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Ahstract

The article provides a fuzzy set theoretic feature evaluation index and a connectionist model for its evaluation along with their theoretical
analysis. A concept of weighted membership function is introduced which makes the modeling of the class structures more appropriate. A
newro-fuzzy algorithm is developed for determining the optimum weighting coefficients representing the feature importance. It is shown
theoretically that the evaluation index has a fixed upper bound and a varying lower bound, and it monotonically increases with the lower
bound. A relation between the evaluation index, interclass distance and weighting coefficients is established. Effectiveness of the algorithms
for evaluating features both individually and in a group (considering their independence and dependency} is demonstrated along with
comparisons on speech, Iris, medical and mango-leaf data. The results are also validated using scatter diagram and &-NN classifier.
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1. Introduction

Feature selection or extraction s 4 process of selecling a
map of the form x' = f(x) by which a sample X(x, xa. ... x,)
in an p-dimensional measurement space (B") is tansformed
ko a point x"{.-.",,.-."},...,.-."}l in a g-dimensional (g << n)
feature space (B¥). The main objective of this problem is
to retain the optimum salient chameteristics necessary for
the recognition process and to reduce the dimensionality of
the measurement space so that effective and easily compu-
table algorithms can be devised for efficient classification.

In general, in the feature selection/exraction process, the
features considered o have optimal saliencies (usefulness)
are that for which interclass/intraclass distances are maxi-
mized/minimized. The enterion of a good feature is that it
should be unchanging with any other possible variation
within a class, while emphasizing differences that are
mmportant in diseriminating between pattems of different
types. Different useful classical techniques o achieve this
are based on diggonal  tmnsformation,  Mahalanobis
distance, divergence, Bhattacharya coefficient, and the
Kolomogorov varnational distance (Devipver & Kittler,
1982; Tou & Gonzalex, 1974).

There also exist several methods based on fuzey sel
theory (Beedek, 1981; Beedek & Caswelaz, 1977; Pal,

1992; Pal & Chakmaborty, 1986) and Artificial neworal
networks (ANN) (Belue & Bauwer, 1995; Kowalceyk &
Ferra, 1994; Kmaijveld, Mao & Jain, 1995; Lampinen &
Oja, 1995; Lowe & Webb, 1991; Mao & Jain, 1995; Priddy.
Rogers, Ruck, Rogers & Kabnsky, 1990 Ruck, Tarr &
Kabrisky, 1993; Saund, 1989; Schrdt & Davis, 1993)
Fuzey sel theoretic approaches for feature selection are
mainl y based on measures of entropy and index of fuzziness
(Pal, 1992; Pal & Chakraborty, 1986), fuzzy c-means
(Beedek, 1981) and fuzzy ISODATA (Beedek & Castelue,
1977) algorithms, ete. Some of the recent attempts made for
feature selectionfextraction in the framework of ANN are
mainl y based on multilayer fecdforward networks (Belue &
Bauer, 1995; Kowalceyk & Ferra, 1994 Lowe & Webb,
1991; Mao & Jain, 1995; Priddy et al., 1993; Ruck et al,,
19940; Saund, 1989; Schmidt & Davis, 1993 and self-
organizing networks (Kraaijveld et al., 1995 Lampinen
& ga, 1995; Mao & Jain, 1995). The methods based
on  multilayer feedforward networks inclode, among
others, determination  of saliency of input features
(Prnddy et al, 1993), development of Sammon’s
nonlinear discnminant analysis (NDA) network, linear
discriminant  analysis (LDA) network (Mao &  Jain,
1995), whereas those based on self-organizing networks
include development of nonlinear projection (NP-SOM)
based Kohonen™s self-organizing  feature map (Mao &
Jam, 1995), distortion tolerant Gabor  ransfommations
followed by minimum distortion clustenng by multlayer
self-organizing maps (Lampinen & Oja, 1995), a non-linear
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projec ion method based on Kohonen's topology preserving
maps (Kraaijveld et al., 1995).

Incorporation of fuzzy set theory enables one to deal with
uncertainties in 4 system, arising from deficiency (e.g
vagueness, incompleteness, ete.) in information, in an effi-
cient manner. ANNs, having the capability of fault toler-
ance, adaptivity and generalization, and scope for massive
parallelism, are widely vsed in dealing with optimization
tasks. Recently, attempts are being made o integrate the
merits of fuzey set theory and ANN under the heading
‘neuro-fuzzy computing’ for making the systems artificially
more mtelligent

The present anicle provides a neuro-fueey approach for
feature evaluation and a theoretical analysis of its perfor-
mance. First of all, a new fueey set theoretic evaluation
index is defined in terms of individual class membership.
Its performance with an existing one (Pal, 1992; Pal &
Chakraborty, 1986) s compared for ranking the features
(or subsets of features). It relation with Mahalanobis
distance and divergence measure 15 demonstrated. Then,
we provide a new connectionist model o perform the task
of optimizing the aforesaid fuzey evaluation index, which
incorporates  weighted  distance  for  computing  class
membership values, This opimization process results in a
setof weighting coefficients representing the imporance of
the individual features. These weighting cocflicients kead o
a transformation of the feature space for modeling better the
class structures. Finally, the performance of the system is
theometically analyzed. This includes denvation of upper
and lower bounds of the evaluation index, and determining
its relation with interclass distance and weighting coeffi-
cient. The effectiveness of the algorithms, along with exten-
sive comparisons, 15 demonstrated on four different data
sets, namely, three-dimensional Gclass vowel data, four-
dimensional 3-class Inis data, nmine-dimensional  d4-class
medical data and 18-dimensional 3-class mango-leal data.
The validity of the experimental resalts is analyzed nde-
pendently with scatter plots and £-NN classifier for different
values of £

The article is organized as follows. Section 2 provides the
description of a new feature evaluation index and weighted
membership function. Section 3 describes the connec ionist
model for the evaluation of the feature evaluation index.
Theoretical analysis of the feature evaluation index s
provided m Secton 4. The effectiveness of the methods is
established with experimental results in Section 5. Finally,
the paper is concluded in Section 6.

2. Fuzzy feature evaluation index and weighted
membership function

Let us consider an m-dimensional feature space 2
CONLAIMINE X ). X3, Xy, 00X 0, fealures  (components).
Let there be M elasses Cy, Ca, Cy, ... Cr..... Cag. The feature
evaluation index for a subset { £3,) containing few of these n

features 15 defined as

XEC

\fo}
RS e

k' ek
where x is constituted by the features of £2, only and

s X = e (%) X (1 — e (X)) (2}

Selx) = %[p.[_-r, () X (1 — pe (xD] + %[p{;.}rfx}x i1
— M (x)l, (3)

with e (x) and g (%) being the membership values of the
patlern X in classes Cp and Cy, respectively. Here ag s the
nomalizing constant for class C, which takes care of the
effect of relative sizes of the classes.

Mote that, s, 5 zero (minimum) if B, = I, or () and is
(.25 (maximum) if g, = 0.5. On the other hand, sy 1s zero
(minimum) when pe, = pe =1 or 0, and is 0.5 (maxi-
mum) for pe =1, g =0 or vice versa.

