Phase properties of even and odd nonlinear coherent states
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Abstract

Using the Pegg—Barett formalism we obtain phase probability distributions of the even and odd nonlinear coherent
states. These distributions are then used to examine whether or not the even and odd nonlinear coherent states exhibit
number /phase squeezing. We also examine whether these states are intelligent states with respect to the number-phase

uncertainty relation.

1. Introduction

Coherent states of simple hammonic oscillator [1]
as well as coherent states of various Lie algebras [2]
have found considerable applications in the study of
quantum optics. Superpositions of coherent states in
the form of symmetrc and antisymmetric combina-
tions were introduced in Ref. [3]. These superposi-
tions, called the even and odd coherent states exhibit
different nonclassical effects [4]. Recently another
type of coherent states, called nonlinear coherent
states (NCS) (comesponding 1o nonlinear algebras)
[5,6] have been introduced o deseribe the motion of
a trapped atom [6]. Subsequently non classical prop-
eries of various superpositions of nonlinear coherent
states have been studied [7.8]

We recall that ull recently the swdy of optical
field phase has been problematic primarily because
of the nonexistence of a hermitian phase operator.
However, with the advent of the Pegg—Bamett for-

malism [9-11] (which ensures a hermitian phase
operatorthe above mentioned difficulty can be
avoided. In particular, using the Pegg—Bamen for-
malism one can obtain the phase probability distnbu-
ton PO ). It may be noted that the phase probability
distrbution is an essential ool in the study of vari-
ous phase characteristics. For example, 1t has been
used o study number-phase  squeezing  [12],
number-phase uncertainty states [13] as also states
with minimum phase noise [14].

In the present paper we shall obtain the Pegg—
Barnett phase probability distribution for the even
and odd nonlinear coherent states. We would hike o
note that there can be any number of nonlinear
coherent states corresponding various choices of the
nonlinearity function (see below) but we shall con-
fine ourselves to the choice of nonlinearity consid-
ered in Ref. [6] to describe the motion of a trapped
ion. Subsequently we shall use the phase probability
distribution w0 study N — @, squeezing of these
states. In the process we shall also determinge whether
or not the even and odd NCS are minimum number-
phase uncertamty states.
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2. Even and odd nonlinear coherent states

Nonlinear coherent states o, f) are defined as

right hand eigenstates of a generalised annihilation
operator A:
Ala.f)=ala.f) (1
A=af(N), N=da (2)
where a is an arbitrary complex number and a(a')
denotes harmonic oscillator annihilation (ereation)
operator and  flx) s a reasonably well behaved
function.

In the number state epresentation the nonlinear
coberent states are given by

e
lae.fy=C Y d,a"|n) (3)
a=0
. 41 —142
d,=[nL_,f(i)] 7 (4)
where C is a normalisation constant and is given by

Cm [ 5 d,ﬂaf“l _ (5)

=1
Even and odd nonlinear coherent states are defined
as
la.f} o =N, (la.frx|— a.f3) (6)
In the number state representation even NCS are
given by

r e

lee.fre=C, ) d,, a®2n) (7)

=0}

o =12
C,= [ B ::i,lal*“] (8)

=1}

while the odd NCS are given by

lee.fr_=C_

o

Yod, o2+ 1) ()

=0}

o -172
r:_=[E ::iﬁ.lal‘””} (10)

a={)

3. Phase properties

We now tum Lo phase distributions of nonlinear
even and odd NCS. In the Pegg-Bameu approach
[9-11] we stant with a finite dimensional (s5+ 1)
dimensional Hilbert space spanned by the number
states 03015, - sk In this space a complete or-

thonormal set of phase states [# pm = (L1, - -~ .5 is
defined by

1 X
|H.'.l|-} T E lﬁi‘ip( P-H'HI,”HH} (11]
LB r={}
where 8 are given by
2wm
H.'J|=HIII+_1: H’I=ﬂ,1,"',.‘f (12}
¥

The value of @, is arbitrary and defines a particular
basis in the phase space. A hermitian phase operator
&, is defined as

d}f.l= E H.'.ulﬂ.ul-}{ﬂml (13]
=)

For superposition states of the form |} =

£ b, ¢'"* n} the phase probability distribution 15 given

by

. 1
<8l =——+

s+ 1 s+ 1
X Y bbeos[(n—k)(d—6,)]
n=k

(14)

Now choosing d, as

" TN
8. =dd— 15
il i (15)
we obtain from (13)
, 1 2
aludf=——+
K8l )] s+l x+1
2wy
X ¥ b bocos(n—k) i (16)
.

n=k
where p=m — 5.
The contmuous phase pmobability  distnbution
P{#) can now be obltained as

§+ 1 5
P(0) = lim ——Ka,ly)F
F=wm LT

%[1 +2 Y b bcos[(n —.{']H]] (17)

= n=k
We can now calculate vanous quantum mechani-
cal averages. For instance the phase variance is given
by (after symmetnzing the phase window)

{(Ad’)) =fw_HEP(H]
@ (g

= + bb—— 158
3 JEJ. * ("_H_ ( )
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Fig. 1. Phase distribution of even NCS for a=.4 and n=.3
{solid curve) and % = 6 (broken curvel.

