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1.

Abstract. An analogy between a genetic algorithm based pattern classification scheme
(where hyperplanes are used to approximate the class boundaries through searching) and
multilayer perceptron (MLP) based classifier is established. Based on this, a method for de-
termining the MLP architecture automatically is described. It is shown that the architecture
would need atmost two hidden layers, the neurons of which are responsible for generating
hyperplanes and regions. The neurons in the second hidden and output layers perform the
AND & OR functions respectively. The methodology also includes a post processing step
which automatically removes any redundant neuron in the hidden/output layer. An exten-
sive comparative study of the performance of the MLP, thus derived using the proposed
method, with those of several other conventional MLPs is presented for different data sets.

Keywords: hyperplane fitting, boundary approximation, hard limiting neuron, network
architecture design, variable string length genetic algorithm.

Introduction

177

Genetic Algorithms (GAs) [1, 2] are randomized search and optimization techniques guided by
the principles of evolution and natural genetics. They are efficient, adaptive and robust search
processes, producing near optimal solutions and have a large amount of implicit parallelism. GAs
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deal with individuals, called chromosomes, (usually binary strings) which encode the parameters
of the problem space and represent a potential solution. An objective function of a string provides
a mapping from the chromosomal space to the solution space. A fitness function is also associated
with a string which indicates the degree of ‘goodness’ of the solution represented by the string.
A set of chromosomes constitute a population which is initially created randomly. Biologically
inspired operators like selection, crossover and mutation are applied on the population over a
number of generations till a termination criterion is achieved. The best string obtained at this
point (or obtained so far) represents the solution of the problem.

In pattern recognition, there are many tasks involved in the process of analyzing/identifying
a pattern which need appropriate parameter selection and efficient search in complex spaces
in order to obtain optimum solutions. Therefore, the application of GAs for solving certain
problems of pattern recognition (which need optimization of computation requirements, and
robust, fast and close approximate solution) appears to be appropriate and natural [3, 4]. Such
an attempt for pattern classification in JR™ has been made in [5] to develop a GA-classifier,
where the class boundaries are approximated by a number of hyperplanes. The characteristics of
GAs are exploited for search and placement of a fixed number, H, of hyperplanes in the feature
space, such that the number of misclassified points is minimized.

Since an a priori knowledge of H is difficult to obtain, a conservative (or overestimated) value
is usually assumed for its operation. This first of all leads to the problem of an overdependence
of the algorithm on the training data, especially for small sample size. In other words, since
a large number of hyperplanes can readily and closely fit the classes, this may provide good
performance during training but poor generalization capability. Secondly, a large value of H
unnecessarily increases the computational effort, and may lead to the presence of redundant
hyperplanes in the final decision boundary. (A hyperplane is termed redundant if its removal
has no effect on the classification capability of the GA-classifier.)

Subsequently, a method has been described in [6] to automatically evolve the value of H as
a parameter of the problem. For this purpose, the concept of variable length strings in GAs
(VGA) has been adopted. Unlike the conventional GAs, here the length of a string is not fixed.
Crossover and mutation operators are accordingly defined. A factor has been incorporated into
the fitness function that rewards a string with smaller number of misclassified samples as well
as smaller number of hyperplanes. It has been theoretically shown in [6] that for infinitely large
number of iterations, the number of misclassified training data points for the said classifier (called
VGA-classifier) will be minimum. At the same time, the number of hyperplanes required for
modeling the class boundaries in order to provide the minimum number of misclassified points
will also be minimum.

It is known that the Multilayer Perceptron (MLP) [7, 8, 9, 10], with the neurons executing
hard limiting non linearities, can also approximate class boundaries using piecewise linear seg-
ments. Thus, a clear analogy exists between the two methodologies, viz. classifiers based on
MLP and VGA. If the parameters of the hyperplanes provided by the VGA-classifier are en-
coded in the connection weights and threshold values of MLP, then the performance provided by
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VGA-classifier and MLP will be the same. The architecture along with the connection weights
of the MLP can thus be determined from the output results of the VGA-classifier.

