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Chapter 1

Introduction

The proportional hazards (PH) model, but more specifically its special case the Cox regression
model (Cox, 1972), plays an important role in the theory and practice of lifetime and dura-
tion data analysis. This is because the PH model (and the Cox regression model) provides
a convenient way to evaluate the influence of one or several covariates on the probability of
conclusion of lifetime or duration spells. However, the PH specification substantially restricts
interdependence between the explanatory variables and the lifetime in determining the hazard.
In particular, the Cox regression model model restricts the coefficients of the regressors in the
logarithm of the hazard function to be constant over the lifetime. This restriction may not hold
in many situations, or may even be unreasonable from the point of view of relevant theory.
Further, this and other kinds of misspecification often lead to misleading inferences about the
effects of explanatory variables and the shape of the baseline hazard.

Testing the Cox PH model, particularly against the omnibus alternative, has therefore been
an area of active research. However, the omnibus tests do not offer much clarity regarding
the nature of departure from underlying assumptions. As a result, these tests do not provide
useful inference for further modeling covariate effects when the Cox regression model does not
hold. For example, it is often of interest to explore whether the hazard rate for one level of the
covariate increases in lifetime relative to another level (i.e., the hazard ratio increases/decreases
with lifetime). Ordered departures from proportionality of this and related types are useful
in the two-sample (or binary covariate) setup for studying commonly observed features like

crossing hazards. Similar situations also occur quite frequently in the k-sample setup and



when the covariate is continuous. Throughout this thesis, we call such ordered departures
generically as "order restrictions on covariate dependence", as distinct from "order restrictions
on ageing" which refers to restrictions on the shape of the baseline hazard function (or, on
duration dependence).

The work included in this thesis develops analytical and graphical inference on covariate
effects in situations when the Cox regression model, or more generally the PH model, may not
hold. In particular, we develop methods to study covariate effects in the presence of potentially
order restricted departures from proportionality. The thesis places emphasis on both theory
and applications, and extends the literature along both these dimensions in several ways. In
this sense, the work is firmly set within the tradition of research in applied statistics and
econometrics.

In the following section (Section 1.1), we motivate our research on order restrictions on
covariate dependence using a few real life examples, focusing on some useful ways in which order
restrictions can be characterised and hazard regression models accommodating order restricted
covariate effects. Next, in Section 1.2, we review recent research on hazard regression models,
which are useful for modeling and estimation of covariate dependence under order restrictions,
particularly when the covariate is continuous. The review is selective, focusing largely on order
restrictions in these models and aimed at identifying gaps in the literature. As we proceed, we
place the main contributions made in the thesis within the context of the literature. Finally,
we outline the new research and describe the chapter scheme for the rest of the thesis (Section

1.3).

1.1 DMotivation for the research

The main focus of our research is on the way covariate effects deviate from the proportional
hazards assumption. We first discuss the two sample setup, where the covariate under consider-
ation is binary. Following this, we discuss continuous covariates and finally, a regression model
for nonproportional hazards. In each of these main themes, we motivate our research using real

life applications.



1.1.1 Two sample setup

In the two sample setup, Gill and Schumacher (1987) and Deshpande and Sengupta (1995) con-
sider departures where the ratio of hazard rates in the two samples is monotonically increasing

or decreasing with the lifetime!

. They develop tests of the null hypothesis of proportionality
against the increasing (decreasing) hazard ratio alternative. Sengupta and Deshpande (1994)
show that this kind of departure is equivalent to convex-ordering of the lifetime distributions
in the two samples (Kalashnikov and Rachev, 1986). Denoting by A and A\g (correspondingly,

Ar and Ag) the hazard functions (cumulative hazard functions) in the two samples,

Ar(t)
o) Tt on [0,00) <:>F5G, (1.1)

where convex ordering of the lifetime distributions is defined as the condition that Ag o A(_;1
is a convex function on [0,00). Similarly, Deshpande and Sengupta (1994) also show that
star-ordering of the lifetime distributions is equivalent to monotone ratio of cumulative hazard

functions
Ap(t)
Aq(t)

where star-ordering of the lifetime distributions is defined by Ap o Aal being a star-shaped

Tton (0,00) <= F <G, (1.2)

function from [0, 00) to [0, 00)?.

One important starting point for our work is the analysis, in Gill and Schumacher (1987),
of the Veterans’ Administration data (Detre et al., 1977) on a controlled clinical trial in chronic
stable angina. The main purpose of the analysis is to compare survival times of patients
receiving coronary artery bypass graft surgery and of patients receiving a conservative medical
treatment. The tests proposed by Gill and Schumacher (1987) fail to reject the null hypothesis
of proportionality against the alternative of decreasing hazard ratio for surgery versus medical
treatment. However, a plot of the empirical trend function (Lee and Pirie, 1981) with log rank

weight function (Gill and Schumacher (1987), shown in Figure 1-1 with axes interchanged)

! The word "increasing" would mean "non-decreasing" throughout this thesis; similarly "decreasing" will mean
"non-increasing".

2 A non-negative valued function is star-shaped function if any straight line through the origin intersects it at
most once and from above; a negative star-shaped function has the opposite property. Note that star-shapedness
is a weaker property than convexity; similarly negative star-shapedness is weaker than concavity.

10
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Figure 1-1: Lee-Pirie plot for Veterans’ Administration data (Figure 5, Gill and Schumacher
(1987), with axes interchanged)

demonstrate clear evidence of ordered departure from proportionality. In fact, the star-shaped
pattern (Kalashnikov and Rachev, 1986) suggests that a monotone cumulative hazard ratio
alternative, which is weaker than concave ordering, may characterise the nature of depature
from proportionality more accurately.

This example motivated us to develop tests for proportionality against the weaker monotone
cumulative hazard ratio alternative. Further, the success of alternatives such as convex and star
ordering in describing ordered departures from proportional hazards in the two-sample setup

also motivate our work on extending the tests to a competing risk framework.

1.1.2 Continuous covariates

While the above characterisation of covariate dependence in nonproportional hazards situation
is useful in studying commonly observed phenomena like crossing hazards, the two sample
setup itself is rather restrictive in its application. At the same time, similar evidence of ordered
departures from proportionality with respect to continuous covariates are quite common in
applications.

For survival with malignant melanoma, for example, Andersen et al. (1993) observe that,

while “hazard seems to increase with tumor thickness” (pp. 389), the plot of estimated cu-

11



mulative baseline hazards for patients with ‘2 mm < tumor thickness < 5 mm’ and ‘tumor
thickness > 5 mm’ against that of patients with ‘tumor thickness < 2 mm’ reveal “concave
looking curves indicating that the hazard ratios decrease with time” (pp. 544-545). Similarly,
Jayet and Moreau (1991), using data on French employment durations, find that the ratio of
hazard function for individuals in the age groups 24 — 28 years to that for 37 — 40 years is
increasing upto a duration of approximately 120 days.

Motivated by applications like the above, we extend the notions of order restricted covariate
dependence to the case of continuous covariates. For example, we define the lifetime random
variable T' to have increasing hazard ratio for continuous covariate (IHRCC') with respect to
a continuous covariate X if,

whenever z1 > za, (T|X =x1) < (T|X = z2). (1.3)

[

Within this very general framework, we develop tests of the proportional hazards assumption
against ordered alternatives. These tests are powerful and can detect departures not only in the
direction of alternatives like I H RC'C, but also violations of the proportional hazards hypothesis

where the covariate effects change at an unknown changepoint.

1.1.3 Modeling nonproportional hazards

For further inference and modeling of covariate effects in the presence of such non-proportionality
of conditional hazard functions, it is useful to consider appropriate alternative hazard regres-
sion models. We argue the use of a multiplicative hazard regression model with time-varying
coefficients

A(tlz) = Xo(t). exp (B(¢).x)

for modeling the nature of nonproportionality. Under this model, monotonicity of the coeffi-

cients as a function of lifetime is equivalent to ordered departures of the IH RCC type (1.3):

B(t) Tton [0,00) <= (T|X =x1) < (T'|X = x2) whenever z; > z2,

12



while changepoint departures like in the unemployment duration data (Jayet and Moreau, 1991)
correspond to the time-varying coefficients increasing over one range of lifetimes and decreasing
over another.

To demonstrate the flexibility and usefulness of this approach, we consider an application to
exits due to bankruptcy among listed firms in the UK (Bhattacharjee et al., 2008a, 2008b). The
main purpose of our focus is to study the effect of macroeconomic instability on business failure.
Based on economic theory and prior evidence, we expect instability to have an adverse effect on
firm survival, and therefore a positive covariate effect on bankruptcy hazard. Further, the effect
of instability is expected to reduce with the age of the firm, implying time varying coefficients
that decrease to zero. Inference on the strength of the effect of instability and its variation with
age have important relevance for economic and legislative policy implications. In fact, using
exchange rate volatility as a measure of instability, the null hypothesis of proportional hazards
is rejected against a decreasing hazard ratio for continuous covariate (DHRCC') alternative.

Our research demonstrates that biased bootstrap methods, such as data tilting and par-
ticularly local adaptive bandwidths provide useful order restricted estimates of such hazard
regression models. The plot of adaptive bandwidth estimates (Figure 1-2a) demonstrate the
variation in and strength of covariate effects over the lifetime of the firm, and provide useful
and policy relevant inference. Figure 1-2b reports bayesian order restricted inference on the
covariate effect of instability on discrete failure time data in the presence of arbitrary frailty.
These estimates provide similar inference, though accounting for frailty somewhat reduces the
inferred strength of the effect of instability.

The above applications motivate the main research ideas developed in this thesis. We
develop analytical and graphical inference tools to examine evidence of nonproportional hazards
in two sample and continuous covariate setups, and to infer on the nature of nonproportionality.
Further, we develop frquentist and bayesian inference in regression models admitting a variety of
nonproportional hazard situations. Finally, we make contributions towards developing economic

theory and applications for understanding macroeconomic effects on the survival of firms.

13
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Figure 1-2: Effect of exchange rate volatility on bankruptcy exit hazard

1.2 Order restrictions in hazard regression models

The Cox regression model (Cox, 1972) has been the workhorse of hazard regression models and
played an important role in the theory and practice of lifetime and duration data analysis over
the past few decades. This is because this model (and more generally the PH model) provides
a convenient way to evaluate the influence of one or several covariates on the probability of
termination of lifetime or duration spells. Limitations and extensions of this model provide the

context of the present review of recent research.

1.2.1 The Cox regression model

The model? specifies that the hazard function of the failure time conditional on a set of possibly
time varying covariates is the product of an arbitrary baseline hazard function and a regres-
sion function of the covariates. For a failure time variable T associated with an experimental
unit with vector of possibly time-dependent covariates X (t), this model postulates that the

conditional hazard rate function of T at time ¢, given X (t), is

A(HX(8)) = Ao(t)- exp [87.X(1)] (1.4)

3The discussion of the Cox regression model here is largely based on Andersen et al. (1993).

14



where Ag(.) is some baseline hazard function, 3 is a vector of regression coefficients, and su-
perscript T’ (T) denotes vector /matrix transpose®. An alternative, and often more convenient,
way of representing the Cox regression model is in the form of a linear transformation model,
in terms of the baseline cumulative hazard function Ay(t) = fg Ao(s)ds:

InAo(t) = —B1.X(t) +¢,

where In A (%) is a positive-valued but arbitrary increasing function and € has the usual extreme
value distribution®.

The Cox regression model allows the baseline hazard function to assume a completely un-
restricted shape. The multiplicative separation of the effect of lifetime from that of the other
covariates has a very important implication. The hazard functions conditional on two different

values of the covariate vector is independent of the lifetime

A(HX() _

NAx )~ OP L (X0 - X0)]-

In other words, the conditional hazard functions are proportional to each other. The propor-

tionality also holds under the more general PH model
A(HX (1) = do(t).¢ [BT.X(1)] (1.5)

where ¢(.) is an arbitrary (smooth) monotone function. An alternative interpretation of this
result is that the impact of the covariate vector on the conditional hazard is the same multiplica-
tive factor exp [@TX ()] at any lifetime; this interpretation will be important in subsequent
developments in this thesis.

Cox (1972, 1975) introduced the ingenious partial likelihood principle to eliminate the in-
finite dimensional baseline hazard function from the estimation of regression parameters with

censored data and potentially time varying covariates. For untied failure time data with time-

*Please note that throughout this thesis, the failure time variable will be denoted by T while superscript T
g ) y P P
() will denote the tanspose of a matrix or vector.
®When ¢ has a standard logistic distribution, we get the proportional odds model.
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varying covariates, the Cox partial likelihood has the form

e[ X0 ™
HH{Z V.00 o0 [BX >]} | 0

1=1t>0

where Y;(t) is the at-risk indicator taking value 1 if individual 7 is under observation and at risk
at time ¢ (zero otherwise), and N;(t) denotes the number of observed failures for individual 7 over
the interval [0,¢]; dV;(t) takes the value 1 if the individual has failed at time ¢ (zero otherwise).
The beauty of the above formulation is in that the infinite dimensional baseline hazard function
is not included in the partial likelihood function at all. Having obtained the maximum partial
likelihood estimator, E, by maximising the partial likelihood (1.6), the baseline cumulative

hazard function is estimated using the Aalen-Breslow estimator (Breslow, 1975; Aalen, 1993)

t _
— > dN(s)
(D) = [
dN(s) = ZdNi(s).

If there are no covariates, this estimator reduces to the familiar Nelson-Aalen estimator (Nelson,

1969, 1972; Aalen, 1975, 1978)

Ao (t) = / dy((:)), ZdN ZY (1.8)
0

for the cumulative hazard function of a lifetime or duration variable.

In a seminal paper, Andersen and Gill (1982) extended the Cox regression model to general
counting processes and established the asymptotic properties of the maximum partial likelihood
estimator and the associated Breslow (1974) estimator of the cumulative baseline hazard func-
tion via the elegant counting process martingale theory. This follows from the representation

of the log partial likelihood as

[e.o]

- Z/ [K(t)-éT.XiG) —In (Zij(t).exp [ETXZ(t)])] dN;(t), (1.9)

_10
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and the Doob-Meyer decomposition of the counting process N;(t)
dM;(t) = dN;(t) + Yi(t).Mo(t). exp [BT. X, ()] .dt (1.10)

where M;(t) is a standard counting process martingale (for details, see Andersen et al., 1993).

The partial likelihood argument follows through in the case of staggered entry (sometimes
also called delayed entry) where some individuals are not observed from time zero. This kind
of situation is present in some of the empirical applications included later in the thesis. Large
sample theory for this case has been developed in Tsiatis (1981) and Sellke and Siegmund
(1983).

These contributions render the Cox regression model very convenient for empirical analysis
while at the same time retaining the flexibility of a fully nonparametric baseline hazard function.
This flexibility comes at a cost — the partial likelihood estimates of the covariate effects as well
as the shape of the baseline hazard function are known to be highly sensitive to violation of the
model’s various assumptions. This issue has been discussed in the literature, for example, in the
work of Johnson et al. (1982), Lagakos and Schoenfeld (1984), Solomon (1984), Struthers and
Kalbfieisch (1986) and Lagakos (1988). A large simulation study reported in Li et al. (1996)

highlight these issues quite strongly.

1.2.2 Effect of misspecification

There are several basic and important features of the Cox regression model,.tests for the under-
lying assumptions for many of which are critical for the model’s use in empirical studies. These
various aspects of the model as well as the corresponding assumptions also suggest directions
for extending the model (Therneau and Grambsch, 2000)%. The first of these, and perhaps
most crucial, is the assumption that the hazard functions conditional on different values of the
covariate vector are proportional to each other. This PH specification substantially restricts
interdependence between the explanatory variables and the lifetime in determining the hazard
(Gill and Schumacher, 1987; Kiefer, 1988; Neumann, 1997).

Proportionality of hazards is not consistent with the crossing hazards or converging/ diverg-

This Section borrows heavily from Therneau and Grambsch (2000), and also Andersen et al. (1993).
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ing hazards phenomena frequently observed in empirical studies; see Stablein et al. (1981), Han
and Hausman (1990), Manton et al. (1991), Caplehorn and Bell (1991) and Liu et al. (2007)
for some examples from biomedicine, economics and demography. Further, the assumption may
even be unreasonable from the point of view of relevant theory. In many applications in the
medical field, one expects the prognostic relevance of some covariates to decay, or even disap-
pear, in the long run (Gill and Schumacher, 1987; Therneau and Grambsch, 2000); evidence
of such decay can be found, for example, in Pocock et al. (1982), Champlin et al. (1983) and
Begg et al. (1984). Predictions of non-proportional hazards can also be found in economic
theory. For example, Mortensen (1977) and Burdett (1979) developed theoretical models where
unemployment benefits have different effects on the hazard from unemployment as the spell
lengthens; using British data, Atkinson et al. (1984) and Narendranathan and Stewart (1993)
find evidence of such non-proportional hazards in unemployment duration. Similarly, in this
thesis, we develop a model of firm exits through competing routes of bankruptcy and acquisition
(Bhattacharjee et al., 2008a, 2008b), where adverse macroeconomic effects decay with the age
of the firm.

Since violation of the PH assumption leads to inaccurate inference on covariate effects and
the baseline hazard (Breslow et al., 1984; Stablein and Koutrouvelis, 1985; Schemper, 1992;
Tubert-Bitter et al., 1994; Hsieh, 1996), testing the PH model has been an area of active
research. The main focus of this thesis is in developing methods to detect departures from
the proportional hazards assumption, as well as modeling and estimation when proportionality

does not hold.

The second main assumption, that of no frailty, is violated when there are omitted covariates.
With scalar multiplicative frailty”, u, representing the combined effect of unobserved covariates
independent of included regressors, we have the standard frailty model

A(HX(8) = Xo(t). exp [B7.X, ()] -ui, wse (0,00) 4 7y

"Frailty is alternatively called unobserved heterogeneity, particularly in the econometrics literature. We find
this definition slightly ambiguous; while unobserved heterogeneity can be both in the nature of random and fixed
effects, frailty usually refers to multiplicative random effects unobserved heterogeneity in the Cox regression
model. We use the term frailty throughout this thesis.
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The model® was first used in the econometrics literature by Lancaster (1979) and Nickell (1979),
and Vaupel et al. (1979) introduced it in demography. With unrestricted individual level frailty,

the above model can be expressed as a linear transformation model
InAg(t) = —BT.X(1) - U +e, U ~ Fy. (1.11)

where In Ag(t) is a positive-valued but arbitrary increasing function, ¢ has the usual extreme
value distribution and the log-frailty U = In(u) has an arbitrary distribution.

The presence of multiplicative frailty invalidates partial likelihood inference, both on the co-
variate effects and the baseline hazard function (Lancaster; 1985, 1990; Struthers and Kalbfleisch,
1986; Henderson and Oman, 1999); see Hougaard (2000) and van den Berg (2001) for discussion.
Research, based on both simulations (Bretagnolle and Huber-Carol, 1988; Baker and Melino,
2000) and empirical applications (Heckman and Singer, 1984b; Trussell and Richards, 1985;
Hougaard et al., 1994; Keiding et al., 1997), also suggests that inference is usually sensitive to
the choice of the frailty distribution. Therefore, Kiefer (1988) argues that it may be preferable
to model frailty using the nonparametric approach of Heckman and Singer (1984a, 1984b),
where a sequence of discrete multinomial distributions with a progressively increasing number
of support points is used to approximate the unknown frailty distribution.

Further, like the proportionality assumption, the assumption that frailty is absent is also
frequently violated in applications, and is often even unjustifiable from theoretical considera-
tions. The shared frailty model, where individuals are clustered a priori based on the value of
their shared but unobserved frailty, is commonly used in biomedical applications (Lin, 1994;
Andersen et al., 1999; Hougaard, 2000). However, many economic applications have strong rea-
sons, both theoretical and empirical, to anticipate unobserved heterogeneity at the individual
level. The work in this thesis incorporates such univariate frailty, either with a known frailty

distribution or with a completely nonparametric treatment of unobserved heterogeneity.

The Cox regression model incorporates two further important features: (a) multiplicative
separability of the effect of the baseline hazard and of each individual covariate, and (b) the

exponential link function. By representing violation of proportionality through interaction

8 Also known as the Mixed Proportional Hazards (MPH) model.
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between the lifetime and the covariate effects, the work in this thesis develops a richer model of
covariate dependence as compared with multiplicative separability. This line of inference follows
the work of Mau (1986), who demonstrated the use of the additive hazard model (Aalen, 1980) in
detecting possible time dependent effect of a covariate. Further, Pettitt and Bin Daud (1990)
show that, when covariate effects are not very large, the hazard regression model with time
varying coefficients provides a first order Taylor approximation to other popular alternatives
— the additive hazard and the accelerated failure time models; see Therneau and Grambsch
(2000) for further discussion.

The issue of finding adequate covariates with loglinear effects is highly specific to any ap-
plication, and is therefore a matter of empirical modeling. Further, we do not directly discuss
the problem of inferring on an appropriate functional form or transformation through which
a covariate’s effect is expressed in the regression model. We, however, take on board several
contributions to this line of research, including Lagakos (1988), Lin et al. (1993), Grambsch et
al. (1995) and Hollénder and Schumacher (2006).

The above literature highlights the importance of the special features of the Cox regression
model, particularly the proportionality and the no frailty assumptions, for obtaining useful
inference on covariate effects. The presence of censoring exacerbates the effect of model mis-
specification, particularly when there are omitted covariates (Andersen et al., 1996). Perhaps
most importantly, the literature suggests extensions that would make the Cox regression model
more useful for studying the prognostic relevance of various regressors.

As regards estimation of the baseline hazard function, the effects of misspecification are
even more severe. First, under the partial likelihood approach, estimation of the baseline
hazard function depends on the estimates of the covariate effects (1.7). Hence, any violation of
assumptions that are crucial for covariate effects are also important for inference on the baseline
hazard function. Second, and perhaps more importantly, several studies of real-life single-spell
failure time data find that estimates of both the covariate effects and the shape of the baseline
hazard function depends crucially on appropriate modeling of frailty; see, for example, Heckman
and Singer (1984a, 1984b), Hougaard et al. (1994) and Keiding et al. (1997). This is true even
when the overall fit of the model does not change with inclusion of frailty in any substantial

way. The crucial nature of the no frailty assumption can also be easily seen within a model
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without covariates, which satisfies the PH assumption by definition, even though the observed
hazard rates will not be proportional across the different levels of frailty. In fact, identification
of the unknown frailty distribution in the proportional hazards frailty model (1.11) comes from
this nonproportionality of the observed conditional hazard functions (see Hougaard, 1991; van
den Berg, 1992; and Keiding, 1998).

Unfortunately, the presence of frailty can often be confused with interaction between the
failure time and the explanatory variables (Elbers and Ridder, 1982; Aalen, 1994). Andersen
et al. (1993, pp. 550-551) present similar evidence, in that a model omitting an important
covariate appears to exhibit evidence of non-proportional hazards. In a similar vein, Abbring
and van den Berg (2007) show how tests for proportional hazards can be adjusted to test for
the no frailty hypothesis when the PH assumption holds. This observation of the close rela-
tionship between non-proportionality and unobserved covariates is a major motivation behind
our treatment of frailty in this thesis. Specifically, we will consider hazard regression models
for single-spell failure time data with potentially non-proportional hazards and frailty having

an unknown distribution.

1.2.3 Goodness-of-fit tests of the PH assumption

Given the crucial nature of the proportionality assumption, an important focus of research
has been in the development of analytical and graphical tests for the proportional hazards
hypothesis. Most of these tests are based on goodness-of-fit, testing for proportional hazards
either against an omnibus alternative or an alternative within which the Cox regression model
is nested”.

Many of the available tests, both graphical and analytical, set the Cox regression model as
the null hypothesis and use an omnibus alternative. For example, Kay (1977), Crowley and Hu

(1977) and Crowley and Storer (1983) used cross-plots of the estimated martingale residuals
t T -
M;(t) = N;(t) —/ Yi(s).exp [ﬁ XZ(S)} dAo(s),
0

either against a covariate value or against a set of order statistics from the unit exponential

9The review here is largely based on Therneau and Grambsch (2000) and Andersen et al. (1993).
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distribution. Lagakos (1981) proposed a method based on permuted rank statistics of such
residuals. Andersen (1982) developed graphical methods similar to Kay (1977) and a goodness-
of-fit test that involves the estimation of a piecewise constant baseline hazard. Cox (1979)
suggested a graphical method using total cumulative baseline hazard between k successive
order statistics; if the Cox model is correct, this statistic has a Gamma, distribution with shape
parameter k£ and unit scale parameter. Schoenfeld (1982) suggested plotting the differences
between the actual value of the covariate for the individual who fails at time ¢; and the expected

value over all individuals at risk at that time. Consider the score process for the i-th individual

Us (B,1) = /0 [X,(5) — 7 (8, 5)] .dMi(s),

where M;(t) is the counting process martingale

Mi(0) = Nit) = [ i) exp [87X,()] dhols)

and

= (ﬁ S) _ EY;(S) eXp MTXZ(S)] X@(S)
- S Yi(s).exp [BT.X,(s)]

Then the Schoenfeld residual at the k-th failure time is given by

- /ttf Z[&(s)_z@,s)}.dﬁi(s)

%

_ /t,;l 3 [Xis) ~ 7 (Bus) | amvico)

i
This is a useful way to detect departures from the proportional hazards model. Other useful
graphical tools for assesing the PH assumption under the Cox regression model have been
developed in Arjas (1988) and O’Quigley (2003).

There are many analytical tests of the Cox regression model against the omnibus alternative,
often based on the graphical tools for model validation. Schoenfeld (1980) proposed a goodness-
of-fit statistic for the Cox proportional hazards model by partitioning the subjects into mutually
exclusive regions based on their covariate values. The goodness-of-fit statistic is then calculated

as a sum of squared differences between the observed and predicted number of failures in
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these regions. Other goodness-of-fit statistics are proposed by Kalbfleisch and Prentice (1980),
Andersen (1982), Lancaster (1983), Gray and Pierce (1985), Lancaster and Chesher (1985),
Arjas (1988), Barlow and Prentice (1988), Hjort (1990), Lin and Wei (1991), McKeague and
Utikal (1991), Chen and Wang (1991), Henderson and Milner (1991), Andersen et al. (1993, pp.
545-550), Li and Doss (1993), and Grambsch and Therneau (1994); the testing procedures differ
mainly in the notions of goodness-of-fit (usual x2, Kolmogorov-Smirnov or Cramér-von Mises)
and the definition of residuals (martingale or generalised residuals, Schoenfeld residuals, Arjas
(1988) type residuals, etc.). Nagelkerke et al. (1984) propose a goodness-of-fit test based on the
autocovariance of successive contributions to the log likelihood. Similar tests were proposed
by Therneau et al. (1990), Horowitz and Neumann (1992) and Lin et al. (1993) based on
cumulative sums of martingale-based residuals or on maximum deviation of the score process
from the zero line. A different approach to the omnibus alternative is to assume a more general
model within which the Cox regression model can be nested. Such nested tests have been
considered by Aranda-Ordaz (1983), O’Quigley and Moreau (1984, 1986), Moreau et al. (1985,
1986). Excellent summaries of some of these procedures have been given by Andersen et al.
(1993) and Fleming and Harrington (1991).

There are two main aspects where the above tests of the proportionality assumption can
be improved. First, the available choices are often too extreme; the omnibus tests have very
low power against many alternatives of interest, while the nested tests are very limited in the
dimensions along which departures from the PH model is allowed. Therefore, there is need to
develop a trade-off between the two approaches. Second, and more importantly, these tests
provide little assistance in understanding the nature of the regression relationship when the
null hypothesis of proportional hazards is rejected. Graphical tools may be useful in these
situatuions to identify suitable alternatives (see, for example, Sengupta 1996). We address
these two issues in this thesis. We develop new methods, both analytical and graphical, that
allow for modeling the nature of nonproportionality in the two-sample (binary covariate) setup,

as well as when the covariates are continuous and time-varying.
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1.2.4 Order restrictions on covariate dependence

As opposed to broad alternatives like the omnibus alternative or alternatives considered in the
general nested tests discussed above, it is often of interest to understand the nature of depar-
tures from the proportionality assumption. As discussed earlier, the PH assumption essentially
implies that hazard functions conditional on different covariate values are proportional to each
other. It is therefore of interest to identify which of the explanatory factors have nonpropor-
tional effects and to examine the nature of the covariate effect.

A useful approach is based on checking proportional hazards within the context of a hazard

regression model

A (X (1)) = Ao (t)- exp [B(t)T.X ()], (1.12)

where proportionality corresponds to the condition that the time varying regression coefficient
process, 3(t), is constant over time: B(t) = 8. Estimators for 3(t) have been developed using
the histogram sieve (Murphy and Sen, 1991; Gore et al., 1984), spline models (Hess, 1994;
Abrahamowicz et al., 1996), local partial likelihood (Valsecchi et al., 1996), penalized partial
likelihood (Zucker and Karr, 1990; Gray, 1992; Hastie and Tibshirani, 1993; Verweij and van
Houwelingen, 1995), kernel-weighted partial likelihood (Tian et al., 2005), local linear estima-
tion (Cai and Sun, 2003) and recursive estimation using Schoenfeld residuals (Winnett and
Sasieni, 2003). Starting from any initial consistent estimator for the time-varying coefficients,
Martinussen and Scheike (2002) and Martinussen et al. (2002) propose a one-step estimation
procedure for the cumulative coefficient B(t) = fot B(s)ds.

In an important contribution, Grambsch and Therneau (1994) show that a plot of the
Schoenfeld residuals for covariate [, properly scaled, gives a first order approximation to 5,;(t),l =
1,...,p. Expressing (3;(t) as a regression on some function g;(¢) (either a known fixed function

of time or a specified predictable process)

Bi(t) = By + Or.gi(t),

they derive a test for proportionality where 6; = 0 constitutes the null hypothesis of proportional
hazards. Andersen et al. (1993, pp. 539-545) describe an alternative strategy where stratified

Cox regression models are fitted based on a pre-specified partition of the covariate space, and
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proportionality is checked by a test that the baseline hazard for all the strata are equal. Marzec
and Marzec (1997) follow the histogram sieve approach of Murphy and Sen (1991) in defining
an increasingly fine partition of the time scale and using the Arjas (1988) methodology to
develop a test that the covariate effect is constant across time. Kvalgy and Neef (2004) and
Kraus (2007) develop similar tests based on cumulative sums of Schoenfeld residuals that test
for the constancy of the covariate effect. Scheike and Martinussen (2004) base their test of the
PH assumption on the fact that under the null hypothesis, the time-integrated covariate effect
process estimated using the methodology developed in Martinussen et al. (2002), should be a

straight line through the origin.

The above tests help in understanding of the nature of covariate effects in situations when
the PH assumption does not hold. Further, by assuming the time-varying coefficient model,
these tests also obtain higher power than the earlier tests for proportionality. However, many
empirical applications involve specific order restrictions on the covariate effect which is not
explicitly incorporated in these tests. For example, it is often of interest to explore whether
the hazard rate for one level of the covariate increases in lifetime, relative to another level (i.e.,
the hazard ratio increases/ decreases with lifetime), particularly when the covariate is discrete
(two-sample or k-sample setup).

As opposed to omnibus alternatives, it is therefore often of interest to consider more specific
situations where the covariate effect is order-restricted. In the two-sample setup, Wei (1984),
Gill and Schumacher (1987) and Deshpande and Sengupta (1995) have constructed analytical
tests of the PH hypothesis against the alternative of ‘increasing hazard ratio’; Lin (1993) extends
the Gill and Schumacher (1987) test to the Cox regression model The alternative hypothesis
accomodates the commonly observed phenomenon of ‘crossing hazards’, and is a useful ordered
alternative to the proportional hazards model in the two-sample setup. Empirical evidence
of such ordering is abundant in the literature on empirical survival analysis, demography and
economic duration models. Besides, this framework permits more explicit modeling of the
covariate effect in the two sample setup, when the covariate effect is time-varying and ordered.

