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Chapter O

Introduction

The main objective of this thesis is to develop an algebraic deformation theory, over
commutative local algebra base, for Leibniz algebras and its homomorphisms and to
give a concrete construction of a formal deformation which induces all other formal
deformations of a given Leibniz algebra satisfying some cohomological condition, which
is unique at the infinitesimal level — the so called “Versal deformation”.

Deformation theory dates back at least to Riemann’s 1857 memoir on abelian
functions in which he studied manifolds of complex dimension one and calculated
the number of parameters (called moduli) upon which a deformation depends. The
modern theory of deformations of structures on manifolds was developed extensively
by Frolicher-Nijenhuis [EN57], Kodaira-Spencer [KS58D], [KS5H8a), Kodaira-Nirenberg-
Spencer [KNS58|, and Spencer [Spe62a), [Spe62b], [Spebs].

The study of deformations of algebraic structures was initiated by M. Gersten-
haber through his monumental works [Ger63], [Ger64], [Ger66], [Ger68|, [Ger74]. He

introduced deformation theory for associative algebras and remarked that his methods

would extend to any equationally defined algebraic structure. The basic theorems and
features of algebraic deformation theory are all due to him. For a comparative study of
algebraic and analytic deformation theory see [Pip67].

The theory of Gerstenhaber was extended to Lie algebras by A. Nijenhuis and R. W.
Richardson, Jr. [NR66], [NRG7a], [NR67D]. The deformation theory of Hopf algebras,
which relates to quantum groups, was studied by M. Gerstenhaber and S. D. Schack
in [GS90]. An algebraic deformation theory for associative algebra homomorphisms
was developed by Gerstenhaber and Schack [GS83,IGS85]. For more recent results
on deformation theory following Gerstenhaber see [MMO02], [Yan06], [Yau(O7|, [Man(07],
[Yau0§].

Gerstenhaber’s theory was generalized in [Bal97] by D. Balavoine to develop formal

one parameter deformation theory for algebras over any quadratic operad, which in-
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cludes all the classical cases. He also deduced formal one parameter deformation theory
of Leibniz algebras from his theory.

Although formal deformation theory was developed in various categories following
Gerstenhaber and computations were made, but the question of obtaining all non-
equivalent deformations of a given object was not properly discussed for a long time.
The right approach to this is the notion of versal deformation — a deformation which
includes all non-equivalent ones. The existence of such a versal deformation for algebraic
categories follows from the work of M. Schlessinger [Sch68].

For Lie algebras it was worked out in [Fia88] and one can deduce it in other categories
as well. It turns out that (under some minor cohomology restrictions) there exists a
versal element, which is universal at the infinitesimal level. For Lie algebras an explicit
construction of versal deformations was given in [F'F99]. The construction is parallel to
the general construction in deformation theory as in [[II71L[Pal76.Lan79,/GMSS8.[Kon94].

In this thesis we give a concrete construction of versal deformation for Leibniz alge-
bras [EMMOS]. Following is a chapter-wise break-up of the thesis.

The notion of Leibniz algebras was introduced by J.-L. Loday [Lod93,[Lod97,[Lod01]
in connection with the study of periodicity phenomenon in algebraic K-theory, as a non-
antisymmetric analogue of Lie algebras. We recall that for a Lie algebra g the Chevalley-
Eilenberg complex is given by the exterior power module Ag. The non-commutative
analogue of the exterior module is the tensor module T'g. If we replace A by ® in the
formula for the boundary map d of the Chevalley-Eilenberg complex and put [z;, z;]
at the it slot when i < j, we get a new complex for g, as the modified d satisfies
d?> = 0. It turns out that this new complex is valid for more general objects than Lie
algebras, as the only property of the Lie bracket, which is needed to prove d?> = 0 is
the Leibniz relation. This generalization of Lie algebras are called Leibniz algebras.
Leibniz algebras turns out to be the algebras over the quadratic operad Leib [Lod01]. A
(co)homology theory associated to Leibniz algebras has been developed by J.-L. Loday
and T. Pirashvili [LP93]. Throughout this thesis, K will denote the ground field and the
tensor product over K will be denoted by ®. In Chapter 1, we recall the definition of
Leibniz algebras, discuss some examples. We also recall the definition of Leibniz algebra
cohomology with coefficients in itself. Low dimensional Leibniz algebra cohomologies
will be extensively used in this thesis to develop the deformation theory in question. We
introduce cohomology modules associated to a Leibniz algebra homomorphism, which
will be relevant in the discussion of deformation of Leibniz algebra homomorphisms.

Chapter 2, is a review of results about Harrison cohomology of a commutative alge-
bra and its relation to extensions of the algebra. These results will be used subsequently.
The basic references for this chapter are [Hoc45l[Har62,[Bar68]. We recall the definition

of the Harrison complex of a commutative algebra A and the Harrison cohomology with



coefficients in an A-module M. Next, we define extension of a commutative algebra A
by an A-module M, describe its relation to Harrison cohomology of A. We also recall
few basic properties that will be used later in this thesis.

In Chapter 3, we introduce the notion of deformations of Leibniz algebras and Leib-
niz algebra homomorphisms over a commutative local algebra base with multiplicative
identity, and introduce infinitesimal deformation and other basic definitions related to
deformations of a Leibniz algebra. We give a construction of an infinitesimal deforma-
tion 71 of a Leibniz algebra L for which dim(HL?(L; L)) is finite. We show that this
infinitesimal deformation is universal among the infinitesimal deformations of L with
finite dimensional local algebra base. We also prove a necessary and sufficient criterion
for equivalence of two infinitesimal deformations of a Leibniz algebra. At the end we
introduce the notion of infinitesimal deformations of Leibniz algebra homomorphisms
and obtain a necessary and sufficient condition for equivalence of two infinitesimal de-
formations in this case.

In Chapter 4, we address the question of extending a given deformation ® =
(A, 5 fau) of a Leibniz algebra homomorphism f : L — M with a given base to a larger
base. This extension problem can be described as follows. Suppose © = (A, ii; f),) is a
given deformation of a Leibniz algebra homomorphism f : L — M with local base A.
Let

0—My—=BLs4-—0

be a given finite dimensional extension of A by M. The problem is to obtain condition
for existence of a deformation ® of f with base B which extends the given deformation,
that is, p*f) = %. We shall measure the possible obstructions that one might encounter
in the above extension process as certain 3-dimensional cohomology classes, vanishing
of which is a necessary and sufficient condition for an extension to exist. The set of
equivalence classes of possible extensions of a given deformation A\ of L with base A,
admits certain natural actions and we shall investigate their relationship. We first take
up the case of extending deformations of Leibniz algebras and then consider the relative
problem of extending deformations of Leibniz algebra homomorphisms. In the last
section of this chapter, we study formal deformations and obtain a necessary condition
for non-triviality of a formal deformation. The results of this chapter will also enable
us to obtain a sufficient criterion for existence of a formal deformation with a given
differential and infinitesimal part. We end this chapter with the definition of a versal
deformation.

Chapter 5 is devoted to give a construction of versal deformation of a given Leibniz
algebra L with dim(HL?(L; L)) < co. We begin with the universal infinitesimal defor-
mation n; of L with base C as constructed in Chapter 3, and apply the tools developed
in Chapter 4 to get a finite dimensional extension 72 with base Co. We Kkill off the
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possible obstruction associated to the extension problem for a specific extension of C
to obtain 79 with base C5. We repeat this procedure successively to get a sequence of

finite dimensional extensions 7 with base Cj. The projective limit C' = lln C is a

k—o00
complete local algebra and n = lim 7, is a formal deformation of L with base C'. We

k—o0
show that the algebra base C' can be described as a quotient of the formal power series

ring over K in finitely many variables. Finally we prove that the formal deformation 7
is a versal deformation of L with base C.

It is well known that the construction of one parameter deformations of various al-
gebraic structures, like associative algebras or Lie algebras, involves certain conditions
on cohomology classes arising as obstructions. These condition are expressed in terms
of Massey brackets [Ret77,[Ref93], which are, in turn, the Lie counterpart of classical
Massey products [Mash4]. The connection between obstructions in extending a given
deformation and Massey products was first noticed in [Dou61]. The aim of Chapter 6, is
to study this relationship in our context. More precisely, we use Massey n-operations as
defined in [Ref77] to establish this connection in the case of one parameter deformation
of a Leibniz algebra. Next, we use a general treatment of Massey brackets as intro-
duced in [FWOT] to express the obstructions arising at different steps in the inductive
construction of a versal deformation as described in Chapter 5, in terms of these general
Massey brackets.

Finally, in Chapter 7, we discuss two examples to illustrate the theory developed
in this thesis. The first example is a three dimensional nilpotent Leibniz algebra for
which we compute a versal deformation. The next example is the three dimensional
Heisenberg Lie algebra. We deform this example viewing it as a Leibniz algebra to
show that not only we recover all the usual Lie algebra deformations, but we get some
new deformations which are Leibniz algebras and not Lie algebras. This example also
illustrate the fact that versal deformation of a Lie algebra L and that of L when viewed

as a Leibniz algebra may differ.



Chapter 1

Leibniz algebras and Leibniz

algebra cohomology

1.1 Introduction

The notion of Leibniz algebras was introduced by J.-L. Loday [Lod93,Lod97,[Lod01] in
connection with the study of periodicity phenomenon in algebraic K-theory as a non-
antisymmetric analogue of Lie algebras. We recall that for a Lie algebra g the Chevalley-
Eilenberg complex is given by the exterior power module Ag. The non-commutative
analogue of the exterior module is the tensor module T'g. If we replace A by ® in the
formula for the boundary map d of the Chevalley-Eilenberg complex and put [z;, 2]
at the it slot when i < j, we get a new complex for g, as the modified d satisfies
d? = 0. It turns out that this new complex is valid for more general objects than Lie
algebras, as the only property of the Lie bracket which is needed to prove d? = 0 is
the Leibniz relation. This generalization of Lie algebras are called Leibniz algebras.
Leibniz algebras turns out to be the algebras over the quadratic operad Leib [Lod01]. A
(co)homology theory associated to Leibniz algebras has been developed by Loday and
Pirashvili [LP93].

In this chapter we recall the definition of Leibniz algebras, discuss some examples.
We also recall the definition of Leibniz algebra cohomology. In the last section of this
chapter we introduce cohomology modules associated to a Leibniz algebra homomor-

phism. This will be used in subsequent chapters.

1.2 Leibniz algebras

Throughout this thesis, K will denote the ground field, and the tensor product over K
will be denoted by ®.
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Definition 1.2.1. A Leibniz algebra L is a K-module, equipped with a bracket operation

[—, —], which is K-bilinear and satisfies the Leibniz identity:

[:C, [y’ ZH = [[xay]’z] - [[x’z]ay] forxz, y, z € L.

Any Lie algebra is automatically a Leibniz algebra, as in the presence of antisym-

metry, the Jacobi identity is equivalent to the Leibniz identity. Here are some more

examples.
Example 1.2.2. Let (L,d) be a differential Lie algebra with the Lie bracket [—, —]. Then
L is a Leibniz algebra with the bracket operation [x,ylq := [x,dy]. The new bracket on

L is called the derived bracket.

Example 1.2.3. OnT(V) =V & V2. o VO @ ... there is a unique bracket that

makes it into a Leibniz algebra and verifies
VMRUR - Quy = ["'[[’Ul,’UQ],Ug],"' 7?}71] fO’I"’UZ' eVoandi= 17 5 T

This is the free Leibniz algebra over a K-module V.

Example 1.2.4. Let A be any associative K-algebra equipped with a K-module map
D : A — A satisfying D(x(Dy)) = (Dz)(Dy) = D((Dx)y) for x,y € A. Then

[z,y] := z(Dy) — (Dy)x

is a Leibniz bracket on A. Some examples of D satisfying the above identity are as

follows:
1. D is an algebra map satisfying D?> = D,

2. A is a superalgebra (that is, any x € A can be written uniquely as v = x4 + x_)
and D(x) = x4,

3. D is a square-zero derivation, that is,

D(zy) = (Dx)y + 2(Dy) and D*x =0 forz, y € A.

Definition 1.2.5. For a Leibniz algebra L, set L' = L, L**! = [L* L] is the submodule
of L generated by all elements of the form [x,y] where x € L¥ and y € L, for k € N.

Then L is said to be nilpotent if there exists an integer n € N such that
L'>L*>...oL"=0.

The smallest integer n for which L™ = 0 is called the nilindex of L.



7 1.2 Leibniz algebras

Example 1.2.6. Complex nilpotent Leibniz algebras have been classified up to isomor-
phism for dimension 2 and 3 in [Lod93] and [AO01]. In dimension 2 there are two
non-isomorphic nilpotent Leibniz algebras. One of them is abelian, the other is given
by the non-zero Leibniz bracket, [e1,e1] = ea, where {e1,e2} is a basis of the Leibniz
algebra.

In dimension 3 there are five non-isomorphic nilpotent Leibniz algebras and one
infinite family of pairwise non-isomorphic Leibniz algebras. They can be described as
follows. Let {e1,ea,e3} be a basis. In the following list we only mention the non-zero

brackets of basis elements.

A1 abelian.

A2 i ler,en] =

Azt [eg,e3] = e, [63,62] =

Ay [ea,ea] =eq,[es,e3] = 61,[62,63] =ep;a € C.
A5 0 [eg,ea] = eq,[es, ea] = eq,[ea,e3] = €3.

X i [e3,e3] =e1,[e1, es3] =

Here is one geometric example [IdLMP99)].
Recall that a Nambu-Poisson manifold M of order n is a differential manifold endowed

with skew-symmetric n-bracket of functions {—,--- , —} satisfying the Leibniz rule

{figi, fo. -+ s fu} = fi{on, foo - s fud o {f1, fos oo L S}

for fi,-++, fn,g91 € C°(M,R), and the fundamental identity

{fla"' ?fnfly{gla"' agn}} — Z{gly 5{f1)"' 5fnflagi},'” ;gn}
i=1

Example 1.2.7. Let (M,A) be a Nambu-Poisson manifold of order n with Nambu-

Poisson bracket {—,---,—} (where A is the associated skew-symmetric tensor of type
(n,0),
A(dfly ,dfn) = {fl,"' afn} fOT fl,"' afn € COO(MaR))

Then (A"~ 1(C*(M;R)),{—,—}) is a Leibniz algebra where

e
{AN ANty gi A AgnaaY = g A A{fr s fat G A Agnot.
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1.3 Cohomology of Leibniz algebras

In this section we recall the Leibniz algebra cohomology with coefficients in a represen-
tation as introduced by J.-L. Loday and T. Pirashvili in [LP93].

Definition 1.3.1. Let L be a Leibniz algebra over K, a representation M of the Leibniz
algebra L is a K-module equipped with two actions (left and right) of L,

[—,—]:LxM-—M and[—,—]: M x L — M such that

[z, [y, 2]] = ([, ], 2] = [z, 2], 9]

holds, whenever one of the variable is from M and the others from L.

In particular, L is a representation of itself with the action given by the bracket in

L. Often, we will represent an element 11 @ 12 ® -+ ® @, € L®" by (21, ,Zp).

Definition 1.3.2. Let L be a Leibniz algebra and M be a representation of L. Let
CL™(L;M) := Homg(L®", M), n >0, and

6" CL™(L; M) — CL""Y(L; M)

be the K-homomorphism given by

5nf(x17”' ,I’n+1)
n+1 -
= ['rlaf(x2a e ,$n+1)] + Z(_l)l[f(xla e )ii?' o axn+1)axi] (131)
=2
+ Z (_1)j+1f(x17”' ,I'i_l,[l'i,xj],xi_i_l,"' 7xj—17£'jaxj+17"' 7xn+1)-
1<i<j<n+1

The linear maps 6", n > 0 satisfy 5”1 o 5" = 0.

Let f € CL™(L; M) and x1,--+ ,xp42 € L. Fix 4,7 with 1 <i < j < n+2 and
consider the element (x1,--- ,xi—1, [, %], Tit1, -+ ,Zj, - ,Tng2) € LM+ We may
denote this element as (y1,- -+ ,yn+1) where yp =z for k=1,--- i —1,i+1,---,j —
1, yi =[5, 2] and yp = k1 fork=j,--- ,n+1

Define

E](yh 7y7l+1) = Z (_1)v+1f(y17"' sYu—15 [yuayv]7"' 7@117"' 7yn+1)-
1<u<v<n+1

Using this notations we get the following Lemma.
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Lemma 1.3.3.

X= > (-

1<i<j<n+2

)]+1F (yl,

: ’ynJrl) =0.

Proof. By expanding for all possible values of 1 < i, j,u,v < n+ 2 we get,

X = Z ( )]JFIF (yla tee ,yn+1)
1<i<j<n+2
- Z (_1)j+1FZ‘7($1, e, Tg—1, ['Ihxj]axiqu) e ’jjj7 e ,$n+2)
1<i<j<n+2
= Z (_1)j+1 Z (_1)U+1f(x1, oy Ty—1, ['Iuaxv]aqurla e )jva T ['Iiaxj]a
1<i<j<n+2 1<u<v<i—1
. ,jja"' ,xn+2)
+ Z ]+1 Z (_1)v+1f(x17”' ,xu_l,[l'u,[I'i,xj]],$u+1,"' )
1<i<j<n42 u<v;1<u<i—1,v=1
xi—la‘ri.hxi-i-la o 7£.j7 e ,I’n+2)
+ Z ]+1 Z (_1)U+1f(xla"' ,xufla[xu,xv],xlkkly'” )
1<i<j<n+2 u<v;1<u<i—1,1<v<j
[CEZ,CE]], ,jv,... ,jja"' ,xn+2)
+ Z ]+1 Z (_1)vf(xl7 7xu—17[xuaxv]7xu+17"' ,[.%'i,.’l?j],"' )
1<i<j<n42 u<v;1<u<i—1,5<v
.@]’ 7.@1)’... 7xn+2)... 7.@].’... 7.@1)’... 7xn+2)
+ Z ]+1 Z (_1)v+1f(x17'“ axifla[[xiaxj]axv]axith"' ’jva"' )
1<i<j<n+2 u<v; u=1,v<J
Zj, CEn+2)
+ Z ]+1 Z (_1)vf(xl7 7xi—17[[xi7xj]7xv]7xi+17”' 7'@]'7"' 7'%1)7
1<i<j<n+2 u<v; u=t,j<v
,.’En+2)
+ Z J+1Z U+1f xla"' >[xiaxj]a"' ,l'ufl,[$u,l’v],$u+1,"' a"%va
1<i<j<n+2 i<u<v<g
. a“%ja"' ,l’n+2)
+ Z ]+1Z 3]'1, o 7[xiaxj]7"' 7xu—17[xU7xU]7xu+17”' 7‘@_77"' )
1<i<j<n+2 <u<j<v
'@va T 7xN+2)
+ Z J+1Z xlv"' a[xlvxj]v y L5 axufla[xua$v]a$u+1a"' )

1<i<j<n+2 j<u<v

j;’ln e 7xN+2)'
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Notice that each term in the 1st sum on the right-hand side of the above expression
appears in the 9th sum with the opposite sign. Similarly the 3rd sum and the 4th sum on
the right-hand side of the above expression appear in the 8th and 7th sum respectively

with opposite sign. Thus by cancelling out these terms we get

X = Z (_1)]+1 Z (_1)v+1f(x17”' s Ly—1, [I’u, [xvaxj]Lxu—I—lf" 7xi—17£.v7

1<i<j<n+2 u<v;1<u<i—1,v=1
Ly4+1y " 7§’.j7'” 7xn+2)
+ Z j+1 Z (_1)v+1f(x1,"' axufly[[xu,xj],xv],xlkkly”' aj:v,"' ;
1<i<j<n+2 u<v; u=1%,9<J
j], ,xn+2)
1 N
+ Z ]+ Z (_1)1].]0(1.17 7xu—17[[xU7xj]7xU]7xu+17”' ,I'j,"' )
1<i<j<n+2 u<v; u=1t,J<v
‘ri.v7 e 7'%'714'2)'

If we interchange j and v in the 3rd sum of the right-hand side of the above expression
of X, then using the identity [z, |2y, 2;]] — [Tu, To], 2] + [T, 5], ©0] = 0 for x4, 2y, 25 €
L; 1 <u,v,7<n+2weget X =0. ]

Proposition 1.3.4. Let L be a Leibniz algebra over K and M be a representation of
the Leibniz algebra L. Then (CL*(L; M),0) is a cochain complex.

Proof. Tt is enough to show that §"*! o d"f = 0 for f € CL"(L; M) and n > 0. Let
x1,++ ,Zny2 € L, then by the definition of 6" in (C3J]) we get,

n+1 n
6 06 f(xla'r2a"' ,xn+2)
n—+2
n ~
=[z1,0" f(x2, "+, Tny2)] + E TR TR A )N 7]
J+15n . ] g -
+ ,Il,“‘ ’xlfla[xzax]]ax%f»l,”' yLj—1,Lgs Lj41," " axn+2)'
1<z<]<n+2

(1.3.2)

Now the first term on the right-hand side of (L32) can be expanded by substituting

the expression of 6" f(zg, - ,xnt2) as follows.
[xla 5nf(x27 o 7xn+2)]
n—+2
:[561,[$2,f($3,"' $n+2 +Z xla ($2,--- ,ii,--- ,$n+2),$i]] (133)

+ [.%'17 Z (_1)].]0('%'27 7xi—17[xiaxj]7xi+17“' 7'@]'7"' 7xn+2)]-
2<i<g<n+4-2
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Similarly, the second term on the right-hand side of (L32) can be expressed as

n+2
YW f (@ B Taga), @]
=2
n+2
_Z .%'1, .%'2,"' 7i.i7"' ,xn+2)],f£i]
n+2
+Z YO (DM[f (@1, R B Tnga), T, @)
2<u<s
n+2
+Z Z u_l[[f(xla"' aj:i,"' ajju,"' ,$n+2),$u],$i]
[
n+2
+Z Z 1)U+1[f(x1’.__ 7xu—17[xU7xU]7”' 7£.U7"' 7£.i7"' ,$n+2),$i]
u<v<i
n+2
+Z Z 1)U[f(xla ,xufla[xu,xv],xlkkly'” aj:ia"' ,‘Iiva"' ,$n+2),$i]
u<t<v
n—+2
+Z Z 1)1)[']1'(.%.1’ 7'2'1'7"' 7mu—17[xuax’u]7xu+17"' 7'@1)7"' 7xn+2)7xi]-
<u<v
(1.3.4)
Also the third term on the right-hand side of (L3Z) can be expressed as
Z (17" f (@1, @i, [T, T i1y T 15 By Tj1, s Tpg2)
1<i<j<n+2
= Z (=176 ([, 5], w9, i1, 85, g1, 5 Tng2)
i=1, 2<j<n+2
+ Z DI f (@1, @i, [T, 5], i1y - 5 Tj1, 84y Tj1, o Tng2)
2<i<i<n+2
n+2
_Z Z’l x]] f($2,$3,"',fj,"' a$n+2)]
+ Z ]+1 xla (an 5, T, [xiaxj]axﬂ»la T >i'ja T >xn+2)]
2<i<i<n+2
+ Z ]+1Z xlv"' ajuv"' axifla[xivxj]v'” ajja"'axn+2);$u]
1<i<j<n+2 2<u<i—1
+ Z (_1)i+j+1[f(x17"' 7xi—17[xi7xj]7xi+17“' 73?]'7"' 7xn+2)7[xi7xj]]
2<i<j<n+2

+ Z (_1)]+1 Z (_1)u[f(x17 ,.’132‘_1,[3]'7;,[13]‘],"' 73?1“'” 73?]'7"' 7xn+2)7xu]

1<i<j<n+2 i<u<j
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+ Z (_1)j+1 Z(_l)u_l[f(xh ,xi_l,[xi,fl'j],"' 7£.j7"' 7£U7"' amn+2)7xu]

1<i<j<n+2 j<u<n+2
+X.
(1.3.5)

By the above Lemma [[33 we get X = 0. Notice that since M is a representation of
the Leibniz algebra L, if we use the identity

[x’ [y’ ZH - [[x,y]a Z] + [[xa Z]’y] =0,
whenever one of the variable is from M and the others from L, we get the following.

Ist term of (L3Z2) + 1st term of (L3 (for i = 2) + 1st term of (L3 (for j = 2)
— 0. Similarly,

2nd term of (C32) + 1st term of (L3 (for ¢ > 2) 4 1st term of (C3A) (for j > 2)
=0,

and 2nd term of (C34)) + 3rd term of (L34) + 4th term of (L3E) = 0.

On the other hand any element in 3rd term of (L32)) appears with opposite sign in the
2nd term of ((L33), so they cancel out. Similarly any element in 4th term, 5th term
or 6th term of (C34]) appears with opposite sign in the expression obtained from 3rd
term, 5th term or 6th term of (LC3H).

Now the result will follow from this observation, if we substitute all the three terms

on the right-hand side of (L32) from (L33)-(C30). O

Definition 1.3.5. Let ZL"(L; M) = ker(6") and BL™(L; M) = im (6" ') be submod-
ules of CL™(L; M) consisting of cocycles and coboundaries respectively. The cohomology

of the Leibniz algebra L with coefficients in the representation M is defined by

HLM(L; M) = H™(CL*(L; M)) = %

When M = L with the action given by the bracket in L, we denote the cohomology
by HL*(L; L).

A graded module V is a K-module together with a family {V;};ez of submodules of
V, such that V = @, Vi. The elements in V; are called homogeneous of degree 1.

Definition 1.3.6. A graded Lie algebra £ is a graded module £ = {L;}icz together with
a linear map of degree zero, |[—,—] : £ £ — £, x @y — [z,y] satisfying

(i), y] = —(=1)" W[y, 2]
(i) (= 1)z, [y, 2] + (), 2, 2] + (=12, [, 9] = 0
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for x,y,z € £, where |x| denotes the degree of x.
A differential graded Lie algebra is a graded Lie algebra equipped with a differential
d satisfying
dlz,y] = [dz,y] + (—1)!*/[z, dy].

Definition 1.3.7. Let S, be the symmetric group of n symbols. Recall that a per-
mutation o € Spiq is called a (p,q)-shuffle, if o(1) < o(2) < --- < o(p), and,
op+1) <olp+2) < - < olp+q). We denote the set of all (p,q)-shuffles in
Sp+q by Sh(p, q).

For a € CLP*Y(L; L) and 8 € CLIYY(L; L), define a o B € CLPTITY(L; L) by

aoB(z1,. ., Tprgr1)
p+1

= Z(_l)q(kil){ Z Sgn(a)a(xl, sy TE—1, B(xka Lo(k4+1)s -+ axo(k:Jrq))a
k=1 c€Sh(g, p—k+1)

To(ktqt1)s - - > Lolpra+1))}-

Then the direct sum CL*(L; L) = @p CLP(L; L) equipped with the bracket [—, —]
defined by,

[, 8] = a0 B+ (~1)PT 30 (1.3.6)
for « € CLPYY(L;L) and B € CLYTY(L; L), is a graded Lie algebra ( [Bal97]). The

grading being reduced by one from the usual grading. Moreover the coboundary can be

expressed by the Lie bracket in the graded Lie algebra as follows.

Lemma 1.3.8. Suppose o € CLPTY(L; L), then éa = —|a, o), where pg is the 2-
cochain given by the Leibniz bracket in L.

Proof. Here éa € CLPT2(L;L). Let Z1,...,Tp+2 € L. Then from the definition of
coboundary we have,

Sz, ..., Tpy2)
p+2 '
= po(z1, (22, ..., Tpta)) + Z(—l)]ﬂo(a(ﬁﬂl, i1, 85, T, - Tpt2), Ty)
j=2
+ Z (—1)j+1a(.%'17...,.%'k,l,/l/o(xk,l'j),l'k+1,...,xj_l,i'j,xj+1,...,.73p+2).
1<k<j<p+2

(1.3.7)
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Now [a, po] = a o pg + (=1)PT1pg o o, where

o po(T1,. .., Tpra)
pHl

= Z(_l)(kil) Z sgn(a)a(xl, sy Tk—1, ,U'O(xlm xo(kJrl))? Lo(k+2)s - - 7x0(p+2))
k=1 oceSh(1l,p—k+1)

= Z (_1)]04(1.17 v 7xk717ﬂ0(wk7xj)7xk+l7 e 7xj—17£.jaxj+17 e 7xp+2)-
1<k<j<p+2
And
o © (1, ... Tpia)

= Z Sg?’L(O'),U,Q(Oé(l'l, Lo(2)s - - 7'730'(1)-‘,-1))7 xa(p+2)) + (_1)pM0(x17 04(1?7 v 7xp+2))
oeSh(p,1)

= Z(—l)p+2_jﬂo(a($1, L5y Tjm1, 85, Tjg 1, - - -, Tpt2), Tj)
2<;<p+2

+ (=1)Puo(z1, a(ze, ..., 2py2)).

Therefore

[Oé, //JO](xl’ s >xp+2)

={aopug+ (—1)P M ugoal(er,...,vps2)

= Z (_1)ja(x1, s axk—laMO(xkaxj)axk‘-i-la s >xjflajj)xj+la s axp+2)
1<k<j<p+2
+ Y (=1 oy, ma, w1, By i1, Tpa), ) — po(@1, (T2, Tpy2)).
2<j<p+2
Thus 0o = — [av, po). O

Now let us consider the linear map d : CL*(L; L) — CL*(L; L) defined by da =
(=1D)llsa for @ € CL*(L; L). Then we have

Lemma 1.3.9. The differential d of the graded Lie algebra CL*(L; L) is a derivation
of degree 1. In otherwords, d|a, 5] = [da, 8] + (=1 [a, dB] for a, 8 € CL*(L; L).

Proof. Let a € CLPTY(L; L) and 3 € CLY"Y(L; L) then from definition we get

dla, ]
= (=1)P* 4, G
= — (=" [, ], o]
= [po, [, B]] (by antisymmetry of the graded Lie bracket [—, —])
= — (=), [up, o] — (=1)*“[a, [3, o] (by the Jacobi identity of [, ~])
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([0, o, 8] + (=1)P[a, (—1)76]
(=P e, pol, B] + (1) [, dP]
(= 1)p506,5] (=1)P[ev, dB]

= [da, B] + (—=1)P[a, df3].

Thus we get the following result.

Proposition 1.3.10. The graded module CL*(L; L) = @p CLP(L; L) equipped with the
bracket defined by

[, B] = ao B+ (1)’ Boa forac CLPTNL;L) and § € CLYT(L; L)

and the differential map d by da = (—1)‘04504 for a € CL*(L; L) is a differential graded
Lie algebra.

From the Lemma [[39] it follows that if «, 3 are cocycles then [«, 3] is also a cocycle,
and the cohomology class of [, 5] depends only on the class of « and 3. Thus the bracket

[—, —] at the cochain level induces
[—,—]: HLP*Y(L; L) @ HL9YY(L; L) — HLPTY(L: L)

and we get the following corollary.

Corollary 1.3.11. The graded module HL*(L; L) is a graded Lie algebra.

1.4 Cohomology for Leibniz algebra homomorphisms

The purpose of this last section is to define cohomology modules associated to a Leibniz
algebra homomorphism [MM]. We shall need them later in this thesis.

Let L and M be Leibniz algebras over K. For simplicity, we use the same notation
[—, —] for the brackets of L and M.

