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A new method of feature selection using a Radial
Basis Function network is described. The parameters
of the radial basis function network, in general,
SJorm a compact description of class struciures. The
intraclass and interclass distances are expressed in
ferms of the parameiers of the trained network, and
mwo different feature evaluation indices are derived
Srom these distances. The effectiveness of the algor-
ithm is demonstrated on Iris and speech data, and
a comparative study is provided with several exisi-
ing lechnigues.
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1. Introduction

Feature selection is a task where the optimum salient
characteristics necessary for the recognition process
are retained, and hence the dimensionality of the
measurement space is reduced. Varous classical/
fuzzy set theoretic methods for feature selection are
reported in the literature [[-3].

Artificial Neural Networks ( ANNs) have the capa-
bility of fault tolerance, adaptivity/generalisation,
and scope for massive parallelism. Often, they are
employed for dealing with wvarious optimisation
tasks. Selecting the optimal subset from a given set
of features is one such optimisation problem. Ruck
etal. [6] developed a multi-layer perceptron-based
(MLP-based) algorithm for feature ranking, where
the sensitivity of output of the network to its input
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is used to rank the input features. The methods
based on muliilayer feedforward networks include
the determination of saliency (usefulness) of input
features [7], development of Sammon's Nonlinear
Disciminant Analysis (NDA) network, the Linear
Disciminant Analysis (LDA) network [8], and a
neuro-fuzzy approach for evaluating the effect of
suppressing certain feature(s) [9]. Investigations have
also been made for the development of neuro-fuzzy
approaches for supervised feature selection [10,11]
and unsupervised feature selection [12]. Those based
on self-organising networks include the development
of nonlinear projection (NP-SOM) based on
Kohonen's self-organising feature map [8], distortion
tolerant Gabor transformations followed by mini-
mum distortion clustering by multilayer self-organis-
ing maps [13], a non-linear projection method based
on Kohonen's topology preserving maps [14].

In this article, a new method is presented for
selecting the optimal set of features by examining
the parameters of a trained Radial Basis Function
(RBF) network [15,16]. The parameters of a RBF
network form a compact description of the class
structures from the given data set used to train the
network. These parameters are used to formulate
interclass and intraclass distances. Two different fea-
ture evaluation indices are, in turn, computed from
these distances. The importance of a set of feature(s)
is evaluated by examining the effect of its absence
on the evaluation indices.

Section 2 provides a brief description of the RBF
network. The feature selection algorithm, including
the new evaluation indices, is presented in Section
3. The effectiveness of the algorithm on real-life
data is experimentally demonstrated and the results
are compared with some of the existing methods in
Section 4. Finally, Section 5 concludes the article.
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2. Radial Basis Function Network

A Radial Basis Function (RBF) network [15,16]
consists of two layers, as shown in Fig. 1. The
connection weight vectors of the input and output
layers are denoted as @ and W. respectively. The
basis (or kernel) functions in the hidden layer pro-
duce a localised response to the input stimulus. The
output nodes form a weighted linear combination of
the basis functions computed by the hidden nodes.

The input and output nodes correspond to the
input features and output classes, while the hidden
nodes represent the number of clusters (specified by
the user) that partition the input space. Let T =
K1y vy Xyvons X € R and F = (P vees Faovena W)
e R’ be the input and output, respectively, and m
the number of hidden nodes.

The output w; of the jth hidden node, using the
Gaussian kernel function as a basis, is given by

(x=— Eﬂy-.[? - EJ.]

H; = exp | — 2!’1:,'1 'Js J.:Is 2,

where ¥ is the input pattern, u; is its input weight
vector (i.e. the centre of the Gaussian for node j)
and o7 is the normalisation parmameter, such that 0
= w; = | (the closer the input is to the centre of

the Gaussian, the larger the response of the node).

Output

1 Classes

m cluslers

Input

Fig. 1. A Radial Basis Function network consisting of n input
nodes representing features, m hidden nodes representing cluster
centres, and 1 oowpot nodes corresponding 1w classes. Cluster
centmes () are stored in the links from the input 1w hidden layer.
oris the normalisation parameter vector of the hidden node
activation functions. w represents the weights of links from the
hidden o output laver.
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The output y; of the jth output node is

}3=ﬁ¥a, = 1200000 (2)
where W, is the weight vector for this node. and
u is the vector of outputs from the hidden layer.
The network performs a linear combination of the
non linear basis functions of Eq. (1).

