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Chapter 1

Introduction

Due to the extraordinary growth of demand in mobile communication facility, design

of efficient systems for providing specialized services has become an important issue in

wireless mobility research. Broadly speaking, there are two major models for wireless

networking: single-hop and multi-hop. The single-hop model [110] is based on the

cellular network, and it provides one-hop wireless connectivity between the host and

the static nodes known as base stations. single-hop networks rely on a fixed backbone

infrastructure that interconnects all the base stations by high speed wired links. On

the other hand, the multi-hop model requires neither fixed wired infrastructure nor

predetermined interconnectivity [83]. Two main examples where the multi-hop model

is adopted, are ad hoc network and sensor network [111].

Ad hoc wireless networking is a technology that enables untethered wireless networking

in the environments where no wired or cellular infrastructure is available, or if available,

is not adequate or cost-effective. Indeed, in an ad hoc wireless network, the wireless links

are established based on the ranges assigned to the radio stations. Ad hoc networking is

the most popular type of multi-hop wireless network because of its simplicity (see Haas

and Tabrizi [71]). This type of networking is useful in many practical applications, for



example in a battlefield, for disaster management, etc. One of the main challenges in ad

hoc wireless networks is the minimization of energy consumption. This can be achieved

in several ways. The most important issues in this context are range assignment to the

radio stations, and efficient routing of the packets as described below:

Range assignment: Assigning range (a non-zero real number) to the radio stations

in the network. This enables each radio station to transmit packets to the other

radio stations within its range. Here, the goal is to assign ranges to the radio

stations such that the desired communication among the radio stations can be

established, and the total power consumption of the entire network is minimized.

Routing: Transmission of packets from the source radio station to the destination

radio station. Here, the power consumption of the network can be minimized by

the choice of an appropriate path from source radio station to destination radio

station.

On the other hand, a wireless sensor network (WSN) consists of large collection of

co-operative small-scale nodes which can sense, perform limited computation, and can

communicate over a short distance via wireless media. A WSN is self-organized in

nature, and its members use short range broadcast communication to send the collected

information to the base station in multi-hop fashion.

In this thesis, we deal with the algorithmic aspects of the range assignment problem with

a focus on the minimization of the total power requirement of the network maintaining

its desired connectivity property. Two important sub-problems in this area are:

• The radio stations are pre-placed, and the objective is to assign ranges to the radio

stations such that the network maintains some specific connectivity property. This

problem is referred to as the range assignment problem.

2



• The radio stations are not pre-placed; the objective is to compute the positions and

ranges of the radio stations such that the entire network maintains the desired

connectivity property, and the total cost of range assignment in the entire network

is minimized. This problem is referred to as the base station placement problem.

Specifically, we consider the range assignment problem for broadcasting and all-to-all

communication, when the radio stations are placed on a line and on a 2D plane. In the

base station placement problem, we consider both the unconstrained and constrained

version. In the unconstrained version, the base stations can appear any where inside

the desired (convex) region. In the constrained version, base stations can appear only

on the boundary of the desired (convex) region.

In the next two sections of this chapter, we discuss these two problems in detail. We

formulate these optimization problems, and deduce geometric characterizations to de-

velop efficient algorithms for solving these problems. In Section 1.3, a detailed literature

survey on both the range assignment and base station placement problems are given.

The explicit mention of the scope of this thesis appears in Section 1.4.

1.1 Range assignment problem

A radio network is a finite set S = {s1, s2, . . . , sn} of radio stations located in a geo-

graphical region. These radio stations can communicate with each other by transmitting

and receiving radio signals. Each radio station si ∈ S is assigned a range ρ(si) (a non-

negative real number) for communication with the other radio stations. This range

assignment R = {ρ(s1), ρ(s2), . . . , ρ(sn)} defines a directed graph G = (V, E), where

V = S = {s1, s2, . . . , sn}, and E = {(si, sj)|si, sj ∈ S, d(si, sj) ≤ ρ(si)}. From now

onwards, the graph G will be referred to as the communication graph.

A directed edge (si, sj) ∈ E indicates that d(si, sj) ≤ ρ(si) and hence si can communi-

cate (i.e., send a message) directly (i.e., in 1 hop) to any other radio station sj. If si

3



cannot communicate directly with sj because of the insufficiency of its assigned range,

then communication between them can be achieved by multi-hop transmission along

a path from si to sj in G, where the intermediate radio stations on the path coop-

erate with the source node and forward the message till its destination sj is reached.

Sometimes in a radio network, link failure occurs with some probability and all such

failures occur independently. In multi-hop transmission, the probability of link fail-

ure on a transmission path increases with the number of hops. Thus, for multi-hop

transmission, the reliability of communication can be ensured by bounding the number

of hops for communication, considering the probability of failure of the radio stations.

Several other problems related to bounded hop communication are available in the lit-

erature [14, 57, 63, 127]. If the maximum number of hops (h) allowed is small, then

communication between a pair of radio stations is established very quickly, but the

power consumption of the entire radio network may become very high [35]. On the

other hand, if h is large, then the power consumption decreases, but communication

delay is likely to increase. The impact of tradeoff between the power consumption of

the radio network and the maximum number of hops needed between a communicating

pair of radio stations has been studied extensively [41, 76, 90]. For more information

about the tradeoff between connectivity and power consumption of the network, see

[25, 42, 98, 112, 125]. The power required by a radio station si (denoted as power(si))

to transmit a message to another radio station sj should satisfy

power(si) > γ × (d(si, sj))
β (1.1)

where d(si, sj) is the Euclidean distance between si and sj, β is referred to as the

distance-power gradient, and γ(≥ 1) is the transmission quality of the message [101]. In

the ideal case (i.e., free-space environment without any obstruction in the line of sight,

and in the absence of reflections, scattering, diffraction caused by buildings, terrains

etc.), we may assume β = 2 and γ = 1. Note that, the values of β may vary from 1 to

6 depending on various environmental factors, and the value of γ may also vary based

4



on several other environmental factors, for example, noise, weather condition, etc. The

more realistic model is to consider γ as a function of the radio station si. Here γ(si) is

referred as the weight of the radio station si and it depends on the positional parameters

of si. Thus

power(si) = γ(si)× (ρ(si))
2 (1.2)

and the total cost of a range assignment R = {ρ(si) | si ∈ S} is written as

cost(R) =
∑

si∈S

power(si) =
∑

si∈S

γ(si)× (ρ(si))
2 (1.3)

This version of the range assignment problem is referred to as the weighted range as-

signment problem. Unless otherwise specified, we assume that γ(si) = 1 for all si ∈ S,

and hence the cost of the range assignment R = {ρ(si) | si ∈ S} is

cost(R) =
∑

si∈S

power(si) =
∑

si∈S

(ρ(si))
2 (1.4)

Note that, Equation 1.2 accounts for only the transmission power, i.e., the power con-

sumed by the sender radio stations. In practice, a non-negligible amount of energy is

also consumed at the receiver end to receive and decode the radio signals. Throughout

this thesis, we consider only the energy consumed by the transmitting radio stations,

since most of the existing literature do not account for the energy consumed for receiving

a message.

If the radio stations are pre-placed, then the following three types of range assignment

problem are considered in the literature depending on the communication criteria:

1. Range assignment problem for broadcasting a message from a source radio station

to all the target radio stations,

2. Range assignment problem for all-to-all communication,

3. Range assignment problem for accumulation of messages to a target radio station

from all other radio stations in the network.

5



We assume two variations of the problem depending on whether the radio stations are

arranged on a straight line or on a 2D plane. These are referred to as 1D- and 2D-version

respectively. The simple 1D model produces more accurate analysis of some typical

situation arising in vehicular technology applications [90]. For an example, consider

the road traffic information system where the vehicles follow roads, and messages are

broadcasted along lanes [16, 39, 48, 77, 90]. Typically, the curvature of a road is small

in comparison to the transmission range; so we may consider the road is a straight line.

For several other vehicular technology applications of this problem, see [31, 61, 76].

The 2D version of the range assignment problems are more realistic, but are often

computationally hard in nature. We could propose efficient algorithm for some restricted

variation of those problems.

1.2 Base station placement problem

In this sub-problem, the objective is to identify the locations for placing the base stations

and to assign ranges to the base stations for efficient radio communication. Each mobile

terminal communicates with its nearest base station, and the base stations communicate

with each other over scarce wireless channels in a multi-hop fashion by receiving and

transmitting radio signals. Each base station emits signal periodically and all the mobile

terminals within its range can identify it as its nearest base station after receiving such

radio signal. Here, the problem is to position the base stations such that a mobile

terminal at any point in the entire area can communicate with at least one base station,

and the total power required for all the base stations in the network is minimized.

Another variation of this problem arises when there are forbidden zones for placing the

base stations, but communication is to be provided over these regions. Example of such

forbidden regions may include large water bodies, or stiff mountain terrains. In such

cases, we need some specialized algorithms for efficiently placing the base stations on
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the boundary of the forbidden zone to provide services within that region. These two

variations of base station placement problem are referred to as

(i) Unconstrained version of the base station placement problem, and

(ii) Constrained version of the base station placement problem.

1.3 Review of Related Works

The range assignment problem for ad hoc wireless networks is studied extensively in the

context of all-to-all communication, information broadcast and information accumula-

tion [111]. In this context, it is very much important to minimize power consumption

while maintaining the aforesaid properties of the network.

1.3.1 Broadcast range assignment problem

The objective of the broadcast range assignment problem is to assign transmission

ranges ρ(si) to the radio stations si ∈ S so that a dedicated radio station (say s∗ ∈ S)

can transmit messages to all other radio stations, and the total power consumption of

the entire network is minimum. The graph-theoretic formalization of the problem is as

follows:

Compute a range assignment R = {ρ(s1), ρ(s2), . . . , ρ(sn)} such that there exists a

directed spanning tree rooted at s∗ in the communication graph G, and the total

cost of the range assignment
∑n

i=1(ρ(si))
2 is minimum.

The directed spanning tree rooted at s∗ is referred to as the broadcast tree. In the

bounded hop broadcast range assignment problem, the objective is to compute a range

assignment R of minimum cost that realizes a broadcast tree of height bounded by a
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pre-specified integer h. The hardness result of the broadcast range assignment problem

depends on different parameters, namely, the distance power gradient β in the cost

function (Equation 1.1), h the maximum number of hops allowed, the dimension (d) of

the plane where the radio stations are located, and the edge weight function. In general,

we assume that w(si, sj) is equal to the Euclidean distance between the radio stations si

and sj. If 0 < β ≤ 1 or h = 1 the problem is trivially polynomial time solvable because

it suffices to set the range of the source s∗ equal to the maximum weight among the

edges incident on it. Or equivalently, assign the range of s∗ equal to the distance of the

furthest radio station from it.

For the unbounded case (h = n− 1), the broadcast range assignment problem is proved

to be NP-hard for any β ≥ 2 [24, 28]. The authors of [24] also suggested a very

high constant factor approximation algorithm for this problem. Fuchs [53] studied this

problem in a restricted setup, called the well-spread instances, which is defined in [41]

as follows:

Let ∆(S) = max{d(u, v) | u, v ∈ S}, δs(S) = min{d(s, v) | v ∈ S \ {s}}, and

δ(S) = min{δs(S) | s ∈ S}. A set of radio stations in S are said to be well-spread

if there exists some positive constant c such that δ(S) ≥ c∆(S)√
|S| .

In that paper, it is proved that for any β > 1, the broadcast range assignment problem

is NP-hard for a set of radio stations which are well-spread in 2D. Clementi et al. [24]

considered the general combinatorial optimization problem, called minimum energy

consumption broadcast subgraph (MECBS) problem, which is stated as follows:

Given a weighted directed graph G = (V,E), where V = {v1, v2, . . . , vn}, and each

edge (vi, vj) ∈ E is attached with a positive weight w(vi, vj). The transmission

graph induced by a range assignment R = {ρ(v1), ρ(v2), . . . , ρ(vn)} is a subgraph

GR(V, ER) of G, where E ′ = {(vi, vj)|w(vi, vj) ≤ ρ(vi)}.
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The MECBS problem is then defined as follows: given a source node vi ∈ V , find

a range assignment R such that GR contains a spanning tree rooted at vi, and

cost(R) =
∑n

i=1 ρ(vi) is minimum.

The bounded hop version of MECBS problem is named as h-MECBS problem, and is

defined as follows: given a source node vi ∈ V , find a range assignment R such that GR

contains a spanning tree of height at most h rooted at vi, and cost(R) =
∑n

i=1 ρ(vi) is

minimum.

It is proved that, both the MECBS and h-MECBS problems are NP-hard [24, 28].

But, this does not imply that the h-hop broadcast range assignment problem is NP-

hard. The reason is that, here the weight of each edge (vi, vj) in G is equal to the

Euclidean distance of the radio stations in S corresponding to the nodes vi and vj. To

our knowledge, no hardness result is available for the bounded hop broadcast range

assignment problem.

For the 1D version of the problem, a dynamic programming based algorithm is proposed

in [31], which runs in O(hn2) time. In this thesis, we propose an improved algorithm

for this problem, which is based on the geometric properties of the problem, and the

running time of this algorithm is O(n2).

Several researchers studied on developing good approximation/heuristic algorithms for

the broadcast range assignment problem. The most popular heuristic for this problem

is based on the minimum spanning tree (MST), and is stated below.

Construct a weighted complete graph G = (V, E), where V = S (the set of radio

stations), and the edge weight w(si, sj) = d(si, sj). Compute the MST T of G.

Assign the range of a radio station si = ρ(si) = max{w(si, sj)|(si, sj) ∈ T}.

As MST is always connected, the communication graph derived from this range assign-

ment is also connected. Wieselthier et al. [130] proposed a greedy heuristic, called
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broadcast incremental power (BIP), which is a variant of Prim’s algorithm for MST,

and is applicable for any arbitrary dimension d (d > 1). At each step, instead of adding

the edge having minimum weight in the MST, a node that needs minimum extra en-

ergy is added. This formulation is obvious due to the broadcast nature of the problem,

where increasing the radius of an already emitting node to reach a new node is less

expensive than creating a new emitting node. Some small improvements of this method

was proposed by Marks et al. [88]. A different heuristic paradigm, namely embedded

wireless multicast advantage (EWMA) is described by Cagalj et al. [28], which is an

improvement over MST based algorithm. It takes the MST as the initial feasible solu-

tion, and builds an energy efficient broadcast tree. In EWMA, every forwarding node in

the initial solution is given a chance to increase its power level. This may decrease the

power level of some other nodes maintaining the network connectivity. This assignment

of new power level to the concerned node is acceptable if cost of the tree decreases.

Each node finally chooses the power level at which the overall decrease in cost of the

final tree is maximized. Assuming complete knowledge of distances for all pairs of radio

stations, Das et al. [49] proposed three different integer programming (IP) formulations

for the minimum energy broadcast problem.

The distributed version of this problem was studied by Wieselthier et al. [131]. Although

it works well for small instances, its performance degrades when the number of radio

stations becomes large. The reason is that, it needs communication for exchanging data

in distributed environment for constructing the global tree. Ingelrest and Simplot-Ryl

[72] proposed a localized version of the BIP heuristic in the distributed set up. Here,

each node apply the BIP algorithm on its 2-hop neighbors, and then include the list of

its neighbors who need to retransmit, together with the transmission ranges with the

broadcast packet. It is experimentally observed that the result offered by this algorithm

is very close to the one obtained by BIP with global knowledge of the network. Below,

we provide a scheme for computing 1-hop and 2-hop neighbors of each node.
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Let the radio stations be distributed in a 2D region. Each radio station knows its po-

sition using a location system (say GPS) [75]. Each radio station broadcasts a ”HEL-

LOW” message with its own coordinate. A radio station that receives such a message

can identify the sender and it notes that the sender is in its 1-hop neighborhood. Using

the 1-hop neighbor information, the 2-hop neighbors of each node can be computed

after the second round of exchange. After knowing the positions of 1-hop and 2-hop

neighbors, each node can easily compute the distances of its 1-hop and 2-hop neighbors.

Cartigny et al. [44] proposed a distributed algorithm for the broadcast range assignment

problem that is based on the Relative Neighborhood Graph (RNG) [123]. The RNG

preserves connectivity, and based on the local information, the range assignment is done

as follows: for each node si, compute its furthest RNG neighbor sj, excepting the one

from which the message is received, and assign a range d(si, sj) to the node si. They

experimentally demonstrated that their algorithm performs better than the solution

obtained by the sequential version of the BIP algorithm. Cartigny et al. [43] described

localized energy efficient broadcast for wireless networks with directional antennas. This

is also based on RNG. Messages are sent only along RNG edges, and the produced

solution requires about 50% more energy than BIP. More reviews on broadcast problem

are available in [85, 122]. Now we mention the state-of-the-art performance bound of

the MST and BIP based algorithms for the broadcast range assignment problem.

Wan et al. [129] proved that the approximation ratio of the MST based heuristic is

between 6 and 12, whereas the approximation ratio of the centralized BIP is between 13
3

and 12. Unfortunately, there was a small error in [129]. Klasing et al. [79] corrected the

analysis and proved that the upper bound of the approximation ratio of the MST based

algorithm is actually 12.15. Further, Flammini et al. [55] proved that the approximation

ratio of the MST based algorithm is 7.6. Navarra [95] improved the approximation

ratio to 6.33. Finally, Ambhul [1] improved the approximation factor of the MST based

algorithm to 6; thus it attains the lower bound proposed in [129].
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Calamoneri et al. [23] proved an almost tight asymptotic bound on the optimal cost for

the minimum energy broadcast problem on the square grid. Finally Calinescu et al. [36]

presented (O(log n), O(log n)) bicriteria approximation algorithm for h-hop broadcast

range assignment problem. The solution produced by this algorithm needs O(h log n)

number of hops, and cost is at most O(log n) times the optimum solution. They also

presented an O(logβ n)-approximation algorithm for the same problem, where the radio

stations are installed in d-dimensional Euclidean spaces, and β is the distance-power

gradient.

Clementi et al. [24] considered the general combinatorial optimization problem, called

minimum energy consumption broadcast subgraph (MECBS) problem and proved that

MECBS is not approximable within a sub-logarithmic factor. They also suggested a

polynomial time approximation algorithm for a special case where the radio stations are

distributed in the Euclidean space. The first logarithmic factor approximation algorithm

for MECBS problem was proposed by Caragiannis et al. [34], where an interesting

reduction to the node-weighted connected dominating set problem is used. This algorithm

achieves a 10.8 ln n factor approximation ratio for the symmetric instances of MECBS

problem. Latter, Papadimitriou and Geordiadis [100] addressed the minimum energy

broadcast problem where the broadcast tree is to be constructed in such a way that

different source nodes can broadcast using the same broadcast tree, and the overall cost

of the range assignment is minimum. This approach differs from the most commonly

used one where the determination of the broadcast tree depends on the fixed source

node. It is proved that, if the same broadcast tree is used, the total power consumed is

at most twice the total power consumed for creating the broadcast tree with any node as

the source. It is also proved that the total power consumed for this common broadcast

tree is less than 2H(n− 1) ∗ opt, where opt denotes the minimum cost of broadcast tree

with this node as the source, and H(n) is the harmonic function involving n.
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Chlebikova et al. [46] and Kantor and Peleg [80] independently studied h-hop broadcast

range assignment problem on an arbitrary graph where the weight of edges (transmis-

sion distances) can violate triangle inequality. By approximating edge weighted graph

by paths, the authors presented a probabilistic O(log n) factor approximation algorithm,

which matches with the lower bound proposed in [104]. If a graph does not contain a

complete bipartite subgraph Kr,r with r > 2, and β ≤ O( log log n
log log log n

), then the approx-

imation ratio can be improved to O((log log n)β) [46], where β is the distance power

gradient of the cost function. It also needs to be mentioned that Chlebikova et al. [46]

presented an exact algorithm for h-hop broadcast, where the graph G is a tree. The

running time of this algorithm is O(hn4).

For the 2-hop broadcast in the plane, the optimum range assignment can be obtained

in O(n7) time using an algorithm based on dynamic programming paradigm [4]. In the

same paper, a polynomial-time approximation scheme for the h-hop broadcast range

assignment problem was suggested for any h ≥ 1 and ε > 0. The time complexity of the

proposed algorithm is O(nα), where α = O((8h2/ε)2h
). Calinescu et al. [38] discussed

2-hop broadcast problem, where the range of a radio station is either a specified value ρ

or 0. They presented a 6-factor approximation algorithm with running time O(n log n),

and a 3-factor approximation algorithm with running time O(n log2 n). Bronnimann and

Goodrich [18] considered the circle cover problem, where a set S of n points is given

in the plane, and a family of circles C is also given; the problem is to find a minimum

number of circles in C that covers all the points in S. The circle cover problem can

be easily mapped to the 2-hop broadcast problem. The proposed algorithm for the

circle cover problem produces O(1)-approximation results in O(n3 log n) time. Thus

the algorithm proposed in [38] is an improvement over [18] in terms of both the time

complexity results, and approximation factor. In this thesis, we present two algorithms

in connection with 2-hop broadcast range assignment problem in 2D. These are (i) find

the minimum cost homogeneous range assignment for 2-hop broadcast from a given
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source, and (ii) given a range ρ compute the minimum set of radio stations (if possible)

whom range ρ is to be assigned for the 2-hop broadcast from the source radio station.

For Problem (i), our proposed algorithm returns the optimum cost range assignment in

O(n2.376 log n) time, and for the Problem (ii), we proposed a 2-approximation algorithm

which runs in O(n2) time.

Although the unweighted broadcast range assignment problem has been studied ex-

tensively, little is known for the case of the weighted version. The first work on this

problem for linearly arranged n radio stations was discussed in [5]. A number of varia-

tions of the problem have been studied, and the algorithms are proposed using dynamic

programming. These are as follows:

The unbounded case (i.e., h = n − 1), for which the time and space complexities of

the proposed algorithm are O(n3) and O(n2) respectively;

h-hop broadcast, for which the time and space complexities of the proposed algorithms

are O(hn4) and O(hn2) respectively;

The unbounded multi-source broadcast, where the time and space complexities are

O(n6) and O(n2) respectively;

In higher dimension (i.e., d > 2) and β = 1, the problem is formulated as a shortest

path problem in a graph, and the proposed algorithm produces a 3-approximation

result in O(n3) time;

For a detailed survey in the broadcast range assignment problem, see [29, 102].

In this thesis, we consider both the bounded and unbounded version of the weighted

broadcast range assignment problem in 1D. Our proposed algorithm for the unbounded

version of the problem output the optimum result in O(n2) time. The proposed algo-

rithm for the bounded (h) hop broadcast problem produces the optimum solution in

O(hn2 log n) time.
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1.3.2 All-to-all range assignment problem

The objective of the range assignment problem for h-hop all-to-all communication is

to assign transmission range ρ(si) to each radio station si ∈ S so that each pair of

members in S can communicate using at most h hops, and the total power consumption

by the entire radio network is minimized. Typically, h can assume any value from 1

to n − 1, where n = |S|. For h = 1, the problem is trivial. Here, for each radio

station si ∈ S, ρ(si) = Maxsj∈Sd(si, sj). Basically, the hardness of the all-to-all range

assignment problem depends on two parameters, namely, the distance power gradient (β

in Equation 1.1) of the cost function and dimension (d) in which the radio stations are

located. For the linear radio network (d = 1), the problem can be solved in polynomial

time [76], but if d > 1, then the problem becomes NP-hard [40, 41, 53]. In particular, if

β = 1, then the problem can be shown to be 1.5-APX hard [7]. For β > 1, the problem

is APX-hard, and so it does not admit a PTAS unless P = NP [76].

For linear radio network, the problem becomes relatively simple, but it results in a more

accurate analysis of the situation arising in vehicular technology application [90]. In a

linear radio network, several variations of the 1D range assignment problem for h-hop

all-to-all communication are studied by Kirousis et al. [76]. For the uniform chain

case, i.e., where each pair of consecutive radio stations on the line is at a distance δ,

tight upper bound on the minimum cost of range assignment is shown to be OPTh =

Θ(δ2n
2h+1−1

2h−1 ) for any fixed h. In particular, if h = Ω(logn) in the uniform chain case,

then OPTh = Θ(δ2 n2

h
). For the general problem in 1D, i.e., where the radio stations

are arbitrarily placed on a line, a 2-approximation algorithm for the range assignment

problem for h-hop all-to-all communication is proposed by Clementi et al. [39]. The

worst case running time of this algorithm is O(hn3). For the unbounded case (h = n−1),

a dynamic programming based O(n4) time algorithm is available [76] for generating the

minimum cost. In this thesis, we proposed an improved algorithm for this problem.

The running time of our algorithm is O(n3).
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Carmi and Katz [32] proved that the all-to-all range assignment problem remains NP-

hard when the range of each radio station is either ρ1 or ρ2 with ρ2 >
√

3
2
ρ1. In the

same paper, they also provided an 11
6
-approximation algorithm. Fuchs [53] studied the

range assignment problem for all-to-all communication where the radio stations are

well-spread [41] with β > 0. Under the assumption of symmetric connectivity as stated

below, the problem is shown to be NP-hard in both 2D and 3D. It is also shown that

the problem is APX-hard in 3D.

In the symmetric connectivity model, the minimum transmission power needed for a

radio station si to reach a radio station sj is assumed to be equal to the minimum

transmission power needed for sj to reach si. In other words, the symmetric connectivity

means a link is established between two radio stations si, sj ∈ S only if both radio

stations have transmission range at least as big as the distance between them.

Althaus et al. [6] presented an exact branch and cut algorithm based on an integer

linear programming formulation for solving the unbounded (i.e., h = n − 1) version of

the 2D all-to-all range assignment problem with symmetric connectivity assumption,

and their algorithm takes 1 hour for solving instances with up to 35-40 nodes. In the

same paper, a minimum spanning tree (MST) based 2-approximation algorithm has also

been presented with symmetric connectivity assumption; here range of a radio station

is equal to the length of the longest edge of the Euclidean MST attached with that

radio station. Under the assumption of symmetric connectivity, Krumke et al. [78]

presented an (O(log n), O(log n)) bicriteria approximation algorithm for h-hop all-to-all

range assignment problem, i.e., their algorithm produces a solution having O(h log n)

number of hops and costs at most O(log n) times the optimum solution. Latter, Cali-

nescu et al. [36] studied the same problem independently, and provided an algorithm

with same approximation result. Recently, Kucera [74] presented an algorithm for the

all-to-all range assignment problem in 2D. Probabilistic analysis says that the average

transmission power of the radio stations produced by this algorithm is almost surely
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constant if the radio stations appear in a square region of a fixed size. This algorithm

can also work in any arbitrary dimension.

Santi et al. [115] studied the homogeneous (range of radio stations are equal) version of

the 2D h-hop range assignment problem using a probabilistic approach, and established

lower and upper bounds on the probability of connectedness of the communication

graph. Under the assumption of asymmetric connectivity, Clementi et al. [40] presented

a lower and an upper bound on the minimum cost of the h-hop range assignment of

a radio network in 2D. They also proved that for the well-spread instances (defined in

[41]) of this problem, these two bounds remain same.

Chlebikova et al. [46] studied the range assignment problem for h-hop all-to-all com-

munication in static ad hoc networks using a graph-theoretic formulation where the

edge weights can violate triangle inequality. They presented a probabilistic algorithm

to approximate any edge-weighted graph by a collection of paths such that for any pair

of nodes, the expected distortion of shortest path distance is at most O(log n). The

paths in the collection and the corresponding probability distribution are obtained by

solving a packing problem defined by Plotkin et al. [103], and using a minimum linear

arrangement problem solver of Robinovich and Raz [108] as an oracle. With this algo-

rithm, they approximated a 2D static ad hoc network as a collection of paths. Then it

runs the polynomial time algorithm for the minimum range assignment problem in 1D

[39]. Therefore, this strategy leads to a probabilistic O(log n) factor approximation al-

gorithm for the h-hop all-to-all range assignment problem for the static ad hoc network

in 2D. A polynomial time constant factor approximation algorithm for this problem on

general metrics is given in [80]. The approximation ratio of the proposed algorithm is

( 1
h√2−1

)β(1 + 3β)(3β+1)h−2.

In [5], the weighted version of the all-to-all range assignment problem is studied only

for q-spread instances in 2D, where the notion of q-spread instances in 2D is defined as

follows:
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Let si be a radio station in S. Consider a maximum size convex polygon containing only

the radio station si and whose vertices are in the set S \ {si}. Let H(si) be the vertices

of this convex polygon. Now we define two quantities ∆(H(si)) = maxsj∈H(si)(d(si, sj))
β

and δ(H(si)) = minsj∈H(si)(d(si, sj))
β. Finally, we choose sk ∈ S such that ∆(H(sk)) =

maxn
i=1 ∆(H(si)). The instance S is said to be q-spread if ∆(H(sk)) ≤ q × δ(H(sk)).

The proposed algorithm can work for any arbitrary distance power gradient β > 1, and

produces a q-approximation result.

In this thesis, we propose an efficient heuristic for the h-hop all-to-all range assignment

problem in 2D. The experimental evidences demonstrate that it produces near optimum

result in reasonable time.

1.3.3 Accumulation range assignment problem

The objective of h-hop accumulation range assignment problem is to assign transmission

range ρ(si) to the radio station si ∈ S such that each radio station si ∈ S can send

message to a dedicated radio station s∗ ∈ S using at most h hops and the total cost
∑

si∈S(ρ(si))
2 of the network is minimum.

Clementi et al. [39] discussed h-hop accumulation range assignment problem for 1D

radio network and proposed an algorithm based on dynamic programming which can

produce optimum solution in O(hn3) time. This algorithm can be used to design a trivial

2-approximation algorithm for the range assignment of h-hop all-to-all communication

in a 1D radio network.

In a general graph, the h-hop accumulation range assignment problem is equivalent to

finding the minimum spanning tree of height h with a designated node as the root. This

problem is referred to as the h-MST problem in the literature. Experimentally tested

exact super-polynomial time algorithms for the h-MST problem is already available

[58, 62]. Althaus et al. [9] presented a polynomial time algorithm for this problem with
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running time nO(h). The 2-MST problem can be easily reduced to the classical Unca-

pacitated Facility Location Problem (UFLP). Thus all the approximation algorithms for

UFLP apply to the 2-MST as well. As for the metric FLP, several polynomial time

approximation algorithm based on linear programming (LP) relaxations have been pre-

sented in the literature [22, 60, 81, 94, 121]. The best known approximation factor is

3.16 due to Mahdian et al. [94]. Alfandari and Paschos [11] proved that metric 2-MST

is MAX SNP-hard and hence PTAS cannot be found for this problem unless P = NP.

As for the Euclidean case, the best result is a PTAS given by Arora et al. [12].

Several heuristic algorithms for the range assignment problem in 2D are available in

the literature. Raidl and Julstrom [106] presented an evolutionary-based heuristic for

the 2D Euclidean 2-MST problem and experimentally demonstrate that their algorithm

performs better that the two existing greedy heuristics based on the classical Prim’s

algorithm for the MST problem [8, 47]. Clementi et al. [30] presented a fast and easy-

to-implement heuristics for the 2D h-hop accumulation range assignment problem, and

investigated its behavior on the instances obtained by choosing n points at random in

a square region. They have also presented two simple heuristics based on Prim’s and

Kruskal’s algorithms for the MST problem, and performed a comparative study among

these three heuristics.

In connection with the accumulation range assignment problem, we have studied a little

bit. We have proposed an algorithm for the unbounded case, which can produce the

optimum solution in O(n2) time. It needs to be mentioned that, our algorithm can work

in arbitrary dimension.

1.3.4 Unconstrained base station placement problem

The base station placement problem involves placing multiple base stations within a

specific deployment site, with an aim to provide an acceptable quality of service to

the mobile users. Here, the formulation of objective function depends on the hardware
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limitations of the specific wireless system and the particular application for which the

system is to be designed.

Several authors [26, 54, 116, 120, 128, 132] studied the issues of optimal base station

placement in an indoor micro-cellular radio environment with an aim to optimizing

several objective criteria. Most of them have primarily used local optimization strate-

gies for optimizing the desired objective function. Stamatelos and Ephremides [116]

formulated the objective function as the maximization of coverage area along with the

minimization of co-channel interference under the stipulated constraint of spatial diver-

sity. Choong and Everitt [26] investigated the role of frequency-reuse across multiple

floors in a building while solving the base station placement problem to minimize co-

channel interference. Howitt and Ham [66] pointed out the limitations of using local

optimization algorithms for solving the base station placement problem; finally they

proposed a global optimization technique based algorithm, where the objective func-

tion is modeled as a stochastic process. The authors of [54, 128] indicated that the

simplex method is well suited for the base station placement problem because the cor-

responding objective function is non-differentiable and so quasi-Newton optimization

methods are not well-suited.

In this thesis, we consider the following problem: place a given number of base stations

in a given convex region in 2D, and assign ranges to each of these base stations such

that every point in the region is covered by at least one base station, and the maximum

assigned range is minimized. We may assume that the range of all the base stations are

same, say ρ. Since a base station with range ρ can communicate with all the mobile

terminals present in the circular region of radius ρ and centered at the position where

the base station is located, our problem reduces to the traditional covering by circle

problem, available in the literature.

In the covering by circle problem, the following two variations are important: (i) find

the minimum number of unit-radius circles that are necessary to cover a given polygon,
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and (ii) given a constant k, compute a radius ρ, such that an arrangement of k circles

of radius ρ exists which can cover the entire polygon, and there does not exists any

arrangement of k circles of a radius ρ′ < ρ which can cover the entire polygon. In this

problem, we needs to report the centers of the k circles (of optimum radius) also.

Verblunsky [126] proposed a lower bound for the first problem; it says that if m is the

minimum number of unit circles required for covering a square where each side is of

length σ, then 3
√

3
2

m > σ2 + cσ, where c > 1
2
. Substantial studies have been done

on the second problem. Several researcher tried to cover a unit square region with a

given number (say k) of equal radius circles with the objective to minimize the radius.

Tarnai and Gasper [124] proposed graph theoretic approach to obtain a locally optimal

covering of a square with up to 10 equal circles. No proof for optimality was given,

but later it was observed that their solution for k = 5 and k = 7 are indeed optimal.

The same idea was then extended by Heppes and Melissen [67] for covering a rectangle

with up to 5 equal circles. Several results exist on covering squares and rectangles

with k equal circles for small values of k (= 6, . . . 10, etc.) [92, 93]. For a reasonably

large value of k, the problem becomes more complex. Nurmela and Ostergard [97]

adopted simulated annealing approach to obtain near-optimal solutions for the unit

square covering problem for k ≤ 30. As it is very difficult to get a good stoping criteria

for a stochastic global optimization problem, they used heuristic approach to stop their

program. It is mentioned that, for k = 27 their algorithm runs for about 2 weeks

to achieve the stipulated stopping criteria. For k ≥ 28, the time requirement is very

high. So, they changed their stopping criteria, and presented the results. Nurmela [96]

adopted the same approach for covering a equilateral triangle of unit edge length with

circles of equal radius, and presented the results for different values of k less than or

equal to 36. No results on the covering by circles problem are available where the region

is an arbitrary simple polygon, or even for an arbitrary convex polygon.

