VERSAL DEFORMATIONS OF LEIBNIZ ALGEBRAS

ASHIS MANDAL

VERSAL DEFORMATIONS OF LEIBNIZ ALGEBRAS

ASHIS MANDAL

Thesis submitted to the Indian Statistical Institute in partial fulfilment of the requirements for the award of the degree of Doctor of Philosophy.

July, 2008

Indian Statistical Institute
203, B.T. Road, Kolkata, India.

To My Parents

Acknowledgements

My greatest debt of gratitude is to my supervisor, Prof. Goutam Mukherjee, who introduced me to Algebraic deformation theory and provided an exposure to the problems studied in this thesis. It was a great experience to work with a caring and affectionate teacher like him. I shall remain indebted always for his guidance, constant encouragement and the time he has given me during this project. I also thank him for allowing me to include the portion of our joint work in this thesis.

I express my indebtedness to Prof. A. Fialowski of Eötvös Loránd University, Budapest, Hungary. I benefitted a lot from the valuable suggestions and important comments from her. I also thank her for allowing me to include the portion of our joint work in this thesis.

I express my deep sense of gratitude to Prof. S. C. Bagchi, Prof. S. M. Srivastava and Dr. M. Datta for teaching me various courses.

I owe a special thanks to Anitadi (Dr. Anita Majumdar) for reading the draft of this thesis and giving useful suggestions.

I take this opportunity to express my deep sense of gratitude to Satyada (Swami Suparnananda), Principal of R. K. Mission Residential College, Narendrapur for his helps and encouragements during my study in that college.

I wish to thank Premda, Nabinda, Rabiulda, Sanjoy and Prosenjit for their continuous help and cooperation.

I thank all my friends, seniors, juniors as well as the members of Stat-Math Unit for providing such a wonderful atmosphere to work on.

I wish to express my heartfelt thanks to all my family members for being a constant source of inspiration and support.

Finally I express my sincere thanks to the authorities of I.S.I. for the facilities extended to carry out my research work.

Contents

0 Introduction 1
1 Leibniz algebras and Leibniz algebra cohomology 5
1.1 Introduction 5
1.2 Leibniz algebras 5
1.3 Cohomology of Leibniz algebras 8
1.4 Cohomology for Leibniz algebra homomorphisms 15
2 Harrison cohomology and related results 19
2.1 Introduction 19
2.2 Harrison complex of a commutative algebra 19
2.3 Extension of algebras and relation to Harrison cohomology 23
3 Deformations of Leibniz algebras and homomorphisms 31
3.1 Introduction 31
3.2 Deformations 31
3.3 Push-out of a deformation 34
3.4 Construction of an infinitesimal deformation 39
3.5 Infinitesimal deformations of Leibniz algebra homomorphisms 51
4 Extension of deformations 57
4.1 Introduction 57
4.2 Extension of a deformation of Leibniz algebras 57
4.3 Two actions on the set of extensions of the deformation λ 70
4.4 Extension of a deformation of Leibniz algebra homomorphisms 78
4.5 Formal deformations 92
5 Construction of a Versal deformation of Leibniz algebras 101
5.1 Introduction 101
5.2 Construction of a formal deformation η 101
5.3 Versality property of η 104
6 Massey Brackets, relation with Obstructions 111
6.1 Introduction. 111
6.2 Massev Brackets 112
6.3 Computation of Obstructions 119
7 Computations and examples 125
7.1 Introduction 125
7.2 Computation of second and third Leibniz cohomology of λ_{6} 125
7.3 Computation of a versal deformation of λ_{6}. 130
7.4 The three dimensional Heisenberg Lie algebra 132
Bibliography 135

Chapter 0

Introduction

The main objective of this thesis is to develop an algebraic deformation theory, over commutative local algebra base, for Leibniz algebras and its homomorphisms and to give a concrete construction of a formal deformation which induces all other formal deformations of a given Leibniz algebra satisfying some cohomological condition, which is unique at the infinitesimal level - the so called "Versal deformation".

Deformation theory dates back at least to Riemann's 1857 memoir on abelian functions in which he studied manifolds of complex dimension one and calculated the number of parameters (called moduli) upon which a deformation depends. The modern theory of deformations of structures on manifolds was developed extensively by Frölicher-Nijenhuis FN57, Kodaira-Spencer KS58b, KS58a, Kodaira-NirenbergSpencer KNS58, and Spencer Spe62a, Spe62b, Spe65.

The study of deformations of algebraic structures was initiated by M. Gerstenhaber through his monumental works [Ger63, Ger64, Ger66, Ger68, Ger74]. He introduced deformation theory for associative algebras and remarked that his methods would extend to any equationally defined algebraic structure. The basic theorems and features of algebraic deformation theory are all due to him. For a comparative study of algebraic and analytic deformation theory see Pip67.

The theory of Gerstenhaber was extended to Lie algebras by A. Nijenhuis and R. W. Richardson, Jr. NR66, NR67a, NR67b. The deformation theory of Hopf algebras, which relates to quantum groups, was studied by M. Gerstenhaber and S. D. Schack in GS90. An algebraic deformation theory for associative algebra homomorphisms was developed by Gerstenhaber and Schack GS83, GS85. For more recent results on deformation theory following Gerstenhaber see MM02, Yau06, Yau07, Man07, Yau08.

Gerstenhaber's theory was generalized in Bal97 by D. Balavoine to develop formal one parameter deformation theory for algebras over any quadratic operad, which in-
cludes all the classical cases. He also deduced formal one parameter deformation theory of Leibniz algebras from his theory.

Although formal deformation theory was developed in various categories following Gerstenhaber and computations were made, but the question of obtaining all nonequivalent deformations of a given object was not properly discussed for a long time. The right approach to this is the notion of versal deformation - a deformation which includes all non-equivalent ones. The existence of such a versal deformation for algebraic categories follows from the work of M. Schlessinger [Sch68.

For Lie algebras it was worked out in Fia88 and one can deduce it in other categories as well. It turns out that (under some minor cohomology restrictions) there exists a versal element, which is universal at the infinitesimal level. For Lie algebras an explicit construction of versal deformations was given in [FF99]. The construction is parallel to the general construction in deformation theory as in III71, Pal76, Lau79, GM88 Kon94.

In this thesis we give a concrete construction of versal deformation for Leibniz algebras FMM08. Following is a chapter-wise break-up of the thesis.

The notion of Leibniz algebras was introduced by J.-L. Loday Lod93 Lod97.Lod01] in connection with the study of periodicity phenomenon in algebraic K-theory, as a nonantisymmetric analogue of Lie algebras. We recall that for a Lie algebra \mathfrak{g} the ChevalleyEilenberg complex is given by the exterior power module $\Lambda \mathfrak{g}$. The non-commutative analogue of the exterior module is the tensor module $T \mathfrak{g}$. If we replace \wedge by \otimes in the formula for the boundary map d of the Chevalley-Eilenberg complex and put $\left[x_{i}, x_{j}\right]$ at the $i^{\text {th }}$ slot when $i<j$, we get a new complex for \mathfrak{g}, as the modified d satisfies $d^{2}=0$. It turns out that this new complex is valid for more general objects than Lie algebras, as the only property of the Lie bracket, which is needed to prove $d^{2}=0$ is the Leibniz relation. This generalization of Lie algebras are called Leibniz algebras. Leibniz algebras turns out to be the algebras over the quadratic operad Leib Lod01. A (co)homology theory associated to Leibniz algebras has been developed by J.-L. Loday and T. Pirashvili LP93. Throughout this thesis, \mathbb{K} will denote the ground field and the tensor product over \mathbb{K} will be denoted by \otimes. In Chapter 1 , we recall the definition of Leibniz algebras, discuss some examples. We also recall the definition of Leibniz algebra cohomology with coefficients in itself. Low dimensional Leibniz algebra cohomologies will be extensively used in this thesis to develop the deformation theory in question. We introduce cohomology modules associated to a Leibniz algebra homomorphism, which will be relevant in the discussion of deformation of Leibniz algebra homomorphisms.

Chapter 2, is a review of results about Harrison cohomology of a commutative algebra and its relation to extensions of the algebra. These results will be used subsequently. The basic references for this chapter are Hoc45. Har62. Bar68. We recall the definition of the Harrison complex of a commutative algebra A and the Harrison cohomology with
coefficients in an A-module M. Next, we define extension of a commutative algebra A by an A-module M, describe its relation to Harrison cohomology of A. We also recall few basic properties that will be used later in this thesis.

In Chapter 3, we introduce the notion of deformations of Leibniz algebras and Leibniz algebra homomorphisms over a commutative local algebra base with multiplicative identity, and introduce infinitesimal deformation and other basic definitions related to deformations of a Leibniz algebra. We give a construction of an infinitesimal deformation η_{1} of a Leibniz algebra L for which $\operatorname{dim}\left(H L^{2}(L ; L)\right)$ is finite. We show that this infinitesimal deformation is universal among the infinitesimal deformations of L with finite dimensional local algebra base. We also prove a necessary and sufficient criterion for equivalence of two infinitesimal deformations of a Leibniz algebra. At the end we introduce the notion of infinitesimal deformations of Leibniz algebra homomorphisms and obtain a necessary and sufficient condition for equivalence of two infinitesimal deformations in this case.

In Chapter 4, we address the question of extending a given deformation $\mathfrak{D}=$ $\left(\lambda, \mu ; f_{\lambda \mu}\right)$ of a Leibniz algebra homomorphism $f: L \longrightarrow M$ with a given base to a larger base. This extension problem can be described as follows. Suppose $\mathfrak{D}=\left(\lambda, \mu ; f_{\lambda \mu}\right)$ is a given deformation of a Leibniz algebra homomorphism $f: L \longrightarrow M$ with local base A. Let

$$
0 \longrightarrow M_{0} \xrightarrow{i} B \xrightarrow{p} A \longrightarrow 0
$$

be a given finite dimensional extension of A by M_{0}. The problem is to obtain condition for existence of a deformation $\tilde{\mathfrak{D}}$ of f with base B which extends the given deformation, that is, $p_{*} \tilde{\mathfrak{D}}=\mathfrak{D}$. We shall measure the possible obstructions that one might encounter in the above extension process as certain 3-dimensional cohomology classes, vanishing of which is a necessary and sufficient condition for an extension to exist. The set of equivalence classes of possible extensions of a given deformation λ of L with base A, admits certain natural actions and we shall investigate their relationship. We first take up the case of extending deformations of Leibniz algebras and then consider the relative problem of extending deformations of Leibniz algebra homomorphisms. In the last section of this chapter, we study formal deformations and obtain a necessary condition for non-triviality of a formal deformation. The results of this chapter will also enable us to obtain a sufficient criterion for existence of a formal deformation with a given differential and infinitesimal part. We end this chapter with the definition of a versal deformation.

Chapter 5 is devoted to give a construction of versal deformation of a given Leibniz algebra L with $\operatorname{dim}\left(H L^{2}(L ; L)\right)<\infty$. We begin with the universal infinitesimal deformation η_{1} of L with base C_{1} as constructed in Chapter 3 , and apply the tools developed in Chapter 4 to get a finite dimensional extension η_{2} with base C_{2}. We kill off the
possible obstruction associated to the extension problem for a specific extension of C_{1} to obtain η_{2} with base C_{2}. We repeat this procedure successively to get a sequence of finite dimensional extensions η_{k} with base C_{k}. The projective limit $C=\lim _{k \rightarrow \infty} C_{k}$ is a complete local algebra and $\eta=\lim _{k \rightarrow \infty} \eta_{k}$ is a formal deformation of L with base C. We show that the algebra base C can be described as a quotient of the formal power series ring over \mathbb{K} in finitely many variables. Finally we prove that the formal deformation η is a versal deformation of L with base C.

It is well known that the construction of one parameter deformations of various algebraic structures, like associative algebras or Lie algebras, involves certain conditions on cohomology classes arising as obstructions. These condition are expressed in terms of Massey brackets Ret77, Ret93], which are, in turn, the Lie counterpart of classical Massey products Mas54. The connection between obstructions in extending a given deformation and Massey products was first noticed in Dou61. The aim of Chapter 6, is to study this relationship in our context. More precisely, we use Massey n-operations as defined in Ret77 to establish this connection in the case of one parameter deformation of a Leibniz algebra. Next, we use a general treatment of Massey brackets as introduced in [FW01 to express the obstructions arising at different steps in the inductive construction of a versal deformation as described in Chapter 5, in terms of these general Massey brackets.

Finally, in Chapter 7, we discuss two examples to illustrate the theory developed in this thesis. The first example is a three dimensional nilpotent Leibniz algebra for which we compute a versal deformation. The next example is the three dimensional Heisenberg Lie algebra. We deform this example viewing it as a Leibniz algebra to show that not only we recover all the usual Lie algebra deformations, but we get some new deformations which are Leibniz algebras and not Lie algebras. This example also illustrate the fact that versal deformation of a Lie algebra L and that of L when viewed as a Leibniz algebra may differ.

Chapter 1

Leibniz algebras and Leibniz algebra cohomology

1.1 Introduction

The notion of Leibniz algebras was introduced by J.-L. Loday Lod93, Lod97 Lod01 in connection with the study of periodicity phenomenon in algebraic K-theory as a nonantisymmetric analogue of Lie algebras. We recall that for a Lie algebra \mathfrak{g} the ChevalleyEilenberg complex is given by the exterior power module $\Lambda \mathfrak{g}$. The non-commutative analogue of the exterior module is the tensor module $T \mathfrak{g}$. If we replace \wedge by \otimes in the formula for the boundary map d of the Chevalley-Eilenberg complex and put $\left[x_{i}, x_{j}\right]$ at the $i^{\text {th }}$ slot when $i<j$, we get a new complex for \mathfrak{g}, as the modified d satisfies $d^{2}=0$. It turns out that this new complex is valid for more general objects than Lie algebras, as the only property of the Lie bracket which is needed to prove $d^{2}=0$ is the Leibniz relation. This generalization of Lie algebras are called Leibniz algebras. Leibniz algebras turns out to be the algebras over the quadratic operad Leib Lod01. A (co)homology theory associated to Leibniz algebras has been developed by Loday and Pirashvili LP93.

In this chapter we recall the definition of Leibniz algebras, discuss some examples. We also recall the definition of Leibniz algebra cohomology. In the last section of this chapter we introduce cohomology modules associated to a Leibniz algebra homomorphism. This will be used in subsequent chapters.

1.2 Leibniz algebras

Throughout this thesis, \mathbb{K} will denote the ground field, and the tensor product over \mathbb{K} will be denoted by \otimes.

Definition 1.2.1. A Leibniz algebra L is a \mathbb{K}-module, equipped with a bracket operation $[-,-]$, which is \mathbb{K}-bilinear and satisfies the Leibniz identity:

$$
[x,[y, z]]=[[x, y], z]-[[x, z], y] \quad \text { for } x, y, z \in L .
$$

Any Lie algebra is automatically a Leibniz algebra, as in the presence of antisymmetry, the Jacobi identity is equivalent to the Leibniz identity. Here are some more examples.

Example 1.2.2. Let (L, d) be a differential Lie algebra with the Lie bracket $[-,-]$. Then L is a Leibniz algebra with the bracket operation $[x, y]_{d}:=[x, d y]$. The new bracket on L is called the derived bracket.

Example 1.2.3. On $\bar{T}(V)=V \oplus V^{\otimes 2} \oplus \cdots \oplus V^{\otimes n} \oplus \cdots$ there is a unique bracket that makes it into a Leibniz algebra and verifies

$$
v_{1} \otimes v_{2} \otimes \cdots \otimes v_{n}=\left[\cdots\left[\left[v_{1}, v_{2}\right], v_{3}\right], \cdots, v_{n}\right] \text { for } v_{i} \in V \text { and } i=1, \cdots, n .
$$

This is the free Leibniz algebra over a \mathbb{K}-module V.
Example 1.2.4. Let A be any associative \mathbb{K}-algebra equipped with a \mathbb{K}-module map $D: A \longrightarrow A$ satisfying $D(x(D y))=(D x)(D y)=D((D x) y)$ for $x, y \in A$. Then

$$
[x, y]:=x(D y)-(D y) x
$$

is a Leibniz bracket on A. Some examples of D satisfying the above identity are as follows:

1. D is an algebra map satisfying $D^{2}=D$,
2. A is a superalgebra (that is, any $x \in A$ can be written uniquely as $x=x_{+}+x_{-}$) and $D(x)=x_{+}$,
3. D is a square-zero derivation, that is,

$$
D(x y)=(D x) y+x(D y) \text { and } D^{2} x=0 \text { for } x, y \in A
$$

Definition 1.2.5. For a Leibniz algebra L, set $L^{1}=L, L^{k+1}=\left[L^{k}, L\right]$ is the submodule of L generated by all elements of the form $[x, y]$ where $x \in L^{k}$ and $y \in L$, for $k \in \mathbb{N}$. Then L is said to be nilpotent if there exists an integer $n \in \mathbb{N}$ such that

$$
L^{1} \supset L^{2} \supset \ldots \supset L^{n}=0
$$

The smallest integer n for which $L^{n}=0$ is called the nilindex of L.

Example 1.2.6. Complex nilpotent Leibniz algebras have been classified up to isomorphism for dimension 2 and 3 in [Lod93] and [AO01]. In dimension 2 there are two non-isomorphic nilpotent Leibniz algebras. One of them is abelian, the other is given by the non-zero Leibniz bracket, $\left[e_{1}, e_{1}\right]=e_{2}$, where $\left\{e_{1}, e_{2}\right\}$ is a basis of the Leibniz algebra.

In dimension 3 there are five non-isomorphic nilpotent Leibniz algebras and one infinite family of pairwise non-isomorphic Leibniz algebras. They can be described as follows. Let $\left\{e_{1}, e_{2}, e_{3}\right\}$ be a basis. In the following list we only mention the non-zero brackets of basis elements.
λ_{1} : abelian.

$$
\begin{aligned}
& \lambda_{2}:\left[e_{1}, e_{1}\right]=e_{2} . \\
& \lambda_{3}:\left[e_{2}, e_{3}\right]=e_{1},\left[e_{3}, e_{2}\right]=-e_{1} . \\
& \lambda_{4}:\left[e_{2}, e_{2}\right]=e_{1},\left[e_{3}, e_{3}\right]=\alpha e_{1},\left[e_{2}, e_{3}\right]=e_{1} ; \alpha \in \mathbb{C} . \\
& \lambda_{5}:\left[e_{2}, e_{2}\right]=e_{1},\left[e_{3}, e_{2}\right]=e_{1},\left[e_{2}, e_{3}\right]=e_{1} . \\
& \lambda_{6}:\left[e_{3}, e_{3}\right]=e_{1},\left[e_{1}, e_{3}\right]=e_{2} .
\end{aligned}
$$

Here is one geometric example IdLMP99.
Recall that a Nambu-Poisson manifold M of order n is a differential manifold endowed with skew-symmetric n-bracket of functions $\{-, \cdots,-\}$ satisfying the Leibniz rule

$$
\left\{f_{1} g_{1}, f_{2}, \cdots, f_{n}\right\}=f_{1}\left\{g_{1}, f_{2}, \cdots, f_{n}\right\}+g_{1}\left\{f_{1}, f_{2}, \cdots, f_{n}\right\}
$$

for $f_{1}, \cdots, f_{n}, g_{1} \in C^{\infty}(M, \mathbb{R})$, and the fundamental identity

$$
\left\{f_{1}, \cdots, f_{n-1},\left\{g_{1}, \cdots, g_{n}\right\}\right\}=\sum_{i=1}^{n}\left\{g_{1}, \cdots,\left\{f_{1}, \cdots, f_{n-1}, g_{i}\right\}, \cdots, g_{n}\right\}
$$

Example 1.2.7. Let (M, Λ) be a Nambu-Poisson manifold of order n with NambuPoisson bracket $\{-, \cdots,-\}$ (where Λ is the associated skew-symmetric tensor of type $(n, 0)$,

$$
\left.\Lambda\left(d f_{1}, \cdots, d f_{n}\right)=\left\{f_{1}, \cdots, f_{n}\right\} \text { for } f_{1}, \cdots, f_{n} \in C^{\infty}(M ; \mathbb{R})\right)
$$

Then $\left(\wedge^{n-1}\left(C^{\infty}(M ; \mathbb{R})\right),\{-,-\}^{\prime}\right)$ is a Leibniz algebra where

$$
\left\{f_{1} \wedge \cdots \wedge f_{n-1}, g_{1} \wedge \cdots \wedge g_{n-1}\right\}^{\prime}=\sum_{i=1}^{n-1} g_{1} \wedge \cdots \wedge\left\{f_{1}, \cdots, f_{n-1}, g_{i}\right\} \wedge \cdots \wedge g_{n-1}
$$

1.3 Cohomology of Leibniz algebras

In this section we recall the Leibniz algebra cohomology with coefficients in a representation as introduced by J.-L. Loday and T. Pirashvili in LP93].

Definition 1.3.1. Let L be a Leibniz algebra over \mathbb{K}, a representation M of the Leibniz algebra L is a \mathbb{K}-module equipped with two actions (left and right) of L,

$$
\begin{gathered}
{[-,-]: L \times M \longrightarrow M \text { and }[-,-]: M \times L \longrightarrow M \text { such that }} \\
{[x,[y, z]]=[[x, y], z]-[[x, z], y]}
\end{gathered}
$$

holds, whenever one of the variable is from M and the others from L.
In particular, L is a representation of itself with the action given by the bracket in L. Often, we will represent an element $x_{1} \otimes x_{2} \otimes \cdots \otimes x_{n} \in L^{\otimes n}$ by $\left(x_{1}, \cdots, x_{n}\right)$.

Definition 1.3.2. Let L be a Leibniz algebra and M be a representation of L. Let $C L^{n}(L ; M):=\operatorname{Hom}_{\mathbb{K}}\left(L^{\otimes n}, M\right), n \geq 0$, and

$$
\delta^{n}: C L^{n}(L ; M) \longrightarrow C L^{n+1}(L ; M)
$$

be the \mathbb{K}-homomorphism given by

$$
\begin{align*}
& \delta^{n} f\left(x_{1}, \cdots, x_{n+1}\right) \\
:= & {\left[x_{1}, f\left(x_{2}, \cdots, x_{n+1}\right)\right]+\sum_{i=2}^{n+1}(-1)^{i}\left[f\left(x_{1}, \cdots, \hat{x}_{i}, \cdots, x_{n+1}\right), x_{i}\right] } \tag{1.3.1}\\
& +\sum_{1 \leq i<j \leq n+1}(-1)^{j+1} f\left(x_{1}, \cdots, x_{i-1},\left[x_{i}, x_{j}\right], x_{i+1}, \cdots, x_{j-1}, \hat{x}_{j}, x_{j+1}, \cdots, x_{n+1}\right) .
\end{align*}
$$

The linear maps $\delta^{n}, n \geq 0$ satisfy $\delta^{n+1} \circ \delta^{n}=0$.
Let $f \in C L^{n}(L ; M)$ and $x_{1}, \cdots, x_{n+2} \in L$. Fix i, j with $1 \leq i<j \leq n+2$ and consider the element $\left(x_{1}, \cdots, x_{i-1},\left[x_{i}, x_{j}\right], x_{i+1}, \cdots, \hat{x}_{j}, \cdots, x_{n+2}\right) \in L^{\otimes(n+1)}$. We may denote this element as $\left(y_{1}, \cdots, y_{n+1}\right)$ where $y_{k}=x_{k}$ for $k=1, \cdots, i-1, i+1, \cdots, j-$ $1, y_{i}=\left[x_{i}, x_{j}\right]$ and $y_{k}=x_{k+1}$ for $k=j, \cdots, n+1$.

Define

$$
F_{i j}\left(y_{1}, \cdots, y_{n+1}\right)=\sum_{1 \leq u<v \leq n+1}(-1)^{v+1} f\left(y_{1}, \cdots, y_{u-1},\left[y_{u}, y_{v}\right], \ldots, \hat{y}_{v}, \cdots, y_{n+1}\right)
$$

Using this notations we get the following Lemma.

Lemma 1.3.3.

$$
X=\sum_{1 \leq i<j \leq n+2}(-1)^{j+1} F_{i j}\left(y_{1}, \cdots, y_{n+1}\right)=0
$$

Proof. By expanding for all possible values of $1 \leq i, j, u, v \leq n+2$ we get,

$$
\begin{aligned}
& X=\sum_{1 \leq i<j \leq n+2}(-1)^{j+1} F_{i j}\left(y_{1}, \cdots, y_{n+1}\right) \\
& =\sum_{1 \leq i<j \leq n+2}(-1)^{j+1} F_{i j}\left(x_{1}, \cdots, x_{i-1},\left[x_{i}, x_{j}\right], x_{i+1}, \cdots, \hat{x}_{j}, \cdots, x_{n+2}\right) \\
& =\sum_{1 \leq i<j \leq n+2}(-1)^{j+1} \sum_{1 \leq u<v \leq i-1}(-1)^{v+1} f\left(x_{1}, \cdots, x_{u-1},\left[x_{u}, x_{v}\right], x_{u+1}, \cdots, \hat{x}_{v}, \cdots,\left[x_{i}, x_{j}\right]\right. \text {, } \\
& \left.\cdots, \hat{x}_{j}, \cdots, x_{n+2}\right) \\
& +\sum_{1 \leq i<j \leq n+2}(-1)^{j+1} \sum_{u<v ; 1 \leq u \leq i-1, v=i}(-1)^{v+1} f\left(x_{1}, \cdots, x_{u-1},\left[x_{u},\left[x_{i}, x_{j}\right]\right], x_{u+1}, \cdots,\right. \\
& \left.x_{i-1}, \hat{x}_{i}, x_{i+1}, \cdots, \hat{x}_{j}, \cdots, x_{n+2}\right) \\
& +\sum_{1 \leq i<j \leq n+2}(-1)^{j+1} \sum_{u<v ; 1 \leq u \leq i-1, i<v<j}(-1)^{v+1} f\left(x_{1}, \cdots, x_{u-1},\left[x_{u}, x_{v}\right], x_{u+1}, \cdots,\right. \\
& \left.\left[x_{i}, x_{j}\right], \cdots, \hat{x}_{v}, \cdots, \hat{x}_{j}, \cdots, x_{n+2}\right) \\
& +\sum_{1 \leq i<j \leq n+2}(-1)^{j+1} \sum_{u<v ; 1 \leq u \leq i-1, j<v}(-1)^{v} f\left(x_{1}, \cdots, x_{u-1},\left[x_{u}, x_{v}\right], x_{u+1}, \cdots,\left[x_{i}, x_{j}\right], \cdots,\right. \\
& \left.\left.\hat{x}_{j}, \cdots, \hat{x}_{v}, \cdots, x_{n+2}\right) \cdots, \hat{x}_{j}, \cdots, \hat{x}_{v}, \cdots, x_{n+2}\right) \\
& +\sum_{1 \leq i<j \leq n+2}(-1)^{j+1} \sum_{u<v ;}(-1)^{v+1} f\left(x_{1}, \cdots, x_{i-1},\left[\left[x_{i}, x_{j}\right], x_{v}\right], x_{i+1}, \cdots, \hat{x}_{v}, \cdots,\right. \\
& \left.\hat{x}_{j}, \cdots, x_{n+2}\right) \\
& +\sum_{1 \leq i<j \leq n+2}(-1)^{j+1} \sum_{u<v ; u=i, j<v}(-1)^{v} f\left(x_{1}, \cdots, x_{i-1},\left[\left[x_{i}, x_{j}\right], x_{v}\right], x_{i+1}, \cdots, \hat{x}_{j}, \cdots, \hat{x}_{v},\right. \\
& \left.\cdots, x_{n+2}\right) \\
& +\sum_{1 \leq i<j \leq n+2}(-1)^{j+1} \sum_{i<u<v<j}(-1)^{v+1} f\left(x_{1}, \cdots,\left[x_{i}, x_{j}\right], \cdots, x_{u-1},\left[x_{u}, x_{v}\right], x_{u+1}, \cdots, \hat{x}_{v},\right. \\
& \left.\cdots, \hat{x}_{j}, \cdots, x_{n+2}\right) \\
& +\sum_{1 \leq i<j \leq n+2}(-1)^{j+1} \sum_{i<u<j<v}(-1)^{v} f\left(x_{1}, \cdots,\left[x_{i}, x_{j}\right], \cdots, x_{u-1},\left[x_{u}, x_{v}\right], x_{u+1}, \cdots, \hat{x}_{j}, \cdots,\right. \\
& \left.\hat{x}_{v}, \cdots, x_{n+2}\right) \\
& +\sum_{1 \leq i<j \leq n+2}(-1)^{j+1} \sum_{j<u<v}(-1)^{v} f\left(x_{1}, \cdots,\left[x_{i}, x_{j}\right], \cdots, \hat{x}_{j}, \cdots, x_{u-1},\left[x_{u}, x_{v}\right], x_{u+1}, \cdots,\right. \\
& \left.\hat{x}_{v}, \cdots, x_{n+2}\right) .
\end{aligned}
$$

Notice that each term in the 1st sum on the right-hand side of the above expression appears in the 9 th sum with the opposite sign. Similarly the 3 rd sum and the 4 th sum on the right-hand side of the above expression appear in the 8 th and 7 th sum respectively with opposite sign. Thus by cancelling out these terms we get

$$
\begin{array}{r}
X=\sum_{1 \leq i<j \leq n+2}(-1)^{j+1} \sum_{u<v ; 1 \leq u \leq i-1, v=i}(-1)^{v+1} f\left(x_{1}, \cdots, x_{u-1},\left[x_{u},\left[x_{v}, x_{j}\right]\right], x_{u+1}, \cdots, x_{i-1}, \hat{x}_{v}\right. \\
\left.x_{1 \leq i<j \leq n+2} x_{v+1}, \cdots, \hat{x}_{j}, \cdots, x_{n+2}\right) \\
\\
+\sum_{1 \leq i<j \leq n+2}(-1)^{j+1} \sum_{u<v ; u ; i, v<j}(-1)^{v+1} f\left(x_{1}, \cdots, x_{u-1},\left[\left[x_{u}, x_{j}\right], x_{v}\right], x_{u+1}, \cdots, \hat{x}_{v}, \cdots\right. \\
\left.\hat{x}_{j}, \cdots, x_{n+2}\right) \\
\sum_{u=i, j<v}(-1)^{v} f\left(x_{1}, \cdots, x_{u-1},\left[\left[x_{u}, x_{j}\right], x_{v}\right], x_{u+1}, \cdots, \hat{x}_{j}, \cdots\right. \\
\left.\hat{x}_{v}, \cdots, x_{n+2}\right)
\end{array}
$$

If we interchange j and v in the 3rd sum of the right-hand side of the above expression of X, then using the identity $\left[x_{u}\left[x_{v}, x_{j}\right]\right]-\left[\left[x_{u}, x_{v}\right], x_{j}\right]+\left[\left[x_{u}, x_{j}\right], x_{v}\right]=0$ for $x_{u}, x_{v}, x_{j} \in$ $L ; 1 \leq u, v, j \leq n+2$ we get $X=0$.

Proposition 1.3.4. Let L be a Leibniz algebra over \mathbb{K} and M be a representation of the Leibniz algebra L. Then $\left(C L^{*}(L ; M), \delta\right)$ is a cochain complex.

Proof. It is enough to show that $\delta^{n+1} \circ \delta^{n} f=0$ for $f \in C L^{n}(L ; M)$ and $n \geq 0$. Let $x_{1}, \cdots, x_{n+2} \in L$, then by the definition of δ^{n} in (1.3.1) we get,

$$
\begin{align*}
& \delta^{n+1} \circ \delta^{n} f\left(x_{1}, x_{2}, \cdots, x_{n+2}\right) \\
= & {\left[x_{1}, \delta^{n} f\left(x_{2}, \cdots, x_{n+2}\right)\right]+\sum_{i=2}^{n+2}(-1)^{i}\left[\delta^{n} f\left(x_{1}, \cdots, \hat{x}_{i}, \cdots, x_{n+2}\right), x_{i}\right] } \\
& +\sum_{1 \leq i<j \leq n+2}(-1)^{j+1} \delta^{n} f\left(x_{1}, \cdots, x_{i-1},\left[x_{i}, x_{j}\right], x_{i+1}, \cdots, x_{j-1}, \hat{x}_{j}, x_{j+1}, \cdots, x_{n+2}\right) . \tag{1.3.2}
\end{align*}
$$

Now the first term on the right-hand side of (1.3.2) can be expanded by substituting the expression of $\delta^{n} f\left(x_{2}, \cdots, x_{n+2}\right)$ as follows.

$$
\begin{align*}
& {\left[x_{1}, \delta^{n} f\left(x_{2}, \cdots, x_{n+2}\right)\right] } \\
= & {\left[x_{1},\left[x_{2}, f\left(x_{3}, \cdots, x_{n+2}\right)\right]\right]+\sum_{i=3}^{n+2}(-1)^{i-1}\left[x_{1},\left[f\left(x_{2}, \cdots, \hat{x}_{i}, \cdots, x_{n+2}\right), x_{i}\right]\right] } \tag{1.3.3}\\
& +\left[x_{1}, \sum_{2 \leq i<j \leq n+2}(-1)^{j} f\left(x_{2}, \cdots, x_{i-1},\left[x_{i}, x_{j}\right], x_{i+1}, \cdots, \hat{x}_{j}, \cdots, x_{n+2}\right)\right] .
\end{align*}
$$

Similarly, the second term on the right-hand side of (1.3.2) can be expressed as

$$
\begin{align*}
& \sum_{i=2}^{n+2}(-1)^{i}\left[\delta^{n} f\left(x_{1}, \cdots, \hat{x}_{i}, \cdots, x_{n+2}\right), x_{i}\right] \\
= & \sum_{i=2}^{n+2}(-1)^{i}\left[\left[x_{1}, f\left(x_{2}, \cdots, \hat{x}_{i}, \cdots, x_{n+2}\right)\right], x_{i}\right] \\
+ & \sum_{i=2}^{n+2}(-1)^{i} \sum_{2 \leq u<i}(-1)^{u}\left[\left[f\left(x_{1}, \cdots, \hat{x}_{u}, \cdots, \hat{x}_{i}, \cdots, x_{n+2}\right), x_{u}\right], x_{i}\right] \\
+ & \sum_{i=2}^{n+2}(-1)^{i} \sum_{u>i}(-1)^{u-1}\left[\left[f\left(x_{1}, \cdots, \hat{x}_{i}, \cdots, \hat{x}_{u}, \cdots, x_{n+2}\right), x_{u}\right], x_{i}\right] \\
+ & \sum_{i=2}^{n+2}(-1)^{i} \sum_{u<v<i}(-1)^{v+1}\left[f\left(x_{1}, \cdots, x_{u-1},\left[x_{u}, x_{v}\right], \cdots, \hat{x}_{v}, \cdots, \hat{x}_{i}, \cdots, x_{n+2}\right), x_{i}\right] \\
+ & \sum_{i=2}^{n+2}(-1)^{i} \sum_{u<i<v}(-1)^{v}\left[f\left(x_{1}, \cdots, x_{u-1},\left[x_{u}, x_{v}\right], x_{u+1}, \cdots, \hat{x}_{i}, \cdots, \hat{x}_{v}, \cdots, x_{n+2}\right), x_{i}\right] \\
+ & \sum_{i=2}^{n+2}(-1)^{i} \sum_{i<u<v}(-1)^{v}\left[f\left(x_{1}, \cdots, \hat{x}_{i}, \cdots, x_{u-1},\left[x_{u}, x_{v}\right], x_{u+1}, \cdots, \hat{x}_{v}, \cdots, x_{n+2}\right), x_{i}\right] . \tag{1.3.4}
\end{align*}
$$

Also the third term on the right-hand side of (1.3.2) can be expressed as

$$
\begin{aligned}
& \sum_{1 \leq i<j \leq n+2}(-1)^{j+1} \delta^{n} f\left(x_{1}, \cdots, x_{i-1},\left[x_{i}, x_{j}\right], x_{i+1}, \cdots, x_{j-1}, \hat{x}_{j}, x_{j+1}, \cdots, x_{n+2}\right) \\
= & \sum_{i=1,}(-1)^{j \leq j \leq 1} \delta^{n} f\left(\left[x_{1}, x_{j}\right], x_{2}, \cdots, x_{j-1}, \hat{x}_{j}, x_{j+1}, \cdots, x_{n+2}\right) \\
& +\sum_{2 \leq i<j \leq n+2}(-1)^{j+1} \delta^{n} f\left(x_{1}, \cdots, x_{i-1},\left[x_{i}, x_{j}\right], x_{i+1}, \cdots, x_{j-1}, \hat{x}_{j}, x_{j+1}, \cdots, x_{n+2}\right) \\
= & \sum_{j=2}^{n+2}(-1)^{j+1}\left[\left[x_{1}, x_{j}\right], f\left(x_{2}, x_{3}, \cdots, \hat{x}_{j}, \cdots, x_{n+2}\right)\right] \\
+ & +\sum_{2 \leq i<j \leq n+2}(-1)^{j+1}\left[x_{1}, f\left(x_{2}, \cdots, x_{i-1},\left[x_{i}, x_{j}\right], x_{i+1}, \cdots, \hat{x}_{j}, \cdots, x_{n+2}\right)\right] \\
+ & \sum_{1 \leq i<j \leq n+2}(-1)^{j+1} \sum_{2 \leq u \leq i-1}(-1)^{u}\left[f\left(x_{1}, \cdots, \hat{x}_{u}, \cdots, x_{i-1},\left[x_{i}, x_{j}\right], \cdots, \hat{x}_{j}, \cdots, x_{n+2}\right), x_{u}\right] \\
+ & \sum_{2 \leq i<j \leq n+2}(-1)^{i+j+1}\left[f\left(x_{1}, \cdots, x_{i-1},\left[x_{i}, x_{j}\right], x_{i+1}, \cdots, \hat{x}_{j}, \cdots, x_{n+2}\right),\left[x_{i}, x_{j}\right]\right] \\
+ & \sum_{1 \leq i<j \leq n+2}(-1)^{j+1} \sum_{i<u<j}(-1)^{u}\left[f\left(x_{1}, \cdots, x_{i-1},\left[x_{i}, x_{j}\right], \cdots, \hat{x}_{u}, \cdots, \hat{x}_{j}, \cdots, x_{n+2}\right), x_{u}\right]
\end{aligned}
$$

$$
\begin{align*}
& +\sum_{1 \leq i<j \leq n+2}(-1)^{j+1} \sum_{j<u \leq n+2}(-1)^{u-1}\left[f\left(x_{1}, \cdots, x_{i-1},\left[x_{i}, x_{j}\right], \cdots, \hat{x}_{j}, \cdots, \hat{x}_{u}, \cdots, x_{n+2}\right), x_{u}\right] \\
& +X . \tag{1.3.5}
\end{align*}
$$

By the above Lemma 1.3.3 we get $X=0$. Notice that since M is a representation of the Leibniz algebra L, if we use the identity

$$
[x,[y, z]]-[[x, y], z]+[[x, z], y]=0
$$

whenever one of the variable is from M and the others from L, we get the following.

```
1st term of (1.3.2) + 1st term of (1.3.4)}(\mathrm{ for }i=2)+1\mathrm{ st term of (1.3.5) (for j=2)
=0. Similarly,
2nd term of (1.3.2) +1st term of (1.3.4)}(\mathrm{ for }i>2)+1\mathrm{ st term of (1.3.5) (for j>2)
= 0,
and 2nd term of (1.3.4)}+3\textrm{rd}\mathrm{ term of (1.3.4)}+4\mathrm{ th term of (1.3.5) = 0.
```

On the other hand any element in 3rd term of (1.3.2) appears with opposite sign in the 2nd term of (1.3.5), so they cancel out. Similarly any element in 4th term, 5th term or 6th term of (1.3.4) appears with opposite sign in the expression obtained from 3rd term, 5th term or 6th term of (1.3.5).

Now the result will follow from this observation, if we substitute all the three terms on the right-hand side of (1.3.2) from (1.3.3)-(1.3.5).

Definition 1.3.5. Let $Z L^{n}(L ; M)=\operatorname{ker}\left(\delta^{n}\right)$ and $B L^{n}(L ; M)=i m\left(\delta^{n-1}\right)$ be submodules of $C L^{n}(L ; M)$ consisting of cocycles and coboundaries respectively. The cohomology of the Leibniz algebra L with coefficients in the representation M is defined by

$$
H L^{n}(L ; M):=H^{n}\left(C L^{*}(L ; M)\right)=\frac{Z L^{n}(L ; M)}{B L^{n}(L ; M)}
$$

When $M=L$ with the action given by the bracket in L, we denote the cohomology by $H L^{*}(L ; L)$.

A graded module V is a \mathbb{K}-module together with a family $\left\{V_{i}\right\}_{i \in \mathbb{Z}}$ of submodules of V, such that $V=\bigoplus_{i} V_{i}$. The elements in V_{i} are called homogeneous of degree i.

Definition 1.3.6. A graded Lie algebra \mathfrak{L} is a graded module $\mathfrak{L}=\left\{L_{i}\right\}_{i \in \mathbb{Z}}$ together with a linear map of degree zero, $[-,-]: \mathfrak{L} \otimes \mathfrak{L} \longrightarrow \mathfrak{L}, x \otimes y \mapsto[x, y]$ satisfying

$$
\begin{aligned}
& \text { (i) }[x, y]=-(-1)^{|x||y|}[y, x] \\
& (i i)(-1)^{|x||z|}[x,[y, z]]+(-1)^{|y||x|}[y,[z, x]]+(-1)^{|z||y|}[z,[x, y]]=0
\end{aligned}
$$

for $x, y, z \in \mathfrak{L}$, where $|x|$ denotes the degree of x.
A differential graded Lie algebra is a graded Lie algebra equipped with a differential d satisfying

$$
d[x, y]=[d x, y]+(-1)^{|x|}[x, d y]
$$

Definition 1.3.7. Let S_{n} be the symmetric group of n symbols. Recall that a permutation $\sigma \in S_{p+q}$ is called $a(p, q)$-shuffle, if $\sigma(1)<\sigma(2)<\cdots<\sigma(p)$, and, $\sigma(p+1)<\sigma(p+2)<\cdots<\sigma(p+q)$. We denote the set of all (p, q)-shuffles in S_{p+q} by $\operatorname{Sh}(p, q)$.

For $\alpha \in C L^{p+1}(L ; L)$ and $\beta \in C L^{q+1}(L ; L)$, define $\alpha \circ \beta \in C L^{p+q+1}(L ; L)$ by

$$
\begin{aligned}
& \alpha \circ \beta\left(x_{1}, \ldots, x_{p+q+1}\right) \\
= & \sum_{k=1}^{p+1}(-1)^{q(k-1)}\left\{\sum _ { \sigma \in S h (q , p - k + 1) } \operatorname { s g n } (\sigma) \alpha \left(x_{1}, \ldots, x_{k-1}, \beta\left(x_{k}, x_{\sigma(k+1)}, \ldots, x_{\sigma(k+q)}\right),\right.\right. \\
& \left.\left.x_{\sigma(k+q+1)}, \ldots, x_{\sigma(p+q+1)}\right)\right\} .
\end{aligned}
$$

Then the direct sum $C L^{*}(L ; L)=\bigoplus_{p} C L^{p}(L ; L)$ equipped with the bracket $[-,-]$ defined by,

$$
\begin{equation*}
[\alpha, \beta]=\alpha \circ \beta+(-1)^{p q+1} \beta \circ \alpha \tag{1.3.6}
\end{equation*}
$$

for $\alpha \in C L^{p+1}(L ; L)$ and $\beta \in C L^{q+1}(L ; L)$, is a graded Lie algebra (Bal97]). The grading being reduced by one from the usual grading. Moreover the coboundary can be expressed by the Lie bracket in the graded Lie algebra as follows.

Lemma 1.3.8. Suppose $\alpha \in C L^{p+1}(L ; L)$, then $\delta \alpha=-\left[\alpha, \mu_{0}\right]$, where μ_{0} is the 2cochain given by the Leibniz bracket in L.

Proof. Here $\delta \alpha \in C L^{p+2}(L ; L)$. Let $x_{1}, \ldots, x_{p+2} \in L$. Then from the definition of coboundary we have,

$$
\begin{align*}
& \delta \alpha\left(x_{1}, \ldots, x_{p+2}\right) \\
= & \mu_{0}\left(x_{1}, \alpha\left(x_{2}, \ldots, x_{p+2}\right)\right)+\sum_{j=2}^{p+2}(-1)^{j} \mu_{0}\left(\alpha\left(x_{1}, \ldots, x_{j-1}, \hat{x}_{j}, x_{j+1}, \ldots, x_{p+2}\right), x_{j}\right) \\
+ & \sum_{1 \leq k<j \leq p+2}(-1)^{j+1} \alpha\left(x_{1}, \ldots, x_{k-1}, \mu_{0}\left(x_{k}, x_{j}\right), x_{k+1}, \ldots, x_{j-1}, \hat{x}_{j}, x_{j+1}, \ldots, x_{p+2}\right) . \tag{1.3.7}
\end{align*}
$$

Now $\left[\alpha, \mu_{0}\right]=\alpha \circ \mu_{0}+(-1)^{p+1} \mu_{0} \circ \alpha$, where

$$
\begin{aligned}
& \alpha \circ \mu_{0}\left(x_{1}, \ldots, x_{p+2}\right) \\
= & \sum_{k=1}^{p+1}(-1)^{(k-1)} \sum_{\sigma \in \operatorname{Sh}(1, p-k+1)} \operatorname{sgn}(\sigma) \alpha\left(x_{1}, \ldots, x_{k-1}, \mu_{0}\left(x_{k}, x_{\sigma(k+1)}\right), x_{\sigma(k+2)}, \ldots, x_{\sigma(p+2)}\right) \\
= & \sum_{1 \leq k<j \leq p+2}(-1)^{j} \alpha\left(x_{1}, \ldots, x_{k-1}, \mu_{0}\left(x_{k}, x_{j}\right), x_{k+1}, \ldots, x_{j-1}, \hat{x}_{j}, x_{j+1}, \ldots, x_{p+2}\right) .
\end{aligned}
$$

And

$$
\begin{aligned}
& \quad \mu_{0} \circ \alpha\left(x_{1}, \ldots, x_{p+2}\right) \\
& =\sum_{\sigma \in \operatorname{Sh}(p, 1)} \operatorname{sgn}(\sigma) \mu_{0}\left(\alpha\left(x_{1}, x_{\sigma(2)}, \ldots, x_{\sigma(p+1)}\right), x_{\sigma(p+2)}\right)+(-1)^{p} \mu_{0}\left(x_{1}, \alpha\left(x_{2}, \ldots, x_{p+2}\right)\right) \\
& =\sum_{2 \leq j \leq p+2}(-1)^{p+2-j} \mu_{0}\left(\alpha\left(x_{1}, x_{2}, \ldots, x_{j-1}, \hat{x}_{j}, x_{j+1}, \ldots, x_{p+2}\right), x_{j}\right) \\
& \quad+(-1)^{p} \mu_{0}\left(x_{1}, \alpha\left(x_{2}, \ldots, x_{p+2}\right)\right) .
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& {\left[\alpha, \mu_{0}\right]\left(x_{1}, \ldots, x_{p+2}\right) } \\
= & \left\{\alpha \circ \mu_{0}+(-1)^{p+1} \mu_{0} \circ \alpha\right\}\left(x_{1}, \ldots, x_{p+2}\right) \\
= & \sum_{1 \leq k<j \leq p+2}(-1)^{j} \alpha\left(x_{1}, \ldots, x_{k-1}, \mu_{0}\left(x_{k}, x_{j}\right), x_{k+1}, \ldots, x_{j-1}, \hat{x}_{j}, x_{j+1}, \ldots, x_{p+2}\right) \\
+ & \sum_{2 \leq j \leq p+2}(-1)^{j+1} \mu_{0}\left(\alpha\left(x_{1}, x_{2}, \ldots, x_{j-1}, \hat{x}_{j}, x_{j+1}, \ldots, x_{p+2}\right), x_{j}\right)-\mu_{0}\left(x_{1}, \alpha\left(x_{2}, \ldots, x_{p+2}\right)\right) .
\end{aligned}
$$

Thus $\delta \alpha=-\left[\alpha, \mu_{0}\right]$.
Now let us consider the linear map $d: C L^{*}(L ; L) \longrightarrow C L^{*}(L ; L)$ defined by $d \alpha=$ $(-1)^{|\alpha|} \delta \alpha$ for $\alpha \in C L^{*}(L ; L)$. Then we have

Lemma 1.3.9. The differential d of the graded Lie algebra $C L^{*}(L ; L)$ is a derivation of degree 1. In otherwords, $d[\alpha, \beta]=[d \alpha, \beta]+(-1)^{|\alpha|}[\alpha, d \beta]$ for $\alpha, \beta \in C L^{*}(L ; L)$.

Proof. Let $\alpha \in C L^{p+1}(L ; L)$ and $\beta \in C L^{q+1}(L ; L)$ then from definition we get

$$
\begin{aligned}
& d[\alpha, \beta] \\
= & (-1)^{p+q+1} \delta[\alpha, \beta] \\
= & -(-1)^{p+q+1}\left[[\alpha, \beta], \mu_{0}\right] \\
= & {\left.\left[\mu_{0},[\alpha, \beta]\right] \text { (by antisymmetry of the graded Lie bracket }[-,-]\right) } \\
= & \left.-(-1)^{q(p+1)}\left[\beta,\left[\mu_{0}, \alpha\right]\right]-(-1)^{p+q}\left[\alpha,\left[\beta, \mu_{0}\right]\right] \text { (by the Jacobi identity of }[-,-]\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\left[\mu_{0}, \alpha\right], \beta\right]+(-1)^{p}\left[\alpha,(-1)^{q} \delta \beta\right] \\
& =(-1)^{p+1}\left[\left[\alpha, \mu_{0}\right], \beta\right]+(-1)^{p}[\alpha, d \beta] \\
& =\left[(-1)^{p} \delta \alpha, \beta\right]+(-1)^{p}[\alpha, d \beta] \\
& =[d \alpha, \beta]+(-1)^{p}[\alpha, d \beta] .
\end{aligned}
$$

Thus we get the following result.
Proposition 1.3.10. The graded module $C L^{*}(L ; L)=\bigoplus_{p} C L^{p}(L ; L)$ equipped with the bracket defined by

$$
[\alpha, \beta]=\alpha \circ \beta+(-1)^{p q+1} \beta \circ \alpha \text { for } \alpha \in C L^{p+1}(L ; L) \quad \text { and } \beta \in C L^{q+1}(L ; L)
$$

and the differential map d by $d \alpha=(-1)^{|\alpha|} \delta \alpha$ for $\alpha \in C L^{*}(L ; L)$ is a differential graded Lie algebra.

From the Lemma 1.3.9 it follows that if α, β are cocycles then $[\alpha, \beta]$ is also a cocycle, and the cohomology class of $[\alpha, \beta]$ depends only on the class of α and β. Thus the bracket $[-,-]$ at the cochain level induces

$$
[-,-]: H L^{p+1}(L ; L) \otimes H L^{q+1}(L ; L) \longrightarrow H L^{p+q+1}(L ; L)
$$

and we get the following corollary.
Corollary 1.3.11. The graded module $H L^{*}(L ; L)$ is a graded Lie algebra.

1.4 Cohomology for Leibniz algebra homomorphisms

The purpose of this last section is to define cohomology modules associated to a Leibniz algebra homomorphism MM. We shall need them later in this thesis.

Let L and M be Leibniz algebras over \mathbb{K}. For simplicity, we use the same notation $[-,-]$ for the brackets of L and M.

Definition 1.4.1. A \mathbb{K}-linear map $f: L \longrightarrow M$ is said to be a Leibniz algebra homomorphism if it preserves the brackets. In other words, $f([x, y])=[f(x), f(y)]$ for $x, y \in L$.

Let $f: L \longrightarrow M$ be a Leibniz algebra homomorphism. We consider M as a representation of L via f as follows.

The actions

$$
[-,-]: L \times M \longrightarrow M,[-,-]: M \times L \longrightarrow M
$$

of L on M are respectively

$$
[l, m]:=[f(l), m], \quad[m, l]:=[m, f(l)]
$$

for $l \in L$ and $m \in M$.
Define a cochain complex $\left(C L^{*}(f ; f), d\right)$ as follows. Set $C L^{0}(f ; f):=0$. For $n \geq 1$, the module of n-cochains is

$$
C L^{n}(f ; f):=C L^{n}(L ; L) \times C L^{n}(M ; M) \times C L^{n-1}(L ; M)
$$

The coboundary $d^{n}: C L^{n}(f ; f) \longrightarrow C L^{n+1}(f ; f)$ is defined by the formula

$$
\begin{equation*}
d^{n}(u, v ; w):=\left(\delta^{n} u, \delta^{n} v ; f u-v f-\delta^{n-1} w\right) \text { for }(u, v ; w) \in C L^{n}(f ; f) \tag{1.4.1}
\end{equation*}
$$

Here δ^{n} on the right-hand side are the coboundaries of the complexes defining Leibniz cohomology groups with appropriate coefficients. The map $v f: L^{\otimes n} \longrightarrow M$ is the linear map defined by $v f\left(x_{1}, \cdots, x_{n}\right)=v\left(f\left(x_{1}\right), \cdots, f\left(x_{n}\right)\right)$, and $f u$ is the composition of maps.

By the Proposition 1.3.4, we have $\delta^{n+1} \circ \delta^{n} u=\delta^{n+1} \circ \delta^{n} v=\delta^{n} \circ \delta^{n-1} w=0$. Moreover $\delta^{n}(f u)=f \delta^{n} u ; \quad\left(\delta^{n} v\right) f=\delta^{n}(v f)$ for $u \in C L^{n}(L ; L), v \in C L^{n}(M ; M)$, and $w \in$ $C L^{n-1}(L ; M)$. So

$$
f \delta^{n} u-\left(\delta^{n} v\right) f-\delta^{n}\left(f u-v f-\delta^{n-1} w\right)=f \delta^{n} u-\left(\delta^{n} v\right) f-\delta^{n} f u+\delta^{n} v f=0
$$

Thus $d^{n+1} \circ d^{n}(u, v ; w)=0$ for $(u, v, w) \in C L^{n}(f ; f), n \geq 0$. Hence we obtain
Proposition 1.4.2. $\left(C L^{*}(f ; f), d\right)$ is a cochain complex.
The corresponding cohomology modules are denoted by

$$
H L^{n}(f ; f):=H^{n}\left(\left(C L^{*}(f ; f), d\right)\right)
$$

Next proposition relates $H L^{*}(f ; f)$ to $H L^{*}(L ; L), H L^{*}(M ; M)$, and $H L^{*}(L ; M)$.
Proposition 1.4.3. If $H L^{n}(L ; L)=0=H L^{n}(M ; M)$, and $H L^{n-1}(L ; M)=0$, then so is $H L^{n}(f ; f)$.

Proof. Let $(u, v ; w)$ represents a cocycle in $H L^{n}(f ; f)$. Since $H L^{n}(L ; L)=0=$ $H L^{n}(M ; M)$, we get $u=\delta^{n-1} u_{1}$ and $v=\delta^{n-1} v_{1}$ for some $(n-1)$-cochains $u_{1} \in$ $C L^{n-1}(L ; L)$ and $v_{1} \in C L^{n-1}(M ; M)$. Now $d^{n}(u, v ; w)=0$, so $f u-v f-\delta^{n-1} w=0=$ $\left(f \delta^{n-1} u_{1}-\delta^{n-1} v_{1} f-\delta^{n-1} w\right)=\delta^{n-1}\left(f u_{1}-v_{1} f-w\right)$. Therefore $\left(f u_{1}-v_{1} f-w\right)$ is a cocycle in $C L^{n-1}(L ; M)$. Since $H L^{n-1}(L ; M)=0$, we get an element $w_{1} \in C L^{n-2}(L ; M)$ such that $\delta^{n-2} w_{1}=\left(f u_{1}-v_{1} f-w\right)$.

Thus $\left(u_{1}, v_{1} ; w_{1}\right) \in C L^{n-1}(f ; f)$ and $d^{n-1}\left(u_{1}, v_{1} ; w_{1}\right)=(u, v ; w)$. Consequently every cocycle is a coboundary in $C L^{n}(f ; f)$.

We shall need a version of the above cohomology with coefficients which is described as follows.

Let M_{0} be a finite dimensional \mathbb{K}-module. For $n \geq 1$ we have the isomorphisms:
$C L^{n}\left(L ; M_{0} \otimes L\right) \cong M_{0} \otimes C L^{n}(L ; L), C L^{n}\left(M ; M_{0} \otimes M\right) \cong M_{0} \otimes C L^{n}(M ; M)$ and $C L^{n}\left(L ; M_{0} \otimes M\right) \cong M_{0} \otimes C L^{n}(L ; M)$.

Set $M_{0} \otimes C L^{0}(f ; f)=0$ and for $n \geq 1$
$M_{0} \otimes C L^{n}(f ; f):=C L^{n}\left(L ; M_{0} \otimes L\right) \times C L^{n}\left(M ; M_{0} \otimes M\right) \times C L^{n-1}\left(L ; M_{0} \otimes M\right)$.
Define $d^{n}: M_{0} \otimes C L^{n}(f ; f) \longrightarrow M_{0} \otimes C L^{n+1}(f ; f)$ by
$d^{n}\left(m_{1} \otimes u, m_{2} \otimes v ; m_{3} \otimes w\right):=\left(m_{1} \otimes \delta^{n} u, m_{2} \otimes \delta^{n} v ;\left(m_{1} \otimes f u-m_{2} \otimes v f-m_{3} \otimes \delta^{n-1} w\right)\right)$
for $\left(m_{1} \otimes u, m_{2} \otimes v ; m_{3} \otimes w\right) \in M_{0} \otimes C L^{n}(f ; f)$.
Now

$$
\begin{align*}
& d^{n+1} \circ d^{n}\left(m_{1} \otimes u, m_{2} \otimes v ; m_{3} \otimes w\right) \\
= & d^{n+1}\left(m_{1} \otimes \delta^{n} u, m_{2} \otimes \delta^{n} v ;\left(m_{1} \otimes f u-m_{2} \otimes v f-m_{3} \otimes \delta^{n-1} w\right)\right) \\
= & \left(0,0 ; m_{1} \otimes f\left(\delta^{n} u\right)-m_{2} \otimes\left(\delta^{n} v\right) f-m_{1} \otimes \delta^{n}(f u)+m_{2} \otimes \delta^{n}(v f)\right) \tag{1.4.2}\\
= & (0,0 ; 0)
\end{align*}
$$

Thus $\left(M_{0} \otimes C L^{*}(f ; f), d\right)$ is a cochain complex. We shall denote the corresponding nth cohomology module by $M_{0} \otimes H L^{n}(f ; f)$.

Chapter 2

Harrison cohomology and related results

2.1 Introduction

In this chapter we recall some results about Harrison cohomology of a commutative algebra and its relation to extensions of the algebra. These results will be used subsequently. The basic references for this chapter are Hoc45 Har62 Bar68. We first recall the definition of the Harrison complex of a commutative algebra A and the Harrison cohomology with coefficients in an A-module M. Next, we define extension of a commutative algebra A by an A-module M, describe its relation to Harrison cohomology of A. We also recall few basic properties that will be used later in this thesis.

2.2 Harrison complex of a commutative algebra

Definition 2.2.1. By a \mathbb{K}-algebra we mean an associative ring A, which is also a \mathbb{K}-module satisfying the conditions

$$
k(x y)=(k x) y=x(k y), \text { for } k \in \mathbb{K} \text { and } x, y \in A .
$$

If the underlying ring is commutative then A is called a commutative algebra.
A local \mathbb{K}-algebra is the one having a unique maximal ideal or equivalently if the set of all the nonunits in A forms a maximal ideal.

Definition 2.2.2. Let A be a \mathbb{K}-algebra, a bimodule M over A or, an A-bimodule is a \mathbb{K}-module equipped with two actions (left and right) of A

$$
A \times M \longrightarrow M \text { and } M \times A \longrightarrow M
$$

such that $(a m) a^{\prime}=a\left(m a^{\prime}\right)$ for $a, a^{\prime} \in A$ and $m \in M$.
The actions of A and \mathbb{K} on M are compatible, that is $(\lambda a) m=\lambda(a m)=a(\lambda m)$ for $\lambda \in \mathbb{K}, a \in A$ and $m \in M$. When A has the identity 1 we always assume that $1 m=m 1=m \quad$ for $m \in M$.

Given a bimodule M over A, the Hochschild complex of A with coefficients in M is defined as follows.

Set $C_{n}(A, M)=M \otimes A^{\otimes n} ; n \geq 0$ where $A^{\otimes n}=A \otimes \cdots \otimes A$ (n-copies). Let

$$
\delta: C_{n}(A, M) \longrightarrow C_{n-1}(A, M)
$$

be the \mathbb{K}-linear map given by

$$
\begin{align*}
\delta\left(m, a_{1}, a_{2}, \ldots, a_{n}\right)=\left(m a_{1}, a_{2}, \ldots, a_{n}\right) & +\sum_{i=1}^{n-1}(-1)^{i}\left(m, a_{1}, \ldots, a_{i} a_{i+1}, \ldots, a_{n}\right) \tag{2.2.1}\\
+ & (-1)^{n}\left(a_{n} m, a_{1}, \ldots, a_{n-1}\right)
\end{align*}
$$

Then $\delta^{2}=0$ and the complex $\left(C_{*}(A, M), \delta\right)$ is called the Hochschild complex of A with coefficients in the A-bimodule M. When $M=A$, where the actions are given by algebra operation in A we denote the complex $C_{*}(A, A)$ by $C_{*}(A)$.

Let A be a commutative \mathbb{K}-algebra with 1 . The Harrison complex of A induced from the Hochschild complex is defined as follows.

Consider $C_{n}(A)=A \otimes A^{\otimes n}$ where A operates on the first factor. If we denote the element $\left(a_{0}, a_{1}, \cdots, a_{n}\right) \in C_{n}(A)$ by $a_{0}\left(a_{1}, \cdots, a_{n}\right)$ and write $1\left(a_{1}, \cdots, a_{n}\right)$ simply by $\left(a_{1}, \cdots, a_{n}\right)$, then the boundary

$$
\delta: C_{n}(A) \longrightarrow C_{n-1}(A)
$$

is the A-linear map such that

$$
\begin{align*}
\delta\left(a_{1}, a_{2}, \ldots, a_{n}\right)=a_{1}\left(a_{2}, \ldots, a_{n}\right)+ & \sum_{i=1}^{n-1}(-1)^{i}\left(a_{1}, \ldots, a_{i} a_{i+1}, \ldots, a_{n}\right) \tag{2.2.2}\\
& +(-1)^{n} a_{n}\left(a_{1}, \ldots, a_{n-1}\right)
\end{align*}
$$

For $a_{1}, a_{2}, \ldots, a_{n} \in A$ and $0<p<n$, set

$$
s_{p}\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{\sigma \in S h(p, n-p)} \operatorname{sgn}(\sigma)\left(a_{\sigma(1)}, a_{\sigma(2)}, \ldots, a_{\sigma(n)}\right) \in C_{n}(A)
$$

where $S h(p, q)$ is the set all (p, q)-shuffles as defined in Chapter 1. Let $S h_{n}(A)$ be the A-submodule of $C_{n}(A)$ generated by the chains $s_{p}\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ for $a_{1}, a_{2}, \ldots, a_{n} \in$
A and $0<p<n$.
It follows from Proposition 2.2 in Bar68 that $\delta\left(S h_{n}(A)\right) \subset S h_{n-1}(A)$. Thus we get a chain complex $C h(A)=\left\{C h_{n}(A), \delta\right\}$ where $C h_{n}(A)=C_{n}(A) / S h_{n}(A)$. This is known as the Harrision chain complex for the algebra A with trivial coefficients.

Let M be a left A-module. Since A is commutative, M can be considered as an A-bimodule. Consider the following complexes by taking $-\otimes M$ and $\operatorname{Hom}(-; M)$ respectively.

$$
\begin{aligned}
& \ldots \xrightarrow{\delta_{n+2} \otimes i d} C h_{n+1}(A) \otimes M \xrightarrow{\delta_{n+1} \otimes i d} C h_{n}(A) \otimes M \xrightarrow{\delta_{n} \otimes i d} C h_{n-1}(A) \otimes M \ldots \\
& \ldots \xrightarrow{\delta^{n-2}} \operatorname{Hom}\left(C h_{n-1}(A) ; M\right) \xrightarrow{\delta^{n-1}} \operatorname{Hom}\left(C h_{n}(A) ; M\right) \xrightarrow{\delta^{n}} \operatorname{Hom}\left(C h_{n+1}(A) ; M\right) \cdots
\end{aligned}
$$

Definition 2.2.3. For an A-module M we set,

$$
\begin{aligned}
& H_{n}^{\text {Harr }}(A ; M)=H_{n}(\operatorname{Ch}(A) \otimes M) \quad \text { and } \\
& H_{H a r r}^{n}(A ; M)=H^{n}(\operatorname{Hom}(\operatorname{Ch}(A), M)) .
\end{aligned}
$$

These are respectively the Harrision homology and cohomology modules of A with coefficients in M.