Definition 1.4.1. A K-linear map f : L — M is said to be a Leibniz algebra ho-
momorphism if it preserves the brackets. In other words, f([z,y]) = [f(z), f(y)] for
x,y € L.

Let f: L — M be a Leibniz algebra homomorphism. We consider M as a repre-
sentation of L via f as follows.

The actions
[—,—]:LxM —M, [-,—] : M xL— M
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of L on M are respectively

[l7m] = [f(l)vm]7 [mvl] = [mvf(l)]

forl € Land m € M.
Define a cochain complex (CL*(f; f),d) as follows. Set CLY(f; f) := 0. For n > 1,

the module of n-cochains is
CL™(f; f) := CL™(L;L) x CL™(M; M) x CL"'(L; M).
The coboundary d” : CL™(f; f) — CL""!(f; f) is defined by the formula
d™(u, v;w) == (6"u, 6"v; fu —vf — 6" tw) for (u,v;w) € CL™(f; f). (1.4.1)

Here 0™ on the right-hand side are the coboundaries of the complexes defining Leibniz
cohomology groups with appropriate coefficients. The map vf : L®" — M is the
linear map defined by vf(x1, -+ ,z,) = v(f(x1), -+, f(xn)), and fu is the composition
of maps.

By the Proposition [Z3.4), we have 6"t od"u = 6"l od"v = §"06" 1w = 0. Moreover
M(fu) = fo"u; (8"v)f = é"(vf) for w € CL™(L;L), v € CL™(M;M), and w €
CL" (L; M). So

fo"u — (8"0)f — 8" (fu—vf — 6" tw) = f6"u — (™) f — 6" fu + 6"vf = 0.

Thus d"*! o d™(u,v;w) = 0 for (u,v,w) € CL™(f; f),n > 0. Hence we obtain
Proposition 1.4.2. (CL*(f; f),d) is a cochain complex. O

The corresponding cohomology modules are denoted by

HL™(f; f) == H"((CL*(f; ), d))-

Next proposition relates HL*(f; f) to HL*(L; L), HL*(M; M), and HL*(L; M).

Proposition 1.4.3. If HL"(L; L) =0 = HL"(M; M), and HL" '(L; M) = 0, then so
is HL'(f: f).

Proof. Let (u,v;w) represents a cocycle in HL™(f;f). Since HL™(L;L) = 0 =
HL"(M; M), we get u = 6" tu; and v = 6" 1oy for some (n — 1)-cochains u; €
CL" YL;L) and v; € CL" Y(M; M). Now d"(u,v;w) =0, so fu—vf — " tw=0=
(f6"tuy — 6" o f — 6" tw) = 6" (fuy — v f —w). Therefore (fuy —vif —w) is a co-
cycle in CL" " Y(L; M). Since HL" *(L; M) = 0, we get an element w; € CL""2(L; M)
such that 6" 2wy = (fu; —v1 f — w).
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Thus (ug,v1;wy) € CL™Y(f; f) and d"'(uj,vi;w1) = (u,v;w). Consequently
every cocycle is a coboundary in CL™(f; f). O

We shall need a version of the above cohomology with coefficients which is described
as follows.

Let My be a finite dimensional K-module. For n > 1 we have the isomorphisms:

CL™(L; My ® L) = My® CL™"(L; L), CL™(M; My ® M) = My ® CL"(M; M) and
CL"(L; My ® M) = My® CL”(L; M)

Set Mo ® CL°(f; f) =0 and for n > 1

Mo ® CL™(f; f) := CL™(L; Mo ® L) x CL™(M; My ® M) x CL"Y(L; My ® M).

Define d" : My ®@ CL"(f; f) — Mo ® CL" L(f; f) by

d"(my @u, ma @v;m3@w) = (M1 @™ u, ma @6™v; (M1 @ fu—ma@vf —mz®d™ w) )

for (m1 ® u,mo ® vimg @ w) € My @ CL™(f; f).

Now

A" o d™(my @ u,mo @ v;Mm3 @ W)
= d""Hmy @ 6" u,me @ 6™; (M1 @ fu—my @vf —mz @ 6" Tw) )
(0,0; m1 ® f(0"u) —mg ® (0"v)f —my1 @™ (fu) + ma ® 0" (vf) ) (1.4.2)
= (0,0;0).

Thus (Mo ® CL*(f; f),d) is a cochain complex. We shall denote the corresponding nth
cohomology module by My @ HL™(f; f).
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Chapter 2

Harrison cohomology and related

results

2.1 Introduction

In this chapter we recall some results about Harrison cohomology of a commutative
algebra and its relation to extensions of the algebra. These results will be used subse-
quently. The basic references for this chapter are [Hoc45lHar62,[Bar68]. We first recall
the definition of the Harrison complex of a commutative algebra A and the Harrison
cohomology with coefficients in an A-module M. Next, we define extension of a com-
mutative algebra A by an A-module M, describe its relation to Harrison cohomology of

A. We also recall few basic properties that will be used later in this thesis.

2.2 Harrison complex of a commutative algebra

Definition 2.2.1. By a K-algebra we mean an associative ring A, which is also a

K-module satisfying the conditions
k(zy) = (kx)y = x(ky), for k € K and z,y € A.

If the underlying ring is commutative then A is called a commutative algebra.

A local K-algebra is the one having a unique maximal ideal or equivalently if the set

of all the nonunits in A forms a maximal ideal.

Definition 2.2.2. Let A be a K-algebra, a bimodule M over A or, an A-bimodule is a
K-module equipped with two actions (left and right) of A

AxM —M and M x A — M

19
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such that (am)a’ = a(ma’) for a,a’ € A and m € M.
The actions of A and K on M are compatible, that is (Aa)m = A am) = a(Am)
for N € K, a € Aand m € M. When A has the identity 1 we always assume that

Im=ml=m formeM.

Given a bimodule M over A, the Hochschild complex of A with coefficients in M is

defined as follows.
Set Cp(A, M) =M @ A®" ;n > 0 where A" = A®---® A (n-copies). Let

§: Cp(A, M) —> C_y1(A, M)

be the K-linear map given by

n—1
d(m,ai,az,...,a,) = (may,as,...,a,) + Z(—l)l(m,al, ey @ity ey )
i=1 (2.2.1)
+ (=D)"(apm,a1,...,an-1).

Then 62 = 0 and the complex (C.(A4, M), ) is called the Hochschild complex of A with
coefficients in the A-bimodule M. When M = A, where the actions are given by algebra
operation in A we denote the complex Cy (A4, A) by C.(A).

Let A be a commutative K-algebra with 1. The Harrison complex of A induced from
the Hochschild complex is defined as follows.

Consider Cp,(A) = A ® A®" where A operates on the first factor. If we denote the
element (ag, a1, - ,a,) € Cp(A) by ag(a,--- ,a,) and write 1(ay,--- ,a,) simply by
(a1,--- ,ap), then the boundary

0:Ch(A) — Ch_1(A)

is the A-linear map such that
n—1
dai,ag,...,an) =ai(az,...,an) + Z(—l)l(al, ey QO] e Op)
i=1 (2.2.2)

+ (=D "ap(a1, ..., an—1).

For ayi,as,...,a, € Aand 0 < p < n, set

Sp(al? az,... 70%) = Z Sgn(o-)(aa(l) y A (2)s - - >ao(n)) € Cn(A)?
o€Sh(p,n—p)

where Sh(p, q) is the set all (p, g)-shuffles as defined in Chapter 1. Let Sh,(A) be the

A-submodule of C),(A) generated by the chains sp(ai,az,...,ay) for a,asz,...,a, €
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Aand 0 <p<n.

It follows from Proposition 2.2 in [Bar68] that 6(Shy,(A)) C Shy,—1(A). Thus we get
a chain complex Ch(A) = {Ch,(A),é} where Ch,(A) = C,(A)/Sh,(A). This is known
as the Harrision chain complex for the algebra A with trivial coefficients.

Let M be a left A-module. Since A is commutative, M can be considered as an
A-bimodule. Consider the following complexes by taking — @ M and Hom(—; M)

respectively.

5n+2®ld

29 O (A) @ M S

Chn(A) @ M 22 Chy_1(A) @ M -+

" Hom(Chy—1(A); M) Y2 Hom(Cha(A); M) 2 Hom(Chy1 (A); M) - -
Definition 2.2.3. For an A-module M we set,

HHam (A M) = H,(Ch(A) @ M) and

H%arr(A; M) - Hn(Hom(Ch(A)7 M))
These are respectively the Harrision homology and cohomology modules of A with
coefficients in M.
In our discussion we mainly require first and second Harrison cohomologies. In low

dimension the Harrison cochain complex is given by

0 — Hom(A; M) 2, Hom(SQA M) 2, Hom(A®3 M), where
§Mp(a,b) = arp(b) —(ab) + bp(a) for o € Hom(A; M)
8%¢(a,b,c) = ag(b,c) — d(ab, c) + ¢(a,bc) — co(a,b)

for ¢ € Hom(S*A; M) and a,b,c € A.

(2.2.3)

Note that Cha(A) is by definition S?A, the symmetric product module of A.

Proposition 2.2.4. Let A be a commutative algebra with a maximal ideal M and M

be an A-module with MM = 0. Then we have the canonical isomorphisms,
HHarr (A M) = HI9T (A K) @ M and

H]Z}IGTT(A; M) g HEGT‘T(A; K) ® M'
Proof. Define

i HIO (4, K) @ M — HI"(4; M) by p(d @ m) = @ m].

If ¢ = 6y 410 for some (n+1)-chain o € Chy41(A) then [c®@m] = [dpr10®@m] = 0. So u
is well-defined. Suppose p([c]@m) = [c® m] where c®m is a boundary in Ch,(A)® M,
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then ¢ ® m = 1100 ® m for some (n + 1)-chain o € Chy41(A). Thus [¢] ® m = 0 in
HHom(A;K) @ M. So, u is injective. From definition it is clear that u is surjective.
Next define

F : Hfyopr (4 M) — Hom(H'"" (4;K); M) by F([¢])([]) = é(c).

G : Hfyopy (A K) @ M — Hom(H,"" (A;K); M) by G([¢] @ a)(¢) = ¢(c)a.

Here F(¢ + 6" 1)) ([c]) = é(c) + " ta(c) = ¢(c) + a(d,c) = ¢(c), so F is well-
defined. From definition of F', it follows that if ¢(c) = 0 for all cycles ¢ € Ch,,(A) then
¢ is a coboundary. Thus F' is injective.

To show that F is surjective, let us consider p € Hom(HM"(A;K); M). Then p

(A; M) such that F(f) = p.

Similarly G is an isomorphism. O

can be extended to a linear map f in H oo

The next proposition gives an alternative description of the first Harrison cohomol-

ogy module of A with coefficients in M.

Definition 2.2.5. Let A be a K-algebra and M an A-module. By a derivation D :

A — M (over K) we mean a K-linear map satisfying
D(ab) = aD(b) + bD(a).

Proposition 2.2.6. The module of derivations from A to M is Hy, . (A; M).

arr(

Proof. By definition, H,, . (A; M) = ]%E’T(fl) = ker(o1).

Suppose ¥ € ker(6') then 6'¢(a,b) =0 for a,b € A.

So ¥(a,b) = ay(b) + byp(a). Thus ¢ : A — M is a derivation. On the other hand
a derivation f : A — M is in ker(6'). Therefore H};,  (A; M) is the module of

Harr

derivations A — M. O

Let A be a local algebra with the maximal ideal 901, and € : A — K be the canonical
augmentation. Thus ¢ is the algebra homomorphism with (1) = 1 and ker(e) = 9. We
consider K as an A-module, where the action of A on K, is given by the augmentation
e. Explicitly, ak = e(a)k, for a € A and k € K.

Corollary 2.2.7. The dual module of (%) corresponds bijectively to H}{ A; K).

G,T‘T(

Proof. Let ¢ € HY
P A— K

A;K). By Proposition ZZZ0, ¢ can be viewed as a derivation

arr(
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Suppose a € M? so that a = Zz}j m;m; for some m;, m; € M where 7, j varies over
a finite set. Then

v(a) = ¢ | D mim;
i
=Y ¢(mimy)
i
= D (map(my) +mjib(my))

i,J
= Z(e(mz)ﬂ)(m]) + e(mj)(m;))
= 0.

(2.2.4)

Moreover (1) = 0, so ¢ vanishes on K. Thus ¢ : 9t — K is a linear map vanishing
on M2. In other words 1 € (M/M?)’.

Conversely let ¢ € (M/9M?). Then ¢ defines a linear map ¢ : A — K such that
d(IM?) =0 and ¢(1) = 0. For aj,as € A=K DM let a; = ky +my and az = ks + mo.

Now

P(araz) = ¢((kr + mq) (ke + mo))

b (k1ks + kimo + kamy + mims)

P(k1ka) + k1g(m2) + kag(m1) + p(mimo)
k1p(mz) + kad(ma)

ki +ma)d (ke +ma) + (ky + mo)d(ky +ma)

arp(az) + asp(ay).

So ¢ is a derivation. Therefore by Proposition EZZH, ¢ can be viewed as an element in
Hyory (A K). O

We will see later that first Harrison cohomology module has another significant

interpretation as the group of automorphisms of extensions of A by M.

2.3 Extension of algebras and relation to Harrison coho-
mology
In this section we first recall the definition of extension of a commutative algebra A by

an A-module M. Then we recall some important characterizations of first and second

Harrison cohomology modules of A in terms of extension of A by M.
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Definition 2.3.1. An extension of a commutative algebra A with maximal ideal 9
by an A-module M satisfying MM = 0 is a commutative algebra B with an algebra
homomorphism p : B — A, a K-linear map i : M — B such that the following is an

exact sequence of K-modules
0—M-"B-24—0.

Moreover, if the image i(M), which is an ideal in B is denoted by N, then B-module

structure on N is induced by the A-module structure on M as follows.
nb = i(m)b = i(mp(b)).

In particular, N is an ideal in B with N2 = 0. For if n,n’ € N with n = i(m) and
n’ = i(m’) where m,m’ € M then nn’ = ni(m') = i(p(n)m’) = 0, because p(n) = 0.
Therefore N2 = 0.

Given A and M as above we can always construct an extension by considering
B=A® M and i(m) = (0,m), p(a,m) = a. The algebra multiplication in B is given
by (a1, m1)(az,m2) = (ajaz, aymg + agmy) for a;,as € A and my,my € M. This

extension is called the trivial extension of A by M.

Definition 2.3.2. Two extensions B and B’ of A by M are said to be isomorphic if

there is a K-algebra isomorphism f: B — B’ such that the diagram below commutes.

0 M — B P, 4 0
— H
0 M Py 0

Next result shows that the isomorphism classes of extension of A by M determine

and are determined by the second Harrison cohomology of A with coefficients in M.

Proposition 2.3.3. Elements of H%

classes of extensions

arr(As M) corresponds bijectively to isomorphism

0—M-—B—A—0
of the algebra A by A-module M.

Proof. Let f be a representative class of [f] € H%,,.,.(A; M). So f : A®?2 — M is a

symmetric linear map. Consider B = A & M and define

(a1, m1)(az, ma) = (a1a2, arms + agmy + f(a1,a2))

for (a1, m1), (ag, me) € B. Then 0 — M . B -2, A —0is an extension of A by
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M, where i(m) = (0,m) and p(a,m) = a for m € M and a € A.
Suppose we take another representative f’ of the class [f] € H%,,..(A; M) and get an
extension B’ as above. Now f — f' = §lg for some g € Hom(A; M). Then ¢ : B — B’
defined by ¢(a,m) = (a,m + g(a)) gives an isomorphism of the extension B and B’.
Thus [f] € H%

Conversely, we consider an extension

arr (A3 M) corresponds to an isomorphism class of extension of A by M.

0—>ML>BL>A—>O

of A by M. Fix a section q : A — B of the projection p.
Define

a:B—A®M by a) = (pb),i t(b—qop(b))).
From definition « is a K-linear map. Now if a(b) = (0,0) then p(b) = 0 and i~*(b) = 0,
hence b = 0. So « is an injective map. Suppose (a,m) € A® M, take b = q(a) + i(m),
then p(b) = a and b — g o p(b) = q(a) +i(m) — q(a) = i(m). Therefore a(b) = a(q(a) +
i(m)) = (a,m), showing « is an onto map. Thus « is a K-module isomorphism. Let
(a,m), denotes the inverse image ¢(a) + i(m) of (a,m) € A & M under the above
isomorphism a. Define ¢, : A®2 — M by

Pg(ar,a2) =i~ ((a1,0)(az,0)g — (a1a2,0)) =i~ '(q(a1)g(as) — q(araz))  (2.3.1)

for aj,a2 € A. Now for by = (a1,m1), and by = (a2, m2), in B we can describe the

element b1by as follows.

b1b2

= (alaml)Q(a2’m2)q
= (g(a1) +i(m1))(q(az) + i(m2))
= q(a1)q(az) + q(ar)i(mz) +i(m1)q(az) + i(m1)i(mz)

= q(a1)q(az) +i(p o q(ar)mz) +i(p o g(az)my) (by the B-module structure on i(M))
= q(a1a2) + {q(a1)q(az) — q(araz)} +i(arma + agmy)
= q(araz) + i(ayma + agmy + ¢4(ay, az))

= (aras , ayma + agm + ¢g4lay, as))y.

Thus the multiplication in B can be written as,
(a1,m1)q(az, ma)g = (araz , ayma + agmy + ¢g(ay, az))q-

Suppose (a1,m1)gq, (a2, m2)q and (a3, m3), € B, using the associativity of the algebra



Chapter 2: Harrison cohomology and related results 26

multiplication in B, we get,

a1¢q(az, az) — ¢q(araz, az) + ¢4(a1, azas) — as.gq(ar, az) =0.

or, 82¢,(a1, az, ag) = 0. So ¢, € Ch*(A; M) = Hom(S?A; M) is a cocycle (cf. ([ZZ3)).
Let ¢ : A — B be another section of p. Replacing g by ¢’ in the above argument,
will give rise to a cocycle ¢y € Hom(S*A; M). Set 8 =1i"'o (¢ —q) € Hom(A; M).
Then ¢y — g = 0 13, Thus for a given extension of A by M there is a unique cohomology
class [¢g] in HZ,,..(A; M).
Let

0—>ML>B/L/>A—>O

be another extension of A by M which is isomorphic to the extension B we took before.
Let ¢ : B — B’ be an isomorphism of extensions B and B’. Thus the following

diagram commutes.

B -2 . A 0

Then ¢ = ¢poq: A — B’ is a section for p’. We have ¢y : S2A — M defined by
g (ar,a2) = (') (¢ (a1)q (a2) — ¢/ (ara2)) (cf. @)

Thus ¢y (a1,a2) = (I')7'(¢'(a1)d'(a2) — ¢'(amra)) = i'(q(ar)g(az) — glaraz)) =
¢q(ar,az). Consequently ¢, and ¢, represents the same class in Hzy,,,.(A; M).

O

We shall later need the following specific extension of a finite dimensional commu-
tative algebra A.

Observe that the action of A on K has an induced action on the module H%_ . (A; K)’
as follows. For a € H%,,.(A;K) and a € A we get, ao € H,, (4;K) given by
aa([y)) = e(@)a([u]) where [y] € HE,, (4K).

Consider a linear map

arr

1 Hy (A K) — Hom(S?A; K) = (S24) (2.3.2)

where p([¢]) is a cocycle representing the class [¢]. We define this map by fixing its

values on a basis of HZ_(A;K) and then extend it linearly. Take the dual map of s,

Harr

ba:S?A— Hy (A K). (2.3.3)
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So, a(a1,az2)([a]) = p([a])(a1, az) for a1,a2 € A and [a] € H%,,.(4;K). Here

arr(

52¢A(a7 b, C)([a]) = {a(ﬁA(b7 C) - ¢A(ab7 C) + (bA(av bc) - C¢A(a7 b)}([a])
= ap([a])(b,c) — u([a])(ab, c) + u([a])(a, be) — cu([e])(a, b)
= 0 (cf. Z2Z3)).
Thus ¢4 is a cocycle and represent a cohomology class in the second Harrison coho-

(A;K)', where the action of A on H% (A;K)

mology of A with coefficients in H? Harr
is induced by the action of A on K. By Proposition Z33 the cohomology class of ¢4

Harr
determines an isomorphism class of extension represented by
0 — H%, (A K)Y — C — A—0, (2.3.4)

where the algebra structure on C = A @ HIQJ (A;K) is determined by ¢4 as in the
proof of Proposition This extension does not depend, up to isomorphism, on the

arr

choice of i and possesses the following partial universal property.

Proposition 2.3.4. Let M be an A-module with MM = 0. Then the above extension

admits a unique homomorphism into an arbitrary extension
0—M-"ZBPa—0

of A.

Proof. Let [f] € H%,,.(A; M) = H%_ (A;K)® M be the cohomology class determined

by the isomorphism class of the extension

arr(

0—M-"BPo a0

This [f] € H%,,,(A;K) ® M defines a linear map

a'f"f‘(
f:H%, (A;K) — M (see Proposition BZIlin Chapter 3).

Using this we get the following homomorphism of extensions.

0 — H%, (AK) —— Cc —— A 0
1
0—— M LB -2 0
The resulting homomorphism is unique as it is determined by [f]. O

The following proposition shows that an extension B of a commutative local algebra
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A with identity by an A-module M is also local and has identity.

Proposition 2.3.5. Let
0—M-"B2A-—0

be an extension of a commutative local algebra A with 1 by an A-module M satisfying
MM = 0, where M is the maximal ideal in A. Then B is local and has multiplicative
identity.

Proof. Let
0—M-B-4-—0

be an extension of a commutative local algebra A by an A-module M satisfying 9MM =
0, where 901 is the maximal ideal in A. Then by Proposition Z33 this extension
determines a cocycle ¢, representing a cohomology class [¢4] € H?{ arr (A K) where ¢ is
a section of the projection p: B — A.

Now 62¢4(1,1,a) = 0, so ¢,(1,a) — ¢q(1,a) + ¢4(1,a) — ag,(1,1) = 0. Therefore
bq(1,a) = agy(1,1). Consider the element (1,—¢4(1,1)), € B. Then for any arbitrary

element (a,m), € B we have

(1, =¢q(1,1))g(a,m)q = (a,m — agy(1,1) + ¢¢(1,a))q = (a,m),.

So, (1,—¢4(1,1)), is the identity in B.

Observe that if we set ¢/ = ¢, — 6*4p, where ¢» € Hom(A; M) is arbitrary map
satisfying ¥(1) = ¢q(1,1), then the cocycle ¢’ satisfies ¢'(1,a) = 0 for a € A and
@' = ¢y for the section ¢’ = ¢— (i01)) (see the proof of Proposition ZZ3). With respect
to the identification B = A @ M defined by ¢/, the multiplicative identity in B can be
expressed as (1,0)y.

Next, we show that B is local.

Suppose 9 is the maximal ideal in A. Consider the ideal p~'(9M) C B. Let N be
an ideal of B containing p~!(90). If possible, suppose there is an element z € M such
that p(x) is not in M. But M is the unique maximal ideal in the local algebra A so
p(z) must be a unit in A, that is p(x)a; = 1, for some a; € A. Since p is onto there is
a y € B such that p(y) = ay. This implies p(xy) = p(x)p(y) = 1. Thus b = zy is an
element in M such that p(b) = 1. Now choose a section ¢ : A — B of p with ¢(1) = b.
Then according to our earlier notations b = (1,0),. Now for any element (a,m), € B

we can write
(a’ m)q = (1’ O)Q(a’ m — ¢CI(1’ a))(I‘

Since b = (1,0), € 9 and N is an ideal of B we conclude that (a,m), € N.
Thus our assumption implies that 9 = B. Hence p~!(9) is maximal in B. U
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Let us denote the maximal ideal of B by 9Mip.
Corollary 2.3.6. For i(M) = N, we have MpN = 0.

Proof. Take an element x from 9p and an element n € N such that n = i(m), m € M.
Then zi(m) = i(p(x)m) = i(e(p(x))m) = 0, where ¢ is the augmentation in A (cf.
Definition Z3T]). O

Let A denote the group of all automorphisms of any given extension.

Proposition 2.3.7. There is a one-to-one correspondence between the group A of au-

tomorphisms of any given extension,
00— M N B2 A4—0

of A and H},,. (A; M).

arr

Proof. Suppose f : B — B is a K-algebra isomorphism giving an automorphism of the
given extension,
0—M-">BA—0.

Thus we get the following commutative diagram.

0 M —.B_-*.,4 0
I |
0 M —.B_—-*,4 0

Now fix a section ¢ : A — B of p. As in the proof of Proposition EZ33, we have a
linear isomorphism o : B = A@® M and let (a, m), denote the inverse image g(a) +i(m)
of (a,m) under this isomorphism.

Suppose f((a,m)q) = (f1((a,m)q), f2((a,m)q))q for (a,m)q € B, where fi, f; are
maps obtained from « o f by taking projection into first and second components. By

the above diagram we have po f = p and f oi = 4. These in turn give fi((a,m)q) = a

and f2((0,m),) = m respectively. Therefore for (a,m), € B, we get

f((a,m)q) = (f1((a,m)q), fo((a,m)q))q
¢+ (0,m)q) = (a, f2((a,m)q))q

q) T F((0,m)q) = (a, f2((a,m)q))q
or, (a, f2(a,0)q)q + (0,m)q = (a, f2((a,m)q))q
or, (a, f2((a,0)q) +m)q = (a, f2((a,m)q))q-
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So f2((a,m)q) = 9¥(a) + m where the map ¢ : A — M is given by ¢(a) = f2((a,0),).
Let ai,as € A. Then (a1,0)q, (a2,0), € B. Since f is a K-algebra homomorphism, we

have,

f((a1, 0)q(az, 0)¢) = f((a1, 0)g)f((az, 0)q)
or, f((araz, ¢¢(a1, az))q) = (a1, fa(a1, 0)q))qlaz, fa((az, 0)q))q
or, (a1a2, ¢4(a1, az2) + (a1, az))q = (a1, ¥(ar))q(az, Y(az)), (2.3.5)
or, (a1az, dq(a1, az) + (a1, az))g = (a1a2, ar1y(az) + azyp(ar) + ¢4(ar, a2))q
or, P(araz) = a1(az) + azyp(ar)
or, 0L4h(ay,as) = 0.

Therefore 1) represents a cohomology class in H}y, . (A; M).

Conversely, suppose ¢ : A — M is a linear map with 6'4 = 0. So §'¢(1,1) = 0, which
gives ¥(1) = 0 (cf. ZZ3)).

Define, f : B — B by f((a,m),) = (a,m+1(a)),. Then f(0,1), = (0,1+1(1)), =
(0,1)4 and f is an automorphism of the given extension.

The assignment f +— [1)] is the required bijection. O
We shall use the following results ( [Har62]) in Chapter 5.

Proposition 2.3.8. Let A = K[zy,x9, - ,x,] be polynomial algebra, and let I be the
ideal of polynomials without constant terms. If an ideal I of A is contained in >, then
Hip oy (A/I;K) = (1/MI).

Proposition 2.3.9. If A, and I are as in Proposition [Z.38, then the extension
0 — H%,.(A/I;K) — C — A/ —0
as given in ([2-37) for A/I is
0 — I/MI - A/MI 25 AT — 0,
where i and p are induced by the inclusions I — A and MI — 1.

To simplify notations, we henceforth omit superscripts for coboundaries, it should

be clear from the context which coboundary is being used.



Chapter 3

Deformations of Leibniz algebras
and homomorphisms of Leibniz

algebras

3.1 Introduction

In this chapter we introduce the notion of deformations of Leibniz algebras and Leib-
niz algebra homomorphisms over a commutative local algebra base with multiplicative
identity, and introduce infinitesimal deformation and other basic definitions related to
deformations of a Leibniz algebra. We give a construction of an infinitesimal deforma-
tion 11 of a Leibniz algebra L for which dim(HL?(L; L)) is finite. Next, we show that
infinitesimal deformation n; is universal among the infinitesimal deformations of L with
finite dimensional local algebra base. We also prove a necessary and sufficient criterion
for equivalence of two infinitesimal deformations of a Leibniz algebra. At the end we
introduce the notion of infinitesimal deformations of Leibniz algebra homomorphisms
and obtain a necessary and sufficient condition for equivalence of two infinitesimal de-
formations in this case. From now on we assume that K is a field of characteristic

Zero.

3.2 Deformations

Let L be a Leibniz algebra and A be a commutative local algebra with identity 1
over K. Let 9 be the maximal ideal of A and ¢ : A — A/9M = K be the canonical
augmentation. Note that ¢ is an algebra homomorphism with £(1) = 1 and ker(e) = 9.
By (A,9) we will mean that A is a commutative local algebra with 1 and 90t is the

maximal ideal in A.

31
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Definition 3.2.1. A deformation \ of L with base (A,9M), or simply with base A, is an
A-Leibniz algebra structure on the tensor product A @ L with the bracket [—,—]\ such
that

(e®id): AQL—-K®L

is an A-Leibniz algebra homomorphism, where the A-Leibniz algebra structure on K ®
L = L is given via €, that is, a(k ®1) = e(a)k ® .

Remark 3.2.2. More generally, one has the notion of deformation with a commuta-
tive algebra base (not necessarily local) by fixing an augmentation. In this case, if the
base is also local, then any deformation over such base is called a local deformation.
Throughout, we will be concerned with deformations over local algebra base and we omit

the adjective local and simply use the term deformation.

Definition 3.2.3. A deformation A over a commutative local algebra base A is called
infinitesimal (of first order) if M? = 0. In general it is called a kth order deformation
when MFH1 = 0.

Observe that if A is a deformation as in Definition BTl then for l1,l; € L and
a,b € A we have
[a ®@11,b® o]y = ab[l ® 11,1 ® lo]y,

by A- linearity of the bracket [—, —]x. Thus to define a deformation A of the Leibniz
algebra L, it is enough to specify the brackets [1 ® l1,1 ® lo]y for l1,ls € L. Moreover,
since (e ®1id): A® L — K® L is an A-Leibniz algebra homomorphism,

(E & id)([l ®R1,1® 12])\) = [ll,lg] = (e’:‘ ® id)(l & [l1,l2])
which implies
[1 ®R1I0,1® lg])\ —-1® [ll,lg] € ker(a ® Zd)

Hence we can write

LRh1®L=1a,kLl+Y ¢y,
J
where 3 ¢; ® y; is a finite sum with ¢; € ker(e) = M and y; € L.

Next we define the notion of deformation of a homomorphism of Leibniz algebras.

Definition 3.2.4. Let f : L — M be a Leibniz algebra homomorphism from a Leibniz
algebra L to a Leibniz algebra M. A deformation ® = (A, p; fau) of f with base (A, 9N)
(or simply with base A) consists of deformations X\ and p (with base A) of the Leibniz
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algebras L and M respectively along with an A-Leibniz algebra homomorphism
hu:(AQ LX) — (A® M, p)

such that the following diagram commutes.

