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Abstract

Merriam- Webster’s open dictionary defines the term black box as

“a usually complicated electronic device whose internal mechanism is usually hidden from

or mysterious to the user; broadly : anything that has mysterious or unknown internal func-

tions or mechanisms.”

In the world of computer science, when we use a program as blackbox, we use it only by the in-

put/output relation of the program. One does not bother about the particular code of the program and

more specifically do not access the internal variables while executing the program.

In cryptography, blackbox constructions are very popular due to the efficiency and the robustness.

As opposed to specific white box constructions, security proofs of black box constructions remain valid

even if only one particular function (bilinear map) satisfies the underlying assumption (like one-wayness)

and some other function (like RSA) does not.

Indifferentiability of popular domain extension algorithms In this thesis we prove blackbox re-

duction and separation of some popular cryptographic constructions. In symmetric key constructions,

we consider blackbox reduction of cryptographic hash functions under the indifferentiability framework.

We introduce a unified framework for indifferentiability security analysis by providing an indifferen-

tiability upper bound for a non-invertible function based, wide class of hash designs, called GDE or

generalized domain extension. In our framework, we present a unified simulator and avoid the problem

of defining different simulators for different constructions. We show, the probability of some bad event

(based on interaction of the attacker with the GDE and the underlying ideal primitive) is actually an

upper bound for indifferentiable security. As immediate applications of our result, we provide simple

and improved (in fact optimal) indifferentiability upper bounds for HAIFA and tree (with counter) mode

of operations. We also consider a particular permutation based mode of operation of a SHA3 candidate,

JH. In this thesis, we prove indifferentiability of JH mode of operation. Additionally, a new mode by

modifying the JH mode is also analyzed in the indifferentiability framework.

In the second part of the thesis, we prove separation of popular public key constructions from a wide

class of assumptions.

Generic Insecurity of PSS First, we consider the problem of securely instantiating Probabilistic

Signature Scheme (PSS) in the standard model. PSS, proposed by Bellare and Rogaway is a widely

deployed randomized signature scheme, provably secure (unforgeable under adaptively chosen message
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attacks) in Random Oracle Model.

Our main result is a black-box impossibility result showing that one cannot prove unforgeability of PSS

against chosen message attacks using blackbox techniques even assuming existence of ideal trapdoor

permutations (a strong abstraction of trapdoor permutations which inherits all security properties of

a random permutation, introduced by Kiltz and Pietrzak in Eurocrypt 2009) or the recently proposed

lossy trapdoor permutations. Moreover, we show onewayness, the most common security property of a

trapdoor permutation does not suffice to prove even the weakest security criteria, namely unforgeability

under zero message attack. Our negative results can easily be extended to any randomized signature

scheme where one can recover the random string from a valid signature.

Separation of OAEP: Optimal Asymmetric Encryption Padding (OAEP) is a widely deployed

padding based encryption scheme. Although, OAEP has been shown to achieve Indistinguishability

under Chosen Ciphertext Attack (IND-CCA), until recently, all the positive instantiation result of OAEP

was on Random Oracle Model. In CRYPTO 2010, Kiltz, O’Neil and Smith proved that OAEP, based

on pairwise independent hash functions and Lossy Trapdoor Permutations, can achieve weaker Indis-

tinguishability under Chosen Plaintext Attack (IND-CPA) in the standard model. Achieving IND-CCA

security of OAEP without random oracle remains a challenge. In Eurocrypt 2009, Kiltz and Pietrzak

showed that IND-CCA security of OAEP or any other padding based encryption scheme cannot be

proven IND-CCA secure from any security property satisfied by a random permutation using blackbox

techniques in the standard model. In this thesis, we analyze the possibility of blackbox reduction of

OAEP in the Seed Incompressibility model where the adversary gets oracle access to the hash functions

and some fixed length advice. The Seed Incompressibility model is based on the notion of seed incom-

pressible function, proposed by Halevi, Myers and Rackoff in TCC 2008 and can be seen as a bridge

between the standard model and the random oracle model. In this thesis we formalize the notion of seed

incompressibility model and extend the negative results of Kiltz and Pietrzak to this model. We show

that even if the adversary can use the advice to construct only one ciphertext without querying the hash

function oracles, IND-CCA security for OAEP cannot be achieved from any security property satisfied

by a random permutation or from Lossy Trapdoor Permutations. Moreover, if the size of the random

string is relatively small then the result is perfectly valid even when the adversary needs to query only

one of the hash oracles in order to create a single ciphertext using the advice.
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2.5.1 Indifferentiability of Merkle-Damgård with prefix free padding . . . . . . . . . . 15
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Chapter 1

Introduction

1.1 Blackbox Reduction

The concept of subroutine is one of the fundamental concepts in Computer Science. A subroutine can

be viewed as a string of symbols which implements a particular function. For example, consider the

following piece of code written in C language.

int f ( int x) {

x++;

return x;

}

Essentially the subroutine f implements a function f(.), where f(x) = x+1, for any integer x. Now

consider the following piece of program that has become the symbol of the C programming language.

int main ( ) {

printf (”hello world”);

return 0;

}

The “main” program calls a subroutine “printf(.)” which prints a string at the screen. Although,

all C programmers use it numerous times, only few know what exactly are the instructions that “printf”

executes. Indeed the operation of the program “main” does not depend upon the actual description of the

subroutine “printf”, rather the subroutine is used only to perform the function it is supposed to do. The

program uses the subroutine “printf” as a black-box to print a string on the screen so that it can feed it
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some input and, in some sense, receive an output. We call such an algorithm which uses the subroutines

as a black-box, a black-box algorithm.

Black-box algorithms are very popular in computer science. Many times, when trying to solve a par-

ticular task, one would write an algorithm that solves the task if it is given black-box access to programs

that solve some simpler tasks, and then write programs that solve these simpler tasks. This approach is a

basic paradigm of software engineering, and almost all programming languages implement mechanisms

(such as function calls) to facilitate it. Black-box algorithms are very popular also in theoretical aspects

of Computer Science. For example, when proving that a decision problem L is NP-complete, one shows

the existence of a black-box algorithm B, such that if B is given black-box access to an algorithm A that

solves the problem L, then B can solve the Satisfiability problem.

The reason that black-box algorithms are so popular is that it seems very hard to make use of the

particular representation of a program as a string. Understanding the properties of a function from the

code of a program that computes it (also known as reverse-engineering) is a notoriously hard problem.

In fact, programs written without any effort on readability or programs written or compiled to low level

languages are considered to be quite incomprehensible. Moreover for the problems like the Halting

problem or the Satisfiability problem, it is either proven or widely believed that when trying to learn

properties of a function, there is no significant advantage to use the code of the program, over getting

black-box access to it.

1.1.1 Blackbox Reduction in Cryptography

In a large body of work in Cryptography, cryptographic constructions are not shown to be uncondition-

ally secure. Rather, their security is reduced to the security of seemingly weaker or simpler primitives. It

is known that if one way functions exist, then private-key encryption and authentication, pseudorandom

generators, (public-key) digital signatures, zero-knowledge proofs etc are possible. On the other hand,

if one way functions do not exist, none of the above problems have any solution.

Several other cryptographic problems, like public key cryptography, oblivious transfer, collision

resistant hash functions etc. are not known to be equivalent to the existence of one-way functions.

Moreover known constructions of digital signature or pseudorandom generators using one-way functions

are inefficient. It is natural to ask whether one way function can be used to solve the problems like public

key cryptography or whether one can find an efficient constructions of digital signature from one-way

function. However, one has to be careful while formalizing such questions. Although, Oblivious transfer

can be solved using some widely believed number theoretic assumptions, such a result does not imply a

solution using arbitrary one-way function.

Impagliazzo and Rudich formalized a framework to solve such problems. They observed that most

implications in cryptography are proved using a blackbox reduction, where the underlying primitive is
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treated as an oracle subroutine. Informally, a black-box reduction of a primitive P to a primitive Q is a

construction of P , out ofQ, that ignores the internal structure of the implementation ofQ and uses it only

as a black-box. In addition, in the case of fully-black-box reductions, the proof of security (showing that

an adversary that breaks the implementation of P implies an adversary that breaks the implementation

of Q), is black-box as well. The internal structure of the adversary that breaks the implementation of P

is ignored.

1.2 Goal of the Thesis

The main objective of the thesis is to find out whether some popular cryptographic constructions can

be reduced to ideal primitives using black-box reduction. We consider constructions from Symmetric

Key as well as Public Key settings. For symmetric key constructions, we analyze wide class of domain

extension techniques of cryptographic hash functions and check whether security notion like Pseudo-

randomness can be achieved from the randomness of the underlying primitive (compression function or

permutation) using black box techniques. For public key cryptography, our goal is to investigate whether

one can use blackbox reduction to prove the security of popular padding based signature schemes (e.g.

PSS) and padding based encryption schemes (e.g. OAEP) when the underlying hash function is not

modeled as a Random Oracle .

1.3 Contribution of the Thesis

Indifferentiability of Popular Mode of Operations

In the first part of this thesis we consider the reduction of Pseudorandomness of a Mode of operation

from the randomness of the underlying primitives in the indifferentiability framework. Although many

popular domain extensions algorithms based on ideal compression functions have been shown to be

indifferentiable from a Random Oracle (RO), the proof of these results are usually complicated (many

times, due to numerous game hopings and hybrid arguments). Also, they require different simulators

for each individual hash design. There were no known sufficient conditions for hash functions to be

indifferentiable from an RO. So a natural question to ask is: Can we characterize the minimal conditions

of a cryptographic hash function to be indifferentiable from a Random Oracle and achieve optimal

bound?

In this thesis, we present a unified technique of proving indifferentiable security for a major class

of iterated hash functions, called Generalized Domain Extensions. We extend the technique of Maurer

for indistinguishability of random systems to the indifferentiability framework. We identify a set of

events (called BAD events) and show that any distinguisher, even with unbounded computational power,
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has to provoke the BAD events in order to distinguish the hash function C from a random function

R. Moreover we prove that, to argue indifferentiability of a construction Cf (based on compression

function f ), one has only to show that the probability that any distinguisher invokes those BAD events,

while interacting with the pair (Cf , f), is negligible. Then, we apply our technique to some popular

domain extension algorithms to provide optimal indifferentiable bounds. In particular, we consider

Merkle-Damgård with HAIFA and tree mode with specific counter scheme. Many of candidates of

SHA3 competition, most notably BLAKE, MD6 etc, actually used these two modes of operations. So,

our result can also be viewed as an optimal indifferentiability bounds of these candidates. Next, we

consider blackbox reduction of the modes of operation based on permutation. We analyze the mode

of JH hash function, another final round candidate of SHA3 competition. JH uses a novel domain

extension algorithm, somewhat reminiscent of a sponge construction, to build a hash function out of

a single, fixed 2n-bit permutation using chopped-MD domain extension. In this thesis, we present the

first detailed security analysis of JH mode of operation. We also consider a modified mode of operation

of JH where the chopping is done on the other bits. We prove that under the assumption that the fixed

permutation of JH is a random permutation, JH mode of operation with specific length padding and the

modified JH mode of operation without length padding is indifferentiable from a Random Oracle. We

also show that the padding is essential for JH domain extension as one can construct a distinguisher that

can distinguish (in the framework of indifferentiability) the output of a Random Oracle from JH mode

of operation without padding with n-bit output using only constant number of queries.

Secure Instantiation of Public Key Constructions

In the second half of the thesis, we concentrate on black-box reduction of popular encryption and sig-

nature schemes when the underlying hash function, given to the adversary, is not modeled as a Random

Oracle. First, we consider the padding based signature schemes where the random string is recoverable.

One of popular example of such padding based signature schemes is PSS which has been standardized

in numerous standards like PKCS# 1.

Our main result on the padding based signature is a general blackbox separation result. Extending

the work of Dodis et. al. on Full Domain Hash, we show that there is no instantiation of “randomization

recoverable” padding based probabilistic signature scheme that can be reduced to any security property

of an ideal trapdoor permutation or a lossy trapdoor permutation in black-box manner. As an ideal trap-

door permutation satisfies almost all reasonable security notions, our result covers many of the standard

security notions, like inverting trapdoor permutation on a random point (one-way), finding some bits of

preimage of a random point (partial domain one-wayness), finding correlated inputs etc. Our result is

perfectly valid even if the hash functions used in the padding are arbitrarily correlated with the trapdoor

permutation. Moreover our result holds even in the scenario when the adversary can invert some point
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of his choice (with some restrictions) for a fixed bounded number of times. Moreover we show that even

the weakest security criterion, namely unforgeability under no message attack of popular Probabilistic

Signature Scheme (PSS) cannot be black-box reduced to the one-wayness of the trapdoor permutation

as long as the randomness space is “super-logarithmic” in the security parameter. This result shows that

use of padding does not help to prove security in the standard model.

Finally, we concentrate on instantiation of padding based encryption schemes, specifically OAEP, by

the seed incompressible functions. OAEP is one of the most popular and widely deployed asymmetric

encryption schemes. It was designed by Bellare and Rogaway as a padding scheme for encryption using

a trapdoor permutation such as RSA. OAEP is standardized in RSA’s PKCS #1 v2.1 and is part of

the ANSI X9.44, IEEE P1363, ISO 18033-2 and SET standards. However security of OAEP against

chosen ciphertext attack has been proved only in Random Oracle Model. In fact, similar to our result

for signatures, Kiltz and Pietrzak (in Eurocrypt’09) has proved that, CCA security of padding based

encryption scheme in the standard model cannot be reduced to any security property of an ideal trapdoor

permutation using black-box techniques. In this thesis we analyze CCA security of OAEP in the seed

incompressible function model where the adversary can have some short string (compared to the key-size

of the hash function) as an advice. We show that, if the length of the advice is allowed to be twice more

than the square of the size of the padded message, then CCA security of OAEP in the standard model

cannot reduced to any security property of an ideal trapdoor permutation using black-box techniques.

We also show that when the length of the randomness is small compared to the security parameter and

the advice string is allowed to be in the cubic order the size of the random string, same result holds. We

also extend our results for the case of lossy trapdoor permutations. Our technique is quite generic and

can be applied to any padding based encryption scheme. To the best of our knowledge, our result is the

first impossibility result of any encryption scheme in the seed incompressibility model.

1.4 Organization of the Thesis

The thesis is divided in two parts. In the first part, we consider the constructions from Symmetric key

Cryptography and analyze their security in the indifferentiability framework of Maurer. Reductions and

impossibility results of public key cryptosystems are considered in the second part. Overall, the thesis

is organized in the following way.

Part I: Indifferentiability of Modes of Operation

Chapter 2: In this chapter, we discuss the definitions of different security properties of the mode of

operation and survey the existing results on Indifferentiability of hash functions.
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Chapter 3: We find sufficient condition of indifferentiability for all domain extension algorithms in

GDE. We apply these conditions to existing hash functions (e.g. Blake, Skein, MD6) and achieve optimal

bounds. This chapter is based on a paper published in Indocrypt’09.

Chapter 4: In this chapter, we apply the techniques described in Chapter 2 to JH hash function, a

SHA3 final round candidate and analyze indifferentiability of corresponding mode of operation. We

also consider a variant of JH mode of operation and achieve better indifferentiability bound than the

actual JH mode. Results of this chapter is based on our publication in FSE’10.

Part II

Chapter 5: In this section we review the security notions of public key encryption and signatures

followed by the definitions and the techniques used for our results. We also present the existing results

related to the thesis.

Chapter 6: In this chapter, we prove the impossibility of proving security of Padding based Signature

Schemes in the standard model, where the underlying hash function is unkeyed, fixed. We present

impossibility results for One-way Trapdoor Permutations, Ideal Trapdoor Permutations (a generalization

of trapdoor permutations by Kiltz and Pietrzak) as well as Lossy Trapdoor Permutations. This chapter

is based on our paper in PKC’11.

Chapter 7: This chapter is on chosen ciphertext security of Optimal Asymmetric Encryption Padding

(OAEP) in Seed Incompressibility model. We show impossibility of black-box reduction of OAEP from

ideal trapdoor permutation and lossy trapdoor permutation even when the adversary can have some

information about the hash function as an oracle.

Chapter 8: This chapter concludes the thesis. We present a summary of the results presented in the

thesis. Finally we end the chapter and the thesis with a discussion on the open problems in the area of

black-box reduction in Cryptography.

1.5 Notation

Throughout the thesis, we follow the following notations. 1n denotes the string of n many 1s. If S is a

set |S| denotes the cardinality of the set. If x is a string, |x| denotes the length of the string. x ←R S

denotes that x is chosen uniformly at random from the set S. We use negl(n) to denote any function

γ : N→ [0, 1] where for any constant c > 0 there exists n0 such that for all n > n0; γ(n) < 1/nc. We

call a function f(n) to be super-polynomial if for any constant c > 0, there exists n0 such that for all

n > n0, f(n) > nc.
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Part I

Blackbox Reduction of Modes of
Operations
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Chapter 2

Blackbox Reduction of Cryptographic
Hash Functions

2.1 Introduction

Designing secure hash function is a primary objective of symmetric key cryptography. A cryptographic

hash function is an efficiently computable functionH : {0, 1}∗ → {0, 1}n for some fixed integer n. The

following security properties are usually expected from a cryptographic hash function.

• Preimage Resistance Given a randomly selected element z ∈ {0, 1}n, it should be “infeasible”

to find a M such that H(M) = z. Note that, any element in {0, 1}n might have more than one

preimages under H . The security requirement ensures that an adversary will not be able to find

any preimage of a hash digest.

• Second Preimage Resistance Given a random message M ∈ {0, 1}∗, it should be “difficult” to

find another message M ′ such that H(M) = H(M ′).

• Collision resistance It should be “infeasible” to find two distinct messagesM,M ′ ∈ {0, 1}∗ such

that H(M) = H(M ′).

The terms “infeasible” or “difficult” are used for adversaries with bounded (polynomial) running

time or query complexity. Many more requirements like target collision resistance, multicollision re-

sistance etc. are known. However, the above three conditions are most common requirements from a

cryptographic hash function.
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2.2 Mode of Operation of a Hash Function

Popular methods to build a hash function involve two steps. First, one designs a compression function

f : {0, 1}m → {0, 1}n where m > n. Then a domain extension algorithm C that utilizes f as a black

box is applied to implement the hash function Cf : {0, 1}∗ → {0, 1}n. This is also known as design or

mode of the hash function.

Essentially any mode of operation is characterized by two properties

• Padding Rule The input to the underlying compression function is of fixed length (m). Usually,

the input message is divided into disjoint fixed size blocks and one block is used in each iteration.

To hash the messages whose lengths are not multiple of block size, some padding rule is applied,

so that the length of the padded message becomes a multiple of block size. A simple padding

rule can be zero padding, that is adding sufficient number of zero bits so that the padded message

becomes a multiple of block size. Sometimes, padding rules are also used to avoid trivial attacks.

• Input functions The input function defines the input to the next query to compression function

f . For iterated hash functions input function may take a message block along with outputs of

previous f queries and the initialization vectors as input.

2.2.1 Examples of Domain Extension of Hash Function

Merkle-Damgård domain extension

The most popular domain extension algorithm is Merkle-Damgård domain extension technique. The

(padded) message is divided in m − n bit blocks. The first message block along with some fixed

initialization vector is queried to the compression function f . At each subsequent step, one block is

appended with the output of the previous query and queried to f . The output of the last query is the

output of the domain extension algorithm.

M1 M2 M3 M`

f f f f
Cf (M)IV

Figure 2.1: The Merkle-Damgård domain extension technique
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Chopped Merkle-Damgård domain extension

In case of Chopped Merkle-Damgård (Chop-MD) mode, some bits from the output of Merkle-Damgård

domain extension are chopped and rest of the bits are given as output. In Chapter 4 we shall consider a

chopped MD domain extension technique.

Envelope Merkle-Damgård domain extension

In envelope Merkle-Damgård mode, after applying the usual Merkle-Damgård mode, the chaining value

is used to query an independent (to the compression function) function and the corresponding response

is published as the digest.

M1 M2 M3 M`

f f f f gIV Cf (M)

Figure 2.2: The Envelope Merkle-Damgård domain extension technique

Tree mode of operation

In case of tree mode, the domain extension algorithm queries the compression function like a k-ary tree.

The messages are divided in m bit blocks and queried to the leaf level. At every other level, input to a

f query is the concatenation of the outputs of its child nodes. Finally, the output of the root node is the

output of the mode.

M1 M2 M3 M4

f f f f

f

h11 h12

f

h13 h14

f

h21 h22

Cf (M1‖M2‖M3‖M4)

h

Figure 2.3: The Tree mode of operation

In Chapter 2, we consider the tree mode of operation with a specific padding rule.
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Sponge domain extension

Sponge domain extension, introduced by Bertoni et. al. is a permutation based hash function design.

Let πr+c → πr+c be a fixed unkeyed permutation. The sponge mode works in two stages. In the first

stage, known as the absorption stage, the message blocks of length r bits, are xored with the first r bits

of the chain and passed through the permutation one by one. In the second stage (squeezing), digests

are formed by taking some arbitrary, fixed part of the chaining value at each iteration. This allows the

sponge design to output a digest of arbitrary size without changing the size of the permutation. r is

called the block-length and c is called the capacity of the domain extension. Note that, |c| need not be

same as |r|.

π
IV2

IV1

M1

π

M2

π π π

Cπ(M)

Figure 2.4: The Sponge mode of operation

2.2.1.1 Security Properties of Mode of Operation

Intuitively a good domain extension algorithm should maintain the security property of the underly-

ing compression function. For example, if the compression function f is collision resistant (i.e. it is

infeasible to find x1, x2 ∈ {0, 1}m with f(x1) = f(x2)), Cf should be collision resistant as well.

Definition 2.2.1. Collision Resistance of Domain Extension A domain extension algorithm C, based
on a compression function f is said to maintain the collision resistance, if there exists an efficient reduc-
tion R such that for every adversary A with

Prob[(M,M ′)← ACf (.);Cf (M) = Cf (M ′)] ≥ δ

there exists a non-negligible ε

Prob[(M,M ′)← RAC
f
,f ; f(M) = f(M ′)] ≥ εδ.

Preimage Resistance and Second Preimage Resistance of a domain extension algorithm can be de-

fined in similar fashion. However, in modern days, domain extension algorithm should also maintain the

properties of Random Functions.
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2.3 Random Functions and Random Permutations

Ideally, a cryptographic hash function should be secure against any kind of attack. There should not be

any particular relations between the digests of any number of messages. Moreover, the digests should

be, in some sense, “independent” of the messages. The hash function should not have (in functional

sense) any structure.

This requirement essentially demands the hash function to behave like a Random Function. Intu-

itively a random function (oracle) is a function f : X → Y chosen uniformly at random from the set of

all functions from X to Y . The following is an equivalent definition of a random function.

Definition 2.3.1. Random Oracle [81] f : X → Y is said to be a random oracle if for each x ∈ X
the value of f(x) is chosen uniformly at random from Y . More precisely, for x /∈ {x1, . . . , xq} and
y, y1, · · · , yq ∈ Y we have

Pr[f(x) = y | f(x1) = y1, f(x2) = y2, · · · , f(xq) = yq] =
1

|Y |

A random permutation is similar to random oracle except that it is a permutation. So similarly one

can view a random permutation π : X → X as a permutation chosen uniformly at random from the set

of all permutations over X . Similar to random oracles, we have the following equivalent definition of

random permutation.

Definition 2.3.2. Random Permutation[81] π : X → X is said to be a random permutation if for each
x ∈ X we have,

Pr[π(x) = y | π(x1) = y1, π(x2) = y2, . . . , π(xq) = yq] =
1

|X| − q

where |X| is finite and x /∈ {x1, . . . , xq}, y1, . . . , yq ∈ X and y ∈ X \ {y1, . . . , yq}

2.3.1 Adversary in the (Random) Oracle Model

In case of blackbox reduction of a hash function Cf , from a (random) compression function f , the

adversary is modeled as an oracle algorithm Af with only oracle access to f . The adversary can query

f adaptively and based only on the query-response the adversary produces some output. Thus A can

adaptively choose x1, · · · , xq and get y1, · · · , yq where yi = f(xi) for all i = 1, · · · , q. We call this

list of query response {(x1, y1), · · · , (xq, yq)} as the view of the adversary. The output of the adversary

should only depend on the view and its internal randomness. For example, for an adversary producing

collision (M,M ′) for the hash function, the relation Cf (M) = Cf (M ′) should be computable from the

view. The complexity of the adversary is measured by the size of its view.

In case of permutation based hash function, the adversary will have access to two oracles; the per-

mutation π and its inverse π−1. Similar to the previous case, if an adversary outputs some message M ,
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it must have made all required π and π−1 queries to compute Cπ(M). Note that, this requirement does

not handicap the adversary in any way. Indeed, for any adversary A not satisfying this relation there

exists an equivalent adversary A′ which maintains the condition and has equivalent success probability.

The security of a hash function can be measured by the minimum complexity of an adversary with

significant success probability.

2.3.2 Hash Functions as Random Oracles

Random Oracle paradigm, introduced by Bellare and Rogaway [12], is a very popular platform for

proving security of cryptographic protocol. In this model all the participating parties, including the

adversary, is given access to a truly random function R. Unfortunately, it is impossible to realize a truly

random function in practice. So while implementing the protocol the most natural choice is to instantiate

R by an ideal hash function H . The formal proofs in Random Oracle model indicate that there is no

structural flaw in the designed protocol. But how can we make sure, that replacing the random function

R with a good hash function H will not make the protocol insecure? In fact recent results [30, 91] show

that theoretically it is possible to construct some pathological protocols that are secure in random oracle

model but completely insecure in standard model. Fortunately those separation results do not imply an

immediate serious threat to any widely used cryptosystem, proven to be secure in random oracle model.

So one can hope that any attack, which fails when a protocol is instantiated with R but succeeds when

the protocol is instantiated with H , will use some structural flaw of H itself. So the above question boils

down to the following. How can we guarantee the structural robustness of a hash function H?

2.4 Indifferentiability

The notion of indifferentiability was introduced by Maurer et. al. in [86] as a generalization of indis-

tinguishability. Loosely speaking, if an ideal primitive G is indifferentiable from a construction C based

on another ideal primitive F, then G can be safely replaced by CF in any cryptographic construction. In

other terms if a cryptographic construction is secure in G model then it is secure in F model.

Definition 2.4.1. Indifferentiability [86]
A Turing machine C with oracle access to an ideal primitive F is said to be (t, qC , qF, ε) indifferentiable
from an ideal primitive G if there exists a simulator S with an oracle access to G and running time at
most t, such that for any distinguisher D,

Advindiff
(CF,F),(G,SG)

= |Pr[DCF,F = 1]− Pr[DG,SG

= 1]| < ε.
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The distinguisher makes at most qC queries to C or G and at most qF queries to F or S. Similarly,
CF is said to be (computationally) indifferentiable from G if running time of D is bounded by some
polynomial in the security parameter k and ε is a negligible function of k.

C F G S

D

Figure 2.5: The indifferentiability notion

We stress that in the above definition G and F can be two completely different primitives. As shown

in Fig 2.5 the role of the simulator is to not only simulate the behavior of F but also remain consistent

with the behavior of G. Note that, the simulator does not know the queries made directly to G, although

it can query G whenever it needs.

Recall that, a cryptosystem can be modeled as an interactive Turing Machine with an interface to an

adversary and to a public oracle. The cryptosystem is run by an environment (modeled as a code based

game) which also runs the adversary and produces some output. The following theorem is a concrete

version of composition theorem proved in [86].