In our discussion we mainly require first and second Harrison cohomologies. In low dimension the Harrison cochain complex is given by

$$
\begin{align*}
& 0 \longrightarrow \operatorname{Hom}(A ; M) \xrightarrow{\delta^{1}} \operatorname{Hom}\left(S^{2} A ; M\right) \xrightarrow{\delta^{2}} \operatorname{Hom}\left(A^{\otimes 3} ; M\right), \text { where } \\
& \delta^{1} \psi(a, b)=a \psi(b)-\psi(a b)+b \psi(a) \text { for } \psi \in \operatorname{Hom}(A ; M) \tag{2.2.3}\\
& \delta^{2} \phi(a, b, c)=a \phi(b, c)-\phi(a b, c)+\phi(a, b c)-c \phi(a, b) \\
& \text { for } \phi \in \operatorname{Hom}\left(S^{2} A ; M\right) \text { and } a, b, c \in A .
\end{align*}
$$

Note that $C h_{2}(A)$ is by definition $S^{2} A$, the symmetric product module of A.
Proposition 2.2.4. Let A be a commutative algebra with a maximal ideal \mathfrak{M} and M be an A-module with $\mathfrak{M} M=0$. Then we have the canonical isomorphisms,

$$
\begin{gathered}
H_{n}^{H a r r}(A ; M) \cong H_{n}^{\text {Harr }}(A ; \mathbb{K}) \otimes M \text { and } \\
H_{H a r r}^{n}(A ; M) \cong H_{H a r r}^{n}(A ; \mathbb{K}) \otimes M
\end{gathered}
$$

Proof. Define

$$
\mu: H_{n}^{\text {Harr }}(A ; \mathbb{K}) \otimes M \longrightarrow H_{n}^{\text {Harr }}(A ; M) \text { by } \mu([c] \otimes m)=[c \otimes m]
$$

If $c=\delta_{n+1} \alpha$ for some $(n+1)$-chain $\alpha \in C h_{n+1}(A)$ then $[c \otimes m]=\left[\delta_{n+1} \alpha \otimes m\right]=0$. So μ is well-defined. Suppose $\mu([c] \otimes m)=[c \otimes m]$ where $c \otimes m$ is a boundary in $C h_{n}(A) \otimes M$,
then $c \otimes m=\delta_{n+1} \alpha \otimes m$ for some $(n+1)$-chain $\alpha \in C h_{n+1}(A)$. Thus $[c] \otimes m=0$ in $H_{n}^{\text {Harr }}(A ; \mathbb{K}) \otimes M$. So, μ is injective. From definition it is clear that μ is surjective. Next define

$$
F: H_{\text {Harr }}^{n}(A ; M) \longrightarrow \operatorname{Hom}\left(H_{n}^{\text {Harr }}(A ; \mathbb{K}) ; M\right) \text { by } F([\phi])([c])=\phi(c) .
$$

$$
G: H_{\text {Harr }}^{n}(A ; \mathbb{K}) \otimes M \longrightarrow \operatorname{Hom}\left(H_{n}^{\text {Harr }}(A ; \mathbb{K}) ; M\right) \text { by } G([\phi] \otimes a)(c)=\phi(c) a
$$

Here $F\left(\phi+\delta^{n-1}(\alpha)\right)([c])=\phi(c)+\delta^{n-1} \alpha(c)=\phi(c)+\alpha\left(\delta_{n} c\right)=\phi(c)$, so F is welldefined. From definition of F, it follows that if $\phi(c)=0$ for all cycles $c \in C h_{n}(A)$ then ϕ is a coboundary. Thus F is injective.

To show that F is surjective, let us consider $\rho \in \operatorname{Hom}\left(H_{n}^{\operatorname{Harr}}(A ; \mathbb{K}) ; M\right)$. Then ρ can be extended to a linear map \tilde{f} in $H_{H a r r}^{n}(A ; M)$ such that $F(\tilde{f})=\rho$.

Similarly G is an isomorphism.
The next proposition gives an alternative description of the first Harrison cohomology module of A with coefficients in M.

Definition 2.2.5. Let A be $a \mathbb{K}$-algebra and M an A-module. By a derivation D : $A \longrightarrow M$ (over \mathbb{K}) we mean a \mathbb{K}-linear map satisfying

$$
D(a b)=a D(b)+b D(a) .
$$

Proposition 2.2.6. The module of derivations from A to M is $H_{H a r r}^{1}(A ; M)$.
Proof. By definition, $H_{\text {Harr }}^{1}(A ; M)=\frac{\operatorname{ker}\left(\delta^{1}\right)}{\{0\}}=\operatorname{ker}\left(\delta^{1}\right)$.
Suppose $\psi \in \operatorname{ker}\left(\delta^{1}\right)$ then $\delta^{1} \psi(a, b)=0$ for $a, b \in A$.
So $\psi(a, b)=a \psi(b)+b \psi(a)$. Thus $\psi: A \longrightarrow M$ is a derivation. On the other hand a derivation $f: A \longrightarrow M$ is in $\operatorname{ker}\left(\delta^{1}\right)$. Therefore $H_{\text {Harr }}^{1}(A ; M)$ is the module of derivations $A \longrightarrow M$.

Let A be a local algebra with the maximal ideal \mathfrak{M}, and $\varepsilon: A \rightarrow \mathbb{K}$ be the canonical augmentation. Thus ε is the algebra homomorphism with $\varepsilon(1)=1$ and $\operatorname{ker}(\varepsilon)=\mathfrak{M}$. We consider \mathbb{K} as an A-module, where the action of A on \mathbb{K}, is given by the augmentation ε. Explicitly, $a k=\varepsilon(a) k$, for $a \in A$ and $k \in \mathbb{K}$.

Corollary 2.2.7. The dual module of $\left(\frac{\mathfrak{M}}{\mathfrak{M}^{2}}\right)$ corresponds bijectively to $H_{\text {Harr }}^{1}(A ; \mathbb{K})$.
Proof. Let $\psi \in H_{\text {Harr }}^{1}(A ; \mathbb{K})$. By Proposition [2.2.6, ψ can be viewed as a derivation $\psi: A \longrightarrow \mathbb{K}$.

Suppose $a \in \mathfrak{M}^{2}$ so that $a=\sum_{i, j} m_{i} m_{j}$ for some $m_{i}, m_{j} \in \mathfrak{M}$ where i, j varies over a finite set. Then

$$
\begin{align*}
\psi(a) & =\psi\left(\sum_{i, j} m_{i} m_{j}\right) \\
& =\sum_{i, j} \psi\left(m_{i} m_{j}\right) \\
& =\sum_{i, j}\left(m_{i} \psi\left(m_{j}\right)+m_{j} \psi\left(m_{i}\right)\right) \tag{2.2.4}\\
& =\sum_{i, j}\left(\varepsilon\left(m_{i}\right) \psi\left(m_{j}\right)+\varepsilon\left(m_{j}\right) \psi\left(m_{i}\right)\right) \\
& =0 .
\end{align*}
$$

Moreover $\psi(1)=0$, so ψ vanishes on \mathbb{K}. Thus $\psi: \mathfrak{M} \longrightarrow \mathbb{K}$ is a linear map vanishing on \mathfrak{M}^{2}. In other words $\psi \in\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime}$.
Conversely let $\phi \in\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime}$. Then ϕ defines a linear map $\bar{\phi}: A \longrightarrow \mathbb{K}$ such that $\bar{\phi}\left(\mathfrak{M}^{2}\right)=0$ and $\bar{\phi}(1)=0$. For $a_{1}, a_{2} \in A=\mathbb{K} \oplus \mathfrak{M}$ let $a_{1}=k_{1}+m_{1}$ and $a_{2}=k_{2}+m_{2}$. Now

$$
\begin{aligned}
\bar{\phi}\left(a_{1} a_{2}\right) & =\bar{\phi}\left(\left(k_{1}+m_{1}\right)\left(k_{2}+m_{2}\right)\right) \\
& =\bar{\phi}\left(k_{1} k_{2}+k_{1} m_{2}+k_{2} m_{1}+m_{1} m_{2}\right) \\
& =\bar{\phi}\left(k_{1} k_{2}\right)+k_{1} \bar{\phi}\left(m_{2}\right)+k_{2} \bar{\phi}\left(m_{1}\right)+\bar{\phi}\left(m_{1} m_{2}\right) \\
& =k_{1} \bar{\phi}\left(m_{2}\right)+k_{2} \bar{\phi}\left(m_{1}\right) \\
& =\left(k_{1}+m_{1}\right) \bar{\phi}\left(k_{2}+m_{2}\right)+\left(k_{2}+m_{2}\right) \bar{\phi}\left(k_{1}+m_{1}\right) \\
& =a_{1} \bar{\phi}\left(a_{2}\right)+a_{2} \bar{\phi}\left(a_{1}\right)
\end{aligned}
$$

So $\bar{\phi}$ is a derivation. Therefore by Proposition 2.2.6 $\bar{\phi}$ can be viewed as an element in $H_{\text {Harr }}^{1}(A ; \mathbb{K})$.

We will see later that first Harrison cohomology module has another significant interpretation as the group of automorphisms of extensions of A by M.

2.3 Extension of algebras and relation to Harrison cohomology

In this section we first recall the definition of extension of a commutative algebra A by an A-module M. Then we recall some important characterizations of first and second Harrison cohomology modules of A in terms of extension of A by M.

Definition 2.3.1. An extension of a commutative algebra A with maximal ideal \mathfrak{M} by an A-module M satisfying $\mathfrak{M} M=0$ is a commutative algebra B with an algebra homomorphism $p: B \longrightarrow A$, a \mathbb{K}-linear map $i: M \longrightarrow B$ such that the following is an exact sequence of \mathbb{K}-modules

$$
0 \longrightarrow M \xrightarrow{i} B \xrightarrow{p} A \longrightarrow 0 .
$$

Moreover, if the image $i(M)$, which is an ideal in B is denoted by N, then B-module structure on N is induced by the A-module structure on M as follows.

$$
n b=i(m) b=i(m p(b)) .
$$

In particular, N is an ideal in B with $N^{2}=0$. For if $n, n^{\prime} \in N$ with $n=i(m)$ and $n^{\prime}=i\left(m^{\prime}\right)$ where $m, m^{\prime} \in M$ then $n n^{\prime}=n i\left(m^{\prime}\right)=i\left(p(n) m^{\prime}\right)=0$, because $p(n)=0$. Therefore $N^{2}=0$.

Given A and M as above we can always construct an extension by considering $B=A \oplus M$ and $i(m)=(0, m), p(a, m)=a$. The algebra multiplication in B is given by $\left(a_{1}, m_{1}\right)\left(a_{2}, m_{2}\right)=\left(a_{1} a_{2}, a_{1} m_{2}+a_{2} m_{1}\right)$ for $a_{1}, a_{2} \in A$ and $m_{1}, m_{2} \in M$. This extension is called the trivial extension of A by M.

Definition 2.3.2. Two extensions B and B^{\prime} of A by M are said to be isomorphic if there is $a \mathbb{K}$-algebra isomorphism $f: B \longrightarrow B^{\prime}$ such that the diagram below commutes.

Next result shows that the isomorphism classes of extension of A by M determine and are determined by the second Harrison cohomology of A with coefficients in M.

Proposition 2.3.3. Elements of $H_{\text {Harr }}^{2}(A ; M)$ corresponds bijectively to isomorphism classes of extensions

$$
0 \longrightarrow M \longrightarrow B \longrightarrow A \longrightarrow 0
$$

of the algebra A by A-module M.
Proof. Let f be a representative class of $[f] \in H_{\text {Harr }}^{2}(A ; M)$. So $f: A^{\otimes 2} \longrightarrow M$ is a symmetric linear map. Consider $B=A \oplus M$ and define

$$
\left(a_{1}, m_{1}\right)\left(a_{2}, m_{2}\right)=\left(a_{1} a_{2}, a_{1} m_{2}+a_{2} m_{1}+f\left(a_{1}, a_{2}\right)\right)
$$

for $\left(a_{1}, m_{1}\right),\left(a_{2}, m_{2}\right) \in B$. Then $0 \longrightarrow M \xrightarrow{i} B \xrightarrow{p} A \longrightarrow 0$ is an extension of A by
M, where $i(m)=(0, m)$ and $p(a, m)=a$ for $m \in M$ and $a \in A$.
Suppose we take another representative f^{\prime} of the class $[f] \in H_{\text {Harr }}^{2}(A ; M)$ and get an extension B^{\prime} as above. Now $f-f^{\prime}=\delta^{1} g$ for some $g \in \operatorname{Hom}(A ; M)$. Then $\phi: B \longrightarrow B^{\prime}$ defined by $\phi(a, m)=(a, m+g(a))$ gives an isomorphism of the extension B and B^{\prime}. Thus $[f] \in H_{\text {Harr }}^{2}(A ; M)$ corresponds to an isomorphism class of extension of A by M.

Conversely, we consider an extension

$$
0 \longrightarrow M \xrightarrow{i} B \xrightarrow{p} A \longrightarrow 0
$$

of A by M. Fix a section $q: A \longrightarrow B$ of the projection p.
Define

$$
\alpha: B \longrightarrow A \oplus M \quad \text { by } \quad \alpha(b)=\left(p(b), i^{-1}(b-q \circ p(b))\right)
$$

From definition α is a \mathbb{K}-linear map. Now if $\alpha(b)=(0,0)$ then $p(b)=0$ and $i^{-1}(b)=0$, hence $b=0$. So α is an injective map. Suppose $(a, m) \in A \oplus M$, take $b=q(a)+i(m)$, then $p(b)=a$ and $b-q \circ p(b)=q(a)+i(m)-q(a)=i(m)$. Therefore $\alpha(b)=\alpha(q(a)+$ $i(m))=(a, m)$, showing α is an onto map. Thus α is a \mathbb{K}-module isomorphism. Let $(a, m)_{q}$ denotes the inverse image $q(a)+i(m)$ of $(a, m) \in A \oplus M$ under the above isomorphism α. Define $\phi_{q}: A^{\otimes 2} \longrightarrow M$ by

$$
\begin{equation*}
\phi_{q}\left(a_{1}, a_{2}\right)=i^{-1}\left(\left(a_{1}, 0\right)_{q}\left(a_{2}, 0\right)_{q}-\left(a_{1} a_{2}, 0\right)_{q}\right)=i^{-1}\left(q\left(a_{1}\right) q\left(a_{2}\right)-q\left(a_{1} a_{2}\right)\right) \tag{2.3.1}
\end{equation*}
$$

for $a_{1}, a_{2} \in A$. Now for $b_{1}=\left(a_{1}, m_{1}\right)_{q}$ and $b_{2}=\left(a_{2}, m_{2}\right)_{q}$ in B we can describe the element $b_{1} b_{2}$ as follows.

$$
\begin{aligned}
& b_{1} b_{2} \\
= & \left(a_{1}, m_{1}\right)_{q}\left(a_{2}, m_{2}\right)_{q} \\
= & \left(q\left(a_{1}\right)+i\left(m_{1}\right)\right)\left(q\left(a_{2}\right)+i\left(m_{2}\right)\right) \\
= & q\left(a_{1}\right) q\left(a_{2}\right)+q\left(a_{1}\right) i\left(m_{2}\right)+i\left(m_{1}\right) q\left(a_{2}\right)+i\left(m_{1}\right) i\left(m_{2}\right) \\
= & q\left(a_{1}\right) q\left(a_{2}\right)+i\left(p \circ q\left(a_{1}\right) m_{2}\right)+i\left(p \circ q\left(a_{2}\right) m_{1}\right)(\text { by the } B \text {-module structure on } i(M)) \\
= & q\left(a_{1} a_{2}\right)+\left\{q\left(a_{1}\right) q\left(a_{2}\right)-q\left(a_{1} a_{2}\right)\right\}+i\left(a_{1} m_{2}+a_{2} m_{1}\right) \\
= & q\left(a_{1} a_{2}\right)+i\left(a_{1} m_{2}+a_{2} m_{1}+\phi_{q}\left(a_{1}, a_{2}\right)\right) \\
= & \left(a_{1} a_{2}, a_{1} m_{2}+a_{2} m_{1}+\phi_{q}\left(a_{1}, a_{2}\right)\right)_{q}
\end{aligned}
$$

Thus the multiplication in B can be written as,

$$
\left(a_{1}, m_{1}\right)_{q}\left(a_{2}, m_{2}\right)_{q}=\left(a_{1} a_{2}, a_{1} m_{2}+a_{2} m_{1}+\phi_{q}\left(a_{1}, a_{2}\right)\right)_{q}
$$

Suppose $\left(a_{1}, m_{1}\right)_{q},\left(a_{2}, m_{2}\right)_{q}$ and $\left(a_{3}, m_{3}\right)_{q} \in B$, using the associativity of the algebra
multiplication in B, we get,

$$
a_{1} \phi_{q}\left(a_{2}, a_{3}\right)-\phi_{q}\left(a_{1} a_{2}, a_{3}\right)+\phi_{q}\left(a_{1}, a_{2} a_{3}\right)-a_{3} \cdot \phi_{q}\left(a_{1}, a_{2}\right)=0
$$

or, $\delta^{2} \phi_{q}\left(a_{1}, a_{2}, a_{3}\right)=0$. So $\phi_{q} \in C h^{2}(A ; M)=\operatorname{Hom}\left(S^{2} A ; M\right)$ is a cocycle (cf. (2.2.3)) .
Let $q^{\prime}: A \longrightarrow B$ be another section of p. Replacing q by q^{\prime} in the above argument, will give rise to a cocycle $\phi_{q^{\prime}} \in \operatorname{Hom}\left(S^{2} A ; M\right)$. Set $\beta=i^{-1} \circ\left(q^{\prime}-q\right) \in \operatorname{Hom}(A ; M)$. Then $\phi_{q^{\prime}}-\phi_{q}=\delta^{1} \beta$. Thus for a given extension of A by M there is a unique cohomology class $\left[\phi_{q}\right]$ in $H_{H a r r}^{2}(A ; M)$.

Let

$$
0 \longrightarrow M \xrightarrow{i^{\prime}} B^{\prime} \xrightarrow{p^{\prime}} A \longrightarrow 0
$$

be another extension of A by M which is isomorphic to the extension B we took before. Let $\phi: B \longrightarrow B^{\prime}$ be an isomorphism of extensions B and B^{\prime}. Thus the following diagram commutes.

Then $q^{\prime}=\phi \circ q: A \longrightarrow B^{\prime}$ is a section for p^{\prime}. We have $\phi_{q^{\prime}}: S^{2} A \longrightarrow M$ defined by

$$
\phi_{q^{\prime}}\left(a_{1}, a_{2}\right)=\left(i^{\prime}\right)^{-1}\left(q^{\prime}\left(a_{1}\right) q^{\prime}\left(a_{2}\right)-q^{\prime}\left(a_{1} a_{2}\right)\right)(\text { cf. (2.3.1) })
$$

Thus $\phi_{q^{\prime}}\left(a_{1}, a_{2}\right)=\left(i^{\prime}\right)^{-1}\left(q^{\prime}\left(a_{1}\right) q^{\prime}\left(a_{2}\right)-q^{\prime}\left(a_{1} a_{2}\right)\right)=i^{-1}\left(q\left(a_{1}\right) q\left(a_{2}\right)-q\left(a_{1} a_{2}\right)\right)=$ $\phi_{q}\left(a_{1}, a_{2}\right)$. Consequently ϕ_{q} and $\phi_{q^{\prime}}$ represents the same class in $H_{H a r r}^{2}(A ; M)$.

We shall later need the following specific extension of a finite dimensional commutative algebra A.

Observe that the action of A on \mathbb{K} has an induced action on the module $H_{\text {Harr }}^{2}(A ; \mathbb{K})^{\prime}$ as follows. For $\alpha \in H_{\text {Harr }}^{2}(A ; \mathbb{K})^{\prime}$ and $a \in A$ we get, $a \alpha \in H_{\text {Harr }}^{2}(A ; \mathbb{K})^{\prime}$ given by $a \alpha([\psi])=\varepsilon(a) \alpha([\psi])$ where $[\psi] \in H_{\text {Harr }}^{2}(A ; \mathbb{K})$.

Consider a linear map

$$
\begin{equation*}
\mu: H_{H a r r}^{2}(A ; \mathbb{K}) \longrightarrow \operatorname{Hom}\left(S^{2} A ; \mathbb{K}\right)=\left(S^{2} A\right)^{\prime} \tag{2.3.2}
\end{equation*}
$$

where $\mu([\phi])$ is a cocycle representing the class $[\phi]$. We define this map by fixing its values on a basis of $H_{\text {Harr }}^{2}(A ; \mathbb{K})$ and then extend it linearly. Take the dual map of μ,

$$
\begin{equation*}
\phi_{A}: S^{2} A \longrightarrow H_{H a r r}^{2}(A ; \mathbb{K})^{\prime} \tag{2.3.3}
\end{equation*}
$$

So, $\phi_{A}\left(a_{1}, a_{2}\right)([\alpha])=\mu([\alpha])\left(a_{1}, a_{2}\right)$ for $a_{1}, a_{2} \in A$ and $[\alpha] \in H_{\text {Harr }}^{2}(A ; \mathbb{K})$. Here

$$
\begin{aligned}
\delta^{2} \phi_{A}(a, b, c)([\alpha]) & =\left\{a \phi_{A}(b, c)-\phi_{A}(a b, c)+\phi_{A}(a, b c)-c \phi_{A}(a, b)\right\}([\alpha]) \\
& =a \mu([\alpha])(b, c)-\mu([\alpha])(a b, c)+\mu([\alpha])(a, b c)-c \mu([\alpha])(a, b) \\
& =0(\text { cf. (2.2.3) }) .
\end{aligned}
$$

Thus ϕ_{A} is a cocycle and represent a cohomology class in the second Harrison cohomology of A with coefficients in $H_{\text {Harr }}^{2}(A ; \mathbb{K})^{\prime}$, where the action of A on $H_{\text {Harr }}^{2}(A ; \mathbb{K})^{\prime}$ is induced by the action of A on \mathbb{K}. By Proposition 2.3.3 the cohomology class of ϕ_{A} determines an isomorphism class of extension represented by

$$
\begin{equation*}
0 \longrightarrow H_{\text {Harr }}^{2}(A ; \mathbb{K})^{\prime} \longrightarrow C \longrightarrow A \longrightarrow 0 \tag{2.3.4}
\end{equation*}
$$

where the algebra structure on $C=A \oplus H_{\text {Harr }}^{2}(A ; \mathbb{K})^{\prime}$ is determined by ϕ_{A} as in the proof of Proposition 2.3.3. This extension does not depend, up to isomorphism, on the choice of μ and possesses the following partial universal property.

Proposition 2.3.4. Let M be an A-module with $\mathfrak{M} M=0$. Then the above extension admits a unique homomorphism into an arbitrary extension

$$
0 \longrightarrow M \xrightarrow{i^{\prime}} B \xrightarrow{p^{\prime}} A \longrightarrow 0
$$

of A.
Proof. Let $[f] \in H_{\text {Harr }}^{2}(A ; M)=H_{\text {Harr }}^{2}(A ; \mathbb{K}) \otimes M$ be the cohomology class determined by the isomorphism class of the extension

$$
0 \longrightarrow M \xrightarrow{i^{\prime}} B \xrightarrow{p^{\prime}} A \longrightarrow 0 .
$$

This $[f] \in H_{\text {Harr }}^{2}(A ; \mathbb{K}) \otimes M$ defines a linear map

$$
\tilde{f}: H_{\text {Harr }}^{2}(A ; \mathbb{K})^{\prime} \longrightarrow M \text { (see Proposition 3.4.1] in Chapter 3). }
$$

Using this we get the following homomorphism of extensions.

The resulting homomorphism is unique as it is determined by $[f]$.
The following proposition shows that an extension B of a commutative local algebra
A with identity by an A-module M is also local and has identity.
Proposition 2.3.5. Let

$$
0 \longrightarrow M \xrightarrow{i} B \xrightarrow{p} A \longrightarrow 0
$$

be an extension of a commutative local algebra A with 1 by an A-module M satisfying $\mathfrak{M} M=0$, where \mathfrak{M} is the maximal ideal in A. Then B is local and has multiplicative identity.

Proof. Let

$$
0 \longrightarrow M \xrightarrow{i} B \xrightarrow{p} A \longrightarrow 0
$$

be an extension of a commutative local algebra A by an A-module M satisfying $\mathfrak{M} M=$ 0 , where \mathfrak{M} is the maximal ideal in A. Then by Proposition 2.3.3, this extension determines a cocycle ϕ_{q} representing a cohomology class $\left[\phi_{q}\right] \in H_{\text {Harr }}^{2}(A ; \mathbb{K})$ where q is a section of the projection $p: B \longrightarrow A$.

Now $\delta^{2} \phi_{q}(1,1, a)=0$, so $\phi_{q}(1, a)-\phi_{q}(1, a)+\phi_{q}(1, a)-a \phi_{q}(1,1)=0$. Therefore $\phi_{q}(1, a)=a \phi_{q}(1,1)$. Consider the element $\left(1,-\phi_{q}(1,1)\right)_{q} \in B$. Then for any arbitrary element $(a, m)_{q} \in B$ we have

$$
\left(1,-\phi_{q}(1,1)\right)_{q}(a, m)_{q}=\left(a, m-a \phi_{q}(1,1)+\phi_{q}(1, a)\right)_{q}=(a, m)_{q}
$$

So, $\left(1,-\phi_{q}(1,1)\right)_{q}$ is the identity in B.
Observe that if we set $\phi^{\prime}=\phi_{q}-\delta^{1} \psi$, where $\psi \in \operatorname{Hom}(A ; M)$ is arbitrary map satisfying $\psi(1)=\phi_{q}(1,1)$, then the cocycle ϕ^{\prime} satisfies $\phi^{\prime}(1, a)=0$ for $a \in A$ and $\phi^{\prime}=\phi_{q^{\prime}}$ for the section $q^{\prime}=q-(i \circ \psi)$ (see the proof of Proposition 2.3.3). With respect to the identification $B \cong A \oplus M$ defined by q^{\prime}, the multiplicative identity in B can be expressed as $(1,0)_{q^{\prime}}$.

Next, we show that B is local.
Suppose \mathfrak{M} is the maximal ideal in A. Consider the ideal $p^{-1}(\mathfrak{M}) \subset B$. Let \mathfrak{N} be an ideal of B containing $p^{-1}(\mathfrak{M})$. If possible, suppose there is an element $x \in \mathfrak{N}$ such that $p(x)$ is not in \mathfrak{M}. But \mathfrak{M} is the unique maximal ideal in the local algebra A so $p(x)$ must be a unit in A, that is $p(x) a_{1}=1$, for some $a_{1} \in A$. Since p is onto there is a $y \in B$ such that $p(y)=a_{1}$. This implies $p(x y)=p(x) p(y)=1$. Thus $b=x y$ is an element in \mathfrak{N} such that $p(b)=1$. Now choose a section $q: A \longrightarrow B$ of p with $q(1)=b$. Then according to our earlier notations $b=(1,0)_{q}$. Now for any element $(a, m)_{q} \in B$ we can write

$$
(a, m)_{q}=(1,0)_{q}\left(a, m-\phi_{q}(1, a)\right)_{q} .
$$

Since $b=(1,0)_{q} \in \mathfrak{N}$ and \mathfrak{N} is an ideal of B we conclude that $(a, m)_{q} \in \mathfrak{N}$.
Thus our assumption implies that $\mathfrak{N}=B$. Hence $p^{-1}(\mathfrak{M})$ is maximal in B.

Let us denote the maximal ideal of B by \mathfrak{M}_{B}.
Corollary 2.3.6. For $i(M)=N$, we have $\mathfrak{M}_{B} N=0$.
Proof. Take an element x from \mathfrak{M}_{B} and an element $n \in N$ such that $n=i(m), m \in M$. Then $x i(m)=i(p(x) m)=i(\varepsilon(p(x)) m)=0$, where ε is the augmentation in A (cf. Definition 2.3.1).

Let \mathcal{A} denote the group of all automorphisms of any given extension.
Proposition 2.3.7. There is a one-to-one correspondence between the group \mathcal{A} of automorphisms of any given extension,

$$
0 \longrightarrow M \xrightarrow{i} B \xrightarrow{p} A \longrightarrow 0
$$

of A and $H_{H a r r}^{1}(A ; M)$.
Proof. Suppose $f: B \longrightarrow B$ is a \mathbb{K}-algebra isomorphism giving an automorphism of the given extension,

$$
0 \longrightarrow M \xrightarrow{i} B \xrightarrow{p} A \longrightarrow 0 .
$$

Thus we get the following commutative diagram.

Now fix a section $q: A \longrightarrow B$ of p. As in the proof of Proposition 2.3.3, we have a linear isomorphism $\alpha: B \cong A \oplus M$ and let $(a, m)_{q}$ denote the inverse image $q(a)+i(m)$ of (a, m) under this isomorphism.

Suppose $f\left((a, m)_{q}\right)=\left(f_{1}\left((a, m)_{q}\right), f_{2}\left((a, m)_{q}\right)\right)_{q}$ for $(a, m)_{q} \in B$, where f_{1}, f_{2} are maps obtained from $\alpha \circ f$ by taking projection into first and second components. By the above diagram we have $p \circ f=p$ and $f \circ i=i$. These in turn give $f_{1}\left((a, m)_{q}\right)=a$ and $f_{2}\left((0, m)_{q}\right)=m$ respectively. Therefore for $(a, m)_{q} \in B$, we get

$$
\begin{aligned}
& \quad f\left((a, m)_{q}\right)=\left(f_{1}\left((a, m)_{q}\right), f_{2}\left((a, m)_{q}\right)\right)_{q} \\
& \text { or, } f\left((a, 0)_{q}+(0, m)_{q}\right)=\left(a, f_{2}\left((a, m)_{q}\right)\right)_{q} \\
& \text { or, } f\left((a, 0)_{q}\right)+f\left((0, m)_{q}\right)=\left(a, f_{2}\left((a, m)_{q}\right)\right)_{q} \\
& \text { or, }\left(a, f_{2}(a, 0)_{q}\right)_{q}+(0, m)_{q}=\left(a, f_{2}\left((a, m)_{q}\right)\right)_{q} \\
& \text { or, }\left(a, f_{2}\left((a, 0)_{q}\right)+m\right)_{q}=\left(a, f_{2}\left((a, m)_{q}\right)\right)_{q}
\end{aligned}
$$

So $f_{2}\left((a, m)_{q}\right)=\psi(a)+m$ where the map $\psi: A \longrightarrow M$ is given by $\psi(a)=f_{2}\left((a, 0)_{q}\right)$. Let $a_{1}, a_{2} \in A$. Then $\left(a_{1}, 0\right)_{q},\left(a_{2}, 0\right)_{q} \in B$. Since f is a \mathbb{K}-algebra homomorphism, we have,

$$
\begin{align*}
& \quad f\left(\left(a_{1}, 0\right)_{q}\left(a_{2}, 0\right)_{q}\right)=f\left(\left(a_{1}, 0\right)_{q}\right) f\left(\left(a_{2}, 0\right)_{q}\right) \\
& \text { or, } f\left(\left(a_{1} a_{2}, \phi_{q}\left(a_{1}, a_{2}\right)\right)_{q}\right)=\left(a_{1}, f_{2}\left(\left(a_{1}, 0\right)_{q}\right)\right)_{q}\left(a_{2}, f_{2}\left(\left(a_{2}, 0\right)_{q}\right)\right)_{q} \\
& \text { or, }\left(a_{1} a_{2}, \phi_{q}\left(a_{1}, a_{2}\right)+\psi\left(a_{1}, a_{2}\right)\right)_{q}=\left(a_{1}, \psi\left(a_{1}\right)\right)_{q}\left(a_{2}, \psi\left(a_{2}\right)\right)_{q} \tag{2.3.5}\\
& \text { or, }\left(a_{1} a_{2}, \phi_{q}\left(a_{1}, a_{2}\right)+\psi\left(a_{1}, a_{2}\right)\right)_{q}=\left(a_{1} a_{2}, a_{1} \psi\left(a_{2}\right)+a_{2} \psi\left(a_{1}\right)+\phi_{q}\left(a_{1}, a_{2}\right)\right)_{q} \\
& \text { or, } \psi\left(a_{1} a_{2}\right)=a_{1} \psi\left(a_{2}\right)+a_{2} \psi\left(a_{1}\right) \\
& \text { or, } \delta^{1} \psi\left(a_{1}, a_{2}\right)=0 \text {. }
\end{align*}
$$

Therefore ψ represents a cohomology class in $H_{\text {Harr }}^{1}(A ; M)$.
Conversely, suppose $\psi: A \longrightarrow M$ is a linear map with $\delta^{1} \psi=0$. So $\delta^{1} \psi(1,1)=0$, which gives $\psi(1)=0$ (cf. (2.2.3)).

Define, $f: B \longrightarrow B$ by $f\left((a, m)_{q}\right)=(a, m+\psi(a))_{q}$. Then $f(0,1)_{q}=(0,1+\psi(1))_{q}=$ $(0,1)_{q}$ and f is an automorphism of the given extension.

The assignment $f \mapsto[\psi]$ is the required bijection.
We shall use the following results (Har62) in Chapter 5.
Proposition 2.3.8. Let $A=\mathbb{K}\left[x_{1}, x_{2}, \cdots, x_{n}\right]$ be polynomial algebra, and let \mathfrak{M} be the ideal of polynomials without constant terms. If an ideal I of A is contained in \mathfrak{M}^{2}, then $H_{\text {Harr }}^{2}(A / I ; \mathbb{K}) \cong(I / \mathfrak{M} I)^{\prime}$.

Proposition 2.3.9. If A, \mathfrak{M} and I are as in Proposition 2.3.8, then the extension

$$
0 \longrightarrow H_{H a r r}^{2}(A / I ; \mathbb{K})^{\prime} \longrightarrow C \longrightarrow A / I \longrightarrow 0
$$

as given in 2.3.4) for A / I is

$$
0 \longrightarrow I / \mathfrak{M} I \xrightarrow{i} A / \mathfrak{M} I \xrightarrow{p} A / I \longrightarrow 0,
$$

where i and p are induced by the inclusions $I \hookrightarrow A$ and $\mathfrak{M} I \hookrightarrow I$.
To simplify notations, we henceforth omit superscripts for coboundaries, it should be clear from the context which coboundary is being used.

Chapter 3

Deformations of Leibniz algebras and homomorphisms of Leibniz algebras

3.1 Introduction

In this chapter we introduce the notion of deformations of Leibniz algebras and Leibniz algebra homomorphisms over a commutative local algebra base with multiplicative identity, and introduce infinitesimal deformation and other basic definitions related to deformations of a Leibniz algebra. We give a construction of an infinitesimal deformation η_{1} of a Leibniz algebra L for which $\operatorname{dim}\left(H L^{2}(L ; L)\right)$ is finite. Next, we show that infinitesimal deformation η_{1} is universal among the infinitesimal deformations of L with finite dimensional local algebra base. We also prove a necessary and sufficient criterion for equivalence of two infinitesimal deformations of a Leibniz algebra. At the end we introduce the notion of infinitesimal deformations of Leibniz algebra homomorphisms and obtain a necessary and sufficient condition for equivalence of two infinitesimal deformations in this case. From now on we assume that \mathbb{K} is a field of characteristic zero.

3.2 Deformations

Let L be a Leibniz algebra and A be a commutative local algebra with identity 1 over \mathbb{K}. Let \mathfrak{M} be the maximal ideal of A and $\varepsilon: A \longrightarrow A / \mathfrak{M} \cong \mathbb{K}$ be the canonical augmentation. Note that ε is an algebra homomorphism with $\varepsilon(1)=1$ and $\operatorname{ker}(\varepsilon)=\mathfrak{M}$. By (A, \mathfrak{M}) we will mean that A is a commutative local algebra with 1 and \mathfrak{M} is the maximal ideal in A.

Definition 3.2.1. A deformation λ of L with base (A, \mathfrak{M}), or simply with base A, is an A-Leibniz algebra structure on the tensor product $A \otimes L$ with the bracket $[-,-]_{\lambda}$ such that

$$
(\varepsilon \otimes i d): A \otimes L \rightarrow \mathbb{K} \otimes L
$$

is an A-Leibniz algebra homomorphism, where the A-Leibniz algebra structure on $\mathbb{K} \otimes$ $L \cong L$ is given via ε, that is, $a(k \otimes l)=\varepsilon(a) k \otimes l$.

Remark 3.2.2. More generally, one has the notion of deformation with a commutative algebra base (not necessarily local) by fixing an augmentation. In this case, if the base is also local, then any deformation over such base is called a local deformation. Throughout, we will be concerned with deformations over local algebra base and we omit the adjective local and simply use the term deformation.

Definition 3.2.3. A deformation λ over a commutative local algebra base A is called infinitesimal (of first order) if $\mathfrak{M}^{2}=0$. In general it is called a kth order deformation when $\mathfrak{M}^{k+1}=0$.

Observe that if λ is a deformation as in Definition 3.2.1 then for $l_{1}, l_{2} \in L$ and $a, b \in A$ we have

$$
\left[a \otimes l_{1}, b \otimes l_{2}\right]_{\lambda}=a b\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda},
$$

by A - linearity of the bracket $[-,-]_{\lambda}$. Thus to define a deformation λ of the Leibniz algebra L, it is enough to specify the brackets $\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda}$ for $l_{1}, l_{2} \in L$. Moreover, since $(\varepsilon \otimes i d): A \otimes L \rightarrow \mathbb{K} \otimes L$ is an A-Leibniz algebra homomorphism,

$$
(\varepsilon \otimes i d)\left(\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda}\right)=\left[l_{1}, l_{2}\right]=(\varepsilon \otimes i d)\left(1 \otimes\left[l_{1}, l_{2}\right]\right)
$$

which implies

$$
\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda}-1 \otimes\left[l_{1}, l_{2}\right] \in \operatorname{ker}(\varepsilon \otimes i d)
$$

Hence we can write

$$
\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda}=1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j} c_{j} \otimes y_{j}
$$

where $\sum_{j} c_{j} \otimes y_{j}$ is a finite sum with $c_{j} \in \operatorname{ker}(\varepsilon)=\mathfrak{M}$ and $y_{j} \in L$.
Next we define the notion of deformation of a homomorphism of Leibniz algebras.
Definition 3.2.4. Let $f: L \longrightarrow M$ be a Leibniz algebra homomorphism from a Leibniz algebra L to a Leibniz algebra M. A deformation $\mathfrak{D}=\left(\lambda, \mu ; f_{\lambda \mu}\right)$ of f with base (A, \mathfrak{M}) (or simply with base A) consists of deformations λ and μ (with base A) of the Leibniz
algebras L and M respectively along with an A-Leibniz algebra homomorphism

$$
f_{\lambda \mu}:(A \otimes L, \lambda) \longrightarrow(A \otimes M, \mu)
$$

such that the following diagram commutes.

Often we shall use the simpler notation $f_{\lambda \mu}$ to denote a deformation $\mathfrak{D}=\left(\lambda, \mu ; f_{\lambda \mu}\right)$ of f. By A-linearity, $f_{\lambda \mu}$ is determined by its value $f_{\lambda \mu}(1 \otimes l) \in A \otimes M$ for $l \in L$. The commutativity of the above diagram implies

$$
f_{\lambda \mu}(1 \otimes l)=1 \otimes f(l)+\sum_{j} m_{j} \otimes x_{j} \text { for } m_{j} \in \mathfrak{M} \text { and } x_{j} \in M
$$

Remark 3.2.5. If the algebra A is a finite dimensional \mathbb{K}-module and $\left\{m_{i}\right\}_{1 \leq i \leq r}$ is a basis of \mathfrak{M} then a deformation λ of L can be written as

$$
\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda}=1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r} m_{i} \otimes l_{i}^{\prime} \text { for } l_{1}, l_{2}, l_{i}^{\prime} \in L
$$

Similarly, a deformation $f_{\lambda \mu}$ of a Leibniz algebra homomorphism $f: L \longrightarrow M$ can be written as

$$
f_{\lambda \mu}\left(1 \otimes l_{1}\right)=1 \otimes f\left(l_{1}\right)+\sum_{j=1}^{r} m_{j} \otimes x_{j} \text { for } l_{1} \text { and } x_{j} \in M
$$

Definition 3.2.6. Suppose λ_{1} and λ_{2} are two deformations of a Leibniz algebra L with base A. We call them equivalent if there exists a Leibniz algebra isomorphism

$$
\phi:\left(A \otimes L,[-,-]_{\lambda_{1}}\right) \rightarrow\left(A \otimes L,[-,-]_{\lambda_{2}}\right)
$$

such that $(\varepsilon \otimes i d) \circ \phi=(\varepsilon \otimes i d)$.
We write $\lambda_{1} \cong \lambda_{2}$ if λ_{1} is equivalent to λ_{2}. The equivalence class of a deformation λ will be denoted by $<\lambda>$.

Equivalence of two deformations $\left(\lambda, \mu ; f_{\lambda \mu}\right)$ and $\left(\lambda^{\prime}, \mu^{\prime} ; f_{\lambda^{\prime} \mu^{\prime}}\right)$ of a Leibniz algebra homomorphism $f: L \longrightarrow M$ with base A is defined as follows.

Definition 3.2.7. Any two deformations $\left(\lambda, \mu ; f_{\lambda \mu}\right)$ and $\left(\lambda^{\prime}, \mu^{\prime} ; f_{\lambda^{\prime} \mu^{\prime}}\right)$ of $f: L \longrightarrow M$ with base A are said to be equivalent, written as $\left(\lambda, \mu ; f_{\lambda \mu}\right) \cong\left(\lambda^{\prime}, \mu^{\prime} ; f_{\lambda^{\prime} \mu^{\prime}}\right)$, if there exist
equivalences

$$
\begin{gathered}
\Phi_{\lambda \lambda^{\prime}}:\left(A \otimes L,[-,-]_{\lambda}\right) \longrightarrow\left(A \otimes L,[-,-]_{\lambda^{\prime}}\right) \\
\text { and } \Psi_{\mu \mu^{\prime}}:\left(A \otimes M,[-,-]_{\mu}\right) \longrightarrow\left(A \otimes M,[-,-]_{\mu^{\prime}}\right)
\end{gathered}
$$

such that $\Psi_{\mu \mu^{\prime}} \circ f_{\lambda \mu}=f_{\lambda^{\prime} \mu^{\prime}} \circ \Phi_{\lambda \lambda^{\prime}}$.
The equivalence class of a deformation $\left(\lambda, \mu ; f_{\lambda \mu}\right)$ will be denoted by $\left\langle\lambda, \mu ; f_{\lambda \mu}\right\rangle$. We denote by λ_{0} the Leibniz algebra structure on $A \otimes L$ given by

$$
\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda_{0}}=1 \otimes\left[l_{1}, l_{2}\right] \text { for } l_{1}, l_{2} \in L
$$

This is a deformation of L with base A. Any deformation of L with base A which is equivalent to λ_{0} is called a trivial deformation. Similarly for a Leibniz algebra homomorphism $f: L \longrightarrow M$, we have a deformation $\left(\lambda_{0}, \mu_{0} ; f_{\lambda_{0} \mu_{0}}\right)$ of f where

$$
f_{\lambda_{0} \mu_{0}}(1 \otimes l)=1 \otimes f(l) \in A \otimes M \text { for } l \in L,
$$

and any deformation of f equivalent to $\left(\lambda_{0}, \mu_{0} ; f_{\lambda_{0} \mu_{0}}\right)$ is said to be a trivial deformation of f.

3.3 Push-out of a deformation

Push-out is a method to produce new deformation from a given one by changing base by a given homomorphism from the given base to a new base.

Suppose λ is a given deformation of a Leibniz algebra L with commutative local algebra base with 1 and augmentation $\varepsilon: A \rightarrow \mathbb{K}$. Let A^{\prime} be another commutative local algebra with identity. Denote the augmentation of A^{\prime} by ε^{\prime}. Suppose $\phi: A \rightarrow A^{\prime}$ is an algebra homomorphism with $\phi(1)=1$ so that $\left(\varepsilon^{\prime} \circ \phi\right)=\varepsilon$. Let $\operatorname{ker}\left(\varepsilon^{\prime}\right)=\mathfrak{M}^{\prime}$ be the maximal ideal in A^{\prime}.

Definition 3.3.1. The push-out $\phi_{*} \lambda$ is a deformation of L with base $\left(A^{\prime}, \mathfrak{M}^{\prime}\right)$ with bracket $[-,-]_{\phi_{*} \lambda}$ as given below. Consider A^{\prime} as an A-module by $a^{\prime} a=a^{\prime} \phi(a)$ so that

$$
A^{\prime} \otimes L=\left(A^{\prime} \otimes_{A} A\right) \otimes L=A^{\prime} \otimes_{A}(A \otimes L) .
$$

Then the deformation $\phi_{*} \lambda$ is given by the bracket

$$
\left[a_{1}^{\prime} \otimes_{A}\left(a_{1} \otimes l_{1}\right), a_{2}^{\prime} \otimes_{A}\left(a_{2} \otimes l_{2}\right)\right]_{\phi_{*} \lambda}=a_{1}^{\prime} a_{2}^{\prime} \otimes_{A}\left[a_{1} \otimes l_{1}, a_{2} \otimes l_{2}\right]_{\lambda}
$$

where $a_{1}^{\prime}, a_{2}^{\prime} \in A^{\prime}, a_{1}, a_{2} \in A$ and $l_{1}, l_{2} \in L$.

Remark 3.3.2. If the bracket $[-,-]_{\lambda}$ is given by

$$
\begin{equation*}
\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda}=1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j} c_{j} \otimes y_{j} \text { for } c_{j} \in \mathfrak{M} \text { and } y_{j} \in L \tag{3.3.1}
\end{equation*}
$$

then the bracket $[-,-]_{\phi_{*} \lambda}$ can be written as

$$
\begin{equation*}
\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\phi_{*} \lambda}=1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j} \phi\left(c_{j}\right) \otimes y_{j} \tag{3.3.2}
\end{equation*}
$$

Proposition 3.3.3. With ϕ as above, $(\phi \otimes i d):(A \otimes L, \lambda) \longrightarrow\left(A^{\prime} \otimes L, \phi_{*} \lambda\right)$ is an A-Leibniz algebra homomorphism.

Proof. For $a \otimes l \in A \otimes L$, we have $(\phi \otimes i d)(a \otimes l)=\phi(a) \otimes l=a \phi(1) \otimes l=a(\phi \otimes i d)(1 \otimes l)$. So $\phi \otimes i d$ is an A-linear map. We now show that $(\phi \otimes i d)$ preserves the brackets. Suppose $1 \otimes l_{1}, 1 \otimes l_{2} \in A \otimes L$, then

$$
\begin{align*}
& {\left[(\phi \otimes i d)\left(1 \otimes l_{1}\right),(\phi \otimes i d)\left(1 \otimes l_{2}\right)\right]_{\phi_{*} \lambda} } \\
= & {\left[\phi(1) \otimes l_{1}, \phi(1) \otimes l_{2}\right]_{\phi_{*} \lambda} } \\
= & {\left[1 \otimes_{A}\left(1 \otimes l_{1}\right), 1 \otimes_{A}\left(1 \otimes l_{2}\right)\right]_{\phi_{*} \lambda} } \\
= & 1 \otimes_{A}\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda} \\
= & 1 \otimes_{A}\left\{1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j} c_{j} \otimes y_{j}\right\}(\text { by (3.3.1) }) \\
= & 1 \otimes_{A}\left(1 \otimes\left[l_{1}, l_{2}\right]\right)+\sum_{j} 1 \otimes_{A}\left(c_{j} \otimes y_{j}\right) \tag{3.3.3}\\
= & \phi(1) \otimes\left[l_{1}, l_{2}\right]+\sum_{j} \phi\left(c_{j}\right) \otimes y_{j} \\
= & (\phi \otimes i d)\left\{1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j} c_{j} \otimes y_{j}\right\} \\
= & (\phi \otimes i d)\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda} .
\end{align*}
$$

Remark 3.3.4. Observe that if λ is a deformation of a Leibniz algebra L with base A then the push-out $\varepsilon_{*} \lambda$ via ε is the original Leibniz bracket in L. To see this, note that the Leibniz bracket $\varepsilon_{*} \lambda$ on $(\mathbb{K} \otimes L)=\mathbb{K} \otimes_{A}(A \otimes L)$ where the A-module structure on \mathbb{K} is given via ε, is obtained as follows.

For $k_{1} \otimes_{A}\left(a_{1} \otimes l_{1}\right), k_{2} \otimes_{A}\left(a_{2} \otimes l_{2}\right) \in \mathbb{K} \otimes L \cong L$,

$$
\begin{aligned}
& {\left[k_{1} \otimes_{A}\left(a_{1} \otimes l_{1}\right), k_{2} \otimes_{A}\left(a_{2} \otimes l_{2}\right)\right]_{\varepsilon_{*} \lambda} } \\
= & k_{1} k_{2} \otimes_{A}\left[a_{1} \otimes l_{1}, a_{2} \otimes l_{2}\right]_{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& =k_{1} k_{2} \otimes_{A} a_{1} a_{2}\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda} \\
& =k_{1} k_{2} \otimes_{A} a_{1} a_{2}\left(1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j} c_{j} \otimes y_{j}\right), c_{j} \in \mathfrak{M}, y_{j} \in L,(\text { by (B.3.1) }) \\
& =k_{1} k_{2} \otimes_{A}\left(a_{1} a_{2} \otimes\left[l_{1}, l_{2}\right]\right)+k_{1} k_{2} \otimes_{A} a_{1} a_{2}\left(\sum_{j} c_{j} \otimes y_{j}\right) \\
& =k_{1} k_{2} \otimes_{A}\left(a_{1} a_{2} \otimes\left[l_{1}, l_{2}\right]\right)+\sum_{j} k_{1} k_{2} \otimes_{A}\left(a_{1} a_{2} c_{j} \otimes y_{j}\right) \\
& =k_{1} k_{2} \varepsilon\left(a_{1} a_{2}\right) \otimes\left[l_{1}, l_{2}\right]+\sum_{j} k_{1} k_{2} \varepsilon\left(a_{1} a_{2} c_{j}\right) \otimes y_{j} \\
& =k_{1} k_{2} \varepsilon\left(a_{1}\right) \varepsilon\left(a_{2}\right) \otimes\left[l_{1}, l_{2}\right]+\sum_{j} k_{1} k_{2} \varepsilon\left(a_{1}\right) \varepsilon\left(a_{2}\right) \varepsilon\left(c_{j}\right) \otimes y_{j} \\
& =\left[k_{1} \varepsilon\left(a_{1}\right) l_{1}, k_{2} \varepsilon\left(a_{2}\right) l_{2}\right] \quad\left(\operatorname{since} \varepsilon\left(c_{j}\right)=0, \text { for } c_{j} \in \operatorname{ker}(\varepsilon)=\mathfrak{M}\right) \\
& =\left[k_{1} \otimes_{A}\left(a_{1} \otimes l_{1}\right), k_{2} \otimes_{A}\left(a_{2} \otimes l_{2}\right)\right] .
\end{aligned}
$$

Therefore $\varepsilon_{*} \lambda$ is the given bracket in L.
Proposition 3.3.5. Push-out is preserved under composition, in other words, if ϕ : $A \longrightarrow A^{\prime}$ and $\psi: A^{\prime} \longrightarrow A^{\prime \prime}$ are homomorphisms of commutative local algebras with 1 and $\phi(1)=1, \psi(1)=1$ and λ is a given deformation of L with base A then $(\psi \circ \phi)_{*} \lambda=$ $\psi_{*}\left(\phi_{*} \lambda\right)$.

Proof. $\phi: A \longrightarrow A^{\prime}$ and $\psi: A^{\prime} \longrightarrow A^{\prime \prime}$. So we have two brackets $[-,-]_{(\psi \circ \phi)_{* \lambda}}$ and $[-,-]_{\psi_{*}\left(\phi_{*} \lambda\right)}$ on $A^{\prime \prime} \otimes L$. We need to show that they are equal.

As before, we write $A^{\prime \prime} \otimes L=A^{\prime \prime} \otimes_{A}(A \otimes L)$, where $A^{\prime \prime}$ is considered as an A-module via $\psi \circ \phi$. Let $a_{1}^{\prime \prime} \otimes_{A}\left(a_{1} \otimes l_{1}\right)$ and $a_{2}^{\prime \prime} \otimes_{A}\left(a_{2} \otimes l_{2}\right)$ be any two elements in $A^{\prime \prime} \otimes L$. Then by definition of push-out

$$
\begin{aligned}
& {\left[a_{1}^{\prime \prime} \otimes_{A}\left(a_{1} \otimes l_{1}\right), a_{2}^{\prime \prime} \otimes_{A}\left(a_{2} \otimes l_{2}\right)\right]_{(\psi o \phi)_{* \lambda}} } \\
= & a_{1}^{\prime \prime} a^{\prime \prime} \otimes_{A}\left[a_{1} \otimes l_{1}, a_{2} \otimes l_{2}\right]_{\lambda} \\
= & \left(a_{1}^{\prime \prime} a_{2}^{\prime \prime}\right)\left(a_{1} a_{2}\right) \otimes_{A}\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda} \\
= & a_{1}^{\prime \prime} a_{2}^{\prime \prime} \psi\left(\phi\left(a_{1}\right)\right) \psi\left(\phi\left(a_{2}\right)\right) \otimes_{A}\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda} \\
= & \left(a_{1}^{\prime \prime} \otimes_{A^{\prime}} \phi\left(a_{1}\right)\right)\left(a_{2}^{\prime \prime} \otimes_{A^{\prime}} \phi\left(a_{2}\right)\right) \otimes_{A}\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda} \\
& \left(\text { writing } A^{\prime \prime}=A^{\prime \prime} \otimes_{A^{\prime}} A^{\prime}, \text { an element } a^{\prime \prime} \psi\left(a^{\prime}\right) \text { corresponds to } a^{\prime \prime} \otimes_{A^{\prime}} a^{\prime}\right) \\
= & \left(a_{1}^{\prime \prime} a_{2}^{\prime \prime} \phi\left(a_{1}\right) \phi\left(a_{2}\right)\right) \otimes_{A}\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda} \\
= & a_{1}^{\prime \prime} a_{2}^{\prime \prime} \otimes_{A^{\prime}}\left(\phi\left(a_{1}\right) \phi\left(a_{2}\right) \otimes_{A}\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda}\right) \\
= & a_{1}^{\prime \prime} a_{2}^{\prime \prime} \otimes_{A^{\prime}}\left(1 \otimes_{A} a_{1} a_{2}\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda}\right) \\
= & a_{1}^{\prime \prime} a_{2}^{\prime \prime} \otimes_{A^{\prime}} \otimes_{A^{\prime}}\left(1 \otimes_{A}\left[a_{1} \otimes l_{1}, a_{2} \otimes l_{2}\right]_{\lambda}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =a_{1}^{\prime \prime} a_{2}^{\prime \prime} \otimes_{A^{\prime}} \otimes_{A^{\prime}}\left(\left[1 \otimes_{A} a_{1} \otimes l_{1}, 1 \otimes_{A} a_{2} \otimes_{2}\right]_{\phi_{*} \lambda}\right) \quad\left(1 \text { on the right-hand side is } 1 \in A^{\prime}\right) \\
& =\left[a_{1}^{\prime \prime} \otimes_{A^{\prime}}\left(\left(1 \otimes_{A} a_{1}\right) l_{1}\right), a_{2}^{\prime \prime} \otimes_{A^{\prime}}\left(\left(1 \otimes_{A} a_{2}\right) \otimes l_{2}\right)\right]_{\psi_{*}\left(\phi_{*} \lambda\right)} \\
& =\left[\left(a_{1}^{\prime \prime} \otimes_{A^{\prime}} 1\right) \otimes_{A}\left(a_{1} \otimes l_{1}\right),\left(a_{2}^{\prime \prime} \otimes_{A^{\prime}} 1\right) \otimes_{A}\left(a_{2} \otimes l_{2}\right)\right]_{\psi_{*}\left(\phi_{*} \lambda\right)} \\
& =\left[a_{1}^{\prime \prime} \otimes_{A}\left(a_{1} \otimes_{1}\right), a_{2}^{\prime \prime} \otimes_{A}\left(a_{2} \otimes l_{2}\right)\right]_{\psi_{*}\left(\phi_{*} \lambda\right)}
\end{aligned}
$$

Note that under the isomorphism $A^{\prime \prime} \cong A^{\prime \prime} \otimes_{A^{\prime}} A^{\prime}$, an element $a^{\prime \prime}$ corresponds to $a^{\prime \prime} \otimes_{A^{\prime}}$ 1.

Let $\mathfrak{D}=\left(\lambda, \mu ; f_{\lambda \mu}\right)$ be a given deformation of a Leibniz algebra homomorphism $f: L \longrightarrow M$ with base A. Then the push-out of \mathfrak{D} by $\phi: A \longrightarrow A^{\prime}$ is defined as follows.

Definition 3.3.6. The push-out $\phi_{*} \mathfrak{D}=\left(\phi_{*} \lambda, \phi_{*} \mu ; \phi_{*} f_{\lambda \mu}\right)$ is a deformation of f with base A^{\prime} where $\phi_{*} \lambda$ and $\phi_{*} \mu$ are as in Definition 3.3.1, and

$$
\phi_{*} f_{\lambda \mu}:\left(A^{\prime} \otimes L, \phi_{*} \lambda\right) \longrightarrow\left(A^{\prime} \otimes M, \phi_{*} \mu\right)
$$

is given by $\phi_{*} f_{\lambda \mu}\left(a_{1}^{\prime} \otimes_{A}\left(a_{1} \otimes l_{1}\right)\right)=a_{1}^{\prime} \otimes_{A} f_{\lambda \mu}\left(a_{1} \otimes l_{1}\right)$
for $a_{1}^{\prime}, a_{2}^{\prime} \in A^{\prime}, a_{1}, a_{2} \in A$ and $l_{1}, l_{2} \in L$.
Proposition 3.3.7. Suppose λ and λ^{\prime} are two deformations of the Leibniz algebra L with base A. If λ and λ^{\prime} are equivalent deformations of L with base A then $\phi_{*} \lambda$ and $\phi_{*} \lambda^{\prime}$ are also equivalent.

Proof. Let $U:(A \otimes L, \lambda) \longrightarrow\left(A \otimes L, \lambda^{\prime}\right)$ be an isomorphism of the Leibniz algebras λ and λ^{\prime}. Now consider the Leibniz algebras $\phi_{*} \lambda$ and $\phi_{*} \lambda^{\prime}$ on

$$
A^{\prime} \otimes L=\left(A^{\prime} \otimes_{A} A\right) \otimes L=A^{\prime} \otimes_{A}(A \otimes L)
$$

which are given by

$$
\begin{gathered}
\quad\left[a_{1}^{\prime} \otimes_{A}\left(a_{1} \otimes l_{1}\right), a_{2}^{\prime} \otimes_{A}\left(a_{2} \otimes l_{2}\right)\right]_{\phi_{*} \lambda}=a_{1}^{\prime} a_{2}^{\prime} \otimes_{A}\left[a_{1} \otimes l_{1}, a_{2} \otimes l_{2}\right]_{\lambda} \\
\text { and }\left[a_{1}^{\prime} \otimes_{A}\left(a_{1} \otimes l_{1}\right), a_{2}^{\prime} \otimes_{A}\left(a_{2} \otimes l_{2}\right)\right]_{\phi_{*} \lambda^{\prime}}=a_{1}^{\prime} a_{2}^{\prime} \otimes_{A}\left[a_{1} \otimes l_{1}, a_{2} \otimes l_{2}\right]_{\lambda^{\prime}}
\end{gathered}
$$

where $a_{1}^{\prime}, a_{2}^{\prime} \in A^{\prime}, a_{1}, a_{2} \in A$ and $l_{1}, l_{2} \in L$.
Define an A^{\prime}-linear map $U^{\prime}:\left(A^{\prime} \otimes L, \phi_{*} \lambda\right) \longrightarrow\left(A^{\prime} \otimes L, \phi_{*} \lambda^{\prime}\right)$ by

$$
U^{\prime}\left(a^{\prime} \otimes_{A}(a \otimes l)\right)=a^{\prime} \otimes_{A} U(a \otimes l)
$$

Now

$$
\begin{aligned}
U^{\prime}\left[a_{1}^{\prime} \otimes_{A}\left(a_{1} \otimes l_{1}\right), a_{2}^{\prime} \otimes_{A}\left(a_{2} \otimes l_{2}\right)\right]_{\phi_{* \lambda}} & =U^{\prime}\left(a_{1}^{\prime} a_{2}^{\prime} \otimes_{A}\left[a_{1} \otimes l_{1}, a_{2} \otimes l_{2}\right]_{\lambda}\right) \\
& =a_{1}^{\prime} a_{2}^{\prime} \otimes_{A} U\left(\left[a_{1} \otimes l_{1}, a_{2} \otimes l_{2}\right]_{\lambda}\right) \\
& =a_{1}^{\prime} a_{2}^{\prime} \otimes_{A}\left[U\left(a_{1} \otimes l_{1}\right), U\left(a_{2} \otimes l_{2}\right)\right]_{\lambda^{\prime}} \\
& =\left[a_{1}^{\prime} \otimes_{A} U\left(a_{1} \otimes l_{1}\right), a_{2}^{\prime} \otimes_{A} U\left(a_{2} \otimes l_{2}\right)\right]_{\phi_{*} \lambda^{\prime}} \\
& =\left[U^{\prime}\left(a_{1}^{\prime} \otimes_{A}\left(a_{1} \otimes l_{1}\right)\right), U^{\prime}\left(a_{2}^{\prime} \otimes_{A}\left(a_{2} \otimes l_{2}\right)\right)\right]_{\phi_{*} \lambda^{\prime}} .
\end{aligned}
$$

So U^{\prime} is a homomorphism of Leibniz algebra. It is clear that U^{\prime} is bijective since U is bijective and

$$
\begin{aligned}
\left(\varepsilon^{\prime} \otimes i d\right) \circ U^{\prime}\left(a^{\prime} \otimes_{A}(a \otimes l)\right) & =\left(\varepsilon^{\prime} \otimes i d\right)\left(a^{\prime} \otimes_{A} U(a \otimes l)\right) \\
& =\left(\varepsilon^{\prime} \otimes i d\right)\left(a^{\prime} \otimes_{A}(\phi \otimes i d) \circ U(a \otimes l)\right) \\
& =\varepsilon^{\prime}\left(a^{\prime}\right)\left(\varepsilon^{\prime} \circ \phi \otimes i d\right) \circ U(a \otimes l) \\
& =\varepsilon^{\prime}\left(a^{\prime}\right)(\varepsilon \otimes i d) \circ U(a \otimes l) \\
& \left.=\varepsilon^{\prime}(a)(\varepsilon \otimes i d)(a \otimes l) \quad \text { since }(\varepsilon \otimes i d) \circ U=\varepsilon \otimes i d\right) \\
& =\varepsilon^{\prime}(a) \varepsilon(a) \otimes l \\
& =\varepsilon^{\prime}(a) \varepsilon^{\prime} \circ \phi(a) \otimes l \\
& =\left(\varepsilon^{\prime} \otimes i d\right)\left(a^{\prime} \phi(a) \otimes l\right) \\
& =\left(\varepsilon^{\prime} \otimes i d\right)\left(a^{\prime} \otimes_{A}(a \otimes l)\right) .
\end{aligned}
$$

Consequently, U^{\prime} is an equivalence of the Leibniz algebras $\phi_{*} \lambda$ and $\phi_{*} \lambda^{\prime}$.
Proposition 3.3.8. Suppose $\mathfrak{D}=\left(\lambda, \mu ; f_{\lambda \mu}\right)$ and $\mathfrak{D}^{\prime}=\left(\lambda^{\prime}, \mu^{\prime} ; f_{\lambda^{\prime} \mu^{\prime}}\right)$ are two deformations of a Leibniz algebra homomorphisms $f: L \longrightarrow M$ with base A then $\phi_{*} \mathfrak{D}$ and $\phi_{*} \mathfrak{D}^{\prime}$ are also equivalent.

Proof. Let $U:(A \otimes L, \lambda) \longrightarrow\left(A \otimes L, \lambda^{\prime}\right)$ and $V:(A \otimes M, \mu) \longrightarrow\left(A \otimes M, \mu^{\prime}\right)$ gives equivalences of \mathfrak{D} and \mathfrak{D}^{\prime}.

So, U is an isomorphism of Leibniz algebras λ and λ^{\prime}, V is an isomorphism of Leibniz algebras μ and μ^{\prime} such that $V \circ f_{\lambda \mu}=f_{\lambda^{\prime} \mu^{\prime}} \circ U$.

We now consider the push-out deformations $\phi_{*} \mathfrak{D}=\left(\phi_{*} \lambda, \phi_{*} \mu ; \phi_{*} f_{\lambda \mu}\right)$ and $\phi_{*} \mathfrak{D}^{\prime}=$ $\left(\phi_{*} \lambda^{\prime}, \phi_{*} \mu^{\prime} \phi_{*} f_{\lambda^{\prime} \mu^{\prime}}\right)$ of f with base A^{\prime}.

Take $U^{\prime}:\left(A^{\prime} \otimes L, \phi_{*} \lambda\right) \longrightarrow\left(A^{\prime} \otimes L, \phi_{*} \lambda^{\prime}\right)$ defined by $U^{\prime}\left(a^{\prime} \otimes_{A}(a \otimes l)\right)=a^{\prime} \otimes_{A} U(a \otimes l)$ and $V^{\prime}:\left(A^{\prime} \otimes M, \phi_{*} \mu\right) \longrightarrow\left(A^{\prime} \otimes M, \phi_{*} \mu^{\prime}\right)$ defined by $V^{\prime}\left(a^{\prime} \otimes_{A}(a \otimes x)\right)=a^{\prime} \otimes_{A} U(a \otimes x)$ for $a^{\prime} \otimes_{A}(a \otimes l) \in A^{\prime} \otimes_{A}(A \otimes L)=A^{\prime} \otimes L$ and $a^{\prime} \otimes_{A}(a \otimes x) \in A^{\prime} \otimes_{A}(A \otimes M)=A^{\prime} \otimes M$.

