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Abstract

Shann and Fu (5F) proposcd o fuzzy neural retwork (FNN) for mule pruning in 4 fuzey controfler. In this paper we {irst
atalyze the FNN of 5F and discuss some of its limitations. SF attempted fo eliminate redundant rules imterpreting some
of the connection weights as certainty factors of miles. In their strategy the connection weights are unrestricted in sign and
hence their interpretation as certainty factors introduces soms inconsistencies inte the scheme, We propose a maodification of
this FINM, which eliminates these inconsistencies. Moreover, we also prapose a praning scheme which, unlike the scheme
of’ 8F. always produces a compatible rule set. Superiority of the modified FNN 15 established using the inverted pendulum

prohlen

Kepwords: Fuzzy control; Fuzzy neural networks; Rule pruning; Certainry facrors

1. Introduction

Fuzzy logic provides an ellcctive means to capturs
the approximate, inexact nature of the real world. One
of its most important applications is the fuzzy logic
controller (FLC) [5, B, Y]. FLC converts the linguis-
tic control strategy based on expert’s knowledge into
an automate control strategy [3]. Experience shows
that FLC vields rosults sometines supecior to those
obtained by conventional control algorithms. In par-
tieular ULC appears very wseful when the processes is
toor complex to analyze by conventional quantitative
techaique or when the awailable sources of informa-
tion are interpreted qualitatively, inexactly or impre-
cisely. Thus, furry logic control falls in betwesn the

conventional precise mathematical control snd cxpert-
like decision making.

The performance of FLC mostly relies on two ime
portant factors: sound techmique of knowledge acqui-
sitiont and the availability of hurman experts, These two
factors may restrict the application domain of F1.Cs.
Thus, extraction of an appropriate sel of rules or se-
lection of an optimal subset of rules from the set of
all possible rules 15 an important problem. Morcover,
given 2 set of rules there is a great need of learning or
tuning the rales to achieve a desired level of controller
performance.

Several attempts |1, 2, 4, 10-15] have been made
to integrate fuzzy systems and neural networks, with
# view 1o achicving in the same system, the human
style inferencing and natural language description of
tuzzy systems with the learning and parallsl process-
ing abilities of neural networks,
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Lee et al. [10] proposed an algorithm lor adjusting
(tuning) the membership functions of antecedent lin-
guistic values of the rule set by error backpropagation
{EBP), where the consequent parts were considered
fixed. Thus the extracted luezy rules aller tuning re-
tain the same linguistic description as the initial rules.
Liand Wu [12] proposed a five-layer neurg-fuzzy hi-
erarchical system with if—then rules for pattern clas-
sification problem, A [ve-layer fuzzy neural network
is also presented by Yao et al. [13]. The parameters
of the nct are identified using evolutionary program-
ming and the tuned network is then pruned to extract
a small set of rules.

Linand Lee [ 11] presented a multilayer feedforward
connectiontst medel designed for FLCs and decision-
making systems. A hybrd two-step learning scheme
that combined self-organized {unsupervised } and su-
pervised leaming algorithms for selection of fuzzy
rules and tuning of membership lunctions were de-
veloped, Lin and Lee used Kohonen's self-organized
feature map |6 for inding the centers of the member-
ship functious. After the selection of the rule sef, i.e,
when the nobwork archilecturs is cstablished, the sec-
ond step of supervised learning begins. Same heuris-
tic guidelines for rule reduction and combination were
also prowvided,

Shann and Fu [14] presented a layer-structured
furzy neural network (FNN) for selection of rules.
Initially, the FNN was constructed to contain all pos-
gible fuzzy rules. Afier the FBP training. redundant
rules were deleted by & rule pruning process lor ob-
taining a concise fuzzy mle-base, The architecture of
Shann and Fu’s network is sitnilar to that of Lin and
Lee [11] in several respects,

In this paper we {irst discuss some conceplual prob-
lems associated with the FNN of Shann and Fu and
then propose a modification of the same. The supe-
riority of the modified FNN is established nsing the
inverted pendulum problem. In our subsequent dis-
cussion the FNN of Shann and Fu will be referred
as FNNO (O for original} and the modibed form as
FNNM.

The organization of the rest of the paper is as fol-
lows. Section 2 discusses Shann and Fu's FINN and
its limitations, and Section 3 presents the proposcd
modification. Details of implementation and results
are discussed in Section 4. We end our repott with
conclusions in Section 5.

