. For an ordinary set, an clement cither belongs 1o
it or nok; while for fuzzy sets, an element can parrially
belong to the set. for example, a set of TALL per-
sons (2010 Here there 15 no precise boundary to the set
TALL, and therefore, we cannot really isolale a col-
lection of people labeled as wll. Fuzzy seis are con-
ceplual sels, whose semantic is more important than
its mathematical characterization. Mathemaiically, a
tuzzy set 15 nothing but a mapping (known as mem-
betship functon} from the universe of discourse X o
[T, X —[0,1].

The set TALL can be modeled by o function shown
in Fig, 1{a). This 1% not the only function that can be
used to moded the fucey set TALL. There may be many
other functions and they may not even be confinuous
but all of them should have the general non-deercasing
characteristic to keep the membership function consis-
tent with the semantic of the fuzzy set. Such functions
are known as S-1ype membership functions. We shall
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Fig. 1. {a) Fuzzy set TALL. (b} Fuzzy set CLOSE e 7.

show an example of S fonetion in Section 2.2.1. Sim-
ilatly, fuzzy sets like “CLOSE TO 77 can be modeled
by the membership function shown in Fig. 1(b}
Again, there could be several other choices. But they
should have a membership value of 1 a1 7 or over a
neighborheod of 7 and then the membership values
should deerease ag we move away from 7. Such func-
tiong are often called [7-type membership functions.
These membership functions can be either obtained
from an expert or estimated from data,

Sinee (uzzy sets characterize imprecise propettics,
they can be effectively used to model vagueness as-
sociated with real-life systems. Fuery logic is based
on the theory of fuzzy sets and approximate reason-
ing. It is much closer in spirit o human reasoning
and natural language than the traditional logical sys-
tem. Thus, fuzzy logic provides an effective means to
model faithfully the approximate and inexact nature
of the real world.

1.3 fremetic algorithma

Genetic algorithms [7, 12] (GAs) are another bi-
ologically inspired computing tool for optimization,
GAx are parallel and randomized search techniques,
where a population of solutions evolves over a se-
quence of generations to possibly a globally oprimal
solution. Based on a fitness function good solutions
are selected for reproduction using two genetic recom-
bination operators: crossover and mutation.

(iAs are optimization algorithms which can solve
problems resistant to other known optimization meth-
ods. They do not require differentiability or continuity
of the fitness function. However, if the fithess func-
tion is differentiablc then this information can be ex-
ploited to expedite searching by GAs [3]. Even if the
iitness funclion is ot mathematically well struetured,
they can be used to find an optimal selution. GAs
work simuiltaneonsly on multiple points in the search
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space, nof oo a single point, unlike conventional search
technigues. Due to the stochastic characteristic, they
have a low chance of getting stuck to a local mini-
mum. Good search algorithms should have the capa-
bility of both exploitation and exploration, GAs are
belicved to suppurt a balanced mixture of both these
features. The criterion of “survival of the fittest™ pro-
vides evolutionary pressure for populations to grow
with increasingly fit individuals and thercby exploits
good solutions while the crossover and mutation oper-
ations enable GAs to explore the entire search space.

GAs work on a set of coded solutions not on the so-

lution themselves, Although different coding schemes

are posgible, binary coding is the most popular. There
are many variants, but the basic mechanism of GAs

i conventional GAs) consists of the Tollowing steps:

1. Start with an mnitial population {a ser of strings’
chromosomes ).

2. Evaluate fimess of every string and select candi-
date strings with probability proportional 1o fitness
value to form the mating pool.

3. Perform crossover and mutation.

4. Repeat steps 2 and 3 unnl the system ceases Lo
improve, of some stopping criterion is reached.
Fach member {(which corresponds to a solution of

the problem) of the population (e, cach chromo-
some} is represented by a fixed length coded siring,
Selection or reproduction creates the population for
the next generation using a probabilistic selection pro-
cess which offory a string with higher Gtness a preater
chance of selection. Muration corresponds to random
Hipping of one or more bits of an individual string.
Mutation increases the diversity in the population and
ensures that the probability of attaining any point in
the sexrch space is greater than zero, Usually mutation
is done with a low probability. The simplest imple-
mentation of crossover selects two parents {randormly )
from the mating peol and then after choosing a ran-
dotn position each parent string exchanges its tail at
that position. The resulting offsprings are included in
the population for the next generation. The erossover
probability is normally high.

L4 The role of soft computing in pattern
FeengRition

Any decision making system will have some
inpuis and some outpots. Usually the inpuls are

J
(=]
i

measurements by some sensors. Every measuring in-
strument has a finite preciston, Therefore, with every
input value we have an inherent imprecision. For
example, if a sensor with two digit precision reads
10,53, then the actual value may not {usually will
not) be exactly equal to 1033 but il 15 something
CLOSE TO 10.53 — a fuzzy concept. Thus fuzzy set
15 a nataral tool to modzl such vageness. Now con-
gider another cxample, an image analysis system for
remotely sensed tmages. For such an image cach pixel
may represent a surface area of even 20 » 20m°. As
a resull part of a pixel may cormespond to, say, land
and while the rest may represent water. Therefore,
while segmenting the image if we make a hard deci-
sion (either water or fand) we are bound to commit
serme error andd then in the Tater stage of the interpre-
tation we may not be able to recover this mistake.
Incorporation of fizziness (fuzzy scgmentation) here
can result i a more meaningful and useful system.
Depending on the characteristics of the neighboring
pixels, the pixel under consideration may be assigned
memberships to different classes. Thus we see that
fuzry sets can be used both at the ioput level and also
during processing. Now consider anather problem of
designing a classifier to discriminate hetween painters
and singers, Suppose we have data for a person who
is partially a painter and partially a singer, then our
classifier should be able to provide such information,
Conventional classifiers cannot provide such details.
However, fuzzy sets can be quite effective to model
such unsharp decision boundares between classes,
l.e., at the output level of a decision making sysfem.
There are several ather ways in which FL. can be used
In patiern recognition, hke fuzey reasoming system
for classifier and so on [5, 15,44).

Omc of the distinctive features of FL is that it can
model the imprecision associated with teal-life situa-
tions, while given a problem we find a computational
teural network model to solve the same. For example,
when the input informalion for a classifier s impre-
cise or vague, we can use fuzzy sets to model them.
Om the other hand, given a problem of designing a
classifier, we can casily wse a mulblayer perceptron
network, or to find the “homogeneous” sub-groups in
8 data set we can wse Kohonen's self-organizing fea-
ture map or Leaming Vector Quantization. For some
other problems we may need fo design problem spe-
cific new neural architcctures also. Often some of the
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common architectures can be easily modified to solve
some problems for which the oripinad net was not de-
signed. We shall see later how the MLP or its variants
can be used for feature analysis although MLT was
originally designed to be a classifier. A natural ques-
tion then arises, what do we gain outl of these? Well, we
may achieve robustness, parallelism, fault tolerance
and olien beler performance (senerahization ) than the
traditional methods.