The test developed in Gill and Schumacher (1987) is particularly interesting, and motivates

much of the work in this thesis. For censored data in a two-sample setup, they develop a test
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for the hypotheses

Hop : Aa(t)/A1(t) = 6 for some positive 6

versus Hy : Ao(t)/A1(t) # 6 for any positive 6,

where A;(.) and Ag(.) are the hazard functions in the two samples. Gill and Schumacher (1987)
construct their test statistic based on the intuition that under Hy, the contrast between two
different estimators of the hazard ratio, 8, should be close to zero. They choose the two esti-
mators as generalised rank estimators (Begun and Reid, 1983; Andersen, 1983) using different
predictable weight functions. The test is particularly useful in detecting ordered departures
from the PH assumption (i.e., when the hazard ratio is monotone), for which it is unbiased
when the ratio of the weight functions is monotone.

The Gill and Schumacher (1987) test is also motivated through a graphical tool developed
by Lee and Pirie (1981), the so-called trend function y(u)

v(u) = Az (AT (u)) | ue (0,A1 (7)),

where Aj(.) and As(.) are the cumulative hazard functions in the two samples, and A;'(.) is
the functional inverse of the cumulative hazard function in sample 1. Gill and Schumacher
(1987) show that their test statistic is a weighted measure of the area between the straight line
through the origin and the empirical trend function.

The Lee-Pirie plot is a powerful tool to graphically detect proportionality of hazards as well
as different kinds of partial orders in failure time distributions'?. It is a straight line through
the origin under proportionality — Hy in this case. Whenever the hazard ratio is monotonically
increasing!! (in other words, the failure time distribution in sample 2 is convex ordered with
respect to sample 1, denoted T5 i T1), the Lee-Pirie plot is convex. The converse is also

true — the plot is concave whenever \2(t)/A1(t) is monotonically decreasing (concave ordering,

'9Convex ordering and star ordering (and their duals — concave and negative star ordering respectively) are
two important partial orders in this context. See Kalashnikov and Rachev (1986) and Sengupta and Deshpande
(1994) for definition and further discussion of their properties.

YThroughout this thesis, the word ‘increasing’ would mean ‘non-decreasing’, and ‘decreasing’ would mean
‘non-increasing’.
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denoted Ty - T). The property of convexity of a function from [0, 00) to [0,00) is a special
case of a weaker property called star-shapedness. If the trend function is star-shaped, then the
survival distribution of sample 2 is star-ordered with respect to that of sample 1. This happens
if and only A2(t)/A1(¢) is increasing (Sengupta and Deshpande, 1994). The above two concepts
of partial ordering of failure time distributions are very useful in applications, and represent

meaningful ordered alternatives to proportionality.

The Gill and Schumacher (1987) test provides a logical starting point for the work in this
thesis for two important reasons. First, unlike the goodness-of-fit tests discussed earlier, this
test has demonstrated unbiasedness against ordered alternatives where the hazard ratio is either
increasing or decreasing (convex/ concave ordering). Further, examination of the Lee-Pirie plot
in combination with rejection of the null hypothesis of PH provides additional information on
the nature of covariate dependence. This additional information can be used to model the
ordered nature of covariate dependence more precisely. Second, as discussed in Section 1.1.1,
Gill and Schumacher (1987) present an application of their methodology to data comparing
surgery and medical treatment for patients with chronic stable angina (Detre et al., 1977).
While their tests fail to reject the null hypothesis of proportionality, the Lee and Pirie (1981)
empirical trend plot (Figure 5 in Gill and Schumacher, 1987) show evidence that the hazard
functions are not proportional. The plot is not convex but apears to be star-shaped. This
suggests monotone cumulative hazard ratio, which is a weaker order than the monotone hazard
ratio.

We extend the Gill and Schumacher (1987) work on testing the PH model with respect to a
binary covariate in two ways. First, motivated by the above example, we develop censored data
tests of proportional hazards in two samples against the alternative hypothesis of ‘increasing
ratio of cumulative hazards’ (star ordering of the two samples). Second, we extend the Gill and
Schumacher (1987) test and the Lee and Pirie (1981) plot to the case of two competing risks;
the test against monotone ratio of cumulative hazards can also be extended in a similar way
to the competing risks situation. These developments are useful in many applications. The
alternative hypothesis of ‘increasing ratio of cumulative hazards’ provide an explanation for
the phenomenon of ‘crossing hazards’ often observed in applications. In fact, in the empirical

literature on survival analysis, convex-ordering/star-ordering of one sample with respect to
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another in the two-sample setup, or one cause of failure to another in the competing risks
setup, as well as their duals (the concave-ordering/ negative-star-ordering hypotheses), can be
useful for modeling the ordered nature of covariate effects. Empirical evidence of such ordering

are abundant in the literature on survival analysis, demography and economic duration models.

The above tests and graphical tools are potentially useful in analysing lifetime/ duration
data because, not only do they detect departures from proportionality, they also provide further
clues about the nature of covariate dependence. However, their practical usefulness is limited
by the fact that many of the important covariates in biomedical/ economic applications are
continuous in nature (Horowitz and Neumann, 1992). Similar ordered departures are also
common and potentially meaningful alternatives to the PH model in the case of continuous
covariates. If, for example, the time-varying coefficient corresponding to a covariate X is
increasing in age, the distribution of the lifetime 7" conditional on a higher value of the covariate
(z2) would be convex ordered with respect to the lifetime distribution conditional on a smaller

covariate value (z1). Notationally expressed as
(T‘X = 131) —C< (T‘X = :L‘Q),

this provides a useful notion of ageing order with respect to a continuous covariate. The higher
the covariate, the faster the ageing of the individual — a situation which is empirically not an
uncommon experience.

In biomedical applications, such monotonically time-dependant covariate effects have been
noted in the literature, both under additive hazard models (Aalen, 1980; Mau, 1986) and mul-
tiplicative hazard models (Anderson and Senthilselvan, 1982; Andersen et al., 1993). In Section
1.1.2, we have discussed evidence of ageing order in data on survival with malignant melanoma
(Andersen et al., 1993) and unemployment durations (Jayet and Moreau, 1991). Decay or even
disappearence of covariate effects with time (age) has been observed in several other medical
applications. For example, Sather et al. (1981), in studying survival from childhood acute
lymphoblastic leukemia, observe that the strong prognostic effect of lymphocyte count at di-
agnosis disappears with time. Gore et al. (1984), in a study of breast cancer, provide another

demonstration of decay in covariate effect. Similarly, O’Quigley and Natarajan (2004) observe
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that the effect of histology grade, one of the main factors affecting survival and recurrence rates
of breast cancer, have its influence significantly dimisnished with time. While the literature
addresses time-varying coefficients in various ways, order restrictions on covariate effects for
continuous covariates has not been discussed.

This thesiscontributes in this area in several ways. First, we develop a suggestion in Fleming
and Harrington (1991) and suggest several notions of ordered departure from proportionality
with respect to continuous covariates. We use these notions to propose tests for the PH hy-
pothesis against such ordered departures. As in the two sample case, these tests are based on
comparing estimates of the cumulative baseline hazard functions conditional on different co-
variate values. Second, we propose the time-varying coeflicients model as an alternative hazard
regression model under which such departures can be studied. The model’s usefulness in study-
ing order restricted covariate effects is highlighted, with special focus on continuous covariates.
Third, we consider estimation of hazard regression models with continuous covariates under
ordered departures from the PH relation. Here, we propose biased bootstrap methods such as
data tilting (Hall and Presnell, 1999; Hall and Huang, 2001) and local adaptive bandwidths
(Brockmann et al., 1993; Schucany, 1995; Hermann, 1997) for order restricted inference; lo-
cal adaptive bandwidths are also closely related to SiZer maps (Chaudhuri and Marron, 1999,
2000).

1.2.5 Order restrictions on ageing

In the literature, the Cox regression model has been used mostly to study the prognostic
effect of the covariate(s) on the hazard rate, leaving the baseline hazard function A\o(¢) (1.4)
completely unspecified. In fact, an important feature of the partial likelihood approach (1.6)
is that inferences on the covariate effects can be drawn, while the baseline hazard is treated
as an infinite-dimensional nuisance parameter. Indeed, the flexibility to leave \o(t) completely
unrestricted is a major advantage of the Cox regression model over parametric hazard regression
models, in that it provides robustness against violations of any maintained assumptions on the
baseline hazard.

Therefore, the Cox regression model offers the possibility of inference on the shape of the

baseline hazard function, though this line of enquiry is largely unexplored in empirical stud-
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ies. Estimates of A\g(t) are typically used either to test for the proportionality assumption by
stratification over the range of covariate values (as in Andersen et al., 1993, pp. 539-545), or
to predict survival probabilities. While in many applications, the baseline hazard function is
expected to be constant (exponential regression), systematic departures from this pattern is
often observed in practice (see, for example, Andersen et al., 1993, pp. 533-535; Baltazar-Aban
and Pena, 1995). Such departures may be due to omitted covariates or other kinds of model
misspecifications, or may reflect genuine underlying patterns of ageing in the conditional base-
line hazard functions. In many applications, it is therefore of interest to understand ageing
properties structural or inherent in the baseline hazard, after accommodating covariate effects
in an appropriate way. For example, in the popular passive learning economic model of firm
dynamics (Jovanovic, 1982; Lippman and Rumelt, 1982), hazard rates of firm exits are often
non-increasing with age conditional on the main covariate, size (for further discussion, see Pakes
and Ericson, 1998).

Ageing properties like the above may be conveniently studied using the notions of positive
and negative ageing in reliability theory. The most commonly used classes describing notions
of positive ageing are increasing failure rate (I F'R), increasing failure rate in average (IFRA),
new better than used (NBU); these are defined as follows. Let T' be a non-negative (failure
time) random variable with survival function F(t) = P [T > t] and hazard rate A(t) and assume,
for simplicity, that F'(0) = 1. Then T is IFR if

F(s+t)

T is IFRA if

~+ | =

t
/)\(s)ds Tt < F(at)>F(t) .forall t>0,0<a<]l;
0

and 1" is NBU if
F(s+t) < F(s).F(t) .for all s,t>0.

The corresponding negative ageing classes (decreasing failure rate (DF'R), decreasing failure

rate in average (DFRA) and new worse than used (NWU)) are similarly defined. There are
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also weaker notions of ageing like new better than used in expectation (NBUEFE), harmonic
new better than used in expectation (HNBUE), L-class and decreasing mean residual life
(DMRL), as well as their duals.

The above ageing notions have been very useful in reliability theory; see Barlow and
Proschan (1975) for detailed discussion of their properties. There are several reasons why these
classes of distributions are useful for characterising ageing in the context of hazard regression
models. First, these ageing classes all include the exponential distribution on the boundary,

and further most of them form a nice sequence of nested classes for positive ageing
Exponential C IFR C IFRAC NBU C NBUE C HNBUE C L-class
as well as for negative ageing
Ezxponential C DFR C DFRAC NWU C NWUE C HNWUE C L-class.

This structure makes tests for the Exponential distribution against these ageing classes useful
for inference on the nature of ageing present in the data. A large literature has, therefore,
evolved on such tests; see Klefsjo (1983) and Doksum and Yandell (1984) for good reviews of
the literature and Ahmad (2001) a recent contribution. These tests can be adapted to the
hazard regression context, as in Chang and Chung (1998).

Second, the above notions of ageing suggest partial orders of failure time distributions.
For example, the ITFR and IFRA classes have important connections with convex and star
ordering respectively and their duals (Sengupta and Deshpande, 1994); similar connections
exist between DF R and concave ordering and DFRA and negative star ordering. For two

failure time distributions F' and G,

F<G <= FoG''isIFR; F>G < FoG'is DFR

F<G <= FoGlisIFRA; Fs~G < FoG'is DFRA.

As we have discussed, it is useful to test the nature of partial order of lifetime distributions

using notions of positive and negative ageing. Therefore, the above ageing classes provide a
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unified framework where order restrictions on both covariate dependence and ageing can be
characterised and empirically studied.

Finally, this framework provides a convenient way to integrate study of ageing properties
of hazard functions conditional on any covariate values with the shape of the baseline hazard
function. This follows from the observation that, if the baseline distribution is I/FFR/ DFR/
IFRA] DFRA/ NBU/ NWU, then the failure time distribution at other values of the covariate
also has the same ageing property, provided the covariate effect is not time-varying'?. This
is because these properties correspond to various geometric shapes of the cumulative hazard
function A(t) = —In [F(t)], which continue to hold after multiplication of the function by a
scalar. Thus, looking into the ageing property of the baseline hazard amounts to looking into
that of an entire class of distributions over all covariate values. The PH assumption in the
above argument is not very restrictive; if nonproportionality is present, the relevant covariates
can be interacted with histogram sieves (Murphy and Sen, 1991) appropriately constructed to
reflect the time-varying nature of coefficients.

Because of the above reasons, the proposed framework is convenient and useful for inference
on order restrictions on ageing, once covariate dependence has been appropriately modeled.
Though not in the context of order restrictions on covariate effects, inference on ageing in hazard
regression models has been studied in a couple of previous contributions to the literature. Pena
(1998) develops inference on the baseline hazard function, by considering the goodness-of-fit
problem of testing whether Ag(.) is equal to some specified hazard rate function. He uses this
methodology to test for exponentiality in the baseline hazard function against the omnibus
alternative. In research more closely related to our work, Chang and Chung (1998) develop
an estimator for monotone baseline hazard function under the Cox regression model. However,
ageing properties in the baseline hazard function in the presence of potential nonproportionality

in the hazards remains largely unexplored in the literature.

In this thesis, we advance research in this area in two ways. First, we use tests for the expo-
nential distribution to identify departures along the dimension of specific ageing classes. These

tests are applied to baseline cumulative hazard functions estimated after taking into account

12Note that the covariate can be time-varying, but all covariates should have proportional hazard effects.
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order restrictions on the nature of covariate dependence. Second, in addition to order restric-
tions related to nonproportionality, it is of interest to build in order restrictions on ageing in the
estimation of hazard regression models. However, inference under multiple order restrictions
using biased bootstrap methods turns out to be computationally very challenging. We develop
a Bayesian modeling framework to understand these ageing properties, in the presence of order

restrictions on covariate dependence and unrestricted multiplicative frailty.

1.2.6 Individual level frailty

In many applications of hazard regression models, there is reason to suspect the influence of
unobserved random variables or frailty. Since Lancaster (1979) and Vaupel et al. (1979),
there has been general recognition of the need to account for frailty in models for lifetime
and duration data. Failure to consider unobserved random covariates causes the estimated
hazard rate to decrease more with the duration than the hazard rate of a randomly selected
member of the population. Moreover, the estimated proportional effect of explanatory variables
on the population hazard rate is smaller in absolute value than that on the hazard rate of the
average population member and decreases with the duration; see van den Berg (2001) for further
discussion.

In the PH model, a scalar frailty variable uncorrelated with the included covariates is usually
assumed to have multiplicative effect on the hazard rate. Inference in this mixed proportional
hazards (MPH) model,

A(HX(8) = Ao(t). exp [87.X,(8)] i, wie (0,00) % Fy, (1.13)
is complicated by the fact that the popular counting process methodology does not apply here
(Petersen et al., 1996). Recent research, for example in Spiekerman and Lin (1998) and Kosorok
et al. (2004), has developed an approach based on empirical process theory for the asymptotic
analysis of frailty models.

In many applications, particularly in biomedicine or when there are repeated failure time
data, it is reasonable to assume a classification of the data based on the magnitude of the

unobserved frailty variable; these are called shared frailty models. However, in other applica-
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tions, particularly in economic duration data, the frailty variable is unique to each individual.
Given the nature of most of the important applications considered in this thesis, we focus pri-
marily on univariate (or individual level) frailty, and do not discuss shared frailty models in
detail. We note, however, that Spiekerman and Lin (1998) have proposed estimation, based on
“quasi-partial likelihood” estimating equations, of the Cox PH model in a multivariate duration
model setting with shared frailty. A special case of this setup is a competing risk model with
unrestricted frailty at the individual level, but the frailty random effect is shared between the
two competing risks; see also Wei et al. (1989). In this thesis, we use this approach for infer-
ence on business failure in UK and US firms through competing exit routes of bankruptcy and
acquisition (Bhattacharjee et al., 2008a, 2008b).

In this thesis, our primary interest lies in inference on order restrictions on covariate depen-
dence and ageing in the presence of individual level frailty. Inference under both these types of
order restrictions rest crucially on good estimates of the baseline cumulative hazard function.
Below we review research on identifiability and estimation under univariate frailty, focusing
mainly on the cumulative baseline hazard function'®. Within the class of individual-level frailty
models, we distinguish between estimation under a known (parametric) frailty distribution and

nonparametric treatment of frailty.

Known distribution of individual frailty

Several parametric continuous distributions for individual-level frailty have been considered in
the literature: the gamma frailty (Lancaster, 1979; Vaupel et al., 1979); the inverse Gaussian
frailty (Hougaard, 1984), the positive stable frailty (Hougaard, 1986), the log-normal frailty
(McGilchrist and Aisbett, 1991), the power variance frailty (Aalen, 1988), the uniform frailty
(Lee and Klein, 1988) and the threshold frailty (Lindley and Singpurwalla, 1986). While theory
provides little insight about the appropriate frailty distribution, the choice of gamma frailty in
most empirical studies is driven by analytical and computational ease!.

Nielsen et al., (1992) showed that the partial likelihood estimator of Cox (1972) can be gen-

eralized to the frailty model with Gamma distributed frailty. Their estimator is semiparametric

"3 The review is partly based on van den Berg (2001).

' Abbring and van den Berg (2007) provide partial justification for this choice, showing that the frailty distrib-
ution of survivors asymptotically converges to the gamma distribution. This insight is, however, not particularly
useful in our applications, where inference on survival at lower durations is important.
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in that it uses parametric specifications of the regression function and the frailty distribution,
but an unrestricted baseline hazard. Han and Hausman (1990) and Meyer (1990) proposed esti-
mators assuming a piecewise-constant baseline hazard and frailty having a gamma distribution.
In an important recent contribution, Kosorok et al. (2004) provide a rigorous foundation for
inference within a wide class of parametric frailty models, and propose robust estimates of the
cumulative baseline hazard function, the regression parameters and the parameter describing
the frailty distribution. They extend their results to one-jump frailty intensity models with
time dependent covariates, including the gamma, the lognormal and the generalized inverse
Gaussian frailty intensity models.

However, both simulations (Bretagnolle and Huber-Carol, 1988; Baker and Melino, 2000)
and empirical studies (Heckman and Singer, 1984b; Trussell and Richards, 1985; Hougaard et
al., 1994; Keiding et al., 1997; Hausman and Woutersen, 2005) with these models reveal that
the estimates are rather sensitive to the assumed frailty distribution. Hence, we take the view
that, in the absence of a strong justification for an assumed parametric form, nonparametric

specification of the distribution of unobserved heterogeneity is preferable.

Arbitrary distribution of individual-level frailty

Before discussing estimation and inference in models with unrestricted frailty distribution, it is
important to consider identifiability of such models. Infact, constructive identification can also
point to useful methods of inference in these models. Elbers and Ridder (1982) showed that the
standard frailty model (1.13) is semiparametrically identified if there is minimal variation in
the regression function. A single indicator variable in the regression function suffices to recover
the regression function, the baseline hazard, and the distribution of the frailty, provided that
frailty is independent of the included covariates. Semi-parametric identification means that
semiparametric estimation is feasible; however, their proof of identifiability is not constructive,
and therefore does not suggest an estimation method.

Heckman and Singer (1984a) derived the non-parametric maximum likelihood estimator of
the MPH model with a parametric baseline hazard and regression function. Based on prior
work by Laird (1978) and Lindsay (1983a, 1983b), they approximate the frailty distribution
by a discrete mixture of degenerate distributions. Starting with the no frailty case (single

mass point degenerate distribution), the number of support points is sequentially increased
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until the in-sample fit cannot be improved any further. This method is very useful in that it
approximates the nonparametric frailty distribution using an increasing sequence of parametric
distributions. However, the rate of convergence and the asymptotic distribution of the Heckman
and Singer (1984a) estimator are not known. Another estimator that does not require the
specification of the unobserved heterogeneity distribution was suggested by Honoré (1990). This
estimator assumes a Weibull baseline hazard and only uses very short durations to estimate the
Weibull parameter. The main limitation of both these estimators lies in the strong parametric
assumptions imposed on the baseline hazard function (ageing).

Under an arbitrary heterogeneity distribution, Melino and Sueyoshi (1990) provide a con-
structive proof of identifiability in the MPH model for the continuous regressor case. Their
proof relies heavily on the observed duration density at t = 0, and therefore cannot be used to
devise an attractive estimation strategy. Kortram et al. (1995) provided a constructive proof
for the two-sample (binary regressor) case (i.e., where Sx can take only two distinct values),
and Lenstra and Van Rooij (1998) used this to construct a consistent nonparametric model
estimator for the two-sample case. This idea is potentially useful; however, the asymptotic
distribution of their estimator of the baseline cumulative hazard function is unknown.

Horowitz (1996, 1999) consider the representation of the MPH model in a linear transfor-

mation model form (1.11),
InAg(t) = —pT.X(1) - U +e, U ~ Fy,

where InAg(t) is an increasing function, log-frailty U has an arbitrary distribution that is
independent of the covariates, and ¢ has the usual extreme value distribution; see Cheng et al.
(1995) for related work. Since U has an arbitrary distribution, so does —U + ¢, and hence this
is a standard transformation model. Under some additional smoothness assumptions, Horowitz

(1999) proposes a nonparametric kernel-based estimator for the regression coefficients 3, the
t

baseline cumulative hazard function Ag(t) = / Ao(s).ds and the distribution function of the
0

scalar frailty Fyr, and derives asymptotic distributions. It is important to note that this model

is identified only upto a location and scale transformation (see Horowitz, 1999), and therefore

has to be normalised before estimation. The location normalisation sets In Ag(t) to zero at a
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given duration t:

lnAo(t) =0= Ao(t) =1.

The model also requires a scale transformation, which requires setting the absolute value of the
regression coefficient for a given covariate to a given fixed positive number. Unfortunately, the
Horowitz (1999) estimates are sensitive to the choice of bandwidths, rendering this methodology
difficult to employ in practice. In an alternative approach, Hausman and Woutersen (2005)
consider discrete failure time data and treat the frailty distribution as nuisance parameters.
They propose estimators for the other parameters of the MPH model under an unspecified
frailty distribution, based on the maximum rank correlation methodology of Han (1987) and
Sherman (1993).
McCall (1996) establish identifiability of the standard frailty model with time-varying coef-
ficients
A (E1X(8) = Ao(1)- exp [B(H)T-X,(1)] i, ue (0,00) % Fy, (1.14)
under the condition that at least one of the included regressors has unbounded support. The
result is not constructive, but McCall (1996) suggests using the histogram sieve estimator
(Murphy and Sen, 1991) to estimate the time-varying coefficients, in combination with the
Heckman and Singer (1984a) methodology for nonparametric estimation of the unknown frailty

distribution.

The existing literature on frailty models reviewed above does not consider order restrictions
on covariate dependence or ageing. However, there is some empirical work to suggest that
the issue of time-varying coefficients may be confounded with omitted random variables. For
example, Andersen et al. (1993, Examples 7.3.1 and 7.3.4) achieve a good fit to a decaying
treatment effect by introducing a frailty parameter. This thesis augments the existing literature
in two ways. First, we develop tests for the proportional hazards assumption against order
restricted covariate effects in the presence of frailty. We consider individual-level frailty with
completely arbitrary distribution, and also the simpler case of.shared frailty. Second, we develop
Bayesian inference where there are order restrictions on covariate dependence and ageing, as

well as individual level frailty modeled using a degenerate mixture distribution.
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1.2.7 Other hazard regression models

As we have discussed, a major issue with the use of the Cox regression model in empirical
studies is that inferences are highly sensitive to the model’s various assumptions, particularly
proportional hazards and no frailty. This has encouraged development of many alternative
hazard regression models; the main competitors are briefly discussed below!'®. It has, however,
come to be generally acknowledged that an important advantage of the Cox regression model
lies in that it offers simple semiparametric analysis of covariate effects. The main aim of
our discussion will be to motivate extensions to the Cox regression model that would allow

incorporation of different aspects of the association between covariates and failure time.

Additive hazards model
In contrast to the PH model, the additive hazards (AH) model (Aalen, 1978, 1980; Lin and
Ying, 1994),

A(HX,(1)) = holt) + A7 X, (0), (1.15)

specifies that covariates have additive rather than multiplicative effect on the hazard function. If
the additive hazards model holds then the difference of hazards rates under constant covariates
does not depend on the failure time.

As compared with the PH model, the main difference in inference arises from the property
that the additive hazards model is not rank invariant; therefore, partial likelihood inference is
no longer applicable. Using the counting process martingale approach, Lin and Ying (1994)
obtain closed form estimators for the covariate effects, 3, and the baseline hazard, Ao(t).

Like the PH model, the additive hazards model also has the so-called ‘absence of memory
property’ (Bagdonavic¢ius and Nikulin, 2004), in that the hazard rate at the given time does
not depend on the past values of time varying covariates. However, this is not a major issue —
if such dependence were postulated, appropriate covariates that incorporate such effects can be
constructed.

The choice between the proportional and additive hazards models is often empirical, but

may also be guided by relevant theory. Nevertheless, in many applications, the additive versus

Y Part of our discussion borrows from Fleming and Lin (2000) and Bagdonavicius and Nikulin (2004).
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multiplicative model choice is not very clear. Lin and Ying (1996) and Sasieni (1996) have
proposed models that provide a synthesis between the two.

Such amalgam models are similar in spirit to hazard rgression models with time varying
coefficients. In fact, one of the ways the additive hazards model has been motivated is through
its use in detecting nonproportional hazards (Mau, 1986). However, a wide range of nonpropor-
tional hazards situations can be accomodated within the multiplicative hazard framework by
considering time varying coefficients. Further, the additive hazards model is well-approximated
by the time varying coefficients model if covariate effects are not very large (Pettitt and Bin

Daud, 1990).

Accelerated failure time (AFT) models
The accelerated failure time (AFT) model was first considered in Bagdonavicius (1978) and was
motivated by the idea that conditional hazard rates may incorporate the effect of past covariate

values:
Fxot) = Fo ([ rixeo)an).

where r(.) is a known decreasing function and the baseline survival function Fy(.) does not

depend on the covariate values, X (.). With constant covariates and the usual choice

Fx(t)=Fo (exp [—QT@] .t) .

The above representation suggests the interpretation that the effect of the covariates is to
transform the time scale: ¢ — exp [—ﬁT@] .t — hence the name accelerated failure time model
(Cox and Oakes, 1984). For any given function r(.), the model can be represented as a linear

transformation model

ht) = "X, + e, (1.16)

where h(.) is a known monotone function and the errors ¢; are IID with known or unknown

39



distribution; for the standard AFT model, h(t) = In(¢). Note that, if instead h(.) were arbitrary
and the errors followed an extreme value distribution, this would give the Cox regression model.
The transformation model representation above (1.16) highlights an important advantage of the
AFT model, in that frailty due to independent unobserved covariates can be easily accomodated
by considering a completely unrestricted error distribution. On the other hand, the model can
be rather restrictive because the function A(.) (equivalently, r(.)) has to be completely specified
a priori.

With censored data, several approaches have been proposed for the estimation and in-
ference on the AFT model. Rank-based methods were developed, among others, in Tsiatis
(1990), Wei et al. (1990), Lai and Ying (1991), Ying (1993) and Fygenson and Ritov (1994);
Koul et al. (1981), Ritov (1990) and Lai and Ying (1991) have considered least squares
based and M-estimation methods. Robins and Tsiatis (1992) make an useful extension to
the AFT model, where time-varying covariates are included through the modified mapping
t— ( [ exp [—QT@] du) .t. However, since the estimating functions are typically neither differ-
entiable nor monotone, the methods are numerically complicated and difficult to implement,
particularly when the number of covariates is large. Further, the covariance matrices of the
estimators are rather difficult to obtain because they involve nonparametric estimation of the
underlying unknown error distribution. Recently proposed counting process (Lin et al., 1998)
and rank-based (Jin et al., 2003) methods address some of these issues.

In biostatistics, lack of robustness of the Cox regression model combined with methodological
developments has led to a renewed interest in the AFT models for the analysis of single-spell
failure time data. While the AFT model provides a convenient framework for dealing with
unobserved heterogeneity, restrictive assumptions on h(.) (closely related to the shape of the
baseline hazard) is a serious mitigating factor; Bagdonavi¢ius and Nikulin (2004) argue that
the AFT model may be a good choice when the researcher has a good idea about the nature
of ageing. Even when unobserved covariates are expected to be important, many practitioners
may prefer the frailty model to the AFT model. This is particularly true if they are interested
in either disentangling genuine ageing from the effect of frailty, or in quantifying the effect of
covariates on the individual hazard as opposed to the observed hazard, with univariate failure

time data. Finally, like the additive hazards model, the AFT model is similar to the model
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with age varying coefficients when covariate effects are not very large (Pettitt and Bin Daud,

1990).

Generalized proportional hazards model

Generalized Proportional Hazards (GPH) models (Bagdonavicius and Nikulin, 1999, 2004) are
powerful alternatives to the PH and AFT models, and are also a potentially useful alternative
to the time varying coefficients model. With constant covariates, the GPH models allow ratios
of the hazard rates to be not only constant but also increasing or decreasing. They include
AFT and PH models as particular cases. The models are defined by postulating that the hazard
rate at any failure time is proportional not only to a function of the covariate at this moment
and to a baseline rate, but also to a function of the probability of survival until that time (or,

equivalently, to the cumulative hazard function):

Fro = 6 [ rixelan).

—In(u)
Ao(t) = /Ot Xo(s)ds, G=H' H(u)= /0 v

where r(.) is a known function and H~! denotes the inverse function of H(.). The models
obtained by completely specifying ¢(.) are rather narrow in their applicability; more useful
models are obtained by either by parametrizing ¢(.) or by leaving it completely unspecified
(Bagdonavi¢ius and Nikulin, 2004).

The most useful property of these models is that they can accommodate a wide range of
hazard ragression models considered in the literature. Particular cases are the PH model (¢(u) =
1) and the AFT model (Ao(u) = Ag), with r(x) = exp @Tg] in either case. Further, assuming
constant covariates and r(x) = exp @T@], various families of models with monotone hazard
ratios are obtained by specifying g(u) = (1+u) " (first GPH model), g(u) = (1 +~u) "
(second GPH model) or ¢(u) = exp (—yu) (third GPH model); see Bagdonavicius and Nikulin
(1999, 2004) for further discussion.

Bagdonavicius and Nikulin (2004) discuss the connection of these models with frailty mod-
els, models with time varying coefficients and additive multiplicative hazard models, as well

as heteroscedastic hazard regression models (Hseih, 2001) and models with crossing survival
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functions. Bagdonavicius and Nikulin (1999, 2004) also discuss semi-parametric inference un-
der the GPH models. The main limitations are, however, the lack of flexibility in dealing with

time-varying covariates and unrestricted frailty distributions.