Aol . Aem

€®idl €®idl

KoL~L — M~Ke M

Often we shall use the simpler notation fy, to denote a deformation ® = (A, i1; fu)
of f. By A-linearity, f), is determined by its value fy,(1®1) € A® M for I € L. The

commutativity of the above diagram implies

f)\u(1®l):1®f(l)+2mj®xj for m; € MM and x; € M.
J

Remark 3.2.5. If the algebra A is a finite dimensional K-module and {m;}1<i<, is a

basis of M then a deformation A of L can be written as

L®h,1®L)=1® [,k + > m®l for i1} € L.
=1

Similarly, a deformation fy, of a Leibniz algebra homomorphism f : L — M can be

written as

fu@h) =1® f(l)) + > m; @x; forly and z; € M.
j=1

Definition 3.2.6. Suppose A1 and Ao are two deformations of a Leibniz algebra L with

base A. We call them equivalent if there exists a Leibniz algebra isomorphism
¢ (A ® L, [_7 _]Al) - (A ® L, [_’ _]A2)

such that (e ® id) o ¢ = (¢ ®id).

We write A\ = Ao if A1 is equivalent to Ay. The equivalence class of a deformation
A will be denoted by < A\ >.
Equivalence of two deformations (X, p; fa,) and (N, p; farw) of a Leibniz algebra

homomorphism f : L — M with base A is defined as follows.

Definition 3.2.7. Any two deformations (A, w; fau) and (N, p's fyw) of f: L — M
with base A are said to be equivalent, written as (N, p; fau) = (N, 15 fa), if there exist
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equivalences

P (ARL, [—,—]n) — (A® L, [—,~]x)
and W,y (A M,[—,—])) — (A® M,[—,—]u)
such that W, 0 fa, = fyw o Py,

The equivalence class of a deformation (A, u; fy,) will be denoted by < A, i3 f, >.
We denote by A\g the Leibniz algebra structure on A ® L given by

[1 ®l1,1 ®l2])\0 =1® [ll,lQ] for Iy,1ly € L.

This is a deformation of L with base A. Any deformation of L with base A which is
equivalent to Ag is called a trivial deformation. Similarly for a Leibniz algebra homo-

morphism f : L — M, we have a deformation (Ao, po; fagu,) of f where
Prop(1®l) =1 f(l) e A M forl € L,

and any deformation of f equivalent to (Ao, f10; fagpu,) is said to be a trivial deformation

of f.

3.3 Push-out of a deformation

Push-out is a method to produce new deformation from a given one by changing base
by a given homomorphism from the given base to a new base.

Suppose A is a given deformation of a Leibniz algebra L with commutative local
algebra base with 1 and augmentation € : A — K. Let A’ be another commutative local
algebra with identity. Denote the augmentation of A’ by . Suppose ¢ : A — A’ is an
algebra homomorphism with ¢(1) = 1 so that (¢' o ¢) = e. Let ker(¢) = M’ be the

maximal ideal in A’.

Definition 3.3.1. The push-out ¢.)\ is a deformation of L with base (A',9M) with

bracket [—, =]y, x as giwen below. Consider A" as an A-module by a’a = d’¢(a) so that
ARL=(A®44)@L=A®4(A® L).
Then the deformation ¢\ is given by the bracket
(a1 @4 (a1 ® 1), a5 @4 (a2 @ l9)]g,x = ajay @4 [a1 @ 11, a2 @ 2]

where af,ah, € A', ay,a9 € A and ly,ls € L.



35 3.3 Push-out of a deformation

Remark 3.3.2. If the bracket [—, —]y is given by

L@h,1®L =1,k + Y ¢ @y; forc; €M and y; € L, (3.3.1)
J
then the bracket [—, —|p,x can be written as
[1®l1,1®l2]¢*)\ =1® [ll,lz] +Z¢(Cj) & Yj- (3.3.2)

J
Proposition 3.3.3. With ¢ as above, (¢ ®id) : (A ® L,\) — (A’ ® L, N\) is an

A-Leibniz algebra homomorphism.

Proof. For a®l € A® L, we have (¢p®id)(a®l) = ¢p(a) @1 = ap(1) @1 = a(p®1id)(1R1).
So ¢p®id is an A-linear map. We now show that (¢®id) preserves the brackets. Suppose
1®10,1®1, € AR L, then

(¢ @id)(1® 1), (¢ @id)(1 @ I2)]g.x
= [¢p(1) ® I1, (1) @ l2]g, 2
=1®4(1®04h),1®a(1@12)]p.x
=1®a[1®1,1® Iy

=104 {1 [, L]+ ¢ ®y;} (by B3I)

J

=1@a (1@ b)+3 1@ (@ y)) (333
= o(1) @ [, 2] + 3 ¢ch) ®yj
= (p@id){1 @ [11,1]2] +ch ®y;}
= (¢pRid[1®,1® l2]>\.]
]

Remark 3.3.4. Observe that if A is a deformation of a Leibniz algebra L with base A
then the push-out e, A via € is the original Leibniz bracket in L. To see this, note that
the Leibniz bracket e, X on (K® L) = K®4 (A® L) where the A-module structure on K
s given via €, is obtained as follows.

For k1 ®a (a1 ®@11), k2 ®4 (a2 ®12) e K L= L,

(k1 @4 (a1 @11), ko @4 (a2 @ 12)]e,
= k1ka ®4 [a1 ® I1, a2 ® l2]x
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= kiko ®4 a1a2[1 ® 11,1 ® lo]y

= kiky @aaray | 1@ [l 1]+ Y ¢ @y; |, ¢ € Myy; € L, ( by @I )
J

= ki1ko @4 (a1a2 ® [ll,lg]) + k1ko @4 aras ch X Yj
J

= k1ka ®4 (@102 ® [l1,12]) + Z kiko ®4 (a1a2¢; @ y;)
J

= kikse(ara2) ® [l1,l2] + Z kikae(arazcy) @ y;
J

= kikoe(ar)e(az) @ [, o] + Z kikae(ar)e(az)e(cs) ® y;

= [kie(a1)ly, kae(az)la] (since e(c;) =0, for ¢; € ker(e) = IM)
= [k1 @4 (a1 @ 11), k2 ®4 (a2 ® I2)].

Therefore e, A is the given bracket in L.

Proposition 3.3.5. Push-out is preserved under composition, in other words, if ¢ :
A— A and : A — A" are homomorphisms of commutative local algebras with 1

and ¢(1) =1, ¥(1) =1 and X is a given deformation of L with base A then (1o @)\ =
Be(BaN),

Proof. ¢ : A — A" and ¢ : A’ — A”. So we have two brackets [—, —](pos),x and
[— —Jy.(g.2) o0 A” ® L. We need to show that they are equal.

As before, we write A”® L = A” @4 (A® L), where A” is considered as an A-module
via 1o ¢. Let af ®4 (a1 ®11) and af @4 (a2 @ l2) be any two elements in A” @ L. Then
by definition of push-out

[af ®4 (a1 ® 11), a5 @4 (a2 @ 12)](yog).
= ajad" ®4 a1 @11, a2 @ lo]
= (afay)(araz) ®4 1@ 11,1 ® o]y
= afayP(d(a1))P((az)) ®a [1® 11,1 ® lo]y
= (af @ p(a1))(ah ©ar Pla2)) @a [1 @ 11,1 @ o]
(writing A” = A” ® o+ A’, an element a”1(a’) corresponds to a” ®: a’)
= (ajay¢(ar1)p(az)) @a [1 @11, 1@ lo]y
= ajay @ (Par)p(az) @a[1® 11,1 @ la]y)
= ajay ®x (1 ®4a1a2(1 ® 11,1 ®1]y)
= afas @4 @a(1®a a1 @l1,a2 ® o))
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"

=ajay ®4 Qa4 (1®aa1 11,1 ®4 a2 @la]p,n) (1 on the right-hand side is 1 € A)
= [0 @4 (1 ®4 a1) @ 11),05 @ (1 ®4 a2) @ 12)]s, (6.3)

= [(a] @4 1) ®a (a1 @ 11), (a5 ®ar 1) D4 (a2 @ 12)]y, (p.)

= [a] ®a (a1 ® 1), a3 @4 (a2 @ l2)]y, (6. \)-

Note that under the isomorphism A” = A” ® 4 A’, an element a” corresponds to a” ® 4
1. O

Let ® = (A, p; fru) be a given deformation of a Leibniz algebra homomorphism
f: L — M with base A. Then the push-out of ® by ¢ : A — A’ is defined as follows.

Definition 3.3.6. The push-out ¢.D = (¢« A, uft; s fru) is a deformation of f with
base A" where ¢\ and ¢4 are as in Definition [TZ1, and

Gifou : (A" ® L, ¢)) — (A" @ M, pupa)
is giwen by ¢ufru(a] ®a (a1 @ 1)) =a) ®a frular @ L)
foral,ay, € A'yar,a2 € A and ly,ls € L.

Proposition 3.3.7. Suppose A\ and X' are two deformations of the Leibniz algebra L
with base A. If X and N are equivalent deformations of L with base A then ¢\ and

O\ are also equivalent.

Proof. Let U : (A® L,\) — (A ® L, ') be an isomorphism of the Leibniz algebras A
and ). Now consider the Leibniz algebras ¢4\ and ¢, )\ on

ARL=(A@1A)9L=A®4(Ax L),
which are given by
(a1’ ®4 (a1 @ 11),a5 ®4 (a2 @ l2)]p. A = ajab ®a (a1 ® 1, a2 ® o]y

and a1’ ®4 (a1 ®11),a5 ®4 (ag @ 12)]p. v = ajas @4 [a1 @ I, a2 @ lo]

where af,d, € A, a1,a2 € A and l,13 € L.
Define an A’-linear map U’ : (A’ ® L, p\) — (A’ @ L, $.\') by

U'ld @4 (a®1)) =d @4 U(a®1).
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Now

Ular’ @4 (a1 @ 1), a5 ®4 (a2 @ 1l2)]p.n = U'(alah ®4 [a1 @ 11, a2 @ lo]))
= ajay @4 U([a1 @ 11,a2 @ la]))
=aljah @4 [U(ar ®11),U(azs @ l2)]x
= la) ®aU(a1 @ l), a5 @4 Ulag @ l2)]g, v
= [U'(a1' ®a (a1 @ 1)), U' (a3 @4 (a2 @ 12))]p. v+

So U’ is a homomorphism of Leibniz algebra. It is clear that U’ is bijective since U is

bijective and

(' ®id)oU'(d ®a (a®1)) = id)(a' @4 Ula®1))

d)( R4 (p®id)oU(a®1))
"N op@id)oU(a®l)
a)(e®id)oU(a®1l)
(

(a
(
£'(a)(e ® zd)( ®1) (since (e ®id)oU = e ®id)
(
(

/

(¢
= (¢

/

3

/

€

a)e(a) ®

'(a)e

o ¢a) ®1
= (¢ ®@id)(d'¢p(a) ®1)
= (¢ @id)(a' ®a (a®1)).

Consequently, U’ is an equivalence of the Leibniz algebras ¢4\ and ¢, \. U

Proposition 3.3.8. Suppose ® = (A, p; fa,) and ©" = (N, i’ fvw) are two deforma-
tions of a Leibniz algebra homomorphisms f : L — M with base A then ¢,® and ¢, D’

are also equivalent.

Proof. Let U : (A® L,\) — (A® LX) and V : (A®@ M,u) — (A® M, ') gives
equivalences of © and D’.

So, U is an isomorphism of Leibniz algebras A and \’, V' is an isomorphism of Leibniz
algebras p and g such that Vo fy, = fywoU.

We now consider the push-out deformations ¢.® = (¢, dup; ds fr,) and ¢, D" =
(DN, Pupt/ i o) of f with base A’

Take U’ : (A'QL, g \) — (AR L, ¢, \') defined by U'(d' @4 (a®1)) = d'@4U(a®1)
and V' : (A @M, ¢pupp) — (A’ @ M, ¢.t) defined by V'(d' @4 (a®@x)) = d' @4 U(a® )
ford @4 (a®l) € A @4 (AR L)=A'®@Land d/ @4 (a®z) € A/ @4 (AM) =A@ M.

From Proposition B3 it follows that U’ and V', respectively give equivalences
oA = ¢\ and dup = ¢y, The homomorphisms ¢, fr, and ¢, fy, are given by
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bufru(d ®a(a®l)) =ad' @4 fru(a®1) and ¢x frw (' @4 (a®@1)) =a @4 fr(a®]l) for
a ®4(a®l) € A ® L. Then we get

Gufyw o U'(d @4 (a®1)) =ufrw(a’ ®aUla@1))
=a' ®a frw o U(a®1)
=a' @4V o frla®]l)
=V'(d @4 faula®1))
V0 G fald @4 (a 1),

Therefore it follows that ¢.D = (P, Pupt; Pu frn) and GD" = (PN, Gupt; ds fryr) are

equivalent deformations of f with base A’. O

Corollary 3.3.9. Push-out of a trivial deformation is trivial.

3.4 Construction of an infinitesimal deformation

In this section we construct a specific infinitesimal deformation of a Leibniz algebra L
with dim(HL?(L; L)) < oo, which turns out to be universal in the class of all infinites-
imal deformations of L.

Let L be a Leibniz algebra which satisfies the condition that the second cohomology
module HL?(L; L) is a finite dimensional module over K. This is true for example, if L
is a finite dimensional module over K. Thoughout this chapter, we denote HL?(L; L)
by H.

Consider the algebra C; = K & H' by setting (k1, h1)(ka, he) = (ki1ks, k1ha + kohy)
where H' is the dual module of H. Observe that the second summand is an ideal of C

with zero multiplication and we get the following trivial extension of K by H'.
0—H o 25K —0, i1(a) = (0,) and py(k, ) = k.

Fix a K-linear map
p:H— CL*(L; L) = Hom(L®? L)

which takes a cohomology class into a cocycle representing it. Such a linear map u can
be obtained by fixing its values on a basis of H and then extending it linearly. We need

the following isomorphism of K-modules.
Proposition 3.4.1. ' ® L =~ Hom(H ; L).

Proof. Let dim(H) = n. Suppose {h;}1<i<n is a basis of H and {g;}1<i<, is the dual
basis. Let £ = Y 1" jog; € H. Thenforl € L, (@1 =>"" ai(gi ®1) € H' ® L.
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Define a linear map F : H' ® L — Hom(H; L) by F(g; ® l) = ¢; € Hom(H; L) where
¢Z(hj) = 5ijl for 0 <4,5 <n. Then

FEel)=F <<Zai9i> ®l> =Y Flagi®l) =) aidi.
=1 =1 =1

Clearly F is linear and having kerF' = {0}. Now let ¢ € Hom(H; L) where ¢(h;) =
B; € L. Consider " | g; ® f; € H' ® L. Then

(Zgz®ﬁz> ZF%@@ Z‘Smﬂz— = ( )

This shows that > ;" | ¢; ® #; € H' ® L is the preimage of ¢ € Hom(H; L), so F is onto.

Consequently F'is an isomorphism. O

By Proposition B:Z1], we have
CioLl=KoH)9L=(KeL)®(H ®L)=L& Hom(H;L).

We use the above identification to define a bilinear bracket [—, —] on C1 ® L as follows.
For (11, ¢1), (l2,¢2) € L& Hom(H ; L),

(s 1) (I2; @2)] = ([l l2), )

where the map ¢ : H — L is given by

Y(a) = p(a)(li,l2) + [p1(a),lo] + [l1, ¢2(a)] for a € H .

Proposition 3.4.2. The K-module C; ® L equipped with the bracket defined above is a

Leibniz algebra.

Proof. The bracket is clearly additive in each variable.
Let (lla ¢1), (l27 ¢2) €ELa® HO’I’I’L(H, L) with [(lla ¢1), (l25 ¢2)] = ([lly l2]7 rlzz)) So

Y(a) = p(a)(l1, 1) + [¢1(), la] + [I1, p2(a)] for a € H.

Now for a € C1,

al(lr, 1), (I2, 2)] = a([l, l2], )
= (all1, ls], a))
= (e(a)[l1, l2],e(a)y)
([e(a)l1, 1], e(a)y )
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= [(e(a)l1,e(a)¢r), (I2; P2)]
= [(al1,a¢1), (I2, 2)]
= [a(l1, ¢1), (2, 92)].

Similarly,

al(li, 1), (I2, 2)] = a([lh, l2], %)
ally,la], avh)
e(a)llr, l2],e(a)y)
[l1,e(a)lz], e(a)v)
(I1, 1), (e(a)l2, £(a)d2)]
(I, ¢1), (al2, as)]

(I, ¢1), alz, ¢2)).

= (
= (
(
[
[
[

This shows that the bracket [—, —| defined above on the module C; ® L is C-bilinear.
It remains to check the Leibniz relation. Let (11, ¢1), (l2, ¢2), (I3, ¢3) € L & Hom(H; L).
Suppose

(11, #1), (2, #2)] = ([l1, l2], 12),  [(l2, @2), (I3, ¢3)] = ([l2, I3], 23)
and [(I1, ¢1), (I3, ¢3)] = ([l1,13],¥13),

where

Y12(a) = p(a)(ly,le) + [¢1(), la] + [l1, p2()],
az(a) = p(a)(lz,13) + [p2(c), I3] +
and Yi13(a) = p(a)(l1,13) + [o1(a), I3] + [I1, P3(a)].

Therefore,

(I1,01), [(l2; ¢2), (I3, ¢3)]] = [[(l1, D1), (L2, B2)], (I3, @3)][[(la, 61), (I3, ¢3)], (I2, P2)]
(I1,01), ([l2, Is], 23)] — [([l1, L2), ¥12), (I3, #3)] + [([l1, 3], ¥13), (L2, #2)]

11, [l2, I3]), ¥1(e3)) — ([l 2] Us), Yaoys) + ([T, 3]s 2]y Yas)2)
(I, [l2, 18] — [[l1, l2], I3] + [[l1, I3], L2], W123) — 12y + Pa3)2)-

[
[
(
(
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Observe that

(V1(23) — Ya2)3 + Yasy2) (@)
= 1(23)(@) — Yaz)z(a) + Pasz)2)(@)
= p(a)(l1, [l2,13]) + [@1(e), [l2, I3]] + [l1, a3 (a)] — pla)([lh, l2], Is)

— [thi2(a), ls] = [[l1, lo], ¢3()] + p(@)([la, Is], I2) + [¥h1s(@), lo] + [[l1, 13], ¢2(ar)]
= dp(a)(ly,l2,13) (by (C3J) in Chapterl)

=0 (since p(a) is a cochain representing «, du(a) = 0).
Thus we have,

[(11, 1), [(I2, @2), (I3, ¢3)]] — [[(L1, 61), (l2, d2)], (I3, &3)] + [[(11, 1), (I3, #3)], (l2, P2)]
=0e(C;®L.

So

(1, ¢1), [(l2, @2), (I3, d3)]] = [[(11, ¢1), (L2, d2)); (s, 93)] = [[(1a; 61), (s, @3)], (I2, ¢2)]-
O

Since C is local with maximal ideal H' such that H'? = 0, we get an infinitesimal
deformation of L with base C; = K & H'.

Proposition 3.4.3. Up to an isomorphism, this deformation does not depend on the

choice of .

Proof. Let
p :H — CL*(L; L)

be another choice for . Then for a € H , the cochains u(a) and p'(«) in CL*(L; L)
represent the same cohomology class a. So pu(a) — p/(«) is a coboundary. Hence we can

define a K-linear map
v:H— CLYL; L)

on a basis {h; }1<i<p of H by v(h;) = 7; with 0v; = p(h;) — i/ (hi). Clearly, p— p/ = 6.
Using the identification C; ® L 2 L @ Hom(H ; L), define

p:Cr®@L — C1®L by p((l,0) = (I,¥),

where ¢¥(a) = ¢(a) + v(a)(l), I € L and ¢ € Hom(H ;L). Then p is a Cj-linear
automorphism of Oy ® L with p=1(I,%) = (I, ¢) with ¢(a) = (o) —y(a)(l) for a € H.

It remains to show that p preserves the bracket.
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Let (l1,¢1), (l2, ¢2) € C1 ®@ L with p(l1, 1) = (I1,91) and p(l2, ¢2) = (l2,%2). Suppose
[(ls 1) (l2; @2)] = ([l1,12], ¢3) where ¢3(a) = p(a)(l1,12) + [¢1(a), l2] + [l1, d2(a)], and

(11, 91), (I2,¥2)] = ([l1,12],¥3) where ¥3(a) = p'(a)(l1,12) + [1(a), l2] + [l1, Pa2(a)].
Then

P3(a)

() (1, 12) + [1(@), b + (11, Y2 ()]

u(a)(lr,lz) — 0y(a)(ly, l2) + [¢1(a) + y(a)(lr), lo] + [l1, g2(a) + v() (12)]
p(a)(lsl2) — [l v(a)(l2)] = [v(@) (), o] + v(@)([l, l2]) + [¢1 (), Io]

+ [v(@) (), lo] + [¢1(r), la] + [l1, P2(@)] + [l1, () (I2)]

= p(a)(l1,l2) + [¢1(a), o] + [l1, p2(a)] + v(a) ([, l2])

= ¢3(a) +v(a)([lx, l2])-

Hence p([l1,l2], ¢3) = ([l1,l2], ¥3) = [(l, 91), (l2,902)] = [p(l1, 1), p(l2, P2)]-

Therefore, up to an isomorphism, the infinitesimal deformation obtained above is inde-

pendent of the choice of p. O
We shall denote this deformation of L by 7;.

Remark 3.4.4. Suppose {h;}i1<i<n is a basis of H and {g;}1<i<n is the dual basis.
Let p(h;) = p; € CL?(L;L). Under the identification C; ® L = L & Hom(H ;L),
an element (1,¢) € L & Hom(H ;L) corresponds to 1 @1+ Y. | gi ® ¢(h;). Then for
(l1,01), (la, ¢2) € L ® Hom(H; L) their bracket ([l1,ls],%) corresponds to

® [l1, 1] +Zgz (ni(ly, 1) + [¢1(ha), lo] + [, P2 (ha)])-

In particular, for ly,ls € L we have

n
1@h, 1@y, =1® [,k + Y g ®p(l,lb).
i=1

The main property of 7, is that it is universal in the class of infinitesimal deforma-
tions with a finite dimensional local algebra base (Theorem BZTT]).

Let C be the category of finite dimensional commutative local algebras with 1. Let
A be any infinitesimal deformation of L with base (4,9M) € C. Let {m;}i<i<, be a
basis of 9 and {&; }1<i<, be the corresponding dual basis. Any element £ € M can be
extended as an element £ € A" with £(1) = 0.

Define a cochain ay ¢ € CL?(L; L) by

()é)\7§(l1,l2) = (f ® Zd)([l ®Rl1,1® ZQ])\), for 1,15 € L. (341)
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Setting 1); = ay ¢, for 1 < i < r, the Leibniz bracket ([B3]) in terms of the basis of I

takes the form

M@l 1®b =101,k + Y m o
ijl (3.4.2)
=1®[l1,l2] + Zmz ®@ i (l1,1l2).

i=1
Proposition 3.4.5. With X\ as above, the cochain ay¢ € CL*(L; L) is a cocycle.

Proof. By definition of coboundary in ([L3T), if we take l1,ls,l3 € L then

daxe(ln,l2,l3) =[l, ane(le, I3)] + [ane(l1,13), o] — [ane(l1,12), 3] (3.43)
—ane([l1,12],13) + axe([l1, 3], l2) + axe(lt, [l2, 13]).
For1®1;,1®10,1x013€ AQ L,
(f &® Zd)([l X ll, [1 & lQ, 1® lg])\])\)

= (E@id)(1 @10, 1® [z, ls)]x + [1 @11, Y m; @ ;(la,13)]x) (using BZD))

j=1

axe(l1, [l2,13]) + Z(é ®id)[1 @ Iy, mj @1p;(la, 13)]a-
j=1

Observe that,

(f & Zd)[l (%9 ll, mj (%9 T/)j(ZQ, l3)]>\
- (§ X id)mj[l &® ll, 1 ® 1/1]'(12, lg)])\
= ({ @ id)m; (1 ® [l1, ¥ (l2,13)] + ka ® T/Jk(ll,ﬂ)j(l%ls)))

k=1
= (¢ ®id)(m; @ [l1,%(I2,13)]) (X being an infinitesimal deformation, M?* = 0)

= [I1, (€ ®@id)(m; ® i (lz,13))].

Therefore (§ ®id)([1 ® 11, [1 ® l2,1 ® l3]x]) can be written as

(€ @id)([1 @1, [1 @la, 1@ 13]A]n) (3.4.4)

T

= ane(ls [lo,Is]) + (I, (€ @id) Y my @ 4j(la, 1))
j=1
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by using [BZ22)

= ane(l, [l2,13]) + [, (€@ id) (1 @ 1o, 1 @ 3]\ — 1 @ [l2,13])]
= C)é)\{(ll, [lg,lg]) + [ll,()é)\7§(l2, lg)] (since 5(1) = 0)

Similarly
(E@id)([1® 1,1 @k]x,1®13]\) = axe([l, 2], 13) + [axe(l, 12), 3] (3.4.5)

and (£ ®@id)([1 @ 11,1 @ I35, 1 ® la]x) = axe([l1, 18], l2) + [ane(li,13),12].  (3.4.6)
Thus using BZ4)-BZH0) in BZ3) we get,
Saue (I, o, I3)
= {ll1, arello, 13)] + ane(ln, [I2, 1)) } = {[ane(l, b2), 3] + ane([la, 2], 13) }
+{lone(la,13), lo] + axe([l1,13], 12) }
= (@id)(1eh,1eh,1RBh\—[1®h,1® L] 1]
+[[1®1,1®I3]x1®I1]))

=0 (since [—, —] satisfies the Leibniz relation on A ® L).
U

Let A be a deformation of a Leibniz algebra L with base (4, M) € C. Let M’ be the
dual of 9T. We shall use the following standard identifications.

Lemma 3.4.6. Hom(L;M @ L) 2 M ® Hom(L; L) = Hom(M'; Hom(L; L))

Proof. Suppose {m;}1<i<, is a basis of M and {¢; }1<i<, is the corresponding dual basis
of M. An arbitrary element in M@ Hom(L; L) is of the form Zj a; ® f; where j varies
over a finite sum and a; € M, f; € Hom(L; L). Let aj =Y ;| ¢;ym; for ¢;; € K, then

Naef=Y (Z%W) @fi= mie| Y il | =) mi®d
J i =1 =1 i =1

where ¢; = >, ¢;jfj € Hom(L; L).
Define a K-linear map, G : M ® Hom(L; L) — Hom(L; MM @ L) by

G <Zm,~ ® ¢i> () => mi®¢;(l) forle L.
=1 =1
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Observe that G is an injective map. Suppose

G (Zm ®¢i) =0e Hom(L;M® L).

i=1

So we get, Y iy m; ® ¢;i(l) =0 for I € L. Equivalently,

(& ®id) (Z mi ® @(Z)) = 0.

=1

This gives ¢;(1) =0 for I € L. So, ¢; = 0.

Now let p2 be a linear map in Hom(L; M ® L) then we have ps(l) € M L for | € L.
Suppose p2(1) = Y_;_; m;®l; for some l; € L. We now define ¢; € Hom(L; L), 1 <i <r
by

¢i(l) = & @1id(p2(l)) for L € L.

Therefore

pa(l) = mi @ ¢i(l) =G (Z m; ® @) (1) for I € L.
=1 =1

So .
> G(mi @ ¢i) = pa.
=1

Therefore G is an onto map and consequently G is an isomorphism. The last isomor-

phism has already been proved in Proposition BTl and is given by
F:9M® Hom(L; L) — Hom("M'; Hom(L; L))
where
F(ml ® gbl)({]) = 5i,j¢i S Hom(L; L).
]

Proposition 3.4.7. Suppose A1 and Ao are infinitesimal deformations of a Leibniz
algebra L with base (A,9M) € C. Then A1 and Ay are equivalent if and only if ay, ¢ and

ay, ¢ Tepresent the same cohomology class for & € M.

Proof. Let dim(9M) = r. Suppose {m;}i<i<, is a basis of M and {&}1<i<, be the
corresponding dual basis of 9. For & € M, let ay ¢, € H be the cohomology class of the

cocycle ay ¢, for any infinitesimal deformation A of L with base A. The correspondences

§i — axg and § — ang
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for 1 <4 < r define homomorphisms
ay: M — CL*(L;L) with oy =0 and ay : 9 — H .

Let A1y and Ay be two equivalent deformations of the Leibniz algebra L with base A.

Then there exists an A-Leibniz algebra isomorphism
p: (AR L,[—,—]x) — (A®L,[—,—]»,) with (¢®id)op= (e ®1id).

Now AQL=KoMIL=(KL)&d(ML)=L® (M L). Thus any element of
A® L is of the form (1, ;_; m; ® l;) where [; € L for 1 <i < r. By A-linearity, p is
determined by the values p(1®1) for [ € L and hence p is of the form p = p; + pa where
p1: L — Land py: L — M ® L. The map p; must be the identity map ¢d: L — L
by the compatibility (¢ ® id) o p = (¢ ® id).

Under the isomorphisms in Lemma B4, we have

por— Y mi ® ;i — b, (3.4.7)
i=1

where ¢; = (§; ® id) o pp and b,(&;) = ¢;. Thus we may write,
p(1 D) =p1(1@ ) +p(1®) =101+ Y m@¢(l) forle L.
=1

The map p is a Leibniz algebra homomorphism if and only if
p([l ®0,1Q ZQ])\I) = [p(l X ll), p(l ® ZQ)])Q for 1,15 € L. (348)

Set ;* = Qg 1 <i<rfor k=1 and 2. Then

1®@10,1®@1y, =1 [l1, 2] + Zmi @ (1, 1o).
=1

Therefore

p(I®I1,1®1a]y)

=p(1® [l 1] + > mi ® ¥ (11, 12))
i=1

=p(1® [l1,1]) + me(l ® ;' (11, 12))
i=1
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@ 1, 1a] + Y mi @ ¢i[l, o)) + > ma{1 @ ¢ (I, 12) + > my @ ¢(vi' (14, 12)) }

i1 i1 =
® [l1,l2] + Zmi ® ¢i([l1,12]) + Zmi(l ® ;' (11, 1))
i1 i1

(‘as mym; =0, A being infinitesimal ).

Similarly
[p(1 @ 1), p(1 @ l2)]x,

ll,z2+2m,®w (I1,12) +Zmz (11, di(la)] +Zmz [6i(11), La]-

i=1 1=1 1=1
Thus BZF) holds if and only if,
[p(L @), p(1 @ 12)x, — p([L @1, 1 @ 12]y,) = 0.

Equivalently, Zm, (W7 (1, 12) = ¥i (11, 12)) + > m; @ 6¢i(l1, 12) = 0 holds
=1 =1

for 1,19 € L.
Equivalently, 1} (I1,ls) — 2(11,12) = d¢i(l1,12), for I1,15 € L holds.
Equivalently, ay, ¢ — an, e = 0¢; for 1 <@ <.

Thus A\; and Ay are equivalent if and only if ay, = ay,.

O

Suppose (A,9M) € C. The algebra A/9M? is obviously local with maximal ideal
9 /9?2 and having the additional property (9t/9M?)? = 0. Let py : A — A/9M? be the
obvious quotient map. If X is any deformation of L with base A then we get the induced
deformation py, A\ with base A/92, which is obviously infinitesimal. As a consequence,

ap,,  takes values in cocycles and hence we have a map
Apy t (M/OM?) — HL*(L; L) defined by ay, (&) = [ap,. ]

where [a, 1] denotes the cohomology class represented by oy, ».

Definition 3.4.8. The linear maps o, » and a,, » are respectively called the infinites-
imal and the differential of ©. The differential a,, » : (9/9M*) — HL*(L; L) is also
denoted by d\. The deformation ps, A\ may be called the infinitesimal part of \.