lerespective of whether a problem is modeled us-
ing tuzzy logic or a neural petworl, often finding of
solutions becomics equivalent to solving an optimiza-
tion problem. Some such examples are: choosing an
“optimal”™ architeclure for an MLP for a given task,
finding the parameters detining membership functions
of a tuzzy mlc-based system or selecting a spall bug
adequate ule set to solve a problem, Sometimes clas-
sical gradient based optimization schemes are not suit-
able, as in the case of finding an “optimal™ set of
rules for a lwey classifier. Since, GAs, do not Tee
quire derivatives/continuity of the objective function,
in principle, (3As can be used to solve any such op-
timization problems, Sometimes scarching with GAs
cun be made faster with judicious vse of gradicot infor-
mation maintaining the stochastic natre of GAs [3],

Readers should not get the false impression that
(7As can solve every problem cfficiently. For exam-
ple, ifthe searching 15 done in the real domain and the
number of parameters to be identified are reasonably
lurge (somctimes 15 parsrnelers may even be large’,
(As may not be an efficient choice. In such a case the
guidelines may be, if vou have some other reasonshly
good search echnigue, wse that, For example, use of
(iAs o opuniize the fozzy c-means [2] objective func-
tion even for the TRIS [1] data may not stand in com-
parison to the wsual allemating optimization scheme.

With this background we now concentrate on the
feature analysis problem.

2. Feature analysis

Feature analysis may be represented by an mmplicit
or explicit mapping 8™ = /Y where for [Balure
selection g-< p, in this case [ simply selects some
features and for feature cxtraclion [computation ol
addirional feamres from the given features), ¢=> p.
Cne can of course view fealure selection as a special

case of feature extraction. Often a part of the featurc
analysis task is called dimensionality reduction. When
feature analysis sugpests a set of ¢ {g< p) features
which has the necessaty information to accomplish
the task at hand (ie., the ¢ features can be used in
place of the p original features) it may be called
dimensionality reduction. These set of features may
be ubtained by selection or compured from the raw
measurements,

We emphasize here ihe fact that the quality of o

Jearure ix dependent on the type of problem or clas-

sthier we wse to evaluare iv. For example, the most im-
portant feature for traiming an MLP may be different
from the mosL tmportant fealure for a nearest proto-
tvpe classifier,

There are many techniques for feature seleclion.
Some of these techniques arc based on interclass and
intraclass distances [9,11], some ate based on ney-
ral networks [8, 28, 39] while some others use genetic
alportthms [249, 42|, Similarly, for fcature extraction
there are several methods including principal compo-
nent analysis [ 16, 21,25, 30, 38, 40].

2.4, Newral networks for feature analysis

Smce majority of the conpectionist schemes that we
are going to present arc based on MLP or its variant,
for the sake of completeness we provide s briel de-
scription of the hackpropagation algorithm.

2.1.1. The bacipraopagation algorithm

A multi-layer perceptron net can be trained to learn
the relation berween a set of inputs and outputs. Each
node of a hidden layer is connected to every node in
its immediately preceding and immediately following
layers. Al cach node all incoming signals { weight mul-
tiplied by the output of the connecting node in the pre-
vigus layer) are summed algebraically to give the tota)
input, which is then transformed by a non-linear ac-
tivation function, The backpropagation {BP) learning
algorithun updates the connection weights with a view
to minimizing the total square crror over the whole
training dara.

We use the [ollowing syvnbols in our subsequent
discussion, Let x; be the ith compaonent of an inpui
veetor & in the training set, ©F be the oulputl corre-
sponding to the ith node of the fkth hidden laver for
the input vector x, 77 be the desired cutput for the ith
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output node cormesponding to input vector x, and FF
be the weight connecting the jth node of the &th layer
to the ith node of the (& + 1)th layer, k=0,1,....n,
Here & =0 corresponds to the input layer, # is the to-
tal number of hidden layers and (7 + 1 )th layer is the
output layer, Also let f be the activation function, 7
be the value of the derivative of the activation fune-
tion at the ith node of the &th hidden layer, ¢ be the
error for the input x, and » be the learning rate.

The BF algorithm consists of two passes: the Tor-
ward pass and the backward or weights adjusiment
puss. The forward pass computes the output of each
node. The output in the first hidden layer is com-
puted as, (3 = f(3° x W) The outputs computed
by the nodes in the kth (k=12...., # 1 layer are given
by ¢ — (15, 0F A1), The ontput from the out-
put layer 7 — 1 can be written as

o= f(z oX u-;;') =7 (1)

[n the backward pass, weighis are adapted to minimize
%" & using the gradient descent on ¢ in (2) penerated
by each input veoetor in the traming sel:

: “%Z':E.-:+1—';Z:;T. Ziy. (2)

Using the gradient descent method the weight comec-
tions for the output layer can be shown as

..':'.H::"— rr‘ :_i—.{al.ll_ {3}
where
Fotl s pletl, (4)

Similarly, using the chain rules the weight updawes for
the hidden layers can be wrinen as

AW =gt OF, (%)
whers,
3 = AN ). (6)

The incremental changes AW} may be summed up
over all patterns in the training set and the weights 1}
may be updated with the resulling sums (batch mode ),
ot the weights may be updated for each pattern (on
Ime mende ).

2.1.2. Fearure extraciion

{a) Newral nets for PCA. Principal component
analysis (PCA) 15 a lincar orthogonal transtorm from
p-dimensional space to g-dimensional space (g = p),
such that the co-ordinates of the data in the new
g-dimensional space are uncorrelated and maximal
amount of variance of the original data is preserved
by only a small number of co-crdinates [17).

Suppose we have a linear transform from a
p-ditnensional vero-mean input veelor £~ (1, %, ...
Xa )" to a g-dimensional output vector ¥ ={ |, Vi.....
vy )" and y s related to x by the cxprossion y = W
where W 15 a ¢ = p marri, with g = p. PCA sets the
g successive rows of B to the g eigenvectors cor-
responding to the ¢ largest eigenvalues of the input
covanance matrix §=F(xx’) Thus, 3. represents
the component of x i the direction of the largest
eigenvecior of S, v, 18 the component in the direction
of the Ind largest. and so on.

Let ML and M, he the W matnices computed
with &, =Ja,c @ 1= 1.2, _.n} and X, =4, L
(X1 & #¥], respectively. Then,

Pam1 = H{|+ | X ?t Hox, | = J‘.,: I {d'r 1

As lomg as 3, 1% not widely different from the vee-
lors vsed to compute W, v,_ 2= . Thus W, can do
a good job of projecling new duts points, as long as the
data points used to compute W, adequately represent
the population generating xy c #7. Duc to unavoid-
able computatonal complexity with the conventional
approaches, especially when g is verv large, neural
nerwork approaches for FCA have been widely stud-
ied recently. A varely of neural networks and learn-
ing alporithms have been proposed for PCA and its
variants [22-25.37,3%|, Most of them arc based on the
carly work of Oja’s ooc-unit algonthm [23,25] We
discuss here only one of them as a representative,
Rubier's PCA wetwork. The PCA network pro-
posed by Rubner et sl {37, 3%] consists of an input
layer with p podes and an output laver with ¢ nodes.
The two layers are completely interconnectad, Let the
connection weight between input node ¢ and output
node j be denoted by w,,. All the output nodes are hier-
avchically organized m such a way that the output node
i 15 comnected to the output node f with conncetion
strength w;, ifand only if =i, The set of weights con-
neeiing an outpul node 7 1o all mpul nodes forms the
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weight vector wy, the transpose of which is the jth row
of the weight matrix W Let {xg = (%152, ..., %)%
k=1 nr}be the set of & input vectors with zero-
mean and { ¥ — (s e v)h k=1, .a} be
their correspending output vectors produced by the
network, as cormputed by

Ser =W X+ > (X ¥k (8)
The weights between the two layers are adjusted upon
presentation of an input paftern x; according to the
Hebbian rule,

wili + 1) =wilid+ ey, i—1....40 (N

The lateral weights adapt themselves according Lo the
anti-Hebbian rule,

(F<f) (1)

where o and p arc positive leamning cocfficicnts. Note
that {%) updates a complete weight vector, while {10)
npdates only one weight.