Time varying coefficients model
In this thesis, we mainly focus on the hazard regression model (1.14)
A (HX()) = do(t). exp [B(0) . Xi(1)] s, uie (0,00) % Fy,

with time varying coefficients and individual level frailty. The covariates, X;(¢), if time varying,
have a clear interpretation as the values of prognostic factors measured over time, so that 3(t)
is precisely identified as the regression effect of X;(t) on the log hazard at failure time ¢. As
discussed earlier, this model provides a simple framework that accommodates order restrictions
on both covariate effects and ageing, and permits inference on the nature of these order re-
strictions. Besides, the model is identified under the assumption that one of the covariates has
unbounded support (McCall, 1996).

The time varying coefficients model, without frailty, has been widely used in the biomedical
literature for modeling covariate dependence under nonproportional hazards; for a representa-
tive selection, see Moreau et al. (1985), Zucker and Karr (1990), Liang et al. (1990), Murphy
and Sen (1991), O’Quigley and Pessione (1991), Gray (1992), Hastie and Tibshirani (1993), Ver-
weij and van Houwelingen (1995), Lausen and Schumacher (1996), Marzec and Marzec (1997),
Martinussen et al. (2002) and Schieke and Martinussen (2004). Inference under the model is
more complicated than the Cox regression model because the additional infinite dimensional
parameter 3(t) does not admit to a simple partial likelihood treatment. As discussed earlier,
many different estimation methodologies have been proposed, of which the most convenient and
attractive one is based on histogram sieves (Murphy and Sen, 1991). Sieve methods are typi-
cally used to estimate an infinite dimensional parameter (Grenander, 1981). The essence of the
method is that a sequence of increasing subspaces (sieves) is used to estimate a large parameter
space such that, asymptotically, the closure of the limiting subspace contains the original para-
meter space. The histogram sieve implementation (Murphy and Sen, 1991) assumes that 3(t)

is a time-varying function that is constant over consecutive intervals Li, Lo, ..., L; spanning
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the sample space of the failure time variable T":
B(t) =B, I{t € L1} + B, I{t € Lo} + ...+ B, . I{t € Ly},

where I {.} denotes the indicator function. The asymptotic setup is one where the partition
Ly, Lywny, - - ., L@y becomes finer and finer as more data become available. Given a partition
and in the absence of frailty, the time varying coefficients can be estimated by maximising the

Cox partial likelihood (1.6) with modified time varying covariates
Xi(t).I{te L1}, Xi(t).I{t e La},..., Xs(t).I{t € Ly},

and the baseline hazard function can then be estimated in the usual way (1.7). In the presence of
frailty with unrestricted distribution, we can combine the histogram sieve approach with either
the Horowitz (1999) kernel based estimator, or with the discrete multinomial mixing distribution
proposed in Heckman and Singer (1984a). In the second approach, the distinct mass-points
mp = 1,ma,...,my as well as the corresponding probabilities w1, 792,...,1 — Z;:ll m; (0 <
m; <1,j=1,2,...,J) are estimated from the data.

One of the main challenges in inference on age-varying coefficients is that the estimates can
be quite volatile and unsmooth, particularly when there are limited data in some time intervals.
This issue prompted Martinussen and Scheike (2002) and Martinussen et al. (2002) to propose
inference on the cumulative coefficients B(t) = fg B(s)ds. An alternative approach, proposed
by Gamerman (1991), postulates a dynamic model for the time variation through a Markov
structure; see Sargent (1997) for a refinement.

Overall, the time varying coefficients model is an useful framework combining many of the
strengths of the Cox regression model with the possibility of nonproportional hazards. the
main advantages of the approach lie in the complete flexibility in the patterns of duration
dependence and ageing, as well as in allowing the presence of frailty. In this thesis, we will
explore the usefulness of the model in studying order restrictions, both on covariate effects and

in the shape of the baseline hazard function.
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Discrete duration data regression models

Many real life applications, including some of the data analysed in this thesis, have reported
failure times grouped into time intervals — days, months, years, etc. This motivates the use of
discrete time hazard regression models, since models for continuous failure times are rendered
inadequate because of the large number of ties. Discrete failure time models have a long history
in biostatistics, and several models have been proposed in the literature. The two most popular

models are:

(a) the grouped time version of the Cox PH model, also called the complementary log-log
model or discrete PH model (Cox, 1972; Kalbfleisch and Prentice, 1973; Prentice and
Gloeckler, 1978; Cox and Oakes, 1984)

In [~ In {1 - h; (X)}] = BT.X +,, (L.17)

where the time intervals are indexed by j = 1,2,...and h; denotes the discrete hazard

rate in interval j (assumed constant over the interval); and

(b) the proportional odds, or the logistic hazard, model (Cox, 1972, 1975; Arjas and Haara,
1987; McCullagh and Nelder, 1989)
In [%] = logit [h; (X)] = 87X + a;. (1.18)
While the discrete PH model (1.17) assumes that latent continuous failure times have a
proportional hazards specification but are grouped into intervals, the proportional odds model
(1.18) offers a specific interpretation with regard to the relative odds of failure in period j con-
ditional on survival upto the previous period. There are some important connections between
the two models. Sueyoshi (1995) shows that, like the discrete PH model, the proportional
odds model can also be consistent with an underlying continuous time PH model. In practice,
the two models share similar ageing properties in the baseline hazard function and yield sim-
ilar estimates of covariate effects, so long as the hazard rate is relatively small. On the other

hand, Chen and Manatunga (2007) point out important differences between the two models

and caution against use of the proportional odds model when the PH assumption holds.
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Sengupta and Jammalamadaka (1993) develop a counting process formulation of the pro-
portional odds and discrete PH models without any assumptions on the origin of the discrete
data. While this approach is potentially useful, asymptotic results can only be derived undera
strict iid assumption. This is not reasonable in some of our applications. Following Jenkins
(1995), the effect of a scalar unobserved covariate can be incorporated by estimating a model
where the frailty distribution is chracterised by the nonparametric approach of Heckman and

Singer (1984a).

The above literature has considered several alternatives to the Cox PH model; many of
these models are aimed at characterising the nature of nonproportionality in the data. How-
ever,.the literature is not very informative when there are potential order restrictions or omitted
covariates. We advance the literature on regression models for failure time data by proposing
the use of the model with time varying coefficients (1.14) in these situations. Specifically, we
argue that this model is useful for studying both covariate dependence and ageing under order
restrictions and in the presence of unrestricted frailty. We also demonstrate the usefulness of
the model by considering several real life applications. In the case of discrete failure time data,
we take a similar view, advocating the use of the discrete PH model with a nonparametric
multinomial frailty distribution, allowing the number of mass points to increase sequentially.
Finally, we demonstrate how this model can be used to address the question as to what explains

nonproportionality better — time varying coefficients or frailty?

1.2.8 Bayesian semiparametric inference

Bayesian semiparametric modeling and inference in the context of hazard regression models,
with order restrictions on covariate dependence and ageing and in the presence of frailty, of-
fers several important advantages over frequentist inference (Sinha and Dey, 1997; Sinha et al.,
1999). First, Bayesian methods enable exact small-sample inference from moderately sized data
sets on parameters of interest which are themselves either high-dimensional or in the presence of
infinite dimensional nuisance parameters. This is important in this thesis, where parametric as-
sumptions are not imposed on either time variation in the covariate effects or the baseline hazard
function. Second, powerful computational tools enable remarkably complex Bayesian models to

be fitted with relative ease, and facilitate the choice of suitably parsimonious models. This is
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particularly true of semiparametric hazard regression models where nonparametric frequentist
estimation of the frailty distribution presents severe computational challenges, especially in a
model with a flexible baseline hazard function (Campolieti, 2001). The computational issues
are compounded even further when we attempt joint inference on order restrictions in covariate
effects and ageing in the presence of unobserved covariates. Third, prior beliefs about order
restrictions on parameters can often be expressed in a way that places no support on part of
the parameter space. In this case, the posterior also exhibits the same property; we exploit this
useful property of Bayesian inference for studying order restrictions on covariate dependence
and ageing.

While there is little prior work on order restricted Bayesian modeling and inference in hazard
regression models, there has been some research on several related areas. We survey related
literature briefly with a view towards placing our work within the context of the literature
and highlighting the distinctive nature of our approach. The survey is partly based on several

review papers: Sinha and Dey (1997), Ibrahim et al. (2001) and Damien (2005).

Bayesian inference in the Cox PH model
Semiparametric approaches to Bayesian inference in hazard regression models usually assume

the Cox proportional hazards model (1.4)
AHX (1) = dolt). exp [87.X(8)]

where \g(.) is some baseline hazard function, X (t) is a vector of (possibly time varying) covari-
ates, and [ is a vector of corresponding regression coefficients. Various Bayesian formulations
of the model differ mainly in the nonparametric specification of \o(t).

A model based on an independent increments gamma process was proposed by Kalbfleisch
(1978) who studied its properties and estimation. In the context of multiple event time data,
Sinha (1993) considered an extension of Kalbfleisch’s (1978) model for Ao(¢). The proposal
assumes the events are generated by a counting process with intensity given by a multiplicative
expression similar to (1.4), but including an indicator of the censoring process, and individual

frailties to accommodate the multiple events occurring per subject.
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Several other modeling approaches based on the Cox PH model have been studied in the
literature. Laud et al. (1998) consider a Beta process prior for Ag(t) and propose an MCMC
implementation for full posterior inference. Nieto-Barajas and Walker (2002a) propose their
flexible Lévy driven Markov process to model Ag(t), and allowing for time dependent covariates.

Full posterior inference is achieved via substitution sampling.

Other Bayesian survival data models

While Bayesian formulation of the Cox proportional hazards model has been rather narrow in
the specification of the baseline hazard function, several other models have been used more
generally in Bayesian survival analysis. These models can be used in the context of hazard
regression models to specify the baseline hazard or baseline cumulative hazard functions.

Many stochastic process priors that have been proposed as nonparametric prior distributions
for survival data analysis belong to the class of neutral to the right (NTTR) processes. A random
probability measure F'(¢) is an NTTR process on the real line, if it can be expressed as F(t) =
1 —exp(=Y(t)), where Y (¢) is a stochastic process with independent increments, almost surely
right-continuous and non-decreasing with P{Y (0) = 0} = 1 and P{lim; ., Y (t) =1} =1
(Doksum 1974). The posterior for a NTTR prior and i.i.d. sampling is again a NTTR process.
Ferguson and Phadia (1979) showed that for right censored data the class of NTTR process
priors remains closed, i.e., the posterior is still a NTTR process.

NTTR processes are used in many approaches that construct probability models for the haz-
ard function A\(¢) or the cumulative hazard function A(¢). Dykstra and Laud (1981) define the
extended gamma process as a model for \(¢), generalizing the independent gamma increments
process studied in Ferguson (1973). Dykstra and Laud (1981) show that the resulting function
A(t) is monotone, making it useful for modeling ageing in the nature of monotone hazard rates.

An alternative Beta process prior on A(t) was proposed by Hjort (1990), where the baseline
hazard comprises piecewise constant independent beta distributed increments. This model is
closed under prior to posterior updating as the posterior process is again of the same type. Full
Bayesian inference for a model with a Beta process prior for the cumulative hazard function
using Gibbs sampling can be found in Damien et al. (1996). Walker and Mallick (1997) specify

a similar structure for the prior, but use independently distributed gamma hazards.
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While the above models for A(t) are based on independent hazard increments {\;}, con-
sidering dependence provides a different modeling perspective. A convenient way to intro-
duce dependence is a Markovian process prior on {\;}. In a model with time-varying co-
efficients, Gamerman (1991) proposes the following characterization for the baseline hazard
function: In (\;) = In(Aj_1) +¢; for j > 2, where {¢;} are independent with E (¢;) = 0 and
Var (g;) = 0?2 < 0o. Later, Gray (1994) used a similar prior process but directly on the hazards
{A;}, without the log transformation. A further generalization involving a martingale process
was proposed in Arjas and Gasbarra (1994). More recently, Nieto-Barajas and Walker (2002b)

proposed a model based on a latent process {u;} such that {\;} is included as
AM — U — g — Uy — ...

and the pairs (u, ) are generated from conditional densities f (u|\) and f (A|u) implied by a
specified joint density f (u,A). The main idea is to ensure linearity in the conditional expecta-
tion: E (Aj+1]A;j) = aj + bjA;. Both the gamma process of Walker and Mallick (1997) and the

discrete Beta process of Hjort (1990) are obtained as special cases of the above construction.

Frailty

Accounting for unobserved covariates is important in the analysis of hazard regression models.
With single survival data and individual-level frailty, estimation of the frailties is not possible
but their distribution can be inferred on. Clayton (1991) and Walker and Mallick (1997)
both consider Bayesian inference in the Cox proportional hazards model with gamma frailty
distribution, but with different priors on the baseline hazard function. Sinha (1993) also assumes
gamma distributed frailties, but in multiple event survival data. Extensions of this model to
the case of positive stable frailty distributions and a correlated prior process with piecewise
exponential hazards can be found in Qiou et al. (1999).

In its ability to deal with potentially large number of latent variables, the Bayesian frame-
work is convenient for nonparametric modeling of individual level frailty. Based on repeated
failures data, Bhattacharjee et al. (2003) and Arjas and Bhattacharjee (2003) have proposed
a hierarchical Bayesian model based on a latent variable structure for modeling unobserved

heterogeneity; the model is very powerful and shown to be useful in applications.

48



Order restricted inference

The literature on order restricted Bayesian inference, with restrictions either on the shape of the
baseline hazard function or on the nature of covariate depence, is indeed very sparse. Notable
contributions to the literature in this area are Arjas and Gasbarra (1996), Sinha et al. (1999),
Gelfand and Kottas (2001) and Dunson and Herring (2003).

Arjas and Gasbarra (1996) develop models of the hazard rate processes in two samples
under the restriction of stochastic ordering. They define their prior on the space of pairs
of hazard rate functions; the unconstrained prior in this space consists of piecewise constant
gamma distributed hazards which incorporate path dependence. The constrained prior is then
constructed by restricting to a subspace on which the maintained order restriction holds. In
their work, Arjas and Gasbarra (1996) propose a coupled and constrained Metropolis-Hastings
algorithm for posterior elicitation based on the order restriction and also for Bayesian evaluation
of the stochastic ordering assumed in the analysis. For the same problem, Gelfand and Kottas
(2001) developed an alternative prior specification and computational algorithm. The Bayesian
model in Arjas and Gasbarra (1996), in combination with the general treatment of Bayesian
order restricted inference (for example, in Gelfand et al., 1992), is related to the current chapter.

Sinha et al. (1999) develop Bayesian analysis and model selection tools using interval
censored data where covariate dependence is possibly nonproportional. They model the baseline
hazard function using an independent Gamma prior and time varying coefficients are endowed
with a Markov type property By.1|61,...,8r ~ N (By,1) . While Sinha et al. (1999) do not
explicitly consider order restrictions either on covariate dependence or on ageing, they provide
Bayesian inference procedures to infer on the validity of the proportional hazards assumption.

In research closely related to this thesis, Dunson and Herring (2003) consider an order re-
striction on covariate dependence in hazard regression models. They develop Bayesian methods
for inferring on the restriction that the effect of an ordinal covariate is higher for higher levels of
the covariate; in other words, they conduct inference on trend in conditional hazard functions.
We work with restrictions on covariate dependence which are different in two respects. First,
the covariate is continuous in our case and not categorical. Second, our order restriction is
related to convex/ concave partial ordering of conditional hazard functions rather than trend.

Consequently, we express our constraints in terms of monotonic time varying coefficients, and
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propose a different methodology for Bayesian inference.

Our work extends the literature on Bayesian modeling and inference in hazard regression
models by considering order restrictions in covariate dependence and ageing as well as individ-
ual level frailty. We propose Bayesian models in which order restrictions on both the covariate
effects and the shape of the baseline hazard can be studied. Since our applications are based
on single failure per subject data, we use a latent variable structure for inferring on the frailty
distribution rather than the latent variables themselves. We model frailty in two different ways.
First, we divide the subjects into groups and incorporate fixed effects unobserved heterogeneity
across these different groups. Second, we model individual level frailty in a more nonparametric
tradition (Heckman and Singer, 1984a) by introducing a sequence of multinomial frailty distri-
butions with increasing number of support points; for a related Bayesian implementation, see

Campolieti (2001).

1.3 Outline of the thesis

As discussed above, this thesis makes several contributions to order restricted inference and
modeling in hazard regression models. In addition to order restrictions on covariate depen-
dence, we consider order restrictions on ageing and individual level frailty with unrestricted

distributions.

1.3.1 Testing proportionality with respect to a binary covariate

In Chapter 2, we develop new tests for the proportional hazards assumption in the two-sample
setup where existing tests are either too general (like the omnibus tests) or the alternative
hypothesis is too strong (like monotone hazard ratio). Specifically, our method test for propor-
tionality against the monotone cumulative hazard ratio alternative, which is a weaker partial
order (Sengupta et al., 1998). Asymptotic distribution of the test is derived and small sample
properties studied. The new tests as well as existing inference procedures for the two-sample
case are also extended to the competing risks framework (Sengupta and Bhattacharjee, 1994).

Several examples are considered.
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1.3.2 Testing proportionality with respect to continuous covariates

In Chapter 3, we extend partial orders in two samples, like convex/ concave ordering or star/
negative star ordering, to the continuous covariate case. Tests for proportionality against such
ordered alternatives are developed, combining evidence from two-sample tests based on failure
times conditional on different pairs of covariate values (Bhattacharjee, 2007a)'%. Asymptotic
distributions are derived and finite sample performance of the tesst are explored. Usefulness of

the tests is demonstrated using real life applications.

1.3.3 Estimation under order restrictions on covariate dependence

The context of Chapter 4 is estimation and modeling of order restricted covariate effects using
hazard regression models. Following Bhattacharjee (2003), we argue that the time varying
coeflicients model is useful for the study of order restricted covariate effects. Under this model,
we propose estimation of hazard regression models with continuous covariates under ordered
departures using various biased bootstrap techniques (Bhattacharjee, 2004a). We find that
kernel estimation with locally adaptive bandwidths is particularly useful for such order restricted
inference and modeling. An application to data on firm exits shows decay with age in the
adverse effect of macroeconomic instability on firm survival. We also discuss the potential
usefulness of the time varying coefficients model for studying order restrictions on ageing as

well as incorporating the effect of unobserved covariates.

1.3.4 Testing proportionality with unrestricted frailty

Chapter 5 extends our testing problem to a model with unrestricted frailty. The tests developed
earlier can be extended to frailty with known distribution and to shared frailty models. In
this chapter, we develop tests for proportional hazards against ordered alternatives, where the
distribution of frailty is completely unrestricted (Bhattacharjee, 2007b)!7. As an extension, we
also develop tests for the related hypothesis of no covariate effect with respect to continuous
covariates. The asymptotic properties of the tests are studied and their use is demonstrated

using real applications.

16 A previous version was circulated as Bhattacharjee and Das (2001).
7 A previous version was circulated as Bhattacharjee (2004b).
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1.3.5 Order restrictions on both covariate dependence and ageing

In Chapter 6, we develop Bayesian inference in hazard regression models under potential order
restrictions on both covariate dependence and ageing, and there is multiplicative frailty with
arbitrary distribution (Bhattacharjee and Bhattacharjee, 2007). We find strong evidence of
decay in the effect of macroeconomic instability on firm exits with age. However, evidence on
any ageing pattern in the baseline hazard is very weak. While the data demonstrates fixed effects
heterogeneity at the industry level, evidence of frailty is not found. The inference highlights

the strengths of the proposed modeling framework.

1.3.6 Applications to firm dynamics

Three applications of the methods developed in the thesis to study of firm exits is presented
in Chapter 7. In this chapter, we use our methodology and framework to make important
contributions to the theory and application surrounding an important research problem in
applied economics — the study of firm dynamics.

First, following Bhattacharjee et al. (2008a), we develop a theoretical framework for study-
ing macroeconomic influences on firm exits through dependent competing routes — bankruptcy
and acquisitions. Our empirical work shows the importance of macroeconomic stability, as well
as evidence of ordering in both covariate dependence and ageing among listed firms in the UK.
In addition to order restrictions on covariate dependence, we find evidence of negative ageing
of the new worse than used type in the shape of the baseline hazard, and relative ageing in the
nature of convex ordering between two baseline hazards of two competing risks.

Second, in Bhattacharjee et al. (2008b), we take a similar approach to data on US firms
and find that macroeconomic influences have been less important since the introduction of a
new bankruptcy code (called Chapter 11) in 1979. The work has important policy implications
with regard to the design and conduct of legislative procedures related to bankruptcy codes.
Additional issues addressed in the work relate to unobserved heterogeneity and to robustness
from truncation potentially dependent on the exit process.

Finally, in Bhattacharjee (2007c)'®, we consider a model developed in Bhattacharjee et al.

18 A previous version of the paper was circulated as Bhattacharjee (2005).
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(2006) where individuals in the labour market make an endogenous decision to become entre-
preneurs and the survival of their firms is conditioned on their, potentially partly unobserved,
human capital. The model indicates potential unobserved covariates as well as order restricted
covariate effects. Applied work incorporating such completely arbitrary frailty is usually very
demanding on the data and on computing facilities, and such inference is therefore often not
very useful — discrete life history data offers considerable simplification. Data on new firms
incorporated by French entrepreneurs demonstrate the importance of segregating these two

issues, both theoretically and empirically.

1.3.7 Real data and applications

Throughout the thesis, we retain a strong applied focus and develop various applications, par-
ticularly from biomedicine and economic duration data. Further, as discussed above, the thesis
makes particularly important contributions to developing one particular area of applications
— firm exits. We add to the literature on firm dynamics by developing an economic models
for the competing risks of bankruptcy and acquisitions, and emphasize the distinction between
unobserved heterogeneity and order restrictions on covariate dependence. Order restrictions
on both covariate dependence and ageing are important in our estimated models. The various

data sets and applications used in the thesis are summarised below.

Ovarian cancer data (Fleming et al., 1980)

The two-sample censored data, drawn from a study at Mayo Clinic, on patients having limited
low-grade (Stage II, 15 patients) or high-grade (Stage IIIA, 20 patients) ovarian carcinoma
are reported and analysed in Fleming et al. (1980); further analysis are reported in Gill and
Schumacher (1987) and Deshpande and Sengupta (1995). The purpose of the analyses are to
study the dependence of time to progression of disease on the grade.

Our analysis in Chapter 2, based on analytic and graphical procedures, suggests that the
cumulative hazard ratio of high-grade to low-grade tumour has an increasing trend. This

supports earlier findings that the hazard ratio is increasing.
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Veteran’s administration data (Detre et al., 1977)

Gill and Schumacher (1987) analyse these two-sample data, on survival times of patients re-
ceiving coronary artery bypass graft surgery and of patients receiving a conservative medical
treatment, based on a controlled clinical trial in chronic stable angina. They fail to reject the
hypothesis of proportional hazards against a monotone hazard ratio alternative.

We do not include any new analyses of the data. However, based on graphical evidence,
we argue (Chapter 2; see also discussion in Chapter 1, Section 1.1.1) that the departure from
oproportionality may be weaker. We use this example to motivate our tests of proportionality

against the monotone ratio of cumulative hazards alternative.

Unemployment duration data (Han and Hausman, 1990)

These are US data on a sample of 1051 heads of households between the ages of 20 and 65,
from waves 14 and 15 (1980 and 1981) of the Panel Study of Income Dynamics (PSID), on
duration of unemployment in weeks and whether the reason for the end of the spell is a new
job, recall, or censoring; see Han and Hausman (1990) for detailed discussion of the sampling
scheme including potential sample selection biases. 58 per cent of the spells end in recall, 23
per cent in a new job, while the remaining 19 per cent are censored. An important feature
observed in previous work is significantly high exits from unemployment at 26 and 39 weeks,
which correspond to exhaustion points of unemployment insurance benefits.

We analyse competing risks of recall to old job and new job, and find evidence of nonpro-

portional hazards in the nature of concave ordering (Chapter 2).

Mice cancer data (Hoel, 1972)

The competing risks data pertain to 99 male mice examined after exposure to 300 rads of
radiation. There are 60 deaths due to cancer and 39 deaths attributed to other causes; there is
no censoring in the data. Previous analyses of the data are reported in Hoel (1972) and Bagai
et al. (1989a).

Our analysis of the data in Chapter 2 uncover evidence that the risk due to cancer increases
in the long run relative to the other competing causes. The nature of departure from propor-

tionality is in the nature of monotone hazard ratio. This evidence adds additional dimension
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to previous findings that the hazard due to cancer is smaller than the other hazards combined.

Survival with malignant melanoma (Drzewiecki and Andersen, 1982)

These data pertain to 205 patients (148 of these are censored) with malignant melanoma (cancer
of the skin) on whom a radical operation was performed at the Department of Plastic Surgery,
University Hospital of Odense, Denmark in the period 1962-77. Andersen et al. (1993) include
detailed analyses of the data, and identify tumour thickness as one of the main prognostic
factors for survival.

One of the main motivations of our work on continuous covariates (particularly Chapters 3
and 4) is the observation, in Andersen et al. (1993), of order restrictions in the covariate effect
of tumour thickness; see also Chapter 1, Section 1.1.2. We analyse these data in Chapter 3
and find evidence of order restrictions in that the covariate effect of tumour thickness decreases
with time since surgery. There is also limited evidence that the above evidence is strongly
supported only for large tumours. In Chapter 4, we also find strong support for the above order

restrictions and obtain biased bootstrap estimates of time varying coefficients.

Data on Strike Durations (Kennan, 1985)

The data pertain to durations of 566 contract strikes in the U.S., each involving 1000 workers
or more, beginning during the period January 1968 to December 1976. Several authors have
analysed these data, including Kennan (1985), Kiefer (1988), Horowitz and Neumann (1992),
and Neumann (1997), a major focus of the analysis being on theeffect of the business cycle
(measured by production index) on strike duration. Given that, strike durations are also known
to exhibit some seasonal effects (Neumann, 1997), we use only the data on 292 strikes beginning
in the first half of each year (none of these failure times are censored).

Our analysis of these data in Chapter 3, both graphical and analytical, show evidence of

order restrictions on the effect of production index on the hazard rate of strike termination.

Child mortality in rural India (Bhalotra and Bhattacharjee, 2001)

The data are extracted from the National Family Health Survey 1992-93 for the study of

mortality outcomes of children in rural India. In particular, we are interested in understanding
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the relationship between mortality hazards and mother’s age at child birth, which is one of the
most important (physiological) determinants of child mortality.

Our analysis of the data, reported in Chapter 3, provides evidence of order restrictions in
the nature of covaraite dependence for mother’s age. Mortality decreases with mother’s age
upto about 24 years and declines thereafter; the magnitude of the prognostic effect, however,
declines with age of the child. The data are reanalysed in Chapter 5, this time with emphasis

on changepoint trend in the covariate effect of mother’s age.

Listed UK firms

The dataset pertains to firms quoted in the UK, constructed by combining the Cambridge-
DTI, DATASTREAM and EXSTAT databases of firm accounts. The relevant failure time
variable is age since listing, where listing dates are compiled by merging these data with the
London Share Price Database. The main objective of our analyses are to evaluate the impact
of macroeconomic fluctuations on business exits due to competing risks of bankruptcy and
acquisition, which requires data running over several business cycles. The combined firm level
accounting data provides an unbalanced panel of about 4,100 UK listed companies over the
period 1965 to 2002. Data on macroeconomic conditions, macroeconomic stability and firm
specific accounting information are used in the analyses. There were 206 instances of bankruptcy
and 1858 acquisitions among 48,046 firm years over the 38 year period.'” In terms of life history
analysis, the data are right-censored and left-truncated?’.

The data are used at several places in the thesis. In Chapters 4 and 6, order restricted
covariate effects of macroeconomic instability on bankruptcy hazard is studied (see also Chapter
1, Section 1.1.2), and Chapter 5 includes studies on whether aggregate 3 has any impact on

bankruptcies, and on testing for proportional hazards against monotone alternatives. Chapter

19A firm that has irretrievably entered the path to bankruptcy may, in a precursor phase of distress, stop
publishing accounts one or two years prior to actually being declared bankrupt. From the point of view of
econometrically modelling bankruptcy it is sensible to reassign the date of “real” bankruptcy to the year of last
published accounts when the firm has been declared legally bankrupt within a 2 year period. Our assignment
of a bankruptcy to a particular point in time captures the date of economic bankruptcy rather than declaration
of bankruptcy. We assign accounting data for each company fiscal year to the calendar year that covers the
majority of the accounting year corresponding to the fiscal year.

20The data used pertain to years, since 1965, during which each company is listed in the London Stock
Exchange. Hence, for each company, the available data are left-truncated, and do not pertain to the entire
period that it is listed.
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7 includes integrated study of several issues including comparison with US firms. The above
analyses draw on methods developed in Chapters 2, 3 and 4, as well as frequentist inference on

estimated baseline hazard functions using notions of ageing and ageing orders.

Listed US firms

These data are constructed by matching the Compustat accounting database with the CRSP
database to identify all listed firms?>! and to extract listing dates. This gives an unbalanced
panel of about 13,700 US industrial and commercial firms over the period 1969 to 2000. There
were 566 exits due to bankruptcy and 2,529 acquisitions in around 133,000 firm years over
the 32 year period. Failure time data, measuring the postlisting lifetime of each firm, are
augmented by annual indicators of macroeconomic conditions, as well as firm and industry-
specific factors. These variables constitute the time-varying covariates used to explain exit-
probabilities or hazard rates. The lifetime data are left-truncated, randomly right censored by
potentially dependent competing risks, and the covariates explaining the nature of the cause-
specific hazards are time-varying.

These data are analysed in Chapter 7 to understand the impact of macroeconomic instability
on competing risks of exit due to bankruptcy and acquisitions, using methods developed in
Chapters 2, 3 and 4. Further, comparison with exits of UK firms is conducted and the effect
of Chapter 11 introduction is studied. The analysis also includes empirical investigation of

potentially dependent left truncation and unrestricted frailty shared between competing risks.

French new firms

The data are extracted from the SINE 94?2 survey, which was conducted by the French Na-
tional Institute of Statistical and Economic Studies 2* in 1994. It provides qualitative data
on entrepreneurship and, more specifically, variables pertaining to the entrepreneur and the
circumstances in which entrepreneurship occurred. A second survey carried out in 1997 (SINE

97) gives information about the situation of the same firms (closed down or still running; when

2 Listed on the NYSE/AMEX, NASDAQ, Over-the-Counter or any of the regional exchanges (Boston, Midwest,
Montreal, Pacific or Philadelphia).

227Qysteme d’informations sur les nouvelles entreprises” (Information system on new firms)

*3Tnsee (Institut National des Statistiques et des Etudes Economiques).
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closed down, the date of the discontinuation). The surveyed units belong to the private pro-
ductive sector in the field of industry, building, commerce and services. These data are merged
with an individual-level survey database on French entepreneurs, to extract information on the
entrepreneur’s education level, previous situation in the labor market, financial endowments
ete.