The problem is to minimise the emor

1 N I
E=3 2 X Of -7 (3)

e

where *v¥and v are desired and computed output
at the jth node for the pth pattern, N is the size of
the data set, and { is the number of output nodes.
In the sequel, the superscrpt p is omitted for the
sake of representation.

Learning in RBF networks can, in general, be
performed by two different strategies [17]. A fixed
set of cluster centres is first formed by clustering
algorithm (e.g. c-means algorthm [1]). The associ-
ations of the cluster centres with the output are
then learned by squared error minimisation (i.e.
minimisation of E (Eq. (3)). Altematively, the cluster
centres can also be learned along with the weights
from the hidden layer to the output layer by gradient
descent technique. However, learning the centres
along with weights may lead to some locally fixed
points in the error space, thus leading to a deviation
from the desired result.

Here a fixed set of cluster centres is formed by
the c-means algorithm [1]. Let the cluster centres,
so determined, be denoted as ;_.-;-, j=1, ..., m. The
nomalisation parameter o, represents a measure of
the spread of data associated with each node.

Learning in the output layer is performed after
the parameters of the basis functions have been
determined. The weights are typically trained using
the Least Mean Squares algorthm given by

AW, =— nei (4)

—_— Ay Hay H H
where ¢, = v, — *y;, and 7 is the learning rate.

3. Feature Selection

In this section, we describe how the RBF network
can be used for feature selection. An evaluation
index is formulated for representing the importance
of different features and their combinations. Based
on this evaluation index, the features/sets of features
can be selected. Tt is assumed that the cluster centres
() are the most representative points of clusters
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identified by the c-means algodthm, and are used
in the subsequent training of RBF network. The
intercluster distances can therefore be directly com-
puted from these cluster centres.

During training of the RBF network, each class
is viewed as a collection of clusters. The contri-
bution of a cluster to any class is modulated by the
weights of the links from the hidden layer to the
output layer. The magnitude of these second layer
weights provide a measure of the importance of a
cluster with respect to a class. Thus, the interclass
and intraclass distances can be logically computed
from the identified cluster centres and the weights
of the comesponding links from the hidden to the
output layer. To represent the relative importance
of the clusters with respect to classes, we have
used normalised absolute values of the second layer
weights given as

W -w

SR

Z Mmr:c - H'I:m.u ':‘5:]
where
"'V;mr:c = max {lwg.(l }
ek

and

H'Il:llwl = Inin {l“’i&l}'
ek

The cluster and class indices are represented by ¢
and k, respectively. The greater the value of wg,
the greater is the importance of cluster ¢ with
respect to class k. Thus, larger values of w's should
contribute more to the interclass and intraclass dis-
tances. Let us now provide the feature evaluation
indices using normalised absolute link weights and
variances (o) stored in the hidden nodes.

3.1. Evaluation Index I

The wvariance in the input data (o) stored in each
hidden node measures the sparseness of the cluster
represented by the hidden node. It is assumed that
the sparser a cluster is, the less should it contribute
to the class distances computed from the cluster
centres. Therefore, the cluster distances are weighted
by l/er in order to obtain the class distances.

The feature evaluation index for a feature subset
SFFEDN is given by

ﬂ{q
FEI= & (6)
25,

where o, represents the compactness of class & and
Dy provides a measure of the distance of class &
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from all other classes, ignoring the feature subset
. These are mathematically expressed as

a=33 3 B e O

g W F

&

and

D= EEE E ':;LJ‘[J‘ :"19.‘.-]- Lty (8)
Ewk € o e eF I

The feature evaluation index measures how the
ratio of the intraclass and interclass distances gets
affected when a particular feature is ignored. If the
classes are well separated and compact, then the
ratio of intraclass and interclass distances will be
small. If the exclusion of some feature subset
deteriorates the compactness of the classes (ie.
increases ) and/for decreases the separation between
classes (i.e. decreases [), then it should be treated
as an important feature. This will be reflected in
the index FEJ, because in that case the ratio will
increase.