Often a momentum term 15 added to each of {9)
and [1{}) to expedite the learning. Rubner and Tavan
[3%8] proved that if the learning parameters # and g are
chosen according to

wh i) 2
_— — 11
A0 —nk) P e

tlf + 1y =ty — pve v

then this leaming rule forces the lateral weights to
vanish and the activities of the output cells to be-
come uncorrelated. Correspondingly, the weight vee-
tors w; converge to the eigenvectors of the covariance
matnix 5. Although in practice, it is difficult to deter-
mine the values of i and ¢ according to the inequality
in {11}, without computing the eigenvalues, (11 ) does
provide a range for the values of gy and pif 4, and 4,
can somehow be estimated.

The PCA network has the same level generaliza-
tiom abilitics as that of W computed with the eigen-
vectors of & and hence is able to project new data
as expected when the original data have linear rela-
tionship. However, PCA neiworks and learning ai-
gorithms have some [imitations that diminish their
aftractiveness: (1) Standard FCA neiworks are able
to realize only lincar input-output mappings, (i) The
POA networks cannor usually separafe independen:
subsignaly from their lnear mixture.

To overcome these drawbacks PCA networks con-
taining nonlinear unils are gaining attcntion [18, 241,
Also Tndependent Component Analysis (ICH) has
been introduced as an interesting extension of PCA
in context with the signal separation problem [8],

(b} Newwral net for Sammon’s nonfinear projection,

Sammon’s method; Sammon’s [40] nonlinear pro-
Jection algorithin (SM) atiemnpts to preserve the struc-
ture by finding # points in g-space such that their
inter-point distances approximate the corresponding
inter-perint distances in p-space,

Let ¥ = {x; ixy -_{X.l.l,-"é:l.-..---nxtp}'r- k=12,
#n} be the set of # input vectors and let ¥ = {p; |y =
(Ver- ¥ezy oo ¥eg ¥y k=12, 0} be the unknown
vectors to be found, Let d} =d{x.x )X, %X
and d;=d{y. ). yoy; € ¥, where d{x;,x;) be the
Fuclidean distance between x: and x;. Sammon sug-
gested looking for ¥ minimizing )

* R
Fegt S EZ 2)

i S by

Sammon used the method of steepest descent for (ap-
proximate) minimization of £ Let 3:(2) be the esti-
mate of p; at the rth iteration ¥i. Then p(t - 1} is
given by

() [ PE)
it} Levde )

where the non-negative scalar constant « s the step
gize for pradient search,

With this method we canmnot get an explicit map-
ping funcrion governing the relationship hetween
patterns i p-space and corresponding parterns in
g-space. Thevefore, [f cannot project new points. It
alse involves a lavge amount of computation, ai ev-
ery step within an iteration reguires the computation
of lln{n — 1} disrances. The algorithm becomes im-
practival for large n. Finally, the algoritim uswaily
gets atnck in a local ngnimun.

Connectionist  nplemmentation of  Sammon’s
method: lain and Mao [16,21] used the multilayer
perceptron network with an emor function defined
in a different manner for Sammon’s projection. The
number of input and output nodes are set to p and
g, respectively. An MLP needs an error function to
drive the backpropagation algorithm. As such for
Sammon’s method the target value is not known. To

¥ilt + 1= 147} rx[ ] (13}
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realize the Sammon’s error, the net 1s given a pair
of data points, say x,,x; € 7 one after another as
irnput. Let the comespondme outputs of the net be
Foy €84 Once puy, are known, oJf; and J;; and
consequently -

Fi= s SRR/ {14}

can be defined. Jain and Mao vsed gradient descent on
£y, with a view to minimizing Sammen’s error fne-
tion. The process is repeated with randomly seleeted
pairs tl] convergence of the net.

It was shown experimentaily that the number of
nodes required in the hidden layer is to be around ng to
get good results. This method requires o lot of space
and fraining dime to get good solutions.

In [21], a different approach was followed for train-
ing so as to take advantage of the nonlinearity of the
ghove network. Inidally a PCA network 15 wied Lo
project data and then standard backpropagation algo-
rthm is wsid to spproximate principal components.
The weights of this trained MLP are then used 1o ini-
tialize the weights of the Sammon’s net.

We offer the following remarks about thiv imple-
meriation: (1} frairirg time 5 high, (1) memory us-
e is Bigh, (iii) to ey a different (new) avchitecture,
ant MELP with the same new architecture should agaiy
he traimed to approximate principal components for
weight initialization ie., we cannot direcily add any
axtra hiddew laver enen if it iy demanded, in fact we
e ever oo ai extra rode dand (iv) the main
purpese of thiv network iy to handle nonlear data,
ax, fincar duta is vervy well projected by the PCA
netweork, but, even this may noi be achieved by the
proposed fnplesentation, as shall be seen from the
resudts.

Anerther new connectionist scheme: Sammon’s al-
zorithm and some of ity derivatives work very well
for small data seis [1044]. As mentioned carlier
Samunon’s method capnot project new data points
and is cornputationally prohibitive for large data sets.
These problems can be eliminated, if we can pet
a mapping function governing the relationship be-
rween patterns in p-space and patterns in g-space, by
projecting a small representative subset ol the data.

We proposed 2 very simple method [30], which

performs better (a1 least on the examples we tried)

than metheds given in [16,21] in terms of time,
space and quality of the projected map. This method
combines the advantages of Sammon’s method for
projecting stnall data sets and capabilities of MLP
for function approximation. We call this method
SAPRONN — Sammon’s projeciion with noural net-
works,

When we talk about projection of unknown data
based on a mapping {(explicit or implicit) ecstimated
from a given data set, we implicitly assume that the
given data have some stmuciure which future data
ANty arc cxpected to follow, Tn other words, we can
assume that the data points are generated from some
time invariant (unknown} probability diztribution.
Therefore, if we can extract a small butr adequate
representative sample of the given data set and then
estimate the mapping function basced on these we can
expect to have a pood generalization.

In fact, although not explained or stated, this was
also the phitosophy behind the Jain and Mao’s method,
It then raises two issues: How to get an adequate bur
small sample and what do we do with that!