2. FNN of Shann and Fu (FINNO}

The fuzrzy neural network of Shann and Fu has five
layers, as shown in Fig. 1. Consecutive layers are con-
structed according to the consecutive steps of a Tueey
logic controller. We use indices 1, j, &, and ! for nodes
in layers 2, 3, 4, and 5, respectively. The outpul from
the ath node of layer m will be denoted by .

A node in layer | represenis an input linguistic vari-
gble which takes a crisp value from ontside and deliv-
ers it to the nexi layer, the membership function layer,
Each node is connected to only those nodes of layer 2
which represent the linguistic values of corresponding
linguistic variable,

Nodes at layer 2 acl as membership functions to
represent the terms of the respective linguistic vari-
able. All link weights between layers | and 2 are set
o unity,

lZach node in layer 3 represents a possible IF-part of
a fuzey rule. The weights of the links are set to unity.
The nodes in this tayer perform the AND operation.
The output of the pode f is computed as

¥ = min(yf). (1)

Here {; is the set of indices of the nodes in layer 2
that are connected to node 7 in laver 3, and 7 is the
output of nede § in layer 2.

A node in layer 4 represents a possible TITEN-part
ot a fuzzy rule and performs the QR operation to inte-

Layer &
Layer 4
Layer 3
Layer 2

Layer 1

Fig, 1. The fuzzy neural network,
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grate the fired rules which have the samc consequent
clause. The nodes of layers 3 and 4 are fully connected.
The weight wy; of the link connecting the node & in
layer 4 to the nade § in layer 3 represents the certainty
factor uf the corresponding fuzzy rule. The output of
the node & in this layer is:

¥ = man(ylw), (2]
S

where f; is the set of indices of the nodes in layer 3
that are connected to the node & o layer 4.

The putput linguistic variables are represented by
nodes in layer 5. A node (say the ’th node) in this
layer computes the defurzified value as

v =Zﬂ}fczrec.-k}ff2{_‘t’fﬂm |8 (3}
OB

kch

Here J; is the set of indices of the nodes in layer 4
which are connecled to the node f in layer 5. ay and
o are respectively the area and centroid of the mems-
bership function ol the ocutpur Mngoistic value repre-
sented by the & in layer 4, The weights of the links
{rom the nodes in fayer 5 1o the nodes in layer 4 are
unity. Thus the only learnable weights in the network
are wy;'s belween layers 3 and 4.

The weights wy; of the FNNO are learned using
the error backpropagation algorithm based on a set of
training data. Let &; be the target output of the node f
ity layer 5 for an input veotor & = (x),52.....xp) The
error for the data point X is

i
Ece=% (di— 1V, (4)
=

where g is the number of nodes in laver 5. For nota-
tional simplicity we drop the subscript X from Ey in
the (oitowing discussion.
Let the weight wy, after ¢ steps of update be dencied
by wy At} then wy¢) is modifled according to
aE
Wit = by =welt) — g o——, 5
.';:.'{ :} h{ L f"“"_i_‘,'{f '} ( }
where # is the learning rate, and
. awlcw - ¥}
B ) -d— }'F]"M:!—_.;}'r}-;'
Py Direp Yoaw
0 otherwisc.

(6}

]

il f=v

Fig. 2. The disgram of the possible fuzey rules with adenticul
ardecedent for an oulput blnguistic vanable v,

Here r = Arg maxjfy?’wh: 1, and Py is the set of indices
of the nodes in laver 4 which are conticeied 10 exactly
one node {in layer 3,

2.1, Rule pruning of Shann and Fu

Initially, all possible fuzzy rules are consid-
ered. If there are » linguistic values (or sn output
linguistic variable, then there are 5 rules with the
same antecedent part but different conscquents, which
are inherently inconsistent, Let us consider the subnet
in Fig. 2 which shows only the connections used for
selecting the most relevant rule corresponding o the
antecedent clause (1F-part) represented by the node
in layer 3. These rules are called incompatible rules,
Fig. 2 cortesponds to the following incompatible
rules:

If{amecedent ), then vris T (v ) r= 1,2, 8

{antecedent); is the antecedent represented hy the
node § of layer 3. The certainty Factors wy; of the
rutes are shown in parenthesis,

For riole pruning the centroid of the set of Incompat-
ibrle rules is calculated as the output of node { in layer 5
censidering only the connections shown in Fig, 2

R
o Eaef}’* At

¥ = iy (73
! Yopes Yian
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where 30 = J,fw;-;-. and T is the set of nodes in layer 4
connected to node £ in laver 5 and node § in layer 3,
i.c., the connections shown in Fig. 2.