There fore, the term ff.,,c.-‘zch < S ) 1s minimom if e, =1
and pe =0 for all k' # k, ie. if the ambiguity in the
hcl{}ngiﬁgncss of a pattem x to classes O and Cp W # &
is minimum (the pattem belongs to only one class). It s
maximum when pe, =035 for all £ In other words, the
valoe of E decreases as the belongingness of the pattems
increases for only one class (e, compactness of individoal
classes increases) and at the same tme decreases for other
classes (e separation between classes mereases). The
valoe of E increases when the patterns tend to hie at the
boundaries between classes (Le. p— 0.5). Our objective
1%, themefore, to select those features for which the valoe
of E 1s minimum. Here E 1s computed over all the samples
in the feature space orespective of the size of the classes.
Therefore, it is expected that the contribution of a class of
bigger size (e, with larger number of samples ) will be more
in the computation of E. As aresult, the index value will be
more biased by the bigger classes; which might affect the
process of feature selection. In order to overcome this, Le. o
nommialize this effect of the size of the classes, a factor oy,
corresponding to the class Cp, 15 intmoduced. In the present
investigation, we have chosen ap = 1 — P, where Pris a
prion probability for class C,. However, other expressions
like e, = (1/|C,|) or a, = (1/P,) could also have been used.

The membership (g (X)) of a pattern X to a class C s
defined with a multi-dimensional m-function (Pal & Prama-
nik, 1986) which 1s given by,

1—2di(x) O=dix) <4,
pe,(0=12[1 —dux)l* 1 =dix) <1, (4)
] otherwise,

where dyix) is the distance of the pattemn x from my (the
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Fig. 1. A schematic diagrmm ol the proposed neuml network model. Black
circles represent the auxiliary nodes, and white circles represent input and
output nodes. Small triangles attached 1o the output nodes represent the
modulatory comections from the respective auxiliary nodes,

center of class C). It can be defined as,

i iy
x; — omg _
dix)= ) ., =10, (5
LX) Z( T * )
1
where
Ay =2 max [|x; —my (]
ket EE':E:‘ [l\-, "nLI“" f ::I
amd
Y 5
XEC,
my = (7)
g

Eqgs. (4)=(7) are such that the membership pe (X) of 2
pattern x 15 1 i it s located at the mean of Cp, and 0.5 1 1L 1s
at the boundary (ie. ambiguous region) for a symmetnc
class structure.

In practice, the class structure may not be symmetric. In
that case, the membership values of some patterns at the
boundary of the class will be greater than (0.5, Also, some
patterns of other classes may have membership values
greater than (0.5 for the class under consideration. For hand-
ling this undesirable situation, the membership function
corresponding w0 a class needs to be transformed so that it
can model the real life class structures appropriately. For
this purpose, we have incorporated a weighting factor corre-
sponding to a featre, which transforms the feature space n
such a way that the transformed membership functions
model the class structures appropriately. Note that, this
incorporation of weighting factors makes the method of
modeling the class structures more generlized; a symmetnc
class structure being a special case.

For this purpose, we define weighted distance from Eq.
(3) as
1fry

LA
dx =3 w (T) . w €10, 1]. (8)

[

The membership values () of the sample points of a
class become dependent on wy. The values of w; (<< 1)
make the function of Eq. (4) flattened along the axis of x;
The lower the value of w, the higher is the extent of flaten-
ing. In the extreme case, whenw; =0, dy = 0and pg, =1
for all the patterns.

In pattern recognition literture, the weight w; (Eqg. (8))
can be viewed to reflect the relative impornance of the
feature x; in measuring the similarity (in terms of distance)
of a pattern to a class, It s such that the higher the value of
wi, Lthe more 15 the importance of x; in chametenzing/disen-
minating a class/between classes. wy = 100} indicates that x;
15 the most (least) important.

Therefore, the compactness of the individual classes and
the separation between the classes as measured by E (Eq.
(1)) 18 now essentially a function of w (= [w, wa. o Ll
we consider all the r features together. The problem of
feature selection/ranking thus reduces to finding a set of
wis For which E becomes minimum; wis indicate the relative
mmportance of xs in charactenzing/discriminating classes.
The task of minimization may be performed with various
technigques (Davis, 1987, Himmelblaw, 1972). Here, we
have adopted gradient descent wehnigue in a connectionist
frumework (becawse of s massive pamllelism, faull toler-
ance ete.) for minimizing E. A new connectionist model is
developed for this purpose. This s desenbed in the next
section.

Note that, the method of individual feature ranking s not
identical to that described in this section. The later one finds
the set of wis (for which E is minimum) considering the
effect of inter-dependencies of the features, whereas in the
case of former one, each feature 15 considered individually
independent of other.

3. Neural network model for fuzzy feature evaluation

The network (Fig. 1) consists of two layers, namely, inpul
and output. The input layer represents the set of all features
in M and the output layer comesponds to the pattern classes.
Input nodes accept activations corresponding Lo the feature
vialues of the input patterns. The output nodes produce the
membership values of the input patterns corresponding Lo
the mespective pattem classes. With each output node, an
auxiliary node 15 connecled which controls the activation
of the output node through modulatory links. An output
node can be activated from the input layer only when the
corresponding auxiliary node remains active. Input nodes
are connected o the auxiliary nodes through feedback
links. The weight of the feedback link from the auxiliary
node, connected to the Ah output node (coresponding Lo the
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class Cp). o the ith input node (corresponding o the feature
x;) is equated to — my;. The weight of the feedforward link
from the ith input node to the &th output node provides the
degree of importance of the feature x;, and 15 given by

w; \E
Wy = (—:l_m) . 9}

During training. the patterns are presented at the input
layer and the membership values are computed at the output
layer. The feature evaluation index for these membership
values 1s computed (Eg. (4)) and the values of ws are
updated in order o minimize this index. Note that, Ags
and mygs are directly computed from the raiming set and
kept fixed during updating of wis. The auxiliary nodes are
activated (e activation values are equated to unity ) one at a
time while the others are made inactive (i.e. the activation
values are fixed at ). Thus duning training, at a time, only
one output node 15 allowed o be activated.

When the kth auxiliary node is activated, input node § has
an activation value as

= (B, (10}

where [ 15 the total activation received by the ith input node
for the pattem X, when the auxiliary node & 15 active, which
is given by

I = x —my;, (11

with x; being the external input (value of the ith feature for
the pattern x) and — my; the feedback activatmon from the kth
auxiliary node to the ith mput node. The activation value of
the kth output node is given by

vy = gl h (12}

where g(-), the activation function of each output node, is a
m-function as given in Eg. (4). w. the total activaton
received by the &th output node for the pattern X, is given by

" I¥ry
¥ = (an X (:—) ) : (13)
; ki

Note that, v, 15 the same as d, (Eq. (8)) for the given inpul
pattern X, and v, 8 equal to the membership value of the
inpul pattern X in the class Cp.

The expression for E{iw) (from Eg. (1)), in terms of the
output node activations, 1 given by

vi(l —w)
Eiw)=
Zug: Z ['lkfl_'lkr}l'f"tkffl—'lk}li

kfek

(14)

The training phase of the network takes care of the task of
minimization of E(w) (Eq. (14)) with respect to w which is
performed wsing simple gradient-descent technigque. The

change in w; (Aw;) is computed as
i
Aw; = —qy—, ¥, 8]
g dw; )
where 1 15 the leaming mle.
For the computation of (dE/dw;), the following expres-
sioms are used.

R EITRLL. o vy
SolEL [[1 ] b = 2»-,:5,—"], (16)
owy ol o
og(x) o
- — = -2l (17)
ohw; oy
dvy i |
—4 — i [}E_I‘L{ 5
oW -
vy .
il 15 v 18
dw, —d[l -yl f=wm<L, e
oW -
0, otherwise,
and

dvy 3 ( W, )f.' I(.-_'J. — my );-.-_ (19
v ¥ Ay
Allernately, we can also express E oas a function of W,
where Wy, = (wi/A,)", and then minimize E with respect
to W, In this case, during tmining phase, the values of W s
can be updated vsing the same gradient-descent technigue.
After training, the degree of importance of ith feature can be
computed as w; = W X Ay;.