The data are analysed in Chapter 7 to evaluate the relative importance of time varying
coeflicients and frailty due to unobserved human capital on the survival of firms. We take the
framework developed in Chapters 3, 4 and 5, particularly in the context of discrete failure time

data.
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Chapter 2

Testing for the Proportionality of
Hazards in Two Samples Against

Ordered Alternatives

2.1 Chapter summary

A number of tests of the proportional hazards hypothesis have been proposed in the past.
Previous researchers have proposed tests geared specially for the alternative hypothesis of “in-
creasing hazard ratio”, keeping in mind the case of crossing hazards (see Gill and Schumacher,
1987; Deshpande and Sengupta, 1995; and Lin, 1991). This alternative may be too restrictive
in many situations. In this chapter, based on Sengupta et al. (1998), we develop a test of the
proportional hazards model for the weaker “increasing cumulative hazard ratio” alternative.
The work is motivated by a data analytic example given by Gill and Schumacher (1987) where
their test fails to reject the null hypothesis of proportional hazards even though the faster age-
ing of one group is quite apparent from a plot. The normalised test statistic proposed here has
an asymptotically normal distribution under either hypothesis. We also present two graphical
methods related to our analytical test. We also adapt these methods, as well as those of Gill and
Schumacher (1987), to the competing risks setup, where one cause-specific hazard is sometimes

oberved to overtake another.
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2.2 Introduction

The proportional hazards (PH) model has played an instrumental part in data analysis in
such areas as survival analysis, reliability, economics, demography and environmental studies.
The validity of the PH assumption in a two-sample problem may be checked through one
of the traditional graphical methods proposed, among others, by Cox (1972), Kay (1977),
Andersen (1982) or Arjas (1988) (see Sengupta (1995) for a review). Several analytical tests
are also available; see, for example, Schoenfeld (1980), Andersen et al. (1982), Wei (1984),
Nagelkerke et al. (1984), Breslow et al. (1984) and Ciampi and Etezadi-Amoli (1985). Gill
and Schumacher (1987) and Deshpande and Sengupta (1995) proposed analytical tests of the
PH hypothesis against the alternative of "increasing hazard ratio", which may account for the
"crossing hazards" phenomenon (Lin, 1991).

If F1 and Fy are two life distributions on the positive real line with hazard rates A1 and Ao
and cumulative hazard functions A; and Asg, respectively, then the condition A;/Ag increasing is
equivalent to the composition Ajo Ay 1 being convex on [0, 00). Using this equivalence, Lee and
Pirie (1981) suggested plotting an estimator of A; (e.g. the Nelson-Aalen estimator) against
that of As. It is expected that the graph would be approximately convex when the hazard ratio
is increasing, and a straight line through the origin when the ratio is constant.

The "increasing hazard ratio" alternative may be too strong in some cases. Consider the
situation where the hazard rate Ay has jump discontinuities. The ratio Aj/Ay cannot be
increasing unless A; also has a jump of adequate size at every point of discontinuity of As.
On the other hand, the consistency of an "omnibus" test is not guaranteed. It would be nice
to have a test which is consistent for a weaker alternative hypothesis.

We consider a weaker form of relative ageing represented by the condition "Aj oAy s star-
shaped", that is, Aj o A5 ! intersects any straight line passing through the origin at most once
and from below. Convexity is a special case of star-shapedness. Sengupta and Deshpande (1994)
showed that the above condition holds if and only if the cumulative hazard ratio (CHR) A;/A»
is an increasing function. Thus, the plot of A; against Ag is star-shaped if and only if Aj/As
is increasing. The empirical plot of Lee and Pirie (1981) should also be approximately star-
shaped when the CHR for the two groups is increasing. Such a phenomenon is indeed observed

in the case of the Veterans’ Administration data (Detre et al., 1977). The plot given by Gill
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Figure 2-1: Lee-Pirie plot for Veterans’ Administration data (Figure 5, Gill and Schumacher
(1987), with axes interchanged)

and Schumacher (1987) (with the coordinates interchanged) is star-shaped, but not convex (for
discussion on star-shaped and convex function, see Kalashnikov and Rachev, 1986); see Figure
2-1. Hence, it is not surprising that the analytical tests proposed by Gill and Schumacher
(1987) failed to reject the PH hypothesis in favour of the increasing hazard ratio alternative.
Perhaps a test designed for the increasing CHR alternative would have been able to reject the
PH hypothesis.

In this chapter we propose a family of tests for the null and alternative hypotheses

Ho : A1(t)/A2(t) =a for all ¢ > 0, for some a > 0

H; : Ai(t)/A2(t) is a non-constant increasing function of ¢ over [0, 0o).

The family of statistics presented here are consistent for testing Hp vs Hj;. The asymptotic
distribution of a suitably normalized form of the test statistic is standard normal both under
Hy and H;. While the results are obtained in the general context of comparing two counting
processes, the case of censored survival data is given special consideration. We also present two
graphical methods related to our analytical test. Finally, we adapt these methods, as well as

those developed by Gill and Schumacher (1987) to the competing risks setup.
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The chapter is organised as follows. In Section 2.2, we develop the test statistics, followed
by consideration of consistency and asymptotic distributions in Section 2.3. In Section 2.4, we
explore related graphical methods and develop real applications in Section 2.5, while in Section
2.6 we discuss the choice of weight functions in the proposed tests. Sections 2.1 through 2.6 are
based on Sengupta et al. (1998). In Section 2.7, based on Sengupta and Bhattacharjee (1994),
we extend these methods to the competing risks setup. Finally, we provide some concluding

remarks in Section 2.8.

2.3 Development of the test statistic

Let Nj(t) for j = 1,2 and te[0, 00) represent two components of a bivariate counting process.

Let the Doob-Meier decomposition of the processes be of the form
AM; (1) = ANj(1) ~ Vi(0)dAs (1), §=1.2

where Aj(.),7 = 1,2 are deterministic functions on [0,00) and Yj(.),7 = 1,2 are non-negative
processes which are predictable with respect to the filtration on which the martingales on the
left hand side are defined. The above coincides with the "multiplicative intensity" model of the
compensator process (see Aalen, 1978). When N;(t) corresponds to the number of failures or
deaths up to time ¢ in the j-th group consisting of individuals with i.i.d. life distributions, A;(t)
is the cumulative hazard rate corresponding to this distribution. In general, N;(¢) may be the
number of type j transitions in a Markov chain, Y;(¢) the number at risk for type j transition
and A;(t) the integrated transition rate.

Under Hy, it is expected that Aj(y).Aa(x) — A1 (z).A2(y) would be non-negative for all x < y
and positive for some 2 < y. If the ratio A1 /A2 is a fast increasing function, the above difference
would be generally large. This fact may be used to define a measure of non-proportionality of

the cumulative hazard functions,

g(w) = / /0 ) W)~ A )Aaly)] ey (2.1)

where w(z,y) is a positive weight function and 7 is a large positive number such that A;(7) < oo
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for j = 1,2. The idea is similar to that of Deshpande and Sengupta (1995), who considered
a measure of non-proportionality of the hazard rates. The double integral may be reduced to
products of single integrals by choosing the weight function w(x,y) = k1(y)ka(z) — k1 (z)k2(y),
k1(.) and k2(.) being positive weight functions with an increasing ratio. With this choice, the

above measure simplifies to

q(k1, ko) = tirtas — tiator, (2.2)

where

tij = / ki(S)Aj(S)dS, 1= 1,2,j = 1,2.
0

Clearly, q(k1, ko) is positive under Hj and zero under Hy. Therefore a consistent estimator of
this difference can serve as a test statistic for the problem at hand. Suppose for j =1, 2, ]A\j(t)
be the Nelson-Aalen estimator of A;(t) given by fg dN;(s)/Y;(s) where the reciprocal of Y;(s)
is defined to be 0 whenever Yj(s) is 0. Let K;(.), ¢ = 1,2 be right-continuous functions with left
limits (rcll) converging in probability to k;(.),7 = 1,2, respectively. We define the test statistic

as

QK K, = T11Toe — Th2T51,

where Tj; = [/ Ki(s)IA\j(s)ds,i =1,2,7 = 1,2. It is shown in the appendix that a consistent

estimator of the variance of the test statistic under the null hypothesis is

Var(Qx, k) = TonToaVii — TorTiaVia — TiiTaoVia + Ti1ThaVao, (2.3)
where
Vij = / / Ki(t)Kj(S)V(S A t)dsdt 1=1,2,7=1,2,
o Jo
and

N t le (S) + ng(S)
o= | v

Note that the form of Qg,k, is similar to the statistic proposed by Gill and Schumacher

(1987). In fact, if the cumulative hazard functions are replaced by the corresponding hazard
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rates, q(k1,k2) becomes a measure of non-proportionality of the hazard rates. The family of
statistics given by Gill and Schumacher (1987) may be motivated by this measure, although
they did not mention it. An important difference between these two families is that the tests
proposed here are not functions of the ranks alone; the actual lengths of time between successive
jumps are made use of.

The weight functions K(t) and K»(t) may be chosen so that K;(t)/Ka2(t) is an increasing
function, in order to make sure that k;(¢)/k2(t) is increasing. Gill and Schumacher (1987) have
indicated several choices of weight functions for their family of statistics. Some of the choices

are suitably normalized versions of

Kq(t) = Yi(t)Ya(t)

Ky(t) = Yi(t)Ya(t) [Ya(t) + Ya(t)] ™"

K(t) = Yi(H)Ya(t) [Ya(t) + Ya(®)] " S(2)
Kat) = vimamme + o) [So]”

where §(t) is the Kaplan-Meier estimator computed from the combined sample. One may
choose any pair of weight functions from the above that have an increasing ratio. All these
weight functions are predictable, and hence satisfy the conditions of Gill and Schumacher (1987).
Being rcll, these may also be used in the test statistic proposed here. In fact, the usable class
of weight functions is larger here, because predictability is not required. For instance, one
may replace the Kaplan-Meier estimator in the expression of K (t) or K4(t) by a smoothed

estimator.

2.4 Consistency and asymptotic normality

The form of the test statistic Qx, k, is similar to that of Gill and Schumacher (1987). However,
here T;; is not a stochastic integral but rather an ordinary Stieljes integral of a stochastic
process. Therefore we take the following route to obtain the convergence results: (a) we show
the convergence of the integral Tj; from that of the corresponding integrand (obtained from

standard martingale convergence results); (b) subsequently we obtain the convergence of the
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test statistic by arguing that it is a constant function of the Tj;’s.
The first step comes from the following theorem.
Theorem 2.3.1
Let K, and X, be vector stochastic processes with sample paths in D[0,00)P and D]0, 00)9,
such that K, L kand X n 2. x , where k is a deterministic function in C0,00)? and X is

a stochastic process with sample paths in D[0, 00)?. Then for every positive constant 7,

T T
/ Ko(t) X (t)dt 2 / k(1) ® X (£)dt. (2.4)
0 0
(In the above, "®" indicates the Kronecker product.)

Proof. See the appendix to this chapter.

In order to study the convergence of Tj;,7 = 1,2, j = 1,2, we replace K,,(t) and X,,(¢) in the
~ ~ T
above theorem by [K1(t) : Ko(t)]” and a suitably normalized version of [Al (t) — Av(t) : Aa(t) — Aa(t)|

respectively. The latter process can be written as

<§1<t> - A1<t>> _ <f5 Yf1<s>dM1<s>>
Ao(t) = Aa(t))  \ fg Yo ' (s)dMa(s))”

We denote this vector martingale by M (¢). Further, let

K1(-)> (kil(-)) <A1(-)> ~ (7\1(-))

K()= () = A() = AL = (=

0= (i) 40 = (1)) 40 = () 20 = ()

where K;(.), ki(.), Ai(.) and A;(.) for i = 1,2 are as defined in the Section 2.2. Finally, let
T = (T11T12T21T22)T and t = <t11t12t21t22)T. Note that the dependence of each of these

quantities on n is suppressed here for notational simplicity. The convergence of the integral

takes place as indicated below.

Corollary 2.3.2

Suppose there is a positive sequence {a,}, approaching infinity as n goes to oo, such that the
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following three conditions hold for j =1, 2:

dA()L )
a 0 / Sy el (2.5)

g <

Van / Aj(u) 250, (2.7)

) dAj(u) 250 Ve >0, (2.6)

where y; L and Yy 1 are bounded on [0, 7]. Then

T — / "KMt @AWt o t, (2.8)
T = / "Kt) o A@)dt s t, (2.9)
0

Van (T-T) = \/cTn/OTK(t)@)M(t)dti»/OTK(t)@W(t)dt, (2.10)

where W(.) is a vector of two independent Gaussian processes W1 (.) and Wa(.) with zero mean,

independent increments and variance function fOT y;l(s)dAj(s), j = 1,2, respectively.

Proof. The definition of M (.) implies that its components are orthogonal martingales with
variation processes [y Y}_l(s)dAj(s),j = 1,2. Therefore the conditions (2.5)—(2.7) ensure, by a
version of Rebolledo’s martingale central limit theorem (see th. IV1.2 of Andersen et al., 1993),

that

JanM (t)dt 25 W (¢).

The results (2.8), (2.9) and (2.10) follow from theorem by replacing X, (¢) with A(t), A(t) and

VanM (t), respectively.
Remark. The stronger condition

Y;(0)

an

sup
0<t<r

—yj(t)’ i>Oasn—>oo, j=1,2 (2.11)

implies the conditions (2.5)—(2.7).

The second step in the asymptotic argument is similar to that of Gill and Schumacher

(1987). The results (2.9) and (2.10), coupled with the version of the delta-method given by Gill
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and Schumacher (1985) imply that

QK K, R q (k1,k2),
Van (Qr 1, — q (u, k2)) = /OT [c()W1(t) — d(t)Wa(t)] dt,

where

C(t) = tggkl(t)—tm]@(t),

d(t) = tog1ky (t) — tooks (t)
The limiting distribution is therefore Gaussian with zero mean, while the variance is given by

/ / s)Vi(s At)+d(t)d(s)Va (s At)]|dsdt,

where

N tdAj(s) o
v = [ e

Under the null hypothesis, the ratio Aa(.)/A1(.) is a constant €, which can also be called the
hazard ratio. Further, ¢(.)/d(.) is also equal to # under Hy. Thus an alternative expression for

the asymptotic null variance is

var (VanQr, k,) = // )[0Vi (s At) + 071 Vo (s At)] dsdt

_ /O /0 c(t)d(s) /0 " {diz(g;) +dy[:1($;)] dsdt

= t21t2ov11 — to1t12012 — t11t22v12 + t11t12022,

vij = /OT /OT ki(t)k;(s) /OSM [dgﬁig) + dyjzl(g)} dsdt, i=1,2,7=1,2.

This variance is estimated consistently by a,, times the expression given in (2.3), as shown in
J(t)

where

the appendix to this chapter, provided yj( ) pointwise on [0, 7]. Since q(K7, K2) is

zero under Hy and positive under Hy, the normalized statistic can be used for a one-sided test.
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2.5 Graphical methods

The following three graphical procedures are of special interest here:

(a) the plot of A1(t) vs Ay(t), proposed by Lee and Pirie (1981),
(b) the plot of (Kl(t) - Kg(t)) vs t, due to Dabrowska et al. (1989) and

(c) the plot of the log cumulative hazard difference In (Kl(t) - Kz(t)) against ¢, suggested
by Dabrowska et al. (1992).

A monotone trend in any of the last two plots suggests a monotone CHR of the two samples,
while no trend corresponds to the PH model. Plot (a) is expected to be close to a straight line
in the PH case and star-shaped when the CHR is (monotone) increasing. Thus, all the three
plots are expected to bring out monotone CHR-type departures from the PH model, although
they have so far been used to look for monotone hazard ratio.

The above plots can be quite unstable. Plots (b) and (¢) can have wild fluctuations for
small values of ¢ (see Dabrowska et al., 1989), while plot (a) may lack precision for large values
of t. Gill and Schumacher (1987) suggested a modification of plot (a), replacing /AXj(t) with
KJK(t) = fg K(s)d?\j(s),j = 1,2, where K(.) is a predictable weight function (see Section 2.2).
This modification can also be used in plots (b) and (c). The modified plots have the same
characteristic features when the hazard ratio is constant or monotone, but such a feature no
longer exists for monotone CHR.

To overcome this problem, we propose two graphical tests based on the estimated func-
tions TjK(t) = fot K(s)d/AXj(s),j = 1,2, where K(.) is now a rcll weight function. The plot of
TE(t)/TE(t) against t is expected to be like a horizontal straight line when the PH model
holds. On the other hand, a monotone ratio of the cumulative hazards of the two populations
is expected to produce a monotone trend in the plot, irrespective of the choice of the weight
function. Since fx = TE(7)/TE(7) is a consistent estimator of the hazard ratio in the PH
case, the horizontal straight line passing through the right end-point of the graph serves as a
reference corresponding to the PH hypothesis.

The other suggested plot is that of T{(.) against T4<(.). This graph is expected to be

close to a straight line when the PH model holds and approximately convex or concave when
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the CHR is monotone. The straight line joining the origin with the end-point of the graph
(T (1), T (7)), may serve as a reference for the PH hypothesis. The two suggested plots are

expected to be smoother and more stable than their unweighted counterparts.

2.6 Data Analysis

The analytic and graphical procedures proposed in Sections 2.2 and 2.4 were used to analyse
the ovarian cancer data set reported by Fleming et al. (1980), which describes the number of
days from treatment to progression of disease. Here, groups 1 and 2 consist of 20 patients with
high-grade tumor (stage ITA) and 15 patients with low-grade tumor (stage II), respectively. The
statistic Qk, Kk, (after normalization) is 2.258. The corresponding two-sided p-value is 0.024,
suggesting an increasing trend of the ratio Aj(¢)/Az(t). This supports the findings of Gill and
Schumacher (1987) and Deshpande and Sengupta (1995) that the hazard ratio is increasing.

The plot of Ay (t)/As(t) vs. ¢, shown in Figure 2-2 has by and large an increasing trend, but
the fluctuations are substantial. Figure 2-3 shows the plot of T; 1K b(t)/ TZK *(t) against ¢ which was
suggested in Section 2.4. This graph is smoother and more clearly suggestive of an increasing
trend of the CHR.

The plot of /A\{{ b(t) vs. Kf ®(t) shown in Figure 2-4 is approximately convex, indicating an
increasing hazard ratio. However, the plot of TlK ’(t) against T2K ®(t) shown in Figure 2-5 is

smoother and clearly convex, suggesting an increasing CHR.

2.7 Choice of weight functions

The role of the weight functions in the family of tests proposed here is crucial. An interesting
question that can be posed in this connection is: "Can the weight functions be chosen ’optimally’
according to some chosen criterion?" We have no clear answer to this question as yet. If a
sequence of alternative hypotheses converging to Hy at a suitable rate is considered, it can be

shown that the asymptotic relative efficiency is of the form

[y Ut)g(t)dt]”
Jo Jo L)W (t, s)dsdt’
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Figure 2-2: Plot of A1 (t)/As(t) vs ¢ for the ovarian cancer data.
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Figure 2-3: Plot of TIK” (t)/TQK” (t) vs t for the ovarian cancer data.
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Figure 2-5: Plot of T (t) vs T (t) for the ovarian cancer data.
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where [(t) is the probability limit of the ratio of the weight functions, g(¢) is a function de-
termined by A;(t) and Aa(t), and W(t,s) is a positive definite function of two variables, also
determined by Aj(t) and Aa(t). A function [(¢) that maximizes this expression would lead to a
suitable weight function. Unfortunately a closed form solution to this problem is not available.
This is in contrast to the similar problem addressed by Gill and Schumacher (1987), where the
"optimal" solution could be obtained in closed form through the Cauchy-Schwartz inequality.
This is not a major issue since the role of optimal weight functions is rather limited in ap-
plications where a precise idea of departures from Hy is rarely available a priori; for further
discussion, see Section 2.7.3.

Here, we explore the role of the weight functions in the two-sample testing problem by
performing a small-scale simulation study. The two samples were generated from an exponential
distribution and a piecewise exponential distribution, respectively. Several combinations of
weight functions were tried out. Out of these, the combination Y;(¢)Ya(t)exp[—t/TTT]| and
Y1(t)Ya(t), where TTT is the total time on test statistic for the combined sample, yielded the
highest power. The former weight function could not have been used for the family of tests
proposed by Gill and Schumacher (1987), since it is not predictable. This underscores the wide

scope of the class of rcll weight functions considered here.

2.8 Testing Proportionality of Hazards due to Competing Risks

Consider a system or unit which is exposed to several risks that can induce failure. The system
can be an individual suffering from more than one disease, as found commonly in survival data.
In Reliability, a series system fits well into the competing risk framework. Different types of
employment of an unemployed individual can serve as a third example of this model.

The nonparametric analysis of competing risks data is often made tractable by means of
simplifying assumptions such as the independence of risks. Comparing one risk with another
is an important problem in this context. Bagai et al. (1989a) studied a test for equality of
two risks against the alternative of one hazard dominating the other. In another paper (Bagai
et al., 1989b) they considered the alternative of stochastic dominance. In these works the

independence of risks is a key assumption and the presence of a third risk is ruled out.
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Deshpande and Sengupta (1995) proposed a test, based on U-statistics, for the hypothesis
that the hazards due to two risks are proportional to each other, against the alternative that
the hazard ratio is monotonically increasing. As discussed earlier in the thesis, this problem is
important because of two reasons. The proportional hazards assumption is commonly used in
applied work in survival analysis and reliability models, as well as duration models in economet-
rics (see Kalbfleisch and Prentice, 1980 and Kiefer, 1988). Secondly, the alternative provides a
reasonable description for the ‘crossing hazards’ situation often observed in empirical studies.
Crossing hazards represent the situation where the importance of one risk as compared to an-
other becomes noticeable only in the long run. An interesting additional aspect of their work
is that the presence of a third risk is also taken into account. This is a crucial generalisation
because all the risks which are different from the risks being compared can be pooled to form
the third group of risks.

In this Section, we propose an alternative methodology, by adapting the family of tests
proposed by Gill and Schumacher (1987) and in Section 2.2, originally proposed for two-sample
data, to the competing risks situation. The asymptotic properties of the tests follow from
the counting process theory, which hold even when the risks are not independent. A related

graphical technique is also discussed.

2.8.1 A graphical method

Consider Gill and Schumacher’s (1987) modification of the plot of Lee and Pirie (1981), where
the Nelson-Aalen estimators of the cumulative hazards of two samples be plotted against one
another. A convex or concave trend would indicate a monotone hazard ratio. In a competing
risks situation, the Nelson-Aalen estimators of the integral of each cause-specific hazard rate
can be easily computed. Let the estimators be ZA\j(.), where j is 1 for risk 1 and 2 for risk 2.
Therefore a convex or concave trend in the plot of Ay vs Ay would indicate that Aq(£)/Az(t)
is a monotonic function of ¢, where A;(.) is the j-th cause-specific hazard. When the risks are
independent, each cause-specific hazard reduces to a simple hazard rate due to a given risk. On
the other hand, the proportional hazards model would correspond to approximately a straight
line passing through origin on the above graph. These properties continue to hold if, in order

to ensure stability of the plot in the tail region, one uses the generalised plot (see Gill and
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Schumacher, 1987) of IA\g() Vs. K{{(), where

KJK(t):/O K(s)d%f), j=12

and K (s) is a predictable weight function. As usual, Y(s) is the number at risk at time s
and N;(s) is the number of type j absorptions up to time s. A simple weight function such as
K(s) =Y (s) would put greater weight on the more reliable part of the estimate, thus producing
a smoother plot.

The graph can be quite revealing when the sample size is large. Take for example the unem-
ployment duration data due to Han and Hausman (1990). The data consists of the duration of
unemployment of 1051 individuals, 603 of whom are recalled to the old job, 245 eventually get
a new job, while the remaining 203 are censored at various points of the study. If absorption
into a new job  and recall to the old job are taken as risks 1 and 2, respectively, then the
plot of Kf(t) VS. /A\{((t) (with K(t) = Y (t)) is as shown in Figure 2-6. The concave trend of
the plot is quite clear. It shows that the rate of recall has a decreasing ratio with the rate of
getting a new job. The latter becomes more significant in the long run. It is surprising that
Han and Hausman used the proportional hazards model for this data. Although they did this in
the presence of a binary covariate (unemployment insurance coverage), their basic assumption
seems to be wrong.

A second example considered here is that of the male mice cancer data due to Hoel (1972).
The group of 99 mice are examined after exposure to 300 rads of radiation. The 60 deaths due
to cancer are attributed to risk 1. The other 39 deaths are gut together as deaths due to risk 2.
There is no censoring in the data. The plot Ké( (t) vs. JA\{< (t) shown in Figure 2-7 is somewhat
convex. indicating that the risk due to cancer increases in the long run.

While the indication from Figure 2-5 is quite clear, the conclusions to be drawn from Figure
2-7 are not as obvious. The latter is a situation where analytical tests, discussed in the next

section (Section 2.7.2), can play a particularly decisive role.
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Figure 2-6: Weighted cumulative hazards due to recall and new job for the unemployment data.
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Figure 2-7: Weighted cumulative hazards due to cancer and other deaths for the mice data.
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2.8.2 A family of analytical tests

Suppose A1(t) and A2(t) are the cause-specific hazard rates due to risk 1 and risk 2, respectively.

We focus on the following testing problem:

Ho : M(t)/Aa(t) =a for all t > 0, for some a > 0

H; : Ai(t)/A2(¢) is a non-constant increasing function of ¢ over [0, 00).

Gill and Schumacher (1987) suggested a test for Hy vs. Hy when A (¢) and A2(¢) are hazard
rates of two isolated samples. The idea is that when Hy is true, different estimators of the

hazards ratio should be close to each other. This leads to the statistic
Ri k, = K11 K22 — K21 K12,

where I?ij = [, Ki(t)dlAXj(t),i =1,2,j = 1,2, K;(t) and K»(t) are two different predictable
weight functions, and 7 is a stopping point. The statistic is directly applicable to the competing
risks framework where Kj(t) for j = 1,2 are the Nelson-Aalen estimator of the cause-specific
cumulative hazard functions. Specifically, /A\j(t) = fg [Y'(s)] "' dN;(s), where N;(s) and Y (s)
have their usual interpretations. In this competing risks setup, the following weight functions

may be used:

Ke(t) = Y(b),
Kp(t) = Y (0)S®),
Kg(t) = YQ(t)a
Kn(t) = Y(6)S"(),

where S(t) is the Kaplan-Meier estimator for the entire sample, treating the absorptions due to
the third risk as censored observations. In the two-sample case, the above four weight functions
correspond to the logrank test, the Prentice-Wilcoxon test, the Gehan test and the Harrington-
Fleming test (see Gill and Schumacher, 1985). In the competing risks situation these weight

functions do not have any such interpretations, but they are easy to use anyway.
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The estimated variance of the test statistic is given by
Var (Ri, k,) = Ko1K2Vi1 — K21 K12Vi2 — K11K2Va1 + K11 K12Vas,

where

LT AN+ M)
vij—/ont)KJ(t) e hi=12

Let us assume that as the sample size goes to infinity, the censoring proportion and the

proportion of each type of absorption stabilises. The asymptotic normality of the statistic

Tk Ky = _ Ak

/Var(Rg, k)
under the null hypothesis follow from the counting process theory; see Gill and Schumacher
(1987). The arguments given by Gill and Schumacher (1985) for consistency also go through in
the competing risks case. A sufficient condition for consistency is that the ratio of the weight
functions K (t)/K>(t) should be increasing in the limiting sense, as the number of subjects go

to infinity. Several pairs of weight functions from the above list satisfy this criterion.

Note that when the risks are assumed to be independent, the statistic Tk, x, becomes a
competitor of the statistic V{ of Deshpande and Sengupta (1995). In fact, the class of statistics
discussed here have a wider range of application because the assumption of independence is not

needed.

2.8.3 Choice of the weight functions

Suppose K (t) and Ka(t) converge in probability, as n — oo, to ki(t) and ka(t), respectively.
Further, let k(t) = kao(t) and I(t) = k1(t)/k2(t). Gill and Schumacher (1987) considered the
issue of asymptotic relative efficiency (ARE) by taking a sequence of alternatives approaching
Hy in a specific way. Specifically, they assumed that: as sample size n — 00, the hazard rates

indexed on sample size, )\gn) (t), approaches A;(t), j = 1,2, in such a way that

im v/n /\gn)(t) — =1m where 6 = Ao(t)
n1—>oo\/> <)\§”) (t) 9) =m(t), here 0 = A (t)
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Under these assumptions, they showed that the normalized test statistic in the two-sample case

converges to a normal distribution with unit variance and mean given by

[ 1k (m —m) dAy

_01/2
V(=17 k2dA y
where
7 fldel —_ fmdel
L= [ kdA, and m = [kdA,
Here
_ Y1Yy2
(y1 + 0y2)’

where y;(t) is the probability limit of Y;(¢)/n, j = 1,2, where Y;(t) and Y3(t) correspond to the
numbers at risk in the two samples at time ¢. From this result they concluded, through the
use of Cauchy-Schwartz inequality, that the Pitman efficacy is maximised (within the family of
tests considered here) by choosing k(I — [) oc y(m — ). However, this argument is somewhat
misleading, since the optimization should have been carried out explicitly under the constraint
[ k(- I)dA; = 0. This constraint introduces a correction term, suggesting that the optimal

choice would be

k(l—l)my[m—%].

If k is chosen as y, the right hand side becomes y(m —m), leading to the choice [ = m. Happily
this pair of solutions coincides with the suggestion of Gill and Schumacher (1985, 1987).
The same argument also holds in the competing risks situation with y(¢) as the probability

limit of Y'(¢)/n. The highest ARE is achieved by choosing
Ko(t) = —~, Ki(t) =n 'Y (&)m(t).

Naturally the latter function can only be computed with a particular alternative in mind.
Nevertheless, the ‘optimal’ pair of weight functions may serve as a benchmark for comparing
the performance of other tests within the family. Its role is similar to that of the locally most

powerful rank test in examining the performance of rank tests.

We illustrate the above result by computing the ‘optimal’ weight function in the case of
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three parametric families, assuming the risks to be independent.

Example 2.7.3.1 (Weibull): Let F;(t) = exp {—a;t%} for j = 1,2. Then X(t)/A1(¢) is an
increasing function of ¢ if and only if 61 < 69, irrespective of a; and as which are positive.
Holding a1, as and 6, fixed, let le) =60 (1 + n_1/2). Then the above conditions are satisfied,
with m(t) = 52 (1 + 61 Int?).

Example 2.7.3.2 (Linear Failure Rate or LFR): Let F;(t) = exp {—a; (t + 30;t*)} for
j =1,2. In this case, A2(t)/A1(t) is an increasing function of ¢ if and only if #; < 69, irrespective
of a1 and «g which are positive. In this case the same configuration of the parameters as above
produces m(t) = &2 (1 + g%t)_

Example 2.7.3.3 (Pareto): Let F;(t) = (1+t/0;)"% for j = 1,2. In this case, \2(t)/A1(¢)

is an increasing function of ¢ if and only if 61 < s, irrespective of a; and g which are positive.

Once again let a1, ao and 61 be fixed, let Hgn) =0 (1 + n*1/2). The resulting m(t) is —g—fefjrt.

We emphasize that the above choice is optimal within a given family only in the context
of ARE. Choosing the appropriate weight function does not ensure highest power for a fixed

sample size and an alternative well separated from Hy.

2.8.4 Monte Carlo study

We examine the following test statistics:
1. Ti: the statistic with weight functions K. and Kjy;
2. Ty: the statistic with weight functions K. and Kg;
3. T3: the statistic with weight functions K, and Kp;
4. Ty: the statistic with weight functions K and Kjy;

5. T5: the statistic with weight functions K, and K,, where the latter is optimal for a given

family of distributions, as described in Section 2.7.3;

6. Vo: the U-statistic proposed by Deshpande and Sengupta (1995) normalized by the as-
ymptotic variance 4@2 /m, where E’g is the U-statistic estimator of FEo (Deshpande and

Sengupta, 1995, p. 257).
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Figure 2-8: Empirical power curves when risks have Weibull distribution.
power
=
0 L L I 1 1 i I 1
0 10 20 30 40 50 60 70 80 90

B2

Figure 2-9: Empirical power curves when risks have LFR distribution.
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Figure 2-10: Empirical power curves when risks have Pareto distribution.