Based on this realization, we describe, in this article, a methodology where the architecture
along with the weights of MLP, with each neuron executing the hard limiting function, is deter-
mined automatically using the principle of pattern classification with VGA [6]. It is guaranteed
that the number of hidden layers (excluding the input and output layers) in the resulting MLP
will be atmost two. The neurons of the first hidden layer are responsible for generation of the
equations of hyperplanes. The neurons in the second hidden layers are responsible for generating
the regions by performing the AND function, whereas those in the output layer are responsible
for producing a combination of different regions by performing the OR function. The algorithm
also includes a post processing step which removes the redundant neurons, if there are any,
in the hidden/output layers. The performance of the MLP derived from this methodology is
compared with those of its conventional version and some more using different architectures, for
two types of artificial data, Iris data, a speech data and a cancer data.

In this context may be mentioned that there are several approaches for determining the MLP
architecture and connection weights [11, 12, 13]. In [11], the connection weights for a given MLP
architecture are determined using GAs, where the weights are encoded in the chromosomes.
The weighted error is taken as the fitness of a string. This method, therefore, totally eliminates
the necessity of using back propagation (BP) algorithm for training. In [12], parallel genetic
algorithm is used for evolving the topology and weights of feedforward artificial neural networks.
Here both the connectivity and the weights are encoded in the chromosomes. Additionally, the
granularity i.e., the number of bits used for encoding the weights is also encoded as a parameter
of the problem. This method, thus, utilizes variable string lengths for topology and weight
determination. Another method based on the construction of Voronoi diagrams over the set of
training patterns is described in [13], where the number of layers, number of neurons in each
layer and the connection weights are automatically determined. Pruning a network of a large size
is another approach towards determination of proper network architecture. A detailed survey
can be found in [14].

2. Brief Description of the VG A-classifier

The VGA-classifier is based on the principle of modeling the class boundaries of a given train-
ing data set using variable number of hyperplanes. Genetic algorithm is used for search and
placement of an appropriate number of hyperplanes for modeling the class boundaries such that
the number of points misclassified by the generated boundary is minimum. The classifier is
described here in brief.
Hyperplane Representation

From elementary geometry, the equation of a hyperplane in N dimensional space (X; — Xy —
.-+ — Xy) is given by

Ty COSQn_y + Oy 1 Sinay_, =d (1)
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where By | = zy_,c0SQN_5 + By_oSinan_,
Brn_2 = Tn_5CO8Qy_3 + By_zsinay_s

By = T, cos oy + B, sin .
The various parameters are as follows :
X; @ the ith feature of the training points.

(z1,%9,...,zN) : a point on the hyperplane
ay_, : the angle that the unit normal to the hyperplane makes with the X, axis.
ay-, : the angle that the projection of the normal in the (X; — X2 — -+ — Xy_,) space makes

with the X _; axis.

a; : the angle that the projection of the normal in the (X; — X5) plane makes with the X, axis.
ag : the angle that the projection of the normal in the (X;) plane makes with the X; axis = 0.
Hence, Gy sinag = 0.
d : the perpendicular distance of the hyperplane from the origin.
Thus the N tuple < a1, a9,...,an-1,d > specifies a hyperplane in N dimensional space.
Each angle o, j = 1,2,..., N — 1 is allowed to vary in the range of 0 to 27. If b; bits are
used to represent an angle, then the possible values of o; are

0,8 % 2,28 % 2m,36 * 2, ..., (2% —1)6 % 27

where § = EéT Consequently, if the b; bits contain a binary string having the decimal value vy,
then the angle is given by vy * ¢ * 2.