From Proposition 3.3.7 it follows that U^{\prime} and V^{\prime}, respectively give equivalences $\phi_{*} \lambda \cong \phi_{*} \lambda^{\prime}$ and $\phi_{*} \mu \cong \phi_{*} \mu^{\prime}$. The homomorphisms $\phi_{*} f_{\lambda \mu}$ and $\phi_{*} f_{\lambda^{\prime} \mu^{\prime}}$ are given by
$\phi_{*} f_{\lambda \mu}\left(a^{\prime} \otimes_{A}(a \otimes l)\right)=a^{\prime} \otimes_{A} f_{\lambda \mu}(a \otimes l)$ and $\phi_{*} f_{\lambda^{\prime} \mu^{\prime}}\left(a^{\prime} \otimes_{A}(a \otimes l)\right)=a^{\prime} \otimes_{A} f_{\lambda^{\prime} \mu^{\prime}}(a \otimes l)$ for $a^{\prime} \otimes_{A}(a \otimes l) \in A^{\prime} \otimes L$. Then we get

$$
\begin{aligned}
\phi_{*} f_{\lambda^{\prime} \mu^{\prime}} \circ U^{\prime}\left(a^{\prime} \otimes_{A}(a \otimes l)\right) & =\phi_{*} f_{\lambda^{\prime} \mu^{\prime}}\left(a^{\prime} \otimes_{A} U(a \otimes l)\right) \\
& =a^{\prime} \otimes_{A} f_{\lambda^{\prime} \mu^{\prime}} \circ U(a \otimes l) \\
& =a^{\prime} \otimes_{A} V \circ f_{\lambda \mu}(a \otimes l) \\
& =V^{\prime}\left(a^{\prime} \otimes_{A} f_{\lambda \mu}(a \otimes l)\right) \\
& =V^{\prime} \circ \phi_{*} f_{\lambda \mu}\left(a^{\prime} \otimes_{A}(a \otimes l)\right) .
\end{aligned}
$$

Therefore it follows that $\phi_{*} \mathfrak{D}=\left(\phi_{*} \lambda, \phi_{*} \mu ; \phi_{*} f_{\lambda \mu}\right)$ and $\phi_{*} \mathfrak{D}^{\prime}=\left(\phi_{*} \lambda^{\prime}, \phi_{*} \mu^{\prime} ; \phi_{*} f_{\lambda^{\prime} \mu^{\prime}}\right)$ are equivalent deformations of f with base A^{\prime}.

Corollary 3.3.9. Push-out of a trivial deformation is trivial.

3.4 Construction of an infinitesimal deformation

In this section we construct a specific infinitesimal deformation of a Leibniz algebra L with $\operatorname{dim}\left(H L^{2}(L ; L)\right)<\infty$, which turns out to be universal in the class of all infinitesimal deformations of L.

Let L be a Leibniz algebra which satisfies the condition that the second cohomology module $H L^{2}(L ; L)$ is a finite dimensional module over \mathbb{K}. This is true for example, if L is a finite dimensional module over \mathbb{K}. Thoughout this chapter, we denote $H L^{2}(L ; L)$ by \mathbb{H}.

Consider the algebra $C_{1}=\mathbb{K} \oplus \mathbb{H}^{\prime}$ by setting $\left(k_{1}, h_{1}\right)\left(k_{2}, h_{2}\right)=\left(k_{1} k_{2}, k_{1} h_{2}+k_{2} h_{1}\right)$ where \mathbb{H}^{\prime} is the dual module of \mathbb{H}. Observe that the second summand is an ideal of C_{1} with zero multiplication and we get the following trivial extension of \mathbb{K} by \mathbb{H}^{\prime}.

$$
0 \longrightarrow \mathbb{H}^{\prime} \xrightarrow{i_{1}} C_{1} \xrightarrow{p_{1}} \mathbb{K} \longrightarrow 0, i_{1}(\alpha)=(0, \alpha) \text { and } p_{1}(k, \alpha)=k .
$$

Fix a \mathbb{K}-linear map

$$
\mu: \mathbb{H} \longrightarrow C L^{2}(L ; L)=\operatorname{Hom}\left(L^{\otimes 2} ; L\right)
$$

which takes a cohomology class into a cocycle representing it. Such a linear map μ can be obtained by fixing its values on a basis of \mathbb{H} and then extending it linearly. We need the following isomorphism of \mathbb{K}-modules.

Proposition 3.4.1. $\mathbb{H}^{\prime} \otimes L \cong \operatorname{Hom}(\mathbb{H} ; L)$.
Proof. Let $\operatorname{dim}(\mathbb{H})=n$. Suppose $\left\{h_{i}\right\}_{1 \leq i \leq n}$ is a basis of \mathbb{H} and $\left\{g_{i}\right\}_{1 \leq i \leq n}$ is the dual basis. Let $\xi=\sum_{i=1}^{n} \alpha_{i} g_{i} \in H^{\prime}$. Then for $l \in L, \xi \otimes l=\sum_{i=1}^{n} \alpha_{i}\left(g_{i} \otimes l\right) \in \mathbb{H}^{\prime} \otimes L$.

Define a linear map $F: \mathbb{H}^{\prime} \otimes L \longrightarrow \operatorname{Hom}(\mathbb{H} ; L)$ by $F\left(g_{i} \otimes l\right)=\phi_{i} \in \operatorname{Hom}(\mathbb{H} ; L)$ where $\phi_{i}\left(h_{j}\right)=\delta_{i j} l$ for $0 \leq i, j \leq n$. Then

$$
F(\xi \otimes l)=F\left(\left(\sum_{i=1}^{n} \alpha_{i} g_{i}\right) \otimes l\right)=\sum_{i=1}^{n} F\left(\alpha_{i} g_{i} \otimes l\right)=\sum_{i=1}^{n} \alpha_{i} \phi_{i} .
$$

Clearly F is linear and having $\operatorname{ker} F=\{0\}$. Now let $\phi \in \operatorname{Hom}(\mathbb{H} ; L)$ where $\phi\left(h_{i}\right)=$ $\beta_{i} \in L$. Consider $\sum_{i=1}^{n} g_{i} \otimes \beta_{i} \in \mathbb{H}^{\prime} \otimes L$. Then

$$
F\left(\sum_{i=1}^{n} g_{i} \otimes \beta_{i}\right)\left(h_{j}\right)=\sum_{i=1}^{n} F\left(g_{i} \otimes \beta_{i}\right)\left(h_{j}\right)=\sum_{i=1}^{n} \delta_{i j} \beta_{i}=\beta_{j}=\phi\left(h_{j}\right) .
$$

This shows that $\sum_{i=1}^{n} g_{i} \otimes \beta_{i} \in \mathbb{H}^{\prime} \otimes L$ is the preimage of $\phi \in \operatorname{Hom}(H ; L)$, so F is onto. Consequently F is an isomorphism.

By Proposition [3.4.1] we have

$$
C_{1} \otimes L=\left(\mathbb{K} \oplus \mathbb{H}^{\prime}\right) \otimes L=(\mathbb{K} \otimes L) \oplus\left(\mathbb{H}^{\prime} \otimes L\right)=L \oplus \operatorname{Hom}(\mathbb{H} ; L) .
$$

We use the above identification to define a bilinear bracket [,--] on $C_{1} \otimes L$ as follows. For $\left(l_{1}, \phi_{1}\right),\left(l_{2}, \phi_{2}\right) \in L \oplus \operatorname{Hom}(\mathbb{H} ; L)$,

$$
\left[\left(l_{1}, \phi_{1}\right),\left(l_{2}, \phi_{2}\right)\right]=\left(\left[l_{1}, l_{2}\right], \psi\right)
$$

where the map $\psi: \mathbb{H} \longrightarrow L$ is given by

$$
\psi(\alpha)=\mu(\alpha)\left(l_{1}, l_{2}\right)+\left[\phi_{1}(\alpha), l_{2}\right]+\left[l_{1}, \phi_{2}(\alpha)\right] \text { for } \alpha \in \mathbb{H} .
$$

Proposition 3.4.2. The \mathbb{K}-module $C_{1} \otimes L$ equipped with the bracket defined above is a Leibniz algebra.

Proof. The bracket is clearly additive in each variable.
Let $\left(l_{1}, \phi_{1}\right),\left(l_{2}, \phi_{2}\right) \in L \oplus \operatorname{Hom}(\mathbb{H} ; L)$ with $\left[\left(l_{1}, \phi_{1}\right),\left(l_{2}, \phi_{2}\right)\right]=\left(\left[l_{1}, l_{2}\right], \psi\right)$. So

$$
\psi(\alpha)=\mu(\alpha)\left(l_{1}, l_{2}\right)+\left[\phi_{1}(\alpha), l_{2}\right]+\left[l_{1}, \phi_{2}(\alpha)\right] \text { for } \alpha \in \mathbb{H} .
$$

Now for $a \in C_{1}$,

$$
\begin{aligned}
a\left[\left(l_{1}, \phi_{1}\right),\left(l_{2}, \phi_{2}\right)\right] & =a\left(\left[l_{1}, l_{2}\right], \psi\right) \\
& =\left(a\left[l_{1}, l_{2}\right], a \psi\right) \\
& =\left(\varepsilon(a)\left[l_{1}, l_{2}\right], \varepsilon(a) \psi\right) \\
& =\left(\left[\varepsilon(a) l_{1}, l_{2}\right], \varepsilon(a) \psi\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left[\left(\varepsilon(a) l_{1}, \varepsilon(a) \phi_{1}\right),\left(l_{2}, \phi_{2}\right)\right] \\
& =\left[\left(a l_{1}, a \phi_{1}\right),\left(l_{2}, \phi_{2}\right)\right] \\
& =\left[a\left(l_{1}, \phi_{1}\right),\left(l_{2}, \phi_{2}\right)\right]
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
a\left[\left(l_{1}, \phi_{1}\right),\left(l_{2}, \phi_{2}\right)\right] & =a\left(\left[l_{1}, l_{2}\right], \psi\right) \\
& =\left(a\left[l_{1}, l_{2}\right], a \psi\right) \\
& =\left(\varepsilon(a)\left[l_{1}, l_{2}\right], \varepsilon(a) \psi\right) \\
& =\left(\left[l_{1}, \varepsilon(a) l_{2}\right], \varepsilon(a) \psi\right) \\
& =\left[\left(l_{1}, \phi_{1}\right),\left(\varepsilon(a) l_{2}, \varepsilon(a) \phi_{2}\right)\right] \\
& =\left[\left(l_{1}, \phi_{1}\right),\left(a l_{2}, a \phi_{2}\right)\right] \\
& =\left[\left(l_{1}, \phi_{1}\right), a\left(l_{2}, \phi_{2}\right)\right]
\end{aligned}
$$

This shows that the bracket $[-,-]$ defined above on the module $C_{1} \otimes L$ is C_{1}-bilinear. It remains to check the Leibniz relation. Let $\left(l_{1}, \phi_{1}\right),\left(l_{2}, \phi_{2}\right),\left(l_{3}, \phi_{3}\right) \in L \oplus \operatorname{Hom}(\mathbb{H} ; L)$. Suppose

$$
\begin{aligned}
{\left[\left(l_{1}, \phi_{1}\right),\left(l_{2}, \phi_{2}\right)\right] } & =\left(\left[l_{1}, l_{2}\right], \psi_{12}\right), \quad\left[\left(l_{2}, \phi_{2}\right),\left(l_{3}, \phi_{3}\right)\right]=\left(\left[l_{2}, l_{3}\right], \psi_{23}\right) \\
\text { and }\left[\left(l_{1}, \phi_{1}\right),\left(l_{3}, \phi_{3}\right)\right] & =\left(\left[l_{1}, l_{3}\right], \psi_{13}\right),
\end{aligned}
$$

where

$$
\begin{aligned}
\psi_{12}(\alpha) & =\mu(\alpha)\left(l_{1}, l_{2}\right)+\left[\phi_{1}(\alpha), l_{2}\right]+\left[l_{1}, \phi_{2}(\alpha)\right] \\
\psi_{23}(\alpha) & =\mu(\alpha)\left(l_{2}, l_{3}\right)+\left[\phi_{2}(\alpha), l_{3}\right]+\left[l_{2}, \phi_{3}(\alpha)\right] \\
\text { and } \psi_{13}(\alpha) & =\mu(\alpha)\left(l_{1}, l_{3}\right)+\left[\phi_{1}(\alpha), l_{3}\right]+\left[l_{1}, \phi_{3}(\alpha)\right] .
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
& {\left[\left(l_{1}, \phi_{1}\right),\left[\left(l_{2}, \phi_{2}\right),\left(l_{3}, \phi_{3}\right)\right]\right]-\left[\left[\left(l_{1}, \phi_{1}\right),\left(l_{2}, \phi_{2}\right)\right],\left(l_{3}, \phi_{3}\right)\right]\left[\left[\left(l_{1}, \phi_{1}\right),\left(l_{3}, \phi_{3}\right)\right],\left(l_{2}, \phi_{2}\right)\right] } \\
= & {\left[\left(l_{1}, \phi_{1}\right),\left(\left[l_{2}, l_{3}\right], \psi_{23}\right)\right]-\left[\left(\left[l_{1}, l_{2}\right], \psi_{12}\right),\left(l_{3}, \phi_{3}\right)\right]+\left[\left(\left[l_{1}, l_{3}\right], \psi_{13}\right),\left(l_{2}, \phi_{2}\right)\right] } \\
= & \left(\left[l_{1},\left[l_{2}, l_{3}\right]\right], \psi_{1(23)}\right)-\left(\left[\left[l_{1}, l_{2}\right], l_{3}\right], \psi_{(12) 3}\right)+\left(\left[\left[l_{1}, l_{3}\right], l_{2}\right], \psi_{(13) 2}\right) \\
= & \left(\left[l_{1},\left[l_{2}, l_{3}\right]\right]-\left[\left[l_{1}, l_{2}\right], l_{3}\right]+\left[\left[l_{1}, l_{3}\right], l_{2}\right], \psi_{1(23)}-\psi_{(12) 3}+\psi_{(13) 2}\right) .
\end{aligned}
$$

Observe that

$$
\begin{aligned}
& \left(\psi_{1(23)}-\psi_{(12) 3}+\psi_{(13) 2}\right)(\alpha) \\
= & \left.\psi_{1(23)}(\alpha)-\psi_{(12) 3}(\alpha)+\psi_{(13) 2}\right)(\alpha) \\
= & \mu(\alpha)\left(l_{1},\left[l_{2}, l_{3}\right]\right)+\left[\phi_{1}(\alpha),\left[l_{2}, l_{3}\right]\right]+\left[l_{1}, \psi_{23}(\alpha)\right]-\mu(\alpha)\left(\left[l_{1}, l_{2}\right], l_{3}\right) \\
& -\left[\psi_{12}(\alpha), l_{3}\right]-\left[\left[l_{1}, l_{2}\right], \phi_{3}(\alpha)\right]+\mu(\alpha)\left(\left[l_{1}, l_{3}\right], l_{2}\right)+\left[\psi_{13}(\alpha), l_{2}\right]+\left[\left[l_{1}, l_{3}\right], \phi_{2}(\alpha)\right] \\
= & \delta \mu(\alpha)\left(l_{1}, l_{2}, l_{3}\right) \text { (by (1.3.1) in Chapter1) } \\
= & 0 \quad \text { (since } \mu(\alpha) \text { is a cochain representing } \alpha, \delta \mu(\alpha)=0) .
\end{aligned}
$$

Thus we have,

$$
\begin{aligned}
& {\left[\left(l_{1}, \phi_{1}\right),\left[\left(l_{2}, \phi_{2}\right),\left(l_{3}, \phi_{3}\right)\right]\right]-\left[\left[\left(l_{1}, \phi_{1}\right),\left(l_{2}, \phi_{2}\right)\right],\left(l_{3}, \phi_{3}\right)\right]+\left[\left[\left(l_{1}, \phi_{1}\right),\left(l_{3}, \phi_{3}\right)\right],\left(l_{2}, \phi_{2}\right)\right]} \\
& =0 \in C_{1} \otimes L
\end{aligned}
$$

So

$$
\left[\left(l_{1}, \phi_{1}\right),\left[\left(l_{2}, \phi_{2}\right),\left(l_{3}, \phi_{3}\right)\right]\right]=\left[\left[\left(l_{1}, \phi_{1}\right),\left(l_{2}, \phi_{2}\right)\right],\left(l_{3}, \phi_{3}\right)\right]-\left[\left[\left(l_{1}, \phi_{1}\right),\left(l_{3}, \phi_{3}\right)\right],\left(l_{2}, \phi_{2}\right)\right] .
$$

Since C_{1} is local with maximal ideal \mathbb{H}^{\prime} such that $\mathbb{H}^{\prime 2}=0$, we get an infinitesimal deformation of L with base $C_{1}=\mathbb{K} \oplus \mathbb{H}^{\prime}$.

Proposition 3.4.3. Up to an isomorphism, this deformation does not depend on the choice of μ.

Proof. Let

$$
\mu^{\prime}: \mathbb{H} \longrightarrow C L^{2}(L ; L)
$$

be another choice for μ. Then for $\alpha \in \mathbb{H}$, the cochains $\mu(\alpha)$ and $\mu^{\prime}(\alpha)$ in $C L^{2}(L ; L)$ represent the same cohomology class α. So $\mu(\alpha)-\mu^{\prime}(\alpha)$ is a coboundary. Hence we can define a \mathbb{K}-linear map

$$
\gamma: \mathbb{H} \longrightarrow C L^{1}(L ; L)
$$

on a basis $\left\{h_{i}\right\}_{1 \leq i \leq n}$ of \mathbb{H} by $\gamma\left(h_{i}\right)=\gamma_{i}$ with $\delta \gamma_{i}=\mu\left(h_{i}\right)-\mu^{\prime}\left(h_{i}\right)$. Clearly, $\mu-\mu^{\prime}=\delta \gamma$.
Using the identification $C_{1} \otimes L \cong L \oplus \operatorname{Hom}(\mathbb{H} ; L)$, define

$$
\rho: C_{1} \otimes L \longrightarrow C_{1} \otimes L \text { by } \rho((l, \phi))=(l, \psi),
$$

where $\psi(\alpha)=\phi(\alpha)+\gamma(\alpha)(l), l \in L$ and $\phi \in \operatorname{Hom}(\mathbb{H} ; L)$. Then ρ is a C_{1}-linear automorphism of $C_{1} \otimes L$ with $\rho^{-1}(l, \psi)=(l, \phi)$ with $\phi(\alpha)=\psi(\alpha)-\gamma(\alpha)(l)$ for $\alpha \in \mathbb{H}$.

It remains to show that ρ preserves the bracket.

Let $\left(l_{1}, \phi_{1}\right),\left(l_{2}, \phi_{2}\right) \in C_{1} \otimes L$ with $\rho\left(l_{1}, \phi_{1}\right)=\left(l_{1}, \psi_{1}\right)$ and $\rho\left(l_{2}, \phi_{2}\right)=\left(l_{2}, \psi_{2}\right)$. Suppose $\left[\left(l_{1}, \phi_{1}\right),\left(l_{2}, \phi_{2}\right)\right]=\left(\left[l_{1}, l_{2}\right], \phi_{3}\right)$ where $\phi_{3}(\alpha)=\mu(\alpha)\left(l_{1}, l_{2}\right)+\left[\phi_{1}(\alpha), l_{2}\right]+\left[l_{1}, \phi_{2}(\alpha)\right]$, and $\left[\left(l_{1}, \psi_{1}\right),\left(l_{2}, \psi_{2}\right)\right]=\left(\left[l_{1}, l_{2}\right], \psi_{3}\right)$ where $\psi_{3}(\alpha)=\mu^{\prime}(\alpha)\left(l_{1}, l_{2}\right)+\left[\psi_{1}(\alpha), l_{2}\right]+\left[l_{1}, \psi_{2}(\alpha)\right]$. Then

$$
\begin{aligned}
\psi_{3}(\alpha)= & \mu^{\prime}(\alpha)\left(l_{1}, l_{2}\right)+\left[\psi_{1}(\alpha), l_{2}\right]+\left[l_{1}, \psi_{2}(\alpha)\right] \\
= & \mu(\alpha)\left(l_{1}, l_{2}\right)-\delta \gamma(\alpha)\left(l_{1}, l_{2}\right)+\left[\phi_{1}(\alpha)+\gamma(\alpha)\left(l_{1}\right), l_{2}\right]+\left[l_{1}, \phi_{2}(\alpha)+\gamma(\alpha)\left(l_{2}\right)\right] \\
= & \mu(\alpha)\left(l_{1}, l_{2}\right)-\left[l_{1}, \gamma(\alpha)\left(l_{2}\right)\right]-\left[\gamma(\alpha)\left(l_{1}\right), l_{2}\right]+\gamma(\alpha)\left(\left[l_{1}, l_{2}\right]\right)+\left[\phi_{1}(\alpha), l_{2}\right] \\
& \quad+\left[\gamma(\alpha)\left(l_{1}\right), l_{2}\right]+\left[\phi_{1}(\alpha), l_{2}\right]+\left[l_{1}, \phi_{2}(\alpha)\right]+\left[l_{1}, \gamma(\alpha)\left(l_{2}\right)\right] \\
= & \mu(\alpha)\left(l_{1}, l_{2}\right)+\left[\phi_{1}(\alpha), l_{2}\right]+\left[l_{1}, \phi_{2}(\alpha)\right]+\gamma(\alpha)\left(\left[l_{1}, l_{2}\right]\right) \\
= & \phi_{3}(\alpha)+\gamma(\alpha)\left(\left[l_{1}, l_{2}\right]\right) .
\end{aligned}
$$

Hence $\rho\left(\left[l_{1}, l_{2}\right], \phi_{3}\right)=\left(\left[l_{1}, l_{2}\right], \psi_{3}\right)=\left[\left(l_{1}, \psi_{1}\right),\left(l_{2}, \psi_{2}\right)\right]=\left[\rho\left(l_{1}, \phi_{1}\right), \rho\left(l_{2}, \phi_{2}\right)\right]$.
Therefore, up to an isomorphism, the infinitesimal deformation obtained above is independent of the choice of μ.

We shall denote this deformation of L by η_{1}.
Remark 3.4.4. Suppose $\left\{h_{i}\right\}_{1 \leq i \leq n}$ is a basis of \mathbb{H} and $\left\{g_{i}\right\}_{1 \leq i \leq n}$ is the dual basis. Let $\mu\left(h_{i}\right)=\mu_{i} \in C L^{2}(L ; L)$. Under the identification $C_{1} \otimes L \cong L \oplus \operatorname{Hom}(\mathbb{H} ; L)$, an element $(l, \phi) \in L \oplus \operatorname{Hom}(\mathbb{H} ; L)$ corresponds to $1 \otimes l+\sum_{i=1}^{n} g_{i} \otimes \phi\left(h_{i}\right)$. Then for $\left(l_{1}, \phi_{1}\right),\left(l_{2}, \phi_{2}\right) \in L \oplus \operatorname{Hom}(\mathbb{H} ; L)$ their bracket $\left(\left[l_{1}, l_{2}\right], \psi\right)$ corresponds to

$$
1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{n} g_{i} \otimes\left(\mu_{i}\left(l_{1}, l_{2}\right)+\left[\phi_{1}\left(h_{i}\right), l_{2}\right]+\left[l_{1}, \phi_{2}\left(h_{i}\right)\right]\right) .
$$

In particular, for $l_{1}, l_{2} \in L$ we have

$$
\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\eta_{1}}=1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{n} g_{i} \otimes \mu_{i}\left(l_{1}, l_{2}\right)
$$

The main property of η_{1} is that it is universal in the class of infinitesimal deformations with a finite dimensional local algebra base (Theorem 3.4.11).

Let \mathcal{C} be the category of finite dimensional commutative local algebras with 1 . Let λ be any infinitesimal deformation of L with base $(A, \mathfrak{M}) \in \mathcal{C}$. Let $\left\{m_{i}\right\}_{1 \leq i \leq r}$ be a basis of \mathfrak{M} and $\left\{\xi_{i}\right\}_{1 \leq i \leq r}$ be the corresponding dual basis. Any element $\xi \in \mathfrak{M}^{\prime}$ can be extended as an element $\xi \in A^{\prime}$ with $\xi(1)=0$.

Define a cochain $\alpha_{\lambda, \xi} \in C L^{2}(L ; L)$ by

$$
\begin{equation*}
\alpha_{\lambda, \xi}\left(l_{1}, l_{2}\right)=(\xi \otimes i d)\left(\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda}\right), \text { for } l_{1}, l_{2} \in L \tag{3.4.1}
\end{equation*}
$$

Setting $\psi_{i}=\alpha_{\lambda, \xi_{i}}$ for $1 \leq i \leq r$, the Leibniz bracket (3.3.1) in terms of the basis of \mathfrak{M} takes the form

$$
\begin{align*}
{\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda} } & =1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r} m_{i} \otimes x_{i} \tag{3.4.2}\\
& =1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r} m_{i} \otimes \psi_{i}\left(l_{1}, l_{2}\right)
\end{align*}
$$

Proposition 3.4.5. With λ as above, the cochain $\alpha_{\lambda, \xi} \in C L^{2}(L ; L)$ is a cocycle.
Proof. By definition of coboundary in (1.3.1), if we take $l_{1}, l_{2}, l_{3} \in L$ then

$$
\begin{align*}
\delta \alpha_{\lambda, \xi}\left(l_{1}, l_{2}, l_{3}\right)= & {\left[l_{1}, \alpha_{\lambda, \xi}\left(l_{2}, l_{3}\right)\right]+\left[\alpha_{\lambda, \xi}\left(l_{1}, l_{3}\right), l_{2}\right]-\left[\alpha_{\lambda, \xi}\left(l_{1}, l_{2}\right), l_{3}\right] } \tag{3.4.3}\\
& -\alpha_{\lambda, \xi}\left(\left[l_{1}, l_{2}\right], l_{3}\right)+\alpha_{\lambda, \xi}\left(\left[l_{1}, l_{3}\right], l_{2}\right)+\alpha_{\lambda, \xi}\left(l_{1},\left[l_{2}, l_{3}\right]\right) .
\end{align*}
$$

For $1 \otimes l_{1}, 1 \otimes l_{2}, 1 \otimes l_{3} \in A \otimes L$,

$$
\begin{aligned}
& (\xi \otimes i d)\left(\left[1 \otimes l_{1},\left[1 \otimes l_{2}, 1 \otimes l_{3}\right]_{\lambda}\right]_{\lambda}\right) \\
& =(\xi \otimes i d)\left(\left[1 \otimes l_{1}, 1 \otimes\left[l_{2}, l_{3}\right]\right]_{\lambda}+\left[1 \otimes l_{1}, \sum_{j=1}^{r} m_{j} \otimes \psi_{j}\left(l_{2}, l_{3}\right)\right]_{\lambda}\right)(\text { using (3.4.2) }) \\
& =\alpha_{\lambda, \xi}\left(l_{1},\left[l_{2}, l_{3}\right]\right)+\sum_{j=1}^{r}(\xi \otimes i d)\left[1 \otimes l_{1}, m_{j} \otimes \psi_{j}\left(l_{2}, l_{3}\right)\right]_{\lambda}
\end{aligned}
$$

Observe that,

$$
\begin{aligned}
& (\xi \otimes i d)\left[1 \otimes l_{1}, m_{j} \otimes \psi_{j}\left(l_{2}, l_{3}\right)\right]_{\lambda} \\
& =(\xi \otimes i d) m_{j}\left[1 \otimes l_{1}, 1 \otimes \psi_{j}\left(l_{2}, l_{3}\right)\right]_{\lambda} \\
& =(\xi \otimes i d) m_{j}\left(1 \otimes\left[l_{1}, \psi_{j}\left(l_{2}, l_{3}\right)\right]+\sum_{k=1}^{r} m_{k} \otimes \psi_{k}\left(l_{1}, \psi_{j}\left(l_{2}, l_{3}\right)\right)\right) \\
& =(\xi \otimes i d)\left(m_{j} \otimes\left[l_{1}, \psi_{j}\left(l_{2}, l_{3}\right)\right]\right) \quad\left(\lambda \text { being an infinitesimal deformation, } \mathfrak{M}^{2}=0\right) \\
& =\left[l_{1},(\xi \otimes i d)\left(m_{j} \otimes \psi_{j}\left(l_{2}, l_{3}\right)\right)\right] .
\end{aligned}
$$

Therefore $(\xi \otimes i d)\left(\left[1 \otimes l_{1},\left[1 \otimes l_{2}, 1 \otimes l_{3}\right]_{\lambda}\right]_{\lambda}\right)$ can be written as

$$
\begin{align*}
& (\xi \otimes i d)\left(\left[1 \otimes l_{1},\left[1 \otimes l_{2}, 1 \otimes l_{3}\right]_{\lambda}\right]_{\lambda}\right) \tag{3.4.4}\\
& =\alpha_{\lambda, \xi}\left(l_{1},\left[l_{2}, l_{3}\right]\right)+\left[l_{1},(\xi \otimes i d) \sum_{j=1}^{r} m_{j} \otimes \psi_{j}\left(l_{2}, l_{3}\right)\right]
\end{align*}
$$

by using (3.4.2)

$$
\begin{aligned}
& =\alpha_{\lambda, \xi}\left(l_{1},\left[l_{2}, l_{3}\right]\right)+\left[l_{1},(\xi \otimes i d)\left(\left[1 \otimes l_{2}, 1 \otimes l_{3}\right]_{\lambda}-1 \otimes\left[l_{2}, l_{3}\right]\right)\right] \\
& =\alpha_{\lambda, \xi}\left(l_{1},\left[l_{2}, l_{3}\right]\right)+\left[l_{1}, \alpha_{\lambda, \xi}\left(l_{2}, l_{3}\right)\right] \quad(\text { since } \xi(1)=0)
\end{aligned}
$$

Similarly

$$
\begin{align*}
& \quad(\xi \otimes i d)\left(\left[\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda}, 1 \otimes l_{3}\right]_{\lambda}\right)=\alpha_{\lambda, \xi}\left(\left[l_{1}, l_{2}\right], l_{3}\right)+\left[\alpha_{\lambda, \xi}\left(l_{1}, l_{2}\right), l_{3}\right] \tag{3.4.5}\\
& \text { and }(\xi \otimes i d)\left(\left[\left[1 \otimes l_{1}, 1 \otimes l_{3}\right]_{\lambda}, 1 \otimes l_{2}\right]_{\lambda}\right)=\alpha_{\lambda, \xi}\left(\left[l_{1}, l_{3}\right], l_{2}\right)+\left[\alpha_{\lambda, \xi}\left(l_{1}, l_{3}\right), l_{2}\right] . \tag{3.4.6}
\end{align*}
$$

Thus using (3.4.4)-(3.4.6) in (3.4.3) we get,

$$
\begin{aligned}
& \delta \alpha_{\lambda, \xi}\left(l_{1}, l_{2}, l_{3}\right) \\
&=\left\{\left[l_{1}, \alpha_{\lambda, \xi}\left(l_{2}, l_{3}\right)\right]+\alpha_{\lambda, \xi}\left(l_{1},\left[l_{2}, l_{3}\right]\right)\right\}-\left\{\left[\alpha_{\lambda, \xi}\left(l_{1}, l_{2}\right), l_{3}\right]+\alpha_{\lambda, \xi}\left(\left[l_{1}, l_{2}\right], l_{3}\right)\right\} \\
&+\left\{\left[\alpha_{\lambda, \xi}\left(l_{1}, l_{3}\right), l_{2}\right]+\alpha_{\lambda, \xi}\left(\left[l_{1}, l_{3}\right], l_{2}\right)\right\} \\
&=(\xi \otimes i d)\left(\left[1 \otimes l_{1},\left[1 \otimes l_{2}, 1 \otimes l_{3}\right]_{\lambda}\right]_{\lambda}-\left[\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda}, 1 \otimes l_{3}\right]_{\lambda}\right. \\
&\left.+\left[\left[1 \otimes l_{1}, 1 \otimes l_{3}\right]_{\lambda}, 1 \otimes l_{2}\right]_{\lambda}\right)
\end{aligned}
$$

$$
=0 \quad\left(\text { since }[-,-]_{\lambda} \text { satisfies the Leibniz relation on } A \otimes L\right)
$$

Let λ be a deformation of a Leibniz algebra L with base $(A, \mathfrak{M}) \in \mathcal{C}$. Let \mathfrak{M}^{\prime} be the dual of \mathfrak{M}. We shall use the following standard identifications.

Lemma 3.4.6. $\operatorname{Hom}(L ; \mathfrak{M} \otimes L) \cong \mathfrak{M} \otimes \operatorname{Hom}(L ; L) \cong \operatorname{Hom}\left(\mathfrak{M}^{\prime} ; \operatorname{Hom}(L ; L)\right)$
Proof. Suppose $\left\{m_{i}\right\}_{1 \leq i \leq r}$ is a basis of \mathfrak{M} and $\left\{\xi_{i}\right\}_{1 \leq i \leq r}$ is the corresponding dual basis of \mathfrak{M}^{\prime}. An arbitrary element in $\mathfrak{M} \otimes \operatorname{Hom}(L ; L)$ is of the form $\sum_{j} a_{j} \otimes f_{j}$ where j varies over a finite sum and $a_{j} \in \mathfrak{M}, f_{j} \in \operatorname{Hom}(L ; L)$. Let $a_{j}=\sum_{i=1}^{r} c_{i j} m_{i}$ for $c_{i j} \in \mathbb{K}$, then

$$
\sum_{j} a_{j} \otimes f_{j}=\sum_{j}\left(\sum_{i=1}^{r} c_{i j} m_{i}\right) \otimes f_{j}=\sum_{i=1}^{r} m_{i} \otimes\left(\sum_{j} c_{i j} f_{j}\right)=\sum_{i=1}^{r} m_{i} \otimes \phi_{i}
$$

where $\phi_{i}=\sum_{j} c_{i j} f_{j} \in \operatorname{Hom}(L ; L)$.
Define a \mathbb{K}-linear map, $G: \mathfrak{M} \otimes \operatorname{Hom}(L ; L) \longrightarrow \operatorname{Hom}(L ; \mathfrak{M} \otimes L)$ by

$$
G\left(\sum_{i=1}^{r} m_{i} \otimes \phi_{i}\right)(l)=\sum_{i=1}^{r} m_{i} \otimes \phi_{i}(l) \text { for } l \in L
$$

Observe that G is an injective map. Suppose

$$
G\left(\sum_{i=1}^{r} m_{i} \otimes \phi_{i}\right)=0 \in \operatorname{Hom}(L ; \mathfrak{M} \otimes L)
$$

So we get, $\sum_{i=1}^{r} m_{i} \otimes \phi_{i}(l)=0$ for $l \in L$. Equivalently,

$$
\left(\xi_{i} \otimes i d\right)\left(\sum_{i=1}^{r} m_{i} \otimes \phi_{i}(l)\right)=0
$$

This gives $\phi_{i}(l)=0$ for $l \in L$. So, $\phi_{i}=0$.
Now let ρ_{2} be a linear map in $\operatorname{Hom}(L ; \mathfrak{M} \otimes L)$ then we have $\rho_{2}(l) \in \mathfrak{M} \otimes L$ for $l \in L$. Suppose $\rho_{2}(l)=\sum_{i=1}^{r} m_{i} \otimes l_{i}$ for some $l_{i} \in L$. We now define $\phi_{i} \in \operatorname{Hom}(L ; L), 1 \leq i \leq r$ by

$$
\phi_{i}(l)=\xi_{i} \otimes i d\left(\rho_{2}(l)\right) \text { for } l \in L
$$

Therefore

$$
\rho_{2}(l)=\sum_{i=1}^{r} m_{i} \otimes \phi_{i}(l)=G\left(\sum_{i=1}^{r} m_{i} \otimes \phi_{i}\right)(l) \text { for } l \in L .
$$

So

$$
\sum_{i=1}^{r} G\left(m_{i} \otimes \phi_{i}\right)=\rho_{2}
$$

Therefore G is an onto map and consequently G is an isomorphism. The last isomorphism has already been proved in Proposition 3.4.1 and is given by

$$
F: \mathfrak{M} \otimes \operatorname{Hom}(L ; L) \longrightarrow \operatorname{Hom}\left(\mathfrak{M}^{\prime} ; \operatorname{Hom}(L ; L)\right)
$$

where

$$
F\left(m_{i} \otimes \phi_{i}\right)\left(\xi_{j}\right)=\delta_{i, j} \phi_{i} \in \operatorname{Hom}(L ; L)
$$

Proposition 3.4.7. Suppose λ_{1} and λ_{2} are infinitesimal deformations of a Leibniz algebra L with base $(A, \mathfrak{M}) \in \mathcal{C}$. Then λ_{1} and λ_{2} are equivalent if and only if $\alpha_{\lambda_{1}, \xi}$ and $\alpha_{\lambda_{2}, \xi}$ represent the same cohomology class for $\xi \in \mathfrak{M}^{\prime}$.

Proof. Let $\operatorname{dim}(\mathfrak{M})=r$. Suppose $\left\{m_{i}\right\}_{1 \leq i \leq r}$ is a basis of \mathfrak{M} and $\left\{\xi_{i}\right\}_{1 \leq i \leq r}$ be the corresponding dual basis of \mathfrak{M}^{\prime}. For $\xi_{i} \in \mathfrak{M}^{\prime}$, let $a_{\lambda, \xi_{i}} \in \mathbb{H}$ be the cohomology class of the cocycle $\alpha_{\lambda, \xi_{i}}$ for any infinitesimal deformation λ of L with base A. The correspondences

$$
\xi_{i} \longmapsto \alpha_{\lambda, \xi_{i}} \text { and } \quad \xi_{i} \longmapsto a_{\lambda, \xi_{i}}
$$

for $1 \leq i \leq r$ define homomorphisms

$$
\alpha_{\lambda}: \mathfrak{M}^{\prime} \longrightarrow C L^{2}(L ; L) \text { with } \delta \circ \alpha_{\lambda}=0 \text { and } a_{\lambda}: \mathfrak{M}^{\prime} \longrightarrow \mathbb{H} .
$$

Let λ_{1} and λ_{2} be two equivalent deformations of the Leibniz algebra L with base A. Then there exists an A-Leibniz algebra isomorphism

$$
\rho:\left(A \otimes L,[-,-]_{\lambda_{1}}\right) \longrightarrow\left(A \otimes L,[-,-]_{\lambda_{2}}\right) \text { with }(\varepsilon \otimes i d) \circ \rho=(\varepsilon \otimes i d) .
$$

Now $A \otimes L=(\mathbb{K} \oplus \mathfrak{M}) \otimes L=(\mathbb{K} \otimes L) \oplus(\mathfrak{M} \otimes L)=L \oplus(\mathfrak{M} \otimes L)$. Thus any element of $A \otimes L$ is of the form $\left(l, \sum_{i=1}^{r} m_{i} \otimes l_{i}\right)$ where $l_{i} \in L$ for $1 \leq i \leq r$. By A-linearity, ρ is determined by the values $\rho(1 \otimes l)$ for $l \in L$ and hence ρ is of the form $\rho=\rho_{1}+\rho_{2}$ where $\rho_{1}: L \longrightarrow L$ and $\rho_{2}: L \longrightarrow \mathfrak{M} \otimes L$. The map ρ_{1} must be the identity map $i d: L \longrightarrow L$ by the compatibility $(\varepsilon \otimes i d) \circ \rho=(\varepsilon \otimes i d)$.

Under the isomorphisms in Lemma 3.4.6, we have

$$
\begin{equation*}
\rho_{2} \longmapsto \sum_{i=1}^{r} m_{i} \otimes \phi_{i} \longmapsto b_{\rho} \tag{3.4.7}
\end{equation*}
$$

where $\phi_{i}=\left(\xi_{i} \otimes i d\right) \circ \rho_{2}$ and $b_{\rho}\left(\xi_{i}\right)=\phi_{i}$. Thus we may write,

$$
\rho(1 \otimes l)=\rho_{1}(1 \otimes l)+\rho_{2}(1 \otimes l)=1 \otimes l+\sum_{i=1}^{r} m_{i} \otimes \phi_{i}(l) \quad \text { for } l \in L
$$

The map ρ is a Leibniz algebra homomorphism if and only if

$$
\begin{equation*}
\rho\left(\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda_{1}}\right)=\left[\rho\left(1 \otimes l_{1}\right), \rho\left(1 \otimes l_{2}\right)\right]_{\lambda_{2}} \text { for } l_{1}, l_{2} \in L \tag{3.4.8}
\end{equation*}
$$

Set $\psi_{i}{ }^{k}=\alpha_{\lambda_{k}, \xi_{i}} 1 \leq i \leq r$ for $k=1$ and 2. Then

$$
\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda_{k}}=1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r} m_{i} \otimes \psi_{i}^{k}\left(l_{1}, l_{2}\right)
$$

Therefore

$$
\begin{aligned}
& \rho\left(\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda_{1}}\right) \\
= & \rho\left(1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r} m_{i} \otimes \psi_{i}{ }^{1}\left(l_{1}, l_{2}\right)\right) \\
= & \rho\left(1 \otimes\left[l_{1}, l_{2}\right]\right)+\sum_{i=1}^{r} m_{i} \rho\left(1 \otimes \psi_{i}{ }^{1}\left(l_{1}, l_{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r} m_{i} \otimes \phi_{i}\left(\left[l_{1}, l_{2}\right]\right)+\sum_{i=1}^{r} m_{i}\left\{1 \otimes \psi_{i}^{1}\left(l_{1}, l_{2}\right)+\sum_{j=1}^{r} m_{j} \otimes \phi_{j}\left(\psi_{i}^{1}\left(l_{1}, l_{2}\right)\right)\right\} \\
& =1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r} m_{i} \otimes \phi_{i}\left(\left[l_{1}, l_{2}\right]\right)+\sum_{i=1}^{r} m_{i}\left(1 \otimes \psi_{i}^{1}\left(l_{1}, l_{2}\right)\right)
\end{aligned}
$$

(as $m_{i} m_{j}=0, \lambda_{1}$ being infinitesimal).
Similarly

$$
\begin{aligned}
& {\left[\rho\left(1 \otimes l_{1}\right), \rho\left(1 \otimes l_{2}\right)\right]_{\lambda_{2}} } \\
= & 1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r} m_{i} \otimes \psi_{i}^{2}\left(l_{1}, l_{2}\right)+\sum_{i=1}^{r} m_{i} \otimes\left[l_{1}, \phi_{i}\left(l_{2}\right)\right]+\sum_{i=1}^{r} m_{i} \otimes\left[\phi_{i}\left(l_{1}\right), l_{2}\right] .
\end{aligned}
$$

Thus (3.4.8) holds if and only if,

$$
\left[\rho\left(1 \otimes l_{1}\right), \rho\left(1 \otimes l_{2}\right)\right]_{\lambda_{2}}-\rho\left(\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda_{1}}\right)=0
$$

Equivalently, $\quad \sum_{i=1}^{r} m_{i} \otimes\left(\psi_{i}^{2}\left(l_{1}, l_{2}\right)-\psi_{i}^{1}\left(l_{1}, l_{2}\right)\right)+\sum_{i=1}^{r} m_{i} \otimes \delta \phi_{i}\left(l_{1}, l_{2}\right)=0$ holds
for $l_{1}, l_{2} \in L$.
Equivalently, $\psi_{i}^{1}\left(l_{1}, l_{2}\right)-\psi_{i}^{2}\left(l_{1}, l_{2}\right)=\delta \phi_{i}\left(l_{1}, l_{2}\right)$, for $l_{1}, l_{2} \in L$ holds.
Equivalently, $\alpha_{\lambda_{1}, \xi_{i}}-\alpha_{\lambda_{2}, \xi_{i}}=\delta \phi_{i}$ for $1 \leq i \leq r$.
Thus λ_{1} and λ_{2} are equivalent if and only if $a_{\lambda_{1}}=a_{\lambda_{2}}$.

Suppose $(A, \mathfrak{M}) \in \mathcal{C}$. The algebra A / \mathfrak{M}^{2} is obviously local with maximal ideal $\mathfrak{M} / \mathfrak{M}^{2}$ and having the additional property $\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{2}=0$. Let $p_{2}: A \longrightarrow A / \mathfrak{M}^{2}$ be the obvious quotient map. If λ is any deformation of L with base A then we get the induced deformation $p_{2 *} \lambda$ with base A / \mathfrak{M}^{2}, which is obviously infinitesimal. As a consequence, $\alpha_{p_{2 *} \lambda}$ takes values in cocycles and hence we have a map

$$
a_{p_{2_{*} \lambda}}:\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime} \rightarrow H L^{2}(L ; L) \text { defined by } a_{p_{2 *}} \mathfrak{D}(\xi)=\left[\alpha_{p_{2 *} \lambda}\right]
$$

where $\left[\alpha_{p_{2_{*}} \lambda}\right]$ denotes the cohomology class represented by $\alpha_{p_{2 *} \lambda}$.
Definition 3.4.8. The linear maps $\alpha_{p_{2 *} \lambda}$ and $a_{p_{2_{*} \lambda}}$ are respectively called the infinitesimal and the differential of \mathfrak{D}. The differential $a_{p_{2 *} \lambda}:\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime} \longrightarrow H L^{2}(L ; L)$ is also denoted by $d \lambda$. The deformation $p_{2 *} \lambda$ may be called the infinitesimal part of λ.

Corollary 3.4.9. Two infinitesimal deformations λ and λ^{\prime} with base $(A, \mathfrak{M}) \in \mathcal{C}$ are equivalent if and only if they have the same differential.

Corollary 3.4.10. Suppose λ and λ^{\prime} are two equivalent deformations of L with base A then they have the same differential.

The main property of η_{1} is given by the following theorem.
Theorem 3.4.11. For any infinitesimal deformation λ of a Leibniz algebra L with a finite dimensional base $(A, \mathfrak{M}) \in \mathcal{C}$ there exists a unique homomorphism $\phi: C_{1}=$ $\left(\mathbb{K} \oplus \mathbb{H}^{\prime}\right) \longrightarrow A$ such that λ is equivalent to the push-out $\phi_{*} \eta_{1}$.

Proof. Let λ be an infinitesimal deformation of a Leibniz algebra L with base $(A, \mathfrak{M}) \in$ \mathcal{C}. Let \mathfrak{M} be the maximal ideal in A and $\operatorname{dim}(\mathfrak{M})=r$. As before let $\{\xi\}_{1 \leq i \leq r}$ be the dual basis in \mathfrak{M}^{\prime} corresponding to a basis $\left\{m_{i}\right\}_{1 \leq i \leq r}$ of \mathfrak{M}. Let $\alpha_{\lambda}: \mathfrak{M}^{\prime} \longrightarrow C L^{2}(L ; L)$ and $a_{\lambda}: \mathfrak{M}^{\prime} \longrightarrow \mathbb{H}$ be the homomorphisms as defined in Proposition 3.4.7

Now consider the map $\phi=\left(i d \oplus a_{\lambda}{ }^{\prime}\right): C_{1} \longrightarrow \mathbb{K} \oplus \mathfrak{M}=A$. By Proposition 3.4.7, it is enough to show that $\alpha_{\phi_{*} \eta_{1}}=\mu \circ a_{\lambda}$. Let $\left\{h_{i}\right\}_{1 \leq i \leq n}$ be a basis of \mathbb{H} and $\left\{g_{i}\right\}_{1 \leq i \leq n}$ be the corresponding dual basis of \mathbb{H}^{\prime}. By Remarks 3.3 .2 and 3.4.4 we have

$$
\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\phi_{*} \eta_{1}}=1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r} \phi\left(g_{i}\right) \otimes \mu\left(h_{i}\right)\left(l_{1}, l_{2}\right)
$$

Let $a_{\lambda}{ }^{\prime}: \mathbb{H}^{\prime} \longrightarrow \mathfrak{M}$ be the dual of a_{λ}. Then

$$
a_{\lambda}^{\prime}\left(g_{j}\right)=\sum_{i=1} \xi_{i}\left(a_{\lambda}^{\prime}\left(g_{j}\right)\right) m_{i} \text { and } a_{\lambda}\left(\xi_{i}\right)=\sum_{j=1}^{n} g_{j}\left(a_{\lambda}\left(\xi_{i}\right)\right) h_{j}
$$

Thus

$$
\begin{aligned}
\alpha_{\phi_{*} \eta_{1}}\left(\xi_{i}\right)\left(l_{1}, l_{2}\right) & =\left(\xi_{i} \otimes i d\right)\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\phi_{*} \eta_{1}} \\
& =\left(\xi_{i} \otimes i d\right)\left(1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j=1}^{n} \phi\left(g_{j}\right) \otimes \mu\left(h_{j}\right)\left(l_{1}, l_{2}\right)\right) \\
& =\left(\xi_{i} \otimes i d\right)\left(\sum_{j=1}^{n} a_{\lambda}{ }^{\prime}\left(g_{j}\right) \otimes \mu\left(h_{j}\right)\left(l_{1}, l_{2}\right)\right) \\
& \left.=\sum_{j=1}^{n} \xi_{i}\left(a_{\lambda}{ }^{\prime}\left(g_{j}\right)\right) \otimes \mu\left(h_{j}\right)\left(l_{1}, l_{2}\right)\right) \\
& \left.=\sum_{j=1}^{n} g_{j}\left(a_{\lambda}\left(\xi_{i}\right)\right) \otimes \mu\left(h_{i}\right)\left(l_{1}, l_{2}\right)\right) \\
& =\mu\left(\sum_{j=1}^{n} g_{j}\left(a_{\lambda}\left(\xi_{i}\right)\right) h_{j}\right)\left(l_{1}, l_{2}\right) \\
& =\mu \circ a_{\lambda}\left(\xi_{i}\right)\left(l_{1}, l_{2}\right)
\end{aligned}
$$

Now we show that the above map ϕ is unique.

Let $\psi: C_{1}=\left(\mathbb{K} \oplus \mathbb{H}^{\prime}\right) \longrightarrow A=\mathbb{K} \oplus \mathfrak{M}$ be an arbitrary \mathbb{K}-module homomorphism such that $\psi(1)=1$ and $(\varepsilon \circ \psi)$ is the canonical augmentation in C_{1}.

Suppose $\psi_{*} \eta_{1}$ is equivalent to the deformation λ of L with base A. From Proposition 3.4.7 it follows that $a_{\psi_{*} \eta_{1}}=a_{\lambda}$. So, $a_{\psi_{*} \eta_{1}, \xi_{i}}=a_{\lambda, \xi_{i}}$ for $1 \leq i \leq r$. We know

$$
\begin{align*}
{\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\psi_{*} \eta_{1}} } & =1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r} \psi\left(g_{i}\right) \otimes \mu\left(h_{i}\right)\left(l_{1}, l_{2}\right) \\
& =1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{n}\left\{\sum_{j=1}^{r} \xi_{j}\left(\psi\left(g_{i}\right)\right) m_{j}\right\} \otimes \mu\left(h_{i}\right)\left(l_{1}, l_{2}\right) \tag{3.4.9}\\
& =1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j=1}^{r} m_{j} \otimes\left\{\sum_{i=1}^{n} \xi_{j}\left(\psi\left(g_{j}\right)\right) \mu\left(h_{i}\right)\right\}\left(l_{1}, l_{2}\right) .
\end{align*}
$$

Thus it follows that

$$
\alpha_{\psi_{*} \eta_{1}}\left(\xi_{j}\right)=\sum_{i=1}^{n} \xi_{j}\left(\psi\left(g_{i}\right)\right) \mu\left(h_{i}\right)=\mu\left(\sum_{i=1}^{n} \xi_{j}\left(\psi\left(g_{i}\right)\right) h_{i}\right) .
$$

So,

$$
a_{\psi_{*} \eta_{1}}\left(\xi_{j}\right)=\left[\mu\left(\sum_{i=1}^{n} \xi_{j}\left(\psi\left(g_{i}\right)\right) h_{i}\right)\right]=\sum_{i=1}^{n} \xi_{j}\left(\psi\left(g_{i}\right)\right) h_{i},
$$

the cohomology class represented by $\alpha_{\psi_{*} \eta_{1}}\left(\xi_{j}\right)$.
On the other hand,

$$
a_{\lambda}\left(\xi_{j}\right)=\sum_{i=1}^{n} g_{i}\left(a_{\lambda}\left(\xi_{j}\right)\right) h_{i}=\sum_{i=1}^{n} \xi_{j}\left(a_{\lambda}^{\prime}\left(g_{i}\right)\right) h_{i} .
$$

Hence by comparing expression of $\alpha_{\psi_{*} \eta_{1}}\left(\xi_{j}\right)$ and $a_{\lambda}\left(\xi_{j}\right)$ we get $\psi\left(g_{i}\right)=a_{\lambda}^{\prime}\left(g_{i}\right)$ for $1 \leq i \leq n$.

Therefore $\psi=\phi=\left(i d \oplus a_{\lambda}^{\prime}\right): C_{1} \longrightarrow A$.

3.5 Infinitesimal deformations of Leibniz algebra homomorphisms

Next we focus our attention to infinitesimal deformations of a Leibniz algebra homomorphism $f: L \longrightarrow M$ with finite dimensional base. Let $\mathfrak{D}=\left(\lambda, \mu ; f_{\lambda \mu}\right)$ be any deformation of f with base $(A, \mathfrak{M}) \in \mathcal{C}$. Let $\left\{m_{i}\right\}_{1 \leq i \leq r}$ be a basis of \mathfrak{M} and $\left\{\xi_{i}\right\}_{1 \leq i \leq r}$ be the corresponding dual basis. As before, we regard any $\xi \in \mathfrak{M}^{\prime}$ as an element of A^{\prime} with $\xi(1)=0$. Define a cochain $f_{\lambda \mu, \xi} \in C L^{1}(L ; M)$ by

$$
\begin{equation*}
f_{\lambda \mu, \xi}(l)=(\xi \otimes i d) \circ f_{\lambda \mu}(1 \otimes l) \text { for } l \in L . \tag{3.5.1}
\end{equation*}
$$

In particular, for the basis elements $\xi_{j}, 1 \leq j \leq r$, if we set $f_{j}=f_{\lambda \mu, \xi_{j}}$, then by Remark 3.2.5 the deformation $f_{\lambda \mu}$ of f can be written as

$$
\begin{equation*}
f_{\lambda \mu}(1 \otimes l)=1 \otimes f(l)+\sum_{j=1}^{r} m_{j} \otimes f_{j}(l), l \in L \tag{3.5.2}
\end{equation*}
$$

Thus we have a linear map $\alpha_{\mathfrak{D}}: \mathfrak{M}^{\prime} \longrightarrow C L^{2}(f ; f)$ given by

$$
\alpha_{\mathfrak{D}}(\xi)=\left(\alpha_{\lambda, \xi}, \alpha_{\mu, \xi} ; f_{\lambda \mu, \xi}\right) \text { for } \xi \in \mathfrak{M}^{\prime}
$$

where $\alpha_{\lambda, \xi} \in C L^{2}(L ; L), \alpha_{\mu, \xi} \in C L^{2}(M ; M)$ are the cochains as defined in (3.4.1).
Proposition 3.5.1. For any infinitesimal deformation $\mathfrak{D}=\left(\lambda, \mu ; f_{\lambda \mu}\right)$ of f with base $(A, \mathfrak{M}) \in \mathcal{C}, \alpha_{\mathfrak{D}}$ takes values in cocycles.

Proof. By the definition of the coboundary in $C L^{*}(f ; f)$, we have to show that $\delta \alpha_{\lambda, \xi}=$ $0=\delta \alpha_{\mu, \xi}$ and $f \alpha_{\lambda, \xi}-\alpha_{\mu, \xi} f=\delta f_{\lambda \mu, \xi}$ for any $\xi \in \mathfrak{M}^{\prime}$. Since λ, μ are infinitesimal deformations of the Leibniz algebras L and M respectively, by Proposition 3.4.5 $\delta \alpha_{\lambda, \xi}=$ $0=\delta \alpha_{\mu \xi}$ for any $\xi \in \mathfrak{M}^{\prime}$.

To complete the proof it is enough to show that

$$
f \psi_{i}^{\lambda}-\psi_{i}^{\mu} f-\delta f_{i}=f \alpha_{\lambda, \xi_{i}}-\alpha_{\mu, \xi_{i}} f-\delta f_{\lambda \mu, \xi_{i}}=0, \quad 1 \leq i \leq r .
$$

We know that $f_{\lambda \mu}: A \otimes L \longrightarrow A \otimes M$ is a Leibniz algebra homomorphism, that is,

$$
f_{\lambda \mu}\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda}-\left[f_{\lambda \mu}\left(1 \otimes l_{1}\right), f_{\lambda \mu}\left(1 \otimes l_{2}\right)\right]_{\mu}=0
$$

for $l_{1}, l_{2} \in L$.

We have from (3.5.2)

$$
\begin{aligned}
& f_{\lambda \mu}\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda} \\
& =f_{\lambda \mu}\left(1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r} m_{i} \otimes \psi_{i}^{\lambda}\left(l_{1}, l_{2}\right)\right) \\
& =1 \otimes f\left(\left[l_{1}, l_{2}\right]\right)+\sum_{i=1}^{r} m_{i} \otimes f_{i}\left(\left[l_{1}, l_{2}\right]\right)+f_{\lambda \mu}\left(\sum_{i=1}^{r} m_{i} \otimes \psi_{i}^{\lambda}\left(l_{1}, l_{2}\right)\right) \\
& =1 \otimes f\left(\left[l_{1}, l_{2}\right]\right)+\sum_{i=1}^{r} m_{i} \otimes f_{i}\left(\left[l_{1}, l_{2}\right]\right)+\sum_{i=1}^{r} m_{i} \otimes f \psi_{i}^{\lambda}\left(l_{1}, l_{2}\right)\left(\text { since } \mathfrak{M}^{2}=0\right) .
\end{aligned}
$$

Also,

$$
\begin{aligned}
& {\left[f_{\lambda \mu}\left(1 \otimes l_{1}\right), f_{\lambda \mu}\left(1 \otimes l_{2}\right)\right]_{\mu}} \\
& =\left[1 \otimes f\left(l_{1}\right)+\sum_{j=1}^{r} m_{j} \otimes f_{j}\left(l_{1}\right), 1 \otimes f\left(l_{2}\right)+\sum_{j=1}^{r} m_{j} \otimes f_{j}\left(l_{2}\right)\right]_{\mu} \\
& =\left[1 \otimes f\left(l_{1}\right), 1 \otimes f\left(l_{2}\right)\right]_{\mu}+\sum_{j=1}^{r} m_{j}\left[1 \otimes f\left(l_{1}\right), 1 \otimes f_{j}\left(l_{2}\right)\right]_{\mu} \\
& +\sum_{j=1}^{r} m_{j}\left[1 \otimes f_{j}\left(l_{1}\right), 1 \otimes f\left(l_{2}\right)\right]_{\mu}+\sum_{i, j=1}^{r} m_{j} m_{i}\left[1 \otimes f_{i}\left(l_{1}\right), 1 \otimes f_{j}\left(l_{2}\right)\right]_{\mu} \\
& =1 \otimes\left[f\left(l_{1}\right), f\left(l_{2}\right)\right]+\sum_{j=1}^{r} m_{j} \otimes \psi_{j}^{\mu}\left(f\left(l_{1}\right), f\left(l_{2}\right)\right)+\sum_{j=1}^{r} m_{i} \otimes\left[f\left(l_{1}\right), f_{j}\left(l_{2}\right)\right] \\
& +\sum_{j=1}^{r} m_{j} \otimes\left[f_{j}\left(l_{1}\right), f\left(l_{2}\right)\right] \quad\left(\text { by using the fact that } \mathfrak{M}^{2}=0\right) .
\end{aligned}
$$

Thus it follows that

$$
\begin{aligned}
& \left(\xi_{i} \otimes i d\right)\left(f_{\lambda \mu}\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda}-\left[f_{\lambda \mu}\left(1 \otimes l_{1}\right), f_{\lambda \mu}\left(1 \otimes l_{2}\right)\right]_{\mu}\right) \\
& =\left(f \alpha_{\lambda, \xi_{i}}-\alpha_{\mu, \xi_{i}} f-\delta f_{\lambda \mu, \xi_{i}}\right)\left(l_{1}, l_{2}\right)
\end{aligned}
$$

Since $f_{\lambda \mu}$ preserves the brackets we get $\left(f \alpha_{\lambda, \xi_{i}}-\alpha_{\mu, \xi_{i}} f-\delta f_{\lambda \mu, \xi_{i}}\right)=0$ for $1 \leq i \leq r$.
Proposition 3.5.2. Let $\mathfrak{D}=\left(\lambda, \mu ; f_{\lambda \mu}\right)$ and $\mathfrak{D}^{\prime}=\left(\lambda^{\prime}, \mu^{\prime} ; f_{\lambda^{\prime} \mu^{\prime}}^{\prime}\right)$ be two infinitesimal deformations of a Leibniz algebra homomorphism $f: L \longrightarrow M$ with base $(A, \mathfrak{M}) \in \mathcal{C}$. Then $\alpha_{\mathfrak{D}}(\xi)$ and $\alpha_{\mathfrak{D}^{\prime}}(\xi)$ represent the same cohomology class for $\xi \in \mathfrak{M}^{\prime}$, if and only if \mathfrak{D} and \mathfrak{D}^{\prime} are equivalent deformations.

Proof. Suppose $\mathfrak{D}=\left(\lambda, \mu ; f_{\lambda \mu}\right)$ and $\mathfrak{D}^{\prime}=\left(\lambda^{\prime}, \mu^{\prime} ; f_{\lambda^{\prime} \mu^{\prime}}^{\prime}\right)$ are two equivalent infinitesimal deformations of f with base A. Let $\left(\alpha_{\lambda, \xi}, \alpha_{\mu, \xi} ; f_{\lambda \mu, \xi}\right)$ and $\left(\alpha_{\lambda^{\prime}, \xi}, \alpha_{\mu^{\prime}, \xi} ; f_{\lambda^{\prime} \mu^{\prime}, \xi}^{\prime}\right)$ be the associated 2-cocycles in $C L^{2}(f ; f)$ determined by \mathfrak{D} and \mathfrak{D}^{\prime} respectively.

Let $\Phi_{\lambda \lambda^{\prime}}:(A \otimes L, \lambda) \longrightarrow\left(A \otimes L, \lambda^{\prime}\right)$ and $\Psi_{\mu \mu^{\prime}}:(A \otimes M, \mu) \longrightarrow\left(A \otimes M, \mu^{\prime}\right)$ be as in Definition 3.2.7 so that

$$
\begin{equation*}
\Psi_{\mu \mu^{\prime}} \circ f_{\lambda \mu}=f_{\lambda^{\prime} \mu^{\prime}}^{\prime} \circ \Phi_{\lambda \lambda^{\prime}} \tag{3.5.3}
\end{equation*}
$$

Since λ and μ are equivalent to λ^{\prime} and μ^{\prime} respectively, it follows from the Proposition 3.4.7 that $\alpha_{\lambda, \xi}$ and $\alpha_{\mu, \xi}$ determine the same cohomology class as $\alpha_{\lambda^{\prime}, \xi}$ and $\alpha_{\mu^{\prime}, \xi}$ respectively. In fact, as shown in the proof of Proposition 3.4.7 (cf. (3.4.7)) the A-Leibniz algebra isomorphisms $\Phi_{\lambda \lambda^{\prime}}$ and $\Psi_{\mu \mu^{\prime}}$ are determined by some linear maps $b_{\Phi}: \mathfrak{M}^{\prime} \longrightarrow \operatorname{Hom}(L ; L)$ and $b_{\Psi}: \mathfrak{M}^{\prime} \longrightarrow \operatorname{Hom}(M ; M)$ respectively so that for $\xi \in \mathfrak{M}^{\prime}$ and $l \in L, x \in M$ we have,

$$
\begin{aligned}
& \Phi_{\lambda \lambda^{\prime}}(1 \otimes l)=1 \otimes l+\sum_{i=1}^{r} m_{i} \otimes b_{\Phi}\left(\xi_{i}\right)(l) \\
& \Psi_{\mu \mu^{\prime}}(1 \otimes x)=1 \otimes x+\sum_{i=1}^{r} m_{i} \otimes b_{\Psi}\left(\xi_{i}\right)(x)
\end{aligned}
$$

where $\alpha_{\lambda, \xi}-\alpha_{\lambda^{\prime}, \xi}=\delta b_{\Phi}(\xi)$ and $\alpha_{\mu, \xi}-\alpha_{\mu^{\prime}, \xi}=\delta b_{\Psi}(\xi)$. Now if we denote $f_{j}=f_{\lambda \mu, \xi_{j}}$ and $f_{j}^{\prime}=f_{\lambda^{\prime} \mu^{\prime}, \xi_{j}}$ we get,

$$
\begin{aligned}
& \Psi_{\mu \mu^{\prime}} \circ f_{\lambda \mu}(1 \otimes l) \\
= & \Psi_{\mu \mu^{\prime}}\left(1 \otimes f(l)+\sum_{j=1}^{r} m_{j} \otimes f_{j}(l)\right) \\
= & 1 \otimes f(l)+\sum_{i=1}^{r} m_{i} \otimes b_{\Psi}\left(\xi_{i}\right)(f(l))+\sum_{j=1}^{r} m_{j} \otimes f_{j}(l)+\sum_{1 \leq i, j \leq r} m_{j} m_{i} \otimes b_{\Psi}\left(\xi_{i}\right)\left(f_{j}(l)\right) \\
= & 1 \otimes f(l)+\sum_{i=1}^{r} m_{i} \otimes b_{\Psi}\left(\xi_{i}\right)(f(l))+\sum_{i=1}^{r} m_{i} \otimes f_{i}(l) \quad\left(\text { since } \mathfrak{M}^{2}=0\right),
\end{aligned}
$$

$$
\text { and } f_{\lambda^{\prime} \mu^{\prime}}^{\prime} \circ \Phi_{\lambda \lambda^{\prime}}(1 \otimes l)
$$

$$
=f_{\lambda^{\prime} \mu^{\prime}}^{\prime}\left(1 \otimes l+\sum_{i=1}^{r} m_{i} \otimes b_{\Phi}\left(\xi_{i}\right)(l)\right)
$$

$$
=1 \otimes f(l)+\sum_{j=1}^{r} m_{j} \otimes f_{j}^{\prime}(l)+\sum_{i=1}^{r} m_{i} \otimes f b_{\Phi}\left(\xi_{i}\right)(l)
$$

$$
+\sum_{1 \leq i, j \leq r} m_{i} m_{j} \otimes f_{j}^{\prime}\left(b_{\Phi}\left(\xi_{i}\right)(l)\right)
$$

$$
=1 \otimes f(l)+\sum_{i=1}^{r} m_{i} \otimes f_{i}^{\prime}(l)+\sum_{i=1}^{r} m_{i} \otimes f b_{\Phi}\left(\xi_{i}\right)(l) \quad\left(\text { since } \mathfrak{M}^{2}=0\right)
$$

It follows from the above expressions that

$$
\begin{gathered}
\left(\xi_{i} \otimes i d\right) \circ \Psi_{\mu \mu^{\prime}} \circ f_{\lambda \mu}(1 \otimes l)=b_{\Psi}\left(\xi_{i}\right)(f(l))+f_{i}(l) \\
\text { and }\left(\xi_{i} \otimes i d\right) \circ f_{\lambda^{\prime} \mu^{\prime}}^{\prime} \circ \Phi_{\lambda \lambda^{\prime}}(1 \otimes l)=f b_{\Phi}\left(\xi_{i}\right)(l)+f_{i}^{\prime}(l) .
\end{gathered}
$$

Hence by (3.5.3) we get

$$
\begin{aligned}
& \left(\xi_{i} \otimes i d\right)\left(\Psi_{\mu \mu^{\prime}} \circ f_{\lambda \mu}-f_{\lambda^{\prime} \mu^{\prime}}^{\prime} \circ \Phi_{\lambda \lambda^{\prime}}\right)(1 \otimes l)=0 \\
& \text { or, } b_{\Psi}\left(\xi_{i}\right) f-f b_{\phi}\left(\xi_{i}\right)+\left(f_{i}-f_{i}^{\prime}\right)=0 \text { for } 1 \leq i \leq r .
\end{aligned}
$$

Thus it follows that $\left(\alpha_{\lambda, \xi}, \alpha_{\mu, \xi} ; f_{\xi}\right)-\left(\alpha_{\lambda^{\prime}, \xi}, \alpha_{\mu^{\prime}, \xi} ; f_{\xi}^{\prime}\right)=d\left(b_{\Phi}(\xi), b_{\Psi}(\xi) ; 0\right)$ for $\xi \in \mathfrak{M}^{\prime}$. Conversely, suppose $\mathfrak{D}=\left(\lambda, \mu ; f_{\lambda \mu}\right)$ and $\mathfrak{D}^{\prime}=\left(\lambda^{\prime}, \mu^{\prime} ; f_{\lambda^{\prime} \mu^{\prime}}\right)$ are two infinitesimal deformations of f with base A such that for $\xi \in \mathfrak{M}^{\prime}, \alpha_{\mathfrak{D}}(\xi)$ and $\alpha_{\mathfrak{D}^{\prime}}(\xi)$ represent the same cohomology class.

