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Abstract

A general procedure is presented to construct conditionally exactly solvable (CES) potentials using the techniques of
supersymmetric quantum mechanics. The method is illustrated with potentials related to the harmonic oscillator problem.
Besides recovering known results, new CES potentials are also obtained within the framework oFf this seneral approsch. The
conditions under which this method leads to CES potentials are also discussed.

1. Introduction

Solvable potential problems have have played a
dual role since the beginnings of quanmm mechan-
ics. First, they represented vseful aids in modelling
realistic physical problems, and second, they offered
an interesting field of investigation in their own
right. Related to this latter area, the concept of
solvability has changed 10 some exient in recent
years. Besides exactly solvable problems, for which
the bound-state energy spectrum and solutions could
be given in general analytical form, guasi-exactly
solvable (QES) (see eg. [1]) and conditionally ex-
actly solvable (CES) [2] potential classes have also
been identified recently.
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In the first case only a finite number of eigen-
states can be obtained exactly, while in the latier one
analytical solutions are available only if some (or all)
of the potential parameters are fine tuned 1o specific
numerical values.

There are different types of CES potentials, which
is also reflected in the way they can be most natu-
rally constructed. Some of them, including the first
CES potentials [2.3] (see also Ref. [4] for some
interesting comments on the construction of CES
potentials) have their bound-state solutions in enms
of a single special function (polynomial); a structure
characterstic of Natanzon class potentials [5] For
another class, these solutions have more complex
structure, but generally they can be expressed in
terms of the linear combination of two special func-
tions. Typically these CES potentials are construcied
as supersymmelric partners of some simple poten-
tials [6,7] Their CES nature hinges on the fact
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whether the parameters of their pardners can be
chosen such that they can be reduced o some simple
potential with known solutions and energy eigenval-
ues. According o the techniques of supersymmetric
quantum mechanics, or SUSYQM (for reviews see
ez [8-11]) the CES potentials constructed in this
wiay ame then essentially sospectral with their part-
ners, e the two spectra are identical or differ only
in their ground state. The bound-state solutions of
CES polentials are obtained from those of their
simple (Natanzon-type) partner potentials by acting
on these latter ones with linear differential operators.
This explains why their bound-state solutions pos-
sess the specific structure described above.

In Refs. [6,7] some CES potentials have been
constructed by SUSYQM. The aim of this publica-
tion is to show that this procedure can be made more
systematic by making use of wvarious Lypes of
SUSYOQM transformations. The rather general nature
of this treatment allows the recovery of known re-
sults and also the derivation of new CES polentials
in the same framework. Our examples concern CES
potentials related to the harmonic oscillator potential
in three or one dimension (the standard examples of
Refs. [6,7]), but the formalism is equally applicable
to other types of potentials as well.

2. The conventional SUSYQM approach to CES
potentials

Let us assume that there is a pair of SUSYQM
partner potentials V!"(r). which can be constructed
from a superpotential W,(r) in the usual way:

VO(r) =3[ Wi (r) £ Wi(r)]. (1
Consider now a superpotential of the form
Wir)=Wy(r) +w(r). (2)

The pariner potentials generated from W{r) are then
Vo (r) = VIO(r) + Wy r)w(r)

+-§[w3{r] + w'( r]] (3)
V_(r) =VO(r)+ Wy(r)w(r)

4w () - w(n)]. (4

Let us now insist on that one of these polentials, say
V, (r) is related o some known potential up to an
energy shift. In the simplest case this could be
V% r) in Eq. (1)

Vo(r)=v®(r)+ 4. (5)

Combined with (3), this requirement immediately
introduces a Riccati-type differential equation for
wir):

%[WE( ry +w'( r]] +W,(ryw(ry=4. (6)

If this equation is solved, then a pair of SUSYQM
potentials is oblained, from which one of the partner
potentials, V' (r), corresponds 1o a known potential
{up to an energy shift). Therefore, both the spectrum
and the wavefunctions of the parner potential V_(r)
can be obtained in the usual way.

In the examples in [6] V") was the harmonic
oscillator potential in 1 and 3 dimensions, with
W,(r) being the corresponding superpotential. In
both cases the structure of wir) was of the type

N

wir)= Y

i=]

4
= g;r

l+g jr2 - O
In the practical examples N =1 was used. The
difference was that in the one-dimensional case the
authors of [6] considered unbroken supersymmetry
{and therefore V_(x) had one more state than
V, (x)) while in the threedimensional case they
chose 1o discuss broken supersymmetry, so the spec-
tra of the parner potentials were identical.