The null distributions of these statistics are checked first. The empirical distributions of
the six statistics from 1000 monte carlo simulations were compared to the standard normal cdf.
The sample size for each experiment was 40. Each risk corresponded to a Weibull distribution
of the notional lifetime. The parameters of the distributions were: a3 = 1, ey = 0.5 and
01 = 63 = 2. The censoring distribution was chosen to be exponential with mean 10. All the
empirical cdf’s showed reasonable closeness to the theoretical curve. For the sake of brevity we
are not reproducing these plots. Instead, the Shapiro-Francia (1972) test of normality (from
100 monte carlo runs) is carried out. The Shapiro-Francia statistics for the six tests mentioned
above turn out to be 0.9893, 0.9875, 0.9923, 0.9851, 0.9857 and 0.9884, respectively. These
may be compared to the percentage points 0.980(p = 0.1), 0.984(p = 0.2), 0.989(p = 0.5) and
0.993(p = 0.8). The results are quite satisfactory. The reason for using only 100 runs for the
analytical tests is that the percentage points are not readily available for higher sample sizes.

The same experiments were also carried out for the LFR and Pareto distributions of notional
lifetimes. The parameters in the LFR case were: a3 = 1, as = 0.1 and 6, = 5 = 1, while the

sample size was 50. The parameters in the Pareto case were: a3 = 0.5, as =1 and §; =05 =1,
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while the sample size was 40. The same censoring distribution (exponential with mean 10) was
used. The empirical distribution of all the six test statistics from 1000 monte carlo runs showed
closeness to the standard normal cdf. The Shapiro-Francia statistics from 100 runs in the LFR
case were 0.9856, 0.9848, 0.9842, 0.9796, 0.9889 and 0.9834, respectively. In the Pareto case
the statistics were 0.9856, 0.9849, 0.9811, 0.9823, 0.9834 and 0.9911, respectively. The results
assure us that the cut-off points from the asymptotic null distribution may be used for further
study.

Empirical power computations from monte carlo experiments were also made. Figures 2-8
to 2-10 show the empirical power curves from 500 experiments for the three families of distri-
butions. In each case the parameter 05 was gradually increased, holding the other parameters
fixed at their respective values in the previous experiment. The plots generally reveal the su-
periority of the family of tests considered here over the U-statistic. The ‘optimal’ choice of
weight functions from ARE considerations does not always lead to the best power, as expected.
Compared to this benchmark, the performance of T5 appears to be good in all the cases. The

performances of 77 and Ty are also quite good.

2.8.5 Data analysis

The statistics 17 to Ty, when evaluated for the unemployment duration data of Han and Haus-
man (1990), turn out to be 11.83, 11.93, 11.96 and 11.48, respectively. The U-statistic Vj in
this case is 10.63. All these strongly indicate that the rates of absorption into new and old
jobs are not proportional to each other. This is in accordance with the indications from the
plot of Section 2.7.1 (Figure 2-6), and contradicts the basic assumption of Han and Hausman.
Consequently a fresh analysis of the data may be in order.

The mice cancer data due to Hoel (1972) has no censored observations. Hence T; and Th
are identical, while the computation of the null variance of the U-statistic is simplified (see
Deshpande and Sengupta, 1995). The statistics are T3 = To = 1.895, T3 = 1.823, Ty = V) =
1.87. The corresponding one-sided p-values are 0.029, 0.032 and 0.031, respectively. Once again
all the test statistics tell the same story — that the hazard due to cancer increases with time
when compared to the hazard due to other causes. This adds a significant dimension to the

analysis of the same data by Bagai et al. (1989a) who found the hazard due to cancer to be
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smaller than the other hazards combined.

2.8.6 Testing against the monotone cumulative hazard ratio alternative

As in the two sample case, the monotone CHR. alternative may be more appealing and appro-
priate than increasing/ decreasing hazard ratio in many competing risks applications. Let A1 (t)
and A\a(t) denote the cause-specific hazard rates due to risks 1 and 2, with the corresponding
cumulative cause-specific hazard rates denoted by A;(t) = fot Aj(s)ds,j = 1,2. Therefore, our

testing problem is:

Ho : Ai(t)/A2(t) =a for all ¢ > 0, for some a > 0

H; : Ai(t)/A2(t) is a non-constant increasing function of ¢ over [0, c0).

The analytical test proposed in Section 2.2 can easily be adapted to this competing risks
situation. The test statistic Qx, k, will now be based on two distinct rcll weight functions
K; and K appropriate for the competing risks setup. An important advantage of this test is
that an independence assumption on the risks is not necessary. Further, the presence of other
risks can be accommodated in a way similar to that discussed in Section 2.7.2. Consistency
and asymptotic distributions, as well as variance estimation, follows exactly in the same way
as in the two sample case (see Section 2.3), and the graphical tests proposed in Section 2.4
also work perfectly well. Dauxois and Kirmani (2004) have developed a closely related test for

proportionality of cumulative incidence functions.

2.9 Concluding remarks

In this chapter, we proposed tests of the proportional hazards assumption in two samples
against the monotone cumulative hazard ratio alternative. This partial order is weaker than
the monotone hazard ratio hypothesis considered in the literature. The use of the proposed
graphical and analytical tests are illustrated with several applications. Further, we extend tests
for both the above kinds of partial orders to a competing risks setup. This extension has the
important advantages of relaxing the common assumption of independence of competing risks

and in allowing the presence of other risks. In the competing risks context, we also clarify the
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nature of optimal tests in the sense of efficacy.

The tests proposed here can be generalised in three ways. First, an useful and interesting
research problem is to extend the partial orders describing nonproportional hazards situations
and the corresponding tests to the case of continuous covariates. This line of research will be
developed in the following chapters of the thesis. Second, the effect of covariates can be taken
into consideration in a manner similar to Breslow (1974) and Dabrowska et al. (1992). The null
hypothesis would then be equivalent to checking the proportionality of the effect of a binary
covariate (such as a group indicator or a discretised covariate), assuming the other covariate
effects to be proportional. However, an extension to the Cox regression model with continuous
covariates along the lines of Lin (1991) may not be possible. Instead, as indicated above,
we extend the framework to continuous covariates by defining new notions of partial order in
this case. The third generalisation may involve the cumulative ~-rate functions considered by
Dabrowska et al. (1989), which includes as a special case the cumulative hazard function and
the odds ratio function.

A nice feature of the graphical methods suggested here is that they produce smooth plots,
even for small sample sizes. Thus the user need not be wary of reading too much from the shape
of the plot. Further, as demonstrated by the examples, these graphical tools are quite powerful
in detecting departures from the PH assumption in the direction of ordered alternatives.

Other researchers have used the work in this chapter to advance the literature in different
ways. The measure of non-proportionality of hazards developed here (2.1) and the main result
on weak convergence and asymptotic distribution of ordinary Stieljes integral of a stochastic
process (Theorem 2.3.1; Theorem 3.1 of Sengupta et al., 1998) have been particularly useful in
this context. Specifically, tests for the proportional odds model (Dauxois and Kirmani, 2003),
relative risk (Kirmani and Dauxois, 2003), of the Koziol-Green model (Koziol and Green, 1976)
against monotone conditional odds for censoring (Kirmani and Dauxois, 2004), proportionality
of cumulative incidence functions of competing risks (Dauxois and Kirmani, 2004), of equality
of survival functions against monotone ratio (Dauxois and Kirmani, 2005), and of proportional
odds with interval-censored data (Sun et al., 2007) have made good use of the above ideas.
The work has also been discussed in Alvarez-Andrade et al. (2007a) and in a review article on

hazard ratios (Andersen, 1998).

84



Appendix to Chapter 2

Proof of Theorem 2.3.1
Consider the function  : D[0, 00)Px D[0, 00)¢ — D]0, 00)P? defined by h (k, z) (t) = k(t)@z(t).
It is easy to show that h is continuous at all points (k, ) such that k is rcll and @ is continuous.
The probability that (k,X) does not belong to the continuity set of h is the same as the
probability that X does not belong to DI[0,00)? — C[0, 00)P. The assumptions of the theorem
ensures that this probability is zero. Therefore K, (.) ® X () 2, k(.) ® X (.) by virtue of the
continuous mapping theorem.

Now consider the function f : D[0, 00)?? — RP? defined by f(x) = [ «(t)dt. To show that
f is continuous, let &, — x in D0, c0)P? and notice that every component of f(x,) converges
to the corresponding component of f(x) by the dominated convergence theorem. Since the
domain and range of f are spaces equipped with product topologies, this implies that f(xy)

converges to f(x). Therefore f is continuous and the result of the theorem follows from the

continuous mapping theorem.

Consistency of the variance estimator (2.3)
Assuming that Y;(t)/a, L, yj(t) for j = 1,2 pointwise on [0, 7], we have a,V(t) N v(t)

in DJ0, c0) under the usual Rebolledo conditions, where

. t dAQ('U,) dAl(u)
ww= | [m(u) T |

Let us also assume that K; i k; for ¢ = 1,2, and that each of the functions v, k1 and ks is
continuous. In view of (2.9), we only have to show that a,V; i vij, 1 = 1,2,5 = 1,2. We
write v;; as ¢ (kij, ¢ (kj,v)), where ¢ and ¢ are functions from D]0,00) x D[0,00) to R and
DJ0, c0), respectively, defined as

v(kl) = /OTk‘(s)l(s)ds,
6 (kD) (1) = /Ok:

In such a case a,Vi; = ¢ (K, ¢ (Kj,a,V)). The convergence of a,V;; to v;; in distribution is

(s)l(s Nt)ds.
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proved by showing that ¢ (K, a,V) L, ¢ (kj,v). Since the limit of convergence in either step
is deterministic, we can invoke the continuous mapping theorem and show that the functions
¢ and 1 are continuous at the limit points. To show the continuity of ¢, let (kjn,vy) be a
sequence in D]0, 00) x D[0, 00) converging to (k;,v). Thus k;, — k; and v, — v in DJ0, c0).
Since k; and v are assumed to be continuous, prop. 1.17(b) of Jacod and Shiryayev (1980, p.
292) ensures that for each t, sup |kjn(s) — k;j(s)| — 0 and sup |v,(s) — v(s)| — 0. Note that
¢ (k,v) € C[0,00). It follows ‘Slitxt for s € [0, 7], =

‘(ﬁ(kjml/n) (8) - ¢(kjvv)’ =

/OT [Fjn (2) (vn(s A t) —v(s A L)) +v(s At) (kjn(t) — k;())] dt

IN

sup |v,(s) —v(s)| / \kjn(t)|dt + 7. sup |v(s)|. sup |kjn(s) — k;j(s)].
s€[0,7] 0 s€[0,7] s€[0,7]

Thus ¢ (kjn,vn) converges to ¢ (kj,v) locally uniformly. Therefore ¢ (kjn,vy) converges to
¢ (kj,v) in D[0,00), and ¢ is continuous at (k;,v). The continuity of ¢ at (k;, ¢ (k;,v)) is

proved in a similar manner.
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Chapter 3

Testing for Proportional Hazards
against Ordered Alternatives with

respect to Continuous Covariates

3.1 Chapter summary

Several two-sample tests of the proportional hazards assumption against ordered alternatives
have been proposed; see Chapter 1 for discussion. Gill and Schumacher (1987) and Deshpande
and Sengupta (1995) considered the monotone hazard ratio alternative, while we (Sengupta
et al. (1998), our Chapter 2) developed a test against the weaker alternative of monotone
ratio of cumulative hazards. In this chapter, based on Bhattacharjee (2007a), we propose a
natural extension of these partial orders to the case of continuous covariates. We develop tests
for the proportional hazards assumption against ordered alternatives and a graphical method
to identify the nature of departures from proportionality. The proposed tests do not make
restrictive assumptions on the underlying regression model, and are applicable in the presence
of multiple covariates and frailty. Small sample performance and applications to real data

highlight the usefulness of the framework and methodology.
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3.2 Introduction

As discussed in Chapter 1, testing the proportional hazards assumption is important for em-
pirical studies and has been an active area of research. Most of the analytical tests are either
omnibus tests or tests in which the PH model is embedded in a larger class of semiparametric
models. However, many of these tests are not satisfactory. The omnibus tests usually have low
power, while the semiparametric alternatives typically make unverifiable assumptions about
the shape of the regression function. Further, when the PH assumption does not hold, ap-
plied researchers require additional information regarding the nature of the covariate effects.
In this context, it is often useful to explore whether the hazard rate for one level of the co-
variate increases in lifetime relative to another level, particularly when the covariate is discrete
(two-sample or k-sample setup); for further discussion, see Section 1.2.4.

In the two-sample setup, Gill and Schumacher (1987) and Deshpande and Sengupta (1995)
developed analytical tests of the PH hypothesis against the alternative of ‘increasing hazard
ratio’, which is equivalent to convex partial order of the lifetime distribution in the two samples.
In Chapter 2 (Sengupta et al., 1998), we proposed a two-sample test of the PH model against the
weaker alternative hypothesis of ‘increasing ratio of cumulative hazards’ (star ordering of the two
samples). As discussed earlier (Section 1.2.4 and Chapter 2), the above alternative hypotheses
(‘increasing hazard ratio’ and ‘increasing ratio of cumulative hazards’) provide explanations for
the phenomenon of ‘crossing hazards’ often found in applications. These two-sample tests are
useful for analysing survival data because, not only are they powerful in detecting departures
from proportionality, they also provide further clues about the nature of covariate dependence.
However, their applicability is limited because many important covariates in biomedical or
economic applications are continuous in nature (Horowitz and Neumann, 1992).

In this chapter, we extend partial orders in the above two-sample problems to the case of
continuous covariates. This extension is particularly motivated by applications in biomedicine
and economics where covariate effects typically change monotonically over lifetime.! Based on
examples from the applied literature as well as new applications, we argue that the proposed

partial orders provide meaningful alternatives to the PH model in the continuous covariate case.

' Often the prognostic effects decay over time, but sometimes they also increase for certain range of covariate
values.
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We propose tests of the PH model against such ordered departures and study their asymptotic
properties. Our framework does not assume any specific underlying regression model, and the
tests are applicable in the presence of additional covariates — observed or unobserved. Monte
Carlo studies and applications to real data highlight the advantages of the proposed methods.

The current chapter, based on Bhattacharjee (2007a), is organised as follows. In Section 3.2,
we develop notions of ordered alternatives to the PH model in the case of continuous covariates.
Tests of the PH assumption against such partial orders are constructed and their asymptotic
properties studied in Section 3.3, and issues regarding implementation and extensions are dis-
cussed in Section 3.4. Small sample properties are studied in Section 3.5, while two real life
applications are presented in Section 3.6. We also discuss modeling non-proportional covariate

effects and develop a related graphical test. Section 3.7 concludes.

3.3 Partial orders with respect to a continuous covariate

Partial orders of lifetime distributions are commonly used in theory and applications. The two
most popular notions of partial ordering, namely convex ordering and star ordering (Kalash-
nikov and Rachev, 1986; Sengupta and Deshpande, 1994), offer useful interpretations in terms
of monotonicity of ratios of hazard and cumulative hazard functions respectively over time; for
further discussion, see Section 1.1.1. Therefore, they describe useful and intuitively appealing
ways to characterise departures from the PH model in two samples and in the competing risks
framework. Gill and Schumacher (1987), Deshpande and Sengupta (1995) and Sengupta et al.
(1998) (our Chapter 2) consider several empirical applications where the departure from the PH
model in two samples is evident from the fact that the ratio of the hazard rates is not constant
over the lifetime; see also Andersen (1998).

For the two-sample setup, Gill and Schumacher (1987) and Deshpande and Sengupta (1995)
developed tests of the PH model against the “increasing hazard ratio” alternative, which is
equivalent to convex ordering of the life-time distribution in one sample with respect to the
other. In Chapter 2 (based on Sengupta et al., 1998), we constructed a test against the weaker
alternative hypothesis of “increasing ratio of cumulative hazards” (star ordering of the two

samples). Sengupta and Bhattacharjee (1994) (Section 2.7), Deshpande and Sengupta (1995)
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and Dauxois and Kirmani (2004) extend these tests to the competing risks problem.
The following definitions describe natural extensions of the above partial orders to the
continuous covariate case. Let T be a lifetime variable, X a continuous covariate and let \(¢|x)

denote the hazard rate of T, given X =z, at T = t.2

Definition 3.2.1. The lifetime random wvariable T is defined to be increasing hazard ratio
for continuous covariate (IHRCC') with respect to the covariate X if, whenever x1 > w2,
At|z1)/A(t|z2) T t. In other words, the lifetime distribution conditional on the lower covariate

value s convex ordered with respect to that conditional on the higher value:
(T|X = 331) -C< (T|X = 332)..

The dual decreasing hazard ratio for continuous covariate (DHRCC') is correspondingly de-

fined.

Definition 3.2.2. The lifetime random variable T is defined to be increasing cumulative hazard

ratio for continuous covariate (ICHRCC') with respect to X if, whenever x1 > w2,
AT |z1)/A(t|z2) Tt (= (TX = 21) < (T X = x2),

where < denotes star ordering of the conditional lifetime distributions. The dual decreasing
*

cumulative hazard ratio for continuous covariate (DCHRCC') is correspondingly defined.

Definition 3.2.3. The lifetime random variable T is defined to be increasing then decreasing
hazard ratio for continuous covariate (IDHRCC') with respect to the covariate X if, there
exists a point x within the range of X such that, T is IHRCC on the interval (—oco,x) and
DHRCC on the interval (z,00). Similarly, we can define decreasing then increasing hazard

ratio for continuous covariate (DIHRCC).

Definitions 3.2.1 and 3.2.2 describe notions of positive ageing with respect to a continuous

covariate. The higher the covariate, the faster the ageing of the individual — a situation which is

?See Fleming and Harrington (1991) for related discussion.
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common in empirical studies. In biomedical applications, such monotonically time-dependant
covariate effects have been discussed both under additive hazard models (Aalen, 1980; Mau,
1986) and multiplicative models (Anderson and Senthilselvan, 1982; Andersen et al., 1993).

Examples of such partial orders are common in applications. In Section 1.1.2, we have
discussed an application to survival with malignant melanoma. Analysing these data, Andersen
et al. (1993) observe that, while “hazard seems to increase with tumor thickness” (pp. 389),
the plot of estimated cumulative baseline hazards for patients with ‘2 mm < tumor thickness
< 5 mm’ and ‘tumor thickness > 5 mm’ against that of patients with ‘tumor thickness < 2
mm’ reveal “concave looking curves indicating that the hazard ratios decrease with time” (pp.
544-545). In fact, it is commonly observed in medical settings that treatment effects of an
active drug decays with time (Therneau and Grambsch, 2000; Scheike and Martinussen, 2004).
Similar evidence has also been noted in the applied econometrics literature. Using French data
on unemplyment durations, Jayet and Moreau (1991) observe that the ratio of hazard function
for individuals in the age groups 24—28 years to that for 37—40 years increases with duration of
unemployment upto approximately 120 days.

Definition 3.2.3 describes a notion of non-monotonic departure from the PH model, with
respect to the effect of a continuous covariate. An application considered later in the chapter
demonstrate evidence of such non-monotonic departures. The following examples illustrate
some simple data generation processes (DGPs) that generate monotone and non-monotonic

departures from the PH assumption with respect to a continuous covariate.

Example 3.2.1. Consider the hazard regression model with time varying coefficients (Murphy
and Sen, 1991; Martinussen et al., 2002) discussed in Sections 1.2.4 and 1.2.7.4. Assume the
hazard function A(t|z) = Ao(t).exp(B(t).x), where x is a continuous covariate and J(.) is an
increasing function of lifetime ¢ (1.12). This model is appropriate when the prognostic value of
the covariate is expected to be higher at higher lifetimes. Then, if 1 > 9, A(t|z1)/\(t|z2) =
exp(B(t).(x1 —x2)) is increasing in ¢. In other words, the lifetime random variable T" is THRCC
with respect to the covariate X. Conversely, if §(.) is a decreasing function of the lifetime,
T would be DHRCC with respect to X, a feature commonly observed in empirical studies.
Put differently, the hazard regression model with time varying coefficients exhibits 1H RCC
(DHRCC) partial order if and only if the integrated (or cumulative) regression effect B(t) =
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fg B(s)ds is a convex (concave) function over the lifetime.

Example 3.2.2. Consider a changepoint survival model given by the cumulative hazard func-
tion A(t|lx) = Ao(t).exp(I (t > t*).5z), where z is the covariate, I(.) the indicator function,
and t* is a lifetime in the interior of the sample space. This is a model where initially the
covariate has no effect on the lifetime. The effect of the covariate begins as soon as the life-
time crosses a certain threshold ¢*, and it lifts the distribution function upto a level where it
would have been, if the effect of the covariate would have persisted over the entire past life
of the lifetime variable. If B > 0, this model is ICHRCC, but not IJHRCC.?> This kind
of model may be useful in analysing the effect of active labour market programmes on un-
employment duration, where the effect may become significant only around the time when
unemployment benefits are terminated; see, for example, Narendranathan and Stewart (1993).
More generally, the hazard regression model with time varying coefficients has IC H RCC' partial
order if and only if the integrated (or cumulative) regression effect is star-shaped; the converse

holds for DCH RCC partial order.

Example 3.2.3. Consider the hazard function A(t|z) = Ao(t).exp(5(t). |z — a|), where z is
the covariate, a is a point on the covariate space, and f(.) is an increasing function of lifetime
t. This model is neither ITHRCC nor DHRCC, but it is DIHRCC; it is IHRCC on one
region of the covariate space (z > a), and DHRCC on another region (z < a). An application
where such a feature is observed is the effect on mother’s age on infant mortality. Because of
physiological reasons, mortality is lowest around an optimal childbearing age; however, keeping
mother’s age fixed, the effect itself declines with age of the child (Bhalotra and Bhattacharjee,

2001). Another application is considered later in the chapter (Section 3.6).

As the above examples illustrate, the notions of ordering introduced in Definitions 3.2.1,
3.2.2 and 3.2.3 encompass a wide range of non-PH situations, and are potentially useful in many
empirical applications. There may be a number of different explanations for changes in the
covariate effects over lifetime. In fact, in many applications, monotone departures from the PH

model may be more reasonable even from a theoretical point of view. Examples include medical

3The distribution function here has a jump discontinuity, but one can construct examples where JCHRCC
holds, and the distribution function is absolutely continuous.
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applications where one expects the prognostic relevance of some covariates to decay, or even
disappear, in the long run (Pocock et al., 1982; Therneau and Grambsch, 2000). Similar decline
in covariate effects are observed in economic studies on the effect of benefits on unemployment
duration (Narendranathan and Stewart, 1993) and on the effect of macroeconomic conditions
on firm exits (Bhattacharjee et al., 2008a). Construction of tests of the PH model against
monotone alternatives with respect to continuous covariates is therefore important.

The above examples also demonstrate typical patterns of time varying coefficients when
proportionality does not hold. These are useful for modeling ordered departures (IHRCC or
DHRCC) as well as non-monotonic violations (IDHRCC or DI HRCC') of the PH assumption.
Using the empirical applications (Section 3.6), we will demonstrate how such time varying
covariate effects can be used, in combination with the proposed tests, to draw useful inferences

in non-PH situations.

3.4 Test statistics

Several two-sample tests of the PH model against monotone alternatives exist in the literature.
For a continuous covariate, a natural approach for testing the PH assumption against ordered
alternatives IHRCC and ICHRCC (and their duals) would be repeated applications of the
corresponding tests in the two-sample setup. In this chapter, we consider the two-sample test
statistics proposed in Gill and Schumacher (1987) (T¢s) and Section 2.2 (also Sengupta et al.,
1998) (T'spr)-

Taking this approach, we propose a simple construction of our tests as follows. First, we fix
a positive integer r > 1, and randomly select r pairs of distinct points on the covariate space.
Next, for each pair, we construct the two-sample standardised test statistics (Tgs and Tspr)
based on counting processes conditional on the two distinct covariate values. Finally, our test
statistics are constructed by taking maxima, minima or average of these basic test statistics

over the r pairs.
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3.4.1 Monotone hazard ratio

For the alternative of ‘increasing hazard ratio’ (convex partial order) in two samples, Gill and

Schumacher (1987) proposed the test statistic

Tas
TGS,std R (3-1)
Var [TGS]
where
Tas = Tulse —Ti2lo, (3.2)
Var [Tgs] = ToToeVit — TorTiaVia — TiiToaVor + T11T12Vas, (3.3)

T,; = /Li(t)d/A\j(t),(i,jzl,Q),
0

Vi = /0 " L)Ly ()Y (B Ya(0)} (N + No) (1), (5, = 1,2),

7 is a random stopping time,* L;(¢) and Lo(t) are two predictable processes, and for the j-th
sample (j = 1,2), A;(t) is the cumulative hazard function and Kj(t) its Nelson-Aalen estimator,
Y;(t) denotes the number of individuals on test at time ¢, and N;(t) the counting process for
the number of failures in the sample at time ¢.

Gill and Schumacher (1987) show that the unstandardised test statistic (Tzg) has mean zero
under the null hypothesis (PH) and positive (negative) mean if the hazard ratio A\ (¢)/A2(¢) is
monotonically increasing (decreasing) in ¢ on [0,00) and L;i(.) and Ls(.) are so chosen that
L1(t)/La(t) is monotonically decreasing, and that its standard error falls to zero as sample size
increases to co under both the null and alternative hypotheses. Hence, while the standardized
test statistic Tggstq is asymptotically standard normal under the null hypothesis, the mean
increases (decreases) to oo (—oo) under the alternative hypotheses of monotonically increasing
(decreasing) hazard ratio. In many applications, L; and Lo are chosen corresponding to the
Gehan-Wilkoxon and log rank tests, where L1 = Y1Ys and Ly = Y1Y3 (V) —I—Yg)_l, so that
L1(t)/La(t) is monotonically decreasing in t.

For testing Hyo : PH vs. Hy : IHRCC, we propose the following procedure. We fix r > 1,

4For example, 7 may be taken as the time at the final observation in the combined sample.
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and select 2r distinct points {x11, o1, ..., Zr1, T12, T22,...,Tr2} on the covariate space X', such

that x;o > z;1,l = 1,...,r. We then construct our test statistics ngax), C(gin) and T g based
on the r statistics Tgg sta(zi1, 212),1 = 1,...,r (each testing convexity with respect to the pair
of counting processes N (t,z;1) and N (¢,z2)), where

Tas(xn, T2
Tas,std(xin, x2) = (2, vi2) ,

\/Var Tas(zn, zi2)]
Tas(zin,xzi2) = TiniTiee — Tin2Tio,

Var Tas(zin,zi2)] = TiaiTieVinn — Tiz1Ti2Vine — T Ti22Vier + T T2 Vise,

EU = / Li(xllamm)(t)d]{(t,xl]‘)?
0

and
d [N(t, 5811) + N(t, .',UIQ)]
Y(t, (EM)Y(t, :L’lg)

Vi) = /0 " Luain, o12) ()L (w1, 212) (8)

fori,j =1,2.

Therefore, our test statistics are:

ngw) = max {Tgs sta(®11, €12), Tas sta(®21, €22), - - -, TGS std(Tr1, Tr2) } (3.4)
ngin) = min {Tgs sta(®11, T12), Tas,sta(®21, 22), - - -, Tas,sta(Tr1, Tr2) } (3.5)
and
_ 1 —
Tes = > Tassta(zin, wiz). (3.6)
=1

For the choice of L1 and Ly mentioned above, these statistics are close to zero under the
null hypothesis. Under the alternative hypothesis IHRCC, Tgg and ngax) increases to oo
as sample size increases, while under DHRCC, Tgg and T((;Igm) decreases to —oo. Under
IDHRCC or DIHRCC, T, C(gax) and Témsin) will both diverge, to oo and —oo respectively, as

sample size increases to oco.

95



3.4.2 Monotone cumulative hazard ratio

The form of the test statistic proposed in Section 2.2 (also Sengupta et al., 1998), for testing
the proportional hazards model against the ‘increasing cumulative hazard ratio’ (star partial

order) alternative, is similar to T g stq. The standardised statistic® is given by

T
TsBRsta = /\Si, (3.7)
Var [Tspr]
where

Tspr = S11522 — 51251, (3.8)

Var [Tspr] = S21522Wi1 — S21512Whz2 — S11522Wa1 + S11512Waa, (3.9)

S, = / Ki(t). R (t).dt, (i, § = 1,2),
0

Wy, — /0 /0 Ki(6).K (). K (). W (min(s, ¢)) dsdt, (i, j = 1,2),

W) = /O (¥ (3)Ya(5) " (V1 + Vo) (s),

*

7* is a large lifetime with Aj(7*) < 00,7 = 1,2,% and K;(¢)(j = 1,2) are right continuous
functions with left limits (rcll functions) that need not be predictable processes.

As shown in Section 2.3, this standardised test statistic is also asymptotically standard
normal under the null hypothesis of proportional hazards. Under the monotone cumulative
hazard ratio alternative, it is asymptotically normal with mean diversing to co (—o0o) accordingly
as the cumulative hazard ratio Aj(t)/A2(t) is monotonically increasing (decreasing) in ¢ on
[0,00) and K; and Ky are so chosen that K(t)/K2(t) is a decreasing process.

As before, we construct our test statistics Té%‘;(),ngi;) and T gpr based on the r statistics

TsBrsta(xi,z12),l = 1,...,r (each testing star-ordering with respect to the pair of counting

’The notation for the test statistic in Chapter 2 is Qx;, x,, which emphasizes the important role for the weight
functions. Since our focus here is on values of the test statistic conditional on different covariate pairs, we choose
the simpler notation Tspr and suppress the dependence on weight functions.

®Note that, unlike 7 in the Gill-Schumacher statistic Tas, 7* need not be a stopping time.
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processes N (t,x;1) and N (¢, 252)). Thus, we have:

ngg) = max {TspR sta(T11, 712), TsBR sta(T21, T22), - - -, TsBR std(Tr1, Tr2) } (3.10)
Timm) = min {Tsprsa(@11, 212), TspRrsta(T21,222), - - - TspR,sta(Tr1, T12)} 5 (3.11)
and
_ 1 «
Tspr= > Tsprsta(zin, ). (3.12)
=1

3.4.3 Large sample results

We now derive the large sample results for the proposed test statistics, using the counting
process methods (Gill and Schumacher, 1987; Andersen et al., 1993) and a result on convergence
of ordinary Stieljes integral of a stochastic process proved earlier (Theorem 2.3.1 in the thesis
and Theorem 3.1 in Sengupta et al., 1998). It is also indicated how these results can be used, in
combination with extreme value theory, to obtain p-values of ngax), ggin), Tér;?) and Tér;ig).

Consider a counting processes {N(t,z) : te[0, 7], zeX}, indexed on a continuous covariate
x, with intensity processes {Y (t,x).A(¢,z)} such that A(¢,z) = 0,A(¢) for all ¢ (under the null
hypothesis of proportional hazards). As before, L1 and Lo denote two predictable processes,
each indexed on a pair of distinct values of the continuous covariate x (i.e., indexed on (z1, x2),
x1 # T2, x1,x2e¢X ), and let T be a stopping time. Similarly, let K and K» be right continuous
functions with left limits, which are each indexed on {(x1,x2), =1 # z2, x1,z2eX}, and 7* is
a large positive time such that A(7*,z;) < oo, i = 1,2. Now, let 7 be a fixed positive integer

(r > 1) and {z11,221,...,%r1,T12,T22,...,Zr2} are 2r points on the covariate space X, such

that ¢ > xpn,l=1,...,7.

Assumption 3.8.1 For each 1,1 = 1,2,...,r, let Li(z1,212)(t) and La(xp,x12)(t) be pre-

dictable processes indexed on the pair of fized covariate values (1, z2).

Assumption 3.3.2 Let T be a random stopping time. In particular, T may be taken as the

time at the final observation of the counting process Elez‘,?:lN(t, x15). In principle, one could

also have different stopping times T (x1,x12),l = 1,...,r for each of the r basic test statistics

TGS,std(l'll’fElQ),l =1,...,7.