Henee,

: L ; .
- E sl Vi Wigthipciy E e p Wi
o, ol B G
Poper ¥ Weidis 2o Wi

Ci (B)
If the centroad ¢); is in the support of a lingoistic value
1., . then the rules whose THEN-part contain T, . re-
mains in the rile-base after pruning, and all other rules
are eliminated. Thus, if the owtput tuzzy sets are de-
fined on ronoterlzpped intervals, the pruned rule-base
will not have any incompatible rules. Such a rule-
base with no incompatible rule is called a sound rule-
base. When the output fuzzy sets are overlapped, for
the same antecedent clavuse, Shann and Fu's scheme
may suggest more than one consegquents; i.e., more
than one rule with the same sotecedent but differcnt
consequents (incompatible rules). This is contradic-
tory 1o the basic design philosophy of [urry systems.
For smooth outputs, we need overlapped output fuzzy
scls and in the present case this can result in incompat-
ible fuzzy rules. If the reduced rule-base is sound. the
conncetions corresponding to the pruned rules are set
o unity, otherwise the reduced set (s further trained.

2.2. Remarks on Shann and Fu model!

The FNN mode! of Shann and Fu combines fuzzy
logic and neural network in a systematic manner. The
working process of a fuzzy logic control system is em-
bedded in the layered structure of the network. Lay-
ers 3 and 4 along with their connecting links function
as a commeclionist inference engine, which avoids the
rule-matching process. After the training, a rale prun-
ing process s execuled to delete redundant rules and
a much smaller rule-base 15 obtained. After pruning
the size of the network is also reduced by discontiect-
ing the redundant links, Authors of [[4] claimed that
besides rule learming this network is flexible and ex-
tendible for leaming other design parameters such as
membership funclions, fuezy operators, cto.

Shann and Fu interpreted the link weights between
laers 3 and 4 as the cerlainty factors of the associated
rules, i.e., each of the rules is activated to a certain de-
proe represented by the weight values. According to
this interpretation, the link weights should always have

positive values, and during the training phase, the {ink
weights between layers 3 and 4 should be leamable
nannegaiive real numbers. In this regard, authors in
[14] mentioned that during the training phase, the link
weights wy, in layer 4 arc leammable nonnegative real
numbers. But the EBP algorithm based on gradient
descent search docs NOT guarantee that the weights
will always be adjusted to nonnegative real numbers
even if the weights arc initialized to nonnegative real
valugs, This happens because of the dynamic nature of
gradient descont leaming which updates the weights
keeping in view only the reduction of residual square
etror; il does not care what mpaerical values differ-
ent connection weights take. Therefore, it can result in
signilicantly large negative values even for majority of
the connection weights, Our experiments indeed show
that there are some weights with significant negative
values, [t appears that authors of [14] are also aware
ol this facl as they mentioned that seest of the weights
after training have nonzero positive values. Thus, as
such the connection weights in FNNO cannot be in-
terpreted as certainty factors of the associated rules.

The function of 2 node § in layver 5 is claimed to
be based on the correlation-product inference and the
fwery ceniroid defurmification scheme. The cquation
tor evaluating the centroid of the incompatible fuzzy
tules 15 delined as:

!
L= E H’*—J.umﬁq-/ E Wisctig- f;‘}

kel kel

This calculation is based on the function performed
by the node { of layer 5. Since wy; is unrestricted, the
denominator of Eq. (9) may be even zero. Moreover,
Eqg. {9) may not be intcrpretcd as the fuzzy centroid
defuzzitication scheme [7], We shall discuss this later,
However, 11 15 a reasonable defurzfication scheme
provided wy; =1,

Afer rule pruning, the fuzzy rule-base obtained may
not be sound, i.e., may contain incompatible rules. The
FNNO pruning scheme is such Lhat the reduced rule-
base will necessarily be sound only when the intervals
delined for the linguistic values of each output lin-
guistic variable are nonoverlapped. Thus, to ensure a
soled rale-base in theit schene one bas to choose the
mtervalg for the linguistic values of each autput lin-
gmstic variable in such a way that they do not overlap
but cover the entire space of the corresponding output
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linguistic varisble. This appears to be an nanecessary
restriction on systemn design and may hinder the per-
formance of the system. As mentioned earlier, this is
contradictory to the basic design philosophy of fuzzy
systomy, which demands overlapped ourput fuzzy sets
for smooth output of the system, Consequently, in [14]
authors wsed the fuzzy sets which are overlapped. But
for the purpose of rule pruning they defined (by some
means} a nonoverlapped partition for the ouiput lin-
guistic values.