The steps involved in the tmining phase of the network
are a8 follows:

¢ Calculate the mean vectors (my) of all the classes from
the data set. Set the weight of the feedback link from the
auxiliary node comesponding to the class C) to the input
node i as — my; (for all ¢ and £).

¢ Compute Ags from Eg. (6) and initialize the weight of the
feedforward link from ith input node to kth output (for all
values of § and &) node. Setthe values of ris (in Eq. (8)) so
that the membership values of all the patterns of the kth
class are at least (05 for that class.

e For each mput pattern:

¢ Present the pattem vector o the imput layer of the
network.

s Actvate only one anxiliary node at a ime. Whenever
an auxiliary node 1s activated, it sends the feedback 1o
the input layer. The input nodes, m turn, send the
resultant activations o the output nodes. The activa-
ton of the cutput node (connected to the active aoxili-
ary node) provides the membership value of the input
pattern to the coresponding class, Thus, the member-
ship values of the input pattem corresponding o all
the classes are computed by sequentially activating
the auxiliary nodes one at a time.

¢ Compute the desired change in weights of the
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feedforward links to be made vsing the updating rule
given in Eqg. (15).

¢ Compute tolal change in w; for each i, over the entire set
of patterns. Update w; (for all i) with the average value of
IjLWj.

¢ Repeat the whole process until convergence, e the
change in E becomes less than certain predefined small
quantity.

Afler convergence, E(w) atlains a local minimum. In that
case, the weights of the feedforward links indicate the order
of importance of the features. In the following section, the
convergence of Eis theoretically established, and the valid-
ity of the ordering of features in terms of network para-
meters s demonstrated  for some  well-defined  class
structures.

4. Theoretical analysis

Here, we analyze mathematically the characteristics of
the feature evaluation index (E) and the significance of
weighting coeflicients (wy). For this purpose we proceed as
folkvws.

s A fixed upper bound and a varying kvwer bound of E(Eqg.
(1)) are derived. The variation of E with respect 1o the
lower bound 15 studied.

o A melation between E. ow; oand imterclass distance is
denived.

4.1, Upper bound and lower bound of E

We can wrte E (Eq. (1)) as

E:ZZ prg X (1 — pphoy
& XEC, j~!. Z [pge X (1 — preed + prpr X (1 — prg )]

kf ik

{20

where py = pe (x) and py = F-:"Jr{-’i}'- Let, E=Y,E, =
2k 2aec, E x|x € C;) where

e X (1 — ey
E, = (21}
: ‘;} 3 Z [pee X (1 — prped + g X (1 — )]
K wik
and
Edxx € cp= por 207 )il )
1 I X — ) + e X (1= )
kfek
(22)

That is, E, is the value of the evaluation index comesponding
toa class O, and Ek(x|x = Cp)is contribution of a pattern X
in class C, to E.

For a pattem x in class C),

1
5 20 [kl = ) + e (1 — ]

Tk ek

1 5
= 5 20 bl = )+ (= )™+ (1= )
ke
Since [(py — pe)” + (1 — )] = 0,

1 M—=1
3 2 el = )+ el = gl = =

< Rk

(1 — )

where M 1s the number of classes. Siee, 0 < g << 1, we
can wrile

o R M 2
Ekfxl.t e Cy) M=1 (23)
Therefore,
2M
i3 = 2
L) M—1 (24}

where  denotes the ‘mathematical expectation’ opera-
tor. o

Again, fora patiem x in class Cp, g g = [0, 1], we can
write

3 [l — ) + el — )] = 3,

1 il
Z Sl = ) + (1 =l = (M = 1),
Kk T

1 2

E = £l
> Al =)+ el — )l (M= 1)

k'ek

Z ] — peghoyg
LIl = ) + (1 — )]

k
k' sk

2
= =1 g_#xﬂ — Moy

Thus
Euxlxe ) = mpkfl — e,
That i
2
SE)y= T f;fg el — oy o) (25)
Therefore,

m-n @

a S0 el Jag) = E(E)
— it = o) = o =
(M —1) - L HLi M
Note that, the upper bound of #(E) is fixed, whereas the
lower bound 15 varying with [2/M — l}llr‘EfL il —
ey -
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Fig. 2. Mon-overlapping pattem classes modeled with m-function.

Let us now analyze the behavior of Ej(x|x € €,) with In order w show that Ejx|x € C;) monotonically
respect Wwoopgll — ). For this purpose, we substtute increases with w1 — g ) for both non-overlapping and
il — pepd by fyoin Eqg. (22). In that case, overfapping class stroctures, we consider the following

CiLses.
el D [l = ) + (1 = pdl(1 = 2p0) — (1 = ) D (1 = 2p0)]
dEJ.-f-‘l-‘ € Ci) — ke kisik
iy T el — ) + el — P10 —2p)
ki
vy,
= L2 -, (27)
SUY Tl = ) + pgll = )P
T ke
where
Z (g1 — prg) + (1 — g )1 — 2p) — (1 — py) Z (1 —2p)
O kT k (28)
4 (1 —2up)

It is clear from Eqg. (27) that {-:!Ek{.'dx e Cpfdhy) as Case I (Non-overlapping (Fig. 2)). Here, for a pattem x,
positivefegative if w15 positive/negative. In other words, if |x; — my| = (A/2) holds for all values of i, g, = 0.5 and
Ex|x € C}) increases/decreases  monotonically  with ppe < 0.5, WE' 2 k. Therefore, », = 0 (Eq. (29)), and as a
pl — pegd i w18 posiive/negative. Smmplifying the result (dE (x|x € C,Wdh,) = 0. This indicates E(x|x €
expression on the right-hand side of Eg. (28) we gel C s monotonically increasing with g (1 — g

Case 2 (Overlapping (Fig. 330 In this case, for a pattem x,

p,i Z (1 —2p0) if |x; — my| = (A,/2) holds for all values of i, g, = 0.5 and

- Z g — kv (29) e = 0.5, Wk' # k. Since the classes are overlapped, we
3 Froeh I (1 —2p;) - i consider two different possibilities: x lying outside the

Fig. 3. Overapping pattem classes modeled with m-function.
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overlapping  zone (e, |n— my| = (A2).¥i  and
|x; = my| = (A2)) and x lying within the overlapping
zone (e |q—myl < ARYD and  |x —myy| <
(A 20, Y0

If the pattern x lies outside the overlapping zone, then
o == 0.5 and thereby v = 0 (Eg. (29)). This indicates
E ix|x € C) monotonically increases with (1 — ).

If x lies within the overlapping zone, both g, e = (05,
Then we have three possibilities: (a) gy = s (b g =
peps and (o) pyp <0 py.