The discrete version of the covering by circle problem is the well-known k-center prob-
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lem. Here we need to place k supply points to cover a set of n demand points on the

plane such that the maximum Euclidean distance of a demand point from its nearest

supply point is minimized. The simplest form of this problem is the Euclidean 1-center

problem which was originally proposed by Sylvester [114] in 1857. The first algorithmic

result on this problem is due to Elzinga and Hearn [51], which gives an O(n2) time al-

gorithm. Later, Shamos and Hoey [117] improved the time complexity of this problem

to O(n log n). Lee [84] proposed the furthest point Voronoi diagram, which also can be

used to solve the 1-center problem in O(n log n) time. Finally Megiddo [87] found an

optimal O(n) time algorithm for solving this problem using prune-and-search technique.

Jaromczyk and Kowaluk [73] studied the 2-center problem, and proposed a simple algo-

rithm with running time 0(n2 log n). Later, Sharir [113] improved the time complexity

to O(n log9 n). The best known algorithm for this problem was proposed by Chan [21].

He suggests two algorithms. The first one is a deterministic algorithm, and it runs

in O(n log2 n(log log n)2) time; the second one is a randomized algorithm that runs in

O(n log2 n) time with high probability.

A variation of this problem is the discrete 2-center problem, where the objective is to

find two closed disks whose union can cover the given set P of n points, and whose

centers are a pair of points in P . Kim and Shin [82] considered both the standard and

discrete versions of the 2-center problem where the points to be covered are vertices

of a convex polygon. Their algorithms run in O(n log3 n log log n) and O(n log2 n) time

respectively.

For a given set of n demand points, the general version of both the k-center problem

and the discrete k-center problem are NP-complete [56, 86]. But for a fixed value of k,

both the problems can be solved in O(nO(
√

k)) time (see [65]). Therefore, it makes sense

to search for efficient approximation algorithms and heuristics for the general version

[69, 99]. Detailed review on this topic can be found in [119]. Another variation of this

problem, available in the literature, is that the center and radius of the (equal-radius)
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circles are fixed and the objective is to cover the points in S with minimum number of

circles. Stochastic formulations of different variations of this problem appeared in [15].

Apart from the base stations placement for mobile communication, the proposed prob-

lems find relevant applications in energy-aware strategic deployment of the sensor nodes

in wireless sensor networks (WSN) [13, 17]. In particular, Boukerche et al. [17] studied

the case where the sensor nodes are already placed. A distributed algorithm is proposed

in that paper which can activate the sensors such that the entire area is always covered,

and the total lifetime of the network is maximized. Voronoi diagram [19] is also an

useful tool for dealing with the coverage problem for sensor networks, where the sensors

are distributed in IR2. Meguerdichian et al. [89] considered the problem where the

objective is to find a sensor avoiding path between a pair of points s and t such that for

any point p on the path, the distance of p from its closest sensor is maximized. Several

other application specific covering problems related to sensor network are mentioned in

[13].

1.3.5 Constrained base station placement problem

In general, every point inside the desired region may not be suitable for installing a

base station. Some specific situations were mentioned in Section 1.2. In this thesis, we

shall consider a constrained variation of the base station placement problem where the

base stations can be erected only on the boundary of the given convex polygonal region.

This problem can also be viewed as a constrained variation of k-center problem.

Several constrained versions of the Euclidean 1-center problem are studied in the litera-

ture. Megiddo [87] studied the case where the center of the smallest enclosing circle must

lie on a given straight line. Bose and Toussaint [20] addressed a constrained variation of

1-center problem where instead of the entire region, a given set Q of m points is to be

covered by a circle whose center is constrained to lie on the boundary of a given simple
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polygon P of size n. They provided an output sensitive O((n + m) log(n + m) + k)

time algorithm for this problem, where k is the number of intersection points of the

farthest-point Voronoi diagram of Q with the edges in P ; this may be O(nm) in the

worst case. Constrained variations of the 1-center and 2-center problems are studied

by Roy et al. [105], where the target region is a convex polygon with n vertices, and

the center(s) of the covering circle(s) is/are constrained to lie on a specific edge of the

polygon. The time complexities of both these problems are O(n). Hurtado et al. [70]

used linear programming to give an O(n + m) time algorithm for solving minimum

enclosing circle problem for a set of points whose center satisfies m linear inequality

constraints. The query version of the minimum enclosing circle problem is studied by

Roy et al. [107], where the given point set needs to be preprocessed such that given an

arbitrary query line, the minimum enclosing circle with center on the query line can be

reported efficiently. The preprocessing time and space of this algorithm are O(n log n)

and O(n) respectively, and the query time complexity is O(log2 n).

Several other constrained variations of the k-center problem can be found in the domain

of mobile communication and sensor network. Recently, Alt et al. [2] considered the

problem of computing the centers of k circles on a line to cover a given set of points

in 2D. The radius of the circles may not be the same. The objective is to minimize

the sum of radii of all these k circles. They proposed an O(n2 log n) time algorithm for

solving this problem.

Sohn and Jo [118] considered a different variation of the problem. It assumes that two

sets of points B = {b1, b2, . . . , bm} and R = {r1, r2, . . . , rn}, called blue and red points,

are given. The objective is to cover all the red points with circles of radius ρ (given

a priori) centered at minimum number of blue points. Here the blue points indicate

the possible positions of base stations, and red points indicate the target locations

where the message need to be communicated. A heuristic algorithm using integer linear

programming is presented along with experimental results. Azad and Chockalingam [3]
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studied a different variation where n base stations (of same range ρ) are placed on the

boundary of a square region, and m sensors are uniformly distributed inside that region.

The sensors are also allowed for limited movement. The entire time span is divided into

slots. At the beginning of each time slot, depending on the positions of the sensors, k

base stations need to be activated. The proposed algorithm finds a feasible solution (if

exists) in time O(mn + n log n) time.

1.4 Scope of the Thesis

In this section, we summarize the list of problems considered in this thesis, and the

results obtained on those problems.

In Chapter 2, we study the unweighted version of the broadcast range assignment prob-

lem in a linear radio network. Here, we assume that the members in the set S of n radio

stations are located on a straight line, and one of them (say s∗) is designated as the

source station. An integer h (1 ≤ h ≤ n − 1) is also given. The objective is to assign

ranges to the members in S so that s∗ can send message to all other members in S using

at most h hops, and the total power consumption (see Equation 1.4) is minimum. We

propose an O(n2) time algorithm for this problem.

In Chapter 3, we consider the weighted version of the broadcast range assignment

problem in a linear radio network. Here, the parameter γ of each radio station si ∈ S

may differ from that of the other members in S. Thus, here the cost function is given

by Equation 1.3. Efficient algorithms have been designed for both the unbounded

and bounded-hop broadcast range assignment problems in this environment. In the

unbounded case (h = n − 1), the proposed algorithm runs in O(n2) time, whereas for

the h-hop broadcast, the time complexity is O(hn2 log n).

In Chapter 4, we consider the broadcast range assignment problem in 2D. Here the
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members in the set S of n radio stations are placed in a 2D region, and a source radio

station s∗ ∈ S is given. We consider the following two variations of minimum cost

homogeneous range assignment problem for 2-hop broadcast from s∗: (i) find the value

of ρ such that 2-hop homogeneous broadcast from s∗ is possible with minimum cost,

and (ii) given a real number ρ, check whether homogeneous 2-hop broadcast from s∗ to

all members in S is possible with range ρ, and if so, then identify the smallest subset

of S, to which the range ρ is to be assigned to accomplish the broadcast. The first

problem is solved in O(n2.376 log n) time and O(n2) space. The second problem seems

to be hard. We present a 2-factor approximation algorithm for this problem, which runs

in O(n2) time.

In Chapter 5, we consider the range assignment problem for all-to-all communication in

linear radio network. We have considered only the unbounded version of the problem.

As in Chapters 2 and 3, here also the radio stations in S are placed arbitrarily on a

line. The objective is to assign ranges to these radio stations such that each of them can

communicate with every other member in S, and the total power consumption of the

entire network is minimized. Since, no restriction on the number of hops is imposed,

communication may be done with at most n− 1 hops. A simple incremental algorithm

for this problem is proposed which produces the optimum solution in O(n3) time and

O(n2) space.

In Chapter 6, we extend the all-to-all range assignment problem in 2D. As in Chapter 4,

here the radio stations in S are distributed on a 2D plane, and an integer h is given. The

objective is to assign range to each member in S such that each radio station in S can

communicate with every other member in S using at most h hops, and the total power

consumption of the entire network is minimum. The general 2D h-hop all-to-all range

assignment problem is known to be NP-hard. We first consider the homogeneous version

of the problem, where the range assigned to each radio station is same (say ρ), and the

objective is to compute the minimum feasible value of ρ for the all-to-all communication.
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We propose an algorithm for this problem which needs O(n3( log logn
logn

)
5
4 logn) time in the

worst case. In addition, if we consider the unbounded version of the homogeneous range

assignment problem, then the minimum feasible value of ρ can be obtained in O(n2logn)

time. Finally, we propose an efficient heuristic algorithm for the general h-hop all-to-all

range assignment problem in 2D, where the range of the radio stations may not be equal.

Experimental results demonstrate that our heuristic algorithm runs fast and produces

near-optimal solutions on randomly generated instances.

In Chapter 7, we consider the base station placement problem in the context of mobile

communication. The unconstrained version of the problem is studied first in a restricted

setup, where the 2D region under consideration is a convex polygon. The objective is to

place a given number of base stations inside a convex region, and to assign range to each

of them such that every point in the region is covered by at least one base station, and

the maximum range assigned is minimum. Existing results for this problem are known

for the case where the region is a square or an equilateral triangle. The minimum radius

obtained by our method favorably compares with the existing results. The execution

time of our algorithm is a fraction of a second in a SUN Blade 1000 computing platform

with 750 MHz CPU speed, whereas the existing methods may even take about two

weeks’ time for a reasonable value of the number of circles (≥ 27), as reported in [97].

In Chapter 8, we study the constrained version of the base station placement problem,

where the base station can be placed only on the boundary of the given convex region P .

Here the objective is to determine the positions of k base stations (of equal range) on the

boundary of P such that each point inside P is covered by at least one base station. We

name this problem as region-cover(k) problem. A simplified form of this problem is the

vertex-cover(k) problem, where the objective is to establish communication among only

the vertices of P instead of covering the entire polygon. This problem is also useful

in some specified applications as mentioned in Chapter 8. We first present efficient

algorithms for vertex-cover(2) and region-cover(2) problems, where the base stations are
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to be installed on a pair of specified edges. The time complexities of these algorithms

are O(n log n) and O(n2) respectively. Next, we consider the case where k ≥ 3. We

first concentrate on the restricted version of the vertex-cover(k) and region-cover(k)

problems, where all the k base stations are to be placed on the same edge of P . Our

proposed algorithm for the restricted vertex-cover(k) problem produces the optimum

result in O(min(n2, nk log n)) time, whereas the algorithm for the restricted region-

cover(k) problem produces an (1 + ε)-factor approximation result in O((n + k) log(n +

k)+n log(d1
ε
e)) time. Finally, we propose an efficient heuristic algorithm for the general

region-cover(k) problem, for k ≥ 3. Experimental results demonstrate that our proposed

algorithm runs fast and produces near-optimum solutions.

Finally, the concluding remarks on our studies in this thesis appear in Chapter 9.

Here, once again we discuss our proposed results on different problems along with their

possible extensions.
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Chapter 2

Broadcast in Linear Radio Networks

2.1 Introduction

In this chapter, we study the h-hop broadcast range assignment problem in linear radio

network. Here a set S of n radio stations are placed on a straight line, a source node

s∗ (∈ S), and an integer h (1 ≤ h ≤ n− 1) are given. The objective is to assign range

ρ(s) to each radio station s ∈ S such that s∗ can transmit message to each member

in S using at most h hops, and the total power requirement for all the members in S

(
∑

s∈S(ρ(s))2) is minimum. We propose an O(n2) time algorithm for this problem. The

earlier result on this problem was O(hn2) [31]. Thus, we have an improvement over the

existing result by a factor of h.

2.2 Preliminaries

We assume that the radio stations S = {s1, s2, . . . , sn} are ordered on the x-axis from left

to right, with s1 positioned at 0 (the origin). The position of si will be denoted by x(si).



Thus, the distance between two radio stations si and sj is d(si, sj) = |x(si)−x(sj)|. Let

R = {ρ(s1), ρ(s2), . . . , ρ(sn)} be a range assignment, where ρ(si) is the range assigned

to si. The cost of this range assignment R is equal to
∑

si∈S(ρ(si))
2 and denoted by

cost(R). As mentioned earlier in Section 1.1, the directed graph G = (V,E) with V = S

and E = {(si, sj)|d(si, sj) ≤ ρ(si)} is referred to as the communication graph for the

range assignment R.

For each radio station si ∈ S, let Di be an array of size n which contains the distances

{d(si, sj), j = 1, . . . , n} in sorted order. Note that, min(Di) = minn
j=1 Di[j] = 0, because

d(si, sj) = 0 if i = j and d(si, sj) > 0 if i 6= j. Now we have the following lemma.

Lemma 2.1 For any given h, if R = {ρ1, ρ2, . . . , ρn} denotes the optimum range as-

signment of {s1, s2, . . . , sn} for h-hop broadcast, then ρi ∈ Di for all i = 1, 2, . . . , n.

Proof: Let us assume that ρi = r for some i, and r /∈ Di. Let GR be the corresponding

communication graph. Clearly, r > min(Di), since r /∈ Di and min(Di) = 0. Now we

consider two cases: (i) r > max(Di) and (ii) there exist a pair of consecutive elements

a, b ∈ Di such that a < r < b.

Consider a different range assignment R′ = {ρ1, ρ2, . . . , ρi−1, r
∗, ρi+1, . . . , ρn}, where

r∗ = max(Di) in Case (i), and r∗ = a in Case (ii). In both the cases, the communication

graph G corresponding to R′ remains same as it was for the range assignment R,

because this change in the range assignment does not delete any edge from G. Thus,

the desired connectivity of each vertex in S to all other vertices is maintained for the

range assignment R′. Again, cost(R′) = cost(R)−r2 +(r∗)2 < cost(R). Hence we have

the contradiction that R is the optimum range assignment. 2

Note: The result stated in Lemma 2.1 is valid if these range assignment problems are

considered in any arbitrary dimension. It will be used to justify the correctness of the

proposed algorithms for different problems considered in this thesis.
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We will use C(S, s∗, h) to denote the minimum among the costs of the range assignments

of the members in S for broadcasting message from the source radio station s∗ (∈ S)

to all other radio stations in S using at most h hops. There may be several range

assignments of S having cost C(S, s∗, h). We will use R(S, s∗, h) to denote one such

range assignment, and will refer it as optimal range assignment.

Definition 2.1 In the communication graph G corresponding to a h-hop broadcast

range assignment, an edge e = (si, sj) is said to be functional if the removal of this

edge indicates that there exists a radio station sk ∈ S which is not reachable from s∗

(source) using a h-hop path.

Definition 2.2 In a h-hop broadcast range assignment, a right-bridge ←−−s`sr corresponds

to a pair of radio stations (s`, sr) such that s` is to the left of s∗, sr is to the right of

s∗, and sr can communicate with s` in 1-hop due to its assigned range, but it can not

communicate with s`−1 in 1-hop.

A right-bridge ←−−s`sr (if exists) is said to be a functional right-bridge if the edge (sr, s`) is

functional (see Definition 2.1) in the communication graph G. Similarly, one can define

a left-bridge −−→s`sr and a functional left-bridge in a h-hop range assignment, where s` and

sr are respectively to the left and right sides of s∗.

Theorem 2.1 [31] Given a set of radio stations S = {s1, s2, . . . , sn}, a source node

s∗ ∈ S, and an integer h (1 ≤ h ≤ n−1), the optimal h-hop broadcast range assignment

R(S, s∗, h) contains at most one functional bridge.

The algorithm proposed in [31] solves the problem in three phases. It computes optimal

solutions having (i) no functional (left/right) bridge, (ii) one functional left-bridge only,

and (iii) one functional right-bridge only. Finally, the one having minimum total cost is

reported. Our algorithm is based on the same principle as in [31], but it considers the
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inherent geometry of the range assignment problem for obtaining the optimal solution

in each of the three cases mentioned in (i)-(iii) in a careful manner; this leads to an

algorithm with improved time complexity.

2.3 Geometric properties

Lemma 2.2 In a linearly ordered set of radio stations {sa, sa+1, . . . , sb} ⊆ S, if the

source station s∗ is at one end of the above set (i.e., s∗ = sa), then for any 1 ≤ µ ≤ b−a,

an optimum µ-hop broadcast range assignment R({sa, sa+1, . . . , sb}, sa, µ) should satisfy
∑b−1

k=a ρ(sk) = x(sb)− x(sa).

sa sisj sb

sa sisj sb

(a)

(b)

Figure 2.1: Proof of Lemma 2.2

Proof: Consider the µ-hop path for communication from sa to sb as shown in Figure

2.1(a). Note that, one can reduce the total cost of range assignment (
∑b−1

k=a(ρ(sk))
2) by

setting ρ(si) = 0 (see Figure 2.1(b)). This maintains µ-hop connections from sa to all

other members in the set S. 2

Lemma 2.3 For a set of radio stations S = {s1, s2, . . . , sn}, C(S, s1, µ) = C(S, sn, µ).

Proof: Let {a0, a1, . . . , aµ−1} ⊆ S be the sequence of radio stations having non-zero

ranges in R(S, s1, µ). Here a0 = s1, and let us denote aµ = sn. By Lemma 2.2, ρ(ai) =
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x(ai+1)− x(ai), for i = 0, 1, . . . , µ− 1. A feasible range assignment for communicating

from sn to s1 using at most µ hops is ρ(ai) = x(ai)− x(ai−1), for i = 1, 2, . . . , µ, and its

cost is same as C(S, s1, µ). Thus C(S, sn, µ) ≤ C(S, s1, µ). Following the same method,

we can prove that C(S, s1, µ) ≤ C(S, sn, µ). Hence the result follows. 2

Lemma 2.4 In an optimum µ-hop broadcast range assignment R(S, s1, µ), if the range

assigned to s1 is ρ(s1) = d(s1, sj) for some j > 1, then there exists a µ-hop broadcast

range assignment R(S\{s1}, s2, µ) for broadcasting from s2, where ρ(s2) ≥ d(s2, sj).

Proof: In R(S, s1, µ), ρ(s1) = d(s1, sj) implies that ρ(s2) = ρ(s3) = . . . = ρ(sj−1) = 0.

Thus, if C(S, s1, µ) = c then C(S \{s1, s2, . . . , sj−1}, sj, µ−1) = c− (d(s1, sj))
2. In other

words, the range assignments of the radio stations S \ {s1, s2, . . . , sj−1} in R(S, s1, µ)

are such that, it supports broadcasting from sj to all the radio stations {sj+1, . . . , sn}
in (µ− 1) hops with minimum cost.

Now, let us assume that the range assigned to s2 in R(S\{s1}, s2, µ) is ρ(s2) = d(s2, sk).

We need to prove that k ≥ j.

Let us assume C(S \ {s1}, s2, µ) = c′. This implies, C(S \ {s1, s2, . . . , sk−1}, sk, µ− 1) =

c′ − (d(s2, sk))
2. Thus, {d(s1, sk), 0, 0, . . . , 0︸ ︷︷ ︸

k−2

,R(S \ {s1, s2, . . . , sk−1}, sk, µ − 1)} is a

feasible range assignment (may not be optimum) for the µ-hop broadcast from s1 to all

the nodes in S \ {s1}, and its cost is equal to (d(s1, sk))
2 + (c′ − (d(s2, sk))

2) ≥ c. This

implies, c− c′ ≤ (d(s1, s2))
2 + 2d(s1, s2)d(s2, sk).

By a similar argument, {d(s2, sj), 0, 0, . . . , 0︸ ︷︷ ︸
j−3

,R(S \ {s1, s2, . . . , sj−1}, sj, µ − 1)} is a

feasible range assignment for the µ-hop broadcast from s2 to the members in S\{s1, s2},
and its cost is equal to (d(s2, sj))

2 + (c − (d(s1, sj))
2) ≥ c′. This implies, c − c′ ≥

(d(s1, s2))
2 + 2d(s1, s2)d(s2, sj).

Combining these two inequalities, we have

(d(s1, s2))
2 + 2d(s1, s2)d(s2, sj) ≤ c− c′ ≤ (d(s1, s2))

2 + 2d(s1, s2)d(s2, sk).
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s1=a0 bµ+1ai bi+2

sn=aµ

(µ+2)−hop broadcast range assignment from s1 to sn

µ−hop broadcast range assignment from s1 to sn

(a)

ai+1bi+1b1 a1 bi aµ-1bµ

(b)

(µ+1)−hop broadcast range assignment from s1 to sn

=bµ+2

bµ+1ai bi+2

sn=aµ

(µ+1)−hop broadcast range assignment from s1 to sn

ai+1bi+1b1 a1 bi aµ-1bµ =bµ+2

bµ+1ai bi+2

sn=aµ

(c)

ai+1bi+1b1 a1 bi aµ-1bµ =bµ+2

=b0

s1=a0

=b0

s1=a0

=b0

Figure 2.2: Proof of Lemma 2.5

This implies k ≥ j. 2

In the following lemma, we prove that if we increase the number of allowable hops for

broadcasting from a fixed radio station, say s1, to all the radio stations to its right, then

the gain in the cost obtained in two consecutive steps are monotonically decreasing.

Lemma 2.5 C(S, s1, µ)− C(S, s1, µ + 1) ≥ C(S, s1, µ + 1)− C(S, s1, µ + 2).

Proof: Let A = {a0 = s1, a1, a2, . . . aµ−1} denote the subsequence (radio stations) of

S having non-zero ranges in R(S, s1, µ). We use aµ to denote the radio station sn and

cost(A) to denote C(S, s1, µ). Here, the range assigned to ai ∈ A is (x(ai+1) − x(ai))

for i = 0, 1, 2, . . . , µ − 1. Again, let B = {b0 = s1, b1, b2, . . . bµ+1} denote the set of

radio stations having non-zero ranges in R(S, s1, µ + 2), i.e., cost(B) = C(S, s1, µ + 2).

As earlier, sn is denoted by bµ+2, and the ranges assigned to bi(∈ B) are (x(bi+1) −
x(bi)) for i = 0, 1, 2, . . . , µ + 1. The two range assignments (A and B) are shown
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in Figure 2.2(a) using solid and dashed lines. Observe that, x(a0) − x(b1) < 0, and

x(aµ) − x(bµ+1) > 0. This implies, there exists at least one i ∈ {0, 1, . . . , µ − 1}
such that x(ai) − x(bi+1) ≤ 0 and x(ai+1) − x(bi+2) ≥ 0. We consider the small-

est i ≥ 0 such that x(ai+1) − x(bi+2) ≥ 0, and construct two subsequences of radio

stations C = {a0 = b0 = s1, a1, . . . , ai, bi+2, bi+3, . . . , bµ+1} and D = {a0 = b0 =

s1, b1, b2, . . . , bi+1, ai+1, ai+2, . . . , aµ−1}, each of length µ + 1. The ranges assigned to

the members in C and D are respectively

• {(x(a1)− x(a0)), . . . , (x(ai)− x(ai−1)), (x(bi+2)− x(ai)), (x(bi+3)− x(bi+2)), . . . ,

(x(bµ+2)− x(bµ+1))} (see Figure 2.2(b)), and

• {(x(b1)− x(b0)), . . . , (x(bi+1)− x(bi)), (x(ai+1)− x(bi+1)), (x(ai+2)− x(ai+1)), . . . ,

(x(aµ)− x(aµ−1))} (see Figure 2.2(c)).

The corresponding costs of the range assignments are

cost(C) =
∑j=i−1

j=0 (x(aj+1)−x(aj))
2 +(x(bi+2)−x(ai))

2 +
∑j=µ+1

j=i+2 (x(bj+1)−x(bj))
2, and

cost(D) =
∑j=i

j=0(x(bj+1)− x(bj))
2 + (x(ai+1)− x(bi+1))

2 +
∑j=µ−1

j=i+1 (x(aj+1)− x(aj))
2.

Thus, cost(C) + cost(D)

= (
∑j=µ−1

j=0 (x(aj+1) − x(aj))
2 − (x(ai+1) − x(ai))

2) + (
∑j=µ+1

j=0 (x(bj+1) − x(bj))
2 −

(x(bi+2)− x(bi+1))
2) + (x(bi+2)− x(ai))

2 + (x(ai+1)− x(bi+1))
2.

= cost(A) + cost(B) + 2(x(ai)− x(bi+1))(x(ai+1)− x(bi+2))

≤ cost(A) + cost(B) (since (x(ai) − x(bi+1)) ≤ 0 and (x(ai+1) − x(bi+2)) ≥ 0 by the

choice of i as mentioned above).

Note that, C(S, s1, µ + 1) is the cost of the minimum cost range assignment for sending

message from s1 to sn in µ + 1 hops (or equivalently to all members in S in at most

µ+1 hops). Thus we have, 2×C(S, s1, µ+1) ≤ cost(C)+ cost(D) ≤ cost(A)+ cost(B).

2
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2.4 Algorithm

Let sα ∈ S be the given source radio station (not necessarily the left-most/right-most

in the ordering of S), i.e., s∗ = sα. Our algorithm for broadcasting from sα to all other

radio stations sj ∈ S consists of three phases. Phase 1 prepares four initial matrices.

These are used in Phases 2 and 3 for computing optimal solution with no functional

bridge, and exactly one functional bridge respectively.

For notational convenience, if the source radio station sα is at one end of a linearly

ordered destination radio stations {sa, sa+1, . . . , sb} (i.e., sα = sa), then we will use

R(sb, sa, µ) and C(sb, sa, µ) to denote the optimal range assignmentR({sa, sa+1, . . . , sb}, sa, µ)

and the corresponding cost C({sa, sa+1, . . . , sb}, sa, µ) respectively.

2.4.1 Phase 1

In this phase, we prepare the following four initial matrices. These will be extensively

used in Phases 2 and 3. Recall that sα is the source radio station.

M1: It is a h×(α−1) matrix. Its (m, j)-th element (1 ≤ j < α) indicates the optimum

cost of sending message from sj to sα (source radio station) using at most m hops.

In other words, M1[m, j] = C(sα, sj,m), where 1 ≤ m ≤ h and 1 ≤ j < α.

M2: It is a h×(α−1) matrix. Its (m, j)-th element (1 < j ≤ α) indicates the optimum

cost of sending message from sj to s1 (left-most radio station in S) using at most

m hops. In other words, M2[m, j] = C(s1, sj, m), where 1 ≤ m ≤ h and 1 < j ≤ α.

M3: It is a h × (n − α) matrix. Its (m, j)-th element (α < j ≤ n) indicates the

optimum cost of sending message from sj to sα using at most m hops. In other

words, M3[m, j] = C(sα, sj,m), where 1 ≤ m ≤ h and α < j ≤ n.
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M4: It is a h × (n − α) matrix. Its (m, j)-th element (α ≤ j < n) indicates the

optimum cost of sending message from sj to sn (right-most radio station in S)

using at most m hops. In other words, M4[m, j] = C(sn, sj,m), where 1 ≤ m ≤ h

and α ≤ j < n.

Note that, the columns of M1 are indexed as [1, 2, . . . , α − 1], whereas those in M2

are indexed as [2, 3, . . . , α]. Similarly, the columns of M3 are indexed as [α + 1, α +

2, . . . , n], whereas those in M4 are indexed as [α, α + 1, . . . , n − 1]. We explain an

incremental approach (in terms of hops) for constructing M1. Similar procedure works

for constructing the other three matrices.

Each entry of the matrix M1 contains a tuple (χ, ptr), where M1[m, j].χ contains

C(sα, sj,m), and its M1[m, j].ptr contains the index of the first radio station (after sj)

on the m-hop path from sj to sα. We will interchangeably use, M1[m, j] and M1[m, j].χ

to denote C(sα, sj,m). After computing up to row m of the matrix M1, the elements in

the (m + 1)-th row can easily be obtained as follows:

Consider an intermediate matrix A of size (α − 1) × (α − 1). Its (j, k)-th element

contains the cost of (m + 1)-hop communication from sj to sα with first hop at

sk. Thus, A[j, k] = (d(sj, sk))
2 + M1[m, k]. After computing the matrix A, we

compute M1[m + 1, j].χ = minα−1
k=j+1 A[j, k], and M1[m + 1, j].ptr = the index k

for which A[j, k] is contributed to M1[m + 1, j].χ.

Straight forward application of the above method needs O(α2) time. For each entry

M1[m + 1, j], it needs computation of the minimum value in the j-th row of the matrix

A. But, Lemma 2.4 says that, if in the optimum (m+1)-hop path from sj to sα, the first

hop is at node sk, then for any node sj′ with j′ > j, we have the optimum (m + 1)-hop

path from s′j to sα with first hop at some node sk′ , where k′ ≥ k. A simple method

for computing the minimum of every row in the matrix A (without enumerating all the

entries in A) needs a total of O(αlogα) time as follows:
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Compute all the entries in the α
2
-th row of the matrix A, and find the minimum. Let

it corresponds to A[α
2
, β]. Next, compute the minimum entry in α

4
-th row of A by

considering {A[α
4
, j], j = 1, 2, . . . , β}, and compute the minimum entry in 3α

4
-th

row of A by considering {A[3α
4

, j], j = β, β + 1, . . . , α− 1}. The process continues

until all the rows of A are considered.

Definition 2.3 [10] A matrix M is said to be a monotone matrix if for every j, k, j′, k′

with j < j′, k < k′, if M [j, k] ≥ M [j, k′] then M [j′, k] ≥ M [j′, k′].

Lemma 2.6 The matrix A is a monotone matrix.

Proof: Given A[j, k] ≥ A[j, k′], where A[j, k] = (d(sj, sk))
2 + M1[m, k] and A[j, k′] =

(d(sj, sk′))
2 + M1[m, k′]. Thus, M1[m, k]−M1[m, k′] ≥ (d(sj, sk′))

2 − (d(sj, sk))
2.

Now, A[j′, k]− A[j′, k′] = (d(sj′ , sk))
2 − (d(sj′ , sk′))

2 + M1[m, k]−M1[m, k′]

≥ (d(sj′ , sk))
2 − (d(sj′ , sk′))

2 + (d(sj, sk′))
2 − (d(sj, sk))

2 ≥ 0 (on simplification). 2

A recursive algorithm for monotone matrix searching is described in [10], which can

compute the minimum entry in each row of a α × α monotone matrix in O(α) time

provided each entry of the matrix can be computed in O(1) time. Using that algorithm,

the matrix M1 can be computed in O(αh) time.

Lemma 2.7 Phase 1 needs O(nh) time.

Proof: Follows from the fact that M1, M2 can be constructed in O(αh) time, and M3,

M4 needs O((n− α)h) time. 2

Lemma 2.8 If the source station sα = s1 or sn, then the h-hop broadcast range assign-

ment can be performed in O(nh) time.
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Proof: The optimum cost of the broadcast range assignment with sα = s1 can be

obtained from M4[h, 1].χ. The corresponding range assignments of the radio stations

are obtained as follows:

Set i = 1 and µ = h.

While i < n execute the following steps:

• Set j = M [µ, i].ptr, and ρ(si) = d(si, sj)

• Set i = j and µ = µ− 1.

Computing the matrix M4 needs O(nh) time (see Lemma 2.7). The range assignments

can be done in O(n) time. The case for sα = sn can be solved in a similar way consulting

the matrix M3. 2

2.4.2 Phase 2

In this phase, we compute the optimal functional bridge-free solution for broadcasting

message from sα to the other nodes in S. Here, the range to be assigned to sα is at least

max(d(sα, sα−1), d(sα, sα+1)) as there is no functional left/right bridges in this case.

Without loss of generality, we assume that d(sα, sα−1) ≤ d(sα, sα+1). Thus, ρ(sα) is

initially assigned to d(sα, sα+1), and let sk (k < α) be the farthest radio station such

that sα can communicate with sk in 1-hop (i.e., d(sk, sα) ≤ d(sα, sα+1)) < d(sk−1, sα)).

If we use R(S, sα, h|ρ(sα) = δ) to denote the optimum range assignment for the h-hop

broadcast from sα to all the nodes in S subject to the condition that the range assigned

to sα is δ, then

R(S, sα, h|ρ(sα) = d(sα, sα+1))

= {R({s1, . . . , sk}, sk, h− 1), 0, 0, . . . , 0︸ ︷︷ ︸
α−k−1

, d(sα, sα+1),R(S \ {s1, . . . , sα}, sα+1, h− 1)},

= {R(s1, sk, h− 1), 0, 0, . . . , 0︸ ︷︷ ︸
α−k−1

, d(sα, sα+1), R(sn, sα+1, h− 1)}

and its cost is

C∗ = C(S, sα, h|ρ(sα) = d(sα, sα+1)) = (d(sα, sα+1))
2 + M2[h− 1, k] + M4[h− 1, α + 1].
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This can be computed in O(1) time using the matrices M2 and M4. We use two tem-

porary variables TEMP Cost and TEMP id to store C∗ and sα+1.

Next, we increment ρ(sα) to min(d(sα, sk−1), d(sα, sα+2)), and apply the same procedure

to calculate the optimum cost of the h-hop broadcast from sα. This may cause update

of TEMP Cost and TEMP id. The same procedure is repeated by incrementing ρ(sα)

to its next choice in the set {d(sα, sk), k = 1, 2, . . . , α− 1}⋃{d(sα, sj), j = k + 1, . . . , n}
so that it can communicate directly with one more node than its previous choice. At

each step, the TEMP Cost and TEMP id are adequately updated. The procedure is

repeated for O(n) times, and the time complexity of this phase is O(n). The stepwise

description of the algorithm is given below.

Step 1: Compute the matrices M2 and M4 using the method described in Phase 1.

Step 2: Initialize TEMP Cost and TEMP id by ∞ and NULL respectively. Set i =

α− 1 and j = α + 1.

Step 3: ρ(sα) = max(d(sα, si), d(sα, sj)).

Step 4: If ρ(sα) corresponds to i, then

if m is the maximum index such that d(sα, sm) ≤ ρ(sα), then set j = m,

count = j − i + 1, and TEMP id = si;

else (* If ρ(sα) does not correspond to i *)

if m be the minimum index such that d(sα, sm) ≤ ρ(sα), then set i = m,

count = j − i + 1, and TEMP id = sj.

Step 5: while (count ≤ n) perform the following steps:

Step 5.1: cost = (ρ(sα))2 + M2[h− 1, i].χ + M4[h− 1, j].χ.