Referring to Eqg. (9) we ind that ay > 0; e unre-
stricted (could be positive, zero, or negative) and wy,
i glso unrestricted in sign. Writing wyap as, say, g
the Eq. {9) becomes

o= ZQMWR/E*?M =3 puci (10)

ke ks ke

where py =gu/2 o, 9. Now if ¢ is positive then
a rule with the corresponding fuzzy set as the output
variable should bias the defuzzified output towards ¢y
when the rule is fired. At least the rule should have a
positive contribution. But under the present scenario
since wy; could be negative also and if it is negative
then p; will be negative and hence, the contribution
of the corresponding rule becomes negative, In other
words, it will bias the resultant centroid in the wrong
direction. It is claimed [14] that since the knowledge
of fuzzy rules learned by EBT algorithm is distributed
over the adjustable weights, most of the weights after
training should have nenzero positive values. In this
repard, we emphasize that the EBP algorithm does not
guarantee that most of the weights after training will
have positive values. We already explained that most
of the connection weights even may assume signifi-
cantly large negative vaiues. Shann and Fu obtained
an encouraging result possibly because in their sim-
ulation they got most of the weights positive and the
input output membership functions were tned o the
problam.

3. Praposed scheme — the FNNM

We used the same fuzzy nevral network structure
of FNMNCG, The functions of layers 1-3 are also the
same. The functions of layers 4 and 5 are different
from those of FNNO and are described next:

The output of node & in layer 4 15

S ]
= max{ ywi,), Cr
FER;: =% =7

where [; is the set of indices of the nodes in laver 3
that are connected to node & in layer 4. Here we took
the square of the weights wy; because 1t is always
posilive and we can inletprel vrfJ as the strength of
the rule whose TF-part is represented by the node j in
layer 3 and THEN-part 1x represented by the node & in
layer 4,
The cutpul of node { in layer § 1 computed by

A i
6 E;.j_:,ll. BN AT

= 73
, —. (12
P oper, Yo

iy

I, ay and oy are as defined in Section 2. Here
¥ = max ey, (ﬁwﬁjj. 3 is always nonnegative real
number. because 1} is always nonnegative real
number (it is a membership value). Thus FNNM
eliminates the problems associated with FWNO, the
original method of Shaon and Fu. in other words,
the counter intuitive charactenstics of the defur=zifi-
calion scheme adopled in | 14] no longer exist. Note
that, since nodes in Tayer 4 use H’%}- and hence nodes
in layer 5 {ic., the defuzzification scheme) also use
wﬁﬂ the network doss not see the sign of wy,. Even
if' wy, attaing a large nepative vaiue, as far as fune-
tioning of the net is concerned it sees only a large
positive value. This is equivalent to constraining the
search space for the connection weights of the leam-
ing algorithm to 8. Thus the leaming algorithm wilt
look for the optimal solntion in £ It may happen
that the uncomstrained weights (as in FNNO) can
generate a lower value of the residual square error.
Bul if we allow negative connection weights {note
that for FNNM the connection weight is wj, ), the
network will be like a black-box type function ap-
prostimator and will lose the logical structure of the
flzzy reasoning system because of nepative certainty
factors.

2.1, EBF learning algovithet of FNNM

We now derive the leaminy algorithm [or ihe
FNMM with node functions defined in Section 3 using
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backpropagation to minimize the error function,

E?ZF— ZZ(Q'; - ,IS ¥, {13}

where ¢ is the number of nodes in layer 5 and o and
Vy are the target and actual cutputs of the node [ in
layer 5 for an input X'

The weights wy, (of the links from layet 3 1o 4) are
adjusted using gradient descent as

JE
WA-_,.{T+ I}ZW;_-_I.'(I} -} (,,-'—), “4}

i

where i =0 15 the leaming rawe. We can write,

OE _ Ok & _ I 3 b 1s)
bwy Oy dwy  By7 Oy Bwy 1
From Eq. (13} we get,

QEfOy] = —{d) — ¥]) (16)