Theorem 2.4.2. [99] Let G be a single stage game expecting access to a functionality and a single
adversarial procedure. Let F and G be two functionalities and compatible honest interfaces. Let A be
an adversary with one oracle. Let S be a simulator that exports the adversarial interface of F. Then
there exist adversary B and distinguisher D such that for all values of y

Prob[GG,A = y] ≤ Prob[GF,A = y] + AdvindiffF,G,S

Moreover, tB ≤ tA + qA · tS , qB ≤ qA · qS , tD ≤ tG + qG,1 · tA and qD ≤ qG,0 + qG,1 · qA, where
tA, tB, tD are the running time of A,B,D, qA, qB are the maximum number of queries made by A and B

in a single execution, qG,0, qG,1 are the maximum number of queries made by G to the honest interface
and the adversarial procedure.

In simple terms, the above theorem says that, if there exists a construction C , based on ideal primi-

tive F, implementing the functionality of another ideal primitive G and CF is indifferentiable to G, then

one can replace G by CF in any single stage cryptosystem and the cryptosystem will be as secure in F

model as in G model.

Indifferentiability of Hash Functions: Based on the framework of Maurer et. al., Coron, Dodis,

Malinaud and Puniya formalized the notion of Indifferentiability of hash functions. The ideal primitive
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G is replaced by a random oracle R. The interface F represents a fixed input length random oracle

(FIL-RO) or a random permutation depending on the mode of operation. In the following definition, we

restate the notion of indifferentiability of a hash function.

Definition 2.4.3. Indifferentiability of Hash Function[36]
A domain extension C with oracle access to an ideal primitive F is said to be (t, qC , qF, ε) indifferen-
tiable from a Random Oracle R if there exists a simulator S with an oracle access to R and running time
at most t, such that for any distinguisher D,

Advindiff
(CF,F),(R,SR)

= |Pr[DCF,F = 1]− Pr[DR,SR

= 1]| < ε.

The distinguisher makes at most qC queries to C or R and at most qF queries to F or S. Similarly,
CF is said to be computationally indifferentiable from R if running time of D is bounded by some
polynomial in the security parameter k and ε is a negligible function of k.

2.5 Existing Works on Indifferentiability

Since the formalization of Coron et. al. numerous hash designs have been proved indifferentiable from a

random oracle assuming the basic building block (the compression function or the permutation) is ideal.

In this section, we review the existing results on the indifferentiability of the hash functions.

2.5.1 Indifferentiability of Merkle-Damgård with prefix free padding

A prefix free coding over an alphabet {0, 1} is an injective map PAD : {0, 1}∗ → {0, 1}∗, such that

for all distinct x, y, PAD(x) is not a prefix of PAD(y). Moreover, there must be a decoding algorithm

DEPAD such that for all x ∈ {0, 1}∗, DEPAD(PAD(x)) = x. Simple example of prefix free encoding is

to divide the message into equal length blocks. Prepend the length of the string as a first block with last

block padded with 10r. In [36], Coron et. al. proved the following theorem

Theorem 2.5.1. [36] The prefix free Merkle-Damgård domain extension based on a n-bit FIL-RO is
indifferentiable from a Random Oracle for t = `O(q2) and ε = O( q

2`2

2n ) where q is the total number of
queries made by the distinguisher, ` is the maximum number of blocks in a single query.

2.5.2 Indifferentiability of Merkle-Damgård tree mode

The Merkle-Damgård domain extension can also be used in a tree mode. In [44], Dodis et al. proved the

following theroem

Theorem 2.5.2. [44] The Merkle-Damgård tree mode of operation based on a n-bit FIL-RO is indiffer-
entiable from a Random Oracle for t = `O(q2) and ε = O( q

2`2

2n ) where q is the total number of queries
made by the distinguisher, ` is the maximum number of blocks in a single query.
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In Theorem 3.4.2, we improve this bound to ε = O( q
2 log `
2n ).

2.5.3 Indifferentiability of Chop-MD domain extension

Recall that, in case of Chop-MD domain extension, some bits (say s) of the output of the final query

to the compression function is chopped and the rest of the bits are used to form the hash digest. Coron

et. al. proved the following results for chopped Merkle-Damgård domain extension without prefix free

padding

Theorem 2.5.3. [36] The chopped Merkle-Damgård domain extension based on a n-bit FIL-RO and
s-bit chopping is indifferentiable from a Random Oracle for t = `O(q2) and ε = O( q

2`2

2s ) where q is the
total number of queries made by the distinguisher, ` is the maximum number of blocks in a single query.

In [32], Chang and Nandi improved the the bound in the following lemma

Theorem 2.5.4. [32] The chopped Merkle-Damgård domain extension based on a n-bit FIL-RO and
s-bit chopping is indifferentiable from a Random Oracle for t = `O(q2) and ε = O( q(n−s)2s + q

2n−s
q2`2

2n )

where q is the total number of queries made by the distinguisher, ` is the maximum number of blocks in
a single query.

2.5.4 Indifferentiability of Envelope MD domain extension

In case of Envelope MD the output of the final compression function f is queried to an independent

function g and the corresponding output is given as digest. Bellare and Ristenpart, proved the indiffer-

entiability of Envelope MD construction when both f and g are modeled as independent FIL-RO.

Theorem 2.5.5. [10] The Envelope Merkle-Damgård domain extension based on two independent n-bit
FIL-RO is indifferentiable from a Random Oracle for t = `O(q2) and ε = O( q

2`2

2n ) where q is the total
number of queries made by the distinguisher, ` is the maximum number of blocks in a single query.

2.5.5 Indifferentiability of Sponge Domain Extension

Indifferentiability of Sponge construction was proven by Bertoni et. al. [15]. This was the first Indiffer-

entiability result based on fixed random permutation.

Theorem 2.5.6. [15] The Sponge domain extension based on r + c-bit random permutation is indiffer-
entiable from a Random Oracle for t = `O(q2) and ε = O( q

2`2

2c ) where q is the total number of queries
made by the distinguisher, ` is the maximum number of blocks in a single query, r is the size of the
processed message block in each iteration.
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Chapter 3

Towards a Unified Proof Technique for
Indifferentiability

In this chapter, we present a unified technique to prove indifferentiability of a wide class of hash designs.

Although many known hash function constructions have been shown to be indifferentiable from an RO,

the proof of these results are usually complicated (many times, due to numerous game hopings and

hybrid arguments). Also, they require different simulators for each individual hash design. There are

no known sufficient conditions for hash functions to be indifferentiable from an RO. From a different

perspective, the existing security bounds for different constructions are not always optimal1. The results

of [45, 85] do not directly imply to improve the indifferentiability bounds for general iterated hash

functions based on a single random oracle. The methods of [44] do not give us any optimal bound either.

So a natural question to ask is: Can we characterize the minimal conditions of a cryptographic hash

function to be indifferentiable from a Random Oracle and achieve optimal bound?

Our Result: In this chapter, we present a unified technique of proving indifferentiable security for a ma-

jor class of iterated hash functions, called Generalized Domain Extensions. We extend the technique of

[85] to the indifferentiability framework. We identify a set of events (called BAD events) and show that

any distinguisher, even with unbounded computational power, has to provoke the BAD events in order to

distinguish the hash function C from a random function R. Moreover we prove that, to argue indiffer-

entiability of a construction Cf , one has only to show that the probability that any distinguisher invokes

those BAD events, while interacting with the pair (Cf , f), is negligible. We avoid the cumbersome

process of defining simulator for each construction separately by providing a unified simulator

for a wide range of constructions. To prove indifferentiability one simply needs to compute the

probability of provoking the BAD events when interacting with (Cf , f).
1 In fact, to the best of our knowledge, none of the known bounds except the one of sponge construction, was proven to be

tight.
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In the second part of this chapter, we apply our technique to some popular domain extension algorithms

to provide optimal indifferentiability bounds. In particular, we consider Merkle-Damgård with HAIFA

and tree mode with specific counter padding. Many candidates of SHA3 competition actually use these

two modes of operations. So, our result can also be viewed as an optimal indifferentiability guarantee

of these candidates. We briefly describe our results below:

1. MD with counter or HAIFA: Let Cf be MD with counter where the last block counter is zero

(all other counters are non-zero). Many SHA3 candidates such as BLAKE, LANE, SHAvite-3 etc

are in this category. In Theorem 3.4.1 and Theorem 3.5.2, we show that the (tight) indifferentiable

bound for C is Θ(σq/2n) where q is the number of queries, n is the size of the hash output and

σ is total number of message blocks in all the queries. The so far best known bound for HAIFA

mode is σ2/2n [36].

2. Tree-mode with counter: Tree mode with counter (e.g. the mode used in MD6) is known to be

indifferentiable secure with upper bound q2`2/2n [44]. In Theorem 3.4.2 and Theorem 3.5.3, we

are provide an optimal indifferentiable bound Θ(q2 log `/2n).

3.1 Generalized Domain Extension (GDE)

Intuitively, any practical domain extension technique applies the underlying compression function f in

a sequence, where inputs of f are determined by previous outputs and the message M ∈ {0, 1}∗ (for

parallel constructions, inputs only depend on the message). Finally the output Cf (M) is a function of

all the previous intermediate outputs and the message M . The Generalized Domain Extension (GDE)

are the domain extension techniques where u` is the input to final invocation of f and Cf (M) = f(u`).

A domain extension algorithm from the class GDE is completely characterized by the following two

functions:

1. Length function: ` : {0, 1}∗ → N is called length function, which actually measures the number

of invocations of f . More precisely, given a message M ∈ {0, 1}∗, ` = `(M) denotes the number

of times f is applied while computing Cf (M).

2. Input function: For each j ∈ N, Uj : {0, 1}∗ × ({0, 1}n)j → {0, 1}m′ , called jth input function.

It computes the input of jth invocation of f . This is computed from the messageM and all (j−1)

previous outputs of f . In other words, Uj(M,v0, v1, · · · , vj−1) is the input of jth invocation of

f while computing Cf (M), where v1, · · · , vj−1 denote the first (j − 1) outputs of f and v0 is a

constant depending on the construction. The input function usually depends on message block,

instead of whole message and hence we may not need to wait to get the complete message to start

invoking f .
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The above functions are independent of the underlying function f . Note that the padding rule of

a domain extension is implicitly defined by the input functions defined above. At first sight, it may

seem that GDE does not capture the constructions with independent post processor. But we argue

that, when the underlying primitive is modeled like a random oracle, then queries to the post processor

can be viewed as queries to same oracle (as in the intermediate queries) but with different padding.

Namely in case of NMAC like constructions, we can consider a GDE construction where the inputs

to the intermediate queries are padded with 1 and the final query is padded with 0. Similarly, one can

incorporate domain extensions which use more than one random oracle.

Definition 3.1.1. (GDE: Generalized Domain Extension)
Let S = (`, 〈Uj〉j≥1) be tuple of deterministic functions as stated above. For any function f :

{0, 1}m′ → {0, 1}n and a message M , GDEfS(M) is defined to be v`, where ` = `(M) and for
1 ≤ j ≤ `,

vj = f
(
Uj(M, v0, v1, · · · , vj−1)

)
.

The uj = Uj(M,v0, v1, · · · , vj−1) is called the jth intermediate input for the message M and the
function f , 1 ≤ j ≤ `. Similarly, vj = f(uj) is called jth intermediate output, 1 ≤ j ≤ ` − 1. The
last intermediate input u` is also called final (intermediate) input. The tuple of functions S completely
characterizes the domain extension and is called the structure of the domain extension GDES.

G1 G2 G3 G`

f f f
u1 v1 u2 v2

u`
v` Cf (M)

M

Figure 3.1: The Generalized Domain Extension Circuit

Note that we can safely assign v0 = IV , the Initialization Vector, used in many domain extensions.

In Fig 3.1 we describe the concept of GDE. EachGi is an algorithm which computes the ith intermediate

input ui, using the input-function Ui defined above. Note that, we have allowed Ui to take the entire

message as the input. However, in practice, it may depend only on few or one message block. The

wires between Gi and Gi+1 is thick. In fact it contains all the previous input, output and the state

information. In this chapter we describe sufficient conditions to make a Generalized Domain Extension

technique indifferentiable from a Random Oracle (RO). In the next section we show a hybrid technique

to characterize the conditions and prove its correctness.
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3.2 Indifferentiability of GDE

In this section we discuss the sufficient condition for a domain extension algorithm C of the class GDE

to be indifferentiable from a random oracle R. Let C ∈ GDE be a domain extension algorithm based on

a fixed input length random oracle f . Recall that to prove the indifferentiability, for any distinguisher D

running in time bounded by some polynomial of the security parameter κ, we need to define a simulator

S such that

|Pr[DCf ,f = 1]− Pr[DR,SR

= 1]| < ε(κ).

Here ε(κ) is a negligible function and the probabilities are taken over random coin tosses of D and

randomness of f and R. Let left query denote the queries to R/Cf and right query denote the queries to

SR/f . The simulator keeps a list L, initialized to empty. If ui is the ith query to the simulator and the

response of the simulator was vi then the ith entry of L is the tuple (i, ui, vi).

Definition 3.2.1. Let C ∈ GDE. We say that Cf (M) for a message M is computable from a list
L = {(1, u1, v1), · · · , (k, uk, vk)} if there are ` = `(M) tuples (i1, ui1 , vi1),· · · , (i`, ui` , vi`) ∈ L such
that for all t ∈ {1, 2, · · · , `},

uit = Ut(M, v0, vi1 , · · · , vit−1).

Intuitively for any simulator to work, C must have the following property:

Message Reconstruction: There should be an efficient algorithm P1 such that given a setL = {(1, u1, v1),

· · · , (k, uk, vk)}, input-output of k many f queries and an input u ∈ {0, 1}m′ (in the domain of f );

P(L, u) outputs M if Cf (M) is computable from L ∪ {(k + 1, u, v)} for all v ∈ {0, 1}n where u` = u

(as in Definition 3.2.1). If no such M exists P outputs⊥. If there are more than one such M , we assume

P outputs any one of them.2

We argue that this is a very general property and is satisfied by all known secure domain extensions.

In fact, the Message reconstruction algorithm P defined above is similar to the extractor of Preimage

Awareness (PrA) of [45]. This is very natural as the notion of PrA is much relaxed notion than the

notion of PRO and every PRO is essentially PrA [45]. However existence of such an algorithm does not

guarantee indifferentiability from a Random Oracle. For example, the traditional Merkle-Damgård con-

struction is PrA but not PRO. In fact, the method of [45] is only applicable to prove indifferentiability

when the final query is made to an independent post processor. On the other hand, our contribution in

this chapter is to show a set of sufficient conditions along with the existence of extractor for a domain

extension of the class GDE (where the final query can be made to that same function) to be a PRO.

1Note that the exact description of P depends on specific implementation.
2For example, P can choose a message randomly among all such messages. However, it will actually invoke BAD event.
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Our simulator works as follows. Suppose the kth query to the simulator is u. Then

• If (i, u, v) ∈ L for some i < k and some v ∈ {0, 1}n, then L = L ∪ {(k, u, v} and return v.

• If P(L, u) = M

– L = L ∪ {(k, u,R(M))}

– return R(M)

• If P(L, u) =⊥

– Sample h ∈R {0, 1}n

– L = L ∪ {(k, u, h)}

– return h

Without loss of generality, we can assume adversary maintains two lists Lleft and Lright to keep the

query-responses made to R/Cf and SR/f respectively.

3.2.1 Security Games

To prove the indifferentiability of GDE we shall use hybrid technique. We start with the scenario when

the distinguisher D is interacting with Cf , f .

A left query C(M)

1. v0 = λ.

2. ` = `(M).

3. for i = 1 to `

(a) ui = Ui(M, v0, v1, · · · , vi−1).

(b) vi = COM RO(ui).

4. return v`.

A right query S(u)

1. return COM RO(u).

COM RO(u)

1. return f(u).

Figure 3.2: Procedures of Game 0

Game 0: In this game the distinguisher is given access to an oracle S for the right queries. Additionally,

both C and S are given access to another oracle COM RO which can make f queries. Note that C

or S do not have direct access to f . S on an input (u), queries COM RO(u). COM RO on input u
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returns f(u). Formally, Game 0 can be viewed as Fig 3.2. Since the view of the distinguisher remains

unchanged in this game we have

Pr[DCf ,f = 1] = Pr[G0 = 1]

where G0 is the event when the distinguisher outputs 1 in Game 0.

Game 1 Now we change the description of the subroutine COM RO and gives it an access to random

oracleR as well. In this game COM RO takes a 3-tuple (u,M, tag) as input where u ∈ {0, 1}m′ ,M ∈
{0, 1}m and tag ∈ {0, 1}. COM RO returns f(u) when tag = 0 and returns R(M) otherwise. We

also change the procedure to handle left and right queries. In this game, the algorithm S maintains a list

L containing the query number, input, output of previous right queries. While processing a left queryM ,

the algorithm queries COM RO with tag = 1 when querying with u` and makes tag = 0 for all other

queries. Informally speaking, for a left query M , the algorithm C behaves almost similarly as game 0,

except it returns R(M) as the response. Similarly when a right query is a trivially derived from L and

some message M , the algorithm sets tag = 1 before querying COM RO and sets tag = 0 otherwise.

Formally Game1 can be viewed as Figure 3.3. In the figure, the variable index represents the number

of distinct queries made to S, so far; i. e. index is the size of the list L. Initially index is set to 0. λ

represents the empty string.

Definition 3.2.2. Trivial Query
A right query u is said to be a trivially derived query (in short, trivial query) if there exist a M ∈ Lleft
and k tuples (i1, ui1 , vi1), · · · , (ik, uik , vik) ∈ Lright such that

• uit = Ut(M,v0, vi1 , · · · , vit−1) for all t ∈ {1, 2, · · · , k}

• u = Uk+1(M, v0, vi1 , · · · , vik)

Similarly a left query M is said to be a trivial query if Cf (M) is computable from Lleft. Any other
queries are said to be nontrivial queries.

Definition 3.2.3. BAD Events for Game 0 and Game 1
Let D make q queries to a game (either Game 0 or Game 1). Let uj be the jth query when it is a right
query and Mj be the jth query when it is a left query. For ith left query Mi, let ufi be the input to final
COM RO query and uiin,1, u

i
in,2, · · · be the inputs to the non-final intermediate COM RO queries.

The ith query is said to set the BAD event if one of the following happens

• for nontrivial left query (Mi, left)

– Collision in final input The final input is same as final input of a previous left query. ufi =

ufj ; i 6= j and Mi 6= Mj .

– Collision between final and non-final intermediate input
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A left query C(M )

1. v0 = IV .

2. ` = `(M).

3. for i = 1 to `− 1

(a) ui = Ui(M, v0, v1, · · · , vi−1).

(b) vi = COM RO(ui, λ, 0).

4. u` = U`(M,v0, v1, · · · , v`−1).

5. v` = COM RO(u`,M, 1).

6. return v`.

COM RO(u,M, tag)

1. if tag = 0 return f(u).

2. else return R(M)

A right query S(u)

1. If (j, u, v) ∈ L for some v, j, return v.

2. If P(L, u) = M 6=⊥

(a) v = COM RO(u,M, 1).

(b) index = index+ 1.

(c) ADD (index, u, v) to L

(d) return v

3. else \\P(L, u) =⊥

(a) v = COM RO(u, λ, 0).

(b) index = index+ 1.

(c) ADD (index, u, v) to L

(d) return v

Figure 3.3: Procedures of Game 1.

∗ The final input is same as intermediate input of a previous left query, ufi = ukin,j for
some k ≤ i and j < l(Mk).

∗ One of the intermediate input is same as the final input of a previous left query. uiin,k =

ufj for some j < i and k < l(Mi)

– Collision between final input and nontrivial right query The final input is same as a
non-trivial right query uj ; u

f
i = uj for some j < i but uj is not a trivial query for Mi.

• for right query (ui, right)

– Collision between nontrivial right query and final input of a left query ui = ufj for some
j < i but ui is not trivially derived.

Let us concentrate on how each of the event defined above can help the distinguisher. When non-

trivial collision between the final input of two left (say Mi and Mj) queries happens, the output of two

queries will surely be a collision in Game 0. But in case of Game 1, the collision probability will be

negligible. When final intermediate input of left query Mi collides with non-final intermediate input of

another left query Mj , it may not be obvious how D can exploit this event. But we note that in that

case output distribution of these two queries may not be independent in Game 0. The well known length

extension attack can also be seen as exploiting this event. Finally if the final input of some left queryMj
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collides with input of some nontrivial right query ui, the outputs of these two queries are same in Game

0. But it is easy to check that, in Game 1, they will be same with negligible probability. We stress that

unless the nontrivial right query is same as the final input , adversary cannot gain anything. In fact in

both of the games the output distribution remains same, even if the nontrivial right query collides with

some non-final intermediate input of some left query.

Theorem 3.2.4. Let C ∈ GDE be a domain extension algorithm. Let BAD event be as defined in
Definition 3.2.3. Then for any distinguisher D,

|Pr[DCf ,f = 1]− Pr[DR,SR = 1]| ≤ Pr[BADC
f ,f ]

where BADC
f ,f denotes the BAD event when D is interacting with (Cf , f).

Proof. To prove the theorem we will show the following relations. Let Gi (i ∈ {0, 1}) denote the event
that the distinguisher outputs 1 in Game i,

1. |Pr[G0 = 1]− Pr[G1 = 1]| ≤ Pr[BAD0].

2. Pr[G1 = 1] = Pr[DR,SR = 1]

As Pr[DCf ,f = 1] = Pr[G0 = 1] and Pr[BAD0] = Pr[BADC
f ,f ], the theorem will follow imme-

diately.
First we shall prove that if BAD events do not happen, then the input output distributions of Game 0

and Game 1 are identical. It is easy to check that ¬BAD is a monotone event as once BAD event happens
(flag is set) it remains so for future queries. Now if the BAD events do not happen, then the final input
of a left query is always “fresh” in both the games. So the output distribution remains same. On the
other hand, if an input to a nontrivial right query is not same as the final input of a previous left query,
then in both the cases the outputs are same and the output distribution of the right query is consistent
with the previous outputs. Similar to [85], we view each input, output and internal states as random
variables. We call the set of input, output and internal states as the transcript of the game. Let T ji denote
the transcript of Game j after ith query, j = 0, 1. Let BAD0

i and BAD1
i be the random variable of BAD

event in ith query in Game 0 and Game 1 respectively. The following lemma shows that the probability
of BAD event occurring first in ith query is same in both Game 0 and Game 1. Moreover if BAD does
not happen in first i queries then the transcript after ith query is identically distributed in both the games.

Lemma 3.2.5. 1. Pr[BAD0
i ∧ ¬(∪i−1

k=1BAD0
k)] = Pr[BAD1

i ∧ ¬(∪i−1
k=1BAD1

k)]

2. Pr[T 0
i |¬ ∪ik=1 BAD1

k] = Pr[T 1
i |¬ ∪ik=1 BAD1

k]

Corollary 3.2.6. Let BADj denote the event that, D invokes BAD in Game j. Then we have,

1. Pr[BAD0] = Pr[BAD1]

2. Pr[DG0 ∧ ¬BAD0] = Pr[DG1 ∧ ¬BAD1]
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Proof. Let the distinguisher D makes q queries.So for any j ∈ {0, 1} we have

Pr[BADj ] = Pr[BAD
j
1] +

q∑
i=2

Pr[BAD
j
i ∧ ¬ ∪

i−1
k=1 BAD

j
k].

Rest follows directly from Lemma 3.2.5. To prove the second part, check from lemma 3.2.5 that

Pr[DG0 |¬BAD0] = Pr[DG1 |¬BAD1].

Now using the first part we get the result.

Using Corollary 3.2.6 one can get the following lemma.

Lemma 3.2.7. Let G1 denote the event that the distinguisher outputs 1 in Game 1.

|Pr[G0 = 1]− Pr[G1 = 1]| ≤ Pr[BAD0]

Proof.

Pr[G0 = 1] = Pr[DG0 = 1]

= Pr[DG0 ∧ BAD0] + Pr[DG0 ∧ ¬BAD0]

= Pr[DG0 ∧ BAD0] + Pr[DG1 ∧ ¬BAD1]

≤ Pr[BAD0] + Pr[DG1 ]

= Pr[BAD0] + Pr[G1 = 1]

By symmetry we have
Pr[G1 = 1] ≤ Pr[BAD1] + Pr[G1 = 0].

Now using Corollary 3.2.6 we get the lemma.

Now we shall prove that Pr[G1 = 1] = Pr[DR,SR = 1]. We prove it by hybrid arguments.
Game 2: In this game (Fig. 3.5), we change the description of C. Here we remove the lines 1− 4 in the
description of C in Game 1 and change the query in line 5 to COM RO(λ,M, 1) where λ is an empty
string. So C does not anymore query COM RO with tag = 0. Note that output of C is still R(M). So
the changes does not affect the input output distribution of the game. Hence

Pr[G2 = 1] = Pr[G1 = 1]

where G2 is the event D outputs 1 in Game 2.
Game 3: Now we give S andC a direct access to f andR. So we replace the queryCOM RO(u,M, 0)

by f(u). Similarly we write R(M) in place of COM RO(u,M, 1). As D did not have direct access to
COM RO and COM RO did not modify any list, Game 3 is essentially same as Game 2. So

Pr[G3 = 1] = Pr[G2 = 1]
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Game (Cf , f) Game 0 Game 1

Game 2 Game 3 Game 4

C f C S

COM RO

f

C S

COM RO0COM RO1

fR

C S

COM RO0COM RO1

fR

C S

fR

R S

f

Figure 3.4: Security Games

A left query C(M )

1. v = COM RO(λ,M, 1).

2. return v.

COM RO(u,M, tag)

1. if tag = 0 return f(u).

2. else return R(M)

A right query S(u)

1. If (j, u, v) ∈ L for some v, j, return v.

2. If P(L, u) = M 6=⊥

(a) v = COM RO(u,M, 1).

(b) index = index+ 1.

(c) ADD (index, u, v) to L

(d) return v

3. else \\P(L, u) =⊥

(a) v = COM RO(u, λ, 0).

(b) index = index+ 1.

(c) ADD (index, u, v) to L

(d) return v

Figure 3.5: Procedures of Game 2.
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A left query C(M )

1. v = R(M).

2. return v.

A right query S(u)

1. If (j, u, v) ∈ L for some v, j, return v.

2. If P(L, u) = M 6=⊥

(a) v = R(M).

(b) index = index+ 1.

(c) ADD (index, u, v) to L

(d) return v

3. else \\P(L, u) =⊥

(a) v = f(u).

(b) index = index+ 1.

(c) ADD (index, u, v) to L

(d) return v

Figure 3.6: Procedures of Game 3.

where G3 is the event D outputs 1 in Game 3. Formal description of Game 3 is described in Fig 3.6
Game 4: In this game we remove the subroutine C. So the distinguisher D has direct access to R. Now
as the simulator S had no access to internal variables of C, the input output distribution remains same
after this change. So

Pr[G4 = 1] = Pr[G3 = 1]

where G4 is the event D outputs 1 in Game 4.
The final observation we make is that S need not query f . Instead it can choose a uniform random

value from {0, 1}n. Note that f is modeled as random function. So we changed a random variable of
the game with another random variable of same distribution. Hence all the input, output, internal state
distribution remains same. This makes S exactly the same simulator we defined.