(a) py = pye. Let e = g — gy where gy = 0. There-
fore, from Eqg. (29) we get

i > (= 2w + 264)

b= zkrp.k - ew) = — = . (30
1.6
v=M— D — > ey
ke k
207 > e — Hi(2p — 1M — 1)
2 kel TR : (31}

Thus, E (x|x € C) increases monotonically with gl —
wy) if

(M — Dpy — Z €k

ksl

2u; Y e — gy — 1M — 1)

L3 = (), (32)
(1= 2p)
1.e 1f
1 1 — M2, — 1
L L st [ F‘LH\ L i ) (33)
M-1:0 (1 — ) +

Since, ey = 0, the above inequality always holds, and
therefore, in such cases, Ey(x|x € C}) always increases
monotonically with pg(l — .

by oy = . In this case. gy = (. and therefore,
mequality (33) always holds. Thus, in this case also, we
gel a monotonic increasing nature of Egx|x € ) with
respect wope(l — gl

(e) pry =< pege. Inthis case, g, << (. Let us replace g by
— i iy = g + gy Then, the condition for B (x|x €
O ) being monotomcally inereasing function with respect o
gl — pg ) becomes

— 3 R
1 ZEW{MH 02 e 1}_

- 3 . 3 (34)
M—A = (1= pe)™ + g

This condition provides an upper bound on the average
value of g (hence on the average value of g o) that can
be allowed in order to gel a monotonie increasing behavior
of E (x|x € ) with respect to il — pg).

First of all, the chance of oy <0 g is low for a pattern in

class Cy. Even if this happens (say, for overlapping case),
the chance of happening

1
M—1

> e = (el — )2y — I — el + )

k'wk

15 very low (as illustrated o the following two examples).
Therefore, Ejx|x € C;) is most likely monotonically
mereasing with gl — .

Example 1. Let, g, = 0.6 for a pattern x lying within the
region |x — my| = A4/2 inclass C;. Then, the condition (34)
becomes

ﬁ Z e < 0.1,
Kk
In order 1o violate this condition, the average membership
value of x (say, po) to classes other than C) should be at
least 0.7. It can also be seen that whatever be the value of
gy (= 0.5), the value of ., should be greater than g . This
15 unusual. Thus, we can say that in this case the inequality
(34) will be satisfied and thereby, we can expect & mono-
tonic increasing behavior of E((x[x € C)) with respect o
gl — gy

Example 2. Let, gy =05, In that case, condition (34)
becomes

1 Z e < 0.

M—1 &

That is, the average membership value of x to classes other
than C should be greater than or equal to 005, This situation
oceurs when the classes are highly overlapped. In other
words, if there is high amount of overap, the behavior of
Ejx|x € C;) becomes unpredictable  for  ambiguous
patterns. o

Thus, we can say that almost in all the cases, E(x|x €
Ci ) is monotonicall y inereasing with g1 — pg ). Therefore,
we can expect that E; (=3 ¢, E (x|x € C})) increases
monotonically with 3, (1 — wp) In other words, almost
in all the cases &(E) is a monotonically increasing function
of $0 (e (] — g dag ), as ags are positive constants,

4.2, Relation between E, interclass distance and w;

Let us now derive a relation of the lower bound of £(E)
with interclass distance and weighting coefficients for some
well-defined class structures.

o et us assume that the classes C, Ca, ..., Cr, o, Oy have
mdependent,  identical  Gaussian  distnbutions with
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Fig. 4. Gmphical representation of & (&) with respect to ©p5) and ©p22 with wy = wy = LIL

SpeCve meians my, my,... .mg,..., m,,; and with the
same variance o, Let pi(x|Cy) be the class-conditional
probability density function for elass C,. Then

1 i
(X C) = — exp| — Z (35)

LT

Let the membership of a pattem X in a class C) be given by

: e
[x; —_m,a,'l W}
242

[36)

pp = ppix) = exp| — Z

[
where A 15 the bandwidth of the class Cy. and s the same for
all the classes.

S1E) 15 given by

S(E)= J Ep(x) dx,
X

whene

p(x) = ZPI,'.U[Klf:,'.j: (38)
X

with P, being a prion probability of class C. Evaluating the
right-hand side of Eq. (37) (see Appendix A). we have

bl

'|1';

a P 5

M-1 29

SE) =

k

* ]+Zc1p —z

i gt 1+ P—1
Wy
& 1 1
s ':'.271':'
sally

" M
o - 2 ¢ =3
i ""x ‘“-\.\_\ =
016 - % K Ry E
\, \\ \M i
0.1d :.-iz-ig.tl '\-\. __\r;__.I Fis) \:1.“ q.1 ——
: Sael :“'--..__ i h"j--_\_\___ _
0.12 o s ' s s
I 0.1 a.2 0.3 o4 L5 0.6 a.r 0.8 o4 1
L

Fig. 5. Graphical representation of #£{E) with respect t

1wy for different values of cia, with oy =0 and 35, wi = 1.
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where p= (Afo) and cyr; = my; — mys 15 a measure of
interclass distance between the classes C) and O along
the feature axis x;.

Let us consider two classes C) and Cs, with two features
xpand x.. Let, C and Cs have unit nomal distribution, 1.e.
o=10.Let, A= 10and P, = a;, = 0.5 (Vk). ¢4 and o422
are the mterclass distances between class ©) and class O
along the feature axes x; and x., respectively. We now
demonstrate graphically the vanation of & (E) with respect
to 12 and ey, and wy and ws.

Fig. 4 shows the vanation of & (E) with respect o oz and

0.3

c

o different values of o5, with gz = 0 and E‘ =1

0, e, when the two classes completely overlap, Here £(E)
decreases with the increase inoopy and o). This vanation is
symmetne with respect o both oz and 2 The rate of
decrease in (E) also decreases as op2 (and c©p22) Increases,
Finally, after a certain value of ¢ {and 1) the rate of
decrease in &0 (1 — prgdog) becomes infinitesimally
small. This 15 also evident from the way of compuling -
value where o of a pattern X with fixed gy decreases with
merease in mterclass distance. IF the interclass distance
exceeds o certain value, p; becomes very small. Thus, the
contribution of the pattern to the evaluation index does not

cizwithw) = wa = | SE ismaximum whenc iy = cpm = get affected further by the extent of the class separation.
SO T !
qZE EDEQHIESL Y LIF IMT.LEILENLES
s 1T
aoof = S
| T 1L —Is
a4 O 15 AHD ABOVE |
; { Faa
RaF .
llu
1 l_d
cO0F AT
P
T gack fo0980a gy
iE ! o
- -] '??'I‘-fx
40 o o ©
(AT RU SRRV
00F uu_u_ u ""_J
E'CID'I 1 L S 1 .
B0 200 1200 1500 iaon 100 2400 00
F,inHz
g. 22 The only difference is that here approx imate boundary of the classes

Fig. 7. Two-dimensional {F; —F) plot of the vowel data This figure is the same as Fi

are dmwmn.
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Importance of different feature subsets. X = ¥ means feature subset X is more important than ¥, Since the number of subsets for medical and mango-leaf data is

Viowel

1B} = {Fi} = {F.Faf =
tFaks = {FLEF =

{FLFa} = {F3}
Inis

FEI of Pal { 1992), Pal and Chakrborty {1986)

{PW} = [PL} = [PLPW! =

1SW PW ) = [SW.PL) = [SLPL) =

{SL.PW} = {SW.PL PW) = [SL} =

ISL.SW PW! = [SLSW.PL! = | SLPL PW)

{SL.SW PLPW) = [SLSW ) = [ SW)

[MCV) = [LDHMCV) = [MCH} =

IMCV.MCH} = {MCV.TBil} > [LDH,MCVTBil} =
{LDHMOY MCH) = [LDHMCH} > [BUNMCY!} =
[LDH} = | MCHTBIl} = [LDH,BUNMCV] =
{BUNMCVMCH} = {BUNMCY.Thil} =
{LDHBUNMCY, MCH) = ...