Step 5.2: If d(sα, si−1) < d(sα, sj+1), then ρ(sα) = d(sα, si−1), i = i− 1;

else ρ(sα) = d(sα, sj+1), j = j + 1

Step 5.3: count = count + 1
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Step 6: (* Range assignment *) Thus, TEMP Cost is the cost of optimum solution

having no functional bridge, and range of sα is ρ(sα) = d(sα, TEMP id). The

range of the other radio stations are computed as follows:

Let ρ(sα) = d(sα, sj), j < α and sj′ (j′ > α) be the right-most radio station such

that d(sα, sj′) ≤ ρ(sα), or in other words, sα can communicate with sj′ in

1-hop. We assign range of sj and sj′ by d(sj, sM2[j].ptr) and d(sj′ , sM4[j′].ptr)

respectively. Next, we proceed further in both left and right directions sep-

arately. At each move towards left (resp. right) we update j = M2[j].ptr

(resp. j′ = M4[j
′].ptr) and assign the range of the corresponding sj (resp.

sj′) as mentioned above, until j = 1 (resp. j′ = n) is achieved. Range of the

other radio stations are assigned to zero.

2.4.3 Phase 3

In this phase, we compute an optimal range assignment for the h-hop broadcast from

sα to all other nodes in S where the solution contains a functional right-bridge. Similar

method will be adopted to compute the optimal solution with one functional left-bridge.

The one having minimum cost is chosen as the optimal solution obtained in this phase.

Let us consider a range assignment which includes a right-bridge ←−−sisj, where i < α < j.

Here, the range of sj is assigned to ρ(sj) = d(sj, si)). For this range assignment of sj,

it can communicate with at most sk to its right. In other words, d(sj, sk) ≤ d(sj, si) <

d(sj, sk+1), k ≥ j. A right-bridge ←−−sisj can be realized in the following two ways:

Scheme 1: Assign ρ(sj) = d(sj, si).

Scheme 2: If d(sj, sk) ≤ d(sj, si) < d(sj, sk+1) < d(sj, si−1), then assign ρ(sj) =

d(sj, sk+1).
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We assume that sj is reached from sα using m hops. Thus, using Scheme 1, (≤ h)-hop

path from sα to all the nodes in S is achieved by (i) reaching s1 from si in (h−m− 1)

hops, and (ii) reaching sn from sk in (h−m−1) hops. Here the cost of range assignment

is B1 = C(sj, sα,m) + (d(si, sj))
2 + C(s1, si, h−m− 1) + C(sn, sk, h−m− 1).

In Scheme 2, sj can directly communicate with sk+1 to the right, and si to the left.

Thus, the (≤ h)-hop path from sα to all the nodes in S is established by (i) reaching s1

from si in (h−m− 1) hops, and (ii) reaching sn from sk+1 in (h−m− 1) hops. Here

the cost of range assignment is B2 = C(sj, sα,m)+ (d(sj, sk+1))
2 +C(s1, si, h−m− 1)+

C(sn, sk+1, h−m− 1).

Denoting by B(←−−sisj,m) the cost of range assignment with a right bridge ←−−sisj where sj

is reached from sα using m hops, we have B(←−−sisj,m) = min(B1, B2).

Apart from identifying sk, B(←−−sisj,m) can be calculated in O(1) time, because

(i) C(sj, sα,m) = C(sα, sj,m) = M3[m, j] (by Lemma 2.3),

(ii) C(s1, si, h−m− 1) = M2[h−m− 1, i],

(iii) C(sn, sk, h−m− 1) = M4[h−m− 1, k], and

(iv) all these matrices are already calculated in Phase 1.

To get an optimal solution with a right-bridge, we need to find

minα−1
i=1 minn

j=α+1 minh−1
m=1 B(←−−sisj,m).

In our algorithm, we fix each si and compute minn
j=α+1 minh−1

m=1 B(←−−sisj,m) using Lemma

2.9, stated below.

Lemma 2.9 If sj ∈ S \ {s1, s2, . . . , sα}, then

C(sj, sα, µ− 1)− C(sj, sα, µ) ≤ C(sj+1, sα, µ− 1)− C(sj+1, sα, µ).
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Proof: Let A = {a0 = sα, a1, a2, . . . aµ−2} denote the subsequence (radio stations) of

S having non-zero ranges in R(sj+1, sα, µ− 1). We use aµ−1 to denote sj+1. Thus, the

range assigned to ai ∈ A is (x(ai+1) − x(ai)) for i = 0, 1, 2, . . . , µ − 2. We use cost(A)

to denote C(sj+1, sα, µ − 1). Again, let B = {b0, b1, b2, . . . bµ−1} denote the set of radio

stations having non-zero ranges in R(sj, sα, µ), i.e., cost(B) = C(sj, sα, µ). The range

assigned to bi(∈ B) is (x(bi+1)− x(bi)) for i = 0, 1, 2, . . . , µ− 1.

Let us now observe the pairs (ai, bi+1) for i = 0, 1, 2, . . . , µ−1. Note that, x(a0)−x(b1) <

0, and x(aµ−1)− x(bµ) > 0. This implies, there exists at least one i ∈ {1, 2, . . . , µ− 1}
such that x(ai−1) − x(bi) ≤ 0 and x(ai) − x(bi+1) ≥ 0. We consider the small-

est i ≥ 1 such that x(ai) − x(bi+1) ≥ 0, and construct two subsequences of ra-

dio stations, namely C = {a0 = b0, a1, . . . , ai−1, bi+1, bi+2, . . . , bµ−1} and D = {a0 =

b0, b1, b2, . . . , bi, ai, ai+1, . . . , aµ−2}, where length of C is µ − 1 and that of D is µ. The

ranges assigned to the members in C and D are respectively

• {(x(a1)− x(a0)), . . . , (x(ai−1)− x(ai−2)), (x(bi+1)− x(ai−1)), (x(bi+2)− x(bi+1)),

. . . , (x(bµ)− x(bµ−1))}, and

• {(x(b1)− x(b0)), . . . , (x(bi)− x(bi−1)), (x(ai)− x(bi)), (x(ai+1)− x(ai)), . . . ,

(x(aµ−1)− x(aµ−2))}.

The corresponding costs of these range assignments are

cost(C) =
∑j=i−2

j=0 (x(aj+1) − x(aj))
2 + (x(bi+1) − x(ai−1))

2 +
∑j=µ−1

j=i+1 (x(bj+1) − x(bj))
2,

and

cost(D) =
∑j=i−1

j=0 (x(bj+1)− x(bj))
2 + (x(ai)− x(bi))

2 +
∑j=µ−2

j=i (x(aj+1)− x(aj))
2.

Thus, cost(C)+cost(D) = (
∑j=µ−2

j=0 (x(aj+1)−x(aj))
2 - (x(ai)−x(ai−1))

2) + (
∑j=µ−1

j=0 (x(bj+1)−
x(bj))

2 - (x(bi+1)− x(bi))
2) + (x(bi+1)− x(ai−1))

2 + (x(ai)− x(bi))
2.

= cost(A) + cost(B) + 2(x(ai)− x(bi+1))(x(ai+1)− x(bi))

≤ cost(A) + cost(B) (due to the choice of i as mentioned above).
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The lemma follows from the fact that C(sj, sα, µ − 1) ≤ cost(C) and C(sj+1, sα, µ) ≤
cost(D). 2

Lemma 2.10 While using the bridge ←−−sisj, i < α < j, if B(←−−sisj, µ) ≤ B(←−−sisj, µ + 1)

then B(←−−sisj, µ + 1) ≤ B(←−−sisj, µ + 2).

Proof: The gain in cost for increasing the number of hops from µ to µ + 1 to reach

from sα to sj is a1 = (C(sj, sα, µ) − C(sj, sα, µ + 1)) ≥ 0. In order to maintain h-hop

reachability from sα to s1 and sn, we need to reach both from si to s1 and from sk to

sn using at most (h − µ − 2) hops instead of (h − µ − 1) hops. Thus, the amount of

increase in the corresponding costs are a2 = C(s1, si, h−µ− 2)−C(s1, si, h−µ− 1) ≥ 0

and a3 = C(sn, sk, h− µ− 2)− C(sn, sk, h− µ− 1) ≥ 0.

As stated in the lemma, B(←−−sisj, µ)−B(←−−sisj, µ + 1) ≤ 0 implies a1 − a2 − a3 ≤ 0.

Now, the gain in cost for increasing the number of hops from µ + 1 to µ + 2 to reach

from sα to sj is a′1 = (C(sj, sα, µ+1)−C(sj, sα, µ+2)) ≥ 0. This causes the reduction in

number of hops from (h−µ−2) to (h−µ−3) for reaching s1 from si and sn from sk. The

reduction in the corresponding costs are a′2 = C(s1, si, h−µ−3)−C(s1, si, h−µ−2) ≥ 0

and a′3 = C(sn, sk, h− µ− 3)− C(sn, sk, h− µ− 2) ≥ 0.

By Lemma 2.5, a′1 ≤ a1, a′2 ≥ a2 and a′3 ≥ a3.

Thus, B(←−−sisj, µ + 1)−B(←−−sisj, µ + 2) = a′1 − a′2 − a′3 ≤ a1 − a2 − a3 ≤ 0 2

Lemma 2.10 implies that while using the right-bridge ←−−sisj, we vary the number of hops

m to reach sj from sα, and compute the corresponding cost B(←−−sisj,m). As soon as

m = µ is reached such that B(←−−sisj, µ) < B(←−−sisj, µ + 1), there is no need to check the

costs by increasing m beyond µ + 1.

After computing the optimum range assignment with the right-bridge ←−−sisj, we proceed

to compute the same with right-bridge ←−−−sisj+1. The following lemma says that if the

optimum B(←−−sisj,m) is achieved for m = µ then while considering the right-bridge
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←−−−sisj+1, the optimum B(←−−−sisj+1,m) will be achieved for some m ≥ µ. Here, it needs to

be mentioned that, we could not explore any relationship among the optimum costs of

range assignments using the right-bridges ←−−sisj and ←−−−sisj+1.

Lemma 2.11 For a given si ∈ S, i < α, if minh
m=1 B(←−−sisj,m) and minh

m=1 B(←−−−sisj+1,m)

are achieved for m = µ and ν respectively, then ν ≥ µ.

Proof: As si is fixed, we compute the optimal range assignment R(s1, si, h−m− 1) to

reach from si to s1.

While using ←−−sisj as the right-bridge, we have ρ(sj) = d(sj, si), and this enables sj to

reach sk to its right (i.e. d(sj, si) ≥ d(sj, sk)). Similarly, while using ←−−−sisj+1 as the

right-bridge, we have ρ(sj+1) = d(sj+1, si), and this enables sj+1 to reach s` to its right

(i.e. d(sj+1, si) ≥ d(sj+1, s`)). Here j + 1 ≤ k ≤ `.

In order to prove the lemma, we need only to show that B(←−−−sisj+1, µ−1) ≥ B(←−−−sisj+1, µ).

Lemma 2.10 implies that B(←−−−sisj+1,m − 1) ≥ B(←−−−sisj+1,m) for all m ≤ µ. Thus, if

min(B(←−−−sisj+1,m)) is achieved for m = ν, then ν > µ.

To prove the above inequality, let

a1 = C(sj, sα, µ− 1)− C(sj, sα, µ),

a′1 = C(sα, sj−1, µ− 1)− C(sα, sj−1, µ),

a2 = C(s1, si, h− µ− 1)− C(s1, si, h− µ),

a3 = C(sn, sk, h− µ− 1)− C(sn, sk, h− µ) and

a′3 = C(sn, s`, h− µ− 1)− C(sn, s`, h− µ).

As B(←−−sisj, µ− 1) > B(←−−sisj, µ), we have a1 − a2 − a3 > 0. By Lemma 2.9, a′1 ≥ a1 and

a′3 ≤ a3. Hence, the amount of gain in cost for increasing the number of hops from µ−1

to µ for reaching from sα to sj+1 and then using the bridge←−−−sisj+1 for broadcasting to the

other nodes in S is equal to B(←−−−sisj+1, µ−1)−B(←−−−sisj+1, µ) = a′1−a2−a′3 ≥ a1−a2−a3 ≥ 0.

2
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Given a source-station sα and another station si (i < α), the optimal range assignment of

the members in S consisting of a functional right-bridge incident at si, can be computed

using the following algorithm:

Algorithm Range Assign using Right Bridge(si)

Step 1: We initialize OPT j = α, OPT cost = ∞ and k store = α, and µ = 1.

(* µ stores the number of hops allotted to reach sj from sα. The role of k store

will be clear in the procedure compute invoked from this algorithm.*)

Start with m = 1 and j = α + 1.

Step 2: At each j, we execute compute(B(←−−sisj,m), k store) by incrementing m from

its current value upwards until

(i) B(←−−sisj,m) > B(←−−sisj,m− 1) is achieved (see Lemma 2.10) or

(ii) m attains its maximum allowable value min(h− 2, j − α).

Step 3: Update OPT cost and OPT j observing the value of B(←−−sisj, m−1) or B(←−−sisj,m)

depending on whether Step 2 has terminated depending on Case (i) or Case (ii).

Step 4: For the next choice of j, update µ by m− 1 or m depending on whether Case

(i) or (ii) occurred in Step 2 (see Lemma 2.11).

Procedure compute(B(←−−sisj, m), k store)

• Initialize k = k store.

• Increment k to identify the right-most radio station sk such that d(sj, sk) ≤ ρ(sj) (

= d(sj, si)).

• Set k store = k for further use. (* i.e., for next j, the search for k will start from

k store *)

• Compute B(←−−sisj,m) = (ρ(sj))
2+R(sj, sα,m)+R(s1, si, h−m−1)+R(sn, sk, h−m−1);

the last three terms are available in M3[m, j], M2[h−m−1, i] and M4[h−m−1, k]

respectively.
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Let ←−−sisj be the functional right-bridge corresponding to the optimum solution. Here,

ρ(sj) = d(si, sj). The range assignment of the radio stations (i) {sα, sα+1, . . . , sj−1} can

be obtained from the matrix M3, (ii) {s1, s2, . . . , sα−1} can be obtained from the matrix

M1, and (iii) {sj, sj+1, . . . , sn} can be obtained from the matrix M4 as described in Step

6 of the algorithm proposed in Subsection 2.4.2 and using the Lemma 2.3.

Theorem 2.2 For a given si (i < α), algorithm Range Assign using Right Bridge

needs O(n− α + h) time in the worst case.

Proof: Follows from Lemmas 2.10 and 2.11, and the role of k store in the procedure

compute for locating right-most sk such that d(sj, sk) ≥ ρ(sj). 2

2.4.4 Complexity analysis

Theorem 2.3 Given a set of radio station S and a source station sα ∈ S, the optimum

range assignment for broadcasting message from sα to all the members in S using at

most h-hops can be computed in O(n2) time and using O(nh) space.

Proof: Phase 1 needs O(nh) time for initializing the matrices. Optimum functional

bridge-free solution can be obtained in O(n) time as described in Phase 2. Finally in

Phase 3, we fix si to the left of sα and identify the optimum solution with a functional

right-bridge incident at si in O(n − α + h) time (see Theorem 2.2). For (α − 1) such

si’s, the total time required in this phase is O(α(n− α + h)). Similarly, the worst case

time required for finding the optimum range assignment with exactly one functional

left-bridge is O((n− α)(α + h)). Thus, the result follows. 2
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2.5 Summary

An easy to implement algorithm for the h-hop broadcast range assignment problem for

the linear radio network is presented. The worst case time complexity of our algorithm

is O(n2). This is an improvement over the existing result on this problem by a factor of

h [31]. Further reduction in the time complexity of the problem is an interesting open

problem. It is observed that if the source radio station is at one end, then the time

complexity of the h-hop broadcast range assignment is O(nh). Thus, it seems that, one

may improve the time complexity to O(nh polylog(h)) by efficiently designing Phase 3

of the algorithm.
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Chapter 3

Weighted Broadcast in Linear

Radio Networks

3.1 Introduction

In this chapter, the weighted version of the range assignment problem is studied in the

context of information broadcast and accumulation in a linear radio network. Efficient

algorithms for the unbounded and bounded-hop broadcast problems are presented. Un-

like the problem in the previous chapter, here each radio station s ∈ S is attached with

a weight w(s) (= γ(s)). Thus the cost function is Σs∈Sw(s)× (ρ(s))2, where ρ(s) is the

range assigned to s. The objective is to assign transmission ranges to the members in S

such that each member in S is reachable from the source radio station s∗ in at most h

hops, and the value of the cost function is minimum. Our proposed algorithm is based

on dynamic programming, and it runs in O(hn2 log n) time. In the unbounded case

(i.e., h = n−1), we have used graph-theoretic formulation of the problem and proposed

an O(n2) time algorithm. We have also studied the unbounded version of the weighted

accumulation range assignment problem. Here the objective is to assign ranges to the



radio stations in S such that all the radio stations can send message to the target radio

station s∗, and the cost Σs∈Sw(s) × (ρ(s))2 of the entire network is minimum. The

time complexity of our algorithm is O(n2). Our proposed algorithm for accumulation

problem can work when the radio stations are placed in any arbitrary dimension.

3.2 Preliminaries

Let S = {s1, s2, . . . , sn} be the set of n radio stations on a straight line from left to

right. An weight wi > 0 is assigned with each si, i = 1, 2, . . . , n. Let s∗ = sθ ∈ S be the

source radio station where from the message needs to be broadcast. The communication

graph for a range assignment R = {ρ(s1), ρ(s2), . . . , ρ(sn)}, as defined in Section 1.1,

is a directed graph G = (V, E) with V = S and E = {(si, sj)|d(si, sj) ≤ ρ(si)}. As in

Chapter 2, here also we can define an edge to be functional with respect to the h-hop

broadcast path in G (see Definition 2.1).

Figure 3.1 demonstrates an instance of the unbounded weighted broadcast range as-

signment problem with five radio stations, along with the optimum solution. Here,

d(s1, s2) = 8, d(s2, s3) = 2, d(s3, s4) = 1 and d(s4, s5) = 4. The weight of the radio

stations s1, s2, . . . , s5 are 10, 1, 10000, 100 and 0.01 respectively, source is s3 (=s∗), the

range of each radio station is indicated by the arrow-headed line as shown in the figure,

and the cost of the optimum range assignment is 10,951.25 units.

s5s4s3 = s*s2s1

Figure 3.1: An example of linear weighted broadcast problem

Definition 3.1 Let Π = {sθ = si1 , si2 , . . . , sik = sj} be a path from the source s∗ = sθ

to a radio station sj (j > θ) in the broadcast communication graph G corresponding to
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a range assignment R. An edge (sia , sia+1) is said to be a right back edge if ia−1 < ia

and ia+1 < ia (see the dashed edge (si, sj) in Figure 3.2).

Similarly, on a path from sθ to a radio station sj (j < θ) a left back edge can be defined.

s1 sj si sk sn

Figure 3.2: An example of right back edge

Lemma 3.1 If θ = 1 (resp. θ = n), then in the minimum cost h-hop weighted broadcast

range assignment, there is no functional right (resp. left) back edge.

Proof: Similar to the proof of Lemma 2.2. 2

As in Chapter 2, here also the optimum broadcast range assignment may consists of

functional left-bridge(s) and/or functional right-bride(s) (see Definitions 2.1 and 2.2

and the subsequent discussions). But unlike the earlier problem, this weighted version

of the problem may consist of many such bridges in the optimum solution (see the

example in Figure 3.1). It needs to be mentioned that, the results stated in Lemmas

2.1 and 2.2 (of Chapter 2) hold for this weighted version also. The following three

lemmas, numbered 3.2, 3.3 and 3.4, characterize a feasible solution of the h-hop weighted

broadcast problem.

Lemma 3.2 If←−−sasb and←−−−sa′sb′ are two functional right-bridges present in a h-hop weighted

broadcast range assignment R, then (i) b 6= b′, (ii) a 6= a′, and (iii) if b < b′, then a′ < a.

Proof: (i) If b = b′ then trivially one of these two bridges will not remain functional.

Same argument holds for part (ii) also.
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(iii) On the contrary, let a′ ≥ a. Now any path from source sθ to sb′ implies that there

is also a path from sθ to sb as b′ > b > θ. Since a′ ≥ a, all the radio stations sk

(a′ ≤ k < θ) are reachable using the right-bridge ←−−sasb. Thus, the right-bridge ←−−−sa′sb′ will

no longer remain functional (see Figure 3.3(a)). 2

(a)

(b)

s1 sbsθ sn
sa sa’ sb’

s1 sa sa’ sθ sb sb’ sn

Figure 3.3: Illustrations of (a) Lemma 3.2 and (b) Lemma 3.3

Lemma 3.3 Let −−→sasb be a functional left-bridge and ←−−−sa′sb′ be a functional right-bridge

in a h-hop weighted broadcast range assignment R. Now, (i) if a ≤ a′ then b′ < b, and

(ii) if a > a′ then b′ ≥ b.

Proof: (i) On the contrary, let a ≤ a′, but b′ ≥ b. Now, the path from the source sθ to

sa may or may not use the right-bridge ←−−−sa′sb′ . If that path uses the right-bridge ←−−−sa′sb′ ,

then obviously left-bridge −−→sasb will not remain functional (see Figure 3.3(b)). Again, if

the path does not use right-bridge ←−−−sa′sb′ , then obviously it is not functional.

(ii) Proof of this part is similar to part (i). 2

Lemma 3.4 Let −−→sasb be a left-bridge and ←−−−sa′sb′ be a right-bridge such that a′ < a <

θ < b′ < b. Now, if both the bridges −−→sasb and ←−−−sa′sb′ are functional in a h-hop weighted

broadcast range assignment, then (i) there is no functional right-bridge ←−−spsq such that

p ≤ a′ and q ≥ b (see Figure 3.4(a)) and (ii) there is no functional left-bridge −−−→sp′sq′

such that p′ ≤ a′ and q′ ≥ b (see Figure 3.4(b)).

52



s1 sθsa’sp’ sa sb’ sb

(a)

(b)

s1 sp sasa’ sθ sb’ sb sq sn

snsq’

Figure 3.4: Illustration of Lemma 3.4

Proof: On the contrary, let one of the following two situations be present in the range

assignment:

Situation 1: ←−−spsq is a functional right-bridge such that there is no functional left-bridge

−−→sesf with p < e ≤ a′ and b < f ≤ q. The justification of the inequalities in the

choice of e and f are as follows: e = p is not possible since ←−−spsq is functional, and

by Lemma 3.2, b = f is also not possible.

Situation 2: −−−→sp′sq′ is a functional left-bridge such that there is no functional right-

bridge ←−−−se′sf ′ with p′ ≤ e′ < a′ and b ≤ f ′ < q.

Situation 1 (resp. Situation 2) produces an affirmative instance of Case (i) (resp. Case

(ii)) of the lemma. We shall now prove the Case (i) of the lemma. Case (ii) can be

similarly proved.

Let there is an instance satisfying Situation 1. Since there is no 1-hop path from any

radio station in {sp+1, sp+2, . . . , sa′} to any radio station in {sb+1, sb+2, . . . , sq}, there

exists a path from sθ to sq without using the bridge ←−−−sa′sb′ . Again, a radio station, which

is covered by the bridge ←−−−sa′sb′ , is also covered by ←−−spsq. Thus, the right-bridges ←−−−sa′sb′ and

←−−spsq can not be simultaneously functional. Thus, we have a contradiction. 2
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(b)

sn
s1 sθ

(d)

sn
s1 sθsa* sb** sb*

sa* sb*

(a)

sn
s1 sθsa* sb*

(c)

sn
s1 sθsa* sb*

sa**

Figure 3.5: Illustration of left-most and right-most functional bridges

The optimum h-hop weighted broadcast range assignment may consist of many left-

bridges and/or many right-bridges (see Figure 3.1). Feasible configurations of over-

lapping bridges are shown in Figure 3.5. We now introduce the concept of right-most

functional right-bridge and left-most functional left-bridge as follows. These help us in

designing our algorithms.

Definition 3.2 A functional right-bridge ←−−−sa∗sb∗ in a range assignment is said to be

right-most functional right-bridge if (i) there exists no other functional right-bridges

←−−sasb in that range assignment satisfying b ≥ b∗ and (ii) there exists no functional left-

bridge −−−→sa′sb′ satisfying a′ ≤ a∗.

Lemma 3.2 says that, if more than one right bridges exist in a range assignment, and

←−−−sa∗sb∗ is the right-most functional right-bridge, then for all other functional right-bridge

←−−sasb, a > a∗.
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Similarly, one can define a left-most functional left-bridge. In Figure 3.5(a) and 3.5(b),

−−−→sa∗sb∗ is the left-most functional left-bridge; in Figure 3.5(c), ←−−−sa∗sb∗ is the right-most

functional right-bridge; in Figure 3.5(d), −−−→sa∗sb∗ and ←−−−−sa∗∗sb∗∗ are left-most and right-most

functional bridges respectively.

3.3 Unbounded weighted broadcast problem

In this section, we consider unbounded version (h = n − 1) of the weighted broad-

cast problem. The following lemma says that the optimal solution for the unbounded

broadcast range assignment problem may be one of the following three types: (i) with

no functional bridge, (ii) with a right-most functional right-bridge, and (iii) with a

left-most functional left-bridge.

Lemma 3.5 In a unbounded broadcast range assignment, both left-most functional left-

bridge and right-most functional right-bridge can not exist simultaneously.

Proof: On the contrary, let the optimum range assignment R contains both right-most

functional right-bridge (←−−sasb) and left-most functional left-bridge (−−−→sa′sb′). Let s` be the

right-most radio station satisfying d(sb, s`) ≤ d(sb, sa), and s`′ be the left-most radio

station satisfying d(sa′ , s`′) ≤ d(sa′ , sb′). Therefore from the Definition 3.2, we have

a < a′ < θ < b < b′. This implies, either sb is reachable from sθ using the bridge −−−→sa′sb′

or sa′ is reachable from sθ using the bridge ←−−sasb. Without loss of generality assume that

sb is reachable from sθ using the bridge −−−→sa′sb′ . Here we need to consider the following

two situations: (i) b < b′ ≤ ` (see Figure 3.6(a)) and (ii) b′ > ` (see Figure 3.6(b)).

If (i) is true, then left-bridge −−−→sa′sb′ itself is not functional. If (ii) is true, then the right-

bridge ←−−sasb will not remain functional since d(sa′ , sb′) > d(sa, sb), and hence the radio

stations covered by sb will also be covered by sa′ . 2
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(a)

s1 sb’s
* snsa sa’ sb

(b)

s1 sb’s
* snsa sa’ sb

sl
sl’

sl’ sl

Figure 3.6: Proof of Lemma 3.5

We first execute a preprocessing phase, and then compute the optimum solution for the

above three cases separately. Finally, the one having minimum cost is reported.

3.3.1 Preprocessing

In this step, we use dynamic programming to create three arrays M , N and P , each of

size n. Each entry of these arrays is a tuple (χ, γ) as described below.

M [i].χ stores the cost of the optimum broadcast from si to all the radio stations in the

set S+
i = {si, si+1, . . . , sn}, and M [i].γ stores the index of the farthest radio station to

the right of si which can be reached from si in 1 hop due to the assigned range of si.

N [i].χ contains the cost of optimum broadcast range assignment from si to all the nodes

in S−i = {s1, s2, . . . , si}, and N [i].γ contains the index of the farthest radio station to

the left of si which can be reached from si in 1 hop due to the assigned range of si.

The fields attached to the elements of the array P are defined using a complete weighted

digraph G with the vertices corresponding to the radio stations in S. The weight

attached with a directed edge (sa, sb) is wa × (d(sa, sb))
2. P [i].χ contains the cost of

the shortest path from sθ to si in the graph G, and P [i].γ contains the index of the

predecessor of si in the shortest path from sθ to si.

We now describe an algorithm for computing the arrays M and P . The array N can

be computed using the technique for computing M .
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Lemma 3.6 If i < n then M [i].χ = minn
k=i(wi×(d(si, sk))

2+M [k].χ), and if minimum

is obtained for k = k∗, then M [i].γ = k∗. If i = n then M [i].χ = 0 and M [i].γ = n.

Proof: The case for i = n is trivial. So, we consider the case where i < n. It is clear

that, if there is a path from si to sn in the communication graph corresponding to a

range assignment, then that range assignment is feasible for the broadcast from si to all

the members in S+
i . By Lemma 3.1, there is no functional back edge in the optimum

range assignment for broadcasting from si to the members in S+
i . Thus, there exists

some sk ∈ S+
i , where si first reaches sk in 1 hop, and then reaches sn from sk in a

minimum cost path. This proves the lemma. 2

Thus, Lemma 3.6 gives a dynamic programming based algorithm for computing M and

N that runs in O(n2) time.

In order to compute the entries of the array P , we may use Dijkstra’s single source

shortest path algorithm to compute the cost of the shortest path from sθ to each radio

station si ∈ S. This needs O(n2) time. Note that, the weight of an edge in G can

be computed from the positional information and weight attached to its end-vertices.

Thus, P can be computed without explicitly constructing the graph G.

By Lemma 3.1, M [1].χ and N [1].χ give the cost of range assignment for the weighted

unbounded broadcast when θ = 1 and θ = n respectively. We now consider the case

where s∗ = sθ, and θ 6= 1 or n.

3.3.2 Bridge-free solution

The algorithm for the optimal solution with no functional bridge uses two variables

opt cost and opt range, where opt cost stores the cost of optimum range assignment,

and opt range stores the index α such that ρ(sθ) = d(sθ, sα) in the range assignment

corresponding to opt cost. The stepwise description of the algorithm is as follows:
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Step 1: opt cost = ∞.

Step 2: Consider each element si ∈ S \ {sθ} in order of their distances from sθ.

Compute the optimum range assignment with ρ(sθ) = d(sθ, si) as follows:

Let sα and sβ be respectively the left-most and right-most radio stations satisfying

d(sθ, sα) ≤ ρ(sθ) and d(sθ, sβ) ≤ ρ(sθ) respectively.

If i = α, then C = N [α].χ + wθ × (ρ(sθ))
2 + minβ

j=θ+1 M [j].χ, and

if i = β, then C = minθ−1
j=α N [j].χ + wθ × (ρ(sθ))

2 + M [β].χ.

If the value of C is less than opt cost, then update opt cost and opt range.

Step 3: (* Range assignment *)

Set ρ(sθ) = d(sθ, sα∗), where α∗ is stored in opt range. The range of the other radio

stations are computed as follows:

Let α∗ < θ. We assign α = α∗. Let sβ (β > θ) be the right-most radio station such

that sθ can reach sβ in 1 hop.

We identify an index k such that M [k].χ = minβ
j=θ+1 M [j].χ. Next, we assign ρ(sα) =

d(sα, sN [α].γ) and ρ(sk) = d(sk, sM [k].γ).

We proceed further in both left and right directions separately. At each move towards

left (resp. right) we update α = N [α].γ (resp. k = M [k].γ), and assign the range of sα

(resp. sk) as mentioned above, until α = 1 (resp. k = n) is reached. Range of the other

radio stations are assigned to zero.

The case, where α∗(= opt range) > θ is similarly handled.
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3.3.3 Solution having right-most functional right-bridge

In this subsection, we describe the algorithm for computing the optimal solution having

right-most functional right-bridge. It considers each possible right-bridge as a right-most

functional right-bridge and computes the cost of the corresponding range assignment.

Finally, we choose the one having minimum cost.

Let ←−−spsq denote the right-most functional right-bridge that produces optimum cost. We

compute the optimum cost range assignment for reaching sq from sθ using the array

P . Let sr be the right-most radio station which is reachable from sq in 1 hop due to

its assigned range. Thus, all the radio stations Spq = {sp, sp+1, . . . , sq, sq+1, . . . , sr} are

reached from sθ. Now, we need to consider the path for reaching s1 to the left and sn

to the right.

For reaching s1, we will only consider sp, and compute the minimum cost path. The

reasons are stated below.

• If we choose some element sj ∈ Spq, j < θ then the cost of reaching s1 can further

be reduced by choosing the bridge ←−−sjsq, which we have separately considered.

• If we choose some element sj ∈ Spq, q ≥ j > θ then such a pair of overlapping

functional right-bridges can not exist in the optimum solution (see Lemma 3.3).

• If we choose some element sj, j > q, for reaching s1 and it hops at sp′ , then p′ < p

(by Lemma 3.3). In this situation, the right-bridge ←−−sp′sj is another right-bridge,

which will be separately considered as the right-most functional right-bridge.

Note that, one may need to consider the cost of range assignments for the paths from

several radio stations to reach sn due to the weight constraint. Below we justify that

we have to choose a radio station st, q < t ≤ r, for reaching sn.
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• If we choose a radio station st, t ≤ p for reaching sn, then the optimum path

from st to sn will take its first hop at a node sr′ , where r′ > q (by Lemma 3.3).

But, this situation results the same cost while considering −−→stsr′ as the left-most

functional left-bridge. Thus, such a choice of st (t ≤ p) is not required.

• If we choose a radio station st, p < t < θ, then by Lemma 3.5, the assigned range

of st is such that it does not form the left-most functional left-bridge. Thus, the

path from st to sn passes through a node sk, where θ < k < q. The cost of this

path is strictly less than that from sk to sn. Thus, such a choice of st, p < t < θ

is also not required.

• If st = sθ, then, following the same reason as mentioned in the above item, the

minimum cost path from sθ to sn can not pass through a node sk, where θ < k ≤ r.

Thus, the first hop from sθ is at a node sk, where k > r. This implies, that the

right-bridge ←−−spsq is not functional.

• Following a similar argument as stated in the above item, it can be shown that a

choice of st, θ < t ≤ q, will also not produce a minimum cost path with ←−−spsq as

the right-most functional right-bridge.

We maintain opt cost to store the optimum cost. We also maintain a tuple of 5 integer

variables (p, q, r, t, f); p, q, r and t are as explained earlier, and f is a flag bit. The

arrays M and N are used for computing the range assignments for reaching sn from st,

and s1 from sp respectively. The stepwise algorithm is stated below. It maintains three

variables `, `′, and k. While considering a bridge ←−−sasb, s` denotes the right-most radio

station such that d(sb, s`) ≤ d(sb, sa), `′ is a temporary variable, and the index k is such

that M [k].χ = min`
j=b+1 M [j].χ.

Step 1: Initialize opt cost = ∞.

Step 2: (* Compute the optimum solution with a right-most functional right-bridge*)
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Consider each radio-station sb, θ < b ≤ n.

Step 2.0: Initialize ` = b.

Consider each right-bridge ←−−sasb, a = θ − 1, θ − 2, . . . , 1 in order, and execute the steps

2.1-2.5.

Step 2.1: Set ρ(sb) = d(sa, sb), and `′ = `

Repeatedly increment ` by 1 until d(sb, s`) > d(sa, sb). Finally decrement ` by 1.

Step 2.2: Compute k such that M [k].χ = min`
j=`′+1 M [j].χ (see Lemma 3.5).

Step 2.3: Thus the optimum cost for considering the right-bridge←−−sasb as the right-most

functional right-bridge is

C = P [b].χ + wb × (d(sa, sb))
2 + N [a].χ + M [k].χ.

Step 2.4: If C < opt cost, then set opt cost = C, and set (p, q, r, t, f) = (a, b, `, k, 0).

Step 2.5: If d(sb, s`+1) < d(sa−1, sb) then ρ(sb) = d(sb, s`+1) also serves the role of

right-bridge ←−−sasb, and we compute the optimum cost for this assignment of ρ(sb). If the

corresponding cost is less than opt cost, then store it in opt cost, set f = 1, and set the

other fields of the 5-tuple appropriately.