Let $\left(\alpha_{\lambda, \xi}, \alpha_{\mu, \xi} ; f_{\xi}\right)-\left(\alpha_{\lambda^{\prime}, \xi}, \alpha_{\mu^{\prime}, \xi} ; f_{\xi}^{\prime}\right)=d(u, v ; w)$ for some 1-cochain $(u, v ; w) \in$ $C L^{1}(f ; f)$.

In particular we can take $\left(\alpha_{\lambda, \xi}, \alpha_{\mu, \xi} ; f_{\xi}\right)-\left(\alpha_{\lambda^{\prime}, \xi}, \alpha_{\mu^{\prime}, \xi} ; f_{\xi}^{\prime}\right)=d(u, v ; 0)$ as $d(u, v ; w)=$ $d(u, v+\delta w ; 0)$. For $\xi=\xi_{i}$ let $\left(u_{i}, v_{i} ; 0\right) \in C L^{1}(f ; f)$ be such that

$$
\begin{equation*}
\left(\alpha_{\lambda, \xi_{i}}-\alpha_{\lambda^{\prime}, \xi_{i}}, \alpha_{\mu, \xi_{i}}-\alpha_{\mu^{\prime}, \xi_{i}} ; f_{i}-f_{i}^{\prime}\right)=d\left(u_{i}, v_{i} ; 0\right)=\left(\delta u_{i}, \delta v_{i} ; f u_{i}-v_{i} f\right) \tag{3.5.4}
\end{equation*}
$$

for $1 \leq i \leq r$.
Define A-linear maps

$$
\begin{aligned}
& \qquad \Phi_{\lambda \lambda^{\prime}}:(A \otimes L, \lambda) \longrightarrow\left(A \otimes L, \lambda^{\prime}\right) \\
& \qquad \text { by } \Phi_{\lambda \lambda^{\prime}}(1 \otimes l)=1 \otimes l+\sum_{i=1}^{r} m_{i} \otimes u_{i}(l), \\
& \text { and } \Psi_{\mu \mu^{\prime}}:(A \otimes M, \mu) \longrightarrow\left(A \otimes M, \mu^{\prime}\right) \\
& \quad \text { by } \Psi_{\mu \mu^{\prime}}(1 \otimes x)=1 \otimes x+\sum_{i=1}^{r} m_{i} \otimes v_{i}(x), \text { for } l \in L \text { and } x \in M .
\end{aligned}
$$

Then Proposition 3.4.7 and (3.5.4) together imply that $\Phi_{\lambda \lambda^{\prime}}$ and $\Psi_{\mu \mu^{\prime}}$ are equivalences $\lambda \cong \lambda^{\prime}$ and $\mu \cong \mu^{\prime}$ respectively. To show that $\mathfrak{D}=\left(\lambda, \mu ; f_{\lambda \mu}\right)$ and $\mathfrak{D}^{\prime}=\left(\lambda^{\prime}, \mu^{\prime} ; f_{\lambda^{\prime} \mu^{\prime}}\right)$ are equivalent deformations of f, it remains to check the relation

$$
\Psi_{\mu \mu^{\prime}} \circ f_{\lambda \mu}=f_{\lambda^{\prime} \mu^{\prime}} \circ \Phi_{\lambda \lambda^{\prime}} .
$$

Suppose $f_{\lambda \mu}$ and $f_{\lambda^{\prime} \mu^{\prime}}$ are given by

$$
\begin{aligned}
f_{\lambda \mu}(1 \otimes l) & =1 \otimes f(l)+\sum_{i=1}^{r} m_{i} \otimes f_{i}(l) \\
\text { and } f_{\lambda^{\prime} \mu^{\prime}}(1 \otimes l) & =1 \otimes f(l)+\sum_{i=1}^{r} m_{i} \otimes f_{i}^{\prime}(l) \text { for } l \in L
\end{aligned}
$$

For $l \in L$ we get

$$
\begin{aligned}
\Psi_{\mu \mu^{\prime}} \circ f_{\lambda \mu} & =\Psi_{\mu \mu^{\prime}}\left\{1 \otimes f(l)+\sum_{i=1}^{r} m_{i} \otimes f_{i}(l)\right\} \\
& =\Psi_{\mu \mu^{\prime}}(1 \otimes f(l))+\sum_{i=1}^{r} m_{i} \otimes \Psi_{\mu \mu^{\prime}}\left(1 \otimes f_{i}(l)\right) \\
& =1 \otimes f(l)+\sum_{i=1}^{r} m_{i} \otimes v_{i}(f(l))+\sum_{i=1}^{r} m_{i}\left\{1 \otimes f_{i}(l)+\sum_{j=1}^{r} m_{j} \otimes v_{j}\left(f_{i}(l)\right)\right\} \\
& =1 \otimes f(l)+\sum_{i=1}^{r} m_{i} \otimes v_{i} f(l)+\sum_{i=1}^{r} m_{i} \otimes f_{i}(l) \quad\left(\text { by using } \mathfrak{M}^{2}=0\right)
\end{aligned}
$$

$$
\text { and } f_{\lambda^{\prime} \mu^{\prime}} \circ \Phi_{\lambda \lambda^{\prime}}(1 \otimes l)
$$

$$
=f_{\lambda^{\prime} \mu^{\prime}}\left\{1 \otimes l+\sum_{i=1}^{r} m_{i} \otimes u_{i}(l)\right\}
$$

$$
=f_{\lambda^{\prime} \mu^{\prime}}(1 \otimes l) \sum_{i=1}^{r} m_{i} \otimes f_{\lambda^{\prime} \mu^{\prime}}\left(1 \otimes u_{i}(l)\right)
$$

$$
=1 \otimes f(l)+\sum_{i=1}^{r} m_{i} \otimes f_{i}^{\prime}(l)+\sum_{i=1}^{r} m_{i}\left\{1 \otimes f(l)+\sum_{j=1}^{r} m_{i} \otimes f_{j}^{\prime}(l)\right\}
$$

$$
=1 \otimes f(l)+\sum_{i=1}^{r} m_{i} \otimes f_{i}^{\prime}(l)+\sum_{i=1}^{r} m_{i} \otimes f u_{i}(l) \quad\left(\text { by using } \mathfrak{M}^{2}=0\right) .
$$

Thus we have

$$
\begin{aligned}
\left(\Psi_{\mu \mu^{\prime}} \circ f_{\lambda \mu}\right)(1 \otimes l)-\left(f_{\lambda^{\prime} \mu^{\prime}} \circ \Phi_{\lambda \lambda^{\prime}}\right)(1 \otimes l) & =\sum_{i=1}^{r} m_{i} \otimes\left(v_{i} f(l)+f_{i}(l)-f_{i}^{\prime}(l)-f u_{i}(l)\right) \\
& =\sum_{i=1}^{r} m_{i} \otimes\left\{\left(f_{i}-f_{i}^{\prime}\right)(l)-\left(f u_{i}-v_{i} f\right)(l)\right\}
\end{aligned}
$$

From (3.5.4) we get $f_{i}-f_{i}^{\prime}=f u_{i}-v_{i} f$.
So it follows that

$$
\Psi_{\mu \mu^{\prime}} \circ f_{\lambda \mu}=f_{\lambda^{\prime} \mu^{\prime}}^{\prime} \circ \Phi_{\lambda \lambda^{\prime}}
$$

Suppose $(A, \mathfrak{M}) \in \mathcal{C}$. Let $\mathfrak{D}=\left(\lambda, \mu ; f_{\lambda \mu}\right)$ be a given deformation of a Leibniz algebra homomorphism $f: L \longrightarrow M$ with base A. As observed before, the algebra A / \mathfrak{M}^{2} is local with maximal ideal $\mathfrak{M} / \mathfrak{M}^{2}$ and $p_{2 *} \mathfrak{D}=\left(p_{2 *} \lambda, p_{2 *} \mu ; f_{p_{2} \lambda} p_{2_{*} \mu}\right)$ with base A / \mathfrak{M}^{2} is an infinitesimal deformation of f where $p_{2}: A \longrightarrow A / \mathfrak{M}^{2}$ is the quotient map. As a consequence, $\alpha_{p_{2 *} \mathfrak{D}}$ takes values in cocycles and hence we have a map

$$
a_{p_{2_{*} \mathfrak{D}}}:\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime} \rightarrow H L^{2}(f ; f) \text { defined by } a_{p_{2_{*}} \mathfrak{D}}(\xi)=\left[\alpha_{p_{2_{*}} \mathfrak{D}}\right]
$$

where $\left[\alpha_{p_{2 *} \mathfrak{D}}\right]$ denotes the cohomology class represented by $\alpha_{p_{2_{*}} \mathfrak{D}}$.
Definition 3.5.3. The linear maps $\alpha_{p_{2 *} \mathfrak{D}}$ and $a_{p_{2_{*}} \mathfrak{D}}$ are respectively called the infinitesimal and the differential of \mathfrak{D}. The deformation $p_{2_{*}} \mathfrak{D}$ may be called the infinitesimal part of \mathfrak{D}.

Corollary 3.5.4. Two infinitesimal deformations \mathfrak{D} and \mathfrak{D}^{\prime} with base $(A, \mathfrak{M}) \in \mathcal{C}$ are equivalent if and only if they have the same differential.

Corollary 3.5.5. Suppose \mathfrak{D} and \mathfrak{D}^{\prime} are two equivalent deformations of f with base A then they have the same differential.

Chapter 4

Extension of deformations

4.1 Introduction

The aim of this chapter is to address the question of extending a given deformation $\mathfrak{D}=\left(\lambda, \mu ; f_{\lambda \mu}\right)$ of a Leibniz algebra homomorphism $f: L \longrightarrow M$ with a given base to a larger base. This extension problem can be described as follows. Suppose \mathfrak{D} is a given deformation of a Leibniz algebra homomorphism $f: L \longrightarrow M$ with local base A. Let

$$
0 \longrightarrow M_{0} \xrightarrow{i} B \xrightarrow{p} A \longrightarrow 0
$$

be a given finite dimensional extension of A by M_{0}. The problem is to obtain condition for existence of a deformation $\tilde{\mathfrak{D}}$ of f with base B which extends the given deformation, that is, $p_{*} \tilde{\mathscr{D}}=\mathfrak{D}$. We shall measure the possible obstructions that one might encounter in the above extension process as certain 3-dimensional cohomology classes, vanishing of which is a necessary and sufficient condition for an extension to exist. The set of equivalence classes of possible extensions of a given deformation λ of L with base A, admits certain natural actions and we shall investigate their relationship.

We first take up the case of extending deformations of Leibniz algebras and then consider the relative problem of extending deformations of Leibniz algebra homomorphisms. In the last section, we study formal deformations and obtain a necessary condition for non-triviality of a formal deformation. The results of this chapter will also enable us to obtain a sufficient criterion for existence of a formal deformation with a given differential and infinitesimal part. We end with the definition of a versal deformation.

4.2 Extension of a deformation of Leibniz algebras

Let λ be a deformation of a Leibniz algebra L with a finite dimensional local algebra base $(A, \mathfrak{M}) \in \mathcal{C}$. The primary aim of this section is to derive a necessary and sufficient
condition for the existence of a deformation of L with an algebra base B extending λ. The extension process naturally leads to an obstruction cochain which turns out to be a cocycle. We use this cocycle to formulate the desired criterion.

We recall (Proposition 2.3.3) that the set of equivalence classes of 1-dimensional extensions of A corresponds bijectively to $H_{\text {Harr }}^{2}(A ; \mathbb{K})$. Consider $[\psi] \in H_{\text {Harr }}^{2}(A ; \mathbb{K})$ and suppose

$$
\begin{equation*}
0 \longrightarrow \mathbb{K} \xrightarrow{i} B \xrightarrow{p} A \longrightarrow 0 \tag{4.2.1}
\end{equation*}
$$

is a representative of the class of 1 - dimensional extensions of A, which corresponds to $[\psi]$. Set the following \mathbb{K}-linear maps.

$$
\begin{aligned}
& \quad I=(i \otimes i d): L \cong \mathbb{K} \otimes L \longrightarrow B \otimes L, P=(p \otimes i d): B \otimes L \longrightarrow A \otimes L \\
& \text { and } E=(\hat{\varepsilon} \otimes i d): B \otimes L \longrightarrow \mathbb{K} \otimes L \cong L
\end{aligned}
$$

where $\hat{\varepsilon}=\varepsilon \circ p$, with ε is the augmentation of A. Fix a section $q: A \longrightarrow B$ of p in the above extension, then

$$
\begin{equation*}
b \longmapsto\left(p(b), i^{-1}(b-q \circ p(b))\right) \tag{4.2.2}
\end{equation*}
$$

is a \mathbb{K}-module isomorphism $B \longrightarrow(A \oplus \mathbb{K})$. Following the notations in Chapter 2, let $(a, k)_{q} \in B$ be the inverse of $(a, k) \in(A \oplus \mathbb{K})$ under the above isomorphism. Then the algebra structure of B is determined by ψ and is given by

$$
\begin{equation*}
\left(a_{1}, k_{1}\right)_{q}\left(a_{2}, k_{2}\right)_{q}=\left(a_{1} a_{2}, \varepsilon\left(a_{1}\right) k_{2}+\varepsilon\left(a_{2}\right) k_{1}+\psi\left(a_{1}, a_{2}\right)\right)_{q} . \tag{4.2.3}
\end{equation*}
$$

Suppose $\operatorname{dim}(A)=r+1$ and $\left\{m_{j}\right\}_{1 \leq j \leq r}$ is a basis of the maximal ideal \mathfrak{M}_{A} of A. Let $\left\{\xi_{j}\right\}_{1 \leq j \leq r}$ denote the dual basis of $\mathfrak{M}_{A}^{\prime}$. Then the Leibniz bracket $[-,-]_{\lambda}$ on $A \otimes L$ can be written as (cf. (3.4.2))

$$
\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda}=1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j=1}^{r} m_{j} \otimes \psi_{j}\left(l_{1}, l_{2}\right) \text { for } l_{1}, l_{2} \in L .
$$

Here $\psi_{j}=\alpha_{\lambda, \xi_{j}} \in C L^{2}(L ; L)$ is given by $\alpha_{\lambda, \xi_{j}}\left(l_{1}, l_{2}\right)=\left(\xi_{j} \otimes i d\right)\left(\left[1 \otimes l_{1}, 1 \otimes l_{2} l\right]_{\lambda}\right)$ for $l_{1}, l_{2} \in L$ and $1 \leq i \leq r$. By Proposition [2.3.5] B is a local algebra with the maximal ideal $\mathfrak{M}_{B}=p^{-1}\left(\mathfrak{M}_{A}\right)$ and $\hat{\varepsilon}$ is the augmentation of B. If $n_{j}=\left(m_{j}, 0\right)_{q}$, for $1 \leq j \leq r$ and $n_{r+1}=(0,1)_{q}$ then $\left\{n_{j}\right\}_{1 \leq j \leq r+1}$ is a basis of \mathfrak{M}_{B}.

Let $\psi_{r+1} \in C L^{2}(L ; L)=\operatorname{Hom}\left(L^{\otimes 2} ; L\right)$ be an arbitrary element. We define a B bilinear operation $\{-,-\}:(B \otimes L)^{\otimes 2} \longrightarrow B \otimes L$ by

$$
\left\{b_{1} \otimes l_{1}, b_{2} \otimes l_{2}\right\}=b_{1} b_{2} \otimes\left[l_{1}, l_{2}\right]+\sum_{j=1}^{r+1} b_{1} b_{2} n_{j} \otimes \psi_{j}\left(l_{1}, l_{2}\right) \text { for } b_{1} \otimes l_{1}, b_{2} \otimes l_{2} \in B \otimes L
$$

Lemma 4.2.1. The B-bilinear map $\{-,-\}$ as defined above satisfies the following conditions.

> (i) $P\left\{l_{1}, l_{2}\right\}=\left[P\left(l_{1}\right), P\left(l_{2}\right)\right]_{\lambda}$ for $l_{1}, l_{2} \in B \otimes L$
> (ii) $\left\{I(l), l_{1}\right\}=I\left[l, E\left(l_{1}\right)\right]$ for $l \in L$ and $l_{1} \in B \otimes L$

Proof. (i) By linearity it is enough to prove the statement for elements $\bar{l}_{1}=b_{1} \otimes l_{1}$ and $\overline{l_{2}}=b_{2} \otimes l_{2}$ in $B \otimes L$. By definition of $\{-,-\}$,

$$
\begin{align*}
& P\left\{\overline{l_{1}}, \overline{l_{2}}\right\} \\
= & P\left(b_{1} b_{2} \otimes\left[l_{1}, l_{2}\right]+\sum_{j=1}^{r+1} b_{1} b_{2} n_{j} \otimes \psi_{j}\left(l_{1}, l_{2}\right)\right) \\
= & p\left(b_{1} b_{2}\right) \otimes\left[l_{1}, l_{2}\right]+\sum_{j=1}^{r+1} p\left(b_{1} b_{2} n_{j}\right) \otimes \psi_{j}\left(l_{1}, l_{2}\right) \\
= & p\left(b_{1}\right) p\left(b_{2}\right)\left(1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j=1}^{r+1} p\left(n_{j}\right) \otimes \psi_{j}\left(l_{1}, l_{2}\right)\right) \tag{4.2.5}\\
= & p\left(b_{1}\right) p\left(b_{2}\right)\left(1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j=1}^{r} m_{j} \otimes \psi_{j}\left(l_{1}, l_{2}\right)\right) \\
& \left(\operatorname{since} p\left(n_{j}\right)=m_{j} \text { for } 1 \leq j \leq r \text { and } p\left(n_{r+1}\right)=0\right) \\
= & p\left(b_{1}\right) p\left(b_{2}\right)\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda} \\
= & {\left[p\left(b_{1}\right) \otimes l_{1}, p\left(b_{2}\right) \otimes l_{2}\right]_{\lambda}\left(\text { since }[-,-]_{\lambda} \text { is a } A \text {-bilinear operation on } A \otimes L\right) } \\
= & {\left[P\left(b_{1} \otimes l_{1}\right), P\left(b_{2} \otimes l_{2}\right)\right]_{\lambda} } \\
= & {\left[P\left(\overline{l_{1}}\right), P\left(\overline{l_{2}}\right)\right]_{\lambda} . }
\end{align*}
$$

Therefore $P\left\{\bar{l}_{1}, \bar{l}_{2}\right\}=\left[P\left(\bar{l}_{1}\right), P\left(\bar{l}_{2}\right)\right]_{\lambda}$ for $\overline{l_{1}}, \overline{l_{2}} \in B \otimes L$.
(ii) Let $l \in L$ and $\overline{l_{1}}=b_{1} \otimes l_{1} \in B \otimes L$ with $b_{1}=\left(a_{1}, k_{1}\right)_{q}$. Then,

$$
\begin{align*}
& \left\{I(l), \overline{l_{1}}\right\} \\
= & \left\{(i \otimes i d)(1 \otimes l), b_{1} \otimes l_{1}\right\} \\
= & \left\{i(1) \otimes l, b_{1} \otimes l_{1}\right\} \tag{4.2.6}\\
= & \left\{n_{r+1} \otimes l, b_{1} \otimes l_{1}\right\} \\
= & n_{r+1} b_{1} \otimes\left[l, l_{1}\right]+\sum_{j=1}^{r+1} n_{r+1} b_{1} n_{j} \otimes \psi_{j}\left(l, l_{1}\right)
\end{align*}
$$

$$
\begin{aligned}
& =\left((0,1)_{q}\left(a_{1}, k_{1}\right)_{q}\right) \otimes\left[l, l_{1}\right]+\sum_{j=1}^{r}(0,1)_{q}\left(a_{1}, k_{1}\right)_{q}\left(m_{j}, 0\right)_{q} \otimes \psi_{j}\left(l, l_{1}\right) \\
& +\left(\left(a_{1}, k_{1}\right)_{q}(0,1)_{q}^{2}\right) \otimes \psi_{r+1}\left(l, l_{1}\right) \\
& =\left(0, \varepsilon\left(a_{1}\right)\right)_{q} \otimes\left[l, l_{1}\right] \quad(\text { by (4.2.3) }) \\
& \left(\text { since }(0,1)_{q}\left(m_{j}, 0\right)_{q}=(0,0)_{q},(0,1)_{q}^{2}=(0,0)_{q} \text { and }(0,1)_{q}\left(a_{1}, k_{1}\right)_{q}=\left(0, \varepsilon\left(a_{1}\right)\right)_{q}\right) \\
& =i\left(\varepsilon\left(a_{1}\right)\right) \otimes\left[l, l_{1}\right] \\
& =i(1) \otimes \varepsilon\left(a_{1}\right)\left[l, l_{1}\right] \\
& =i(1) \otimes\left[l, \hat{\varepsilon}\left(b_{1}\right) l_{1}\right] \\
& =I\left(1 \otimes\left[l, E\left(b_{1} \otimes l_{1}\right)\right]\right) \\
& =I\left[l, E\left(\bar{l}_{1}\right)\right] \text {. }
\end{aligned}
$$

Since E is linear the statement in (ii) holds.
Thus the Leibniz algebra structure λ on $A \otimes L$ can be lifted to a B-bilinear operation $\{-,-\}:(B \otimes L)^{\otimes 2} \longrightarrow B \otimes L$ satisfying (4.2.4). In addition to this if $\{-,-\}$ satisfies the Leibniz relation on $B \otimes L$ then it is indeed a deformation of L with base B extending the deformation λ with base A.

In our next step we show that a bilinear operation as obtained above gives rise to a 3 -cochain, which we call an obstruction cochain.

Suppose $\{-,-\}$ is a B-bilinear operation on $B \otimes L$ satisfying the conditions in (4.2.4).

Let us define a linear map $\phi:(B \otimes L)^{\otimes 3} \longrightarrow B \otimes L$ by

$$
\begin{equation*}
\phi\left(l_{1}, l_{2}, l_{3}\right)=\left\{l_{1},\left\{l_{2}, l_{3}\right\}\right\}-\left\{\left\{l_{1}, l_{2}\right\}, l_{3}\right\}+\left\{\left\{l_{1}, l_{3}\right\}, l_{2}\right\} \text { for } l_{1}, l_{2}, l_{3} \in B \otimes L . \tag{4.4.7}
\end{equation*}
$$

It is clear that $\{-,-\}$ satisfies the Leibniz relation if and only if $\phi=0$. Now from property (i) in (4.2.4) and the definition of ϕ it follows that

$$
\begin{align*}
& P \circ \phi\left(l_{1}, l_{2}, l_{3}\right) \\
= & P\left(\left\{l_{1},\left\{l_{2}, l_{3}\right\}\right\}-\left\{\left\{l_{1}, l_{2}\right\}, l_{3}\right\}+\left\{\left\{l_{1}, l_{3}\right\}, l_{2}\right\}\right) \\
= & {\left.\left[P\left(l_{1}\right),\left[P\left(l_{2}\right), P\left(l_{3}\right)\right]_{\lambda}\right]_{\lambda}-\left[\left[P\left(l_{1}\right), P\left(l_{2}\right)\right]_{\lambda}, P\left(l_{3}\right)\right]_{\lambda}+\left[P\left(l_{1}\right), P\left(l_{3}\right)\right]_{\lambda}, P\left(l_{2}\right)\right]_{\lambda} } \\
= & 0 \text { (since } P\left(l_{1}\right), P\left(l_{2}\right), P\left(l_{3}\right) \in A \otimes L \text { and }[-,-]_{\lambda} \text { satisfy the Leibniz relation). } \tag{4.2.8}
\end{align*}
$$

Therefore ϕ takes values in $\operatorname{ker}(P)$.
Observe that $\phi\left(l_{1}, l_{2}, l_{3}\right)=0$, whenever one of the arguments belongs to $\operatorname{ker}(E)$. To see this, suppose $l_{1}=(b \otimes l) \in \operatorname{ker}(E) \subseteq B \otimes L$. Since $\operatorname{ker}(E)=\operatorname{ker}(\hat{\varepsilon}) \otimes L=$ $p^{-1}(k e r(\varepsilon)) \otimes L=\mathfrak{M}_{B} \otimes L$, we can write $l_{1}=\sum_{j=1}^{r+1}\left(n_{j} \otimes l_{j}^{\prime}\right)$ with $l_{j}^{\prime} \in L, 1 \leq j \leq r+1$.

Then for $l_{2}, l_{3} \in B \otimes L$, we get

$$
\phi\left(l_{1}, l_{2}, l_{3}\right)=\phi\left(\sum_{j=1}^{r+1}\left(n_{j} \otimes l_{j}^{\prime}\right), l_{2}, l_{3}\right)=\sum_{j=1}^{r+1} n_{j} \phi\left(1 \otimes l_{j}^{\prime}, l_{2}, l_{3}\right)=0
$$

This is because $\phi\left(1 \otimes l_{j}^{\prime}, l_{2}, l_{3}\right) \in \operatorname{ker}(P)=\operatorname{im}(I)=i m(i) \otimes L=i(\mathbb{K}) \otimes L$ and for any element $k \in \mathbb{K}$ and $l \in L$,

$$
\begin{aligned}
& n_{j} i(k) \otimes l=i\left(p\left(n_{j}\right) k\right) \otimes l=i\left(m_{j} k\right) \otimes l=i\left(\varepsilon\left(m_{j}\right) k\right) \otimes l=0 \text { for } 1 \leq j \leq r \\
& \text { and } n_{r+1} i(k) \otimes l=k n_{r+1}^{2} \otimes l=0 \quad\left(m_{j} \in \mathfrak{M} \subset A \text { and } m_{j} k=\varepsilon\left(m_{j}\right) k\right) .
\end{aligned}
$$

The other two cases are similar. Thus ϕ defines a linear map

$$
\tilde{\phi}:\left(\frac{B \otimes L}{\operatorname{ker}(E)}\right)^{\otimes 3} \longrightarrow \quad \operatorname{ker}(P)
$$

$\tilde{\phi}\left(b_{1} \otimes l_{1}+\operatorname{ker}(E), b_{2} \otimes l_{2}+\operatorname{ker}(E), b_{3} \otimes l_{3}+\operatorname{ker}(E)\right)=\phi\left(b_{1} \otimes l_{1}, b_{2} \otimes l_{2}, b_{3} \otimes l_{3}\right)$. Moreover, the surjective map $E: B \otimes L \longrightarrow \mathbb{K} \otimes L \cong L$, defined by $b \otimes l \longmapsto \hat{\varepsilon}(b) \otimes l$, induces an isomorphism $\frac{B \otimes L}{\operatorname{ker}(E)} \stackrel{\alpha}{\cong} L$, where

$$
\alpha: L \longrightarrow \frac{B \otimes L}{\operatorname{ker}(E)} ; \quad \alpha(l)=(1 \otimes l)+\operatorname{ker}(E)
$$

Also, $\operatorname{ker}(P)=\operatorname{im}(I)=i(\mathbb{K}) \otimes L=\mathbb{K} i(1) \otimes L \stackrel{\beta}{\cong} L$ where the isomorphism β is given by $\beta\left(k n_{r+1} \otimes l\right)=k l$ with inverse $\beta^{-1}(l)=n_{r+1} \otimes l$. Thus we get a linear map $\bar{\phi}: L^{\otimes 3} \longrightarrow L$, such that $\bar{\phi}=\beta \circ \tilde{\phi} \circ \alpha^{\otimes 3}$. The cochains $\bar{\phi} \in C L^{3}(L ; L)$ and ϕ are related by

$$
\begin{equation*}
n_{r+1} \otimes \bar{\phi}\left(l_{1}, l_{2}, l_{3}\right)=\phi\left(1 \otimes l_{1}, 1 \otimes l_{2}, 1 \otimes l_{3}\right) \tag{4.2.9}
\end{equation*}
$$

Proposition 4.2.2. The 3 -cochain $\bar{\phi} \in C L^{3}(L ; L)$ is a cocycle.

Proof. Let $l_{1}, l_{2}, l_{3} \in L$. Then from the coboundary formula (1.3.1) we get

$$
\begin{aligned}
& \delta \bar{\phi}\left(l_{1}, l_{2}, l_{3}, l_{4}\right) \\
= & {\left[l_{1}, \bar{\phi}\left(l_{2}, l_{3}, l_{4}\right)\right]+\left[\bar{\phi}\left(l_{1}, l_{3}, l_{4}\right), l_{2}\right]-\left[\bar{\phi}\left(l_{1}, l_{2}, l_{4}\right), l_{3}\right]+\left[\bar{\phi}\left(l_{1}, l_{2}, l_{3}\right), l_{4}\right] } \\
& -\bar{\phi}\left(\left[l_{1}, l_{2}\right], l_{3}, l_{4}\right)+\bar{\phi}\left(\left[l_{1}, l_{3}\right], l_{2}, l_{4}\right)-\bar{\phi}\left(\left[l_{1}, l_{4}\right], l_{2}, l_{3}\right) \\
& +\bar{\phi}\left(l_{1},\left[l_{2}, l_{3}\right], l_{4}\right)-\bar{\phi}\left(l_{1},\left[l_{2}, l_{4}\right], l_{3}\right)-\bar{\phi}\left(l_{1}, l_{2},\left[l_{3}, l_{4}\right]\right) .
\end{aligned}
$$

Therefore,

$$
\begin{align*}
& \beta^{-1} \circ \delta \bar{\phi}\left(l_{1}, l_{2}, l_{3}, l_{4}\right) \\
= & \beta^{-1}\left(\left[l_{1}, \bar{\phi}\left(l_{2}, l_{3}, l_{4}\right)\right]\right)+\beta^{-1}\left(\left[\bar{\phi}\left(l_{1}, l_{3}, l_{4}\right), l_{2}\right]\right)-\beta^{-1}\left(\left[\bar{\phi}\left(l_{1}, l_{2}, l_{4}\right), l_{3}\right]\right) \\
& +\beta^{-1}\left(\left[\bar{\phi}\left(l_{1}, l_{2}, l_{3}\right), l_{4}\right]\right)-\beta^{-1}\left(\bar{\phi}\left(\left[l_{1}, l_{2}\right], l_{3}, l_{4}\right)\right)+\beta^{-1}\left(\bar{\phi}\left(\left[l_{1}, l_{3}\right], l_{2}, l_{4}\right)\right) \tag{4.2.10}\\
& -\beta^{-1}\left(\bar{\phi}\left(\left[l_{1}, l_{4}\right], l_{2}, l_{3}\right)\right)+\beta^{-1}\left(\bar{\phi}\left(l_{1},\left[l_{2}, l_{3}\right], l_{4}\right)\right)-\beta^{-1}\left(\bar{\phi}\left(l_{1},\left[l_{2}, l_{4}\right], l_{3}\right)\right) \\
& -\beta^{-1}\left(\bar{\phi}\left(l_{1}, l_{2},\left[l_{3}, l_{4}\right]\right)\right) .
\end{align*}
$$

Now,

$$
\begin{align*}
& \beta^{-1}\left(\left[l_{1}, \bar{\phi}\left(l_{2}, l_{3}, l_{4}\right)\right]\right) \\
= & n_{r+1} \otimes\left[l_{1}, \bar{\phi}\left(l_{2}, l_{3}, l_{4}\right)\right] \\
= & I\left(\left[l_{1}, \bar{\phi}\left(l_{2}, l_{3}, l_{4}\right)\right]\right) \quad\left(i(1)=n_{r+1}\right) \\
= & I\left(\left[l_{1}, E\left(1 \otimes \bar{\phi}\left(l_{2}, l_{3}, l_{4}\right)\right)\right]\right) \\
= & \left\{I\left(l_{1}\right), 1 \otimes \bar{\phi}\left(l_{2}, l_{3}, l_{4}\right)\right\} \quad(\text { by }(i i) \text { of (4.2.4) }) \tag{4.2.11}\\
= & \left\{n_{r+1} \otimes l_{1}, 1 \otimes \bar{\phi}\left(l_{2}, l_{3}, l_{4}\right)\right\} \\
= & \left\{1 \otimes l_{1}, n_{r+1} \otimes \bar{\phi}\left(l_{2}, l_{3}, l_{4}\right)\right\} \\
= & \left\{1 \otimes l_{1}, \phi\left(1 \otimes l_{2}, 1 \otimes l_{3}, 1 \otimes l_{4}\right)\right\} \quad(\text { by (4.2.9) }) \\
= & \left\{1 \otimes l_{1},\left\{1 \otimes l_{2},\left\{1 \otimes l_{3}, 1 \otimes l_{4}\right\}\right\}\right\}-\left\{1 \otimes l_{1},\left\{\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}, 1 \otimes l_{4}\right\}\right\} \\
& +\left\{1 \otimes l_{1},\left\{\left\{1 \otimes l_{2}, 1 \otimes l_{4}\right\}, 1 \otimes l_{3}\right\}\right\} .
\end{align*}
$$

Also,

$$
\begin{align*}
& \beta^{-1}\left(\left[\bar{\phi}\left(l_{1}, l_{3}, l_{4}\right), l_{2}\right]\right) \\
= & n_{r+1} \otimes\left[\bar{\phi}\left(l_{1}, l_{3}, l_{4}\right), l_{2}\right] \\
= & I\left(\left[\bar{\phi}\left(l_{1}, l_{3}, l_{4}\right), E\left(1 \otimes l_{2}\right)\right]\right) \quad\left(i(1)=n_{r+1}\right) \\
= & \left\{I\left(\bar{\phi}\left(l_{1}, l_{3}, l_{4}\right)\right), 1 \otimes l_{2}\right\} \quad(\text { by } \quad(i i) \text { of (4.2.4) }) \\
= & \left\{n_{r+1} \otimes \bar{\phi}\left(l_{1}, l_{3}, l_{4}\right), 1 \otimes l_{2}\right\} \tag{4.2.12}\\
= & \left\{\phi\left(1 \otimes l_{1}, 1 \otimes l_{3}, 1 \otimes l_{4}\right), 1 \otimes l_{2}\right\} \quad(\text { by (4.2.9) }) \\
= & \left\{\left\{1 \otimes l_{1},\left\{1 \otimes l_{3}, 1 \otimes l_{4}\right\}\right\}-\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}, 1 \otimes l_{4}\right\}\right. \\
& \left.+\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{4}\right\}, 1 \otimes l_{3}\right\}, 1 \otimes l_{2}\right\} \\
= & \left\{\left\{1 \otimes l_{1},\left\{1 \otimes l_{3}, 1 \otimes l_{4}\right\}\right\}, 1 \otimes l_{2}\right\}-\left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}, 1 \otimes l_{4}\right\}, 1 \otimes l_{2}\right\} \\
& +\left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{4}\right\}, 1 \otimes l_{3}\right\}, 1 \otimes l_{2}\right\} .
\end{align*}
$$

Similarly,

$$
\begin{align*}
& \beta^{-1}\left(\left[\bar{\phi}\left(l_{1}, l_{2}, l_{4}\right), l_{3}\right]\right) \\
&=\left\{\left\{1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{4}\right\}\right\}, 1 \otimes l_{3}\right\}-\left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}, 1 \otimes l_{4}\right\}, 1 \otimes l_{3}\right\} \tag{4.2.13}\\
&+\left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{4}\right\}, 1 \otimes l_{2}\right\}, 1 \otimes l_{3}\right\}
\end{align*}
$$

and

$$
\begin{align*}
& \beta^{-1}\left(\left[\bar{\phi}\left(l_{1}, l_{2}, l_{3}\right), l_{4}\right]\right) \\
=\left\{\left\{1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}\right\}, 1 \otimes l_{4}\right\} & -\left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}, 1 \otimes l_{3}\right\}, 1 \otimes l_{4}\right\} \tag{4.2.14}\\
+ & \left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}, 1 \otimes l_{2}\right\}, 1 \otimes l_{4}\right\}
\end{align*}
$$

Again,

$$
\begin{aligned}
& \beta^{-1}\left(\bar{\phi}\left(\left[l_{1}, l_{2}\right], l_{3}, l_{4}\right)\right) \\
= & n_{r+1} \otimes \bar{\phi}\left(\left[l_{1}, l_{2}\right], l_{3}, l_{4}\right) \\
= & \phi\left(1 \otimes\left[l_{1}, l_{2}\right], 1 \otimes l_{3}, 1 \otimes l_{4}\right) \\
= & \phi\left(\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}-X, 1 \otimes l_{3}, 1 \otimes l_{4}\right) \\
& \left(\text { since } E\left(\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}\right)=1 \otimes\left[l_{1}, l_{2}\right] \text { by }(i)\right. \text { of (4.2.4), we may write } \\
& \left.\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}=1 \otimes\left[l_{1}, l_{2}\right]+X, \text { where } X \text { denotes an element in } k e r(E)\right) \\
= & \phi\left(\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}, 1 \otimes l_{3}, 1 \otimes l_{4}\right) \\
& \left(\text { since } \phi\left(l_{1}, l_{2}, l_{3}\right)=0 \text { for at least one } l_{i} \in \operatorname{ker}(E) \text { for } i=1,2 \text { and } 3\right) \\
= & \left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\},\left\{1 \otimes l_{3}, 1 \otimes l_{4}\right\}\right\}-\left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}, 1 \otimes l_{3}\right\}, 1 \otimes l_{4}\right\} \\
& +\left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}, 1 \otimes l_{4}\right\}, 1 \otimes l_{3}\right\} .
\end{aligned}
$$

Similarly we have,

$$
\begin{align*}
& \beta^{-1}\left(\bar{\phi}\left(\left[l_{1}, l_{3}\right], l_{2}, l_{4}\right)\right) \\
= & n_{r+1} \otimes \bar{\phi}\left(\left[l_{1}, l_{2}\right], l_{3}, l_{4}\right) \tag{4.2.16}\\
= & \left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\},\left\{1 \otimes l_{2}, 1 \otimes l_{4}\right\}\right\} \\
& -\left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}, 1 \otimes l_{2}\right\}, 1 \otimes l_{4}\right\} \\
& +\left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}, 1 \otimes l_{4}\right\}, 1 \otimes l_{2}\right\}, \\
& \beta^{-1}\left(\bar{\phi}\left(\left[l_{1}, l_{4}\right], l_{2}, l_{3}\right)\right) \tag{4.2.17}\\
= & n_{r+1} \otimes \bar{\phi}\left(\left[l_{1}, l_{2}\right], l_{4}, l_{3}\right) \\
= & \left\{\left\{1 \otimes l_{1}, 1 \otimes l_{4}\right\},\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}\right\} \\
& -\left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{4}\right\}, 1 \otimes l_{2}\right\}, 1 \otimes l_{3}\right\} \\
& +\left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{4}\right\}, 1 \otimes l_{3}\right\}, 1 \otimes l_{2}\right\},
\end{align*}
$$

$$
\begin{align*}
& \beta^{-1}\left(\bar{\phi}\left(l_{1},\left[l_{2}, l_{3}\right], l_{4}\right)\right) \\
= & n_{r+1} \otimes \bar{\phi}\left(l_{1},\left[l_{2}, l_{3}\right], l_{4}\right) \\
= & \phi\left(1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}, 1 \otimes l_{4}\right) \tag{4.2.18}\\
= & \left\{1 \otimes l_{1},\left\{\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}, 1 \otimes l_{4}\right\}\right\} \\
& -\left\{\left\{1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}\right\}, 1 \otimes l_{4}\right\} \\
& +\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{4}\right\},\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}\right\} . \\
= & n^{-1}\left(\bar{\phi}\left(l_{1},\left[l_{2}, l_{4}\right], l_{3}\right)\right) \\
= & \phi\left(1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{4}\right\}, 1 \otimes l_{3}\right) \tag{4.2.19}\\
= & \left\{1 \otimes l_{1},\left\{\left\{1 \otimes l_{2}, 1 \otimes l_{4}\right\}, 1 \otimes l_{3}\right\}\right\}-\left\{\left\{1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{4}\right\}\right\}, 1 \otimes l_{3}\right\} \\
& +\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\},\left\{1 \otimes l_{2}, 1 \otimes l_{4}\right\}\right\},
\end{align*}
$$

and

$$
\begin{align*}
& \beta^{-1}\left(\bar{\phi}\left(l_{1}, l_{2},\left[l_{3}, l_{4}\right]\right)\right) \\
= & n_{r+1} \otimes \bar{\phi}\left(l_{1}, l_{2},\left[l_{3}, l_{4}\right]\right) \\
= & \phi\left(1 \otimes l_{1}, 1 \otimes l_{2},\left\{1 \otimes l_{3}, 1 \otimes l_{4}\right\}\right) \tag{4.2.20}\\
= & \left\{1 \otimes l_{1},\left\{1 \otimes l_{2},\left\{1 \otimes l_{3}, 1 \otimes l_{4}\right\}\right\}-\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\},\left\{1 \otimes l_{3}, 1 \otimes l_{4}\right\}\right\}\right. \\
& +\left\{\left\{1 \otimes l_{1},\left\{1 \otimes l_{3}, 1 \otimes l_{4}\right\}\right\}, 1 \otimes l_{2}\right\} .
\end{align*}
$$

Substituting each term on the right-hand side of (4.2.10) from (4.2.11) - 4.2.20) we get,

$$
\begin{aligned}
& \beta^{-1} \circ \delta \bar{\phi}\left(l_{1}, l_{2}, l_{3}, l_{4}\right) \\
= & \left\{1 \otimes l_{1},\left\{1 \otimes l_{2},\left\{1 \otimes l_{3}, 1 \otimes l_{4}\right\}\right\}\right\}-\left\{1 \otimes l_{1},\left\{\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}, 1 \otimes l_{4}\right\}\right\} \\
& +\left\{1 \otimes l_{1},\left\{\left\{1 \otimes l_{2}, 1 \otimes l_{4}\right\}, 1 \otimes l_{3}\right\}\right\}+\left\{\left\{1 \otimes l_{1},\left\{1 \otimes l_{3}, 1 \otimes l_{4}\right\}\right\}, 1 \otimes l_{2}\right\} \\
& -\left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}, 1 \otimes l_{4}\right\}, 1 \otimes l_{2}\right\}+\left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{4}\right\}, 1 \otimes l_{3}\right\}, 1 \otimes l_{2}\right\} \\
& -\left\{\left\{1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{4}\right\}\right\}, 1 \otimes l_{3}\right\}+\left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}, 1 \otimes l_{4}\right\}, 1 \otimes l_{3}\right\} \\
& -\left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{4}\right\}, 1 \otimes l_{2}\right\}, 1 \otimes l_{3}\right\}+\left\{\left\{1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}\right\}, 1 \otimes l_{4}\right\} \\
& -\left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}, 1 \otimes l_{3}\right\}, 1 \otimes l_{4}\right\}+\left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}, 1 \otimes l_{2}\right\}, 1 \otimes l_{4}\right\} \\
& -\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\},\left\{1 \otimes l_{3}, 1 \otimes l_{4}\right\}\right\}+\left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}, 1 \otimes l_{3}\right\}, 1 \otimes l_{4}\right\} \\
& -\left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}, 1 \otimes l_{4}\right\}, 1 \otimes l_{3}\right\}+\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\},\left\{1 \otimes l_{2}, 1 \otimes l_{4}\right\}\right\} \\
& -\left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}, 1 \otimes l_{2}\right\}, 1 \otimes l_{4}\right\}+\left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}, 1 \otimes l_{4}\right\}, 1 \otimes l_{2}\right\} \\
& -\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{4}\right\},\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}\right\}+\left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{4}\right\}, 1 \otimes l_{2}\right\}, 1 \otimes l_{3}\right\} \\
& -\left\{\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{4}\right\}, 1 \otimes l_{3}\right\}, 1 \otimes l_{2}\right\}+\left\{1 \otimes l_{1},\left\{\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}, 1 \otimes l_{4}\right\}\right\} \\
& -\left\{\left\{1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}\right\}, 1 \otimes l_{4}\right\}+\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{4}\right\},\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}\right\}
\end{aligned}
$$

$$
\begin{aligned}
& -\left\{1 \otimes l_{1},\left\{\left\{1 \otimes l_{2}, 1 \otimes l_{4}\right\}, 1 \otimes l_{3}\right\}\right\}+\left\{\left\{1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{4}\right\}\right\}, 1 \otimes l_{3}\right\} \\
& -\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\},\left\{1 \otimes l_{2}, 1 \otimes l_{4}\right\}\right\}-\left\{1 \otimes l_{1},\left\{1 \otimes l_{2},\left\{1 \otimes l_{3}, 1 \otimes l_{4}\right\}\right\}\right. \\
& +\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\},\left\{1 \otimes l_{3}, 1 \otimes l_{4}\right\}\right\}-\left\{\left\{1 \otimes l_{1},\left\{1 \otimes l_{3}, 1 \otimes l_{4}\right\}\right\}, 1 \otimes l_{2}\right\} \\
= & 0 .
\end{aligned}
$$

Thus $\beta^{-1} \circ \delta \bar{\phi}\left(l_{1}, l_{2}, l_{3}, l_{4}\right)=0$ for l_{1}, l_{2}, l_{3} and $l_{4} \in L$. Since β^{-1} is an isomorphism, it follows that $\delta \bar{\phi}=0$.

Let us show now that the cohomology class of $\bar{\phi}$ is independent of the choice of the lifting $\{-,-\}$.

Proposition 4.2.3. Suppose $\{-,-\}$ and $\{-,-\}^{\prime}$ are any two B-bilinear operations on $B \otimes L$, satisfying (4.2.4). Let $\bar{\phi}$ and $\bar{\phi}$ be the corresponding cocycles determined by $\{-,-\}$ and $\{-,-\}^{\prime}$ respectively. Then $\bar{\phi}$ and $\bar{\phi}$ represent the same cohomology class in $H L^{3}(L ; L)$.

Proof. Set $\rho=\{-,-\}^{\prime}-\{-,-\}$. Then $\rho:(B \otimes L)^{\otimes 2} \longrightarrow B \otimes L$ is a B-linear map. Now ρ takes values in $\operatorname{ker}(P)$ because for $l_{1}, l_{2} \in B \otimes L$,

$$
\begin{aligned}
& P \circ \rho\left(l_{1}, l_{2}\right) \\
= & P\left\{l_{1}, l_{2}\right\}-P\left\{l_{1}, l_{2}\right\}^{\prime} \\
= & {\left[P\left(l_{1}\right), P\left(l_{2}\right)\right]_{\lambda}-\left[P\left(l_{1}\right), P\left(l_{2}\right)\right]_{\lambda}(\text { by }(i) \text { in (4.2.4) }) } \\
= & 0 .
\end{aligned}
$$

Since ρ takes values in $\operatorname{ker}(P), \rho\left(l_{1}, l_{2}\right)=0$, whenever one of the arguments is in $\operatorname{ker}(E)$. This is similar to the argument given for ϕ. Thus ρ induces a linear map

$$
\begin{gathered}
\tilde{\rho}:\left(\frac{B \otimes L}{\operatorname{ker}(E)}\right)^{\otimes 2} \longrightarrow \operatorname{ker}(P) \\
\tilde{\rho}\left(l_{1}+\operatorname{ker}(E), l_{2}+\operatorname{ker}(E)\right)=\rho\left(l_{1}, l_{2}\right) \text { for } l_{1}, l_{2} \in B \otimes L
\end{gathered}
$$

Hence we get a 2-cochain $\bar{\rho}: L^{\otimes 2} \longrightarrow L$ such that $\bar{\rho}=\beta \circ \tilde{\rho} \circ \alpha^{\otimes 2} \in C L^{2}(L ; L)$. The map ρ and $\bar{\rho}$ are related by $n_{r+1} \otimes \bar{\rho}\left(l_{1}, l_{2}\right)=\rho\left(1 \otimes l_{1}, 1 \otimes l_{2}\right)$ for $l_{1}, l_{2} \in L$.

Let us denote by ϕ^{\prime} respectively, $\bar{\phi}$ ' the corresponding maps determined using $\{-,-\}^{\prime}$ as in (4.2.9). Next we will show that

$$
\left(\bar{\phi}^{\prime}-\bar{\phi}\right)=\delta \bar{\rho} .
$$

Suppose $l_{1}, l_{2}, l_{3} \in L$. From the coboundary formula (1.3.1), we have

$$
\begin{aligned}
\delta \bar{\rho}\left(l_{1}, l_{2}, l_{3}\right)=\left[l_{1}, \bar{\rho}\left(l_{2}, l_{3}\right)\right]+\left[\bar{\rho}\left(l_{1}, l_{3}\right), l_{2}\right] & -\left[\bar{\rho}\left(l_{1}, l_{2}\right), l_{3}\right]-\bar{\rho}\left(\left[l_{1}, l_{2}\right], l_{3}\right) \\
& +\bar{\rho}\left(\left[l_{1}, l_{3}\right], l_{2}\right)+\bar{\rho}\left(l_{1},\left[l_{2}, l_{3}\right]\right) .
\end{aligned}
$$

Let us compute the terms appearing on the right-hand side of $\beta^{-1} \circ \delta \bar{\rho}\left(l_{1}, l_{2}, l_{3}\right)$

$$
\begin{aligned}
\beta^{-1}\left(\left[l_{1}, \bar{\rho}\left(l_{2}, l_{3}\right)\right]\right) & =n_{r+1} \otimes\left[l_{1}, \bar{\rho}\left(l_{2}, l_{3}\right)\right] \\
& =I\left[l_{1}, \bar{\rho}\left(l_{2}, l_{3}\right)\right] \\
& =I\left[l_{1}, E\left(1 \otimes \bar{\rho}\left(l_{2}, l_{3}\right)\right)\right] \\
& =\left\{I\left(l_{1}\right), 1 \otimes \bar{\rho}\left(l_{2}, l_{3}\right)\right\}^{\prime} \\
& =\left\{n_{r+1} \otimes l_{1}, 1 \otimes \bar{\rho}\left(l_{2}, l_{3}\right)\right\}^{\prime} \\
& =\left\{1 \otimes l_{1}, n_{r+1} \otimes \bar{\rho}\left(l_{2}, l_{3}\right)\right\}^{\prime} \\
& =\left\{1 \otimes l_{1}, \rho\left(l_{2}, l_{3}\right)\right\}^{\prime} \\
& =\left\{1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}^{\prime}-\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}\right\}^{\prime} \\
& =\left\{1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}^{\prime}\right\}^{\prime}-\left\{1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}\right\}^{\prime} \\
\beta^{-1}\left[\bar{\rho}\left(l_{1}, l_{3}\right), l_{2}\right] & =n_{r+1} \otimes\left[\bar{\rho}\left(l_{1}, l_{3}\right), l_{2}\right] \\
& =I\left(1 \otimes\left[\bar{\rho}\left(l_{1}, l_{3}\right), E\left(1 \otimes l_{2}\right)\right]\right) \\
& =\left\{I\left(\bar{\rho}\left(l_{1}, l_{3}\right)\right), 1 \otimes l_{2}\right\}^{\prime} \\
& =\left\{n_{r+1} \otimes \bar{\rho}\left(l_{1}, l_{3}\right), 1 \otimes l_{2}\right\}^{\prime} \\
& =\left\{\rho\left(l_{1}, l_{3}\right), 1 \otimes l_{2}\right\}^{\prime} \\
& =\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}^{\prime}-\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}, 1 \otimes l_{2}\right\}^{\prime} \\
& =\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}^{\prime}, 1 \otimes l_{2}\right\}^{\prime}-\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}, 1 \otimes l_{2}\right\}^{\prime} .
\end{aligned}
$$

Similarly,

$$
\beta^{-1}\left[\bar{\rho}\left(l_{1}, l_{2}\right), l_{3}\right]=\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}^{\prime}, 1 \otimes l_{3}\right\}^{\prime}-\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}, 1 \otimes l_{3}\right\}^{\prime} .
$$

Also

$$
\begin{aligned}
\beta^{-1} \circ \bar{\rho}\left(\left[l_{1}, l_{2}\right], l_{3}\right) & =n_{r+1} \otimes \bar{\rho}\left(\left[l_{1}, l_{2}\right], l_{3}\right) \\
& =\rho\left(1 \otimes\left[l_{1}, l_{2}\right], 1 \otimes l_{3}\right) \\
& =\left\{1 \otimes\left[l_{1}, l_{2}\right], 1 \otimes l_{3}\right\}^{\prime}-\left\{1 \otimes\left[l_{1}, l_{2}\right], 1 \otimes l_{3}\right\} .
\end{aligned}
$$

Since $E\left(\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}\right)=1 \otimes\left[l_{1}, l_{2}\right]$ so we get $\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}=1 \otimes\left[l_{1}, l_{2}\right]+X$, where X denotes an element in $\operatorname{ker}(E)$, using this the last expression is given by

$$
\begin{aligned}
& =\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}-X, 1 \otimes l_{3}\right\}^{\prime}-\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}-X, 1 \otimes l_{3}\right\} \\
& =\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}, 1 \otimes l_{3}\right\}^{\prime}-\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}, 1 \otimes l_{3}\right\}-\rho\left(X, 1 \otimes l_{3}\right) \\
& =\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}, 1 \otimes l_{3}\right\}^{\prime}-\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}, 1 \otimes l_{3}\right\} \\
& \left.\quad \quad \quad \quad \text { since } X \in \operatorname{ker}(E), \rho\left(X, 1 \otimes l_{3}\right)=0\right)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\beta^{-1} \circ \bar{\rho}\left(\left[l_{1}, l_{3}\right], l_{2}\right)= & \left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}, 1 \otimes l_{2}\right\}^{\prime}-\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}, 1 \otimes l_{2}\right\} \\
\text { and } \beta^{-1} \circ \bar{\rho}\left(l_{1},\left[l_{2}, l_{3}\right]\right) & =n_{r+1} \otimes \bar{\rho}\left(l_{1},\left[l_{2}, l_{3}\right]\right) \\
& =\rho\left(1 \otimes l_{1}, 1 \otimes\left[l_{2}, l_{3}\right]\right) \\
& =\left\{1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}\right\}^{\prime}-\left\{1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}\right\}
\end{aligned}
$$

Substituting all the above terms on the right-hand side of $\beta^{-1} \circ \delta \bar{\rho}\left(l_{1}, l_{2}, l_{3}\right)$ we get,

$$
\begin{aligned}
\beta^{-1} \circ \delta \bar{\rho}\left(l_{1}, l_{2}, l_{3}\right)= & \beta^{-1}\left[l_{1}, \bar{\rho}\left(l_{2}, l_{3}\right)\right]+\beta^{-1}\left[\bar{\rho}\left(l_{1}, l_{3}\right), l_{2}\right]-\beta^{-1}\left[\bar{\rho}\left(l_{1}, l_{2}\right), l_{3}\right] \\
& -\beta^{-1} \bar{\rho}\left(\left[l_{1}, l_{2}\right], l_{3}\right)+\beta^{-1} \bar{\rho}\left(\left[l_{1}, l_{3}\right], l_{2}\right)+\beta^{-1} \bar{\rho}\left(l_{1},\left[l_{2}, l_{3}\right]\right) \\
= & \left\{1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}^{\prime}\right\}^{\prime}-\left\{1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}\right\}^{\prime} \\
& +\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}^{\prime}, 1 \otimes l_{2}\right\}^{\prime}-\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}, 1 \otimes l_{2}\right\}^{\prime} \\
& -\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}^{\prime}, 1 \otimes l_{3}\right\}^{\prime}+\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}, 1 \otimes l_{3}\right\}^{\prime} \\
& -\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}, 1 \otimes l_{3}\right\}^{\prime}+\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}, 1 \otimes l_{3}\right\} \\
& +\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}, 1 \otimes l_{2}\right\}^{\prime}-\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}, 1 \otimes l_{2}\right\} \\
& +\left\{1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}\right\}^{\prime}-\left\{1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}\right\} \\
= & \phi^{\prime}\left(1 \otimes l_{1}, 1 \otimes l_{2}, 1 \otimes l_{3}\right)-\phi\left(1 \otimes l_{1}, 1 \otimes l_{2}, 1 \otimes l_{3}\right) \\
= & n_{r+1} \otimes \bar{\phi}^{\prime}\left(l_{1}, l_{2}, l_{3}\right)-n_{r+1} \otimes \bar{\phi}\left(l_{1}, l_{2}, l_{3}\right) \\
= & n_{r+1} \otimes\left(\bar{\phi}^{\prime}-\bar{\phi}\right)\left(l_{1}, l_{2}, l_{3}\right) \\
= & \beta^{-1} \circ\left(\bar{\phi}^{\prime}-\bar{\phi}\right)\left(l_{1}, l_{2}, l_{3}\right)
\end{aligned}
$$

where ϕ^{\prime} and $\bar{\phi}^{\prime}$ are the maps corresponding to ϕ and $\bar{\phi}$ respectively for the pairing $\{-,-\}^{\prime}$. Therefore $\beta^{-1} \circ \delta \bar{\rho}\left(l_{1}, l_{2}, l_{3}\right)=\beta^{-1} \circ\left(\bar{\phi}^{\prime}-\bar{\phi}\right)\left(l_{1}, l_{2}, l_{3}\right)$ for $l_{1}, l_{2}, l_{3} \in L$.
Since β^{-1} is an isomorphism we get $\delta \bar{\rho}=\left(\bar{\phi}^{\prime}-\bar{\phi}\right)$.
We note that the 3 -cocycle $\bar{\phi}$ as determined by the extension (4.2.1) depends only on its isomorphism class.

The above considerations together with Proposition 2.3.3 define a map

$$
\begin{equation*}
\theta_{\lambda}: H_{\text {Harr }}^{2}(A ; \mathbb{K}) \longrightarrow H L^{3}(L ; L) \text { by } \theta_{\lambda}([\psi])=[\bar{\phi}] \tag{4.2.21}
\end{equation*}
$$

where $[\bar{\phi}]$ is the cohomology class of $\bar{\phi}$. We call the map θ_{λ} the obstruction map.
We are now in a position to formulate a necessary and sufficient condition for existence of an extension of the Leibniz algebra structure λ on $A \otimes L$.

Theorem 4.2.4. Let λ be a deformation of the Leibniz algebra L with base A and let B be a 1-dimensional extension of A corresponding to the cohomology class $[\psi] \in$ $H_{\text {Harr }}^{2}(A ; \mathbb{K})$. Then λ can be extended to a deformation of L with base B if and only if the obstruction $\theta_{\lambda}([\psi])=0$.

Proof. Suppose $\theta_{\lambda}([\psi])=0$. Let

$$
0 \longrightarrow \mathbb{K} \xrightarrow{i} B \xrightarrow{p} A \longrightarrow 0
$$

be a 1-dimensional extension representing the cohomology class $[\psi]$. Let $\{-,-\}$ be a B-bilinear operation on $B \otimes L$ satisfying (4.2.4), lifting the Leibniz algebra structure λ on $A \otimes L$. Let $\bar{\phi}$ be the associated cocycle in $C L^{3}(L ; L)$ as described above in (4.2.9). Then $\theta_{\lambda}([\psi])=[\bar{\phi}]=0$, implies $\bar{\phi}=\delta \rho$ for some $\rho \in C L^{2}(L ; L)$. Now take $\rho^{\prime}=-\rho$, and define a new linear map

$$
\{-,-\}^{\prime}:(B \otimes L)^{\otimes 2} \longrightarrow B \otimes L \text { by }\left\{l_{1}, l_{2}\right\}^{\prime}=\left\{l_{1}, l_{2}\right\}+I \circ \rho^{\prime}\left(E\left(l_{1}\right), E\left(l_{2}\right)\right)
$$

Let ϕ^{\prime} and $\bar{\phi}^{\prime}$ be the maps as defined in (4.2.9) corresponding to $\{-,-\}^{\prime}$. Then we have $\left(\bar{\phi}^{\prime}-\bar{\phi}\right)=\delta \overline{\rho^{\prime}}=-\bar{\phi}$. Hence $\bar{\phi}^{\prime}=0$, which implies $\phi^{\prime}=0$. Therefore, $\{-,-\}^{\prime}$ is a Leibniz algebra structure on $B \otimes L$ extending λ.

The converse part is clear from the fact that if we have an extension $\{-,-\}$ of the deformation λ of L with base A, the map ϕ as defined in (4.2.7) is the zero map. So the induced cochain $\bar{\phi}$ is the zero cochain.

Example 4.2.5. Let λ_{t} be a finite order 1-parameter deformation of a Leibniz algebra L with base $A=\mathbb{K}[[t]] /\left(t^{N+1}\right)$. Explicitly, $\lambda_{t}(x, y)=\sum_{i \geq 0} \lambda_{i}(x, y) t^{i} \quad\left(\right.$ modulo $\left.t^{N+1}\right)$, where $x, y \in L, \lambda_{i} \in C L^{2}(L ; L)$ with λ_{0} the original Leibniz bracket in L and N is the order of the deformation. By Leibniz relation we have

$$
\lambda_{t}\left(x, \lambda_{t}(y, z)\right)-\lambda_{t}\left(\lambda_{t}(x, y), z\right)+\lambda_{t}\left(\lambda_{t}(x, z), y\right)=0
$$

modulo t^{N+1}, for $x, y, z \in L$.

If we try to extend it to a deformation of order $N+1$, starting with the extension

$$
0 \longrightarrow\left(t^{N+1}\right) /\left(t^{N+2}\right) \longrightarrow \mathbb{K}[[t]] /\left(t^{N+2}\right) \longrightarrow \mathbb{K}[[t]] /\left(t^{N+1}\right) \longrightarrow 0
$$

the obstruction cocycle in this case can be written as (Bal97)

$$
\bar{\phi}(x, y, z)=\sum_{\substack{i+j=N+1 \\ i, j>0}}\left\{\lambda_{i}\left(\lambda_{j}(x, y), z\right)-\lambda_{i}\left(\lambda_{j}(x, z), y\right)-\lambda_{i}\left(x, \lambda_{j}(y, z)\right)\right\}
$$

The given deformation extends to a deformation of order $N+2$, if the cohomology class of the above obstruction cocycle is zero.

Suppose now that M_{0} is a finite dimensional A-module satisfying the condition $\mathfrak{M} M_{0}=0$, where \mathfrak{M} is the maximal ideal in A. The previous results can be generalized from the 1-dimensional extension (4.2.1) to a more general extension

$$
0 \longrightarrow M_{0} \xrightarrow{i} B \xrightarrow{p} A \longrightarrow 0
$$

representing an isomorphism class of extensions corresponding to a cohomology class $[\psi] \in H_{\text {Harr }}^{2}\left(A ; M_{0}\right)$ (Proposition 2.3.3) .