3.2. Evaluation Index II

Here we provide an altemate measure of evaluation
index for the features. Let a pattern p in cluster ¢,
and a pattern g in cluster ¢ be denoted by
= X, o xE, and B = x3,xL, ... X1,
respectively. Let the distance %(¢,. ¢,) between two
clusters ¢, and ¢2 be the summation of the pairwise
distances of the points in these two clusters, ie.

Bey, e2) = 2,2, d(xh, x9) 9
roq
where di.) is the physical distance between two
points in the pattern space. If di.) comesponds to
the squared Buclidean distance, then

Dle, &) = 2, 5,0, (&, = 4 (10)
pogq i
After simplification, the distance between two

clusters can be written as

Ber, €2) = NiN2 (0, + 02, +d(p.,, po))  (11)

where N, and N, are the number of patterns present
in the clusters ¢, and ¢, respectively.

Now, if the number of points in some cluster is
creater, the weight of the link connected to the
hidden node corresponding to the cluster will be
iterated for a larger number of tdals during training
of the network, provided all the classes are equally
likely. In that case, it is expected that the value of
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w (Eq. (3)) corresponding to that link will be more.
In other words, the greater the number of points
present in a cluster, the larger will be the importance
of the link connected to the hidden node correspond-
ing to the cluster, and vice versa. Based on this
concept, and Eq. (11), an alternative measure for
intraclass and interclass distances is given as

dy= EE( 2 (o= )+ oF + rrf) W'

S W F ! (12)

and

D, = EE E( 2 (B = ) + 07 + “‘l) gty

k vk € o ome UyeF

(13)

The altemative measure for the feature evaluation
index is given as

. o

FEI = —

25

k

(14)

3.3, Method of Feature Selection

The evaluation indices are computed based on the
weighted distance between the clusters represented
by the hidden nodes. The number of clusters should
be such that the classification performance of the
network reaches the optimum wvalue. At the same
time, a very large number of clusters may lead to
undesirable redundancy in the network. Here we
consider RBF networks with a minimum number of
hidden nodes, such that the classification perform-
ance does not deteriorate.

It is assumed that the required number of clusters
(m) cannot be less than the number of classes (f).
This is because if these are equal, then ideally an
individual cluster will correspond to an individual
class. Therefore, to find out the RBF network with
a minimum number of hidden nodes, we start with
a network having m = [. Then m is increased until
there is no significant increase in the classification
performance. FEI and FEI' are computed with this
network, and the feature subsets are ranked accord-
ingly. This method is algorthmically described
below.

Step I: Select an RBF network with a number of
hidden nodes equal to the number of classes.

Step 2: Train the network and test the classi-
fication performance.

Step 30 Increase the number of hidden nodes, and
repeat step 2 until the classification performance
does not improve significantly.
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Step 4: Compute normalised absolute wvalues of
link weights of the trained RBF obtained in step 3.

Step 50 Compute FE! and FEI' for each feature
subset according to Egs (6) and (14).

Step 6 Rank the feature subsets according to the
values of the evaluation indices.

4. Experimental Results

The algorithm was implemented on real data, viz
Iris and Vowel. The results obtained by the proposed
algorithm (model BM) are compared with some of
the existing techniques, considered as benchmarks
in this study. These are (i) the statistical method of
Devijver and Kittler [2] (model DK), (ii) the fuzzy
entropy-based method of Pal and Chakraborty [3]
(model PC), (ii1) the neural network-based method
of Ruck et al. (model R*), and (iv) that of Ishibuchi
[9] (model IM).

The Iris data [L8] consists of 150 pattern points
with four input features corresponding to measure-
ments of sepal lengih, sepal widih, petal lengih,
petal widih on 50 flowers from each of three species
setosa, versicolor, virginica represented by the three
output classes. The RBF network used to learn this
data set, therefore, consists of four input and three
output nodes. The choice of eight hidden nodes was
found to yield the best result after several trials.