97



Assumption 3.3.3 The sample paths of Li(z;1,x12) and Y (t,2;)~ ! are almost surely bounded

with respect to t, for i = 1,2 and | = 1,...,r. Further, for each I = 1,...,r, L1(zy1,z;2) and
Lo(xy1, x2) are both zero whenever Y (t,x;1) or Y (t,x52) are.

Assumption 3.3.4 There exists a sequence a(™, (™ — oo as n — oo, and fized functions

y(t,z), li(xpn, x2)(t) and lo(xp, x12)(t), L =1,...,7 such that

P
sup ‘Y(t,x)/a(") —y(t, :B)| —0 as n — oo, VreX
te[0,7]
P
sup |Li(z, z2)(t) — li(zpn, x2)(t)] — 0 asm— o0, i=1,2,1=1,...,r
te[0,7]
where |l;(z11,712)(.)| are bounded on [0,7] for each i = 1,2 and [ = 1,...,7, and y~(.,z) is

bounded on [0,7], for each xeX.

max)

Let the test statistics Tc(:s ,ngm) and T'gs be as defined earlier (3.4 — 3.6).
Theorem 3.3.1. Let Assumptions 3.3.1 through 3.3.4 hold. Then, under Hy : PH, as n — 00,
(a) P|TSE™ < 2| = 22",

(b) P [ngi“) > —z} — [®(2)]", and

(c) i Tas = N(0,1),
where ®(z) is the distribution function of a standard normal variate.

(Proof in Appendix.)

Corollary 3.3.1.
P [ar {TémSaX) — br} < z} — exp[—exp(—z)] asr — o0

and

P [ar {ngin) + br} > z] — exp [—exp(z)] as r — oo,

where a, = (2In7)Y? and b, = (2Inr)/% — 3 2In7) "2 (Inlnr + In4r) .

(Proof in Appendix).

"The condition on probability limit of Y (¢, z) can be replaced by a set of weaker conditions. See, for example,
Sengupta et al. (1998).
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Corollary 3.3.2. Given a vector w = (w1, wa,...,w,) of T weights, each possibly dependent
on x; (1 =1,2,...,r;5 = 1,2) but not on the counting processes N (t,x15), let us define the

test statistics

ngz) = Max {w. Tas sta(rn, ©12)}

=1,...,7

TS = min {wTasalan, )}

=1,...,r

and
= Y wiTas stalTn, Tr2)
Tesw = 7 :
21:1 wp

Let Assumptions 3.8.1 through 8.3.4 hold. Then, under Hy: PH, as n — oo,
(a) PT550 < 2] = TIi- [@(z/w),

(b) P |TSa) > —2| =TIy [@(z/w)), and

Dliw D
(C) M‘TG&E — N(O7 1)’

where ®(z) is the distribution function of a standard normal variate.

(Proof in Appendix).

Theorem 3.3.1, along with Corollaries 3.3.1 and 3.3.2, establish the asymptotic results for
testing proportionality against monotone hazard ratio alternatives (I H RCC and DHRCC)) as
well as non-monotonic violations (IDHRCC or DIHRCC') of the PH assumption.

Next, we derive similar results for partial orders based on cumulative hazard ratios.

Assumption 3.3.5 For each [,1 =1,2,...,r, let Ki(x;1,22)(t) and Koz, 212)(t) be stochas-

tic processes with sample paths in D[0, 00) (i.e., are right continuous and have left limits).

Assumption 3.3.6 Let 7° be a positive lifetime such that A (7%, 2;;) < 00,1 =1,2,...,7,j =

1,2.

Assumption 3.3.7 There exists a sequence a(™, a(™ — oo as n — 0o, and deterministic

functions y(t, x), ki(xp, z2)(t) and ka(xy1, z2)(t), L = 1,...,r such that

sup |Y(t,x)/a(”) - y(t,z)} 50 asn — oo, VaeX
te[0,7*]

sup |K;(xpn,x2)(t) — ki(z1, z12) (t)] L0 asn—ooo, i=1,21=1,...,r
te[0,7*]
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where ki (z1,x12)(t) and ko(xp1, z2)(t), = 1,...,r are continuous functions with respect to ¢,

and y~!(.,x) is bounded on [0, 7], for each weX.

Let the test statistics Tg]gzg), Té%ig) and Tspr be as defined earlier (3.10 — 3.12).
Theorem 3.3.2. Let Assumptions 3.3.5 through 3.3.7 hold. Then, under Hy : PH, as n — 00,

(a) PTGER < 2| = [@(2)]",
(b) P |TSR) > —2| = [@(:)]", and

(¢) ViTspr = N(0,1),
where ®(z) is the distribution function of a standard normal variate.

(Proof in Appendix.)

Corollary 3.3.3.

P [a { gg‘?) — by } } — exp[—exp(—z)] asr — oo and

{ {ngg) + br} > z} — exp[—exp(z)] as r — oo,

where a, = (2Inr)Y/?,
1
and b, = (2Inr)/%— 3 (2Inr) V2 (Inlnr + In4x) .
(Proof in Appendix.)
Corollary 3.3.4. Given a vector w = (w1, ws,...,w,) of r weights, each possibly dependent

on x; (1 =1,2,...,r;5 = 1,2) but not on the counting processes N (t,x;;), let us define the

test statistics

Tg;?%}:()w = lmax {wi.Tspr.sta(zi1,12)},
TSEIE?Q = ljlllinr {w. Tspr,sta(T11,12) } 5
— T ow. T T, T
and Tspru = 211 Wi-Tsprsta(zn, 2i2)

Zle wi
Let Assumptions 3.8.5 through 8.3.7 hold. Then, under Hy : PH, as n — oo,
(a) P [T8550, < 2| = Ty [@(=/w),

(b) P TSR, = —2| =TTy [@(z/w)], and
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YW D
(c) mTSBR& — N(0,1),

where ®(z) is the distribution function of a standard normal variate.

(Proof in Appendix).

Remark 3.3.1. Restricting the statistics Témsax), Té?in), ngz() and Ts(gig) to depend on a fixed
number () of distinct pairs of points is crucial for the asymptotic results. This is because, the
processes Tgs sta(21,22) and Tspprsta(®1,z2) on the space {(x1,x2) : xa > x1, 21, x2eX} are
pointwise standard normal and independent, and therefore the maxima (minima) diverges to
+oo(—00) without having well-defined asymptotic distributions.

Remark 3.3.2. Corollaries 3.3.1 and 3.3.3 provide simple ways to calculate the p-values for
the extremal test statistics ngax) and glgn (and similarly, ngg) and Té@i;)) provided r is
reasonably large. Note that since r is held fixed it cannot increase to oo, but with a value large
enough (say, 20 or higher) the approximation is quite accurate.

Remark 3.3.3. Corollaries 3.3.2 and 3.3.4 can be used to weight the underlying test statistics
by some measure of the distance between x;; and x;3. In other words, one can give higher
weights to a covariate pair where the covariates are further apart. In practice, this is expected

improve the empirical performance of the tests. We have, however, not used these weights in

the empirical work in Sections 3.5 and 3.6.

3.5 Implementation and extensions

In this Section, we discuss some issues regarding implementation of the proposed tests, partic-

ularly in small samples, and extensions to other cases.

3.5.1 Small sample correction

Since the covariate under consideration is continuous, it is not feasible to construct the basic
tests (Tgs and Tspr) based solely on two distinct fixed points on the covariate space. In our
implementation, we consider "small" intervals around the (randomly) chosen points, assuming
the hazard function within these intervals to be approximately constant over covariate values.

While the asymptotic distributions in Section 3.3 are based on specified points in the covariate
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space, the tests will be valid for small intervals around these points, provided the hazard function
(for T, érgax)’ ((;?in) and Tgg) or the cumulative hazard function (for ng‘?) , égi;) and TsgR)
is continuous at these points.

However, in small samples, these intervals often overlap, causing independence of the basic
test statistics to be violated. Our Monte Carlo studies suggest that the average test statistics
are susceptible to this problem, resulting in a sample variance larger than 1/r. We suggest
making a small sample correction in such cases, by normalizing the average statistic using a
jacknife or bootstrap (subsample) estimate of the standard error. In this chapter, we have used
the Quenouille-Tukey jacknife variance estimator for this purpose. This adjustment improves
the performance of the tests in small samples, and does not affect our asymptotic results. We

denote these adjusted test statistics as TGS’ Adj and Tsp R,Ad; respectively.

3.5.2 Choice of r and covariate pairs

The proposed tests take 7, the number of covariate pairs, as fixed a priori. If the chosen value is
sufficiently high (say, 20 or more), Corollaries 3.3.1 and 3.3.3 can be used to compute p-values
very easily; the choice of r is not very critical otherwise. For the Monte Carlo study reported
in Section 3.5, we choose r = 45.

However, the choice of covariate pairs can be quite critical for the performance of the tests.
Typically, the choice will have to take account of the design density in an appropriate way.
This is to ensure that the underlying two sample tests (Tos and Tspr) are based on reasonable
sample sizes and on representative samples of the covariate values.

We considered three methods to choose covariate pairs. In the first aproach, we resample
from the realised covariate distribution using a simple bootstrap. Once covariate values are se-
lected, we computed T and Tspr based on small samples of 20 nearest neighbour observations
corresponding to each chosen value. Our second approach was the nonparametric bootstrap
using a kernel estimate of the design density. This should work better particularly in regions
where covariate values are sparse. The samples were constructed as in the previous approach.
Third, we divided the sample observations into deciles based on the covariate values, and then

chose the (120) = 45 combinations given by the partition.
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All the three approaches gave comparable results in our Monte Carlo experiments. We,
however, prefer the third approach because of its simplicity and its advantages of generating

non-overlapping intervals and adequately covering the covariate space.

3.5.3 Comparison with other tests

As discussed earlier, a convenient way to interpret the ordered alternatives considered here is
through time varying coefficients in a multiplicative hazard regression model. In this sense,
our tests are somewhat related to other analytical tests of time-dependant covariate effects
proposed in the literature.

However, our approach embodies several important points of departure. First, our tests
are based on the partial orders defined in Section 3.2 and not on any restrictive regression
model. Second, some of the available analytical tests are based on partitioning the sample space
of the lifetime variable into intervals (Anderson and Senthilselvan, 1982; Murphy, 1993) and
consequently do not make use of the full information that the data offers. Our tests do not have
this shortcoming. Third, unlike some other tests (Grambsch and Therneau, 1994; Scheike and
Martinussen, 2004), our methods enable us to identify useful non-monotonic departures from
the PH model, like IDH RCC and DIHRCC. Fourth, while the previous tests merely identify
violation of the constancy of covariate effects over the lifetime, our tests are based on explicit
partial orders and provide additional insight into the nature of the regression relationship. This
is useful for further inference and modeling. Finally, along with the test proposed by Scheike
and Martunussen (2004), our tests have the advantage that tests of proportionality can be
conducted sequentially for different covariates. This is often very useful in applications.

Notwithstanding these iportant differences, we compare the performance of the proposed
tests against the popular test for time constant effects (PH model) due to Grambsch and

Therneau (1994), using a simulation study (Section 3.5).

3.5.4 Choice between the proposed tests

The choice between the maxima, minima and average test statistics can be important in prac-
tice. The maxima and minima tests detect more complicated departures from the PH model

(IDHRCC, DIHRCC, and their counterparts based on the cumulative hazard functions),
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and thereby facilitate detailed investigation of ordered covariate effects. On the other hand,
as we shall see in the Monte Carlo simulations (Section 3.5), the adjusted average statistics

outperform the maxima and minima tests in terms of power.

3.5.5 Extensions

The proposed ethodology offers several straightforward extensions.

k-sample problem

The proposed tests can be used to study monotone departures in k-sample (discrete covariate)
problems. In this case, an a priori ordering of the k samples can be obtained using estimators
of hazard ratio proposed in Gill and Schumacher (1987) or Chapter 2 (Sengupta et al., 1998),
or using the tree-structured modeling approach (Ahn and Loh, 1994). One can then easily
apply the test for the PH model proposed here. The tests can also be similarly extended to the

competing risks problem with more than 2 competing risks.

Different censoring and sampling plans

While our proposed methods are developed under the standard random censorship model (Flem-
ing and Harrington, 1991; Andersen et al., 1993), these can be easily extended to other censoring
and sampling plans. For example, Bordes (2004) and Alvarez-Andrade et al. (2007) extend the
counting process approach to estimation of the cumulative hazard function and proportional
hazards regression based on progressive type-II censoring. Their results can be easily used to
extend our results to this setup. Similarly, Sellke and Siegmund (1983) extend partial likelihood
inference under the Cox regression model to the case of staggered (delayed) entry. Here, the
counting process approach does not work. However, large sample results for our tests can still

be derived using Theorem 2.3.1 in combination with Theorem 3.3.2.

Frailty

Like in the case of staggered entry, the counting process approach is not applicable in the
presence of frailty. Under the shared frailty model, where individuals are clustered a priori

based on the value of their shared but unobserved frailty, "quasi partial likelihood" inference
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was developed in Spiekerman and Lin (1998) based on empirical process theory. Similar theory
for the univariate frailty model with a known one-parameter frailty distribution is developed
in Kosorok et al. (2004). In either case, combining Theorem 2.3.1 with Theorem 3.3.2 gives us

asymptotic results for the test statistics.

Presence of other covariates

While the proposed method is presented in the context of a single covariate, it can be extended
to a multiple covariate setup in several ways. First, we may assume that the other covariates
have proportional effects on the hazard function, as in the Cox regression model. In this case,
the usual Aalen-Breslow estimator of the cumulative baseline hazard function, conditional on
different values of the index covariate, can be used to construct the tests. Large sample results
follow in the same way as before.

Second, if it is suspected that some of the other covariates may have nonproportional effects,
these can be accommodated by incorporating time varying coefficients for these covariates. In
this case, the tests can be constructed using estimates of the cumulative baseline hazard function
based on estimated cumulative baseline hazard function using the histogram sieve estimator
proposed by Murphy and Sen (1991). The asymptotic arguments described above still follow.
In fact, in general, we recommend starting with a model where all the covariates are allowed to
have time varying effects, and then reduce the model by sequentially testing for proportionality
of each covariate. This is similar to the approach in Scheike and Martinussen (2004).

Third, the proposed method can be used to nonparametrically study covariate effects in
the context of more general regression models, without the assumption of time varying coeffi-
cients. For example, one could define the lifetime 7" to be IH RCC with respect to continuous
covariates X and Z if, whenever x1 > zo and z1 > z9, A(t|z1, 21)/A(t|z2, 22) T t. More gener-
ally, one may define T to be I HRCC' with respect to X and Z if, given some function A(.,.),
At|z1, 21) /A(t|z2, 22) T t whenever h(x1,21) > h(xe, 22). Further, the appropriate specification
of the function A(.,.), which will be typically application-specific, can be made from the values
of the underlying two sample test statistics. A proposed graphical method, discussed later,
may be particularly useful in this situation. This demonstrates the versatility of the proposed

framework and methodology for studying covariate effects.
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It is clear from the above discussion that, though the testing procedure is applied sequentially
to individual covariates or a small number of covariates, its applicability is almost universal.

This outlines the usefulness of the proposed methods.

3.6 Monte Carlo study

Now, we explore the finite sample performance of the tests for different specifications of the
baseline hazard function and covariate dependence. The selected data generation processes
are similar to those used in Horowitz (1999) and Martinussen et al. (2002). In particular, we

consider models of the form

At, x) = No(t). exp [B(t, )], (3.13)

where A\o(t) and [(t,z) are chosen to assume a variety of functional forms. Note that, un-
der model (3.13), the PH assumption holds if and only if §(¢,2) depends only on z. If, for
fixed x, B(t, x) increases (decreases) in ¢, we have the ITHRCC and ICHRCC (DHRCC and
DCHRCC) alternatives. If, on the other hand, 5(¢,z) increases in t over some range of the
covariate space, and decreases over another (as in Example 3), the alternatives IDH RCC' or
DIHRCC may hold. While the proposed average tests are consistent for ordered alternatives
to the null hypothesis of proportional hazards, our maxima and minima tests are consistent in
both monotonic and non-monotonic cases.

In addition to the proposed tests, we included in our study the popular test for proportion-
ality proposed by Grambsch and Therneau (1994) (GT'). While the GT test is designed for
testing specific parametric departures in the single covariate case, it is known to be very power-
ful in detecting departures from the PH model. A simulation study in Scheike and Martinussen
(2004) suggests that a particular implementation of the GT test has higher power than the test
proposed in their chapter. Hence, the G'T" test is a good benchmark for comparison.

Our Monte Carlo simulations are based on independent right-censored data from eight data

generating processes (DGPs), defined by combinations of four specifications of the regression
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function

0
In(t).x
[ In(?). ||

and two specifications of the baseline hazard function A\o(t) (= 2,12t); see Table 3.5.1 for

Bt )

definitions and notations for the DGPs. Randomly right-censored data are generated using
the Gauss 386 random number generator, where the covariate X is i.i.d. U(—1,1), and the
censoring time C' is i.i.d. U(0.2,2.2). Of the eight, four DGPs belong to the null hypothesis
of PH, and two have ITHRCC (also ICHRCC specifications). The two remaining models,
with (¢, z) = In (¢) . |z|, have DI HRCC specifications, being I H RCC and ICHRCC over the
range z¢l0, 1] and DHRCC and DCHRCC over the range ze[—1, 0].

TABLE 3.5.1: DATA GENERATING PROCESSES

Model | Ao(t) | B(t,x) Median cens. | % cens. | Expected significance

DGPy;y | 2 0 0.36 16.4 | None

DGPyy | 2 T 0.30 19.2 None

DGPys | 2 In(t).z 0.25 158 | T Tig ag TS Toproag, GT
DGPy | 2 In(t). || 0.52 26.9 | 70w gl plma) pmin) qre
DGPyy | 12t 0 0.32 8.9 None

DGPyy | 12t T 0.32 9.6 None

DGPy3 | 12t | In(t).x 0.30 89 | T2 Tas ag, TS Tspr ag, GT
DGPyy | 12t | In(t). |z| 0.42 13.8 | Thne) plmin) plmax) puin) G

Table 3.5.2 reports, for each of the above eight data generation processes, the observed
rejection rates (in percentage) of each of the test statistics, at 5 per cent confidence level, for
different sample sizes. The reported percentages of rejection are based on 1000 Monte Carlo
simulations in each case, and asymptotic distributions are used to compute the cut-offs. The
covariate values considered are midpoints of each decile of the empirical distribution of realised
covariate samples. Our test statistics are computed based on 45 random pairs of points on the
covariate space (r = 45) in each case, given by each distinct combination of the above covariate
values. Conditional on each covariate value, a sample of 20 nearest neighbour data points are

used to construct the underlying two-sample test statistics Tgg and Tspg.
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TABLE 3.5.2: REJECTION RATES (%) AT THE 5% ASsyMpTOTIC CONFIDENCE LEVEL

Model | Test Sample size Model | Test Sample size
100 | 200 | 500 | 1000 100 | 200 | 500 | 1000
DGPy | TS3™ | 188 | 7.7 | 55 | 49 | DGPy | TSe™ 131 | 73 | 57 | 5.2
TS 230 | 75 | 54 | 50 TSem 214 | 80 | 45 | 5.1
Tosaq | 41 | 44 | 47 | 52 Tasaqg | 55 | 5.5 | 54 | 4.8
T8 1132 | 7.8 | 6.0 | 47 T8 118 | 7.0 | 5.6 | 4.8
T 129 | 71 | 56 | 4.9 Ti{min) 129 | 7.3 | 57 | 5.2
Tsproag | 5.5 | 5.1 5.0 5.1 Tsproag | 152 | 6.0 | 4.9 5.0
GT 45 | 41 | 47 | 58 GT 3.7 | 37 | 53 | 41
DGPy, | TSe™ 1196 | 94 | 63 | 54 || DGPy | TS9™ | 288 | 89 | 56 | 5.1
TS 182 7.9 | 57 | 48 TS 16.4 | 88 | 64 | 46
Tasag | 123| 63 | 52 | 53 Taosag | 57 | 5.2 | 50 | 4.8
T&e) 1132 | 6.9 | 54 | 4.9 T 1125 | 7.7 | 55 | 5.1
T 169 | 81 | 58 | 5.2 T{nin) 121 7.0 | 57 | 47
Tsprag | 56 | 55 | 56 | 4.6 Tsproag | 31 | 3.9 | 44 | 53
GT 1.6 | 15 | 26 | 23 GT 08 | 1.9 | 1.7 | 19
DGPys | TS5 | 52.3 | 83.8 | 100.0 | 100.0 || DGPys | TSe™ | 33.1 | 49.6 | 100.0 | 100.0
TS 1.9 61 | 05 | 0.0 T e 131 | 54 | 1.9 | 20
Tas,aq | 37.8 | 100.0 | 100.0 | 100.0 Tasaq | 75.8 | 92.3 | 100.0 | 100.0
T 852 | 100.0 | 100.0 | 100.0 M) | 148 | 26.6 | 98.3 | 100.0
TS 44 | 01 | 00 | 04 T{min) 33 | 1.9 | 00 | 02
Tsprag | 422 | 100.0 | 100.0 | 100.0 Tspraq | 86.1 | 98.2 | 100.0 | 100.0
GT 99.1 | 100.0 | 100.0 | 100.0 GT 69.0 | 95.4 | 100.0 | 100.0
DGPy | TS3™ | 31.7| 33.2 | 579 | 91.2 || DGPy | TSe™ | 24.6 | 32.1 | 40.8 | 46.3
TS 20.4 | 421 | 70.6 | 94.8 TSem 22.0 | 29.1 | 49.5 | 53.2
Tasag | 164 | 121 | 7.7 | 10.1 Tasag | 11.0 103 | 55 | 2.8
T 1102 | 224 | 395 | 873 T 1112 [ 198 | 359 | 45.4
Ti{min) 21.1 | 339 | 752 | 97.8 T{min) 14.4 | 181 | 27.9 | 56.3
Tsprag | 92 | 135 | 9.1 8.3 Tsprag | 139 | 10.2 | 4.1 4.6
GT 2.7 | 24 | 24 | 27 GT 1.8 [ 21 | 37 | 3.1
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For the maxima and minima tests, the one-sided cut-off for the relevant extreme value
approximation is used, while the average test statistics have the two sided normal cut-offs.
As discussed earlier, the average test statistics are standardized using the Quenouille-Tukey
jacknife estimator of variance, to account for small sample distortions.

The results show that the proposed tests have good power in small samples, except for
DGPsy. This is not surprising since DG Pay is DIHRCC, possessing I HRCC' features over
one-half of the covariate space, and DH RCC over the other. Hence, when a pair of points
are drawn at random from the covariate space, only a quarter of them may be expected to
reflect the THRCC nature of the underlying data generating process, and another quarter
would reflect the DH RC'C nature. When we increased the sample size to 1500, the rejection
rates for ngax), C(;H;n), égag) and Tér;i;) rose to 77, 68, 61 and 83 per cent respectively. The
GT test (Grambsch and Therneau, 1994) performed very poorly for both the non-monotonic
DGPs (DGPy4 and DG Pay).

Overall, our tests are powerful and maintain their nominal sizes in finite samples. By
comparison, the GT test has serious deficiencies in not being able to maintain its nominal size
under PH DGPs. However, its power is higher for the monotone alternatives. The results
also reflect the strength of the maxima and minima test statistics in their ability to detect

non-monotonic departures from the PH model (DG P14 and DG Pyy).

3.7 Empirical applications

Now, we illustrate the use of the tests with three applications: to (a) durations of contract strikes
in the US (Kennan, 1985), (b) survival with malignant melanoma (Drzewiecki and Andersen,
1982; Andersen et al., 1993), and (c) infant mortality in India (Bhalotra and Bhattacharjee,
2001).

3.7.1 Data on Strike Durations

The data, reported in Kennan (1985), pertain to durations of 566 contract strikes in the U.S.,
each involving 1000 workers or more, beginning during the period January 1968 to Decem-

ber 1976. Several authors have analysed these data, including Kennan (1985), Kiefer (1988),
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Figure 3-1: Lee-Pirie Plot of A(¢|z = 0.037) versus A(t|z = —0.048).

Horowitz and Neumann (1992), and Neumann (1997). A important question of research inter-
est, and of previous analyses, is the effect of business cycles (measured by production index) on
strike duration. This production index represents the continuous covariate in our application.
Since strike durations are also known to exhibit seasonal effects (Neumann, 1997), we use only
the data on 292 strikes beginning in the first half of each year.

Empirical investigations of Kennan’s strike data by previous authors suggest that the level of
production index significantly affects strike duration (Kennan, 1985; Neumann, 1997). Higher
values of the production index were associated with higher conditional probability of ending
the strike, implying significant counter cyclical pattern of strike duration. However, the PH
model specifies much more than merely the sign of the covariate effect. In order to graphically
explore whether the data exhibit monotone departures from the PH model, we use Lee-Pirie
plots (Lee and Pirie, 1981) of cumulative hazard functions conditional on various randomly
chosen pairs of covariate values. Many of these plots indicate an increasing ratio of the hazards,
as evident from the convexity (in some cases, star-shapedness) of the plot lending credence to
a priori suspicion of monotone ordering of the I H RCC' type; as an illustration, see Figure 3-1,

the Lee-Pirie plot conditional on covariate values —0.048 and 0.037).
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TABLE 3.6.1: TESTS OF THE PH MODEL: STRIKE DURATION DATA

Test Test Statistic | p-value (%)
TS e 3.619 0.030
T e —3.426 0.054
Tas,adj 4.093 0.000
T{mes) 3.415 0.056
TS —2.703 0.420
TsBr,Adj 3.808 0.000

Next, we apply our tests to these data (Table 3.6.1). Each of the tests were based on 150
pairs of distinct covariate values. The results of the tests confirm our a priori notion based
on the above plots. The null hypothesis of PH model is rejected in favour of the alternative
THRCC (and ICHRCC), at 5% level, with production index as the continuous covariate.
This implies that the covariate effect of production index is such that, the duration distribution
conditional on a higher value of the covariate is convex-ordered with respect to that conditional
on a lower production index. In other words, the impact of production index on the hazard
rate of strike duration increases in the duration of the strike.

Further, the maxima and minima tests provide additional information on the covariate pairs
for which the basic test statistics attain their extreme values, which may be useful for modeling

TC(T,HSIaX) is attained

the nature of departures from proportionality. The maxima test-statistic
for the covariate pair {—0.0478,0.0371}. The test statistic ngin) (covariate pair 0.0371 and
0.0675) has a p-value of 0.054, which provides some evidence of concave-ordering towards the
upper end of the covariate space (IDHRCC).

To illustrate how this I D H RC'C' nature can be incorporated into a regression model of strike
durations, we present parameter estimates for three different models in Table 3.6.2. Model 1
is a simple Cox PH model, with production index as the continuous covariate. In Model 2, we
allow for time-varying coefficients using the histogram sieve estimator proposed in Murphy and
Sen (1991).% This model accomodates monotone departures from proportionality, in the nature

of THRCC or DHRCC. In Model 3, we allow the coefficient of the covariate to vary not only

over failure time, but also for covariate values. More specifically, we allow the coefficients to be

8There are several other estimators for time varying coefficients; see Martinussen et al. (2002) for a review.
We choose the histogram sieve estimator (Murphy and Sen, 1991) because of its simplicity, intuitive appeal and
efficiency in the sense of attaining the variance bound given in Sasieni (1992).

111



different for covariate values below and above 0.0371, enabling us to model departures of the
IDHRCC or DIHRCC type. Here again, we use the estimators given by Murphy and Sen
(1991) for inference.

Model 1 indicates a significant impact of production index on the hazard rate of strike
durations. However, this evidence is misleading. Model 3 estimates show that the true nature
of covariate dependence is strikingly different. These time- and covariate-varying nature of the
parameter estimates closely relate to the results of our analytical tests on the nature of covariate
dependence. For lower values of the covariate, the coeflicient increases with duration, while the
opposite holds for higher covariate values. These results point to new evidence on asymmetric

business cycle effects on strike duration which has important policy implications.

TABLE 3.6.2: MODEL ESTIMATES: STRIKE DURATION DATA

Model/ Parameter Coefficient | z-stat.

MopEL 1

Production Index, z 3.529 3.17

MODEL 2

x.1 [te]0, 75)] 5.179 3.90
I [te[75,150)] 0.360 0.27
I [te[150, 00)] 9.416 1.19

MODEL 3
I [ze(—00,0.037)] .1 [te]0, 75)] —1.178 —0.75
I [ze(—00,0.037)] .1 [te[75, 150)] 9.362 4.32

x.1 [ze(—00,0.037)] .1 [te[150, 00)] 45.266 3.43
I [2€[0.037,00)] .1 [te]0, 75)] 10.173 4.96
I [2€]0.037, 00)] .1 [te[75, 150)] —14.910 —5.96
I [2€[0.037, 00)] .1 [te][150, 00)] —27.619 —5.90

3.7.2 A related graphical test

Plotting the contours of the underlying standardised test statistics on a covariate X covariate
two-dimensional plane provides an useful graphical tool for inference on monotonic and non-
monotonic departures considered in this chapter. Figure 3-2 shows a contour diagram of the
standardized test statistic Tgg st (smoothed using the Epanechnikov kernel) for the strike

duration data. The significant height of the peaks and troughs indicate nonproportionality, and
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the shift in the slopes about the covariate value of approximately 0.04 indicate non-monotonic
departures from proportionality about this point. The use of the plot here confirms the inference

drawn from our analytical tests, and in particular helps in choosing the changepoint for the

IDHRCC pattern.

Contour Plot of TGS,std
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-0.06 -0.04 002 0 002 004 006 0.08
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In applications with multiple covariates, similar graphical analysis can also provide valuable
insights into the interaction between different covariates. With two continuous covariates x
and z, one can obtain similar plots for different candidate functions h(z, z) (see Section 3.4.5)
to examine which of these provides the sharpest slopes in the contour plot. The candidate
functions can sometimes be implied by the relevant application. For example, in survival of
a series system with covariates measuring proneness to failure of the two components, the
relevant function may be max(z,z). In other situations where there is no a priori knowledge
about h(.,.), one can either hypothesize linear functions of the form x +~z, or find the function
using regression methods. The identity of the covariate pairs with high (low) values for the

maxima (minima) test statistics can be very helpful in such analyses.
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3.7.3 Survival with Malignant Melanoma

The data pertain to 205 patients (148 of these are censored) with malignant melanoma (cancer
of the skin) on whom a radical operation was performed at the Department of Plastic Surgery,
University Hospital of Odense, Denmark. The analysis of these data in Andersen et al. (1993)
identifies tumor thickness as one of the most important prognostic factors. Further, Andersen
et al. (1993) show that the Lee-Pirie plots of Nelson-Aalen estimates of the cumulative hazard
functions for patients with ‘2 mm < tumor thickness < 5 mm’ and ‘tumor thickness > 5 mm’
against that of patients with ‘tumor thickness < 2 mm’ are “concave looking curves”, indicating
possible violation of the PH model in favour of DH RC'C. Similarly, the plot of the cumulative
regression functions for log-thickness (Martinussen et al., 2002) also indicate a distinct concave
shape. However, surprisingly, the constant coefficient estimate lies almost entirely within the
95 percent confidence band of their estimates of the cumulative regression function fot B(s)ds.