Step 3: Finally, the range assignment corresponding to the optimum solution, is done

as follows:

Let the 5-tuple (p, q, r, t, f) corresponds to the optimum solution.

Assign ρ(sq) = d(sp, sq) or d(sq, sr) depending on whether f bit is 0 or 1. This establishes

the right-bridge ←−−spsq. The range assignment of all the radio stations on the path from sθ

to sq are obtained from the array P . The range assignment from sp to s1 are obtained

from the array N and the range of the radio stations from st to sn are obtained from

the array M as described in Subsection 3.3.2.
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3.3.4 Correctness and complexity

The correctness of the algorithm for computing optimum solution without any functional

bridge follows from the fact that we have considered all possible range of the source sθ.

For each choice of the range of sθ, we have computed the optimum range assignment

of the other radio stations for reaching s1 and sn. The correctness of the algorithm

for computing the optimum range assignment with a right-most functional right-bridge

←−−spsq follows from Lemmas 3.2, 3.3, 3.5, and the discussions in Subsection 3.3.3 on the

choice of radio stations from which s1 and sn are reached. Exactly same method as in

Subsection 3.3.3 works for computing the optimum range assignment with a left-most

functional left-bridge.

Theorem 3.1 The worst case time and space complexities of the weighted unbounded

broadcast range assignment problem are O(n2) and O(n) respectively.

Proof: The space complexity follows from the size of the arrays M , N and P . The

time required for computing these arrays is O(n2). After computing M and N , the

time required for computing the optimum solution with no functional bridge is O(n)

time. In Step 2 of the algorithm, we fix a radio station b and consider the right-bridges

←−−sasb for all a = θ − 1, θ − 2, . . . , 1 in order. Note that, the computation of ` and k in

each iteration of Steps 2.1-2.5 (i.e., for a fixed index b) is incremental. Step 2.5 may

also need some incremental time, and this reduces the time requirement of the next

iteration. Thus, for a particular radio station sb, b > θ, the total number of distance

computations in Step 2.1 and finding minimum value in the M array in Step 2.2 is O(n).

This indicates that the total time complexity of Step 2 is O(n2). The range assignment

in Step 3 needs O(n) time. 2

62



3.4 Weighted h-hop broadcast problem

If the number of hops is restricted to a specified integer h (1 ≤ h ≤ n− 1), the graph-

theoretic approach, described above, does not work. We apply dynamic programming

based approach for solving this problem. We first compute three n×h matrices, namely

A, B and C, whose each entry is a tuple (χ, γ) as mentioned below.

(a) A[i, j].χ = minimum cost for sending message from si to the radio stations in

S+
i+1 = {si+1, si+2, . . . , sn} using at most j hops; A[i, j].γ = index k, such that in

the minimum cost j-hop path from si to sn, the first hop takes place at sk.

(b) B[i, j].χ = minimum cost for sending message from si to the radio stations in

S−i−1 = {s1, s2, . . . , si−1} using at most j hops; B[i, j].γ = index k, such that in

the minimum cost j-hop path from si to s1, the first hop takes place at sk.

(c) C[i, j].χ = minimum cost of sending message from sθ (source) to si using at most

j hops; C[i, j].γ = index k, such that in the minimum cost j-hop path from sθ to

si, the last hop takes place from sk to si.

We explain the computation of matrices A and C. The computation of the matrix B is

similar to that of A.

The elements of the first column of matrix A are A[i, 1].χ = wi × (d(si, sn))2 and

A[i, 1].γ = n for i = 1, 2, . . . , n. After computing the (j − 1)-th column, the com-

putation of the j-th column is as follows:

A[i, j].χ = minn
k=i(wi × (d(si, sk))

2 + A[k, j − 1].χ)

If the minimum is achieved for k = k′, then we set A[i, j].γ = k′.

The elements of the first column of matrix C are C[i, 1].χ = wθ × (d(sθ, si))
2 and

C[i, 1].γ = θ, for i = 1, 2, . . . , n. After computing the (j − 1)-th column, the

computation of the j-th column is as follows:

C[i, j].χ = minn
k=1(C[k, j − 1].χ + wk × (d(sk, si))

2)

If the minimum is achieved for k = k′, then we set C[i, j].γ = k′.
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It is clear from the above discussion that the time required for computing the matrices

A, B and C is O(hn2). In the following two subsections we describe the method of

computing the optimum range assignment for the h-hop broadcast (i) with no functional

bridge and (ii) with right-most functional right-bridge. The optimum solution with left-

most functional left-bridge is similarly computed.

3.4.1 Bridge-free solution

The algorithm for the weighted h-hop broadcast range assignment problem having no

functional bridge is similar to the algorithm for the unbounded version of the same

problem described in Subsection 3.3.2. The only change is that, here we need to replace

M [i] and N [i] by A[i, h− 1] and B[i, h− 1] respectively.

3.4.2 Solution with right-most functional right bridge

We consider each ←−−sasb (a < θ < b), and compute the minimum cost of range assignment

with ←−−sasb as the right-most functional right-bridge. Finally, the one having the overall

minimum cost, is identified.

Here also, we will initialize opt cost by ∞, and will use the 5-tuple (p, q, r, t, f) as

described in the algorithm of Subsection 3.3.3.

We shall consider each right-bridge ←−−sasb (1 ≤ a < θ < b ≤ n) and each integer k (1 ≤
k ≤ h). For a particular choice of ←−−sasb and k, we execute the following steps (assuming

←−−sasb is the right-most functional right-bridge, and sb is reached from sθ (source) in k

hops).

Step 1: We assign ρ(sb) = d(sa, sb) to implement the right-bridge ←−−sasb. Let ` be the

maximum index such that d(sb, s`) ≤ d(sa, sb).
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Step 2: From the C matrix, we compute the minimum cost range assignment for

reaching sθ to sb using k hops. Now, the following three sets of nodes are already

reached from sθ.

(i) In the k-hop path from sθ to sb, S1
ab = {si, si+1, . . . , sb} are reached from sθ in

hi, hi+1, . . . , hb hops respectively, where each hj ≤ k,

(ii) the bridge ←−−sasb enables S2
ab = {sa, sa+1, . . . , si−1} to be reached from sθ in k + 1

hops (where a < i), and

(iii) due to the assigned range of sb, the radio stations in S3
ab = {sb+1, sb+2, . . . s`}

are all reached from sθ in k + 1 hops (where ` ≥ b). In particular, if ` = b then

S3
ab = ∅.

Step 3: As described in Subsection 3.3.3, here also we compute the cost of reaching s1

from sa only, which is equal to B[a, h− k − 1].

Step 4: For reaching sn, we need to choose an appropriate radio stations in Sab =

S1
ab ∪ S2

ab ∪ S3
ab for which the cost is minimum.

We compute A∗ = min(A∗
1, A

∗
2,A

∗
3), where

A∗
1 = minb

j=i A[j, h− hj] (* cost of reaching sn from any one of the nodes in S1
ab *),

A∗
2 = mini−1

j=a A[j, h− k − 1] (* cost of reaching sn from any one of the nodes in S2
ab *),

and

A∗
3 = min`

j=b+1 A[j, h− k− 1] (* cost of reaching sn from any one of the nodes in S3
ab *).

Step 5: Let A∗ corresponds to sj (a < j ≤ `). We need to consider the following three

cases for computing the cost of range assignment.

j = b: Here we have three parts in the cost: (i) from sθ to sb (in k hops), (ii) from sb

to sn, and (iii) from sa to s1. Thus, the cost of range assignment is

cost = C[b, k] + A∗ + B[a, h− k − 1].

Note that, here the contribution of the bridge ←−−sasb is not added in the cost due
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to the fact that, in A∗
1 the range of sb is greater than d(sa, sb). Otherwise, in the

path from sb to sn, it first hops at a radio station, say s`′ where `′ < `, and from

s`′ it reaches sn using a (h− k − 1)-hop path. Thus the cost of reaching sn from

s`′ using a (h− k − 1)-hop path is less than the cost of reaching sn from sb using

(h− k)-hop path. Thus we have a contradiction that A∗ corresponds to j = b.

i ≤ j < b: Here we have four parts in the cost: (i) from sθ to sj (in hj hops), (ii) from

sj to sn (this enables sb to get the message from sθ), (iii) from sb to sa (using the

bridge), and (iv) from sa to s1. Thus, the cost of range assignment is

cost = C[j, hj] + wb × (d(sa, sb))
2 + A∗ + B[a, h− k − 1],

a + 1 ≤ j < i or b < j ≤ `: Here also we have four parts in the cost: (i) from sθ to sb

(in k hops), (ii) from sj to sn, (iii) from sb to sa (using the bridge), and (iv) from

sa to s1. Thus, the cost of range assignment is

cost = C[b, k] + wb × (d(sa, sb))
2 + A∗ + B[a, h− k − 1].

The justifications of the above expression are as follows: If j ≥ b, then the reason is

trivial. Otherwise (i.e., if j < b) consider the path from sθ to sb. Let sb is reached

from sj in k′ hops. The actual desired situation is hj + k′ = k. If hj + k′ < k,

then the produced cost may be dominated by another value of k = hj + k′. But

this does not create any problem due to the fact we are considering all possible

values of k = 1, 2, . . . , h. Below, we argue that hj + k′ > k is not possible.

If hj + k′ > k, a node s`′ exists on the path from sj to sb which is reached from

sθ in exactly k hops. The path from s`′ to sn is subsumed in the path from sj to

sn, and hence the cost of the former one is less than that of the latter. Thus the

assumption that A∗ corresponds to sj, is violated.

Step 6: If cost < opt cost then

set opt cost = cost, and the 5-tuple (p, q, r, t, f) = (a, b, `, j∗, 0), where j∗ is the index

of the radio station for which the minimum occurs in the expression of A∗.
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Step 7: If d(sb, s`+1) < d(sa−1, sb) then

Assign ρ(sb) = d(sb, s`+1) (* this also serves the role of right bridge ←−−sasb *), and repeat

Steps 2 to 5 for computing the optimum cost for assigning this range of ρ(sb). If the

observed cost is less than opt cost, then update opt cost and the 5-tuple appropriately

with the flag bit f set to 1.

The optimal range assignments of the radio stations can be done using the 5-tuple, and

using the same technique as stated in Subsection 3.3.2.

3.4.3 Correctness and complexity

The correctness of the algorithm for computing optimum solution without any functional

bridge is same as that of unbounded version of the problem (see Subsection 3.3.4). For

the case where the solution contains functional bridge(s), the correctness follows from

the Lemmas 3.2, 3.3, 3.4, and the justifications given in Step 5.

In order to analyze the time complexity of our algorithm, let us consider a right-bridge

←−−sasb, and an integer k (1 ≤ k < h), where k is the number of hops needed to reach

sb from sθ. Step 1 needs O(n) time to compute `. In Step 2, C[b, k].χ is used to

compute the minimum cost of reaching from sθ to sb using k hops. Similarly, in Step 3,

B[a, h− k − 1].χ is used to compute the minimum cost of reaching from sa to s1 using

(h− k − 1). Thus, Steps 2 and 3 need O(1) time. Steps 4 needs O(n) time to compute

A∗. Steps 5 and 6 need O(1) time. Step 7 may need an additional O(n) time if ρ(sb)

needs a minor increment maintaining the right bridge ←−−sasb. Thus, we have the following

theorem.

Theorem 3.2 The worst case time and space complexities of the weighted h-hop broad-

cast problem is O(hn3) and O(nh) respectively.

Proof: The minimum cost range assignment without any functional bridge can be
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computed in O(n) time using the matrices A and B. In order to compute the solution

with a functional bridge, we may need to consider O(n2) pairs of nodes in S as the

possible right-most functional right-bridge (resp. left-most functional left-bridge), and

for each such pair, the possible choices of k is at most h− 1. As mentioned earlier, the

time required for considering each triple (sa, sb, k) is O(n). Thus, the time complexity

result follows. It needs to be mentioned that, another O(n) time pass is required to

compute the range assigned to each node in S. The space complexity result follows

from the storage requirement of the matrices A, B and C. 2

3.4.4 Further refinement

The time complexity of the Step 4 of the algorithm can be reduced if we can get the

three quantities A∗
1, A∗

2 and A∗
3 on demand from a preprocessed data structure. In

order to achieve this, we store each column (k) of the matrix A in a height balanced

binary tree Tk whose each node is a tuple (s, c). The s fields of the leaf nodes contain

{1, 2, . . . , n} in left to right order, and their c fields contain the corresponding elements

of the k-th column of matrix A. The discriminant value stored at each internal node

(say v) of Tk is the average of the s values stored in its inorder predecessor and successor

nodes. The corresponding c field stores the minimum value of the c fields attached to

all the nodes rooted at v in Tk.

Let us now fix a node sb, b > θ, and consider the minimum cost of range assignment

with all possible right bridges ←−−sasb, where a < θ. Let sb be reached from sθ in k hops.

While computing the k-hop path from sθ to sb, we can get the set S1
ab, and the number

of hops needed for each node to reach from sθ. Thus, we can also compute A∗
1 in O(|S1

ab|)
time using the matrix A as mentioned in Step 3 of the algorithm.

Now, assign different ranges to sb for generating right bridges ←−−sasb for different a < θ.

This determines the set S2
ab and S3

ab. Now we can get A∗
2 and A∗

3 on demand, by searching
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in the tree Tk in O(log n) time. Note that, for a given k and b, A∗
1 does not change. So,

we can compute the cost of the range assignment for all the bridges initiated from b in

O(n log n) time. Thus, we have the following theorem:

Theorem 3.3 The worst case time and space complexities of the weighted h-hop broad-

cast problem is O(hn2 log n) and O(nh) respectively.

3.5 Weighted Accumulation Problem

In this section, we propose an O(n2) time algorithm for solving the unbounded (h =

n− 1) version of the accumulation range assignment problem for linear radio network.

This algorithm can be used to solve the same problem when radio stations are located

in any arbitrary dimension. In this context, it needs to be mentioned that the existing

O(hn3) time algorithm for the h-hop accumulation range assignment problem [39] works

for the weighted version of the problem also.

Let S = {s1, s2, . . . , sn} be a set of n radio stations located on a straight line and

W = {w1, w2, . . . , wn} be the weights of the radio stations in S. Without loss of

generality, assume that s∗ = sn is the target radio station. For solving the accumulation

range assignment problem, we use the standard algorithm for arborescence problem on

a digraph G as stated below.

Arborescence Problem : Given a weighted directed graph G and a root node s∗,

the minimum cost arborescence problem is to find the minimum-cost spanning tree in

G directed out from s∗ (called arborescence tree).

In the accumulation range assignment problem, the ranges are assigned in such a way

that s∗ can be reached from each node in S, and the total cost of the entire network is

minimum. Thus, in order to map this problem with the standard arborescence problem,
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the weight of each edge (si, sj) must depend on the weight of node sj (not on si). The

formal algorithm is stated below.

Step 1: Let G = (V, E) be a complete digraph, whose vertex set V corresponds to the

set of radio stations S. The weight of a directed edge (si, sj) ∈ E is wj×(d(si, sj))
2.

Step 2: Compute the arborescence tree T of G directed out from s∗ using the O(n2)

time algorithm proposed by Gabow et al. [59].

Step 3: Change the direction of each edge in T .

Step 4: For each edge (si, sj) ∈ T do ρ(si) = d(si, sj).

The correctness of the above algorithm follows from the definition of arborescence prob-

lem. Clearly the time complexity of the proposed algorithm is O(n2).

3.6 Summary

The weighted version of the range assignment problem in linear radio network is studied

in the context of information broadcast and accumulation. The time complexity of our

proposed algorithms for the unbounded and bounded (h-hop) versions of the broadcast

problem are O(n2) and O(hn2 log n) respectively. This improves time complexity of the

existing results for the same two problems by a factor of n and n2

log n
respectively [5]. An

O(hn3) time algorithm for the h-hop accumulation problem for linear radio network is

available in [39]. We show that the unbounded version of the accumulation problem can

be solved in O(n2) time. This algorithm works even when the radio stations are placed

in IRd. It needs to be mentioned that the status of the h-hop accumulation problem in

IRd is not known for d ≥ 2.
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Chapter 4

Homogeneous 2-hop Broadcast in

2D

4.1 Introduction

In this chapter, we study the 2-hop broadcast range assignment problem in IR2. Given a

set S = {s1, s2, . . . , sn} of n pre-placed radio stations and a source radio station s∗ ∈ S,

we consider the following two variations of minimum cost homogeneous (equal) range

assignment problem for the 2-hop broadcast from s∗ to all the members in S: (i) find

the value of ρ such that 2-hop homogeneous broadcast from s∗ is possible with minimum

cost, and (ii) given a real number ρ, check whether homogeneous 2-hop broadcast from

s∗ to the members in S is possible with range ρ, and if so, then identify the smallest

subset of S whom range ρ is to be assigned to accomplish the 2-hop broadcast from

s∗. The first problem is optimally solved in O(n2.376 log n) time and O(n2) space. The

second problem seems to be computationally hard. We present a 2-factor approximation

algorithm for this problem, which runs in O(n2) time.



Source

Figure 4.1: An example of 2-hop broadcast

4.2 Preliminaries

In a homogeneous radio network, each member si ∈ S is either assigned a fixed range ρ

or is not assigned any range. In the later case, si can not send message to other radio

stations, but can receive message from other radio stations having non-zero range.

Thus, the cost of a homogeneous radio-network is k×ρ2, where k is the number of radio

stations having range ρ.

In Figure 4.1, an example is demonstrated for a given range value ρ. The black sites or

the sites having thick boundary (except source s∗) indicate the subset of radio stations

(called S1) which are reachable from s∗ in 1 hop, and the sites having thin boundary

indicate the subset (called S2) which are reachable from s∗ in 2 hop. It is easy to

understand that s∗ must be assigned range ρ, and the members in S1 lie inside the

circle C∗ having radius ρ and centered at s∗. Among the members in S1, the black

sites (denoted by S∗) are assigned range ρ for the optimum 2-hop broadcast from s∗ to

all the members in S, but those having thick boundary only, need not be assigned any

range i.e., their range is zero. Thus, S∗ ⊆ S1 ⊂ S. All the members in S2 lie outside

C∗, and so, the range assigned to each members in S2 is zero.

We consider the following two variations of the homogeneous 2-hop broadcast range

assignment problem:
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P1: Find the range value ρ that supports 2-hop broadcast from s∗ to all the members

in S, and the total cost of the entire network is minimum, and

P2: Given a range value ρ, check whether 2-hop broadcast is possible from s∗ to all the

members in S with range ρ, and if possible then identify the minimum cardinality

subset S∗ ⊂ S, whom range (= ρ) is to be assigned to accomplish the 2-hop

broadcast from s∗ to all the members in S.

Problem P2 is a special case of the minimum geometric disk cover problem [33] as stated

below.

Given two sets of points S1 and S2, the objective is to cover the points in S2 by

minimum number of disks of a given radius r and centered at the points in S1.

It [68], it is shown that the minimum geometric disk cover problem admits a PTAS.

Given a positive integer `, the algorithm produces a solution with approximation factor

(1 + 1
`
)2 in time O(`4(2n)4`2+1). Substituting ` = 2, we have a 9

4
-factor approximation

algorithm with worst case time complexity O(n17). In [38], two algorithms for the prob-

lem P2 are proposed; the first one produces 6-factor approximation result in O(n log n)

time and the second one produces 3-factor approximation result in O(n log2 n) time. It

can be shown that the time complexity of their second algorithm can easily be improved

to O(n log n) using fractional cascading [27].

We give a very simple algorithm for problem P1 which runs in O(n2.376logn) time and

O(n2) space. For problem P2, we propose a 2-factor approximation algorithm, which

runs in O(n2) time and O(n) space.

4.3 Problem P1

Throughout this chapter, we assume that the radio stations in S are numbered as

{s1, s2, . . . , sn} in increasing order of their distances from s∗(= s1). A radio station sj is
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said to be covered by another radio station si with its assigned range ρ if d(si, sj) ≤ ρ.

The 1-hop broadcast problem is trivial; here only one radio station s∗ is to be assigned

a non-zero range, and its value is d(s∗, sn).

Definition 4.1 A range value ρ is said to be feasible if 2-hop broadcast from s∗ to all

the members in S is possible by assigning range ρ to s∗ and some radio stations in S1.

Lemma 4.1 For a range value ρ, its feasibility can be tested in O(n log n) time.

Proof: We compute the sets S1 and S2 (= S \ (S1 ∪ {s∗})) in O(n) time. Next, we

compute the Voronoi diagram of the points in S1 in O(n log n) time [19]. For each point

p ∈ S2, we find its nearest point qp ∈ S1 by performing the planar point location [19] in

the aforesaid Voronoi diagram. If d(p, qp) ≤ ρ for all p ∈ S2, then ρ is a feasible range

for the 2-hop broadcast. The time complexity result follows from the fact that each

planar point location query needs O(log n) time. 2

Fact 4.1 If ρ is a feasible range for problem P1, then any range value ρ′ greater than

ρ is feasible.

In the 2-hop broadcast range assignment problem from s∗, if the minimum cost is

achieved for a range value ρ, then ρ must be the distance between a pair of members in

S (see Lemma 2.1).

Lemma 4.2 In the minimum cost range assignment, |S∗| ≤ 2.

Proof: Let ρmin be the minimum feasible range for the 2-hop broadcast from s∗. It

is obvious that if a range value 2ρmin is assigned to s∗, then all the nodes in S can be

reached from s∗ in 1 hop, and the cost of this range assignment would be 4ρ2
min. If a

lesser cost of 2-hop broadcast range assignment with range value ρ (> ρmin) is possible,
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then kρ2 < 4ρ2
min, where k = |S∗| + 1 (this includes s∗ and the members in S∗). As

ρ > ρmin, we have k ≤ 3, and hence |S∗| ≤ 2. 2

Lemma 4.2 says that, for finding the optimum solution of problem P1, we need to

compute the optimum costs of broadcast with |S∗| = 0, |S∗| = 1, and |S∗| = 2. The op-

timum cost with |S∗| = 0 (the 1-hop broadcast) is (d(s∗, sn))2. We separately compute

the optimum cost with |S∗| = 1 and with |S∗| = 2. Finally, we choose the one having

minimum cost. As a preprocessing, we execute the following steps:

• Compute an array D containing the distance of each pair of radio stations in S.

• Sort the array D in increasing order.

• Perform binary search to find the minimum feasible range ρmin for 2-hop broad-

cast.

• Delete all the elements from the array D which are less than ρmin. Thus, the array

D contains all the feasible ranges for the 2-hop broadcast from s∗.

We consider |S∗| = 1, and |S∗| = 2 separately and compute the corresponding minimum

value of the range for the 2-hop broadcast as follows:

Perform binary search in the array D.

For each chosen ρ do

compute S1 and S2 in O(n) time, and

execute the decision procedures for |S∗| = θ, for θ = 1, 2

as described in the following two subsections.
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4.3.1 Decision procedure for |S∗| = 1

For each member s ∈ S1, compute δs = maxt∈S2 d(s, t). Let ∆ = mins∈S1 δs, and ∆

corresponds to the radio station s′ (∈ S1). For the given parameter (range) ρ, if ∆ ≤ ρ

then decision procedure returns true with the radio station s′; otherwise it returns false.

4.3.2 Decision procedure for |S∗| = 2

For the given range ρ, let |S1| = k and |S2| = `, where s∗ 6∈ S1 and k + ` = n −
1. Let us name the members in S1 as {s11, s12, . . . , s1k} and the members in S2 as

{s21, s22, . . . , s2`}. We allocate a matrix M of size k × `. Its (i, j)-th cell contains 1 if

d(s1i, s2j) ≤ ρ, otherwise it contains 0. Thus, M [i, j] = 1 implies s1i can communicate

with s2j with range ρ.

The event |S∗| = 2 is true if and only if there exists a pair of rows, say a and b, of

the matrix M such that M [a, j] = 1 and/or M [b, j] = 1 for every j = 1, 2, . . . , `. This

checking can easily be done in O(n3) time. We describe a faster algorithm for this

decision procedure using matrix multiplication.

Let MC be the complement of matrix M , where MC[i, j] = 1 − M [i, j], for each

i = 1, 2, . . . , k and j = 1, 2, . . . , `. Now, compute the matrix product P = MC ×MC ′,

where MC ′ is the transpose of matrix MC. If P [a, b] = ν (6= 0), then there exists ν

many columns in the original matrix M where ’0’ is stored in both a-th and b-th row.

In other words, if we assign range ρ to the radio stations s1a and s1b, then we can not

cover ν many members in S2. If P [a, b] = 0, then s1a and s1b (with range assignment

ρ) can cover all the members in S2. Thus, if there exists at least one ’0’ entry in the

product matrix P then the procedure returns true with the corresponding radio stations.

Otherwise, the procedure returns false. Here the following two important notes need to

be considered
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• If there exists a ’0’ entry in a diagonal element of the product matrix P , then |S∗| =
1. But, the decision procedure for the case |S∗| = 1 using matrix multiplication is

expensive with respect to the running time. It also needs to be mentioned that,

we need to compute the optimum cost for |S∗| = 1 and |S∗| = 2 separately. The

reason is that, if we run the matrix multiplication based decision procedure for

testing the feasibility of 2-hop broadcast for |S∗| = 1 and |S∗| = 2 together, it

returns the minimum radius without considering whether |S∗| = 1 or |S∗| = 2.

Suppose the reported radius corresponds to |S∗| = 2. There may exist situation

where a minor increase in the radius may achieve the 2-hop broadcast with |S∗| = 1

with a lesser cost.

• While executing the decision procedure for |S∗| = 2, if the minimum element in

the product matrix P is ν (6= 0), this implies that the best choice of 2 radio

stations in S1 with range ρ can cover (n− ν) many elements in S.

Theorem 4.1 The worst case time and space complexities of our proposed algorithm

for problem P1 are O(n2.376 log n) and O(n2) respectively.

Proof: The preprocessing step needs O(n2 log n) time. The decision procedure for

|S∗| = 1 needs O(n2) time. The time complexity for the decision procedure for |S∗| = 2

is dominated by that of matrix multiplication. The best known time complexity result

for the matrix multiplication is O(n2.376) [45]. We may need to call both the decision

procedures at most O(log n) time. Thus, the time complexity result follows. The space

complexity follows from the size of the array D and the matrices M , MC and MC ′. 2

4.4 Problem P2

Now we consider a more generic problem where a range value ρ is given, and the

problem is (i) to test whether the 2-hop broadcast from s∗ to all other radio stations in
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S is possible, and (ii) if possible then identify the minimum number of members in S1

whom the range ρ need to be assigned for the 2-hop broadcast. The feasibility testing

of range ρ in part (i) can be done in O(n log n) time (see Lemma 4.1).

In part (ii), let ρ be a feasible range for the 2-hop broadcast. Our objective is to identify

the minimum number of elements in S1 for the range assignment. It is very similar to

the set-cover problem, and hence it seems to be computationally hard. We present a

2-approximation algorithm for this problem.

We use Ci to denote the circle of radius ρ, and centered at si ∈ S. If a pair of circles

Ci and Cj intersect, then let α(Ci, Cj) and β(Ci, Cj) denote the two intersection points

among the boundaries of Ci and Cj, where α(Ci, Cj) lies on the left side of the directed

line −−→sisj, and β(Ci, Cj) lies on the right side of −−→sisj. We use I(Ci, Cj) to denote the

subset of S which are inside the intersection region of Ci and Cj.

Since 2-hop broadcast from s∗ is possible with range ρ, for each member si ∈ S2,

I(Ci, C
∗) contains at least one member s ∈ S1. We first apply the following steps for

pruning S2.

Pruning-Step-1: Identify the circles Ci (si ∈ S2) which does not intersect any other

circle Cj inside C∗. In other words, for each such si, Ci ∩ Cj ∩ C∗ = φ for all

sj ∈ S2, j 6= i. We assign range ρ to a radio station inside Ci ∩C∗ for covering si,

and delete the radio station si from S2.

Pruning-Step-2: Identify all the circles Ci (si ∈ S2) such that I(Ci, C
∗) ⊃ I(Cj, C

∗)

for some Cj, sj ∈ S2. Here in order to cover sj, we need to assign range ρ to

a radio station in I(Cj, C
∗). This also covers si. Thus, we can delete the radio

station si from S2.

After execution of these pruning steps, let us consider the set of circles C = {Ci|si ∈ S2}.
Here each circle Ci (si ∈ S2) intersects with some other circle Cj (sj ∈ S2), sj 6= si.

For a pair of circles (Ci, Cj), if both α(Ci, Cj) and β(Ci, Cj) lie inside C∗, then the
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pair (Ci, Cj) is said to be a critical pair; otherwise, the pair is said to be non-critical.

Example of a critical pair is demonstrated in Figure 4.4(b).

4.4.1 Algorithm

We now describe a simple algorithm for problem P2, and show that if there exists no

pair of radio stations si, sj ∈ S2 such that their corresponding circles Ci, Cj form a

critical pair, then it produces optimum solution. We use this algorithm for designing

the approximation algorithm for the general case.

Step 1: Let L be a list of circularly sorted points {α(Ci, C
∗)|si ∈ S2} in anticlockwise

order. We use αi to denote α(Ci, C
∗).

Step 2: For each element αi ∈ L, we execute the following steps.

Step 2.1: Assume that αi is the starting position of the circular sorted list. Rename

the circles corresponding to the members in S2 such that the circle corresponding

to α((i+k) mod |S2|) is assigned the name Ck+1, for all k = 1, 2, . . . , |S2|. Set j = 1.

Step 2.2: While j ≤ n, execute the following steps:

(* Choose a member in S∗ for range assignment *)

• Find an index k such that
⋂k

`=j I(C`, C
∗) 6= ∅ but

⋂k+1
`=j I(C`, C

∗) = ∅.
(* We say, Cj, Cj+1, . . . , Ck satisfy consecutive property *)

Let sp ∈ ⋂k
`=j I(C`, C

∗).

• Assign range ρ to the radio station sp.

• set j = k + 1.
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4.4.2 Correctness and complexity analysis for the restricted

case

Theorem 4.2 If for every pair of points sa, sb ∈ S2, the corresponding circles Ca, Cb

form a non-critical pair, then the algorithm proposed in Subsection 4.4.1 produces opti-

mum result in the restricted case of problem P2.

Proof: Let S∗ = {so
1, s

o
2, . . . , s

o
opt} denote the set of radio stations having range ρ in

the optimum solution, where opt = |S∗|. As mentioned earlier, s∗ is not included in S∗.

Let us consider a radio station so
θ ∈ S∗. Let p be the point of intersection of the ray

−−→
so

θs
∗ and the boundary of the circle C∗, and C = {Cµ|sµ ∈ S2} be the ordered set of the

circles such that {α(Cµ, C
∗)|sµ ∈ S2} are in the anticlockwise sorted order along the

boundary of C∗ starting from the point p. Assume that so
θ ∈ Cj1 ∩Cj2 ∩ . . .∩Cjν ∩C∗,

where j1 < j2 < . . . < jν . Among these, Cj1 , Cj2 , . . . , Cj`
are consecutive in the sense

that j2 = j1 +1, j3 = j1 +2, . . . , j` = j1 + `− 1, but j`+1 6= j1 + `, where ` < ν. In other

words,

so
θ ∈ Cj1 ∩ Cj1+1 ∩ . . . ∩ Cj1+`−1 ∩ C∗ = A (say), but

so
θ 6∈ Cj1 ∩ Cj1+1 ∩ . . . ∩ Cj1+`−1 ∩ Cj1+` ∩ C∗ = B (say).

In Figure 4.2, the regions A is shown using light shade and region B is shown using

dark shade.

In the optimum solution, let so
γ ∈ S∗ cover the circle Cj1+`. It may either lie in the

region B or in region C = (Cj1+` ∩ C∗) \ B (marked as a dotted region in Figure

4.2). In the former case, our algorithm chooses so
γ for assigning range ρ (instead of so

θ)

to cover Cj1 , Cj2 , . . . , Cj`
, Cj`+1, and we are free to choose a radio station for covering

Cj`+1
, Cj`+2

, . . . , Cjν . In the latter case, each of the circles Cj`+1
, Cj`+2

, . . . , Cjν contains

a part of A, and in turn contains region C also (see in Figure 4.2). Thus so
γ can cover all

the circles Cj`+1
, Cj`+2

, . . . , Cjν . Thus, when an iteration (of Step 2.2) of our algorithm

80



C*

s*

Cjl+1
Cj1+l

Cjl

B

C
A

Figure 4.2: Proof of Theorem 4.2

starts from α(Cj1 , C
∗), then it chooses so

θ ∈ A or some other radio station in the region A

(satisfying consecutive property) for assigning range ρ. The correctness of our algorithm

follows from the fact that, in both the cases the number of radio stations with range

ρ obtained by our algorithm is less than or equal to |S∗|. Since S∗ is the optimum

solution, the solution obtained by our algorithm is also optimum. 2

Theorem 4.3 The time and space complexities of the proposed algorithm for problem

P2 are O(n3) and O(n) respectively.

Proof: Step 1 needs O(n log n) time for the sorting. The number of iterations in Step 2

is O(n). Since the time for computing the intersection of two ordered sets is O(n), and

in Step 2.2, O(n) such intersections are computed in the worst case, the time complexity

of Step 2 is O(n3) time. The space complexity follows from the fact that we need to store

{α(Ci, C
∗)|si ∈ S2} in an array, and the circular scan needs only a constant number of

extra space. 2

Corollary 4.3.1 If there exists a point p on the boundary of C∗ which is not covered

by any one of the circles {Ci|si ∈ S2}, then in the restricted case, the optimum solution

for problem P2 can be obtained in O(n2) time.
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Proof: Arrange the L list such that α(C1, C
∗) appears first in the list if we walk along

the boundary of C∗ in anticlockwise direction starting from p. Note that, here one

iteration of Step 2.2 always starts from α(C1, C
∗) irrespective of where from the first

iteration of Step 2.2 starts. Thus, only one iteration (Step 2) suffices to get the optimum

solution, and it starts from α(C1, C
∗). Thus, the result follows. 2

Theorem 4.4 In the restricted case, a solution of size at most |S∗|+1 can be obtained

in O(n2) time.

Proof: Let us choose a radio station s ∈ S1 which is farthest from s∗, and draw a ray
−→
s∗s which hits the boundary of C∗ at p. If p is not covered by any circle Ci, si ∈ S2,

then from the Corollary 4.3.1, we get a solution of size |S∗| in O(n2) time by running

our algorithm.

If p is covered by some circle(s) corresponding to the members in S2, then we assign

range ρ to the radio station s (∈ S1). If the circle corresponding to s covers some

member(s) in S2, then delete those radio stations from S2. Let the updated set be S ′2.

Now, the following three situations may happen:

s

(a)

C*

s*

s

(b)

C*

s*

p p

Figure 4.3: Proof of Theorem 4.4

(i) the point p is not covered by any circle corresponding to the members in S ′2,
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(ii) p is covered by circles corresponding to a member in S ′2 such that these members

in S ′2 lie in the left (resp. right) side of the directed ray
−→
s∗s. Note that, here the

region of each of these circles inside C∗ to the right (resp. left) side of the ray
−→
s∗s

does not contain any point of S1 (see the shaded region in Figure 4.3(a)). The

reason is that we have chosen s to be the nearest from the boundary of C∗, and

we have already applied Pruning-Step-2 (see Section 4.4) on S2.