Pr[G4 = 1] = Pr[DR,SR = 1].

As the Game 0 is equivalent to the pair (Cf , f) we obtain our main result of the section (using triangle
inequality):

|Pr[DCf ,f = 1]− Pr[DR,SR = 1]| ≤ Pr[BAD0] = Pr[BADC
f ,f ]
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A right query S(u)

1. If (j, u, v) ∈ L for some v, j, return v.

2. If P(L, u) = M 6=⊥

(a) v = R(M).

(b) index = index+ 1.

(c) ADD (index, u, v) to L

(d) return v

3. else \\P(L, u) =⊥

(a) v =←R {0, 1}n.

(b) index = index+ 1.

(c) ADD (index, u, v) to L

(d) return v

Figure 3.7: The Generic Simulator.

3.3 Proof of Lemma 3.2.5

Let Xj
1 , X

j
2 , · · · ,Xj

q ∈ X and Y j
1 , Y

j
2 , · · · , Y

j
q ∈ Y be input random variables and output random

variables respectively of Game j; j ∈ {0, 1}. Let U j1,i, U
j
2,i, · · · , U

j
`i,i

be the internal random variables

(output of internal queries) of ith query in Game j. As previously We call the set of input,output and

internal states, the transcript of the game. Let T ji denote the transcript of Game j after ith query.

In this proof, w.l.g., we assume that Distinguisher does not repeat queries. Let q be the number

queries the adversary makes. We shall prove the Lemma 3.2.5 by induction on i.

CASE i = 1: We start from the observation that

Pr
D

[X0
1 ] = Pr

D
[X1

1 ].

If X1 is a left query (M1, left)

Pr
D,f

[(U0
1 , · · · , U0

`1,1)|X0
1 ] = Pr

D,f
[(U1

1 , · · · , U1
`1,1)|X1

1 ].

Hence

Pr
D,f

[X0
1 , U

0
1,1, U

0
2,1, · · · , U0

`1,1] = Pr
D,f,R

[X1
1 , U

1
1,1, U

1
2,1, · · · , U1

`1,1].
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It is easy to check that for the first query BAD event can only be set by a left query. Also note that it

happens when the final query is same with some non-final intermediate query. So

Pr
D,f

[BAD0
1|X0

1 , U
0
1,1, U

0
2,1, · · · , U0

`1,1] = Pr
D,R,f

[BAD1
1|X0

1 , U
0
1,1, U

0
2,1, · · · , U0

`1,1].

Hence

Pr
D,f

[BAD0
1] = Pr

D,R,f
[BAD1

1]

If ¬BAD1 is true then uf1 /∈ IM1 . As f and R are random oracles, we have

Pr
f

[f(uf1) = v] = Pr
R

[R(M1) = v]∀v ∈ {0, 1}n.

On the other hand if the first query is (u, right) for any u, then Y1 = f(u) in both the games. So,

∀v ∈ {0, 1}n

Pr
D,f

[Y 0
1 = v|X0

1 , U
0
1,1, U

0
2,1, · · · , U0

`1,1 ∧ ¬BAD0
1]

= Pr
D,R,f

[Y 1
1 = v|X1

1 , U
1
1,1, U

1
2,1, · · · , U1

`1,1 ∧ ¬BAD1
1].

Hence,

Pr
D,f

[X0
1 , U

0
1,1, U

0
2,1, · · · , U0

`1,1, Y
0

1 |¬BAD0
1]

= Pr
D,f,R

[X1
1 , U

1
1,1, U

1
2,1, · · · , U1

`1,1, Y
0

1 |¬BAD1
1].

This implies that the distribution of transcript after first query is identical in both the games if ¬BAD1 is

true. This finishes the proof of the case i = 1.

Suppose the lemma is true for all i < t.

CASE i = t:By Induction Hypothesis, we have,

Pr
D,f

[T 0
t−1|¬(∪t−1

k=1BAD0
k)] = Pr

D,f,R
[T 1
t−1|¬(∪t−1

k=1BAD1
k)].

As the input/output distribution of two games are same if ¬(∪t−1
k=1BAD1

k) is true, the distribution of tth

query must be same for both the games.

Pr
D,f

[X0
t |T 0

t−1 ∧ ¬(∪t−1
k=1BAD0

k)] = Pr
D,f,R

[X1
t |T 1

t−1 ∧ ¬(∪t−1
k=1BAD1

k)]

When Xt = (ut, right) is a non trivial right query then Yt = f(ut) in both the games. Now if

¬(∪t−1
i=1BADi) is true then, from induction hypothesis, the transcript distribution after t queries is same

for both the games. The probability that uft collides with some final input of any previous query is same

for both the games. So for the right query

Pr[BAD0
t |¬(∪t−1

k=1BAD0
k)] = Pr[BAD1

t |¬(∪t−1
k=1BAD1

k)]
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When Xt = (Mt, left) then we have,

Pr
D,f

[X0
t |T 0

t−1 ∧ ¬BAD0] = Pr
D,f,R

[X1
t |T 1

t−1 ∧ ¬BAD1]

Notice that if the distribution of tth query is same for both the games then the distribution of internal

queries is also same for both the games. Hence

Pr
D,f

[X0
t , U

0
1,1, · · · , U0

`(Mt),(t)
|T 0
t−1 ∧ ¬(∪t−1

k=1BAD0
k)]

= Pr
D,f

[X1
t , U

1
1,1, · · · , U1

`(Mt),(t)
|T 1
t−1 ∧ ¬(∪t−1

k=1BAD1
k)].

Hence

Pr
D,f

[BAD0
t |¬(∪t−1

k=1BAD0
k)] = Pr

R,D,f
[BAD1

t |¬(∪t−1
k=1BAD1

k)]

For a non-trivial right query (ut, right), both the games query f(ut). If ¬(∪tk=1BAD1
k) is true then

ut 6= ufj for all j < t. On the other hand , for a left query (Mt, left), if ¬(∪tk=1BAD1
k) is true then uft

has never been queried before. Then Prf [f(uft ) = v] = PrR[R(Mt) = v] for all v ∈ {0, 1}n. So

Pr
D,f

[Y 0
t , X

0
t , U

0
1,1, · · · ,U0

`(Mt),(t)
|T 0
t−1 ∧ ¬(∪tk=1BAD0

k)]

= Pr
D,R,f

[Y 1
t , X

1
t , U

1
1,1, · · · , U1

`(Mt),(t)
|T 1
t−1 ∧ ¬(∪tk=1BAD1

k)].

This implies

Pr
D,f

[T 0
t |¬(∪ik=1BAD0

k)] = Pr
D,R,f

[T 1
t , · · · , U1

`i,i
)|¬(∪ik=1BAD1

k)]

3.4 Applications to popular mode of operations

In this section we show the indifferentiability of different popular mode of operations from a Random

Oracle. We note that, according to Theorem 3.2.4 to upper bound distinguisher’s advantage one needs

to calculate the probability of BAD event defined in previous section. Moreover we can only concentrate

on the specific mode of operation rather than the output of the simulator.

3.4.1 Merkle-Damgård with HAIFA

Now we consider Merkle-Damgård mode of operation another variant of prefix free padding; HAIFA. In

this padding we append a counter (indicating the block number) with each but last block of the message.

The last block is padded with 0 (see Fig 3.8). It is easy to check that Merkle-Damgård with HAIFA
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M1|| < 1 > M2|| < 2 > M3|| < 3 > M`|| < 0 >

f f f f
Cf (M)IV

Figure 3.8: Merkle-Damgård with padding rule HAIFA

belongs to GDE. In this case the reconstruction algorithm works as follows. Let t denote the length of

the padding. On input of a f query u; check whether the last t bit of u is 0. If not return ⊥. Otherwise

parse u as h0||m0 where h0 is of n bits. Find, whether h0 is in the output column of a query in the

list L. If no return ⊥. If such a query exists select corresponding input ui. Now last t bit of ui will

be ` − 1, where ` is the number of blocks in possible message. We call such an ui as u`−1. Now for

j = ` − 1 to 2; parse uj as hj−1||mj . find whether hj−1 exist in the output column of L where the

corresponding input has padding j − 1. If no return ⊥. Else select the input and call it uj−1. Repeat the

above three steps until we find a uj with padding 1. If we can find such uis, then construct the message

M = m1||m2|| · · ·m`||m0 and return M . Check that for ith query the algorithm P runs in time O(i`)

where ` is the maximum block length of a query. Hence the total running time of P and hence of the

simulator is O(q2`).

For finding the probability of BAD events, the HAIFA padding rule gives us the following advantage.

While computing Cf (M) for any message M , all the intermediate inputs are unique. In fact the final

input is always different from any intermediate input. So if no f query with same counter padding

has collision in the output, the outputs of the penultimate f queries do not have collision in output

and no nontrivial right query input is same as the final input of some left query, BAD event does not

happen. If BAD event does not happen in ith query, the output of ith query is uniformly distributed

over Y = {0, 1}n. Without loss of generality, we assume that D does not make any trivial query as

trivial queries do not raise a BAD event. Moreover we can consider only a deterministic (albeit adaptive)

distinguisher as the general case can easily be reduced to this case [89]. So input to the ith query is

uniquely determined by previous i− 1 outputs. We represent the output of the nontrivial queries as the

view (V ) of the distinguisher. Let f : {0, 1}m′ → {0, 1}n be a fixed input length random oracle. If D

makes q nontrivial queries and V is the set of all possible views then |V| = |Y |q. We write V as ∩qi=1Vi,

where Vi is the output corresponding to ith query. Now for any V ∈ V, we define an event BAD′V which

occurs whenever there is a collision between intermediate inputs, final inputs and right query inputs.

In fact, ¬BAD′V ∩ V ⊆ ¬BAD ∩ V . We split, BAD′V as ∪qi=1BAD′Vi . BAD′Vi occurs whenever any

intermediate input (final or non-final) of ith left query collides with any intermediate inputs of any other

distinct left query or with input of any nontrivial right query. Although we are working with an adaptive
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attacker, future query inputs are fixed by V . Note that, if ith query is right query BAD′Vi never occurs.

Suppose `i is the number of blocks in ith query.

Suppose the ith query made by the distinguisher is a left query. For ¬BAD′Vi to happen, any intermediate

input (final or non-final) has to be different from previous intermediate/final inputs. Because of HAIFA

padding, no final input will be same with any intermediate input. So if ¬BAD′Vi has to be true, every

intermediate input of ith has to be different from the intermediate inputs with same counter of previous

i−1 queries. Also any intermediate input cannot be same as future right query inputs or future left query

intermediate inputs fixed by the view. There only q many such candidates. So for any intermediate(final)

input there are at most i− 1 + q < 2q bad values. Hence,

Pr[¬BAD′Vi ∩ Vi| ∩i−1
j=1 (¬BAD′Vj ∩ Vj)] ≥

(
|Y | − 2q

|Y |

)`i−1

· 1

|Y |
.

If the ith query is nontrivial right query,

Pr[¬BAD′Vi ∩ Vi| ∩i−1
j=1 (¬BAD′Vj ∩ Vj)] =

1

|Y |
.

So one can calculate the probability of ¬BAD as

Pr[¬BAD] =
∑
V ∈V

Pr[¬BAD ∩ V ] ≥
∑
V ∈V

Pr[¬BAD′V ∩ V ]

=
∑
V ∈V

Pr[∩qi=1(¬BAD′Vi ∩ Vi)]

=
∑
V ∈V

Pr[¬BAD′V1 ∩ V1]

q∏
i=2

Pr[¬BAD′Vi ∩ Vi| ∩i−1
j=1 (¬BAD′Vj ∩ Vj)]

≥
∑
V ∈V

q∏
i=1

(
|Y | − 2q

|Y |

)`i−1

· 1

|Y |

≥
∑
V ∈V

(
1− O(

σq

|Y |
)

)
· 1

|Y |q
= 1− O(

σq

|Y |
)

Here Y = {0, 1}n and σ =
∑q

i=1 `i. So Pr[BAD] ≤ O(σq2n ).

Theorem 3.4.1. The Merkle-Damgård construction with HAIFA padding rule based on a FIL-RO is
(tS , qC , qF, ε) - indifferentiable from a random oracle, with tS = ` · O(q2) and ε = O(σq2n ), where ` is
the maximum length of a query made by the distinguisher D, σ is the sum of the lengths of the queries
made by the distinguisher and q = qC + qF.

In [36], Coron et al. considered a specific prefix-free padding rule which is similar to HAIFA. There

they proved indifferentiability bound as O(σ
2

2n ). So Theorem 3.4.1 can be seen as improving that bound

as well. In Section 3.5.1 we show that the bound we prove in Theorem 3.4.1 is tight.
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3.4.2 Tree Mode of Operation with counter

Tree mode of operation is another popular mode of operation. MD6, a SHA3 candidate uses this mode

of operation. Let f : {0, 1}m′ → {0, 1}n. The input message is divided in blocks and can be viewed

as the leaf nodes. The edges are the function f . Any internal node can be viewed as the concatenation

of the outputs of f on its child nodes. The output of the hash function is the output of f applied on the

root. Now with each node we associate a tag 〈height, index〉 where height denotes the height of the

(1, 1)‖M1 (1, 2)‖M2 (1, 3)‖M3 (1, 4)‖M4

f f f f

(2, 1)‖h11‖h12

h11 h12

(2, 2)‖h13‖h14

h13 h14

f f

(0, 0)‖h21‖h22

h21 h22

f

Cf (M1‖M2‖M3‖M4)

h

Figure 3.9: Tree Mode of Operation with Sequential Padding where m′

n = 2

node in the tree and index represents the index of the node in the level it is in (see Figure 3.9). Each

node is padded with the tag. This padding makes, like HAIFA, each input unique in the evaluation tree

of Cf (M) for any fixed message M . In [44], Dodis et al. proved the tree mode to be indifferentiable

with O( q
2`2

2n ) bound. In this section we improve their bound to ε = O( q
2 log `
2n ).

One can easily construct the computable algorithm P using the same method as in HAIFA. Let Mi

and Mj be two distinct left queries (for simplicity, both of length `) made by distinguisher. Let k be an

index such that kth blocks of Mi and Mj are different. Consider the path from node (1, k) to the root. It

is easy to check that if no collision happens in this path, the final input of f query does not collide while

computing Cf (Mi) and Cf (Mj). Length of this path is log ` (height of the tree). On the other hand a

nontrivial right query input can collide with at most one intermediate input of a left query. Hence, using

a method similar to proof of Theorem 3.4.1, one can prove the following theorem

Theorem 3.4.2. Let F be a FIL-RO and C be the tree mode of operation with the counter padding. CF

is (tS , qC , qF, ε) - indifferentiable from a random oracle, with tS = ` ·O(q2) and ε = O( q
2 log `
2n ), where

` is the maximum length of a query made by the distinguisher D and q = qC + qF.
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Proof. As in Section 3.4.1, we define an event BAD′V , for each V ∈ V. But as discussed in Section
3.4.2 we do not really need all intermediate inputs with same counter to be distinct. All we need is, all
the intermediate inputs are distinct in at least one path for every pair of left queries. So BAD′i does not
happen if there exist paths Pi,j from a leaf node to final input node in the derivation tree of ith query
such that all inputs along that path did not appear in jth query; j < i. Also, as before BAD′Vi happens if
any intermediate input or final input collides with future right query inputs or fixed intermediate inputs
of a left query. As before, we shall give lower bound of Pr[¬BAD′Vi ∩ Vi| ∩

i−1
j=1 (¬BAD′Vj ∩ Vj)]. At

least one input block in every pair of distinct left queries (i, j) is different. For simplicity we assume the
input with pad (1, 1) is different in all the i queries. The general case can be handled in a same way, but
the proof will be a bit more messy.

Let P denote the path from (1, 1) to root. For each intermediate input along the path P , there are
at most (i − 1) previous intermediate inputs which has same padding. Also, as each intermediate input
has unique pad, any particular right query inputs can collide with at most one intermediate input of the
ith left query. Let b(k,k′) denote the number of right queries with pad (k, k′) .

∑
(k,k′) b(k,k′) ≤ q. So for

(k, k′)th node in the path P , there are i − 1 + b(k,k′) < 2q possible values which will set BAD′Vi . For
any other node there are b(k,k′) such values. Hence, if ith query is a left query we have,

Pr[¬BAD′Vi ∩ Vi|∩i−1
j=1(¬BAD′Vj ∩ Vj)]

≥
(
|Y | − 2q

|Y |

)log `

·
( ∏

(k,k′)/∈P

|Y | − b(k,k′)
|Y |

)
· 1

|Y |

≥
(

1− O(q log `)

|Y |

)
·
(

1− q

|Y |

)
· 1

|Y |

=

(
1− O(q log `)

|Y |

)
· 1

|Y |

If the ith query is nontrivial right query,

Pr[¬BAD′Vi ∩ Vi| ∩i−1
j=1 (¬BAD′Vj ∩ Vj)] =

1

|Y |
.

Hence,

Pr[¬BAD] ≥
∑
V ∈V

q∏
i=1

(
1− O(q log `)

|Y |

)
· 1

|Y |

=
∑
V ∈V

(
1− O(q2 log `)

|Y |

)
· 1

|Y |q

= 1− O(q2 log `)

|Y |
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3.5 Indistinguishability attacks on popular mode of operations

In this section we show a lower bound for the advantage of a distinguishing attacker against Merkle-

Damgård constructions with HAIFA padding and Tree mode of operations with counter padding scheme.

The bound we achieve actually reaches the corresponding upper bound shown before. Note, if all the

queries are of length `, then q2` = qσ.

3.5.1 Distinguishing Attacks on Merkle-Damgård Constructions

Consider q messages M1, · · · ,Mq such that,

PAD(M1) = M1
1 ||M2|| · · · ||M `

PAD(M2) = M1
2 ||M2|| · · · ||M `

...

PAD(Mq) = M1
q ||M2|| · · · ||M `

Let COLL be the event denoting collision among Cf (M1), · · · , Cf (Mq). We shall prove that,

Pr[COLL] = Ω(
q2`

2n
).

Let COLLij be the event denoting the collision between Cf (Mi) and Cf (Mj). Hence,

Pr[COLL] = Pr[
⋃

1≤i<j≤q
COLLij ].

Using principle of inclusion-exclusion we get,

Pr[
⋃

1≤i<j≤q
COLLij ] ≥

∑
1≤i<j≤q

Pr[COLLij ]−
∑

1≤i<j<k≤q

(
Pr[COLLij ∩ COLLjk]

+ Pr[COLLij ∩ COLLik] + Pr[COLLik ∩ COLLjk]
)

−
∑

1≤i<j<k<r≤q

(
Pr[COLLij ∩ COLLkr] + Pr[COLLik ∩ COLLjr]

+ Pr[COLLir ∩ COLLjk]
)

(3.1)

Next, we prove the following Lemma.

Lemma 3.5.1. Let Y = {0, 1}n and 1 ≤ i < j < k < r ≤ q. If `− 1 ≤ 2n, then

1. Pr[COLLij ] ≥ `
2|Y |

2. Pr[COLLij ∩ COLLjk] ≤ 2`2

|Y |2

3. Pr[COLLij ∩ COLLkr] ≤ `2

|Y |2 + 6`3

|Y |3
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Proof. Proof of part 1
Let Y = {0, 1}n. The probability of ith left query and jth left query will collide is lower bounded as
following.

Pr[COLLij ] =
1

|Y |
+ (1− 1

|Y |
)

1

|Y |
+ (1− 1

|Y |
)2 1

|Y |
+ · · ·+ (1− 1

|Y |
)`−1 1

|Y |

= 1− (1− 1

|Y |
)`

≥ `

2|Y |

Proof of part 2

Pr[COLLij ∩ COLLjk|COLLij ∧ First time collision happened on input of

mk′ in ith and jth queries ]

=
2

|Y |
(1 + (1− 2

|Y |
) + · · ·+ (1− 2

|Y |
)k
′−2) +

1

|Y |
(1− 2

|Y |
)k
′−1(1 + (1− 1

|Y |
)

+ · · ·+ (1− 1

|Y |
)`−k

′
)

≤ 2

|Y |
(1 + (1− 1

|Y |
) + · · ·+ (1− 1

|Y |
)`−1)

= 2(1− (1− 1

|Y |
)`)

≤ 2`

|Y |

The above result actually implies Pr[COLLij ∩ COLLjk|COLLij ] ≤ 2`
|Y | . Hence,

Pr[COLLij ∩ COLLjk] = Pr[COLLij ]× Pr[COLLij ∩ COLLjk|COLLij ]

≤ (1− (1− 1

|Y |
)`)× 2`

|Y |

≤ 2`2

|Y |2

Proof of Part 3
With a similar approach to the above we can show

Pr[COLLij ∩ COLLkr|COLLij ] ≤
`

|Y |
+

6`2

|Y |2
.

Hence,

Pr[COLLij ∩ COLLkr] ≤
`2

|Y |2
+

6`3

|Y |3
.
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Using Equation 3.1 and Lemma 3.5.1 we get,

Pr[COLL] ≥
(
q

2

)
`

2|Y |
− 3

(
q

3

)
2`2

|Y |2
− 3

(
q

4

)
(
`2

|Y |2
+

6`3

|Y |3
) ≈ α

4
− α2

8
≥ α

8

where α = q2`
2n < 1. By Birthday Bound, for a random function R, the collision probability for q

different messages is Θ( q
2

2n ). Hence for a distinguisher D which queries messages M1, · · · ,Mq, the

advantage of the distinguisher is Ω( q
2`

2n ). Also we can easily construct q such messages for any prefix

free Merkle-Damgård scheme, specifically HAIFA.

Theorem 3.5.2. Let C be the Merkle-Damgård domain extension with a prefix free padding. There
exists a distinguisher D, such that

|Pr[DCf ,f = 1]− Pr[DSR,R = 1]| ≥ Ω(
q2`

2n
)

where D makes q queries and length of each query is at most `.

3.5.2 Distinguishing Attacks on Tree Mode

Similar to previous attack we choose q messages M1, · · · ,Mq such that after padding only first block of

these messages are different. Formally

PAD(Mi) = M1
i ||M2|| · · · ||M `.

Now for these massages the tree mode works like a Merkle-Damgård mode with messagesM1, · · · ,M q

where

PAD(Mi) = M1
i ||M

2|| · · · ||Mh ∀i = 1, 2, · · · , q

h = dlog `e is the height of the tree. Hence using the similar method to previous section we get the

following Theorem.

Theorem 3.5.3. Let C be the Tree mode domain extension with the sequential counter padding. There
exists a distinguisher D, such that

|Pr[DCf ,f = 1]− Pr[DSR,R = 1]| ≥ Ω(
q2 log `

2n
)

where D makes q queries and length of each query is at most `.
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Chapter 4

Indifferentiability of JH Domain
Extension

4.1 Introduction

In 2007, NIST announced a competition for a new hash function standard, to be called SHA-3. 64

designs were submitted and after an internal review of the submissions, 51 were selected for meeting

the minimum submission requirements and accepted as the First Round Candidates. Recently, NIST

declared the names of 14 candidates for the second round of the competition. One of these candidates

will win the competition and eventually become the next standard cryptographic hash function. Hence,

it is essential for these candidate designs to meet the state of the art security notions.

In this chapter, we consider the mode of operation of the JH hash function, one of the final round

candidates of SHA3 competition. It uses a novel construction, somewhat reminiscent of a sponge con-

struction [15], to build a hash algorithm out of a single, large, fixed permutation using chopped-MD

domain extension [113]. We also consider a little modified mode of operation of JH where the chopping

is done on the other bits.

Contribution of this chapter

In this chapter we examine the indifferentiability and preimage resistance of JH mode of operation in

2n bit random permutation model. Let s denote the number of chopped bits. We extend the technique

of Chang and Nandi [32] to random permutation model. We prove that under the assumption that the

fixed permutation of JH is a random permutation, JH mode of operation with specific length padding

is indifferentiable from random oracle with distinguisher’s advantage bounded by O( q
2σ
2s + q3

2n ). When

s = 3n/2 (as in case of JH hash function with 256 bit output), our result gives beyond the birthday barrier
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security guarantee for JH 1. This implies that finding collision in the output is not enough to distinguish

a Random Oracle from JH hash function with n/2-bit output. Although chopMD constructions do not

need the length padding in general, we show the padding is essential for JH mode. We construct one

indifferentiability attacker, working in constant number of queries against JH mode of operation without

length padding at last block with n-bit output. This result also shows that the method used in [15] to

prove indifferentiability of sponge constructions (where length padding in last block is not required)

based on random permutations cannot be readily extended to prove indifferentiability of JH.

Simultaneously, we look at other constructions, modifying JH mode of operation, where the chop-

ping is done on the first instead of last s bits.

• We show that when the length of longest query is less than 2n/2, then the modified JH mode of

operation without the length padding is indifferentiable from an RO with distinguisher’s advantage

bounded by O( q2

2min(s,n) ) where q is the maximum number of queries made by the distinguisher.

• We show one indifferentiability attacker against modified JH mode of operation with Ω(2n/2)

query complexity. This shows for s ≥ n the previous security bound is actually optimal.

• If we set s = n, we get a random permutation based secure mode of operation with n-bit digest

using 2n bit permutation. We note that this construction is at least as secure as the sponge con-

struction based on 2n bit random permutation. where the indifferentiability bound is O(σ
2

2n ) [15].

Here σ is the number blocks that the adversary queries.

Remark 4.1.1. Although, for s = n, the bound of JH’ is optimal, for s < n, the bound of JH′ may not
be optimal.

Overview of our technique

We extend and formalize the Technique of [32] to the permutation based constructions. Informally

speaking, we avoid the cumbersome game playing arguments. We show that, in order to prove indif-

ferentiability one has to construct a simulator, such that the statistical distance of the distribution (of

the view of any indifferentiability distinguisher) between the ideal and real world is negligible. Then

we use the technique of Interpolation Probability to show that for our simulator, for any output view.

the statistical distance between the real and the ideal world is negligible. Moreover, our simulator does

not invoke any BAD flag. Instead, the simulator goes through a resampling procedure to ensure that the

distribution remains close to the real world.
1According to birthday paradox, for a uniform random function with n-bit digest, collision can be found with significant

probability in O(2
n
2 ) queries. This is known as the birthday barrier as security against more than O(2

n
2 ) queries is non-trivial;

when at all possible
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4.2 Preliminaries

Definition 4.2.1. FH : {0, 1}2n → {0, 1}n is a function which outputs first n bit of any 2n bit number.
Similarly, LH : {0, 1}2n → {0, 1}n is a function which outputs last n bit of any 2n bit number.

Often we refer FH as left half and LH as right half. Below we state a few basic inequalities as a

lemma which will be useful later.

Lemma 4.2.2. For any y ∈ {0, 1}2n−s, c ∈ {0, 1}n, S ⊆ {0, 1}2n and T ⊆ {0, 1}n we have,

1. |{z ∈ {0, 1}s : y‖z ∈ S}| ≤ |S| and |{z ∈ {0, 1}s : z‖y ∈ S}| ≤ |S|

2. |{z ∈ {0, 1}s : FH(y‖z) ⊕ c ∈ T}| ≤ 2n|T| and |{z ∈ {0, 1}s : FH(z‖y) ⊕ c ∈ T}| ≤
2s

2min(s,n) |T|

JH Compression Function

The compression function of JH, fπ : {0, 1}3n → {0, 1}2n is defined as follows:

fπ(h1‖h2‖m) = π(h1‖(h2 ⊕m))⊕ (m‖0n)

where h1, h2,m ∈ {0, 1}n and π : {0, 1}2n → {0, 1}2n is a fixed permutation.