We propose to select a small subset X' of repre-
sentative data points using SREWOR. {simple random
sampling without replacement) scheme so that statis-
lical charactenistics of X arc rotained by X based on
47 or diverpence statistic [43]. Qur computational ex-
ercise shows that 30% data points are usually enough.
Now we run Sammon's algorithm on X' to generate
F'5 < @4, Then we use (X', Y1} 1o (rain an MLP.
Mate that such a trained MLI' will capmre the struc-
ture present i XY 97 lain and Mao used 50% of
the data points first to train a PCA network and used
that net to initialize Sammon’s network, Unlike Jain
and Maa, it our scheme the relation 1 captured by the
pair (¥, ¥'**) and an MLP simply learns il. In this
scheme it is casy to try different NN architecturss.

Mext we provide a schematic description of the
algorithm:

Algorithm SAPRONN { )
{

Inpul ¥ = {x; £ &7 i — 12 . .ah
Mormalize x; to pet rf'i‘rt', i=1,2,....8%L
Leae X2 = 0 i 1,2,...,n);

Select a random sample X5 of size n, by
SRSWOR-scheme from X7
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using ¥ or divergence or like Jain & Mao a
random sample of size n, — A2,
Run Sammon_projection with X! ta get
Fiil = {y‘“cw. i=1.2,....{n)}
where _'.J carrc:-.pﬂnds 10 xm
Narmalize_v toget ¥ i= 12 ()
Let}""]—{ym i=1,2,....(0};
Train an MLP with XU dTld yise,

y[ s the target corresponding to x}'ﬁ;

Use this trained MLP to project the complete data
set X% and any new dala points.

213 Feature ranking & selection

When an MLP is reasonably trained we can ex-
aming the sensibivity ol the net’s oulput with respeet
to input for finding important features. Based on this
philosophy we discuss two methods.

Saliency based feature ranking (SAFER): Ruck
el al. [39] possibly were the first to propose use of
sensitivity of ourput of the network to its nput for
ranking of input teatures. The expression for feamre
saliency measure as proposed by them is

=X

sk wnd;

(13)

{a.;:{x, W]‘

where 3, is the set ot values tor the jth teature that will
be sampled and oy 1% the output of the th output node.
# is the maining set. The matrix W is an array of all
connection weights in the network aitanged in some
suitable form. They used sum of the absolute values
of the derivative as an indicaror of the sensitivity of
the output of the network with respect to the input
feature. Therefore, A; > A; is assumed to indicate that
the importance of the fth feature is more than that of
the ith feature.

For evaluating dog(x, W)idx, in (15) the chain
rufe can be used as discussed for the backpropagation
algorithm.

To reduce the computanonal load, Ruck ot al
suggestad to sample the data at the most important
points. The points of greatest importance tn the input
space are those for which wraining data exist; hence,
the training vectors are used as starting points to
sarmple the inpul space. For every training vector,
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Fig 2. The scutterphot of a 2-dimensionzl data see.

each feature is sampled over its range to compute the
saliency.

Mote that the method of sampling data points in
[3Y] sornctimes may mislead the scheme. Lot us take
a pattern set in two dimension as in Fig 2.

Fig. 2 has two classes viz. class 1 (left) and class
2 (nght). Consider a pattern vector x in the training
get Trorn class 1. 10 the value of Feature 1 {8 ) 15 kept
tixed and that of F: is varied over its range, some of
the peints may be pencrated cutside of both classes
1 and 2. The network is neither trained with these
pattern points nor do these points belong to any of the
two classcs. Therefore, incorporation of these points
in calcnlating the feature saliency tnay mislead the
process of ranking. Further details in this regard can
be found in |8].

Sensitiviry based feature ranking (SEFER). After
an MLI successfully learns a data set, the weights
of the links are expected to be so adjusted that the
value of a redundant (less importance) feature will
not influence the output vector muoch, Tesser the
importanee of a [eature in diseriminating between
classes, lower would be the influence of its value on
the cutpur of the nerwork. SEFLCR is banked on this
concept | ¥].

Using the trained MLP, for every feature g we
compute a feature quality index, FOf, and then rank
the features according to FOI,. To compure FOI, we
proceed as follows: For each waining data point x;,
i = 1.2,....n wesct x, to zeroo Lot this mdified
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data point be denoted by x|7; ie, x\T =x; ¥i#g

and xf;,"' =, Sefting the gth companent to zero is

equivalent to delinking the gth input node and hence
delinking all connections asseciated directly with the
gth input node. Thus, the impact of the gth feature
will not reach any node of the network. Let the outpuot
vectors obtained for x; and x\*' be g; and o', respec-
tively, Note that o; is s the target output correspond-
ing to x,, but the aedual output that is obtained for x;
[rorn Lhe trained nec. For a less important feanire, the
output vectors @, and o' arc not expected to differ
such, Any functien of ¢ and off' that can meusure
this variation between the two can be used as an in-
dex for feature ranking. A very simple choice would
be to define

c I (o
FQI.-;—FQL_.—”;M o'l

1r

1 " I‘:H g1
} o, —g 0] 16
S o= 5

Here 3 1 and ¢ 15 the number of classes. After com-
puting FEs for all p features, they can be ranked
aceording to their impottance as ¢-.¢2,....4, when
FOI, ?;FQI;: = oo .?-FQI;,P.

Another intereshing choice could be to use the sym-
metric divergence function of Kullhack FOIn,

FOIn— % to;  olF)logtanioli"y, (17}

Note that, FOf, cannot be called entropy as a;s are
not probability and it 13 not a metric also.

IF the problem is to select & (k< p) best fea-
tures (feature selection), best from the point of
view of discrimination between classes, the feature
sel {g.g7....,4: } may not be the optimal set. But
J1. g7, e will definitely represent a pood subset
of leatures. However, the best set of & Meaturcs can
be obtained by evaluating FOT setting every possible
subset of & features to zero,

In SEFER we find the cutput of the net aftar remow-
iy a leatare and then measuring the deviation of this
outpnt from the learnt output but not from the target
oulpul. We have nol considered the argel outpul

because the network might not have been able to learn
the target output to a desirable level. It is more logi-
cal to consider the sensilivity with respect to what has
been learnt by the network, Marcowver, seiting & fea-
ture value 1o zero is equivalent to assurmng absence
of that feature. Thus, it is a conservative approach.
SAFER ranks individual featurcs but cannot select the
best subset of & < & leatures. But SETER can rank the
features individually as well as select the beat subser
of & < n features,

Awn grienuator based feature selection (AFES). In
a standard multilayer perceptron netwark, the effect
of some features (inputs) can be eliminated by mult-
plying them with zero and the rest with unity before
they propapate inte the network. They can be made
effective again by chanping these “multiplicrs™ or
“leature attenuators™ from zero 1o unity. The binary
varsion of these “aftenuators” can be fiirther peneral-
ized into continuous “attenuation functions™, whose
vange is [0. 1]. In ATES the inputs are atlenuated
by their comesponding “attenuation functions™ be-
fore they pass e the network. Parameters of the
attenuation functions are also trained by the gradient
descent method along with the connection weights
[28]. At the end of the training input features with a
high attenustion can be climinated.

In addition to the symbols introduced carlicr, we
ns¢ the following:

Let F be the attenuation function, F_,’ be the deriva-
live of the allenuation function associawed with the
fth input node, M; be the argument of the attenuation
funetion assoviated with the ith mput node, j be the
learning rate of the attenuator, and 4, be the attenua-
tion of the fith feature =1 ~ F{A).