(iii) p is covered by circles corresponding to two sets of members in S ′2, such that these

two sets lie in two different sides of the directed ray
−→
s∗s. Using the same reason

of case (ii), here also the intersection region of two circles of different set inside

C∗ does not contain any member of S1 (see the shaded region in Figure 4.3(b)).

In Case (i), the point p is not covered by any member of S ′2. In the other two cases

also, after assigning range ρ to the radio station s, we may consider that the point p is

not covered by any circle corresponding to the members in S ′2, and hence the optimum

solution can be obtained in O(n2) time. Since, we have assigned range ρ to s, the

number of radio stations with range ρ (not including s∗) is at most |S∗|+ 1. 2

4.4.3 Approximation algorithm for the general case

The proposed algorithm in Section 4.4.1 may not produce optimum solution for a feasible

range ρ if the radio stations are arbitrarily positioned. In Figure 4.4(a), the situation is

explained, where {s∗, s1, s3} indicates the optimum solutions, and {s∗, s2, s3, s4} is the

output of our algorithm. We show that, the above method can be used for producing a

2-approximation result.

Lemma 4.3 For a pair of points si, sj ∈ S2, if both α(Ci, Cj) and β(Ci, Cj) are inside

C∗, then 6 sis
∗sj > π

2
.
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Figure 4.4: (a) Intuitive idea of the approximation algorithm, (b) proof of Lemma 4.3

Proof: Let p be the point on the boundary of C∗ such that p /∈ Ci ∪ Cj (see Figure

4.4(b)). Now, consider the triangle ∆sips
∗, where sip > ρ (as p is outside Ci) and

ps∗ = ρ. Thus, 6 psis
∗ < 6 sis

∗p. Similarly in the triangle ∆sjps
∗, 6 psjs

∗ < 6 sjs
∗p.

Thus, in the triangle ∆sis
∗sj, 6 sisjs

∗ + 6 sjsis
∗ < 6 sis

∗sj. This proves the lemma. 2

Based on Lemma 4.3, we modify the algorithm proposed in Section 4.4.1, so that it

produces a 3-factor approximation result in O(n2) time.

We draw two mutually orthogonal lines L1 and L2 passing through s∗. This partitions

the plane into four quadrants. Let Sk
1 and Sk

2 be respectively the radio stations of S1

and S2 in the k-th quadrant, k = 1, 2, 3, 4. By Lemma 4.3, Ci and Cj (corresponding to

a pair of points si, sj ∈ Sk
2 ) intersect, then at least one point of α(Ci, Cj) and β(Ci, Cj)

will lie outside C∗. Thus, if the algorithm presented in Section 4.4.1 is executed for Sk
2 , it

assigns range ρ to a minimum size subset of S1 (of size χk say) for the 2-hop broadcast

from s∗ to the radio stations in Sk
2 (see Theorem 4.2). Obviously,

∑4
k=1 χk ≤ 4|S∗|.

Following theorem says that it is indeed a 3-approximation algorithm.

Theorem 4.5
∑4

k=1 χk ≤ 3|S∗|.

Proof: Let Sk∗ denote the radio stations in the optimum solution S∗ which lie inside

the k-th quadrant, k = 1, 2, 3, 4. In our proposed algorithm, χk denotes the number of
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members chosen from S1 for assigning range ρ to broadcast among the members in Sk
2 .

Consider the members in S1
2 . For any radio station sj ∈ S1

2 , the circle Cj does not

span inside the portion of C∗ in 3-rd quadrant. Thus, the optimum solution for S1
2

does not contain any member of S3
1 . This implies, χ1 ≤ |S1∗|+ |S2∗|+ |S4∗|. Similarly,

it can be proved that χ2 ≤ |S1∗| + |S2∗| + |S3∗|, χ3 ≤ |S2∗| + |S3∗| + |S4∗|, and χ4 ≤
|S1∗|+ |S3∗|+ |S4∗|. Thus,

∑4
k=1 χk ≤ 3(|S1∗|+ |S2∗|+ |S3∗|+ |S4∗|) = 3|S∗|. 2

Theorem 4.6 The time complexity of the proposed 3-approximation algorithm in the

general case is O(n2).

Proof: We run this algorithm for the subset Sk
2 ∈ S2 separately for k = 1, 2, 3, 4. While

considering Sk
2 , none of the arcs span to its diagonally opposite quadrant. By Corollary

4.3.1, here we need to execute only one pass instead of |Sk
2 | passes of Step 2. 2

4.4.4 Improved analysis of the approximation factor

We now show that the algorithm proposed in Subsection 4.4.1 produces a 2-factor

approximation result in O(n2) time.

Lemma 4.4 For a triple of points si, sj, sk ∈ S2, if all the points α(Ci, Cj), β(Ci, Cj),

α(Cj, Ck), β(Cj, Ck), α(Ci, Ck) and β(Ci, Ck) are inside C∗, then Ci ∩ Cj ∩ Ck = φ.

Proof: Since α(Ci, Cj), β(Ci, Cj) are inside C∗, then 6 sis
∗sj > π

2
(by Lemma 4.3).

Thus, Ci ∩ Cj lies entirely in the region A1 as shown in Figure 4.5. Using the same

argument, Cj∩Ck and Ck∩Ci lie in the regions A2 and A3 respectively. Since the regions

A1, A2 and A3 have only one common point, namely s∗, we may have s∗ ∈ Ci∩Cj ∩Ck.

Again, as si, sj, sk ∈ S2, s∗ 6∈ Ci, Cj, Ck. Thus we have a contradiction. 2
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Figure 4.5: Proof of Lemma 4.4

Remark 4.1 In Step 2.2 of the algorithm, we computed the maximum index k such that

∩k
`=jI(C`, C

∗) 6= ∅, and then assigned range ρ to a radio station inside ∩k
`=jI(C`, C

∗),

where Cj is the starting point of an iteration. Next, we started another iteration from

Ck+1, and so on. Let the size of the solution obtained by our algorithm be ∆.

Instead of that, if we choose a radio station inside ∩k′
`=jI(C`, C

∗), where k′ < k, then

the size of the solution obtained is greater than or equal to ∆.

Lemma 4.5 If there exists a point p on the boundary of C∗ which is not covered by

any one of the circles {Ci|si ∈ S2}, then the algorithm in Subsection 4.4.1 produces a

2-factor approximation result for the general case in O(n2) time.

Proof: Sort the points {α(Ci, C
∗), si ∈ S2} in anticlockwise order starting from the

point p. Let the corresponding order of the circles be {C1, C2, . . . , C|S2|}. In the optimum

solution, let C1 be covered by a radio station sθ ∈ S1. Consider the set of circles

C = {Ci1 , Ci2 , . . . Cik , Cj1 , Cj2 , . . . , Cj`
} covered by sθ, where i1(= 1) < i2 < . . . < ik <

j1 < j2 < . . . < j`. By Lemma 4.4, we may split these circles in at most two sets

C1 = {Ci1 , Ci2 , . . . Cik} and C2 = {Cj1 , Cj2 , . . . , Cj`
} such that there is no critical pair

inside C1 and C2. We show that our algorithm uses at most two radio stations to cover

the circles in C = C1 ∪ C2. Let us now consider the circles in C1. If these are contiguous
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in the ordering of the circles then these are covered by a single radio station sθ or some

other radio station in their intersection zone. Otherwise, let µ be the minimum index

such that Cµ 6∈ C1, and Cµ lies between Ciδ , Ciδ+1
∈ C1 in the ordering of circles. As

shown in the proof of Theorem 4.2, it is enough to consider the circles Ci1 , Ci2 , . . . , Ciδ

which can be covered by a single radio station in our algorithm. The other circles

Ciδ+1
, . . . , Cik ∈ C1 will be covered by the radio station used for covering Cµ in the

optimum solution. Note that, we have not yet considered the covering of the members

in C2. For this, we may assume that a new iteration of Step 2.2 of the algorithm starts

from Cj1 , and it uses one radio station for covering the members in C2 or a part of it.

By Remark 4.1, the size of the solution obtained here is greater than the size of the

solution obtained by our algorithm.

We now eliminate Ci1 , Ci2 , . . . , Ciδ and proceed with the algorithm from Cµ. The same

situation may arise with the radio station in the optimum solution that covers Cµ. Thus,

for each radio station in the optimum solution, our algorithm chooses at most two radio

stations for assigning range ρ in the worst case. Thus the approximation result follows.

The time complexity follows from the fact that only one iteration of Step 2 of the

algorithm is executed here. 2

Theorem 4.7 The algorithm in Section 4.4.1 produces a 2-factor approximation result

for the general 2-hop broadcast problem.

Proof: If there exists a point p on the boundary of C∗ which is not covered by any

circle corresponding to the members in S2, then we can generate a solution of size 2|S∗|
(excluding s∗) for the general problem (see Lemma 4.5). If no such point p is found,

we can create such a point by assigning range ρ to a member in S1 which is farthest

from s∗. Since range ρ is assigned to s∗ also, the size of the solution produced by our

algorithm is at most 2|S∗| + 2. The theorem follows from the fact that the size of the

optimum solution is |S∗|+ 1. 2
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4.4.5 An efficient heuristic

In this section, we present an efficient heuristic algorithm for problem P2. We assume

that a count field COUNT (s) is attached with every member s ∈ S2.

Step 1: For each member si ∈ S1 do

If d(si, sj) ≤ ρ for an element sj ∈ S2, then increase COUNT (sj)

Step 2: For each member sj ∈ S2 having COUNT (sj) = 1 do

Select the corresponding radio station (say si) in S1, and assign range ρ to si;

remove si from S1 and all the radio stations of S2 that are covered by the circle

Ci (with radius ρ and centered at si).

Step 3: For each element si ∈ S1, compute A(si) = subset of S2 whose elements are

inside Ci.

For a pair of elements si and sk, if A(si) ⊆ A(sk), then si can be removed from

S1, and

for each element sj ∈ S2, if Cj contains si then decrease COUNT (sj) by 1.

Step 4: Repeat Steps 2 and 3 as long as possible.

Finally, if all the points in S2 are exhausted, then the optimal solution is achieved.

Otherwise, we need to apply Step 5.

Step 5: (* Heuristic step *)

Repeat the following steps until the COUNT field of at least one member in S2

is reached to 1.

• Arbitrarily choose a member in si ∈ S1, assign its range to ’0’, and delete si

from S1.

• if Ci contains a radio station sj ∈ S2, then COUNT (sj) is decreased by 1.

Again start executing from Step 2.
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The time required for computing the COUNT field for all the members in S2 is O(n2).

It is easy to observe that in each of the Steps 2 to 5, at least one point of either S1

or S2 is removed. After selecting a radio station in S1 for the range assignment, the

adjustment of the COUNT field for the members in S2 needs O(n) time. Thus, the

time complexity of the proposed heuristic algorithm is O(n2).

We have performed a detailed experiment in SUN BLADE 1000 machine with 750 MHz

CPU speed and have used LEDA software [91]. We have considered different values on

n, and for each n, we have generated 100 instances. We computed minimum feasible

ρ value, say ρmin for 2-hop broadcast, and the ρ value for 1-hop broadcast, say ρmax.

Then we have generated a ρ value in [ρmin, ρmax] randomly. This execution time is not

included in the running time of the experiment. We execute both the heuristic and

approximation algorithms. Finally, in Tables 4.1 and 4.2 respectively, we report the

average size of the solution (cardinality of the subset of S1 having range ρ), and the

running time for both the algorithms.

During the experiment, it is observed that in very few cases we need to apply Step 5 of

the heuristic algorithm. This indicates that the optimum solution may not be obtained

by this algorithm for all the instances. But, it is also observed that, if Step 5 is executed

once, the control never came back to Step 5 again. Thus, we may infer that the solution

obtained by this heuristic algorithm is very close to the optimum solution.

Table 4.1: Performance of our heuristic and approximation algorithms

No. of radio stations −→ 100 200 300 400 500 600 700 800 900 1000

Solution produced by ↓
Heuristic Algorithm 5.5 6.0 6.0 5.6 5.0 5.0 5.6 6.2 5.6 5.7

Approximation Algorithm 6.5 6.0 7.0 6.0 5.4 6.0 6.4 6.8 6.4 6.4

89



Table 4.2: Execution time of the heuristic and the approximation algorithms

No. of radio stations −→ 100 200 300 400 500 600 700 800 900 1000

Running time (in sec.) of ↓
Heuristic Algorithm 0.0 0.0 0.1 0.3 0.6 1.0 1.3 1.6 3.1 4.0

Approximation Algorithm 0.0 0.2 0.3 0.6 1.0 1.3 2.0 2.8 3.3 4.4

4.5 Summary

Given a set S of n pre-placed radio stations and a source station s∗ in IR2, we considered

the following two variations of minimum cost homogeneous range assignment problem

for the 2-hop broadcast from s∗ to all the members in S: (i) find the value of ρ such that

2-hop homogeneous broadcast from s∗ is possible with minimum cost, and (ii) given a

real number ρ, check whether homogeneous 2-hop broadcast from s∗ to the members

in S is possible with range ρ, and if so, then identify the smallest subset of S whom

range ρ is to be assigned to accomplish the 2-hop broadcast from s∗. The first problem

is optimally solved in O(n2.376 log n) time and O(n2) space. For the second problem we

presented a 2-factor approximation algorithm, which runs in O(n2) time. We have also

proposed a heuristic algorithm for problem P2. Experimental evidences demonstrate

that our heuristic algorithm runs very fast, and produces a optimum solution in most

of the cases. Surely, in some instances it could not produce optimum solution, but the

produced solution is very close to the optimum one. The proof of the computational

hardness result of problem P2 is still undecided.
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Chapter 5

All-to-all Communication in Linear

Radio Networks

5.1 Introduction

In this chapter, we will study the unbounded version of the range assignment problem

for all-to-all communication in linear radio network. Here a set S = {s1, s2, . . . , sn} of

n radio stations are arbitrarily placed on a line. The objective is to assign range ρ(si)

to each radio station si ∈ S such that each radio station in S can communicate with

the other members in S and the total power (
∑

si∈S(ρ(si))
2) consumption is minimum.

A simple incremental algorithm for this problem is proposed. It produces optimum

solution in O(n3) time and O(n2) space. Thus, the earlier time complexity result on

this problem is improved by a factor of n [76].

5.2 Preliminaries

As in Chapter 2, the members in S = {s1, s2, . . . , sn} are assumed to be ordered from

left to right on a line with s1 at the origin. Given a range assignment R = {ρ(s1), ρ(s2),



. . . , ρ(sn)} of the radio stations in S, the communication graph is a directed graph

G = (V,E), where V = S, and E = {(si, sj)|d(s− i, sj) ≤ ρ(si)}, as defined in Section

1.1.

Definition 5.1 A communication graph G corresponding to a range assignment R is

said to be h-hop connected if from each vertex si ∈ S there exists a directed path of

length less than or equal to h to every other vertex sj ∈ S.

For each radio station si, we maintain an array Di which contains the set of distances

{d(si, sj), j = 1, . . . , n} in increasing order. Now we have the following lemma.

Lemma 5.1 For any given h, if R = {ρ1, ρ2, . . . , ρn} denotes the optimum range as-

signment of {s1, s2, . . . , sn} for h-hop all-to-all communication then ρi ∈ Di for all

i = 1, 2, . . . , n.

Proof: Same as in Lemma 2.1. 2

From now onwards, we restrict ourselves to the unbounded version of the problem, i.e.,

h = n− 1. Here the optimal solution corresponds to a range assignment such that the

communication graph G is strongly connected, and the sum of powers (
∑n

i=1(ρ(si))
2) of

all the radio stations in the network is minimum. The following two lemmas indicate

two important features of the optimum range assignment.

Lemma 5.2 Let ρ be the range assigned to a vertex si; s` and sr be respectively the left-

most and right-most radio stations such that d(si, s`) ≤ ρ and d(si, sr) ≤ ρ. Now, if we

consider the optimum range assignment of the radio stations {s`, s`+1, . . . , si, . . . , sr−1, sr}
only subject to the condition that ρ(si) = ρ, then (i) the range assigned to the radio sta-

tion sj is equal to d(sj, sj+1) for all j = `, ` + 1, . . . , i − 1, and (ii) the range assigned

to the radio station sk is equal to d(sk, sk−1) for all k = i + 1, i + 2, . . . , r.
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Figure 5.1: Illustration of Lemma 5.2

Proof: The feasibility of the range assignment as mentioned in the lemma follows from

the fact that there are directed paths from s` to si and sr to si in the corresponding

communication graph. The optimality follows from the inequality (p+ q)2 > p2 + q2 for

any two positive real numbers p and q (See Figure 5.1). 2

Lemma 5.3 In optimum range assignment R = {ρ1, ρ2, . . . , ρn}, ρ1 = d(s1, s2) and

ρn = d(sn−1, sn).

Proof: On the contrary, let us assume that ρ1 = d(s1, si), where i > 2. Now, we

prove the lemma considering the following two cases : (i) ρ2 ≤ d(s2, si), and (ii)

ρ2 > d(s2, si). In Case (i), let us consider a modified assignment R′ = {ρ′1, ρ′2, . . . , ρ′n},
where ρ′1 = d(s1, s2), ρ

′
2 = d(s2, si), ρ

′
3 = ρ3, ρ

′
4 = ρ4 . . . , ρ′n = ρn. Note that, the com-

munication graph corresponding to the range assignment R′ is still strongly connected,

and cost(R′) = cost(R) − (d(s1, si))
2 − ρ2

2 + (d(s1, s2))
2 + (d(s2, si))

2 = cost(R) −
2d(s1, s2)d(s2, si) − ρ2

2 < cost(R). In Case (ii) also, let us consider a modified as-

signment R′ = {ρ′1, ρ′2, . . . , ρ′n}, where ρ′1 = d(s1, s2), ρ
′
2 = ρ2, ρ

′
3 = ρ3, . . . , ρ

′
n =

ρn. Note that, the communication graph corresponding to the new range assignment

R′ is still strongly connected, and cost(R′) = cost(R) − (d(s1, si))
2 + (d(s1, s2))

2 =

cost(R)− 2d(s1, s2)d(s2, si)− (d(s2, si))
2 < cost(R). Therefore, in both the cases, there

is another range assignment R′ with ρ1 = d(s1, s2) whose cost is less than that of R.

The second part of the lemma can be proved in exactly similar manner. 2

Our proposed algorithm is an incremental one. We denote the optimal range assignment

of a subset Sk = {s1, s2, . . . , sk} by Rk = {ρk
1, ρ

k
2, . . . , ρ

k
k}. Here the problem is: given

Rj for all j = 2, 3, . . . , k, obtain Rk+1 by considering the next radio station sk+1 ∈ S.
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An almost similar dynamic programming approach is used in [76] for solving the same

problem in O(n4) time. Our approach is based on a detailed geometric analysis of the

optimum solution, and it solves the problem in O(n3) time.

5.3 Method

We assume that for each j = 2, 3, . . . , k, the optimal range assignment of Sj = {s1, s2,

. . . , sj} is stored in an array Rj of size j. The elements in Rj are {ρj
1, ρ

j
2, . . . , ρ

j
j}, and

cost(Rj) =
∑j

α=1(ρ
j
α)2. The radio station sk+1 is the next element under consideration.

An obvious choice of Rk+1 for making the communication graph GRk+1
strongly con-

nected is ρk+1
k+1 = d(sk, sk+1) and ρk+1

k = max(d(sk, sk+1), ρ
k
k). Lemma 5.4 says that this

may not lead to an optimum result.

Lemma 5.4 (d(sk, sk+1))
2 ≤ cost(Rk+1)−cost(Rk) ≤ (d(sk, sk+1))

2+(max(d(sk, sk+1), ρ
k
k))

2

− (ρk
k)

2.

Proof: In Rk+1, sk+1 will receive range equal to d(sk, sk+1) for connecting it with its

closest member sk ∈ Sk (see Lemma 5.3). Thus, the left hand side of the inequality

follows. The equality takes place when sk+1 is reachable from some member in Sk with

its existing range assignment in Rk. If this situation does not take place, then one needs

to extend the range of some member in Sk to reach sk+1. The inequality in the right

hand side follows from the obvious choice sk for which the range ρk
k < d(sk, sk+1), and

is extended to d(sk, sk+1). Here, the equality takes place if ρk
k ≥ d(sk, sk+1). 2

Illustrative examples are demonstrated in Figure 5.2, where the distance between each

two consecutive nodes is shown along that edge; the range assignment for each node

before and after inserting radio station s5 are shown in parenthesis and square bracket

respectively. From the left hand inequality of Lemma 5.4, the range of sk+1 (i.e., ρk+1
k+1)

needs to be assigned to d(sk, sk+1) (see the range assigned to s5 in both the figures). Now

we analyze the different cases that may be observed in Rk, and the actions necessary
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5 10 2 9

(5)[5] (10)[10] (10)[11] [2](2) [9]

s1 s2 s3 s4 s5

3 2 1 3

(3)[3] (3)[3] (2)[1] [3](1) [3]

s1 s2 s3 s4 s5

(a)

(b)

Figure 5.2: Proof of Lemma 5.4

for all those cases such that at least one member of Sk can communicate with sk+1 in

1-hop, and the total cost becomes minimum.

The simplest situation occurs if d(si, sk+1) ≤ ρk
i for at least one i = 1, 2, . . . , k. In this

case, ρk+1
i = ρk

i for all i = 1, . . . , k. If d(si, sk+1) > ρk
i for all i = 1, . . . , k, then we

need to increase the range of some member in Sk for the communication from Sk to

sk+1. This may sometime need changes in different elements of Rk to achieve Rk+1. We

have demonstrated two examples in Figure 5.2, where the optimal range assignment of

{s1, s2, s3, s4, s5} is obtained from that of {s1, s2, s3, s4}. The optimal range assignment

in R4 and R5 are given in parenthesis and square bracket respectively. In Figure 5.2(a)

the optimal range assignment is obtained by incrementing the range of s3 only. But in

Figure 5.2(b), in addition to incrementing the range of s4, the range of s3 is decremented

to get the optimal assignment.

We useRi
k+1 to denote the optimum range assignment of the members in Sk+1 subject to

the condition that ρk+1
i = d(si, sk+1). Now,Rk+1 can be obtained by computingRi

k+1 for

all i = 1, 2, . . . , k, and then identifying an i∗ such that cost(Ri∗
k+1) = mink

i=1 cost(Ri
k+1).

We first describe a preprocessing step. Next, we describe in detail the computation of

Ri
k+1. Finally, we mention the order of invoking Ri

k+1 for different values of i.
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5.3.1 Preprocessing

In this step, we create the following two matrices using the given set of radio stations

S = {s1, s2, . . . , sn}.

T1: It is an n×n matrix. Its (i, j)-th entry contains the index α (i ≤ α < j) such that

d(sα, sα+1) = maxj−1
β=i d(sβ, sβ+1). Note that, T1 is a symmetric matrix.

T2: It is also an n × n matrix. Its (i, j)-th entry contains an index α such that if si

is assigned the range d(si, sj) then si can communicate with sα in 1-hop, but si

can not communicate with sα−1 (resp. sα+1) in 1-hop depending on whether i < j

(resp. i > j).

Lemma 5.5 Both the matrices T1 and T2 can be computed in O(n2) time.

Proof: The results of the lemma follows from the computation order of the elements

of T1 and T2. The computation order of i-th rows of T1 and T2 are as follows:

T1: T1[i, i], T1[i, i + 1], . . . , T1[i, n]

T2: T2[i, i], T2[i, i− 1], . . . , T2[i, 1], T2[i, i + 1], T2[i, i + 2], . . . , T2[i, n]

The time complexity for computing i-row of T1 is O(n), which follows from the fact

that (i) T1[i, i] = 0 and for j > i, T1[i, j] = max(T1[i, j − 1], d(sj−1, sj)), and (ii) T1 is

a symmetric matrix.

The time complexity for computing i-row of T2 is O(n), which follows from the fact

that T [i, i] = 0 and (i) if T2[i, `] = α and T2[i, k] = β where k < ` < i, then β ≥ α,

and (ii) if T2[i, `] = α and T2[i, k] = β where k > ` > i, then β ≤ α. 2
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5.3.2 Computation of Ri
k+1

First, we introduce the notion of left-cover and right-cover which will be used extensively

in designing our algorithm.

Definition 5.2 The left-cover of a radio station sα for its assigned range ρ is the left-

most radio station sβ which is reachable from sα in 1-hop. Thus, sβ = left-cover(sα, ρ),

where β ≤ α and d(sα, sβ) ≤ ρ < d(sα, sβ−1). If β = 1 then the right-hand inequality

condition is not required.

Definition 5.3 The right-cover of a radio station sα for its assigned range ρ is the

right-most radio station sβ which is reachable from sα in 1-hop. Thus, sβ = right-

cover(sα, ρ), where β ≥ α and d(sα, sβ) ≤ ρ < d(sα, sβ+1). If β = n then the right-hand

inequality condition is not required.

For notational convenience we use ρj to denote ρk+1
j , for j = 1, 2, . . . , k + 1. We first

assign ρi = d(si, sk+1) and ρk+1 = d(sk, sk+1). Let s` = left-cover(si, ρi). This implies,

si can communicate with all the radio stations {s`, s`+1, . . . , si−1, si, si+1, . . . , sk+1} =

SSi (say) in 1-hop, but si can not communicate with s`−1 in 1-hop. Let us denote

SSi
L = {s`, s`+1, . . . , si−1, si}, and SSi

R = {si+1, si+2, . . . , sk+1}. Thus, we have SSi =

SSi
L ∪ SSi

R.

By applying Lemma 5.2, we assign ρj = d(sj, sj−1) for all sj ∈ SSi
R, and ρj = d(sj, sj+1)

for all sj ∈ SSi
L \ {si}. Due to this changed range assignment, none of the nodes in

SSi
R can communicate with a node to the left of si in 1-hop, but there may exist some

member(s) in the set SSi
L whose left-cover is in S`−1. Let sm be the left-most radio

station such that sm = left-cover(sα, ρα) for some sα ∈ SSi
L. We now need to consider

the following two cases depending on whether (i) m < ` and (ii) m = `.

Case (i) [m < `]: Using the same argument as stated in Lemma 5.2, we further

update the range of the radio station sj to ρj = d(sj, sj+1) for all j = m,m +
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(b)

(a)

(c)

s1 si sk sk+1

sm
sl-1 sl si sk sk+1

sl-1 sl si sk sk+1

Figure 5.3: Illustration of (a) Case (i), (b) Case (ii) with m = ` = 1, and (c) Case (ii)

with m = ` > 1

1, . . . , ` − 1 (see Figure 5.3(a)). This makes the communication subgraph with radio

stations {sm, sm+1, . . . , s`−1, s`, . . . , si, . . . , sk+1} strongly connected. This new assign-

ment of range may cause some one to the left of sm to be reachable in 1 hop from

{sm, sm+1, . . . , s`−1}. We update the set SSi
L to SSi

L∪{sm, sm+1, . . . , s`−1}. As a result,

SSi is also being updated accordingly, and m is considered to be as `. Again, we need

to consider one among the cases (i) and (ii). Note that, while calculating the left-cover

of the updated set of nodes SSi
L, we need to consider only the newly added nodes in

SSi
L.

Case (ii) [m = `]: Here several nodes in SSi
L exist whose assigned range enables it

to communicate with sm in 1-hop but not with sm−1 (if exists). Thus, Case (i) fails to

recur (see Figure 5.3(c)). Here SSi = {sm, sm+1, . . . , si, . . . , sk, sk+1}, and m is referred

to as the maximal-left-cover. The optimum range assignments for the radio stations in

SSi are as follows:

• ρi = d(si, sk+1) (as assumed),

• ρj = d(sj−1, sj) for all j = i + 1, i + 2, . . . , k + 1, and

• ρj = d(sj, sj+1) for all j = m,m + 1, . . . i− 1.

Observation 5.1 The left-cover of every member in SSi with respect to the above range

assignment lies inside SSi.
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Now, two cases may arise depending on whether m = 1 or m > 1. For m = 1, the

optimum range assignment Ri
k+1 is already computed (see Figure 5.3(b)). However, if

m > 1, we need to compute the range assignments of the members in Sm−1 and establish

communication among SSi and Sm−1.

Let us now consider Rm, and set ρj = Rm[j] for j = 1, 2, . . . ,m−1. Since Rm supports

strong connectivity among the members in Sm, at least one member in Sm−1 directly

(in 1 hop) communicates with a member in SSi with the range assignment Rm. Let sµ

be the right-most member in SSi which is directly (in 1 hop) reachable from a member

sν ∈ Sm−1. But, no element in SSi can communicate with Sm−1 with its presently

assigned range. We now introduce the concept of critical-gap and use it to describe two

procedures for restoring the strong connectivity in the entire Sk+1.

Definition 5.4 Let {sa, sa+1, . . . , sb} be a sequence of radio stations such that ∆ =

maxb−1
j=a d(sj, sj+1) = d(sτ , sτ+1) (say). Here, ∆ is said to be the critical-gap of the

sequence of radio stations {sa, sa+1, . . . , sb}.

Lemma 5.6 Let (sa, sa′) and (sb, sb′) be two pairs of radio stations such that a < b′ <

a′ < b, and the range assigned to sa and sb be ρa = d(sa, sa′) and ρb = d(sb, sb′)

respectively (see Figure 5.4(a)). If the critical-gap in {sb′ , sb′+1, . . . , sa′} is d(sτ , sτ+1),

where b′ ≤ τ < a′, then in the optimum (cost) range assignment of the radio stations

{sa, sa+1, . . . , sb′ , . . . , sa′ , . . . , sb}, (i) ρj = d(sj, sj−1) for j = a + 1, a + 2, . . . , τ and (ii)

ρj = d(sj, sj+1) for j = τ + 1, τ + 2, . . . , b− 1.

Proof: Since ρa = d(sa, sa′), ρb = d(sb, sb′) and a < b′ < a′ < b, the communication

graph among the nodes {sa, sa+1, . . . , sb} remains strongly connected if we choose an

index t ∈ [b′, a′] and assign (i) ρj is equal to d(sj, sj−1) for j = a+1, a+2, . . . , t and (ii)

ρj is equal to d(sj, sj+1) for j = t+1, t+2, . . . , b−1 (see Figure 5.4(b) for the demonstra-

tion). Thus, the total cost becomes (d(sa, sa′))
2 + (d(sb, sb′))

2 +
∑t

j=a+1(d(sj, sj−1))
2 +
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sa’ sb

(b)

sb’ sτ sτ+1

sa’ sbsτ sτ+1

sa

sa sb’

(a)

Figure 5.4: Proof of Lemma 5.6

∑b−1
j=t+1(d(sj, sj+1))

2 = (d(sa, sa′))
2 +(d(sb, sb′))

2 +
∑b−1

j=a(d(sj, sj+1))
2− (d(st, st+1))

2. As

d(sτ , sτ+1) is the critical-gap, the minimum cost is achieved for t = τ . 2

sa’ sb

(a)

(b)

sasb’ sτ sτ+1

sa’ sbsasb’ sτ sτ+1

Figure 5.5: Proof of Lemma 5.7

Lemma 5.7 Let (sa, sa′) and (sb, sb′) be two pairs of radio stations such that b′ < a <

a′ < b, and the range assigned to sa and sb be ρa = d(sa, sa′) and ρb = d(sb, sb′)

respectively (see Figure 5.5(a)). If the critical-gap in {sa, sa+1, . . . , sa′} is d(sτ , sτ+1),

then in the optimum (cost) range assignment of the radio stations {sb′ , sb′+1, . . . , sb}, (i)

ρj = d(sj, sj+1) for j = b′, b′+1, . . . , a−1, (ii) ρj = d(sj, sj−1) for j = a+1, a+2, . . . , τ ,

and (iii) ρj = d(sj, sj+1) for j = τ + 1, τ + 2, . . . , b− 1 (see Figure 5.5(b)).

Proof: Proof is similar to Lemma 5.6. 2

100



Recall that, sµ is the right-most radio station in SSi which is 1-hop reachable from a

member of Sm−1 with the existing range assignment. We now describe the following

two procedures for establishing a connection from SSi to Sm−1, and the necessary

adjustments of the existing range assignments for reducing the overall cost. Note that,

Procedure-1 is to be run if µ > m. But Procedure-2 needs to be run always (irrespective

of the value of µ).

Procedure-1

This procedure is applicable if µ > m. Since the members in SSi are strongly connected

with their existing range assignments and µ > m, there exists some radio station(s) to

the right of sµ whose assigned range enables it to reach a radio station to the left of sµ.

We assume that sθ is the left-most one among such radio stations, where m ≤ θ < µ.

Thus, a situation as in Figure 5.4(a) (ignoring the suffixes of the radio stations) appears

here. Let ∆ = d(sτ , sτ+1) be the critical-gap in {sθ, sθ+1, . . . , sµ}. We apply Lemma 5.6

to update the range assignment as {ρj = d(sj, sj−1), j = τ, τ − 1, . . . ,m} (see Figure

5.4(b)). The range assignments of the other radio stations remain unchanged, and

the strong connectivity of the entire Sk+1 is restored. The cost of the updated range

assignment is then computed and stored in a variable C∗. We also allocate another

variable α∗ and initialize it with 0. Here C∗ and α∗ are used respectively to store the

optimum cost of Ri
k+1 and the optimum choice of α whose range is to be increased for

communication with Sm−1.

Note that, if µ = m then this procedure is not applicable. In that case, we initialize C∗

by
∑k+1

j=1 ρ2
j , where ρj is the presently assigned range of sj; α∗ is initialized with 0.

Procedure-2

This procedure is executed irrespective of whether µ = m or µ > m. Here we restore

the strong connectivity by increasing the range of a member sα ∈ SSi
L so that it can
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sα’ sβsβ’ sτ’ sτ’+1sαsmsm-1 sµsτ

Figure 5.6: Updating range assignment using critical-gap

communicate with a member in Sm−1. We consider each member sα ∈ SSi
L separately,

and increase its range to ρα = d(sα, sm−1). This needs updating the ranges of the

radio stations in SSi
L to achieve the minimum cost. We use (Ri

k+1 | ρα = d(sα, sj)) to

denote the optimum range assignments for maintaining strong connectivity among the

members in Sk+1 with ρi = d(si, sk+1) and ρα = d(sα, sj).

Consider the computation of cost(Ri
k+1 | sα = d(sα, sm−1)). Here, the following two

instances are created where we need to compute the critical-gap for updating the ranges

of the radio stations in SSi
L.

The range assignments ρν = d(sν , sµ) (ν < m) and ρα = d(sα, sm−1) are such that, both

sν and sα can communicate with a non-empty subset of radio stations, namely

{sm−1, sm, . . . , sφ}, where φ = min(µ, α). We compute the critical-gap ∆1 =

maxφ−1
j=m−1 d(sj, sj+1) = d(sτ , sτ+1) (say).