Another melaton which we shall use concerns
number-phase uncertainty. In the present case it is
miven by

(AN X(ag)D) " = Ve, Dl (19)
where
[N, ] =i[1 =27 P(8,)] (20)

From (18) it follows that there is squeezing in the
number vanable if

Fla)={(AN)Y ) =[N ]I<0 (21)

while the condition for squeezing in the phase vari-
able 15 given by

Gla) =4 .ﬂfﬂ”]z} = -;—I{{N,ff{, J}<0 (22)

We now proceed Lo the computation of Pegg—
Bamet phase probability distributions using (6)-
(10). The particular class of nonlinearity we choose
here was considered in Ref. [6] to describe the
motion of trapped ion. In the present case the nonlin-
carity function f{n) is given by [6]

An) = L(n?)[(n + D) LY(n)] (23)

where n is known as the Lamb-Dicke parameter
and L9 x) denotes the generalised Lagurre polyno-
mials [15].

We now turn to the figures. In Figs. 1 and 2, we
have plotied Pegg—-Bamett phase probabibity distri-
butions for the even and odd nonlinear coherent
states. From Fig. 1 we find that for small value of 5
the phase distibution for even NCS has a central
peak at #=10 while there are two not so well
developed peaks at #= + 5. For a larger value of i
the peaks at #= + § become prominent. On the
other hand from Fig. 2 we find that for 5 small the
phase distribution for odd NCS has only a central
peak at 8= 0 and as n is increased apant from the
central peak two more peaks develop at #= + 5.
Thus for both the even as well as the odd NCS
quantum interference effects become more promi-
nent for relatively larger values of 7.

In Fig. 3 we plot phase disributions of the even
and odd nonlinear coherent states. From the figure it
is clear that the distributions for the even and odd
NCS are rather different, the former having well
developed peaks and the latter having not so well
developed peaks at #= + 7. Thus unlike the case of
ordinary even and odd coherent states [16] the
Pegg—Barnett distribution cleardy reflects the differ-
ent character of gquantum interference in the case of
even and odd NCS.

In Fig. 4 we have plotted the function F{a) for
the even and odd NCS against o keeping n fixed
{we note that the reverse ie., keeping o fixed and
varying 1 15 also possible. But there is no change m
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Fig. 2. Phase distribution of odd NCS for o = .4 and n =3 (solid
curve} and 0 = 6 (broken curve).
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Fig. 3. Phase distribution of even NCS (solid curve) and odd NCS
(broken curve) for =6 and o = 4.

qualitative behaviour of the function F). Cleady if
Fla) is less than zero then there will be number
squeczing. From Fig. 4 10as clear that both the even
and the odd NCS exhibit number squeezing. How-
ever, number squeezing is more profound in the case
of odd NCS. We have checked that for larger values
of i number squeezing is more prominent.

Fig. 5 shows plot of the function (i« ) for the
even and the odd NCS. From Fig. 5 we find that for
both even and odd NCS o) decreases upto a
certain value of o and then again increases as o
increases. This behaviour remains the same when o
and/or i is changed. Therefore we conclude that
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Fig. 4. Plot of F{a) of even NCS (bmken curve) and odd NC5
(dotted curve} for =9,
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Fig. 5. Plot of (o) of even NCS (solid curve) and odd NCS
(bmoken curve) for n =8,

neither the even nor the odd NCS exhibit phase
squeezng.

Finally in Fig. 6 we plot the function H( ). Note
that when H{w) = 0 the comesponding stale is an
intelligent state. From the figure we find that for
both the even and the odd NCS the function M)
starts from zero (and thus are intelligent states) and
as o increases M a) also increases. However com-
pared w the odd NCS the even NCS remain intelli-
gent over a larger range of a.
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Fig. 6. Plot of H{a) of even NCS (solid curve) and odd NCS
(broken curve) for n =8,
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4. Conclusions

In this article we have examined phase properties
of even and odd nonlinear coherent states. In particu-
lar we have the Pegg—Bamet phase distibutions for
these states and compared them. It has also been
shown that while the two superpositions exhibit
number squeezing, phase squeezing has been absent
in both the cases. However, both the even and odd
NCS have been shown o be inelligent states with
respect o the number-phase uncettainty relation (19},
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