In the forward pass corresponding to an input vector
x we gel the atenuated veetor & aller the atenoation
has occurred for each input feature {x, ) as,

x..' =F{M)x,. (18]
To realize (1¥) we may assutne that the ith node in the
inpud layer bas an activalion fonction §(x) = x# (M),

with tupable M;, i=1,2,..., p. Thus. the output {]_,!
for the first hidden layer becomes,

0 = ¢ (Z x| H',’-}") . {19)
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Propagating the signal further into the network we
have,

Ok i f (z qk lﬁ,-l_-:‘: I) L {21]}

where £ = 2,...,n+ 1. The final cutput, as before, is
given by O™,

In the backward pass, weights and parameters of the
attenuation functivns are adapted with a view to mini-
mizing % & using the gradient descent on & generated
for each input vector in the data set.

As before,

p= %Z (E)* (21}

The weights of the network are adjusted exactly in the
same manner as described earlier except for the minor
changes given below.

AW —ndix — ndlxF(M;). (22)

The Teaming rule for the attenuators (M) can be
shown [28] to be

AM; = pxfi Y (W8] (23}

A

Here the attenuation for the ith feature iz given by,
A, =10 F{M:).

If A; is close to 1.0 i.e., when F{M; ) is close o zero,
(M) will have values close to wero. Under such a
situation the feature will not pass into the networl, On
the other hand, when 4; is close to 0.0 (F{M;) nearly
equal t 100, xF{M; ) will have values close to x;, and
hence, the feamre passes almost unatenuated into the
network, The training starts with all attenuation fune-
tions sel o almost cero value, 1.0, 4, = 100%,. Thus,
at the beginning of the fraining, practically none of the
features 15 allowed to pass into the network, As the
network trains, it selectively allows only some impor-
tant fealures W be active by increasing their altenoator
values as dictated by the gradient descent, The train-
ing can be glopped when the network has classified
satisfactorily, i.e.. the number of mis-classifications
has gone down o a tolerable value andfor the error is
low. Features with high attenuation may be eliminated
from the feature set.

2.2, Fuzzy seis for fearure analysis

There are not many attempts to feature anal-
ysis using fozzy logic. We just illustrate here
a few such approaches for feature ranking, Let
X —{xi,x, ...x,t C R be the universe of discourse
and a fuzzy set o = {u (2 0 v X i=1,2,. ..,
fior = |11} be defined on X where p{x;) denotes
the membership of x; to 2, A measure of fuzziness
for of can be defined as [27]

Ha )=k flpalx)), (24)

i-1

where £ 15 2 constant and the function f(-) can be de-
tined in various ways [27]. One can obtain the fuzzi-
ness measure suggested by Deluca-Termini using

Flpa(x )= — far(x Y Infp ()

(1 — pla ol — pple))  (25)

in Eq. (24). H{.of ) with {25} is also called entropy of
the furry set. Thus, the cntropy becomes,

1
By~ rin2

3 - sa(x) i (u ox))
=i

— (1 — s ()30 {1 — pryix )b (26)

where £ = L/ 1n 2 is the normalization factor. Pal and
Chakraborty used Eg. (26) for feature ranking [32].
&) attains the maximuom value when & i3 most
fuzzy, Le., when p (% )=1035 ¥ and it attains the
minimnm valug when g (x,1=0 or | ¥i. Pal and
Chakraborty used S-type and =-type [32] membership
fonctions for modeling of p. Ler us consider only the
standard S-function, defined as

[0, X=a,
2[1'. a]z =y h
' =AY R,
! 2[-‘-—*3} bEx e
L —

in the interval ja,c] with f={a + ¢)/2. The para-
meter i is known as the crossover point for which
dolxa b o) =05
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Let X ={x. %3, ..., %} C R be the given data set
where each x, is from one of the ¢ classes. i.€., sach
x; has a class label % which it comes from.

Let av, max and min be the average, maximum and
the minimum value of x,;, respectively, of the jih fia-
ture for class £.

Define [32]

b= 5y hav (28)

e = b+ max{|(x;: ) — (X dmax -

gy v — (g dmin |+ (29)
and
a—2b—c. (30}

Compute H (in (26)) of the ¢lass € for the gth
feature using (281-(30). Now for the gth feature of
class & if each xyy 15 equal to b, A will be maximun
and equal to 1. A tends to zero as x,; moves away
(rom & towards cither ¢ of @, The higher the value of
H, the greater would be the number of samples having
i x )= 0.5 and hence greater would be the tendency of
the samples to cluster around its mean value, resulting
in less (intermal) scatter witlin the class. T we pool
together the classes % and %, and compute the mean,
maximum and minimum values of the gth feature over
all (x; 421, ) samples where a7, (= 7, £} is the number
of samples in class €., If for the pooled sample would
decrease as the goodness of feature increases. This is
because, for a good fealare, the samples [rom both
classes should be away from the overall mean, i,
maost of the points will have i x )} == 0 or |, The fearare
evaluation index for feature g, (FEJT,), can thus be
delined as [32]

; Hyss
FEL, = o {31}
where fl,; is the value of the entropy for feature g
after pooling the classes % and %; H,;. H,. are those
lor the feature g computed for %, and %, respectively.
The lower the value of FEI,, the better is, therefore.
the quality of the gth feature in characterizing and dis-
criminating classes %; and %,. Instead of vsing oaly
one lealure g, FEF can be caleulated even for a sct
of features [31]. In this case, we need to vse a multi-
dimensional membership function [34]. Mote that, in-

stead of H in (26} any measure of fuzziness [27] can
be used,

This method can be used to assess features for a
pair of classes only. It may happen that a feature p
13 good in discriminating %; and %, while feature g
may be a better discriminator for classes 6 and %;.
Further, it may happen that some other feature r 15, on
an averagre, a better diseriminator for all the classes %,
%, € and % taken together. Thus, with FET it may
be dilficult to assess the goodness of a teature keeping
m view all classes taken together.

To get around this problem, Pal [31] extended his
earlier work to define the average importance of a set
of features &' as

(FENE =S WW(FEN", (32)
i L3

where W, —n/n, Wo=ni/n, n= z}. ny, Lk=
L2, . ..o k&£, are weight factors.

Here the weights are nothing but the a priod prob-
abilities of different classes. Hence, (FEI™ depends
on the number of peints in a class and this may not be
desirable, Preferably, (FE7)™ should depend anly on
the structure of the classes but not on the number of
points in a class. Suppose #; +my — v (2 constant) for
two different pairs of classes. Here ¥, W, attains the
maximum value when u; —=n, =4 2. Thus, (FEFF"
is biazed towards equiprobable classes bul this is not
desirable. With a view to relaxing this bias a new in-
dex, called overall feature evaluation index or OFE!
is defined in [E].