If we try to extend a deformation with base A to a deformation with base B, as in the beginning of this section, then an analogous computation yields

$$
\tilde{\phi}:\left(\frac{B \otimes L}{\operatorname{ker}(E)}\right)^{\otimes 3} \longrightarrow \operatorname{ker}(P)=\operatorname{im}(I) \cong M_{0} \otimes L
$$

It will give rise to a cocycle $\bar{\phi} \in C L^{3}\left(L ; M_{0} \otimes L\right)$ with the cohomology class

$$
[\bar{\phi}] \in H L^{3}\left(L ; M_{0} \otimes L\right)=M_{0} \otimes H L^{3}(L ; L)
$$

The obstruction map in this case is

$$
\theta_{\lambda}: H_{H a r r}^{2}\left(A ; M_{0}\right) \longrightarrow M_{0} \otimes H L^{3}(L ; L) \text { defined by } \theta_{\lambda}([\psi])=[\bar{\phi}]
$$

Then, as in the case of 1-dimensional extension, we have the following.
Theorem 4.2.6. Let λ be a deformation of a Leibniz algebra L with base (A, \mathfrak{M}) and let M_{0} be a finite dimensional A-module with $\mathfrak{M} M_{0}=0$. Consider an extension B of A

$$
0 \longrightarrow M_{0} \xrightarrow{i} B \xrightarrow{p} A \longrightarrow 0
$$

corresponding to some $[\psi] \in H_{\text {Harr }}^{2}\left(A ; M_{0}\right)$. A deformation μ of L with base B such that $p_{*} \mu=\lambda$ exists if and only if the obstruction $\theta_{\lambda}([\psi])=0$.

4.3 Two actions on the set of extensions of the deformation λ

Suppose μ and μ^{\prime} are any two deformations with base B extending a given deformation λ with base A of a Leibniz algebra L. We would like to know how μ and μ^{\prime} are related. In the present section we study this relationship.

Let $[\psi] \in H_{\text {Harr }}^{2}(A ; \mathbb{K})$ and consider the extension problem as in the previous section. Assume $\theta_{\lambda}([\psi])=0$. Let S denote the set of equivalence classes of deformations μ of L with base B such that $p_{*} \mu=\lambda$.

We define two natural actions on S. Let \mathcal{A} denote the group of automorphisms of the extension (4.2.1). Let $u \in \mathcal{A}$, then $u: B \longrightarrow B$ is an algebra isomorphism such that following diagram commutes (see Proposition (2.3.7).

Now $u_{*} \mu$ is a deformation of L with base B and $p_{*}\left(u_{*} \mu\right)=(p \circ u)_{*} \mu=p_{*} \mu=\lambda$. Also if $\mu \cong \mu^{\prime}$, then $u_{*} \mu \cong u_{*} \mu^{\prime}$ (by Proposition 3.3.7). Thus we get an action

$$
\sigma_{1}: \mathcal{A} \times S: \longrightarrow S \text { defined by } \sigma_{1}(u,<\mu>)=<u_{*} \mu>
$$

where $<\mu>$ is the equivalence class of μ (cf. Definition 3.2.6).
On the other hand, $H L^{2}(L ; L)$ acts on S as follows.
Suppose a B-bilinear operation $\{-,-\}$ is given on $B \otimes L$, satisfying (4.2.4) so that $p_{*}\{-,-\}=\lambda$ and $\rho \in C L^{2}(L ; L)$ a given cochain. Define

$$
\left\{l_{1}, l_{2}\right\}^{\prime}=\left\{l_{1}, l_{2}\right\}+I \circ \rho\left(E\left(l_{1}\right), E\left(l_{2}\right) \text { for } l_{1}, l_{2} \in B \otimes L\right.
$$

Then $\{-,-\}^{\prime}$ is a B-bilinear operation on $B \otimes L$ and satisfies (4.2.4). Moreover the 2-cochain $\bar{\rho}$ determined by the difference $\{-,-\}^{\prime}-\{-,-\}$ as in the beginning of the proof of Proposition 4.2.3, is the given ρ. It follows that $\bar{\phi}^{\prime}-\bar{\phi}=\delta \rho$.

In particular, if $\{-,-\}^{\prime}$ and $\{-,-\}$ satisfy Leibniz relation on $B \otimes L, \rho$ must be a cocycle.

Define an action

$$
\sigma_{2}: H L^{2}(L ; L) \times S \longrightarrow S \text { by } \sigma_{2}([\rho],<\mu>)=<\mu^{\prime}>
$$

where $\left[l_{1}, l_{2}\right]_{\mu^{\prime}}=\left[l_{1}, l_{2}\right]_{\mu}+I \circ \rho\left(E\left(l_{1}, E\left(l_{2}\right)\right)\right)$.

We first check that the above action is well-defined.
Suppose $\rho_{1}, \rho_{2} \in C L^{2}(L ; L)$ represent the same class $[\rho] \in H L^{2}(L ; L)$, so that $\rho_{1}-\rho_{2}=$ $\delta \alpha$ for some 1-cochain $\alpha \in C L^{1}(L ; L)$. Define two deformations μ_{1}^{\prime} and μ_{2}^{\prime} of L with base B, which are extensions of λ, where the brackets $[-,-]_{\mu_{1}^{\prime}}$ and $[-,-]_{\mu_{2}^{\prime}}$ are given by

$$
\begin{align*}
& {\left[l_{1}, l_{2}\right]_{\mu_{1}^{\prime}}=\left[l_{1}, l_{2}\right]_{\mu}+I \circ \rho_{1}\left(E\left(l_{1}\right), E\left(l_{2}\right)\right) \text { and }} \tag{4.3.1}\\
& {\left[l_{1}, l_{2}\right]_{\mu_{2}^{\prime}}=\left[l_{1}, l_{2}\right]_{\mu}+I \circ \rho_{2}\left(E\left(l_{1}\right), E\left(l_{2}\right)\right) \text { for } l_{1}, l_{2} \in B \otimes L}
\end{align*}
$$

We claim that $\mu_{1}^{\prime} \cong \mu_{2}^{\prime}$.
For this we define a B-linear isomorphism $\Phi: B \otimes L \longrightarrow B \otimes L$
by $\Phi(1 \otimes l)=1 \otimes l+n_{r+1} \otimes \alpha(l)$ for $1 \otimes l \in B \otimes L$. Note that $E \circ \Phi=E$. From definition it follows that for $l \in L, \Phi \circ I(1 \otimes l)=\Phi\left(n_{r+1} \otimes l\right)=n_{r+1} \otimes l=I(1 \otimes l)$. To prove our claim it remains to check that Φ preserves the brackets. Now

$$
\begin{align*}
& \Phi\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\mu_{1}^{\prime}} \\
= & \Phi\left(\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\mu}+I \circ \rho\left(E\left(1 \otimes l_{1}\right), E\left(1 \otimes l_{2}\right)\right)\right) \\
= & \Phi\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]+\Phi \circ I \circ \rho_{1}\left(l_{1}, l_{2}\right) \\
= & \Phi\left(1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r+1} n_{j} \otimes \psi_{j}\left(l_{1}, l_{2}\right)\right)+\Phi \circ I \circ \rho_{1}\left(l_{1}, l_{2}\right) \\
= & \Phi\left(1 \otimes\left[l_{1}, l_{2}\right]\right)+\sum_{i=1}^{r+1} n_{j} \Phi\left(1 \otimes \psi_{j}\left(l_{1}, l_{2}\right)\right)+\Phi \circ I \circ \rho_{1}\left(l_{1}, l_{2}\right) \\
= & 1 \otimes\left[l_{1}, l_{2}\right]+n_{r+1} \otimes \alpha\left(\left[l_{1}, l_{2}\right]\right) \\
& +\sum_{i=1}^{r+1} n_{j}\left(1 \otimes \psi_{j}\left(l_{1}, l_{2}\right)+n_{r+1} \otimes \alpha \circ \psi_{j}\left(l_{1}, l_{2}\right)\right)+\Phi \circ I \circ \rho_{1}\left(l_{1}, l_{2}\right) \tag{4.3.2}\\
= & 1 \otimes\left[l_{1}, l_{2}\right]+n_{r+1} \otimes \alpha\left(\left[l_{1}, l_{2}\right]\right)+\sum_{j=1}^{r+1} n_{j} \otimes \psi_{j}\left(l_{1}, l_{2}\right) \\
& +\sum_{j=1}^{r+1} n_{j} n_{r+1} \otimes \alpha \circ \psi_{j}\left(l_{1}, l_{2}\right)+\Phi \circ I \circ \rho_{1}\left(l_{1}, l_{2}\right) \\
= & 1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j=1}^{r+1} n_{j} \otimes \psi_{j}\left(l_{1}, l_{2}\right)+n_{r+1} \otimes \alpha\left(\left[l_{1}, l_{2}\right]\right)+\Phi \circ I \circ \rho_{1}\left(l_{1}, l_{2}\right) \\
= & {\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\mu}+n_{r+1} \otimes \alpha\left(\left[l_{1}, l_{2}\right]\right)+\Phi \circ I \circ \rho_{1}\left(l_{1}, l_{2}\right) . }
\end{align*}
$$

On the other hand

$$
\begin{align*}
& {\left[\Phi\left(1 \otimes l_{1}\right), \Phi\left(1 \otimes l_{2}\right)\right]_{\mu_{2}^{\prime}} } \\
= & {\left[1 \otimes l_{1}+n_{r+1} \otimes \alpha\left(l_{1}\right), 1 \otimes l_{2}+n_{r+1} \otimes \alpha\left(l_{2}\right)\right]_{\mu_{2}^{\prime}} } \\
= & {\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\mu_{2}^{\prime}}+\left[1 \otimes l_{1}, n_{r+1} \otimes \alpha\left(l_{2}\right)\right]_{\mu_{2}^{\prime}} } \\
& +\left[n_{r+1} \otimes \alpha\left(l_{1}\right), 1 \otimes l_{2}\right]_{\mu_{2}^{\prime}}+\left[n_{r+1} \otimes \alpha\left(l_{1}\right), n_{r+1} \otimes \alpha\left(l_{2}\right)\right]_{\mu_{2}^{\prime}} \\
= & {\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\mu}+I \circ \rho_{2}\left(E\left(1 \otimes l_{1}\right), E\left(1 \otimes l_{2}\right)\right) } \\
& +n_{r+1}\left[1 \otimes l_{1}, 1 \otimes \alpha\left(l_{2}\right)\right]_{\mu}+n_{r+1} I \circ \rho_{2}\left(E\left(1 \otimes l_{1}\right), E\left(1 \otimes \alpha\left(l_{2}\right)\right)\right) \\
& +n_{r+1}\left[1 \otimes \alpha\left(l_{1}\right), 1 \otimes l_{2}\right]_{\mu}+n_{r+1} I \circ \rho_{2}\left(E\left(1 \otimes \alpha\left(l_{1}\right)\right), E\left(1 \otimes l_{2}\right)\right) \\
= & {\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\mu}+I \circ \rho_{2}\left(l_{1}, l_{2}\right) } \tag{4.3.3}\\
& +n_{r+1}\left(1 \otimes\left[l_{1}, \alpha\left(l_{2}\right)\right]+\sum_{j=1}^{r+1} n_{j} \otimes \psi_{j}\left(l_{1}, \alpha\left(l_{2}\right)\right)\right) \\
& +n_{r+1}\left(1 \otimes\left[\alpha\left(l_{1}\right), l_{2}\right]+\sum_{j=1}^{r+1} n_{j} \otimes \psi_{j}\left(\alpha\left(l_{1}\right), l_{2}\right)\right) \\
= & {\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\mu}+I \circ \rho_{2}\left(l_{1}, l_{2}\right) } \\
& +n_{r+1} \otimes\left[l_{1}, \alpha\left(l_{2}\right)\right]+n_{r+1} \otimes\left[\alpha\left(l_{1}\right), l_{2}\right] .
\end{align*}
$$

Thus

$$
\begin{align*}
& \Phi\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\mu_{1}^{\prime}}-\left[\Phi\left(1 \otimes l_{1}\right), \Phi\left(1 \otimes l_{2}\right)\right]_{\mu_{2}^{\prime}} \\
= & n_{r+1} \otimes \alpha\left(\left[l_{1}, l_{2}\right]\right)-n_{r+1} \otimes\left[l_{1}, \alpha\left(l_{2}\right)\right]-n_{r+1} \otimes\left[\alpha\left(l_{1}\right), l_{2}\right] \\
& +\Phi \circ I \circ \rho_{1}\left(l_{1}, l_{2}\right)-I \circ \rho_{2}\left(l_{1}, l_{2}\right) \tag{4.3.4}\\
= & n_{r+1} \otimes\left(-\delta \alpha\left(l_{1}, l_{2}\right)\right)+I \circ\left(\rho_{1}-\rho_{2}\right)\left(l_{1}, l_{2}\right) \\
= & 0 .
\end{align*}
$$

Hence $\sigma_{2}\left(\left[\rho_{1}\right],<\mu>\right)=<\mu_{1}^{\prime}>=<\mu_{2}^{\prime}>=\sigma_{2}\left(\left[\rho_{2}\right],<\mu_{2}>\right)$.
In order to check that σ_{2} is well defined it remains to show that $\sigma_{2}\left([\rho],<\mu_{1}>\right)=\sigma_{2}\left([\rho],<\mu_{2}>\right)$ for $\mu_{1} \cong \mu_{2}$.

Suppose $\mu_{1} \cong \mu_{2}$ and $\sigma_{2}\left([\rho],<\mu_{1}>\right)=<\mu_{1}^{\prime}>, \sigma_{2}\left([\rho],<\mu_{2}>\right)=<\mu_{2}^{\prime}>$. Let

$$
\Phi:\left(B \otimes L,[-,-]_{\mu_{1}}\right) \longrightarrow\left(B \otimes L,[-,-]_{\mu_{2}}\right)
$$

be an equivalence of μ_{1} and μ_{2}. By definition

$$
\begin{align*}
& {\left[l_{1}, l_{2}\right]_{\mu_{1}^{\prime}}=\left[l_{1}, l_{2}\right]_{\mu_{1}}+I \circ \rho\left(E\left(l_{1}\right), E\left(l_{2}\right)\right)} \tag{4.3.5}\\
& {\left[l_{1}, l_{2}\right]_{\mu_{2}^{\prime}}=\left[l_{1}, l_{2}\right]_{\mu_{2}}+I \circ \rho\left(E\left(l_{1}\right), E\left(l_{2}\right)\right) \text { for } l_{1}, l_{2} \in B \otimes L}
\end{align*}
$$

We claim that

$$
\Phi\left[l_{1}, l_{2}\right]_{\mu_{1}^{\prime}}=\left[\Phi\left(l_{1}\right), \Phi\left(l_{2}\right)\right]_{\mu_{2}^{\prime}}
$$

Now

$$
\begin{align*}
\Phi\left[l_{1}, l_{2}\right]_{\mu_{1}^{\prime}} & =\Phi\left[l_{1}, l_{2}\right]_{\mu_{1}}+\Phi \circ I \circ \rho\left(E\left(l_{1}\right), E\left(l_{2}\right)\right) \tag{4.3.6}\\
& =\left[\Phi\left(l_{1}\right), \Phi\left(l_{2}\right)\right]_{\mu_{2}}+\Phi \circ I \circ \rho\left(E\left(l_{1}\right), E\left(l_{2}\right)\right)
\end{align*}
$$

On the other hand

$$
\begin{align*}
{\left[\Phi\left(l_{1}\right), \Phi\left(l_{2}\right)\right]_{\mu_{2}^{\prime}} } & =\left[\Phi\left(l_{1}\right), \Phi\left(l_{2}\right)\right]_{\mu_{2}}+I \circ \rho\left(E \circ \Phi\left(l_{1}\right), E \circ \Phi\left(l_{2}\right)\right) \tag{4.3.7}\\
& =\left[\Phi\left(l_{1}\right), \Phi\left(l_{2}\right)\right]_{\mu_{2}}+I \circ \rho\left(E\left(l_{1}\right), E\left(l_{2}\right)\right) \quad(\text { by using } E \circ \Phi=\Phi)
\end{align*}
$$

So $\mu_{1}^{\prime} \cong \mu_{2}^{\prime}$. Therefore $\sigma_{2}\left([\rho],<\mu_{1}>\right)=<\mu_{1}^{\prime}>=<\mu_{2}^{\prime}>=\sigma_{2}\left([\rho],<\mu_{2}>\right)$. Consequently, the action of $H L^{2}(L ; L)$ on S is well defined. The transitivity of the action follows from the definition of σ_{2}.

We now show that the actions σ_{1} and σ_{2} on S are related to each other by the differential $d \lambda:\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime} \longrightarrow H L^{2}(L ; L)$ (see Definition 3.4.8).

Recall that the group \mathcal{A} is identified with $H_{\text {Harr }}^{1}(A ; \mathbb{K})$ (Proposition 2.3.7) so that for any element $u \in \mathcal{A}$, the corresponding cohomology class in $H_{\text {Harr }}^{1}(A ; \mathbb{K})$ is represented by a 1-cocycle ψ such that $u\left((a, m)_{q}\right)=(a, m+\psi(a))_{q}$, where $q: A \longrightarrow B$ is a section of p. On the other hand $H_{\text {Harr }}^{1}(A ; \mathbb{K})$ is identified with $\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime}$ (Corollary 2.2.7). For if $\psi: A \longrightarrow \mathbb{K}$ is a linear map with $\delta \psi=0$, then $\psi(1)=0$ and ψ vanishes on \mathfrak{M}^{2}. As a consequence, ψ can be viewed as an element in $\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime}$. Using these identifications we get the following result.

Proposition 4.3.1. Let λ be a deformation of the Leibniz algebra L with base A and let

$$
0 \longrightarrow \mathbb{K} \xrightarrow{i} B \xrightarrow{p} A \longrightarrow 0
$$

be a given extension of A. If $u: B \longrightarrow B$ is an automorphism of this extension which corresponds to an element $\psi \in\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime}$, then for any deformation μ of L with base B, such that $p_{*} \mu=\lambda$, the difference $\left([-,-]_{u_{*} \mu}-[-,-]_{\mu}\right)$ induces a cocycle representing the cohomology class $d \lambda(\psi)$.

Proof. Suppose $<\mu>\in S$ and $u \in \mathcal{A}$. By definition of $\sigma_{1},<u_{*} \mu>\in S$. Consider the Leibniz brackets $[-,-]_{u_{*} \mu}$ and $[-,-]_{\mu}$ on $B \otimes L$ for the deformations $u_{*} \mu$ and μ respectively.

Suppose $\psi \in\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime}$ corresponds to $u \in \mathcal{A}$ under the identification mentioned above. We now proceed to show that the 2 -cocycle determined by the difference $\left([-,-]_{u_{*} \mu}-[-,-]_{\mu}\right)$ represents $d \lambda(\psi)$.
Choose a basis $\left\{m_{1}, m_{2}, \cdots, m_{k}, m_{k+1}, \cdots, m_{r}\right\}$ of the maximal ideal \mathfrak{M} of A such
that $\left\{\bar{m}_{j}\right\}_{1 \leq j \leq k}$ is a basis of $\mathfrak{M} / \mathfrak{M}^{2}$. Fix a section $q: A \longrightarrow B$ of p. Let $\left\{n_{1}, n_{2}, \cdots, n_{k}, n_{k+1}, \cdots, n_{r+1}\right\}$ be the corresponding basis of $\mathfrak{M}_{B}=p^{-1}(\mathfrak{M})$ where $p\left(n_{j}\right)=m_{j}$ for $1 \leq j \leq r$ and $i(1)=n_{r+1}$. For $l_{1}, l_{2} \in L$ suppose

$$
\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\mu}=1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j=1}^{r+1} n_{j} \otimes \psi_{j}\left(l_{1}, l_{2}\right) .
$$

Now we have $u\left(n_{j}\right)=u\left(m_{j}, 0\right)_{q}=\left(m_{j}, \psi\left(m_{j}\right)\right)_{q}=\left(m_{j}, \psi\left(\bar{m}_{j}\right)\right)$ for $1 \leq j \leq r$ and $u\left(n_{r+1}\right)=u(0,1)_{q}=(0,1)_{q}=n_{r+1}$. Then by (3.3.2)

$$
\begin{aligned}
& {\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{u_{*} \mu} } \\
= & 1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j=1}^{r} u\left(n_{j}\right) \otimes \psi_{j}\left(l_{1}, l_{2}\right)+u\left(n_{r+1}\right) \otimes \psi_{r+1}\left(l_{1}, l_{2}\right) \\
= & 1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j=1}^{r}\left(m_{j}, \psi\left(\bar{m}_{j}\right)\right)_{q} \otimes \psi_{j}\left(l_{1}, l_{2}\right)+n_{r+1} \otimes \psi_{r+1}\left(l_{1}, l_{2}\right) \\
= & 1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j=1}^{r}\left(m_{j}, 0\right)_{q} \otimes \psi_{j}\left(l_{1}, l_{2}\right)+\sum_{j=1}^{r}\left(0, \psi\left(\bar{m}_{j}\right)\right)_{q} \otimes \psi_{j}\left(l_{1}, l_{2}\right)+n_{r+1} \otimes \psi_{r+1}\left(l_{1}, l_{2}\right) \\
= & 1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j=1}^{r} n_{j} \otimes \psi_{j}\left(l_{1}, l_{2}\right)+n_{r+1} \otimes \psi_{r+1}\left(l_{1}, l_{2}\right)+\sum_{j=1}^{k} \psi\left(\bar{m}_{j}\right) n_{r+1} \otimes \psi_{j}\left(l_{1}, l_{2}\right) \\
= & {\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\mu}+\sum_{j=1}^{k} \psi\left(\bar{m}_{j}\right) n_{r+1} \otimes \psi_{j}\left(l_{1}, l_{2}\right) } \\
= & {\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\mu}+\sum_{j=1}^{k} n_{r+1} \otimes \psi\left(\bar{m}_{j}\right) \psi_{j}\left(l_{1}, l_{2}\right) } \\
= & {\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\mu}+I\left(\sum_{j=1}^{k} 1 \otimes \psi\left(\bar{m}_{j}\right) \psi_{j}\left(l_{1}, l_{2}\right)\right) } \\
= & {\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\mu}+I \circ \rho\left(l_{1}, l_{2}\right) \text { where } \rho\left(l_{1}, l_{2}\right)=\sum_{j=1}^{k} 1 \otimes \psi\left(\bar{m}_{j}\right) \psi_{j}\left(l_{1}, l_{2}\right) . }
\end{aligned}
$$

Since μ extends λ, we have

$$
\begin{aligned}
{\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda} } & =\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{p_{*} \mu} \\
& =1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j=1}^{r} p\left(n_{j}\right) \otimes \psi_{j}\left(l_{1}, l_{2}\right)+p\left(n_{r+1}\right) \otimes \psi_{r+1}\left(l_{1}, l_{2}\right) \\
& =1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j=1}^{r} m_{j} \otimes \psi_{j}\left(l_{1}, l_{2}\right) .
\end{aligned}
$$

Thus $\alpha_{\lambda, m_{j}^{\prime}}=\psi_{j}$ for $1 \leq j \leq r$, where $\left\{m_{j}^{\prime}\right\}_{1 \leq j \leq r}$ denotes the dual basis (see (3.4.1)).

Then the push-out $p_{2 *} \lambda$ via $p_{2}: A \longrightarrow A / \mathfrak{M}^{2}$ may be written as

$$
\begin{aligned}
{\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{p_{2 *} \lambda} } & =1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j=1}^{r} p_{2}\left(m_{j}\right) \otimes \psi_{j}\left(l_{1}, l_{2}\right) \\
& =1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j=1}^{r} \bar{m}_{j} \otimes \psi_{j}\left(l_{1}, l_{2}\right)
\end{aligned}
$$

So, $\alpha_{p_{2 *} \lambda, \bar{m}_{j}^{\prime}}=\psi_{j}$ and $a_{p_{2 *} \lambda, \bar{m}_{j}^{\prime}}=\left[\psi_{j}\right]$, the cohomology class of ψ_{j} for $1 \leq j \leq k$. Thus $\rho\left(l_{1}, l_{2}\right)=\sum_{j=1}^{k} 1 \otimes \psi\left(\bar{m}_{j}\right) \psi_{j}\left(l_{1}, l_{2}\right)=\sum_{j=1}^{k} 1 \otimes \psi\left(\bar{m}_{j}\right) \alpha_{p_{2 *} \lambda, \bar{m}_{j}^{\prime}}\left(l_{1}, l_{2}\right)$. Now

$$
d \lambda(\psi)=d \lambda\left(\sum_{j=1}^{k} \psi\left(\bar{m}_{j}\right) m_{j}^{\prime}\right)=\sum_{j=1}^{k} \psi\left(\bar{m}_{j}\right) d \lambda\left(\bar{m}_{j}^{\prime}\right)=\sum_{j=1}^{k} \psi\left(\bar{m}_{j}\right) a_{p_{2 *} \lambda, \bar{m}_{j}^{\prime}}
$$

This shows that $d \lambda(\psi)$ is represented by the cochain ρ.
Corollary 4.3.2. Suppose that for a deformation λ of the Leibniz algebra L with base A, the differential $d \lambda:\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime} \longrightarrow H L^{2}(L ; L)$ is onto. Then the group of automorphisms \mathcal{A} of the extension 4.2.1) operates transitively on the set S of equivalence classes of deformations μ of L with base B such that $p_{*} \mu=\lambda$.

Remark 4.3.3. If μ and μ^{\prime} are two extensions of λ then the difference $[-,-]_{\mu^{\prime}}-[-,-]_{\mu}$ determines a cocycle representing an element in $H L^{2}(L ; L)$. Now if the differential map $d \lambda:\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime} \longrightarrow H L^{2}(L ; L)$ is onto then we have an element $\psi \in\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime}$ corresponding to an element $u \in \mathcal{A}$ so that

$$
[-,-]_{u_{*} \mu}-[-,-]_{\mu}=d \lambda(\psi)=[-,-]_{\mu^{\prime}}-[-,-]_{\mu}
$$

which gives $[-,-]_{u_{* \mu}}=[-,-]_{\mu^{\prime}}$. Thus it follows that for a deformation λ of the Leibniz algebra L with base $(A, \mathfrak{M}) \in \mathcal{C}$, if the differential $d \lambda:\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime} \longrightarrow H L^{2}(L ; L)$ is onto and if μ exists, then it is unique up to an isomorphism and an automorphism of the extension 4.2.1.

We end this section with the following naturality property of the obstruction map.
Proposition 4.3.4. Suppose $\left(A_{1}, \mathfrak{M}_{1}\right)$ and $\left(A_{2}, \mathfrak{M}_{2}\right)$ are in \mathcal{C} with augmentations ε_{1} and ε_{2} respectively. Let $\phi: A_{2} \longrightarrow A_{1}$ be an algebra homomorphism with $\phi(1)=1$ and $\varepsilon_{1} \circ \phi=\varepsilon_{2}$. Suppose λ_{2} is a deformation of a Leibniz algebra L with base A_{2} and $\lambda_{1}=\phi_{*} \lambda_{2}$ is the push-out via ϕ. Then the diagram in Figure 4.1 commutes.
Proof. Let $\left[\psi_{A_{1}}\right] \in H_{\text {Harr }}^{2}\left(A_{1} ; \mathbb{K}\right)$ and $\left[\psi_{A_{2}}\right]=\phi^{*}\left(\left[\psi_{A_{1}}\right]\right) \in H_{\text {Harr }}^{2}\left(A_{2} ; \mathbb{K}\right)$ correspond to the classes of 1 - dimensional extensions of A_{1} and A_{2}, represented by

$$
0 \longrightarrow \mathbb{K} \xrightarrow{i_{k}} B_{k} \xrightarrow{p_{k}} A_{k} \longrightarrow 0, \quad k=1,2
$$

Figure 4.1:
Fix some sections $q_{k}: A_{k} \longrightarrow B_{k}$ of p_{k} for $k=1,2$. Then, as in (4.2.2), we get \mathbb{K}-module isomorphisms $B_{k} \cong A_{k} \oplus \mathbb{K}$. Let $(a, x)_{q_{k}}$ denote the inverse of (a, x) under the above isomorphisms. The algebra structures on B_{k} are determined as in (4.2.3).

Let $I_{k}=\left(i_{k} \otimes i d\right), P_{k}=\left(p_{k} \otimes i d\right)$ and $E_{k}=\left(\hat{\varepsilon}_{k} \otimes i d\right)$, where $\hat{\varepsilon}_{k}=\left(\varepsilon_{k} \circ p_{k}\right)$ for $k=1,2$. Suppose \mathfrak{M}_{k} is the unique maximal ideal in A_{k}. Then $\mathfrak{N}_{k}=p_{k}^{-1}\left(\mathfrak{M}_{k}\right)$ is the unique maximal ideal of B_{k} (cf. Proposition (2.3.5). Let $\left\{m_{k i}\right\}_{1 \leq i \leq r_{k}}$ be a basis of \mathfrak{M}_{k} and $\left\{n_{k i}\right\}_{1 \leq i \leq r_{k}+1}$ a basis of \mathfrak{N}_{k} for $k=1,2$ (as obtained in Section 4.2).

Thus $n_{k i}=\left(m_{k i}, 0\right)_{q_{k}}$ for $1 \leq i \leq r_{k}$ and $n_{k\left(r_{k}+1\right)}=(0,1)_{q_{k}}$. Let $\left\{\xi_{k i}\right\}_{1 \leq i \leq r_{k}}$ be the dual basis of $\left\{m_{k i}\right\}$. As in (3.5.2), the Leibniz bracket on $A_{2} \otimes L$ may be written as

$$
\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda_{2}}=1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r_{2}} m_{2 i} \otimes \psi_{i}^{2}\left(l_{1}, l_{2}\right) \text { for } l_{1}, l_{2} \in L
$$

where $\psi_{i}^{2}=\alpha_{\lambda_{2}, \xi_{2 i}}$. Let $\phi\left(m_{2 i}\right)=\sum_{j=1}^{r_{1}} c_{i, j} m_{1 j}$ where $c_{i, j} \in \mathbb{K}$ for $1 \leq i \leq r_{2}$. Then the push-out $\lambda_{1}=\phi_{*} \lambda_{2}$ on $A_{1} \otimes L$ may be written as (cf. (3.3.2))

$$
\begin{aligned}
{\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda_{1}} } & =1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r_{2}}\left(\sum_{j=1}^{r_{1}} c_{i, j} m_{1 j}\right) \otimes \psi_{i}^{2}\left(l_{1}, l_{2}\right) \\
& =1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j=1}^{r_{1}} m_{1 j} \otimes \psi_{j}^{1}\left(l_{1}, l_{2}\right) \text { for } l_{1}, l_{2} \in L
\end{aligned}
$$

where $\psi_{j}^{1} \in C L^{2}(L ; L)$ is defined by $\psi_{j}^{1}\left(l_{1}, l_{2}\right)=\sum_{i=1}^{r_{2}} c_{i, j} \psi_{i}^{2}\left(l_{1}, l_{2}\right)$ for $l_{1}, l_{2} \in L$.
For any 2-cochain $\chi \in C L^{2}(L ; L)$, let $\{-,-\}_{k}:\left(B_{k} \otimes L\right)^{\otimes 2} \longrightarrow B_{k} \otimes L$ be the B_{k}-bilinear operation on $B_{k} \otimes L$ lifting λ_{k}, defined by

$$
\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}_{k}=1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r_{k}} n_{k i} \otimes \psi_{i}^{k}\left(l_{1}, l_{2}\right)+n_{k\left(r_{k}+1\right)} \chi\left(l_{1}, l_{2}\right)
$$

for $k=1,2$ and $l_{1}, l_{2} \in L$. We know that $\{-,-\}_{k}$ satisfies properties (i) and (ii) of (4.2.4) (Lemma 4.2.1).

Define $\psi: B_{2} \cong\left(A_{2} \oplus \mathbb{K}\right) \longrightarrow B_{1} \cong\left(A_{1} \oplus \mathbb{K}\right)$ by $\psi\left((a, x)_{q_{2}}\right)=(\phi(a), x)_{q_{1}}$ for
$(a, x)_{q_{2}} \in B_{2}$. It is clear that ψ is a \mathbb{K}-algebra homomorphism. Because, for $1 \leq j, k \leq r_{2}$

$$
\begin{aligned}
\psi\left(n_{2 j} n_{2 k}\right) & =\psi\left(\left(m_{2 j}, 0\right)_{q_{2}}\left(m_{2 k}, 0\right)_{q_{2}}\right) \\
& =\psi\left(m_{2 j} m_{2 k}, \psi_{A_{2}}\left(m_{2 j}, m_{2 k}\right)\right)_{q_{2}} \\
& =\left(\phi\left(m_{2 j} m_{2 k}\right), \psi_{A_{1}}\left(\phi\left(m_{2 j}\right), \phi\left(m_{2 k}\right)\right)\right)_{q_{1}} \quad\left(\text { since }\left[\psi_{A_{2}}\right]=\phi^{*}\left[\psi_{A_{1}}\right]\right) \\
& =\left(\phi\left(m_{2 j}\right) \phi\left(m_{2 k}\right), \psi_{A_{1}}\left(\phi\left(m_{2 j}\right), \phi\left(m_{2 k}\right)\right)\right)_{q_{1}} \\
& =\left(\phi\left(m_{2 j}\right), 0\right)_{q_{1}}\left(\phi\left(m_{2 k}\right), 0\right)_{q_{1}} \\
& =\psi\left(n_{2 j}\right) \psi\left(n_{2 k}\right)
\end{aligned}
$$

Moreover note that $\psi\left(n_{2 j} n_{2\left(r_{2}+1\right)}\right)=\psi\left(n_{2 j}\right) \psi\left(n_{2\left(r_{2}+1\right)}\right)$ for any $j, 1 \leq j \leq r_{k}$ as $n_{k j} n_{k\left(r_{k}+1\right)}=0, k=1,2$.

We claim that $(\psi \otimes i d)\left(\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}_{2}\right)=\left\{\psi \otimes i d\left(1 \otimes l_{1}\right), \psi \otimes i d\left(1 \otimes l_{2}\right)\right\}_{1}$ for $l_{1}, l_{2} \in L$. Now

$$
\begin{aligned}
& (\psi \otimes i d)\left(\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}_{2}\right) \\
= & 1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r_{2}} \psi\left(n_{2 i}\right) \otimes \psi_{i}^{2}\left(l_{1}, l_{2}\right)+\psi\left(n_{2\left(r_{2}+1\right)}\right) \otimes \chi\left(l_{1}, l_{2}\right) \\
= & 1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r_{2}}\left(\phi\left(m_{2 i}\right), 0\right)_{q_{1}} \otimes \psi_{i}^{2}\left(l_{1}, l_{2}\right)+\psi\left(n_{2\left(r_{2}+1\right)}\right) \otimes \chi\left(l_{1}, l_{2}\right) \\
= & 1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r_{2}}\left(\sum_{j=1}^{r_{1}} c_{i j} m_{1 j}, 0\right)_{q_{1}} \otimes \psi_{i}^{2}\left(l_{1}, l_{2}\right)+n_{1\left(r_{1}+1\right)} \otimes \chi\left(l_{1}, l_{2}\right) \\
& \left(\phi\left(m_{2 i}\right)=\sum_{j=1}^{r_{1}} c_{i j} m_{1 j} \text { and } \psi\left(n_{2\left(r_{2}+1\right)}\right)=\psi\left((0,1)_{q_{2}}\right)=(\phi(0), 1)_{q_{1}}=n_{1\left(r_{1}+1\right)}\right) \\
= & 1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r_{2}}\left(\sum_{j=1}^{r_{1}} c_{i j} n_{1 j}\right) \otimes \psi_{i}^{2}\left(l_{1}, l_{2}\right)+n_{1\left(r_{1}+1\right)} \otimes \chi\left(l_{1}, l_{2}\right) \\
= & 1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j=1}^{r_{1}} n_{1 j} \otimes \psi_{j}^{1}\left(l_{1}, l_{2}\right)+n_{1\left(r_{1}+1\right)} \otimes \chi\left(l_{1}, l_{2}\right) \\
= & \left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}_{1} \\
= & \left\{\psi \otimes i d\left(1 \otimes l_{1}\right), \psi \otimes i d\left(1 \otimes l_{2}\right)\right\}_{1}, \text { which proves our claim. }
\end{aligned}
$$

Let ϕ_{k} be defined by $\{-,-\}_{k}$ as in (4.2.7) and $\bar{\phi}_{k}$ the corresponding cocycle as in (4.2.9). Then

$$
\begin{align*}
& (\psi \otimes i d) \circ \phi_{2}\left(1 \otimes l_{1}, 1 \otimes l_{2}, 1 \otimes l_{3}\right) \\
& =(\psi \otimes i d)\left(\left\{1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}_{2}\right\}_{2}-\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}_{2}, 1 \otimes l_{3}\right\}_{2}\right. \\
& \left.+\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}_{2}, 1 \otimes l_{2}\right\}_{2}\right) \\
& =\left\{1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}_{1}\right\}_{1}-\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}_{1}, 1 \otimes l_{3}\right\}_{1} \tag{4.3.8}\\
& +\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}_{1}, 1 \otimes l_{2}\right\}_{1} \\
& =\phi_{1}\left(1 \otimes l_{1}, 1 \otimes l_{2}, 1 \otimes l_{3}\right) \\
& =n_{1\left(r_{1}+1\right)} \otimes \bar{\phi}_{1}\left(l_{1}, l_{2}, l_{3}\right) \text {, }
\end{align*}
$$

From (4.3.8) and (4.3.9) we get, $\bar{\phi}_{1}=\bar{\phi}_{2}$.
Therefore, $\theta_{\lambda_{1}}\left(\left[\psi_{A_{1}}\right]\right)=\left[\bar{\phi}_{1}\right]=\left[\bar{\phi}_{2}\right]=\theta_{\lambda_{2}}\left(\left[\psi_{A_{2}}\right]\right)=\theta_{\lambda_{2}} \circ \phi^{*}\left(\left[\psi_{A_{1}}\right]\right)$.
Hence $\theta_{\lambda_{1}}=\theta_{\lambda_{2}} \circ \phi^{*}$.

4.4 Extension of a deformation of Leibniz algebra homomorphisms

This section is analogous to Section 4.2 We extend the results of Section 4.2 to the case of a Leibniz algebra homomorphism.

Recall that a deformation $\mathfrak{D}=\left(\lambda, \mu ; f_{\lambda \mu}\right)$ of a Leibniz algebra homomorphism f : $L \longrightarrow M$ with base A consists of a deformation λ of L, a deformation μ of M with base A and a Leibniz algebra homomorphism $f_{\lambda \mu}:(A \otimes L, \lambda) \longrightarrow(A \otimes M, \mu)$.

Let $\mathfrak{D}=\left(\lambda, \mu ; f_{\lambda \mu}\right)$ be a deformation of a Leibniz algebra homomorphism $f: L \rightarrow M$ with base $(A, \mathfrak{M}) \in \mathcal{C}$. Let $\varepsilon: A \longrightarrow \mathbb{K}$ be the augmentation of A. We fix a cohomology class $[\psi] \in H_{\text {Harr }}^{2}(A ; \mathbb{K})$. Let

$$
0 \longrightarrow \mathbb{K} \xrightarrow{i} B \xrightarrow{p} A \longrightarrow 0
$$

represents the isomorphism class of 1-dimensional extension of A corresponding to $[\psi]$. As before, we consider the problem of extending \mathfrak{D} from the base A to the base B. We follow the notations of Section 4.2 .

As in Chapter 3, (3.4.1) and (3.5.1), let $\psi_{j}^{\lambda}=\alpha_{\lambda, \xi_{j}} \in C L^{2}(L ; L), \psi_{j}^{\mu}=\alpha_{\mu, \xi_{j}} \in$ $C L^{2}(M ; M)$ and $f_{j}=f_{\lambda \mu, \xi_{j}} \in C L^{1}(L ; M)$ for $1 \leq j \leq r$. Then by (3.4.2) the brackets
$[-,-]_{\lambda}$ and $[-,-]_{\mu}$ can be written as

$$
\begin{gathered}
{\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda}=1 \otimes\left[l_{1}, l_{2}\right]+\sum_{j=1}^{r} m_{j} \otimes \psi_{j}^{\lambda}\left(l_{1}, l_{2}\right) \text { for } l_{1}, l_{2} \in L} \\
\text { and }\left[1 \otimes x_{1}, 1 \otimes x_{2}\right]_{\mu}=1 \otimes\left[x_{1}, x_{2}\right]+\sum_{j=1}^{r} m_{j} \otimes \psi_{j}^{\mu}\left(x_{1}, x_{2}\right) \text { for } x_{1}, x_{2} \in M .
\end{gathered}
$$

Also by (3.5.2),

$$
f_{\lambda \mu}(1 \otimes l)=1 \otimes f(l)+\sum_{j=1}^{r} m_{i} \otimes f_{j}(l)
$$

Using an arbitrary element $\left(\psi_{L}, \psi_{M}\right) \in C L^{2}(L ; L) \times C L^{2}(M ; M)$ we define B-bilinear operations,

$$
\{-,-\}_{L}:(B \otimes L)^{\otimes 2} \longrightarrow B \otimes L \text { and }\{-,-\}_{M}:(B \otimes M)^{\otimes 2} \longrightarrow B \otimes M
$$

as follows:

$$
\left\{b_{1} \otimes l_{1}, b_{2} \otimes l_{2}\right\}_{L}=b_{1} b_{2} \otimes\left[l_{1}, l_{2}\right]+\sum_{j=1}^{r} b_{1} b_{2} n_{j} \otimes \alpha_{\lambda, \xi_{j}}\left(l_{1}, l_{2}\right)+b_{1} b_{2} n_{r+1} \otimes \psi_{L}\left(l_{1}, l_{2}\right)
$$

and $\left\{b_{1} \otimes x_{1}, b_{2} \otimes x_{2}\right\}_{M}=b_{1} b_{2} \otimes\left[x_{1}, x_{2}\right]+\sum_{j=1}^{r} b_{1} b_{2} n_{j} \otimes \alpha_{\mu, \xi_{j}}\left(x_{1}, x_{2}\right)$

$$
+b_{1} b_{2} n_{r+1} \otimes \psi_{M}\left(x_{1}, x_{2}\right)
$$

Moreover, we have a B-linear map $\tilde{f}: B \otimes L \longrightarrow B \otimes M$ defined by

$$
\tilde{f}(b \otimes l)=b \otimes f(l)+\sum_{j=1}^{r} b n_{j} \otimes f_{j}(l)
$$

Let I, P, E be the linear maps as defined in Section 4.2, and I_{1}, P_{1} and E_{1} denote the corresponding maps obtained by replacing L by M.

We claim that the triple $\left(\{-,-\}_{L},\{-,-\}_{M} ; \tilde{f}\right)$ satisfy the following identities.
(i) $P\left\{l_{1}, l_{2}\right\}_{L}=\left[P\left(l_{1}\right), P\left(l_{2}\right)\right]_{\lambda}$ and $P_{1}\left\{x_{1}, x_{2}\right\}_{M}=\left[P_{1}\left(x_{1}\right), P_{1}\left(x_{2}\right)\right]_{\mu}$
for $l_{1}, l_{2} \in B \otimes L$, and $x_{1}, x_{2} \in B \otimes M$.
(ii) $\left\{I(l), l_{1}\right\}_{L}=I\left[l, E\left(l_{1}\right)\right]$ for $l \in L, l_{1} \in B \otimes L$ and

$$
\begin{equation*}
\left\{I_{1}(x), x_{1}\right\}_{M}=I_{1}\left[x, E_{1}\left(x_{1}\right)\right] \text { for } x \in M, x_{1} \in B \otimes M \tag{4.4.1}
\end{equation*}
$$

$(i i i)(\hat{\varepsilon} \otimes i d) \circ \tilde{f}=f \circ(\hat{\varepsilon} \otimes i d)$.
(iv) $f_{\lambda \mu} \circ P=P_{1} \circ \tilde{f}$.

In view of (4.2.5) and (4.2.6) we need only to verify the last two identities. Let $b \otimes l \in$ $B \otimes L$.
(iii) Then,

$$
\begin{align*}
(\hat{\varepsilon} \otimes i d) \circ \tilde{f}(b \otimes l) & =(\hat{\varepsilon} \otimes i d)\left(b \otimes f(l)+\sum_{j=1}^{r} b n_{j} \otimes f_{j}(l)\right) \\
& =\hat{\varepsilon}(b) \otimes f(l)+\sum_{j=1}^{r} \hat{\varepsilon}\left(b n_{j}\right) \otimes f_{j}(l) \tag{4.4.2}\\
& =\hat{\varepsilon}(b) f(l)+\sum_{j=1}^{r} \hat{\varepsilon}(b) \hat{\varepsilon}\left(n_{j}\right) \otimes f_{j}(l) \\
& =f(\hat{\varepsilon}(b) l) \quad\left(\text { since } n_{j} \in \operatorname{ker}(\hat{\varepsilon}), \quad \hat{\varepsilon}\left(n_{j}\right)=0\right) \\
& =f \circ(\hat{\varepsilon} \otimes i d)(b \otimes l) .
\end{align*}
$$

(iv) We have,

$$
\begin{align*}
f_{\lambda \mu} \circ P(b \otimes l) & =f_{\lambda \mu}(p(b) \otimes l) \\
& =p(b) f_{\lambda \mu}(1 \otimes l) \\
& =p(b)\left(1 \otimes f(l)+\sum_{j=1}^{r} m_{j} \otimes f_{j}(l)\right) \\
& =p(b) \otimes f(l)+\sum_{j=1}^{r} p(b) m_{j} \otimes f_{j}(l) \tag{4.4.3}\\
& =(p \otimes i d)(b \otimes f(l))+\sum_{j=1}^{r} p(b) p\left(n_{j}\right) \otimes f_{j}(l) \\
& =P_{1}(b \otimes f(l))+\sum_{j=1}^{r} P_{1}\left(b n_{j} \otimes f_{j}(l)\right) \\
& =P_{1} \circ \tilde{f}(b \otimes l)
\end{align*}
$$

Therefore the triple $\left(\{-,-\}_{L},\{-,-\}_{M} ; \tilde{f}\right)$ satisfies the conditions in 4.4.1) as claimed.
If in addition the brackets $\{-,-\}_{L}$ and $\{,-\}_{M}$ satisfy the Leibniz relation and the map $\tilde{f}: B \otimes L \longrightarrow B \otimes M$ preserves the respective brackets, then the triple $\left(\{-,-\}_{L},\{-,-\}_{M} ; \tilde{f}\right)$ is a deformation of f with base B extending \mathfrak{D}. Just like the case of Leibniz algebra, this extension process leads to an obstruction map as described below. Consider the \mathbb{K}-linear maps

$$
\phi_{L}:(B \otimes L)^{\otimes 3} \longrightarrow B \otimes L, \quad \phi_{M}:(B \otimes M)^{\otimes 3} \longrightarrow B \otimes M
$$

and $\phi_{f_{\lambda \mu}}:(B \otimes L)^{\otimes 2} \longrightarrow B \otimes M$ given by

$$
\begin{align*}
\phi_{L}\left(l_{1}, l_{2}, l_{3}\right) & =\left\{l_{1},\left\{l_{2}, l_{3}\right\}_{L}\right\}_{L}-\left\{\left\{l_{1}, l_{2}\right\}_{L}, l_{3}\right\}_{L}+\left\{\left\{l_{1}, l_{3}\right\}_{L}, l_{2}\right\}_{L} \\
\phi_{M}\left(x_{1}, x_{2}, x_{3}\right) & =\left\{x_{1},\left\{x_{2}, x_{3}\right\}_{M}\right\}_{M}-\left\{\left\{x_{1}, x_{2}\right\}_{M}, x_{3}\right\}_{M}+\left\{\left\{x_{1}, x_{3}\right\}_{M}, x_{2}\right\}_{M} \tag{4.4.4}\\
\text { and } \phi_{f_{\lambda \mu}}\left(l_{1}, l_{2}\right) & =\tilde{f}\left\{l_{1}, l_{2}\right\}_{L}-\left\{\tilde{f}\left(l_{1}\right), \tilde{f}\left(l_{2}\right)\right\}_{M}
\end{align*}
$$

where $l_{1}, l_{2}, l_{3} \in B \otimes L ; x_{1}, x_{2}, x_{3} \in B \otimes M$. Here ϕ_{L} and ϕ_{M} are the map ϕ for L and M respectively, as defined in (4.2.7) in Section 4.2. As observed before, $\phi_{L}=0$ if and only if $\{-,-\}_{L}$ is a Leibniz bracket on $B \otimes L$, and similarly $\phi_{M}=0$ if and only if $\{-,-\}_{M}$ is a Leibniz bracket on $B \otimes M$. Moreover $\phi_{f_{\lambda \mu}}=0$ if and only if \tilde{f} preserves the B-bilinear operations $\{-,-\}_{L}$ and $\{-,-\}_{M}$.

By (4.2.8) we get, $P \circ \phi_{L}\left(l_{1}, l_{2}, l_{3}\right)=0$ and $P_{1} \circ \phi_{M}\left(x_{1}, x_{2}, x_{3}\right)=0$ for $l_{1}, l_{2}, l_{3} \in B \otimes L$ and $x_{1}, x_{2}, x_{3} \in B \otimes M$.

By the properties (i) and $(i v)$ in (4.4.1) we also have for $l_{1}, l_{2} \in B \otimes L$,

$$
\begin{aligned}
P_{1} \circ \phi_{f_{\lambda \mu}}\left(l_{1}, l_{2}\right) & =P_{1}\left(\tilde{f}\left\{l_{1}, l_{2}\right\}_{L}-\left\{\tilde{f}\left(l_{1}\right), \tilde{f}\left(l_{2}\right)\right\}_{M}\right) \\
& =P_{1} \circ \tilde{f}\left\{l_{1}, l_{2}\right\}_{L}-P_{1} \circ\left\{\tilde{f}\left(l_{1}\right), \tilde{f}\left(l_{2}\right)\right\}_{M} \\
& =f_{\lambda \mu} \circ P\left\{l_{1}, l_{2}\right\}_{L}-\left[P_{1} \circ \tilde{f}\left(l_{1}\right), P_{1} \circ \tilde{f}\left(l_{2}\right)\right]_{\mu} \\
& =f_{\lambda \mu}\left[P\left(l_{1}\right), P\left(l_{2}\right)\right]_{\lambda}-\left[f_{\lambda \mu} \circ P\left(l_{1}\right), f_{\lambda \mu} \circ P\left(l_{2}\right)\right]_{\mu} \\
& =0 \quad\left(\text { as } f_{\lambda \mu} \text { is a Leibniz algebra homomorphism }\right) .
\end{aligned}
$$

Therefore ϕ_{L} and ϕ_{M} take values in $\operatorname{ker}(P)$ and $\operatorname{ker}\left(P_{1}\right)$ respectively, and $\phi_{f_{\lambda \mu}}$ takes values in $\operatorname{ker}\left(P_{1}\right)$. As observed in Section 4.2, we have $\phi_{L}\left(l_{1}, l_{2}, l_{3}\right)=0$ whenever one of the arguments is in $\operatorname{ker}(E)$ and similarly $\phi_{M}\left(x_{1}, x_{2}, x_{3}\right)=0$ whenever one of the arguments is in $\operatorname{ker}\left(E_{1}\right)$. This is because, $\operatorname{ker}(P)=\operatorname{im}(i) \otimes L=\mathbb{K} n_{r+1} \otimes L$, $\operatorname{ker}\left(P_{1}\right)=\operatorname{im}(i) \otimes M=\mathbb{K} n_{r+1} \otimes M$, and $n_{j} n_{r+1}=0$ for $1 \leq j \leq r+1$. Moreover $\phi_{f_{\lambda \mu}}=0$ whenever one of the arguments is in $\operatorname{ker}(E)$. For suppose $l_{1}=(b \otimes l) \in \operatorname{ker}(E) \subseteq B \otimes L$. Since $\operatorname{ker}(E)=\operatorname{ker}(\hat{\varepsilon}) \otimes L=p^{-1}(\operatorname{ker}(\varepsilon)) \otimes L=\mathfrak{M}_{B} \otimes L$, we can write $l_{1}=\sum_{j=1}^{r+1} n_{j} \otimes l_{j}^{\prime}$ with $l_{j}^{\prime} \in L ; 1 \leq j \leq r+1$. Then for $l_{2} \in B \otimes L$, we get

$$
\phi_{f_{\lambda \mu}}\left(l_{1}, l_{2}\right)=\phi_{f_{\lambda \mu}}\left(\sum_{j=1}^{r+1} n_{j} \otimes l_{j}^{\prime}, l_{2}\right)=\sum_{j=1}^{r+1} n_{j} \phi_{f_{\lambda \mu}}\left(l_{j}^{\prime}, l_{2}\right)=0
$$

Note that $\phi_{f_{\lambda \mu}}\left(l_{j}^{\prime}, l_{2}\right) \in \operatorname{ker}\left(P_{1}\right)=i(\mathbb{K}) \otimes M$ and for any element $k \in \mathbb{K}$ and $x \in M$,

$$
\begin{aligned}
& n_{j} i(k) \otimes x=i\left(p\left(n_{j}\right) k\right) \otimes x=i\left(m_{j} k\right) \otimes x=i\left(\varepsilon\left(m_{j}\right) k\right) \otimes x=0 \text { for } 1 \leq j \leq r \\
& \text { and } n_{r+1} i(k) \otimes x=k n_{r+1}^{2} \otimes x=0 \quad\left(m_{j} \in \mathfrak{M} \subset A \text { and } m_{j} k=\varepsilon\left(m_{j}\right) k\right) .
\end{aligned}
$$

A similar argument shows that $\phi_{f_{\lambda \mu}}=0$ whenever $l_{2} \in \operatorname{ker}(E)$.

Thus we have the following induced linear maps

$$
\begin{align*}
& \quad \tilde{\phi}_{L}:\left(\frac{B \otimes L}{\operatorname{ker}(E)}\right)^{\otimes 3} \longrightarrow \operatorname{ker}(P), \quad \tilde{\phi}_{M}:\left(\frac{B \otimes M}{\operatorname{ker}\left(E_{1}\right)}\right)^{\otimes 3} \longrightarrow \operatorname{ker}\left(P_{1}\right), \\
& \text { and } \tilde{\phi}_{f_{\lambda \mu}}:\left(\frac{B \otimes L}{\operatorname{ker}(E)}\right)^{\otimes 2} \longrightarrow \operatorname{ker}\left(P_{1}\right) \tag{4.4.5}
\end{align*}
$$

determined by the values of ϕ_{L}, ϕ_{M} and $\phi_{f_{\lambda \mu}}$ on the coset representatives respectively. Let α denote the isomorphism $L \cong \frac{B \otimes L}{\operatorname{ker}(E)}$ as defined in Section4.2. Similarly we denote by α_{1} the isomorphism $M \cong \frac{B \otimes M}{\operatorname{ker}\left(E_{1}\right)}$ induced by the linear maps E and E_{1} respectively. Also recall that we denoted the isomorphism $\operatorname{ker}(P) \cong L$ by $\beta ; \beta\left(k n_{r+1} \otimes l\right)=k l$, for $k \in \mathbb{K}$ and $l \in L$. Similarly, let β_{1} denote the isomorphism $\operatorname{ker}\left(P_{1}\right) \cong M$.

We use these isomorphisms and the linear maps $\tilde{\phi}_{L}, \tilde{\phi}_{M}$ to get cochains $\bar{\phi}_{L} \in$ $C L^{3}(L ; L), \bar{\phi}_{M} \in C L^{3}(M ; M)$ as in 4.2.9). Moreover, the linear map $\tilde{\phi}_{f_{\lambda \mu}}$ defines a cochain $\bar{\phi}_{f_{\lambda \mu}} \in C L^{2}(L ; M)$ by $\beta_{1} \circ \bar{\phi}_{f_{\lambda \mu}} \circ \alpha^{\otimes 2}$.

Thus for $l_{1}, l_{2}, l_{3} \in L$ and $x_{1}, x_{2}, x_{3} \in M$, we have

$$
\begin{align*}
n_{r+1} \otimes \bar{\phi}_{L}\left(l_{1}, l_{2}, l_{3}\right) & =\phi_{L}\left(1 \otimes l_{1}, 1 \otimes l_{2}, 1 \otimes l_{3}\right) \\
n_{r+1} \otimes \bar{\phi}_{M}\left(x_{1}, x_{2}, x_{3}\right) & =\phi_{M}\left(1 \otimes x_{1}, 1 \otimes x_{2}, 1 \otimes x_{3}\right) \tag{4.4.6}\\
\text { and } n_{r+1} \otimes \bar{\phi}_{f_{\lambda \mu}}\left(l_{1}, l_{2}\right) & =\phi_{f_{\lambda \mu}}\left(1 \otimes l_{1}, 1 \otimes l_{2}\right)
\end{align*}
$$

The resulting 3-cochain $\left(\bar{\phi}_{L}, \bar{\phi}_{M} ; \bar{\phi}_{f_{\lambda \mu}}\right) \in C L^{3}(f ; f)$ is called the obstruction cochain for the triple $\left(\{-,-\}_{L},\{-,-\}_{M} ; \tilde{f}\right)$ in extending the deformation \mathfrak{D} of f with base A to a deformation with base B.

Next we show that the obstruction cochain $\left(\bar{\phi}_{L}, \bar{\phi}_{M} ; \bar{\phi}_{f_{\lambda \mu}}\right) \in C L^{3}(f ; f)$ is a 3-cocycle. For this we shall need the following observation.