Recalling Eq. (12), 3% =3 (Wagen )Y ('aw),

we gZet

a_Ff_ (e Jr',yﬂmf}ﬂu.ﬂ.'k {E*.’ vyamfwkf)ﬂm
4

a“h {pr J’yan'k’

Canlen(Xy Vhaw )~ (e ¥hawew )
(2w ¥han

_ anlen(d e yhaw ) = w(Ey vian))

(3 yiaw ¥

awlen — 1)
Sl sl A i (17)
Zkr }"?—ra-.’ﬁ"

Here &' is the indices of the nodes in layer 4 which
are comnecied to the node [ in layer 3.
Considering Eq. (11), let

F=dry IIII_!JE{}-_'?WEJ-]. (18}
K
Then,
A i
o _ { 2yfwy i j=r, (19)
gy 0 otherwise.

Using Egs. (167, {17}, and {19, we can write Eqg.
{15) as

ey By £
aplen — W
= {d f}—“ﬁ;ﬁ}zp wii if f=r,
o V@ (20}
{) otherwise,

Hence weight update rule (14} becomes
wid? +1) —

awlen - 1Y 5

wilr) + uldr - ¥7) S yha ¥ W
ke Vel
if j=r,

}  otherwise.

(21}
1.2 fude pruning for FNNM

For the rule pruning we use a method similar {buat
not identical) to that of Shann and Fu. For every an-
tecedent clause we compute the centroid of the cor-
responding set of s incompatible rules. Considering
the subnet in Fig, 2 we compute the outpui of node
{as

¥iy= 3 viaucy / Y yian. (22)

kel ked,

A e S T S A
Smee )i Fitis

Z Yi Wt;amc,r;-/z _)’JH;[J;H.M-

LEN LLS
2 5
=D whanci / > whan. (23)
= kel

-P."Sj in Eq. (23} can be viewead as the centroid ¢, of
the set of incompatible farzy roles which comesponds
to Fig. 2 with certainty factor w{; for the rule with an-
lecedent node § and consequent node k. This centroid
y; can now be used for rule reduction.

If ¢); fails in the support set or interval of £ (£ =0)
outpit linguistic values, then following the concept
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of Shann and Fu, comresponding ¢ rules may be ne-
tained. In this case the pruned rule set will have
incompatible rules. To get around this. we sug-
gest a different scheme for pruning. In this scheme
we find the membership values of ¢ in all conse-
quent fuzzy sets of the incompatible rules. Then the
rule whose conseguent has the highest membership
value for cp is selected and the rest are deleted.
we used 30% overlap (Fig. 4) berween two con-
secutive fuzzy sets defined on the output linguistic
variable. Hence, the centroid ¢; will be in the inter-
val (support set) of two linpuistic values T, and
TrgL - If the membership of ¢, to T; ,, 15 more than
that to Tr4 . then we select the rule corresponding
to I, . otherwise, the rule with F._) ., is selected.
Thus, in this scheme the pruned rule set will never
have incompatible rules; i.e., will always be sound.

4. Implementation apd results
4.1 The problem of iroerted pendutum

In this investipation wi used the simple inverted
pendulum (Fig. 3) as the control system because of its
simplicity for computer simulation. The inverted pen-
dulum is a rod of mass m supported through a hinge by
g cart of mass M, where the rod motion is constrained
to be on a vertical plane and the cart motion is con-
steained to be along the horizontal X direction. When
the cart is at rest, the stick is in the vertical position
and the force u 15 zero then the system is in equilib-
rium. This equilibrium position is unstable in the sense
that with any perturbation from this position, no mat-
ter how small, the stick will fall down, For this system
we have two types of turzy control rules - one for
controlling the pole and the other for the cart. For sim-
plicity, in thiz investigation we have considered only
the pole balancing pari. A typical rule for this has the
form:

I[ #is PB and 8 is PB then u is PB.

Herc {/ is the angular displacement, 0 is the angu-
lar velocity, o is the force applied. & and # are the
input linguistic variables and u is the cutput linpuistic
variable.

Fig. 3. The overted penduluco.

4.2, Computational protacols

We have used the following computational proto-
cols: pole length 1.5 m; pole mass (0.1 kg, cart mass
2 kg, learning rate ¢ = 0.002; the maximum allowable
angular deviation 15 0.18rad and anpular veloeity 13
1.8 rad;s. i), #, and w, each of these linguistic variables
has seven linguistic values: WB, NM, NS, Z, PS, PM,
and PB. The membership (unctions of the linguistic
values of the linguwistic variables are given in Fig. 4.
In the absence of any preferential puidelines about
the bhase and peak of different membership functions
we used the most natural choice — isosceles triangles
with 30% overlap with the neighbornng membership
functions. Fach membership fimetion has equal base-
length. Thus our choice 15 the most unbiased choice
{or membership functions.