π
h1

h′2h2

h′1

m

Figure 4.1: The JH compression function

JH Mode of Operation

The JH mode of operation based on a permutation π is the chopMD mode of operation based on the

above compression function fπ. The usual Merkle-Damgård technique is applied on fπ and the output

of the hash function is the first 2n−s bits of the final fπ query output. For any, 0 ≤ s ≤ |n|, CHOPRs(m)

is defined as mL where m = mL‖mR and |mR| = s. Formally the JH mode of operation based on a

permutation π with initial value IV1‖IV2 is defined as

JHπ(·) : ({0, 1}n)+ → {0, 1}2n−s ≡ CHOPRs(MDfπ(·)).

Where,MDfπ is the Merkle-Damgård mode of operation with initial value as IV1‖IV2 and compression

function as fπ. According to [113], typically s = n. Also it is suggested to have s ≥ n.
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π π · · · π
ChopsIV1

IV2

m1 m2 m`

2n− s
JH(M)

Figure 4.2: The JH hash function

Modified JH Mode of Operation: JH ′

We also define a modified version of JH mode of operation (denoted by JH ′ throughout the chapter)

where instead of chopping right most s bits we chop left most s bits. Let for 0 ≤ s ≤ |m|, CHOPLs(m)

is defined as mR where m = mL‖mR and |mL| = s.

JH ′π(·) : ({0, 1}n)+ → {0, 1}2n−s ≡ CHOPLs(MDfπ(·)).

π π · · · π
Chops

IV1

IV2

m1 m2 m`

2n− s
JH ′(M)

Figure 4.3: The JH ′ hash function

Throughout the chapter JH-t denotes the JH mode of operation with t bit output. Similarly JH ′-t

denotes JH ′ mode of operation with t bit output.

Padding Rule: To encode messages whose lengths are not multiple of block size (n bit) we need

some padding rule, so that padded message becomes a multiple of block size. A simple padding rule

can be zero padding, that is adding sufficient number of zero bits so that the padded message becomes a

multiple of block size, even though this is not secure. We will see as in the case of JH a well designed

padding rule leads to additional security guarantee.

Definition 4.2.3. A padding rule P is a tuple of two efficiently computable functions

P ≡ (PAD : {0, 1}∗ → ({0, 1}n)+,DEPAD : ({0, 1}n)+ → {0, 1}∗ ∪ {⊥})

such that for any M ∈ {0, 1}∗ we have

DEPAD(PAD(M)) = M.

DEPAD(y) outputs ⊥ if there exists no M ∈ {0, 1}∗ such that, PAD(M) = y.

The function PAD takes a message of arbitrary length and outputs the padded message which is

multiple of block length. Where as, the function DEPAD takes the padded message which is multiple

of block length and outputs the original message. Normally, when we specify a padding rule we only
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specify the function PAD, but usually definition of DEPAD can be trivially derived from the description of

PAD. In our context, we are interested in a specialized class of padding rules, namely with the following

additional properties.

1. |PAD(M)|
n = d |M |n e+ 1.

2. For anyM ∈ ({0, 1}n)+, let LB(M) ⊆ {0, 1}n be the set of n-bit elements (possible last blocks)

such that for all m ∈ {0, 1}n,

DEPAD(M‖m) 6=⊥ .

We want, |LB(M)| to be small for all M ∈ {0, 1}∗(smaller than some constant).

Here, if x ∈ {0, 1}∗, |x| denotes the length of x in bits. Also, if A is a set, |A| denotes the number of

elements in A. Any padding which satisfies the above two properties is called good padding rule. Now

we are ready to define the JH mode of operation with padding.

Definition 4.2.4. With respect to a padding rule P = (PAD,DEPAD) and a permutation π, the JHP

mode of operation is defined as follows,

JHπ
P (·) : {0, 1}∗ → {0, 1}2n−s ≡ JHπ(PAD(·)) ≡ CHOPLs(MDfπ(PAD(·))).

The JH Padding rule:

In [113], the following padding rule is mentioned for JH hash function with block length n = 512.

Suppose that the length of the message M is `(M) bits. Append the bit 1 to the end of the message,

followed by 384 − 1 + (−`(M) mod 512) zero bits. Then the binary representation of `(M) in big

endian form is concatenated. This padding rule ensures that at least one block of 512 bits is padded

after the message (irrespective of whether the message length is multiple of 512) . It is easy to check the

above padding rule is actually a good padding rule with |LB(M)| ≤ 2.

4.3 Main Tools for Bounding Distinguisher’s Advantage

We follow a similar approach to [32, 31] for proving indifferentiability security over here. We start

with modeling the attacker. Then we construct a simulator, whose output distribution in attacker’s view

remains statistically close whether the attacker is interacting with JH Hash function and the random

permutation it is based on, or is interacting with a random function and the simulator. Compared to [32]

we do not restrict ourselves to some particular type of irreducible views. The underlying small domain

oracle being a random permutation we also need to answer inverse queries.
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Consistent Oracles

Intuitively, a small domain oracle is said to be consistent to a big domain oracle with respect to some

mode of operation if querying the mode of operation based on the small domain oracle is equivalent to

querying the big domain oracle.

Definition 4.3.1. A (small domain) probabilistic oracle algorithm G2 is said to be consistent to a (big
domain) probabilistic oracle algorithm G1 with respect to MO-mode of operation if for any point x
(from the big domain), we have

Pr[G1(x) = MOG2(x)] = 1.

Evaluatable queries

There might be some point x for which the value of MOG2(x) gets fixed by the relations G2(x1) =

y1, · · · , G2(xq) = yq. Such x’s are called evaluatable by the relations G2(x1) = y1, · · · , G2(xq) = yq.

Formally,

Definition 4.3.2. A point x ∈ Domain(MOG2) is called evaluatable with respect to MO-mode of
operation (based on G2) by the relations G2(x1) = y1, · · · , G2(xq) = yq, if there exists a deterministic
algorithm B such that,

Pr[MOG2(x) = B(x, (x1, y1), · · · , (xq, yq))|G2(x1) = y1, · · · , G2(xq) = yq] = 1.

Modeling the adversary

In this chapter the adversary is modeled as a deterministic, computationally unbounded1 distinguisher A

which has access to two oracles O1 and O2. Recall that A tries to distinguish the output distribution of

(JHπ, π) from that of (R,SR). We say A queries O1 when it queries the oracle JHπ or R and queries

O2 when it queries the oracle π or SR. As we model π as a random permutation, the distinguisher is

allowed to make inverse queries to oracle O2. We denote the forward query as (O2(+, ·, ·)) and inverse

query as (O2(−, ·, ·)). The view V of the distinguisher is the list query-response tuple

((M1, h1), . . . , (Mq1 , hq1), (x1
1, x

2
1, y

1
1, y

2
1), . . . , (x1

q2+q3 , x
2
q2+q3 , y

1
q2+q3 , y

2
q2+q3)) (4.1)

Where,

O1(M1) = h1, . . . ,O1(Mq1) = hq1

O2(+, x1
1, x

2
1) = (y1

1, y
2
1), . . . ,O2(+, x1

q2 , x
2
q2) = (y1

q2 , y
2
q2)

O2(−, y1
q2+1, y

2
q2+1) = (x1

q2+1, x
2
q2+1), . . . ,O2(−, y1

q2+q3 , y
2
q2+q3) = (x1

q2+q3 , x
2
q2+q3)

1Any deterministic adversary with unlimited resource is as powerful as a randomized adversary
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Definition 4.3.3. For any view V as in ( Equation 4.1), we define Input View I(V) and Output View
O(V) as follows,

I(V) = (M1, . . . ,Mq, (x
1
1, x

2
1), . . . , (x1

q2 , x
2
q2), (y1

q2+1, y
2
q2+1), . . . , (y1

q2+q3 , y
2
q2+q3))

O(V) = (h1, . . . , hq, (y
1
1, y

2
1), . . . , (y1

q2 , y
2
q2), (x1

q2+1, x
2
q2+1), . . . , (x1

q2+q3 , x
2
q2+q3))

Below we point out some important observations,

1. V, I(V) and O(V) are actually ordered tuples. That means, the position of any element inside the

tuple actually denotes the corresponding query number. So, in general O1(.), O2(+, (., .)) and

O2(−, (., .)) queries should not be grouped together. But we write it like this to avoid further

notational complexity.

2. For any deterministic non-adaptive attacker I(V) is always fixed.

3. For any deterministic adaptive attacker I(V) is actually determined by O(V) [89].

4. For any deterministic attacker (adaptive or non-adaptive) V is actually determined by O(V).

Irreducible Views

Loosely speaking an irreducible view does not contain any duplicate query, and none of the O1 queries

are evaluatable from the O2 queries present in the view.

Definition 4.3.4. A view,

V = ((M1, h1), . . . , (Mq1 , hq1), (x1
1, x

2
1, y

1
1, y

2
1), . . . , (x1

q2+q3 , x
2
q2+q3 , y

1
q2+q3 , y

2
q2+q3))

is called irreducible if

• M1, . . . ,Mq1 are distinct,

• (x1
1, x

2
1), . . . , (x1

q2+q3 , x
2
q2+q3) are distinct,

• (y1
1, y

2
1), . . ., (y1

q2+q3 , y2
q2+q3) are distinct,

• M1, · · · ,Mq1 are not evaluatable by the relations

π(x1
1, x

2
1) = (y1

1, y
2
1), . . . , π(x1

q2+q3 , x
2
q2+q3) = (y1

q2+q3 , y
2
q2+q3)

with respect to MD-mode of operation based on fπ.

Also, any view which is not irreducible is called reducible view.

Definition 4.3.5. For an attacker A, an output view OV is called irreducible if the corresponding view
V is irreducible. Any output view which is not irreducible is called reducible output view.
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Let OVA
O1,O2

be the random variable corresponding to the output view of attacker A, obtained after

interacting with O1,O2. Also, VA
O1,O2

be the random variable corresponding to the view of attacker A,

obtained after interacting with O1,O2.

The theorem below shows, if the probability distributions for all possible output views in two sce-

narios are close, then the attacker advantage is small. In contrast to the existing work in the literature,

here we concentrate on output views instead of views. In fact, for a fixed attacker A, there is always an

one to one mapping between any view and output view.

Theorem 4.3.6. Fi, Gi be the probabilistic oracle algorithms. If for an attacker A, the relation

Pr[OVA
F1,F2

= OV] ≥ (1− ε) Pr[OVA
G1,G2

= OV],

holds for all possible output views OV, then we have, AdvA((F1, F2), (G1, G2)) ≤ ε

In general it is hard to show the necessary condition of Theorem 4.3.6 for all possible output views.

Theorem 4.3.7 proves that it is sufficient to work with irreducible output views instead of all possible

output views. In fact, one can reduce any output view to an irreducible output view and then can apply

Theorem 4.3.6.

Theorem 4.3.7. If there exists a simulator SR consistent to a random oracleR with respect to JH-mode
of operation, such that for any attacker A making at most q queries, the relation

Pr[OVA
JHπ ,π = OV] ≥ (1− ε) Pr[OVA

R,SR = OV],

holds for all possible irreducible output views OV (with respect to A); then for any attacker A making
at most q queries, we have

AdvA((JHπ, π), (R,SR)) ≤ ε.

Proof. This theorem differs from Theorem 4.3.6, only in the aspect that here probability distributions
are close only for the irreducible output views. For any reducible output view OV and the corresponding
attacker A, let V be the view fixed by OV and A. Let V′ be the view obtained by deleting the computable
O1 queries and repeated O2 queries of V. The input view I(V′) actually specifies a non-adaptive attacker
A′. The output view OV′ = O(V′) is actually an irreducible output view with respect to A′. As, π is
consistent to JHπ and SR is consistent to R with respect to JH-mode of operation we have,

Pr[OVA
JHπ ,π = OV] = Pr[OVA′

JHπ ,π = OV′]

Pr[OVA
R,SR = OV] = Pr[OVA′

R,SR = OV′].

Note, A′ actually makes fewer queries compared to A. Hence, even for reducible views, we have

Pr[OVA
JHπ ,π = OV] = Pr[OVA′

JHπ ,π = OV′]

≥ (1− ε) Pr[OVA′

R,SR = OV′]

= (1− ε) Pr[OVA
R,SR = OV].
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So the required condition of Theorem 4.3.6 remains true. Now, by applying Theorem 4.3.6 we get the
result.

4.4 Indifferentiability Security Analysis of JH ′

4.4.1 Simulator and its Interpolation Probability

The simulator maintains one partial permutation e1 : {0, 1}2n → {0, 1}2n initially empty, one partial

function e∗1 : ({0, 1}n)∗ → {0, 1}2n initialized with e∗1(φ) = IV1‖IV2. It also maintains two setsC1, C2

initialized as C1 = {IV1} and C2 as empty. Let I1 denotes the set of points on which e1 is defined,

O1 denotes the output points of e1. FH,LH : {0, 1}2n → {0, 1}n be the two functions outputting first

n-bits and last n-bits of any 2n-bit number respectively.

The goal of the simulator is to remain consistent withRwith respect to JH ′-mode of operation while

behaving like a random permutation. Before describing the simulator, we give some insight informally

on how the simulator works.

1. In the partial permutation e1, the simulator maintains its history.

2. In the partial function e∗1, the simulator maintains the list of queries evaluatable by e1 with respect

to JH-mode of operation.

3. C1 is the set of first half (first n-bits) of e∗1 outputs.

4. Even though e∗1 is evaluatable by the partial permutation e1, it might happen that e1 is also defined

at some points which do not help in evaluating e∗1. C2 is the set of first half of such points.

5. The simulator makes sure, C1 and C2 always remain mutually exclusive.

6. Because of 5, there are no so called accidents. That means when the attacker is interacting with

(R,SR) and she wants to evaluate O1(m1‖ · · · ‖m`) through a series of O2 queries, she will

always have to make a series of ` queries starting with O2(IV1, IV2 ⊕m1). The attacker cannot

hope to skip a query in the middle.

We note at any point of time, the following conditions hold.

|O1| ≤ q2 + q3 and |I1| ≤ q2 + q3 and |C1 ∪ C2| ≤ q2 + q3 and |C1| ≤ q2 + 1

Theorem 4.4.1. For any attacker A against JH ′ and any irreducible output view OV with respect to it,
we have

Pr[OVA
R,S′R = OV] ≤ 1

2(2n−s)q1+2n(q2+q3)
× 1

(1− 2(q2+q3)

2min(s,n) )q2
× 1

(1− 2(q2+q3)
2n )q3
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S ′R(+, x1, x2)

• IF e1(x1‖x2) = z RETURN z

• IF there exists M , s.t e∗1(M) = x1‖x′

1. m = x′ ⊕ x2

2. y = R(M‖m)⊕ CHOPL(m‖0n)

3. w ∈R {0, 1}s

4. z = w‖y

5. IF ( z ∈ O1 OR FH(z)⊕m ∈ C1 ∪ C2)

– GOTO Step 3

6. C1 = C1 ∪ {FH(z)⊕m}

7. e∗1(M‖m) = z ⊕ (m‖0n)

8. e1(x1‖x2) = z

9. RETURN z

• ELSE

10. z ∈R {0, 1}2n

11. IF z ∈ O1

– GOTO Step 10

12. e1(x1‖x2) = z

13. C2 = C2 ∪ {x1}

14. RETURN z

S ′R(−, y1, y2)

• IF there exists z1‖z2 such that e1(z1‖z2) = y1‖y2

– RETURN z1‖z2

• ELSE

1. z1 ∈R {0, 1}n

2. IF z1 ∈ C1

– GOTO Step 1

3. z2 ∈R {0, 1}n

4. IF z1‖z2 ∈ I1

– GOTO Step 3

5. C2 = C2 ∪ {z1}

6. RETURN z1‖z2

Figure 4.4: Simulator for JH ′
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where 2(q2 + q3) < 2min(s,n).

Proof. As OV is irreducible, R query outputs are independent of the other queries, hence R being a
Random Function for q1 manyR queries we get the term 1

2(2n−s)q1
. For an S′R(+, ·, ·) queries, simulator

is giving output as w‖y, there are two scenarios.

1. y is distributed uniformly over {0, 1}2n−s and w is distributed uniformly over {0, 1}s \ {z ∈
{0, 1}s : z‖y ∈ O1 or FH(z‖y)⊕ (x′ ⊕ x2) ∈ C1 ∪ C2}.

2. w‖y is distributed uniformly over {0, 1}2n \O1.

By Lemma 4.2.2 we know,

|{z ∈ {0, 1}s : y‖z ∈ O1}| ≤ |O1| ≤ (q2 + q3).

On the other hand, using Lemma 4.2.2 here we have,

|{z ∈ {0, 1}s : FH(z‖y)⊕ (x′ ⊕ x2) ∈ C1 ∪ C2}| ≤
2s

2min(s,n)
|C1 ∪ C2|

≤ 2s

2min(s,n)
(q2 + q3).

Hence, for any (w‖y) ∈ {0, 1}2n we have,

Pr[S′R(+, ·, ·) query outputs (w‖y)]

≤ max

(
1

22n−s
1

2s − 2s

2min(s,n) (q2 + q3)− (q2 + q3)
,

1

22n − (q2 + q3)

)
≤ 1

22n

1

(1− 2(q2+q3)

2min(s,n) )

For SR(−, ·, ·) query giving output as z1‖z2 we know,

1. z1 is uniformly distributed over {0, 1}n \ C1

2. z2 is uniformly distributed over {0, 1}n \ {w ∈ {0, 1}n : z1‖w ∈ I1}

We know, |C1| ≤ (q2 + 1) and |I1| ≤ (q2 + q3). Hence, for any (z1‖z2) ∈ {0, 1}2n we have

Pr[SR(−, ·, ·) query outputs (z1‖z2)] ≤ 1

(2n − (q2 + 1))(2n − (q2 + q3))

≤ 1

22n

1

1− 2(q2+q3)
2n

Hence, all together we get

Pr[OVA
R,SR = OV] ≤ 1

2(2n−s)q1+2n(q2+q3)
× 1

(1− 2(q2+q3)

2min(s,n) )q2
× 1

(1− 2(q2+q3)
2n )q3
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Next we wish to show that our simulator is efficient. We know |O1| ≤ (q2 + q3) and |C1 ∪ C2| ≤
(q2+q3). The probability that the GOTO statement at Step 5 in forward query in Figure 4.4 gets executed

is at most 2(q2+q3)

2min(s,n) . The condition 2min(s,n) > 4(q2 +q3) ensures that it happens with probability at most
1
2 in each iteration. Hence except with negligible probability, Step 5 takes at most O(q2 + q3) time to

satisfy the condition. The same argument holds for other GOTO statements as well. Hence we get the

following result.

Theorem 4.4.2. If 2min(s,n) > 4(q2 + q3), the simulator S′R takes at most O(q2 + q3) time to answer
any query (except with exponentially small probability).

4.4.2 Interpolation Probability of OVA
JH′π ,π

In Theorem 4.4.1 we have shown upper bound for Pr[OVA
R,S′R = OV] for any irreducible output views

OV. The Theorem below gives a lower bound for Pr[OVA
JH′π ,π = OV] for any irreducible output view

OV. Later we will apply Theorem 4.3.7 to prove the indifferentiability bound using these upper and

lower bounds.

Theorem 4.4.3. For any attacker A and any irreducible output view OV with respect to it, we have

Pr[OVA
JH′π ,π = OV] ≥ 1

2(2n−s)q1+2n(q2+q3)
× (1− 2σ2

22n
)× (1− 2q1(q1 + q2 + q3)

2min(s,n)
).

The proof of the above theorem involves two steps. Starting with an attacker A against JH ′π ≡
CHOPLs(MDfπ) we construct another attacker A′ againstMDfπ which essentially makes same queries

as A but has access to unchopped output view.

• First we define the notion of MD-irreducible view (irreducible view with respect to Merkle-

Damgård mode of operation) and then we show for the output view OVMD corresponding to

any MD-irreducible view we actually have,

Pr[OVA′

MDfπ ,π = OVMD] ≥ 1

22nq1+2n(q2+q3)
× (1− 2σ2

22n
)

• In Theorem 4.4.7 we show, given an irreducible output view OV and an attacker A, if OVMD is

the set of all MD-irreducible output views for the attacker A′ such that,

Pr[OVA
JH′π ,π = OV|OVA′

MDfπ ,π = OVMD] = 1

for all OVMD ∈ OVMD; then

|OVMD| ≥ 2sq1 × (1− 2q1(q1 + q2 + q3)

2min(s,n)
)

The above two results will readily imply Theorem 4.4.3.
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Definition 4.4.4. The set of relations

MDfO2
(M1‖m1) = g1, . . . ,MDfO2

(Mq1‖mq1) = gq1

O2(x1
1, x

2
1) = (y1

1, y
2
1), . . . ,O2(x1

q2+q3 , x
2
q2+q3) = (y1

q2+q3 , y
2
q2+q3)

is MD-irreducible if,

1. g1 ⊕ (m1‖0n), . . . , gq1 ⊕ (mq1‖0n), y1
1‖y2

1, . . . , y
1
q2+q3‖y

2
q2+q3 are all different.

2. For i = 1, . . . , q1, one of the following two conditions holds

(a) FH(gi) is different from x1
1, . . . , x

1
q2+q3 and IV1.

(b) Σ be the set of all message blocks present in MDfO2 queries. If FH(gi) = IV1, then
LH(gi)⊕ IV2 6∈ Σ. If FH(gi) = x1

j for some 1 ≤ j ≤ q2 + q3, then LH(gi)⊕ x2
j 6∈ Σ.

3. M1‖m1, . . . ,Mq1‖mq1 are not evaluatable by the relations

O2(x1
1, x

2
1) = (y1

1, y
2
1), . . . ,O2(x1

q2+q3 , x
2
q2+q3) = (y1

q2+q3 , y
2
q2+q3)

with respect to MD-mode of operations based on fO2

We also say the tuple,

v = ((M1‖m1, g1), . . . , (Mq1‖mq1 , gq1), (x1
1, x

2
1, y

1
1, y

2
1), . . . ,

(x1
q2+q3 , x

2
q2+q3 , y

1
q2+q3 , y

2
q2+q3))

is MD-irreducible if and only if the corresponding set of relations is MD-irreducible, according to Defi-
nition 4.4.4.

The definition above is similar to the definition of irreducible view (Definition 4.3.4). But here we are

interested in the view without any chopping. Note, condition 2 ensures Mi‖mi is not evaluatable even

with the help of the relations MDfO2 (Mj‖mj) = hj for j 6= i. Loosely speaking, the Theorem below

gives a lower bound of the probability of getting a particular MD-irreducible tuple v, when a attacker

interacts with (MDfπ , π).

Theorem 4.4.5. Let a tuple

v = ((M1‖m1, g1), . . . , (Mq1‖mq1 , gq1), (x1
1, x

2
1, y

1
1, y

2
1), . . . ,

(x1
q2+q3 , x

2
q2+q3 , y

1
q2+q3 , y

2
q2+q3))

be MD-irreducible, then the number of permutations π such that,

MDfπ

IV1‖IV2(M1‖m1) = g1, . . . ,MDfπ

IV1‖IV2(Mq1‖mq1) = gq1

π(x1
1, x

2
1) = (y1

1, y
2
1), . . . , π(x1

q2+q3 , x
2
q2+q3) = (y1

q2+q3 , y
2
q2+q3) . . .Rel B
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is at least
|Π|

22nq1+2n(q2+q3)
× (1− 2σ2

22n
),

where |Π| = (22n)! is the total number of permutations from {0, 1}2n to {0, 1}2n and σ is the total
number of message blocks queried. Also for a MD-irreducible tuple v, the probability that Rel B holds
is at least

1

22nq1+2n(q2+q3)
× (1− 2σ2

22n
),

when π is a random permutation.

Proof. Let D be the set of all elements from ({0, 1}n)+ whose MDfπ

IV1‖IV2 values are determined from
the relations

π(x1
1, x

2
1) = (y1

1, y
2
1), . . . , π(x1

q2+q3 , x
2
q2+q3) = (y1

q2+q3 , y
2
q2+q3).

Since v is MD-irreducible, Mi‖mi /∈ D for all 1 ≤ i ≤ q1. let P denote the set of all nonempty prefixes
of Mi’s. More precisely,

P = {M ∈ ({0, 1}n)+ : M is prefix of Mi for some 1 ≤ i ≤ q1}.

We enumerate the set P \D ≡ {N1, . . . , Nσ′}. Note that, |P |+ q1 ≤
∑

i ‖Mi‖. Now, we have

σ = q2 + q3 +
∑
i

‖Mi‖ ≥ q2 + q3 + |P |+ q1 ≥ q1 + q2 + q3 + σ′ ≡ σ′′

Note that, σ′ = |P \D| ≤ |P |. As the number of feasible choices depend only on σ′ and not on |P |, we
used σ′ in the previous expression.

We can choose outputs of MDfO2

IV1‖IV2(N1), . . . , MDfO2

IV1‖IV2(Nσ′) in at least

(22n − 2(q1 + q2 + q3))(22n − 2(q1 + q2 + q3 + 1)) . . . (22n − 2(q1 + q2 + q3 + σ′ − 1))

ways. (In the negative term, the factor 2 comes because, any output value should not be same as other
output values and the next input value induced by the output value should not be same as other input
values.) Hence,

|{π : {0, 1}2n → {0, 1}2n such that π is a permutation and satisfies Rel B}|

≥ (22n − σ′′)!×
σ′−1∏
i=0

(22n − 2(q1 + q2 + q3 + i))

≥ (22n)!

22nσ′′
× 22nσ′ × (1− 2σ′σ′′

22n
) ≥ |Π|

22nq1+2n(q2+q3)
× (1− 2σ2

22n
)

For the third inquality we used σ > σ′′ > σ′ and σ′′ = q1 + q2 + q3 +σ′. Π is the set of all permutations
over {0, 1}2n.
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Definition 4.4.6. With respect to an irreducible view

V = ((M1‖m1, h1), . . . , (Mq1‖mq1 , hq1), (x1
1, x

2
1, y

1
1, y

2
1), . . . ,

(x1
q2+q3 , x

2
q2+q3 , y

1
q2+q3 , y

2
q2+q3))

an MD-irreducible tuple v is said to be CHOPLs-matching if

v = ((M1‖m1, w1‖h1), . . . , (Mq1‖mq1 , wq1‖hq1), (x1
1, x

2
1, y

1
1, y

2
1), . . . ,

(x1
q2+q3 , x

2
q2+q3 , y

1
q2+q3 , y

2
q2+q3)),

for some q1-tuple w = (w1, . . . , wq1).

Let M ′V be the set of all such CHOPLs-matching MD-irreducible tuples.

Theorem 4.4.7. For any irreducible view

V = ((M1‖m1, h1), . . . , (Mq1‖mq1 , hq1), (x1
1, x

2
1, y

1
1, y

2
1), . . . ,

(x1
q2+q3 , x

2
q2+q3 , y

1
q2+q3 , y

2
q2+q3))

we have,

|M ′V| ≥ 2sq1 × (1− q1(q1 + q2 + q3)

2min(s,n)
).