The objective of OFFET is to account for some
of the issues just discussed, Feature g will be good
il it can discriminate every pair of the ¢ classes.
Therefore, the goodness of a [eature g increases as
e (ALA=12.....c and j=k) decreases and fI,
(j=1.2....,¢) increascs; i, 3, ;. Hyp de-
creases and Z; | Hy Increases. Thus, the overall
feature evaluation index for fealere ¢ (OFEL ) can b
defined as
E.& |,|.:{-:- Hq.-'i

N

L= Lig

OFEI, =

(33)

If OFF is low, we can expect the associated fea-
ture Lo be better. [ may happen that £, <1 but
How = Hyy. Le., feature g is more important to discrim-
inate classes { and 7 than leature » but the converse is
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true for classes & and [. Since Eq. (33) considers all
possible pairs of classcs, OFES, will refleet the overall
{averape) discriminating power of the feature ¢. Note
that, OFE], does not directly depend on the size of a

class.
2.3, Genetic algorithms for feature analysis

There have been a few attermpts to solve the feature
selection problem ysing GA. Sedleeki and Sklansky
[42] used k-NN rule to find a small subset of fea-
nures for which the classifier's performance does not
deteriorate below a specified level. They did this by
constriucting a GA chromosome consisting ol a binary
string whose length equaled the number of features, If
a bit i 17, that feature is selocted for cvaluating the
performance of the classifier.

Kelly and Davis [19] and Punch et al. [35] solved
the same feature selection problem using GA. Unlike
Siedlecki and Sklansky they multiplied each feature
by & real-valued weight and then used that weighted
fcature for computing distances required for imple-
mentation of k-NN classifier. GAs have been used to
tearn these weights, Features with high values for the
learned weights are considered important features and
vice-versa,

These methods cannot be wsed o select a fixed
[given) number of pood features ic., say ¢, good fea-
tures, The algorithin may terminate at a point where
the total number of [™s in the solution sting may not be
equal w g in [42]; while for other two methods [19,35]
those ¢ features having highest weights can be se-
lected. But this can create another problem. Suppose,
therc is a fiature which is more or less constant for
all classes. For this feature whatever be the weight the
classifier performance will not change. Since GAs are
probabilistic search techniques, the algorithm might
terminate at a point with high weight for this inditfer-
ent feature and thereby indicating a false impottance.

In order to maintain a fixed number of 1% in a
chromosome, yvet keeping the evolutionary character-
istic of GA, Ial et al. [29] proposed a new crossover
operator, named self-crassover. Unlike conventional
crossover, self-crossover allers the genetic informa-
tion within a vingle potential string selected randomly
from the matng pool to produce an offspring. This is
done in such a manner that the stochastic and evolu-
tionary charactenistics of GAs arc prescrved.

Let
5= (01001 1001011011 (34)

be a string of length 20 sclected from the mating
pool. For self-crossover, first we select a random posi-
tion p (= p-<L)and generate two subsirings 5; and
5208 = bits | through p of § and 52 = bits p + )
through £ of 5. Now we sclect two random positions
. 02 p s pand po, 05 p<(L — p). Then four
substrings are generated as [ollows:

s =hits | through p - py of 5,

s —hits {(p— p + 1) through p ol 5,

51 = bits | through L — p — py of 5,

§27 = hits (L — ps + 1} through L of 52

Using operations similar 1o crossover we gener-
ate S' =4 |52 and 57 =437 |12, Finally, the self-
crossovered offspring of § is generated as 5, = §° | 57,
Tt is easy to see that mumber of 1's in § and 5, is the
same. Let us now explain it with the cxample string
&in(34).

M random position, p=19, is selected for splitting
the string into two substringd (5, 52 ) a5 fillows:

5 =00010100 and 5 =11001011011.

Now rwo random positions, g —4 and g =7, are
selected for s and 5., respectively, After splitting 5
and #; at 4th and Tth position, respectivcly, we got.

g1 =00010;
and
S = 1Q1I0LT,

s =001 50 = 11K}

Now two new substrings §' and S* are then obtained
as

§' = (00101011011 and 82 = 11000100,

Finally, the offspring (5, is generated by concatenar-
ing §' and §° as

5, = 0001010110111 1300100,

Thus, self-crossover exchanges substrings 5,2 and 5.
If the parent string consists of all 0's or all I's, the
offspring generated through self-crossover will resem-
ble its parent because of the underlying constraint on
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the total munber of 1°3 in the swing. If we do not start
GA with a all ®1™ or all "0" string, GA with self-
crossover techmigue, will nover gencrate such strings
s offsprings. Seif-crossover evolves to new offsprings
as iteratioms go om.

1t can be casily shown that self-crossover {(without
mutation ) can generate any target string [29], How-
ever, the result docs mof say that there is no need
for mutation m GA with self-crossover technigue, 1t
simply says that for problems like TSP, use of self-
crossover without mutation can generate all possible
valid solution sirings. For problems like feature se-
lection, data editing for NN classifier where we want
lo select a good subsel of features or dala points of a
prefixed cardinality, self-crossover without mutation
is sulficient. Conventional mutation for such problems
may produce myvalid selutions, ie., it may generaic a
substing of arbitrary cardinality, not equal to the pre-
fixed cardinality.

Al the firsl sight, it might appear that selFerossover
is a parallel random search, but this is not the case
for twu reasons, Scli-crossover is done only on 4 ran-
domly selected subset of strings and self-crossover
does not aller the substring s It exchanges, only so:
and s:2. Consequently, through selection & crossover
the cvolubonary characteristies of (7A are preserved.
The similarity between the parents and offsprings will
be more if we take py=p.=p' (say)=a random
number selected between 1 and Mind p, £ — p); 1e.,
G-z gy = pr = p" =Win p, L. - ). In this case, the bits
in positions O through p' and bits from p— 1 through
L — p" will remain unaltered, Consequently, the evo-
lutionary pressure will be more,

Let us denote the p features as £, Fy,.... F. We
have to sclect a set of ¢ features, say { Fo. Fa.... Fi
AL k) such thal the selected (eature sub-
set can do different pattern recogmition jobs well,
To usc GA tor feature sclection we need an objec-
live (fitness) fonction to guide the feamre selection
process, The fitness function should reflect the per-
formance of the reduced data set for different pattern
recognition tasks. For an unlabeled (where class
tnformation 15 not available) data set the fitness
funciion may reflect the performance of a clustering
algorithm; while for labeled data (where class in-
formation 15 available) the fitness function may be
defined to measure the performance of a classifier,
Here we consider the later case and the fitness func-

tion is defined to be the performance of the nearest
prototype (NP) classifier. Thus the hGimess functivn f
is miven by J{F,Fa, ., Fip ¥y, V1= No. of correct
classification, where ¥, = {y1. 0.0 ). p € RY and
the &th componcent of yp, 1.¢, ¥y 15 cguoal to some fth
component x; of x, SR LV = {e, e, boe CRY
15 the set of ¢ dimensional prototypes detined by

n=-% (35)

where ¢ i5 the number of classes and % denotes the
ith ¢lass. Mote thut the prototypes may be gencrated
in many other ways,

A feature subset is now represented by a binary
string of length p. A set of M binary sinngs of length
p and cardinality & is taken as the initial population
where the cardinality of a binary string is defined as the
Lotal number of 175 in the string, If the ith position of
the string contains a 1% then the ith feature 15 selected
tor the chosen subset. Thus, a string of cardinality &
denotes a feature subset of size &, Now the iterations
of G4 are continued with self-crossover, pvaluation
and selection with probability proportional to fitness.
The entire process is repeated for a desired number
of times or gll we And no improvement in the fitness
value for several gencrations.