3. An aliernative SUSYQM construetion of CES
potentials

Here we use various SUSYQM transformations
systematically to recapitulate the formalism of Sec-
tion 2 and to pul it into a more general conlext.

It is known from the theory of sospectral poten-
tials that a potential Vo(r) isospectral with a known
potential Vi(r} can be constructed by [12]

2

-3 Ind( ). (8)

Vz(r]= Vl("] _dr
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where ¢ r) is a solution of the Schrisddinger equation

1 d%
-5 33 Vir)é= b ©)

Here e is usually called factorization energy. De-
pending on the value of e and the boundary condi-
tions of the solution ¢(r), Vi(r) in (8) will have
various properties. In the case of a radial problem (in
three-dimensions) four types of transformations are
possible. These are related four different types of
nodeless solutions ¢(r) of Eg. (9) and have been
described in terms of SUSYOQM [12,13.15]. The
nodelessness of é{r) guarantees that the resulting
potential Vy(r) does not have singularities for finile
values of r (besides the ongin), and this can be
achieved whenever the factorization energy e is
below the ground-state energy of Vi(r) [12]. We
briefly summarize the basic chamctenstics of the
four SUSYQM wransformation types in Table 1.

Let us consider the radial harmonic oscillator as
an example and solve (9) for ¢(r) with

Vi(r) =v®(r) =:[W3(r) + Wy(r)]
1 + 1 3
=5r3+J}I(J§T)+T+E. (lﬂ]

Here the superpotential is W(r)=r+(y+ 1)r',
and the bound states of V,(r) are found at E, = 2n
+ 2y + 3. The solution ¢(r) can be searched for in
the form

B
¢(r) = r"‘cxr*[?’z]”(mb:crzl , (11)

where Fla,b:z) is the confluent hypergeometric
function [16]. Straightforward calculation shows that

(9) transforms into the confluent hypergeometric
equation if the following conditions hold:

A(A-1)=y(y+1), B*=1, B=-C;

(12)

b=A+ (13)

baj—

+

1
—_— e o — -, 14
2C 2C 4cC 4 (%)
Recalling that besides Flab:z), 27 "Fla — b + 1,
2 —b:z) is a lincarly independent solution of the
same confluent hypergeometric function [16], the
general solution ¢ r) has the form

£ ¥ 3 A
= ?

d(r)=¢e [E 3 veipl "o g T
(r]—uaptzr o, r 12¢ ¥ 2¢
3 v 3 3 ,
+—t — + =, y+ =:Cr
4C 2 4 2

€ ¥ 3
o, TF| — + — + —
- \2C 2C 4C

| 1 i
—E+1,—‘}'+E:Cr']]. (15)
Note that the two terms in Eq. (15) are connected by
the y+ 1 — y tansformation, therefore it is enough
o consider one of the solutions (A =y+ 1 or A=
—v)of ACA—1)=y(y+ 1)in Eg. (12} The solu-
ions corresponding w the transformations T, T, T,
and T, in Table 1 can then be identified by imposing
the appropriate boundary conditions on ¢{r).
Substituting the ¢{r) function in Eq. (8) one
oblains an expression for Vo(r) in terms of &'(r)
and ¢"(r). With the use of (9), V,(r) can be ex-

Tahle 1
SUSYQM tmnsformations belonging to different types of solutions d{r). The notation of Refs. [12,13,15] has heen adapted to the potentials
discussed here.
Trans formation T T, 7 T
3 e=Ey, e< Ey < E; ek,
lim, _, Fret roY Frt Y
lim, , . onvergent divergem divergent convergent
Spectrum deletes ground state adds new ground state none none
madification (0 < % only) (0= % anly)
Singularity (y+1k7 —yr ? Cy+ 102 —yr 2

maodification
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pressed in terms of Vi(r), € and &' /db. In this last
expression the first-order dervatives of two conflu-
ent hypergeometric functions occur, each of which
can be expressed in terms of another confluent hy-
pergeometric function [16]. This means that V.(r)
can be expressed mnoa somewhat complicated, but
closed analytic form. A special situation occurs when
a=—Nora—b+1=—M holds. In this case one
of the confluent hypergeometric functions occuring
in (15) reduces to an Nth or Mth order (generalized
Laguerre [16]) polynomial of the argument. Accord-
ing to (14}, this case corresponds o specific choices
of the factorzation encrgy . We note that in princi-
ple both confluent hypergeometric functions can re-
duce o a polynomial il both € and v has a specific
values: e= —C(M+N+1)—y—3, y=M-N
+ 1. Let us now consider the four transformations
7.7, T, and T, one by one.