Let sα′ = right-cover(sα, ρα), where ρα = d(sα, sm−1). As originally SSi was strong

connected, there must exist a radio station sβ (β ≥ α′) which can communicate

with a node sβ′ (say) to the left of sα′ in 1 hop. In other words, sβ′ = left-

cover(sβ, ρβ). Thus, sα and sβ can communicate with a non-empty subset of

radio stations, namely {sψ, sψ+1, . . . , sα′}, where ψ = max(α, β′). We compute

the critical-gap ∆2 = maxα′−1
j=ψ d(sj, sj+1) = d(sτ ′ , sτ ′+1) (say).

Next, we apply Lemma 5.6 and Lemma 5.7 adequately to revise the range assignments

as follows (see Figure 5.6 for an illustration):

• ρα = d(sα, sm−1) (as assumed).

• ρj = d(sj, sj−1) for j = τ, τ − 1, . . . ,m.
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• ρj = d(sj, sj−1) for j = τ ′, τ ′ − 1, . . . , α + 1.

• The range of other radio stations remain unchanged.

Note that, given ρi = d(si, sk+1) and ρα = d(sα, sm−1), we have assigned ranges of k− 1

radio stations in (Ri
k+1 | ρα = d(sα, sm−1)). It produces the minimum cost because

(i) we have chosen minimum cost range assignments for the m − 1 radio stations

{s1, s2, . . . , sm−1} from Rm,

(ii) the range of each of the remaining (k −m) radio stations is equal to its distance

from one among its two neighbors, and

(iii) we have (k −m + 2) such pairwise distances among the radio stations {sm, sm+1,

. . . , sk+1}, and we have chosen (k−m) such distances leaving the two critical-gaps

∆1 and ∆2 for assigning ρα = d(sα, sm−1) in the two side of sα.

Some times the range ρα = d(sα, sm−1) is such that a very small further increase of ρα

enables sα to communicate with sα′+1 directly, and thus a larger critical-gap d(sα′ , sα′+1)

can be reduced from the total cost of range assignment. The following two lemmas

indicate that only one more range ρα = d(sα, sα′+1) of sα need to be considered, and

the situation where such a choice of ρα may produce lower cost.

Lemma 5.8 If d(sα, sm−1) ≤ d(sα, sα′) + C, where C = max{d(sj, sj+1) | j = m −
1,m, . . . , α′ − 1}, then cost(Ri

k+1 | ρα = d(sα, sα′+1)) > cost(Ri
k+1 | ρα = d(sα, sm−1)).

Proof: Let d(sα, sm−1) = d(sα, sα′) + C1, d(sα, sα′+1) = d(sα, sm−1) + C2, and D =

cost(Ri
k+1 | ρα = d(sα, sα′+1)) − cost(Ri

k+1 | ρα = d(sα, sm−1)). To prove D > 0 if

C1 < C.

Consider the Figure 5.7. Here

D = [(d(sα, sm−1) + C2)
2 − (δ1)

2 − (δ2)
2] − [(d(sα, sm−1))

2 − (∆1)
2 − (∆2)

2], where δ1

and δ2 are the critical-gap for assigning ρα = d(sα, sα′+1) in the two sides of sα.
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sα’
sβsβ’ sα’+1sαsmsm-1 sµ

δ1
δ2

Figure 5.7: Increasing the range of sα, and the resulting two critical-gaps

Since m is the maximal-left-cover, we have δ2 = C1 + C2 < 2d(sα, sm−1)− C1. We also

have δ1 < C2, since we have increased the range of sα by an amount C2.

On simplification of the expression of D, we have

D = 2C2× d(sα, sm−1) + (C2)
2 + (∆1)

2 + (∆2)
2− (δ1)

2− (δ2)
2 ≥ (∆1)

2 + (∆2)
2− (C1)

2.

Thus D > 0 if C1 < max(∆1, ∆2). As C = max{d(sj, sj+1) | j = m− 1,m, . . . , α′ − 1},
we have C = max(∆1, ∆2). Thus the lemma follows. 2

Lemma 5.9 If ρα is increased to communicate with Sm−1, then the possible values of

ρα to be considered are d(sα, sm−1) and d(sα, sα′+1).

Proof: The first choice of the value of ρα is obvious. Let us now consider the sec-

ond choice ρα = d(sα, sα′+1). Let sψ = left-cover(sα, d(sα, sα′+1)). Following the same

convention as in Lemma 5.8, let C ′ = max(δ1, δ2) and d(sα, sα′+1) = d(sα, sψ) + C ′
1.

From Lemma 5.8, we have d(sα′ , sα′+1) = C1 + C2. Again since ψ ≤ m − 1, we

have d(sα, sα′+1) − d(sα, sψ) ≤ C2. The lemma follows from the fact that C ′
1 ≤ C2 <

d(sα′ , sα′+1) < C ′, since d(sα′ , sα′+1) ≤ δ2. 2

Lemma 5.9 says that, we need to compute cost(Ri
k+1|sα = d(sα, sm−1)) and cost(Ri

k+1|sα =

d(sα, sα′+1)) for each sα, α = m,m + 1, . . . , i. At each step, if the minimum of these

two costs is less than C∗, then C∗ is updated accordingly, and α is also stored in α∗.

Finally, cost(Ri
k+1) = C∗. If α∗ = 0, we need to run Procedure-1 once again to get the

optimum range assignment Ri
k+1. Otherwise, we run Procedure-2 with α = α∗ to get

Ri
k+1.
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5.3.3 Computation of Rk+1

We are now in a position to present the stepwise description of our algorithm. In the

preprocessing step, we create two matrices T1 and T2 of size n×n each as described in

Subsection 5.3.1. Note that, if the (i, j)-th entry of the matrix T2 contains α and i < j

(resp. i > j) then sα= left-cover(si, d(si, sj)) (resp. sα = right-cover(si, d(si, sj))). The

input for computing Rk+1 is {Rj, j = 2, 3, . . . , k}; these are computed in the previous

(k − 1) iterations. The following two lemmas say that the computation of Rk+1 can be

made fast if Ri
k+1 are executed for i = k, k − 1, . . . , 1 in order.

Lemma 5.10 Let m and m′ be the maximal-left-cover for Ri
k+1 and Rj

k+1 respectively.

Now, if i < j then m ≤ m′. Furthermore, if s` = left-cover(si, ρi) and ` ≥ m′, then

m = m′.

Proof: The first part of the lemma trivially follows from the fact that if si is to the

left of sj and d(si, sk+1) > d(sj, sk+1), then SSj ⊆ SSi. The second part follows from

the fact that (a) in Rj
k+1 the ranges assigned to each node sβ ∈ SSj

L(= {sm, sm+1, . . . ,

sj−1}) is d(sβ, sβ+1), and (b) while computing Ri
k+1, the range assigned to each node

sα ∈ {s`, s`+1, . . . , si−1} is equal to d(sα, sα+1). Since ` ≥ m′, the repeated computation

of left-cover will terminate after observing the maximal-left-cover m = m′. 2

Lemma 5.11 Let m′ be the maximal-left-cover for Rj
k+1. While computing Ri

k+1 for

some i < j, if ` ≥ m′, then cost(Ri
k+1) > cost(Rj

k+1).

Proof: Let m be the maximal-left-cover for Ri
k+1. As i < j, ` ≥ m′, we have

m = m′. While increasing the range of sα to ρ (= d(sα, sm−1) or d(sα, sα′+1) as

discussed in Lemma 5.9) to communicate with Sm−1, the critical-gap ∆1 generated

for both Rj
k+1 and Ri

k+1 become same. Let sβ = right-cover(sα, ρ). If β ≤ i, then

∆2 value for computing both Rj
k+1 and Ri

k+1 become same. If β > i, then ∆2
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value for Rj
k+1 is greater than ∆2 value for Ri

k+1 because in the former case ∆2 is

max{d(sα, sα+1), d(sα+1, sα+2), . . . , d(sβ̂−1, sβ̂)} (where β̂ = min(j, β)) and in the latter

case ∆2 is max{d(sα, sα+1), d(sα+1, sα+2), . . . , d(si−1, si)}.

The lemma follows from the fact that d(sj, sk+1) < d(si, sk+1) and ∆2 value for Rj
k+1 is

greater than or equal to ∆2 for Ri
k+1. 2

Lemmas 5.10 and 5.11 lead to the following conclusion towards accelerating the execu-

tion of the algorithm.

While computing Ri
k+1 if (i) cost(Rj∗

k+1) = mink
j=i+1 cost(Rj

k+1) and the maximal-left-

cover of sj∗ is sm∗ in the range assignment Rj∗
k+1, (ii) the left-cover of si is s` for its

range assignment ρ′i = d(si, sk+1), and (iii) ` > m∗, then cost(Ri
k+1) > cost(Rj∗

k+1).

So, we need not have to compute cost(Ri
k+1) in such a case.

5.3.4 Algorithm

We now give the stepwise description of the algorithm for computing Rk+1. In addition

to {Rj, j = 1, 2, . . . , k}, we need four scalar locations, namely opt, C∗, i∗ and α∗, and

two arrays R and LC, each of size n. The array R is used for generating Ri
k+1, and

the array LC contains the left-cover of some selected radio stations after assigning their

ranges. More specifically, each element of the array LC is a tuple (a, b), where m < a ≤ i

and sb = left-cover(sa, ρa). The first element of LC contains a = i, and the indices (a

values) of only those radio stations are to be stored in LC such that the corresponding

b values are in strictly decreasing order.

Step 1 Check whether there exists any radio station si ∈ Sk whose range ρi (∈ Rk)

is greater than or equal to d(si, sk+1). If the check succeeds, then the algorithm

terminates by copying the elements inRk in first k elements ofRk+1, and assigning

d(sk, sk+1) to the (k + 1)-th element of Rk+1.
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Step 2 If the check in Step 1 fails, then (* run the algorithm for computing Rk+1 *)

• Initialize opt ←−∞, m ←− k + 1 and

• For each i = k, k−1, . . . , 1, execute the following sub-steps to compute Ri
k+1.

(* This identifies an i∗ such that the cost of Ri∗
k+1 is minimum. As mentioned

above, at each iteration (corresponding to each value of i) the array R will

be used to generate Ri
k+1. For the sake of notational simplicity, we will use

ρj to denote R[j] *).

Step 2.1 Compute ` = left-cover(si, d(si, sk+1)) = T2[i, k + 1].

Step 2.2 Let m∗ be the maximal-left-cover at the (k− i∗+1)-th iteration, which

has produced the optimum solution till the (k − i)-th iteration.

Now, if ` < m∗ then execute the following steps (* if ` ≥ m∗, we need not

have to process si (by Lemma 5.11) *).

Step 2.3 Initialize the elements of R as follows. During this process, we also

compute the maximal-left-cover m and the array LC.

Step 2.3.1 Assign ρi = d(si, sk+1); LC ptr = 1; LC[1] = (i, `); m = ` and

α = i.

Step 2.3.2 Assign ρj = d(sj, sj−1) for j = k + 1, k, k − 1, . . . , i + 1.

Step 2.3.3 for j = α− 1, α− 2, . . . , ` do

ρj = d(sj, sj+1) and m = left-cover(sj, ρj).

if m < LC[LC ptr].b, then LC ptr = LC ptr + 1; LC[LC ptr] = (j, m)

endfor

Step 2.3.4 if m < ` then α = `; ` = m and execute Step 2.3.3.

Step 2.3.5 Assign ρj = j-th element of Rm for j = 1, 2, . . . ,m− 1.

Step 2.4 if m = 1, then

Compute C = cost(R).

if C < opt, then assign opt = C, i∗ = i and exit from Step 2.
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Step 2.5 Set the critical-gap ∆1 = 0.

Compute µ = max{right-cover(sj, ρj), j=1, 2, . . . , m-1}.
(* Sm is strongly connected with range assignments Rm. So µ ≥ m *)

Step 2.6 (* Procedure-1: If µ > m then execute this step. *)

• (* Compute sβ, the left-most radio station which is 1-hop reachable from

the radio stations to the right of sµ including itself *)

TEMP = LC ptr (* LC ptr will again be used in Procedure-2 (Step

2.7) *)

while LC[LC ptr].a < µ do LC ptr = LC ptr − 1

β = LC[LC ptr].b

LC ptr = TEMP (* Get back LC ptr *)

• Assign δ = T1[β, µ] and compute ∆1 = d(sδ, sδ+1) = critical-gap in

{sβ, sβ+1, . . . , sµ}.
• Revise the range assignment using the critical-gap ∆1 as described in

Lemma 5.6.

• Compute C = cost(R)− (∆1)
2 + (d(sm, sm−1))

2

• If C < C∗ then set C∗ = C, α∗ = 0 and i∗ = i.

Step 2.7 (* Procedure-2 *) Increase the range of each member in {sm, sm+1, . . . ,

si} one by one for communication with Sm−1. Let sα be under consideration.

Step 2.7a Increase the range of sα to ρ′α = d(sm−1, sα).

(* Compute ∆1 *)

• Assign β = min(µ, α)

• Assign θ = T1[m− 1, β] and compute ∆1 = d(sθ, sθ+1)

(* Compute ∆2 *)

Let α′ = T2[α,m− 1], (* sα′ = right-cover(sα, d(sα, sm−1)) *)
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(* Compute sβ′ , the left-most radio station which is 1-hop reachable from a

radio station to the right of sα′ including itself. *)

• While LC[LC ptr].a < α′ do LC ptr = LC ptr − 1

• β′ = LC[LC ptr].b.

• If β′ ≥ α then set θ = T1[β′, α′].

Otherwise set θ = T1[α, α′]

• Compute ∆2 = d(sθ, sθ+1).

• Compute C = cost(R)− (ρα)2 + (d(sα, sm−1))
2 − (∆1)

2 − (∆2)
2.

• If C < C∗, then set C∗ = C, α∗ = α and i∗ = i.

Step 2.7b Increase the range of sα to ρ′α = d(sα, sα′+1).

(* Compute ∆′
1: Let sδ be the left-most radio station which is 1-hop reachable

from sα *)

Compute δ′ = max(ν, δ)

Assign θ′ = T1(δ′, β) (* β is computed earlier *)

Compute ∆′
1 = d(sθ′ , sθ′+1)

(* Compute ∆′
2: Let sβ′ be the left-most radio station which is 1-hop reachable

from a radio station to the right of sα′+1 including itself. *)

• Compute ∆′
2 = max(∆2, d(sα′ , sα′+1)).

• Compute C = cost(R)− (ρα)2 + (d(sα, sα′+1))
2 − (∆′

1)
2 − (∆′

2)
2.

• If C < C∗, then set C∗ = C, α∗ = α and i∗ = i.

Step 3: If C∗ < opt then assign opt = C∗, and

repeat Step 2.1 to 2.7 with α = α∗, and copy the values of R in Rk+1.
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5.3.5 Correctness of the algorithm

The following lemma is relevant in the context of the proof of correctness of the algo-

rithm.

Lemma 5.12 While computing the maximal-left-cover for the range assignment Ri
k+1,

it is enough to consider ρ(si) = d(si, sk+1) as the range of si.

Proof: Consider a typical situation where m is the maximal-left-cover with ρ(si) =

d(si, sk+1). Here si covers s` towards its left, but not s`−1 for a very small (ε) shortage

of range, i.e., d(si, s`−1)−ε < ρ(si) < d(si, s`−1). We will show that if such a case arises,

then also we need not have to consider d(si, s`−1) as a choice for computation of m (the

maximal-left-cover). Here two cases need to be considered, namely m < ` and m = `.

In the first case, the maximal-left-cover computed using ρ(si) = d(si, sk+1) will be the

same as the maximal-left-cover with ρ′(si) = d(si, s`−1). Thus, the range assignment

of radio stations Sk+1 \ {si} using our algorithm will remain same for both the range

assignments ρ(si) and ρ′(si). Thus, we will loose in terms of cost if we use ρ′(si) instead

of ρ(si).

In the second case, for the assignment of ρ′(si) = d(si, s`−1), we will surely get a

maximal-left-cover m′ where m′ ≤ m. Here the cost of the range assignments for the

radio stations Sm−1 = {s1, s2, . . . , sm} using ρ′(si) is greater than that using ρ(si). The

reason is that, in the former case we only use Rm−1
m (which in turn uses Rm′), whereas in

the latter case, we consider the optimal range assignment Rm. In the part SSi, surely,

the range of one member in SSi
L needs to be increased to reach sm−1. Here the effect

of increasing the range of si to ρ′(si) is also considered. Thus the lemma follows. 2

Theorem 5.1 Our proposed algorithm correctly computes Ri
k+1.

Proof: After assigning ρi = d(si, sk+1) and computing the maximal-left-cover m, the

cost of range assignments of SSi is
∑i−1

α=m(d(sα, sα+1))
2+(d(si, sk+1))

2+
∑k+1

α=i+1(d(sα, sα−1))
2,
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which is equal to (d(si, sk+1))
2 + the sum of square of the length of the gap between

each pair of consecutive radio stations. In order to assign ranges to the members in

Sm−1, we have chosen the minimum cost range assignment Rm. This ensures commu-

nication between Sm−1 and SSi. The communication from SSi to Sm−1 is established

by increasing the range of only one radio station. Each element sα ∈ SSi
L is considered

for this purpose. For each sα, only two feasible choices of range (see Lemma 5.9) is

considered, and the cost is computed by increasing its range and doing necessary mod-

ifications of the range of other radio stations considering two critical-gaps ∆1 and ∆2.

Thus, the correctness of the algorithm follows. 2

5.3.6 Complexity analysis

The worst case time complexity of computing Rk+1 assumes the fact that no element

si ∈ Sk exists with ρi ≥ d(si, sk+1). If Ti denotes the time complexity of computing

Ri
k+1, then the total time complexity of computing Rk+1 is k × maxk

i=1 Ti. We now

calculate the worst case value of Ti.

In Step 2, the computation of maximal-left-cover (m) needs O(k + 1 −m) time. But,

Lemma 5.10 says that, the total time needed for computing the maximal-left-cover for

all the range assignments {Ri
k+1, i = k, k − 1, . . . , 1} is O(k).

While computing Ri
k+1 for some i, the worst case situation with respect to the time

complexity arises when m 6= 1. Here, Steps 2.5 and 2.6 execute in O(µ) time using the

preprocessed matrices T1 and T2. This may be O(k) in the worst case.

Step 2.7 needs to be repeated for each sα ∈ SSi
L with two feasible ranges. In each case,

the computation of critical-gap for sα needs amortized O(1) time using the array LC.

Finally, Step 3 needs another O(k) time. Thus, we have the following theorem stating

the worst case time complexity of the algorithm.
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Theorem 5.2 The time complexity of our proposed algorithm for the optimal range

assignment of the 1D unbounded range assignment problem is O(n3) in the worst case.

The space complexity is O(n2).

Proof: The preprocessing time complexity is O(n2). The above discussions say that

Ti = O(k) in the worst case. Thus, the time required for computing Rk+1 is O(k2). The

time complexity result follows from the fact that our incremental algorithm inserts n

radio stations on the line one by one in order.

The space complexity result follows from the requirement of space for the matrices T1

and T2, and the space required for storing Ri for all i = 1, 2, . . . , n−1 while computing

Rn. 2

5.4 Summary

The unbounded version of the range assignment problem for all-to-all communication in

linear radio network is studied. An incremental algorithm for this problem is proposed.

It uses dynamic programming paradigm, and produces optimum solution in O(n3) time

and O(n2) space. This is an improvement in the running time by a factor of n over the

best known existing algorithm for the same problem [76]. Two important properties of

this problem are mentioned in Lemmas 5.10 and 5.11, but we could not use it for the

further acceleration of the algorithm. We hope, a careful analysis using these results

may improve both the time and space complexities of the problem.
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Chapter 6

All-to-all Communication in 2D

6.1 Introduction

In this chapter, we extend the problem of Chapter 5 in 2D. Here, the given set S =

{s1, s2, . . . , sn} of n radio stations are placed in a 2D region, and an integer h is given.

The objective is to assign range ρ(si) to each radio station si ∈ S such that each

members of S can communicate with the others in at most h hops, and the total power

consumption (
∑

si∈S(ρ(si))
2) of the entire network is minimum. Here, we assume the

value of distance power gradient β is equal to 2, but our proposed algorithms are valid

for any β ≥ 1. The general 2D h-hop range assignment problem is known to be NP-

hard [40]. We first consider two simplified variations of the problem and propose efficient

polynomial time algorithm for obtaining optimal solution. In the homogeneous case,

where the range assigned to each radio station is same (ρ), we can obtain the minimum

value of ρ in O(n3( log logn
logn

)
5
4 logn) time in the worst case. In addition, if we consider

the unbounded version (h = n − 1) of the homogeneous range assignment problem,

then the optimal value of ρ can be obtained in O(n2logn) time. Finally, we propose

an efficient heuristic algorithm for the general h-hop range assignment problem. Here



the range of the radio stations may not be equal. Experimental results demonstrate

that our heuristic algorithm runs fast and produces near-optimal solutions on randomly

generated instances.

6.2 Homogeneous h-hop range assignment problem

Let ρ be the common range assigned to each radio station ρ. The objective is to find

the minimum value of ρ such that each element si ∈ S can communicate with all other

radio stations in S in at most h hops. In other words, if we denote the communication

graph corresponding to the range assignment {ρ, ρ, . . . , ρ} by Gρ then the objective is

to find a ρ > 0 such that there exists a directed path of length at most h between every

pair of vertices in Gρ, and for any ε > 0 however small, there exists at least one pair of

vertices si, sj such that there does not exist any directed path of length at most h from

si to sj in Gρ−ε.

s1
3.5

4

2.75

2.5

5

4.1

(a)

s2

s3 s4

s1

(b)

s2

s3 s4

s1

(c)

s2

s3 s4

Figure 6.1: Demonstration of homogeneous range assignment

Figure 6.1 demonstrates the theme of the algorithm for homogeneous range assignment

with n = 4 and h = 2. Figure 6.1(a) shows the distances between each pair of vertices.

Figure 6.1(b) shows the communication graph corresponding to ρ = 4, where each

node can communicate with every other nodes in 2 hops. Figure 6.1(c) shows the

communication graph corresponding to ρ = 3.5, which is not 2-hop connected between

every pair of radio stations.
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6.2.1 Overview of the algorithm

For each si ∈ S, we maintain an array Di which contains the set of distances {d(si, sj), j =

1, . . . , n} in increasing order. Now we have the following lemma.

Lemma 6.1 For any given h, if R = {ρ(s1), ρ(s2), . . ., ρ(sn)} denotes the opti-

mum solution of the range assignment problem for h-hop all-to-all communication, then

ρ(si) ∈ Di for all i = 1, 2, . . . , n.

Proof: Same as Lemma 2.1. 2

In the homogeneous range assignment problem, the range ρ assigned to every element

in S must be an element in ∪n
i=1Di (by Lemma 6.1). We create an array D of size

(
n
2

)
containing the elements in ∪n

i=1Di in increasing order of their magnitude. We also

allocate a n× n matrix to store the communication digraph. Now we need to consider

two important things - (i) choose an element ρ in the array D, and (ii) check the h-hop

connectivity using the following steps:

Step 1: Construct the graph Gρ.

Step 2: Test whether the graph Gρ is strongly connected.

Step 3: If the test in Step 2 returns true, then we compute a parameter ∆(ρ) of the

digraph Gρ as follows:

Compute all pair shortest paths [64] in Gρ. ∆(ρ) is the length of the longest

one among these paths.

The parameter ρ is selected as follows: choose ρ = D[2α], for α = 0, 1, . . . , k, where k

is such that the ∆(ρ) > h for α = k − 1, but ∆(ρ) ≤ h for α = k. Now, we need to

perform a binary search among the indices [2k−1, 2k−1 + 1, . . . , 2k] to find an element k′
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such that ∆(ρ) > h for ρ = D[k′ − 1], and ∆(ρ) ≤ h for ρ = D[k′]. Thus, we need to

inspect at most O(logn) elements of the array D.

6.2.2 Complexity

Theorem 6.1 The worst case time and space complexities for the homogeneous version

of 2D h-hop range assignment problem are O(n3( log logn
logn

)
5
4 logn) and O(n2) respectively.

Proof: The space complexity follows from the fact that, for each required value of ρ,

we need to create the graph Gρ, which may need O(n2) space in the worst case. Step

1 needs O(n2) time for creating the graph. Step 2 can be executed in O(|E|) time

[37], where E is the set of edges in Gρ. The best known algorithm for Step 3 runs in

O(n3( log logn
logn

)
5
4 ) time [64]. Thus, the time required for Step 3 dominates the worst case

time complexity for processing a single value of the parameter ρ. As we need to inspect

O(logn) entries of the array D for finding the optimal values of ρ in the worst case, the

overall time complexity of the algorithm is O(n3( log logn
logn

)
5
4 logn). 2

Corollary 6.1.1 The worst case time complexity of the unbounded homogeneous ver-

sion of 2D range assignment problem is O(n2logn).

Proof: Follows from the fact that, here Step 3 of the algorithm is not required. For

each required value of ρ, we need only to test the strong connectivity of the directed

graph Gρ, which needs O(n2) time [37]. 2

For the unbounded version of the problem, if the assumption of homogeneous range

assignment is relaxed, a 2-approximation algorithm can easily be obtained in O(nlogn)

time using the following two steps:

Step 1: compute the the minimum spanning tree of the planar point set in O(nlogn)

time (see Theorem 1 of [50]).
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Step 2: If si is connected to sj1 , sj2 , . . ., sjk
in the minimum spanning tree, then assign

ρ(si) = max(d(si, sj1), d(si, sj2), . . ., d(si, sjk
)) [76].

6.3 General h-hop range assignment problem

The algorithm described in the earlier section works well for the general problem if

the radio stations are uniformly distributed in the 2D plane. But, such an ideal sit-

uation is practically impossible due to various physical constraints, for example, pres-

ence of mountains/lakes, existing street layouts, conservation of large historical places

etc. Thus, our earlier algorithm for homogeneous range assignment will not produce

an optimum solution in general. Here the ranges assigned to different radio stations

S = {s1, s2, . . . , sn} may differ. Given a finite set S of n radio stations in 2D, and a

positive integer h (1 ≤ h < n), the 2D h-hop range assignment problem is NP-hard

[40]. We describe an efficient heuristic approach for this problem. For small examples,

the result produced by our algorithm is very close to the optimum solution obtained by

exhaustive search. We have also performed simulation experiments for demonstrating

the change in cost of range assignment for different values of h on the same set of radio

stations. The change in cost for different n for a fixed value of h is also studied. In order

to demonstrate the efficiency of our algorithm with respect to the quality of the solution

and running time, we have run our algorithm on randomly generated large examples and

compared the results with the 2-approximation algorithm based on minimum spanning

tree for the unbounded version of 2D range assignment problem [76].

6.3.1 Proposed heuristic algorithm

We first compute the optimum solution for homogeneous h-hop range assignment prob-

lem. For each element si ∈ S, we have already computed the array Di containing its
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distances from all other n− 1 radio stations in increasing order. Next, we perform the

following refinement steps to get solution for the general problem.

Step 1: For all the radio stations si ∈ S, if ρ(si) does not match with any element in

Di, we update ρ(si) by an element δ ∈ Di which is largest among all the elements

in Di that are less than or equal to ρ(si). It can be obtained by applying binary

search in Di.

This step does not change the communication graph. So, we can easily reduce the

total cost of power assignment maintaining the h-hop connectivity.

Step 2: We compute the gain of reducing range (by one step) for each radio station

si ∈ S as follows: if ρ(si) = Di[j] (the j-th element in Di), then gain(si) =

((Di[j])
2 − (Di[j − 1])2). This indicates the reduction in the cost if the range of

si is changed from Di[j] to Di[j − 1]. Note that, in this step we are not checking

whether the h-hop connectivity is maintained or not due to this reduction of range

of si. We store gain(si) (along with i and j) for all si ∈ S in a max-heap.

Step 3: Pick up (and delete) the maximum element from the heap. Let it corresponds

to the radio station si. If ρ(si) = Di[j] (the j-th element in Di), then replace

ρ(si) by Di[j − 1], and check for h-hop connectivity. If this test succeeds we set

ρ(si) = Di[j − 1]. Note that, ρ(si) may further be reduced maintaining the h-hop

connectivity. So, we compute gain(si) = (Di[j − 1])2 − (Di[j − 2])2, and put it

in the heap along with i and (j − 1). If the test fails, the range of si can not

be reduced further maintaining h-hop connectivity. Thus, gain(si) need not be

retained in heap.

Step 4: We iterate Step 3 repeatedly until the heap becomes empty.

Note that further reduction of total cost by applying of Step 3 will destroy the

h-hop connectivity. But it may so happen that, a little increase in ρ(si) for some
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si ∈ S creates a number of edges in the communication graph. This may allow

reduction in the range assigned to many other elements of S (i.e., deletion of

many edges from the communication graph) preserving the h-hop connectivity.

This motivates us to execute Step 5 and 6 stated below.

Step 5: This step invokes Step 4 repeatedly for each sk ∈ S. We use two scalars B

and µ. B is initialized with 0. For each element sk ∈ S we inspect the following:

Assign ρ(sk) = Dk[n − 1]. This incorporates many edges in the communication

graph. Thus, we may apply Step 4 repeatedly to observe the gain in the total

cost. The total gain, if any, is compared with the existing value of B. If it is

profitable, then the B is updated with the amount of gain, and k is stored in µ.

Step 6: We apply Step 5 repeatedly until no further gain is possible.
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Figure 6.2: An instance of 2D range assignment

In Figure 6.2, an arrangement of 5 radio stations is shown in a 5 × 5 grid for the

demonstration of our heuristic algorithm with n = 5 and h = 2. The initial homogeneous

range assignment is {5, 5, 5, 5, 5}, and the cost is 125. After Step 1, the range vector

becomes {√13, 5,
√

13, 5, 5}. This keeps the communication graph invariant, and the

total cost becomes 101. After two iterations of Step 2, the resulting assignments are
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Figure 6.3: Comparison of heuristic estimate of power requirement and the optimal

power requirement for different values of n and β

{√13,
√

10,
√

10, 5, 5}. This maintains 2-hop connectivity, and the cost reduces to 83.

In Step 4, observe that an increase of the range of s3 to
√

26, causes a decrease in total

cost to 79; the corresponding range vector is {√13,
√

10,
√

26,
√

5, 5}.

6.4 Experimental Results

We have performed the experiment using DEC-ALPHA 233 MHz workstation. The

points are generated on a 500 × 500 square grid. We have been able to compute the

optimum solution of the 2D h-hop range assignment problem by performing exhaustive

enumeration for n = 8 and n = 9. Figures 6.3(a) and 6.3(b) demonstrate the per-

formance of our heuristic as compared to the optimum solution for β = 2 and β = 3

respectively (β is the distance power gradient in the cost function). It is observed that

the solution produced by our heuristic is very close to the optimum solution in most of

the cases. In particular, for large values of h the result of the two experiments produce

almost same result.
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Figure 6.4 demonstrates the change in the total cost of range assignment for different

values of β. The four different plots correspond to (a) β = 1, (b)β = 2, (c) β = 3 and

(d) β = 4. We have chosen different values of n ranging from n = 10 to n = 30, keeping

h fixed. We have produced the result for h = 2, 3, 4 and 5. It is observed that, if the

value of h is high, then the variation in the total cost does not vary much if n increases.

But if h is small, then as n increases, the total cost increases significantly.
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Figure 6.4: Plots of the power requirement vs. number of radio stations (for different

values of h)

Figures 6.5 demonstrates the variation of total cost of range assignment for different
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values of β, namely (a) β = 1, (b) β = 2, (c) β = 3 and (d) β = 4. We have considered

different values of h keeping n fixed (n = 30, 40, 50). It is obvious that for higher values

of h the total cost for the range assignment should be less, and for lower values of h,

the cost is high. But the important observation is that the each of these curves looks

like a rectangular hyperbola. This implies, the product of the cost and the value of h

is almost constant. The same observation is demonstrated in Figure 6.3.
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Figure 6.5: Comparison of the total power with h for fixed n

We now analyze the time requirement for running our heuristic algorithm. It starts

with the homogeneous range assignment and tries to reduce the cost in successive steps

keeping the h-hop connectivity preserved. The time requirement for the homogenous
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range assignment is O(n3( log logn
logn

)
5
4 log n) and that of checking h-hop connectivity of

the communication graph is O(n3( log logn
logn

)
5
4 ) at each step [64]. Thus the total time

required for running our program depends on the number of iterations needed. Table

6.1 demonstrates the running time of our heuristic for different values of n and h.

Table 6.1: Variation of time (in second) with different n and h

h = 2 h = 5 h = 10 h = 15 h = 20

n = 50 7.0 5.0 2.0 1.2 0.9

h = 5 h = 10 h = 15 h = 20 h = 25

n = 75 35.0 11.0 6.0 4.5 4.0

h = 10 h = 15 h = 20 h = 25 h = 30

n = 100 47.0 17.0 14.0 13.0 12.5

Each entry in Table 6.1 corresponds to the given value of n and h, and it shows the CPU

time required for h-hop range assignment using our program if n points are distributed

randomly over a square grid of size 500 × 500. As the execution time depends on the

distribution of points, we consider 50 different instances and report the average time.

It has been observed that, for a fixed h, the time increases with n. This is obvious

because it requires more time for both the initial homogenous range assignment and

checking the h-hop connectivity. On the other hand, for fixed n, the time decreases as

h increases. This is because, for a given n, the higher value of h needs less number of

iterations in Step 3 and 5 of the heuristic. The same thing is observed in the homo-

geneous range assignment problem. Corollary 6.1.1 says that for the unbounded case,

i.e., for h = n− 1, the time complexity is O(n2logn), whereas for a specific value of h,

we may need O(n3( log logn
logn

)
5
4 log n) time in the worst case.

In Figure 6.6, we compare the cost of range assignment using our heuristic with that

using minimum spanning tree based 2-approximation algorithm [76]. For given n, we

have generated several instances and have run both the algorithms. The plot in Figure
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6.6 shows the normalized cost of MST based algorithm with respect to the cost of

the solution produced by our proposed heuristic algorithm. Though our algorithm

takes reasonably more time than the minimum spanning tree based heuristic, it outputs

improved solution than the latter one.
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Figure 6.6: Comparison of results obtained by our algorithm with the MST based

approximation algorithm

6.5 Summary

To our knowledge, no prior attempt is made for designing good heuristic algorithm for

the generalized version of the 2D h-hop range assignment problem. Only one heuristic

algorithm is available in the literature which considers a restricted case where h = n−1

and the symmetric connectivity is assumed [6]. But the performance of that algorithm

is much worse than that of ours with respect to the running time. We hope that the

running time can be improved by considering the exact geometry of the positioned radio

stations.
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Chapter 7

Base Station Placement Problem

7.1 Introduction

In this chapter, we have considered the base station placement problem in the context

of mobile communication. The objective is to place a given number of base stations

in a given convex region, and to assign range to each of them such that every point in

the region is covered by at least one base station, and the maximum range assigned is

minimized. It is basically covering a region by a given number of equal radius circles

(see Figure 7.1), and the objective is to minimize the radius. We develop an efficient

algorithm for this problem using Voronoi diagram [19]. Existing results for this problem

are available when the region is a square [97] and an equilateral triangle [96]. The

minimum radius obtained by our method favorably compares with the results presented

in [96, 97]. The execution time of our algorithm is a fraction of a second, whereas the

existing methods may even take about two weeks’ time for a reasonable value of the

number of circles (≥ 27) as reported in [96, 97].