The number of possible fuzzy rules is 343
{(=7x7x7) A target fuzey rule-base, referred to as
standard rule-matrix, and the corresponding comtrol
surface are shown in Fig. 5. This mle-matrix 15 used
as a standard to compare the performance of FNNG
and FNNM. The control surface produced by the
membership functions in Fig. 4 and this rule-matrix,
is reparded as the ideal control surface {Lig. 5(b})
and was used to penerate the waining samples. We
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Fig. 4. Fuzzy membership fonctions of the linguistic values as-
sociated with (a) input linguistic variable & (b) input linguistic
variable ¢ and {c) ouwlput lmgwistic vanable 1.
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Fig. 5(a}. The standard rule-mstris.
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Fig. 5(b}. Control surface of the standard matrix in Fig, 5¢a),
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Fig. f. Plot of ereor a5 a fungtion of epochs (irceationz) for FRNM
gnd FMMN{} for the standard matrix in Fig. 5(a).

generated 1369 (=37 = 37} training samples uni-
formby over the product space & x 8. Hence, in the
fuzzy neural network, for the inverted pendulum,
there are 2 nodes (1 for # and 1 for §) in layer 1, 14
(7 for linguistic values of & and 7 for linguistic values
of @) nodes in layer 2, 49 (for 7 x 7 different [F-part
of rule base) nodes in layer 3, 7 (for 7 linguistic
values of 4} in layer 4, and 1 {for 1 output linguistic
variable) in laver 5. There are 343 (=49 x 7} links
hetween lavers 3 and 4 hefore pruning. Bach link
represents a possible fuzzy mle. After pruning the
number of links becomes 49, For all resulls reported,
the initial weights of the links between layers 3 and
4 are randomly selected in [—1.+1].

4.3, Results

Fig. 6 depicts a typical iHlustration of the variation
of traiming error with iteration for both FNNO and
FNIMNM with the same leaming rate # =0.002 and the
same initialization of the network link weights, Fig. 6
reveals that, in the present case, the training error {or
FMIMNM reduces faster than that in FWNO. The steady-
stale ertor of our model is also much less than that for
FNNO.

After training the rmule pruning process was
performed. Cmly 49 of the 343 initial fuzzy rules
remained alier pruning. For compatison of the two
models, we generated pruned rule-matrix at different
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Fig. Tia) The mle-matrix poncrated by FNMM and standand
mile-matrx aficr 5 training epachs.
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Tig. Tb) Control surfave produced by FNMBT afler & epochs for
the standard malrix.

stapes of tratming, Our proposed model reproduces
cxactly the sramndard rufe-mareix after only 11 train-
ing epochs, whereas the model of Shann and Fu could
not produce the siamderd rede-madrix even after
100K} traming epochs. Fig. 7{a) shows the resulting
rule-mawrix penerated by FNNM only after 5 epochs
and the corresponding control surface is depicted in
Fig 7{b). Comparing rule matrix in Fig. W a) wilh the
target. 1.e., siandard rule-matrix we find that there
is not much differcoce between the two. This is alse
evident from the comparison of the control surface
in Fig. %(b) with that in Fig. 3{b). The rule-matrices
produced by the pruning algorithm for FNNO after
5, 11, 100, and 1000 training epochs are shown in
Fig. 8. The rule-matrix generated by FNNO even
after 1000 training epochs mismatches the standard
ride-matrix in six positions in which one significant
position (¢ = PB, § = PB) is highly different from the
target, The tarzet value is PB while FNNO suggested
NB! To comparc FNMNG with FNNB, in Fig. 9 we
have shown the plot of difference between the control

2 NBlHMlNS % PS!]IPM PH

N8B | ND [ NM | NB K5 | NS § N5 | NM
T hm nm (M iNs] 2z | 21z
T N5 | mM | BM[NMIHS| Z
Z NS |BS | 2 | 2| 2 |PS|PS!
PG5 | NS | NS | Z | FS[PM|FM|FD