The speech data Vowe! [19] deals with 871 Indian
Telugu vowel sounds. These were uttered in a Con-
sonant-YVowel-Consonant  context by three male
speakers in the age group of 30 to 35 years. It has
three features corresponding to the first, second and
third vowel formant frequencies obtained through
spectrum analysis of the speech data. The data
contains six vowel classes — a4, a, i, u, e, o. Figure
2 shows the data in the first and second feature
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Fig 2. Vowel data.
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Table 1. Ranking for fris data.

am

Feature set FEI Rank Owerall rank FEF Rank Owerall rank
1 0618 4 11 0702 4 11
2 0.649 3 9 0722 i 9
i 0777 1 4 0908 1 4
4 0.667 2 T 0.744 2 &
1, 2 0.604 [i] 13 0.669 [ 13
1,3 0689 i [§] 0.879 2 5
1,4 0.621 5 10 0.692 5 12
2.3 0763 2 5 0868 i [i]
2,4 0.657 4 & 0717 4 10
i, 4 0.905 | i 1.01 | 2
1,23 0598 4 14 0.758 i T
1,2 4 0.606 3 12 0.65 4 14
1, 3. 4 1.793 1 1 1254 1 1
2,3, 4 0916 2 2 0981 2 3
Table 2. Ranking for Vewel data.

Feature set FEI Rank Owerall rank FEI Rank Owerall rank
1 0.891] 2 4 0932 2 4
2 1.029 1 2 108 1 2
i 0.847 3 5 0.903 i 5
1,2 1.096 | | 1.097 | 1
1,3 0839 3 [§] 0878 i [§]
2.3 0.94 2 i 1068 2 i

plane, for ease of depiction. The RBF network in
this case consists of three input, six output and
twelve hidden nodes.

Table 1 illustrates the ranking of features, based
on the feature evaluation indices FEI (Eq. (6)) and
FEI' (Eq. (14)). It is observed that feature 3 is most
important, followed by feature 4, when considered
individually, using both the evaluation indices. Com-
bining pairs of features, it is found that the first
three significant pairs are (3, 4), (2, 3) and (1, 3)
when FEI is used. When FEI' is used, the ranking
becomes (3, 4), (1, 3), (2, 3). Considering triplets,
the set (1, 3, 4) is found to be most important using
both FEI and FEI'.

Considering all possible subsets, (1, 3, 4) is found
to be most important using both the evaluation
indices. The next three in overall ranking are (2, 3,
43, (3, 4) and (3). It is observed from Table 1 that
in many cases an individual feature has higher rank-
ing than its supermsets. For example, feature 3 is
found to be more imporant than the subsets (1, 3),
(2, 3y and (1, 2. 3). This indicates that the addition

of extra (redundant) features may deteriorate the
performance of a classifier.

Table 2 provides a similar study for Vowel data.
The individual and pairwise ranking of the features
are found to be the same with FE! and FEI'. Feature
2 is found to be most significant, followed by feature
I. Considerdng feature pairs, the combination (1, 2)
is observed to be most important. It is also found,
from the owverall ranking, that (1, 2) is most
important among all possible subsets, followed by
(2) and (2, 3).

Table 3 demonstrates a comparative study of the
individual feature orderings generated by different
algorithms for the two data sets. Since the individual
feature ordering is the same for both the evaluation
indices (FEI and FEI'), they are referred in a single
row of model BM. As [Iris data is typically studied
by researchers (in the pattern recognition field), an
extensive comparison has been provided for this
data. The overall study shows that the results tally
with each other. The features 4 and 3 are found to
be more important than the features 1| and 2 for



inz

Table 3. Comparative study.

Data Algorithm Feature ordering

BM

DK
Iris PC
I
R*
BM
PC

L
I

o

—_ = [ [ =

L.t o

Vowel

[RE T T T PE R PE R SN
R N

classifying [ris data. The class structures in the
Vowel data, on the other hand, are highly ovedap-
ping and ambiguous (as observed from Fig. 2) and
not so typical (like [ris data). Hence its comparison
has been made only with model PC. It is observed
that features 2 and 1 are most important for classify-
ing Vowel data. This information tallies with the
experts’ opinion [19].

5. Conclusions

Two new evaluation indices for selecting optimal
set of features are described. The evaluation indices
for a feature subset are derived from the effect
ideterioration) on the separation between and/or
compactness of the classes due to the absence of the
feature set. The interclass and intraclass distances,
representing the separation between and compactness
of classes, respectively, are computed directly from a
trained radial basis function network with minimum
redundancy. The method of feature selection is inde-
pendent of the testing phase of the network, because
once the network is trained, the indices are com-
puted directly from the parameters of the network.
The effectiveness of the evaluation indices is tested
on a couple of real-life data. The performance is
also compared with the existing methods and found
to provide desired feature rankings.
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