Lemma 4.4.1. For the triple $\left(\{-,-\}_{L},\{-,-\}_{M} ; \tilde{f}\right)$ satisfying 4.4.1) we have
(i) $\tilde{f}(1 \otimes l)-1 \otimes f(l) \in \operatorname{ker}\left(E_{1}\right)$
(ii) $\left\{1 \otimes l, 1 \otimes l^{\prime}\right\}_{L}-1 \otimes\left[l, l^{\prime}\right] \in \operatorname{ker}(E)$
(iii) $\tilde{f}\left\{1 \otimes l, 1 \otimes l^{\prime}\right\}_{L}-\left\{\tilde{f}(1 \otimes l), \tilde{f}\left(1 \otimes l^{\prime}\right)\right\}_{M} \in \operatorname{ker}\left(P_{1}\right)$,
for $l, l^{\prime} \in L$.
Proof. For $l \in L$, we have

$$
\begin{aligned}
E_{1} \circ \tilde{f}(1 \otimes l) & =f \circ E(1 \otimes l) \quad(\text { by }(i i i) \text { of (4.4.1) }) \\
& =f(\hat{\varepsilon}(1) \otimes l) \\
& =f(l) \\
& =E_{1}(1 \otimes f(l)) . \text { This proves }(i)
\end{aligned}
$$

For $l, l^{\prime} \in L$,
$E\left(\left\{1 \otimes l, 1 \otimes l^{\prime}\right\}_{L}\right)$
$=(\varepsilon \otimes i d) \circ P\left\{1 \otimes l, 1 \otimes l^{\prime}\right\}_{L}$
$=(\varepsilon \otimes i d)\left[P(1 \otimes l), P\left(1 \otimes l^{\prime}\right)\right]_{\lambda} \quad($ by (i) of (4.4.1) $)$
$=(\varepsilon \otimes i d)\left[1 \otimes l, 1 \otimes l^{\prime}\right]_{\lambda}$
$=1 \otimes\left[l, l^{\prime}\right](E=(\varepsilon \otimes i d): A \otimes L \longrightarrow \mathbb{K} \otimes L \cong L$ is a Leibniz algebra homomorphism $)$
$=E\left(1 \otimes\left[l, l^{\prime}\right]\right)$, proving $(i i)$.
Finally for $l, l^{\prime} \in L$,

$$
\begin{aligned}
& P_{1} \circ \tilde{f}\left\{1 \otimes l, 1 \otimes l^{\prime}\right\}_{L} \\
= & f_{\lambda \mu} \circ P\left\{1 \otimes l, 1 \otimes l^{\prime}\right\}_{L}(\text { by }(i v) \text { in (4.4.1) }) \\
= & f_{\lambda \mu}\left(\left[P(1 \otimes l), P\left(1 \otimes l^{\prime}\right)\right]_{\lambda}\right)(\text { by }(i) \text { in (4.4.1) }) \\
= & f_{\lambda \mu}\left(\left[1 \otimes l, 1 \otimes l^{\prime}\right]_{\lambda}\right) \\
= & {\left[f_{\lambda \mu}(1 \otimes l), f_{\lambda \mu}\left(1 \otimes l^{\prime}\right)\right]_{\mu} } \\
= & {\left[f_{\lambda \mu} \circ P(1 \otimes l), f_{\lambda \mu} \circ P\left(1 \otimes l^{\prime}\right)\right]_{\mu} } \\
= & {\left[P_{1} \circ \tilde{f}(1 \otimes l), P_{1} \circ \tilde{f}\left(1 \otimes l^{\prime}\right)\right]_{\mu} } \\
= & P_{1}\left\{\tilde{f}(1 \otimes l), \tilde{f}\left(1 \otimes l^{\prime}\right)\right\}_{M} .
\end{aligned}
$$

This proves (iii).
Proposition 4.4.2. The obstruction cochain $\left(\bar{\phi}_{L}, \bar{\phi}_{M} ; \bar{\phi}_{f_{\lambda \mu}}\right)$ is a 3 -cocycle in $C L^{3}(f ; f)$.
Proof. By the definition of the coboundary d in (1.4.1) we have

$$
d\left(\bar{\phi}_{L}, \bar{\phi}_{M} ; \bar{\phi}_{f_{\lambda \mu}}\right)=\left(\delta \bar{\phi}_{L}, \delta \bar{\phi}_{M} ; f \bar{\phi}_{L}-\bar{\phi}_{M} f-\delta \bar{\phi}_{f_{\lambda \mu}}\right)
$$

Thus it is enough to show that $\delta \bar{\phi}_{L}=0=\delta \bar{\phi}_{M}$, and $\delta \bar{\phi}_{f_{\lambda \mu}}=f \bar{\phi}_{L}-\bar{\phi}_{M} f$. The result will follow if we show that

$$
\beta^{-1} \circ \delta \bar{\phi}_{L}=0=\beta_{1}^{-1} \circ \delta \bar{\phi}_{M} \quad \text { and } \beta_{1}^{-1} \circ \delta \bar{\phi}_{f_{\lambda \mu}}=\beta_{1}^{-1} \circ\left(f \bar{\phi}_{L}-\bar{\phi}_{M} f\right)
$$

First two equalities follows from Proposition 4.2.2. Thus we only need to verify the last equality. For $l_{1}, l_{2}, l_{3} \in L$,

$$
\begin{align*}
\beta_{1}^{-1} \circ \delta \bar{\phi}_{f_{\lambda \mu}}\left(l_{1}, l_{2}, l_{3}\right)= & \beta_{1}^{-1}\left[f\left(l_{1}\right), \bar{\phi}_{f_{\lambda \mu}}\left(l_{2}, l_{3}\right)\right]+\beta_{1}^{-1}\left[\bar{\phi}_{f_{\lambda \mu}}\left(l_{1}, l_{3}\right), f\left(l_{2}\right)\right] \\
& -\beta_{1}^{-1}\left[\bar{\phi}_{f_{\lambda \mu}}\left(l_{1}, l_{2}\right), f\left(l_{3}\right)\right]-\beta_{1}^{-1}\left(\bar{\phi}_{f_{\lambda \mu}}\left(\left[l_{1}, l_{2}\right], l_{3}\right)\right) \tag{4.4.7}\\
& +\beta_{1}^{-1}\left(\bar{\phi}_{f_{\lambda \mu}}\left(\left[l_{1}, l_{3}\right], l_{2}\right)\right)+\beta_{1}^{-1}\left(\bar{\phi}_{f_{\lambda \mu}}\left(l_{1},\left[l_{2}, l_{3}\right]\right)\right)
\end{align*}
$$

Let us compute the terms on the right-hand side of (4.4.7). The first term is

$$
\begin{align*}
& \beta_{1}^{-1}\left[f\left(l_{1}\right), \bar{\phi}_{f_{\lambda \mu}}\left(l_{2}, l_{3}\right)\right] \\
& =n_{r+1} \otimes\left[f\left(l_{1}\right), \bar{\phi}_{f_{\lambda \mu}}\left(l_{2}, l_{3}\right)\right] \\
& =I_{1}\left[f\left(l_{1}\right), \bar{\phi}_{f_{\lambda \mu}}\left(l_{2}, l_{3}\right)\right] \quad\left(i(1)=n_{r+1}\right) \\
& =\left\{I_{1} f\left(l_{1}\right), 1 \otimes \bar{\phi}_{f_{\lambda \mu}}\left(l_{2}, l_{3}\right)\right\}_{M} \quad(\text { by }(i i) \text { of (4.4.1) }) \\
& =\left\{1 \otimes f\left(l_{1}\right), \phi_{f_{\lambda \mu}}\left(1 \otimes l_{2}, 1 \otimes l_{3}\right)\right\}_{M} \\
& \text { (using B-bilinearity of }\{-,-\}_{M} \text { and by (4.4.6)) } \\
& =\left\{1 \otimes f\left(l_{1}\right), \tilde{f}\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}_{L}-\left\{\tilde{f}\left(1 \otimes l_{2}\right), \tilde{f}\left(1 \otimes l_{3}\right)\right\}_{M}\right\}_{M} \quad(\text { by (4.4.4) }) \\
& =\left\{\tilde{f}\left(1 \otimes l_{1}\right)-X_{1}, \tilde{f}\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}_{L}\right\}_{M} \\
& -\left\{1 \otimes f\left(l_{1}\right),\left\{1 \otimes f\left(l_{2}\right)+X_{2}, 1 \otimes f\left(l_{3}\right)+X_{3}\right\}_{M}\right\}_{M} \\
& \text { (by Lemma 4.4.1 }(i) \text { where } X_{1}, X_{2}, X_{3} \in \operatorname{ker}\left(E_{1}\right) \text {) } \\
& =\left\{\tilde{f}\left(1 \otimes l_{1}\right), \tilde{f}\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}_{L}\right\}_{M}-\left\{X_{1},\left\{\tilde{f}\left(1 \otimes l_{2}\right), \tilde{f}\left(1 \otimes l_{3}\right)\right\}_{M}+Z_{2,3}\right\}_{M} \\
& -\left\{1 \otimes f\left(l_{1}\right),\left\{1 \otimes f\left(l_{2}\right)+X_{2}, 1 \otimes f\left(l_{3}\right)+X_{3}\right\}_{M}\right\}_{M} \\
& \text { (by Lemma 4.4.1 (iii) where } Z_{2,3} \in \operatorname{ker}\left(P_{1}\right) \text {) } \\
& =\left\{\tilde{f}\left(1 \otimes l_{1}\right), \tilde{f}\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}_{L}\right\}_{M}-\left\{X_{1},\left\{1 \otimes f\left(l_{2}\right)+X_{2}, 1 \otimes f\left(l_{3}\right)+X_{3}\right\}_{M}\right\}_{M} \\
& -\left\{X_{1}, Z_{2,3}\right\}_{M}-\left\{1 \otimes f\left(l_{1}\right),\left\{1 \otimes f\left(l_{2}\right)+X_{2}, 1 \otimes f\left(l_{3}\right)+X_{3}\right\}_{M}\right\}_{M} \\
& \text { (by Lemma 4.4.1 }(i) \text { where } X_{2}, X_{3} \in \operatorname{ker}\left(E_{1}\right) \text {) } \\
& =\left\{\tilde{f}\left(1 \otimes l_{1}\right), \tilde{f}\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}_{L}\right\}_{M}-\left\{X_{1},\left\{1 \otimes f\left(l_{2}\right), 1 \otimes f\left(l_{3}\right)\right\}_{M}\right\}_{M} \\
& -\left\{X_{1},\left\{1 \otimes f\left(l_{2}\right), X_{3}\right\}_{M}\right\}_{M}-\left\{X_{1},\left\{X_{2}, 1 \otimes f\left(l_{3}\right)\right\}_{M}\right\}_{M}-\left\{X_{1},\left\{X_{2}, X_{3}\right\}_{M}\right\}_{M} \\
& -\left\{X_{1}, Z_{2,3}\right\}_{M}-\left\{1 \otimes f\left(l_{1}\right),\left\{1 \otimes f\left(l_{2}\right), 1 \otimes f\left(l_{3}\right)\right\}_{M}\right\}_{M} \\
& -\left\{1 \otimes f\left(l_{1}\right),\left\{X_{2}, 1 \otimes f\left(l_{3}\right)\right\}_{M}\right\}_{M}-\left\{1 \otimes f\left(l_{1}\right),\left\{1 \otimes f\left(l_{2}\right), X_{3}\right\}_{M}\right\}_{M} \\
& -\left\{1 \otimes f\left(l_{1}\right),\left\{X_{2}, X_{3}\right\}_{M}\right\}_{M} . \tag{4.4.8}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& \beta_{1}^{-1}\left[\bar{\phi}_{f_{\lambda \mu}}\left(l_{1}, l_{3}\right), f\left(l_{2}\right)\right] \\
= & \left\{\tilde{f}\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}_{L}, \tilde{f}\left(1 \otimes l_{2}\right)\right\}_{M}-\left\{\left\{1 \otimes f\left(l_{1}\right), 1 \otimes f\left(l_{3}\right)\right\}_{M}, X_{2}\right\}_{M} \\
& -\left\{\left\{1 \otimes f\left(l_{1}\right), X_{3}\right\}_{M}, X_{2}\right\}_{M}-\left\{\left\{X_{1}, 1 \otimes f\left(l_{3}\right)\right\}_{M}, X_{2}\right\}_{M}-\left\{\left\{X_{1}, X_{3}\right\}_{M}, X_{2}\right\}_{M} \\
& -\left\{Z_{1,3}, X_{2}\right\}_{M}-\left\{\left\{1 \otimes f\left(l_{1}\right), 1 \otimes f\left(l_{3}\right)\right\}_{M}, 1 \otimes f\left(l_{2}\right)\right\}_{M} \\
& -\left\{\left\{X_{1}, 1 \otimes f\left(l_{3}\right)\right\}_{M}, 1 \otimes f\left(l_{2}\right)\right\}_{M}-\left\{\left\{1 \otimes f\left(l_{1}\right), X_{3}\right\}_{M}, 1 \otimes f\left(l_{2}\right)\right\}_{M} \\
& -\left\{\left\{X_{1}, X_{3}\right\}_{M}, 1 \otimes f\left(l_{2}\right)\right\}_{M} \tag{4.4.9}
\end{align*}
$$

and

$$
\begin{align*}
& \beta_{1}^{-1}\left[\bar{\phi}_{f_{\lambda}}\left(l_{1}, l_{2}\right), f\left(l_{3}\right)\right] \\
= & \left\{\tilde{f}\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}_{L}, \tilde{f}\left(1 \otimes l_{3}\right)\right\}_{M}-\left\{\left\{1 \otimes f\left(l_{1}\right), 1 \otimes f\left(l_{2}\right)\right\}_{M}, X_{3}\right\}_{M} \\
& -\left\{\left\{1 \otimes f\left(l_{1}\right), X_{2}\right\}_{M}, X_{3}\right\}_{M}-\left\{\left\{X_{1}, 1 \otimes f\left(l_{2}\right)\right\}_{M}, X_{3}\right\}_{M}-\left\{\left\{X_{1}, X_{2}\right\}_{M}, X_{3}\right\}_{M} \\
& -\left\{Z_{1,2}, X_{3}\right\}_{M}-\left\{\left\{1 \otimes f\left(l_{1}\right), 1 \otimes f\left(l_{2}\right)\right\}_{M}, 1 \otimes f\left(l_{3}\right)\right\}_{M} \\
& -\left\{\left\{X_{1}, 1 \otimes f\left(l_{2}\right)\right\}_{M}, 1 \otimes f\left(l_{3}\right)\right\}_{M}-\left\{\left\{1 \otimes f\left(l_{1}\right), X_{2}\right\}_{M}, 1 \otimes f\left(l_{3}\right)\right\}_{M} \\
& -\left\{\left\{X_{1}, X_{2}\right\}_{M}, 1 \otimes f\left(l_{3}\right)\right\}_{M} . \tag{4.4.10}
\end{align*}
$$

Also

$$
\begin{align*}
& \beta_{1}^{-1}\left(\bar{\phi}_{f_{\lambda \mu}}\left(\left[l_{1}, l_{2}\right], l_{3}\right)\right) \\
= & n_{r+1} \otimes \bar{\phi}_{f_{\lambda \mu}}\left(\left[l_{1}, l_{2}\right], l_{3}\right) \\
= & \phi_{\lambda \mu}\left(1 \otimes\left[l_{1}, l_{2}\right], 1 \otimes l_{3}\right)(\text { by the 3rd expression in (4.4.6i) }) \\
= & \tilde{f}\left\{1 \otimes\left[l_{1}, l_{2}\right], 1 \otimes l_{3}\right\}_{L}-\left\{\tilde{f}\left(1 \otimes\left[l_{1}, l_{2}\right]\right), \tilde{f}\left(1 \otimes l_{3}\right)\right\}_{M} \\
& \quad \quad(\text { by the 3rd expression in (4.4.4) }) \\
= & \tilde{f}\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}_{L}-Y_{1,2}, 1 \otimes l_{3}\right\}_{L}-\left\{\tilde{f}\left(\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}_{L}-Y_{1,2}\right), \tilde{f}\left(1 \otimes l_{3}\right)\right\}_{M} \\
& \quad\left(\text { by Lemma 4.4.1 }(i i) \text { where } Y_{1,2} \in \operatorname{ker}(E)\right) \\
= & \tilde{f}\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}_{L}, 1 \otimes l_{3}\right\}_{L}-\tilde{f}\left\{Y_{1,2}, 1 \otimes l_{3}\right\}_{L}-\left\{\tilde{f}\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}_{L}, \tilde{f}\left(1 \otimes l_{3}\right)\right\}_{M} \\
& +\left\{\tilde{f}\left(Y_{1,2}\right), \tilde{f}\left(1 \otimes l_{3}\right)\right\}_{M} . \tag{4.4.11}
\end{align*}
$$

Similarly,

$$
\begin{align*}
& \beta_{1}^{-1}\left(\bar{\phi}_{f_{\lambda \mu}}\left(\left[l_{1}, l_{3}\right], l_{2}\right)\right) \\
= & \tilde{f}\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}_{L}, 1 \otimes l_{2}\right\}_{L}-\tilde{f}\left\{Y_{1,3}, 1 \otimes l_{2}\right\}_{L} \tag{4.4.12}\\
& -\left\{\tilde{f}\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}_{L}, \tilde{f}\left(1 \otimes l_{2}\right)\right\}_{M}+\left\{\tilde{f}\left(Y_{1,3}\right), \tilde{f}\left(1 \otimes l_{2}\right)\right\}_{M}
\end{align*}
$$

and

$$
\begin{align*}
& \beta_{1}^{-1}\left(\bar{\phi}_{\lambda_{\lambda \mu}}\left(l_{1},\left[l_{2}, l_{3}\right]\right)\right) \\
= & \tilde{f}\left\{1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}_{L}\right\}_{L}-\tilde{f}\left\{1 \otimes l_{1}, Y_{2,3}\right\}_{L} \tag{4.4.13}\\
& -\left\{\tilde{f}\left(1 \otimes l_{1}\right), \tilde{f}\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}_{L}\right\}_{M}+\left\{\tilde{f}\left(1 \otimes l_{1}\right), \tilde{f}\left(Y_{2,3}\right)\right\}_{M} .
\end{align*}
$$

Thus using (4.4.8)-(4.4.13) in (4.4.7) we get

$$
\begin{align*}
& \beta_{1}^{-1} \circ \delta \bar{\phi}_{f_{\lambda \mu}}\left(l_{1}, l_{2}, l_{3}\right) \\
= & -\phi_{M}\left(X_{1}, 1 \otimes f\left(l_{2}\right), 1 \otimes f\left(l_{3}\right)\right)-\phi_{M}\left(X_{1}, 1 \otimes f\left(l_{2}\right), X_{3}\right)-\phi_{M}\left(X_{1}, X_{2}, 1 \otimes f\left(l_{3}\right)\right) \\
& -\phi_{M}\left(X_{1}, X_{2}, X_{3}\right)-\phi_{M}\left(1 \otimes f\left(l_{1}\right), X_{2}, 1 \otimes f\left(l_{3}\right)\right)-\phi_{M}\left(1 \otimes f\left(l_{1}\right), 1 \otimes f\left(l_{2}\right), X_{3}\right) \\
& -\phi_{M}\left(1 \otimes f\left(l_{1}\right), X_{2}, X_{3}\right)+\phi_{f_{\lambda \mu}}\left(Y_{1,2}, 1 \otimes l_{3}\right)-\phi_{f_{\lambda \mu}}\left(Y_{1,3}, 1 \otimes l_{2}\right) \\
& -\phi_{f_{\lambda_{\mu}}}\left(1 \otimes l_{1}, Y_{2,3}\right)-\left\{X_{1}, Z_{2,3}\right\}_{M}-\left\{Z_{1,3}, X_{2}\right\}_{M}+\left\{Z_{1,2}, X_{3}\right\}_{M} \\
& +\tilde{f} \phi_{L}\left(1 \otimes l_{1}, 1 \otimes l_{2}, 1 \otimes l_{3}\right)-\phi_{M}\left(1 \otimes f\left(l_{1}\right), 1 \otimes f\left(l_{2}\right), 1 \otimes f\left(l_{3}\right)\right) . \tag{4.4.14}
\end{align*}
$$

Now recall that $\phi_{M}\left(l_{1}, l_{2}, l_{3}\right)=0$, whenever one of the arguments is in $\operatorname{ker}\left(E_{1}\right)$ and $\phi_{f_{\lambda_{\mu}}}\left(l_{1}, l_{2}\right)=0$, whenever one of the arguments is in $\operatorname{ker}(E)$. Moreover note that $\left\{X_{1}, Z_{2,3}\right\}_{M}=0$ as $\{-,-\}_{M}$ is B-bilinear and $n_{j} n_{r+1}=0$ for $1 \leq j \leq r$. Similarly, $\left\{Z_{1,3}, X_{2}\right\}_{M}=0=\left\{Z_{1,2}, X_{3}\right\}_{M}$.

Therefore from (4.4.14) we get,

$$
\begin{aligned}
& \beta_{1}^{-1} \circ \delta \bar{\phi}_{f_{\lambda \mu}}\left(l_{1}, l_{2}, l_{3}\right) \\
= & \tilde{f} \phi_{L}\left(1 \otimes l_{1}, 1 \otimes l_{2}, 1 \otimes l_{3}\right)-\phi_{M}\left(1 \otimes f\left(l_{1}\right), 1 \otimes f\left(l_{2}\right), 1 \otimes f\left(l_{3}\right)\right) \\
= & \beta_{1}^{-1}\left(f \bar{\phi}_{L}-\bar{\phi}_{M} f\right)\left(l_{1}, l_{2}, l_{3}\right) .
\end{aligned}
$$

This completes the proof.
Proposition 4.4.3. Suppose $\left(\{-,-\}_{L},\{-,-\}_{M} ; \tilde{f}\right)$ and $\left(\{-,-\}_{L}^{\prime},\{-,-\}_{M}^{\prime} ; \tilde{f}^{\prime}\right)$ are any two triples satisfying conditions 4.4.1). Let $\left(\bar{\phi}_{L}, \bar{\phi}_{M} ; \bar{\phi}_{f_{\lambda \mu}}\right)$ and $\left(\bar{\phi}_{L}^{\prime}, \bar{\phi}_{M}^{\prime} ; \bar{\phi}_{f_{\lambda \mu}}^{\prime}\right)$ be the corresponding cocycles determined by $\left(\{-,-\}_{L},\{-,-\}_{M} ; \tilde{f}\right)$ and $\left(\{-,-\}_{L}^{\prime},\{-,-\}_{M}^{\prime} ; \tilde{f}^{\prime}\right)$ respectively. Then $\left(\bar{\phi}_{L}, \bar{\phi}_{M} ; \bar{\phi}_{f_{\lambda \mu}}\right)$ and $\left(\bar{\phi}_{L}^{\prime}, \bar{\phi}_{M}^{\prime} ; \bar{\phi}_{f_{\lambda \mu}}^{\prime}\right)$ represent the same cohomology class in $H L^{3}(f ; f)$.

Proof. Suppose $\left(\{-,-\}_{L},\{-,-\}_{M} ; \tilde{f}\right)$ and $\left(\{-,-\}_{L}^{\prime},\{-,-\}_{M}^{\prime} ; \tilde{f}^{\prime}\right)$ are two liftings satisfying (4.4.1). Set $\rho_{L}=\{-,-\}_{L}^{\prime}-\{-,-\}_{L}, \rho_{M}=\{-,-\}_{M}^{\prime}-\{-,-\}_{M}$ and $\rho_{f}=\tilde{f^{\prime}}-\tilde{f}$. Then $\rho_{L}:(B \otimes L)^{\otimes 2} \longrightarrow B \otimes L, \rho_{M}:(B \otimes M)^{\otimes 2} \longrightarrow B \otimes M$ and $\rho_{f}: B \otimes L \longrightarrow B \otimes M$ are B-linear maps. It follows from Proposition 4.2.3 that ρ_{L} and ρ_{M} induce two 2-cochains $\bar{\rho}_{L}$ and $\bar{\rho}_{M}$ respectively such that

$$
\begin{equation*}
\left(\bar{\phi}_{L}^{\prime}-\bar{\phi}_{L}\right)=\delta \bar{\rho}_{L} \quad \text { and }\left(\bar{\phi}_{M}^{\prime}-\bar{\phi}_{M}\right)=\delta \bar{\rho}_{M} . \tag{4.4.15}
\end{equation*}
$$

Now ρ_{f} takes values in $\operatorname{ker}\left(P_{1}\right)$ because for $l \in B \otimes L$

$$
\begin{aligned}
P_{1} \circ \rho_{f}(l) & =P_{1}\left(\tilde{f}^{\prime}(l)-\tilde{f}(l)\right) \\
& =P_{1} \circ \tilde{f}^{\prime}(l)-P_{1} \circ \tilde{f}(l) \\
& =f_{\lambda \mu} \circ P(l)-f_{\lambda \mu} \circ P(l) \quad(\text { by }(i v) \text { in (4.4.1) }) \\
& =0
\end{aligned}
$$

Also from (iii) in (4.4.1) it follows that $E_{1} \circ \tilde{f}^{\prime}=f \circ E=E_{1} \circ \tilde{f}$, so ρ_{f} vanishes on $\operatorname{ker}\left(E_{1}\right)$. Thus ρ_{f} induces a linear map $\tilde{\rho}_{f}:\left(B \otimes L / \operatorname{ker} E_{1}\right) \longrightarrow \operatorname{ker}\left(P_{1}\right)$, which defines a 1-cochain $\bar{\rho}_{f} \in C L^{1}(L ; M)$ such that $n_{r+1} \otimes \bar{\rho}_{f}(l)=\rho_{f}(1 \otimes l)$ for $l \in L$.

We claim that

$$
\left(\bar{\phi}_{L}, \bar{\phi}_{M}^{\prime} ; \bar{\phi}_{f_{\lambda \mu}}^{\prime}\right)-\left(\bar{\phi}_{L}, \bar{\phi}_{M} ; \bar{\phi}_{f_{\lambda \mu}}\right)=d\left(\bar{\rho}_{L}, \bar{\rho}_{M} ; \bar{\rho}_{f}\right)=\left(\delta \bar{\rho}_{L}, \delta \bar{\rho}_{M} ; f \bar{\rho}_{L}-\bar{\rho}_{M} f-\delta \bar{\rho}_{f}\right)
$$

In view of (4.4.15) it is enough to show that $\left(\bar{\phi}_{f_{\lambda \mu}}^{\prime}-\bar{\phi}_{f_{\lambda \mu}}\right)=\left(f \bar{\rho}_{L}-\bar{\rho}_{M} f-\delta \bar{\rho}_{f}\right)$. For $l_{1}, l_{2} \in L$,

$$
\begin{align*}
& \beta^{-1} \circ \delta \bar{\rho}_{f}\left(l_{1}, l_{2}\right) \\
& =n_{r+1} \otimes \delta \bar{\rho}_{f}\left(l_{1}, l_{2}\right) \\
& =n_{r+1} \otimes\left(\left[f\left(l_{1}\right), \bar{\rho}_{f}\left(l_{2}\right)\right]+\left[\bar{\rho}_{f}\left(l_{1}\right), f\left(l_{2}\right)\right]-\bar{\rho}_{f}\left[l_{1}, l_{2}\right]\right) \\
& =n_{r+1} \otimes\left[f\left(l_{1}\right), \bar{\rho}_{f}\left(l_{2}\right)\right]+n_{r+1} \otimes\left[\bar{\rho}_{f}\left(l_{1}\right), f\left(l_{2}\right)\right]-n_{r+1} \otimes \bar{\rho}_{f}\left[l_{1}, l_{2}\right] \\
& =I_{1}\left[f\left(l_{1}\right), \bar{\rho}_{f}\left(l_{2}\right)\right]+I_{1}\left[\bar{\rho}_{f}\left(l_{1}\right), f\left(l_{2}\right)\right]-\rho_{f}\left(1 \otimes\left[l_{1}, l_{2}\right]\right) \\
& =\left\{I_{1} f\left(l_{1}\right), 1 \otimes \bar{\rho}_{f}\left(l_{2}\right)\right\}_{M}^{\prime}+\left\{I_{1} \bar{\rho}_{f}, 1 \otimes f\left(l_{2}\right)\right\}_{M}^{\prime}-\left(\tilde{f}^{\prime}-\tilde{f}\right)\left(1 \otimes\left[l_{1}, l_{2}\right]\right) \\
& =\left\{n_{r+1} \otimes f\left(l_{1}\right), 1 \otimes \bar{\rho}_{f}\left(l_{2}\right)\right\}_{M}^{\prime}+\left\{n_{r+1} \otimes \bar{\rho}_{f}, 1 \otimes f\left(l_{2}\right)\right\}_{M}^{\prime}-\tilde{f}^{\prime}\left(1 \otimes\left[l_{1}, l_{2}\right]\right) \\
& +\tilde{f}\left(1 \otimes\left[l_{1}, l_{2}\right]\right) \\
& =\left\{1 \otimes f\left(l_{1}\right), n_{r+1} \otimes \bar{\rho}_{f}\left(l_{2}\right)\right\}_{M}^{\prime}+\left\{n_{r+1} \otimes \bar{\rho}_{f}, 1 \otimes f\left(l_{2}\right)\right\}_{M}^{\prime}-\tilde{f}^{\prime}\left(1 \otimes\left[l_{1}, l_{2}\right]\right) \\
& +\tilde{f}\left(1 \otimes\left[l_{1}, l_{2}\right]\right) \\
& =\left\{\tilde{f}^{\prime}\left(1 \otimes l_{1}\right)-X_{1}^{\prime},\left(\tilde{f}^{\prime}-\tilde{f}\right)\left(1 \otimes l_{2}\right)\right\}_{M}^{\prime}+\left\{\left(\tilde{f}^{\prime}-\tilde{f}\right)\left(1 \otimes l_{1}\right), \tilde{f}\left(1 \otimes l_{2}\right)-X_{2}\right\}_{M}^{\prime} \\
& -\tilde{f}^{\prime}\left(\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}_{L}^{\prime}-Y_{1,2}^{\prime}\right)+\tilde{f}\left(\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}_{L}^{\prime}-Y_{1,2}^{\prime}\right) \\
& \text { (by Lemma 4.4.1 (i) and (ii)) } \\
& =\left\{\tilde{f}^{\prime}\left(1 \otimes l_{1}\right), \tilde{f}^{\prime}\left(1 \otimes l_{2}\right)\right\}_{M}^{\prime}-\left\{\tilde{f}^{\prime}\left(1 \otimes l_{1}\right), \tilde{f}\left(1 \otimes l_{2}\right)\right\}_{M}^{\prime}-\left\{X_{1}^{\prime},\left(\tilde{f}^{\prime}-\tilde{f}\right)\left(1 \otimes l_{2}\right)\right\}_{M}^{\prime} \\
& +\left\{\tilde{f}^{\prime}\left(1 \otimes l_{1}\right), \tilde{f}\left(1 \otimes l_{2}\right)\right\}_{M}^{\prime}-\left\{\tilde{f}\left(1 \otimes l_{1}\right), \tilde{f}\left(1 \otimes l_{2}\right)\right\}_{M}^{\prime}-\left\{\left(\tilde{f}^{\prime}-\tilde{f}\right)\left(1 \otimes l_{1}\right), X_{2}\right\}_{M}^{\prime} \\
& -\tilde{f}^{\prime}\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}_{L}^{\prime}+\tilde{f}\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}_{L}^{\prime}+\left(\tilde{f}^{\prime}-\tilde{f}\right)\left(Y_{1,2}^{\prime}\right) \\
& =\left\{\tilde{f}^{\prime}\left(1 \otimes l_{1}\right), \tilde{f}^{\prime}\left(1 \otimes l_{2}\right)\right\}_{M}^{\prime}-\left\{\tilde{f}\left(1 \otimes l_{1}\right), \tilde{f}\left(1 \otimes l_{2}\right)\right\}_{M}^{\prime}-\tilde{f}^{\prime}\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}_{L}^{\prime} \\
& +\tilde{f}\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}_{L}^{\prime} . \tag{4.4.16}
\end{align*}
$$

On the other hand

$$
\begin{align*}
& \beta^{-1} \circ\left(f \bar{\rho}_{L}\right)\left(l_{1}, l_{2}\right)=n_{r+1} \otimes f \bar{\rho}_{L}\left(l_{1}, l_{2}\right)=\tilde{f}\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}_{L}^{\prime}-\tilde{f}\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}_{L}, \tag{4.4.17}\\
& \beta^{-1} \circ \bar{\phi}_{f_{\lambda \mu}}^{\prime}\left(l_{1}, l_{2}\right) \\
& =n_{r+1} \otimes \bar{\phi}_{f_{\lambda \mu}}^{\prime}\left(l_{1}, l_{2}\right) \tag{4.4.18}\\
& \\
& =\phi_{f_{\lambda \mu}^{\prime}}^{\prime}\left(1 \otimes l_{1}, 1 \otimes l_{2}\right) \\
& \tag{4.4.19}\\
& =\tilde{f}^{\prime}\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}_{L}^{\prime}-\left\{\tilde{f}^{\prime}\left(1 \otimes l_{1}\right), \tilde{f}^{\prime}\left(1 \otimes l_{2}\right)\right\}_{M}^{\prime}, \\
& \beta^{-1} \circ \bar{\phi}_{f_{\lambda \mu}}\left(l_{1}, l_{2}\right)
\end{aligned} \begin{aligned}
& =n_{r+1} \otimes \bar{\phi}_{f_{\lambda \mu}}\left(l_{1}, l_{2}\right) \\
& =\phi_{f_{\lambda \mu}}\left(1 \otimes l_{1}, 1 \otimes l_{2}\right) \\
& =\tilde{f}\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}_{L}-\left\{\tilde{f}\left(1 \otimes l_{1}\right), \tilde{f}\left(1 \otimes l_{2}\right)\right\}_{M},
\end{align*}
$$

and

$$
\begin{aligned}
& \beta^{-1} \circ \bar{\rho}_{M} f\left(l_{1}, l_{2}\right) \\
= & n_{r+1} \otimes \bar{\rho}_{M} f\left(l_{1}, l_{2}\right) \\
= & n_{r+1} \otimes \bar{\rho}_{M}\left(f\left(l_{1}\right), f\left(l_{2}\right)\right) \\
= & \rho_{M}\left(1 \otimes f\left(l_{1}\right), 1 \otimes f\left(l_{2}\right)\right) \\
= & \left\{1 \otimes f\left(l_{1}\right), 1 \otimes f\left(l_{2}\right)\right\}_{M}^{\prime}-\left\{1 \otimes f\left(l_{1}\right), 1 \otimes f\left(l_{2}\right)\right\}_{M} \\
= & \left\{\tilde{f}\left(1 \otimes l_{1}\right)-X_{1}, \tilde{f}\left(1 \otimes l_{2}\right)-X_{2}\right\}_{M}^{\prime}-\left\{\tilde{f}\left(1 \otimes l_{1}\right)-X_{1}, \tilde{f}\left(1 \otimes l_{2}\right)-X_{2}\right\}_{M} \\
& \left.\quad \quad \text { by Lemma 4.4.1 }(i), \text { where } X_{1}, X_{2} \in \operatorname{ker}\left(E_{1}\right)\right) \\
= & \left\{\tilde{f}\left(1 \otimes l_{1}\right), \tilde{f}\left(1 \otimes l_{2}\right)\right\}_{M}^{\prime}-\left\{\tilde{f}\left(1 \otimes l_{1}\right), \tilde{f}\left(1 \otimes l_{2}\right)\right\}_{M} \\
& -\rho_{M}\left(\tilde{f}\left(1 \otimes l_{1}\right), X_{2}\right)-\rho_{M}\left(X_{1}, \tilde{f}\left(1 \otimes l_{2}\right)\right)+\rho_{M}\left(X_{1}, X_{2}\right) \\
= & \left\{\tilde{f}\left(1 \otimes l_{1}\right), \tilde{f}\left(1 \otimes l_{2}\right)\right\}_{M}^{\prime}-\left\{\tilde{f}\left(1 \otimes l_{1}\right), \tilde{f}\left(1 \otimes l_{2}\right)\right\}_{M}
\end{aligned}
$$

(since $\rho_{M}\left(x_{1}, x_{2}\right)=0$, whenever one of the arguments is in $\operatorname{ker}\left(E_{1}\right)$).

Using (4.4.17)-(4.4.20) we get

$$
\begin{align*}
& \beta^{-1} \circ\left(f \bar{\rho}_{L}-\bar{\rho}_{M} f-\bar{\phi}_{f_{\lambda \mu}}^{\prime}+\bar{\phi}_{f_{\lambda \mu}}\right)\left(l_{1}, l_{2}\right) \\
= & \left\{\tilde{f}^{\prime}\left(1 \otimes l_{1}\right), \tilde{f}^{\prime}\left(1 \otimes l_{2}\right)\right\}_{M}^{\prime}-\left\{\tilde{f}\left(1 \otimes l_{1}\right), \tilde{f}\left(1 \otimes l_{2}\right)\right\}_{M}^{\prime} \tag{4.4.21}\\
& -\tilde{f}^{\prime}\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}_{L}^{\prime}+\tilde{f}\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}_{L}^{\prime} .
\end{align*}
$$

Therefore from (4.4.16) and (4.4.21) it follows that

$$
\beta^{-1} \circ \delta \bar{\rho}_{f}\left(l_{1}, l_{2}\right)=\beta^{-1} \circ\left(f \bar{\rho}_{L}-\bar{\rho}_{M} f-\bar{\phi}_{f_{\lambda \mu}}^{\prime}+\bar{\phi}_{f_{\lambda \mu}}\right)\left(l_{1}, l_{2}\right)
$$

Thus we have a map

$$
\Theta_{\mathfrak{D}}: H_{H a r r}^{2}(A ; \mathbb{K}) \longrightarrow H L^{3}(f ; f) \text { given by } \Theta_{\mathfrak{D}}([\psi])=\left[\left(\bar{\phi}_{L}, \bar{\phi}_{M} ; \bar{\phi}_{f_{\lambda \mu}}\right)\right]
$$

where $\left[\left(\bar{\phi}_{L}, \bar{\phi}_{M} ; \bar{\phi}_{f_{\lambda \mu}}\right)\right]$ denotes the cohomology class of $\left(\bar{\phi}_{L}, \bar{\phi}_{M} ; \bar{\phi}_{f_{\lambda \mu}}\right)$, which is the obstruction map in the present context.

Theorem 4.4.4. Given an 1-dimensional extension

$$
0 \longrightarrow \mathbb{K} \xrightarrow{i} B \xrightarrow{p} A \longrightarrow 0
$$

of A representing $[\psi] \in H_{\text {Harr }}^{2}(A ; \mathbb{K})$, a deformation \mathfrak{D} of f with base A can be extended to a deformation of f with base B if and only if $\Theta_{\mathfrak{D}}([\psi])=0$.

Proof. Suppose $\Theta_{\mathfrak{D}}([\psi])=0$. Let $\left(\{-,-\}_{L},\{-,-\}_{M} ; \tilde{f}\right)$ be a triple satisfying conditions in (4.4.1). Let ϕ_{L}, ϕ_{M} and $\phi_{f_{\lambda \mu}}$ be maps as defined in (4.4.4). Let $\left(\bar{\phi}_{L}, \bar{\phi}_{M} ; \bar{\phi}_{f_{\lambda \mu}}\right)$ be the associated cocycle.

Since $\Theta_{\mathfrak{D}}([\psi])=\left[\left(\bar{\phi}_{L}, \bar{\phi}_{M} ; \bar{\phi}_{f_{\lambda \mu}}\right)\right]=0$, there is a 2 -cochain $(u, v ; w) \in C L^{2}(f ; f)$ such that $\left(\bar{\phi}_{L}, \bar{\phi}_{M} ; \bar{\phi}_{f_{\lambda \mu}}\right)=d(u, v ; w)$. Therefore $\delta u=\bar{\phi}_{L}, \delta v=\bar{\phi}_{M}$, and $(f u-v f-\delta w)=$ $\bar{\phi}_{f_{\lambda \mu}}$. Take $\rho_{L}^{\prime}=-u, \rho_{M}^{\prime}=-v$, and $\rho_{f}^{\prime}=-w$. Define the linear maps

$$
\begin{aligned}
& \{-,-\}_{L}^{\prime}:(B \otimes L)^{\otimes 2} \longrightarrow B \otimes L \text { by }\left\{l_{1}, l_{2}\right\}_{L}^{\prime}=\left\{l_{1}, l_{2}\right\}-I \circ u\left(E\left(l_{1}\right), E\left(l_{2}\right)\right), \\
& \{-,-\}_{M}^{\prime}:(B \otimes M)^{\otimes 2} \longrightarrow B \otimes M \text { by }\left\{x_{1}, x_{2}\right\}_{M}^{\prime}=\left\{x_{1}, x_{2}\right\}-I_{1} \circ v\left(E_{1}\left(x_{1}\right), E_{1}\left(x_{2}\right)\right), \\
& \text { and } \tilde{f}^{\prime}: B \otimes L \longrightarrow B \otimes M \text { by } \tilde{f}^{\prime}(l)=\tilde{f}(l)-I_{1} \circ w(E(l)) \\
& \text { for } l, l_{1}, l_{2} \in B \otimes L \text { and } x_{1}, x_{2} \in B \otimes M .
\end{aligned}
$$

We claim that $\left(\{-,-\}_{L}^{\prime},\{-,-\}_{M}^{\prime} ; \tilde{f}^{\prime}\right)$ is a deformation of f with base B extending the deformation \mathfrak{D}. Let $\phi_{L}^{\prime}, \phi_{M}^{\prime}$, and $\phi_{f_{\lambda \mu}}^{\prime}$ be the associated maps as defined in (4.4.4). Let $\left(\bar{\phi}_{L}^{\prime}, \bar{\phi}_{M}^{\prime} ; \bar{\phi}_{f_{\lambda \mu}}^{\prime}\right)$ be corresponding 3-cocycle. Then it is easy to see that $\left(\bar{\phi}_{L}-\bar{\phi}_{L}^{\prime}\right)=\delta u$, $\left(\bar{\phi}_{M}-\bar{\phi}_{M}^{\prime}\right)=\delta v$, and $\left(\bar{\phi}_{f_{\lambda \mu}}-\bar{\phi}_{f_{\lambda \mu}}^{\prime}\right)=f u-v f-\delta w$. Thus $\bar{\phi}_{L}^{\prime}=0, \bar{\phi}_{M}^{\prime}=0$, and $\bar{\phi}_{f_{\lambda \mu}}^{\prime}=0$. It follows from (4.4.6) that $\phi_{L}^{\prime}=0=\phi_{M}^{\prime}$ and $\phi_{f_{\lambda \mu}}^{\prime}=0$. Consequently $\left(\{-,-\}_{L}^{\prime},\{-,-\}_{M}^{\prime} ; \tilde{f}^{\prime}\right)$ is a deformation of f with base B extending \mathfrak{D}.

The converse part follows easily, since if we have an extension $\left(\{-,-\}_{L},\{-,-\}_{M} ; \tilde{f}\right)$ of the deformation \mathfrak{D} then $\phi_{L}=\phi_{M}=\phi f_{\lambda \mu}=0$, by definition (4.4.4). So $\Theta_{\mathfrak{D}}([\psi])$ is represented by the zero cochain.

Example 4.4.5. Let $\mathfrak{D}=\left(\lambda_{t}, \mu_{t} ; f_{t}\right)$ be a finite order 1-parameter deformation of Leibniz algebra homomorphism $f: L \longrightarrow M$ with base $A=\mathbb{K}[[t]] /\left(t^{N+1}\right)$. Explicitly,

$$
\begin{aligned}
& \lambda_{t}\left(l_{1}, l_{2}\right)=\sum_{i \geq 0} \lambda_{i}\left(l_{1}, l_{2}\right) t^{i}\left(\text { modulo } t^{N+1}\right) \\
& \mu_{t}\left(x_{1}, x_{2}\right)=\sum_{i \geq 0} \mu_{i}\left(x_{1}, x_{2}\right) t^{i}\left(\text { modulo } t^{N+1}\right) \\
& f_{t}(l)=\sum_{i \geq 0} f_{i}(l) t^{i}\left(\text { modulo } t^{N+1}\right)
\end{aligned}
$$

where $l, l_{i} \in L, x_{i} \in M, \lambda_{i} \in C L^{2}(L ; L), \mu_{i} \in C L^{2}(M ; M)$ and $f_{i} \in C L^{1}(L ; M)$, $i=1,2$ with λ_{0}, μ_{0} are the original brackets in L and M respectively, and f_{0} is the Leibniz algebra homomorphism f.

By Leibniz relations satisfied by λ_{t} and μ_{t} we have

$$
\begin{aligned}
& \lambda_{t}\left(l_{1}, \lambda_{t}\left(l_{2}, l_{3}\right)\right)-\lambda_{t}\left(\lambda_{t}\left(l_{1}, l_{2}\right), l_{3}\right)+\lambda_{t}\left(\lambda_{t}\left(l_{1}, l_{3}\right), l_{2}\right)=0 \\
& \mu_{t}\left(x_{1}, \mu_{t}\left(x_{2}, x_{3}\right)\right)-\mu_{t}\left(\mu_{t}\left(x_{1}, x_{2}\right), x_{3}\right)+\mu_{t}\left(\mu_{t}\left(x_{1}, x_{3}\right), x_{2}\right)=0 \\
& \quad \text { for } l_{i} \in L \text { and } x_{i} \in M, i=1,2,3
\end{aligned}
$$

Also f_{t} is a Leibniz algebra homomorphism, so we have

$$
f_{t}\left(\lambda_{t}\left(l_{1}, l_{2}\right)\right)=\mu_{t}\left(f_{t}\left(l_{1}\right), f_{t}\left(l_{2}\right)\right) \text { for } l_{1}, l_{2} \in L
$$

If we try to extend \mathfrak{D} to a deformation of order $N+1$, starting with the extension

$$
0 \longrightarrow\left(t^{N+1}\right) /\left(t^{N+2}\right) \longrightarrow \mathbb{K}[[t]] /\left(t^{N+2}\right) \longrightarrow \mathbb{K}[[t]] /\left(t^{N+1}\right) \longrightarrow 0
$$

the obstruction cocycle $\left(\bar{\phi}_{L}, \bar{\phi}_{M} ; \bar{\phi}_{f_{\lambda \mu}}\right)$ in this case can be written as (Man07])

$$
\begin{aligned}
& \bar{\phi}_{L}\left(l_{1}, l_{2}, l_{3}\right)=\sum_{\substack{i+j=N+1 \\
i, j>0}}\left\{\lambda_{i}\left(\lambda_{j}(x, y), z\right)-\lambda_{i}\left(\lambda_{j}(x, z), y\right)-\lambda_{i}\left(x, \lambda_{j}(y, z)\right)\right\} \\
& \bar{\phi}_{M}\left(x_{1}, x_{2}, x_{3}\right)=\sum_{\substack{i+j=N+1 \\
i, j>0}}\left\{\mu_{i}\left(\mu_{j}\left(x_{1}, x_{2}\right), x_{3}\right)-\mu_{i}\left(\mu_{j}\left(x_{1}, x_{3}\right), x_{2}\right)-\mu_{i}\left(x_{1}, \mu_{j}\left(x_{2}, x_{3}\right)\right)\right\} \\
& \bar{\phi}_{f_{\lambda \mu}}\left(l_{1}, l_{2}\right)=\sum^{\prime} \mu_{i}\left(f_{j}\left(l_{1}\right), f_{k}\left(l_{2}\right)\right)-\sum_{\substack{i+j=N+1 \\
i, j>0}} f_{i}\left(\lambda_{j}\left(l_{1}, l_{2}\right)\right)
\end{aligned}
$$

for $l_{i} \in L$ and $x_{i} \in M, i=1,2,3$.

Here,

$$
\sum^{\prime}=\sum_{\substack{i+j=N+1 \\ i, j>0 ; k=0}}+\sum_{\substack{i+k=N+1 \\ i, k>0 ; j=0}}+\sum_{\substack{j+k=N+1 \\ j, k>0 ; i=0}}+\sum_{\substack{i+j+k=N+1 \\ i, j, k>0}}
$$

The given deformation extends to a deformation of order $N+2$ if the cohomology class of the obstruction cocycle is zero.

So far we were concerned with the lifting problem for 1-dimensional extension of the base $(A, \mathfrak{M}) \in \mathcal{C}$ of a deformation. An analogous consideration holds for any finite dimensional extension of the algebra A by an A-module.

Let M_{0} be a finite dimensional A-module satisfying $\mathfrak{M} M_{0}=0$. From Proposition [2.3.3, it follows that $H_{\text {Harr }}^{2}\left(A ; M_{0}\right)$ is in one to one correspondence with the isomorphism classes of extensions

$$
\begin{equation*}
0 \longrightarrow M_{0} \xrightarrow{i} B \xrightarrow{p} A \longrightarrow 0 \tag{4.4.22}
\end{equation*}
$$

Let $[\psi] \in H_{\text {Harr }}^{2}\left(A ; M_{0}\right)$ correspond to the class of extensions represented by the extension in (4.4.22). If we proceed with the above extension as in the case of 1 dimensional extension, we obtain a triple $\left(\{-,-\}_{L},\{-,-\}_{M} ; \tilde{f}\right)$ and the maps ϕ_{L}, ϕ_{M} and $\phi_{f_{\lambda \mu}}$ as determined in (4.4.4). We define $\tilde{\phi}_{L}, \tilde{\phi}_{M}$ and $\tilde{\phi}_{f_{\lambda \mu}}$ using ϕ_{L}, ϕ_{M} and $\phi_{f_{\lambda \mu}}$ respectively as in (4.4.5). As before we have isomorphisms $(B \otimes L / \operatorname{ker}(E)) \cong L$ and $\left(B \otimes M / \operatorname{ker}\left(E_{1}\right)\right) \cong M$. Moreover in this general case, we have isomorphisms $\operatorname{ker}(P) \cong M_{0} \otimes L$ and $\operatorname{ker}\left(P_{1}\right) \cong M_{0} \otimes M$. We use these isomorphisms to obtain cochains

$$
\begin{gathered}
\bar{\phi}_{L} \in C L^{3}\left(L ; M_{0} \otimes L\right) \cong M_{0} \otimes C L^{3}(L ; L), \\
\bar{\phi}_{M} \in C L^{3}\left(M ; M_{0} \otimes M\right) \cong M_{0} \otimes C L^{3}(M ; M) \\
\text { and } \bar{\phi}_{f_{\lambda \mu}} \in C L^{2}\left(L ; M_{0} \otimes M\right) \cong M_{0} \otimes C L^{2}(L ; M) .
\end{gathered}
$$

An argument analogous to the proof of Proposition 4.4.2 shows that $\left(\bar{\phi}_{L}, \bar{\phi}_{M}, \bar{\phi}_{f_{\lambda \mu}}\right)$ is a cocycle in $M_{0} \otimes C L^{3}(f ; f)$.

As a consequence we have the obstruction map

$$
\Theta_{\mathfrak{D}}: H_{\text {Harr }}^{2}\left(A ; M_{0}\right) \longrightarrow M_{0} \otimes H L^{3}(f ; f) .
$$

As in Theorem 4.4.4 we have
Theorem 4.4.6. Given an extension 4.4.22) of A by the A-module M_{0} representing $[\psi]$, a deformation $\mathfrak{D}=\left(\lambda, \mu ; f_{\lambda \mu}\right)$ of f with base $(A, \mathfrak{M}) \in \mathcal{C}$ can be lifted to a deformation of f with base B if and only if $\Theta_{\mathfrak{D}}([\psi])=0$.

4.5 Formal deformations

An \mathfrak{M}-adic filtration of a commutative algebra A is a filtration

$$
A=\mathfrak{M}^{0} \supset \mathfrak{M} \supset \mathfrak{M}^{2} \supset \cdots
$$

by ideals of A. Given an \mathfrak{M}-adic filtration, the completion $\hat{A}_{\mathfrak{M}}$ of A with respect to the \mathfrak{M}-adic filtration is the projective limit of the quotient algebras A / \mathfrak{M}^{i} equipped with the family of homomorphisms $p_{i}^{j}: A / \mathfrak{M}^{j} \longrightarrow A / \mathfrak{M}^{i}$ for $j \geq i$ defined by $p_{i}^{j}\left(a+\mathfrak{M}^{j}\right)=a+\mathfrak{M}^{i}$. It is a subalgebra of the direct product

$$
\begin{aligned}
\hat{A}_{\mathfrak{M}} & :=\lim _{n \rightarrow \infty}\left(A / \mathfrak{M}^{n}\right) \\
& :=\left\{a=\left(a_{1}, a_{2}, \cdots\right) \in \Pi_{i} A / \mathfrak{M}^{i} ; p_{i}^{j}\left(a_{j}+\mathfrak{M}^{j}\right)=a_{i}+\mathfrak{M}^{i} \text { for all } j>i\right\}
\end{aligned}
$$

The completed ring $\hat{A}_{\mathfrak{M}}$ is equipped with maps $p_{j}: \hat{A}_{\mathfrak{M}} \longrightarrow A / \mathfrak{M}^{j}$ for all j such that for $j \geq i, p_{i}^{j} \circ p_{j}=p_{i}$.

If A is local with maximal ideal \mathfrak{M} then $\hat{A}_{\mathfrak{M}}$ is a local ring with the maximal ideal $\hat{\mathfrak{M}}$, where $\hat{\mathfrak{M}}=\left\{a=\left(a_{1}, a_{2}, \cdots\right) \in \Pi_{i} A / \mathfrak{M}^{i} ; a_{1}=0\right\}$.

In case the natural map $A \longrightarrow \hat{A}_{\mathfrak{M}}$ is an isomorphism, then we say that A is complete with respect to \mathfrak{M}. In this case we shall always assume that $\operatorname{dim}\left(\mathfrak{M}^{k} / \mathfrak{M}^{k+1}\right)$ is finite for all k.

Example 4.5.1. If $A=R\left[x_{1}, \cdots, x_{n}\right]$ is a polynomial ring over the ring R, and $\mathfrak{M}=<$ $x_{1}, \cdots, x_{n}>$, the ideal generated by x_{1}, \cdots, x_{n}, then the completion $\hat{A}_{\mathfrak{M}}$ of A with respect to \mathfrak{M} is the formal power series ring

$$
\hat{A}_{\mathfrak{M}} \cong R\left[\left[x_{1}, \cdots, x_{n}\right]\right]
$$

Definition 4.5.2. Let A be a complete local algebra, where \mathfrak{M} is the maximal ideal in A. A deformation λ of L with base A is called formal if the A-Leibniz algebra structure λ on

$$
A \hat{\otimes} L=\lim _{n \rightarrow \infty}\left(\left(A / \mathfrak{M}^{n}\right) \otimes L\right)
$$

is the projective limit of deformations λ_{n} with base A / \mathfrak{M}^{n}.
Example 4.5.3. If $A=\mathbb{K}[[t]]$ then a formal deformation of a type of algebra L (associative, Lie, Leibniz etc.) over A is a formal one parameter deformation of L Ger64, Ger66, Ger68, Ger74. For example, the deformation λ of a Leibniz algebra L with base $A=\mathbb{K}[[t]]$ is given by the bracket

$$
\lambda_{t}=[-,-]+\lambda_{1} t+\lambda_{2} t^{2}+\cdots, \quad \text { where } \lambda_{i} \in C L^{2}(L ; L)
$$

with $[-,-]$ being the original Leibniz bracket on L. This is studied in Bal97.
Definition 4.5.4. A formal deformation of a Leibniz algebra homomorphism $f: L \longrightarrow$ M with base A, where A is complete, is a deformation $\mathfrak{D}=\left(\lambda, \mu ; f_{\lambda \mu}\right)$ which is obtained as a projective limit of deformations $\mathfrak{D}_{n}=\left(\lambda_{n}, \mu_{n} ; f_{\lambda_{n} \mu_{n}}\right)$ with base A / \mathfrak{M}^{n}.

Example 4.5.5. If $A=\mathbb{K}[[t]]$ then a formal deformation $\left(\lambda_{t}, \mu_{t} ; f_{t}\right)$ of $f: L \longrightarrow M$ is a Leibniz algebra homomorphism $f_{t}: L_{t} \longrightarrow M_{t}$ of the form

$$
f_{t}=f+f_{1} t+f_{2} t^{2}+\cdots
$$

Here each $f_{i}: L \longrightarrow M$ is a \mathbb{K}-linear map for $i \geq 1$, and $L_{t}=L \otimes_{\mathbb{K}} \mathbb{K}[[t]]$, $M_{t}=M \otimes_{\mathbb{K}} \mathbb{K}[[t]]$ are formal one parameter family of deformations of L and M given by brackets λ_{t} and μ_{t}, respectively. This is studied in (Man07].

Definition 4.5.6. For a formal deformation \mathfrak{D} of f with base $A, p_{2 *} \mathfrak{D}$ is called the infinitesimal part of \mathfrak{D} and $a_{p_{2 *} \mathfrak{D}}$ is the differential of \mathfrak{D}, where $p_{2}: A \longrightarrow A / \mathfrak{M}^{2}$ is the map introduced above.

More generally, let \mathfrak{D}_{k} denote the push-out $p_{k_{*}} \mathfrak{D}$, where $p_{k}: A \longrightarrow A / \mathfrak{M}^{k}$. Then \mathfrak{D}_{k} is a deformation with base A / \mathfrak{M}^{k}.

Definition 4.5.7. For a formal deformation $\mathfrak{D}=\left(\lambda, \mu ; f_{\lambda \mu}\right)$ of f with base A, the linear map

$$
\alpha_{\mathfrak{D}_{2}}:\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime} \longrightarrow C L^{2}(f ; f)
$$

defined by $\alpha_{\mathfrak{D}_{2}}(\xi)=\left(\alpha_{\lambda_{2}, \xi}, \alpha_{\mu_{2}, \xi} ; f_{\lambda_{2} \mu_{2}, \xi}\right)$ is called the infinitesimal of the deformation \mathfrak{D}. More generally, if $\alpha_{\mathfrak{D}_{k}}=0$, the zero map for $1 \leq k \leq n$, and $\alpha_{\mathfrak{D}_{n+1}}$ is a nonzero linear map, then $\alpha_{\mathfrak{D}_{n+1}}$ is called the n-infinitesimal of the deformation \mathfrak{D}, where $\mathfrak{D}_{k}=p_{k *} \mathfrak{D}$.

Remark 4.5.8. Note that for every n,

$$
0 \longrightarrow \mathfrak{M}^{n} / \mathfrak{M}^{n+1} \longrightarrow A / \mathfrak{M}^{n+1} \longrightarrow A / \mathfrak{M}^{n} \longrightarrow 0
$$

is an extension of the algebra A / \mathfrak{M}^{n} and \mathfrak{D}_{n+1} is an extension of the deformation \mathfrak{D}_{n} from the base A / \mathfrak{M}^{n} to the base A / \mathfrak{M}^{n+1}.

Proposition 4.5.9. The infinitesimal $\alpha_{\mathfrak{D}_{2}}$ of the deformation \mathfrak{D} takes values in cocycles in $C L^{2}(f ; f)$. More generally, the n-infinitesimal $\alpha_{\mathfrak{D}_{n+1}}$ takes values values in cocycles in $C L^{2}(f ; f)$.

Proof. By Theorem 3.5.1 $\alpha_{\mathfrak{D}_{2}}(\xi)$ is a 2-cocycle in $C L^{2}(f ; f)$. In general let

$$
\alpha_{\mathfrak{D}_{k}}:\left(\mathfrak{M} / \mathfrak{M}^{k+1}\right)^{\prime} \longrightarrow C L^{2}(f ; f)
$$

be the k-infinitesimal of the deformation \mathfrak{D}. Consider the extension

$$
0 \longrightarrow \mathfrak{M}^{k} / \mathfrak{M}^{k+1} \xrightarrow{i_{k}^{k+1}} A / \mathfrak{M}^{k+1} \xrightarrow{p_{k}^{k+1}} A / \mathfrak{M}^{k} \longrightarrow 0
$$

of A / \mathfrak{M}^{k}. The maximal ideal of A / \mathfrak{M}^{k} is $\mathfrak{M} / \mathfrak{M}^{k}$ and the maximal ideal $\mathfrak{M} / \mathfrak{M}^{k+1}$ of A / \mathfrak{M}^{k+1} is given by $\mathfrak{M} / \mathfrak{M}^{k+1}=\mathfrak{M} / \mathfrak{M}^{k} \oplus \mathfrak{M}^{k} / \mathfrak{M}^{k+1}$. Let $\operatorname{dim}\left(\mathfrak{M} / \mathfrak{M}^{k}\right)=r$ and $\operatorname{dim}\left(\mathfrak{M}^{k} / \mathfrak{M}^{k+1}\right)=s$, so $\operatorname{dim}\left(\mathfrak{M} / \mathfrak{M}^{k+1}\right)=r+s$. Let $\left\{m_{i}+\mathfrak{M}^{k}\right\}_{1 \leq i \leq r}$ be a basis of $\mathfrak{M} / \mathfrak{M}^{k}$ and $\left\{m_{r+i}+\mathfrak{M}^{k+1}\right\}_{1 \leq i \leq s}$ be a basis of $\mathfrak{M}^{k} / \mathfrak{M}^{k+1}$. Thus we get a basis of $\mathfrak{M} / \mathfrak{M}^{k+1}$, which we write as $\left\{\bar{m}_{i}\right\}_{1 \leq i \leq r+s}$.

From definition, $\alpha_{\mathfrak{D}_{k}}\left(\bar{m}_{i}^{\prime}\right)=\left(\alpha_{\lambda_{k}, \bar{m}_{i}^{\prime}}, \alpha_{\mu_{k}, \bar{m}_{i}^{\prime}} ; f_{\lambda_{k} \mu_{k}, \bar{m}_{i}^{\prime}}\right)$. It is sufficient to show that

$$
d \alpha_{\mathfrak{D}_{k}}\left(\bar{m}_{i}^{\prime}\right)=\left(\delta \alpha_{\lambda_{k}, \bar{m}_{i}^{\prime}}, \delta \alpha_{\mu_{k}, \bar{m}_{i}^{\prime}} ; f \alpha_{\lambda_{k}, \bar{m}_{i}^{\prime}}-\alpha_{\mu_{k}, \bar{m}_{i}^{\prime}} f-\delta f_{\lambda_{k} \mu_{k}, \bar{m}_{i}^{\prime}}\right)=0
$$

for $1 \leq i \leq r+s$. Notice that \mathfrak{D}_{k} is an extension of \mathfrak{D}_{k-1} and $\alpha_{\mathfrak{D}_{k}}$ is the k-infinitesimal, so $\alpha_{\mathfrak{D}_{k}}\left(\bar{m}_{i}^{\prime}\right)=\alpha_{\mathfrak{D}_{k-1}}\left(\bar{m}_{i}^{\prime}\right)=0$ for $1 \leq i \leq r$. Thus $\mathfrak{D}_{k}=\left(\lambda_{k}, \mu_{k} ; f_{\lambda_{k} \mu_{k}}\right)$ is given by the following.

$$
\begin{aligned}
& {\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda_{k}}=1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=r+1}^{r+s} \bar{m}_{i} \otimes \alpha_{\lambda_{k}, \bar{m}_{i}^{\prime}}\left(l_{1}, l_{2}\right), \text { for } l_{1}, l_{2} \in L} \\
& {\left[1 \otimes x_{1}, 1 \otimes x_{2}\right]_{\mu_{k}}=1 \otimes\left[x_{1}, x_{2}\right]+\sum_{i=r+1}^{r+s} \bar{m}_{i} \otimes \alpha_{\mu_{k}, \bar{m}_{i}^{\prime}}\left(x_{1}, x_{2}\right) x_{1}, x_{2} \in M \text { and }} \\
& f_{\lambda_{k} \mu_{k}}(1 \otimes l)=1 \otimes f(l)+\sum_{i=r+1}^{r+s} \bar{m}_{j} \otimes f_{\lambda_{k} \mu_{k}, \bar{m}_{i}^{\prime}}(l) \text { for } l \in L
\end{aligned}
$$

Now $\left\{\bar{m}_{i}\right\}_{r+1 \leq i \leq r+s}$ is a basis of $\mathfrak{M}^{k} / \mathfrak{M}^{k+1}$ and $\left(\mathfrak{M}^{k} / \mathfrak{M}^{k+1}\right)^{2}=0$. Thus by the analogous computations as in Theorem 3.5.1 we get $\delta \alpha_{\lambda_{k}, \bar{m}_{i}^{\prime}}=0=\delta \alpha_{\mu_{k}, \bar{m}_{i}^{\prime}}$ and $f \alpha_{\lambda_{k}, \bar{m}_{i}^{\prime}}-\alpha_{\mu_{k}, \bar{m}_{i}^{\prime}} f-\delta f_{\lambda_{k} \mu_{k}, \bar{m}_{i}^{\prime}}=0$ for $r+1 \leq i \leq r+s$. Consequently, $\alpha_{\mathfrak{D}_{k}}\left(\bar{m}_{i}^{\prime}\right)$ is a 2-cocycle in $C L^{2}(f ; f)$ for $1 \leq i \leq r+s$.

Theorem 4.5.10. A non-trivial formal deformation of a Leibniz algebra homomorphism is equivalent to a deformation whose n-infinitesimal is not a coboundary (in the sense that the image of the n-infinitesimal is not contained in 2 -coboundaries) for some $n \geq 1$.

Proof. Let $\mathfrak{D}=\left(\lambda, \mu ; f_{\lambda \mu}\right)$ be a formal deformation of f with complete local algebra base (A, \mathfrak{M}). Suppose \mathfrak{D} has n-infinitesimal $\alpha_{\mathfrak{D}_{n+1}}$ for some $n \geq 1$. Note that for every k, $\mathfrak{D}_{k}=p_{k *} \mathfrak{D}=\left(\lambda_{k}, \mu_{k} ; f_{\lambda_{k} \mu_{k}}\right)$ is a deformation with base A / \mathfrak{M}^{k} such that $\mathfrak{D}=\lim _{k \rightarrow \infty} \mathfrak{D}_{k}$ where $p_{k}: A \longrightarrow A / \mathfrak{M}^{k}$.

Assume that $\alpha_{\mathfrak{D}_{n+1}}(\xi)$ is a coboundary in $C L^{2}(f ; f)$ for all $\xi \in\left(\mathfrak{M} / \mathfrak{M}^{n+1}\right)^{\prime}$.

We claim that \mathfrak{D}_{n+1} is equivalent to the trivial deformation $\mathfrak{D}_{0}=\left(\lambda_{0}, \mu_{0} ; f_{0}\right)$ with base A / \mathfrak{M}^{n+1}, where λ_{0} and μ_{0} are given by $\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda_{0}}=1 \otimes\left[l_{1}, l_{2}\right]$ and $\left[1 \otimes x_{1}, 1 \otimes\right.$ $\left.x_{2}\right]_{\mu_{0}}=1 \otimes\left[x_{1}, x_{2}\right]$ for $l_{1}, l_{2} \in L, x_{1}, x_{2} \in M$, and $f_{0}(1 \otimes l)=1 \otimes f(l)$ for $l \in L$.

Let $\left\{\bar{m}_{i}=m_{i}+\mathfrak{M}^{n}\right\}_{1 \leq i \leq r}$ be a basis of $\mathfrak{M} / \mathfrak{M}^{n}$. We extend this to basis $\left\{\bar{m}_{i}\right\}_{1 \leq i \leq r+s}$ of $\mathfrak{M} / \mathfrak{M}^{n+1}=\mathfrak{M} / \mathfrak{M}^{n} \oplus \mathfrak{M}^{n} / \mathfrak{M}^{n+1}$ by adding a basis $\left\{\bar{m}_{r+i}=m_{r+i}+\mathfrak{M}^{n+1}\right\}_{1 \leq i \leq s}$ of $\mathfrak{M}^{n} / \mathfrak{M}^{n+1}$. By our assumption $\alpha_{\mathfrak{D}_{n}}=0$, the zero map so that $\alpha_{\mathfrak{D}_{n+1}}\left(\bar{m}_{i}^{\prime}\right)=\alpha_{\mathfrak{D}_{n}}\left(\bar{m}_{i}^{\prime}\right)=$ 0 for $1 \leq i \leq r$ as \mathfrak{D}_{n+1} is an extension of \mathfrak{D}_{n} (cf. Remark 4.5.8) and $\alpha_{\mathfrak{D}_{n+1}}\left(\bar{m}_{i}^{\prime}\right)=$ $d\left(u_{i}, v_{i} ; w_{i}\right), r+1 \leq i \leq r+s$ for some 1-cochains $\left(u_{i}, v_{i} ; w_{i}\right) \in C L^{1}(f ; f)$.

We may assume that $\alpha_{\mathfrak{D}_{n+1}}\left(\bar{m}_{i}^{\prime}\right)=d\left(u_{i}, v_{i} ; 0\right)$ as $d\left(u_{i}, v_{i} ; w_{i}\right)=d\left(u_{i}, v_{i}+\delta w_{i} ; 0\right)$ for $r+1 \leq i \leq r+s$. Thus we have following relations

$$
\begin{equation*}
\left(\alpha_{\lambda_{n}, \bar{m}_{i}^{\prime}}, \alpha_{\mu_{n}, \bar{m}_{i}^{\prime}} ; f_{\lambda_{n} \mu_{n}, \bar{m}_{i}^{\prime}}\right)=\left(\delta u_{i}, \delta v_{i}, f u_{i}-v_{i} f\right) \text { for } r+1 \leq i \leq r+s \tag{4.5.1}
\end{equation*}
$$

Define A / \mathfrak{M}^{n+1}-linear maps

$$
\begin{aligned}
& \Phi:\left(\left(A / \mathfrak{M}^{n+1}\right) \otimes L, \lambda_{n+1}\right) \longrightarrow\left(\left(A / \mathfrak{M}^{n+1}\right) \otimes L, \lambda_{0}\right) \text { by } \\
& \Phi(1 \otimes l)=1 \otimes l+\sum_{i=r+1}^{r+s} \bar{m}_{i} \otimes u_{i}(l) \text { and } \\
& \Psi:\left(\left(A / \mathfrak{M}^{n+1}\right) \otimes M, \mu_{n+1}\right) \longrightarrow\left(\left(A / \mathfrak{M}^{n+1}\right) \otimes M, \mu_{0}\right) \text { by } \\
& \Psi(1 \otimes x)=1 \otimes l+\sum_{i=r+1}^{r+s} \bar{m}_{i} \otimes v_{i}(x) \text { for } l \in L \text { and } x \in M
\end{aligned}
$$

Observe that

$$
\begin{align*}
& {\left[\Phi\left(1 \otimes l_{1}\right), \Phi\left(1 \otimes l_{2}\right)\right]_{\lambda_{0}} } \\
= & {\left[1 \otimes l_{1}+\sum_{i=r+1}^{r+s} \bar{m}_{i} \otimes u_{i}\left(l_{1}\right), 1 \otimes l_{2}+\sum_{i=r+1}^{r+s} \bar{m}_{i} \otimes u_{i}\left(l_{2}\right)\right]_{\lambda_{0}} } \\
= & {\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda_{0}}+\sum_{i=r+1}^{r+s} \bar{m}_{i}\left[1 \otimes u_{i}\left(l_{1}\right), 1 \otimes l_{2}\right]_{\lambda_{0}} } \tag{4.5.2}\\
& +\sum_{i=r+1}^{r+s} \bar{m}_{i}\left[1 \otimes l_{1}, 1 \otimes u_{i}\left(l_{2}\right)\right]_{\lambda_{0}}+\sum_{i, j=r+1}^{r+s} \bar{m}_{i} \bar{m}_{j}\left[1 \otimes u_{i}\left(l_{1}\right), 1 \otimes u_{j}\left(l_{2}\right)\right]_{\lambda_{0}} \\
= & 1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=r+1}^{r+s} \bar{m}_{i} \otimes\left[u_{i}\left(l_{1}\right), l_{2}\right]+\sum_{i=r+1}^{r+s} \bar{m}_{i}\left[l_{1}, u_{i}\left(l_{2}\right)\right] \\
& \quad\left(\text { using } \bar{m}_{i} \bar{m}_{j}=0, r+1 \leq i, j \leq r+s\right) .
\end{align*}
$$

On the other hand

$$
\begin{align*}
& \Phi\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda_{n+1}} \\
= & \Phi\left(1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=r+1}^{r+s} \bar{m}_{i} \otimes \alpha_{\lambda_{n+1}, \bar{m}_{i}^{\prime}}\left(l_{1}, l_{2}\right)\right) \\
= & \Phi\left(1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=r+1}^{r+s} \bar{m}_{i} \Phi\left(1 \otimes \alpha_{\lambda_{n+1}, \bar{m}_{i}^{\prime}}\left(l_{1}, l_{2}\right)\right)\right. \\
= & 1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=r+1}^{r+s} \bar{m}_{i} \otimes u_{i}\left(\left[l_{1}, l_{2}\right]\right) \tag{4.5.3}\\
& +\sum_{i=r+1}^{r+s} \bar{m}_{i}\left(1 \otimes \alpha_{\lambda_{n+1}, \bar{m}_{i}^{\prime}}\left(l_{1}, l_{2}\right)+\sum_{j=r+1}^{r+s} \bar{m}_{j} \otimes u_{j}\left(\alpha_{\lambda_{n+1}, \bar{m}_{i}^{\prime}}\left(l_{1}, l_{2}\right)\right)\right) \\
= & 1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=r+1}^{r+s} \bar{m}_{i} \otimes u_{i}\left(\left[l_{1}, l_{2}\right]\right)+\sum_{i=r+1}^{r+s} \bar{m}_{i} \otimes \alpha_{\lambda_{n+1}, \bar{m}_{i}^{\prime}}\left(l_{1}, l_{2}\right) .
\end{align*}
$$

The $\left(A / \mathfrak{M}^{n+1}\right)$ - linear map Φ defines an equivalence of λ_{n+1} and λ_{0} if and only if

$$
\left[\Phi\left(1 \otimes l_{1}\right), \Phi\left(1 \otimes l_{2}\right)\right]_{\lambda_{0}}-\Phi\left(\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda_{n+1}}\right)=0
$$

Equivalently,

$$
\sum_{i=r+1}^{r+s} \bar{m}_{i} \otimes \delta u_{i}\left(l_{1}, l_{2}\right)-\sum_{i=r+1}^{r+s} \bar{m}_{i} \otimes \alpha_{\lambda_{n+1}, \bar{m}_{i}^{\prime}}\left(l_{1}, l_{2}\right)=0
$$

Equivalently, $\sum_{i=r+1}^{r+s} \bar{m}_{i} \otimes\left(\delta u_{i}-\alpha_{\lambda_{n+1}, \bar{m}_{i}^{\prime}}\right)\left(l_{1}, l_{2}\right)=0$.
From the relations in 4.5.1) it follows that Φ defines an equivalence of λ_{n+1} and λ_{0}.
Similarly Ψ defines an equivalence of μ_{n+1} and μ_{0}.
We now check that

$$
\Psi \circ f_{\lambda_{n+1} \mu_{n+1}}=f \circ \Phi .
$$

Now

$$
\begin{aligned}
& \Psi \circ f_{\lambda_{n+1} \mu_{n+1}} \\
= & \Psi\left\{1 \otimes f(l)+\sum_{i=r+1}^{r+s} \bar{m}_{i} \otimes f_{\lambda_{n+1} \mu_{n+1}, \bar{m}_{i}^{\prime}}(l)\right\} \\
= & \Psi(1 \otimes f(l))+\sum_{i=r+1}^{r+s} \bar{m}_{i} \Psi\left(1 \otimes f_{\lambda_{n+1} \mu_{n+1}, \bar{m}_{i}^{\prime}}(l)\right)
\end{aligned}
$$

$$
\begin{aligned}
& =1 \otimes f(l)+\sum_{i=r+1}^{r+s} \bar{m}_{i} \otimes v_{i}(f(l))+\sum_{i=r+1}^{r+s} \bar{m}_{i}\left\{1 \otimes f_{\lambda_{n+1} \mu_{n+1}, \bar{m}_{i}^{\prime}}(l)\right. \\
& \left.+\sum_{j=r+1}^{r+s} \bar{m}_{j} \otimes v_{j}\left(f_{\lambda_{n+1} \mu_{n+1}, \bar{m}_{i}^{\prime}}(l)\right)\right\} \\
& =1 \otimes f(l)+\sum_{i=r+1}^{r+s} \bar{m}_{i} \otimes v_{i}(f(l))+\sum_{i=r+1}^{r+s} \bar{m}_{i} \otimes f_{\lambda_{n+1} \mu_{n+1}, \bar{m}_{i}^{\prime}}(l) \\
& \left(\text { since }\left(\mathfrak{M}^{n} / \mathfrak{M}^{n+1}\right)^{2}=0\right) \text {. }
\end{aligned}
$$

On the other hand

$$
\begin{aligned}
f_{0} \circ \Phi(1 \otimes l) & =f_{0}\left(1 \otimes l+\sum_{i=r+1}^{r+s} \bar{m}_{i} \otimes u_{i}(l)\right) \\
& =f_{0}(1 \otimes l)+\sum_{i=r+1}^{r+s} \bar{m}_{i} f_{0}\left(1 \otimes u_{i}(l)\right) \\
& =1 \otimes f(l)+\sum_{i=r+1}^{r+s} \bar{m}_{i} \otimes f u_{i}(l)
\end{aligned}
$$

Using the expression $f u_{i}-v_{i} f=f_{\lambda_{n+1} \mu_{n+1}, \bar{m}_{i}^{\prime}}$ in 4.5.1) we get

$$
\Psi \circ f_{\lambda_{n+1} \mu_{n+1}}=f \circ \Phi
$$

Therefore \mathfrak{D}_{n+1} is equivalent to the trivial deformation of f with base A / \mathfrak{M}^{n+1}.
Thus we may assume that \mathfrak{D} has $(n+1)$-infinitesimal. If $\alpha_{\mathfrak{D}_{n+2}}$ takes values in coboundaries, we can repeat the argument and the process must stop as $\mathfrak{D}=\lim _{n \rightarrow \infty} \mathfrak{D}_{n}$ is given to be non-trivial.