Proof. By Lemma 4.2.2, we know

|{z ∈ {0, 1}s : z‖h1 ⊕ (m1‖0n) ∈ {y1
1‖y2

1, . . . , y
1
q2+q3‖y

2
q2+q3}}|

= |{z ∈ {0, 1}s : z‖h1 ∈ {y1
1‖y2

1 ⊕ (m1‖0n), . . . , y1
q2+q3‖y

2
q2+q3 ⊕ (m1‖0n)}}| ≤ q2 + q3

and
|{z ∈ {0, 1}s : FH(z‖h1) ∈ {x1

1, . . . , x
1
q2+q3 , IV1}}| ≤

2s

2min(s,n)
(q2 + q3 + 1).

Hence there are at least (2s− (q2 + q3 + 2s

2min(s,n) (q2 + q3 + 1))) many possible values for w1. Similarly
once w1 is selected there are at least (2s − (q2 + q3 + 2s

2min(s,n) (q2 + q3 + 1) + 1)) many possible values
for w2 and so on. Hence,

|M ′V| = Number of valid w tuples

≥ (2s − (q2 + q3 +
2s

2min(s,n)
(q2 + q3 + 1))) . . . (2s − (q2 + q3 +

2s

2min(s,n)
(q2 + q3 + 1) + q1 − 1))

≥ 2sq1 × (1− 2q1(q1 + q2 + q3)

2min(s,n)
)
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Now we are ready to prove Theorem 4.4.3, with help of Theorem 4.4.5 and Theorem 4.4.7. Let V be

the irreducible view determined by A and irreducible output view OV. Consider an Attacker A′, which

makes queries at the same input points as of A, but has access to MDfO2 instead of JH ′O2 . Hence,

Pr[OVA
JH′π ,π = OV] = Pr[VA

JH′π ,π = V] =
∑
v∈MV

Pr[VA′

MDfπ ,π = v]

≥
∑
v∈MV

1

22nq1+2n(q2+q3)
× (1− 2σ2

22n
)

≥ 1

22nq1+2n(q2+q3)
× (1− 2σ2

22n
)× 2sq1 × (1− 2q1(q1 + q2 + q3)

2min(s,n)
)

=
1

2(2n−s)q1+2n(q2+q3)
× (1− 2σ2

22n
)× (1− 2q1(q1 + q2 + q3)

2min(s,n)
)

4.4.3 Indifferentiability Security Bound

We are now ready to prove the main result of this section. For any attacker A, making at most q1, q2, q3

queries to the oracles O1,O2(+, ·, ·),O2(−, ·, ·) respectively we show an upper bound for AdvA.

Theorem 4.4.8. The JH ′π-construction (with (2n− s)-bit output) based on a random permutation π is
(O(q2 + q3)), q1, q2 + q3, ε) indifferentiable from a random oracle R, with

ε ≤ 2σ2

22n
+

2q3(q2 + q3)

2n
+

2q2(q2 + q3) + 2q1(q1 + q2 + q3)

2min(s,n)
,

where σ is the maximum number of message blocks queried, q1 is the maximum number queries to JH ′π

or R, q2 + q3 is the maximum number of queries to π, π−1 or S′R(+, ·, ·), SR(−, ·, ·). Here we also
assume, q2 + q3 < 2min(s,n)−21.

Proof. For any attacker A and an irreducible output view OV from Theorem 4.4.1 and Theorem 4.4.3
we have,

Pr[OVA
JHπ ,π = OV]

≥

(
1−

(2σ2

22n
+

2q3(q2 + q3)

2n
+

2q2(q2 + q3) + 2q1(q1 + q2 + q3)

2min(s,n)

))
× Pr[OVA

R,S′R = OV]

Now, applying Theorem 4.3.7 we get the required result.

When maximum query length ` is smaller than 2n/2, for any attacker A (making at most q many

queries) against the JH ′ construction we have

AdvA = O(
q2

2min(s,n)
)

1Note that, as q2, q3 are the query complexity of the adversary (rather than time complexity), the condition q2 + q3 <

2min(s,n)−2 does not restrict the adversary to be PPTM.
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4.5 Indifferentiability Security Analysis of JHP

4.5.1 Simulator and its Interpolation Probability

We describe our simulator in Fig 4.5. Similar to previous section, the following notation we used in

describing the simulator.

• Partial permutation e : {0, 1}2n → {0, 1}2n, initially empty. I denotes set of points where e is

defined and O denotes the output points of e.

• Partial function e∗ : ({0, 1}n)∗ → {0, 1}2n initialized to e∗(φ) = IV1‖IV2.

• Set C ⊆ {0, 1}n initialized to C = {IV1} is the FH (first half) of e∗ outputs.

For a padding rule P = (PAD,DEPAD) and M ∈ ({0, 1}n)+, we recall LB(M) ⊆ {0, 1}n is de-

fined as {m ∈ {0, 1}n : DEPAD(M‖m) 6=⊥}. As in case of the actual JH padding rule we assume,

|LB(M)| ≤ 2.

We recall the design philosophy behind the JH ′ simulator from Section 4.4.1. Over there the simulator

was maintaining a list of evaluatable queries and their non-chopped outputs in the partial permutation

e∗1. When the simulator receives some query the goal of the simulators are three fold.

1. Give a random output keeping in mind the permutation property.

2. Do not create some new evaluatable query unless forced to do so. That means output of the

simulator will never create a new evaluatable query with the exception of the following scenario.

3. It might happen, only the input of the simulator forces another new evaluatable query. (This

happens if attacker is trying to find some O1 query output through O2 query.) If this happens, then

adjust the output of the simulator so that it remains consistent to R, w.r.t. the new evaluatable

query.

One crucial point is, during one simulator query the simulator must prevent creation of more than

one evaluatable query. Otherwise, the simulator cannot remain consistent to both of them. In forward

queries to JH ′ simulator with s = n, when the attacker has forced creation of one new evaluatable

query the LH (last half) of the possible output gets fixed by R response of that evaluatable query, but

the simulator has control over FH output with which it makes sure, another evaluatable query is not

created.

Here the situation is reversed. FH gets fixed by R, the simulator has control only over LH . This is

problematic, because only FH can lead to creation of more evaluatable queries (with one more message
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block after the current evaluatable query). In fact, in Section 4.6 the attacker against JH mode operation

(without length padding at last block) exploits this fact. But the simulator can play with LH to change

the actual evaluatable query (even though it cannot prevent the creation.) By doing so, the simulator

ensures the new evaluatable query is not a valid padded message, hence for that query the simulator does

not need to be consistent with R. The simulator also needs to be careful such that no new evaluatable

queries of length (current evaluatable query length + 2) or more are created. However, that can easily be

handled.

The next two theorems describe the running time and interpolation probability upper bound corre-

sponding to the simulator.

Theorem 4.5.1. For any attacker A against JHπ
P mode of operation and any irreducible output view

OV with respect to it, we have

Pr[OVA
R,SR = OV] ≤ 1

2(2n−s)q1+2n(q2+q3)
× 1

(1− (q2+q3+3)2

2s )q2
× 1

(1− (q2+q3+1)2

2n )q3

when (q2 + q3 + 3)2 < 2min(s,n).

Proof. As OV is irreducible, the distributionR query outputs is independent from the output distribution
of other queries, hence R being a Random Function for q1 many R queries we get the term 1

2(2n−s)q1
.

For SR(+, ·, ·) query giving output as y‖w we actually have two scenarios:

1. y is distributed uniformly over {0, 1}2n−s and w is distributed uniformly over {0, 1}s \ (B1 ∪
B2 ∪ · · · ∪B7), where

(a) B1 = {z ∈ {0, 1}s : y‖z ∈ O}

(b) B2 = {z ∈ {0, 1}s : FH(y‖z)⊕ x1 = m,LH(y‖z)⊕ x2 ∈ LB(M‖m)}

(c) B3 = {z ∈ {0, 1}s : FH(y‖z)⊕i1 = m,LH(y‖z)⊕i2 ∈ LB(M‖m) for some i1‖i2 ∈ I}

(d) B4 = {z ∈ {0, 1}s : FH(y‖z)⊕ x1 = m,LH(y‖z)⊕ x2 = FH(y‖z)⊕ x1}

(e) B5 = {z ∈ {0, 1}s : FH(y‖z) ⊕ x1 = m,LH(y‖z) ⊕ x2 = FH(y‖z) ⊕ i′1 for some
i′1‖i′2 ∈ I}

(f) B6 = {z ∈ {0, 1}s : FH(y‖z) ⊕ i1 = m,LH(y‖z) ⊕ i2 = FH(e(i1‖i2)) ⊕ x1 for some
i1‖i2 ∈ I}

(g) B7 = {z ∈ {0, 1}s : FH(y‖z) ⊕ i1 = m,LH(y‖z) ⊕ i2 = FH(e(i1‖i2)) ⊕ i′1for
somei1‖i2, i′1‖i′2 ∈ I}

2. y‖w is uniformly distributed over {0, 1}2n \O
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SR(+, x1, x2)

1. IF e(x1‖x2) = z RETURN z

2. IF there exists M , s.t. e∗(M) = x1‖x′

(a) m = x′ ⊕ x2

(b) IF M 6= φ AND m ∈ LB(M)

i. y = R(DEPAD(M‖m))⊕CHOPR(m‖0n)

ii. w ∈R {0, 1}s

iii. z = y‖w

(c) ELSE

i. z ∈R {0, 1}2n

(d) IF z ∈ O GOTO Step 2b

(e) e∗′ = e∗

(f) C′ = C

(g) FOR EACH i1‖i2 ∈ I ∪ {x1‖x2}

i. IF FH(z)⊕m 6= i1 CONTINUE

ii. IF LH(z)⊕ i2 ∈ LB(M‖m)

• GOTO Step 2b

iii. IF i1‖i2 = x1‖x2
• o1‖o2 = z

iv. ELSE

• o1‖o2 = e(i1‖i2)

v. e∗′(M‖m‖LH(z) ⊕ i2) = (o1 ⊕ LH(z) ⊕
i2)‖o2

vi. C′ = C′ ∪ {o1 ⊕ LH(z)⊕ i2}
vii. FOR EACH i′1‖i′2 ∈ I ∪ {x1‖x2}

• IF LH(z)⊕ i2 = o1 ⊕ i′1
– GOTO Step 2b

(h) e∗ = e∗′

(i) C = C′

(j) e∗(M‖m) = z ⊕ (m‖0n)

(k) C = C ∪ {FH(z)⊕m}

3. ELSE

(a) z ∈R {0, 1}2n

(b) IF z ∈ O GOTO Step 3a

4. e(x1‖x2) = z

5. RETURN z

SR(−, y1, y2)

1. IF there exists z1‖z2 such that e(z1‖z2) = y1‖y2

• RETURN z1‖z2

2. ELSE

(a) z1 ∈R {0, 1}n

(b) IF z1 ∈ C

• GOTO Step 2a

(c) z2 ∈R {0, 1}n

(d) IF z1‖z2 ∈ I

• GOTO Step 2c

(e) e(z1‖z2) = y1‖y2

(f) RETURN z1‖z2

Figure 4.5: Simulator for JH with padding
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We know |O| = |I| ≤ q2 + q3, we would also like to have upper bounds for |B1|, |B2|, · · · , |B7|.

1. By Lemma 4.2.2, |B1| ≤ |O| ≤ q2 + q3. Also, |B2| ≤ |LB(M‖m)| ≤ 2

2. We partition I as I1 ∪ I2 ∪ · · · depending on the first half values, more precisely a, b ∈ Ij implies
FH(a) = FH(b). Now,

|B3| = |{z ∈ {0, 1}s : FH(y‖z)⊕ i1 = m,LH(y‖z)⊕ i2 ∈ LB(M‖m) for some

i1‖i2 ∈ I}|

=
∑
j

|{z ∈ {0, 1}s : FH(y‖z)⊕ i1 = m,LH(y‖z)⊕ i2 ∈ LB(M‖m) for some

i1‖i2 ∈ Ij}|

≤
∑
j

|Ij | × |LB(M‖m)| ≤ 2|I| ≤ 2(q2 + q3)

3. |B4| ≤ 1 and |B5| ≤ |I| ≤ (q2 + q3)

4. We partition I as before. Now,

|B6| = |{z ∈ {0, 1}s : FH(y‖z)⊕ i1 = m,LH(y‖z)⊕ i2 = FH(e(i1‖i2))⊕ x1 for some

i1‖i2 ∈ I}|

=
∑
j

|{z ∈ {0, 1}s : FH(y‖z)⊕ i1 = m,LH(y‖z)⊕ i2 = FH(e(i1‖i2))⊕ x1 for some

i1‖i2 ∈ Ij}|

≤
∑
|Ij | = |I| ≤ (q2 + q3)

5. We partition I as before. Now,

|B7|

= |{z ∈ {0, 1}s : FH(y‖z)⊕ i1 = m,LH(y‖z)⊕ i2 = FH(e(i1‖i2)⊕ i′1 for some

i1‖i2, i′1‖i′2 ∈ I}|

=
∑
j

|{z ∈ {0, 1}s : FH(y‖z)⊕ i1 = m,LH(y‖z)⊕ i2 = FH(e(i1‖i2)⊕ i′1 for some

i1‖i2 ∈ Ij , i′1‖i′2 ∈ I}| ≤
∑
j

|Ij | × |I| = |I|2 ≤ (q2 + q3)2

Hence all together we have

|B1 ∪B2 ∪ · · · ∪B3| ≤ (q2 + q3)2 + 5(q2 + q3) + 3 ≤ (q2 + q3 + 3)2.
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So, when (q2 + q3 + 3)2 < 2s for any y‖w ∈ {0, 1}2n we have,

Pr[SR(+, ·, ·) query outputs y‖w] ≤ max(
1

22n−s
1

2s − (q2 + q3 + 3)2
,

1

22n − (q2 + q3)
)

≤ 1

22n

1

1− (q2+q3+3)2

2s

For SR(−, ·, ·) query giving output as z1‖z2, we know

• z1 is uniformly distributed over {0, 1}n \ C

• z2 is uniformly distributed over {0, 1}n \ {w ∈ {0, 1}n : z1‖w ∈ I}

Initially size of C is 1 and during each query, the size of C can grow by at most |I|+ 1 amount. Hence
we have,

|C| ≤ (q2 + q3)2.

Also, by Lemma 4.2.2 we know,

|{w ∈ {0, 1}n : z1‖w ∈ I}| ≤ |I| ≤ q2 + q3.

So, when (q2 + q3)2 ≤ 2n for any z1‖z2 ∈ {0, 1}2n we have,

Pr[SR(−, ·, ·) query outputs z1‖z2] ≤ 1

2n − (q2 + q3)2

1

2n − (q2 + q3)
≤ 1

22n

1

1− (q2+q3+1)2

2n

Hence, all together we have

Pr[OVA
R,SR = OV] ≤ 1

2(2n−s)q1+2n(q2+q3)
× 1

(1− (q2+q3+3)2

2s )q2
× 1

(1− (q2+q3+1)2

2n )q3
.

Theorem 4.5.2. If 2(q2 + q3 + 3)2 < 2min(s,n), the simulator SR takes at most O((q2 + q3)2) time to
answer any query (except with exponentially negligible probability).

4.5.2 Interpolation Probability of OVA
JHπ

P ,π

The following theorem is analogous to Theorem 4.4.3, used in Section 4.4.

Theorem 4.5.3. For any attacker A and any irreducible output view OV with respect to it, we have

Pr[OVA
JHπ

P ,π
= OV] ≥ 1

2(2n−s)q1+2n(q2+q3)
× (1− 2σ2

22n
)× (1− 2σq1(q1 + q2 + q3)

2s
).

Proof. To prove the theorem we need an analog of Theorem 4.4.7 when chopping is done on the right-
most (most significant) bits. We define the notion of CHOPR-matching in exact same way as of CHOPLs-
matching defined in Definition 4.4.6. Let MV be the set of all such CHOPR-matching MD-irreducible
tuples. Now we have the following theorem
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Theorem 4.5.4. For any irreducible view

V = ((M1‖m1, h1), . . . , (Mq1‖mq1 , hq1), (x1
1, x

2
1, y

1
1, y

2
1), . . . , (x1

q2+q3 , x
2
q2+q3 , y

1
q2+q3 , y

2
q2+q3))

we have,

|MV| ≥ 2sq1 × (1− 2σq1(q1 + q2 + q3)

2s
).

Proof. By Lemma 4.2.2, we know

|{z ∈ {0, 1}s : h1‖z ⊕ (m1‖0n) ∈ {y1
1‖y2

1, . . . , y
1
q2+q3‖y

2
q2+q3}}|

= |{z ∈ {0, 1}s : h1‖z ∈ {y1
1‖y2

1 ⊕ (m1‖0n), . . . , y1
q2+q3‖y

2
q2+q3 ⊕ (m1‖0n)}}| ≤ q2 + q3

Also, we would like to have an upper bound for

|{z ∈ {0, 1}s : h1‖z ⊕ 0n‖m ∈ {x1
1‖x2

1, . . . , x
1
q2+q3‖x

2
q2+q3 , IV1‖IV2} for some m ∈ Σ}|

Consider the case when s ≥ n. We partition {x1
1‖x2

1, . . . , x
1
q2+q3‖x

2
q2+q3 , IV1‖IV2} as S1 ∪ S2 ∪ · · ·

such that for any a, b ∈ {x1
1‖x2

1, . . . , x
1
q2+q3‖x

2
q2+q3 , IV1‖IV2}, a and b will go to the same partition

(i.e. a, b ∈ Si) iff FH(a) = FH(b). Clearly,∑
|Si| = (q2 + q3 + 1).

Hence,

|{z ∈ {0, 1}s : h1‖z ⊕ 0n‖m ∈ {x1
1‖x2

1, . . . , x
1
q2+q3‖x

2
q2+q3 , IV1‖IV2} for some m ∈ Σ}|

=
∑
i

|{z ∈ {0, 1}s : h1‖z ⊕ 0n‖m ∈ Si for some m ∈ Σ}| ≤
∑
i

|Si||Σ| ≤ (q2 + q3 + 1)σ

In a similar way, we can also show

|{z ∈ {0, 1}s : h1‖z⊕0n‖m ∈ {x1
1‖x2

1, . . . , x
1
q2+q3‖x

2
q2+q3 , IV1‖IV2} for some m ∈ Σ}| ≤ (q2+q3+1)σ

when s < n. Hence, there are at least (2s − (q2 + q3 + (q2 + q3 + 1)σ)) many possible values for w1.
Once w1 is selected there are at least (2s − (q2 + q3 + (q2 + q3 + 1)σ + 1)) choices for w2 and so on.
Hence,

|MV| = Number of valid w tuples

≥ (2s − (q2 + q3 + (q2 + q3 + 1)σ)) . . . (2s − (q2 + q3 + (q2 + q3 + 1)σ + q1 − 1))

≥ 2sq1 × (1− 2σq1(q1 + q2 + q3)

2s
)
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We are now ready to prove Theorem 4.5.3. Let V be the irreducible view determined by A and
irreducible output view OV. Consider an Attacker A′, which makes queries at the same input points as
of A, but has access to MDfO2 instead of JHπ

P .

Pr[OVA
JHπ

P ,π
= OV] =

∑
v∈MV

Pr[VA′

MDfπ ,π = v]

≥
∑
v∈MV

1

22nq1+2n(q2+q3)
× (1− 2σ2

22n
)

≥ 1

22nq1+2n(q2+q3)
× (1− 2σ2

22n
)× 2sq1 × (1− 2σq1(q1 + q2 + q3)

2s
)

=
1

2(2n−s)q1+2n(q2+q3)
× (1− 2σ2

22n
)× (1− 2σq1(q1 + q2 + q3)

2s
)

The first inequality follows from Theorem 4.4.5 and the second inequality follows from Theorem 4.5.4.

4.5.3 Indifferentiability Security Bound

Theorem 4.5.5. The JHπ
P mode of operation (with (2n−s)-bit output) based on a random permutation

π is (O((q2 + q3)2), q1, q2 + q3, ε) indifferentiable from a random oracle R, with

ε ≤ 2σ2

22n
+
q2(q2 + q3 + 3)2

2s
+
q3(q2 + q3 + 1)2

2n
+

2σq1(q1 + q2 + q3)

2s
,

where σ is the maximum number of message blocks queried, q1 is the maximum number queries to JHπ
P

or R, q2 + q3 is the maximum number of queries to π, π−1 or S′R(+, ·, ·), SR(−, ·, ·). Here we also
assume, 2(q2 + q3 + 3)2 < 2min(s,n).

Under reasonable assumptions, for an attacker making at most q queries with total σ many compres-

sion function invocations we have

AdvA = O(
σ2

22n
+
q3

2n
+
q2σ

2s
).

4.6 Distinguisher A for JH without length padding at last block

Recall that the compression function of JH is based on a fixed permutation π. On input of the n-bit

message block m and 2n-bit chaining value h1||h2 the compression function outputs f(m,h1, h2) =

π(h1, h2 + m) + m||0n. JH applies chopped Merkle-Damgård transformation and outputs first t (t =

2n− s) bits of the output of final compression function. Here s denotes the number of chopped bits.

In case of JH-n, we have s = n. Our distinguisher first queries h = Cπ(M) with a random n-bit

message M . The distinguisher appends 0n with h and queries t1‖t2 = π(+, h‖0n). Note that when

the distinguisher is interacting with (π,Cπ), the second π query made by Cπ(M ||M2) will be on the
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Distinguisher A

1. M ∈R {0, 1}n.

2. h = O1(M).

3. t1‖t2 = O2(+, h‖0n).

4. z1‖z2 = O2(+, IV1‖IV2⊕M).

5. h2 = O1(M‖z2).

6. IF t1 6= h2 ⊕ z2

• return 1.

7. return 0.
(a) Distinguisher for JH-n without length
padding

Distinguisher for JH′ without length padding at last block

• Choose distinct n-bit numbers m1, . . . ,mk

• For i = 1, . . . , k

y1i ‖y2i = O2(+, IV1‖IV2 ⊕mi)

• If for i = 1, . . . , k, (yi1 ⊕mi)’s are distinct return 1

• else

– Find distinct j1, j2 such that (y1j1 ⊕mj1 ) = (y1j2 ⊕mj2 )

– m ∈R {0, 1}n

– x1 = O1(mj1‖(m⊕ y2j1 ))

– x2 = O1(mj2‖(m⊕ y2j2 ))

– if x1 ⊕ CHOPL((m⊕ y2j1 )‖0n) 6= x2 ⊕ CHOPL((m⊕ y2j2 )‖0n)

∗ return 1

• return 0
(b) Distinguisher for JH ′ without length padding

Figure 4.6: The Distinguishers

input (h||z) where z is the last n bit output of π(+, IV1, IV2 ⊕M1) xor-ed with M2. So if we set M2

to be the last n bit output of π(+, IV1, IV2 ⊕M1) then z = 0n. Note that in case of JH with length

padding, we could not choose M2 this way as the length block is fixed. To get M2, the distinguisher

queries z1‖z2 = O2(+, IV1‖IV2 ⊕M). Now D sets M2 = z2 and queries h2 = Cπ(M‖z2). Finally

the distinguisher checks whether h2 = t1 ⊕ z2. Formal algorithm of the distinguisher is described in

Figure 4.6(a).

Theorem 4.6.1. If the simulator S makes at most k many R queries for answering a single query, then
AdvA ≥ 1− 2k+1

2n

4.7 Distinguisher for JH ′

In this section, we show one distinguisher with Ω(2n/2) many queries, which is successful against any

simulator with non-negligible probability. Hence, when maximum query length ` is bounded by 2n/2,

we get tight security bound.

The distinguisher has access to two oracles O1,O2 and is trying to differentiate between the two

scenarios whether (O1,O2) is (JHπ, π) or (R,SR). Formal description of our distinguisher is given in

Fig 4.6(b). The success probability of the distinguisher is established by following theorem.

Theorem 4.7.1. With k = Ω(2n/2), AdvA is non-negligible for any simulator S.
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Proof. If there exists a simulator S against which A(k) has negligible advantage with k = Ω(2n/2), then
the simulator must output a collision among (y1

1 ⊕m1), . . . , (y1
k ⊕mk) with non-negligible probability.

But the simulator also should find y2
j1

and y2
j2

such that the relation

R(mj1‖(m⊕ y2
j1))⊕ CHOP((m⊕ y2

j1)‖0n) = R(mj2‖(m⊕ y2
j2))⊕ CHOP((m⊕ y2

j2)‖0n)

holds with non negligible probability for m ∈R {0, 1}n. But R being a Random Oracle clearly that is
not possible.

Note, if we use CHOPR instead of CHOPL then the same attack actually applies for the original JH

mode of construction without length padding at last block as well.
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Part II

Blackbox Separation of Padding Based
Schemes
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Chapter 5

Blackbox Separation of Padding Based
Public Key Schemes: Definitions and
Preliminaries

5.1 Introduction and Definitions

In public key cryptography, the keys of the sender and the receiver are different. Based on the applica-

tion, either the sender or the receiver generates a pair of keys; a public key, which is known to everyone

including the adversary and a secret key, which is only known to the person who generated the keys.

Two of the most important applications of public key cryptography are encryption and signatures.

5.1.1 Public Key Encryption Scheme

A public key encryption scheme E = (Gen,Enc,Dec) consists of three probabilistic polynomial time

algorithms. The key generation algorithm Gen takes a security parameter 1k as input and outputs an

encryption key ek and a decryption key dk. We write (pk, sk) ← Gen(1k) to denote the execution of

Gen. The (randomized) encryption algorithm Enc takes ek and the message M as input and outputs

a ciphertext C. We denote the execution of the encryption algorithm by C ← Enc(pk,M). The

decryption algorithm (possibly randomized), on input dk and a cipher text C, outputs the message M

(or a special symbol⊥ ifC is an invalid ciphertext). We writeM ← Dec(sk,M) to denote an execution

of the decryption algorithm.

Security against Chosen Plaintext Attack

A public key encryption scheme E is said to be secure against chosen plaintext attack (IND-CPA) if

for any PPTM adversary A, advantage of A in the following game is negligible in terms of the security
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parameter.

• Gen(1k) is executed to get (pk, sk). A gets 1k and pk.

• A publishes two equal length messages M0 and M1. A bit b ← {0, 1} is chosen uniformly at

random. A gets the challenge ciphertext C = Enc(pk,Mb).

• A publishes a bit b′ as output.

We say A to be successful if b = b′ and denote the probability of this event as PrCPAA,E [Success].

We define the advantage of A as AdvCPAA,E = |PrCPAA,E [Success]− 1
2 | where the probability is taken over

the joint distribution of A and E.

Security against Chosen Ciphertext Attack

A public key encryption scheme E is said to be secure against chosen ciphertext attack if for any PPTM

adversary A, advantage of A in the following game is negligible in terms of the security parameter.

• Gen(1k) is executed to get (pk, sk). A gets 1k and pk.

• A makes at most polynomially many queries to the decryption oracle Dec(sk, .).

• A publishes two equal length messages M0 and M1. A bit b ← {0, 1} is chosen uniformly at

random. A gets the challenge ciphertext C = Enc(pk,Mb).

• The adversary continues to make at most polynomially many queries to the decryption oracle

Dec(sk, .) except on the challenge ciphertext C.

• A publishes a bit b′ as output.

A is said to be successful if b = b′ and we denote the probability of this event as PrCCAA,E [Success].

We define the advantage of A as AdvCCAA,E = |PrCCAA,E [Success]− 1
2 | where the probability is taken over

the joint distribution of A and E.

In this thesis we also consider signature schemes, another important public key cryptographic prim-

itive.