3. Results

We present our results summarized into two sub-
sections, one [or feature ranking sand selection, and the
other for dimensionality reduction. For feature selec-
tion and ranking wi have imptemented the algorithms
discussed on several data sets ingluding both synthetic
as well as real data sets, bul we repott here only re-
sults on two of them, Crude-oil and Mango-leal for
the feature selection algorithms and to show the eflec-
tiveness of the feature extraction algorithm we con-
sider a synthetic data set, Sphere-Shelf and the well
knawn TRIS data.

Crude-cit [17] has five feanures and 56 data poinls
and Mango-leal [4] has cighteen fcatures and 166
data points. Both have three classes. 'The Sphere-Shel]
[22], om the other hand, consists of [0 points in 3-
space. 300 points are selected randomly within a hemi-
sphere of radius #] and rest SO0 from a shell defined
by two hemispheres of radius r2 and #3, such that
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Tahle 1
Results wilh SAFER, SCFER, (TEI® and OFED on Crude-wnl

Feature no. SAFER SEFFER  {FEI}* QFEI

Feamre

made 0 B 1 Rum2 Run 2

1 1 1 | 1 3 5
2 5 3 5 h] 3 3
3 4 3 2 4 4 4
4 z 4 4 2 2 2
3 k) 2 3 3 1 1

#l=r2<rd IRIS [1,17] is a four dimensional data
wilh 150 points in three classes.

3.1, Results on feature vanking emd selection

In our implementation all features are normal-
ized to the same scale by a transformation. For each
feature x' the transformed value x is obtained as
x={(x" — £}k — k1), where Kl :min,-minf{x:j}
and &= max,-maxj{x:;}. Mote that this fransformalion
does not change the struocture of the classes as it is
only a change of scale and origin of the entire data.

For the MLP based algorithms we used the sran-
dard sigmoid for both attenuator and activation fumc-
tions. “On-line” methed was employed for training,
Onc complete pass through the dara was considered
to be one epech or iteration. The initial values of the
“attenuation functions” should be ideally zero, this
way practicatly achieved by setting M; to —5.0 which
corresponds o F{A) = 0.0066%9, [ ¢, an atdenuation
of 3%.33%. A feature is considered important if its at-
tonuation is low.

We compared our results with Ruck et al.’s scheme
far which we provided rankings for three typical runs,
The networlk architectures, learning rates and the num-
ber of iterations were kept the same for all schemes.
We authenticated our results by running the conven-
tional MLP with different feature subsets,

3. 1.1, Results for Crude-oil

For Crude-oil [17] an architecture with six nodes in
a single hidden layer is found to be adeguate for an
MLP.

Table 1 reports the results obtained from three typ-
ical rons of SAFER and also the ranks obtained by
SLEFER, FEI and OFE] The sccond fealurc has con-

Table 2

Results with AFES fur Crude—nil [or ¢004) iletations

Featurcs M Ap-100
L *5.52 *0.29
2 5,52 Q06
3 *8.42 22
4 *4.90 *1.74
5 *h62 *0.13
Misclassification 2

Forror 21

Tahble 3

Results of convertional MLP on Crude-oil

Fealures Tieration Misclussilicauons Error

All 000 3 00289
1.1 34 5000 4 00315
L2335 SO0y 2 00170
1,2. 4,35 SOk 2 0.0156
*1,3,4.5 SO 0 00002
L3 4,5 SOWE 1 04154
L35 SO0 4 IR AN
2,3,5 SO0 9 .70
35 SO0k 12 0.1453
2.5 SCHIG 7 1.07a4
4, 5 SO0 7 rOGSE

sistently been ranked the last for all experiments that
we conducted with SAFER and SEFER, thus indi-
cating that it is the least important feature. Later we
shall see that AFES conforms to this but the ranking
of other features does not agree with that of AFES,
For a few runs nol reported in Table 1 both methods
are found to rank fearure 3 as the least important one;
while both of the tuzzy indices produce significantly
different ranking.

Resuits of a typical mn of AFES on Cride-oil are
piven in Table 2. [n Table 2 {and also in Table 3)
asterisks (™) are nsed to indicate features with low at-
tenuation. Table 2 reveals that features 1, 3, 4 and S
are Lhe imporiant ones as their attenuarions are very
lovwr at the end of the trafning. Several different ininal-
izations gave the sapre final result. For the run shown
in Tahle 2 the initialization was such that feature 2
was achivaled first, however, later il was eliminated
which tells us that this feature is causing confusion
and iz a harmlul one. These resulis were ratified by
rnunning the standard MLP on various feature subsets.
We report this in Table 3,
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From Table 3, we find that only the feature subset
{1, 3. 4, 51 can result in zero misclassification just
i1 1000 iterations and it is the best subset of features
ot size four. Ameng the combinations involving four
features, the one lacking feamurc 5 has a higher crror
than the resr, indicating the importance of this feamre
in comparison to the rest. This is also reflected by the
[reeest value of the atfenuation factor for feature 3 n
Table 2.

Feature sets invelving 4 and 5 have given a better
performance than the rest, thereby indicating that fea-
lure 5 s the most important ene followed by featore
4. The absence of feature 2 shows improvement m the
performance of the classifier indicating its deleferious
contribution. The column labeled Emor in Table 3 rep-
resents the average square error per class.

312 Resulis on Mango-leaf

This data sel [4} has 18 feawres corresponding o
three kinds of Indian mangoes, The results of SAFER,
SEFER and (FQIF™ and OFEl are presented in
Table 4. Ranking producced by threc runs of Ruck
et al.’s method and thar by others are different but are
highly comrelated. We shall see that these rankings
are sipmificantly different from the results supgested
hy AFES,

Tuble 5 shows the Tesults obtained by AFES which
are found 10 be consistent over several initializations.
Always fearures 2 and 3 had the minimum atnenua-
tions in comparison {0 the rest. Though feature 3 con-
sigtently pave a lower attenuaiion than that of feature
2 for all rans, the difference in attenuations was small.
Feamre 6 and [eature 3 were consistently close to cach
other and always next to fearres 2 and 3. Most of
the times feature 6 was found to have a lower attenu-
arion than that of feature 9. Howewver, feature 9 pave
lower values of attenuation than that of feature 6 for
soime initiadizations, Like other data sets for Mango-
leat also we ran the conventicnal MLT with different
subsets of features and it 15 reported in Table 6,

For most runs of SAFER the following {our fia-
tures 17, 6, {2 and 18 (listed in order) are found o be
the most important. To authenticate this we ran con-
ventional MLP {Table &) with feature subscts {17),
(17, 6% (17,6, 12) and (17, 6, 12, 18). We found
that the most important feature subset {2, 3) sug-
gesled by AFES is much better than (6, 17). Similary,

Tahlc 4
Rsnlts with 5AFER. SEFER. (FEIY* and B on vango-lcaf

SEFER (FEIy™ FQ1

Featute nu.! SAFER

Feamire T 2
made [ Fun 1 Bum 2 Run 3

1 17 16 14 ] 7 T
2 11 11 12 ] 11 Y
] 11 12 16 3] 16 3
4 ki ] 4 1 3 1
3 9 E 10 13 i 2
[ 2 2 1 7 13 HE]
7 16 L& 17 17 & 5
] 1% 17T 15 15 ] 4
) B E] 2 2 uy t2
L 14 t5 ) 4 12 11
Ll 7 T 7 & 12 17
12 3 3 9 14 14 15
L3 5 a] 13 Il 17 15
14 12 13 11 15 i &
13 10 11} 5 3 2 3
16 15 14 15 1] 11 1]
17 1 1 1 12 13 14
14 4

Lo
=
. =
o0
L)

(2, 3, &) is a much beiter choice than {6, 12, 17). $im-
ilar experiments with the ranks suggested by others
showed that AFES is the best among the three methods
discussed.