3.0, The T, case

The boundary condition at r = 0 allows solutions
only with o, =0 in (15) (if v > 0 holds), further-
more B = —1 is also required o fulfil the asymp-
totic boundary condition. The a= —N condition
leads to € =2N + 2y + 3. This factorization energy
comesponds o the bound-states energies of Vi(r) =
V%) and &(r) simply reproduces the physical
wavefunctions. It is known that for N =n+ 0 the
transformed potental Vo(r) has singulanties at those
locations, where the wavefunctions have nodes. The
ground-state wavefunction with n =0, however, is
nodeless, and the T, wansformation then simply
retrieves the classic SUSY QM transformation which
eliminates the ground state of V(r) and increases
the value of v with one unit.

3.2 The T; case

Stmilarly to the T, case only the term regular at
the ongin is allowed by the boundary conditon at
r=00e a,= (), however, the asymptotic bound-
ary condition requires B =1 in this case. The a=
=N polynomial condition then leads o the specific
factorization energies € = — 2N, which are always
below the ground-state energy of Vi(r), so the node-
lessness of ) is always secured. The N = 0 choice
recovers Volr) as another oscillator with the same

spectrum as Vi(r): only the value of ¥ is increased
with one unit and the energy is shifted downwards
with one unit. The N =1 case results in the CES
potential described in [6] (denoted by V_(r) there)
up Lo an energy shift:

1 y+ 1) y+2 1
Vz{r]=;r3+—( ](3 ]+}'+;
4g|3r3 B 2, )
(rgry T
2
= i 16
g1 Yy +3 { )

The energy shift s two units here, and it appears
both in the numerical constant in (16) (it is 1 /2 here
and 7/2 in [6]) and the factorization energy (=2
here and 0 in [6]) Similar, but more complicated
isospectral potentials would anse from choosing N
=1.

3.3. The T, case

In contrast with the previous two cases, the
boundary condition at the origin now allows both the
regular and the singular solution in (15). The ratio of
the two coefficients, o, and o, appears as a new
parameter in Vo(r): the resuling potential family
will have the same spectrum, but different shape.
Similarly to the T, case, this one is usually also
interpreted as a situation with broken supersymme-
try, because the spectra of the pariner potentials
{and, of course, of the whole family) is identical.

In order to get a situation similar o the 75 and T,
cases, we can restrict this potential family to a single
potential, i.e. to that with e, = (0 in (15). The strue-
wre of ¢l r) then becomes the same as before: it will
contain only a single confluent hypergeometric func-
ton. With the loss of the generality, however, the
nodelessness of ¢ r) cannot be guarmnteed in gen-
eral, mather 1t has o be checked in each case sepa-

rately.
Taking also into account the asymplotic boundary
condition which now requires 8 = —1, we find that

the @ — b + 1= — N polynomial condition now leads
o factorization energies e=2N+2 The N=10
choice again results in another harmonic oscillator
potential, with y decreased with one unit and with
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an energy shift of one unit upwards. For N=1 a
potential similar to that in [6] arises, whenever y >
1/2 holds. (As we have mentioned already, this
latter condition  secures that the  polynomial
F(—1,— v+ 37y =1+ 27 /2y — 1) remains
nodeless, and there will be no singularities in the
Vo(r). In fact, the 2y + 3=E, > e= 2N + 2 condi-
tion also leads w0 v > 1,2 for &N = 1.) The potential
15 then

L ] 3
Vz(r}=;r'+—jr3 L
dgir® 2¢,
+ .-|'.|_ '.|:
{1+g,r']_ 1 +g,r
2
17
£ Ty—1 (17)

The functional form of Vi(r) is essentially the same
as that of (16), only the value of . the numencal
constant and g, is different. Similarly to the T, case,
further potentials isospectral with a harmonic oscilla-
tor can be constructed by choosing N2> 1, but the
nodelessness of df r) has 1o be checked in each case.

3.4, The T, case

The situation here is the same as in the T, case:
both the regular and the singular solutions are al-
lowed by the boundary condition at the orgin. This
means, that we again have a whole family of poten-
tials V,(r), which have the same spectrum and differ
only in their shape. As before, we again restrict our
attention to a paticular member of this family, ie. o
the potential obtained with o, = (0. Furthermore, we
consider the polynomial condition a — b+ 1= =N,
which leads to e= —2N+ 2y + 1.

For & =1,

1 -1
Va(r) = 5r3+ ’}"("::'—r!] +
which comesponds 1o another harmonic oscillator
potential with the ¢ value decreased by one unit and
also shified lower by one energy unit. Cleady, this
comesponds 1o the wsual SUSYOQM  transformation
which inserts a new state (at £ =2y + 1) below the

ground state of V(r) For N=1 we find that
A—1,—y+1:—=r°=1-=2r /2y~ 1), which has
a node at a positive valoe of r, unless y<1/2
holds. As m the T, case, here we have o check the
nodelessness of & r) in each case, because it cannol
be automatically guaranteed after we restricted the
general solution by selecting o, =0 in (15). The
functional form of V,(r} is the same as (17), but
with g, =2/(1 — 2y).