Figure 7.1: Illustration of our problem

7.2 Preliminaries

Consider a set of points P = {p1, p2, . . . , pk} inside a convex polygon Π where the i-th

base station is located at point pi ∈ Π. We use V OR(P ) to refer the Voronoi diagram

of the set of points P , and vor(pi) to denote the Voronoi cell corresponding to the point

pi ∈ P . Since we need to establish communication inside Π, if a part of the region

vor(pi) goes outside Π for some i, then the region vor(pi)
⋂

Π is used as vor(pi).

Note that, all the points inside vor(pi) are closer to pi than any other point pj ∈ P ,

j 6= i. Thus, all these points communicate with pi. As all the base stations are of

equal range, our objective is to arrange the points in P inside the region such that the

maximum range required (ρ) among the points in P is as minimum as possible. Our

algorithm is an iterative one. At each step, it perturbs the point set P as described

below, and finally, it attains a local minimum.
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7.3 Algorithm

In each iteration, we compute V OR(P ), and then compute the circumscribing circle

Ci of each vor(pi) using the algorithm proposed in [87], for each i = 1, 2, . . . , k. Let ri

denote the radius of Ci. It is easy to understand that in order to cover a convex polygon

by a base station with minimum range, we need to place the base station at the center

of the circumscribing circle of that convex region, and the range assigned to that base

station is equal to the radius of that circle. Thus, for each i = 1, 2, . . . , k, we move pi to

the center of Ci and assign range ri to it. Next, we compute ρ = max{ri, i = 1, 2, . . . , k}.
The stepwise description of the algorithm for an iteration is given below.

Input: (* of the j-th iteration *) k points P = {p1, p2, . . . , pk}
If j = 1, then the members of P are k random points inside the polygon Π, and

if j > 1, then the members of P are the output of the (j − 1)-th iteration.

Output: (* of the j-th iteration *) The range ρ obtained in this iteration, and

the centers of k circles for the next iteration.

Step 1: Compute V OR(P ).

Step 2: Compute the minimum enclosing circle Ci of vor(pi).

Step 3: Compute ρ = maxk
i=1 ri, where ri is the radius of the circle Ci.

Step 4: Output ρ, and the centers of Ci for i = 1, 2, . . . , k.

Lemma 7.1 At each iteration, (i) the newly assigned position of each point pi lies

inside the corresponding vor(pi), and (ii) the value of ρ decreases.

Proof: (i) The smallest enclosing circle of a convex polygon either passes through the

farthest pair of vertices of the polygon, and the line segment joining that pair of vertices
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define the diameter of the smallest enclosing circle, or it passes through three or more

vertices of the polygon. In the first case, lemma obviously follows. In the second case, if

the center lies outside the convex polygon, there exists a point-free arc of the enclosing

circle having length greater than half of the perimeter of the said circle. Thus it is not

the minimum enclosing circle of that convex polygon (see Chapter 16 of [109]).

(ii) Let {p1, p2, . . . , pk} be the position of the base stations prior to an iteration, and ρold

be the corresponding value of ρ. We have drawn the Voronoi diagram of {p1, p2, . . . , pk}
and then computed the smallest enclosing circle of each vor(pi). Let {p′1, p′2, . . . , p′k}
be the center of these circles, and C∗ be the largest one among these circles. In other

words, ρold is equal to the radius of C∗. In this iteration, the positions of the base

stations are revised to {p′1, p′2, . . . , p′k}. The Voronoi polygon around each p′i in the next

iteration is obtained as follows:

Pi’

Figure 7.2: Illustration of vor(p′i)

Draw copies of C∗ with centers at {p′1, p′2, . . . , p′k}. Let Ci be the copy of C∗ with

center at p′i. Consider the line segment defining the chords-of-intersection of each

Cj with Ci for all j 6= i, j = 1, 2, . . . , k, and the edges of the convex polygon Π.

Next, compute the envelope of these line segments around p′i. This defines the
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Voronoi polygon vor(p′i) around p′i for the next iteration. In Figure 7.2, the region

bounded by the solid line segments demonstrates the voronoi region of p′i, here

the chords-of-intersection are shown using the dotted line segments.

Note that, vor(p′i) is properly inscribed by the corresponding circle Ci with center at p′i,

and having radius ρold. In the next iteration, we compute the smallest enclosing circle

C ′
i of each vor(p′i) which is completely enclosed in Ci. This proves that, if ρnew is the

revised value of ρ in the next iteration, then ρnew ≤ ρold. 2

Remark 7.1 The iteration terminates when the value of ρ reaches to a local minima,

or in other words, ρnew = ρold is attained.

In order to come out from the local minima, we apply a refinement step during the

iterative process. Note that, if a point (base station) pi is on the boundary of Π, then

at least 50% of the area of Ci lies outside Π, and hence this region need not be covered.

This indicates the scope of further reduction in the area of Ci. Thus, if a point goes

very close to the boundary of Π, we move it to the centroid of Π, which is computed as

follows:

Let Π be a m vertex convex polygon, and (xj, yj) denote the j-th vertex of Π, j =

1, 2, . . . , m. The centroid of Π is the point having the coordinates ( 1
m

∑m
j=1 xj,

1
m

∑m
j=1 yj).

It can be shown that, the centroid of a convex region is always inside that region.

It is observed that, such a major perturbation brings the solution away from a local

minima, and it leads to a scope of further reduction in ρ. We again continue the iteration

with this initial placement until it again reaches another local minima.

The following theorem analyzes the time complexity of each iteration of our heuristic

algorithm.
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Theorem 7.1 The worst case time complexity of an iteration is O(n + klogk).

Proof: The factors involved in this analysis are as follows:

• Computing V OR(P ) - this can be done in O(klogk) time [19].

• V OR(P ) splits the convex polygonal region Π into k closed cells. Each edge of

V OR(P ) appears in at most two cells. As the number of edges of the region Π is n,

identifying these k cells need O(n + k) time.

• Computing the minimum enclosing circle of a convex polygon needs time linear in its

number of edges [87]. Thus, computing {Ci, i = 1, 2, . . . , k}, needs O(n + k) time. 2

It is observed that the number of iterations needed to reach to a local optima from an

initial configuration is reasonably small. The overall time complexity depends on the

number of times we apply the refinement step.

7.4 Experimental results

An exhaustive experiment is performed with several convex shapes of the given region

Π and with different values of k. It is easy to show that, for a given initial placement of

P , at each iteration the value of ρ is decreased. As the process reaches a local minima,

the quality of the result completely depends on the initial choice of the positions of P .

We have studied the problem with random distribution of P . It shows that in an ideal

solution, the distribution of points is very regular. So, while performing experiment

with unit square region, we choose the initial placement of the points in P as follows:

compute m = b√kc. If m2 = k, we split the region into m ×m cells, and in each cell

place a point of P randomly. If (k − m2) < m, then split the region into m rows of

equal width. Then, arbitrarily choose (k −m2) rows and split each of these rows into

(m + 1) cells; the other rows are split into m cells. Now place one point in each cell. If

(k−m2) > m, then split the square region into (m + 1) rows, and each row is split into

m or (m + 1) rows to accommodate all the points in P .
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Table 7.1: Covering a unit square

k ρopt using ρ∗opt using %

method in [97] our method increment

4 0.35355339059327376220 0.353553 0.0

5 0.32616054400398728086 0.326165 0.0

6 0.29872706223691915876 0.298730 0.0

7 0.27429188517743176508 0.274295 0.0

8 0.26030010588652494367 0.260317 0.0

9 0.23063692781954790734 0.230672 0.02

10 0.21823351279308384300 0.218239 0.0

11 0.21251601649318384587 0.212533 0.01

12 0.20227588920818008037 0.202395 0.06

13 0.19431237143171902878 0.194339 0.01

14 0.18551054726041864107 0.185527 0.01

15 0.17966175993333219846 0.180208 0.30

16 0.16942705159811602395 0.169611 0.11

17 0.16568092957077472538 0.165754 0.04

k ρopt using ρ∗opt using %

method in [97] our method increment

18 0.16063966359715453523 0.160682 0.03

19 0.15784198174667375675 0.158345 0.32

20 0.15224681123338031005 0.152524 0.18

21 0.14895378955109932188 0.149080 0.08

22 0.14369317712168800049 0.143711 0.01

23 0.14124482238793135951 0.141278 0.02

24 0.13830288328269767697 0.138715 0.30

25 0.13354870656077049693 0.134397 0.63

26 0.13176487561482596463 0.132050 0.23

27 0.12863353450309966807 0.128660 0.02

28 0.12731755346561372147 0.127426 0.08

29 0.12555350796411353317 0.126526 0.77

30 0.12203686881944873607 0.123214 0.96

Table 7.2: Covering a equilateral triangle

k ρopt using ρ∗opt using %

method in [96] our method increment

4 0.2679491924311227065 0.267972 0.01

5 0.2500000000000000000 0.250006 0.0

6 0.1924500897298752548 0.192493 0.02

7 0.1852510855786008545 0.185345 0.05

8 0.1769926664029649641 0.177045 0.03

9 0.1666666666666666667 0.166701 0.02

10 0.1443375672974064411 0.144681 0.24

11 0.1410544578570137366 0.141252 0.14

12 0.1373236156889236662 0.137633 0.23

13 0.1326643857765088351 0.133379 0.54

14 0.1275163863998600644 0.127829 0.25

15 0.1154700538379251529 0.115811 0.30

16 0.1137125784440782042 0.114574 0.76

17 0.1113943099632405880 0.112141 0.67

18 0.1091089451179961906 0.109890 0.72

19 0.1061737927289732618 0.107288 1.05

20 0.1032272183417310354 0.104049 0.80

k ρopt using ρ∗opt using %

method in [96] our method increment

21 0.0962250448649376274 0.099165 3.06

22 0.0951772351261450917 0.095877 0.74

23 0.0937742911094478264 0.094625 0.91

24 0.0923541375945022204 0.093982 1.76

25 0.0906182448311340175 0.091688 1.18

26 0.0887829248953373781 0.090231 1.63

27 0.0868913397937031505 0.088238 1.15

28 0.0824786098842322521 0.086795 5.23

29 0.0818048133956910115 0.084545 3.35

30 0.0808828500258641436 0.082246 1.69

31 0.0798972448089536737 0.081665 2.21

32 0.0788506226168764215 0.080457 2.04

33 0.0776371221483728244 0.079604 2.53

34 0.0763874538343494465 0.078827 3.19

35 0.0751604548962267707 0.076918 2.34

36 0.0721687836487032206 0.075950 5.24

For each k, we have chosen 1000 initial instances. For each of these instances, we have

computed the value of ρ executing our iterative algorithm. Finally, we report ρ∗opt =

minimum value of ρ over all the 1000 instances. In Table 7.1, we have compared ρ∗opt

with the value of ρopt obtained by the algorithm in [97] for different values of k. In the
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same table, we have also reported the % increment of the ρ value by our method, i.e.,
(ρ∗opt−ρopt)

ρopt
× 100. This indicates that the range ρ produced by our method is very close

to that in [97].

We have also compared our method with that of [96] when the region is an equilateral

triangle. The experimental results for different values of k appear in Table 7.2. Figure

7.1 demonstrates the output of our algorithm for covering a given convex polygon with

13 circles. Since there is no prior study of this problem when Π is an arbitrary convex

polygon, we could not do any comparative study in this case.

Table 7.3: Performance evaluation of our algorithm

k ρ∗opt ρaverage SD Time

4 0.353553 0.395284 0.040423 0.052

5 0.326165 0.326247 0.000201 0.073

6 0.298730 0.309837 0.008433 0.090

7 0.274295 0.27603 0.001668 0.107

8 0.260317 0.26131 0.003079 0.124

9 0.230672 0.231119 0.000540 0.143

10 0.218239 0.218244 0.000004 0.164

11 0.212533 0.213855 0.000894 0.184

12 0.202395 0.205567 0.000908 0.206

13 0.194339 0.194960 0.000645 0.228

14 0.185527 0.189217 0.001722 0.258

15 0.180208 0.182782 0.001883 0.279

16 0.169611 0.174669 0.003178 0.303

17 0.165754 0.168231 0.002336 0.327

k ρ∗opt ρaverage SD Time

18 0.160682 0.164347 0.001092 0.351

19 0.158345 0.160797 0.000885 0.377

20 0.152524 0.156772 0.000877 0.405

21 0.149080 0.153131 0.001253 0.436

22 0.143711 0.148640 0.000582 0.465

23 0.141278 0.145498 0.001738 0.499

24 0.138715 0.142105 0.001507 0.531

25 0.134397 0.139549 0.001572 0.557

26 0.132050 0.136489 0.001618 0.587

27 0.128660 0.133725 0.001298 0.623

28 0.127426 0.131589 0.001357 0.655

29 0.126526 0.129241 0.000964 0.688

30 0.123214 0.127069 0.000881 0.719

In order to present the performance of our heuristic, we report the minimum, average

and standard deviation (SD) of the value of ρ over all the 1000 instances for different

values of k, and with unit square region as Π (see Table 7.3). Thus, column 3 of Table

7.1 is identical with the column 2 of Table 7.3. We have performed the entire experiment

in SUN BLADE 1000 machine with 750 MHz CPU speed, and have used LEDA [91]

for computing the Voronoi diagram. The average time (in seconds) for processing each

instance is also given. Similar results are observed with equilateral triangle.
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7.5 Summary

A simple algorithm for placing a given number of base stations in a convex region,

and assigning range to them is presented. The problem is equivalent to covering a

convex region by equal radius circles such that the radius of the circles is minimized.

This problem is very much important in the context of mobile communication. To our

knowledge, this is the first attempt to cover an arbitrary convex region with a given

number of circles of minimum radius. The earlier works on this problem have considered

squares, rectangles and equilateral triangles only [97, 92, 96].

We have compared the results produced by our algorithm with that of the existing ones

when the region under consideration is a square or an equilateral triangle. Experimental

results indicate that the solutions produced by our algorithm are very close to those of

the existing results where the region is a square [97] and an equilateral triangle [96]. It

is mentioned in [96, 97] that for a reasonably large value of k (≥ 27), it needs to run

several weeks to get the solution, whereas our method needs a fraction of a second. Thus

this result is highly acceptable in the context of mobile communication applications.
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Chapter 8

Base Station Placement Problem -

A Constrained Variation

8.1 Introduction

In this chapter, we consider a constrained variation of the base station placement prob-

lem which has a very important application in establishing the mobile communication

service in a hazardous area. Here, we need to place k base stations of equal range on the

boundary of a convex polygonal region P such that each point inside P is covered by at

least one base station. The objective is to reduce the cost of the network by minimizing

the (common) range. Sometimes it is observed that some portions of the target region

are unsuitable for placing the base stations, but the communication inside those regions

need to be provided. As an example, we may consider a huge water body, say lake or

river, where the base station can not be placed, but communication inside that region

must be provided for the fishermen. In such cases, we need some specialized algorithms

to tackle this problem.

We consider several versions of this problem. The general problem is named as region-



cover(k) problem, where k stands for the specified number of base stations to be placed.

A simplified form of this problem is the vertex-cover(k) problem, where the objective is

to communicate with only the vertices of P instead of covering the entire region inside

the polygon. This problem is also useful in some specified applications, where guards

are placed only at the vertices of the polygonal region P and the communication among

them is provided using these base stations. We first present efficient algorithms for

vertex-cover(2) and region-cover(2) problems, where the base stations are to be installed

on a pair of specified edges of P . The time complexity of these algorithms are O(n log n)

and O(n2) respectively. Next, we consider the case where k ≥ 3. We first concentrate on

the restricted version of the vertex-cover(k) and region-cover(k) problems, where all the

k base stations are to be installed on the same edge of P . Our proposed algorithm for

the restricted vertex-cover(k) problem produces optimum result in O(min(n2, nk log n))

time, whereas the algorithm for the restricted region-cover(k) problem produces an

(1 + ε)-factor approximation result in O((n + k)log(n + k) + nlog(d1
ε
e)) time. Finally,

we propose an efficient heuristic algorithm for the general version of the region-cover(k)

problem for k ≥ 3. Experimental results demonstrate that our algorithm runs fast and

produces near optimum solutions.

8.2 Preliminaries

Let P be a convex polygon with vertices {p0, p1, . . . , pn−1} in anticlockwise order. De-

pending on the context, we will use pn to denote the vertex p0. The edge (pi, pi+1) is

denoted by ei. Without loss of generality, we assume that the edge e0 is horizontal and

the points in P are on or above the line containing e0. We will use MEC(Q) to denote

the minimum enclosing circle of a sub-polygon Q of P whose center is constrained to

lie on e0. We use Pm to denote the convex polygon with vertices {p1, . . . , pm}, where

2 ≤ m ≤ n. Thus, we have Pn = P . Depending on the context, we will also use Pm to

denote the set of vertices {p1, . . . , pm}.
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As a preprocessing step, we compute MEC(Pm) for 2 ≤ m ≤ n in an incremental

manner. The minimum enclosing circle of a convex polygon with its center on a specified

edge of the said polygon can be computed in linear time [87, 105]. Thus the straight

forward application of that algorithm returns MEC(Pm) for all m = 2, 3, . . . , n in O(n2)

time. We present a linear time algorithm for this problem as the preprocessing step. It

uses the property of farthest point Voronoi diagram of the vertices of a convex polygon.

Let FV (Pm) be the farthest point Voronoi diagram of the vertices of Pm for a particular

value of m. Let Fm = {f1, f2, . . . , fα} be the intersection points of the edges of FV (Pm)

with edge e0 in left-to-right order. Lemma 8.1, stated below, says that α (= |Fm|) ≤ m.

We will use ri to denote the radius of the minimum enclosing circle of Pm with center

at fi. The members in Fm define (α + 1) intervals on e0, namely {`0, `1, . . . , `α}, where

`0 is the interval on e0 to the left of f1, `α is the interval to the right of fα, and for each

i = 1, 2, . . . , α − 1, `i is bounded by fi and fi+1. Each open interval `i entirely lies in

the farthest point Voronoi cell of a single vertex of Pm.

Lemma 8.1 [105] Let e = [u, v] and f = [v, w] be two consecutive edges of a convex

polygon Q. If the perpendicular bisectors of these two edges intersect outside Q, then

there exists no point on the boundary of Q which lies in the farthest point Voronoi region

of v.

We now introduce a function ψ as follows: if the farthest vertex corresponding to the

cell containing `i is pj, then ψ(`i) = j. Lemma 8.2, stated below, is an important

property of the point set Fm.

Lemma 8.2 ψ(`0) < ψ(`1) < . . . , < ψ(`α).

Proof: Let ψ(`i) = j and ψ(`i+1) = k. Clearly, fi+1 is the intersection point of the

perpendicular bisector of line segment pjpk with e0. Since `i+1 is to right side of `i along
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the directed edge −−→p0p1, and the vertices of P are in anticlockwise order, we have k > j

from the definition of farthest point Voronoi diagram. 2

8.2.1 Preprocessing

In this phase, we compute the minimum enclosing circle of Pm with center on e0, for

each m = 2, 3, . . . , n. This helps in designing fast algorithm for the problems considered

in this chapter.

Note that, we do not compute the farthest point Voronoi diagram FV (Pm) explicitly

for each m; but we compute the points Fm for each m in an incremental manner. We

use an array M of size n − 1 (indexed as 2, 3, . . . , n) to store the center and radius of

MEC(Pm) for m = 2, 3, . . . , n. We also maintain a link-list F as the working storage.

After the m-th iteration, F contains the members of Fm in left-to-right order. Let us

start with m = 2; we compute F2, and store it in F . By Lemma 8.1, |F2| ≤ 2. In

addition, for each `i, if the perpendicular projection of ψ(`i) on e0 lies in `i, then it

is the center of MEC(P2). We add this point in F as a member of F2, and store the

center and radius of MEC(P2) in M [2].

Next, we explain the incremental step. At the m-th iteration, the array M contains the

information about MEC(Pi) for i = 2, 3, . . . , m. In addition, the link-list F stores the

members in Fm. At each fi ∈ F , we have stored mini
j=0 rj. We now consider pm+1, and

compute the MEC(Pm+1).

Let |F| = |Fm| = α. Let µ = ψ(`α). We draw the perpendicular bisector of pµpm+1.

If it does not hit the edge e0, then this step stops. But, if it hits e0 at say f̂ , then we

need to consider the following two cases:

f̂ is to the right of fα: Here we add fα+1 = f̂ in the array F , and attach minm+1
j=0 rj =

min(minm
j=0 rj, rm+1) with it as the radius.
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f̂ is to the left of fα: Here we repeatedly apply the following procedure until f̂ is

observed at the right side of all the element of F .

delete fα from F , and decrement the value of α by 1. Next, draw the perpen-

dicular bisector of pµpm+1, where µ = ψ(`α) for the current value of α. We

again use f̂ to denote the point of intersection of this straight line with e0.

Finally, increment α by 1 and add f̂ in F .

The radius attached with f̂ is minα
j=0 rj = min(minα−1

j=0 rj, rα). If the minimum is

achieved for j = j∗, then the tuple (fj∗ , rj∗) is stored in M [m + 1] as the center and

radius of MEC(Pm+1). We also compute the perpendicular projection of pm+1 on e0.

If it is inside FV (pm+1), then it is the center of MEC(Pm+1). We add this point in F
and store it with the corresponding radius in M [m + 1]. The process terminates after

considering pn.

Lemma 8.3 The total time required for computing MEC(Pm) for all m = 2, 3, . . . , n

is O(n).

Proof: The time complexity is determined by that of maintaining the link-list F . Note

that, when we consider a new vertex pm+1, we repeatedly perform the following steps:

• compute the bisector of the line segment joining pm+1 and another vertex of Pm+1,

• test it with the last entry of F , and then

• either insert it in F or delete the last entry in F .

At each iteration only one element is inserted in F . Thus, in total n entries are inserted

in F . An inserted element is deleted at most once. Thus, the lemma follows. 2
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em
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Figure 8.1: Different configurations of C1∗ and C2∗

8.3 Vertex-cover(2) problem

We first consider the problem of placing two circles C1∗ and C2∗ of equal radii on two

specified edges such that each vertex of P is covered by at least one among C1∗ and

C2∗ and the radius becomes minimum. Without loss of generality, we assume that the

center of C1∗ is on e0. Let the center of C2∗ be on em.

Observation 8.1 C1∗ and C2∗ may satisfy any one of the following five configurations

(see Figure 8.1):

(i) C1∗ covers {p1, p2, . . . , pm} and C2∗ covers {pm+1, pm+2, . . . , pn},

(ii) C1∗ covers {pm+1, pm+2, . . . , pn} and C2∗ covers {p1, p2, . . . , pm},
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(iii) there exists two vertices of P , namely pα and pβ (1 ≤ α ≤ m,m + 1 ≤ β ≤ n),

such that C1∗ covers the vertices Q = {p1, p2, . . . , pα}∪{pn, pn−1, . . . , pβ} and C2∗

must cover the vertices R = P \Q.

(iv) there exists a vertex of P , namely pα (1 ≤ α < m), such that C1∗ covers the

vertices Q = {p1, p2, . . . , pα} and C2∗ must cover the vertices R = P \Q.

(v) there exists a vertex of P , namely pβ (m + 1 < β ≤ n), such that C2∗ covers the

vertices R = {p1, p2, . . . , pm, pm+1, pm+2, . . . , pβ−1} and C1∗ must cover the vertices

Q = P \R.

For configurations (i) and (ii), the center and radius of C1∗ and C2∗ can be obtained by

the technique described for the preprocessing. Observe that, the center and radius of

C1∗ satisfying configuration (i) is already stored in m-th element of the array M . We

now describe the method of computing the circles C1∗ and C2∗ for configuration (iii).

This handles the configurations (iv) and (v) also. Finally, we choose the one for which

maximum radius among C1∗ and C2∗ is minimum.

Computation of C1∗ and C2∗ satisfying configuration (iii)

Let us fix the vertex p` among {p1, p2, . . . , pm} as pα and choose every vertex pj, j =

m + 1,m + 2, . . . , n in order as pβ. For each pj, we compute two circles C1∗
j and C2∗

j

(of minimum radii and centered on e0 and em respectively) to cover the points Q =

{p1, p2, . . . , p`} ∪ {pj, pj+1, . . . , pn} and R = P \ Q respectively. We use the procedure

described in Section 8.2.1, which incrementally computes C1∗
j and C2∗

j for each j =

n, n − 1, n − 2, . . . , m + 1. Let ρ1
j and ρ2

j denote the radii of the circles C1∗
j and C2∗

j

respectively, and χ(j) = max(ρ1
j , ρ

2
j). We then compute ρ(`) = minn

j=m+1 χ(j).

Thus, for the given `, ρ(`) is the radius of the smallest pair of circles (with centers on

e0 and em) such that C1∗ covers p` and the pair of circles C1∗ and C2∗ cover all the

vertices of P . But, if we choose some different value of `, we may get a pair of circles
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with smaller radius (with centers on e0 and em) which can also cover P . In order to

compute the smallest radius, we may need to try with several values of ` using binary

search among {1, 2, . . . ,m}.

We first choose p` to be the middle-most vertex between p1 and pm. In other words,

` = b1+m
2
c, and compute ρ(`). Let ρ(`) = χ(j∗) = max(ρ1

j∗ , ρ
2
j∗). In the next level

of recursion, the search space for pα is split into two parts. In each part, the possible

values of β are also mentioned.

• if α ∈ {1, 2, . . . , b1+m
2
c}, then β ∈ {m + 1,m + 2, . . . , j∗}, and

• if α ∈ {b1+m
2
c+ 1, . . . , m}, then β ∈ {j∗ + 1, j∗ + 2, . . . , n}.

So, we need to perform the following two steps.

• Choose ` =
1+b 1+m

2
c

2
and compute C1∗

j and C2∗
j for each value of j = j∗, j∗ −

1, . . . ,m+2,m+1. Finally, identify the value of j (say j∗1) for which max(ρ1
j1∗ , ρ2

j1∗)

is minimum.

• Similarly, choose ` =
1+b 1+m

2
c+m+1

2
, and compute C1∗

j and C2∗
j for each value of

j = n, n− 1, . . . , j∗ + 2, j∗ + 1 in order. Finally, identify the value of j (say j∗2) for

which max(ρ1
j2∗ , ρ2

j2∗) is minimum..

Again, using the procedure described in Section 8.2.1, the time required for these two

steps is O(n) in total. It splits the entire search space in 4 parts for the third level of

recursion. The procedure continues until a part becomes of size zero.

Complexity analysis

Theorem 8.1 The time complexity of the above algorithm for the vertex-cover(2) prob-

lem is O(n log n).
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Proof: For configuration (i) and (ii), the optimum C1∗ and C2∗ can be obtained in

O(n) time (see Subsection 8.2.1). The time needed for handling configuration (iii) is

O(n log n), since α values are chosen in at most O(log n) levels of recursion, and the

execution time of each level of recursion is O(n). 2

8.4 Region-cover(2) problem

We will use C1 and C2 to denote the pair of smallest radius circles for the region-

cover(2) problem with centers on e0 and em respectively. It places two circles of same

radii centered on edges e0 and em respectively, such that the entire region inside the

closed polygon P is covered by at least one of these two circles, and the common radius

ρ is minimum.

We first solve the vertex-cover(2) problem. It outputs two circles C1∗ and C2∗, which

may or may not completely cover the entire region inside P . In the former case, C1∗

and C2∗ intersect, and the two intersection points lie on or outside the boundary of P

(see Figure 8.2(a)). In this case C1 = C1∗ and C2 = C2∗; or in other words, the solution

of vertex-cover(2) problem is the same as that of the region-cover(2) problem. In the

latter case, the circles C1∗ and C2∗ may or may not intersect. If they intersect, then

also at least one intersection point lies inside P . In this case, we need to manipulate C1∗

and C2∗ by increasing their common radius and/or shifting their centers to obtain the

circles C1 and C2. If p and q are the points of intersection of the circles C1 and C2, then

we have the following two possible forms of the optimum solution of the region-cover(2)

problem.

(i) p and q lie on two edges of the polygon P (Figure 8.2(b)).

(ii) One of p and q lies on an edge of P , but the other one lies outside P (Figure 8.2(c)).
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Figure 8.2: Demonstrations of the case where (a) C1 = C1∗ and C2 = C2∗, (b) p and q

lie on the boundary of P , and (c) at least one of p and q lies outside P

We consider each edge ea ∈ {e1, e2, . . . , em} and assume that p lies on it, and compute

C1, C2 by trying with both the cases (i) and (ii) as mentioned above. The one producing

the minimum radius is recorded. The same procedure is adopted considering each edge

eb ∈ {em, em+1, . . . , en(= e1)} and assuming q to lie on it for computing C1 and C2.

Finally, the pair of circles with minimum radius is reported.

As in Section 8.3, we apply recursive procedure to choose ea. The recursion starts with

choosing the middle-most edge in {e1, e2, . . . , em}. For this choice, say ea∗ , we consider

each edge eb ∈ {em, em+1, . . . , en} and execute the procedures for Case (i) and Case (ii)

described below to solve the region-cover(2) problem. Suppose the optimum solution

is obtained for b = b∗. At the next stage of recursion, the problem splits into two

parts as in the vertex-cover(2) problem. We choose (a) ea as the middle-most edge in

{e1, e2, . . . , ea∗−1} and search for eb in {em, em+1, . . . , eb∗}, and (b) ea as the middle-most

edge in the subset of edges {ea∗+1, ea∗+2, . . . , em} and search for eb in the subset of edges

{eb∗ , eb∗+1, . . . , en}.
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8.4.1 Case (i)

Given the two edges ea and eb, we test whether the optimum solution satisfies Case (i)

or not, and if the test returns true, it also returns the optimum solutions C1 and C2.

Let the equations of the lines corresponding to the four relevant edges be e0 : y = 0,

ea : y = µ1x + c1, em : y = µ2x + c2 and eb : y = µ3x + c3. Also, let r = (α, 0) and

s = (β, µ1β +c2) be the centers of C1 and C2 respectively. Let the points of intersection

of C1 and C2 on ea and eb be p = (γ, µ1γ + c1) and q = (ν, µ3ν + c3) respectively. The

points r, p, s and q form a rhombus of minimum edge length. As the diagonals of a

rhombus intersect at their mid-point, we have

α + β = γ + ν (8.1)

µ1γ + µ3ν + c1 + c3 = µ2β + c2 (8.2)

Again, since the diagonals of a rhombus are perpendicular to each other, we have

µ2β + c2

β − α
× µ1γ + c1 − µ3ν − c3

γ − ν
= −1 (8.3)

From the equations 8.1, 8.2 and 8.3 we have the following relation (eliminating α and

β).

(a1γ + a′1ν + a′′1)× (γ − ν) + (a2γ + a′2ν + a′′2)× (a3γ + a′3ν + a′′3) = 0 (8.4)

Where, a1 = 2µ1−µ2

µ2
, a′1 = 2µ3−µ2

µ2
, a′′1 = 2

µ2
(c1 + c2 + c3),

a2 = µ1, a′2 = µ3, a′′2 = c1 + c2, and

a3 = µ1, a′3 = −µ3, a′′3 = c1 − c2.

We recast the equation 8.4 as a quadratic equation of γ as follows:

a4γ
2 + (a5ν + a′5)γ + a6ν

2 + a′6ν + a′′6 = 0 (8.5)
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Where, a4 = a1 + a2a3,

a5 = a′1 − a1 + a′2a3 + a2a
′
3, a′5 = a′′1 + a′′2a3 + a2a

′′
3, and

a6 = −a′1 + a′2a
′′
3, a′6 = −a′′1 + a′′2a

′
3 + a′2a

′′
3, a′′6 = a′′2a

′′
3.

The solutions of the quadratic equation 8.5 are

γ1 = b1ν + b′1 +
√

b2ν2 + b′2ν + b′′2 (8.6)

and

γ2 = b1ν + b′1 −
√

b2ν2 + b′2ν + b′′2 (8.7)

Where, b1 = −a5

2a4
, b′1 =

a′5
2a4

, and

b2 =
a2
5−4a4a6

2a4
, b′2 =

2a5a′5−4a4a′6
2a4

, b′′2 =
(a′5)2−4a4a′′6

2a4
.

Again, we consider equations 8.1 and 8.2, and eliminating β from these two equations,

we have

α = d1γ + d′1ν + d′′1 (8.8)

where, d1 = µ2−µ1

µ2
, d′1 = µ2−µ3

µ2
and d′′1 = c2−c1−c3

µ2
.

Let us now consider the squared length of the one edge of the rhombus, which is

(d(r, q))2 = (ν − α)2 + (µ3ν + c3)
2 = (ν − d1γ − d′1ν − d′′1)

2 + (µ3ν + c3)
2.

Substituting γ1 and γ2 for γ, we have two expressions of (d(r, q))2 in terms of ν as

follows:

ψ1(ν) = (g1ν + g′1 +
√

b2ν2 + b′2ν + b′′2)
2 + (m3ν + c3)

2 (8.9)

and

ψ2(ν) = (g1ν + g′1 −
√

b2ν2 + b′2ν + b′′2)
2 + (m3ν + c3)

2 (8.10)

Where, g1 = 1− b1d1 − d′1 and g′1 = −b′1d1 − d′′1.

(These are obtained by some algebraic simplifications using equations 8.6 and 8.7.)
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Minimizing these two expressions with respect to ν, we have the following 2 equations

in ν.

∂
∂ν

ψ1(ν) = 0

=⇒
√

b2ν2 + b′2ν + b′′2 × (h1ν + h′1) + h2ν
2 + h′2ν + h′′2 = 0

and

∂
∂ν

ψ2(ν) = 0

=⇒ −
√

b2ν2 + b′2ν + b′′2 × (h1ν + h′1) + h2ν
2 + h′2ν + h′′2 = 0

where, h1 = 2g2
1 + 2b2 + 2µ2

3, h′1 = 2g1g
′
1 + b′2 + 2µ3c3, and

h2 = 4b2g1, h′2 = 3g1b
′
2 + 2g′1b2, and h′′2 = g′1b

′
2.

Both the equations are of degree 4 in ν, and can be solved using the technique due to

Ferrari [52]. These produce at most eight different values of ν. We consider each of

them and test whether the corresponding points r, s, p and q lie on e0, em, ea and eb

respectively. If one of these tests returns true, we compute the radius ρ. We also do

the same test and compute the value of ρ by choosing r at two end-points of e0 and s

at two end points of em. Finally, we choose the one producing the minimum value of

ρ, and compute the corresponding center points r and s for the circles C1 and C2. If

none of these tests returns true, then the optimum solution does not satisfy Case (i).

8.4.2 Case (ii)

In this case, we compute C1 and C2 such that they intersect at the points p and q

such that p lies on the edge ea, q is outside P , but both the circles contain the edge

eb or a part of it. Let P = PSW ∪PSE∪PNE∪PNW , where PSE = {p1, p2, . . . , pa}, PNE =

{pa+1, pa+2, . . . , pm}, PNW = {pm+1, pm+2, . . . , pb}, and PSW = {pb+1, pb+2, . . . , pn−1, pn}.
Note that, the size of each of these subsets is at least 1.