Corollary 3.4.9. Two infinitesimal deformations X\ and N with base (A,9M) € C are
equivalent if and only if they have the same differential.
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Corollary 3.4.10. Suppose X and N are two equivalent deformations of L with base A
then they have the same differential.

The main property of 77 is given by the following theorem.

Theorem 3.4.11. For any infinitesimal deformation X of a Leibniz algebra L with
a finite dimensional base (A,9M) € C there exists a unique homomorphism ¢ : C; =
(K@ H') — A such that X is equivalent to the push-out ¢.1;.

Proof. Let A be an infinitesimal deformation of a Leibniz algebra L with base (A,9M) €
C. Let M be the maximal ideal in A and dim(9M) = r. As before let {{}1<i<, be the
dual basis in 9 corresponding to a basis {m;}1<i<, of M. Let ay : M — CL?(L; L)
and ay : M’ — H be the homomorphisms as defined in Proposition B2

Now consider the map ¢ = (id ® a)’) : C; — K& 9 = A. By Proposition B-A1, it
is enough to show that oy, = o ax. Let {h;}i1<i<, be a basis of H and {g;}1<i<, be
the corresponding dual basis of H'. By Remarks B:32 and B4 we have

1®U,1® bl =18 [, )] +Z¢ 9i) ® pu(hi) (1, 12).
=1

Let a)' : H' — 9 be the-dual of a). Then n
ax'(g5) Z& ax'(g;))m; and ax(&) = g;(ax(&))h;
j=1

Thus
Qg (&)1, 1) = (LG ®@id)[1®11,1® 12]45*171

= (& ®id)(1® [l 2] +Z¢ 95) @ p(hy)(l1,12))

7j=1

= (& ®id) Za)\ (95) @ pu(hy) (11, 12)
Z@ ax'(g;)) ® p(hy)(l1, 1))

= Zg] ay 5@ ®M( )(l1’l2))

j=1
=p | > gi(aa(@)hy | (11, 1)
j=1

= poax(&)(ly,la).

Now we show that the above map ¢ is unique.
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Let ¢ : Cy = (K H') — A =K & M be an arbitrary K-module homomorphism
such that ¢ (1) =1 and (£ o ¢) is the canonical augmentation in Cf.

Suppose 1,1 is equivalent to the deformation A of L with base A. From Proposition
B4 it follows that ay,,, = ax. So, ay,n ¢ = arg for 1 <i <r. We know

10,1 ®)yny =10 [l ] + ZW%) ® p(hi)(ly,l2)
i—1

® [l1,lo] + Z{Z 5] (9i) m]} ® p(hi)(l1,12) (3.4.9)

11]1

® [l1,12] +Zm]®{Z§j hi)}(l1,12).

Thus it follows that

Ay (&) =D& (g0)u(hi) = p <Z fjw(gi))hi) :

i=1 i=1

Qapmy 5] [ <Z§] >] = Zﬁ;(?/)(g ))h
=1

the cohomology class represented by cvy,p, (§;)-
On the other hand,

D)= gilaa(§)hi =Y &(d)(g:)h
=1 1=1

Hence by comparing expression of oy, (&) and ax(&;) we get 1(g;) = a)(g;) for
1<y <n.
Therefore ) = ¢ = (id ® a)) : C1 — A. O
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3.5 Infinitesimal deformations of Leibniz algebra homo-

morphisms

Next we focus our attention to infinitesimal deformations of a Leibniz algebra homo-
morphism f : L — M with finite dimensional base. Let ® = (A, u; fy,) be any
deformation of f with base (A4,9M) € C. Let {m;}1<i<, be a basis of M and {& }1<i<,
be the corresponding dual basis. As before, we regard any £ € M’ as an element of A’
with £(1) = 0. Define a cochain fy, ¢ € CL'(L; M) by

e = (€ ®id)o fr,(1@1) for L € L. (3.5.1)

In particular, for the basis elements §;, 1 < j <r, if we set f; = fy,¢;, then by Remark
the deformation fy, of f can be written as

fuel) =1 fI)+Y m;® f;(1),l € L. (3.5.2)
j=1

Thus we have a linear map agp : M — CL2(f; f) given by
ap(§) = (are g faue) for & € M,

where ay ¢ € CL?(L; L), oy ¢ € CL*(M; M) are the cochains as defined in BZZ1).

Proposition 3.5.1. For any infinitesimal deformation ® = (X, p; fr,) of f with base
(A, 0M) € C, ap takes values in cocycles.

Proof. By the definition of the coboundary in CL*(f; f), we have to show that day ¢ =
0 = doye and fore — apef = dfaue for any & € M. Since A, p are infinitesimal
deformations of the Leibniz algebras L and M respectively, by Proposition BZ3A, dory ¢ =
0 = doy¢ for any & € M.

To complete the proof it is enough to show that

fui =l f =i = foxg — auef —0fug =0, 1<i<r.
We know that fy,: A® L — A® M is a Leibniz algebra homomorphism, that is,

hull@l, 1@ — [Huleh), (@), =0

for 1,15 € L.
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We have from [B2.2)
f)\u[l & ll, 1® 12])\

= (1@ [l ] + Zmi ® 93 (I, l2))

=1

=1® f([l1,12]) Zmz®fz 1, 1)) + fap <Zmz®¢z llal2)>

i=1 =1

=1 f([l1,12]) + Zmz ® fi([lh,l2]) + Zmz ® fi/}f‘(ll,lg) (since m? = 0).

i=1 i=1

Also,

(I @), fr,(1®12)],

=L@ f(h)+Y_ m® fi(h), 1@ fla) + Y my® fi(la)l,

j=1 j=1
=[1® f(l),1® f(la)] +ij 1@ f(11), 1 f;(l2)],
7j=1
+> mil @ fi(h), 1@ fla)lu+ Y mymi1 @ f,(h), 1@ fi(l2)l
j=1 i,j=1
=1 [f(h), f(l2)] +ij Y5 (f(lh), f(I2)) +Zmz f), f;(l2)]
7=1

ij [£i(I1), f(I2)] ( by using the fact that 9 = 0).

Thus it follows that

(& @id)(frl @, 1@k — A @h), A ®k)],)
= (farg —apef = e ) l2).

Since f), preserves the brackets we get (fong, — apue, f —0fape) =0for 1 <i <r.

Proposition 3.5.2. Let © = (A, u; fr,) and ©' = ()\',,u';f;\,u,) be two infinitesimal
deformations of a Leibniz algebra homomorphism f : L — M with base (A,IM) € C.

Then agn(€) and ag (§) represent the same cohomology class for &€ € M, if and only if

D and D' are equivalent deformations.

Proof. Suppose ® = (A, ; fr,) and @' = (N, 1/ f3, /) are two equivalent infinitesimal

deformations of f with base A. Let (ag, apug; foue) and (anv g, ap e fi, ) be the

associated 2-cocycles in CL2(f; f) determined by ® and ®’ respectively.
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Let ®yn : (A®LA) — (A®L,N)and ¥, : (AQ M, 1) — (A® M, i) be as in
Definition BZZ7 so that
\IIHH/ o f)\ﬂ = f;\/ﬂ/ o (13)\)\/. (353)

Since X and p are equivalent to X and ' respectively, it follows from the Proposi-
tion B.A1 that a)¢ and o, ¢ determine the same cohomology class as ay ¢ and o ¢
respectively. In fact, as shown in the proof of Proposition BT (cf. BZ)) the
A-Leibniz algebra isomorphisms ®,) and ¥, are determined by some linear maps
b : M — Hom(L; L) and by : M — Hom(M; M) respectively so that for £ € 9V
and [ € L,z € M we have,

i=1

Vy(lor)=1z+ Y m;@bu(&) (),
i=1

where a ¢ — ay e = 0be(§) and oy ¢ — e = dby (§). Now if we denote f; = fi,¢; and
f1= fawe, we get,

\IIHH/ e} f)\y,(l X l)

=W, (1@ F(1)+ > m;® f(1)

i
=1 f(I) + Zm @ by (&) (1) + Zm] @ £i(l) 1<Z< mjm; @ by (&)(f;(1)
Sij<r
=1® f(l) —{—ZmZ@b\p E(f Jrz:mz(z@fZ (since M2 = 0),
and [}, 0 ®ay (1@ 1)
= fupw(l@l+ Zr;mz ® ba (&)(1))
=1 f( +Zlm]®f +Zm@®fbc1>($z)()
+ > ﬂ;mj ® fi(ba(&)(1))

1<i,j<r

=1® f(l +Zml®f +Zml®fb¢(£l)() (since M? = 0).
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It follows from the above expressions that
(& ®id) o Wyyp o (1@ 1) = by (&) (f(1) + fi(l)

and (& ®id) o fy, 0 Pan(1®1) = foa (&) (1) + fi(1).
Hence by [B23]) we get

(é.z X id)(\puul o f)\u — fﬁ\’u’ o q))\A/)(l &® l) =0
or, by (&) f — fos(&) + (fi — fl)=0for 1 <i<r.

Thus it follows that (axe, apue; fe) — (v g au e fi) = d(ba(§),bw(£);0) for & € N
Conversely, suppose D = (A, i1; fy,) and ®" = (N, ¢/; fy ) are two infinitesimal defor-
mations of f with base A such that for £ € M, ap(§) and ag (§) represent the same
cohomology class.

Let (axg auefe) — (ave aw e f) = d(u,v;w) for some l-cochain (u,v;w) €
CL'(f; f)-

In particular we can take (a ¢, ¢ fe) — (v e, ¢ fé) = d(u,v;0) as d(u,v;w) =
d(u,v + dw;0). For & =& let (u;,v;;0) € CLY(f; f) be such that

(ong — v Qg — s fi — fi) = d(ug, v3;0) = (0w, 0vg; fug —vif)  (3.5.4)

for 1 <i<r.

Define A-linear maps
Dy (A & L,)\) — (A & L,)\,)

by Dav(l@l) =101+ m;@u(l),
=1
and \IIMM/ : (A@M,,U,) - (A®MHU/)
by \I/,u,u’(1®x) = 1®96+Zmi®vi(x), forle L and x € M.

i=1

Then Proposition BZ7 and (8224 together imply that ®,) and ¥,/ are equivalences
A= X and p =y respectively. To show that ® = (A, i; fa,) and @' = (X, 1; faw) are

equivalent deformations of f, it remains to check the relation

\IINN/ o) f)\u = f)\lul o) (bAA"

Suppose fy, and fy,s are given by
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hu®l) =18 f( +Zmz®fz
and fy(1®1) =1® f(l +Zm,®f ) for I € L.
For [ € L we get
Wy 0 o =V {1 ® f(I) + Zm ® fil)}

( ®f +Zmz®\yuu( ®f2(l))

=1

:1®f(l)+zmi®vz +Zmz{1®fz +ij ® vj (fi()}

=1 7=1

=1® f(l +Zm@®v@f +Zmz®fz (by using M = 0),

and f)\lul (¢] (b)\)\/(l X l)

=P {l@l+ Y mi@ui(l)}

i=1

=faw (L@ > mi ® frw (1@ ui(l))

=1

=1® f(I Jrzmz@)fZ +Zmz{1®f +Zmz®fj )}

=1® f( +Zml®f —i—ZmZ@fuZ 1) (by using M2 = 0).
Thus we have
(W 0 fa) A @ 1) = (a0 Pan)( Zmz (vif (1) + fi() = fi() — fui (D))
=Z;m @ {(fi = )W) = (Fui = vif)(D)}
From (B54) we get f; — f = fu; — vif.

So it follows that

W OfA;L f)\ﬂ oDy
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Suppose (A,9M) € C. Let ® = (A, i; fru) be a given deformation of a Leibniz algebra
homomorphism f : L — M with base A. As observed before, the algebra A/9M? is
local with maximal ideal 91/9M? and p2,D = (P2, A, P24t fpo. ) po.p) With base A/
is an infinitesimal deformation of f where ps : A — A/9M? is the quotient map. As a

consequence, «,,, o takes values in cocycles and hence we have a map
apy, 0 ¢ (M/M?) — HL?(f; f) defined by ap, o(&) = [ap,. o)

where [a, p] denotes the cohomology class represented by ), o.

Definition 3.5.3. The linear maps ap, o and ap, o are respectively called the infinites-
imal and the differential of ©. The deformation p2,® may be called the infinitesimal
part of ©.

Corollary 3.5.4. Two infinitesimal deformations ® and D' with base (A,9M) € C are

equivalent if and only if they have the same differential.

Corollary 3.5.5. Suppose © and D' are two equivalent deformations of f with base A
then they have the same differential.



Chapter 4

Extension of deformations

4.1 Introduction

The aim of this chapter is to address the question of extending a given deformation
D = (A, p; fau) of a Leibniz algebra homomorphism f : L — M with a given base to a
larger base. This extension problem can be described as follows. Suppose ® is a given

deformation of a Leibniz algebra homomorphism f : . — M with local base A. Let
0— My L> B2 A—0

be a given finite dimensional extension of A by M. The problem is to obtain condition
for existence of a deformation ® of f with base B which extends the given deformation,
that is, p,® = ©. We shall measure the possible obstructions that one might encounter
in the above extension process as certain 3-dimensional cohomology classes, vanishing
of which is a necessary and sufficient condition for an extension to exist. The set of
equivalence classes of possible extensions of a given deformation \ of L with base A,
admits certain natural actions and we shall investigate their relationship.

We first take up the case of extending deformations of Leibniz algebras and then con-
sider the relative problem of extending deformations of Leibniz algebra homomorphisms.
In the last section, we study formal deformations and obtain a necessary condition for
non-triviality of a formal deformation. The results of this chapter will also enable us to
obtain a sufficient criterion for existence of a formal deformation with a given differential

and infinitesimal part. We end with the definition of a versal deformation.

4.2 Extension of a deformation of Leibniz algebras

Let A be a deformation of a Leibniz algebra L with a finite dimensional local algebra

base (A,9M) € C. The primary aim of this section is to derive a necessary and sufficient

o7
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condition for the existence of a deformation of L with an algebra base B extending A.
The extension process naturally leads to an obstruction cochain which turns out to be
a cocycle. We use this cocycle to formulate the desired criterion.

We recall (Proposition EZ33]) that the set of equivalence classes of 1-dimensional
A;K). Consider [¢] € H%,, (4;K)

extensions of A corresponds bijectively to H arr(

arr(

and suppose
0—K-—>B-24-—0 (4.2.1)

is a representative of the class of 1- dimensional extensions of A, which corresponds to

[1]. Set the following K-linear maps.

I=(i®id): L2XK®L—BQ®LP=(p®id):BRL— ARQL
and F = (é®id): BL —K®L =1L,

where € = € o p, with ¢ is the augmentation of A. Fix a section ¢ : A — B of p in the

above extension, then

b— (p(b),i"' (b —gop(b))) (4.2.2)

is a K-module isomorphism B — (A @ K). Following the notations in Chapter 2, let
(a,k)q € B be the inverse of (a,k) € (A @ K) under the above isomorphism. Then the
algebra structure of B is determined by 1 and is given by

(al, kl)q(ag, kz)q = (a1a2 , 8(0,1)/{?2 + 8(0,2)]{1 + w(al,ag))q. (4.2.3)

Suppose dim(A) = r+ 1 and {m;}i<j<, is a basis of the maximal ideal M4 of A. Let
{&}1<j<r denote the dual basis of M’y. Then the Leibniz bracket [—, —]y on A® L can
be written as (cf. (BZ22))

[1 X ll, 1 ®12])\ =1® [ll,lz] + ij ®¢j(l1,lg) for ll,lg € L.
j=1

Here ¢; = aye, € CL?(L; L) is given by axg; (l1,12) = (§ @ id)([1 ® l1,1 @ lal]y) for
l1,lo € L and 1 < ¢ < r. By Proposition Z30 B is a local algebra with the maximal
ideal Mp = p~1(M4) and € is the augmentation of B. If n; = (m;,0),, for 1 <j <r
and n,41 = (0,1)4 then {n;}i1<j<,+1 is a basis of Mp.

Let 1,41 € CL?(L;L) = Hom(L®?; L) be an arbitrary element. We define a B-
bilinear operation {—, —}: (B® L)®? — B ® L by

r—+1
{1 @ l1,ba ® la} = biby @ [l1, 1] + Zb1b2nj ® Yj(l1,12) for b1 @ l1,ba ® 1y € B® L.
=1
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Lemma 4.2.1. The B-bilinear map {—,—} as defined above satisfies the following con-
ditions.

(i) P{l1,lo} = [P(l), P(I2)]x forli,lp € B®L

(i) {I(1),lh1} =I[l,E(ly)] forle L andl; € B® L.

(4.2.4)

Proof. (i) By linearity it is enough to prove the statement for elements i1 = b; ® l; and
lo =by® Iy in B® L. By definition of {—, —},

P{l, 5}
r+1

= P(blbg X [11, lz] + Z blbgnj & ¢j(l1,lg))
j=1

r+1

= p(bibo) @ [l1, o] + Y _ p(brbany) @ (11, 1)
j=1

r41
= p(b1)p(b2)(1 @ [l1, 2] + ip(nj) ®¥;(l1,12))
o (4.2.5)
= p(b)p(b2) (1 @ [In, lo] + Y m; @ ¢b;(1a,12))
j=1
( since p(nj) =m; for 1 < j <r and p(n,4+1) =0)
= p(b1)p(b2)[1 @ 11,1 ® la]x
= [p(b1) ® l1,p(b2) ® l2]x ( since [—, —]y is a A-bilinear operation on A ® L)
= [P(by ®11),P(b2 ® l2)]»

= [P(lh), P(I2)x-

Therefore P{l1,l2} = [P(l1), P(I2)]x for l1,lo € B® L.
(ii) Let € Land I} = by ® I} € B® L with by = (ay, k1)q. Then,

{I(1), 11}
={(i®id)(1®1),by @1}
={i(1)® 1,01 @11}
={n1 L @1}

r—+1

= 11 @ [LU]+ ) neabing @ 95(L L)
j=1

(4.2.6)
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= ((0,1)g(a1, k1)) ® [I, 1] + i((h Dg(a1,k1)q(m;,0)q @ ¥;(1,11)
j=1

+ ((a1,k1)q(0,1)7) @ ¢hpya (1, 1)
= (0,e(a1))g ® [I,1a]  (by [EZ3))
('since (0,1)¢(m;,0)q = (0,0)q, (0, 1)2 = (0,0)q and (0,1)¢(a1,k1)q = (0,£(a1))q )

=i(e(a1)) ® [I, 1]

(1) @ e(a)[l, 1]
—i(1) © 1, &byl
A&l Eb @h))
= Il E(Iy)).

=1

Since E is linear the statement in (i¢) holds. O

Thus the Leibniz algebra structure A on A® L can be lifted to a B-bilinear operation
{—,—=}: (B® L)®? — B ® L satisfying (EZ3). In addition to this if {—, —} satisfies
the Leibniz relation on B® L then it is indeed a deformation of L with base B extending
the deformation A with base A.

In our next step we show that a bilinear operation as obtained above gives rise to a
3-cochain, which we call an obstruction cochain.

Suppose {—,—} is a B-bilinear operation on B ® L satisfying the conditions in
.

Let us define a linear map ¢ : (B® L)®3 — B® L by

gb(ll,lg, l3) = {ll, {lg, lg}} - {{ll,lg},lg} + {{ll, l3}, l2} for l1,l9,l3 € B® L. (427)

It is clear that {—,—} satisfies the Leibniz relation if and only if ¢ = 0. Now from
property (%) in ({LZ4]) and the definition of ¢ it follows that

Po¢(ly,la,13)
= P({l1,{l2, l3}} — {{l1, Lo}, I3} + {{l, I3}, 12})
= [P(l1), [P(l2), P(I3)]a]x — [P(l), P(I2)]x, P(3)]x + [P(l1), P(I3)]x, P(l2)]A
= 0 (since P(l1), P(l3), P(ls) € A® L and [—, —], satisfy the Leibniz relation).
(4.2.8)

Therefore ¢ takes values in ker(P).
Observe that ¢(ly,l2,l3) = 0, whenever one of the arguments belongs to ker(E).
To see this, suppose [; = (b® 1) € ker(E) C B® L. Since ker(E) = ker(é) ® L =

pYker(e)) ® L = Mp ® L, we can write l; = Zgi%(nj ®U5) with l; € L, 1 <j <r+1.
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Then for l9,l3 € B® L, we get

r+1 r—+1
Bl1,l2,13) = ¢ | D _(n; @1)), o135 | = nid(l@1],la,13) = 0.
j=1 j=1

This is because ¢(1 ®17,12,13) € ker(P) = im(I) = im(i) ® L = i(K) ® L and for any
element ke Kand [ € L,

nj i(k) @1 =i(p(n;)k) ® 1 =i(mik) @1 =i(e(m;)k) @1 =0 for 1 <j<r
and n,1i(k) @1 =kn? @1 =0 (m; € M C A and mjk = £(m;)k).

The other two cases are similar. Thus ¢ defines a linear map

~'<%> —  ker(P),

P(b1 @1 +ker(E), by@ly+ker(E), b3l +ker(E)) = ¢(b1 @11, ba®ly, b3@13). Moreover,

the surjective map E B®L — K® L¥=L, defined by b ® | — £(b) ® [, induces an

isomorphism kg?%é) = L, where

BoL
ker(E) ’

a: L — a(l) =(1x1)+ ker(E).
p . . .

Also, ker(P) = im(I) = {(K)® L = K i(l) ® L = L where the isomorphism (3 is
given by B(kn,11 ®1) = kl with inverse 871(I) = n,41 ® I. Thus we get a linear map
¢: L® — L, such that ¢ = Bodoa®3. The cochains ¢ € CL*(L; L) and ¢ are related
by

M1 ®¢_5(l1,l2,l3) = gb(l ®11,1®1,1 ®l3) (429)
Proposition 4.2.2. The 3-cochain ¢ € CL3(L; L) is a cocycle.

Proof. Let l1,la,l3 € L. Then from the coboundary formula ([CL3) we get

0p(ly,1a,13,14)

= [, o(la, I3, 1a)] + [O(11, 13, 14), Ia] — [D(l1, 2, 1a), 1] + [p(l1, l2, 13), L]
(11, 02), 13, 1a) + @([ln, 3], 12, la) — D([11, 1a], 12, 13)

oIy

Nl 1], 1a) = (I, [l2, 1], I3) — @ (1, Lo, (I3, 1a]).

—¢
+
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Therefore,

B0 b(l1, 1,13, 14)
= 871l @(la, I3, 10)]) + 571 ([, 13, 1), 12)) —
+ 871 ([l 12, 13), 1 ]) 1( ([, 2], U3, 1a)) +
— B (d([l, 1], I, 13)) + B (o (L, [l2, 13, 1)) —
-8 1(¢(l1,12,[13,l4])).

Now,

57 ([, ¢(l2, 13, 1)])
= npy1 @ [I1, ¢(l2, 13, 14)]
= I([ly, ¢(l2,13,14)])  (i(1) = npg1)
= I([l1, E(1 @ ¢(l2,13,14))])
= {I(l1),1 @ ¢(lz,13,14)} (by (ii) of EZI))
= {n, 11 @1, 1@ ¢(lp, 13, 14) }
={1®11,n41 @ ¢(la,13,14)}
={1®h,¢(1®1,1®13,1®1l)} (by EZI))

B[, 12, 1), 13])
BN ([l 3], 12, 1s))
B o(l, [la, 1], 13))

= {1 ® ll’{l ®l2a{1 ® l3,1 ® l4}}} - {1 b2y lla{{l ® l2’1 b2y l3}’1 ®l4}}

+{1oh, {1®h, 10k}, 1®I3}}

Also,

BH([b(l, 13, 14), 1))
= N1 ® [9(l1, 13, 14), l2]
= I([¢(l1,13,14), E(Q @ 1)])  (i(1) = 1y41)
= {I(¢(l1,13,14)),1 @1z} (by (ii) of [EZI)
= {nr11 @ ¢(l1,13,14), 1 @ Ip}
={p(1® 0,1 ®I13,1®l4), 1@k} (by EZ])

={{1eoh,{1,1L4}} —{{1®h,1®I3},1®14}

+{1®h10L},113},1®1}

= {{1 ® ll’{l ®l3’1 ® l4}}’1 ®l2} - {{{1 ®l1’1 ® l3}a 1 ®l4}’1 b2y l2}

+{{l1eh,10hL},1013},1 01}

(4.2.10)

(4.2.11)

(4.2.12)
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Similarly,

B7H[d1, Iz, 14), 13)
= {1, {leh,1lel}} 1l —{{{l1®h,1x},1®14},1®I} (4.2.13)
+ {{{1 ®1,1® 14}, 1® lz}, 1® lg}

and

ﬁil([é(lla l27l3)7l4])
={1001,{1®h,123}}, 1L} - {{1x,12hL}1®I3},1®I} (4.2.14)
+{{1oh,1003},10k}, 101}

Again,

B ([, 1), I3, 1))
= 111 ® ¢([l, 12, I3, 1)
= (1@ |[l,l2],1®13,1® 1)
=o({1®1,1®h} - X,1013,1®14)
(since E{1®11,1®1s}) =1® [l1,l9] by (i) of [(EZZ), we may write

(4.2.15)
{1®0,1®1}=1®[l1,l2] + X, where X denotes an element in ker(FE))
= ¢({1 ®ll,1 ®12},1 ®l3,1 ®l4)
(since ¢(l1,1l2,13) = 0 for at least one I; € ker(FE) for i = 1,2 and 3)
={{lehleobh{lol 1okl -{{1eh,10k},1@I3},1@1}
+{{{1 ®1171 ®12}71®l4}71 ®l3}
Similarly we have,
B0 ([, 1), Lo, 1))
= npi1 ® o([l1,l2), 13,1
1@ 0l bl L) (4.2.16)
={1oh, 10k} {110k} - {{leh, 103}, 10k}, 1@}
+ {{{1 ® lla 1® l3}a 1® l4}’ 1® lg},
BTG, 1], 12, 13))
= i1 @ O([l1,12], 14,1
+18 @i, 2], b, s) (4.2.17)

= {({1@0,10L},{1®,103}} — {1,100 L4},1®1},1® I3}
+{{loh,10L},1013},1 0k},
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B b1, (12, 13], 1a))
= ny41 @ &I, [la, 1], 1)
=o(101,{1®1,1®13},1® 1) (4.2.18)
={1oh,{lehleol}1oL}} -—{{1e,{1®,1®I3}},1® 1L}
+ {1 ®h, 10 L}, {1®,1®I3}}.

BB, (2, 1], 13))
= ny41 @ &I, [la, 1], I3)
=0(1®1,{1R1,1014},1®13) (4.2.19)
={10h,{1®h,10L4},1x3}} —{1e,{1®1,1®14}}, 113}
+{1®h,10},{1®I,1®14}},

and

B, o, I3, 1))
= 141 @ ¢, I, I3, 1a])
=o(101,1@12,{1®13,1®14}) (4.2.20)
={100,{10hL, {103,110 L4}} -{{1®h, 10k}, {1®I3,1®4}}
+{{10h,{1®3,1®14}},1® 1}

Substituting each term on the right-hand side of ([EZ10) from EZTT) - [E2Z20) we get,

B o 8p(l1, 12,13, 14)
={1004,{1®0,{1013,10}}} — {1, {{l®i,1®I3},1®I14}}

+{100,{1®,10L}, 1} +{{1®h,{1®3,1®4}},1® I}
—{{{1e, 13}, 1L}, 1L +{{{1®h, 1L}, 1®I3}, 11}
{10, {1®,1L}}L,1B}+{{{1®h, 12}, 10 L}, 1®I3}
—{{{leh1e4}10bh1B}+ {1, {1®,1®I3}},1®14}
{111l +{{{1®h,123},101},1®14}
{1010k} {10,104} +{{1®h, 12k}, 1013}, 1® 14}
—{{{leh1ebh1ohLh1B+{{10,1013},{1®l,1®I14}}
—{{{leh1eL510bhl1L+{{{1®h,1®3},10 4L}, 1@}
—{{1el,1eLh {10k 1} +{{{1®h,1®4},10k}, 1213}
—{{{leh,1@4},10BL1R L+ {1®h,{{1®,1®(3},1®14}}
—{{10h,{1®0,1e3}}L 1L +{{1®h,10L},{1®l,1®I3}}
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{196, {1®h, 1@}, 1@} +{{1®h,{1®,1®l4}},1®Is}

_{{1®l171®l3}7{1®l271®l4}}_{1®l17{1®l27{1®l371®l4}}

+{{1®l171®12}7{1®l371®l4}}_{{1®lla{1®l371®l4}}71®l2}
= 0.

Thus S~ 0 6¢(l1,12,13,14) = 0 for Iy,ls,l3 and Iy € L. Since 37! is an isomorphism, it
follows that d¢ = 0. U

Let us show now that the cohomology class of ¢ is independent of the choice of the
lifting {—, —}.

Proposition 4.2.3. Suppose {—, —} and {—,—} are any two B-bilinear operations on
B ® L, satisfying (£.2-4). Let ¢ and ¢ be the corresponding cocycles determined by
{—, =} and {—,—} respectively. Then ¢ and ¢' represent the same cohomology class
in HL3(L; L).

Proof. Set p = {—,—} —{—,~}. Then p: (B® L)®*? — B® L is a B-linear map.
Now p takes values in ker(P) because for l1,lo € B® L,

Pop (l1,12)

= P{ly,lo} — P{ly, 1o}
= [P(lh), P(l2)]x — [P(l1), P(I2)]x (by (7) in EZ)
=0.

Since p takes values in ker(P), p(l1,l2) = 0, whenever one of the arguments is in ker(E).

This is similar to the argument given for ¢. Thus p induces a linear map

~ B ®L ®2
: ker(P
() — e
p(ly + ker(E),ls + ker(E)) = p(l1,12) for l1,lo € B® L.

Hence we get a 2-cochain p : L®? — L such that p = fopoa® € CL?(L;L). The
map p and p are related by n,11 ® p(l1,l2) = p(1 ® 11,1 ® l3) for 4,15 € L.

Let us denote by ¢’ respectively, ¢’ the corresponding maps determined using {—, —}'
as in ([ZY). Next we will show that

(¢ — ) =dp.
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Suppose [y, 12,13 € L. From the coboundary formula (IL3]), we have

6p(lrsl2,13) = [, p(l2, 13)] + [p(l1,13), l2] — [p(l1,12), 13] — p([l1, I, I3)
+ ([l 18], 12) + p(la, [l2, Is]).-

Let us compute the terms appearing on the right-hand side of 87! 0 6p(I1,l2,13)

871, pll2,13)]) = nrga @ [l pla, 13))
= I[l1, p(la,13)]
= I[ly, E(1® p(l2,13))]
= {I(h), 1@ p(l2,13)}
= {nr1 @11, 1 ® p(la, 13)}
= {1®,np41 @ p(la, 13)}
={1®1U,p(s13)}
={10h,{1®,1x} —{1al,1xI3}}
={100,{1®,1LY} - {120,{1®,1®I13}}.

B (1, 13),1a] = npgr @ [p(l, 1), o]
= I(1® [p(l1,13), E(1 ®12)])
= {I(p(l1,13)),1 @ o}
= {nr1 ® p(ly,13), 1 @1}
= {p(l1,13), 1 @ lo}’
= {{1e,1eLY - {10,1013},1® )
={leh,1ebl,10b} -{1eh, 12}, 10k} .