Once the angles are fixed, the orientation of the hyperplane becomes fixed. Now only d must
be specified in order to specify the hyperplane. For this purpose the hyper rectangle enclosing
min
i
of feature X; as obtained from the training points. Then the vertices of the enclosing hyper

the training points is considered. Let z"" and z["%* be the minimum and maximum values

rectangle are given by

h h h
(x5, 25", 2y
where each ch;, i = 1,2,..., N can be either maz or min. (Note that there will be 2V vertices.)

Let diag be the length of the diagonal of this hyper rectangle given by

diag — /(:1;71110.1‘ _ mTin)Q + (xanax _ mam'n)2 + ...+ (x%ax _ x}vvn‘n)z‘

A hyperplane is designated as the base hyperplane with respect to a given orientation (i.e., for
some ai,ao,...,an_1) if
1: it has the same orientation

ii : it passes through one of the vertices of the enclosing rectangle

iii : its perpendicular distance from the origin is minimum ( among the hyperplanes passing
through the other vertices). Let this distance be dpn.
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If by bits are used to represent d, then a value of v, in these bits represents a hyperplane with
the given orientation and for which d is given by dpn + %szﬂ * V.

Population Initialization
The chromosomes are represented by strings of 1, 0 and # (don’t care), encoding the parameters
of variable number of hyperplanes. As mentioned before, in RN, N parameters are required for
representing one hyperplane. These are N — 1 angle variables, anglel, ..., anglel,_,, indicating
the orientation of hyperplane ¢ (i = 1,2,..., H when H hyperplanes are encoded in the chro-
mosome), and one perpendicular distance variable, d* indicating its perpendicular distance from
the origin. Let Hya, represent the maximum number of hyperplanes that may be required to
model the decision boundary of a given data set. It is specified a priori.

Initial population is created in such a way that the first and the second strings encode
the parameters of Hp,, and 1 hyperplanes respectively to ensure sufficient diversity in the
population. For the remaining strings, the number of hyperplanes is generated randomly in the
range [1, Hmaz), and the corresponding bits are initialized randomly to 1s and Os.

Fitness Computation
For each string ¢ encoding H; hyperplanes, the number of misclassified points miss;, is found as
in [6]. If n is the size of the training data, then the fitness fit; is defined as

fit; = (n —miss;) — aHj, 1 < H; < Hpoy (2)
=0 otherwise, (3)

where a = Hr,lm' This definition of the fitness function ensures maximization of it primarily

minimizes the number of misclassified points and then the number of hyperplanes.

Genetic Operators
Among the operations of selection, crossover and mutation, the selection operator used here may
be one of those used in conventional GA [1, 15], while crossover and mutation need to be newly
defined for VGA.

Crossover : Two strings, 4 and j, having lengths [; and /; respectively are selected from the
mating pool. Let I; <l;. Then string 4 is padded with #s so as to make the two lengths equal.
Conventional crossover like single point crossover, two point crossover [1] is now performed over
these two strings with probability u.. The following two cases may now arise :

e All the hyperplanes in the offspring are complete. (A hyperplane in a string is called
complete if all the bits corresponding to it are either defined (i.e., Os and 1s) or #s.
Otherwise it is incomplete.)

e Some hyperplanes are incomplete.

In the second case let u = number of defined bits (either 0 or 1) and ¢ = total number of bits per
hyperplane. Then, for each incomplete hyperplane, all the #s are set to defined bits (either 0 or
1 randomly) with probability 7. In case this is not permitted, all the defined bits are set to #.
Thus each hyperplane in the string becomes complete. Subsequently, the string is rearranged so
that all the #s are pushed to the end, or in other words all the hyperplanes are transposed to
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the beginning of the strings. The information about the number of hyperplanes in the strings is
updated accordingly.

Mutation : In order to introduce greater flexibility in the method, the mutation operator
is defined in such a way that it can both increase and decrease the string length. For this, the
strings are padded with #s such that the resultant length becomes equal to ;4. Now for each
defined bit position, it is determined whether conventional mutation [1] can be applied or not
with probability p,. Otherwise, the position is set to # with probability p,,. Each undefined
position is set to a defined bit (randomly chosen) according to another mutation probability
lim,- These are described in Fig. 1.