Let r∗ ∈ e0 and s∗ ∈ em be the centers of C1∗ and C2∗ respectively. We need to compute
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r and s, the centers of C1 and C2 respectively. As p is on the edge ea, we have r and s

on the line segments r∗p1 and s∗pm respectively, and d(p, r) = d(p, s). The objective is

to identify p, r and s.

We compute the Voronoi partition line V (e0, em) of the line segments e0 and em. It

consists of parabolic arcs and line segments as shown in Figure 8.3. For each point

τ ∈ V (e0, em), its smallest distances from e0 and em are same. Let π be the inter-

section point of V (e0, em) and the edge ea = [pa, pa+1]. If no such intersection exists

then choose π = pa or pa+1. We choose Π = pa if max(dist(pa, e0), dist(pa, em)) ≤
max(dist(pa+1, e0), dist(pa+1, em)); otherwise we choose Π = pa+1. Here dist(p, e) =

minimum distance of a line segment e from a point p. Let ŝ be the closest point of em

from π. We compute ρ̂ = d(ŝ, π) and mark ŝ as s (the initial estimate of the center of

C2). Also mark r̂ on e0 as r (the estimate of the center of C1) such that d(π, r̂) = ρ̂.

Let Ĉ1 and Ĉ2 are the initial estimate of C1 and C2 respectively.

Figure 8.3: Voronoi diagram of two line segments

Lemma 8.4 The circle Ĉ2 centered at ŝ with radius ρ̂ covers all the points in PNE, and

the circle Ĉ1 of radius ρ̂ and centered at r̂ covers all the points in PSE.

Proof: Follows from the fact that we have started with C1∗ and C2∗ (the solution of

vertex-cover(2) problem) and have obtained Ĉ1 and Ĉ2 by increasing their radii and

shifting their center towards right on e0 and em. 2

If Ĉ1 and Ĉ2 completely encloses PSE ∪PSW and PNE ∪PNW respectively, then Ĉ1 and

Ĉ2 correspond to the optimum solution C1 and C2 respectively. But such a situation
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may not arise always. There may exist situation where one/more point(s) PNW (resp.

PSW ) which lie outside Ĉ2 (resp. Ĉ1). This is due to the fact that the centers of Ĉ1

and Ĉ2 are to the right side of the centers of C1∗ and C2∗ on e0 and em respectively.

Consider a situation where Ĉ2 does not cover all the vertices of PNW . Here, ŝ lies to the

farthest point Voronoi region of a vertex pθ ∈ PNW , and d(pθ, ŝ) > ρ̂. The same situation

may happen for Ĉ1 with respect to the point set PSW . We compute the intersections

of the farthest point Voronoi diagram FV (PNW ) with the edge em using the method

described in Section 8.2.1. All these intersection points lie on the line segment s∗pm

[107]. Let us name these members as FV m = {fm
1 , fm

2 , . . .} from left to right along

em. Similarly, we compute the intersection points of the farthest point Voronoi diagram

FV (PSW ) with e0, and name these points as FV 0 = {f 0
1 , f 0

2 , . . .} from left to right. We

will use these two lists (FV 0 and FV m) for searching r and s.

Lemma 8.5 If s (on em) lies inside the farthest point Voronoi region of pθ ∈ PNW ,

then the radius of C2 is at least d(pθ, s). Similarly, If r (on e0) lies inside the farthest

point Voronoi region of pφ ∈ PSW , then the radius of C1 is at least d(pφ, r).

Proof: Follows from the property of the farthest point Voronoi diagram. 2

Lemma 8.6 [107] The radius of the smallest enclosing circle of PNW ∪PNE increases if

we move the center s from s∗ towards pm along em. Similarly, the radius of the smallest

enclosing circle of PSW ∪ PSE will increase if we move the center r from r∗ towards p1

along e0.

Lemma 8.7 If at least one of the two inequalities C1 6= Ĉ1 and C2 6= Ĉ2 is true, then

C1 and C2 pass through at least one point in PNW and PSW respectively.

Proof: Ĉ2 includes all the vertices in PNE (by Lemma 8.4). Let C2 6= Ĉ2, and Ĉ2 can

not include all the vertices in PNW . Let pθ be the only vertex which is not covered by
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Ĉ2. In order to include pθ, we need to place s in the farthest point Voronoi region of

pθ. Let the interval [fm
i , fm

i+1] be this region on em which is to the right of s∗, and s lies

in the proper interior of (fm
i , fm

i+1). Thus d(s, pθ) is the radius of C2. Knowing s and

d(s, ptheta), we can compute the point π on ea (where C1 and C2 intersect) and the

point r on e0 (the center of C1). If C1 does not pass through a point in PSW , then we

can reduce the radius of both C1 and C2 by shifting the center of C1 to the right along

e0, and adjusting the radii of C1 and C2 so that they intersect on ea. Thus, we have a

contradiction. 2

In order to find s, we consider each member fm
i ∈ FV m in order, and compute the

radius of the smallest enclosing circle of PNW with center at fm
i , and then compute the

center r of C1 on e0. If C1 does not covers PSW , we need to consider other members

of FV m to the right of fm
i . Finally, we can identify two points fm

i , fm
i+1 such that the

circles C1 and C2 computed with fm
i does not cover all the points of P , but those with

fm
i+1 covers all the points of P . This implies that s (the center of C2) must be a point

in the interval [fm
i , fm

i+1]. We repeat the same process to identify the vertex pφ ∈ PSW

through which C1 passes.

Summarizing the above discussions, we have the following information: C1 passes

through pφ, the center of C1 is r ∈ e0, C2 passes through pθ, the center of C2 is

s ∈ em, and C1 and C2 intersect at π ∈ ea.

We also have d(pθ, s) = d(s, π) = d(π, r) = d(r, pφ). Assuming the coordinate of π

as (β, µ1β + c1), and substituting it in the above equality, we have a fourth degree

equation in β. We test the feasibility of its each solution with respect to π ∈ ea and the

s ∈ [fi, fi+1], and choose the one producing the minimum radius. Thus, we have the

following lemma.

Lemma 8.8 If Case (ii) of region-cover(2) problem appears, then the optimum solution

can be obtained in O(n) time.
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Proof: After computing π, we compute s by considering each pair of consecutive

members in FV m, which may be O(n) in number. After identifying a pair (fi, fi+1)

in which s lies, we can identify the vertex pθ ∈ PNW through which C2 passes. Next

we can apply the same process to get the center of C1 and the point pφ through which

C1 passes in O(n) time [52]. Solving the 4th degree equation needs O(1) time. This

generates at most 4 real solutions. So, the feasibility test also needs O(1) time. Thus,

the lemma follows. 2

Theorem 8.2 The region-cover(2) problem can be solved in O(n2) time.

Proof: The recursive procedure is similar to the vertex-cover(2) problem. In each level

of recursion (i.e. for each choice of ea), we need to consider O(n) members of PNW∪PSW .

For each of these members, the test of Case (i) needs O(1) time but the test of Case

(ii) may need O(n) time (see Lemma 8.8). Thus, the recursion relation expressing the

time complexity is

T (n) = 2T (
n

2
) + O(n2).

2

8.5 Restricted vertex-cover(k) problem

In this section, we present the algorithm for placing k equal circles centered at k points

on an edge of the polygon P such that each of the vertices of P is covered by at least

one circle and the radius becomes minimum. Without loss of generality, we assume

that the base stations are to be placed on e0. To solve this problem, we first solve the

following decision problem which helps us to solve the original problem.

RVCD(k, ρ): Given a convex polygon P and a real number ρ test whether it is possible

to cover all vertices of P by k circles of radius ρ centered at k points on e0.
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We present an O(n) time algorithm for solving RV CD(k, ρ). As an obvious check, we

compute the distance of each vertex of P from e0. If any one of these distances is greater

than ρ, then the test return false. Otherwise, we put k circles of radius ρ with centers

at k points on e0 one by one in right-to-left order as follows. We use Ci and si to denote

the i-th circle in the order, and its center.

In order to find C1, we choose a point u on e0 such that d(p1, u) = ρ. We draw the

circle of radius ρ with center at u and find the maximum index m such that each of the

vertices in {p1, p2, . . . , pm−1} are inside the circle, but pm is outside of that circle (see

Figure 8.4(a) where m = 2). Consider the vertical line ` drawn at u. If pm is in the

right side of `, then move the center of circle from u to a point u′ on the line segment

[u, p1] such that d(u′, pm) = ρ (see Figure 8.4(b)). Note that, this right shifted circle

covers all the vertices p1, p2, . . . , pm. We rename u′ as u and repeat the same process

for shifting the circle towards right to include the next vertex of P . As soon as the

next vertex (say pm∗) is to the left of the corresponding vertical line `∗, the circle C1 is

finalized with center s1 = u′.

Let p1, p2, . . . , pm∗ be the vertices of P which are inside C1. For the second circle C2,

we choose its center s2 such that s2 ∈ e0 and d(pm∗+1, s2) = ρ. In order to enclose

maximum number of vertices of P inside C2, we repeat the same process as described

for C1. The same process is repeated for placing the other circles. Finally, if p0 is

covered by a circle Ci for some i ≤ k, then the algorithm returns true, otherwise it

returns false. The time complexity of this procedure is clearly O(n).

Now, we provide an algorithm for the optimization version of the restricted vertex cover

problem as follows:

RVCO(k): Compute the minimum value of ρ such that the circles of radius ρ with

center on k points of the edge e0 cover all the vertices of P .

Let Cij denote the minimum radius circle with center on e0 which covers the vertices
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Figure 8.4: (a) Initial placement of circle C1, and (b) modified placement of C1 to cover

the next vertex

{pi, pi+1, . . . , pj} of P . Let the radius of Cij be ρij. We first identify two consecutive

vertices pα and pα+1 such that k circles of radius ρ1α unable cover all the vertices of P ,

but k circles of radius ρ1(α+1) can do it. We can identify pα by applying binary search

in the array M (created in preprocessing step). At each step, we get the radius from

the corresponding entry of the array M , and execute the decision procedure RV CD. If

the optimum value of the radius is ρ∗, then ρ1α < ρ∗ ≤ ρ1(α+1). We choose ρ∗ = ρ1(α+1)

as initial estimate of ρ∗. In next step, we try to improve the estimate of ρ∗. Note

that, the first circle with radius ρ′(< ρ∗) is unable to contain pα+1 by the definition of

ρ1(α+1). So, we repeat the same procedure to cover {pα+1, pα+2, . . . , pn−1, pn} with k− 1

circles centered on e0. This returns a pair of radii ρ(α+1)j and ρ(α+1)(j+1), and we have

max(ρ1α, ρ(α+1)j) < ρ∗ ≤ min(ρ1(α+1), ρ(α+1)(j+1)). As a revised estimate we take ρ∗ =

min(ρ1(α+1), ρ(α+1)(j+1)). We may have to repeat the same experiment at most k times

in total to determine the value of ρ∗.

8.5.1 Correctness and complexity

The correctness proof of the algorithm is as follows. It is clear that ρ∗ ≤ ρ1(α+1) (the

initial estimate of ρ∗). In second step, if ρ(α+1)(j+1) ≤ ρ1(α+1) then ρ(α+1)(j+1) will be

chosen as the revised estimate of ρ∗; otherwise the initial estimate of ρ∗ is retained. The
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same process is repeated k times. At each step, we have computed the optimum radius

of the first circle. It is selected for an estimate of ρ∗ or not depending on whether its

value is less than the existing estimate of ρ∗ or not. Thus, at each step, the estimate of

ρ∗ decreases maintaining its feasibility to cover all the vertices of P .

Lemma 8.9 The time complexity of the proposed algorithm for the RV CO(k) problem

is O(nk log n).

Proof: As mentioned earlier, we may need to run RVCO procedure with parameters

k, k− 1, . . . , 1. The O(n log n) time complexity for each call of RVCO procedure follows

from the fact that we have applied binary search, and at each step of the binary search,

the RVCD procedure needs O(n) time. 2

If k = O(n), then the time complexity of the above algorithm is O(n2 log n). In this case,

instead of using the binary search, we may use a sequential search for solving RV CO(k)

problem as follows: Run RVCD procedure with M [2],M [3], . . . until the procedure

returns true at a vertex pα, say. Again apply linear search to solve RV CO(k − 1) with

the vertex set {pα+1, pα+2, . . . , pn−1, pn}. It is easy to see that this procedure needs

O(n2) time. Thus, we have the following theorem.

Theorem 8.3 The time complexity of the RV CO(k) problem is O(min{nklog n, n2}).

8.6 Restricted region-cover(k) problem

We now concentrate on covering the entire region inside the convex polygon P . Here we

propose an (1 + ε)-approximation algorithm for the restricted region-cover(k) problem.

As in the earlier problems, here also we assume that the k centers of the covering circles

appear on e0 = [p0, p1].
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Lemma 8.10 Let `0 and `1 be two lines perpendicular to the edge e0 = [p0, p1] at p0

and p1 respectively. If `0 (resp. `1) cuts the boundary of P at q0 (resp. q1), then in the

optimal solution, the portion to the left (resp. right) of `0 (resp. `1) will be covered by

only one circle.

Proof: Consider the optimum solution, where s1, s2, . . . , sk are the centers of the circles

on the edge e0 from left to right. We will show that if q0 ∈ ei then the sub-polygon Q of

P with vertices {pn, pn−1, . . . , pi+1, q0} will be covered by the circle centered at s1 (see

Figure 8.5(a)).

Let p be a point inside or on the boundary of Q. Thus, d(p, s1) < d(p, si), for all

i = 2, 3, . . . , k (see Figure 8.5(b)). Thus, if p is covered by any one of the circles

centered at s2, s3, . . . , sk, then p is also covered by the circle centered at s1 as the radius

of all the k circles are same. The same argument holds for the portion of P to the right

of `1. 2

p0 p1

p3
p4

p2

p5

p6

p7

l0 l1

(a)

p0 p1

p3
p4

p2

p5

p6

p7

l0 l1

(b)

p

c3 c2 c1
c0

q0
q1 q0

q1

Figure 8.5: Proof of Lemma 8.10

Lemma 8.11 The set of k equal circles with centers on e0 and of minimum radius that

can cover the perimeter of P , is the solution of the restricted-region-cover(k) problem.

Proof: The proof follows from the fact that in order to cover the entire perimeter of

P , each two consecutive circles Ci and Ci+1 will intersect on or outside P . 2

As in the earlier section, here also we can design the restricted perimeter cover decision

and optimization procedures as follows:
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RPCD(k, ρ): Test whether k circles of radius ρ and centered at k points on e0 can

cover the entire perimeter of P .

RPCO(k): Find the minimum radius ρ and the centers on e0 of k circles such that

these k circles can cover the entire region inside the polygon P .

The procedure RPCD(k, ρ) is similar to the procedure RV CD(k, ρ) and can be executed

in O(n + k) time.

We present an (1+ε)-approximation algorithm for the optimization problem RPCO(k).

Thus, if the optimum value of the radius of k equal circles centered at e0 for covering the

polygon P is ρ∗, then our procedure outputs a radius of value at most (1+ ε)ρ∗, and the

corresponding centers (on e0) of those k circles. The basic idea is to identify two points

q′ and q′′ on an edge, say eα, of the polygon P with d(q′, q′′) ≤ ερ∗, such that if ρ′ and ρ′′

are the radii of the minimum enclosing circles of the convex polygons {p1, p2, . . . , pα, q′}
and {p1, p2, . . . , pα, q′′} respectively, both centered on e0, then RPCD(k, ρ′) = false, but

RPCD(k, ρ′′) = true. This implies, ρ′ < ρ∗ ≤ ρ′′, and ρ′+d(q′, q′′) ≥ ρ′′. Thus, we have

ρ′′ ≤ (1 + ε)ρ∗. Our objective is to identify such a pair of points (q′, q′′).

We first apply binary search on the vertices of the polygon P to identify the edge eα of

P containing the pair of points (q′, q′′). Next, we split the edge into k equal sized pieces

by introducing (k− 1) points, namely {q1, q2, . . . , qk−1}. Again, we apply binary search

to identify a pair of consecutive points qi and qi+1 such that q′, q′′ ∈ [qi, qi+1]. Next,

we identify q′ and q′′ by searching in the interval [qi, qi+1] using bisection method. The

splitting of eα into k equal parts will help in analyzing the approximation factor of the

algorithm. Below we present the stepwise description of the algorithm.

Step 1: (* Compute the edge eα *)

Set i = 1; j = n; (* Initialization Step *)

Step 1.1: Set m = i+j
2

(* pm be the middle-most vertex in {pi, pi+1, . . . , pj} *)
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Step 1.2: Compute the radius ρ of the minimum enclosing circle of the polygon

Pm = {p1, p2, . . . , pm} centered on e0.

Step 1.3: If RPCD(k , ρ) = true, then set j = m, otherwise set i = m.

Step 1.4: If i < j − 1 then Go To Step 1.1, otherwise set α = i.

Step 2: (* Identify qi and qi+1 *)

Divide the edge eα = [pα, pα+1] in k equal parts by introducing k − 1 points

{q1, q2, . . . , qk−1} in order along −−−−→pαpα+1.

Step 2.1: Apply the technique of Step 1 to identify two consecutive points qi and

qi+1 such that if ρ′ and ρ′′ are the radii of the minimum enclosing circles of

the convex polygons {p1, p2, . . . , pα, qi} and {p1, p2, . . . , pα, qi+1} respectively,

both centered on e0, then RPCD(k, ρ′) = false, but RPCD(k, ρ′′) = true.

Step 3: (* Identify q′ and q′′ *)

Let dΠ(p1, q) = the distance of the point q on the boundary of the polygon P from

p1 in anticlockwise direction along the boundary of P .

Set µ = 0, ν = dΠ(p1, qi+1) (* Initialization step *)

Step 3.1: Executes the Step 3.2 logd2
ε
e times.

Step 3.2: Set γ = µ+ν
2

. Let q ∈ eα be a point such that dΠ(p1, q) = γ. Com-

pute the radius ρ of the minimum enclosing circle of the convex polygon

{p1, p2, . . . , pα, q} centered on e0. If RPCD(k, ρ) = true then set ν = γ,

otherwise set µ = γ.

Step 3.3 Let q ∈ eα be a point such that dΠ(p1, ν) = γ. Compute the radius

ρ of the minimum enclosing circle of the convex polygon {p1, p2, . . . , pα, ν}
centered on e0. (* ρ be the output of our algorithm *)
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8.6.1 Correctness and complexity

Theorem 8.4 If ρ∗ and ρ are the radii of optimum solution and the solution obtained

by executing the above algorithm respectively, then ρ ≤ (1 + ε)ρ∗.

Proof: In Step 2, we obtain two points qi and qi+1 on eα such that if ρ′ and ρ′′

are the radii of the minimum enclosing circle of the polygons {p1, p2, . . . , pα, qi} and

{p1, p2, . . . , pα, qi+1} respectively, centered on e0, then RPCD(k, ρ′) = false, but RPCD(k, ρ′′)

= true. Thus, ρ′ < ρ∗ ≤ ρ′′ and there exists a point q ∈ eα such that ρ∗ is the radius of

minimum enclosing circle of the convex polygon {p1, p2, . . . , pα, q} centered on e0. We

now consider the following two cases:

Case 1: q ∈ [qi, qi+1] for some i ≥ 1, and

Case 2: q ∈ [pα, q1].

In Case 1, pαq1 lies completely inside the right-most circle of radius ρ∗ centered on e0.

This implies, d(pαq1) ≤ 2ρ∗. In Case 2, the line segments qi+1qi+2, qi+2qi+3, . . ., qk−2qk−1,

qk−1pα+1 lie completely inside ` circles of radius ρ∗, where ` ≤ k − 1. Since the length

of all the line segments qjqj+1, j = i + 1, i + 2, . . . , k − 1 are same (by construction in

Step 2), we have (k − 1) × d(pα, q1) ≤ 2ρ∗ × `. This, in turn, implies d(pα, q1) ≤ 2ρ∗.

Thus, in both the cases, d(qi, qi+1) ≤ 2ρ∗.

At each iteration of Step 3.2, the value of (ν − µ) reduces to half of its previous value.

Initially, we have (ν − µ) ≤ 2ρ∗. As we have executed Step 3.2 logd2
ε
e times, (ν − µ)

reduces to a value less than or equal to 2×ρ∗

2logd 2
ε e

= ερ∗.

Let the points q′, q′′ ∈ eα be the output of Step 3.2 such that dΠ(p1, q
′) = µ and

dΠ(p1, q
′′) = ν. This implies, d(q′, q′′) ≤ ερ∗. Let ρ′ and ρ′′ be the radii of the minimum

enclosing circle of the polygons {p1, p2, . . . , pα, q′} and {p1, p2, . . . , pα, q′′} respectively,

centered on e0. This implies, RPCD(k, ρ′) = false, but RPCD(k, ρ′′) = true. Thus,
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ρ′ < ρ∗ ≤ ρ′′. Since d(q′, q′′) ≤ ερ∗, we have ρ′′ ≤ (1 + ε)ρ∗. Thus, the theorem follows.

2

Theorem 8.5 The time complexity of our algorithm for the restricted region-cover(k)

problem is O((n + k)log(n + k) + nlog(d1
ε
e)).

Proof: The decision procedure RPCD(k, ρ) runs in O(n) time. The Step 1 of RPCO(k)

needs O(n log n) time, since we call RPCD(k, ρ) at most O(logn) times in this step.

Similarly, the worst case time complexity of Step 2 is O((n + k) log(n + k)). In Step 3,

number of calls of the routine RPCD(k, ρ) is O(logd1
ε
e). Thus, the theorem follows. 2

8.7 Heuristic algorithm for region-cover(k) problem

We now present a heuristic algorithm for placing k circles of equal radii and centered

on the boundary of P such that every point inside the closed polygon P is covered

by at least one circle, and the common radius of these circles is minimum. Thus, the

restriction of lying the centers of all the covering circles on a single edge of P is relaxed.

Our approach is an iterative one. We use ρj as the estimate of ρ∗ obtained in the j-th

iterative step. We show that, ρj ≤ ρj−1 for every iteration j. The execution starts with

k randomly chosen points on the boundary of P , and this iterative process terminates

when the difference of the values of ρ produced in two consecutive iterations is less than

ε, a preassigned small positive real number. We now present the steps to be executed

in each iteration.

Input: (* of the j-th iteration *) k points on the boundary of P which are the output

of the (j − 1)-th iteration.

Output: (* of the j-th iteration *) the radius ρj, and the centers of k circles on the

boundary of P for the next iteration.
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Step 1: Let Q = {q1, q2, . . . , qk} be the k points obtained from the (j− 1)-th iteration;

each qi is on the boundary of P .

Step 2: Compute the Voronoi diagram of Q inside P . Let V (qi) be the Voronoi cell of

qi, for i = 1, 2, . . . , k.

Step 3: Compute the minimum enclosing circle Ci of V (qi) with center on the boundary

of P . The corresponding centers will be the input of the next iteration.

Step 4: If ri is the radius of the circle Ci, i = 1, 2, . . . , k, then ρj = maxk
i=1 ri.

Step 5: During the iteration, it may happens that there exists a vertex in V (qi) which

is far from every other vertices of V (qi), and its covering circle encloses some

other V (q`). Thus, some times it may happen that the minimum radius required

to cover P with k circles is same as the minimum radius required to cover P with

k′ (≤ k) circles. See Figure 8.6 for the demonstration. Such a situation may be

faced if the distance of the centers of two adjacent circles Ci and C` becomes very

close; in other words, d(qi, q`) < ε, where ε is a small constant, mentioned a priori.

In such case, we drop one center, say q`, and continue iteration with k = k − 1.

Lemma 8.12 If ρj and ρj+1 are the radii obtained in the j-th and (j +1)-th iterations,

then ρj ≥ ρj+1.

Proof: Consider V (qi), the Voronoi cell of qi in the j-th iteration. Let Ci (i = 1, 2, . . . , k)

be the circles with radius ρj and centered at q′i, where q′i is the center of the minimum

enclosing circle corresponding to V (qi). Also assume that, ηi` be the common chord

of Ci and C`, ` = 1, 2, . . . k, ` 6= i. ηi` may be φ if Ci does not intersect with C` for

some `. Consider the region obtained by the intersection of at most (k − 1) half planes

(bounded by the lines passing through ηi`, ` 6= i and ` = 1, 2, . . . , k) containing q′i. This

defines the Voronoi cell V (q′i) at the (j + 1)-th iteration. Note that, Ci encloses V (q′i)

completely. We may even reduce the size of the minimum enclosing circle of V (q′i) by
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(a) (b)

Figure 8.6: Example of the increase in the number of circles can not reduce the radius

shifting its center. This observation is true for all qi, i = 1, 2, . . . , k. Thus the lemma

follows. 2

The running time of the proposed algorithm depends on the number of iterations and

the worst case time complexity of an iteration. The time complexity of an iteration

follows from the following theorem:

Theorem 8.6 The worst case time complexity of an iteration of the proposed algorithm

is O(n + k log k).

Proof: The time needed for computing the Voronoi polygons V (qi) for all the points

qi ∈ Q inside the polygon P is O(n+k log k), where n is the number of vertices in P and

O(k log k) is the time complexity for computing the Voronoi diagram of the k points in

Q [19]. The computation of the minimum enclosing circles {Ci, i = 1, 2, . . . , k} needs

another O(n + k) time since (i) the total number of edges of all the Voronoi cells is

O(n + k), and (ii) the time complexity of computing the minimum enclosing circle of a

convex polygon is linear in its number of vertices [87]. 2
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8.7.1 Experimental results

An exhaustive experiment is performed with several randomly generated convex poly-

gons with different values of k. The polygon is generated in an unit square, the set Q

of k centers are chosen randomly on the boundary of P as an initial solution, and the

iteration starts. The iteration ends when a local minima is reached. It is observed that

the quality of the result depends on the initial positions of the points in Q. It is some

times observed that the range required for k′(≤ k) circles is same as that for k circles.

Thus, during the execution if it is observed that the Euclidean distance between the

centers of two circles is less than a given small positive quantity ε, then we drop one

of these two centers and reduce k by 1. Finally, k′ is the value of k when the iteration

stops.

(a) (b)

Figure 8.7: Experimental results for (a) a square region with 4 base stations, and (b) a

regular hexagon with 3 base stations

The entire experiment is performed in SUN BLADE 1000 machine with 750 MHz CPU

speed, and using LEDA software [91]. Table 8.1 shows the time requirement of our

algorithm for different values of n and k. For ε = 0.001, the value of k′ is also shown.

Since there exists no existing result on this problem in the literature, we could not do

the comparative study on the performance of our algorithm. In order to justify the

quality of the solution produced by our algorithm, we have performed experiments on
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Table 8.1: Experimental results

n k k′ time

(in seconds)

7 20 12 1.49

7 25 13 1.80

7 30 13 1.80

7 35 12 1.92

7 40 12 2.02

7 50 12 2.10

8 20 10 1.52

8 25 10 1.82

8 30 11 1.80

8 35 12 2.00

8 40 12 2.14

8 50 12 2.20

n k k′ time

(in seconds)

9 20 12 1.51

9 25 12 1.63

9 30 12 1.76

9 35 12 1.98

9 40 11 2.11

9 50 12 2.09

10 20 12 1.70

10 25 12 2.00

10 30 12 2.20

10 35 12 2.25

10 40 13 2.25

10 50 13 3.00

two specific instances for which the optimum solution is known. These are (i) P = a

unit square and k = 4, and (ii) P = a regular hexagon with side length 1 unit and

k = 3. For each of these two experiments, 10 different instance of initial placements are

generated; for each initial placement our algorithm is executed, and the minimum value

of ρ is recorded. The result obtained for experiment (i) and (ii) are ρ = 0.5 (= 1
2
) and

ρ = 1.732051(=
√

3
2

) respectively (see Figure 8.7). Thus, in both the cases, the optimum

value is obtained. The time taken for each experiment is a fraction of a second.
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8.8 Summary

Several variations of restricted region cover problem are studied in the context of the

range assignment problems in mobile communication. To be specific, here the objective

is to place k base stations of equal range on the boundary of a convex polygonal region

P such that each point inside P is covered by at least one base station. It is shown

that, both the vertex-cover(2) and region-cover(2) problems can be solved in O(n log n)

and O(n2) time respectively, where n is the number of vertices of the polygon. For

general k (≥ 3), if the positions of the k base stations appear on a single edge of the

polygon, then vertex-cover(k) can be solved in O(min(n2, nklogn)) time, whereas the

algorithm for the restricted region-cover(k) problem produces an (1+ ε)-approximation

result in O((n+ k)log(n+ k)+nlog(d1
ε
e)) time. Finally, an efficient heuristic algorithm

for the general version of the region-cover(k) problem is proposed. Experimental results

demonstrate that our algorithm runs fast and produces near optimum solutions. The

proof of hardness result, and an efficient approximation algorithm for the general region-

cover(k) problem is an useful extension of research on this problem.
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Chapter 9

Conclusion

In this thesis, we considered the algorithmic issues related to the optimal placement

and range assignment of radio stations in the context of a mobile radio network. Two

different variations are studied - (i) the radio stations are pre-placed, and (ii) the radio

stations are to be placed. In both cases, the number of radio stations are given a priori,

and the objective is to minimize the total power requirement of the entire radio network.

Needless to mention that the power requirement mainly depends on the ranges assigned

to the radio stations. The exact function indicating the total power requirement also

involves the environmental factors where the network is to be installed.

We first studied the case where a set of pre-placed radio stations is given. The problem

is to assign ranges to these radio stations so that the network satisfies some desired

connectivity requirement, for example, broadcast from a designated node, all-to-all

communication, etc., and the total power consumption of the entire radio network is

minimized. We have considered both the 1D and 2D variations of the problems.

We have also studied the some variations of the range assignment problem where the

radio stations are not pre-placed, and the objective is to compute the optimal locations

of the radio stations in the network such that the desired communication can be es-



tablished with minimum power. Here, we have only considered the homogeneous case,

where the range of every radio station is same.

The specific problems considered in this thesis are

Broadcast range assignment in a linear radio network: Here a set S of n radio

stations are located on a straight line, and a designated member s∗ ∈ S) is given as a

source node. An integer h (1 ≤ h ≤ n − 1) is also given. The objective is to assign

ranges to the members in S so that s∗ can send message to all other members in S using

at most h hops, and the total power consumption is minimum. Two variations of this

problem are considered - (i) unweighted, and (ii) weighted. For the unweighted version,

we propose an O(n2) time algorithm for this problem. An O(hn2) time algorithm for

this problem was presented in [31]. Thus our algorithm is an improvement over the

existing result by a factor of h. It seems that, one may improve the time complexity

to O(nh× polylog(h)) by further investigating the geometric properties of the problem.

For the weighted version, the time complexity of our proposed algorithm is O(hn2 log n).

It is also shown that in the unbounded case (i.e. h = n − 1), the algorithm runs in

O(n2) time.

Broadcast range assignment in 2D: Here the set of the pre-placed radio stations

are in 2D. We consider the homogeneous case only, and have considered the following

two variations: (i) find the range value r such that 2-hop homogeneous broadcast from

s∗ is possible with minimum cost, and (ii) given a real number r, check whether homo-

geneous 2-hop broadcast from s∗ to all members in S is possible with range r, and if so,

identify the smallest subset of S, to which the range r is to be assigned to accomplish

the broadcast. The first problem is solved in O(n2.376 log n) time and O(n2) space. For

the second problem, we present a 2-approximation algorithm, that runs in O(n2) time.

In this context, we need to mention that the hardness result of the second problem is

still undecided.
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Range assignment for all-to-all communication: Here also a set S of radio stations

are given, and the objective is to assign ranges to the members in S such that each of

them can communicate with the others in h hops, where h is specified in advance, and

the total power consumption over the entire network is minimized. We have considered

both 1D and 2D versions of the problem.

In 1D version, we have considered only the unbounded case, and proposed an algorithm

of O(n3) time and O(n2) space for producing the optimum range assignment. This

is an improvement in the running time by a factor of n over the best known existing

algorithm for the same problem [76].

For the 2D version, we have considered several variations of the problem. In the homo-

geneous case, we have proposed an O(n3( log logn
logn

)
5
4 logn) time algorithm for producing the

optimum solution. In particular, if we consider the unbounded case and homogeneous

range assignment, then the proposed algorithm runs in O(n2) time. For the general

h-hop all-to-all communication problem, computing the optimum solution is proved to

be APX-hard, and so it does not admit a PTAS unless P = NP [76]. Since the problem

is very useful in terms of its manifold applications, we have proposed a very efficient

heuristic algorithm for this problem. Experimental results indicate that our heuris-

tic algorithm runs fast and produces near-optimal solutions on randomly generated

instances.

Base station placement problem: Here the radio stations are not pre-placed; the

objective is to place the base stations and assign ranges to them such that a mobile

terminal at each point of the region under consideration can communicate with at least

one base station (i.e., each point inside the region is within the range of at least one base

station) and the total power consumption of all the base stations is minimum. We have

made two assumptions for solving this problem - (i) the region under consideration is

convex, and (ii) the base stations are homogeneous in the sense that the range assigned

to each base station is same. Two variations of this problem are considered. In the
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unconstrained version, the base stations can be placed anywhere inside the region. But

in the constrained version, the base stations can be placed only on the boundary of the

region.

The unconstrained version of the problem can be mapped to the traditional circle cover-

ing problem in computational geometry. Given a convex polygonal region, the objective

is to cover the region by k equal radius circles of minimum radius. The parameter k is

specified a priori. Existing studies on this problem considered the region to be a square

or a triangle. The proposed algorithms use numerical techniques and are very slow in

general. Our proposed algorithm works for arbitrary convex polygon. It is iterative in

nature, and is based on the concept of Voronoi diagram. The execution time of our

algorithm is a fraction of a second in a SUN Blade 1000 computing platform with 750

MHz CPU speed, whereas the existing methods may even take about two weeks’ time

for a reasonable value of the number of circles (≥ 27), as reported in [97].

Next, we considered the constrained version of the base station placement problem,

where the k base stations can be placed on the boundary of the given convex region,

and k is specified a priori. We considered two variations of this problem, namely vertex-

cover, and region-cover. In the vertex-cover problem, the objective is to cover the

vertices of the given convex polygonal region, and in the region-cover problem, the

objective is to cover the entire region inside the given polygonal region. We have

shown that for k = 2, the vertex-cover and the region-cover problems can solved in

O(n log n) and O(n2) time respectively. For k ≥ 3, we have considered a restricted case

of these problems where all the base stations can be installed on a specified edge of

the given polygon. Our proposed algorithm for the restricted vertex-cover(k) problem

produces the optimum result in O(min(n2, nk log n)) time, whereas the algorithm for

the restricted region-cover(k) problem produces an (1+ε)-factor approximation result in

O((n+k) log(n+k)+n log d1
ε
e) time. Finally, we propose an efficient heuristic algorithm

for the generalized version of the region-cover(k) problem, when k ≥ 3. Experimental
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results demonstrate that our proposed algorithm runs fast and produces near-optimum

solutions. Our next concern is to get an polynomial time approximation scheme for the

generalized version of the region-cover(k) problem.
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