Similarly,
B pl, ), ) = {{1@h, 1@k}, 10} —{{1eh,10k}, 1}

Also

B o p(llh, o], 13) = npi @ p([l, 2], 13)
= p(1® [l1,l2],1®13)
= {1 X [ll,lg], 1® lg}l — {1 (= [ll,lg], 1® lg}.
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Since E{1 ® 11,1 ®12}) =1® [l1,12] so we get {1® 11,1 @2} =1® [l1,l2] + X, where

X denotes an element in ker(F), using this the last expression is given by

={1oh,10kL}- X1} —{{1eh, 1k} - X, 113}
={{lehl1obhlekl - {{1eoh,10hL}1®5} —p(X,113)
={{1ehlobllekl -{{1oh,10k}, 1@}

(since X € ker(E), p(X,1®13) =0).

Similarly,
ﬁil o ﬁ([l17l3]712) - {{1 ® ll7 1® l3}7 1® l2}/ - {{1 ® lla 1® 13}7 1® ZZ}

and 87" o p(ly, [l2,13]) = nrs1 ® p(la, [l2, 13])
= p(l & ll, 1® [lQ,lg])
= {1 ® lla {1 ® l2’ 1® l3}}/ - {1 ® ll? {1 2 l2a 1® l3}}

Substituting all the above terms on the right-hand side of 371 o 6p(ly, l2,[3) we get,

B0 0p(lila,13) = 571 I, plla, 13)] + 87 Al 1), 1) — B (1, 1o), Ig]

=87 0([h 1) 1) + B p([l, Bs), L) + B (1, [La, 13))

={1oh {10k 1}t —{1eh, {10k, 1®3}}
+{{ieh1ebl10b) —{{1eh,1e3}, 1@k}
—{{1oh, 1LY, 1Y +{1®h, 10k}, 13}
—{{1eh,10bhloklY +{{1eh,10k}, 113}
+{{loh,10}10LY —{{10h,1013},1® 1}
+t{1oh {10kl —{1el, {10k, 1®I3}}

=¢(1®0,1®1,1013) —d(1®h,1®I,1®I3)

=111 @ ¢ (I, 12, 13) — 11 @ D11, Ia, 1)

= 1,41 @ (¢ = 0)(I1,12,13)

=870 (¢ — ) (I, o, 13),

where ¢/ and ¢’ are the maps corresponding to ¢ and ¢ respectively for the pairing

{—, —}/. Therefore ﬁfl o 5ﬁ(11, lg,lg) = ﬁfl o ((5' — (5)(11, lg,lg) for l1,l0,13 € L.
Since 37! is an isomorphism we get dp = (¢' — ¢). O

We note that the 3-cocycle ¢ as determined by the extension ([EZI]) depends only

on its isomorphism class.
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The above considerations together with Proposition define a map
00 s Hup (AiK) — HIX(L;L) by 6([0]) = [6), (4.2.21)

where [¢] is the cohomology class of ¢. We call the map 6 the obstruction map.
We are now in a position to formulate a necessary and sufficient condition for exis-

tence of an extension of the Leibniz algebra structure A on A ® L.

Theorem 4.2.4. Let A be a deformation of the Leibniz algebra L with base A and
let B be a 1-dimensional extension of A corresponding to the cohomology class [¢] €
HI%,WT(A;K). Then A can be extended to a deformation of L with base B if and only if
the obstruction 6y([¢)]) = 0.

Proof. Suppose 05([¢]) = 0. Let
0—K--BL A—0

be a 1-dimensional extension representing the cohomology class [1)]. Let {—,—} be a
B-bilinear operation on B ® L satisfying [ZZ4), lifting the Leibniz algebra structure A
on A® L. Let ¢ be the associated cocycle in CL3(L; L) as described above in (EE23).
Then 0)([¢]) = [¢] = 0, implies ¢ = &p for some p € CL?(L; L). Now take p' = —p, and

define a new linear map
{— =Y :(BeL)** — B&L by {li,l} = {li,lo} + I 0 p'(E(lh), E(ly)).

Let ¢ and ¢’ be the maps as defined in @ZJ) corresponding to {—, —}’. Then we have
(¢ — @) = 6p) = —¢. Hence ¢ = 0, which implies ¢’ = 0. Therefore, {—, —} is a
Leibniz algebra structure on B ® L extending A.

The converse part is clear from the fact that if we have an extension {—,—} of the
deformation A of L with base A, the map ¢ as defined in ([Z7) is the zero map. So
the induced cochain ¢ is the zero cochain. U

Example 4.2.5. Let )\ be a finite order 1-parameter deformation of a Leibniz algebra
L with base A = K[[t]/(tN ). Eaplicitly, X(x,y) = Y50 Mz, y)t" (modulo tN+1),
where x,y € L, \; € CL?(L; L) with Ao the original Leibniz bracket in L and N is the

order of the deformation. By Leibniz relation we have

(2, Ae(y, 2)) — MM (2, 9), 2) + Ae(Ne(w, 2),9) =0

modulo tN11, for x,y,z € L.
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If we try to extend it to a deformation of order N + 1, starting with the extension
0 — (")/(t"F?) — K]/ (") — K]/ ") — 0,
the obstruction cocycle in this case can be written as ( [Bal97])

Swy.2) = D {N(@y),2) = NN, 2),9) = Nz, \j(y, 2) )

i+j=N-+1
i,5>0

The given deformation extends to a deformation of order N + 2, if the cohomology class

of the above obstruction cocycle is zero.

Suppose now that My is a finite dimensional A-module satisfying the condition
MMy = 0, where 901 is the maximal ideal in A. The previous results can be generalized

from the 1-dimensional extension ([EZ2]) to a more general extension
0— My L> B-X.A 0,

representing an isomorphism class of extensions corresponding to a cohomology class
(W] € H,,..(A; My) (Proposition EZZ33).

If we try to extend a deformation with base A to a deformation with base B, as in

the beginning of this section, then an analogous computation yields

N ®3
: (%) s ker (P) = im(I) = My ® L.

It will give rise to a cocycle ¢ € CL3(L; My ® L) with the cohomology class
[ € HL3(L; My ® L) = My ® HL3(L; L).
The obstruction map in this case is
O : Hyroyr(A; Mo) — Mo ® HL?(L; L) defined by 05([]) = [4].

Then, as in the case of 1-dimensional extension, we have the following.

Theorem 4.2.6. Let A be a deformation of a Leibniz algebra L with base (A,9M) and
let My be a finite dimensional A-module with MMy = 0. Consider an extension B of A

O—>M0—i>Bi>A—>O

corresponding to some [] € Hz, (A;My). A deformation p of L with base B such
that pup = X exists if and only if the obstruction 05([¢)]) = 0.
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4.3 Two actions on the set of extensions of the deforma-

tion A\

Suppose p and p’ are any two deformations with base B extending a given deformation
A with base A of a Leibniz algebra L. We would like to know how p and p' are related.
In the present section we study this relationship.

Let [¢] € H%
Assume 0)([¢)]) = 0. Let S denote the set of equivalence classes of deformations p of L
with base B such that p.u = A.

We define two natural actions on S. Let A denote the group of automorphisms of
the extension ZZTl). Let u € A, then u : B — B is an algebra isomorphism such that

2 (A;K) and consider the extension problem as in the previous section.

following diagram commutes (see Proposition Z31).

0 — K — B -2, 49
0 — K "B - .,4__ .0

Now u,p is a deformation of L with base B and p.(u.p) = (pou)sp = pspe = . Also if
p =/, then uep = uep (by Proposition B3 ). Thus we get an action

o1: A xS :— S defined by o1 (u, < gt >) =< uept >,

where < p > is the equivalence class of u (cf. Definition BZ2ZH).

On the other hand, HL?(L; L) acts on S as follows.

Suppose a B-bilinear operation {—, —} is given on B ® L, satisfying ([EZ4]) so that
pe{—,—}=Xand p € CL?(L; L) a given cochain. Define

{ll,lg}, = {ll,lg} +1o p(E(ll),E(lg) for li,ls € B® L.

Then {—,—} is a B-bilinear operation on B ® L and satisfies ([EZ4]). Moreover the
2-cochain p determined by the difference {—, —} — {—, —} as in the beginning of the
proof of Proposition EEZ3] is the given p. It follows that ¢’ — ¢ = dp.

In particular, if {—, -}’ and {—, —} satisfy Leibniz relation on B ® L, p must be a
cocycle.

Define an action
o9 HL*(L; L) x S — S by o9([p], < u >) =< p >,

where [ll,lz]ul = [ll,lz]u + IOp(E(ll,E(lg))).
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We first check that the above action is well-defined.
Suppose p1, p2 € CL*(L; L) represent the same class [p] € HL?(L; L), so that p; — py =
Sa for some 1-cochain o € CLY(L;L). Define two deformations p} and juf of L with

+and [—, —]

i, / are given

base B, which are extensions of A\, where the brackets [—, —] b

by

11, 00) = [l1,lo]y + T o p1(E(l1), E(l2)) and

1

(4.3.1)
[ll,l2]ﬂ’2 = [llal2],u + 1o p2(E(l1),E(l2)) for l1,lo € B® L.

We claim that pf = .

For this we define a B-linear isomorphism ® : BQL — B® L

by ®(1®1) = 1®1+n,+1®@a(l) for 1®l € B® L. Note that Eo® = E. From definition
it follows that for l € L, o I(1®1) = ®(n,41 ®1) = nypy1 @1 =I(1 ®1). To prove our

claim it remains to check that ® preserves the brackets. Now

(I)[l ®10,1® lz]ﬂll
— (L@ h, 1@ bl + o p(E(1oh), Bl b))

= (I)[l ®l1,1® l2] +do Iopl(ll,lg)
r+1
= (1@ [ly,l2] + an ®Pj(l1,12)) + P o lopi(l,l2)
i=1
r—+1
= (I)(l (024 [ll, ZQ]) + Zn]‘l)(l (029 ¢j(l1,l2)) +dofo pl(ll,lg)
i=1
= 1® [ly,la] + 111 ® a[l1, 12])
X (4.3.2)
+ ) (1@ (I, la) + nep1 @ a0 gh(ly,1g)) + @ o T o py(ly, o)
i=1
r—+1
= 1@ [l lo] + 1 ® o[l o)) + D nj @ (1, 1)
j=1
r+1
+ annr_H ® oo ¢j(l1,l2) +dofo pl(ll,lg)
j=1
r—+1
=1®[h,l] + Zn]’ ® Yj(l1,1l2) + nrgp1 @ a[l1, I2]) + PoTopi(ly,l2)
j=1

=[1®1,1® ], +nrp1 @ a[ly, l2]) + P olopi(ly,lz).
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On the other hand

@1 ® L), D1 @),
=1L +np1 @), 1® 1y + 11 @ ala)],y
=[1®h, 1@, +[1®h,nr1 ® a(l2)],y,
+ 1 @ a(li), 1 ® o]y, + [nrp1 @ alh), nrp1 @ a(la)]y,
=[1®11,1@ 1], +1Top(E(l®h),E(1®I1))
+ [l @1, 1@ a(lo)]y + nrgil 0 pp(E(L @ 1), E(1 ® a(la)))
e[l ®@a(l), 1@ o]y + el 0 p2(E(1® alh)), E(1®12))

=1®h,1®I1),+1opa(li,l2)
r—+1
(1 [l ella)] + Y ny @4, a(la)))
j=1
r—+1

+ 1,1 (1 @ [a(ly), o] + an @ Pj(a(ly),l2))
=1

=1®h,1®I1),+1opa(li,l2)
+ npp1 @ [l al2)] + npg1 @ [aly), lo].

Thus

P1®h,1® lz]ﬂfl —[P1®h),P(1x l2)]u’2

= nr11 @ a([l1, l2]) — 1 ® [l al2)] — npt1 @ [a(lh), 1]
+®olopy(ly,ls) —Iops(ly,ls)

= npp1 @ (=oa(l1,l2)) + Lo (p1 — p2)(l1,12)

= 0.

Hence oa([p], <p>)= <py> = <py> =oa(lp2], < p2>).
In order to check that o9 is well defined it remains to show that

oa([p], < p1 >) = oa([p), < p2 >) for g = po.

(4.3.3)

(4.3.4)

Suppose p1 = g and oa([p], < p1 >) = < ph >, oa([p], < p2 >) = < ph >. Let

P (B ® L, [_a _]/Jl) - (B ® L’ [_’ _],U«Q)
be an equivalence of ;1 and ps. By definition

(I, l2] e = [l1,le]yy + 1o p(E(l), E(l2))

1

[ll’ZQ]Mlg = [ll,ZQ]“Q +IOp(E(l1),E(l2)) for l1,lo € B® L.

(4.3.5)



73 4.3 Two actions on the set of extensions of the deformation A

We claim that
Dfl1,la],, = [@(11), P(12)] -

Now

(I)[ll,ZQ]Mll = q)[ll,lg]ﬂl + & OIOp(E(ll),E(lg))

(4.3.6)
= [®(l1), (l2)]p, + Polop(E(l), E(l2)).
On the other hand
[@(11), @(l2)], = [®(11), D(l2)], + L0 p(E 0 (lh), E 0 D(l2)) (437)
= [@(11), ®(l2)]; + I 0 p(E(h), E(l2)) (by using Eo®=a).
So py = ph. Therefore oo([pl, < p1 >) = < pf > = <ph> =olpl,< p2 >).

Consequently, the action of HL?(L;L) on S is well defined. The transitivity of the
action follows from the definition of 5.

We now show that the actions o1 and o9 on S are related to each other by the
differential d\ : (IM/9M?) — HL?(L; L) (see Definition BFZS).

Recall that the group A is identified with H},,,..(A; K) (Proposition ZZ37) so that for

any element u € A, the corresponding cohomology class in H,

arr
arr(A;K) is represented
by a 1-cocycle ¢ such that u((a,m)y) = (a,m +1(a)),, where ¢ : A — B is a section
of p. On the other hand H},,, (4;K) is identified with (991/9?2)" (Corollary ZZZT). For
if 9 : A — K is a linear map with §¢) = 0, then (1) = 0 and 1/ vanishes on 9M?. As
a consequence, 1 can be viewed as an element in (9/92)’. Using these identifications

we get the following result.

Proposition 4.3.1. Let A be a deformation of the Leibniz algebra L with base A and
let

0—K-B-L2,4-—50

be a given extension of A. If u: B — B is an automorphism of this extension which
corresponds to an element 1) € (IM/IM?)', then for any deformation pu of L with base B,
such that p.u = X, the difference ([—, —|u.u — [—, —]u) induces a cocycle representing
the cohomology class dA(v).

Proof. Suppose < p >€ S and u € A. By definition of o1, < u,u >€ S. Consider
the Leibniz brackets [—, —],,, and [—, -], on B ® L for the deformations u.p and p
respectively.

Suppose 1 € (9MM/M?)" corresponds to u € A under the identification mentioned
above. We now proceed to show that the 2-cocycle determined by the difference
([=s =lusp — [=5 —]p) represents dA(z)).

Choose a basis {mj,ma, -+ ,mg, mgs1, - ,m,} of the maximal ideal M of A such
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that {m;}i<j<r is a basis of M/M?. Fix a section ¢ : A — B of p. Let
{ni,n2, -+ , Mg, NEks1, -+ ,Nr41} be the corresponding basis of Mp = p~ (M) where

p(n;) =m; for 1 < j <randi(l) = nyq;. For l1,ly € L suppose

r—+1
L@, 1@, =1® [kl + Y nj@d;(l,b).
j=1

Now we have u(nj) = u(m;,0)q = (mj,¥(m;))g = (mj,¥(m;)) for 1 < j < r and
u(nrs1) = u(0,1)q = (0,1)q = nyq1. Then by B3Z2)

[1 & lla 1 (9 l2]u*,u

® [l1, o) + Zu(nj) ® Y;(l1,l2) +u(ne1) @ Yry1(ly, l2)
=

=1® [ll, lg] + Z(mj,lb(mj))q & ¢j(l1712) + N1 ® 1/17"+1(l1712)
j—l

® [l1, 1] +Z (mj,0)q ® (I, 1) +Z )q ® 511, 12) + 1y g1 @ ppa (I, o)
7=1

k
® [l1,lo) + an @ Yi(l1,l2) + 11 @ Yrg1(le, l2) + Z¢(mj)nr+1 ® Y;i(l1,12)
j=1 =1

k
= 1@, 1@kl + Y bmj)n1 @ ;)
j=1
k
=10, 1], + an+1 ® P(mj);(ly,l2)
j=1

K
=A@, 1@+ 1> 1@p(m,)p;l,b)
j=1

= 1L, 1@ ]y + T o p(ly,l2) where p(l1,lp) = S°5_; 1@ (m;)ib; (I, I2).
Since p extends A, we have
1,10y =[1®101,1®]pu

® [, 1] + Y p(ny) @ (11, 1) + p(nri1) @ g (l, 12)
j=1

® [l1, 2] + ij @ ;(l1,l2).

Jj=1

Thus Uyt = Y; for 1 < j <7, where {m/}1<;j<, denotes the dual basis (see (EZI)).
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Then the push-out pa, A via ps : A — A/9M? may be written as

L@, 1@y, = 1@ [l1,1] + Y pa(my) @ ;(la, )
i=1

=1® [, + ij ® (11, l2).
j=1

So, Ay A, = Y and Ay Ny = [4;], the cohomology class of ; for 1 < j < k. Thus
p(lly) = Y5 1@ p(my)(l,l) =35 1@ (M), a v (11, 12). Now

k k
W) = dAQ_ w(mg)my) = Y d(my)dA(mG) = Y d(img)ap, xm-
j=1 j=1 j=1
This shows that dA(¢) is represented by the cochain p. O

Corollary 4.3.2. Suppose that for a deformation X of the Leibniz algebra L with base A,
the differential dX : (IM/IM?) — HL?(L; L) is onto. Then the group of automorphisms
A of the extension ([{.2-1]) operates transitively on the set S of equivalence classes of
deformations v of L with base B such that p.u = A.

Remark 4.3.3. If i and pi are two extensions of X then the difference [—, —|,y —[—, —|,
determines a cocycle representing an element in HL?*(L;L). Now if the differential
map d\ : (M/MM?) — HL?(L; L) is onto then we have an element 1 € (9M/IM2)

corresponding to an element u € A so that
[_7 _]u*u - [_7 _]M = dA(l/f) = [_7 _],u/ - [_7 _];m

which gives [—, =]y, = [—, =] Thus it follows that for a deformation X of the Leibniz
algebra L with base (A, M) € C, if the differential dX\ : (IM/IM?) — HL?(L; L) is onto
and if u exists, then it is unique up to an isomorphism and an automorphism of the

extension (4.2.1).

We end this section with the following naturality property of the obstruction map.

Proposition 4.3.4. Suppose (A1,My1) and (Az,M2) are in C with augmentations e;
and 9 respectively. Let ¢ : As — Ay be an algebra homomorphism with ¢(1) = 1
and €1 0 ¢ = 9. Suppose Ao is a deformation of a Leibniz algebra L with base Ay and
A1 = ¢s A2 is the push-out via ¢. Then the diagram in Figure [{_1 commutes.

Proof. Let [ta,] € Hy,,.(A1;K) and [t4,] = ¢*([¢04,]) € H¥,,..(A2;K) correspond to

the classes of 1- dimensional extensions of A; and As, represented by

0K B, 2 Ay —0, k=1,2.
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Hiope (A23K)

O,

arr (

o* HL3(L; L)

O,
HIZ'IGTT (Al :r ]K)

Figure 4.1:

Fix some sections g, : Ay — By, of py, for k = 1,2. Then, as in ([EZ2), we get K-module
isomorphisms By, = A, @ K . Let (a,z)q, denote the inverse of (a,z) under the above
isomorphisms. The algebra structures on By are determined as in ([E2Z3]).

Let I = (ix ®id), P, = (pr ® id) and Ey = (¢, ® id) , where &, = (g o py) for
k = 1,2. Suppose My, is the unique maximal ideal in Ag. Then Ny = p,;l(smk) is the
unique maximal ideal of By, (cf. Proposition EZ3H). Let {my;}i<i<r, be a basis of My,
and {ng; h1<i<r,+1 & basis of My, for kK = 1,2 (as obtained in Section E.2).

Thus ng; = (Mpi,0)g, for 1 < i <7y and ng 41y = (0,1)g, . Let {&kib1<i<r, be the
dual basis of {my;}. As in B2), the Leibniz bracket on Ay ® L may be written as

72
1®I1,1®12)x, =1® [l1,l2] + Zmzz ®¥7(ly,lp) for ly,lp € L,
i=1
where ¢22 = Q) 6, Let ¢(my;) = 251:1 ¢ ymij where ¢; j € K for 1 <¢ <ry. Then the
push-out A\; = ¢, Ay on A; ® L may be written as (cf. (B32))

ro r1
1@, 1®)y = 1®[h,l] + Z Zcmmlj ® Vi (ly,l2)
=1 \j=1

r1
= 1[I, L] + Y ma; @) (1, lp) forly,ly € L,
j=1
where ¢]1 € OL%*(L; L) is defined by ¢]1~(l1,l2) =302, ¢ (I, le) for ly,ly € L.
For any 2-cochain x € CL?(L;L), let {—,—}x : (Bx ® L)®2 — Bj, ® L be the
Bj-bilinear operation on By ® L lifting A\, defined by

Tk
{120,101k =1 [l ]+ Y nk @ ¢ (1, 12) + nigrnyx (s 12)
i=1
for k = 1,2 and [ly,lo € L. We know that {—, —}; satisfies properties (i) and (1) of

EZ3) (Lemma EZT]).
Define 9 : By = (A @ K) — By = (A1 @ K) by ¢((a,2)q,) = (¢(a),x)q, for
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(a,z)q, € By. It is clear that v is a K-algebra homomorphism. Because, for 1 < j, k <y

Y(ngino) = ¥((ma;,0)g (Mak; 0)g,)
= Y(majmag, Y a, (maj, Mar)) g,
= (@(majmoag), ¥a, (d(ma;), ¢(mak)))q, (since [tha,] = ¢*[Ya,])
= (¢(maj)(mak), 1 a, (P(m2;), p(Mak))) g
= (¢(ma;),0)q, (p(mak), 0)g,
= 1h(nz;)h(nak).

Moreover note that ¥(ngjno,+1)) = ¥(n2;)Y(nagy41)) for any j, 1 < j < rp as
nkjnk(rk+1) = 0, k= 1, 2.

0 K By —£— 4 —— 0
N

We claim that (¢ ®@id)({1®101,1®12}2) = {¢¥®id (1®0),Y®id (1®12)}; for Iy, 1y € L.

Now
(W @id)({1®1h,1®I1}2)

= 1@ [l I + Y ¢(ngi) @47 (11, 12) + ¥ (naryr1)) © X(11, 12)
i=1

zmwz (m2:),0)q, @ Y2 (11, 12) + P(nary 1)) © X (11, 12)

® [, 1a] +Z (chmlj, ) ® V7 (11, 12) + ny(ry41) ® x(1, 12)
i=1 =1

q1
((mai) =D ciymay and Y(nag, 1)) = 9((0,1)g,) = (6(0), 1)g, = nry11))
=
® [, 1]+ (Z Cz‘jnlj) ® 17 (11, l2) + nagry 1) ® X (11, 1)
=1 \j=1

T1
= 1@ (I, la] + Y 1y @) (I, 12) + gy 1) @ X1, I2)
j=1

={1®,1®}
={Y®id (1®101),Y ®id (1 ®I)}1, which proves our claim.
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Let ¢y, be defined by {—, =} as in (1) and ¢y, the corresponding cocycle as in [EZZJ).
Then

(Y ®id)oga(1®11,1®12,1®13)
= @WeId){10h,{1®l,1® 3}t —{{1®,1 @2}, 1@ I3}
+{{1®04,1®13}2,1R12}9)
={10h, {10k, 1@l3h1}1 —{{1®h,1®1}1,1®13} (4.3.8)
+{l®h,1®3}1,1 @1}
=01(1®h,10k,1®13)
= N3y 41) ® G1(l1, 12, 13),

and (¢ @ id)da(1 ® 11,1 @12, 1® 13) = (¢ @ id)(na(ry+1) @ P2(l1, 12, 13))

A (4.3.9)
= Ny, 41) @ P2(l1, 12, 13).
From [A3X) and E3) we get, ¢p1 = do.
Therefore, Oy, ([¢4,]) = [91] = [@2] = O3, ([V4,]) = Ox, © 6" ([¥0a,])-
Hence 0y, = 6, 0 ¢". O

4.4 Extension of a deformation of Leibniz algebra homo-

morphisms

This section is analogous to Section We extend the results of Section to the
case of a Leibniz algebra homomorphism.

Recall that a deformation © = (A, p; f,) of a Leibniz algebra homomorphism f :
L — M with base A consists of a deformation A of L, a deformation p of M with base
A and a Leibniz algebra homomorphism fy, : (A® L,\) — (A® M, p).

Let ® = (A, u; fa,) be a deformation of a Leibniz algebra homomorphism f : L — M
with base (A,9) € C. Let ¢ : A — K be the augmentation of A. We fix a cohomology
class [¢] € H%,,, (4;K). Let

CLT’T’(

0—K-~B-L.4—30

represents the isomorphism class of 1-dimensional extension of A corresponding to [¢].
As before, we consider the problem of extending © from the base A to the base B. We
follow the notations of Section EE2

As in Chapter 3, BZIl) and BEII), let wj)»‘ = ayg € CL*(L; L), ¢§L = aue; €
CL*(M;M) and f; = I € CLY(L; M) for 1 < j < r. Then by EZZ) the brackets
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[—,—]x and [—, =], can be written as

[1 ®ll,1 X lz])\ =1® [ll,lg] —i—ij ®1/Jj-‘(ll,l2) for ll,lg eL
j=1

T
and [1 ® 21,1 ® 2], = 1 ® [z1, 2] + ij ®¢;‘(aﬂ1,xg) for x1,29 € M.
=1

Also by (B5L2),
hp(lel) =1 f(I)+ > mi e f(D).

j=1
Using an arbitrary element (v1,,v5s) € CL?(L; L) x CL?>(M; M) we define B-bilinear

operations,
{(—~}:(BoL)® —B®Land {—,~}y: (BeM)® —BoM

as follows:

{b1 ®U,ba @12}, = biby ® [l1,l2] + Zb1b2nj ® axg, (l1,12) + bibanyy1 @ Yr(ly, l2)
=1

and {b @ x1,by ® T2} ar = b1by @ [x1, x2) + Zb1b2nj ® ¢ (T1,72)
=1
+ brban, 1 ® Y (w1, T2).

Moreover, we have a B-linear map f :B® L — B ® M defined by

foel) =be f0)+> bn;® f(D).
j=1

Let I, P, E be the linear maps as defined in Section EE2 and I;, P, and F; denote the
corresponding maps obtained by replacing L by M.

We claim that the triple ({—, —}r,{—, —}ar; f) satisfy the following identities.

(i) P{li,lo}r = [P(l), P(I2)]x and Pi{z1,z2}nm = [Pi(21), Pr(22)]
for l1,lo e B® L, and 1,29 € B® M.
(¢3) {I(),lh}p =1I[l,E(ly)]forl e L, [y € B® L and
{L(x),x1}p = L[z, By (x1)] for x € M, 1 € B® M.
(i31) (¢ @id) o f = fo (¢ ®id).
(iv) fauo P =Piof.

(4.4.1)
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In view of ([EZH)) and [ZH]) we need only to verify the last two identities. Let b ® [ €
B® L.
(iii) Then,

(¢@id)o f(b®1) = (¢ ®id) (b@f +anj®f] ))

j=1
=2(b) @ f(I) + > _&(bny) ® f;(1)

j=1 (4.4.2)
+Z nj ®fj()

I
(T)>

(€(b)1) (smce n; € ker(é), é(n;) =0)
o(é®id)(b®1).

f
f
(iv) We have,

fapo PO@1) = fau(p(b) @1)
= p(b)f)\“(l ® l)

=p(0) [ 1® f( +§)m®b

7j=1

—p(0) @ 1)+ p)m; @ (1)

7j=1

= (p@id)(b® f(1) +§:p p(n;) ® f;(1)

(4.4.3)

Pi(b® f(1) +Zamwm»

7j=1
=Piof(bm]l).

Therefore the triple ({—, —} 1, {—, —}ar; f) satisfies the conditions in [Z1) as claimed.

If in addition the brackets {—, —}z and {, —}as satisfy the Leibniz relation and
the map f : B® L — B ® M preserves the respective brackets, then the triple
({—, =}, {=, = Yar; f) is a deformation of f with base B extending ©. Just like the
case of Leibniz algebra, this extension process leads to an obstruction map as described

below. Consider the K-linear maps

¢r:(BRL)®* — B®L, ¢p:(BM)S — B M,
and ¢y, , : (B®L)®? — B® M given by
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or(l,l2,l3) = {l, {l2, s}t — ({l1, e}, I3} + {{l, Is}e, 2}
dnr(wy, wo, 23) = {1, {wo, w3}t artar — o1, woar, w3tar + {{o1, w3far, 22t (4.4.4)
and ¢y, (I, la) = f{l,la}r = {F (L), F(l2) }ar,
where ly,ls,l3 € B® L; x1,29,23 € B® M. Here ¢ and ¢); are the map ¢ for L
and M respectively, as defined in ([EZ7) in Section As observed before, ¢y, = 0 if
and only if {—, —}1 is a Leibniz bracket on B ® L,and similarly ¢ = 0 if and only if
{—, =} is a Leibniz bracket on B ® M. Moreover ¢r,, = 0if and only if f preserves
the B-bilinear operations {—, —}; and {—, —} /.
By EZX]) we get, Po¢r(l1,1l2,13) = 0 and Pyodps(x1, e, x3) = 0 for ly,la,l3 € BRL
and x1,x2,x3 € BRQ M .
By the properties (i) and (iv) in ([ZI]) we also have for l1,lo € B® L,

Progy,, (I, la) = Po(f{l,lo}n — {f(l), FI2)}ar)
= Pro f{l, o} — Pro{f(lh), f(l2)}ar
= fawo P{l,la}r — [Pro f(lh), Pro f(la)lu
= faulP(l), P(I2)]x = [fau o P(l), fru o P(l2)]u

=0 (as fy,is a Leibniz algebra homomorphism).

Therefore ¢, and ¢pr take values in ker(P) and ker(Py) respectively, and ¢y, , takes
values in ker(Pp). As observed in Section B2 we have ¢ (l1,l2,l3) = 0 whenever
one of the arguments is in ker(E) and similarly ¢ps(z1,22,23) = 0 whenever one of
the arguments is in ker(E7). This is because, ker(P) = im(i) ® L = Kn,4; ® L,
ker(Py) = im(i) @M = Kn, 1®M, and njn, 1 = 0for 1 < j < r+1. Moreover Py, =0
whenever one of the arguments is in ker(F). For suppose [1 = (b®1) € ker(E) C B® L.
Since ker(E) = ker(8)® L = p~Y(ker(e))® L = Mp ® L, we can write [; = ZTH n; @1
with l;- €L; 1<j<r+1. Thenforl, € B® L, we get

r+1 r+1
o1y, (1, 12) = o5y, an Ul | = ey, (1l2) =0
j=1
Note that ¢y, , (I},1l2) € ker(P1) = i(K) ® M and for any element k € K and = € M,
nj i(k) ® x = i(p(n;)k) ® x = i(mjk) @ x =i(e(mj)k) @z =0 for 1 <j<r

and n,11i(k) @ x = knZ,, @ x =0 (m; € M C A and mjk = e(m;)k).