Note that mutation may result in some incomplete hyperplanes, and these are handled in a
manner, as done for crossover operation. For example, the operation on the defined bits, i.e.,
when k < {; in Fig. 1, may result in a decrease in the string length, while the operation on #s,
i.e., when k > [; in the figure, may result in an increase in the string length. Also, mutation
may yield strings having all #s indicating that no hyperplanes are encoded in it. Consequently,
this string will have fitness = 0 and will be automatically eliminated during selection. &

Begin
[; = length of string ¢
Pad string ¢ with # so that its length becomes lnq;
for k = 1 to l;ar do
Generate rnd, rndl and rnd2 randomly in [0,1]
if k <l; do /* for defined bits */
if rnd < g, do /* conventional mutation */
Flip bit k of string i
else /* try changing to # */
if rndl < pp, do
Set bit k of string i to #
endif
endif
else /¥ k>1; i.e., for #s */
if rnd2 < pm, do /* set to defined */
Position k of string ¢ is set to O or 1 randomly
endif
endif
endfor
End

Figure 1. Mutation operation for string ¢

The operations of selection, crossover and mutation are performed over a number of genera-
tions till a user specified termination condition is attained. In the elitist model of GAs the best
string of the current generations is preserved during each generation. The best string seen upto
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the last generation, alongwith its associated labelling of regions provides the solution to the
problem. During testing, for each point with unknown classification, the task of the classifier is
to check the region in which it lies, and to put the label (or classify) accordingly.

3. Multilayer Perceptron

A Multilayer Perceptron (MLP) consists of several layers of simple neurons with full connectivity
existing between neurons of adjacent layers. Fig. 2 shows an example of a four layer MLP which
consists of an input layer (layer 0), two hidden layers (layers I and 2) and an output layer (layer

9).

layer 3

layer 2

layer 1

layer 0

Figure 2. Multilayer perceptron

The neurons in the input layer serve the purpose of fanning out the input values to the

neurons of layer 1. Let w§?, I = 1,2,3 represent the connections weight on the link from the
1th neuron in layer [ — 1 to the jth neuron in layer . Let 0]“) represent the threshold of the jth
g-l), received by the jth neuron in layer [ is given by

l -1 l 4
z) =3y W) + 6 (4)

neuron in layer [. The total input, z

i
where y(l_l) is the output of the ith neuron in layer [ — 1. For the input layer

1
u' = (5)
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where z; is the ith component of the input vector. For the other layers
! 1
=16l 1=123 (6)

Several functional forms like threshold logic, hard limiter, sigmoid etc. can be used for f (.)-

There are several algorithms for training the network in order to learn the connection weights
and the thresholds from a given training data set. Backpropagation (BP) is one such learning
algorithm, where the least mean square error of the network output is computed, and this is
propagated in a top down manner (i.e., from the output side) in order to update the weights.
The error is computed as the difference between the actual and the desired output when a known
input pattern is presented to the network. A gradient descent method along the error surface is
used in BP.

4. Analogy between Multilayer Perceptron and VGA-classifier

It is known in the literature [8] that Multilayered Perceptron (MLP) with hard limiting non
linearities approximates the decision boundaries by piecewise linear surfaces. The parameters of
these surfaces are encoded in the connection weights and threshold biases of the network. Sim-
ilarly, the VGA-classifier also generates decision boundaries by appropriately fitting a number
of hyperplanes in the feature space. The parameters are encoded in the chromosomes. Thus a
clear analogy exists between these two models.

Both the methods start from an initial randomly generated state (the set of initial random
weights in MLP). Both of them iterate over a number of generations while attempting to decrease
the classification error in the process.