Mango-leaf [L/B} = [L/B,UPe/LPe} = [SLL/B} =
{81} = {SLL/B,UPe/LPe} = {SLUP/Lpe) =
ISLL/BAL + PyBY = (B,L/B) = [B.SLL/B)} =
ISLIL + PVB} = |B.UBJL + PVB) = [BSI) =
{L/BIL + PVB,UPelLPe} = [{L + PVB,UPe/LPe} = .

Medical

{FLF} = {Fa) = {Fy} =
{FoFs} = {FLEFy ) =
{Ea} = |FLFLFs)
{PL} = [SWPL) = [PLPW} =
{PW} = [SW PLPW} = [SLSWPLPW)} >
1SW.PW ) = [SLPL} = {50 PLPW) =
{SLEW.PL) = [SLSW.PW| = [SLPW]} =
{8W} = {51} = [SLSW}
{MCV MCHTBIl} = [TBil} = {MCVTBil} =
{MCH} = {BUNMCY MCH} = [BUN MCV]} =
IMCH,TBil} = [BUNMCV.TBil} = |BUNMCY MCHTBIl} =
{BUN,MCH} = |MCVMCH) > [BUN,Thil} =
{BUN} = [BUNMCH,TBil} = [MCV} = ..

(B} = [L/B} = {B,UPe/LPe} =
{Pe} = [{L + PVB} = [AL} =
{B.L/B} = |BL/B,UP/LPe] = [P} =
Al=[L+P=5) =

{SLL/B} = [SLL/B,UPe/LPe} = |L/BJAL + PVB,UPa/LPe} = ..

Figs. 5 and 6 show the variation of &(E) with respect
to wy and ws for different interclass distances when
z,‘;, wf = 1. Here we have considered ¢4, = 0 through-
oul whereas o5 15 considered to be 1.0, 3.0, 5.0, 7.0
and 9.0), respectively. It 15 seen from the figures that E

decreases with vy (or increases with we) and atlaing a
maximum  (Or  minimum)

wy = (). This is due to the fact that the feature x; has
no discriminating power as ¢j22 = 00 On the other hand,
the feature xy is necessary for classification as there is a
separation (o2 # 0) between the classes along its axis.
Note also from Figs. 5 and 6 that for higher values of

21, the decrease (or increase) of E 18 more sharp. This
when wy =10 {or when indicates that the rate of convergence of the network o a
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Fig. #. Grphical representation of the relationship between featune evaluation index and Mahalanohis distance for the vowel data.
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Fig. 9. Graphical representation of the relationship between feature evaluation index and divergence measure for the vowel data.

local minimum increases, as expected, with the decrease in tested on four data sets, namely, vowel data (Pal & Dutta
overlap between the classes. Majumder, 1986}, Iris data (Fisher, 1936), medical data
(Hayashi, 1991} and mango-leal data (Bhattacharjee,
5. Results 1986). The vowel data consists of a set of 871 Indian Telugu
vowel sounds collected by trained personnel. These were
The effectivencss of the above-mentioned algonthms was uttered in 4 consonant-vowel-consonant context by three
3h T T
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& 55
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=
R
3
= 50—
e
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» it
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k] ™,
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i
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Fig. 10, Graphical representation of the relationship between feature evaluation index and Mahalanobis distance for Ins data.
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Fig. 11. Graphical representation of the relationship between featune evaluation index and divergence measure for Iris data.

male speakers in the age group of 30-35 years. The data set
has three features, Fp. Fs and Fs corresponding to the first,
second and third vowel format frequencies obtained through
spectrum analysis of the speech data. Fig, 7 shows a two-
dimensional projection of the three-dimensional feature
space of the six vowel classes (d, a, 1, u, ¢, o) in the F—-
F; plane (For case of depiction). The details of the data and

its extraction procedure are available in (Pal & Dutta
Majumder, 1986). This vowel data is being extensively
used for two decades in the area of patlern recognition.
Anderson’s Iris data (Fisher, 1936) set contains three
classes, pe. three varieties of Ins Qowers, namely, Ins
Setwsa, Ins Versicolor and Iris Virginica consisting of 50
samples cach. Each sample has four features, namely, Sepal
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Fig. 12. Graphical representation of the relationship between feature evaluation index and Mahalanobis distance for the medical data.
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Fig. 13, Grphical representation of the relationship between featune evaluation index and divergence measune for the medical data.

Length (SL), Sepal Width (5W), Petal Length (PL) and
Fetal Width (PW). Ins data has been used in many research
mnvestigation related to pattern recognition and has become
a sort of benchmark-data.

The medical data consisting of nine input features and
four pattern classes, deals with various Hepatobiliary

28":' —_— e — - - -1

2501 \

"
(o)
W

220 \

2000~

Feature evaluaiion indss

180

160 ' '
2

4 G a

disorders (Hayashi, 1991} of 536 patient cases. The input
features are the results of different biochemical tests, vie.
Glutamic Oxalacetic Transaminate (GOT, Karmen unit),
Glutamic  Pyruvie Transaminase (GPT, Kammen Unit),
Lactate Dehydrase (LDH, iw/f1), Gamma Glutamyl Trans-
peptidase (GGT. mu/ml), Blood Urea Nitrogen (BUN,

10 12 14 16

haha anobis disianac

Fig. 14. Graphical representation of the relationship between feature evaluation index and Mahalanobis distance for mango-leat data.
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Fig. 15. Graphical representation of the relationship between feature evaluation index and divergence measure for mango-leaf data.

mg/dl), Mean Corpuscular Volume of red blood cell (MCYV,
13, Meun Corpuscular Hemoglobin (MCH, pg), Total Bilir-
ubin (TBil, mg/dl} and Creatinine (CRTNN, mg/dl). The
hepatobiliary disorders Aleobolic Liver Damage (ALD),
Primary Hepatoma (PH), Liver Cirthosis (LC) and Chole-
lithiasis (C), constitute the four output classes.

Mungo-leal data (Bhattacharjee, 1986), on the other hand,

15 a data set on different Kinds of mango-leal with 18
featres, (Le. 18-dimensional data) with 166 daty points. It
has three classes representing three kinds of mango. The
featre set consists of measurements like Z-value (Z), area
(A), perimeter (Pe), maximum  length (L), maximum
breadth (Bl petiole (P), K-value (K), S-value (5), shape
index (51), L + P, L/P, L/B, (L + PVB., A/L, A'B, APe,

4.6 ; e |
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i AL E i
¥ o+ E D
LI =
zg B * -
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1_-_5' ] 4 i 1 e o
1 2 3 4 5 B 7 51

Fig. 16, Scatter plot SL-5W of Iris data. Here =%, *

SL

+ " and "0 mpresent classes Iris Setosa, Iris Versicolor mnd Iris Virginica, respectively.



RK Deer al # Newral Netwarks 12 1999 ) J420_ 1455

1443

T T T 1

Fig. 17. Scatter plot 5L-FPL of Ins data. Here =,

upper midrib/lower midnb (UM/ALM) and perimeter upper
hallfpenmeter lower half {UPe/LPe). The terms ‘upper” and
Tower” are used with respect o maximum breadth position.

In the following experiments the values of r in Egs. (5)
and (8) are so chosen that the membership values of all the
patterns of a class are at least 0.5 for that class. For 6-class
vowel data the values of rp are found to be 28.8, 78.5, 21.4,
T4, 204 and 47.8 corresponding o its classes. Similarly,

aL

+ " and "0 represent classes Iris Setosa, Iris Versicolor and Iris Virginica, respectively.

these values are 71.7, 2413 and 193.9 for 3-class Ins data,
650, 385, 12.8 and 163.2 for 4-class medical data, and
1338, 71.2 and 225.2 for 3-class mango-leal data.