PM | Ps] Z | PS|PS|PM|PM|PB

P | PS5 |PM | PS5 [PS|PM | P | NB

NR | NM | N§

NI | NB | NM | NB | NS
TR EAER AR
ws oM | NM[NMINs| 2 | B5 | PS
2 Ns | NS | z | = | % |Ps]eES
PS N5 | NS | T |PS|PM|PM| PB
™ ¥ | Ps| 2 | P5 [PS | P | PM | PB

| P8 | Ps  PM|PS |PS|PM|PH]NB
(b)

T s |

, | NBINM)NS|Z|PS|PM | PB

[ wn | wB [ NM, MM NS [ ns [ B | g

NM [ NM (NN [sM(bs[z [ % |Ps
NG | NM | NM | NAL | NS
2 | N5 |Ws |\ Z |z |z |Ps|Pi
S Ns ] Z | % |Ps|PMPM| PR

M | P3| N5 | PM | PS | PM | FM | NB |

: LA B
[ PR | Ps [PM[ PS5 PS|¥M|TB|NB
(e)

i
————— o dmidiigaed L o
|_ . NE |![ MM | N5 Z I| S| PM \ PEB

NB | NB |NM{NB |NS| NS | NS | NS

e el e

MBL WAL [ MM [ MBI (NS | WS | 2 | 2
—
N5 Wh | MM [NM NS | 2 | FS P‘S_
Z NS iNWS| ZFE]Z | P5|F5

}_ ]

L] N5 | N5t Z [P5|(PM|PM|PB

FM ] Z [PM|P5|PM)FH | TD

PH PS |PM | PS5 | PS | FM | PB | NB
)

Fig. & The rle-mafttiess gencraled Ty FMMNO and  standacd
mule-matrix after {a) 3 wmining epochs. (b) 11 training epochs. (o)
10} training, cpochs and {dh 100K training epochs.
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-2 Nz

Fig. #¥ai). Differcawe surface produced by FNNM afier 3 epochs

for the standard matrix, . 7 :
Fig. 9(bu). Difference surface prodeced by FNNO after 11 epochs
for the atandurd matmx.

150

£ o= B

2

n B

2.0z

Fig. Wuii). Differcnge surface produced by ENWNM after |1 epochs
for the standard matrix.
Fig. W(hiii). Difference surface produced by FHMO aller 100

epochs for the standard mareis,

15
100

Fig. Wil Diﬂ':rence. surface provluced by FNNO after 5 epochs Fig. %hiv). Dillerence surface produced by FMNG after 1000
for the standard mamix. epochs for the standand matriz
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KB | mm }:s|z'Ps PM | PR

KB | NH | NB|NMINS|NS| 2 | 2
NM | NE | NB | NM|%SiNS | 2 | %
% | wM | NM[EMINsT T [ P! Py
"z Ins!wsiws|z PS | S [ IS
NS | Z |[P5|PM|FM | PM |

M | z | % |Ps|psiem|rel PB

Z | P5 | PS|PM | PB[TH |

Fig. 1ka). Uhe close-matrix.

: 21
NE N]e-:l| M3 | E | P5 |FM | PB
. i )

xn [P5 |z |wM[PB| Z N5 2
NM_ | NS |PM | P |NB | 2 | PH | PM |
s | ps |[PB[ 2 [xB|[wmins|nB
z [ wsiwM[es[e]ns|es[pml
Ps |PM|PS| Z !NM[PBPM|PB
PM PR [NB{NM [ NS |[PM | Z | NB

PB INM|Ns [PB|PM| Z |[Ps] Z

Fig. 1(Nb). The random-matrix.

|NB NM;iNS:I'.rL PS5 | PM | PB

| ND |ND|NB NS NS|NS |z |Z
| wa [ nB|wB[NM[bs } N5 | % | 7 |
| N5 [NM|nM wM N5 | % | FS | s
T | Ns|ms|ws|z [eM|[F5 |5
Fi NS | Z | %2 [PM|PM|PM|PB
z | ps |75 [PM] PR [ N0

PH 2

Z | PS |PM|NB | NE | NB|

Fig. Il The cule-matrix generated by FNNO and close-matria
after 501 traming epochs,

surfaces generated by (a) FNNM and the standard
rule-matrix, and (b)Y FNNO and the standard rule-
mairix after different epochs of training, Mote that
for FNNM we have shown the difference surfaces
only with 3 and 11 epochs as FNNM can produce the
target mulc-matrix with 11 iterations. Fig. 9 clearly
shows that FNNM outperforms FNNO for the stan-
dard target rule-matrix.