Our analytical tests (Table 3.6.3) based on 100 pairs of distinct covariate values show that

T30 and T4 T {max)

are significant at 1 percent level and T, ¢™ is significant at 5 percent level, but
TGS, Adj and Tsp R,Adj are not significant. Further, Témsin) and nga“x) are attained for covariate
pairs {1.9,7.7} and {1.0, 1.8} respectively. This provides partial support for the observation in
Andersen et al. (1993), in that the null of PH is rejected in favour of the alternatives DH RCC
and DCHRCC over the upper range of the covariate space. However, in patients with small
tumors, there is some evidence of an IHRCC pattern (probably the reason why TGS’ Adj and
Tsgp R,Adj are not significant). The inference from the Murphy-Sen histogram sieve estimators

(Table 3.6.4) is similar.

TABLE 3.6.3: TESTS OF THE PH MODEL: MALIGNANT MELANOMA DATA

Test Test Statistic | p-Value (%)
T 3.462 0.035
T —4.985 0.000
TGs,Adj ~1.080 0.188
T{max) 2.559 0.420
T —8.255 0.000
TsBRr,Adj ~1.235 0.249
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TABLE 3.6.4: MODEL ESTIMATES: MALIGNANT MELANOMA DATA

Model/ Parameter Coefficient | z-stat.
MODEL 1

Log Tumor Thickness, In(z) 0.823 5.49
MODEL 2

In(x).I [te[0, 1062)] 1.123 5.09
In(z).I [te[1062, 0)] 0.518 2.89
MODEL 3

In(x).I [x€(0,1.9)] .1 [te[0, 1062)] 0.097 0.15
In(z).I [2€(0,1.9)] .1 [te[1062, 00)] 1.177 2.39
In(x).1 [xe[1.9, 00)] .I [te[0, 1062)] 1.184 5.90
In(x).I [xe[1.9,00)] .T [te[1062, 00)] 0.444 1.99

This demonstrates the usefulness of the proposed methods for detecting non-proportional

covariate effects which previous tests fail to identify.

3.7.4 Child mortality in India

The third application is adapted from a study (Bhalotra and Bhattacharjee, 2001) of child
mortality across the three Indian states of Kerala, West Bengal and Uttar Pradesh. As argued
by Sen (1998), infant and child mortality are important indicators of quality of life, in that
they vary widely across space and time, they contain substantial information about and social
inequalities (including gender bias), and are quite strongly influenceable by economic policy.
The literature highlights a host of determinants that affect child mortality — economic, socio-
cultural and physiological, and identifies the importance of provision and access to welfare
measures and community infrastructure.

There is substantial spatial variation in infant and child mortality within India. Here we
consider data for the state of Kerala which has demographic features more typical of a middle-
income country than of a poor developing country. A large number of covariates are included,
covering economic, socio-cultural and physiological determinants of child mortality. The data
are from the National Family Health Survey of 1992-93 and we use retrospective data for ten
years for each ever-married women who had at least one live-birth during the ten years preceding

the date of survey.
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Our main focus is on the mother’s age at childbirth, which has been identified in previous
research as an important covariate (Martin et. al., 1983; Trussell and Hammerslough, 1983;
Pebley and Stupp, 1987; Guo and Rodriguez, 1992). However, the effect of maternal age on
mortality outcomes depends critically on the age of the child. Children born to very young
(teenage) mothers are expected to be disadvantaged, both at birth (because of physiological
reasons) and during early childhood because very young mothers may not be able to provide
adequate childcare. Similarly, the effect of a higher maternal age on child survival may be
mixed; while children born to older mothers may be physiologically disadvantaged at birth, such
mothers may be more experienced and better able to provide adequate childcare. Therefore,
a priori, we expect the covariate effect to be negative and falling to zero at lower ranges of
maternal age (THRCC). The effect may be non-monotonic (IDHRCC) if the age benefits of
better childcare provision at higher maternal ages are not strong.

As expected for a state with good socio-economic conditions (including maternal education
and post-natal childcare provision), C(;gax) and TGS, Agj are significant at 1% level, while Ténéin)
is not (r = 150,Tc(;n§ax) = 6.72 — covariate pair 23, 29 years,TéH;n) = _2-52aTGS,Adj = 0.30).
The Grambsch and Therneau (1994) test fails to reject the PH assumption, though the p-value
is fairly small at 0.079.

We use a sequential testing procedure to identify all covariates with non-PH effects. Two
other covariates, preceding and succeeding birth intervals, also demonstrated monotone covari-
ate effects. Interestingly, our tests fail to reject the null hypothesis for one covariate, distance
to nearest town, which was identified by the Grambsch and Therneau (1994) test to have time
varying coefficients. However, the histogram sieve estimates of age-varying coefficients strongly

support the inferences drawn using our tests for all the covariates.

The three applications considered here demonstrate the value of studying departures from
the PH model with respect to continuous covariates in terms of monotonicity of the covariate
effects. These examples also illustrate the use of our test statistics in identifying monotonic
and non-monotonic structures in the data. Similar inference has been used in Bhattacharjee et
al. (2008a, 2008b) in applications to business failures in the UK and the US, which we discuss
in Chapter 7 (Sections 7.2 — 7.4).
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3.8 Conclusion

In this chapter, we develop notions of partial ordering of lifetime distributions with respect to
continuous covariates and propose tests of the PH model against such monotone or ordered
departures. Departures of these kinds are common in applications. Therefore, both empirical
and theoretical work in lifetime models need to have a framework flexible enough to accomodate
these kinds of covariate dependence. Unlike other tests available in the literature, the proposed
methodology works in very general situations and does not require any assumptions on the
underlying regression models. Further, the methods offer a great deal of flexibility in terms of
accommodating the effects of other covariates, both observed and unobserved.

An important advantage of the tests is that they provide valuable insights into the pattern
of covariate dependence where the PH assumption does not hold. Unlike other competing tests,
this is true for both monotonic and non-monotonic covariate effects. The methods are therefore
useful for regression modeling in non-PH cases. Further, since the proposed partial orders can
be interpreted in terms of time varying coefficients, existing inference methods can be easily
used. Monte Carlo evidence and real life examples demonstrate the strength and usefulness of
the proposed framework based on partial orders as well as the tests developed here.

Several promising areas of future research emerge from the research in this chapter. First, in
the derivation of asymptotic results, we show that the basic underlying two-sample test statistics
for distinct covariate pairs are independent of each other. This fact can be exploited to extend
many familiar two-sample inference techniques to the case of continuous covariates. In Chapter
5, we will take this approach in developing tests for the absence of covariate dependence. Second,
research can be directed towards extension of the proposed tests to models with unrestricted
univariate frailty. The notions of partial ordering introduced in this chapter will be valid in
this case, and we can in principle construct similar tests using estimators of the cumulative
hazard function under such models. However, this inference problem is quite distinct from the
one addressed here, because of identifiability restrictions and the different nature of estimators
proposed in the literature (see, for example, Horowitz, 1999). In Chapter 5, we show that this
problem is related to testing for the absence of covariate dependence, and develop tests for the
PH model in the univariate frailty case. Third, estimation of semiparametric regression models

under order restrictions motivated by the current work is an area of considerable research
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potential. In Chapter 4 (also Bhattacharjee, 2004a), we develop biased bootstrap methods

for such order restricted inference on covariate effects, while Bayesian inference under oder

restrictions on both covariate effects and ageing, and in the presence of frailty, is developed in

Chapter 6.

Fourth, it will be useful to develop further inference on the changepoint in non-monotonic

models using covariate pairs corresponding to the maxima and minima tests. Fifth, a somewhat

related problem is inference on the unknown A(.,.) function in the multiple covariate case. These

problems will be retained for future work.

Appendix to Chapter 3

Proof of Theorem 3.3.1: It follows from Gill and Schumacher (1987) that, under PH, as n —

OO?
2\ 12 D
(a( )) Tas (x1,z2) — N(Oa‘ﬂGSJ)v and
— P
a™Var Tas (z11, 212)] — O'QGS,lv
where
T _ 2
J2GS’Z = /0 [52(9511,9512)[1(:011,@2)(t)—l1(wz1,$12)l2(9€11,9€l2)(t)]
dA(t,:Ull) dA(t,IElQ)
9961109012 ( +
y(t, z2) y(t, 1)
and [; (zpn, zp) = /li(xllvaQ)(t)dA(tvxli)v =12
0
so that,
Tas (x1, 12) D

— N(0,1), I=1,...,r

Tassta (T, T12) = ——
\/ Var [Tas (2, 212)]

The proof of the Theorem would follow, if it further holds that Ts stq (z11,212) , L = 1,. ..
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are asymptotically independent. In other words,

TGs,std (T11,T12)

TGS,std (1721, 5022)

2 N(OL,),
TGS,std (mT17 xr2)
where I, is the identity matrix of order r.
Following Gill and Schumacher (1987), let
z) = / Li(wn,m) (O { A (t, 215) = Alt,m) | (,j=12%1=1,...r).
0
Then
1/2 12 (7 AN (t,x1;) — Y (¢, 21;)dA(t, x15)
(n)) Zm ( (n)) / L. " ) Lij » L1 » Ll
a iy a (T, x
( llj 0 ( 1 l2)( ) Y(t,f]fl])
D T
Lo [ i, o) (M 1),
0
where M(t,x;),l = 1,...,7r,j = 1,2 are independent Gaussian processes with zero means,

independent increments and variance functions

Var [M(t,z;)] = /OT m

This follows from a version of Rebolledo’s central limit theorem (see Andersen et al., 1993),
which states that the innovation martingales corresponding to components of a vector count-
ing process are orthogonal, and the vector of these martingales asymptotically converge to a

Gaussian martingale.

It follows, by a version of the §-method proved in Gill and Schumacher (1987), that

1ij r
TGs,std (T11,T12) Zijzll ! fo Li(z11, x12) (8)dM (E, 21;)
2ij or
( (n))l/2 Tes,sta (T21,T22) D Zijzll 7 Iy (a1, wa2) (£)dM (t, 25
a . I .
TG’S,std (mrlv xr2) Z?’jzl Z”J fOT li(lea mr2)(t)dM(t7 mrj)
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where

7 (=13 i3

and lj;; = /li(xll,:zrlz)(t)dA(t,:rlj); l=1,...,ri,j=1,2.
0

Now, under Hy : PH,l};; = G%ji (211, 712), so that

2 .
le”/o li(zin, zi2) (0)dM (L, 5) = /o [liaola (zi, m12) (8) — Lpalo (i, 2i2) ()] AM (E, z11)

4,j=1

+/ [—lorli (211, 2i2) () + Lnala(@in, 2i2) (B) ] M (¢, 212).
0

It follows that

Tas (I11>$12)
Tas (55217%22)

2N (oY),

TGS (xrlvxr2)
where Y = diag ((O’%;SJ)) JA=1,...,r, with

2 dA(t, 1)

y(tv xll)
2 dA(t, 212)

y(tu xl2) ’

Ohsi = /0 (22l (201, 12) (8) — linola (i1, i2) (¢)]

+ /T [—ilQlll(xllv 22)(t) + lnala(zn, ml2)(t)]
0

Further, following Gill and Schumacher (1987), it can be shown that o2, s, can be consistently

estimated by Var [Tas (x11,x12)]. Hence, it follows that

TGs,std (T11,T12)

TGS,std (3321, 3322)
5 N(0,1,),

TGS,std (mrla xr2)

where I, is the identity matrix of order r.

Proofs of (a), (b) and (c) follow.
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Proof of Corollary 3.3.1: Proof follows from the well known result in extreme value theory

regarding the asymptotic distribution of the maximum of a sample of iid N (0, 1) variates (see,
for example, Berman, 1992), and invoking the d-method by noting that maxima and minima

are continuous functions.

Proof of Corollary 3.3.2: From Theorem 3.3.1, we have:

TGs,std (T11,T12)

TGs,std (21, T22)
i) N (Q) IT) )

TGS,std (xrla er)

where I, is the identity matrix of order r.

The proof follows immediately.

Proof of Theorem 3.3.2: It follows from Section 2.3 that, under Hy, as n — oo,

1/2
(Cl,(n)) TSBR (xll,.%'lg) i) N(O7U%BRJ)7 and

— P
a"Var [Tspr (zi1,22)] — kg,

where
U%BRJ = / / V (min(s,t),z1) + d(t)d(s)V (min(s,t), x;2)] dsdt,
o Jo
T dA (s, ) )
V(t,zy) = / 73, =1,2,
( lj) 0 y(s xlj) J
c(t) = so(w2) k1 (T, 12) (t) — s1 (212) k2 (@11, 212) (1),
d(t) = s2(zn)kt (z1,212) (t) — 51 (21) k2 (211, 712) (1),
and s; (z1;) = / ki (i1, 212) (8).A(s, 215)ds, 1=1,2,7=1,2.
0
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so that,

Tspr(zn,212) D

N(0,1), I=1,...,m7
\/Var Tspr (z11,712)]

TsBr,std (T11, T12)

Like Theorem 3.3.1, the proof will follow, if it further holds that

TspRr,std (T11, T12)

TsBR,std (T21, T22)
5 N(0,1,),

TsBR,std (Tr1, Tr2)

where I, is the identity matrix of order r.

The essential difference in the arguments required to establish asymptotic distributions
here, from those in Theorem 3.3.1, lie in the fact that the integrals considered in Theorem 3.3.1
are transformations of stochastic integrals, while here, they are functions of ordinary Steiljes
integrals of stochastic processes.

Let us define

;gn) / Ki(xzp1, z12)(t) {IA\(t, ) — A(t,xlj)} dt, (t,7=1,2;1=1,...,7).

Then, by Rebolledo’s central limit theorem and Theorem 2.3.1 (Theorem 3.1 in Sengupta et

al., 1998), we have, as n — oo,

((n)) lz —>/ (2, T12) )M(tamlj)dt’

where M(t,x;),l = 1,...,7,j = 1,2 are independent Gaussian processes with zero means,

independent increments and variance functions

T dA (s, x5)
y(57 Q’Jl]) '

Var [M(t,x5)] = /0
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Now, as in Theorem 3.3.1, invoking the §J-method of Gill and Schumacher (1987), it follows that

—1ij r
TsBR,std (T11,T12) Zijzl kY Jo Filzin, z12)(8) M (¢, 21;)dt
—2ij r
( (n))1/2 TsBR,std (T21,722) D Z?’jzlk jfo ki(xo1, w22)(t) M (t, x25)dt
a —_—

TSBR,std (-Trl; x7'2) Z’ijZl E”'j fOT ki (‘r’rla er)(t)M(ty $7‘j)dt
where
k Y= (_1)Z+Jkl,3—i,3—j
and Elij = / ki(xi, xi2) (0 A(t, 25)dt; I=1,...,m4,7=1,2,
0

and under Hy,

2 , .
>k j/ ki(zi, wip) () M (¢, yy)dt = / [Kigzk (w11, 212) (t) — Kk (i, mi2) (8)] M (¢, 211)dt
i 0 0

+/ [ =K1k (211, 212) () + kiaka(zin, 2i2) (8) ] M (t, 242)dt.
0

It follows that

Tspr (T11,%12)
Tspr (5521, $22)
2N (0.,

TsBr (Tr1, Tr2)

where Y~ = diag ((O'%BRJ)> , 0L = 1,...,r, and following similar arguments as Appendix to
Chapter 2, it can be shown that U?S“BR,Z can be consistently estimated by Var [Tspr (1, x2)]-
Hence, it follows that
TspR,std (¥11, T12)
TsBR,std (T21, T22)

L2, N(0,1,),

TSBR,std (Irla xr2)
where I, is the identity matrix of order r.

Proofs of (a), (b) and (c) follow.
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Proof of Corollary 3.3.3: Proof follows from extreme value theory and the d-method, as in

Corollary 3.3.1.

Proof of Corollary 3.3.4: From Theorem 3.3.2, we have:

TsBR,std (T11,%12)

TsBR,std (T21, T22)
25 N(0,1,),

TsBR,std (Zr1, Tr2)

where I, is the identity matrix of order r.

The proof follows immediately.
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Chapter 4

Estimation in nonproportional
hazard regression models with

monotone covariate effect

4.1 Chapter summary

In this chapter, based on Bhattacharjee (2003, 2004a), we build on the notion of ordered
departures from proportionality introduced in Chapter 3, and propose estimation methods for
hazard regression models under such order restrictions. In our proposed test of the proportional
hazards assumption (Bhattacharjee, 2007a — our Chapter 3), the ordered alternative of special
interest was that the lifetime distribution conditional on a higher covariate value was convex
(concave) ordered with respect to that conditional on a lower value. Here we argue that hazard
regression models with time varying coefficients provide an appropriate framework for studying
such order restrictions. Building on a natural interpretation of these alternatives in terms
of monotonicity of time varying coefficients, we use biased bootstrap methods to estimate
the covariate effects when such monotone departures are known to hold. In particular, it is
shown how order restricted estimation can be performed using biased bootstrap techniques
such as adaptive bandwidth kernel estimators (Brockmann et al., 1993) or data tilting (Hall

and Presnell, 1999). The performance of the estimators is compared using simulated data, and
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their use is illustrated with applications from biomedicine and economic duration data. The
methods are relatively simple to implement, and provide useful inference in nonproportional

hazard situations.

4.2 Introduction

As discussed earlier in the thesis (Chapters 1 through 3), the proportional hazards assump-
tion is often violated in applications, or may even be unreasonable from the point of view of
relevant theory. Further, such violation leads to misleading inferences based on the Cox PH
model. Johnson et al. (1982), Lagakos and Schoenfeld (1984), Solomon (1984), Struthers and
Kalbfieisch (1986) and Lagakos (1988) discuss the effect of misspecification on inferences about
the effects of explanatory variables, and Li et al. (1996) reports results of a large simulation
study. Similarly, inaccurate inferences on the shape of the baseline hazard function has been
discussed by Breslow et al. (1984), Stablein and Koutrouvelis (1985), Schemper (1992), Tubert-
Bitter et al. (1994) and Hsieh (1996). Testing the PH model, particularly against the omnibus
alternative, has therefore been an area of active research.

Recently, specific attention has focussed on testing the PH assumption against ordered
alternatives. As discussed earlier, it is often of interest to explore whether the hazard rate
for one level of the covariate increases in lifetime, relative to another level (i.e., the hazard
ratio increases/ decreases with lifetime). Such tests have the important advantage of providing
inferences useful for regression modeling when the proportionality assumption does not hold.
In the two-sample setup, Gill and Schumacher (1987) and Deshpande and Sengupta (1995)
have constructed analytical tests of the PH hypothesis against the alternative of ‘increasing
hazard ratio’, while Sengupta et al. (1998) (our Chapter 2) have proposed a test of the PH
model against the weaker alternative hypothesis of ‘increasing ratio of cumulative hazards’. In
Chapter 3 (Bhattacharjee, 2007a), we developed a natural extension of such monotone ordering
to the case of continuous covariates, and constructed tests for the proportional hazards model
against these alternatives.

It is observed that monotone departures are common in economic and biomedical applica-

tions (Bhattacharjee, 2007a; Scheike, 2004), and provide useful information about the nature
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of covariate dependence. Besides, they may also be suggested by theory. Estimation of hazard
regression models under such order restrictions is therefore important. These methods are ap-
propriate when either analytical tests or relevant theory suggests order restrictions rather than
proportionality.

A popular approach in the literature is to interpret violations of the PH model in terms of
time varying coefficients (for a review, see Scheike, 2004). Several authors have suggested vali-
dation of the PH assumption by testing for time varying coefficients (see, for example, Grambsch
and Therneau, 1994; Scheike and Martinussen, 2004), and several methods for estimation of
these time varying coefficients have been proposed (see, for example, Zucker and Karr, 1990;
Murphy and Sen, 1991; Martinussen et al., 2002). However, none of these estimators consider
the case when the covariate effects are order restricted. As discussed in Chapter 3, Bhattachar-
jee (2007a) considers testing the proportionality assumption against the alternative of order
restricted covariate effects in a more general framework. This framework includes the hazard
regression model with time varying coefficients as a special case.

In this chapter, we build on the notion of ordered departures from proportionality introduced
in Bhattacharjee (2007a) and propose estimation methods for hazard regression models under
such order restrictions. We argue that a natural framework for hazard regression models in
such situations is the one that allows time varying coefficients. Further, building on a natural
interpretation of these alternatives in terms of monotonicity of time varying coefficients (see
Example 3.2.1), we use biased bootstrap methods to estimate the covariate effects when such
monotone departures from proportional hazards hold. Small sample properties of the estimators
are explored using simulated data. Algorithms are developed for using these methods, and the
nature of inference derived is demonstrated using a couple of applications.

The chapter is organised as follows. In Section 4.2, we motivate modeling ordered depertures
from PH by a hazard regression model with monotonically time-varying coefficients, while
Section 4.3 briefly reviews some alternative methods for order restricted inference that can be
potentially used in the current context. Sections 4.2 and 4.3 are based on Bhattacharjee (2003).
Next, following Bhattacharjee (2004a), we discuss estimation of hazard regression models with
order restricted covariate effects. The proposed estimation methodologies based on biased

bootstrap methods are developed in Section 4.4. In Section 4.5, we illustrate the use of the
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estimators using simulations and two real life applications. Section 4.6 collects the concluding

remarks.

4.3 A hazard regression model admitting order restrictions in

covariate effects

As discussed in Chapter 3, Bhattacharjee (2007a) extended to the continuous covariate setup
the notion of monotone hazard ratio in two samples developed in Gill and Schumacher (1987),
Sengupta and Deshpande (1994) and Deshpande and Sengupta (1995). Let T' be a lifetime
variable, X a continuous covariate and let A (t|x) denote the hazard rate of T', given X = z, at
T =t. Then, T is defined to be increasing (decreasing) hazard ratio for continuous covariate
(IHRCC (DHRCC)) with respect to X if, whenever z1 > x9, the ratio A (t|z1) /A (t|x2) is
increasing (decreasing) in ¢ (Definition 3.2.1).

Further, Bhattacharjee (2007a) showed that, within the context of the hazard regression

model with time varying coefficients (Murphy and Sen, 1991; Martinussen et al., 2002)

A(tlz) = Do(t). exp(B(t)-),

the lifetime random variable T is I H RC'C with respect to the covariate X if and only if the
time varying covariate effect 3(.) is an increasing function of lifetime ¢ (Example 3.2.1); this is
also true in the presence of additional covariates or frailty. The converse holds for the partial
order DHRCC.

The above result suggests that the time varying coefficients model (1.12) may be useful
for regression modeling in situations where covariate effects are non-proportional. However, it
is also clear that the partial orders ITHRCC and DHRCC are defined in more general set-
tings than the time varying coefficients model. Therefore, before considering estimation under
order restrictions, we characterise the additional assumptions embodied in the time varying

coefficients hazard regression model.

First, we consider the single covariate case. For simplicity, we assume that the the lifetime

variable 7' is discrete and takes values 0,1, ..., and that the covariate X takes three possible
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values: | = 0 (low), m = 1 (medium) and h > m (high). Here, the most general hazard

regression model is given by

Atlx) = Xo(t). exp [y (¢, x)], ~(¢0)=0. (4.1)

Without loss of generality, the exponential function can be substituted by any other monotonic
positive valued function. We treat the hazard rate corresponding to the lowest covariate value,
A(t|X = 0), as the baseline hazard rate Ag(t). Then, the time varying covariate effects, 3(t),

implied by the general model (4.1) for various combinations of 7" and X are as follows:

Covariate | Lifetime, 7' =0 | Lifetime, 7 =1 Lifetime, T =k
X =1(=0) | B(0) unrestricted | S(1) unrestricted B(k) unrestricted
X=m(=1)| B(0)=~(01) A1) =~ (1,1) Bk) =~ (k1)

X =h(>1) | B(0)=7(0,h)/h | B(1) =~ (1,h) /h B(k) =~ (k,h) /h

When the covariate is zero, the conditional hazard rate is the same as the baseline hazard,
and 3(.) is completely unrestricted. Clearly, when the covariate is binary,! the time vary-
ing coefficients model coincides with the most general model, and an exact correspondence
B(t) =~ (t,1) holds. However, when the covariate is not binary (takes more than two possible
values), the time varying effect model holds only when two conditions are satisfied. First, the
following scaling condition holds:

Y (tv 581) Y (tv 332)

= N

I I2

where x; and x5 are any two non-zero values of the covariate X. Second, the logarithm of
conditional hazard rates for different covariate values have to be proportional to each other.?
The first condition can be addressed by suitable transformations of the covariate X. The
second assumption is more critical. However, if it fails to hold, we can use a histogram sieve
(Grenander, 1981) to divide the covariate space into disjoint intervals within which the shape

of B(.) is approximately similar.®> Thus, we can still construct an appropriate time varying

'In this case, without loss of generality, X can be assumed to take values 0 and 1.

2Note that proportionality of hazards implies the much stronger condition that logarithm of conditional hazard
rates are constant over lifetime.

3See, for example, the applications reported in Sections 3.6.1 and 3.6.3, particularly Model 3 estimates in
Tables 3.6.2 and 3.6.4
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coefficients model and estimate the model using methods similar to those proposed in Murphy
and Sen (1991); see discussion in Section 1.2.7. In fact, the above assumption can also be tested
using methods similar to those developed by Murphy (1993) in the context of testing the PH
model.

The above arguments can be simply extended to the continuous failure time case, as well

as the continuous covariate case.

Next, let us consider the case when there are multiple covariates. From the above argument,
it is clear that, even in the simplest case with 2 binary covariates the time varying coefficients
model (1.12) may fail to hold. This is because of potential interaction between the covariates.

However, in this case, the time varying coefficients model

At|x, z) = Xo(t).exp [Bx (t).x + B, (t).2 + Bxz(t).2.2]

is exactly equivalent to the most general case.

Carrying this intuition to the case of several continuous covariates, it can be seen that the
time varying coefficients model is valid under the additional assumption of additive covariate
effects on the logarithm of conditional hazard rates. The assumption too can be tested. For
example, one can use a Hausman-type test (Hausman, 1978), based on the difference between
a consistent unrestricted nonparametric estimate and an efficient estimate under the additivity
assumption. Under additivity, both the Murphy and Sen (1991) histogram sieve estimator and
the Martinussen et al. (2002) estimator of the cumulative coefficients are efficient in that they
attain the bounds based on efficient influence functions given by Sasieni (1992).* Further, as
before, even when additivity is rejected, a valid time varying coefficients model can be built by
placing histogram sieves on the product space of the covariates.

Thus, the time varying coefficients model incorporates two important assumptions relating
to variation in the shape of the time varying coefficients over covariate values and to additivity
of covariate effects. At the same time, even when these conditions are invalid, one can work with

a modified model where the time varying coefficients are allowed to also vary with covariate

*Gozalo and Linton (2001) developed a similar test for additivity in nonparametric regression which can be
modified to the current framework.
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values and may include interaction between covariates. Further, it is easy to estimate these
models, either by using histogram sieves along the lines of Murphy and Sen (1991) or using
kernel based methods. All the above arguments also hold in the presence of frailty and time
varying covariates.

In summary, the time varying coefficients model is potentially a very useful hazard regression

model for order restricted inferences of the kind developed in this chapter and thesis.

4.4 Estimation under order restrictions

Curve estimation under shape constraints is of considerable interest in many applications. In
the context of nonparametric regression, typical examples include the study of dose response
experiments in medicine and the study of indirect utility, cost and production functions in
economics, and pricing of options in finance, among others. In the context of hazard regres-
sion models, monotonicity of time varying coefficients provides a useful way to express order
restrictions on covariate effects; see also discussion in Chapter 3 and Section 4.2.

Starting from the classic works of Hildreth (1954) and Brunk (1955), there exists a large
literature on the problem of estimating monotone, concave or convex regression functions; for
further discussion, see Barlow et al. (1972) and Robertson et al. (1988). More recently,
attention has focussed on simple, smooth and efficient estimation of shape restricted regression
functions. In the following subsections, we provide a very brief overview of some of these
methods, focussing mainly on monotonicity (or isotonic regressions) and methods that are
particularly attractive for hazard regression modeling. We also discuss our choice of estimation

methodologies.

4.4.1 Isotonic regression approach

The isotonic regression approach (Barlow et al., 1972; Hanson et al., 1973) represents the
most traditional method for estimating a nonparametric regression function under monotonicity
constraints. The method obtains a least squares solution under the monotonicity restriction by
the pool adjacent violators (PAV) algorithm. Whenever monotonicity is violated at a particular

data point, the algorithm averages over neighbouring data, expanding the neighbourhood until
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monotonicity is restored. Newer generations of isotonic regression methods and their properties
have been studied by Mukerjee (1988), Mammen (1991a, 1991b), Qian (1994), and others. In
the sense that pooling is similar to expanding the bandwidth in the kernel regression framework,

this method is similar to local adaptive bandwidths. The idea is also related to taut strings.

4.4.2 Estimation based on projections

Mammen et al. (2001) developed a general framework where the constrained smoothing problem
can be interpreted as a projection of the unconstrained estimator in an appropriate Hilbert
space. Special cases include smoothing spline and local polynomial methods; see also Ramsay
(1988), Tantiyaswasdikul and Woodroofe (1994), Mammen and Thomas-Agnan (1999) and
Mammen et al. (1999). In fact, Mammen et al. (2001) also show how the usual Nadaraya

Watson nonparametric kernel regression estimator can also be interpreted as a projection.

4.4.3 Taut string method

The taut string method has its origins in isotonic regression, and specifically the familiar result
that the greatest convex minorant of the data is a taut string and its derivative is the isotonic
estimator (Barlow et al., 1972; Leurgans, 1982). The taut string method is also related to the
notion of excess mass which motivated the development of scale space view of kernel smoothing
(SiZer maps) by Chaudhuri and Marron (1999, 2000).

Mammen and van de Geer (1997) developed the method further and extended its use to
locally adaptive nonparametric regression. In recent times, the method has attracted substantial
attention because of two main reasons. First, the work of Diimbgen (1998) and Davies and
Kovac (2001) established a connection between taut string and the number and location of
local extremes. This has important implications for testing qualitative order restrictions as well
as nonparametric smoothing under order restrictions. Second, the method has been found to
offer good control over the number of local extreme values. In other words, it does very well in

detecting even low peaks without picking up artificial peaks.
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4.4.4 Density regression approach

The density regression method proposed by Dette et al. (2006) is implemented in two steps.
In the first step, the unconstrained Nadaraya Watson nonparametric regression estimator is
obtained. In the second step, an isotonic estimator of the inverse regression function is obtained,
using a different kernel from the first step. The resulting estimator has the desirable property

that it is of the same order of smoothness as the unconstrained estimator.

The above four approaches are all based on intuitive and attractive ideas. However, we find
the biased bootstrap methods discussed below more intuitively appealing, particularly because
they are easy to implement and provide smooth estimates that agree with the corresponding
unconstrained (kernel or sieve) estimators most of the time. Besides, there are issues relating to
computational intensity and the lack of a simple way to visualise departures from hypothesized

order restrictions.

4.4.5 Biased bootstrap methods

"Biased bootstrap" is usually taken to mean a weighted bootstrap procedure where the weights
are chosen to satisfy the constraints imposed by the statistical model. Following Hall and
Turlach (1999), we adopt a slightly different interpretation, where the notion is enlarged to also

include reweighting data in a neighbourhood of the covariate space.

Data tilting

The data tilting method (Hall and Presnell, 1999; Hall and Huang, 2001) starts with an uncon-
strained estimator, and then reduces the relative weights on observations influential for violation
of the maintained order restrictions. In this way, the method preserves the smoothness of the
unconstrained estimator in large samples.

This idea is very attractive in the current context. It is closely related to influence func-
tions and identification of influential observations, and can provide valuable information about
the strength of the maintained order restriction. We also find it quite convenient to use in

combination with the histogram sieve estimator (Murphy and Sen, 1991).
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Local adaptive bandwidths

Local adaptive bandwidths (Brockmann et al., 1993; Schucany, 1995) are based on a similar
idea of leaving the unrestricted nonparametric kernel estimator unchanged at most places, and
only reweighting in regions where the monotonicity property is violated. The reweighting is
implemented by adjusting the bandwidth locally.