5.0, Using feature evaluation indices

The evaluation index, E (Eqg. (1)), was computed for
various subsets of features of all the data sets described

25 T T T o T T
3 ]
O e
] =
R B o B
2F o i L4 i
3 ERC L]
T ]
3 +
+ + I
1.5 LRI N K 1
+ I i
E Lo o b o o !
o + =
+
1 Lo + 4+ &
i
0.5-
[ —— 1 e B = T o 1 1
1 2 3 4 5 ] 7 ]

Fig. 18. Scatter plot SL—PW of Iris data. Here =, °

+ " and “O0" represent classes Ins Setosa, Iris Versicolor and Ins Virginica, respactively.
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Fig. 19. Scatter plot 3W—PL of Iris data. Here =", * + " mnd "0 represent classes Iris Setosa, Iris Versicolor and Iris Virginica, respectively.

before. The order of importance of these subsets was
compared with that obtained by the feature evaluation
index (FEI) used by Pal(1992), Pal and Chakraborty (1986).

In the case of vowel data, the order of importance of the
subsets of features is

{Fat = (R} = F R ) = R Fy) = (FLFa By
= F. ) = (R

according o E of Eq. (1), and

{Fi.Fat = [Fp} = (Fy} = (FaL Fy)

= FLFy By} = (B} = (FL B

according to the FEI of Pal (1992), Pal and Chakrabory
(1986). Here x = v indicates that the importance of feature
x 1% greater than that of feature v, For both the methods, three
best subsets are found to be the same. Similary, in the case
of Iris data (Table 1), the subsets {PW}, {PL} and
[ SW.PW | are found to be the first, second and third best
subsets by E (Eq. (1)), whereas the comesponding subsels
are {PL}. {SW.PL} and {PL.PW} by the index of Pal
(1992, Pal and Chakraborty (1986). Note that, SL has not
come oul as a member of these subsets by either method.
In the case of medical data, since the number of features 15
nine, we have computed the evalvation indices for indivi-
dual featwres (e for the nine subsets), and for all the
subsets containing clements of the best four individuoal
features obtamed by the mespective indices. Nowe that,
these four features are found to be MCV, MCH, LDH and
TBil by Eq. (1), and TBil, MCH, BUN and MCV by FEI of
Pal (1992), Pal and Chakraborty (1986). Therefore we

consider five feawres LDH, BUN, MCV, MCH and TBil
Lo constitute these subsets. The total number of subsets thus
considered including the nine individual features becomes
35, Among all these, the order of importance of the best five
subsets, as seen from Table 1, 1s

[MCV} = [LDH,MCV} = |MCH} = [MCV MCH}
= [MCV,TBil}
aecording to E of Eq. (1), and
IMCV,MCH, TBil} = |TBil} = [MCV,TBil} = |MCH}

= [BUN,MCV, MCH |

according to the FEL of Pal (1992), Pal and Chakraborty
(1986). Note that, the features MCYV andor MICH are
present in all these subsets obtained by £ (Eq. (1)), whercas
itis MCH andfor TBil which are present in all the best five
subsets obtained by the ndex of Pal (1992), Pal and Chak-
raborty (1986). This conforms to the ranking order obtaimed
for individual features where MCV and MCH are found to
be the best two features vsing Eq. (1), and TBil and MCH
are those as obtained by the algorithm in Pal (1992), Pal and
Chakmborty (1986).

Similarly, in the case of mango-kal data, since the
number of features 15 18, we have computed the evaluation
indices for individual features (i.e. for the 18 subsets), and
for all the subsets containing elements of the best four indi-
vidual features obtained by the respective indices. Here, the
best four features obtained by these two indices are found to
be the elements of {Pe. B, 51 L/B, (L + PVB, UPe/LPe};
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Fig. 2. Scatter plot 3W—-PW of Iris data. Here =°, © + " and “0" represent classes Ins Setosa, Iris Versicolor and Iris Virginica, respectively.

thereby making a total of 75 subsets. Among them, the best
five subsets as obtained with E (Eq. (1)) and the FEI of Pal
(1992}, Pal & Chakraborty (1986) are (Tabke 1)

ILB} = {L/B, UPe/LP:} = |SLL/B} = |81} = [Pe,L/B}
and
|B} = |L/B} = |B,UPe/LPe} = |Pe} > |(L + P¥B}

respectively. Note that the features L/B and/or S1are present
in all these five subsets obtained by E (Eq. (1)) This
conforms o the mnking order obtained for individual
feature where L/B and SI are found w be the best two
features using Eg. (1) On the other hand, for FEI (Pal,
1992; Pal & Chakraborty, 1986) the best two individuoal
features, e.g. B and L/B are seen w0 be present only in the
first three subsets.
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1. Scatter plot PL—PW of Iris data. Here *°, © 4 " and “0" represent classes Ins Setosa, Iris Versicolor and Ins Virginica, respactively.
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Tahle 2
Recognition score with &=MNN classifier for individual and pairwise features
of Iris data

Feature Classification (%)

Suhset k=1 b= k=3 E=35 k=0
1SL} 4567 & 100 Gh AT 67.33 ahbT
|SW} 5533 5533 5247 5267 5467
|PL) 9333 £33 9533 95,33 9533
| P} RO33 R9.33 Qb 00 600 94,67
1SL5W ) T4 67 TaHT TaHT Ta0 TEON
{SLPL} 09533 Q2 00 9333 9533 Q600
{SLPW) 96T 6T 9400 Q4,00 91,33
15W PL} M 6T A1 6T 0200 09333 095,13
|5W PW) a7 92 67 a4 00 9467 Q400
1PLPW} 9333 4 100 b 10 Q6,00 9667

In order o show the validity of these orders of impor-
tance, we consider both scatter plots and &-NN classifier for
k=1,2,35and \."'E & being the number of samples in the
traiming sel. The mesults are shown only for Ins and vowel
data. In the case of Iris data, it s seen from Figs, 16-21 that
the order of importance (in terms of class structures) of the
feature pairs conforms o those (Table 1) obtained by the
evaluation index E (Eqg. (1)), Among all the feature pairs,
{ PL.PW | 15 the best. In other words, the result obtaned by
FEI of Pal (1992}, Pal & Chakraborty ( 1986), that the subset
{SW.PL} is more important than {PLPW |, does not get
reflected by the scatter plots. Although, the order of impor-
tance of PW and PL, individually, is found to be different for
E and FEL according to Fig. 21, they are seen to have more
or less the same importance.

From the results of k-NN classifier (Table 2), PW is seen
Lo be better than PL for most of the values of &, although the
difference is not  significant. In  fact, the ranking
PW = PL = SL = 5W as obtained by E for individuoal
features is seen to be exactly reflected in Table 2. As in
the case of scatter plots, |PLPW/} is seen here o be the
best of all such pairs. In other words, the order oblained by
FEI of Pal (1992}, Pal & Chakraborty (1986), that
{SW.FL} = [PL,PW} does not get supported by the £-NN
classificr. The subset |SW.FW} is also found to be more
important (in terms of classification performance) than

Tahle 3
Recognition score with &MNN classifier for individual and pairwise features
of vowel data

Feature Classification (%)

Subset k=1 k=l k=3 k=35 k=2
1F} 26.52 1825 27.21 2721 31.92
{Fa} 858 1628 i823 47.76 .28
[Es) 2606 M4l 3341 33,87 .75
(E..Fi} 537 5568 6820 76.35 71.73
{1Fi.Fa} 44 .32 4558 454 5580 .65

|Fa,F3} 58.21 560.14 6303 03495 5. 10

Table 4
Importance of different features of vowel data

Feature  Initial w

= 1.0 = [i,1] =05x¢€

W Funk W Rank W Fank
F H40382 2 0.257358 2 1L.213647 2
Fa (1759389 | 0.437536 | (L3262 1
F; 0435496 3 (154319 3 (L123651 3

{SW.PL} for all the cases except &£ = 9. These signify the
superiority of the measure E over FEI considenng the mank-
ing within both individual features and pairwise features.