Definition 4.5.11. A Leibniz algebra homomorphism $f: L \longrightarrow M$ is said to be rigid if any formal deformation of f is trivial.

Corollary 4.5.12. If $H L^{2}(f ; f)=0$, then $f: L \longrightarrow M$ is rigid.
Proof. Since $H L^{2}(f ; f)=0$, any 2-cocycle in $C L^{2}(f ; f)$ is a 2-coboundary. Suppose \mathfrak{D} is a formal deformation of f with base A. By Theorem 3.5.1 $\alpha_{\mathfrak{D}_{2}}(\xi)$ is a 2-cocycle, hence a coboundary in $C L^{2}(f ; f)$ for any $\xi \in\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime}$. Then as shown in the proof of Theorem 4.5.10, \mathfrak{D}_{2} is a trivial deformation. But then by Proposition 4.5.9 the 2-infinitesimal takes values in cocycles and hence in coboundaries. By repeating the argument, we see that \mathfrak{D}_{n} is trivial for every n. Hence $\mathfrak{D}=\underset{n \rightarrow \infty}{\lim _{n}} \mathfrak{D}_{n}$ must be trivial.

Suppose A is a complete local algebra with the maximal ideal \mathfrak{M}. Let

$$
a:\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime} \longrightarrow H L^{2}(f ; f)
$$

be any linear map and \mathfrak{D} be an infinitesimal deformation with base A / \mathfrak{M}^{2} and $a_{\mathfrak{D}}=a$. For instance, let $\left\{\bar{m}_{i}\right\}_{1 \leq i \leq r}$ be a basis of $\mathfrak{M} / \mathfrak{M}^{2}$ with $\left\{\bar{\xi}_{i}\right\}_{1 \leq i \leq r}$ be the corresponding dual basis of $\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime}$. Consider a linear map $\alpha:\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime} \longrightarrow C L^{2}(f ; f)$ such that $a\left(\bar{\xi}_{i}\right)=\left[\alpha\left(\bar{\xi}_{i}\right)\right], 1 \leq i \leq r$. Suppose $\alpha\left(\bar{\xi}_{i}\right)=\left(\psi_{i}^{\lambda}, \psi_{i}^{\mu} ; f_{i}\right)$. We define a deformation $\mathfrak{D}=\left(\lambda, \mu ; f_{\lambda \mu}\right)$ of f with base A / \mathfrak{M}^{2} as follows.

$$
\begin{aligned}
& {\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\lambda}=1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r} m_{i} \otimes \psi_{i}^{\lambda}\left(l_{1}, l_{2}\right)} \\
& {\left[1 \otimes x_{1}, 1 \otimes x_{2}\right]_{\mu}=1 \otimes\left[x_{1}, x_{2}\right]+\sum_{i=1}^{r} m_{i} \otimes \psi_{i}^{\mu}\left(x_{1}, x_{2}\right)} \\
& f_{\lambda \mu}\left(1 \otimes l_{1}\right)=1 \otimes f\left(l_{1}\right)+\sum_{i=1}^{r} m_{i} \otimes f_{i}\left(l_{1}\right) \text { for } l_{1}, l_{2} \in L \text { and } x_{1}, x_{2} \in M
\end{aligned}
$$

Then $a_{\mathfrak{D}}=a$.
Suppose the deformation \mathfrak{D} can be lifted to a deformation \mathfrak{D}_{k} with base A / \mathfrak{M}^{k} for $k \geq 2$. Consider the extension

$$
0 \longrightarrow \mathfrak{M}^{k} / \mathfrak{M}^{k+1} \xrightarrow{i_{k}^{k+1}} A / \mathfrak{M}^{k+1} \xrightarrow{p_{k}^{k+1}} A / \mathfrak{M}^{k} \longrightarrow 0
$$

representing a cohomology class $\left[\psi_{k}\right] \in H_{\text {Harr }}^{2}\left(A / \mathfrak{M}^{k} ; M_{k}\right)$, where $M_{k}=\mathfrak{M}^{k} / \mathfrak{M}^{k+1}$.
Let $\theta_{k}=\Theta_{\mathfrak{D}_{k}}\left(\left[\psi_{k}\right]\right) \in M_{k} \otimes H L^{3}(f ; f)$. Then by Proposition 4.4.6 we obtain
Proposition 4.5.13. Let A be a complete local algebra with the maximal ideal \mathfrak{M}. Let $a:\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime} \longrightarrow H L^{2}(f ; f)$ be a given linear map. Let \mathfrak{D} be any infinitesimal deformation with base A / \mathfrak{M}^{2} and $a_{\mathfrak{D}}=a$. Then there exists a formal deformation of f with base A and with the given map a as its differential if and only if $\theta_{k}=0$ for all $k \geq 2$.

Corollary 4.5.14. If $H L^{3}(f ; f)=0$, then every linear map

$$
a:\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime} \longrightarrow H L^{2}(f ; f)
$$

is the differential of some formal deformation \mathfrak{D} of f with base A.

We end this chapter with the definition of a versal deformation of a Leibniz algebra L.

Definition 4.5.15. A formal deformation η of a Leibniz algebra L with base C is called versal, if
(i) for any formal deformation λ of the Leibniz algebra L with base A there exists a homomorphism $f: C \rightarrow A$ such that the deformation λ is equivalent to $f_{*} \eta$;
(ii) f is unique whenever the the maximal ideal \mathfrak{M} of A satisfies the condition $\mathfrak{M}^{2}=0$. An explicit construction of a versal deformation will be given in the next chapter.

Chapter 5

Construction of a Versal deformation of Leibniz algebras

5.1 Introduction

The present chapter is devoted to give a construction of versal deformation of a given Leibniz algebra L with $\operatorname{dim}\left(H L^{2}(L ; L)\right)<\infty$. We begin with the universal infinitesimal deformation η_{1} of L with base C_{1} as constructed in Chapter 3, and apply the tools developed in the last chapter to get a finite dimensional extension η_{2} with base C_{2}. We kill off the possible obstruction associated to the extension problem for the specific extension (2.3.4) of C_{1} to obtain η_{2} with base C_{2}. We repeat this procedure successively to get a sequence of finite dimensional extensions η_{k} with base C_{k}. The projective limit $C=\lim _{k \rightarrow \infty} C_{k}$ is a complete local algebra and $\eta=\varliminf_{k \rightarrow \infty}^{\lim _{\leftrightarrows}} \eta_{k}$ is a formal deformation of L with base C. We show that the algebra base C can be described as a quotient of the formal power series ring over \mathbb{K} in finitely many variables. Finally we prove that the formal deformation η is a versal deformation of L with base C.

5.2 Construction of a formal deformation η

Let L be a Leibniz algebra satisfying $\operatorname{dim}\left(H L^{2}(L ; L)\right)<\infty$. As in Chapter 3, we denote $H L^{2}(L ; L)$ by \mathbb{H}.

Set $C_{0}=\mathbb{K}$ and $C_{1}=\mathbb{K} \oplus \mathbb{H}^{\prime}$. As in Section 3.4 we consider the algebra C_{1} as a finite dimensional extension of \mathbb{K} given by the trivial extension

$$
0 \longrightarrow \mathbb{H}^{\prime} \xrightarrow{i_{1}} C_{1} \xrightarrow{p_{1}} C_{0} \longrightarrow 0,
$$

where the multiplication in C_{1} is defined by

$$
\left(k_{1}, h_{1}\right)\left(k_{2}, h_{2}\right)=\left(k_{1} k_{2}, k_{1} h_{2}+k_{2} h_{1}\right) \text { for }\left(k_{1}, h_{1}\right),\left(k_{2}, h_{2}\right) \in C_{1}
$$

Let η_{1} be the universal infinitesimal deformation of L with base C_{1} as constructed in Section 3.4. We proceed by induction. Suppose for some $k \geq 1$ we have constructed a finite dimensional local algebra C_{k} in \mathcal{C} and a deformation η_{k} of L with base C_{k} such that $p_{k *} \eta_{k}=\eta_{k-1}$.

Consider a linear map

$$
\mu_{k}: H_{H a r r}^{2}\left(C_{k} ; \mathbb{K}\right) \longrightarrow \operatorname{Hom}\left(S^{2} C_{k} ; \mathbb{K}\right)=\left(S^{2} C_{k}\right)^{\prime}
$$

where μ_{k} takes a cohomology class $[\psi]$ to a cocycle representing it. Such a linear map can be obtained by fixing its values on a basis of $H_{\text {Harr }}^{2}\left(C_{k} ; \mathbb{K}\right)$ and then extending it linearly (as in (2.3.2)). Let the dual map of μ_{k} be

$$
f_{k}: S^{2} C_{k} \longrightarrow H_{H a r r}^{2}\left(C_{k} ; \mathbb{K}\right)^{\prime}
$$

We have seen that f_{k} is a cocycle and represents a cohomology class in the second Harrison cohomology of C_{k} with coefficients in $H_{\text {Harr }}^{2}\left(C_{k} ; \mathbb{K}\right)^{\prime}$. Therefore by Proposition 2.3.3 the cohomology class of f_{k} corresponds to an isomorphism class of extensions of C_{k} represented by an extension

$$
\begin{equation*}
0 \longrightarrow H_{H a r r}^{2}\left(C_{k} ; \mathbb{K}\right)^{\prime} \xrightarrow{\bar{i}_{k+1}} \bar{C}_{k+1} \xrightarrow{\bar{p}_{k+1}} C_{k} \longrightarrow 0 \tag{5.2.1}
\end{equation*}
$$

For this extension we now consider the problem of extending the deformation η_{k} of L with base C_{k} as discussed in Chapter 4. As in (4.2.21) the associated obstruction is $\theta_{k}\left(\left[f_{k}\right]\right) \in H_{\text {Harr }}^{2}\left(C_{k} ; \mathbb{K}\right)^{\prime} \otimes H L^{3}(L ; L)$. By Proposition 3.4.1] $\theta_{k}\left(\left[f_{k}\right]\right)$ gives a linear map

$$
\begin{equation*}
\omega_{k}: H_{H a r r}^{2}\left(C_{k} ; \mathbb{K}\right) \longrightarrow H L^{3}(L ; L) \tag{5.2.2}
\end{equation*}
$$

with the dual map

$$
\omega_{k}^{\prime}: H L^{3}(L ; L)^{\prime} \longrightarrow H_{\text {Harr }}^{2}\left(C_{k} ; \mathbb{K}\right)^{\prime}
$$

Thus to get an extension of η_{k} we modify the extension (5.2.1) to a new extension of C_{k} for which obstruction vanishes.

We take the quotient module $\operatorname{coker}\left(\omega_{k}^{\prime}\right)$ of $H_{H a r r}^{2}\left(C_{k} ; \mathbb{K}\right)^{\prime}$ and obtain an induced extension of the algebra C_{k} by $\operatorname{coker}\left(\omega_{k}^{\prime}\right)$ as in the commutative diagram in Figure 5.1, where the vertical arrows are projection maps.

Figure 5.1:

This yields a new extension

$$
0 \longrightarrow \operatorname{coker}\left(\omega_{k}^{\prime}\right) \longrightarrow \bar{C}_{k+1} / \bar{i}_{k+1} \circ \omega_{k}^{\prime}\left(H L^{3}(L ; L)^{\prime}\right) \longrightarrow C_{k} \longrightarrow 0 .
$$

Observe that $\operatorname{coker}\left(\omega_{k}^{\prime}\right) \cong\left(\operatorname{ker}\left(\omega_{k}\right)\right)^{\prime}$, so it induces an extension

$$
\begin{equation*}
0 \longrightarrow\left(k e r\left(\omega_{k}\right)\right)^{i_{k+1}} C_{k+1} \xrightarrow{p_{k+1}} C_{k} \longrightarrow 0 \tag{5.2.3}
\end{equation*}
$$

where $C_{k+1}=\bar{C}_{k+1} / \bar{i}_{k+1} \circ \omega_{k}^{\prime}\left(H L^{3}(L ; L)^{\prime}\right)$ and i_{k+1}, p_{k+1} are the mappings induced by \bar{i}_{k+1} and \bar{p}_{k+1}, respectively. Since C_{k} is finite dimensional, the cohomology module $H_{\text {Harr }}^{2}\left(C_{k} ; \mathbb{K}\right)$ is also finite dimensional and hence by Proposition 2.3.5, C_{k+1} is in \mathcal{C} as well.

Remark 5.2.1. It follows from Proposition 2.3.4 that the specific extension (5.2.1) has the following "universal property". For any C_{k}-module M with $\mathfrak{M} M=0$, (5.2.1) admits a unique homomorphism into an arbitrary extension of C_{k} :

$$
0 \longrightarrow M \longrightarrow B \longrightarrow C_{k} \longrightarrow 0
$$

As a consequence we get the following result.
Proposition 5.2.2. The deformation η_{k} with base C_{k} of the Leibniz algebra L admits an extension to a deformation with base C_{k+1}, which is unique up to an isomorphism and an automorphism of the extension

$$
0 \longrightarrow\left(k e r\left(\omega_{k}\right)\right)^{\prime} \xrightarrow{i_{k+1}} C_{k+1} \xrightarrow{p_{k+1}} C_{k} \longrightarrow 0 .
$$

Proof. From the above construction of the extension (5.2.3) it is clear that the corresponding obstruction map is the restriction of ω_{k} to the submodule $\operatorname{ker}\left(\omega_{k}\right)$ and is given by

$$
\left.\omega_{k}\right|_{\operatorname{ker}\left(\omega_{k}\right)}: \operatorname{ker}\left(\omega_{k}\right) \longrightarrow H L^{3}(L ; L) .
$$

Hence, it is the zero map. Thus the result follows from Theorem 4.2.6.
Therefore we get a new deformation η_{k+1} of L with base C_{k+1} extending the deforma-
tion η_{k} endowed with the projection map $p_{k+1}: C_{k+1} \longrightarrow C_{k}$ such that $p_{k+1 *} \eta_{k+1}=\eta_{k}$. Using induction on k, the above process yields a sequence of finite dimensional local algebras C_{k} and deformations η_{k} of the Leibniz algebra L with base C_{k}

$$
\mathbb{K} \stackrel{p_{1}}{\longleftarrow} C_{1} \stackrel{p_{2}}{\longleftarrow} C_{2} \stackrel{p_{3}}{\longleftarrow} \ldots \ldots \stackrel{p_{k}}{\longleftarrow} C_{k} \stackrel{p_{k+1}}{\longleftarrow} C_{k+1} \ldots
$$

such that $p_{k+1 *} \eta_{k+1}=\eta_{k}$. Thus by taking the projective limit we obtain a formal deformation η of L with base $C=\lim _{k \rightarrow \infty} C_{k}$.

5.3 Versality property of η

Suppose $\operatorname{dim}(\mathbb{H})=n$. Let $\left\{h_{i}\right\}_{1 \leq i \leq n}$ be a basis of \mathbb{H} and $\left\{g_{i}\right\}_{1 \leq i \leq n}$ be the corresponding dual basis. Let $\mathbb{K}\left[\left[\mathbb{H}^{\prime}\right]\right]$ denote the formal power series ring $\mathbb{K}\left[\left[g_{1}, \ldots, g_{n}\right]\right]$ over \mathbb{K} in n variables g_{1}, \ldots, g_{n}. A typical element in $\mathbb{K}\left[\left[\mathbb{H}^{\prime}\right]\right]$ is of the form

$$
\sum_{i=0}^{\infty} a_{i} \alpha_{i}\left(g_{1}, \ldots, g_{n}\right)=a_{0}+a_{1} \alpha_{1}\left(g_{1}, \ldots, g_{n}\right)+a_{2} \alpha_{2}\left(g_{1}, \ldots, g_{n}\right)+\cdots
$$

where $a_{i} \in \mathbb{K}$ and α_{i} is a monomial of degree i in n-variables g_{1}, \ldots, g_{n} for $i=0,1,2, \ldots$. Let \mathfrak{M} denote the unique maximal ideal in $\mathbb{K}\left[\left[\mathbb{H}^{\prime}\right]\right]$, consisting of all elements in $\mathbb{K}\left[\left[\mathbb{H}^{\prime}\right]\right]$ with constant term being equal to zero.

The next result gives a description of the finite dimensional local algebras C_{k}, for $k \geq 1$ constructed above.

Proposition 5.3.1. For $k \geq 1, C_{k} \cong \mathbb{K}\left[\left[\mathbb{H}^{\prime}\right]\right] / I_{k}$ for some ideal I_{k}, satisfying $\mathfrak{M}^{2}=$ $I_{1} \supset I_{2} \supset \ldots \supset I_{k} \supset \mathfrak{M}^{k+1}$ and the maximal ideal of C_{k} is \mathfrak{M} / I_{k}.

Proof. By construction of the universal infinitesimal deformation η_{1}, the algebra base $C_{1}=\mathbb{K} \oplus \mathbb{H}^{\prime} \cong \mathbb{K}\left[\left[\mathbb{H}^{\prime}\right]\right] / \mathfrak{M}^{2}$. Take $I_{1}=\mathfrak{M}^{2} \supset \mathfrak{M}^{3}$. Clearly, the maximal ideal of C_{1} is $\mathfrak{M} / \mathfrak{M}^{2}=\mathfrak{M} / I_{1}$.

We use induction on k to prove the result. Suppose we already know that $C_{k} \cong$ $\mathbb{K}\left[\left[\mathbb{H}^{\prime}\right]\right] / I_{k}$ where $\mathfrak{M}^{2} \supset I_{k} \supset \mathfrak{M}^{k+1}$.

Then taking $A=\mathbb{K}\left[\left[\mathbb{H}^{\prime}\right]\right]$ and $I=I_{k}$ in Proposition [2.3.8, we get

$$
H_{\text {Harr }}^{2}\left(C_{k} ; \mathbb{K}\right) \cong\left(I_{k} / \mathfrak{M} I_{k}\right)^{\prime} .
$$

Then the algebra \bar{C}_{k+1} which is the extension of C_{k} by $H_{H a r r}^{2}\left(C_{k} ; \mathbb{K}\right)^{\prime}$ can be written as

$$
\bar{C}_{k+1} \cong \mathbb{K}\left[\left[\mathbb{H}^{\prime}\right]\right] / \mathfrak{M} I_{k} \text {, by Proposition 2.3.9 }
$$

By construction in the previous section, C_{k+1} is the quotient of \bar{C}_{k+1} by an ideal con-
tained in $H_{\text {Harr }}^{2}\left(C_{k} ; \mathbb{K}\right)^{\prime} \cong I_{k} / \mathfrak{M} I_{k} \subset \mathfrak{M}^{2} / \mathfrak{M} I_{k}$. Let $I_{k+1} / \mathfrak{M} I_{k}$ be the ideal by which we take quotient of \bar{C}_{k+1} to get C_{k+1}. So $I_{k+1} / \mathfrak{M} I_{k} \subset I_{k} / \mathfrak{M} I_{k} \subset \mathfrak{M}^{2} / \mathfrak{M} I_{k}$.

Therefore $C_{k+1}=\bar{C}_{k+1} /\left(I_{k+1} / \mathfrak{M} I_{k}\right) \cong \mathbb{K}\left[\left[\mathbb{H}^{\prime}\right]\right] / I_{k+1}$ where $\mathfrak{M}^{2} \supset I_{k+1} \supset \mathfrak{M} I_{k} \supset$ \mathfrak{M}^{k+2}. Then the maximal ideal of C_{k+1} is \mathfrak{M} / I_{k+1}. The proof is now complete by induction.

Remark 5.3.2. In Proposition 2.3.9, the projection map $p: A / \mathfrak{M} I \longrightarrow A / I$ is induced by the inclusion $\mathfrak{M} I \hookrightarrow I$. So the projection map $p_{k+1}: C_{k+1} \longrightarrow C_{k}$ for $k \geq 1$ discussed in the Proposition 5.3.1 is given by the natural map $p_{k+1}\left(f+I_{k+1}\right)=f+I_{k}$.

Corollary 5.3.3. For $k \geq 2$ the projection $p_{k}: C_{k} \longrightarrow C_{k-1}$ induces an isomorphism $\left(\frac{\mathfrak{M} / I_{k}}{\mathfrak{M}^{2} / I_{k}}\right)^{\prime} \longrightarrow\left(\frac{\mathfrak{M} / I_{k-1}}{\mathfrak{M}^{2} / I_{k-1}}\right)^{\prime}$. Moreover, the differential d $\eta_{k}:\left(\frac{\mathfrak{M} / I_{k}}{\mathfrak{M}^{2} / I_{k}}\right)^{\prime} \longrightarrow \mathbb{H}$ is the identity map.

Proof. By Proposition 5.3.1 we have $C_{0}=\mathbb{K} ; C_{1}=\left(\mathbb{K} \oplus \mathbb{H}^{\prime}\right) \cong \mathbb{K}\left[\left[\mathbb{H}^{\prime}\right]\right] / \mathfrak{M}^{2}$ and for $k \geq 2, C_{k} \cong \mathbb{K}\left[\left[\mathbb{H}^{\prime}\right]\right] / I_{k}$ where $\mathfrak{M}^{2}=I_{1} \supset I_{2} \supset \ldots \supset I_{k} \supset \mathfrak{M}^{k+1}$.

By Remark 5.3.2 the projection $p_{k}: C_{k} \longrightarrow C_{k-1}$ is given by $p_{k}\left(f+I_{k}\right)=f+$ I_{k-1} for $f \in C_{k}$ and $k \geq 1$. The map p_{k} gives rise to a surjective linear map $\left.p_{k}\right|_{\mathfrak{M} / I_{k}}$: $\mathfrak{M} / I_{k} \longrightarrow \mathfrak{M} / I_{k-1}$ by restriction of p_{k} on the maximal ideal \mathfrak{M} / I_{k} of C_{k}. Consider the quotient map $q_{k}: \mathfrak{M} / I_{k-1} \longrightarrow \frac{\mathfrak{M} / I_{k-1}}{\mathfrak{M}^{2} / I_{k-1}}$. Thus $q_{k} \circ\left(\left.p_{k}\right|_{\mathfrak{M} / I_{k}}\right): \mathfrak{M} / I_{k} \longrightarrow \frac{\mathfrak{M} / I_{k-1}}{\mathfrak{M}} /$ in $^{2} / I_{k-1}$ a surjective linear map with kernel \mathfrak{M}^{2} / I_{k}. Consequently we get an isomorphism

$$
\frac{\mathfrak{M} / I_{k}}{\mathfrak{M}^{2} / I_{k}} \longrightarrow \frac{\mathfrak{M} / I_{k-1}}{\mathfrak{M}^{2} / I_{k-1}} .
$$

As a result we get the desired isomorphism

$$
\left(\frac{\mathfrak{M} / I_{k}}{\mathfrak{M}^{2} / I_{k}}\right)^{\prime} \longrightarrow\left(\frac{\mathfrak{M} / I_{k-1}}{\mathfrak{M}^{2} / I_{k-1}}\right)^{\prime} .
$$

In particular any $k \geq 1$ we get $\left(\frac{\mathfrak{M} / I_{k}}{\mathfrak{M}^{2} / I_{k}}\right)^{\prime}=\left(\frac{\mathfrak{M}}{\mathfrak{M}^{2}}\right)^{\prime}$. Observe that $C_{1}=\mathbb{K} \oplus \mathbb{H}^{\prime}$ has the maximal ideal \mathbb{H}^{\prime} with $\left(\mathbb{H}^{\prime}\right)^{2}=0$. Hence $\left(\frac{\mathfrak{M}}{\mathfrak{M}^{2}}\right)^{\prime}=\left(\mathbb{H}^{\prime}\right)^{\prime}=\mathbb{H}$.

By definition, the differential $d \eta_{k}:\left(\frac{\mathfrak{M} / I_{k}}{\mathfrak{M}^{2} / I_{k}}\right)^{\prime}=\left(\frac{\mathfrak{M}}{\mathfrak{M}^{2}}\right)^{\prime} \longrightarrow \mathbb{H}$ is given by

$$
d \eta_{k}\left(h_{i}\right)=a_{\pi_{k_{*}} \eta_{k}}\left(h_{i}\right)=a_{\pi_{k *} \eta_{k}, h_{i}}=\left[\alpha_{\pi_{k *} \eta_{k}, h_{i}}\right] \text {, the cohomology class of } \alpha_{\pi_{k *} \eta_{k}, h_{i}},
$$

where $\pi_{k}: C_{k} \longrightarrow C_{k} /\left(\mathfrak{M}^{2} / I_{k}\right)$ is the canonical projection. Now $p_{k *} \eta_{k}=\eta_{k-1}$ for $k \geq 1$ and $p\left(h_{i}+I_{k}\right)=h_{i}+I_{k-1}$. Thus from (3.3.2) and (3.4.1) it follows that $\alpha_{\eta_{k}, h_{i}}=$ $\alpha_{\eta_{k-1}, h_{i}}=\cdots=\alpha_{\eta_{1}, h_{i}}=\mu\left(h_{i}\right)$ for $1 \leq i \leq n$. Also we have $\alpha_{\pi_{k *} \eta_{k}, h_{i}}=\alpha_{\eta_{k}, h_{i}}=\mu\left(h_{i}\right)$ for $i \leq i \leq n$.

Therefore $d \eta_{k}\left(h_{i}\right)=\left[\alpha_{\pi_{k *} \eta_{k}, h_{i}}\right]=\left[\mu\left(h_{i}\right)\right]=h_{i}$.

Proposition 5.3.4. The complete local algebra $C=\underset{k \rightarrow \infty}{\lim _{k}} C_{k}$ can be described as $C \cong$ $\mathbb{K}\left[\left[\mathbb{H}^{\prime}\right]\right] / I$, where I is an ideal contained in \mathfrak{M}^{2} and the maximal ideal in C is \mathfrak{M} / I.

Proof. Consider the map

$$
\phi: \mathbb{K}\left[\left[\mathbb{H}^{\prime}\right]\right] \longrightarrow C_{k}=\mathbb{K}\left[\left[\mathbb{H}^{\prime}\right]\right] / I_{k} \text { defined by } \phi(f)=f+I_{k} \text { for } f \in \mathbb{K}\left[\left[\mathbb{H}^{\prime}\right]\right]
$$

Since $I_{k} \supset \mathfrak{M}^{k+1}$, the map ϕ induces a surjective linear map

$$
\phi_{k}: \mathbb{K}\left[\left[\mathbb{H}^{\prime}\right]\right] / \mathfrak{M}^{k+1} \longrightarrow C_{k}=\mathbb{K}\left[\left[\mathbb{H}^{\prime}\right]\right] / I_{k} \text { for each } k \geq 1
$$

In the limit we get a surjective linear map

$$
\hat{\phi}: \mathbb{K}\left[\left[\mathbb{H}^{\prime}\right]\right]=\lim _{k \rightarrow \infty} \mathbb{K}\left[\left[\mathbb{H}^{\prime}\right]\right] / \mathfrak{M}^{k+1} \longrightarrow \lim _{k \rightarrow \infty} C_{k}=C
$$

given by $\hat{\phi}\left(f_{1}+\mathfrak{M}^{2}, f_{2}+\mathfrak{M}^{3}, \cdots\right)=\left(\phi_{1}\left(f_{1}+\mathfrak{M}^{2}\right), \phi_{2}\left(f_{2}+\mathfrak{M}^{3}\right), \cdots\right)=\left(f_{1}+I_{1}, f_{2}+I_{2}, \cdots\right)$. Therefore we get an isomorphism $C \cong \mathbb{K}\left[\left[\mathbb{H}^{\prime}\right]\right] / \operatorname{ker}(\hat{\phi})$.

Let I denote the ideal $\operatorname{ker}(\hat{\phi})=\bigcap_{k} I_{k} \subset \mathfrak{M}^{2}$. So $C \cong \mathbb{K}\left[\left[\mathbb{H}^{\prime}\right]\right] / I$. Clearly the maximal ideal of C is \mathfrak{M} / I.

Finally we prove the versality property of the formal deformation η with base C. We need the following standard lemma.

Lemma 5.3.5. Suppose $0 \longrightarrow M_{r} \xrightarrow{i} B_{r} \xrightarrow{p} A \longrightarrow 0$ is an r-dimensional extension of A. Then this extension yields an $(r-1)$-dimensional extension

$$
0 \longrightarrow M_{r-1} \xrightarrow{\bar{i}} B_{r-1} \xrightarrow{\bar{p}} A \longrightarrow 0
$$

of A and a 1-dimensional extension

$$
0 \longrightarrow \mathbb{K} \longrightarrow B_{r} \longrightarrow B_{r-1} \longrightarrow 0
$$

Proof. Let $\left\{x_{i}\right\}_{1 \leq i \leq r}$ be a basis of M_{r}. We take $M_{r-1}=M_{r} /<x_{r}>$ and $B_{r-1}=$ $B_{r} / i\left(<x_{r}>\right)$, where $<x_{r}>$ denotes the 1-dimensional submodule over \mathbb{K} spanned by x_{r}. Then we get an $(r-1)$-dimensional extension $0 \longrightarrow M_{r-1} \xrightarrow{\bar{i}} B_{r-1} \xrightarrow{\bar{p}} A \longrightarrow 0$, where \bar{i} and \bar{p} are maps induced by i and p respectively. If $p^{\prime}: B_{r} \longrightarrow B_{r-1}$ is the quotient map then the 1-dimensional extension in question is

$$
0 \longrightarrow<x_{r}>\longrightarrow B_{r} \xrightarrow{p^{\prime}} B_{r-1} \longrightarrow 0
$$

Theorem 5.3.6. Let L be a Leibniz algebra with $\operatorname{dim}(\mathbb{H})<\infty$. Then the formal deformation η with base C constructed in Section 5.2, is a versal deformation of L.

Proof. Suppose $\operatorname{dim}(\mathbb{H})=n$. Let $\left\{h_{i}\right\}_{1 \leq i \leq n}$ be a basis of \mathbb{H} and $\left\{g_{i}\right\}_{1 \leq i \leq n}$ the corresponding dual basis of \mathbb{H}^{\prime}.

Let A be a complete local algebra with maximal ideal \mathfrak{M} and λ be a formal deformation of L with base A. We want to find a \mathbb{K}-algebra homomorphism $\phi: C \longrightarrow A$ such that the deformation λ is equivalent to the push-out $\phi_{*} \eta$ of the deformation η via the map ϕ.

Denote $A_{0}=A / \mathfrak{M} \cong \mathbb{K}$ and $A_{1}=A / \mathfrak{M}^{2} \cong \mathbb{K} \oplus\left(\mathfrak{M} / \mathfrak{M}^{2}\right)$. Since A is a complete local algebra, we have $A=\lim _{k \rightarrow \infty} A / \mathfrak{M}^{k}$. Moreover, for each $k \geq 1$ we have the following finite dimensional extension

$$
\begin{equation*}
0 \longrightarrow \frac{\mathfrak{M}^{k}}{\mathfrak{M}^{k+1}} \xrightarrow{i} \frac{A}{\mathfrak{M}^{k+1}} \xrightarrow{p} \frac{A}{\mathfrak{M}^{k}} \longrightarrow 0 \tag{5.3.1}
\end{equation*}
$$

because $\operatorname{dim}\left(\frac{\mathfrak{m}^{k}}{\mathfrak{M}^{k+1}}\right)<\infty$.
Let $n_{k}=\operatorname{dim}\left(\frac{\mathfrak{M}^{k}}{\mathfrak{M}^{k+1}}\right)$. A repeated application of Lemma 5.3 .5 to the extension

$$
0 \longrightarrow \frac{\mathfrak{M}^{2}}{\mathfrak{M}^{3}} \longrightarrow \frac{A}{\mathfrak{M}^{3}} \longrightarrow \frac{A}{\mathfrak{M}^{2}}=A_{1} \longrightarrow 0
$$

yields n_{1} number of 1 -dimensional extensions as follows.

$$
\begin{gathered}
0 \longrightarrow \mathbb{K} \longrightarrow A_{2} \longrightarrow A_{1} \longrightarrow 0 \\
0 \longrightarrow \mathbb{K} \longrightarrow A_{3} \longrightarrow A_{2} \longrightarrow 0 \\
\vdots \\
0 \longrightarrow \mathbb{K} \longrightarrow A_{n_{1}+1}=\frac{A}{\mathfrak{M}^{3}} \longrightarrow A_{n_{1}} \longrightarrow 0 .
\end{gathered}
$$

Similarly, the extension

$$
0 \longrightarrow \frac{\mathfrak{M}^{3}}{\mathfrak{M}^{4}} \longrightarrow \frac{A}{\mathfrak{M}^{4}} \longrightarrow \frac{A}{\mathfrak{M}^{3}}=A_{n_{1}+1} \longrightarrow 0
$$

splits into n_{2} number of 1-dimensional extensions and so on. Consequently, we get a sequence of 1- dimensional extensions

$$
0 \longrightarrow \mathbb{K} \xrightarrow{j_{k+1}} A_{k+1} \xrightarrow{q_{k+1}} A_{k} \longrightarrow 0 \quad ; k \geq 1 .
$$

Since $A=\lim _{k \rightarrow \infty} A / \mathfrak{M}^{k}$, it follows that $A=\varliminf_{k \rightarrow \infty}^{\lim _{\leftrightarrows \rightarrow \infty}} A_{k}$. Let $Q_{k}: A \longrightarrow A_{k}$ be the projection map for the inverse system $\left\{A_{k}, q_{k}\right\}_{k \geq 1}$ with the limit A, where $Q_{1}: A \longrightarrow A_{1}=A / \mathfrak{M}^{2}$
is the natural projection. Let $Q_{k_{*}} \lambda=\lambda_{k}$, then λ_{k} is a deformation of L with base A_{k}. Thus $\lambda_{k}=Q_{k_{*}} \lambda=\left(q_{k+1} \circ Q_{k+1}\right)_{*} \lambda=q_{k+1_{*}} \lambda_{k+1}$. Now we will construct inductively homomorphisms $\phi_{j}: C_{j} \longrightarrow A_{j}$ for $j=1,2 \ldots$, compatible with the corresponding projections $C_{j+1} \longrightarrow C_{j}$ and $A_{j+1} \longrightarrow A_{j}$, along with the conditions $\phi_{j_{*}} \eta_{j} \cong \lambda_{j}$. Define $\phi_{1}: C_{1} \longrightarrow A_{1}$ as

$$
\left(i d \oplus(d \lambda)^{\prime}\right): \mathbb{K} \oplus \mathbb{H}^{\prime} \longrightarrow \mathbb{K} \oplus\left(\mathfrak{M} / \mathfrak{M}^{2}\right)
$$

From Theorem 3.4.11] we have $\phi_{1_{*}} \eta_{1} \cong \lambda_{1}$.
Suppose we have constructed a \mathbb{K}-algebra homomorphism $\phi_{k}: C_{k} \longrightarrow A_{k}$ with $\phi_{k *} \eta_{k} \cong \lambda_{k}$. Consider the homomorphism $\phi_{k}^{*}: H_{\text {Harr }}^{2}\left(A_{k} ; \mathbb{K}\right) \longrightarrow H_{\text {Harr }}^{2}\left(C_{k} ; \mathbb{K}\right)$ induced by ϕ_{k}. Let

$$
0 \longrightarrow \mathbb{K} \xrightarrow{i_{k+1}} B \xrightarrow{p_{k+1}} C_{k} \longrightarrow 0
$$

represent the image under ϕ_{k}^{*} of the isomorphism class of the extension (Proposition 2.3.3)

$$
0 \longrightarrow \mathbb{K} \xrightarrow{j_{k+1}} A_{k+1} \xrightarrow{q_{k+1}} A_{k} \longrightarrow 0
$$

Then we have a commutative diagram

Figure 5.2:
where ψ is given by $\psi\left((x, k)_{q}\right)=\left(\phi_{k}(x), k\right)_{q^{\prime}}$ for some fixed sections q and q^{\prime} of p_{k+1} and q_{k+1} respectively. Observe that by Proposition 4.3.4, the obstructions in extending λ_{k} to the base A_{k+1} and that of η_{k} to the base B coincide. Since λ_{k} has an extension λ_{k+1}, the corresponding obstruction is zero. Hence there exists a deformation ξ of L with base B which extends η_{k} with base C_{k} such that $\psi_{*} \xi=\lambda_{k+1}$. By Remark 5.2.1 we get a unique homomorphism of extensions given by the commutative diagram in Figure 5.3 Since the deformation η_{k} has been extended to B, the obstruction map

$$
\omega_{k}: H_{H a r r}^{2}\left(C_{k} ; \mathbb{K}\right) \longrightarrow H L^{3}(L ; L)
$$

is zero and hence ω_{k}^{\prime} is also the zero map.
Therefore the composition $\tau^{\prime} \circ \omega_{k}^{\prime}: H L^{3}(L ; L)^{\prime} \longrightarrow \mathbb{K}$ is zero. Consequently, τ^{\prime}

Figure 5.3:
induces a linear map

$$
\tau: H_{H a r r}^{2}\left(C_{k} ; \mathbb{K}\right)^{\prime} / \omega_{k}^{\prime}\left(H L^{3}(L ; L)^{\prime}\right) \longrightarrow \mathbb{K} .
$$

Moreover the map $\bar{\chi}: \bar{C}_{k+1} \longrightarrow B$ induces a linear map

$$
\chi: C_{k+1}=\bar{C}_{k+1} / \bar{i}_{k+1} \circ \omega_{k}^{\prime}\left(H L^{3}(L ; L)^{\prime}\right) \longrightarrow B .
$$

Since $\operatorname{coker}\left(\omega_{k}^{\prime}\right) \cong\left(\operatorname{ker}\left(\omega_{k}\right)\right)^{\prime}$, the last diagram yields the following commutative diagram.

Figure 5.4:
By Corollary 5.3.3, the differential

$$
d \eta_{k}:\left(\frac{\mathfrak{M} / I_{k}}{\mathfrak{M}^{2} / I_{k}}\right)^{\prime} \longrightarrow \mathbb{H}
$$

is onto, so by Corollary 4.3.2 the deformations $\chi_{*} \eta_{k+1}$ and ξ are related by some automorphism $u: B \longrightarrow B$ of the extension

$$
0 \longrightarrow \mathbb{K} \longrightarrow B \longrightarrow C_{k} \longrightarrow 0
$$

with $u_{*}\left(\chi_{*} \eta_{k+1}\right)=\xi$. Now set $\phi_{k+1}=(\psi \circ u \circ \chi): C_{k+1} \longrightarrow A_{k+1}$, where ψ is as in Figure [5.2] As push-out is preserved under composition of maps (Proposition 3.3.5) we get

$$
\phi_{k+1_{*}} \eta_{k+1}=\psi_{*} \circ u_{*} \circ \chi_{*} \eta_{k+1}=\psi_{*} \xi=\lambda_{k+1} .
$$

Thus by induction we get a sequence of homomorphisms $\phi_{k}: C_{k} \longrightarrow A_{k}$ with $\phi_{k *} \eta_{k}=$ λ_{k}. Consequently, in the limit, we find a homomorphism $\phi: C \longrightarrow A$ such that $\phi_{*} \eta=\lambda$. If $\mathfrak{M}^{2}=0$, then the uniqueness of ϕ follows from the corresponding property of ϕ_{1} in Theorem 3.4.11

Chapter 6

Massey Brackets, relation with Obstructions

6.1 Introduction

It is well known that the construction of one parameter deformations of various algebraic structures, like associative algebras or Lie algebras, involves certain conditions on cohomology classes, arising as obstructions. This is also mentioned in this thesis for Leibniz algebras in Examples 4.2.5 and 4.4.5. These conditions are expressed in terms of Massey brackets Ret77, Ret93, which are, in turn, the Lie counterpart of classical Massey products Mas54. The connection between obstructions in extending a given deformation and Massey products was first noticed in Dou61. The aim of this chapter is to study this relationship in our context.

First, we relate obstructions in extending a finite order one parameter deformation of a Leibniz algebra to Massey brackets of 2-cocycles using the notion of Massey noperations as defined by V.S. Retakh Ret77. Recall (Definition 3.4.8) that for $(A, \mathfrak{M}) \in$ \mathcal{C}, the differential of a deformation λ with base A of a Leibniz algebra L is a linear map, $\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime} \longrightarrow H L^{2}(L ; L)$. A natural question is whether any such linear map is realized as a differential. We prove a necessary and sufficient condition for an arbitrary linear map $a:\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime} \longrightarrow H L^{2}(L ; L)$ to be the differential of a deformation with base A. This is done by using a general approach to Massey brackets as introduced in FW01. Finally, we express the obstructions arising at different steps in the inductive construction of a versal deformation η as discussed in Chapter 5, in terms of these general Massey brackets.

6.2 Massey Brackets

Let L be a Leibniz algebra over \mathbb{K} with bracket $[-,-]$. Recall that a formal deformation of L (see Example 4.5.3) is defined as a formal power series

$$
\left[l_{1}, l_{2}\right]_{\lambda_{t}}=\left[l_{1}, l_{2}\right]+\sum_{i=1}^{\infty} t^{i} \lambda_{i}\left(l_{1}, l_{2}\right) \text { for } \lambda_{i} \in C L^{2}(L ; L) \text { and } l_{1}, l_{2} \in L,
$$

which makes $L[[t]]=L \otimes \mathbb{K}[[t]]$ a Leibniz algebra. The bracket $[-,-]_{\lambda_{t}}$ satisfies the Leibniz relation is equivalent to the fact that ([Bal97])

$$
\begin{equation*}
\delta \lambda_{1}=0 \text { and } \delta \lambda_{i}=\frac{1}{2} \sum_{k=1}^{i-1}\left[\lambda_{k}, \lambda_{i-k}\right] \text { for } i \geq 2 . \tag{6.2.1}
\end{equation*}
$$

Here $\left[\lambda_{k}, \lambda_{i-k}\right]$ denotes the product in the differential graded Lie algebra structure in $\left(C L^{*}(L ; L),[-,-], d\right)$ (cf. Proposition 1.3.10).

The first condition $\delta \lambda_{1}=0$ in (6.2.1) means that λ_{1} is a 2 -cocycle. Then $[-,-]_{\lambda_{t}}=$ $[-,-]+t \lambda_{1}$ is an infinitesimal deformation of L with base $\mathbb{K}[[t]] /\left(t^{2}\right)$. This infinitesimal deformation can be extended to a formal deformation of L with base $\mathbb{K}[[t]]$ if and only if there exist cochains $\lambda_{i} \in C L^{2}(L ; L)$ such that each λ_{i} satisfies (6.2.1). These conditions can be conveniently expressed by Massey brackets Ret77 defined on the graded module $H L^{*}(L ; L)$ (cf. Corollary 1.3.11).

Let M be an ordered set of homogeneous elements of $C L^{*}(L ; L)$, and, P and Q be non intersecting ordered set of elements of M. Denote by $\varepsilon(P, Q)$ the sum of numbers of form $(|x|+1)(|y|+1)$ such that $x \in P, y \in Q$ and y precedes x in M, where $|x|$ denotes the homogeneous degree of $x \in C L^{*}(L ; L)$. The pair P, Q is called proper if the minor element of P precedes the minor element of Q and $P \cup Q=M$.

Definition 6.2.1. Let $y_{i}=\left[x_{i}\right] \in H L^{*}(L ; L), 1 \leq i \leq n$. We say that the Massey operation $<y_{1}, \cdots, y_{n}>$ is defined for the elements y_{i}, if for $m<n$ and for any set $1 \leq i_{1}<i_{2}<\cdots<i_{m} \leq n$ there exist elements $x_{i_{1} \cdots i_{m}}$ such that for each ordered set $I=\left(x_{i_{1}}, \cdots, x_{i_{m}}\right)$ we have $d x_{i_{1} \cdots i_{m}}=\sum(-1)^{\varepsilon(J, K)}\left[\bar{x}_{j_{1}, \cdots j_{s}}, x_{\left.k_{1}, \cdots, k_{t}\right]}\right]$, where the sum is taken over all proper pairs of the sets $J=\left(x_{j_{1}}, \cdots, x_{j_{s}}\right), K=\left(x_{k_{1}}, \cdots, x_{k_{t}}\right)$ and $\bar{x}=(-1)^{|x|+1} x$ for $x \in C L^{*}(L ; L)$. The set $\left\{x_{i_{1} \cdots i_{m}}\right\}$ is called the defining system of $<y_{1}, \cdots, y_{n}>$.
Proposition 6.2.2. Ret77, The element $\bar{x}_{1 \cdots n}=\sum(-1)^{\varepsilon(J, K)}\left[\bar{x}_{j_{1} \cdots j_{s}}, x_{\left.k_{1} \cdots k_{t}\right]}\right.$, where the sum is taken over all proper decompositions of the set $\left\{x_{1}, \cdots, x_{n}\right\}$, is a cocycle. The cohomology class represented by the cocycle $\bar{x}_{1 \cdots n}$ is independent of the choice of different representatives of $\left\{y_{i}\right\}$.

The class in $H L^{*}(L ; L)$ corresponding to $\bar{x}_{1 \cdots n}$ is called the value of the operation $\left.<y_{1}, \cdots, y_{n}\right\rangle$. Denote by $\left[y_{1}, \cdots, y_{n}\right]$ the set of classes constructed for all defining systems.

Mostly we need to consider 2-cocycles $y_{i} \in H L^{2}(L ; L)$, so that the representative cochains $x_{i} \in C L^{2}(L ; L)$. Then $\left|x_{i}\right|=1$ and $\overline{x_{i}}=x_{i}$. For $y_{i}=\left[x_{i}\right] \in H L^{2}(L ; L)$, $i=1,2$ it follows from Definition 6.2.1 that $\left\langle y_{1}, y_{2}\right\rangle$ is represented by the 2 -cochain x_{12} obtained from graded Lie bracket $\left[x_{1}, x_{2}\right]$.

Suppose that $y_{i} \in H L^{2}(L ; L), 1 \leq i \leq 3$ such that $\left\langle y_{i}, y_{j}\right\rangle=0$ for every i and j. This means that for a cocycle x_{i} representing y_{i} we have $\left[x_{i}, x_{j}\right]=d x_{i j}$ for some 2 - cochain $x_{i j}$. Then the third order Massey operation $<y_{1}, y_{2}, y_{3}>$ is defined and is represented by

$$
\left[x_{12}, x_{3}\right]+\left[x_{1}, x_{23}\right]+\left[x_{13}, x_{2}\right] .
$$

The cohomology class is independent of the choice of $x_{i j}$. The higher order Massey brackets are defined inductively.

Observe that the obstruction cocycle $\bar{\phi}$ in Example 4.2 .5 can be written as

$$
\begin{align*}
\bar{\phi}(x, y, z) & =\sum_{\substack{i+j=N+1 \\
i, j>0}}\left\{\lambda_{i}\left(\lambda_{j}(x, y), z\right)-\lambda_{i}\left(\lambda_{j}(x, z), y\right)-\lambda_{i}\left(x, \lambda_{j}(y, z)\right)\right\} \\
& =\frac{1}{2} \sum_{\substack{i+j=N+1 \\
i, j>0}}\left[\lambda_{i}, \lambda_{j}\right](x, y, z) . \tag{6.2.2}
\end{align*}
$$

It follows from Definition 6.2.1) that the cohomology class of

$$
\sum_{\substack{i+j=N+1 \\ i, j>0}}\left[\lambda_{i}, \lambda_{j}\right]
$$

denotes the N th Massey bracket $\left\langle\left[\lambda_{1}\right], \cdots,\left[\lambda_{1}\right]>\right.$. Now this obstruction $\bar{\phi}$ represents the 0 class if and only if the N th Massey bracket is defined and [$\left.\left[\lambda_{1}\right], \cdots,\left[\lambda_{1}\right]\right](N-$ many) contains the class 0 . If $\bar{\phi}=\delta \lambda_{N+1}$ then $\lambda_{t}=\sum_{i=1}^{N+1} \lambda_{i} t^{i}$ is a $(N+1)$ th order deformation of L with base $\mathbb{K}[[t]] /\left(t^{N+2}\right)$.

Using Definition 6.2.1] the conditions in (6.2.1) for the bracket $[-,-]_{\lambda_{t}}$ is given by the fact that the set $\left[\left[\lambda_{1}\right], \cdots,\left[\lambda_{1}\right]\right.$] (the bracket contain i-many λ_{1}) contains 0 for all $i \geq 2$.

Remark 6.2.3. One can establish a similar relationship between Massey brackets and obstructions that arise in extending deformations not merely with one parameter base but with more general base. This connection will be used in the next chapter.

Next we recall a more general definition of Massey brackets FW01 to relate it to
the obstruction cocycles obtained in the construction in 5.2,
Suppose (\mathcal{L}, ν, d) is a differential graded Lie algebra, ν being the bracket and d is the differential on the graded module \mathcal{L} over \mathbb{K}. We denote by $\mathcal{H}=\bigoplus_{i} \mathcal{H}^{i}$, the cohomology of \mathcal{L} with respect to the differential d. For our purpose we consider the differential graded Lie algebra $\left(C L^{*}(L ; L), \nu, d\right)$ (cf. Proposition 1.3.10).

Let F be a graded cocommutative coassociative coalgebra, that is a graded module with a degree 0 mapping (comultiplication) $\Delta: F \longrightarrow F \otimes F$ satisfying the conditions $S \circ \Delta=\Delta$ and $(1 \otimes \Delta) \circ \Delta=(\Delta \otimes 1) \circ \Delta$, where

$$
S: F \otimes F \longrightarrow F \otimes F
$$

is defined as

$$
S(\phi \otimes \psi)=(-1)^{|\phi||\psi|}(\psi \otimes \phi)
$$

Suppose also that a filtration $F_{0} \subset F_{1} \subset F$ is given in F, such that $F_{0} \subset \operatorname{ker}(\Delta)$ and $\operatorname{Im}(\Delta) \subset F_{1} \otimes F_{1}$. We need the following result (see [FW01]).

Proposition 6.2.4. Suppose a linear mapping $\alpha: F_{1} \longrightarrow \mathcal{L}$ of degree 1 satisfies the condition

$$
\begin{equation*}
d \alpha=\nu \circ(\alpha \otimes \alpha) \circ \Delta \tag{6.2.3}
\end{equation*}
$$

Then $\nu \circ(\alpha \otimes \alpha) \circ \Delta(F) \subset \operatorname{ker}(d)$.

Definition 6.2.5. Let $a: F_{0} \longrightarrow \mathcal{H}, b: F / F_{1} \longrightarrow \mathcal{H}$ be two linear maps of degree 1 and 2 respectively. We say that b is contained in the Massey F-bracket of a, and write $b \in[a]_{F}$, or $b \in[a]$, if there exists a degree 1 linear mapping $\alpha: F_{1} \longrightarrow \mathcal{L}$ satisfying condition (6.2.3) and such that the diagrams in Figure 6.1 are commutative, where the vertical maps labeled by π denote the projections of each module onto the quotient module.

Figure 6.1:

Note that the upper horizontal maps of the above diagrams are well defined, since $\alpha\left(F_{0}\right) \subset \alpha(\operatorname{ker} \Delta) \subset \operatorname{ker}(d)$ by virtue of (6.2.3), and $\nu \circ(\alpha \otimes \alpha) \circ \Delta(F) \subset \operatorname{ker}(d)$ by Proposition 6.2.4

The definition makes sense even if $F_{1}=F$. In that case $\operatorname{Hom}\left(F / F_{1}, \mathbb{K}\right)=0$, and $[a]_{F}$ may either be empty or contain 0 . In the last case we say that a satisfies the condition of triviality of Massey F-brackets.

Let $(A, \mathfrak{M}) \in \mathcal{C}$ be a finite dimensional commutative local algebra with 1 . Let $\varepsilon: A \longrightarrow A / \mathfrak{M} \cong \mathbb{K}$ be the canonical augmentation.

Suppose $\rho:(A \otimes L) \times(A \otimes L) \longrightarrow(A \otimes L)$ is an A-bilinear operation on $A \otimes L(\rho$ need not satisfy the Leibniz identity) such that $(\varepsilon \otimes i d): A \otimes L \longrightarrow \mathbb{K} \otimes L \cong L$ is a homomorphism with respect to the operation ρ on $A \otimes L$ and the Leibniz bracket $[-,-]$ on L. In other words,

$$
(\varepsilon \otimes i d) \circ \rho\left(a_{1} \otimes l_{1}, a_{2} \otimes l_{2}\right)=\varepsilon\left(a_{1} a_{2}\right)\left[l_{1}, l_{2}\right] \text { for } a_{1} \otimes l_{1}, a_{2} \otimes l_{2} \in A \otimes L
$$

We prove a necessary and sufficient condition for ρ to be a Leibniz bracket on $A \otimes L$.
Suppose $\operatorname{dim}(A)=r+1$. Choose a basis $\left\{m_{1}, m_{2}, \cdots, m_{k}, m_{k+1}, \cdots, m_{r}\right\}$ of \mathfrak{M} such that $\left\{\bar{m}_{i}=m_{i}+\mathfrak{M}^{2}\right\}_{1 \leq i \leq k}$ is a basis of $\mathfrak{M} / \mathfrak{M}^{2}$.

Note that for $1 \otimes l_{1}, 1 \otimes l_{2} \in A \otimes L$ we have

$$
(\varepsilon \otimes i d) \circ \rho\left(1 \otimes l_{1}, 1 \otimes l_{2}\right)=\left[(\varepsilon \otimes i d)\left(1 \otimes l_{1}\right),(\varepsilon \otimes i d)\left(1 \otimes l_{2}\right)\right]=\varepsilon \otimes i d\left(1 \otimes\left[l_{1}, l_{2}\right]\right)
$$

Therefore

$$
\begin{equation*}
\rho\left(1 \otimes l_{1}, 1 \otimes l_{2}\right)-1 \otimes\left[l_{1}, l_{2}\right] \in \operatorname{ker}(\varepsilon \otimes i d)=\operatorname{ker}(\varepsilon) \otimes L=\mathfrak{M} \otimes L \tag{6.2.4}
\end{equation*}
$$

Hence we can write

$$
\begin{equation*}
\rho\left(1 \otimes l_{1}, 1 \otimes l_{2}\right)=1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r} m_{i} \otimes l_{i}^{\prime} \text { for } l_{1}, l_{2}, l_{i}^{\prime} \in L \tag{6.2.5}
\end{equation*}
$$

Any linear map $\phi \in\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime}$ can be extended to a linear map $\tilde{\phi} \in \mathfrak{M}^{\prime}$ by defining $\tilde{\phi}\left(m_{i}\right)=0$ for $k+1 \leq i \leq r$. Denote $F=F_{1}=\mathfrak{M}^{\prime}$ and $F_{0}=\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime}$. Then we get a filtration $F_{0} \subset F_{1}=F$. The maximal ideal \mathfrak{M} of A is a commutative associative algebra. So the dual module $\mathfrak{M}^{\prime}=F=F_{1}$ is a cocommutative coassociative coalgebra with the comultiplication $\Delta: F \longrightarrow F \otimes F$ being the dual of the multiplication in \mathfrak{M}.

Suppose $\phi \in \mathfrak{M}^{\prime}$ is given, define $\alpha_{\phi} \in C L^{2}(L ; L)$ by

$$
\begin{equation*}
\alpha_{\phi}\left(l_{1}, l_{2}\right)=(\phi \otimes i d)\left(\rho\left(1 \otimes l_{1}, 1 \otimes l_{2}\right)-1 \otimes\left[l_{1}, l_{2}\right]\right) \tag{6.2.6}
\end{equation*}
$$

for $l_{1}, l_{2} \in L$ (cf. (6.2.4)). This gives a linear map

$$
\alpha: \mathfrak{M}^{\prime} \longrightarrow C L^{2}(L ; L) \text { defined by } \phi \mapsto \alpha_{\phi}
$$

Suppose $\left\{m_{i}^{\prime}\right\}_{1 \leq i \leq r}$ is the basis of \mathfrak{M}^{\prime} dual to the basis $\left\{m_{i}\right\}_{1 \leq i \leq r}$ of \mathfrak{M}. From 6.2.5) it follows that $\alpha_{m_{i}^{\prime}}\left(l_{1}, l_{2}\right)=\left(m_{i}^{\prime} \otimes i d\right)\left(\rho\left(1 \otimes l_{1}, 1 \otimes l_{2}\right)-1 \otimes\left[l_{1}, l_{2}\right]\right)=l_{i}^{\prime}$.

Thus

$$
\rho\left(1 \otimes l_{1}, 1 \otimes l_{2}\right)=1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r} m_{i} \otimes \alpha_{m_{i}^{\prime}}\left(l_{1}, l_{2}\right) \text { for } l_{1}, l_{2} \in L
$$

So, ρ and α determine each other.
We now consider the differential graded Lie algebra $\left(C L^{*}(L ; L), \nu, d\right)$ (see Proposition 1.3.10) and get the following result.

Proposition 6.2.6. The operation ρ satisfies the Leibniz relation on $A \otimes L$ if and only if the map α satisfies the equation $d \alpha-\frac{1}{2} \nu \circ(\alpha \otimes \alpha) \circ \Delta=0$.