The obvious advantage of the GA based method over that of the MLP is that the GA-
classifier performs concurrent search for a number of sets of hyperplanes, each representing a
different classification in the feature space. On the other hand, the MLP deals with only one such
set. Thus it has a greater chance of getting stuck at a local optimum, which the GA-classifier
can overcome. Moreover, VGA-classifier does not assume any fixed value of the number of
hyperplanes, while MLP assumes a fixed number of hidden nodes and layers. This results in
the problem of over fitting with an associated loss of generalization capability for MLP. In this
context one must note that since the VGA-classifier has to be terminated after finitely many
iterations, and the size of the data set is also finite, it may not always end up with the optimal
number of hyperplanes. Consequently, the problem of overfitting exists for VGA-classifier also,
although it is comparatively reduced.

5. Deriving the MLP architecture

In this section we describe how the principle of fitting a number of hyperplanes using GA,
for approximating the class boundaries, can be exploited in determining the appropriate
architecture of MLP. Since our aim is to model the equation of hyperplanes, we use the hard
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limiting function in the neurons of the MLP, defined as

+1 ife>0
f(x)_{ -1 ifz<0.

5.1. Terminology

Let us assume that the VGA-classifier provides
Hy g hyperplanes, designated by

{Hypla Hyp?a v 7HypHVGA}7

r regions, designated by

{R17R23 v aR’I‘}a

and k be classes, designated by

{C1,C, ..., Ck}.

Note that more than one region may be labelled with a particular class, indicating that r > k.
Let R! be the region representing class C1, and let it be a union of r| regions given by

1 _ .1 .
R _RjIIURjéU'--Rjrlla 13]17J%,~~»17}1§7‘-

Generalizing the above, let R* (i = 1,2,...,k) be the region representing class C;, and let it be
a union of r; regions given by

R =R JRsU.--UR;,  1<i..5 <r

Note that each R? is disjoint, i.e.,
ROAR =¢, i#j, 4,j=12...,k

5.2. Network Construction Algorithm

The network construction algorithm (NCA) is a four step process where the number of neurons,
their connection weights and the threshold values are determined. It guarantees that the total
number of hidden layers (excluding the input and output layers) will be atmost two. (In this
context, Kolmogorov’s Mapping Neural Network Existence Theorem may be mentioned. The
theorem states that any continuous function can be implemented exactly by a three layer,
including input and output layers, feedforward neural network. The proof can be found in [16].
However, nothing has been stated about the selection of connection weights and the neuronal
functions.)
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The output of the VGA-classifier is the parameters of the Hy g4 hyperplanes. These are
obtained as follows :

1 1 1 1
i, Oy ..., oay_1, d

2 2 2 2
af, aj,..., ay_1, d
Hyga Hyvga Hyga H
oy y Qo yeeey Qo St dfvea

Step 1 : Allocate N neurons in the input layer, layer 0, where N is the dimensionality of
the input vector. The neurons in this layer simply transmit the value in the input links to all
the output links.

Step 2 : Allocate Hyg4 neurons in layer 1. Each neuron is connected to the N neurons
of layer 0. Let the equation of the ith hyperplane (i = 1,2,..., Hyga) be

1Ty + T+ ... +cyay —d=0

where from Eqn. 1 we may write

i - i

¢y = cosaly_, |

1 — 1 H 1

Cyoy = cosaly_psinaly_, _

1 —_ 2 3 1 3 1
cy_y = cosaly_ssinaly_,sinad,
cl = cosajsinal...sinady_,

sinaj ...sinaly_,;
since oy = 0.

Then the corresponding weights on the links to the ¢th neuron in layer 1 from those in layer
0 are

and

since the bias term is added to the weighted sum of the inputs to the neurons.
Step 3 : Allocate r neurons in layer 2 corresponding to the r regions. If the ith region
R; (i =1,2,...,7) lies on the positive side of the jth hyperplane Hyp; (j = 1,2,..., Hyca), then
w? = +1.

Otherwise
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and

6? = —(Hyga — 0.5).