5.2 Signature Schemes

A signature scheme (Gen,Sign,Verify) is defined as follows:

- The key generation algorithm Gen is a probabilistic algorithm which given 1k, outputs a pair of

matching verification and signing keys, (vk, sk).
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- The signing algorithm Sign takes the message M to be signed, the public key vk and the signing

key sk, and returns a signature σ = Signsk(M). The signing algorithm may be probabilistic.

- The verification algorithm Verify takes a message M , a candidate signature σ′ and vk. It returns

a bit Verifyvk(M,σ′), equal to one if the signature is accepted, and zero otherwise.

We require that if σ ← Signsk(M), then Verifyvk(M,σ) = 1. We say a message signature pair

(M,σ) to be valid if the signature σis accepted for the message M .

5.2.1 Security of a Signature Scheme

In a secure Signature scheme, the security is ensured against an adversary whose objective is to forge

a signature. The weakest security notion of a signature scheme is called unforgeability against zero

message attack where adversary has to produce a valid message signature pair without even looking at

the signature of any message. In stronger notions, adversary is allowed to ask (possibly adaptively) for

signature of some messages of its choice and then produce a valid signature of a new message (whose

signature was not queried).

Unforgeability against zero message attack

A signature scheme is said to be unforgeable against zero message attack if for any PPTM adversary A,

advantage of A in the following game is negligible in terms of the security parameter.

• Gen(1k) is executed to get (vk, sk). A gets 1k and vk.

• A publishes a message signature pair (M,σ).

We say A to be successful if Verifyvk(M,σ) = 1.

Unforgeability against chosen message attack

A signature scheme is said to be unforgeable against chosen message attack (EUF-CMA) if for any

PPTM adversary A, advantage of A in the following game is negligible in terms of the security param-

eter.

• Gen(1k) is executed to get (vk, sk). A gets 1k and vk.

• A makes at most polynomially many queries to the signing oracle Sign(sk, .).

• A publishes a message signature pair (M,σ).

We say A to be successful if Verifyvk(M,σ) = 1 and M was never queried to the signing oracle.
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5.2.2 Padding Based Schemes

In a padding based public key scheme, a public, invertible padding is applied to the message (and

the random string) before the operation (like encryption, signature etc). Examples of popular padding

based encryption scheme includes OAEP [12], OAEP++ [105], SAEP [26], SAEP+ [26]. Similarly the

Full Domain Hash and Probabilistic Signature Schemes can be considered as padding based signature

schemes.

5.2.3 Trapdoor Permutations (TDPs)

Trapdoor Permutation is the most basic primitive of public key cryptography. In contrast to general

notion of permutations, trapdoor permutations require a trapdoor to efficiently find the inverse.

Definition 5.2.1. A trapdoor permutation family is a triplet of PPTM (Tdg, F , F−1). Tdg is proba-
bilistic and on input 1n outputs a key-pair (pk, td) ←R Tdg(1n). F (pk, .) implements a permutation
πpk over {0, 1}n and F−1(td, .) implements the corresponding inverse π−1

pk .

Security of Trapdoor Permutations

The most standard security property of TDP is one-wayness which says that it is hard to invert a random

element without knowing the trapdoor. Formally, for any PPTM A

Pr[(pk, td)←R Tdg(1n), x←R {0, 1}n : A(fpk(x)) = x] ≤ negl(n).

Many other security notions for Trapdoor Permutations are known. Like [43, 78], we consider a

wide class of security properties using the notion of δ-hard games.

5.2.4 Hard Games

A cryptographic game consists of two PPTMs C (Challenger) and A (Prover) who can interact over a

shared tape. After the interaction, C finally outputs a bit d. We say,Awins the game if d = 1 and denote

it, following [43], by 〈C,A〉 = 1.

Definition 5.2.2. [43] A game defined as above is called δ-hard game if for all PPT A (in the security
parameter n) the probability of win , when both C and A have oracle access to t uniform random
permutations π1, π2, · · · , πt over {0, 1}n, is at most negligible more than δ. Formally C is a δ-hard
game if for all PPTM A

AdvC(A,n) = Pr[〈Cπ1,π2,··· ,πt , Aπ1,π2,··· ,πt〉 = 1] ≤ δ + negl(n)

The hardness of the game C (denoted by δ(C)) is the minimum δ such that C is δ-hard.
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For cryptographic games like one-wayness, partial one-wayness, claw-freeness; δ = 0. For the game

of pseudo-randomness δ = 1/2. The notion of δ-hard game was considered in [78] as a generalization

of hard games considered in [43]. It was pointed out in [78] that the result of [43] can easily be extended

to this notion.

5.2.5 Ideal Trapdoor Permutations

The notion of Ideal Trapdoor permutation was coined in [78]. To remain consistent with literature, we

follow the same notion.

Let TDP = (Tdg, F, F−1) be a trapdoor permutation. We say that TDP is secure for δ-hard

game C if for all PPTM A, AdvC(A,n)− δ(C) is negligible even when the random permutations in the

definition of hard game is replaced by TDP . Formally, TDP is secure iff,

Pr[〈CF (pk1),F (pk2),··· ,F (pkt), AF (pk1),F (pk2),··· ,F (pkt)〉 = 1] ≤ δ + negl(n),

where (pki, tdi)←R Tdg(1n) for i = 1, · · · t.

Definition 5.2.3. [78] TDP is said to be an ideal trapdoor permutation if it is secure for any δ-hard
game C.

We stress that, ideal trapdoor permutation does not exist. However as we are proving negative result

in the thesis, proving separation from an ideal trapdoor permutation (hence to any hard game) makes our

result stronger. This implies black-box separation from security notions like collision resistant hashing,

pseudo-random functions, IND-CCA secure public key encryption schemes etc. In Fig. 5.1 we show

some δ-hard game with the upper bound on advantage of any PPTM.

Game Description of Game Winning Condition Advantage
One-wayness x←R {0, 1}k;y ← F (pk1, x);x′ ← AF (y) x′ = x ≤ q+1

2k

Partial Domain OW x←R {0, 1}k; y ← F (pk1, x);x′ ← AF (y) x′ = [x]` ≤ q
2k

+ 2k−`
2k−q

Claw-freeness (x1, x2)← AF (pk1,.),F (pk2,.)(1k) F (pk1, x1) = F (pk2.x2) q2

2k

Figure 5.1: Advantage of Ideal Trapdoor Permutations

5.2.6 Lossy Trapdoor Permutations

Lossy Trapdoor Functions were introduced by Peikert and Waters in [94]. In this chapter we consider

a straightforward generalization to permutations. A family of (n, l) Lossy Trapdoor Permutations (LT-

DPs) is given by a tuple (S,F,F′) of PPTMs. S is a sampling algorithm which on input 1 invokes F

and on input 0 invokes F′. F (called “Injective Mode”) describes a usual trapdoor permutation; i.e. it

outputs (π, π−1) where π is a permutation over {0, 1}n and π−1 is the corresponding inverse. F′ (called
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“Lossy Mode”) outputs a function f ′ on {0, 1}n with range size at most 2l. For any distinguisher D,

LTDP-Advantage is defined as

Advltdp(F,F′),D =
∣∣∣Pr[Dπ(.) = 1 : (π, π−1)←R F]− Pr[Df ′(.) = 1 : f ′ ←R F′]

∣∣∣.
We call F “lossy” if it is the first component of some lossy LTDP.

5.3 Existing work on the separation of padding based schemes

5.3.1 Blackbox Separation Results

A rich body of work [55, 56, 58, 63, 73, 107] on blackbox separation exists in the literature starting from

the seminal work of Impagliazzo and Rudich [73]. Regarding the separation of random oracle from the

standard model, the first result was due to Canetti, Goldreich and Halevi [30] who showed an artificial

albeit valid signature scheme that cannot be securely instantiated by standard hash functions. Many such

results [43, 50, 63, 78] were subsequently published.

To obtain our separation results we use the two oracle technique of Hsiao and Reyzin [71]. Specifi-

cally, we use the following generic version of proposition 1 of [71].

Proposition 5.3.1. [71] To show that there is no black-box reduction from primitive P to secret-coin
collision resistant hashing Q, it suffices to construct two oracles T and G such that

1. There exists a PPTM M such that MT implements Q.

2. For all PPTM N , if NT implements P, there exists a PPTM AG breaks the security of NT .

3. For all PPTM B, BG cannot break the security of MT .

5.3.2 Separation of Padding based schemes

The most relevant results to this thesis is the works of Dodis et. al. [43] and of Kiltz and Pietrzak [78]. In

[43], Dodis, Oliviera and Pietrzak showed that the popular Full Domain Hash (FDH) signature scheme

cannot be instantiated (using blackbox technique) in standard model by a ideal trapdoor permutation.

Note that, FDH is a very special (deterministic) padding based signature scheme.

Theorem 5.3.2. [43] There is no blackbox reduction of unforgeability against chosen message attack of
Full Domain Hash signature scheme from any security property of ideal trapdoor permutation.

In [93], Paillier showed impossibility of reduction of many RSA based signatures including PSS

from different security assumptions of RSA. However, Paillier’s impossibility result is based on an

additional assumption (namely, instance non-malleability) of RSA.

Kiltz and Pietrzak [78] established that there is no blackbox reduction of any padding based CCA

secure encryption scheme from ideal trapdoor permutations.
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Theorem 5.3.3. [78] There is no blackbox reduction of IND-CCA security of any padding based en-
cryption scheme from any security property of ideal trapdoor permutation.
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Chapter 6

Impossibility of Instantiating PSS in the
Standard Model

6.1 Introduction

Probabilistic Signature Scheme (PSS) is one of the most known and widely deployed provably secure

randomized signature schemes. It was designed by Bellare and Rogaway [14] as a generic scheme

based on a trapdoor permutation (like RSA). In [14], Bellare and Rogaway showed the scheme is secure

in Random Oracle (RO) Model [12]. Coron improved the previous security bound in [34]. Recently

in [37], PSS is proven secure even against fault attacks exploiting the Chinese Remainder Theorem

(CRT) implementation of RSA . However, all the previous security proofs are valid only in RO model,

where one assumes the existence of ideal, truly random hash functions. Unfortunately truly random

functions do not exist and in practice, the “ideal” functions are instantiated with some efficient hash

functions. Hence it is important that the proofs are valid while replacing random oracles by a standard

hash functions. Otherwise such proofs merely provide heuristic evidence that breaking the scheme may

be hard (or there is no generic attack against the scheme).

A number of papers [30, 43, 63, 78], starting from famous results of Canetti et. al. [30], showed that

there are schemes secure in the Random Oracle model, which are uninstantiable under standard model.

Naturally, these results raise concerns about the soundness of the schemes proven secure in random

oracle model. Particularly for widely deployed scheme like PSS, it is especially important to have an

secure instantiation by a standard, efficiently computable hash function so that we do not build our

technology in vacuum. In this chapter, we ask essentially this particular question about PSS: Whether

it is possible, to securely instantiate PSS based on reasonable assumptions to the underlying trapdoor

permutation.
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6.1.1 Our Results

Our main result is a general negative result to the above question. Roughly, we extend all the negative

results by Dodis et. al. [43] for Full Domain Hash (FDH) to PSS. Specifically, we show the following

• There is no instantiation of PSS such that, unforgeability under chosen message attack can be

reduced to any security property of a random permutation using black-box reduction techniques.

As a random permutation satisfies almost all reasonable security notions, our result covers many

of the standard security notions, like inverting trapdoor permutation on a random point (one-

way), finding some bits of pre-image of a random point (partial domain one-wayness), finding

correlated inputs etc. Our result is perfectly valid even if the hash functions used in PSS can query

the trapdoor permutation and digests are arbitrarily related to the responses.

• We also rule out any black box reduction from recently proposed Lossy Trapdoor Permuta-

tions [94]. In Crypto 2010, Kiltz et. al. [77] has proven IND-CPA security of OAEP based

on Lossy Trapdoor Permutation. Hence it is important to analyze whether positive result could be

possible for PSS.

• We also show that even the weakest security criteria , namely unforgeability under no message

attack cannot be black-box reduced to the one-wayness of the trapdoor permutation if the ran-

domness space in PSS is “super-polynomial” in security parameter.

• All our results can easily be extended to the scenario when the adversary can invert some points

of his choice (with some restrictions) for a fixed bounded number of times.

We would like to mention that our results does not completely rule out the possibility of instantiating

PSS in standard model. A “whitebox” reduction, using the code of the adversary, may still exist. On the

other hand, it may be possible to show a reduction from other cryptographic functions like homomorphic

encryption. Still, we believe our result is important from theoretical point of view as it shows PSS

requires special property of underlying trapdoor permutation as opposed to “Only randomness of hash

is sufficient” notion of random oracle model.

Remark 6.1.1. All our results can be extended to any padding based signature scheme where the random
string can be recovered.

6.1.2 Overview of our Technique

We use the technique of two oracles due to Hsio and Reyzin [71] for our separation results. We construct

two oracles T and G such that T implements an ideal trapdoor permutation and G can be used to forge

the PSS scheme. However, G does not help the attacker to break any security property of the ideal
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trapdoor permutation. Informally, this ensures that a black-box security proof cannot exist as any such

proof should be valid against our T and G.

On a very high level our technique can be seen as an extension of the technique of Dodis et. al. [43]

to rule out black box reduction of FDH. Separation from a random permutation is achieved in two steps.

As the first step, we instantiate T by permutation chosen uniformly at random from the set of exponen-

tially many permutations. Intuitively, G, the main forger oracle, should output a forgery after checking

whether the adversary truly has access to a signer by sending polynomially many challenge messages.

However the reduction could design the underlying hash function in such a way, so that the digests of

the messages either collide with each other (hence reducing the number of points on which inversion

is needed) or the digest is the result of one of the evaluation queries made to the trapdoor permuta-

tion (hence the reduction can get the signature from the corresponding query by evaluating the hash

function). For this reason we define G to output the forgery only if the adversary can produce distinct

signatures, which were not a query to the trapdoor permutation during the computation of digests, for

all the challenge messages.

In the second step we show that a reduction algorithm (which does not have access to inversion

oracle) cannot produce a valid signature meeting both the conditions with non-negligible probability.

Hence to win any hard game, G is of no use to the adversary. However, we construct an efficient

adversary with an access to a valid sign oracle (available in an unforgeability game) that can either find

a forgery on its own or can construct signatures satisfying all the conditions of G. We stress that the

efficient algorithm in [43], which precomputes all the hash values to check for the conditions, does not

work efficiently when the signature scheme is randomized. Specifically, when the random strings are of

super-logarithmic length, it is no longer possible for a polynomial time algorithm to compute all possible

hash values for even a single message. It might very well happen that the computed digests meet the

conditions but the digests on which signer generated the signature do not meet the condition. To solve

this problem we use an elegant adaptive “evaluate on the fly” technique where we sample polynomially

many random strings and check for the conditions. If the conditions are satisfied for the sampled digests,

we repeatedly query the signer with fresh random coins for multiple signatures of same message. We

show that, with probability exponentially close to 1, one gets either a set of valid signatures maintaining

the conditions from the signer or could find a forgery during the sampling stage.

6.1.3 Differences from Crypto 05 paper of Dodis et. al.

Although our definition of oracles are quite similar to that in [43], difference comes in when finally

implementing a forgery. The technique of [43] is not readily applicable for randomized signatures.

Specifically in case of PSS the forger cannot force the signer to choose any particular random string.

On the other hand, if the randomness space is super-polynomial the forger cannot pre-compute all the
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possible value of the hashes of any message. As a result the forger, as defined in [43], cannot output a

forgery when G aborts. Our contribution is in constructing adaptive forger that can forge PSS with over-

whelming probability even when the randomness space is super-polynomial. Moreover, our technique

to rule out black-box reduction to one way trapdoor permutation is completely different. Looking ahead,

we show that when the randomness space is of super-polynomial size, no Probabilistic Polynomial-Time

Turing Machine (PPTM) can use a random signature (over the choice of random string during signing)

of any fixed message to invert the one way trapdoor permutation.

6.1.4 Probabilistic Signature Scheme(PSS)

m r

ω

h

0 r∗ g2(ω)

g1(ω)

g1

g2

Figure 6.1: PSSTDP
H : The components of the image y = 0‖ω‖r∗‖g2(ω) are darkened. The signature of m

is F−1(td, y)

Let TDP = (Tdg, F, F−1) be a family of trapdoor permutations. PSS uses a tripletH = (h, g1, g2)

of hash functions such that, h : {0, 1}∗ → {0, 1}k1 , g1 : {0, 1}k1 → {0, 1}k0 and g2 : {0, 1}k1 →
{0, 1}n−k0−k1−1, where n, k0 and k1 are parameters.

Gen(1n)

1. Return (pk, td) = Tdg(1n)
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Signtd(m)

1. r ← {0, 1}k0

2. ω ← h(m‖r)

3. r∗ ← g1(ω)⊕ r

4. y ← 0‖ω‖r∗‖g2(ω)

5. Return σ = F−1(td, y).

Verifypk(m,σ)

1. Let y = F (pk, σ)

2. Parse y as 0‖ω‖r∗‖γ. If the parsing fails re-
turn 0.

3. r ← r∗ ⊕ g1(ω)

4. If h(m‖r) = ω and g2(ω) = γ return 1.

5. else return 0.

Any PSS signature scheme can be instantiated by specifying the triplet of hash functions H =

(h, g1, g2) and the trapdoor permutation TDP . Let PSSTDPH be the PSS signature scheme instantiated

by H and TDP . For any H = (h, g1, g2), the PSS transformation described above is defined as

PSS
πpk
H (m‖r) = 0‖h(m‖r)‖(r ⊕ g1(h(m‖r))‖g2(h(m‖r)).

PSS
πpk
H (m‖r) is in fact the darkened area in Figure 6.1, y = 0‖ω‖r∗‖g2(ω). Note, h, g1, g2 can be

oracle circuits with oracle access to πpk. For the rest of the chapter, PSSTDPH denotes the signature

scheme, where as PSSπpkH (·) is the PSS transformation during Sign procedure before applying the

trapdoor permutation. From the context these two notations are easily distinguishable.

The following observation is very important to our technique.

Observation 6.1.2. A collision after the PSS transformation implies collision in the random space. In
other words,

PSS
πpk
H (M1‖r1) = PSS

πpk
H (M2‖r2)

implies r1 = r2.

As both the digests are same, ω1‖r∗1‖γ1 = ω2‖r∗2‖γ2; we have ω1 = ω2 and r∗1 = r∗2. This leads to

r1 = r2. So for two distinct random strings r1 and r2, the digests of PSSπpkH and hence the signatures

are always different (irrespective of whether the messages are same or not)! In case of other padding

based signature schemes where random string is recoverable, then a similar condition can be found.

6.2 No Blackbox Reduction from One way Trapdoor Permutations

One-wayness is the most common security property of a trapdoor permutation. All the previous security

proofs of PSS in Random Oracle model are based on one wayness of underlying trapdoor permutation

(specifically RSA). In this section we consider the possibility of reducing security of PSS from one-

wayness of a trapdoor permutation, but in standard model. We show that when k0 = ω(log n), one
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cannot prove PSS secure via a blackbox reduction from one way trapdoor permutation even if the forger

is never allowed to query the signer.

Recall that, r1 6= r2 implies PSSπpkH (0‖r1) 6= PSS
πpk
H (0‖r2). So the set {PSSπpkH (0‖r)|r ∈

{0, 1}k0} is of super-polynomial size. Even if G returns one random signature (from a choice of su-

perpolynomially many) of message 0, it is unlikely to be of any use of the adversary intended to invert

TDP T on a uniformly chosen element z.

Following [71], Proposition 1, to rule out blackbox reductions, it is enough to construct two oracles

T and G such the following holds:

• There exists an oracle PPTM TDP such that TDP T implements a trapdoor permutation.

• There exist an oracle PPTM A such that AT,G finds a forgery under chosen message attack for

PSSTDP
T

H .

• TDP T is an one-way trapdoor permutation relative to the oracles T and G. That is, TDP T is an

one-way permutation even if the adversary is given oracle access to T and G.

Definition of T

For any n ∈ N, Choose 2n + 1 permutations π0, π1, π2, · · · , π2n−1 and g uniformly at random from the

set of all permutations over {0, 1}n. Now the oracle T is defined as follows:

• T1(td)→ g(td) (generate public key from the trapdoor)

• T2(pk, y)→ πpk(y) (evaluate)

• T3(td, z)→ π−1
g(td)(z) (inversion)

Implementing TDP T

We use T = (T1, T2, T3) in the following way to construct (in the functional sense) the trapdoor permu-

tation TDP T = (Tdg, FT , F
−1
T ).

• Tdg(1n) chooses a uniform random td← {0, 1}n and computes the corresponding public key as

pk = T1(td) and outputs (td, pk).

• FT (pk, y) returns T2(pk, y).

• F−1
T (td, z) returns T3(td, z).

It is easy to check that as TDP T implements a trapdoor permutation, as g(td) = pk.
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Description of G

The oracle G takes as input k ∈ N and H ∈ {0, 1}∗. G selects an r ∈R {0, 1}k0 and returns

F−1
T (td, PSS

πpk
H (0‖r)). Here (td, pk) are the output of Tdg(1k).

As G always outputs a forgery for message 0, we get the following result.

Lemma 6.2.1. There is a PPTM A such that AG outputs a forgery for PSS signature scheme.

G does not break security of TDP T

Next we shall prove that TDP T is one way, even relative to G. This is not at all obvious as G always

provides forgery of the form π−1
pk (PSS

πpk
H (.)) for a H of our choice! But we note that G(.) samples one

z′ from a set of superpolynomial size and outputs π−1
pk (z). Even if the adversary sets PSSπpkH (0, r) for

one r to be the challenge z she received, probability that πpk(G(.)) = z is negligible. On the other hand

if πpk(G(.)) 6= z, then knowledge of inverse of some other point does not help the adversary to find

π−1
pk (z) with significant probability for a pseudorandom πpk. Following the above discussion we have

Lemma 6.2.2,

Lemma 6.2.2. A random permutation π : {0, 1}n → {0, 1}n is one way even if adversary is allowed to
make one inverse query on any input except the challenge.

Proof. Suppose, for contradiction, the lemma is not true. Then there exist a PPTM B = (B1, B2) such
that

Pr[Bπ
1 (z) = z′;Bπ

2 (z, z′, π−1(z′)) = x; z 6= z′ : π(x) = z] ≥ 1/nc

for some constant c > 0. We construct a PPTM B′ that , using B, can invert a random permutation
π′ : T → T where |T | = 2n − 1. First we note that we can view T as the set {0, 1}n \ 1n. B′ keeps a
list L with all the query responses. Without loss of generality, we assume B does not repeat a query and
if B outputs some x, B must have queried it. Indeed, if B has not queried x, then the probability that
π(x) = z is negligible, which we can ignore.

Suppose B1 and B2 makes nc1 and nc2 queries respectively (c1, c2 are positive constant). B′ works
as following: on receiving the challenge z, check whether z = 1n. If yes, abort; otherwise simulate
B1(z). Clearly the probability that a randomly chosen z is equal to 1n is 1/2n; hence negligible. When
B1 makes an oracle query x, check whether x = 1n. If yes, select one element y1 uniformly at random
from {0, 1}n \ L. If y1 = z; abort. Otherwise add (1n, y1) to L. If x 6= 1n, query y = π′(x) and
check whether y = y1. If no add (x, y) to L. Otherwise add (x, 1n) to L. Clearly the probability that B′

aborts at this stage is 1/(2n − |L|). As B1 makes only nc1 number of queries, the above probability is
negligible.

Suppose after all the queries, B1(z) outputs z′. Select one element x′ uniformly at random from
{0, 1}n \ L, add (x′, z′) to L and simulate B2(z, z′, x′). If B2 makes an oracle query x (x 6= 1n) s.t
π′(x) = z′ compute y′ = π′(x′) . If x′ = 1n; y′ = 1n. Add (x, y′) to L and proceed with y′ as the
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answer. Otherwise if B2 queries 1n, select one element y1 uniformly at random from {0, 1}n \ L. If
y1 = z; abort. Otherwise add (1n, y1) to L. For all other query x compute y = π(x). If y = y1 reset
y = 1n. Add (x, y) to L.

Suppose B2 returns x1. Clearly x1 6= 1n as B′ aborted whenever 1n was queried and the result of
the sampling was z. If π′(x1) = z′ return x′ from the list. else return x1.

It is easy to check that, while answering the oracle queries B′ simulates the random permutation.
Moreover, if B2 returns a correct answer so does B, except the case when B′ aborts (when challenge is
1n orB has queried 1n and the result of the sampling was z). Probability that randomly chosen challenge
is equal to 1n is 1/2n. On the other hand, Probability that while sampling for the image of 1n, z was
picked is at most 1

2n−|L| ≤
1

2n−nc1 for some fixed constant c. So Probability that B′ aborts is negligible.
So Probability that B′ inverts a randomly chosen z is at least 1

nc−negl(n) . This is a contradiction to the
fact that a π′ is hard to invert. Hence the lemma follows.

Now, we can claim that TDP T is one way even relative to G.

Lemma 6.2.3.
Pr[AT,G(pk, z) = x : FT (pk, x) = z] ≤ negl(n),

where x←R {0, 1}n and (pk, td)← Tdg(1n).

Proof. AsFT (pk, .) is a permutation chosen uniformly at random from a set of exponential size, FT (pk, .)

is computationally indistinguishable from a random permutation. So if G was not there, TDP T was
clearly one way. Next we shall prove that TDP T is one-way even when adversary has access to G. By
the property of PSSπpkH , there can be at most one r ∈ {0, 1}k0 such that PSSπpkH (0||r) = z. So Proba-
bility that G selects that corresponding r is 1/2k0 which is negligible for k0 = ω(log n). On the other
hand , ifG does not select that particular r, by Lemma 6.2.2, a random permutation and hence FT (pk, .)

(being computationally indistinguishable from a random permutation) is hard to invert . Hence

Pr[AT,G(pk, z) = x : FT (pk, x) = z]

= Pr[AT,G(pk, z) = x : FT (pk, x) = z|G(·) = FT (td, z)].P r[G(·) = FT (td, z)]

+ Pr[AT,G(pk, z) = x : FT (pk, x) = z|G(·) 6= FT (td, z)] · Pr[G(·) 6= FT (td, z)]

≤ 1/2k0 + (2k0 − 1)/2k0 .(negl(n))

= negl(n).

Using Lemma 6.2.1 and Lemma 6.2.3, we get the main result of this section as follows

Theorem 6.2.4. There is no blackbox reduction of Security under no message attack of Probabilistic
Signature Scheme with superpolynomial randomness space from Oneway Trapdoor Permutations.
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6.3 No Blackbox Reduction from an Ideal Trapdoor Permutation

The following theorem states that there is no adversary that can break the security of the TDP T using

any adversary (in black-box way) breaking PSSTDP
T

H by chosen message attack when TDP T is an

ideal permutation.

Theorem 6.3.1. There is no black-box reduction from a family of ideal trapdoor permutations to the
existential unforgeability against chosen message attack of the PSS signature scheme.

Like the previous section, we shall construct a oracle G such that there exists a PPTM B such that

BG can forge PSS although TDP T is secure even relative to G. We define T and TDP T as in section

6.2.

Definition of G

The oracleGworks as follows. On input the description of the hash function tripletH = (h, g1, g2), and

the security parameter n, it selects t = max(|H|, n) messagesm1,m2, · · ·mt uniformly at random from

{0, 1}∗ \ {0} and outputs them as a set of challenge messages. G expects valid and distinct signatures

of all the messages. G also keeps a list (initially empty) of description of input hash functions, the

challenge messages and the forgery it returns. If the description of the hash matches then G outputs the

same challenge messages. If it gets valid signatures (as described below) then it outputs the previously

returned forgery from the list.