Proof. Let $1 \otimes l_{1}, 1 \otimes l_{2} \in A \otimes L$, then from (6.2.5) we write

$$
\begin{equation*}
\rho\left(1 \otimes l_{1}, 1 \otimes l_{2}\right)=1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r} m_{i} \otimes \psi_{i}\left(l_{1}, l_{2}\right) \tag{6.2.7}
\end{equation*}
$$

where $\psi_{i} \in C L^{2}(L ; L)$ is given by $\psi_{i}=\alpha_{m_{i}^{\prime}}$. For $1 \otimes l_{1}, 1 \otimes l_{2}, 1 \otimes l_{3} \in A \otimes L$ we have

$$
\begin{aligned}
& \rho\left(1 \otimes l_{1}, \rho\left(1 \otimes l_{2}, 1 \otimes l_{3}\right)\right) \\
= & \rho\left(1 \otimes l_{1}, 1 \otimes\left[l_{2}, l_{3}\right]+\sum_{i=1}^{r} m_{i} \otimes \psi_{i}\left(l_{2}, l_{3}\right)\right)(\text { by (6.2.7) }) \\
= & \rho\left(1 \otimes l_{1}, 1 \otimes\left[l_{2}, l_{3}\right]\right)+\sum_{i=1}^{r} m_{i} \rho\left(1 \otimes l_{1}, 1 \otimes \psi_{i}\left(l_{2}, l_{3}\right)\right) \\
= & 1 \otimes\left[l_{1},\left[l_{2}, l_{3}\right]\right]+\sum_{i=1}^{r} m_{i} \otimes \psi_{i}\left(l_{1},\left[l_{2}, l_{3}\right]\right)+\sum_{i=1}^{r} m_{i} \otimes\left[l_{1}, \psi_{i}\left(l_{2}, l_{3}\right)\right] \\
& \quad+\sum_{1 \leq i, j \leq r} m_{i} m_{j} \otimes \psi_{j}\left(l_{1}, \psi_{i}\left(l_{2}, l_{3}\right)\right)(\text { by (6.2.7) })
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \rho\left(\rho\left(1 \otimes l_{1}, 1 \otimes l_{2}\right), 1 \otimes l_{3}\right) \\
=1 \otimes\left[\left[l_{1}, l_{2}\right], l_{3}\right] & +\sum_{i=1}^{r} m_{i} \otimes \psi_{i}\left(\left[l_{1}, l_{2}\right], l_{3}\right)+\sum_{i=1}^{r} m_{i} \otimes\left[\psi_{i}\left(l_{1}, l_{2}\right), l_{3}\right] \\
& +\sum_{1 \leq i, j \leq r} m_{i} m_{j} \otimes \psi_{j}\left(\psi_{i}\left(l_{1}, l_{2}\right), l_{3}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \rho\left(\rho\left(1 \otimes l_{1}, 1 \otimes l_{3}\right), 1 \otimes l_{2}\right) \\
=1 \otimes\left[\left[l_{1}, l_{3}\right], l_{2}\right] & +\sum_{i=1}^{r} m_{i} \otimes \psi_{i}\left(\left[l_{1}, l_{3}\right], l_{2}\right)+\sum_{i=1}^{r} m_{i} \otimes\left[\psi_{i}\left(l_{1}, l_{3}\right), l_{2}\right] \\
& +\sum_{1 \leq i, j \leq r} m_{i} m_{j} \otimes \psi_{j}\left(\psi_{i}\left(l_{1}, l_{3}\right), l_{2}\right) .
\end{aligned}
$$

For a linear map $\phi: \mathfrak{M} \longrightarrow \mathbb{K}$, let $\phi\left(m_{i}\right)=x_{i} \in \mathbb{K}$. Then by (6.2.6) and (6.2.7) we get

$$
\begin{equation*}
\alpha_{\phi}\left(l_{1}, l_{2}\right)=(\phi \otimes i d)\left(\sum_{i} m_{i} \otimes \psi_{i}\left(l_{1}, l_{2}\right)\right)=\sum_{i} x_{i} \otimes \psi_{i}\left(l_{1}, l_{2}\right)=1 \otimes\left(\sum_{i} x_{i} \psi_{i}\right)\left(l_{1}, l_{2}\right) . \tag{6.2.8}
\end{equation*}
$$

This shows that α_{ϕ} can be expressed as $\sum_{i} x_{i} \psi_{i}$.
Let $\Delta(\phi)=\sum_{p} \xi_{p} \otimes \eta_{p}$ for some $\xi_{p}, \eta_{p} \in \mathfrak{M}^{\prime}$. We set $\xi_{p}\left(m_{i}\right)=\xi_{p, i}$ and $\eta_{p}\left(m_{i}\right)=\eta_{p, i}$. Thus

$$
\phi\left(m_{i} m_{j}\right)=\Delta(\phi)\left(m_{i} \otimes m_{j}\right)=\left(\sum_{p} \xi_{p} \otimes \eta_{p}\right)\left(m_{i} \otimes m_{j}\right)=\sum_{p} \xi_{p, i} \eta_{p, j} .
$$

Now

$$
\begin{aligned}
& (\phi \otimes i d)\left(\sum_{1 \leq i, j \leq r} m_{i} m_{j} \otimes \psi_{j}\left(l_{1}, \psi_{i}\left(l_{2}, l_{3}\right)\right)\right) \\
= & \sum_{1 \leq i, j \leq r} \phi\left(m_{i} m_{j}\right) \otimes \psi_{j}\left(l_{1}, \psi_{i}\left(l_{2}, l_{3}\right)\right. \\
= & \sum_{1 \leq i, j \leq r}\left(\sum_{p} \xi_{p, i} \eta_{p, j}\right) \psi_{j}\left(l_{1}, \psi_{i}\left(l_{2}, l_{3}\right)\right) \\
= & \sum_{p}\left(\sum_{i=1}^{r} \xi_{p, i}\left(\sum_{j=1}^{r} \eta_{p, j} \psi_{j}\left(l_{1}, \psi_{i}\left(l_{2}, l_{3}\right)\right)\right)\right) \\
= & \sum_{p}\left(\sum_{i=1}^{r} \xi_{p, i} \alpha_{\eta_{p}}\left(l_{1}, \psi_{i}\left(l_{2}, l_{3}\right)\right)\right) \\
= & \sum_{p} \alpha_{\eta_{p}}\left(l_{1}, \sum_{i=1}^{r} \xi_{p, i} \psi_{i}\left(l_{2}, l_{3}\right)\right) \\
= & \sum_{p} \alpha_{\eta_{p}}\left(l_{1}, \alpha_{\xi_{p}}\left(l_{2}, l_{3}\right)\right) .
\end{aligned}
$$

Therefore

$$
\begin{align*}
& (\phi \otimes i d)\left(\rho\left(1 \otimes l_{1}, \rho\left(1 \otimes l_{2}, 1 \otimes l_{3}\right)\right)\right) \\
= & \sum_{i=1}^{r} \phi\left(m_{i}\right) \otimes \psi_{i}\left(l_{1},\left[l_{2}, l_{3}\right]\right)+ \\
& +\sum_{i=1}^{r} \phi\left(m_{i}\right) \otimes\left[l_{1}, \psi_{i}\left(l_{2}, l_{3}\right)\right] \tag{6.2.9}\\
& +\sum_{p} \alpha_{\eta_{p}}\left(l_{1}, \alpha_{\xi_{p}}\left(l_{2}, l_{3}\right)\right)
\end{align*}
$$

Similarly

$$
\begin{align*}
& (\phi \otimes i d)\left(\rho\left(\rho\left(1 \otimes l_{1}, 1 \otimes l_{2}\right), 1 \otimes l_{3}\right)\right) \\
= & \alpha_{\phi}\left(\left[l_{1}, l_{2}\right], l_{3}\right)+\left[\alpha_{\phi}\left(l_{1}, l_{2}\right), l_{3}\right]+\sum_{p} \alpha_{\eta_{p}}\left(\alpha_{\xi_{p}}\left(l_{1}, l_{2}\right), l_{3}\right) \tag{6.2.10}
\end{align*}
$$

and

$$
\begin{align*}
& (\phi \otimes i d)\left(\rho\left(\rho\left(1 \otimes l_{1}, 1 \otimes l_{3}\right), 1 \otimes l_{2}\right)\right) \\
= & \alpha_{\phi}\left(\left[l_{1}, l_{3}\right], l_{2}\right)+\left[\alpha_{\phi}\left(l_{1}, l_{3}\right), l_{2}\right]+\sum_{p} \alpha_{\eta_{p}}\left(\alpha_{\xi_{p}}\left(l_{1}, l_{3}\right), l_{2}\right) . \tag{6.2.11}
\end{align*}
$$

Hence by substituting (6.2.9)-(6.2.11), we get

$$
\begin{aligned}
&(\phi \otimes i d)\left(\rho\left(1 \otimes l_{1}, \rho\left(1 \otimes l_{2}, 1 \otimes l_{3}\right)\right)\right.-\rho\left(\rho\left(1 \otimes l_{1}, 1 \otimes l_{2}\right), 1 \otimes l_{3}\right) \\
&\left.+\rho\left(\rho\left(1 \otimes l_{1}, 1 \otimes l_{3}\right), 1 \otimes l_{2}\right)\right) \\
&=\alpha_{\phi}\left(l_{1},\left[l_{2}, l_{3}\right]\right)+\left[l_{1}, \alpha_{\phi}\left(l_{2}, l_{3}\right)\right]-\alpha_{\phi}\left(\left[l_{1}, l_{2}\right], l_{3}\right)-\left[\alpha_{\phi}\left(l_{1}, l_{2}\right), l_{3}\right] \\
&+\alpha_{\phi}\left(\left[l_{1}, l_{3}\right], l_{2}\right)+\left[\alpha_{\phi}\left(l_{1}, l_{3}\right), l_{2}\right]+\sum_{p}\left\{\alpha_{\eta_{p}}\left(l_{1}, \alpha_{\xi_{p}}\left(l_{2}, l_{3}\right)\right)\right. \\
&\left.\quad-\alpha_{\eta_{p}}\left(\alpha_{\xi_{p}}\left(l_{1}, l_{2}\right), l_{3}\right)+\alpha_{\eta_{p}}\left(\alpha_{\xi_{p}}\left(l_{1}, l_{3}\right), l_{2}\right)\right\} \\
&=\delta \alpha_{\phi}\left(l_{1}, l_{2}, l_{3}\right)+\frac{1}{2} \sum_{p}\left[\alpha_{\eta_{p}}, \alpha_{\xi_{p}}\right]\left(l_{1}, l_{2}, l_{3}\right) \\
&=\left(-d \alpha+\frac{1}{2} \nu \circ(\alpha \otimes \alpha) \circ \Delta\right) \phi\left(l_{1}, l_{2}, l_{3}\right) .
\end{aligned}
$$

Thus the operation ρ on $A \otimes L$ satisfies the Leibniz relation if and only if the linear map $\alpha($ determined by $\rho)$ satisfies the equation $d \alpha-\frac{1}{2} \nu \circ(\alpha \otimes \alpha) \circ \Delta=0$.

Now let ρ be a deformation of L with base $(A, \mathfrak{M}) \in \mathcal{C}$. Then ρ satisfies the Leibniz relation on $A \otimes L$. From Proposition 6.2.6 the linear map α determined by ρ satisfies
the equation

$$
\begin{equation*}
d \alpha-\frac{1}{2} \nu \circ(\alpha \otimes \alpha) \circ \Delta=0 . \tag{6.2.12}
\end{equation*}
$$

Here $\Delta\left(F_{0}\right)=0$, since for $\xi \in F_{0}=\left(\mathfrak{M} / \mathfrak{M}^{2}\right)^{\prime}, \xi: \mathfrak{M} \longrightarrow \mathbb{K}$ is a linear map vanishing on \mathfrak{M}^{2}, which gives $\Delta(\xi)\left(m_{i} \otimes m_{j}\right)=\xi\left(m_{i} m_{j}\right)=0$ for $1 \leq i, j \leq r$. So, $F_{0} \subset k e r(\Delta)$. Therefore by (6.2.12) we get $\alpha\left(F_{0}\right) \subset \operatorname{ker}(d)$.

Let a denote the composition

$$
a: F_{0} \xrightarrow{\alpha} \operatorname{ker}(d) \xrightarrow{\pi} H L^{2}(L ; L), \text { where } \pi \text { is the quotient map. }
$$

Then from Definition 3.4.8 it follows that a is the differential of the deformation ρ of L with base A.

Corollary 6.2.7. A linear map $a: F_{0} \longrightarrow H L^{2}(L ; L)$ is a differential of some deformation of the Leibniz algebra L with base A if and only if $\frac{1}{2}$ a satisfies the condition of triviality of Massey F-brackets.

Proof. Suppose $a: F_{0} \longrightarrow H L^{2}(L ; L)$ is a linear map so that $\frac{1}{2} a$ satisfies the condition of triviality of Massey F-brackets. From Definition 6.2.5 we get, $\frac{1}{2} a: F_{0} \longrightarrow H L^{2}(L ; L)$ is a linear map such that there exists a linear map $\frac{1}{2} \alpha: F_{1}=\mathfrak{M}^{\prime} \longrightarrow C L^{2}(L ; L)$ satisfying $d\left(\frac{1}{2} \alpha\right)=\nu \circ\left(\frac{1}{2} \alpha \otimes \frac{1}{2} \alpha\right) \circ \Delta$ or, $d \alpha-\frac{1}{2} \nu \circ(\alpha \otimes \alpha) \circ \Delta=0$.

By Proposition 6.2.6, the map α determines a A-bilinear operation ρ on $A \otimes L$ such that ρ is a deformation of L with base A. Also from Definition 3.5.3 it follows that the linear map $a: F_{0} \longrightarrow H L^{2}(L ; L)$ is the differential $d \rho$ of the deformation ρ.

Conversely, suppose ρ is a deformation of L with base A such that the differential $d \rho$ is the linear map $a: F_{0} \longrightarrow H L^{2}(L ; L)$. Now the operation ρ on $A \otimes L$ determines a linear map $\alpha: F \longrightarrow C L^{2}(L ; L)$ satisfying the equation $d \alpha-\frac{1}{2} \nu \circ(\alpha \otimes \alpha) \circ \Delta=0$ (by Proposition 6.2.6). This means $\nu \circ(\alpha \otimes \alpha) \circ \Delta$ takes values in coboundaries. Hence for b if we take the zero map, by Definition 6.2.5 $\frac{1}{2} a$ satisfies the condition of triviality of Massey F-brackets.

6.3 Computation of Obstructions

In this section we relate the obstruction ω_{k} appeared in Section 5.2 at the k th stage of the construction of a versal deformation η to Massey brackets.

Recall that a versal deformation η is obtained by constructing a sequence of finite dimensional local algebras C_{k} with maximal ideals \mathfrak{M}_{k}, and deformations η_{k} of the Leibniz algebra L with base C_{k} yielding an inverse system

$$
\mathbb{K} \stackrel{p_{1}}{\longleftarrow} C_{1} \stackrel{p_{2}}{\longleftarrow} C_{2} \stackrel{p_{3}}{\longleftarrow} \ldots . . \stackrel{p_{k}}{\longleftarrow} C_{k} \stackrel{p_{k+1}}{\leftrightarrows} C_{k+1} \ldots
$$

with $p_{k+1 *} \eta_{k+1}=\eta_{k}$, so that η is the projective limit of η_{k}. Taking the dual of the above system we get a direct system

$$
\mathbb{K} \xrightarrow{p_{1}^{\prime}} C_{1}^{\prime} \xrightarrow{p_{2}^{\prime}} C_{2}^{\prime} \xrightarrow{p_{3}^{\prime}} \ldots \ldots \xrightarrow{p_{k}^{\prime}} C_{k}^{\prime} \xrightarrow{p_{k+1}^{\prime}} C_{k+1}^{\prime} \cdots
$$

Moreover, the corresponding maximal ideals \mathfrak{M}_{k} give another system

$$
\mathbb{K} \xrightarrow{p_{1}^{\prime}} \mathfrak{M}_{1}^{\prime} \xrightarrow{p_{2}^{\prime}} \mathfrak{M}_{2}^{\prime} \xrightarrow{p_{3}^{\prime}} \ldots \ldots \xrightarrow{p_{k}^{\prime}} \mathfrak{M}_{k}^{\prime} \xrightarrow{p_{k+1}^{\prime}} \mathfrak{M}_{k+1}^{\prime} \ldots
$$

where each p_{k}^{\prime} is an injective linear map. In the induction process, for any k we get an extension of C_{k} given by

$$
\begin{equation*}
0 \longrightarrow H_{\text {Harr }}^{2}\left(C_{k} ; \mathbb{K}\right)^{\prime} \xrightarrow{\bar{i}_{k+1}} \bar{C}_{k+1} \xrightarrow{\bar{p}_{k+1}} C_{k} \longrightarrow 0 \tag{6.3.1}
\end{equation*}
$$

The cohomology class represented by the obstruction cocycle in the extension process gives a linear map (cf. (5.2.2))

$$
\omega_{k}: H_{\text {Harr }}^{2}\left(C_{k} ; \mathbb{K}\right) \longrightarrow H L^{3}(L ; L)
$$

To kill this obstruction, we consider the new base

$$
C_{k+1}=\bar{C}_{k+1} / \bar{i}_{k+1} \circ \omega_{k}^{\prime}\left(H L^{3}(L ; L)\right) .
$$

Take $F=\left(\overline{\mathfrak{M}}_{k+1}\right)^{\prime}, \quad F_{1}=\mathfrak{M}_{k}^{\prime}$ and $F_{0}=\mathfrak{M}_{1}^{\prime}=H L^{2}(L ; L)$.
From the extension (6.3.1) we have $F / F_{1}=\left(\overline{\mathfrak{M}}_{k+1}\right)^{\prime} / \mathfrak{M}_{k}^{\prime}=H_{\text {Harr }}^{2}\left(C_{k} ; \mathbb{K}\right)$. Thus ω_{k} can be viewed as a linear map

$$
\omega_{k}: F / F_{1} \longrightarrow H L^{3}(L ; L) .
$$

Theorem 6.3.1. The map ω_{k} obtained from the cohomology class represented by the obstruction cochain, has the property, $2 \omega_{k} \in[i d]_{F}$. Moreover, an arbitrary element of $[i d]_{F}$ is equal to $2 \omega_{k}$ for an appropriate extension of the deformation η_{1} of L with base C_{1} to a deformation η_{k} of L with base C_{k}.

Proof. By Definition 6.2.5 in order to show that $2 \omega_{k} \in[i d]_{F}$, we need to find a linear map $\alpha: F_{1} \longrightarrow C L^{2}(L ; L)$ satisfying the condition (6.2.3) such that the diagrams in Figure 6.1 are commutative. Here the projection map in the first diagram in Figure 6.1 is the map $C L^{2}(L ; L) \longrightarrow H L^{2}(L ; L)$, the left vertical projection in the second diagram is $F=\left(\overline{\mathfrak{M}}_{k+1}\right)^{\prime} \longrightarrow F / F_{1}=H_{\text {Harr }}^{2}\left(C_{k} ; \mathbb{K}\right)$ whereas the right vertical projection is the map $C L^{3}(L: L) \longrightarrow H L^{3}(L ; L)$.

Consider η_{k}, a deformation of L with base C_{k} extending the deformation η_{1} of L
with base C_{1}. Now $[-,-]_{\eta_{k}}$ is a Leibniz algebra structure on $C_{k} \otimes L$. As in (6.2.6) define

$$
\alpha: \mathfrak{M}_{k}^{\prime} \longrightarrow C L^{2}(L ; L)
$$

by $\alpha_{\phi}\left(l_{1}, l_{2}\right)=(\phi \otimes i d)\left(\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\eta_{k}}-1 \otimes\left[l_{1}, l_{2}\right]\right)$ for $\phi \in \mathfrak{M}_{k}^{\prime}$ and $l_{1}, l_{2} \in L$. Since η_{k} is a Leibniz algebra structure on $C_{k} \otimes L$, Proposition6.2.6 implies that $d \alpha=\frac{1}{2} \nu \circ(\alpha \otimes \alpha) \circ \Delta$.

Observe that $\left.\alpha\right|_{F_{0}}: F_{0} \longrightarrow C L^{2}(L ; L)$ is given by $\left.\alpha\right|_{F_{0}}\left(h_{i}\right)=\mu\left(h_{i}\right)$, a representative of the cohomology class h_{i}. So the composition

$$
a=\left.\pi \circ \alpha\right|_{F_{0}}: F_{0} \longrightarrow \mathbb{H}
$$

is the identity map.
Now consider the extension \bar{C}_{k+1} (given in (6.3.1)) of C_{k} by $H_{H a r r}^{2}\left(C_{k} ; \mathbb{K}\right)^{\prime}$ and recall that ω_{k} is a linear map determined by the cohomology class represented by the associated obstruction cocycle.

Let $\left\{m_{i}\right\}_{1 \leq i \leq r}$ be a basis of \mathfrak{M}_{k}. We extend this to a basis $\left\{\bar{m}_{i}\right\}_{1 \leq i \leq r+s}$ of the maximal ideal $\overline{\mathfrak{M}}_{k+1}$ of \bar{C}_{k+1}. Let the multiplication in $\overline{\mathfrak{M}}_{k+1}$ be defined (on the basis) as

$$
\bar{m}_{i} \bar{m}_{j}=\sum_{p=1}^{r+s} c_{i}^{p} \bar{m}_{p} \text { for } 1 \leq i, j \leq r+s
$$

Then the comultiplication obtained by taking the dual of the multiplication in $\overline{\mathfrak{M}}_{k+1}$,

$$
\Delta:\left(\overline{\mathfrak{M}}_{k+1}\right)^{\prime} \longrightarrow \mathfrak{M}_{k}^{\prime} \otimes \mathfrak{M}_{k}^{\prime}
$$

is given by $\Delta\left(\bar{m}_{p}^{\prime}\right)=\sum_{i, j=1}^{r} c_{i j}^{p} m_{i}^{\prime} \otimes m_{j}^{\prime}$.
As in (3.4.2) we write the Leibniz bracket $[-,-]_{\eta_{k}}$ on $C_{k} \otimes L$ as

$$
\left[1 \otimes l_{1}, 1 \otimes l_{2}\right]_{\eta_{k}}=1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r} m_{i} \otimes \psi_{i}\left(l_{1}, l_{2}\right)
$$

From the definition of α we have $\alpha\left(m_{i}^{\prime}\right)\left(l_{1}, l_{2}\right)=\psi_{i}\left(l_{1}, l_{2}\right)$ for $i \leq r$. For arbitrary cochains $\psi_{i} \in C L^{2}(L ; L), r+1 \leq i \leq s$, a \bar{C}_{k+1}-bilinear map $\{-,-\}$ on $\bar{C}_{k+1} \otimes L$ is given by

$$
\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}=1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r+s} \bar{m}_{i} \otimes \psi_{i}\left(l_{1}, l_{2}\right)
$$

(Compare the construction of the obstruction map in Chapter 4 .) To prove that α and $2 \omega_{k}$ satisfy required conditions we proceed as follows.

For $1 \otimes l_{1}, 1 \otimes l_{2}, 1 \otimes l_{3} \in \overline{\mathfrak{M}}_{k+1} \otimes L$,

$$
\begin{aligned}
& \left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}, 1 \otimes l_{3}\right\} \\
= & \left\{1 \otimes\left[l_{1}, l_{2}\right]+\sum_{i=1}^{r+s} \bar{m}_{i} \otimes \psi_{i}\left(l_{1}, l_{2}\right), 1 \otimes l_{3}\right\} \\
= & \left\{1 \otimes\left[l_{1}, l_{2}\right], 1 \otimes l_{3}\right\}+\sum_{i=1}^{r+s} \bar{m}_{i}\left\{1 \otimes \psi_{i}\left(l_{1}, l_{2}\right), 1 \otimes l_{3}\right\} \\
= & 1 \otimes\left[\left[l_{1}, l_{2}\right], l_{3}\right]+\sum_{i=1}^{r+s} \bar{m}_{i} \otimes \psi_{i}\left(\left[l_{1}, l_{2}\right], l_{3}\right)+\sum_{i=1}^{r+s} \bar{m}_{i} \otimes\left[\psi_{i}\left(l_{1}, l_{2}\right), l_{3}\right] \\
& +\sum_{i, j=1}^{r} \bar{m}_{j} \bar{m}_{i} \otimes \psi_{j}\left(\psi_{i}\left(l_{1}, l_{2}\right), l_{3}\right) \\
= & 1 \otimes\left[\left[l_{1}, l_{2}\right], l_{3}\right]+\sum_{i=1}^{r+s} \bar{m}_{i} \otimes \psi_{i}\left(\left[l_{1}, l_{2}\right], l_{3}\right)+\sum_{i=1}^{r+s} \bar{m}_{i} \otimes\left[\psi_{i}\left(l_{1}, l_{2}\right), l_{3}\right] \\
& +\sum_{i, j=1}^{r+s} \sum_{p=1}^{r+s} c_{i j}^{p} \bar{m}_{p} \otimes \psi_{j}\left(\psi_{i}\left(l_{1}, l_{2}\right), l_{3}\right) .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \left\{\left\{1 \otimes l_{1}, 1 \otimes l_{3}\right\}, 1 \otimes l_{2}\right\} \\
= & 1 \otimes\left[\left[l_{1}, l_{3}\right], l_{2}\right]+\sum_{i=1}^{r+s} \bar{m}_{i} \otimes \psi_{i}\left(\left[l_{1}, l_{3}\right], l_{2}\right)+\sum_{i=1}^{r+s} \bar{m}_{i} \otimes\left[\psi_{i}\left(l_{1}, l_{3}\right), l_{2}\right] \\
& +\sum_{i, j=1}^{r} \sum_{p=1}^{r+s} c_{i j}^{p} \bar{m}_{p} \otimes \psi_{j}\left(\psi_{i}\left(l_{1}, l_{3}\right), l_{2}\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left\{1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}\right\} \\
= & 1 \otimes\left[l_{1},\left[l_{2}, l_{3}\right]\right]+\sum_{i=1}^{r+s} \bar{m}_{i} \otimes \psi_{i}\left(l_{1},\left[l_{2}, l_{3}\right]\right)+\sum_{i=1}^{r+s} \bar{m}_{i} \otimes\left[l_{1}, \psi_{i}\left(l_{2}, l_{3}\right)\right] \\
& +\sum_{i, j=1}^{r} \sum_{p=1}^{r+s} c_{i j}^{p} \bar{m}_{p} \otimes \psi_{j}\left(l_{1}, \psi_{i}\left(l_{2}, l_{3}\right)\right)
\end{aligned}
$$

Therefore

$$
\begin{aligned}
& \left(\bar{m}_{p}^{\prime} \otimes i d\right)\left(\left\{1 \otimes l_{1},\left\{1 \otimes l_{2}, 1 \otimes l_{3}\right\}\right\}-\right. \\
& -\left\{\left\{1 \otimes l_{1}, 1 \otimes l_{2}\right\}, 1 \otimes l_{3}\right\} \\
= & \left.\left.\left.\psi_{i}\left(\left[l_{1}, l_{2}\right], l_{3}\right)+\left[\psi_{i}\left(l_{1}, l_{2}\right), l_{3}\right]-l_{i}\left(\left[l_{1}, l_{3}\right], l_{2}\right)-\left[\psi_{i}\left(l_{1}\right\}, l_{3}\right), l_{2}\right]+l_{2}\right\}\right) \\
& +\left[l_{1}, \psi_{i}\left(l_{1},\left[l_{2}, l_{3}\right]\right)\right]+\sum_{i, j=1}^{r} c_{i j}^{p}\left(\psi_{j}\left(\psi_{i}\left(l_{1}, l_{2}\right), l_{3}\right)-\psi_{j}\left(\psi_{i}\left(l_{1}, l_{3}\right), l_{2}\right)+\psi_{j}\left(l_{1}, \psi_{i}\left(l_{2}, l_{3}\right)\right)\right) \\
= & \delta \psi_{p}\left(l_{1}, l_{2}, l_{3}\right)+\frac{1}{2} \sum_{i, j=1}^{r} c_{i j}^{p}\left[\psi_{j}, \psi_{i}\right]\left(l_{1}, l_{2}, l_{3}\right) \\
= & \delta \psi_{p}\left(l_{1}, l_{2}, l_{3}\right)+\frac{1}{2} \nu \circ(\alpha \otimes \alpha) \circ \Delta\left(\bar{m}_{p}^{\prime}\right)\left(l_{1}, l_{2}, l_{3}\right) \\
= & -d \alpha\left(m_{p}^{\prime}\right)\left(l_{1}, l_{2}, l_{3}\right)+\frac{1}{2} \nu \circ(\alpha \otimes \alpha) \circ \Delta\left(\bar{m}_{p}^{\prime}\right)\left(l_{1}, l_{2}, l_{3}\right) .
\end{aligned}
$$

Thus with $b=2 \omega_{k}$ and $a=[\alpha]=\left.i d\right|_{F_{0}=H L^{2}(L ; L)}$, the conditions in Definition 6.2.5 are satisfied. This completes the proof.

Chapter 7

Computations and examples

7.1 Introduction

The aim of this final chapter is to illustrate the theory developed in this thesis by two examples. First example is a three dimensional nilpotent Leibniz algebra over \mathbb{C}. We compute cohomologies necessary for our purpose, Massey brackets and construct a versal deformation of this example, Man08.

Since any Lie algebra L is a Leibniz algebra it is natural to investigate whether one recovers the same deformation picture of L if it is seen as a Leibniz algebra. Our next example is a three dimensional Lie algebra over \mathbb{C}. This example illustrates that a Lie algebra L when viewed as a Leibniz algebra may admit new deformations which are Leibniz algebras but not Lie algebras. Moreover, versal deformation of L as Lie algebra and that of L when viewed as a Leibniz algebra may differ.

7.2 Computation of second and third Leibniz cohomology of a nilpotent Leibniz algebra

Consider a three dimensional module L spanned by $\left\{e_{1}, e_{2}, e_{3}\right\}$ over \mathbb{C}. Define a bilinear map $[-,-]: L \times L \longrightarrow L$ by $\left[e_{1}, e_{3}\right]=e_{2}$ and $\left[e_{3}, e_{3}\right]=e_{1}$, all other products of basis elements being 0 . Then $(L,[-,-])$ is a three dimensional Leibniz algebra over \mathbb{C}. The Leibniz algebra L is nilpotent and is denoted by λ_{6} in the classification of three dimensional nilpotent Leibniz algebras (see Example 1.2.6).

To construct a versal deformation of λ_{6}, we need to compute the second and third cohomology modules of $\lambda_{6}=L$. First consider $H L^{2}(L ; L)$. Our computation consists of the following steps:
(i) To determine a basis of the module of cocycles $Z L^{2}(L ; L)$,
(ii) to find out a basis of the coboundary module $B L^{2}(L ; L)$,
(iii) to determine the quotient module $H L^{2}(L ; L)$.
(i) Let $\psi \in Z L^{2}(L ; L)$. Then $\psi: L \otimes L \longrightarrow L$ is a linear map and $\delta \psi=0$, where

$$
\begin{aligned}
\delta \psi\left(e_{i}, e_{j}, e_{k}\right) & =\left[e_{i}, \psi\left(e_{j}, e_{k}\right)\right]+\left[\psi\left(e_{i}, e_{k}\right), e_{j}\right]-\left[\psi\left(e_{i}, e_{j}\right), e_{k}\right]-\psi\left(\left[e_{i}, e_{j}\right], e_{k}\right) \\
& +\psi\left(e_{i},\left[e_{j}, e_{k}\right]\right)+\psi\left(\left[e_{i}, e_{k}\right], e_{j}\right) \text { for } 0 \leq i, j, k \leq 3 .
\end{aligned}
$$

Suppose the linear map ψ is defined by $\psi\left(e_{i}, e_{j}\right)=\sum_{k=1}^{3} a_{i, j}^{k} e_{k}$ where $a_{i, j}^{k} \in \mathbb{C}$ for $1 \leq i, j, k \leq 3$. Since $\delta \psi=0$, equating the coefficients of e_{1}, e_{2} and e_{3} in the expression of $\delta \psi\left(e_{i}, e_{j}, e_{k}\right)$ we get the following relations:

$$
\begin{array}{ccc}
a_{1,1}^{1}=a_{1,1}^{3}=0 ; & a_{1,2}^{1}=a_{1,2}^{3}=0 ; & a_{2,1}^{1}=a_{2,1}^{2}=a_{2,1}^{3}=0 \\
a_{2,2}^{1}=a_{2,2}^{2}=a_{2,2}^{3}=0 ; & a_{3,1}^{2}=a_{3,1}^{3}=0 ; & a_{3,2}^{2}=a_{3,2}^{3}=0 \\
a_{2,3}^{3}=0 ; & a_{1,1}^{2}=a_{3,1}^{1}=-a_{3,3}^{3} ; & a_{1,2}^{2}=-a_{1,3}^{3}=a_{3,2}^{1} .
\end{array}
$$

Observe that there is no relation among the coefficients $a_{1,3}^{1}, a_{1,3}^{2}, a_{2,3}^{1}, a_{2,3}^{2}, a_{3,3}^{1}$ and $a_{3,3}^{2}$. Therefore, in terms of the ordered basis $\left\{e_{i} \otimes e_{j}\right\}_{1 \leq i, j \leq 3}$ of $L \otimes L$ and $\left\{e_{i}\right\}_{1 \leq i \leq 3}$ of L, the matrix corresponding to ψ is of the form

$$
M=\left(\begin{array}{ccccccccc}
0 & 0 & x_{3} & 0 & 0 & x_{5} & x_{1} & x_{2} & x_{7} \\
x_{1} & x_{2} & x_{4} & 0 & 0 & x_{6} & 0 & 0 & x_{8} \\
0 & 0 & -x_{2} & 0 & 0 & 0 & 0 & 0 & -x_{1}
\end{array}\right)
$$

where $x_{1}=a_{1,1}^{2}, x_{2}=a_{1,2}^{2}, x_{3}=a_{1,3}^{1}, x_{4}=a_{1,3}^{2}, x_{5}=a_{2,3}^{1}, x_{6}=a_{2,3}^{2}, x_{7}=a_{3,3}^{1}$ and $x_{8}=$ $a_{3,3}^{2}$ are in \mathbb{C}.

We define the cocycles $\phi_{i} \in Z L^{2}(L ; L)$ for $1 \leq i \leq 8$, by taking $x_{i}=1$ and $x_{j}=0$ for $i \neq j$ in the above matrix of ψ. Then $\left\{\phi_{i}\right\}_{1 \leq i \leq 8}$ forms a basis of $Z L^{2}(L ; L)$. Next we compute the coboundary module $B L^{2}(L ; L)$.
(ii) Let $\psi_{0} \in B L^{2}(L ; L)$. We have $\psi_{0}=\delta g$ for some 1-cochain $g \in C L^{1}(L ; L)=$ $\operatorname{Hom}(L ; L)$. Let $g\left(e_{i}\right)=g_{i}^{1} e_{1}+g_{i}^{2} e_{2}+g_{i}^{3} e_{3}$ for $1 \leq i \leq 3$. Then the matrix associated to g is given by

$$
\left(\begin{array}{ccc}
g_{1}^{1} & g_{2}^{1} & g_{3}^{1} \\
g_{1}^{2} & g_{2}^{2} & g_{3}^{2} \\
g_{1}^{3} & g_{2}^{3} & g_{3}^{3}
\end{array}\right) .
$$

From the definition of coboundary we get

$$
\delta g\left(e_{i}, e_{j}\right)=\left[e_{i}, g\left(e_{j}\right)\right]+\left[g\left(e_{i}\right), e_{j}\right]-g\left(\left[e_{i}, e_{j}\right]\right) \text { for } 0 \leq i, j \leq 3 .
$$

The matrix δg can be written as

$$
\left(\begin{array}{ccccccccc}
0 & 0 & \left(g_{1}^{3}-g_{2}^{1}\right) & 0 & 0 & g_{2}^{3} & g_{1}^{3} & g_{2}^{3} & \left(2 g_{3}^{3}-g_{1}^{1}\right) \\
g_{1}^{3} & g_{2}^{3} & \left(g_{3}^{3}+g_{1}^{1}-g_{2}^{2}\right) & 0 & 0 & g_{2}^{1} & 0 & 0 & \left(g_{3}^{1}-g_{1}^{2}\right) \\
0 & 0 & -g_{2}^{3} & 0 & 0 & 0 & 0 & 0 & -g_{1}^{3}
\end{array}\right)
$$

Since $\psi_{0}=\delta g$ is also a cocycle in $C L^{2}(L ; L)$, comparing matrices δg and M we get $x_{2}=x_{5}$ and $x_{6}=x_{1}-x_{3}$. Thus we conclude that the matrix of ψ_{0} is of the form

$$
\left(\begin{array}{ccccccccc}
0 & 0 & x_{3} & 0 & 0 & x_{2} & x_{1} & x_{2} & x_{7} \\
x_{1} & x_{2} & x_{4} & 0 & 0 & \left(x_{1}-x_{3}\right) & 0 & 0 & x_{8} \\
0 & 0 & -x_{2} & 0 & 0 & 0 & 0 & 0 & -x_{1}
\end{array}\right)
$$

Let $\phi_{i}^{\prime} \in B L^{2}(L ; L)$ for $i=1,2,3,4,7,8$ be the coboundary with $x_{i}=1$ and $x_{j}=0$ for $i \neq j$ in the above matrix of ψ_{0}. It follows that $\left\{\phi_{1}^{\prime}, \phi_{2}^{\prime}, \phi_{3}^{\prime}, \phi_{4}^{\prime}, \phi_{7}^{\prime}, \phi_{8}^{\prime}\right\}$ forms a basis of the coboundary module $B L^{2}(L ; L)$. Notice that

$$
\begin{align*}
& \phi_{1}^{\prime}=\phi_{1}+\phi_{3}-\phi_{3}^{\prime} \quad \phi_{3}^{\prime}=\phi_{3}-\phi_{6} \tag{7.2.1}\\
& \phi_{2}^{\prime}=\phi_{2}+\phi_{5} \quad \phi_{i}^{\prime}=\phi_{i} \text { for } i=4,7,8
\end{align*}
$$

(iii) For $[\psi] \in H L^{2}(L ; L)=\frac{Z L^{2}(L ; L)}{B L^{2}(L ; L)}$, we can express the cocycle ψ as

$$
\begin{aligned}
\psi & =\sum_{i=1}^{8} x_{i} \phi_{i} \text { for } x_{i} \in \mathbb{C} \\
= & x_{1}\left(\phi_{1}^{\prime}-\phi_{3}+\phi_{3}^{\prime}\right)+x_{2} \phi_{2}+x_{3} \phi_{3}+x_{4} \phi_{4}^{\prime}+x_{5}\left(\phi_{2}^{\prime}-\phi_{2}\right)+x_{6}\left(\phi_{3}-\phi_{3}^{\prime}\right) \\
& \quad+x_{7} \phi_{7}^{\prime}+x_{8} \phi_{8}^{\prime} \quad(\text { using (17.2.1) })
\end{aligned}
$$

where $\phi=x_{1} \phi_{1}^{\prime}+x_{5} \phi_{2}^{\prime}+\left(x_{1}-x_{6}\right) \phi_{3}^{\prime}+x_{4} \phi_{4}^{\prime}+x_{7} \phi_{7}^{\prime}+x_{8} \phi_{8}^{\prime} \in B L^{2}(L ; L)$. Thus an arbitrary element $[\psi] \in H L^{2}(L ; L)$ is in the submodule generated by $\left\{\left[\phi_{2}\right],\left[\phi_{3}\right]\right\}$. Also the set $\left\{\left[\phi_{2}\right],\left[\phi_{3}\right]\right\}$ is linearly independent. Therefore $\operatorname{dim}\left(H L^{2}(L ; L)\right)=2$.

Next let us consider the module $H L^{3}(L ; L)$.
If $\psi \in Z L^{3}(L ; L)$, then a computation similar to 2-cocycles shows that the transpose of the matrix of ψ is

Let $\tau_{i} \in Z L^{3}(L ; L)$ for $1 \leq i \leq 20$ be the cocycle with $x_{i}=1$ and $x_{j}=0$ for $i \neq j$ in the above matrix. Then $\left\{\tau_{i}\right\}_{1 \leq i \leq 20}$ forms a basis of $Z L^{3}(L ; L)$. So $\operatorname{dim}\left(Z L^{3}(L ; L)\right)=20$.

On the other hand suppose $\psi \in C L^{3}(L ; L)$ is a coboundary with $\psi=\delta g$. Let $g\left(e_{i}, e_{j}\right)=g_{i, j}^{1} e_{1}+g_{i, j}^{2} e_{2}+g_{i, j}^{3} e_{3}$; for $1 \leq i, j \leq 3$. Then the transpose of the matrix of $\psi=\delta g$ is

$$
\left(\begin{array}{ccc}
0 & g_{1,1}^{3} & 0 \\
0 & g_{1,2}^{3} & 0 \\
\left(g_{2,1}^{1}+g_{1,2}^{1}-g_{1,1}^{3}\right) & \left(g_{2,1}^{2}+g_{1,2}^{2}-g_{1,1}^{1}+g_{1,3}^{3}\right) & \left(g_{2,1}^{3}+g_{1,2}^{3}\right) \\
0 & g_{2,1}^{3} & 0 \\
0 & g_{2,2}^{3} & 0 \\
\left(g_{2,2}^{1}-g_{1,2}^{3}\right) & \left(g_{2,2}^{2}+g_{2,3}^{3}-g_{1,2}^{1}\right) & g_{2,2}^{3} \\
\left(g_{1,1}^{3}-g_{2,1}^{1}\right) & \left(g_{1,1}^{1}+g_{3,1}^{3}-g_{2,1}^{2}\right) & \left.-g_{2,1}^{3}\right) \\
\left(g_{1,2}^{3}-g_{2,2}^{1}\right) & \left(g_{1,2}^{1}+g_{3,2}^{3}-g_{2,2}^{2}\right) & -g_{2,2}^{3} \\
g_{1,1}^{1} & \left(g_{3,3}^{3}+g_{1,1}^{2}\right) & g_{1,1}^{3} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
\left(g_{2,2}^{1}-g_{2,1}^{3}\right) & \left(g_{2,2}^{2}-g_{2,1}^{1}\right) & g_{2,2}^{3} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
-g_{2,2}^{3} & -g_{2,2}^{1} & 0 \\
g_{2,1}^{3} & g_{2,1}^{1} & 0 \\
g_{2,2}^{3} & g_{2,2}^{1} & 0 \\
g_{2,1}^{1} & g_{2,1}^{2} & g_{2,1}^{3} \\
g_{1,1}^{3} & 0 & 0 \\
g_{1,2}^{3} & 0 & 0 \\
\left(g_{1,1}^{1}+g_{3,2}^{1}-g_{3,1}^{3}+g_{1,3}^{3}\right) & \left(g_{1,1}^{2}+g_{3,2}^{2}-g_{3,1}^{1}\right) & \left(g_{1,1}^{3}+g_{3,2}^{3}\right) \\
g_{2,1}^{3} & 0 & 0 \\
g_{2,2}^{3} & 0 & 0 \\
\left(g_{2,3}^{3}-g_{3,2}^{3}+g_{1,2}^{1}\right) & \left(g_{1,2}^{2}-g_{3,2}^{1}\right) & g_{1,2}^{3} \\
\left(2 g_{3,1}^{3}-g_{1,1}^{1}\right) & \left(g_{3,1}^{1}-g_{1,1}^{2}\right) & -g_{1,1}^{3} \\
\left(2 g_{3,2}^{3}-g_{1,2}^{3}\right) & \left(g_{3,2}^{3}-g_{1,2}^{3}\right) & -g_{1,2}^{3} \\
\left(g_{3,1}^{1}+g_{3,3}^{3}\right) & g_{3,1}^{2} & g_{3,1}^{3}
\end{array}\right) .
$$

Since $\delta \psi$ is also zero, the transpose of the matrix of ψ is of the previous form as well. Comparing these two matrices we get $x_{6}=-\left(x_{2}+x_{11}\right)$ and $x_{19}=x_{4}-x_{8}-x_{12}-x_{14}$. Thus a coboundary ψ has the following transpose matrix.

$$
\left(\begin{array}{ccc}
0 & x_{1} & 0 \\
0 & x_{2} & 0 \\
x_{3} & x_{4} & \left(x_{2}+x_{5}\right) \\
0 & x_{5} & 0 \\
0 & 0 & 0 \\
-\left(x_{2}+x_{11}\right) & x_{17} & 0 \\
x_{7} & x_{8} & -x_{5} \\
\left(x_{2}+x_{11}\right) & \left(x_{13}-x_{10}+2 x_{7}+x_{3}-2 x_{1}\right) & 0 \\
\left(2 x_{16}-x_{14}\right) & x_{9} & x_{1} \\
0 & 0 & 0 \\
0 & 0 & 0 \\
-\left(x_{11}+x_{5}\right) & x_{10} & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & x_{11} & 0 \\
x_{5} & \left(x_{1}-x_{7}\right) & 0 \\
0 & -x_{11} & 0 \\
\left(x_{1}-x_{7}\right) & \left(3 x_{16}-x_{14}-x_{8}\right) & x_{5} \\
x_{1} & 0 & 0 \\
x_{2} & 0 & 0 \\
x_{12} & x_{18} & x_{13} \\
x_{5} & 0 & 0 \\
0 & 0 & 0 \\
\left(x_{17}-x_{10}+3 x_{7}+2 x_{3}-x_{13}\right) & \left(x_{4}+x_{8}-x_{12}-x_{14}\right) & x_{2} \\
x_{14} & x_{15} & -x_{1} \\
\left(2 x_{13}-2 x_{1}-x_{3}-x_{7}\right) & \left(x_{14}+x_{12}-x_{8}-x_{4}\right) & -x_{2} \\
\left(x_{9}+x_{15}\right) & x_{20} & x_{16}
\end{array}\right)
$$

Let $\tau_{i}{ }^{\prime} \in B L^{3}(L ; L)$ for $1 \leq i \leq 20$ and $i \neq 6,19$ be the coboundary with $x_{i}=1$ and $x_{j}=0$ for $i \neq j$ in the above matrix of ψ. It follows that $\left\{\tau^{\prime}\right\}_{1 \leq i \leq 20, i \neq 6,19}$ forms a basis of the coboundary module $B L^{3}(L ; L)$. Consequently by considering the quotient module $\frac{Z L^{3}(L ; L)}{B L^{3}(L ; L)}=H L^{3}(L ; L)$ we get, $\operatorname{dim}\left(H L^{3}(L ; L)\right)=2$.

7.3 Computation of a versal deformation of λ_{6}

Let $L=\lambda_{6}$. Since $H L^{3}(L ; L)$ is nontrivial, it is necessary to compute possible obstructions in order to extend an infinitesimal deformation to a higher order one.

First we describe the universal infinitesimal deformation η_{1} for our Leibniz algebra. To make our computation simpler, we choose the representative cocycles μ_{1}, μ_{2} where $\mu_{1}=\left(\phi_{2}-\phi_{2}^{\prime}\right)$ and $\mu_{2}=\phi_{3}$. Let us denote a basis of $H L^{2}(L ; L)^{\prime}$ by $\{t, s\}$. By Remark 3.4.4 the universal infinitesimal deformation η_{1} of L can be written as

$$
\left[1 \otimes e_{i}, 1 \otimes e_{j}\right]_{\eta_{1}}=1 \otimes\left[e_{i}, e_{j}\right]+t \otimes \mu_{1}\left(e_{i}, e_{j}\right)+s \otimes \mu_{2}\left(e_{i}, e_{j}\right)
$$

with base $C_{1}=\mathbb{C} \oplus \mathbb{C} t \oplus \mathbb{C} s$.
In order to extend η_{1} to a deformation of L with larger base we need to compute possible obstructions which arise in the extension process. We shall compute these obstructions using the inductive definition of Massey brackets by Ret77 (see Definition 6.2.1), which is a particular case of more general definition, Definition 6.2.5 (FW01).

Recall that if $y_{1}=\left[x_{1}\right], y_{2}=\left[x_{2}\right]$ are 2- cohomology classes, then the second order bracket $\left\langle y_{1}, y_{2}\right\rangle$ is represented by the graded Lie bracket $\left[x_{1}, x_{2}\right]$. Assume that for $y_{i} \in$ $\left.H L^{2}(L ; L),<y_{i}, y_{j}\right\rangle=0$ for $1 \leq i \leq 3$. This means that for a cocycle x_{i} representing y_{i} we have $\left[x_{i}, x_{j}\right]=d x_{i j}$. Then the third order Massey bracket $\left\langle y_{1}, y_{2}, y_{3}\right\rangle$ is defined and is represented by

$$
\left[x_{12}, x_{3}\right]+\left[x_{1}, x_{23}\right]+\left[x_{13}, x_{2}\right] .
$$

The cohomology class is independent of the choice of $x_{i j}$. The higher order Massey brackets are defined inductively.

By Definition 6.2.1 we have.
(i) $<\left[\mu_{1}\right],\left[\mu_{1}\right]>$ is represented by $\left[\mu_{1}, \mu_{1}\right]=2\left(\mu_{1} \circ \mu_{1}\right)$.

Now $\left(\mu_{1} \circ \mu_{1}\right)\left(e_{i}, e_{j}, e_{k}\right)$
$=\mu_{1}\left(\mu_{1}\left(e_{i}, e_{j}\right), e_{k}\right)-\mu_{1}\left(\mu_{1}\left(e_{i}, e_{k}\right), e_{j}\right)-\mu_{1}\left(e_{i}, \mu_{1}\left(e_{j}, e_{k}\right)\right)$ for $1 \leq i, j, k \leq 3$.
Since $\mu_{1}\left(e_{2}, e_{3}\right)=-e_{1}$ and takes value zero on all other basis element of $L \otimes L$, it follows that $\mu_{1} \circ \mu_{1}=0$.
(ii) Similarly $<\left[\mu_{1}\right],\left[\mu_{2}\right]>$ is represented by $\left[\mu_{1}, \mu_{2}\right]=\mu_{1} \circ \mu_{2}+\mu_{2} \circ \mu_{1}$. Since $\mu_{2}\left(e_{1}, e_{3}\right)=e_{1}$ and takes value zero on all other basis elements of $L \otimes L$ it follows that $\left\langle\left[\mu_{1}\right],\left[\mu_{2}\right]\right\rangle=0$.
(iii) The bracket $<\left[\mu_{2}\right],\left[\mu_{2}\right]>$ is represented by $\left[\mu_{2}, \mu_{2}\right]=2\left(\mu_{2} \circ \mu_{2}\right)=0$.

Since $\left\{\left[\mu_{1}\right],\left[\mu_{2}\right]\right\}$ forms a basis for $H L^{2}(L ; L)$, it follows that all the Massey 2- brackets are trivial. So all the Massey 3- brackets are defined.

From the definition of Massey 3-bracket it follows that all the Massey 3- brackets < $\left[\mu_{i}\right],\left[\mu_{j}\right],\left[\mu_{k}\right]>$ are trivial and represented by the 0 -cocycle. By induction it follows that any $<\left[\mu_{1}\right],\left[\mu_{2}\right], \cdots,\left[\mu_{k}\right]>=0$ for $\left[\mu_{i}\right] \in H L^{2}(L ; L)$ and moreover, they are represented by the 0 cocycle.

By Theorem 6.3.1 and Remark 6.2.3, it follows that the possible obstruction at each stage in extending η_{1} to a versal deformation with base $\mathbb{C}[[t, s]]$ can be realized as the Massey brackets of $\left[\mu_{1}\right]$ and $\left[\mu_{2}\right]$. So the possible obstructions are zero.

As there are no obstructions to extending the universal infinitesimal deformation η_{1}, it means that η_{1} extends to a versal deformation with base $\left.\mathbb{C}[t, s]\right]$. Moreover, observe that by our choice of μ_{1} and μ_{2} every Massey bracket is represented by the 0 - cocycle, and so η_{1} is itself a Leibniz bracket with base $\mathbb{C}[[t, s]]$. It follows by the construction in 5.2 that η_{1} is a versal deformation.

Explicitly, the versal deformation that we have constructed can be written as

$$
\left[e_{1}, e_{3}\right]_{t, s}=e_{2}+e_{1} s, \quad\left[e_{3}, e_{3}\right]_{t, s}=e_{1}, \quad\left[e_{2}, e_{3}\right]_{t, s}=-e_{1} t
$$

with all the other brackets of basis elements are zero.
Thus we obtain the following two non-equivalent one parameter deformations for the Leibniz algebra λ_{6}.

$$
\text { (i) }\left[e_{1}, e_{3}\right]_{t}=e_{2}, \quad\left[e_{2}, e_{3}\right]_{t}=-e_{1} t, \quad\left[e_{3}, e_{3}\right]_{t}=e_{1},
$$

all the other brackets of basis elements are zero.

$$
\text { (ii) }\left[e_{1}, e_{3}\right]_{s}=e_{2}+e_{1} s, \quad\left[e_{3}, e_{3}\right]_{s}=e_{1} \text {, }
$$

all the other brackets of basis elements are zero.

7.4 The three dimensional Heisenberg Lie algebra

Since any Lie algebra L is a Leibniz algebra it is natural to investigate whether one recovers the same deformation picture of L if it is seen as a Leibniz algebra. The following example illustrates that a Lie algebra L when viewed as a Leibniz algebra may admit new deformations which are Leibniz algebras but not Lie algebras. Moreover, the versal deformation of L as Lie algebra and that of L when viewed as a Leibniz algebra may differ.

Let L be a module over \mathbb{C} with basis $\left\{e_{1}, e_{2}, e_{3}\right\}$. Define a bilinear map $[-,-]$: $L \times L \longrightarrow L$, by $\left[e_{1}, e_{3}\right]=e_{2},\left[e_{3}, e_{1}\right]=-e_{2}$, and, all other products of basis elements being zero. Then $(L,[-,-])$ is the complex three-dimensional Heisenberg Lie algebra.

Let us first determine the universal infinitesimal Leibniz deformation η_{1} of L. For this, we need to compute $H L^{2}(L ; L)$. This computation is similar to that of the first
example in Section 7.2
Let $\psi: L^{\otimes 2} \longrightarrow L$ be a 2-cocycle. Suppose $\psi\left(e_{i}, e_{j}\right)=\sum_{k=1}^{3} a_{i, j}^{k} e_{k}$ where $a_{i, j}^{k} \in \mathbb{C}$; for $1 \leq i, j, k \leq 3$. Since ψ is a cocycle, we have

$$
\begin{aligned}
\delta \psi\left(e_{i}, e_{j}, e_{k}\right) & =\left[e_{i}, \psi\left(e_{j}, e_{k}\right)\right]+\left[\psi\left(e_{i}, e_{k}\right), e_{j}\right]-\left[\psi\left(e_{i}, e_{j}\right), e_{k}\right]-\psi\left(\left[e_{i}, e_{j}\right], e_{k}\right) \\
& +\psi\left(e_{i},\left[e_{j}, e_{k}\right]\right)+\psi\left(\left[e_{i}, e_{k}\right], e_{j}\right)=0 \text { for } 0 \leq i, j, k \leq 3
\end{aligned}
$$

Using the expression of $\psi\left(e_{i}, e_{j}\right)$ above we get some relations between the coefficients $a_{i, j}^{k}$. If we use the resulting relations then the matrix of ψ with respect to the ordered basis $\left\{e_{i} \otimes e_{j}\right\}_{1 \leq i, j \leq 3}$ of $L^{\otimes 2}$ and $\left\{e_{i}\right\}_{1 \leq i \leq 3}$ of L, takes the form

$$
\left(\begin{array}{ccccccccc}
0 & x_{2} & x_{5} & -x_{2} & 0 & x_{8} & -x_{5} & -x_{8} & 0 \\
x_{1} & x_{3} & x_{6} & -x_{3} & 0 & x_{9} & x_{10} & -x_{9} & x_{11} \\
0 & x_{4} & x_{7} & -x_{4} & 0 & x_{2} & -x_{7} & 0 & 0
\end{array}\right)
$$

where $x_{1}=a_{1,1}^{2} ; x_{2}=a_{1,2}^{1} ; x_{3}=a_{1,2}^{2} ; x_{4}=a_{1,2}^{3} ; x_{5}=a_{1,3}^{1} ; x_{6}=a_{1,3}^{2} ; x_{7}=a_{1,3}^{3} ;$ $x_{8}=a_{2,3}^{1} ; \quad x_{9}=a_{2,3}^{2} ; x_{10}=a_{3,1}^{2} ;$ and $x_{11}=a_{3,3}^{2}$ are in \mathbb{C}.

Let ϕ_{i} for $1 \leq i \leq 11$, be the cocycle with $x_{i}=1$ and $x_{j}=0$ for $i \neq j$ in the above matrix of ψ. Then $\left\{\phi_{i}\right\}_{1 \leq i \leq 11}$ forms a basis of the submodule of 2 -cocycles in $C L^{2}(L ; L)$.

On the other hand, let ψ_{0} be a 2-coboundary so that $\psi_{0}=\delta g$ for some 1-cochain g. Let $g\left(e_{i}\right)=g_{i}^{1} e_{1}+g_{i}^{2} e_{2}+g_{i}^{3} e_{3}$ for $i=1,2,3$. The coboundary formula gives

$$
\delta g\left(e_{i}, e_{j}\right)=\left[e_{i}, g\left(e_{j}\right)\right]+\left[g\left(e_{i}\right), e_{j}\right]-g\left(\left[e_{i}, e_{j}\right]\right)
$$

for $1 \leq i, j \leq 3$. From this we write down the matrix of δg. But $\delta g=\psi_{0}$ is also a cocycle and we know the form of the matrix for a 2 -cocycle as given above. Comparing these two matrices we get $x_{1}=x_{2}=x_{4}=x_{8}=x_{11}=0, x_{3}=-x_{7}, x_{5}=-x_{9}$ and $x_{6}=-x_{10}$. Thus matrix of ψ_{0} takes the form

$$
\left(\begin{array}{ccccccccc}
0 & 0 & x_{5} & 0 & 0 & 0 & -x_{5} & 0 & 0 \\
0 & x_{3} & x_{6} & -x_{3} & 0 & -x_{5} & -x_{6} & x_{5} & 0 \\
0 & 0 & -x_{3} & 0 & 0 & 0 & x_{3} & 0 & 0
\end{array}\right) .
$$

Let $\phi_{i}^{\prime} \in B L^{2}(L ; L)$ for $i=3,5,6$ be the coboundary with $x_{i}=1$ and $x_{j}=0$ for $i \neq j$ in the above matrix of ψ_{0}. It follows that $\left\{\phi_{3}^{\prime}, \phi_{5}^{\prime}, \phi_{6}^{\prime}\right\}$ forms a basis for the submodule of 2-coboundaries in $C L^{2}(L ; L)$. Observe that

$$
\phi_{3}^{\prime}+\phi_{7}=\phi_{3}, \phi_{5}^{\prime}+\phi_{9}=\phi_{5} \text { and } \phi_{6}^{\prime}+\phi_{10}=\phi_{6} .
$$

Using this it follows that

$$
\left\{\left[\phi_{1}\right],\left[\phi_{2}\right],\left[\phi_{4}\right],\left[\phi_{7}\right],\left[\phi_{8}\right],\left[\phi_{9}\right],\left[\phi_{10}\right],\left[\phi_{11}\right]\right\}
$$

forms a basis of $H L^{2}(L ; L)$ where $\left[\phi_{i}\right]$ denotes the cohomology class represented by the cocycle ϕ_{i}. Thus $\operatorname{dim}\left(H L^{2}(L ; L)\right)=8$.

Let $\left\{t_{i}\right\}_{1 \leq i \leq 8}$ denote the dual basis. Then by Remark 3.4.4, the universal infinitesimal deformation η_{1} of L with base $\mathbb{C} \oplus H L^{2}(L ; L)^{\prime}$ is given by

$$
\begin{aligned}
{\left[e_{i}, e_{j}\right]_{\eta_{1}}=} & 1 \otimes\left[e_{i}, e_{j}\right]+t_{1} \otimes \phi_{1}\left(e_{i}, e_{j}\right)+t_{2} \otimes \phi_{2}\left(e_{i}, e_{j}\right)+t_{3} \otimes \phi_{4}\left(e_{i}, e_{j}\right) \\
& +t_{4} \otimes \phi_{7}\left(e_{i}, e_{j}\right)+t_{5} \otimes \phi_{8}\left(e_{i}, e_{j}\right)+t_{6} \otimes \phi_{9}\left(e_{i}, e_{j}\right) \\
& +t_{7} \otimes \phi_{10}\left(e_{i}, e_{j}\right)+t_{8} \otimes \phi_{11}\left(e_{i}, e_{j}\right) .
\end{aligned}
$$

In particular, we get eight non-equivalent infinitesimal deformations of L given by

$$
\mu_{i}=\mu_{0}+t \phi_{i} \text { for } i=1,2,4,7,8,9,10,11,
$$

where μ_{0} denotes the original bracket in L. Observe that ϕ_{j} is skew-symmetric for $j=2,4,7,8,9$ and hence the infinitesimal deformations μ_{j} for $j=2,4,7,8,9$ are Lie algebras.

A similar computation yields that two dimensional Chevalley-Eilenberg cohomology module is of dimension 5 , and spanned by the cohomology classes of ϕ_{j} for $j=2,4,7,8,9$.

Hence as before we can write down the universal infinitesimal deformation η_{1}^{\prime} of L as a Lie algebra as follows.

$$
\begin{aligned}
{\left[e_{i}, e_{j}\right]_{\eta_{1}^{\prime}}=1 \otimes\left[e_{i}, e_{j}\right] } & +t_{1} \otimes \phi_{2}\left(e_{i}, e_{j}\right)+t_{2} \otimes \phi_{4}\left(e_{i}, e_{j}\right)+t_{3} \otimes \phi_{7}\left(e_{i}, e_{j}\right) \\
& +t_{4} \otimes \phi_{8}\left(e_{i}, e_{j}\right)+t_{5} \otimes \phi_{9}\left(e_{i}, e_{j}\right) .
\end{aligned}
$$

The universal infinitesimal deformation of L as Lie algebra is not the same as the one when we view it as Leibniz algebra. Thus we see that even at the infinitesimal level the universal deformation of a Lie algebra differs from that when the Lie algebra is deformed as a Leibniz algebra. This example shows that by deforming a Lie algebra L in the category of Leibniz algebras not only one recovers its Lie algebra deformations but can get new deformations of L which are only Leibniz algebras as one might expect. Moreover, versal deformation of L as Lie algebra and that of L when viewed as a Leibniz algebra may differ.

Bibliography

[AO01] Sh. A. Ayupov and B. A. Omirov, On some classes of nilpotent Leibniz algebras, Sibirsk. Mat. Zh. 42 (2001), no. 1, 18-29.
[Bal97] D. Balavoine, Deformations of algebras over a quadratic operad, Operads: Proceedings of Renaissance Conferences (Hartford, CT/Luminy, 1995) (Providence, RI), Contemp. Math., vol. 202, Amer. Math. Soc., 1997, pp. 207-234.
[Bar68] M. Barr, Harrison homology, Hochschild homology and triples, J. Algebra 8 (1968), 314-323.
[Dou61] A. Douady, Obstruction primaire à la déformation, Seminar H. Cartan exp. 4 (1960/61), 01-19.
[FF99] A. Fialowski and D. Fuchs, Construction of miniversal deformations of Lie algebras, J. Funct. Anal. 161 (1999), no. 1, 76-110.
[Fia88] A. Fialowski, An example of formal deformations of Lie algebras, Deformation theory of algebras and structures and applications (Il Ciocco, 1986), NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., vol. 247, Kluwer Acad. Publ., Dordrecht, 1988, pp. 375-401.
[FMM08] A. Fialowski, A. Mandal, and G. Mukherjee, Versal deformations of Leibniz algebras, To appear in Journal of K-Theory, arXiv:math.QA/0702476 (2008).
[FN57] A. Frölicher and A. Nijenhuis, A theorem on stability of complex structures, Proc. Nat. Acad. Sci. U.S.A. 43 (1957), 239-241.
[FW01] D. Fuchs and L. L. Weldon, Massey brackets and deformations, J. Pure Appl. Algebra 156 (2001), no. 2-3, 215-229.
[Ger63] M. Gerstenhaber, The cohomology structure of an associative ring, Ann. of Math. (2) 78 (1963), 267-288.
[Ger64] M. Gerstenhaber, On the deformation of rings and algebras, Ann. of Math. (2) 79 (1964), 59-103.
[Ger66] M. Gerstenhaber, On the deformation of rings and algebras. II, Ann. of Math. 84 (1966), 1-19.
[Ger68] M. Gerstenhaber, On the deformation of rings and algebras. III, Ann. of Math. (2) 88 (1968), 1-34.
[Ger74] M. Gerstenhaber, On the deformation of rings and algebras. IV, Ann. of Math. (2) 99 (1974), 257-276.
[GM88] W. M. Goldman and J. J. Millson, The deformation theory of representations of fundamental groups of compact Kähler manifolds, Bull. Amer. Math. Soc. (N.S.) 18 (1988), no. 2, 153-158.
[GS83] M. Gerstenhaber and S. D. Schack, On the deformation of algebra morphisms and diagrams, Trans. Amer. Math. Soc. 279 (1983), no. 1, 1-50.
[GS85] M. Gerstenhaber and S. D. Schack, On the cohomology of an algebra morphism, J. Algebra 95 (1985), no. 1, 245-262.
[GS90] M. Gerstenhaber and S. D. Schack, Bialgebra cohomology, deformations, and quantum groups, Proc. Nat. Acad. Sci. U.S.A. 87 (1990), no. 1, 478481.
[Har62] D. K. Harrison, Commutative algebras and cohomology, Trans. Amer. Math. Soc. 104 (1962), 191-204.
[Hoc45] G. Hochschild, On the cohomology groups of an associative algebra, Ann. of Math. (2) 46 (1945), 58-67.
[IdLMP99] R. Ibáñez, M. de León, J. C. Marrero, and E. Padrón, Leibniz algebroid associated with a Nambu-Poisson structure, J. Phys. A 32 (1999), no. 46, 8129-8144.
[II171] L. Illusie, Complexe cotangent et déformations. I, Lecture Notes in Mathematics, Vol. 239, Springer-Verlag, Berlin, 1971.
[KNS58] K. Kodaira, L. Nirenberg, and D. C. Spencer, On the existence of deformations of complex analytic structures, Ann. of Math. (2) 68 (1958), 450-459.
[Kon94] M. Kontsevich, Topics in algebra: Deformation theory, Univ. of California Press, Berkeley, CA, 1994.
[KS58a] K. Kodaira and D. C. Spencer, On deformations of complex analytic structures. I, II, Ann. of Math. (2) 67 (1958), 328-466.
[KS58b] K. Kodaira and D. C. Spencer, A theorem of completeness for complex analytic fibre spaces, Acta Math. 100 (1958), 281-294.
[Lau79] O. A. Laudal, Formal moduli of algebraic structures, Lecture Notes in Mathematics, vol. 754, Springer, Berlin, 1979.
[Lod93] J.-L. Loday, Une version non commutative des algèbres de Lie: les algèbres de Leibniz, Enseign. Math. (2) 39 (1993), no. 3-4, 269-293.
[Lod97] J.-L. Loday, Overview on Leibniz algebras, dialgebras and their homology, Cyclic cohomology and noncommutative geometry (Waterloo, ON, 1995), Fields Inst. Commun., vol. 17, Amer. Math. Soc., Providence, RI, 1997, pp. 91-102.
[Lod01] J.-L. Loday, Dialgebras, Dialgebras and related operads, Lecture Notes in Math., vol. 1763, Springer, Berlin, 2001, pp. 7-66.
[LP93] J.-L. Loday and T. Pirashvili, Universal enveloping algebras of Leibniz algebras and (co)homology, Math. Ann. 296 (1993), no. 1, 139-158.
[Man07] A. Mandal, Deformation of Leibniz algebra morphisms, Homology, Homotopy Appl. 9 (2007), no. 1, 439-450 (electronic).
[Man08] A. Mandal, An example of constructing versal deformation for Leibniz algebras, Comm. Algebra 36 (2008), no. 6, 2233-2253.
[Mas54] W. S. Massey, Products in exact couples, Ann. of Math. (2) 59 (1954), 558-569.
[MM] A. Mandal and G. Mukherjee, Deformation of Leibniz algebra morphisms over commutative local algebra base, To appear in Comm. Algebra.
[MM02] A. Majumdar and G. Mukherjee, Deformation theory of dialgebras, K Theory 27 (2002), no. 1, 33-60.
[NR66] A. Nijenhuis and R. W. Richardson, Jr., Cohomology and deformations in graded Lie algebras, Bull. Amer. Math. Soc. 72 (1966), 1-29.
[NR67a] A. Nijenhuis and R. W. Richardson, Jr., Deformations of homomorphisms of Lie groups and Lie algebras, Bull. Amer. Math. Soc. 73 (1967), 175-179.
[NR67b] A. Nijenhuis and R. W. Richardson, Jr., Deformations of Lie algebra structures, J. Math. Mech. 17 (1967), 89-105.
[Pal76] V. P. Palamodov, Deformations of complex spaces, Uspehi Mat. Nauk 31 (1976), no. 3(189), 129-194.
[Pip67] W. S. Piper, Algebraic deformation theory, J. Differential Geometry 1 (1967), 133-168.
[Ret77] V. S. Retakh, The Massey operations in Lie superalgebras, and deformations of complex-analytic algebras, Funkcional. Anal. i Priložen. 11 (1977), no. 4, 88-89.
[Ret93] V. S. Retakh, Lie-Massey brackets and n-homotopically multiplicative maps of differential graded Lie algebras, J. Pure Appl. Algebra 89 (1993), no. 1-2, 217-229.
[Sch68] M. Schlessinger, Functors of Artin rings, Trans. Amer. Math. Soc. 130 (1968), 208-222.
[Spe62a] D. C. Spencer, Deformation of structures on manifolds defined by transitive, continuous pseudogroups. I. Infinitesimal deformations of structure, Ann. of Math. (2) 76 (1962), 306-398.
[Spe62b] D. C. Spencer, Deformation of structures on manifolds defined by transitive, continuous pseudogroups. II. Deformations of structure, Ann. of Math. (2) 76 (1962), 399-445.
[Spe65] D. C. Spencer, Deformation of structures on manifolds defined by transitive, continuous pseudogroups. III. Structures defined by elliptic pseudogroups, Ann. of Math. (2) 81 (1965), 389-450.
[Yau06] D. Yau, (Co)homology of triassociative algebras, Int. J. Math. Math. Sci. Art. ID 69248 (2006), 21 pages.
[Yau07] D. Yau, Deformation of dual Leibniz algebra morphisms, Comm. Algebra 35 (2007), no. 4, 1369-1378.
[Yau08] D. Yau, Deformation theory of dialgebra morphisms, Algebra Colloq. 15 (2008), no. 2, 279-292.