Note that the neurons in this layer effectively serve the AND function, such that the output is
high (+1) if and only if all the inputs are high (+1). Otherwise, the output is low (-1).

Step 4 : Allocate k neurons in layer 3 (output layer), corresponding to the k classes. The
task of these neurons is to combine all the distinct regions that actually correspond to a single

class. Let the ith class (: = 1,2,...,k) be a combination of r; regions. That is,
Then the ith neuron of layer 3, (i = 1,2,...,k), is connected to neurons gi g .. .j,’;i of layer 2
and,

wh =1,  je{idi.. 0}
whereas o

wh =0,  j¢& {550
and

93 =T;— 0.5.

1

Note that the neurons in this layer effectively serve the OR function, such that the output is
high (+1) if at least one of the inputs is high (+1). Otherwise, the output is low (-1). For any
given point, atmost one output neuron, corresponding to its class, will be high. Also, none of the
output neurons will be high if an unknown pattern, lying in a region with unknown classification
(i.e., there were no training points in the region) becomes an input to the network.

5.3. An Example

In order to demonstrate the functioning of the algorithm, let us consider the following problem
in Fig. 3 for N = 2 (two dimensional).

Let L; be the line resulting from the application of VGA-classifier for partitioning the two
classes shown. The corresponding angle (considering angles from the normal to the X5 axis in
the anticlockwise direction) and perpendicular distance values are

Ly — of = 315° and d' = 0.
In other words, the equation of L; is given by
x2 cos(315) + z;sin(315) =0

T
—L =0.
V2

Sl
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Class 1 R2

Class 2

Figure 3. Problem for demonstrating the network construction algorithm

As can be seen from Fig. 3, there are 2 distinct regions viz. R;, and Ry, of which R,
represents the region for class 1 and Ry represents the region for class 2. Also,

Ry — +vesideof L;
Ry — -veside of L

Applying NCA, we obtain the following :

Step 1 : 2 neurons in the input layer, since N =2.

Step 2 : 1 neuron in layer 1, since Hyga = 1. The connection weights and the threshold
are as follows :

wi, = cosa} X sinal
= L
V2
wly, = cosal
= L
1 \/51
01 = _d
0.0

Step 3 : 2 neurons in layer 2, since there are two distinct regions, r = 2. The connection
weights and the thresholds are as follows :

6? =-05
wh =-1
63 =-0.5

Step 4 : 2 neurons in the output layer, layer 3, since there are two classes, k = 2. The
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connection weights and the thresholds are as follows :

wi =1
wiy =0
6?2 =05
w3, =0
w%Q =1
63 =05

Note that the zero weights effectively mean that the corresponding connections do not exist.
The resulting network is shown in Fig. 4.

layer 3

layer 2

layer 1

layer 0

Figure 4. Network for the problem in Fig. 2

5.4. Post Processing Step

The network obtained from the application of NCA may be further optimized in terms of the
links and neurons in the output layer. A neuron in layer 3 that has an input connection from
only one neuron in layer 2 may be eliminated completely. Mathematically, let for some i,
1<i<k,
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wh =1 ifj=j

=0 otherwise,
then neuron i of layer 3 is eliminated and is replaced by neuron j' of layer 2. Its output then
becomes the output of the network. Note that this step produces a network where a neuron in
layer ¢ is connected to a neuron in layer ¢ 4 2.

In the extreme case, when all the neurons in the output layer (layer 3) get their inputs from
exactly one neuron in layer 2, the output layer can be totally eliminated, and layer 2 becomes
the output layer. This reduces the number of layers from three to two. This will be the case
when r = k, i.e., a class is associated with exactly one region formed by the Hy g4 hyperplanes.

Applying the post processing step to the network obtained in Fig. 4, we find that neurons 1
and 2 of layer 8 have links only from neurons 1 and 2 of layer 2 respectively. Consequently, one
entire layer may be removed and this results in a network as shown in Fig. 5.

layer 2

layer 1

layer 0

Figure 5. Modified network after post processing

6. Implementation

The effectiveness of the network construction algorithm (NCA) is demonstrated here on a number
of real life and artificial data sets.