Once it receives the messages and the signatures (m1,m2, · · · ,mt, σ1, σ2, · · · , σt), G checks for

the following conditions.

1. σ1, · · · , σt are valid signatures for m1, · · · ,mt. Recover r1, · · · , rt such that,

PSS
πpk
H (m1‖r1) = πpk(σ1), · · · , PSSπpkH (mt‖rt) = πpk(σt).

2. σi 6= σj (or equivalently PSSπpkH (mi‖ri) 6= PSS
πpk
H (mj‖rj) ) for all 1 ≤ i < j ≤ t.

3. {PSSπpkH (m1‖r1), · · · , PSSπpkH (mt‖rt)} ∩ Y PSSH
πpk

(r1, · · · , rt) = ∅ where

Y PSSH
πpk

(r1, · · · , rt) ={πpk(x)|∃i, 1 ≤ i ≤ t,

PSS
πpk
H (mi‖ri) makes the oracle query x}.

If all the above conditions are satisfied then G chooses one r uniformly at random from {0, 1}k0 and

returns π−1
pk (PSS

πpk
H (0‖r)). Here pk is the public key generated by Tdg(1k).
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G breaks the security of PSSTDPTH

Lemma 6.3.2. There is a PPTM BG that can mount existential forgery by chosen message attack on
PSS with overwhelming probability.

Proof. The goal ofBG is to either generate a forgery on its own or use the sign oracle to get signatures
of m1, · · · ,mt such that Condition 1, Condition 2 and 3 get satisfied. Then BG can use output of G
to produce forgery for the message 0. We describe two constructions of BG depending on size of the
randomness space or k0.

Case I: k0 = O(log n) :

In this case BG precomputes PSSπpkH (mi‖r) for all r ∈ {0, 1}k0 and i = 1 · · · t and checks whether the
Condition 3 from Section 6.3 would get satisfied or not for any possible choice of r by the Sign oracle.
If the conditions are not satisfied, B can find some mi,mj , ri, rj , x such that

PSS
πpk
H (mi‖ri) = πpk(x),

where PSSπpkH (mj‖rj) makes the oracle query πpk(x). In this case B can easily produce the forged
signature x for the message mi.
Otherwise to take care of Condition 2, BG calls the Sign oracle to get valid signatures for message
mi’s one by one for i = 1 to t. After receiving the ith signature σi it always recovers the randomness ri
and checks whether

PSS
πpk
H (mi‖ri) = PSS

πpk
H (mj‖ri)

for some i < j ≤ t. Because of Observation 6.1.2 it is sufficient to check with the fixed ri for collision
detection purposes. If the above condition gets true again BG can readily output a forged signature for
message mj as σi. Otherwise, BG ends up with σ1, · · · , σt such that all the three conditions in Section
6.3 are satisfied. So BG can easily use G to produce a forgery for the message 0. Hence BG succeeds
to forge PSS with probability 1.

Case II: k0 = ω(log n) :

In this case the randomness space is of superpolynomial size, hence BG cannot precompute all the
possible outputs of PSSπpkH (m‖·) even for a single message m. However, we observe that the “no
collision” requirement or Condition 2 can easily be taken care of by a technique similar to the previous
one. To take care of Condition 3, we adopt a sampling procedure. BG works in two phases. In Phase-I,
B samples some random r’s from {0, 1}k0 uniformly and simulate the signing procedure by the real
Sign oracle that would be queried in Phase-II. Then the probabilities that Condition 3 gets satisfied in
Phase-I or in Phase-II are essentially the same. We set our parameters such a way, with high probability
either Condition 3 does not hold in Phase I (hence direct forgery) or it holds in Phase-II (forgery via
oracle G, provided Condition 2 holds).
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Algorithm 1 BG : Phase-I

1: rki ←R {0, 1}k0 : 1 ≤ i ≤ t, 1 ≤ k ≤ t
2: V = {PSSπpkH (mi‖rki ) : 1 ≤ i ≤ t, 1 ≤ k ≤ t}
3: Y = {πpk(x)| ∃i, k, 1 ≤ i ≤ t, 1 ≤ k ≤ t

s. t. PSSπpkH (mi, r
k
i ) makes oracle query πpk(x)}

4: if V ∩ Y 6= ∅ then
5: Output Direct Forgery
6: end if

Success Probability of BG in Case II

In Line 21 of Algorithm 2, Condition 1 and Condition 2 are always satisfied. So BG can abort only in
two ways.

1. In Line 16 of Algorithm 2, Σi becomes empty for some i, 1 ≤ i ≤ t.

2. In Line 21 of Algorithm 2, Condition 3 gets violated. r1, · · · , rt be the random strings recovered
from σ1, · · · , σt. Violation of Condition 3 over here implies there exist some i, j, 1 ≤ i, j ≤ t,
i 6= j such that

PSS
πpk
H (mi‖ri) = πpk(x),

where PSSπpkH (mj‖rj) makes the oracle query x.

Moreover, in both the cases no forgery was found in Algorithm 1.
Let us consider the case where for some i, Σi is empty. It implies for some i, for all k = 1, · · · , t,

σki ∈ Xi,k and hence was removed from Σi . Fix some i . Let us call the set of r for which
PSS

πpk
H (mi, r) = πpk(x) and x was queried while computing PSSπpkH (mi, r) as BAD. Suppose

Prr[r ∈ BAD] = θ.

Now the event Σi = ∅ and no forgery was found in Phase-I implies that the random strings r(i), sampled
in Phase 1 were not from the BAD set and all of r1

i , r
2
i , · · · , rti were from BAD. As Sign and B

samples independently, probability of Σi = ∅ is θt(1 − θ)t ≤ 2−t. Taking union bound over all i, the
probability that for some i, Σi is empty is at most t/2t.

For the second case, the chosen σis were not queried while computing them; rather one σi was
queried while computing some other σj . Recall that maximum number of πpk queries (made byPSSπpkH )
while computing one signature is |H|. As, for any j Σj ≤ t, for each j = 1, 2, · · · , t; j 6= i, maximum
number of πpk queries made while computing Σj is at most t|H|. So overall, for all j 6= i, total number
of πpk queries made by the PSSπpkH was t2|H|. As, there are 2|r| choices of random string, implying
2|r| choices for each σki , and Sign runs each time with independent random coins, probability that at
least one σki was from those t2|H| many πpk queries is at most t4

2k0
.
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Algorithm 2 BG : Phase-II
1: for i = 1 to t do
2: σ1

i ← Sign(mi), · · · , σti ← Sign(mi)

3: Σi = {σ1
i , · · · , σti}

4: Recover r1
i , · · · , rti from σ1

i , · · ·σti using Verify.
5: for j = i+ 1 to t do
6: if PSSπpkH (mi‖rki ) == PSS

πpk
H (mj‖rki ) for some 1 ≤ k ≤ t then

7: Output Direct Forgery (mj , σ
k
i )

8: end if
9: end for

10: for k = 1 to t do
11: Xi,k ← {x|PSS

πpk
H (mi‖rki ) makes oracle query πpk(x)}

12: if σki ∈ Xi,k then
13: Σi ← Σi \ {σki }
14: end if
15: end for
16: if Σi = ∅ then
17: Output ⊥
18: end if
19: Pick any σi ∈ Σi

20: end for
21: if σ1, · · · , σt satisfy Condition 1, Condition 2 and Condition 3 from Section 6.3 then
22: Output forgery via G
23: else
24: Output ⊥
25: end if

Hence we get that

Pr[BG →⊥]

≤ Pr[∃i; Σi = ∅] + Pr[∃i, j;σi ∈ { πpk queries made while computing σj }]

≤ t

2t
+
t4|H|
2|r|

Putting t = max(|H|, n), |r| = ω(log n) and |H| ≤ nc for some constant c, Pr[BG →⊥] is negl(n).
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G does not break the security of TDP T

Lemma 6.3.3. For any oracle PPTM B and any δ-hard game C (with t = t(n) implicitly defined by C),

Pr[〈CF (pk1),F (pk2),··· ,F (pkt), AF (pk1),F (pk2),··· ,F (pkt),G〉 = 1] ≤ δ + negl(n),

where (pki, tdi)←R Tdg(1n) for i = 1, · · · t.

Proof. The proof of the above lemma is essentially same as in proof of Lemma 2 in [43], where one
argues in the absence of oracle G the claim holds because of computational indistinguishability of πpk
from a random permutation. Moreover, Lemma 6.3.4 below states the accepting condition of oracle G
can only be satisfied with a negligible probability.

Lemma 6.3.4. Let π be a random permutation on {0, 1}n and c ≥ 1 be a constant,m1, · · · ,mt be n-bit
values with t = max(|H|, n). For any oracle TM A which makes at most nc oracle queries, we have
(the probability is over randomness of π)

Pr[Aπ → (H,x1, · · · , xt)] = negl(n)

where, |H| ≤ nc and the output satisfies the following conditions for some k0-bit r1, · · · , rt

1. π−1(PSSπH(m1‖r1)) = x1, · · · , π−1(PSSπH(mt‖rt)) = xt .

2. π−1(PSSπH(mi‖ri)) 6= π−1(PSSπH(mj‖rj)) for all 1 ≤ i < j ≤ t.

3. {PSSπH(m1‖r1), · · · , PSSπH(mt‖rt)} ∩ Y PSSH
π (r1, · · · , rt) = ∅, where

Y PSSH
π (r1, · · · , rt) ={π(x)|∃i, 1 ≤ i ≤ t,

PSSπH(mi‖ri) makes the oracle query x}.

Lemma 6.3.4 can proved following the same technique of Lemma 3 of [43]. For completeness we

give the following proof.

Proof. Consider any oracle TMA, whereAπ comes up with an output (PSSH , x1, · · · , xt) after making
nc oracle queries. Even if A outputs only one xi, which it did not query to the oracle π, then the
probability that the relation π−1(PSSπH(mi‖ri)) = xi holds for some ri is negligible. Let XA

π , |XA
π | =

nc denote all the oracle queries made by Aπ, i.e.

XA
π = {x|Aπ makes the oracle query x}.

Consider any fixed oracle circuit h, |h| ≤ nc and k0 bit values r1, · · · , rt satisfying condition 2 and 3.
Let Xh

π (r1, · · · , rt) = {π−1(y)|y ∈ Y h
π (r1, · · · , rt)}, i.e.

Xh
π (r1, · · · , rt) = {x|∃i, 1 ≤ i ≤ t, hπ(mi‖ri) makes the oracle query x}
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and let
H(r1, · · · , rt) = {π−1(hπ(m1‖r1)), · · · , π−1(hπ(mt‖rt))}.

Condition 3 states that π(H(r1, · · · , rt)) ∩ π(Xh
π (r1, · · · , rt)) = φ, and as π is permutation this is

equivalent to
H(r1, · · · , rt) ∩Xh

π (r1, · · · , rt) = φ.

Given Xh
π (r1, · · · , rt) and conditioned on hπ satisfies condition 3 for the fixed r1, · · · , rt, the set

H(r1, · · · , rt) is a random subset of {0, 1}n\Xh
π (r1, · · · , rt). If condition 2 is satisfied thenH(r1, · · · , rt) =

t, moreover |Xh
π (r1, · · · , rt)| ≤ t|h| ≤ tnc. Now the probability thatH(r1, · · · , rt) ⊆ XA

π can be upper
bounded as

Pr[H(r1, · · · , rt) ⊆ XA
π ] =

t−1∏
i=0

|XA
π | − |XA

π ∩Xh
π (r1, · · · , rt)| − i

2n − i− |Xh
π (r1, · · · , rt)|

≤
( |XA

π |
2n − t− |Xh

π (r1, · · · , rt)|

)t
≤
( nc

2n − 2tnc

)t
.

By taking the union bound over all oracle circuits h, |h| ≤ nc and all possible r1, · · · , rt we can now
upper bound the probability that there exists some oracle circuit PSSH , and k0-bit values r1, · · · , rt
satisfying condition 2 and 3 such that Aπ have queried the xi values satisfying condition 1 as

nc∑
|H|=1

2|H|
( nc2k0

2n − 2tnc

)t
.

As t = max(|H|, n) and assuming k0 < n − c log n for all c and sufficiently large n,1 we can easily
show the above term is negl(n).

6.4 No Reduction from Lossy Trapdoor Permutations

In this section we show that there is no blackbox reduction of existential unforgeability of PSS against

chosen message attack from Lossy Trapdoor Permutations. Specifically, let LTDP = (S, F, F ′) be

a family of Lossy Trapdoor Permutations. We define the output of PSS based on LTDP as σ =

π−1(PSSH(m||r)) where (π, π−1) ∈ F . Note that, while instantiating PSS by a lossy TDP, we consider

the trapdoor permutation to be the injective mode of the TDP.

Theorem 6.4.1. There is no blackbox reduction of existential unforgeability against chosen message
attack of Probabilistic Signature Scheme from Lossy Trapdoor Permutations.

Proof To prove Theorem 7.5.2, we need new definitions of the oracles.
1If k0 = n − c logn for some constant c PSS is trivially insecure as a random n bit string will be a valid signature of

message 0 with probability 2n−c logn−n = 1
nc

84



Definition of T

T is defined as a pair (T, T ′). Choose 2n + 1 permutations π0, · · · , π2n−1 and g uniformly at random

from the set of all permutations over {0, 1}n. Moreover choose 2n functions e0, · · · , e2n−1 uniformly

at random from the set of all functions from {0, 1}n to {0, 1}l.
Oracle T works as follows:

• T1(td)→ g(td) (generate public key from the trapdoor)

• T2(pk, y)→ πpk(y) (evaluate)

• T3(td, z)→ π−1
g(td)(z) (inversion)

On the other hand T ′ is defined as follows

• T ′(pk, x) = πpk(1
n−l||epk(x))

Now we define the LTDP T,T
′

= (S, (F, F−1), F ′) as follows

• S(b) If b = 1, choose a uniform random td← {0, 1}n compute pk = T1(td) and return (pk, td),

otherwise choose a uniform random pk ← {0, 1}n and return (pk,⊥).

• F (pk, y) returns T2(pk, y).

• F−1(td, z) returns T3(td, z).

• F ′(pk, y) returns T ′(pk, x).

Lemma 6.4.2. LTDP T,T ′ implements a secure (n, l) Lossy Trapdoor Permutation when l = O(n
1
c ) for

a positive constant c.

Proof. Recall that, to show the security of LTDP T,T
′
, we need to argue that for any efficient distin-

guisher D, |Pr[DF = 1] − Pr[DF ′ = 1]| is negligible. Consider a random function e′ : {0, 1}n →
{0, 1}l and a random permutation π : {0, 1}n → {0, 1}n. It is easy to check that π(1n−l||e′()) has
the same distribution of a random permutation until a collision in e′. e′ being a random function, the
collision probability is q2/2l, which is negligible for q = O(nc1)) for some constant c1 > 0.

Now using the fact that a function (permutation) chosen uniformly at random from the set of expo-
nentially many functions (permutations) is indistinguishable from a random function (permutation), the
lemma follows.
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6.4.0.1 Definition of G

Intuitively, G will work exactly the same way as in the previous case when the underlying permutation

is in injective mode. When the permutation is lossy G can abort instead of returning a forgery. So

effectively, when instantiated by the lossy mode G always aborts and in injective mode G aborts if the

conditions are not satisfied.

In more detail, G works in the following way. On input the description of the hash functions h, g1

and g2, it selects t (to be fixed later) messages m1,m2, · · ·mt uniformly at random from {0, 1}∗ \ 0 and

outputs them as a set of challenge messages. G expects valid and distinct signatures of all the messages.

G also keeps a list (initially empty) of description of input hash functions, the challenge messages and

the forgery it returns. If the description of the hash matches thenG outputs the same challenge messages.

If it gets valid signatures (as described below) then it outputs the same forgery from the list.

Once it receives the messages and the signatures (m1,m2, · · · ,mt, σ1, σ2, · · · , σt), G first checks

whether the signatures are valid and distinct.

• F (pk, σi) = PSS
πpk
H (mi‖r) for some r. This signature verification is to make sure that that

calling algorithm has access to signing oracle.

• σi 6= σj for all i 6= j

If the above two conditions are satisfied then G finds the random strings used in the signatures. Let

r1, r2, · · · , rt be the random strings

• {F (pk, σ1), F (pk, σ2), · · · , F (pk, σt)} ∩ YT = ∅ where

YT = {F (pk, x)|∃i, 1 ≤ i ≤ t, PSSπpkH (mi‖ri) queries F (pk, x)}.

Finally G checks whether F is the lossy mode1, if yes it aborts; otherwise G chooses one r uni-

formly at random from {0, 1}k0 and computes the PSS hash of 0‖r as y = 0‖h(0‖r)‖g1(h(0‖r)) ⊕
r‖g2(h(0‖r)). Finally it returns the forgery as (0, F−1(td, y)).

In order to use G to distinguish the lossy and the injective mode, any distinguisher has to construct

a satisfying assignment of G in injective mode. By Lemma 6.3.4, it happens with negligible probability

and we get the following result.

Lemma 6.4.3. Suppose k = O(n
1
c ) for a positive constant c. LTDP T,T

′
implements a secure (n, k)

Lossy Trapdoor Permutation even relative to G.

Existence of a forger BG for PSS using the injective mode of the LTDP is satisfied by Lemma 6.3.2.

This completes the proof of Theorem 7.5.2.
1 As description of F can be hardwired in G, G can easily check the mode of F by finding the possible inverses
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6.5 No Reduction from Hard Games with Inversion

Like [43], our result can also be extended to the hard games with inversions. Informally, in a hard

game with bounded inversion C, the adversary is allowed to make polynomial q(n) many inversion

queries except on some points defined in the game (for one way game adversary is not allowed to make

inversion queries on the challenge she received). Following [43], if we modify G to ask for signatures

of |H|+ q(n) messages and modify Lemma 6.3.4 accordingly, we get the following two theorems.

Theorem 6.5.1. There is no blackbox reduction of security against existential forgery under chosen
message attack for PSS from any hard game with polynomial number of inversion queries.

Theorem 6.5.2. There is no blackbox reduction of security against existential forgery against zero mes-
sage attack for PSS from an oneway trapdoor permutation, even with polynomial number of inversion
queries.
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Chapter 7

Generic Insecurity of OAEP in the Seed
Incompressibility model

7.1 Introduction

Optimal Asymmetric Encryption Padding (OAEP) is one of the most popular and widely deployed

padding based encryption schemes. Proposed by Bellare and Rogaway in [12], OAEP has been part

of numerous standards like PKCS#1 v2.1, ANSI X9.44, IEEE P1363 etc. Several variants of OAEP,

such as OAEP++ by Shoup[105], Simplified OAEP(SAEP) of Boneh [26], exist in the literature. All

these schemes can be categorized as padding based encryption scheme where a public, invertible, in-

jective padding is applied to the message and the random string, before encrypting the result by some

trapdoor permutation like RSA. For example, OAEP uses two round Feistel network involving two sep-

arate hash functions as padding. Decryption is done by first inverting the trapdoor permutation followed

by inversion of the padding.

Due to its importance, a lot of work has been done on OAEP and other padding based encryption

schemes. OAEP has been proved secure against Chosen Ciphertext Attack (IND-CCA) in [52] under

the assumption that the trapdoor permutation is partial-domain one-way. OAEP++ has been proved

IND-CCA secure in [105] assuming the underlying permutation is one-way. Recently, Kiltz, O’Neil and

Smith [77] has proven IND-CPA security of OAEP from the assumption that trapdoor permutation is

lossy. However, all the existing security results, except [77], were proved in the Random Oracle Model,

where one assumes the existence of a truly random hash function. On the other hand, Kiltz and Pietrzak

[78] have proved that no padding based encryption scheme can be proven IND-CCA secure by blackbox

reduction from any security property satisfied by random permutation in the standard model.
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Seed Incompressible Functions

Seed Incompressible Functions were introduced by Halevi, Myers and Rackoff in [65]. Informally,

a seed incompressible function remains secure even if the adversary can have some information (size

bounded above by fraction of keysize or some security parameter) of the hash function as an advice.

One can view the notion of Seed Incompressibility as a generalization of Exposure Resilience where

adversary cannot break Pseudorandomness of the hash function even if some part of the hash input

was saved and used as advice. [65] showed that, in contrast to negative result of [63], Fiat-Shamir

Transformation can be proved secure in the standard model if the underlying hash function is modeled

as seed incompressible. Unfortunately the result of [78] remains valid even if the two hash functions in

OAEP are assumed to be seed incompressible.

Our Results

If we closely observe the blackbox security proofs of IND-CCA security of OAEP in the random oracle

model, one important argument in the proof is that the adversary cannot compute any ciphertext without

explicitly querying the oracles. On the other hand, the main trick in the impossibility proof of [78] is that

the reduction has no knowledge about the hash function evaluations, done by the adversary in order to

construct the ciphertexts. This observation raises the question whether there is a reduction of IND-CCA

security of OAEP, if the reduction can see some queries of the adversary, or, formulating in different

terms, do the impossibility results hold if the adversary cannot even compute a single ciphertext on its

own? In this chapter we investigate this question. From a broader perspective, we ask: Can OAEP or

other padding based encryption schemes can be proven IND-CCA secure in some model, significantly

weaker than random oracle as well as stronger than standard model?

In this chapter, we prove blackbox separation of IND-CCA security of OAEP from Ideal Trapdoor

Permutations in a restricted model, called Seed Incompressibility model. Roughly speaking, Seed In-

compressibility model can be viewed as a bridge between the Random Oracle and the standard model.

Security game in the seed incompressibility model is carried out in two steps. In the first stage, like

in the standard model, the adversary gets the description of the circuit computing the hash functions

(padding). However, the adversary can save at most φ bits of information in the first stage. In the second

phase the security game starts and the adversary, using the stored information and oracle access to the

hash functions, attempts to win the security game. The Random Oracle model can be viewed only as the

second stage of a seed incompressibility model where adversary cannot save any information in the first

stage. On the other hand, the standard model can be considered as seed incompressible with superpoly-

nomial storage. Using this model we formalize the idea of restricting the number of “private” queries

made by the adversary.
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• Extending the results of Kiltz and Pietrzak [78], we prove that, under the assumption that collision

resistant hash functions exist, if the length of the advice string, φ > k(1 + 1
c ) + (log k)2 for some

positive constant c, there is no blackbox reduction of IND-CCA security of OAEP with security

parameter k and superpolynomial message space from ideal trapdoor permutation in the seed

incompressibility model. This result implies that the separation holds even if the adversary can

construct only one ciphertext on its own.

• We extend this result to the case where adversary cannot construct even one ciphertext without

making queries to the oracles. Specifically, if the length of the random string is µ(r) and the length

of the advice φ > (1+ 1
c )µ(r) for some positive constant c, there is no blackbox reduction of IND-

CCA security of OAEP with superpolynomial message space from ideal trapdoor permutation in

the seed incompressibility model.

• Finally, we consider a reduction from Lossy Trapdoor Permutations. We show that, if collision

resistant hash functions exist and if the length of the random string is µ(r) and the length of the

advice φ > (1 + 1
c )µ(r) for some positive constant c, there is no blackbox reduction of IND-CCA

security of OAEP with superpolynomial message space from lossy trapdoor permutation in the

seed incompressibility model.

We would like to mention that our result shows only blackbox separation of OAEP from a wide

range of security properties. A whitebox security proof of OAEP may exist even in the standard model.

However, we believe our result has strong theoretical interest as it hints a possible limitation in the

structure of OAEP.

Overview of Our Technique

We use the technique of two oracles due to Hsio and Reyzin [71] for our separation results. We construct

two oracles T and B = (B1, B2) such that T implements an ideal trapdoor permutation and B can be

used to break IND-CCA security of OAEP. Still, B does not help the reduction to break any security

property of the ideal trapdoor permutation. Informally, this ensures that a black-box security proof

cannot exist as any such proof should be valid against our T and B.

Our technique is almost similar to the technique of Kiltz and Pietrzak [78]. Our results on blackbox

separation is achieved in two steps. At the first step, we instantiate T by permutation chosen uniformly

at random from the set of exponentially many permutations. The adversary oracle B will output the

secret key, only if the challenger can invert some ciphertexts created using the same public key. In case

of IND-CCA game this requirement can easily be met with the help of the decryption oracle. On the

other hand, if a reduction algorithm (which does not have access to any inversion oracle) does not know
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the exact queries made to the hash functions, it will not be able to decrypt the ciphertexts. However,

in case of seed incompressibility model, if the length of the advice is small, the adversary algorithm

needs to query the oracles in order to evaluate the padding scheme. The main challenge is to construct

an adversary, which can create a challenge ciphertext in such a way that even after knowing some hash

queries the reduction will not be able to decrypt the ciphertexts.

Informally, we show that in case of OAEP, if the message has superlogarithmic entropy, then the

reduction even with the knowledge of queries made to the G oracle (first hash function of the two

round Feistel network) cannot find the correct message from the ciphertext. We apply the compression

argument of Gennaro and Trevisan [55] to show that if a polynomial size reduction could find the correct

message with significant probability, the reduction could be used to compress a random permutation. We

remark that this technique essentially solves the problem in the proof of [78], as pointed out by Dodis et.

al.[42]. Although we got this result independently, the authors of [78] seem to have fixed the problem

with essentially same technique1.

Optimal Asymmetric Encryption Padding (OAEP)

Optimal Asymmetric Encryption Padding (OAEP), described in Figure 7.1, is parametrized by three

parameters k, µ(r), k1 where µ(r), k1 is linear in terms of k. Let F : {0, 1}k → {0, 1}k be a family of

trapdoor permutations and G : {0, 1}µ(r) → {0, 1}k−µ(r) and H : {0, 1}k−µ(r) → {0, 1}µ(r) be two

cryptographic hash functions. The message space is {0, 1}k−µ(r)−k1 . The OAEP Encryption Scheme

(Gen,Enc,Dec) works in the following way,

• The Key generation algorithm Gen(1k) chooses (πpk, π
−1
pk ) ∈R F and publishes the public key

pk. Let sk be the corresponding secret key.

• The Encryption algorithm Enc(pk,m) chooses a random string r ∈R {0, 1}µ(r) and computes

– s = m||0k1 ⊕G(r)

– t = H(s)⊕ r

Finally it outputs the ciphertext C = πpk(s‖t).

• The decryption algorithm Dec(sk, C) recovers s||t = π−1
pk (C). Then it computes

– r = H(s)⊕ t

– s′ = G(r)⊕s Finally it checks whether last k1 bits of s are all 0. If yes, it parses s′ = m||0k1

and outputs m. Otherwise it outputs ⊥.
1Via Personal Communication
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Figure 7.1: OAEP Transformation

Throughout the chapter we use OAEPFG,H to represent OAEP encryption scheme instantiated by hash

functionG andH and the family of trapdoor permutations F . OAEPG,H(m, r) = s||t denotes the OAEP

padding.

Seed Incompressible Functions

Seed Incompressible Functions was introduced by Halevi, Myers and Rackoff in [65]. Informally, a

hash function family with keysize κ is called φ-Seed Incompressible function if for any adversary with

φ(κ) bits of advice and an oracle access to the hash function cannot break any security property of the

hash function with significantly more probability when given access to only the oracles. However, the

idea is meaningless if the function is insecure even when the adversary is given only an oracle access.