3.5, The one-dimensional case

We note that similady to the radial equation, the
one-dimensional case can also be handled m the
present {ramework. The difference arises from the
different boundary conditions. The varous transfor-
mation types comesponding o solutions of a
Schridinger equation with different boundary condi-
ions has been described in [14]. Here we only
mention the example discussed in [6] for one dimen-
sion. In omder to construct Vi(r) with one more
bound state than V,(r), the solution diverging in both
directions has to be considered [14]. In general, such
a solution should be constructed from the two lin-
early independent solutions of the Schridinger equa-
ton, similady o the siwation seen in Sections 3.3
and 3.4. However, taking only one of these, ¢(x) =
explE) A= 1L,b—x®) =expl5 X1 + 2x7°), we ob-
tain the new state introduced for V,(x) as ¥ x) =
1/ x). Note that Vi(r) is symmetric with respect
to the x< —x transformation. In the general case
Volr) would be asymmetric, similady to  the
SUSYQM parner potentials of the one-dimensional
harmonic oscillator constructed in Ref. [17]

4. Discussion

The relation of the two procedures outlined in
Sections 2 and 3 can be interpreted in a simple way
by noting that the partner potentials are linked by
Vo(r) = V_(r)= Wir) and Vi(r) - Vir)=
{Ind( #)Y'. From this

H-"{r]=|:lnd:-(r]]|r+t' (18)
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follows. Direct integration of (2) and (7) with W,(r)
=r+(y+ 1}r ', asin [6] and ¢ = 0, indeed, recov-
ers the general solution @) specific o the Ty case:

2
d(r)=r"" IMP[%}”{EUU +3H’3]- (19)
| 2
In addition to the notation of [6] g, =0 was also
introduced for convenience. This function is also an
Nth order polynomial, as expected from (11) for
a = —N. In addition 1o the T, case, the situation
should be the same for the other cases mentioned
here, including also the one-dimensional case. We
note that n the T, T, and in the one-dimensional
cases discussed here, (19) is not the most general
form of the solution, rather it is a specific member of
a family of solutons obtained as the linear combina-
tion of two independent solutions.

In fact, all the V,(r) potentials derived from
polynomial-type ¢{(r) solutions can be expressed by
a common formula. Substituting a= —N in (11)
and combining it with (8) and (10} one gets

1 . yly+1)+24 3

Va(r) =

2

1
—E——nlnF[—N,A+-—:r:3 . {20
dr? | 2 ] (20)

The solutons welevant to the T, T, T and T, cases
can then be oblained by substituting [ A, B.C] = [y +
1,-11), [-y.1,-1), [y+1,1,-1) and [—-7y,—
1.1], respectively. In the W= 0 case the last term in
(20) cancels and V,(r) contains only terms character-
istic of the three-dimensional harmonic oscillator
potential. For N=1, F(— 1A+ 5:Cri)=1+g,r%,
with g, = —2C/(2 A + 1), which gives rise 10 two
new terms, formally identical ith the last two s
of (1a).

Another interesting formula can also be derived if
recalling (5) and (10), ie. Vi(r) =V _ (r)— A which
also indicates Vi(r)= V_(r)— A From this V,(r)
+ Vo(r)=W3r)—2A directly follows. On the
other hand, (8) and (9) lead to Vi(r) + V(r)=2e+
(' /b ¥ . Combinig these two formulas, we get

[W(r) = (Ind(r))][W(r) + (Ind(r))]
=2(e+4). (21)

This means, that Wir)= +(lnd{r)) always re-
quires € = — A 1o hold. In this way A, the constant
appearing in the Riccati Eg. (6) in Section 2 is
related 1o the factodzation energy used in the formu-
las in Section 3. Note that the W= —{lndJ choice
is also acceptable here, and it simply corresponds o
the V<V, and V| = V. replacements.

We stress that although the examples we pre-
sented here are related to the harmonic oscillator in
three and one dimensions, our treatment can be
applied w other types of polentials as well. Besides
the relatively simple shape-invariant potential [18]
(see also [19.8-11] for a list of them), any member
of the more general Natanzon potential class [3] can
also serve as the V"N r) reference potential in (5).
However, for the first such applications some more
thoroughly studied special Natanzon potentials could
be the best candidates [20-28].
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