In the case of overlapping vowel data, it is seen from Figs.
22-24 that [ F.F5} 15 the best feawre pair, and this
conforms o that obtained by both the mdices. The order
of importance of the feature pairs, {F, Fy} = (Fo, Fy} =
{F . Fy . as obtained by both the indices, is also in confor-
mity 1o the results obtained by k-NN classifier. However,
unlike E, the relative importance of the best three subsels
obtained by FEL 15 seen to be mamtained in the results of k-
NN classifier.

Finally, the relation of feature evaluaton index, E (Eqg.
(13 with Mahalanobis distance and divergence measure 1s
graphically depicted in Figs. 8 and 9 (for vowel data), in
Figs. 10 and 11 (for Iris data), in Figs. 12 and 13 (for the
medical data) and in Figs. 14 and 15 (for mango-leal data).
They are computed over every pair of classes. As expected,
Figs. 8-15 show a decrease in feature evaluation index with
increase in Mahalanobis distance and divergence measure
between the classes,

5.2. Using the newral network model

Tables 4-7 provide the degrees of importance (w) of
individual features, obtained by the neural network-based
method (Section 3), comesponding to the vowel, Ins, medi-
cal and mango-leal data. Three different imiializations of w
were wsed in order to train the network. These are:

(i) w; = 1, tor all i, i.e. all the features are considered Lo

be equally most important,

(i) w; = [0, 1], for all i, ie. the network starts searching

Table 5
Importance of different features of Iris data

Feature  Initial w

=11 = i, 1] =5*xe

W Ruank W Rank  w Rank
SL 0480797 4 0203230 4 022066 4
5w 0572347 3 03252 3 0374984 3
PL. L6175 1 (422184 1 041367 1
P 0.6ITITA 2 0403027 2 0402833 2
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Table 6
Importance of different features of the medical data

Table 7
Importance of differsnt features of mango-leaf data

Featum Initial w Feature Initial w
=10 e [0, 1] =05+ ¢ =10 E0,1] =05+e
W Bank w Rank w Rank W Bank w Rank w Rank

GOT (L5704 2 (L1643 2 0.6 13058 2 Z 0398839 13 (LIEGE 16 11 (L0NT 504 17
GPT 0317 3 .52989 3 0534147 3 Y 1.50(0456 9 00802408 12 0121824 13
LIMH MISIA7 4 0LMI6TT 4 0322765 4 P 0451312 12 OB0145 13 0. 280411 11
GGT 133640 5 03063 5 (.235711 il L. 0507300 11 LT 14 00T 141 1
BUN N7den 9 0.1425% § 012307 9 B (1L.598 589 5 0426404 4 445400 5
MCYV (1.735713 | (1. 748205 | (747224 | P (.273254 17 M2582 15 (L3251 9
MCH 01280931 fi O Ids 7 0328 5 E (.60N539 4 0411154 =] . 457997 4
Thil 0i2xMo 7 02047 4 0201762 7 5 0.535603 T (. 1ERS07 Q9 0328027 6
CRTNN  (L10365 8 0125008 9 0149290 | 1 | 0313462 15 (LNETSH 16 0. 201877 2
L+ P 0508099 10 0.300547 T 0.2334E9 10
LiP (LI9183E 18 BaTT7T 11 arm2 s
for a sub-optimal set of weizhts from an arbitrary point in s eHHT 6 0213001 3 0.310526. 7
! P : st Y (L+PyB 0293149 16 (LKT6]L 18 L1678 14
the search space, and AL 0625540 3 0500711 3 052431 3
(1) w; = 05 * g, for all i, e € [0,0.01]. In this case the AlB 1523274 8§ 0401377 6 nwom: g
features are considered to be almost equally but not fully AlPe 0643935 2 Oedooss 2 0714805 2

& . & ¥y ¥
important. Note that, wy = | means the feature x; 15 most e 032303 14 cobmiy 17 gz 16
UPe/LPe 1.0 1 (1. 768731 | (.72 8 |

important. That is, its presence is a must for charactene-
ing the pattern classes. Similarly, w; = () means x; has no
importance and therefore, its presence in the feawre
vector s nol required. wy, = 005 indicates an ambiguous
situation about such presence of x;. € adds a small pertur-
bation w the degree of presence/importance.

It is found from Table 4 that the order of importance of
individual features for the vowel data, under all inital pea-
tions of w, is Fy = F) = F; which is the same as obtained
by both E (Eq. (1)) and FEI (Pal, 1992; Pal & Chakraborty,
1986). For Ins data (Table 5), like both E (Eq. (1)) and FEI
(Pal, 1992; Pal & Chakmborty, 1986), PL and PW are found
to be the best two features. As established in Section 5.1 by
the scatter plots (Figs. 16-21) and the results of &NN
classifier (Table 2), { PL PW } is the best feature pair. Within
them it 15 hard w0 find the edge of one over the other. This
justifies the interc hangeable order as obtained by E(Eg. (1))
and FEI (Pal, 1992; Pal & Chakraborty, 1986) between PW
and PL.

In the case of medical data (Table 6), the order of the best
four features as obtained by neuro-fuzey  approach s
MCY = GOT = GFT = LDH, whereas this 1%
MCV = MCH = LDH = TBil by Eq. (1). Note that,
MOCW has come out as the best individual feature in both
the cases. Table 8 shows that the results of B-NN classifier
using these feature sets. Here, the neuro-fuzey method is
seen to perform better than E (Eqg. (1)) (with respect to
classification performance) for all values of & On the
other hand, for mango-leaf data, the set of best four features
obtained by the neuro-fuzey approach (Table 7) is found to
perform poorer (Table 930 In this connection we menton
here that the neuro-fuzey method considers inlerdependence
among the features, whereas the other method assumes
features to be independent of cach other.

As mentioned in Section 2, the transformed feature space
15 obtained by multiplying the original feature values with
their respective  (optimum)  weighting  coefficients  as
obtained by the ANN model. As typical illustrations, Figs.
2527 depict three scatter plots in the two-dimensional
transformed spaces for Inis data. Note that, the scales
along both the ransformed axes are kept identical to those
of the original ones, for the sake of comparison. From Figs.
16-21 and 25-27 it is seen that the classes in the trans-
formed feature spaces are more compact than those in the
original spaces; thereby validating one of the objectives of
the algorithm. In order to support this finding, &-NN
classifier was also wsed on the transformed spaces. It was
found, for example, for the pair { PLPW | that NN classi-
fier results in 94, 94, 96, 96.67 and 97 33% in the trans-
formed space as compared w 9333, 94, 96, 96 and
96.67% in the onginal one for £ = 1.2,3.5 and 9, respec-
tively. Similarly, for overlapping vowel classes, the classi-
fication performance is seen Lo improve in the transformed
space for lower values of & For example, for the feature
pairs [Fy. Falo (F. Fs)boand [ Fh, Fi}oin the transformed
space, £-NN classifier results in 3901, 55.34 and 62.80%
for k=1, and 5798, 52.8] and 60.05% for k=2 In
contrast o that the figures are (Table 3) 56.37, 44.32 and
5821% fork = 1. and 55.68, 45.58 and 56.14% fork =2 in
the onginal space.