In this chapter, we consider the following definition of seed incompressible functions,

Definition 7.1.1. (Seed Incompressible Functions[65]) Let {hκ}κ∈N be a family of cryptographic hash
functions. hκ is called φ(κ) Seed Incompressible (SI) for the property Π, if

• For all PPTM A,
Pr[Ahκ breaks security Π] ≤ negl(κ)

• For all pairs of PPTM A1,A2,

Pr[A1(κ) = σ, |σ| ≤ φ(κ);Ahκ
2 (σ) breaks securityΠ] ≤ Pr[Ahκ

2 breaks securityΠ] + negl(κ)

This definition can also be extended to Seed Incompressible Correlation Intractability where the

adversary (even with the advice) cannot satisfy some evasive relation.

Instantiation by seed incompressible functions

In [65], authors proved security of Fiat-Shamir Transformation, instantiated by seed incompressible

correlation intractable function, in the standard model. Their reduction C works like the compressor

of the seed incompressible function. They showed that if the adversary can break the soundness of the

proof, then C can produce an advice σ, using which a PPTM M can break the correlation intractability
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of underlying seed incompressible function. On the other hand, the impossibility results of [78] in the

standard model indeed cover possible instantiation by a seed incompressible function.

7.2 Seed Incompressibility model

In the Random Oracle model, the hash functions are modeled as random oracles. All parties including

the adversary have only oracle access to the hash functions. In comparison, in the standard model, hash

functions are assumed to be computable by efficient circuits. Adversary is given the description of the

corresponding circuits as public parameters before the start of the security game.

In this chapter we consider the notion of seed incompressibility model. We argue that this model

captures the concept of adversary’s (partial) knowledge about the hash functions and bridges the gap

between the Random Oracle and the standard model. In the seed incompressibility model, the adversary

is a pair of algorithms (A1,A2). A1 gets the description of the hash functions along with the public key.

At the end of its execution A1 produces an advice σ to be used by A2. The size of the advice, |σ|, is

upper bounded by the parameter φ. The security game is played with A2, which gets the public key as

input and has only oracle access to the hash functions.

Definition 7.2.1. An oracle algorithm C is said to be (Π → Π′, φ, δ, t) fully blackbox reduction for
scheme S in seed incompressibility model, if for any seed incompressible Π adversary (A1,A2), and
for Π′ candidate T , if

AdvΠ
SH [T ](A1(〈H〉)→ σ, |σ| ≤ φ : AH

2 (σ)) ≥ ε

for a hash function H and constant ε > 0, then

AdvΠ′
T (CT,A

T
) ≥ δ(ε, q)

where q is the total number of oracle queries made by C, t is the running time of C.

The following proposition holds for a particular hash function.

Proposition 7.2.2. 1. If there exists (Π → Π′, 0, δ, t) fully blackbox reduction for S in the seed
incompressibility model, then there exists a (Π → Π′, δ, t)-fully blackbox reduction for S in the
random oracle model.

2. If there exists (Π→ Π′, δ, t) fully blackbox reduction for S in the standard model, then there exists
a (Π→ Π′, |〈H〉|, δ, t)-fully blackbox reduction for S in the seed incompressibility model.

We stress that, for a fully blackbox reduction in the seed incompressibility model, the reduction will

not have access to any of the internal variable including the advice string used by the adversary. In both

of the random oracle and the standard model, all the internal variables of the adversary are inaccessible

to the fully blackbox reduction. As the definition of seed incompressibility model does not impose any
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restriction on the size of the advice string (restriction is imposed by the underlying seed incompressible

function), one can view both the random oracle model (where size of the advice string is zero) and

standard model (advice string can be of arbitrary length) as seed incompressibility model. Allowing

direct access to the advice string will destroy this essence and the abstraction will be meaningless.

Notice that, the seed incompressibility model is essentially different to the Bounded-Retrieval Model

[40, 46] where the adversary gets to know some amount of information about all the secrets (including

the trapdoor). In the seed-incompressibility model, the adversary gets the description of only the hash

function.

7.2.1 Blackbox Separation in Seed Incompressibility model

We use the two oracle technique of Hsiao and Reyzin [71] to disprove the existence of any fully blackbox

reduction. Following [71], Proposition 1, to rule out blackbox reductions of OAEP to the ideal trapdoor

permutation, it is enough to construct two oracles T and B such the following holds:

• There exists an oracle PPTM TDP such that TDP T implements a trapdoor permutation.

• There exist an oracle PPTM A such that AT,B mounts a Chosen Ciphertext Attack on OAEPTG,H .

• TDP T is an ideal trapdoor permutation relative to the oracles T and B. That is, TDP T is an

ideal trapdoor permutation even if the adversary is given oracle access to T and B.

Throughout the chapter we consider the following construction of T and TDP T .

Definition of T

For any n ∈ N, Choose 2k + 1 permutations π0, π1, π2, · · · , π2k−1 and g uniformly at random from the

set of all permutations over {0, 1}k. Now the oracle T is defined as follows:

• T1(td)→ g(td) (generate public key from the trapdoor)

• T2(pk, y)→ πpk(y) (evaluate)

• T3(td, z)→ π−1
g(td)(z) (inversion)

Implementing TDP T

We use T = (T1, T2, T3) in the following way to construct (in the functional sense) the trapdoor permu-

tation TDP T = (Tdg, FT , F
−1
T ).

• Tdg(1k) chooses a uniform random td← {0, 1}k and computes the corresponding public key as

pk = T1(td) and outputs (td, pk).
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• FT (pk, y) returns T2(pk, y).

• F−1
T (td, z) returns T3(td, z).

It is easy to check that as TDP T implements a trapdoor permutation, as g(td) = pk.

7.3 No Blackbox Reduction for Long Advice: φ ≥ k(1 + 1
c) + (log k)2

In this section, we prove that, if adversary is allowed to save φ ≥ k(1 + 1
c ) + (log k)2 bits of advice

for any constant c > 0, there is no blackbox reduction of IND-CCA security of OAEPTG,H from any

security property of an ideal trapdoor permutation in the Seed Incompressibility model. Notice that size

of the random string (µ(r)) in OAEP has to be super-logarithmic in terms of the security parameter to

have IND-CCA security. From Section 7.2.1, we need to construct a seed incompressible adversary

B = (B1, B2) that can break IND-CCA security of OAEPTG,H . Still TDP T will remain secure even

relative to B.

Description of B

Recall that, in seed incompressibility model the adversary works in two phases: first phase gets the

description of the hash functions and saves an advice σ, the second phase using σ, breaks the security.

To meet this framework, B is divided in two parts; B1 and B2. Both B1 and B2 has same random

function h′ : {0, 1}k → {0, 1}
k
c . B1 takes a description of the hash functions, picks a random message

m ←R {0, 1}(log k)2 and computes OAEPG,H on those messages with independently and uniformly

selected random strings. 1 B1 saves the message and the corresponding ciphertext. B1 also saves h′(pk)

in σ. Note that, B1 is stateless in the sense that it saves the same advice string if it is queried again with

same input. B2, on receiving the public key pk, first computes the h′(pk) to check whether the same

public key has been given. If yes, it computes the ciphertexts corresponding to the messages using pk

and outputs them for decryption one by one. If the decrypted message matches with m, B2 outputs the

secret key corresponding to pk.

Formally B works in the following way

• Phase I: Description of B1

– On input (k, pk, 〈G〉, 〈H〉), select m←R {0, 1}(log k)2 and r ←R {0, 1}µ(r).

– Compute α = h′(pk)

– Compute c = OAEPTG,H(m‖0k−µ(r)−k1−(log k)2 , r).

1We assume that message length is at least (log k)2. However, our proof works for any super logarithmic message length.
We fix (log k)2 for notational convenience.

95



– Save σ = (α‖m‖c).

• Phase II: Description of B2

– Ask for the public key pk.

– If h′(pk) 6= α output ⊥.

– Parse σ as (α‖m‖c).

– Output c for decryption.

– If c is correctly decrypted, output td = g−1(pk). Otherwise output ⊥

Breaking OAEPTG,H

It is straightforward to use B to break IND-CCA security of OAEPTG,H in the seed incompressibility

model. The adversary A, in the first phase , gets the public key pk and the description of the hash

functions as input and initiates B(k, 〈G〉, 〈H〉). When B asks for the public key, A will start the second

phase and start the IND-CCA game. When A receives the public key, it will forward it to B to get the

ciphertext c. Then it will query the decryption oracle to decrypt c and forward the decrypted message to

B to get the secret key. Finally A will submit two random messages m0,m1 and can easily decrypt the

challenge ciphertext by using the trapdoor and querying the G and H oracle. On the other hand, if B

aborts, A also aborts.

Lemma 7.3.1. There exists a PPTM A which with oracle access to B can break the IND-CCA security
of OAEPTG,H .

Note that, in case of OAEP, the message m and the random string r can be recovered from s‖t by

querying the oracle G and H . That is the reason we do not need to check whether OAEPG,H is already

a IND-CCA scheme.

TDP T is secure even relative to B

In this section, we prove that no efficient reduction can use B to break any security property of TDP T .

Lemma 7.3.2. If collision resistant hash functions exist, TDP T implements an ideal trapdoor permu-
tation, even relative to B.

Proof. The fact that TDP T is an ideal trapdoor permutation relative to T follows from Lemma 7 of
[78]. By Lemma 10 of [78], to show that TDP T is secure also relative to B, we need to show that B
can be simulated by a polynomial time circuit. We show that if collision resistant hash function exists
then there exists a simulator S, such that, for any PPTM C and for any δ hard game, output distribution
of CT,B and CT,S

T
are computationally indistinguishable. S can be described in the following way.
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S has a collision resistant hash function H . On input (1k, pk, 〈G〉, 〈H〉), S samples a message
m ←R {0, 1}(log k)2 , and an r ←R {0, 1}µ(r). If same input is given S repeats the same output. Then
S computes the ciphertext by c = OAEPTG,H(m‖0k−µ(r)−k1−(log k)2 , r) and the fingerprint α = h(pk).
Finally, it saves α‖m‖c.

In the second phase, the simulator on receiving the public key pk′, first checks if h(pk′) is same as
α.

• If h(pk′) 6= α, it outputs ⊥. This perfectly simulates the B as h is collision resistant so C can
produce two pk, pk′ which collide with only a negligible probability. In case of B, h′ is a random
function and hence collision resistant against any polynomial size circuits.

• When C submits the message m′, if m 6= m′, output ⊥. In this case, C perfectly simulates B.

• If m = m′ output ⊥. Note that this is the only case where S cannot simulate B perfectly.

We observe that, [78] also considers the case where C has made any F−1 queries. We stress that, in a
hard game as defined in Chapter 5, the reduction does not have access to any F−1 oracle. So we can
ignore the check for our case.

To bound the output difference of B and S, we need to show that for any reduction C, which
queries B with input (pk, 〈G〉, 〈H〉) and receives a ciphertext c for a randomly chosen message m and
a randomly chosen string r, C can find m with only negligible probability. To show that, we prove the
following lemma.

Lemma 7.3.3. For any efficient circuit C making at most poly(k) queries

Prob[C(OAEPTG,H(m‖0µ(m)−(log k)2 , r)) = m] ≤ negl(k)

No reduction can recover m: Proof of Lemma 7.3.3

Fix µ(m) = (log k)2. Let π : {0, 1}k → {0, 1}k be a fixed permutation. Let OAEPG,H makes at most l

queries. Suppose, there exists an algorithm C which makes q ≤ kc1 queries and a constant c0 > 0

Probm,r[C(π(OAEPG,H(m, r))) = m] ≥ 1

kc0
(7.1)

By averaging argument, there exists an r ∈ {0, 1}µ(r) such that

Probm[C(π(OAEPG,H(m, r))) = m] ≥ 1

kc0

Let Xr be the set {(OAEPG,H(m, r))|m ∈ {0, 1}µ(m)} and Z = {π(x)|x ∈ Xr}. Let Y ⊂ Z be

the set of elements for which C can correctly find out the corresponding m. We use the arguments of

Gennaro and Trevisan [55] to argue that π can be described using significantly less than log(n − a)!
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bits. The only point we need to take care of is instead of saving the direct preimages of a large subset

of Y , we need to save the corresponding m. Additionally we need to save responses of all the queries

made by the OAEPG,H(m, r) in order to reconstruct the preimages. Formally the encoding works in the

following way.

Encoding of π

We construct two sets Sz and Sm and a family of ordered list {Ri|i ∈ {0, 1}µ(m)}. Initially all the

sets are empty. We pick the lexicographically smallest element z of Y and put z in Sz . We simulate

the computation of C(z). Let x1, x2, · · · , xq be the query made by C(z) and y1, y2, · · · , yq be the

corresponding answers. If yi = z for some i ∈ [q], define Γ = Y ∩{y1, · · · , yi−1}. If z /∈ {y1, · · · , yq},
Γ is defined as Y ∩ {y1, · · · , yq}. Remove the set Γ from Y .

Let C(z) returns a message mz . Put mz in Sm. Let x′1, x
′
2, · · · , x′l be the sequential π queries

made by OAEPG,H(m, r) and y′1, y
′
2, · · · , y′l be the responses. If y′j = z for some j we remove

{y′1, y′2, · · · , y′i−1} from Y and add them to the list Rmz maintaining the sequence. Otherwise we

remove, {y′1, y′2, · · · , y′l} from Y and add them to the list Rmz maintaining the sequence. We pick the

lexicographically smallest element remaining in the list and the whole procedure is repeated until Y is

empty.

At each step one element is added to Sz and at most kc3 + 1 elements are removed from X where

kc3 = q+l. So finally, both Sz and Sm will have at least 2µ(m)

kc0 (kc+1) ≥
2µ(m)

kc elements for a some constant

c. As OAEPG,H makes at most l queries, each Ri will contain at most l elements each of k bits.

The sets Sz and Sm are kept as lists. for each i ∈ {0, 1}µ(m), Ri is saved as a table. Values of π on

each element {0, 1}k − π−1(S) is written in a separate table.

Decoding of π

To decode π, first we decode the list L of preimages of the elements in Sz . For each m ∈ Sm and

simulate OAEPG,H(m, r) and return the answers of π queries reading sequentially from Rm. Moreover

we add the corresponding queries and responses to the table (partially) describing π. If end of the list

is reached and another query x is made then abort the simulation and put x in L. Otherwise OAEPG,H
gets completed and outputs the x which is then added to the list. In both the cases we store x =

OAEPG,H(m, r). Finally, L will have all the preimages of Sz .

After we construct L, value of π−1 on any element in {0, 1}k − Sz can be found by reading from

the table. The value of π−1 on elements from Sz are recovered in the lexicographic order. First pick

the lexicographically smallest element z in Sz and simulate C(z). If it makes a query π(x), we know

that either x ∈ {0, 1}k − π−1(Sz) (for which the value is written in the table) or y = π(x) ∈ Sz and

y is lexicographically smaller than z (hence the relation y = π(x) has already been reconstructed and

98



written in the table) or z = π(x). In all of the cases, correct answers can given to C. Finally, when C

outputs m, we find the corresponding π−1(z) = OAEPG,H(m, r). So in all the cases we shall get the

value of π−1(z).

The size of the encoding

Let a = |S| ≥ 2µ(m)

kc = 2µ(m)−c log k. The list Sz can be described using at most log
(

2k

a

)
bits. The

list Sm requires log
(

2µ(m)

a

)
bits. The ordered list Ris needs at most a × lk bits. Finally the rest of the

permutation can be described using log(2k − (l + 1)a)! bits. So overall the π can be described using

log
(

2k

a

)
+ log

(
2µ(m)

a

)
+ alk + log(2k − (l + 1)a)! bits.

So the fraction of permutations for which Equation (7.1) holds true is

2alk
(

2k

a

)(
2µ(m)

a

)
(2k − (l + 1)a)!

2k!
=

2alk(2
k

a )(2
µ(m)

a )(2k−a)!

2k!

al−1∏
j=0

(2k − a− j)

=
2alk(2

µ(m)

a )

a!

al−1∏
j=0

(2k − a− j)

=
(2
µ(m)

a )

a!

al−1∏
j=0

(1− a+ j

2k
)

As al ≤ 2k, for sufficiently large k, 1∏al−1
j=0 (1−a+j

2k
)

can be bounded above by e. On the other hand

(2
µ(m)

a )
a! can be upper bounded by

(
4e22µ(m)

a2

)a
≤
(

4e22µ(m)

22µ(m)−2c log k

)a
< 2−

aµ(m)
2

In the last inequality we used a = 2µ(m)−c log k < 2
µ(m)

2 .

Taking union bound over all circuits of size kc, probability that Equation 7.1 holds against a ran-

domly chosen permutation against any circuit is less than 2−
aµ(m)

2
+ckc log k. As µ(m) = (log k)2,

2
−aµ(m)

2
+ckc log k is negligible in terms of security parameter k.

Lemma 7.3.3 follows from the observation that FT (pk, .) is indistinguishable from a random permuta-

tion.

Putting it all together we get the main result of this section.

Theorem 7.3.4. If the advice string can be of length k(1 + 1
c ) + (log k)2, there is no blackbox reduction

of IND-CCA security of OAEP from ideal trapdoor permutation in the seed incompressibility model,
assuming collision resistant hash functions exist.
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7.4 Impossibility for small randomness: φ(k) ≥ µ(r) + (log k)2 + k
c

In this section we show that, if collision resistant hash function exists, OAEP with small random string

(say of size k
3 ) cannot be proven secure in the k

2 -seed incompressibility model by black box reduction.

Note that, if φ ≤ k
2 , then an adversary cannot save even a single ciphertext as the advice. Hence the

adversary needs to query the hash function oracles in order to create any ciphertext. As the queries

made to the oracles are public, the reduction would be able to save the queries and their corresponding

responses in a list. It may be possible (like the proofs in the random oracle model) that the reduction

may be able to decrypt the challenge ciphertexts using these queries.

We show that, if there exists a collision resistant hash function h : {0, 1}k → {0, 1}(
k
c

), then IND-

CCA security of OAEPFG,H cannot be proven using blackbox reduction from ideal trapdoor permutations

in the SI model. The idea is to compute s‖t = OAEPG,H(m, r) for an m with entropy (log k)2 and a

fixed random string r. We save m and t along with α = h′(pk) as advice where h′ : {0, 1}k → {0, 1}
k
c

is a random function hardwired to B. α is saved to ensure that the reduction do not input a different

public key in the second phase, which may make t invalid. Formally B works in the following way

• Phase I

– On input (k, pk, 〈G〉, 〈H〉), select m←R {0, 1}(log k)2 .

– Set r = 0µ(r)

– Compute α = h′(pk)

– Compute s‖t = OAEPG,H(m‖0µ(m)−(log k)2 , r).

– Save σ = (α‖m‖t).

• Phase II

– Ask for the public key pk.

– If π(pk) 6= α output ⊥.

– Parse σ as (α‖m‖t).

– Query G oracle with input 0µ(r).

– Compute s = G(0µ(r))⊕m‖0k−µ(r)−(log k)2 .

– Compute the ciphertext c = FT (pk, s, t)

– Output c for decryption.

– If c is correctly decrypted, output td = g−1(pk). Otherwise output ⊥
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Breaking OAEPTG,H with small randomness

The adversary A to break the security of OAEPTG,H works exactly as in Section 7.3. On receiving the

public key and the description of OAEPG,H , A queries B to get the ciphertext, decrypt it using the

decryption oracle of IND-CCA game and return it to B to get the trapdoor td. Then A will be able to

correctly decrypt the challenge ciphertext and win the game.

Lemma 7.4.1. There exists a PPTM A which with oracle access to B can break the IND-CCA security
of OAEPTG,H with small randomness with probability 1.

TDP T is secure even relative to B

In this section, we prove that no efficient reduction can use B to break any security property of TDP T .

Lemma 7.4.2. If collision resistant hash functions exist, TDP T implements an ideal trapdoor permu-
tation even relative to B.

Proof. The proof works exactly the same way as in the proof of Lemma 7.3.2. There are only two major
difference to the previous case. First, the ciphertext is computed in the second phase and the reduction
gets to see the G query and its output. We claim that m has superlogarithmic entropy even relative to
r and G(r). This might seem incorrect as m was chosen based on the public key and description of G
and H . We argue that B uses a (hardwired) uniform random function to find m. For a uniform random
function output distribution is independent to the input distribution. That would ensure the necessary
binding to pk, G and H as well as the required independence.

The second difference is that r is fixed instead of being chosen uniformly at random. However,
Lemma 7.3.3 is essentially proved for a fixed r and a message with (log k)2 entropy.

Lemma 7.4.3. For any efficient circuit C making at most poly(k) queries

Probm,C [C(OAEPTG,H(m, r))) = m] ≤ negl(k)

Hence the claim follows.

We get the main result of this section.

Theorem 7.4.4. If φ ≥ µ(r) + (log k)2 + k
c , there is no blackbox reduction of IND-CCA security of

OAEP from an ideal trapdoor permutation in the seed incompressibility model

7.5 No Reduction from Lossy Trapdoor Permutations

In this section we show that there is no blackbox reduction of IND-CCA security of OAEP from Lossy

Trapdoor Permutations even in seed incompressibility model. Specifically, Let LTDP = (S, F, F ′)

be a family of Lossy Trapdoor Permutations. We define the output of OAEP based on LTDP as c =
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π(OAEPG,H(m, r)) where (π, π−1) ∈ F . Note that, while instantiating OAEP by a lossy TDP, we

consider the trapdoor permutation to be the injective mode of the TDP. Otherwise, the decryption cannot

be uniquely defined.

Theorem 7.5.1. Assuming collision resistant hash functions exist, if φ ≥ k(1 + 1
c ) + (log k)2, there

is no blackbox reduction of IND-CCA security of OAEP from lossy trapdoor permutation in the seed
incompressibility model.

Theorem 7.5.2. Assuming collision resistant hash functions exist, if φ ≥ µ(r) + (log k)2 + k
c , there

is no blackbox reduction of IND-CCA security of OAEP from a lossy trapdoor permutation in the seed
incompressibility model.

To prove Theorem 7.5.1 and Theorem 7.5.2, we need new definitions of the oracles.

Definition of T

The definition of the oracle is same as in the previous chapter. We recall the description here for com-

pleteness. T is defined as a pair (T, T ′). Choose 2k + 1 permutations π0, · · · , π2k−1 and g uniformly

at random from the set of all permutations over {0, 1}k. Moreover choose 2k functions e0, · · · , e2k−1

uniformly at random from the set of all functions from {0, 1}k to {0, 1}l.
Oracle T works as follows:

• T1(td)→ g(td) (generate public key from the trapdoor)

• T2(pk, y)→ πpk(y) (evaluate)

• T3(td, z)→ π−1
g(td)(z) (inversion)

On the other hand T ′ is defined as follows

• T ′(pk, x) = πpk(1
n−l||epk(x))

Now we define the LTDP T,T
′

= (S, (F, F−1), F ′) as follows

• S(b) If b = 1, choose a uniform random td← {0, 1}k compute pk = T1(td) and return (pk, td),

otherwise choose a uniform random pk ← {0, 1}k and return (pk,⊥).

• F (pk, y) returns T2(pk, y).

• F−1(td, z) returns T3(td, z).

• F ′(pk, y) returns T ′(pk, x).
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The adversary B

we show that, if collision resistant hash function exists, OAEP with small random string (say of size k
3 )

cannot be proven secure in the k
2 -seed incompressibility model by black box reduction to lossy trapdoor

permutation. Informally B will work exactly in the same way as in Section 7.4 except that in the last

step, after getting the correct m, B2 will check whether T is in lossy mode. If yes, B2 aborts, otherwise

B2 publishes the corresponding secret key.

LTDP T is secure relative to B

The simulator works exactly in the same way as in previous section. The output distribution of CT,B and

CT,ST
, are indistinguishable, S simulates B perfectly when T is in lossy mode. When T is in injective

mode, Lemma 7.3.3 implies that no polynomial size circuit can return correct m with non-negligible

probability. This proves Theorem 7.5.1 and Theorem 7.5.2.
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Chapter 8

Conclusion and Open Problems

In this thesis, we presented some results on blackbox reduction and separation of popular cryptographic

constructions. We considered both symmetric and public key constructions.

In symmetric key, we considered indifferentiability of different modes of operation of cryptographic

hash functions. We proposed a unified method to prove indifferentiability of a wide class of iterated

hash functions, called GDE. Using our method we proved optimal indifferentiability bounds for Merkle-

Damgård construction with counter (e.g. HAIFA) mode and for Tree Mode constructions with a similar

sequential padding. This result shows tight indifferentiability bound (when the underlying compression

functions are realized as random oracles) for many SHA3 candidates like BLAKE, LANE, SHAvite-3,

MD6 etc. We also considered the security of a SHA 3 second round candidate, JH, in the indifferen-

tiability framework. We showed that under the assumption that the underlying permutation is a random

permutation, JH mode of operation with specific padding rule is indifferentiable from a Random Oracle.

We also considered a modified design of JH, called JH′ , by chopping different bits. We analyzed the

indifferentiability of JH′ mode with optimal bounds. We also presented a distinguisher for JH mode

without length padding ( with any other prefix free padding). However, our attack does not pose any

serious threat to JH hash function.

In the public key setting, we proved blackbox separation of popular padding based encryption and

signature schemes. We showed that PSS or any padding based signature scheme (where the random

string can be recovered from the signature) cannot be proven existentially unforgeable in the standard

model using blackbox technique under a large class of cryptographic assumptions. We also proved that

even if we restrict the adversary to a model where it has only limited information about the underlying

hash functions, OAEP cannot be proven IND-CCA secure using a blackbox reduction.
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8.1 Open Problems

This thesis leaves a number of open problems and interesting research directions. We list some of the

possible directions below.

• The Envelope Merkle-Damgård construction of Bellare and Ristenpart can be seen to be in the

class of Generalized Domain Extension. It would be highly interesting to see whether our method

can be used to prove optimal indifferentiability bound of Envelope MD as well. In general, it is

interesting to explore whether our technique can be used to prove improved bound for any prefix

free Merkle-Damgård domain extension.

• In the definition of GDE we considered the underlying object to be a non-invertible random func-

tion. Extending our method to invertible objects (ideal cipher or random permutation) will also be

an interesting direction.

• Our work on GDE presents sufficient condition of indifferentiability. Finding necessary condition

will also be worthwhile to attack.

• To prove indifferentiability of JH we formalized an interpolation probability based technique. It

is natural to explore whether a game based proof can be found to obtain similar bound.

• Improving our indifferentiability bound of JH remains a fascinating open problem due to its selec-

tion to the final round of SHA3 competition. However, such an analysis seems to need substantial

insight.

• It seems that JH mode can also be used for authenticated encryption and online encryption. It may

be interesting to pursue research in those directions.

• JH′ mode has a similar indifferentiability bound as sponge. It is interesting to compare these two

constructions from other security aspects (like collision resistance, preimage resistance) as well.

• It would be interesting to explore that whether the security of PSS or any other padding based

signature scheme can be proven in the generic group model where every party has oracle access

to a group isomorphic to the underlying groups. Recently Dodis et. al. has made some progress

towards this direction.

• It may be an interesting open problem to analyze whether one can prove IND-CCA security of

OAEP in the seed incompressibility model where the size of the advice is significantly smaller

than the random string. Instantiating oracle G by pseudorandom generators and H by MAC may

be a good starting point.
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• Exploring the power of seed incompressibility model will definitely remain an interesting research

direction.
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