In order to see the ability and effectiveness of the
proposed model for other target rule-matrices besides
the siardard rule-mairix just discussed, we trained

1 oz
\\u\ -

01
-2 4z

Fig, 12¢8). Diffcrence surface produced by FMNM after 141 cpochs
for the close matrix.

100 4

EEA

Fig, 12{h} Diflcrence surface prochiced by FNMNE after 500
epachs for the close matrix,

both FNNG and FWNM with the same training sam-
plcs generated by the following two other target ruje-
matrices: (1} a rule-matrix (Fig. 10(a)} very close
1o the standarvd rule-matrix. We call this rele-matrix
as close-mrairix. (2} a very inconsistent mle-matrix
produced by randomly selecting the conscquent furry
sets of each rule. This rule-matrix 15 not able to bal-
ance the inverted pendulum (rom any initial position.
We call this matnx as random-marrix, Tt is shown in
Fig, 10{b).

FMNMNM is found to reproduce the clorve-mafrix just
with 10 iterations; while FNNO cannot produce the
target nule-matrix even with 1000 iterations. Fig, 1 2{(a)
depicts the difference surface for FNMM aficr only 10
epochs, while Fig. 12(b) shows the same for the rule-
matrix {Fig. 11} selected by FNNO after 500 cpochs
of training,
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MH HM‘NH L | P5 | FM | Fi

NI Fi | £ | N5 {PM N3} 2

¥M [ Ns [FM | Ps [NB PM | PM

NS [ PS|[PD| 7 |NB|NM|NS|NB
5
B

RPN i TR, RIS EYSGy ST SRR DN SPUTI [ERRLN:
Z
Z

@ NS | NS | Ps IPM| NS | PS|PM|
PS  PM | PS5 | % |NM| FB | PM | PH |
PM PE | WM |[NM [ NS | PM | 2 | NB

FE NM .. Ni|PB|FPM| &2 | P5| Z

Fig. 1X¥a). The mle-matris geagrated by FNMM and random-
matrix after 300 traibing epochs.

p KB N]’-‘IENE’E P5 [ PM | FB

NE | P3| Z |NM|PE| Z |NS| Z
NM | NS [PM|PS |NB| 2 |PB|PM|
NS | P5|PB| Z |NB|NM| %S | NB
7 NS INM| PS |PB) NS | PS | PM |
PS |PM|P5| Z |NM|PB |PM | PB
PM |NP|NB|NM|NS|TM| Z | NB
PB__|NM| N§ |NB | PM| Z | P3| 2

Fig. 13(b). The rule-matrix generated by FNNG and random-
matrix after 304} training epochs.

2 Nz

Fig. 14a). Difference surface produced by FNNM afler 500
cpochs for the random matrix.

In case of randorme-matrix, our model takes more
training epochs compared to other two cases discussed
earlier. Afier 500 training epochs we get the rule-
tnatrix shown in Fig. 13{a). Though the number of po-
sitions in which mismatches occur are six, the values

2 gz

Fig. ld(b). Dhfference surface prodeced by FWNO after 500
epochs for the random matrix.

are slightly different from the target random-matrix.
On the other hand, the rule-matrix produced by FNNO
in the same situation mismatches the tareet random-
matrix only at two positions (Fig. 13({h}), but the dif-
ference in values at these two positions are maximum
{in both cases the target fuzzy sel was PB and FNNO
selects NB), Consequently, the control surfaces are
expecied to be significantly different. Fig. 14 clearly
shows that this is indeed the case. Fig. 14{a) shows
the differcnce surface for the rule-matrix, selected by
FNINM after 500 epochs of training, and Fig. 14b) de-
picts the same for the rule-matrix, selected by FNNO
after the same number of training iterations.

5. Conclusions

Shann and Fu propaosed a fuzzy neural network for
rule selection. In this paper, we first addressed dif-
ferent limmitations of the FNNO and provided solu-
tions for the same, In F3NO the tranable connection
welghts could be negative and hence its use as cer-
tainty factors led o a counter-miuitive defuerification
scheme. We have avoided these problems by using
square of the connection weights as certainty factors
and incorporating that into the defuzzification as well
as in the leamning and pruning schemes, The requircd
learming rules have also been derived. We also pro-
posed a rule proning scheme, which unlike FNNO,
will always produce a set of compatible rufes. The su-
periotity of FNNM over FNNG has been established
for the invertad pendulum problem,
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