6.1. Data Sets

ADS 1 and ADS 2 : These are two dimensional, two class, artificial data sets shown in Figs. 6
and 7 respectively. The first one consists of 557 data points while the second consists of 417
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data points. The boundaries for both the data sets are seen to be highly non-linear, although
the classes are separable.

825 7111111111111113111111111111111
111111111113111111111111111111111
2111111111111111111311111111111111
111111111111111111111111111111111111

11111111111 1111111111
11111111111 1111311111
11111111 11111111
1111111 2 22222222 1111111
1111111 22 22222222 111111
111111 2222 22222222 11111
11111 222222 22222222 11111

Y 11111 22222222 22222222 11111
11111 222222 22222222 11111
11111 2222 22222222 11111
111111 22 22222222 11111

1111111 111111
1111111 111111
11111111 1111111

11111111111111111111111111111111111111
111111111111111111111111111111111111
1111111111111111111111111111111111

300 111111111111111111111111311111111

800 X 2750

Figure 6. ADS 1

. Vowel Data : This data consists of 871 Indian Telugu vowel sounds [17]. These were uttered
in a consonant-vowel-congonant context by three male speakers in the age group of 30-35 years
The data set has three features Fi, Fo and Fj3, corresponding to the first, second and thirci
vowel formant frequencies, and six classes {0, a,%,u,e,0}. Fig. 8 shows the distribution of the
six classes in the F; — Fy plane. (It is known {17] that these two features are more important in
characterizing the classes than F3.) Note that the boundaries of the classes are very ill-defined
and overlapping.

Iris Data : This data represents different categories of irises. The four feature values per

sample represent the sepal length, sepal width, petal length and the petal width in centime-
ters [18]. It has three classes with 50 samples per class.

Cancer Data : This breast cancer database, obtained from the University of Wisconsin
Hospital, Madison [19], is used for the purpose of demonstrating the effectiveness of the classifier
in classifying high dimensional patterns. It has 683 samples belonging to two classes Benign
(class 1) and Malignant (class 2), and nine features corresponding to clump thickness, cell sz’ie

uniformity, cell shape uniformity, marginal adhesion, single epithelial cell size, bare nuclei, bland
chromatin, normal nucleoli and mitoses. ’
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825 222222222222222222222222
2222222222222222222222222
22222222222222222222222222
22222
22222
2222
2222 11112121231111111111113111
2222 11111111111213111112111111
2222 111111111111211113111111111
¢| 2222 1111112211111311111111111111
2222 111111
22222 11111
22222 1111
22222222222222222222222222 1111
2222222222222222222222222 11111
222222222222222222222222 1111
1111
11111
111111
111111111111111111111111131
11113111111111111111111112
300 111111111111112121311111111
800 X 2750
Figure 7. ADS 2
300
SIZE FREQUENCY OF OCCURRENCES
a 1—2
a 3—5
8001 a 6 — 9§
a 10 —14
a 15 AND ABOVE
7001
6001
N
T 500
€
-
4001
3001
200 ) ) I 1 L .
600 300 1200 1500 1800 2100 2400 2700
F2 inHz

Figure 8. Vowel data in the F; — F5 plane
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6.2. Results

For the VGA-classifier, a fixed population size of 20 is chosen. Roulette wheel strategy is used
to implement proportional selection. Single point crossover. is applied with a fixed crossover
probability of 0.8. A variable value of mutation probability y, is selected from the range [0.015,
0.333]. 200 iterations are performed with each mutation probability value. The values of p,,
and g, are set to 0.1. The process is executed for a maximum of 3000 iterations. Elitism
is incorporated in the process. The recognition scores provided here are the average values
obtained over five different runs of the algorithm. H,,,; is set to 10, so @ = 0.1.