A similar argument shows that ¢y, = 0 whenever Iy € ker(E).
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Thus we have the following induced linear maps

B M

o1 : (%)m — ker(P). ou : (W)m et (4.4.5)

© ) ker(Py),

and ¢y, : (k:er(E)

determined by the values of ¢r, ¢y and ¢ fr, OD the coset representatives respectively.

Let a denote the isomorphism L =2 kff?é) as defined in Section Similarly we denote

~ _BM
— ker(E1)

Also recall that we denoted the isomorphism ker(P) = L by 3; S(kny+1 ® 1) = ki, for
k € K and | € L. Similarly, let 3; denote the isomorphism ker(P;y) = M.

We use these isomorphisms and the linear maps ¢, ¢ to get cochains ¢y €
CL3(L;L), ¢pr € CL}(M;M) as in @EZH). Moreover, the linear map gz~5fAH defines
a cochain éfw € CL*(L; M) by 1 o éfw o a®2.

Thus for l1,1l9,l3 € L and x1, 29,23 € M, we have

by a7 the isomorphism M induced by the linear maps E and F4 respectively.

N1 @ or(l1, o, 13) = or(1 @ 11,1 @12, 1 @ 13)
Np41 ® &M(xl’x%xi’») = ¢M(1 ® zy, 1® €2, 1® ,173), (446)
and 1,41 ® ¢y, (I, 12) = o5, (1@ 11,1 @ 1)

The resulting 3-cochain (¢r., ¢ar; (J_Sf/\ﬂ) € CL3(f; f) is called the obstruction cochain for
the triple ({—, —}r,{—, —}m; f) in extending the deformation © of f with base A to a
deformation with base B.

Next we show that the obstruction cochain (¢r., ¢ar; &fw) € CL3(f; f) is a 3-cocycle.

For this we shall need the following observation.

Lemma 4.4.1. For the triple ({—, =}, {—, =} f) satisfying #Z1) we have

(i) fA®l) —1® f() € ker(Ey)
(i) {1@L,11'}, —1[,1'] € ker(E)
(ii1) fllolb1ely, —{f(0al), fAa1)}ym € ker(Py),
forl,l' € L.
Proof. For | € L, we have
Eiof(1®l)=foE(1®I) (by (i) of @ZI) )
=fe) &)

=f(1)
=F1(1® f(1)). This proves (i).
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For I,I' € L,

E{1®l,1®10'}L)

=(e®@id)oP{1®,1x1'}L

— (cwid)[P(el), PA el (by (i) of @)

=(e®id[1, 1],

=1L (E=(e®id): A® L — K® L = L is a Leibniz algebra homomorphism)
= E(1®][l,1']), proving (i1).

Finally for [,1I' € L,

Pofllelliel};
= fwoP{1®lL 1@} (by (iv) in @EZXT))
= hu([P1®1),P(1®1)])) (by (¢) in @EZT))
= fu(l®lL1el],)
= @), (e,
= [HpoPA®l), fruo P,
=[Piof(1®1),Piof(l1al),
=P{fel), Aol

This proves (#i). O
Proposition 4.4.2. The obstruction cochain (¢r, dus; &fw) is a 3-cocycle in CL3(f; f).

Proof. By the definition of the coboundary d in ([CZI) we have
d(Pr, dar; O1,,) = (061, 600r5 for, — dmf — 665,,)-

Thus it is enough to show that d¢;, = 0 = d¢ys, and 5(5}3# = fér, — dpf. The result

will follow if we show that

B lodp, =0=p1"0ddy and B 0 ddy,, =B o (fr — dumf).

First two equalities follows from Proposition Thus we only need to verify the last
equality. For l1,lo,1l3 € L,

Bt 0865, (1,12, 13) = B (1), by, (Lo, 13)] + 81 g, (1 1), £ (1))
— B g, (o 12), £ (1)) = B (¢, ([, 2], 13)) (4.4.7)
+ B (0, (11, 18], 12)) + By (D5, (1 [12, 13])).
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Let us compute the terms on the right-hand side of [@Z1). The first term is

B (), by, (12, 13)]
=1 @ [f(11), Oy, (12, 13)]
= L[f(lh), ¢, (I2,13)]  (i(1) = npia)
= {1 f(),1® ¢y, (I2,13)} s (by (ii) of EEZT))
={1® f(lh), ¢, (1@, 1@13)}u
(using B-bilinearity of {—, —}s and by ([EZHl))
= {10 f(h), {1010} —{f(1eh), fU®l)}miy (by @)
={f0leh) - X, flloblel}im
—{1® f(l1),{1® f(l2) + X2,1® f(I3) + X3} }ms
( by Lemma EAT] (i) where Xy, X2, X3 € ker(E7) )
={fl@h), flleb 1o}ty —{X1.{f0®L), A}y + Zastu
—{1® f(l1),{1® f(lo) + X2,1® f(I3) + X3} }r
( by Lemma BT (i4i) where Zy 3 € ker(Py) )
={fteh), [{lob 1okl — (X1, {1® f(l2) + X2, 1® f(l3) + Xs}arbu
—{X1, Zostu —{1® f(l), {1 ® f(la) + X2,1® f(l3) + Xs}am}m
( by Lemma LTI (i) where Xo, X3 € ker(Ey) )
={fOeh), fleblol}r}w —{Xi, {1® f(),1© f(l3)}mtm
—{X1, {1 @ f(l2), Xstartn — { X1, {Xo, 1 ® fl3)}art s — { X1, { X, Xsfnrfm
—{X1, Zoatm — {1 @ (1), {1® f(l2), 1 ® f(l3)}a }ma
—{1® f(l), { X2, 1@ f(la)tartar — {1 @ f(11), {1 @ f(l2), X3}arfu

—{1® f(l), {X2, X3} m}nr-
(4.4.8)

Similarly,

By b, (11, 13), f(I2)]
= {fll®h, 1@}, fA® L)y — {{1® f1),1® f(l3)} . Xa}u
—{{1® f(lh), X3}am, Xotwr — {{X1, 1@ f(3)}ar, Xotar — {{X1, X3} v, Xt
—{Z13, X0t —{{1® f(lh),1® f(I3)}mr, 1 ® f(l2)} s
—{Xu 1@ fUs)m, 1@ fl2) by — {1 @ f(lh), Xs}ar, 1@ f(l2)

— {({X1, Xs}ar, 1® f(l2) fm
(4.4.9)
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and

B b5, (11, 12), £(Is)]
={flloh,1@bl, fAal)} y —{1® f(1),1® f(l2)}m, X3}
—{1® f(l), Xo}tn, Xata — {{X1, 1@ f(l2)}ar, Xabar — {{X1, Xo}wr, Xafur
—{Z12, X3} —{{1@ f(11),1® f(l2)}ar, 1 ® f(I3) }ur
—{X, 1@ f(2)}m, 1@ fla) = {1 @ f(lh), Xo}ar, 1@ f(I3) I

— {{X1, X2 m, 1 ® f(l3) b
(4.4.10)

Also

B (05, ([0 1), 1))

=Npp1 @ éfA#([lla lo],13)
= oau(1® [l1,12],1 ® I3) ( by the 3rd expression in ([EZH) )
= 1o,k 1@l —{f(1 @[ b)), fA®l)}u

( by the 3rd expression in ([EZA]) )
= {1l 1®bl, - Y10k} — {f{1®h,1® b}, —Yi2), f1®1)}u

( by Lemma BT (i¢) where Y7 5 € ker(E) )

= flleh1ebl 10kl - f{Yig 10kl — {f{leh, 10k}, f(1 )}

+{f(V12), f(1 ®13)}r.
(4.4.11)

Similarly,

B (o, ([, 1], 12))
:f{{l %) ll, 1® lg}L, 1® l2}L — f{Yl,g, 1® l2}L (4412)
—{flleh, 1@k}, fA®k) v+ {f(Yis), f[A®)}tu

and

BN (D, (1 12, 13)))
1o, {1®l,1®13}}r — f{1®1,Ya3}s (4.4.13)
—{faeh), flleb, 1ol iv+{f1eh), f(Yos)u.
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Thus using (EZR)-EZLI13) in (EZT) we get

Bt oddy,, (I, la,13)

== om(X1,1® f(l2),1® f(I3)) — dm (X1, 1 ® f(l2), X3) — dnr (X1, X2, 1 ® f(I3))
— on(X1, X2, X3) — (1 ® f(11), X2,1® f(l3)) — o (1@ f(11), 1 @ f(l2), X3)
— o1 ® f(lh), X2, X3) + ¢, ,(Y12,1 @ 3) — by, (Y1,3,1 @ I2)
— 05, (1@ 0, Ya3) —{X1, Zastm — {Z13, Xotm +{Z12, X3}m

+for(1 @, 1®1,1®13) — ¢u(1® f(11), 1@ fla), 1 ® f(l3)).
(4.4.14)

Now recall that ¢as(l1,l2,13) = 0, whenever one of the arguments is in ker(F;) and
o1y, (l1,12) = 0, whenever one of the arguments is in ker(E). Moreover note that
{X1,Z23}m = 0 as {—, =} is B-bilinear and n;n,y; = 0 for 1 < j < r. Similarly,
{Z13, Xo}m = 0={Z12, X3} m.

Therefore from (AT we get,

61_1 Oé&f@(llvl%h)
=for(1®1,1®1,1@13) —dp(1® f(l1),1® f(la), 1® f(l3))
=67 (for — daf) (1,12, 13).

This completes the proof. ]

Proposition 4.4.3. Suppose ({—,—}r,{— —}ar; f) and ({—, =}, {—, —V\s; f)) are
any two triples satisfying conditions [{Z.1). Let (¢r,dur; éfm) and

(¢, Dhps 7'fm) be th,e~ corresponding cocycles_detfrmizzed by ({_’__}f” {—_, —}ars f) and
({= =}p, = =} [') respectively. Then (¢, Pum; ¢y,,) and (47, IM;‘ﬁ/fm) represent
the same cohomology class in HL3(f; f).

Proof. Suppose ({—, —}r,{—, =} f) and ({—, =Y;,{—, =}y f') are two liftings sat-
isfying (I, Set pr = {— ) —{— 1 ot = LYy — = —Jar and py = F'— J.
Then py, : (B®L)®? — BQL, pps : (BOM)®? — BQM and py : BRL — B®M are
B-linear maps. It follows from Proposition EEZ3] that p;, and pjs induce two 2-cochains
pr, and pys respectively such that

(67, — é1) = dpr and (S — dar) = Spu- (4.4.15)
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Now p; takes values in ker(P;) because for l € B® L

Pyropg(l) = Py(f'(1) — f(1))
=Piofi(l) = Pio f(l)
= fopo P(l) = fapo P(I) (by (iv) in EZT)
=0.

Also from (44i) in @ZT) it follows that By o f' = fo E = Eyo f, so p; vanishes on
ker(Ey). Thus py induces a linear map py : (B ® L/kerEy) — ker(Py), which defines
a l-cochain py € CLY(L; M) such that n, 1 ® pr(l) = ps(1®1) for | € L.

We claim that

(01r, Ohis 0,,) — (D1, 003 05,,,) = d(pr, pass py) = (0P, 6pars fpr — puf — 0py).-

In view of ([EZTH) it is enough to show that (é’m — &fw) = (fpL — pmf — dpy). For
l1,l € L,

B odps(ly,lz)
= N1 ®ps(ly,l2)
= 111 @ ([f(l1), pr(I2)] + [pr(l1), f(I2)] — prlla, l2])
= N1 @ [f (1), pr(l2)] + npy1 @ [pr (1), f(12)] = g1 @ pylla, o]
= Li[f(l), pr(2)] + Li[ps (), f(l2)] — pr(1 @ [I1,12])
= {Lf (), 1@ prl2)Yor + {1ipp, 1 ® fl2)Yay — (F' = )1 @ [, lo])
= {1 ® f(1), 1@ pp(l2)Yor + {nei1 ® pp, 10 fl2) Yoy — (1@ [, 1))
+ 1@, 1))
= {1® f(l),nrs1 @ prla)Yor + {nrs1 @ pp, 1@ f(I2) Yoy — F/(1 @ [, 1a])
+ f(1@ [, b))
= {F0eh) = X,(F =N @)Yy +{(F = H1eh), f1el) - X}y
—f{leh, 1@k}, - Vi) + fleh, 1@k, - Y1)
( by Lemma AT (¢) and (i3) )
={/Qeh). Lol —{f/1eh), fAeb)}y —{X. (- 1 ek)}ly
+{lAeh), flek)ly—{f0eh), k) —{(f' - Heh), X2}y
—F{leh, 10kl + f{leh, 10k, + (f' = H(Y,)
—{f1eh), fleb)ly—{f0eh), f0ek)}y - f{loh 10k},
+ 1@, 1010k},
(4.4.16)
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On the other hand
B o (fpn)(l1,le) = nr1 @ fin(li,lo) = Fll@L, 1@}, — fll®@h,1®1s} 1, (4.4.17)

Bto &, (1 l2) = 1 @ ¢, (11, 12)
= ¢} (101,101) (4.4.18)
=il 1ebl, —{f1eh), 1k},

B o gy, (I, la) = g1 ® ¢y, , (11, 1)
= (JSf/\M(l ®1,1®1) (4.4.19)
=fleh, 1@kl —{f1eh), f0lal)}m,

and

57 o pa f(l, 1)
= 1,41 ® pu [l o)
= nr41 @ pu(f(l), f(l2))
=pu(1® f(l),1® f(l2))
={1ef(l). 10 fl)}y - {1® f(h),1® f(2)}u
={fAeh) - X1, fAelk) - X}y —{f(1eh) - X1, f1el) - Xa}u

( by Lemma LTI (i), where X1, X5 € ker(Ey) )

= {f0®h), fleb)ly —{f0eh), 1el)}u

—pu(f(A® 1), X2) — pmr (X1, fF(1 ®12)) + par (X1, X2)
={fleh), fleb)}ly - {f0lah), fAel)}u

(since pas(x1,x2) = 0, whenever one of the arguments is in ker(Ey) ).

(4.4.20)
Using ([EZT7)-[EZ20) we get

B o (fpr = puf — &, + 01, (1, 1o)
—{F(1eh), Faeb)y —{faeh), f1l )}y, (4.4.21)
— el 1ebl, + fleh,1®b),.

Therefore from [EZT0) and [EZZT) it follows that

B odps(llo) = B o (fpr — puf — &, + 5,,) (L, o)
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Thus we have a map

Op : Hirgy (A K) — HLP(f; f) given by Op([¢)]) = [(br, dar; b5,,)];

where [(Q_SL,gz_bM;gz_BfM)] denotes the cohomology class of (gz_bL,gz_bM;qz_be), which is the

obstruction map in the present context.

Theorem 4.4.4. Given an 1-dimensional extension
0—K-B-2 40

of A representing ] € H%,,.(A;K), a deformation ® of f with base A can be extended
to a deformation of f with base B if and only if O5([¢)]) = 0.

Proof. Suppose Op([¢)]) = 0. Let ({—, =}z, {—, —}ar; f) be a triple satisfying conditions
in [@ZT)). Let ¢r, ¢ and ¢y, , be maps as defined in (@LZZ). Let (b1, dur; éfw) be the

associated cocycle.

Since O ([¥]) = [(¢1, dus; q_SfM)] = 0, there is a 2-cochain (u,v;w) € CL?(f; f) such
that (¢, o ¢5,,) = d(u, v;w). Therefore du = ¢, dv = ¢ur, and (fu —vf — dw) =
¢y, Take pf = —u, ply; = —v, and p} = —w. Define the linear maps

{—=Yp: (BeL)® — B& L by {l1,l}} = {1, l2} — T ou(E(l1), E(l2)),

{— =Yy : (B@M)®* — B&M by {z1, 22}y = {z1,22} — I 0 v(E1(31), Er(2)),
and f/: B& L — B® M by f'(I) = f(I) — I, ow(E(l))

for [,l1,lo € B® L and 1,29 € B® M.

We claim that ({—, =}, {—, —}\s; f') is a deformation of f with base B extending the
d?forfnati_on D. Let ¢, ¢, and gb}w be the associated maps as deﬁned_in (m) Let
(@), s /fku) be corresponding 3-cocycle. Then it is easy to see that (¢ — ¢} ) = ou,
(prr — ¢)yy) = ov, and (dy,, — Ifm) = fu—uvf —d0w. Thus ¢, =0, ¢, = 0, and
(%Cw =0. It follow§ from [EZH) that ¢, = 0 = ¢, and (ﬁ}w = 0. Consequently
{—, =}, {— =}y f') is a deformation of f with base B extending D.

The converse part follows easily, since if we have an extension ({—, —}r,{—, —}a; f)
of the deformation © then ¢r, = ¢ar = ¢fr, = 0, by definition [EZZ). So Op([¢)]) is

represented by the zero cochain. O
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Example 4.4.5. Let © = (A, ue; ft) be a finite order 1-parameter deformation of Leib-
niz algebra homomorphism f : L — M with base A = K[[t]]/(tN*1). Explicitly,

Al l2) =Y Ni(ln, la)t" (modulo tN+1)
>0

t(x1,x9) Z,uz (x1,x2)t i (modulo tN+1)
>0

= Z fi(Dt* (modulo tN+1)
i>0

where 1,l; € L, x; € M, \; € CL*(L; L), u; € CL*(M;M) and f; € CL*(L; M),
1 = 1,2 with Ao, puo are the original brackets in L and M respectively, and fqo is the
Leibniz algebra homomorphism f.

By Leibniz relations satisfied by Ay and py we have

Ae(l1, Ae(l2,03)) — Me(Me(ln, 12),13) + Me(Me (L, 13),12) = 0
p (1, pe (22, 23)) — pe(pe (21, 2), 3) + pe(pee (1, x3), x2) = 0
forl;€e L andx; € M,i=1,2,3.

Also f is a Leibniz algebra homomorphism, so we have

Je(l, 12)) = pa(fe(l), fe(l2)) for L1y € L.
If we try to extend ® to a deformation of order N + 1, starting with the extension
0 — (V) /ENH) — K/ (V) — K/ V) — 0,
the obstruction cocycle (pr, dar; ¢y,,) in this case can be written as ( [Man07))

Srlllayls) = > {N(A 12) = Mi(Ai(@, 2), ) — i, A (y, 2)) }

i+j=N+1
1,j>0

S, wa,m3) = Y {ilpg (@1, ), w3) — pilpy (w1, @3), w2) — i@, pj(wa, 73))}

i+j=N+1
1.5>0
Opn(1,12) = Z,uz ) ) = D0 fild( 1)
i+j=N-+1
5,5>0

forlie L andx; € M,i1=1,2,3.
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Here,

)SED SENE U SUNN

i+j=N+1  it+k=N+1 j+k=N+1 it+j+k=N+1
,j>0k=0  3,k>0;5=0 j,k>0;i=0 3,7,k>0

The given deformation extends to a deformation of order N + 2 if the cohomology class

of the obstruction cocycle is zero.

So far we were concerned with the lifting problem for 1-dimensional extension of
the base (A,M) € C of a deformation. An analogous consideration holds for any finite
dimensional extension of the algebra A by an A-module.

Let My be a finite dimensional A-module satisfying 9tMy = 0. From Proposition
B33, it follows that H 12{

classes of extensions

arr (A3 Mp) is in one to one correspondence with the isomorphism

0— My - B-24—0. (4.4.22)

Let [¢] € H%,, . (A;Mp) correspond to the class of extensions represented by the
extension in [EZZZ). If we proceed with the above extension as in the case of 1-
dimensional extension, we obtain a triple ({—, —}r,{—, —}u; f) and the maps ¢, dns
and ¢y, , as determined in ([ZZ)). We define b1, dnr and quM using ¢r, ¢m and ¢y, ,
respectively as in ([LZH). As before we have isomorphisms (B ® L/ker(E)) = L
and (B ® M/ker(E1)) = M. Moreover in this general case, we have isomorphisms
ker(P) = My ® L and ker(Py) = My ® M. We use these isomorphisms to obtain

cochains
¢ € CL3(L; My ® L) = My ® CL3(L; L),
dar € CL3(M; My ® M) = My ® CL*(M; M)
and ¢y, € CL*(L; My ® M) = My @ CL*(L; M).
An argument analogous to the proof of Proposition shows that (¢, dar, gz_bfm) is a

cocycle in My ® CL3(f; f).

As a consequence we have the obstruction map
99 : HI2{arr(A; MO) - MO ® HLB(f, f)

As in Theorem B4l we have

Theorem 4.4.6. Given an extension ({{.4.23) of A by the A-module My representing
[¥], a deformation © = (A, p; fau) of f with base (A,9M) € C can be lifted to a defor-
mation of f with base B if and only if ©o([¢)]) = 0.
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4.5 Formal deformations

An M-adic filtration of a commutative algebra A is a filtration
A=MoMOM> > -+ .

by ideals of A. Given an 9Mi-adic filtration, the completion Agn of A with respect to the
IM-adic filtration is the projective limit of the quotient algebras A/9M equipped with the
family of homomorphisms p{ C A/ — A/ for j > i defined by pg(a—l—imj) = a+ML
It is a subalgebra of the direct product

Agy := lim (A/M")

n—oo

= {a = (ay,a9,---) € IA/M" ; pg(aj + M) = a; + M for all j > i}

The completed ring Agy is equipped with maps p; : Agp — A/ for all j such that
for j > i, pl o p; = pi.

If A is local with maximal ideal 9t then Agﬁ is a local ring with the maximal ideal
M, where M = {a = (a1, a9, ---) € I;A/M'; a; = 0}.

In case the natural map A — Agy is an isomorphism, then we say that A is complete
with respect to 9. In this case we shall always assume that dim(9F/MF+1) is finite
for all k.

Example 4.5.1. If A = R[xy, -+ ,x,] is a polynomial ring over the ring R, and M =<
X1, , &y >, the ideal generated by x1,--- ,x,, then the completion Agﬁ of A with

respect to M is the formal power series ring
Aoy R[[xy, -+ ,zp]].

Definition 4.5.2. Let A be a complete local algebra, where MM is the mazximal ideal in
A. A deformation A of L with base A is called formal if the A-Leibniz algebra structure
A on

ABL = lim ((A/M") & L),

n—oo

is the projective limit of deformations A\, with base A/ON™.

Example 4.5.3. If A = K][[t]] then a formal deformation of a type of algebra L
(associative, Lie, Leibniz etc.) over A is a formal one parameter deformation of
L [Ger6]|Ger6l[Ger68,|Ger7j]. For example, the deformation \ of a Leibniz algebra L
with base A = K][[t]] is given by the bracket

A= [——]+Mt+ Aot? + -+ , where \; € CLQ(L; L)
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with [—, —] being the original Leibniz bracket on L. This is studied in [Bal97].

Definition 4.5.4. A formal deformation of a Leibniz algebra homomorphism f : L —
M with base A, where A is complete, is a deformation ® = (A, j; fr,) which is obtained
as a projective limit of deformations ®, = (An, tin; fr,p,) with base A/OM™.

Example 4.5.5. If A = K[[t]] then a formal deformation (¢, ue; ft) of f: L — M is

a Leibniz algebra homomorphism f; : Ly — My of the form

fr="F+fit+ fot’ +--- .

Here each f; : L — M is a K-linear map for i > 1, and Ly = LexK][[t]] ,
My = MexK][[t]] are formal one parameter family of deformations of L and M given
by brackets Ay and pq, respectively. This is studied in [Man07).

Definition 4.5.6. For a formal deformation © of f with base A, p2,® is called the
infinitesimal part of ® and ay, o is the differential of ®, where pa : A — A/OM? is the

map introduced above.

More generally, let ®j, denote the push-out p;,®, where p : A — A/9MF. Then
D}, is a deformation with base A/MF.

Definition 4.5.7. For a formal deformation ® = (X, p; fx,) of f with base A, the linear
map

ap, : (M/M?) — CL*(f; f)

defined by ap,(§) = (0r,6r Ay ¢; frops,g) @5 called the infinitesimal of the deformation
9. More generally, if ap, = 0, the zero map for 1 < k < n, and ap,,, is a non-
zero linear map, then ag, ., is called the n-infinitesimal of the deformation ®, where
Dk = PrsD.

Remark 4.5.8. Note that for every n,
0 — Mm/mtt — A/t — A/M — 0

is an extension of the algebra A/IMM™ and D, +1 is an extension of the deformation Dy,

from the base A/9M™ to the base A/OM™FL.

Proposition 4.5.9. The infinitesimal ap, of the deformation ® takes values in cocycles

in CL2(f; f). More generally, the n-infinitesimal o, ., takes values values in cocycles

in CL2(f; f).

Proof. By Theorem [E5l ap,(€) is a 2-cocycle in CL2(f; f). In general let

ap, © (M/MFY — CLA(f; f)



Chapter 4: Extension of deformations 94

be the k-infinitesimal of the deformation ®. Consider the extension
ik+1 pk+1
0 — mk/mk-{-l k_) A/mk-{-l k_} A/mk —50

of A/9M*. The maximal ideal of A/9M* is M/9M* and the maximal ideal PT/MF+1
of A/OMF1 is given by IMM/MMF+L = M/MF @ 9MF /MF+L. Let dim(9M/MF) = r and
dim(9ME JMEFL) = 5, so dim(IM/MF+1) = r + 5. Let {m; + MF} <<, be a basis of
M/MMF and {m,; + 93?]‘“+1}1§i§3 be a basis of MMF/MF+1. Thus we get a basis of
M /OME+HL which we write as {m; }1<i<rts-

From definition, auo, (m}) = (ax, m!, Ay mts Fague,m:)- 1t is sufficient to show that

_
dog, (mg) = (6a>\k,m§’ 60‘;%7771;; fa)\k,mé - O‘Mk,méf - 6f>\kuk,m§) =0

for 1 <14 < r+s. Notice that Dy, is an extension of D;_; and ap, is the k-infinitesimal,

so ap, (Mm}) = ap, ,(m;) =0 for 1 <i < r. Thus Dy = (Ag, tk; fr,) 18 given by the

following.
r+s
[1 ®0,1® lg])\k =1® [ll,lQ] + Z m; ® Oé>\k7m;(l1,l2), for l1,lo € L
i=r+1
r+s
[1 ® 27, 1® xg]uk =1® [1‘1,.%’2] + Z m; & Oémmmé(.%'l,xg) x1,To € M and
i=r+1
r+s
Prm (1@ =10 )+ > My & f,um (1) for L € L.
i=r+1

Now {m;}ri1<i<rts is a basis of MMF/MEFTL and (9% /9MF+1)2 = 0. Thus by the
analogous computations as in Theorem 5T we get oy, m = 0 = ooy, m and
fozAk,m; — O‘uk,méf — 6f)\wk7m; =0 for r+1 < i < r+s. Consequently, ap, (m;) is
a 2-cocycle in CL?(f; f) for 1 <i <r+s.

O

Theorem 4.5.10. A non-trivial formal deformation of a Leibniz algebra homomorphism
is equivalent to a deformation whose n-infinitesimal is not a coboundary (in the sense

that the image of the n-infinitesimal is not contained in 2-coboundaries) for some n > 1.

Proof. Let ® = (A, i1 fau) be a formal deformation of f with complete local algebra base
(A,91). Suppose D has n-infinitesimal ap, ,, for some n > 1. Note that for every k,
D = Pkx® = (i, fis [, ) 18 @ deformation with base A/MMF such that © = lim Dy

k—o0

where pj, : A — A/INF.
Assume that ag,,,(£) is a coboundary in CL?(f; f) for all £ € (/MY
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We claim that ©,,11 is equivalent to the trivial deformation Do = (Ao, po; fo) with
base A/, where \g and pg are given by [1®11, 1®1s]y, = 1®[l1,ls] and [1®@x1,1®
T2luy = 1 ® [w1,29] for Iy,lp € L, x1,20 € M, and fo(1®1) =1® f(I) for | € L.

Let {m; = m;+9M" }1<i<, be a basis of M /M". We extend this to basis {m; }1<i<r+s
of M/ML = M/IM™ @ M™ /M by adding a basis {m, i = myp; + M}l of
oM™ /M. By our assumption ap, = 0, the zero map so that ap, ,, (M) = ap, (M}) =
0 for 1 < i < r as Dy,41 is an extension of D, (cf. Remark 58 ) and ag, ., (M) =
d(u;,vi;w;),m +1 < i <r+ s for some 1-cochains (u;,v;;w;) € CL'(f; f).

We may assume that agp, ., (M) = d(u;,v;;0) as d(u;, vi; w;) = d(ug, v; + dwy; 0) for

r+1<i<r+s. Thus we have following relations
(nn it Qs Panpn.mt) = (0, 605, fug —vif) forr+1<i<r+s. (4.5.1)
Define A/9M" L linear maps

D ((A/MY) @ L, Apy1) — (A/9"H) @ L, \o) by

r+s
P1el) =11+ Z m; @ u;(l) and
i=r+1
W (A @ M, pg1) — (A/D) @ M, o) by
r+s
Vl®zr)=11+ Z m; @ v;(x) for [ € L and z € M.
i=r+1
Observe that
(P(1®@10), P(1®12)]x
r4+s r4+s
=[1®h+ Z m; @ui(ly), 1 @1 + Z mi @ ui(l2)]x,
i=r+1 i=r+1
r+s
= 1@, 1@+ > Ml @ui(l), 1@l
i=r+1
i i (4.5.2)
+ Y millehleul)h + Y mml @), 1©u;(l))
i=r+1 i,7=r+1
r+s r4+s
= 1@ [,k + Y Mm@ i), la] + > mally, ui(la)]
i=r+1 i=r+1

(using mim; =0,r+1<4,5<r+s).
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On the other hand

(I)[l ®Rl,1® lg])\mq

r+s
QA @ [l 1] + Y i @y, g (1, 12))
i=r+1
r+s
=21 [l lo)+ Y m@(1®ay,, a1, l2)
i=r+1
s (4.5.3)
® [, o]+ > mi @ ui((l, 1))
i=r+1
r+s r+s
+ Y Mm@y, () + > My @ ug(ay,,, e (l,12)))
i=r+1 j=r+1
r+s r+s
@[]+ Y mi@ui(ll, b))+ Y mi® oy, (1)
i=r+1 i=r+1

The (A/9M"*1)- linear map ® defines an equivalence of )\, 11 and )g if and only if

[q)(l ® ll), ‘I)(l & lg)])\o — q)([l ®I1,1® 12])\”+1) =0.

Equivalently,
r+s r+s
Z mi®5ui(11,l2)— Z mi®06)\n+1,m;(ll,l2) =0
i=r+1 i=r+1

Equivalently, -7 % | m; ® (Su; — a, 1.m )1, l2) = 0.

From the relations in ([E0.T]) it follows that ® defines an equivalence of A,41 and Ag.
Similarly ¥ defines an equivalence of p,+1 and pyg.