We also used GA with self-crossover for feamure
selection. When the cardinality of the chromosomes
were fixed at 2, 3 and 4 the feature subsets selecled by
the scheme are {9, 14}, {9, 13,14} and {9, 13, 14,17},
respectively. These feature subsets are found to he
quite good in terms of number of misclassifications
produced by nearest prototype classifiors designed on
them,

2.2, Resuldts on dimensionalicy reduciion

221 For Sphere-Shell and IRIS

For leature eximaction or stoucture preserving di-
mensionality reduction algorithins, as mentioned ear-
fier, we used two data sets: Sphere-Shell and RIS,

Table 7 shows that for IRIS onginal Sammen’s
method requires much less tme than cither of Jain
and Man's method and SAPRONN, with SAPRONN
requiring aboul half time of Jain and Mao’s method.
In fact, for any small data set Sammon's method
iz expected lo perform better than the neural
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Table 5
Resolta of the multiplier hasgd method on Manye-leal

MR Pal! Fuzzy Sefs and Svarewns TO3 ¢ 199, 2011-227

Iterations 1000 2000 3000 SO0
Treulures —_— — -— = — - -_ — —
A, A 1H M A LH) A A L0 M Ap-10g
1 s *14.75 4003 14 4 *.45 oA .63
2 *q,42 1.0k e .54 "854 0. 670 0,12
3 *3,37 *3.32 *5.44 *43 T 6.0 *0.23 *5.83 s
4 —4.,70 Q13 —2.47 03124 194 CER —170 a7.58
& —4 .95 G032 463 Q%03 344 LR ¥4 76 *0.84
L] —4.97 Qg 31 3.59 o711 a9 *0.56 665 *r13
7 —d4.90 Q033 —d4. 4909 09,33 —3,99 99 33 —i.90 0933
# —4.50 Qo33 =54 bg.32 =500 L9353 —4 Je Y31
9 3403 462 *h.51 *115 R0 12 * .6l 13
10 —-477 LN —d, 50 LR R —1.495 K1.a0 - 162 07 40
11 4497 093] *LM) 1056 31 45 *3 M1 461 "SR
(e 496 04,31 —d.08 Uk 14 *4.30 *¥127 RS 24
13 - 4.97 boa] —4.41] PERTN =320 9.1 ¥5.55 .39
14 —d 0% 49,32 —4. 84 R 22 4.62 0942 - 387 9795
15 —d4. B% BeI5 —3.83 UTRT =321 iR e -341 g, 7O
16 —d,99 94,33 — 408 G932 497 .31 —4.93 28
17 —d.94 by.22 —-2.52 258 *4.57 103 &l =072
18 —d, 4 Wy 13 —4. 86 09,23 4.58 ogo7 5325 *3.72
Mizclassifications 24 b L5 11
Eeror (162 NN ES 1.096 LaRINE
Table & Tahle 7
Fresubts of conventional MLT on Mango-leat CPL time (sevunds) [ur vancus methods
Features tzken lerations Mizelassifications Eivor Crata Samnmon’s Jain and Mao’s SAPRONN
— method merend
All SO0 13 0,131 o
2.3 50060 25 .13 [RIS 2005 1288.5 SHL.I
N S00C 14 01476 Sphere-Shell EQOS R 76012 A6
LN S000 a5 11 1897 B : R o R
23,6 3000 1K 0.1047
23,4 5004 20 n1134 Tihle #
2,5.6,% 5000 19 £ Yaloes of Sammon’s ermor for variows methos
2,3,6,9,12 5000 19 (k1007 - - - —
2.3,6.9,17 ity ™ 01025 [Data Samman s Jain und Mao's SAPROMNN
2,3,6,%,12,17 30040 1% B.1023 methud methinl
2,3,6,9.12,13,17 5000 15 01,0893 — 000659 001252 20617
7.4 5004 48 0.1998 Sphera-Shell 000083 0.09 .03
78,2 S04 47 01868
2.3,9,17 400 19 1091
17 EHM) 43 0.5453
6,17 5000 a8 0.56609 displayed here, For Sphere-Shell SAPRONN required
0,12, 17 5000 28 4219 much less CPU tme than both Sammon's method
&, 12,17, 18 0.4130

RILHT i

implementadion in termy of both CPU time and
Sammon’s error, For JRIS the scanerplot of the two
dimensional projections are similar and hence not

and Jain and Mao's scheme, and the performance
(in terms of Sammon’s error) of SAPRONN is
guite comparahle to that of Jam's method (Table §).
For Sphers-Shell SAPRONN works better than the
method of Jain and Mao. This 13 also revealed by
Fig. 3. In Jain's method some of the projecied poinls
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Fig. 3. Sphere-Shell by SAPRONN,

Fig. 4. Sphere-5hell by Sammon’s algorithm.

corresponding to the owter shell got mixed up with
projected points corresponding to central hemisphere
{circle represents points from the shell while dot ()
indicates points in the hemisphere),

Fig. 5. Spherc-Shel] o Jain and Mau Aloogichs.

4, Conclusions and discussion

We discussed the main ingredients of soft com-
puting and explained how they can help in the
design of effective pattern recognition systems, We
presented several methods based om sofl eomput-
ing for feamre analysis. In particular, we discussed
how GA, fuzzy logic and NN can be used for fea-
ture ranking and selection. OF the vanous fealure
selection/ranking schemes, AFES i found 1o be
the best. To avoid the computational overhead of
Sammon’s method and to realize a dimensienality
teduction system wath predictability, SAPRONN in-
tegrates the tools of statistics, Sammon’s function
and neural networks in a novel manver. We also pre-
gented 4 few other methods for neural realization of
Sammon’s scheme, Most of the methods have been
llustrated with synthetic as well as real data,

An interesting area where further investigation
could be done for feature extraction (particularly for
dimensionahity redyction ) would be the use of neuro-
fuzzy approaches. As is well known, MLP picks up
ane of many possible generalizations (equivalently
sgtiles w one of several local minima) which may
not be the desirable one. Consequensiy. cven when
Jain and Mao's method or SAPRONN works well
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tor the data wsed to train the net, it can seriously fail
lor new data points. This chanee of very bad genueral-
izations can possibly be reduced drastically with the
help of mmulti-lavered neuro-tuzzy architectures. If the
neuro-fuzzy system, maintains the logical reasoning
structure of a fuzey reasoning system yot cxploils the
features of connectionist models, the chance of very
bad generalization is reduced significantly.
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