It has been observed experimentally that the network
converges much slower with the initalization w; = 1, for
all i, as compared 1o the other values. For example, the
number of iterations required to converge the network come-
sponding to the imitializations 1, [0,1] and 0.5 * € are
17 300, 10 000 and 11 500 for vowel data, 9400, 7000
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Fig. 22, Scatter plot Fa—F, of vowel data. Here ©O°, 0 @, "%, "% "and ° + * represent classes d, a, i, u, ¢ and o, respectively.

and 3600 for the Ins data, 4700, 3000 and 190 for medical
data, and 1700, 1200 and 900 for mango-leaf data.

6. Conclusions

Inthis article, we have presented a neuro-fuzey model for
feature evaluation along with its theorencal analysis and
experimental performance on speech (vowel) data, Iris
data, medical data and mango-leal data (having dimension
three, four, nine and eighteen respectively ). First, a feature
evaluation index 15 defined based on the aggregated measure

between the classes in terms of class membership functions.
The index value decreases with the increase in both the
compactness of individual classes and  the separation
between the classes. Using this index, the best subset from
a given set of features can be selected. As Mahalanobis
distance and divergence between the classes inerease, the
featre evaluation index decreases.

Weighting factors representing feature importance are
then introduced into membership functions. Incorporation
of these weighting factors into membership function mves
rse to g transformation of the feature space, which provides
a generaliced frumework for modeling class structures. A

of compactness of the individual classes and the separation new  connectionist model 15 designed in order o
Table 8

Recognition score for medical data with &-NN classifier corresponding to four best individual features, obtained by the neuro-furzy method and £
Feature Classifi cation (%)

Subset k=1 Fank k=2 Bank k=3 Bank k=5 Fank k=16 Buank
1GOT,GPT,LDH MOV ) 44 40 | 45,40 | 4851 | 47.76 | 48 BR |
ILDH MCY, MCH, TBil } 4366 2 38.06 2 AT 2 45.9) 2 4515 rs
Table 9

Recognition score for mango-leaf data with &-MN classifier corresponding to four best individual features, obtained by the neuro-fuzzy method and £
Feature Classification (%)

Subset k=1 Eank k=2 Rank k=3 Bank k=5 Rank k=9 Buank
{E AL APe UPe/LPe ) (AR 2 G786 2 HT.EA 2 &4 20 2 T024 2
B.S1L/B UP/LPe T6.19 | Bi.495 | T857 | T138 | TI138 |
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Fig. 23, Scatter plot Fy—F, of vowel data. Here “0°, 57, "@®°, "% " " % " and * + " mepresent classes d, a, i, u, e and o, respectively.
perform the task of minimizing this index. Note that, this It is shown theoretically that the evaluation index has a
neural network based minimization procedure considers fixed upper bound and a varying lower bound. The mono-
all the features simultaneously, in order o find the tonie mereasing behavior of the evaluation index with
relative importance of the features. In other words, the respect o the lower bound s established for different
interdependencies of the features have been taken into cases. A relation of the evaluation index, interclass distance
account. and weighting coefficients s derived. It 1s also shown that
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Fig. 24. Scatter plot Fi—F: of vowel data. Here %07, 57, "@®°, "% " " % " and * + " mepresent closses d, o, i, u, e and o, espectively.
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Fig. 25. Scatter plot PL—PW, in the trinsformed space, of Ins data. Here
respectively.

the higher the mterclass distances, the greater 1s the chance
of the network in getting converged into local minmma.
Results obtained by the feature evaluation index E of
Eq. (1} 15 seen w be supernor to that of FEIL of Pal (1992),
Pal and Chakraborty (1986). This is validated by both
scatter plots (e, in terms of class structures) and k-NN

2.8

i
4
watPL

-
& |-
-J
=

“+ "and *O° represent classes Iris Setosa, Iis Vemioolor and Iris Virginica,

classifier (e in temms of classification  perdormance).
Moreover, in the index FEL the separtion between two
classes 15 measured by pooling the classes together, and
modeling them with a single membership function. There-
fore, for an M-class problem, the number of membership
functions required is M + '€, ; where the first term and the

— T 1
2
1.5r -
=
o
=+
=
1 b
0.5 4
UI—I_ 1 1 - L 1 1
Ju] .5 1 1.5 2 2.5 3 3.8 4 4.5
w2 EW
Fig. 26, Scatter plot SW—PW, in the transformed space, of Ins data. Here =7, © + "and “O07 represent classes Iris Setosa, Iris Versicolor and Iris Virginica,

respectively.
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Fig. 27. Scatter plot SW-PL, in the transformed space, of Inis data. Here 7,

respectively.

second term correspond o individual class and pairwise
class  membership  functions, respectively. In o other
words, one needs MM + 1) parameters for compuling
the FEI. On the other hand, for computing the evalua-
tion index E, we need to compute only M individoal
class membership functions, ie. 2M parameters. Indivi-
dual ranking, as obtained by newro-fuzey  method,
conforms well to those obtaimed by E (Eq. (1)) for
both vowel and Iris data. For medical data the former
method 15 seen to perform better as per the E-NN
classifier 15 concemed, whereas it 15 the reverse for the
mango-leaf data.

In the neuro-fuzey approach, the class means and
bandwidths are determined directly from the training
data (under supervised mode). However, the method
may be suitably modified, in order to  determine,
adaptively, the class means and bandwidths  under
unsupervised mode so that it can give rise o a versa-
tile self-organizing neural network model for feature
evaluation.
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Appendix A. Derivation of Eg. (39)
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as
Ly
)3 <
e S M — 1
Thus,
Rl — oy

LY lmex(1-

k' =k

P+ e X (1 — ]

Z e

2y k'
= 1= + |3 — 2, —
ST Ly ( L p.k)M—l

Therefore, using Eq. (38). &1
(1 — g+ prge X 01— pe )]0 18 given by
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L I X1 = ) + e X (1 — )]
k¥ ek
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)h:xp( — ﬁ-,ﬂ_h_}r) diy---dx,
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1

X mp( =% ff‘;’g’ff-}-'-- ) dx,---dx, = P, — PuJy,
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— a3 Yaens [ %

Also let,
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Let us also assume that,
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= 1

Toprap =
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s0 that,

Sy =Pl —Jdy)= Pk(l = l_[-ﬁm)

and

Jia=F z (3 l_[-fu:‘n — El_liw_n — l_[-fuf.h')-
frars) i i #

Therefore, from Eq. (Al) we have,

& pr( 1 — g hoy
PO X (= )+ e X (1= gl

k ek

A S )
= Fi ok ; (A2
M—l(" M-1 )

For evaluating the integrals Jy Jyos Jyow, and Jyos we use
the result of the following integral,

J= J.mm uxp[—{a!.rj + ABx + “_P}I] dx.

Mow,
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I
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———
|
o
=
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A B — day R P 7 S
= 2pr( P )J.“ 2ﬁuxp[ gz e

Hence,
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We use the following transformation for evaluating Jy;,
e Sy and Sy

Then we can wnte,
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Therefore, using the result of S (Eg. (A3)) we have,
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where a = (1 + p'w?), B =0 and y= 0. Similarly, the
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e

expressions for Sy Joyw and Jyos are obtamed as follows.
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