The MLP is executed using both hard limiters and the sigmoid function in the neurons. The

sigmoid function is defined as
1
Jz) = 1+e @

The learning rate and momentum factor are fixed at 0.8 and 0.2 respectively. Online weight

updation, i.e., updation after each training data input, is performed for a maximum of 3000
iterations.

The performance of VGA-classifier and consequently that of the MLP derived using NCA
(i.e., where the architecture and the connection weights have been determined using NCA) are
compared with that of a conventional MLP having the same architecture as provided by NCA,
but trained using the back propagation (BP) algorithm with the neurons executing the sigmoid
function. For the purpose of comparison, we have also considered here three more typical
architectures for the conventional MLP having two hidden layers with 5, 10 and 20 nodes in
each layer respectively. Tables 1-5 summarize the results obtained. The MLP architecture is
denoted by Arch. in the tables.

The number of hyperplanes (Hyc4) and regions (r) obtained by the VGA-classifier starting
from H,,q; = 10 are mentioned in columns 2-3. These are used to select the MLP architectures
as shown in columns 10-11 and 12-13.

From Table 1 corresponding to ADS 1, it is found that the MLP trained using BP does not
succeed in learning the boundaries of class 2, for all the architectures (columns 4-11).
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In fact, as seen from Fig. 6, class 2 is totally surrounded by class 1. The VGA-classifier, on
the other hand, is able to place the lines appropriately, thereby yielding a significantly better
score both during training and testing (columns 2-3). Consequently, the network derived using
NCA (which has the performance same as that of the VGA-classifier) also provides a significantly
better score (columns 12-13).

Similar is the case for Vowel and Iris data (Tables 3 and 4 respectively) where the VGA-
classifier, and consequently the MLP derived using NCA provide a superior performance than
the MLPs trained with BP. For ADS 2 (Table 2) and Cancer data (Table 5), the situation is
different where MLPs trained with BP provide superior performance (except one case for ADS
2). The overall recognition score during testing for Vowel is found to increase with the increase
in the number of nodes in the hidden layers (columns 5, 7 and 9) since the classes are highly
overlapping. For Iris data, the reverse is true, indicating a case of overfitting the classes.

Note that the Arch. values of the MLPs mentioned in columns 10-11 and 12-13 of the tables
are the ones obtained without the application of the post processing step. These values are put
in order to clearly represent the mapping from VGA-classifier to MLP, in terms of the number
of hyperplanes and regions, although the post processing task could have reduced the size of the
network while keeping the performance same. For example in the case of Iris data, the number
of hyperplanes and regions are 2 and 3 (columns 2-3) respectively. Keeping analogy with this,
the Arch. value in column 12-13 are mentioned to be 4:2:3:3. In practice, after post processing,
the said values became 4:2:3. Similarly, for ADS 1, Vowel and Cancer data, the values after
post processing were found to be 2:3:4:2, 3:6:2:6 and 9:2:3:2 respectively. In the case of ADS 2,
there was no change before and after post processing.

7. Discussion and Conclusions

A method for automatic determination of MLP architecture and the associated connection
weights is described, based on its analogy with the VGA-classifier in terms of placement ca-
pability of hyperplanes for approximating the class boundaries. The method guarantees that
the architecture will involve atmost two layers (excluding the input and output layers), with
the neurons in the first and second hidden layers being responsible for hyperplane and region
generation, and those in the output providing a combination of regions for the classes.

This investigation may also be considered as an application of the VGA-classifier. It not
only finds a relation of VGA-classifier with the MLP, but also provides a way of determining
an appropriate archtecture and connection weights for MLP. Moreover, the said analogy will
augment the application domain of the VG A-classifier to those areas where MLP has widespread
use.

Since the principle of VGA-classifier is used for developing NCA, it becomes mandatory
to consider hard limiting neurons in the derived MLP. Although this makes the network rigid
and susceptible to noise and corruption in the data, one may use NCA for providing a possible
appropriate structure of conventional MLPs.
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