We now check that

\II © f)\n+1l/4n+1 = f © (b

Now

vo f/\n+1un+1
r+s
=U{1® f(I) Z m; @ f)\n+1un+1, (l)}
i=r+1
r+s

= \I/(l &® f(l)) + Z miq/(l ® f)\n+lﬂn+1,m;(l))

i=r+1
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r+s r+s
=10 fO+ Y meu(f0)+ > mi{l® fr, .m0
i=r+1 i=r+1
r+s
+ Z mj®vj(f)\n+1un+17m;(l))}
j=r+1
r+s r+s
=10 )+ Y m@u(fO)+ D Mmi® fr, s ()
i=r+1 i=r+1

(' since (MM/M 12 =0).
On the other hand

r+s

foo(1 @) = fol@l+ > mi®u(l))
i=r+1
r+s

= fol@l)+ > mifo(l @ ui(l))
i=r+1
r+s

=1@fO)+ Y mi® fu(l).

i=r+1

Using the expression fu; — vif = fx, 1y ,me in ERT) we get

\II © f)\n+ll/4n+1 = f o @

Therefore ,,11 is equivalent to the trivial deformation of f with base A/9"+!.
Thus we may assume that ® has (n + 1)-infinitesimal. If agp, , takes values in

coboundaries, we can repeat the argument and the process must stop as ©® = lim D,
n—oo
is given to be non-trivial. O

Definition 4.5.11. A Leibniz algebra homomorphism f : L — M 1is said to be rigid

if any formal deformation of f is trivial.
Corollary 4.5.12. If HL?(f; f) =0, then f: L — M is rigid.

Proof. Since HL?(f; f) = 0, any 2-cocycle in CL?(f; f) is a 2-coboundary. Suppose D is
a formal deformation of f with base A. By Theorem B5Tl as, (§) is a 2-cocycle, hence a
coboundary in CL?(f; f) for any & € (9/9M?)". Then as shown in the proof of Theorem
ELTO, ©- is a trivial deformation. But then by Proposition E5, the 2-infinitesimal
takes values in cocycles and hence in coboundaries. By repeating the argument, we see

that ®,, is trivial for every n. Hence ® = lin 9, must be trivial. O

n—oo
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Suppose A is a complete local algebra with the maximal ideal 91. Let
a: (MM — HL(f; f)

be any linear map and ® be an infinitesimal deformation with base A/9? and ap = a.
For instance, let {1m;}1<;<, be a basis of M/M? with {}1<i<, be the corresponding
dual basis of (M/M?)". Consider a linear map a : (IM/M?) — CL2(f; f) such that
a(&) = [a(&)], 1 < i < r. Suppose a(&) = (¥, ¥ f;). We define a deformation
D = (A, 5 fru) of f with base A/M? as follows.

M®h,1®by=11 [, + Zmz @ (11, 12),

i=1

T
1®21,1®z0]) = 1@ [w1,72] + Y my @9l (w1, 22),
i=1

Pp(1@h) =1 f(l1) +>_mi ® fi(la) for ly,ly € L and 21,25 € M.
=1

Then ap = a.
Suppose the deformation © can be lifted to a deformation Dy with base A/9M* for

k > 2. Consider the extension
k41 k+1
0 —s mk/mk+1 LN A/mkﬂ Pr_, A/mk 0,

representing a cohomology class [t] € H%, . (A/9F; M), where My = 9k /ok+1,
Let 0y = On, ([¥x]) € My, ® HL3(f; f). Then by Proposition EEZ0 we obtain

Proposition 4.5.13. Let A be a complete local algebra with the mazimal ideal IN.
Let a : (MM/M2?) — HL2(f; f) be a given linear map. Let ® be any infinitesimal
deformation with base A/9M? and ap = a. Then there exists a formal deformation of
f with base A and with the given map a as its differential if and only if 0 = 0 for all
k> 2.

Corollary 4.5.14. If HL?(f; f) = 0, then every linear map
a: (M/M?) — HL*(f; f)

is the differential of some formal deformation © of f with base A.
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We end this chapter with the definition of a versal deformation of a Leibniz algebra

L.

Definition 4.5.15. A formal deformation n of a Leibniz algebra L with base C' is called
versal, if

(i) for any formal deformation X of the Leibniz algebra L with base A there exists a

homomorphism f : C — A such that the deformation X is equivalent to f.n;
(ii) f is unique whenever the the mazimal ideal MM of A satisfies the condition IM? = 0.

An explicit construction of a versal deformation will be given in the next chapter.
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Chapter 5

Construction of a Versal

deformation of Leibniz algebras

5.1 Introduction

The present chapter is devoted to give a construction of versal deformation of a given
Leibniz algebra L with dim(HL?(L; L)) < co. We begin with the universal infinitesimal
deformation 7n; of L with base C as constructed in Chapter 3, and apply the tools
developed in the last chapter to get a finite dimensional extension 7 with base Cs.
We Kkill off the possible obstruction associated to the extension problem for the specific
extension (Z37]) of C; to obtain 7, with base Cy. We repeat this procedure successively
to get a sequence of finite dimensional extensions 7 with base C). The projective limit

C = lim Cj is a complete local algebra and n = lim 7 is a formal deformation of L

k—o0 k—oo

with base C'. We show that the algebra base C can be described as a quotient of the
formal power series ring over K in finitely many variables. Finally we prove that the

formal deformation 7 is a versal deformation of L with base C.

5.2 Construction of a formal deformation 7

Let L be a Leibniz algebra satisfying dim(H L?(L; L)) < co. As in Chapter 3, we denote
HL*(L;L) by H.
Set Cp = K and C; = K@ H'. As in Section B4, we consider the algebra C; as a

finite dimensional extension of K given by the trivial extension

0—>H'i—1>01£>00—>0,

101
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where the multiplication in C is defined by
(k1,h1)(k2, ho) = (kika , kiha + kaohy) for (ki,h1), (Ko, he) € C1.

Let 11 be the universal infinitesimal deformation of L with base C] as constructed in
Section B4l We proceed by induction. Suppose for some k > 1 we have constructed a
finite dimensional local algebra Cj in C and a deformation 7, of L with base C} such

that pr.k = k-1
Consider a linear map

i Hy o (Cis K) — Hom(S%Cy; K) = (S2Cy)

where py; takes a cohomology class [¢)] to a cocycle representing it. Such a linear map
can be obtained by fixing its values on a basis of Hy,,,.(Ck;K) and then extending it

linearly (as in (Z32) ). Let the dual map of py be

CLT‘T‘(

e S2C), — HIQMW(Ck;K)/.

We have seen that f is a cocycle and represents a cohomology class in the second
Ci; K)'. Therefore by Proposition

B33 the cohomology class of f; corresponds to an isomorphism class of extensions of

Harrison cohomology of C with coefficients in H%aw(

C} represented by an extension
0 — Hyjopr (Cis K) %5 Gy 28 0 — 0. (5.2.1)

For this extension we now consider the problem of extending the deformation 7y of L
with base C as discussed in Chapter 4. As in ([ZZZI]) the associated obstruction is
0x([fx]) € H%,,,(Cr; K) @ HL3(L; L). By Proposition BZ], 05 ([fx]) gives a linear map

wy : Hy, (Cr: K) — HL3(L; L) (5.2.2)

with the dual map
wi'  HL3(L; L) — H¥r (Cri K.

Thus to get an extension of 7, we modify the extension ([EZT]) to a new extension of
C}. for which obstruction vanishes.
We take the quotient module coker(w,) of H

Harr

(Ck; K)' and obtain an induced
extension of the algebra Cj, by coker(w;) as in the commutative diagram in Figure B.]

where the vertical arrows are projection maps.
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U1 5 Dr+1

0 —— H?{a'rr(ck'; K)/ Ck+1 - k — 0
Hir o (CriK) Ch
0 S HBmD e, LS C = 0
Figure 5.1:

This yields a new extension
0 — coker(w,) — Cri1/ips1 o wh(HL}(L; L)) — Cp, — 0.

Observe that coker(wy,) = (ker(wy))’, so it induces an extension

0 — (ker(wg)) 22 Cpyr 28 Cp — 0 (5.2.3)
where Cyy1 = Cri1/ig+10 Wy (HL3(L;L)') and igi1, pry1 are the mappings induced
by ixy1 and Pyy1, respectively. Since C}, is finite dimensional, the cohomology module
H%arr(Ck; K) is also finite dimensional and hence by Proposition Z3H, Cy41 is in C as

well.

Remark 5.2.1. It follows from Proposition [2-3 that the specific extension [ZZ1) has
the following “universal property”. For any Cyx-module M with MM = 0, (2Z1) admits

a unique homomorphism into an arbitrary extension of Cy:
00— M —B— C, —0.

As a consequence we get the following result.

Proposition 5.2.2. The deformation n, with base Cy, of the Leibniz algebra L admits
an extension to a deformation with base Cyy1, which is unique up to an isomorphism

and an automorphism of the extension

0 — (ker(wg)) Bty Crt1 B O — 0.

Proof. From the above construction of the extension (Z3]) it is clear that the corre-
sponding obstruction map is the restriction of wy to the submodule ker(wy) and is given
by

Wi |ker(wy) * ker(wg) — HL3(L; L).

Hence, it is the zero map. Thus the result follows from Theorem O

Therefore we get a new deformation 1 of L with base Cy,1 extending the deforma-
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tion 7, endowed with the projection map pgy; : Cp+1 — Cf such that pgi1,m6+1 = M-
Using induction on k, the above process yields a sequence of finite dimensional local

algebras C} and deformations 7 of the Leibniz algebra L with base C},
K& o By 2 Lo Oy

such that pri1,mk+1 = Mk. Thus by taking the projective limit we obtain a formal
deformation 7 of L with base C' = lim Cj.

k—o0
5.3 Versality property of n

Suppose dim(H) = n. Let {h; }1<i<n be a basis of H and {g; }1<i<n be the corresponding
dual basis. Let K[[H']] denote the formal power series ring K|[g1, ..., gn]] over K in n
variables g1, ..., gn. A typical element in K[[H']] is of the form

o
Zaiai(gla cee 7gn) = Qo + alal(gh' .- 7gn) + G,QOéQ(gl,. .. 7gn) + - )
=0

where a; € K and «; is a monomial of degree ¢ in n-variables g1,...,g, fori =0,1,2,....
Let 9t denote the unique maximal ideal in K[[H']], consisting of all elements in K[[H']]
with constant term being equal to zero.

The next result gives a description of the finite dimensional local algebras Cf, for

k > 1 constructed above.

Proposition 5.3.1. For k > 1, Cy = K[[H']]/I; for some ideal I}, satisfying M? =
I; DI, D ... D I, DML and the mazimal ideal of Cy, is M/I},.

Proof. By construction of the universal infinitesimal deformation 7, the algebra base
C; = Ko W = K[[H']]/9M?2. Take I; = M? > M3. Clearly, the maximal ideal of C; is
M/M2 =M/ 1.

We use induction on k to prove the result. Suppose we already know that Cj =
K[[H]]/ I where M2 > I, D ML,

Then taking A = K([[H']] and I = I} in Proposition , we get

HIQJ(MT(CIC; K) = (Ik/QﬁIk)/

Then the algebra Cj 1 which is the extension of Cy by H%,,..(Ck; K)' can be written as

arr
Cry1 2 K[[H]] /9, by Proposition B2

By construction in the previous section, Cy1 is the quotient of C 1 by an ideal con-



105 5.3 Versality property of n

tained in H%,,, (Crp;K) = I, /I, C 92 /M. Let Iry1 /M) be the ideal by which
we take quotient of Cy i1 to get Cry1. So 1 /M C I/, C N2 /M.

Therefore Oy 1 = Cry1/(Ipr1/MIy) =2 K[[H'])]/Ixr1 where M2 D Iy 1 D M O
9MF+2. Then the maximal ideal of Cjyq is 9/Ixy1. The proof is now complete by

induction. O

Remark 5.3.2. In Proposition [Z239, the projection map p : A/9MI — A/I is induced
by the inclusion MI — I. So the projection map pgy1 : Crr1 —> Cy for k > 1 discussed
in the Proposition I3 is given by the natural map prp1(f + Ixy1) = [+ Ix.

Corollary 5.3.3. For k > 2 the projection p : Cp, — Cir_1 induces an isomorphism

(99;;//[]’“]“ ) — (99;;//[[’“]:1)'. Moreover, the differential dny, : (9972//1;“16)’ — H is the identity

map.

Proof. By Proposition B3], we have Cp = K ; 7 = (K @ H') = K[[H']]/9MM? and for
k> 2 Cp = K[H)]/I where M2 =1, DI, D ... D I D M+,

By Remark B3 the projection pp : Cxy — Ci_1 is given by pp(f + I) = f +
I for f € Cp and k > 1. The map pi gives rise to a surjective linear map pk\gm/fk :
M/ I, — M /11 by restriction of py on the maximal ideal M /) of Cj. Consider the
quotient map qx : M/I_1 — 939)1?2//111__11' Thus qx, o (prlow/z,) = M/ I, — 939)1?2//111:_11 is a
surjective linear map with kernel 9t?/I;.. Consequently we get an isomorphism

ML M/I
M2 /I M2/ 111

As a result we get the desired isomorphism

M/ I M/Iy
S (hcnv/al it S0
M2 /I M2 /I
!/
In particular any k > 1 we get <;‘g/ /Ilkk) ( 2),. Observe that C; = K @ H' has the
maximal ideal H' with (H')*> = 0. Hence (g )" = (H')’ = H.
By definition, the differential dny, : <M) = ( ﬂ)I — H is given by

E
< §|§

|

D2/, 2

dni(hi) = any (M) = Qrp g b = (O mp,hs)> the cohomology class of ar, e hi
where 7, @ C, — Cy/(OMM?/1},) is the canonical projection. Now pg.nmx = nr_1 for
k> 1 and p(h; + I) = h; + 1. Thus from F32) and [EZT) it follows that oy, 5, =
Qe by = = oy py, = p(hy) for 1 <4 < n. Also we have ar, y n, = Oy, = p(hs)
fori<i<n.

Therefore dny(h;) = [0ty myohs) = [10(Rs)] = Ry O

i
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Proposition 5.3.4. The complete local algebra C = lin Cy can be described as C' =2

k—o0

K[[H'])/I, where I is an ideal contained in 9M? and the mazimal ideal in C is M/I.

Proof. Consider the map
6+ K[H]] — Ci = K[W)/T; defined by ¢(f) = f + Ik for f € K[[H].
Since Ij, D MFFL the map ¢ induces a surjective linear map
o - K[[H')] /MM — Oy = K[[H']]/I), for each k > 1.
In the limit we get a surjective linear map

6 K[H] = lim K[H])/M — lim G, = C.

k—o0 k—oo

given by o(f1+M2, fo+ M3, -+ ) = (b1 (fr+M2), po(fo+M3), -+ ) = (fi+]1, fot Do, --).
Therefore we get an isomorphism C' 2 K[[H']]/ker ().

Let I denote the ideal ker(¢) = N, Ix C M2 So C = K[[H]]/I. Clearly the
maximal ideal of C' is M/I. O

Finally we prove the versality property of the formal deformation n with base C.

We need the following standard lemma.

Lemma 5.3.5. Suppose 0 — M, SN B, 25 A — 0 is an r-dimensional extension

of A. Then this extension yields an (r — 1)-dimensional extension
0— M,y —— B,y 2 A—0

of A and a 1-dimensional extension
0 —K—B,— B,_1 — 0.

Proof. Let {z;}1<i<r be a basis of M,. We take M,_; = M,/ < z, > and B,_; =
B, /i(< x, >), where < z, > denotes the 1-dimensional submodule over K spanned by
x,. Then we get an (r — 1)-dimensional extension 0 — M, _t, B, SLIy N 0,
where 7 and p are maps induced by i and p respectively. If p’ : B, — B,_1 is the

quotient map then the 1-dimensional extension in question is

0 —< 2, >— B, 25 B,_; — 0.
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Theorem 5.3.6. Let L be a Leibniz algebra with dim(H) < oo. Then the formal

deformation n with base C constructed in Section [L3, is a versal deformation of L.

Proof. Suppose dim(H) = n. Let {h;}i<i<n be a basis of H and {g;}i1<i<n the corre-
sponding dual basis of H'.

Let A be a complete local algebra with maximal ideal 9t and A be a formal defor-
mation of L with base A. We want to find a K-algebra homomorphism ¢ : C — A
such that the deformation A is equivalent to the push-out ¢.n of the deformation n via
the map ¢.

Denote Ag = A/ = K and A; = A/M? =2 K @ (M/M?). Since A is a complete

local algebra, we have A = lim A/MF. Moreover, for each k > 1 we have the following

k—oo
finite dimensional extension

mk A, A

O gt e T o

—0 (5.3.1)

. k
because dzm(%) < 0.

Let ng = dzm(mmTil) A repeated application of Lemma B30 to the extension

m? A A
0= — o e M0

yields nq number of 1-dimensional extensions as follows.

0 —K—A4 — A4, —0

0—K— A3 — A9 — 0

A

0—>K—>An1+1:W — Ap, — 0.
Similarly, the extension
m3 A A
0—>——>——>—:Am+1—>0

om M4 oms3
splits into ny number of 1-dimensional extensions and so on. Consequently, we get a

sequence of 1- dimensional extensions

0_>Kj’“—“>Ak+1q’“—“>Ak—>o D k> 1.

Since A = lim A/ME it follows that A = lim Ag. Let Qi : A — Aj be the projection
k—oo k—o0

map for the inverse system {Ay, qx }x>1 with the limit A, where Q1 : A — A; = A/9M?
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is the natural projection. Let Qr, A = Ag, then A\ is a deformation of L with base Ay.
Thus Ay = Qi = (k41 © Qk+1)sA = Qrt1, \+1- Now we will construct inductively
homomorphisms ¢; : C; — A; for j = 1,2..., compatible with the corresponding
projections Cj11 — Cj and Aj;1 — Aj, along with the conditions ¢; n; = A;.
Define ¢ : C1 — A as

(id® (d\)) : Ko H — Ko (9/9Mm?).

From Theorem BATIl we have ¢1,1m1 = 1.
Suppose we have constructed a K-algebra homomorphism ¢ : Cp — A with
Ap;K) — HZ (Cr; K) induced

Gk = Ao Consider the homomorphism ¢} : H Farr

by ¢i. Let

G,T‘T‘(

0—>Kik—+1>Bpk—+}Ck—>0

represent the image under ¢; of the isomorphism class of the extension (Proposition

Z33)

Jk qx
0—>K—+1>Ak+1—+l>Ak—>0,

Then we have a commutative diagram

0 K Yk+1 B Pr+1 Ch 0
(0 l o
Jk+1 Qr+1
0 K A1 k 0
Figure 5.2:

where 1 is given by ¢((z,k)q) = (¢ (), k), for some fixed sections g and ¢’ of py41
and g1 respectively. Observe that by Proposition L34 the obstructions in extending
Ar to the base Ag11 and that of 1, to the base B coincide. Since A\ has an extension
Ak11, the corresponding obstruction is zero. Hence there exists a deformation £ of L
with base B which extends 7, with base C} such that ¥.& = A\p11. By Remark B2 we
get a unique homomorphism of extensions given by the commutative diagram in Figure

Since the deformation 7; has been extended to B, the obstruction map
Wi - HIZ'{arr(Ck; K) - HLg(Lv L)

is zero and hence wy, is also the zero map.

Therefore the composition 7/ o wj : HL¥(L; L)) — K is zero. Consequently, 7/
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Figure 5.3:
induces a linear map
T Hi1pp (O K)' Jwi (HLP(L; L)) — K.
Moreover the map ¥ : Cj41 — B induces a linear map
X : Crg1 = Crgt fips1 o wip(HL?(L; L)) — B.

Since coker(wy,) = (ker(wy))’, the last diagram yields the following commutative dia-

gram.
0 ——=(ker(wy)) ——=Crs1 C 0
0 K B Ck 0
Figure 5.4:

By Corollary B33l the differential

NELNTAN
dnk.<im2/lk> — H

is onto, so by Corollary IE32, the deformations x.mrr1 and & are related by some

automorphism u : B — B of the extension
0 —K-—B—C,—0

with us(X«nk+1) = & Now set ¢p11 = (Y ouox) : Cyp1 —> Agy1, where ¢ is as in
Figure As push-out is preserved under composition of maps (Proposition B:3Hl) we
get

Olit1:Mh+1 = Vs O Us © XaMt1 = Vil = Ajp1-
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Thus by induction we get a sequence of homomorphisms ¢y, : Cx — Ay with ¢,k =
M. Consequently, in the limit, we find a homomorphism ¢ : C — A such that ¢.n = A.
If 92 = 0, then the uniqueness of ¢ follows from the corresponding property of ¢; in
Theorem BZTT1 O



Chapter 6

Massey Brackets, relation with

Obstructions

6.1 Introduction

It is well known that the construction of one parameter deformations of various alge-
braic structures, like associative algebras or Lie algebras, involves certain conditions on
cohomology classes, arising as obstructions. This is also mentioned in this thesis for
Leibniz algebras in Examples and L0 These conditions are expressed in terms
of Massey brackets [Ret77,[Ref93], which are, in turn, the Lie counterpart of classical
Massey products [Mash4]. The connection between obstructions in extending a given
deformation and Massey products was first noticed in [Dou61]. The aim of this chapter
is to study this relationship in our context.

First, we relate obstructions in extending a finite order one parameter deformation
of a Leibniz algebra to Massey brackets of 2-cocycles using the notion of Massey n-
operations as defined by V.S. Retakh [Ret7]. Recall (Definition BZR]) that for (A, M) €
C, the differential of a deformation A with base A of a Leibniz algebra L is a linear
map, (sm/ 93?2), — HL?*(L;L). A natural question is whether any such linear map is
realized as a differential. We prove a necessary and sufficient condition for an arbitrary
linear map a : (971/97{2)/ — HL*(L; L) to be the differential of a deformation with
base A. This is done by using a general approach to Massey brackets as introduced
in [FWO0T]. Finally, we express the obstructions arising at different steps in the inductive
construction of a versal deformation 7 as discussed in Chapter 5, in terms of these general

Massey brackets.

111
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6.2 Massey Brackets

Let L be a Leibniz algebra over K with bracket [—, —]. Recall that a formal deformation
of L (see Example LA3)) is defined as a formal power series

[11, lz])\t = [11, lz] + Zti)\i(lla lz) for \; € CLQ(L; L) and l{,ls € L,
i=1
which makes L[[t]] = L ® K[[t]] a Leibniz algebra. The bracket [—, —]), satisfies the
Leibniz relation is equivalent to the fact that ( [Bal97])
i—1

1 .
0M =0 and 6A; = - > ks ig] for i > 2. (6.2.1)

k=1

Here [Ag, Ai_x] denotes the product in the differential graded Lie algebra structure in
(CL*(L; L), [—,—],d) (cf. Proposition [L3I0).

The first condition 6A; = 0 in (E2ZT]) means that A; is a 2-cocycle. Then [—, —]), =
[—, —] +tA1 is an infinitesimal deformation of L with base K[[t]]/(¢?). This infinitesimal
deformation can be extended to a formal deformation of L with base K[[¢]] if and only if
there exist cochains \; € CL?(L; L) such that each \; satisfies (2Z1]). These conditions
can be conveniently expressed by Massey brackets [Ret77] defined on the graded module
HL*(L; L) (cf. Corollary [C3TT]).

Let M be an ordered set of homogeneous elements of C'L*(L; L), and, P and @ be
non intersecting ordered set of elements of M. Denote by (P, )) the sum of numbers of
form (|| 4+ 1)(|y| + 1) such that € P,y € @ and y precedes x in M, where |z| denotes
the homogeneous degree of x € CL*(L; L). The pair P,(Q is called proper if the minor
element of P precedes the minor element of Q and PUQ = M.

Definition 6.2.1. Let y; = [z;] € HL*(L;L), 1 < i < n. We say that the Massey
operation < yi1,--- ,Yn > s defined for the elements y;, if for m < n and for any
set 1 <1y <ig < -+ < iy < n there exist elements x;,...;,, such that for each ordered
set I = (i), ,x,) we have dxi,...;;, = S (=1 [T5 o ap, . 1,], where the sum
is taken over all proper pairs of the sets J = (xj,-- ,%;,), K = (g, - ,Tk,) and
= (=)= for x € CL*(L;L). The set {x..q,} is called the defining system of
<Y1, ,Yn >

Proposition 6.2.2. [Ret77], The element Ty.., = .(—1)°F) [z, i wp, .k, ], where
the sum is taken over all proper decompositions of the set {x1, -+ ,x,}, is a cocycle.

The cohomology class represented by the cocycle Zy.., is independent of the choice of

different representatives of {y;}.
]
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The class in HL*(L; L) corresponding to ..., is called the value of the operation
< Y1, ,Yn >. Denote by [y1, - ,yn] the set of classes constructed for all defining
Systems.

Mostly we need to consider 2-cocycles y; € HL?(L; L), so that the representative
cochains z; € CL?*(L;L). Then |z;| = 1 and &; = x;. For y; = [v;] € HL*(L; L),
i = 1,2 it follows from Definition that < y1,y2 > is represented by the 2-cochain
x12 obtained from graded Lie bracket [z, z2].

Suppose that y; € HL*(L;L), 1 < i < 3 such that < y;,y; >= 0 for every i and
j. This means that for a cocycle x; representing y; we have [z;,x;] = dx;; for some
2- cochain z;;. Then the third order Massey operation < yi,¥y2,y3 > is defined and is
represented by

(12, 23] + [21, X23] + [713, T2].

The cohomology class is independent of the choice of x;;. The higher order Massey
brackets are defined inductively.
Observe that the obstruction cocycle ¢ in Example can be written as

Sx,y,2) = ) (@), 2) = Ny (,2),9) = Nl 4 (y, 2))}

iFi=N+1
,7>0
) (6.2.2)
25 Z P\Za)‘]](xayaz)
i+j=N+1
1,7>0
It follows from Definition that the cohomology class of
> Al
iti=N+1
1,7>0
denotes the Nth Massey bracket < [A1],---,[A1] >. Now this obstruction ¢ represents
the 0 class if and only if the Nth Massey bracket is defined and [ [A1], -+, [A1] ] (N-

many) contains the class 0. If ¢ = dAx11 then Ay = SN N#7 is a (N + 1)th order
deformation of L with base K[[t]]/(t"V*2).

Using Definition B2, the conditions in ([EZT]) for the bracket [—, —]», is given by
the fact that the set [ [A1],--- ,[A1] ] (the bracket contain i-many A1) contains 0 for all
1> 2.

Remark 6.2.3. One can establish a similar relationship between Massey brackets and
obstructions that arise in extending deformations not merely with one parameter base

but with more general base. This connection will be used in the next chapter.

Next we recall a more general definition of Massey brackets [FEW01] to relate it to
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the obstruction cocycles obtained in the construction in

Suppose (£, v, d) is a differential graded Lie algebra, v being the bracket and d is the
differential on the graded module £ over K. We denote by H = @, H', the cohomology
of £ with respect to the differential d. For our purpose we consider the differential
graded Lie algebra (CL*(L;L),v,d) (cf. Proposition [[310]).

Let F' be a graded cocommutative coassociative coalgebra, that is a graded module
with a degree 0 mapping (comultiplication) A : FF — F ® F satisfying the conditions
SoA=Aand (19 A)oA=(A®1)oA, where

S FRF—FQF

is defined as

S(p@y) = (-1 e g).

Suppose also that a filtration Fy C Fy C F is given in F', such that Fy C ker(A) and
Im(A) C Fy ® F1. We need the following result (see [FW0I]).

Proposition 6.2.4. Suppose o linear mapping o : 1 — L of degree 1 satisfies the
condition
do=vo(a®a)oA. (6.2.3)

Then vo (a® «)o A(F) C ker(d).
U

Definition 6.2.5. Let a : Fy — H, b : F/Fy — H be two linear maps of degree 1
and 2 respectively. We say that b is contained in the Massey F-bracket of a, and write
b € [alp, or b € [a], if there exists a degree 1 linear mapping o : Fy — L satisfying
condition (ZA) and such that the diagrams in Figure [G1 are commutative, where

the vertical maps labeled by w denote the projections of each module onto the quotient

module.
A
R L B pore@®aen )
T T T
Jo— o FIF—b oy

Figure 6.1:

Note that the upper horizontal maps of the above diagrams are well defined, since
a(Fy) C alkerA) C ker(d) by virtue of (G2Z3)), and v o (« ® a) o A(F) C ker(d) by
Proposition B241
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The definition makes sense even if Fy} = F. In that case Hom(F/F, K) = 0, and
[a]p may either be empty or contain 0. In the last case we say that a satisfies the
condition of triviality of Massey F-brackets.

Let (A,9t) € C be a finite dimensional commutative local algebra with 1. Let
e:A— A/M =K be the canonical augmentation.

Suppose p: (AR L) x (A® L) — (A® L) is an A-bilinear operation on A® L (p
need not satisfy the Leibniz identity) such that (e ®id) : A L — K® L = Lis a
homomorphism with respect to the operation p on A® L and the Leibniz bracket [—, —]

on L. In other words,
(E ® Zd) o p(a1 Rli,a0 ® lz) = E(alaz)[ll,lg] foraq ®l1,a0 Q1 € AR L.

We prove a necessary and sufficient condition for p to be a Leibniz bracket on A ® L.
Suppose dim(A) = r + 1. Choose a basis {mi,ma, -+ ,mp, Mgs1, -+ ,my} of M
such that {m; = m; + M?}1<;< is a basis of M/M?.
Note that for 1® 11, 1®1l, € A® L we have

(e®id)op(1®11,1®1) =[(e®id)(1®11), (e ®id)(1 ®12)] = e ®id(1 ® [l1,12]).
Therefore
p(l ®R1,1® lg) —1® [11, lg] € ker(a ® Zd) = ker(a) QL =M L. (6.2.4)

Hence we can write
I8
P10, 101) =1® [l k] + Y _ m; @1 for Iy, 1} € L. (6.2.5)
i=1

Any linear map ¢ € (MM/M?) can be extended to a linear map ¢ € M’ by defining

d(m;) = 0 for k+1 < i < r. Denote F = F; = M’ and Fy = (M/M?)". Then we

get a filtration Fy C F} = F. The maximal ideal 91 of A is a commutative associative

algebra. So the dual module M’ = F = F} is a cocommutative coassociative coalgebra

with the comultiplication A : F — F ® F being the dual of the multiplication in 9.
Suppose ¢ € M’ is given, define oy € CL?*(L; L) by

a¢(11, lz) = (¢ ® id)(p(l ®1,1® lz) —1® [ll, 12]) (6.2.6)
for i1,lo € L (cf. (EZ3)). This gives a linear map

a:M — CL*(L;L) defined by ¢ +— a.
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Suppose {m]}1<i<, is the basis of M’ dual to the basis {m;}i<;<, of M. From (GZH)
it follows that Oém;(ll, lz) = (m; X id)(p(l ®R10,1® lz) —-1® [11712]) = l;
Thus

p(1@ 1, 1@ 1) =1® [l 1] + 3 mi @ gy (la,13) for y,ly € L.
=1

So, p and « determine each other.
We now consider the differential graded Lie algebra (CL*(L;L),v,d) (see Proposition
[C3T10) and get the following result.

Proposition 6.2.6. The operation p satisfies the Leibniz relation on A® L if and only
if the map « satisfies the equation do — %1/ o(a®a)oA=0.

Proof. Let 1®11,1®1y € A® L, then from ([G2ZH) we write
P11, 1®1) =1® [l k] + Y m; @i(l1, 1) (6.2.7)
i=1

where 1; € CL?(L; L) is given by ¢; = Q- For 1@11,1®1,1®13 € A ® L we have

p(1 @1, p(1®12,1®13))

=p(1®@11,1® [la,l3] + Zmz @ Pi(l2,l3)) (by @21))

i=1

= p(1 @1, 1@ [la,15]) + > mip(1 @ 11,1 @ 1hi(la, Is))
i=1

® [l1, [l2, 3] + Zmz ®@ (11, [l2,13]) + Zmi ® [I1,¢i(l2,13)]
i1 i1

+ > mim; @1l ¥illa, Is)) (by (EZT).

1<ij<r

Similarly,
Pp(1®1h,1®12),1®13)

=1® ([, ], 1s] + Zmz@”/fz (11, 12].13) Zmz [i(la, 12), 3]

=1

+ > mimy @ (Yl l), ls)

1<i j<r
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and
p(p(l (039 ll, 1® l3)’ 1® l2)

® [l 3], la] + Y mi @ ([, 1], 12) + > mi @ [hi(la, 1), Io]

i=1 i=1
-+ Z m;m; ®7,Z)j(¢i(ll,l3)’l2)'
1<4,5<r

For a linear map ¢ : M — K, let ¢(m;) = x; € K. Then by (E2Z0) and (EZ1) we get

ag(ly,l2) = (¢ ®1d) (Zmz'@?/%(ll,b ) Zﬁﬂz@% h,lb)=1® <Z€U@¢z> (I1,12).

(6.2.8)
This shows that g can be expressed as ), x;1;.
Let A(¢) = Zp &p @np for some &, m, € M. We set &,(m;) = &p; and np(m;) = 1.
Thus

¢(m; m;) = A(¢)(m; ® my) <Z & ® np> (mi ®m;) =D &pi Mp,j-
p

Now

(¢®id)< > mimj®¢j(l17¢i(lz7ls)))

1<i j<r

= > dlmimy) @ ¢ (ly,¢i(l2, I3)

1<i j<r

— Z (ngznpj> Yi(l1,i(l2,13))

1<i j<r

- Z (Z Ep,i (Z vajl/’j(llﬂ/’i(l%l?)))))
P i=1 J=1

=3 (Z £p,ianp(l1,¢i(l2,l3))>
P 1=1

= Za% (Zlv ng,iwi(l% l3)>
P i=1
= ay,(l, ag, (Iz, 1))

p
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Therefore
(¢ @id)(p(1 @ 11, p(1 @ l2,1 ®13)))
= 3 0m) @ il i, b]) + 3 6m) @ [, s 1)
h + i o, (11, e, (12, 3))

p

= agy(ly, [l Is]) + [l (2, 13)] + > ag, (11, g, (I, 13)).

Similarly

(¢ ®@id)(p(p(1 ®@11,1®12),1®13))

= ay([l1, 2], 13) + [ae(lr,l2), l3] + Z o, (ag, (1, 12), I3)

and

(¢ ®id)(p(p(1 @11,1®13),1®13))
= Oé¢([l1,l3],l2) + [Oé¢(l1,l3),lg] + Zanp(agz)(ll,lg),lg).

p

Hence by substituting (E29)-E2Z1), we get

(¢ & id)(p(l ® l, p(l ®Rl,1® lg)) — p(p(l ®0,1®l),1® l3)
+o(p(1®0,1®I13),1® lg))
= ag(l1, [l2,13]) + [l ap(l2, I3)] — ag([l1, 12], I3) — [ (l1,12), 3]

+ a¢([11,l3],l2) + [a¢(11, lg), lg] + Z{aﬁp(h’ Oégp(lg, lg))

— Qp, (aﬁp (ll7 l2)7 l3) + Oy, (aﬁp (l17 l3)7 ZZ)}
1
= 50é¢)(ll, l27l3) + 5 Z[angﬂ a&p](l17127 l3)
p

= (—da + %u o(a®a)oA)p(ly,la,13).

(6.2.9)

(6.2.10)

(6.2.11)

Thus the operation p on A® L satisfies the Leibniz relation if and only if the linear map

o (determined by p ) satisfies the equation da — 3vo (@ ® ) o A = 0.

O

Now let p be a deformation of L with base (A, 9) € C. Then p satisfies the Leibniz
relation on A ® L. From Proposition 28, the linear map a determined by p satisfies
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the equation

1
doz—?/o(oz@oz)oA:O. (6.2.12)

Here A(Fy) = 0, since for ¢ € Fy = (M/M2), £ : M — K is a linear map vanishing
on M2, which gives A(€)(m; ® my) = E(mymy) =0 for 1 < 4,5 <r. So, Fy C ker(A).
Therefore by [EZI2) we get a(Fp) C ker(d).

Let a denote the composition
a: Fy % ker(d) = HL?(L; L), where 7 is the quotient map.

Then from Definition it follows that a is the differential of the deformation p of L
with base A.

Corollary 6.2.7. A linear map a : Fy — HL*(L; L) is a differential of some defor-
mation of the Leibniz algebra L with base A if and only if %a satisfies the condition of
triviality of Massey F-brackets.

Proof. Suppose a : Fy — HL?*(L; L) is a linear map so that %a satisfies the condition of
triviality of Massey F-brackets. From Definition we get, %a : Fy — HL?*(L; L) is
a linear map such that there exists a linear map 2o : Fy = 9 — CL*(L; L) satisfying
d3a)=vo(3a®ia)oAor,da—3vo(a®a)oA=0.

By Proposition B26] the map a determines a A-bilinear operation p on A ® L such
that p is a deformation of L with base A. Also from Definition it follows that the
linear map a : Fy — HL?(L; L) is the differential dp of the deformation p.

Conversely, suppose p is a deformation of L with base A such that the differential
dp is the linear map a : Fy — HL?(L; L). Now the operation p on A ® L determines a
linear map « : ' — CL?(L; L) satisfying the equation do — %1/ o(a®a)oA =0 (by
Proposition EZZH]). This means v o (o« ® a) o A takes values in coboundaries. Hence for
b if we take the zero map, by Definition BZH] %a satisfies the condition of triviality of
Massey F-brackets. O

6.3 Computation of Obstructions

In this section we relate the obstruction wy appeared in Section at the kth stage of
the construction of a versal deformation 1 to Massey brackets.

Recall that a versal deformation n is obtained by constructing a sequence of finite
dimensional local algebras Cj with maximal ideals 9, and deformations 7 of the

Leibniz algebra L with base Cj yielding an inverse system

p1 p2 P3 P Dk+1
K Cy = Cy+—...... O Crgr
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with pr41,Mk+1 = 7k, so that n is the projective limit of n,. Taking the dual of the

above system we get a direct system
P ;P ; Ps P}, ’ Phi1 /
K—CC —Cy—>...... — O — Ciyq - -
Moreover, the corresponding maximal ideals 91 give another system

Ph

/
p Pl Pry1
Lo, ol = —= My, — My

K —

where each pj, is an injective linear map. In the induction process, for any k we get an

extension of C given by
0— H%arr(ck; K)/ Zk—-H) C_’kJrl Ijk—H’ Crp — 0. (631)

The cohomology class represented by the obstruction cocycle in the extension process
gives a linear map (cf. (BZZ))

wi : Hy, (Cii K) — HL3(L; L).
To kill this obstruction, we consider the new base
Crs1 = Crpr figr1 0 wp(HLY(L; L))

Take F = (My41), F1 =M}, and Fy = M) = HL*(L; L).
From the extension ([G3.0) we have F/Fy = (My41) /M, = HY

can be viewed as a linear map

Ck; K). Thus wy

arr (

wy: F/F, — HL3(L; L).

Theorem 6.3.1. The map wi obtained from the cohomology class represented by the
obstruction cochain, has the property, 2wy € [id]|p. Moreover, an arbitrary element of
[id]F is equal to 2wy, for an appropriate extension of the deformation n1 of L with base

C1 to a deformation n, of L with base Cy.

Proof. By Definition G238, in order to show that 2wy € [id]r, we need to find a linear
map o : Fy — CL?(L; L) satisfying the condition (E223)) such that the diagrams in
Figure are commutative. Here the projection map in the first diagram in Figure B
is the map CL?(L; L) — HL?(L; L), the left vertical projection in the second diagram
is F = (Myps) — F/F = H,,
map CL3(L: L) — HL3(L; L).

Consider 7, a deformation of L with base C} extending the deformation n; of L

(Ck; K) whereas the right vertical projection is the
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with base Ci. Now [—,—],, is a Leibniz algebra structure on Cy ® L. As in (GZ8)
define
oM, — CL*(L; L)

by a¢(11, lz) = ((ﬁ@id)([l@lh 1®l2]7ik —1®[11, lz]) for ¢ € m% and [1,ly € L. Since Ny 1S
a Leibniz algebra structure on Cx® L, Proposition B2Z8 implies that da = %I/O(Oé@a)OA.
Observe that a|g, : Fy — CL?(L; L) is given by a|g,(h;) = u(h;), a representative

of the cohomology class h;. So the composition
a=moalg : Fy — H

is the identity map.
Now consider the extension Cii; (given in @3J)) of Cx by H%,,.(Ck;K) and

recall that wy is a linear map determined by the cohomology class represented by the

arr

associated obstruction cocycle.
Let {mi}i<i<r be a basis of M. We extend this to a basis {m;}1<i<r4s of the
maximal ideal My 1 of Cjy1. Let the multiplication in 9,1 be defined (on the basis)

as
r+s

my mj:Zcfjmp for 1 <i,5 <r+s.
p=1
Then the comultiplication obtained by taking the dual of the multiplication in 901,
A N (95?k+1)/ — m; ® m’t;{:

is given by A(m;,) = Z;;‘:l ijm; ® m;».

As in (BZ2) we write the Leibniz bracket [—, —],, on C} ® L as

k

1@, 1®l1),, =1®[h,l]+ Zmz ® (11, 1a).

i=1

From the definition of a we have a(m})(l1,12) = ¢i(l1,12) for i < r. For arbitrary
cochains ¢; € CL?(L; L), r +1 < i < s, a Cj41-bilinear map {—,—~} on Cj;1 ® L is

given by
r+s

(1o, 10kt =1,k + Y mi @ ¢, l).
i=1
( Compare the construction of the obstruction map in Chapter 4 .) To prove that «

and 2wy, satisfy required conditions we proceed as follows.
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For 1®1;,1®1,1®13 € My @ L,

H{l®h,10k}, 113}

r+s
={1®[l1,lo] + Zmz ® Yi(l1,12),1 ® I3}
i=1
r+s
= {1® [, k), 1@} + > m{l@1(l1,1),1 @15}
i1
r+s r+s
@ ([l 1o, Is] + > s @ ([l o), 1) + Y 1ms @ [i(ly, 2), 3]
i=1 i=1
+ Z m;m; @ T,Z)j(¢i(l1al2)’l3)
ij=1
r+s r+s
=1®[[lL,l2],13] + Zmz®¢z (l1,12],13) Zmz [Vi(l,12),13]
=1
r r+s

+ Z Z My @ P;(Yilh, 1), 13).

i,j=1p=1
Similarly,
{{1oh,1®13},10 1}
r+s rts
@ [l ), ba) + > s @ i, ), 1) + D s @ Wil o), o
=1 i=1
r r+s
£ 303 g © (.l )
t,j=1p=1
and
{1oh,{1®1,1®I}}
r+s r+s
@ [, [, L)) + Y 7 @ il o, ) + Y 7 @ [, i, 1)
i=1 =1

r r+s

+ Z Z mp®¢J l1,¢2(l2,13))

3,j=1p=1
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Therefore

(my, @ id)({1 @1, {1®1, 125} —{{1®5,10k},1913}
+ {{1 ®1,1® lg}, 1® lg})
= Yi([l1, 2], 13) + [i(l1, 12), I3] — ¥i([l1, 3], 12) — [l 13), L] + i(la, [l2, 13])

+ [l ¥i(l2, 13)] + Z (i (illr,l2),13) — ¥ (i(lr, 13), I2) + i (l, ila, 13)) )

1,7=1
= 5¢p(l1, 1, 13) + Z (05,10 (1, D, 1s)
3,j=1
1
= 51/)p(l1,l2,l3) + —-rvo (Oé@()é) OA(m;))(ll,ZQ,lg)

2
1
= — da(m;)(ll,lg, l3) + 5 Vo (a ® a) o A(m;))(ll, l2,l3).

Thus with b = 2wy, and a = [a] = id|p, —pr2(1;1), the conditions in Definition are
satisfied. This completes the proof. O
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Chapter 7

Computations and examples

7.1 Introduction

The aim of this final chapter is to illustrate the theory developed in this thesis by
two examples. First example is a three dimensional nilpotent Leibniz algebra over C.
We compute cohomologies necessary for our purpose, Massey brackets and construct a
versal deformation of this example, [Man08].

Since any Lie algebra L is a Leibniz algebra it is natural to investigate whether one
recovers the same deformation picture of L if it is seen as a Leibniz algebra. Our next
example is a three dimensional Lie algebra over C. This example illustrates that a Lie
algebra L when viewed as a Leibniz algebra may admit new deformations which are
Leibniz algebras but not Lie algebras. Moreover, versal deformation of L as Lie algebra

and that of L when viewed as a Leibniz algebra may differ.

7.2 Computation of second and third Leibniz cohomology

of a nilpotent Leibniz algebra

Consider a three dimensional module L spanned by {e1, €2, es} over C. Define a bilinear
map [—,—] : L x L — L by [e1,e3] = e2 and [e3,e3] = eq, all other products of
basis elements being 0. Then (L, [—, —]) is a three dimensional Leibniz algebra over C.
The Leibniz algebra L is nilpotent and is denoted by Ag in the classification of three
dimensional nilpotent Leibniz algebras (see Example [LZ6]).

To construct a versal deformation of A\g, we need to compute the second and third
cohomology modules of A\¢ = L. First consider HL?(L;L). Our computation consists

of the following steps:

(i) To determine a basis of the module of cocycles ZL?(L; L),

125
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(ii) to find out a basis of the coboundary module BL?(L; L),

(iii) to determine the quotient module HL?(L; L).

(i) Let ¢ € ZL*(L;L). Then ¢ : L ® L. — L is a linear map and ¢ = 0, where

(e, e5,ex) = [ei, P(ej, er)] + [Y(eis er), ej] — [Y(eise;), ex] — ¥([eis ej], ex)
+ ¢(6ia [ej’ 6k]) + ¢([ei’ 6k]a 6]) for O < iaja k <3
Suppose the linear map ¢ is defined by v (e;,e;) = Zizl af’jek where aﬁj e C for
1 <i,j,k < 3. Since 1 = 0, equating the coefficients of ey, e5 and eg in the expression
of 01(e;, €5, ex) we get the following relations:

1 _ .3 _q. 1 _ .3 _ . 1 .2 _ .3 _
a1 =0a11 = 0; Q10 = a1 = 0; Ay =031 = Qg1 = 0
1 _ .2 _ .3 _q. 2 _ .3 _ (. 2 _ .3 _
Ug9 = U39 = G359 = 0; agy =az; = 0; azo =azy =0
3 _ . 2 _ 1 _ .3 . 2 _ 3 _ 1
as3 =Y a1y =a3; = —a33, A9 = —0a13 = a32.

Observe that there is no relation among the coefficients af 5, a? 5, ad 5, a3 5, ai 5 and
a§73. Therefore, in terms of the ordered basis {e; ® e;}1<; j<3 of L ® L and {e;}1<i<3 of

L, the matrix corresponding to % is of the form

0 0 3 0 0 =5 21 z2 a7
M = 1 T2 T4 0 0 T6 0 0 T8
0 0 —22 00 0 0 0 -—-m:

where 1 = ail,xg = ai2,$3 = ai3,x4 = a%73,x5 = a%,3,x6 = a§,3,x7 = a§73 and xg =
a§73 are in C.

We define the cocycles ¢; € ZL*(L; L) for 1 < i < 8, by taking z; = 1 and x; =0
for i # j in the above matrix of 1. Then {@; }1<i<s forms a basis of ZL?(L; L). Next
we compute the coboundary module BL?(L; L).

(ii) Let v9 € BL*(L;L). We have ¢y = dg for some 1-cochain g € CL}(L;L) =
Hom(L;L). Let g(e;) = gter + gea + gies for 1 < i < 3. Then the matrix associated
to g is given by

9% g9 g
93 B 93
3 9 g

From the definition of coboundary we get
dg(ei, ej) = [ei, g(e;)] + [g(ei), ej] — g(lei, e5]) for 0 <4, 5 < 3.

The matrix dg can be written as
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0 0 (F—93) 00 g5 g8 g5 (293—91)
g 95 (93+9i—93) 0 0 g5 0 0 (935—g)
0 0 —g3 00 0 0 O —g3

Since 1)y = dg is also a cocycle in CL?(L; L), comparing matrices §g and M we get

T9 = x5 and xg = x1 — 3. Thus we conclude that the matrix of ¢ is of the form

0O 0 =3 0 O T2 r1 T2 X7
r1 X9 Ty 0 0 (1‘1 — .%'3) 0 0 T8
0 0 —a2 0 O 0 0 0 —x

Let ¢, € BL*(L; L) for i = 1,2,3,4,7,8 be the coboundary with z; = 1 and z; = 0 for
i # j in the above matrix of 1. It follows that {¢}, @5, ¢, ¢}, %, ¢} forms a basis of
the coboundary module BL?(L; L). Notice that

P =1+ Pz — Py Py = ¢3.— b6 (7.2.1)
Py = ¢2 + ¢ ¢ = ¢ for i =4,7,8

(iii) For [¢/] € HL*(L; L) = 22%37 we can express the cocycle 1 as

8
1/1221'2(?2 for z; € C

i1
=21(¢) — ¢3 + %) + Tk + w33 + 4@y + 15(P5 — P2) + w6 (3 — Ps)
+ 279, + xs¢y (using [CZI))

=(r2 — x5)¢2 — (71 — ¥3 — T6)P3 + ¢,

where ¢ = 1¢) + x5¢h + (v1 — 26)Ph + T4} + T7¢; + 2890, € BL?(L;L). Thus an
arbitrary element [¢)] € HL?(L; L) is in the submodule generated by {[#2], [#3]}. Also
the set {[¢2], [¢3]} is linearly independent. Therefore dim(HL*(L; L)) = 2.

Next let us consider the module HL3(L; L).
If v € ZL3(L; L), then a computation similar to 2-cocycles shows that the transpose of

the matrix of ¢ is
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T3

0
T6
x7
é(2m2 — 3z + 2x11)
(2216 — 714)
0
0

0
0
0
€5
0
(z1 — @7)
)
o
€12
€5

0

T14
(25613 — 2I1 — T3 — $7)

(xg + $15)

%(3.%'2 + 3xg — 2.%'11) — Iy

($17 — 13 — T10 + 3x7 + 2.%'3)

2
)
T4
x5
0
T17
g
(13 — 10 + 207 + 3 — 221)

T9

T11
(1 —27)
é(?):ﬂz + 3x¢ — 2$11)

(3x16 — x14 — XR)

x19
15
(x14 + 212 — 28 — X4)

20

%(6962 + 26+ x11)
—x

—x9

Z16

Let 7; € ZL3(L; L) for 1 < i < 20 be the cocycle with z; = 1 and z; = 0 for i # j in
the above matrix. Then {7;}1<;<20 forms a basis of ZL3(L; L). So dim(ZL3(L; L)) = 20.
On the other hand suppose v € CL3(L;L) is a coboundary with ¢» = dg. Let
gleiej) = gz{jel + gijeg + ggjeg; for 1 <i,5 < 3. Then the transpose of the matrix of

Y = dg is
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7.2 Computation of second and third Leibniz cohomology of Ag

0 g3, 0
0 921)’,2 0
(51 +9lo—901)  (B1+dia—0gi1+9ls) (931 +982)
0 93,1 0
0 93,2 0
(932 — 91 2) (932 + 935 — 912) 952
(931 — 93.1) (911 +951—931) —93,
(9‘;’,2 - 9%,2) (9%,2 + 93,2 - 9%,2) —93,2
911 (935 +971) gia
0 0 0
0 0 0
(9%,2 - 95’,1) (9%,2 - 95,1) 95’,2
0 0 0
0 0 0
—93,2 —g%g 0
93,1 95,1 0
93,2 95,2 0
9%,1 9%,1 93,1
gil 0 0
giQ 0 0
(9%,1 + 9%,2 - 93,1 + 9:15,3) (9%,1 + 9%,2 - 9?1,,1) (9:1)’,1 + 93,2)
9%,1 0 0
9%,2 0 0
(95’,3 - 9%,2 + 9%,2) (9%,2 - g{%,Q) 9‘;’,2
(2931 — 91.1) (931 — 9%.1) -},
(2932 — 912) (932 — 972) —g7 5
(9?1,,1 + 93,3) 9:%,1 93,1

Since dv is also zero, the transpose of the matrix of 1 is of the previous form as well.
Comparing these two matrices we get xg = —(x2 + x11) and z19 = 4 — Tg — T12 — T14.

Thus a coboundary 1 has the following transpose matrix.
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x1
To 0
x3 x4 (2 + x5)
0 xIs 0
0 0 0
—(z2+ x11) x17
xT7 xIrs —XI5
(x2 + x11) (x13 — x10 + 227 + 23 — 227) 0
(2216 — 714) xg9 x1
0 0 0
0 0 0
— (211 + 25) Z10 0
0 0
0 0
0 11 0
5 (w1 — 7) 0
0 —T11 0
(1 — 27) (3216 — 714 — 78) Ts5
I 0 0
T2 0 0
Z12 x18 x13
5 0 0
0 0 0
($17 — 210 + 37 + 223 — xlg) ($4 + a8 — 12 — x14) X9
T14 T15 —x1
(2213 — 221 — w3 — 27) (714 + 212 — 78 — 74) —x3
(g + 715) T2 T16

Let 7,/ € BL3(L; L) for 1 < i < 20 and i # 6,19 be the coboundary with z; = 1 and
x; = 0 for i # j in the above matrix of 1. It follows that {7'}1<i<20,i2619 forms a
basis of the coboundary module BL3(L; L). Consequently by considering the quotient

3(7,- .
module % = HL3(L; L) we get, dim(HL3(L; L)) = 2.

7.3 Computation of a versal deformation of A4

Let L = X\g. Since HL3(L; L) is nontrivial, it is necessary to compute possible obstruc-

tions in order to extend an infinitesimal deformation to a higher order one.
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First we describe the universal infinitesimal deformation 7; for our Leibniz algebra.
To make our computation simpler, we choose the representative cocycles p1, po where
p1 = (¢ — @) and po = ¢3. Let us denote a basis of HL?(L; L)' by {t,s}. By Remark

B4 the universal infinitesimal deformation 71 of L can be written as
1®e;,1®ejly =1@ [es,e5] +t @ pi(e ef) + 5@ pales, e5).

with base C; =C @ Ct & C s.

In order to extend n; to a deformation of L with larger base we need to compute
possible obstructions which arise in the extension process. We shall compute these
obstructions using the inductive definition of Massey brackets by [Ref77] (see Definition
[E210), which is a particular case of more general definition, Definition ( [EWOLD).

Recall that if y; = [x1],y2 = [x2] are 2- cohomology classes, then the second order
bracket < y1,y2 > is represented by the graded Lie bracket [z1, z3]. Assume that for y; €
HL?*(L; L), < y;,y; >= 0 for 1 <i < 3. This means that for a cocycle x; representing
y; we have [z;, 2;] = dx;;. Then the third order Massey bracket < y1,y2,y3 > is defined
and is represented by

(12, 23] + [21, T23] + [213, 22].

The cohomology class is independent of the choice of x;;. The higher order Massey
brackets are defined inductively.
By Definition B2, we have.

(i) < [pa], [1] > is vepresented by [p1, p1] = 2(p1 © pn).
Now (1 0 pu1)(ei €5, ex)
= pa(pa(es €5), ex) — pa(pales ex), €5) — palei, palej, e)) for 1 <,k < 3.
Since pi(es, e3) = —e; and takes value zero on all other basis element of L ® L, it

follows that pq o 3 = 0.

(ii) Similarly < [p1],[u2] > is represented by [u1,p2] = p1 o g + pa o p1.  Since
ua(e1, e3) = ep and takes value zero on all other basis elements of L ® L it follows

that < [u1], [u2] >= 0.
(iii) The bracket < [ug], [1o] > is represented by [ue, na] = 2(ug o uz) = 0.

Since {[p1], [12]} forms a basis for HL?(L; L), it follows that all the Massey 2- brackets
are trivial. So all the Massey 3- brackets are defined.

From the definition of Massey 3- bracket it follows that all the Massey 3- brackets <
(i, [15], (] > are trivial and represented by the O-cocycle. By induction it follows that
any < [u1], [ua], -+, [ux] >= 0 for [u;] € HL?*(L; L) and moreover, they are represented
by the 0 cocycle.
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By Theorem B3] and Remark [B23), it follows that the possible obstruction at each
stage in extending 7; to a versal deformation with base C][t, s]] can be realized as the
Massey brackets of [u1] and [ug]. So the possible obstructions are zero.

As there are no obstructions to extending the universal infinitesimal deformation 7y,
it means that 7; extends to a versal deformation with base C[[t, s]]. Moreover, observe
that by our choice of u; and us every Massey bracket is represented by the 0- cocycle,
and so 7 is itself a Leibniz bracket with base C[[¢, s]]. It follows by the construction in
that 7 is a versal deformation.

Explicitly, the versal deformation that we have constructed can be written as
e1,e3]ts = e2 +e1s, [es,e3lis = €1, [e2,€3]es = —ent

with all the other brackets of basis elements are zero.
Thus we obtain the following two non-equivalent one parameter deformations for

the Leibniz algebra Ag.

(1) e1,es]s = ea, [ea,e3]y = —ert, [es,es]y = eq,
all the other brackets of basis elements are zero.

(i) le1, es]s = e2 + €15, es, e3]s = e1,

all the other brackets of basis elements are zero.

7.4 The three dimensional Heisenberg Lie algebra

Since any Lie algebra L is a Leibniz algebra it is natural to investigate whether one
recovers the same deformation picture of L if it is seen as a Leibniz algebra. The
following example illustrates that a Lie algebra L when viewed as a Leibniz algebra may
admit new deformations which are Leibniz algebras but not Lie algebras. Moreover, the

versal deformation of L as Lie algebra and that of L when viewed as a Leibniz algebra

may differ.

Let L be a module over C with basis {e;, ez, e3}. Define a bilinear map [—,—] :
L x L — L, by [e1,e3] = e, [e3,e1] = —ea, and, all other products of basis elements
being zero. Then (L, [—, —]) is the complex three-dimensional Heisenberg Lie algebra.

Let us first determine the universal infinitesimal Leibniz deformation 7, of L. For
this, we need to compute HL?(L;L). This computation is similar to that of the first
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example in Section
Let ¢ : L®2 — L be a 2-cocycle. Suppose ¥(e;,e;) = 22:1 aﬁjek where aﬁj e G
for 1 <14,4,k < 3. Since ¢ is a cocycle, we have

oY (eisej, ex) = [ei,hlej, ex)] + [W(ei, ex), e5] — [W(es, e5), ex] — ¥(les, e5], ex)
+(es, (e, ex]) + ¥([ei, ex),e;) =0 for 0 <, 4,k < 3.

Using the expression of 1(e;, e;) above we get some relations between the coefficients
af ;- If we use the resulting relations then the matrix of ¢ with respect to the ordered

basis {ei X ej}lgid‘gg of L®2 and {ei}lgigg of L, takes the form

0 Ty Iy —TQ 0 ry —I5 —I8 0
1 x3 w¢ —w3 0 w9 w10 —T9 T11

0 T4 I7 —T4 0 Tro —X7 0 0

where z7 = a%,l; To = ai2; T3 = a%,Q; Ty = ai{’z; T5 = ai?); Tg = a%,3; T7 = a‘(f,3;
rg = ai?}; Tg = a%73; T19 = a§,1§ and x11 = a§73 are in C .

Let ¢; for 1 < ¢ < 11, be the cocycle with z; = 1 and z; = 0 for ¢ # j in the
above matrix of ¢. Then {¢; }1<i<11 forms a basis of the submodule of 2-cocycles in
CL?*(L; L).

On the other hand, let 1y be a 2-coboundary so that ¥y = dg for some 1-cochain g.
Let g(e;) = gler + gPea + gies for i = 1,2,3. The coboundary formula gives

dg(ei, ej) = lei, g(ej)] + g(ei), ] — g([ei, ¢5])

for 1 < 4,5 < 3. From this we write down the matrix of dg. But dg = g is also a
cocycle and we know the form of the matrix for a 2-cocycle as given above. Comparing
these two matrices we get 1 = 29 = x4 = 23 = 11 = 0, r3 = —x7, 5 = —x9 and

xg = —x10. Thus matrix of ¢y takes the form

0 0 x5 0 0 0 -z 0 O
0 T3 T6 —XI3 0 —T5; —Tg Ij 0
0 0 —2z3 0 0 O xz3 0 0

Let ¢, € BL*(L; L) for i = 3,5,6 be the coboundary with z; = 1 and x; = 0 for i # j
in the above matrix of ¢. It follows that {¢j, ¢%, @i} forms a basis for the submodule
of 2-coboundaries in CL?(L; L). Observe that

P + ¢ = d3, P54+ P9 = ¢5 and P + P10 = Pe.
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Using this it follows that

{[#1], [@2], [@4], [@7], (@8], [@9], [D10), [P11]}

forms a basis of HL?(L; L) where [¢;] denotes the cohomology class represented by the
cocycle ¢;. Thus dim(HL?(L; L)) = 8.

Let {t;}1<i<s denote the dual basis. Then by Remark B:Z4l the universal infinitesi-
mal deformation 1y of L with base C@® HL?(L; L)' is given by

leis ejlm =1 ® [es, 5] +t1 @ pi(es, e5) + ta @ Pa(es, e5) +t3 @ pa(es, e5)
+ 14 @ Pr(ei,e;) +t5 @ ¢sles, ef) +te @ dol(es, €j)
+ 17 ® ¢1o(es, e5) +ts @ dr1(es, ).

In particular, we get eight non-equivalent infinitesimal deformations of L given by
Wi = po +tp; fori=1,2,4,7,8,9,10,11,

where po denotes the original bracket in L. Observe that ¢; is skew-symmetric for
J = 2,4,7,8,9 and hence the infinitesimal deformations p; for j = 2,4,7,8,9 are Lie
algebras.

A similar computation yields that two dimensional Chevalley-Eilenberg cohomol-
ogy module is of dimension 5, and spanned by the cohomology classes of ¢; for
7 =2,4,7,8,9.

Hence as before we can write down the universal infinitesimal deformation 7] of L

as a Lie algebra as follows.

[ei, €5l =1 ® [ei, 5] + 11 @ Pa(es, €5) + 12 @ pales, €5) + 13 ® Pr(eis €;)
+ta ® ¢s(eir ej) + ts @ go(ei, €;).

The universal infinitesimal deformation of L as Lie algebra is not the same as the one
when we view it as Leibniz algebra. Thus we see that even at the infinitesimal level
the universal deformation of a Lie algebra differs from that when the Lie algebra is
deformed as a Leibniz algebra. This example shows that by deforming a Lie algebra L
in the category of Leibniz algebras not only one recovers its Lie algebra deformations
but can get new deformations of L which are only Leibniz algebras as one might expect.
Moreover, versal deformation of L as Lie algebra and that of L when viewed as a Leibniz

algebra may differ.
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