Like data tilting, the degree to which local adjustments are required can provide insights
into the validity of the hypothesized order restriction. In this sense, the idea of local adaptive
bandwidths is similar to SiZer maps (Chaudhuri and Marron, 1999, 2000. A closely related
idea is adaptive weights smoothing, introduced by Polzehl and Spokoiny (2003) in the context

of image denoising.

Data sharpening

In data sharpening (Choi and Hall, 1999), the idea is to modify the data just that little bit so
that the estimates maintain the hypothesized order restrictions. Since such data modification
works a bit like changing the bandwidth, the method is related to local adaptive bandwidths.
Potentially, the approach is useful in our context. Extensions to hazard rate estimation with
censored data were developed by Claeskens and Hall (2002). In a nonparametric regression
context, data sharpening has been often used to adapt to sparse design density in certain regions
(Choi et al., 2000), and can be similarly used for estimating monotone regression curves. This
is usually implemented by adjusting both the explanatory and the response variables prior to
substitution into a local linear estimator. However, since most of our applications include time
varying covariates, it is difficult to implement data sharpening methods directly. Specifically,
if the response variable (lifetime) is raised, it will generate missing values in the time varying

covariates.

4.4.6 Choice of estimation methods

There are several reasons guiding our choice of biased bootstrap methods, particularly data
tilting and local adaptive bandwidths, for estimating hazard regression models with ordered
covariate effects. First, as we will demonstrate in the later sections, they are simple to im-

plement with the kernel and histogram sieve estimators. They also offer intuitively appealing
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interpretation in terms of local bandwidths and sampling weights.

Second, since they modify the underlying unrestricted estimator only in regions where they
are non-monotone (Hall and Turlach, 1999), the biased bootstrap methods preserve the degree of
smoothness in the original estimator.” Smoothness is an attractive property which is not shared
by some other estimation methods, such as those based on projections (Hall and Huang, 2001).
Effectively, the adaptive bandwidth estimator smoothes away “spurious wiggles” by increasing
the local bandwidth at the middle of the wiggles, and reducing the bandwidth towards the
boundaries. Data tilting estimators achieve a similar objective by reducing the sampling weight
on observations that are atypical, and help create an illusion of non-monotonic covariate effects.
While in large samples, the monotone nature of the data would dominate, and biased bootstrap
estimators may not be necessary, these methods usually produce more visually appealing curve
estimates in small samples (Farmen and Marron, 1999).

Thirdly, the biased bootstrap methods facilitate inferences relating to influence functions
(influential observations) or local violations of maintained order restrictions. In case the main-
tained order restrictions do not hold, this helps in understanding why this might be so. Further,
since both these methods are based on modifying unconstrained estimators only in “small” re-
gions where they are non-monotone, they also provide means for testing the strength of the
maintained monotone relationship. With respect to adaptive bandwidth estimation, this testing
philosophy is very similar to SiZer maps (Chaudhuri and Marron, 1999, 2000; see also Bowman
et al., 1998 and Fisher et al., 1994). Similarly, in the case of data tilting, the power measure of
divergence (Cressie and Reid, 1984) can be used to construct a measure of the strength of the
monotonic relationship.

Last, but not the least, the two biased bootstrap methods are quite popular in the literature
on nonparametric and semiparametric curve estimation under order restrictions. This is not
only because of their convenient application and easier interpretation, but also because recent
research is facilitating better appreciation of their attractive theoretical properties; see, for
example, Hall and Huang (2001) and Prewitt (2003). For these compelling reasons we choose

to focus on these two biased bootstrap techniques.

’The density-regression method is based on a different approach, but it also achieves good smoothness
properties.
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In the following section (Section 4.4), we describe how biased bootstrap methods can be
applied to unconstrained kernel and histogram sieve estimators to restore monotonicity in the

estimated time varying coefficients.

4.5 Estimation procedures based on biased bootstrap techniques

We consider a age-varying covariate effect regression model A (t|z) = Ao(¢). exp (5(¢).x), where
B(t) is known to increase or decrease in ¢. The basis for this monotonicity assumption can either
be tests of proportionality against monotone alternatives (Bhattacharjee, 2007a, our Chapter 3),
or theoretical considerations, or prior knowledge. As discussed in Section 4.2, with adequately
defined covariates, this model can be very general. Nonmonotonic covariate effects, discussed
in Chapter 3, can also often be expressed in this form, in terms of auxilliary covariates. For
example, if 5(t) increases in ¢ over one range of the covariate space, say = < xp, and decreases

in t otherwise, we can write the regression model as

Atlz) = Ao(t).exp (B1(2).21 + Ba(t)-22) ,

1 = zl(x<xzo),r2=—2I(x > x0),

where (3;(t) and (5(t) both increase in .

In this section, we discuss estimation of 5(¢) under such models. We consider two biased
bootstrap methods by which usual kernel regression or sieve estimators can be monotonised to
obtain the required order-restricted estimators. In Section 4.3, we have discussed several other
ways by which order restricted estimates of hazard regression models can be obtained — namely
isotonic regression, projection on to constrained subspaces, taut strings and density regression
approach. However, we choose biased bootstrap methods because of their ease of interpretation

and implementation, as well as their attractive smoothness properties.

4.5.1 Data tilting

We begin with a suitable estimator of time varying coefficients at r distinct ordered lifetimes

tM) <@ < . <. Denote this estimator B,
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B (t(l);tnxla Tnx1; Ynxk, 5n><17pn><1)

B B(t(2)§tn><lafnxlaynxkyénxhpnxl)
rx1l — . ,

B (t(T)E tnx1; Tnx1; Ynxks 5n><17pn><l) ]

where the observed (possibly censored) data are of the form (ti,a:i, yi(lxk),éi), 1=1,2,...,n,
and pnx1 (pi > 0,> p; = 1) represents the weights assigned to the n data points. Here, z,x1
represents the covariate for which the age-varying effects are under study, Y« denotes other
covariates (whose effects are assumed to be age-constant, for simplicity), and B may be taken
as one of the usual estimators of time varying coefficients, like the ones proposed by Zucker and
Karr (1990), Murphy and Sen (1991) or Martinussen et al. (2002).

Following Hall and Huang (2001), and taking p = punir = (1/n,1/n,...,1/n)" as the base
case, the objective of the data tilting methodology is to find p = p* that minimises a power
measure of divergence (Cressie and Read, 1984) from p,;f among all p’s for which the constraint

is satisfied, i.e., for which

B(t(l);t,x,Y,é,p> < B (t(2);t,m,Y,5,p> <...<pB (t(r);t,x,Y,(S,p) .

The usual measure of divergence used is

Dp(p) = {’I’L - Z(npl)p} /{IO(]‘ - p)}vp 7£ 0,1,
=1
Do(p) = =) log(npi)
=1

and Di(p) = —Zpilog(npi).
i=1

Then, the estimator is given by
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B (t(l);tnxh Tnx1, Ynxk, 5n><17p'>rkl><1)

~DT B(t(z);tnxlaan].vYnan&nXl?p;kle)

i B (t(r)§tnxlvmnxl,Ynxka5n><1:p:L><1) ]
It is reasonably straightforward to abstract to an estimator over a continuous range on the
lifetime axis, instead of the discrete set of points tM), ¢, ... ¢("). In this case, one can have

the constraint as

T.r AT
Lpit.a,Y,0)= | B (sit.2,Y,6,p).1(B" (sit,2,Y,6,p) <0)ds =0,
0

where I(.) is the indicator function.

Hall and Huang (2001) have discussed estimation of order restricted regression functions
using data tilting when the regression function is monotonically increasing or decreasing. The
extension of the procedure to the case of hazard regression models is conceptually similar.
However, while this is theoretically an appealing estimation procedure, there are some issues
regarding its implementation in the general form.

First, the likelihood function is complicated, and the influence function (measuring the
influence of each observation on L(p)) is not available in closed form.® However, estimates of
the influence of each observation can be estimated, either by row-deletion (jacknife) of each
observation by turn, or by computing partial likelihood estimators for different weighting of the
observations using the method proposed recently in Cai and Sun (2003).

Second, following estimation of the influence of each observation, a typical application of the
data tilting procedure would involve convex optimisation (with linear constraints) in very high
dimensions. This dimension increases with sample size, making the procedure computationally

very demanding.

In order to proceed, we restrict attention to the class of estimators for which p; = i;/n

where i; > 0 are integers. This reduces the problem to a discrete optimization problem, though

SFor notational convenience, here and in the following, we denote L (a function of five parameters) as a
function only of p. The other parameters of L are held constant throughout the estimation process.
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the number of candidate p’s, 2" — 1, is still very large. We now propose an algorithm, in two
simpler steps, to obtain data tilting estimates within this class of weighting vectors.

In the first step, we fix ng > 1, initialize the weighting vector p(® = Punif and adopt
the following iterative procedure. At iteration r, the procedure modifies the weighting vector
from p("=Y to p(") by increasing the weight of the ny observations with the highest influence
on L(ﬁ(’”_l)) by 1/n each, and correspondingly reduce the weight of the ny lowest influence
observations. This iterative procedure is continued till we achieve L(p) = 0. Let the weighting
vector at this stage be denoted p*; the corresponding divergence is D,(p*). This gives us one
potential estimate.

In the second step, we enumerate L(p) for all p’s (within the class p; = i;/n,i; > 0) for
which D,(p) < D,(p*) . We then estimate the final solution p** as the one in this class for

which L(p) = 0 and D,(p) is the minimum:

I argn%in {D,(p) : Dy(p) < D,(p*), L(p) = 0}.

The search involved in this step is considerably less computation-intensive than what would
be necessary if we were to optimise over all p’s (instead of only over p’s for which D,(p) < D,(p*),
even after taking into account the computations in the first step of the algorithm. Thus, the
division of the algorithm into these two steps reduces the computational complexity of the
estimation procedure substantially. This procedure does not necessarily produce an unique
solution; however, in our simulations, the effect of this on the final estimates was negligible.
The steps of this procedure are summarized in Algorithm 4.4.1.

It must be mentioned here that this algorithm does not strictly give data tilting estimators,
since we restrict to the set of p’s for which p; = i;/n,i; > 0. For a reasonable sample size,
however, this is not likely to be an issue. An attractive feature of this algorithm is that the
most computation-intensive sub-steps of the procedure (Step 2a and Step 3a) are amenable to
parallel computation. The computation-intensity of the whole algorithm depends to a large
extent on how large the search procedure in Step 3a is, which in turn depends critically on
the choice of ng. If ng is too large, the algorithm can rapidly reduce effective sample size, by
reducing a sizeable number of the p;’s to nil, in which case the set P will also be very large.

On the other hand, if ng is too small, a large number of iterations will be required in Step2 to
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get a feasible solution. In fact, the algorithm is particularly useful if sample size reduction is
matched with fast convergence towards monotonicity. The choice of ng and the effectiveness
of the algorithm in applications are important empirical issues which will be addressed in the

next Section.

Algorithm 4.4.1

Computation of data tilting estimates

Step 1. Initialize: Fix p(©) = Punif and ng (the number of p;’s reduced
at each iteration). Compute age-varying coefficients and L(p(®)).
Step 2. Loop: Do while L(3(") < 0

a) Computation of influence functions (for each observation
for which ﬁg-r_l) > 0): This can be done by actual row-deletion
(jacknife) followed by estimation of age-varying regression
coefficients.

b) Compute (") Increase p;j by 1/n for the ng data points with
highest influence on L(3("~1), and correspondingly reduce p; for
the ng data points with lowest influence.

¢) Compute L(p")) and age-varying coefficients.

Endo: End of loop. Return p* and D* = D,(p*).
Step 3. Find p**.
a) Construct the set P = {p: D,(p) < D*, L(p) = 0}.

b) Find peP for which D,(p) is minimum. Set p** = p.

c) Return final p™* and age-varyng regression coefficients.

4.5.2 Local adaptive bandwidth

Adaptive bandwidth selection has a long and established tradition in nonparametric regression;
some recent contributions to this literature are Brockmann et al. (1993), Schucany (1995),
Hermann et al. (1995) and Hermann (1997). In addition to the ability to adapt to the density
of design points, and to the presence of heteroscedasticity, adaptive bandwidth regression esti-
mators also have the advantage that they can adapt readily to the structure of the regression

function, smoothing more in flat parts of the curve and less in peaky parts (Brockmann et al.,
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1993). This feature suggests the use of adaptive bandwidth estimators for order restricted in-
ference in regression models, including hazard regressions. If one were to smooth more in peaky
parts rather than the flat ones, adaptive bandwidth would be useful in estimating regression
functions under order restrictions in the nature of monotonicity of shape or slope parameters.

This method involves reweighting of the original data in a particular way, and in this sense,
it falls within the general class of biased bootstrap methods (Hall and Turlach, 1999). The
estimation procedure may be considered richer than the data tilting method in the sense that it
offers the possibility of choosing different bandwidths at different age levels, instead of choosing
a general overall reweighting of the whole data.

Adaptive bandwidth estimation is also similar in spirit to the way in which the location
and scale view (SiZer maps) has been proposed as an attractive way for exploring structures in
curves (scale is interpreted here as the “level of resolution” or “bandwidth”) (Chaudhuri and
Marron, 1999, 2000). However, while Chaudhuri and Marron (1999, 2000) focus on identifying
features of a nonparametric curve that are relatively more robust to changes in bandwidth (in
a sense, their focus is on testing), we propose to use adaptive bandwidths to perform kernel

regression estimation subject to some maintained monotone structure.

In order to implement an adaptive bandwidth estimation algorithm, we require, for each
lifetime ¢ and local bandwidth h(t), an estimator for the local kernel regression age-varying
covariate effect B (t,h(t)) in the neighbourhood of ¢. This can be appropriately estimated by
putting the weights from the kernel function on the corresponding term in the partial likelihood
function, and then obtain partial likelihood estimates of the time varying coefficients (Cai and
Sun, 2003).

The estimation procedure begins with choosing a global bandwidth h(q) (which provides
an initial kernel estimator that is reasonably smooth), and several candidate bandwidths hy <
... < hgy < ... < hy, both above and below h(. The choice and range of these bandwidths
depend on the particular context and application, and the degree of smoothness desired. For
each of these candidate bandwidths, we estimate the kernel regression time varying coefficients
6 (t,hi),i=1,...,r and B (t, h(o)) using the methodology proposed in Cai and Sun (2003).

The objective of estimation is to achieve monotonicity with minimum deviation from the

baseline bandwidth %g). Hence, our adaptive bandwidth kernel estimator will be given by
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B (t, h*(t)), where h*(.) minimises fOT [[h(t) — h(o)l|.dt within the class of h(t)’s satisfying

T
M (h(.);t,2,Y, ) :/0 B (s,h().I (BT (s,h(.)) < o) ds = 0.

Note that, the adaptive bandwidth h*(¢) varies with age ¢, and, at each ¢, is equal to one
of the r 4+ 1 candidate bandwidths h(q), k1, ..., hr. If none of the candidate bandwidths gives
M (h(.)) = 0, the choice of bandwidths has to be extended. This extension would usually be
more towards the higher side.” A lower bandwidth will typically compromise the desirable
smoothness properties of the estimator and, besides, monotonicity will always be achieved if
the bandwidth is increased sufficiently.?

On the other hand, even when a feasible h(.) has been identified, one may decide to extend
candidate bandwidths over finer grids for one of the two following reasons. Either, if one finds
multiple A(.)’s having M (h(.)) = 0 and the same divergence measure fOT [[h(t) = h()l|-dt, so that
finetuning the bandwidths around the potential candidate adaptive bandwidths is necessitated.
Or, if one wishes to finetune the grids further to ensure that the estimated adaptive bandwidth
does indeed minimise the divergence from h() within the class of adaptive bandwidths for
which M (h(.)) = 0. The process of selecting candidate bandwidths and estimating the kernel
regression time varying coefficients for these bandwidths is continued until a suitable adaptive
bandwidth A** is found. The steps of this proposed estimation procedure are outlined in
Algorithm 4.4.2.

The algorithm is quite easy to implement and involves only moderate computational inten-
sity. The choice of candidate bandwidths is a critical issue. Choice of h) will depend on the
smoothness desired in any particular application, and the choice may be made using available
methods for choosing an optimal bandwidth.” The other bandwidths may initially be chosen
on the basis that they do not compromise the smoothness of the estimates too much (on the
lower side), and include some bandwidths that give reasonably flat estimates (on the higher

side), so that the initial admissible A* can be identified quickly. In the refinement stage of the

"For notational convenience, we denote M as a function only of h, and supress the other four parameters. All
parameters in M, other than h, are held constant throughout the estimation procedure.

8This is because a very large bandwidth will effectively reduce the age-varying kernel estimates to the usual
(age-constant) partial likelihood estimate of the covariate effect, which is monotone by default.

?See Delaigle and Gijbels (2003) for an excellent practitioner-oriented review of the techniques in the context
of density estimation with contaminated data; similar methods apply to kernel regression applications.
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procedure, the aim of the choice of further bandwidths is to minimise the divergence from hg),
so the additional bandwidths chosen would typically be closer to i) than those in the current

h* at that stage.

Algorithm 4.4.2

Computation of local adaptive bandwidth estimates

Step 1. Fix h(), h1, ..., hy: Choose a bandwidth h(g) that gives

age-varying coefficient estimates that are as smooth as desired,
and several other candidate bandwidths hy, ..., h, that also give
reasonably smooth estimates. Set h*(.) = hq).

Step 2. Loop: Do while M (h*(.)) <0

a) Search for admissible adaptive bandwidth estimators:
Enumerate the set H of h(.)’s as
H = {h(.) : h(t)e {h(o), b1, .. h+} , M (h(.)) = 0}.

b) Select h*:

If H is not empty, set h*(.) = argmingep f; ||h(t) — b ||-dt.
c¢) Expand choice of candidate bandwidths: If H is empty,
select a larger set of candidate bandwidths, particularly
including higher bandwidths that would flatten out the

kernel estimates of age-varying coefficients.
Endo: End of loop. Return A* and j (¢, h*(t)).

Step 3. Refine estimates: If A* given in Step 2 is unique, consider other
candidate bandwidths close to this and refine estimates. If there
are multiple candidate h*’s, choose other candidate bandwidths
close to these, and resolve the tie. Return final A** and

age-varying regression coefficients.

The search for admissible adaptive bandwidths (Step 2a) is the most computation intensive
step in the algorithm, and it is useful to keep the number of candidate bandwidths within
bounds. The ways by which this can be achieved depend largely on the particular context of
the application at hand. In our experience, it is often apparent that some of the bandwidths are

not useful in achieving monotonicity, and these may then be omitted in favour of more useful
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bandwidths at that stage.

Since this method allows the choice of widely different bandwidths at different points on
the duration scale, it can be less parsimonious than data tilting. Consequently, the method
offers more choice and makes it easier to attain the desired monotonicity. Further, the adaptive
bandwidth method is easier to implement, being less computation intensive than data tilting.

Further, we find adaptive bandwidth estimators easier to interpret than data tilting. Since a
higher bandwidth flattens out the kernel estimates, the adaptive bandwidth method is expected
to give higher bandwidths to points on the lifetime scale that are either peaky in terms of the
time varying coefficients, or where the data are sparse. As mentioned earlier, this feature of
the estimation procedure has the potential of being interpreted as a strength of the maintained
monotone relationship, much in the same way as SiZer maps (Chaudhuri and Marron, 1999,
2000).

Also, standard confidence intervals are easier to construct, and provide useful inference
about the strength of the maintained order restriction at different ages. These confidence
intervals are, however, not proper confidence intervals of the adaptive bandwidth estimator
since they are not adjusted for pretesting. Pretesting-adjusted confidence intervals can be
constructed by resampling (bootstrap or jacknife) from the original sample — such computations

are, however, quite intensive.

4.6 Applications and simulations

In this section, we explore empirical performance of the two proposed biased bootstrap esti-
mation methods, based on a small simulation study and two real applications — one each from
biomedicine and economic duration data. We also provide some practical guidance as to the

choice of parameters during implementation of the algorithms.

4.6.1 Simulation study

In the simulation study, we use the histogram sieve estimator (Murphy and Sen, 1991) to
benchmark the performance of the proposed estimators. It is worth noting that, while the

application of biased bootstrap methods to order-restricted inference in the hazard regression
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context is new, several other papers have reported simulation studies in the linear regression
context. Hall and Huang (2001) have examined the performance of data tilting estimators under
monotonicity constraints, the performance of spline-based nonparametric regression estimators
has been empirically evaluated in Lee (2003), and Lee and Solo (1999) have compared the
empirical performance of bandwidth selection methods for local linear regression.

Randomly right censored data are generated from the following age-varying coefficient haz-
ard regression model:

At X =) =2.exp (tz),

where X are generated from Uniform[1,2], and the censoring random variable C' has distribution
function F(c) = (c—0.005)3, ce[0.005, 1.005]. 100 random samples of 500 observations each were
generated from this data generating process and Murphy-Sen histogram sieve estimation and
the two biased bootstrap techniques described in Sections 4.3 and 4.4 were applied to each.
The estimates of age-varying coefficients based on the three estimators were evaluated at 10

equidistant lifetimes 0.06 through 0.60 with increments of 0.06.

For the implementation of Algorithm 4.4.1 (data tilting), we set ng to 10 and p to unity. The
choice of p has been discussed by previous authors (Hall and Presnell, 1999; Hall and Huang,
2001), and we do not have anything new to add to the discussion in the present context. As
discussed in Section 4.4, an effective choice of ng is necessary to strike a good balance between
sample size reduction (and therefore enlargement of the set P) and fast convergence towards
monotonicity. We experimented with several values of ng and decided on 10 based on our
experience (for a sample size of 100, the choice of ng = 5 appeared to work well). With
ng = 10, it took an average of 21 iterations to achieve monotonicity. The effective sample size
reduced to 432 on average; on average, 378 observations had frequency 1, 41 had frequency 2
and 10 had frequency 3. Hence, construction of the set P was quite computation intensive;
however, optimising for the lowest divergence D,(p) (Step 3b) did not change the age-varying
coefficients substantially. For many empirical applications, therefore, we feel that one may
terminate the algorithm at Step 2.

For our implementation of Algorithm 4.4.2, we used an Epanechnikov kernel, and the Cai

and Sun (2003) method was used to estimate the time varying coefficients. Our choice of initial
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bandwidths were iy = 0.11, and 0.07, 0.09, 0.13, 0.15, 0.19 and 0.25. This, in our opinion,
constituted a good mix of candidate bandwidths that gave smooth coefficient estimates over
lifetime, and made the time-variation quite flat at the upper end.

The performance of the data tilting method was the worst of the three methods under
study. As mentioned earlier, the effective sample size was reduced to about 430 on average,
over the 100 samples. The final estimates were poor, particularly towards the boundaries of
the sample space. For t = 0.06, ¢ = 0.30 and ¢t = 0.60, for example, the average estimates
were —0.675 (quartiles —1.08, —0.65 and —0.21), 0.253 (quartiles 0.11, 0.22 and 0.32) and 4.283
(quartiles 2.89, 4.22 and 5.55) respectively, as compared to parameter values of 3(0.06) = 0.06,
£(0.30) = 0.30 and £(0.60) = 0.60 respectively under the model. The problem with this
implementation of the data tilting method appeared to be that the algorithm systematically
reduced the weights on observations having high influence towards the boundaries, with the
result that estimates in these neighbourhoods were pushed too far out of sync.

The adaptive bandwidth estimator performed the best of the three, the average estimates for
t =0.06, ¢ = 0.30 and ¢t = 0.60 being —0.021 (quartiles —0.11, 0.04 and 0.16), 0.292 (quartiles
0.18, 0.30 and 0.39) and 0.631 (quartiles 0.41, 0.62 and 0.83) respectively. The Murphy-Sen
estimator by contrast had average estimates for ¢ = 0.06, ¢ = 0.30 and ¢t = 0.60 of 0.057
(quartiles —0.16, 0.05 and 0.32), 0.195 (quartiles —0.17, 0.20 and 0.55) and 0.675 (quartiles
0.22, 0.65 and 1.31) respectively.

On the basis of the simulations, the adaptive bandwidth estimator was the most efficient of
the three estimators considered, with the estimates for the different samples tightly clustered
together, as seen from the box plots in Figure 4-1 (adaptive bandwidth) and Figure 4-2 (Murphy-
Sen histogram sieve estimator). The average absolute deviation of the estimates from actual
values for these 10 points was, on average over the 100 samples, 0.150 for adaptive bandwidth
and 0.468 for Murphy-Sen, while this measure was as high as 0.805 for our implementation of
the the data tilting estimator.

Therefore, on the basis of our simulation study, the adaptive bandwidth estimator appears
to work better in terms of empirical performance, and we concentrate on this estimator in the

following two applications.
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Figure 4-1: Box plot of adaptive bandwidth estimates (duration 0.06,0.12,...,0.60; 100 sam-
ples; sample size 500).

4.6.2 Example: Malignant melanoma data

These data pertain to 205 patients (148 of these are censored) with malignant melanoma (cancer
of the skin) on whom a radical operation was performed at the Department of Plastic Surgery,
University Hospital of Odense, Denmark. Andersen et al. (1992) have reproduced the data
and elaborately analysed it, and have discussed the findings of several other researchers who
have worked on these data. One of the strongest prognostic factors in malignant melanoma
identified in the literature is tumor thickness. As discussed in Chapters 1 and 3 (Sections 1.1.2
and 3.6.3 respectively), Andersen et al. (1992) find possible violation of the PH model in these
data, particularly in favour of alternatives like DH RCC. Further, the plot of the cumulative
regression functions for log-thickness (Martinussen et al., 2002) also indicate a distinct con-
cave shape, though the constant coefficient estimate lies almost entirely within the 95 percent
confidence band of the cumulative regression function.

Bhattacharjee (2007a, our Chapter 3) showed that the null hypothesis of proportional hazard
was rejected in these data, in favour of the alternative DH RCC over the upper range of the

covariate space, while for patients with small tumors, there was some evidence of an IHRCC
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Figure 4-2: Box plot of Murphy-Sen estimates (duration 0.06,0.12,...,0.60; 100 samples; sam-
ple size 500).

pattern (this was also confirmed by the Murphy-Sen histogram sieve estimators). Figures 4-
3 and 4-4 show kernel estimators of the time varying coefficients for various bandwidths, for
patients with tumor thickness less than, and greater than 1.8 mm respectively. One can see
that the monotonicity evident from the tests emerge prominently in these plots, and that
constrained estimation using adaptive bandwidth selection can be used to obtain estimates of

order-restricted covariate effects for tumor thickness.

4.6.3 Example: Macroeconomic instability and business failure

We analyse data from Bhattacharjee et al. (2008a) on firm exits in the UK over the period 1965
to 1998; see Sections 1.1.3 and 1.3.7.1 for previous discussions of the data and the application.
A major focus of the analysis is on the effect of macroeconomic instability on business failure.
Two measures of macoeconomic instability are considered: turnaround in business cycle (a
measure of the curvature of the Hodrick-Prescott filter of output per capita) and volatility in
exchange rates (maximum monthly change in exchange rates over a year). Theory suggests that

the effect of the first measure on bankruptcy may be negative, and the second one positive.
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Figure 4-3: Age varying covariate effects: In (Thickness) x 1 (Thickness < 1.8).
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Figure 4-4: Age varying covariate effects: In (Thickness) x 1 (Thickness > 1.8)

149



[}

Duration

3 a 15 21 27 bk}

| —=— Blased Boolstrap Estimate = = e = =002 [OWET C] = o=y = =009 UppEr Cl |

Figure 4-5: Age varying covariate effects: turnaround in business cycle.

Because of learning effects, the adverse impact of instability is expected to decline in the age
of the firm, post-listing.

The tests of proportional hazards against monotone departures proposed in Bhattacharjee
(2007a) indicate monotone departures in both cases, and this is also confirmed by the Murphy-
Sen estimates (see Chapter 7), after conditioning on industry dummies and firm level factors
like size, profitability and cash flow.

The kernel estimates of time varying coefficients for several candidate bandwidths confirm
that the detrimental effect of uncertainty diminishes with the age of the firm, post-listing.
The adaptive bandwidth estimators along with 90 per cent confidence bands (not adjusted for
pre-testing) confirm these findings (Figures 4-5 and 4-6), and provide useable and meaningful
estimates of the prognostic impact of instability on corporate failure. The confidence bands also
provide useful inference about the strength of the monotonicity relationship, in that they depend
closely on the magnitude of the bandwidth given by the estimator, which in turn depends on

the peakedness feature of the kernel estimates at different durations and on the density of data
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Figure 4-6: Age varying covariate effects: volatility in exchange rate.

around these durations.

In summary, the adaptive bandwidth estimators appear to be a convenient way to estimate
hazard regression models under monotone departures from proportionality. Their empirical
performance is good, and they provide useful inference in applications. By contrast, data
tilting methods are comparatively more difficult to implement, and their performance in the

simulation study was poor.

4.7 Concluding remarks

In this chapter, we discussed estimation in hazard regression models under order restrictions,
where the time varying coefficients are known to be monotonically increasing or decreasing.
Such situations occur frequently in applications, and encompass a wide range of data generating
processes. We consider estimation using two biased bootstrap methods, one based on data
tilting and the other on local adaptive bandwidths.

The adaptive bandwidth estimator performed much better than the histogram sieve estima-
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tor and the data tilting estimator in simulations, and was useful in applications. In combination
with research reported earlier in Chapter 3 (Bhattacharjee, 2007a), on testing proportionality
against monotone alternatives in hazard regression models, these inference techniques provide
a new and useful way to analyse covariate dependence in hazard regression models when the
PH assumption does not hold.

Several lines of potential further research emerge from our work. First, while our focus here
was on biased bootstrap methods, estimation under constraints using other methods (particu-
larly taut string and density regression approach) may be useful. Second, while we point out the
usefulness of the proposed methods in detecting departures from monotonicity, more work needs
to be done on formal testing for order restrictions using these approaches. Third, many appli-
cations imply order restrictions on ageing in addition to those on covariate effects. In Chapter
6 (Bhattacharjee and Bhattacharjee, 2007), we develop Bayesian methods for analysis in these
situations; frequentist inference may be developed in future work. Fourth, our discussion of
the time varying coefficients model highlighted additional assumptions relating to additivity
and proportional variation in time varying coefficients. Development of formal tests for the
time varying coefficients model in these respects will be an useful research direction. Finally,
it is well acknowledged that monotone covariate effects may often be confounded with frailty.
Inference on frailty models to address this issue will be reported in Chapter 5 (Bhattacharjee,
2007b), Chapter 6 (Bhattacharjee and Bhattacharjee, 2007) and Section 7.4 (Bhattacharjee,
2007¢).
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Chapter 5

Testing for Proportional Hazards

with Unrestricted Univariate Frailty

5.1 Chapter summary

Based on Bhattacharjee (2007b), here we develop tests of the proportional hazards assumption,
with respect to a continuous covariate, in the presence of individual level frailty with unknown
distribution. Unlike the case where the frailty distribution is known upto finite dimensional
parameters (Chapter 3, Bhattacharjee, 2007a), the null hypothesis for the current problem
is similar to a test for absence of covariate dependence. However, the two testing problems
differ in the nature of relevant alternative hypotheses. We first develop tests for absence of
covariate dependence, particularly against trending alternatives, by extending two-sample tests
for equality of hazard rates. Next, we adapt the above methods to testing for proportional
hazards by making suitable choice of weight functions. The proposed tests are particularly useful
for detecting trend in the underlying conditional hazard rates, and for testing proportionality
against ordered alternatives, respectively. Asymptotic distribution of the test statistics are
established, followed by a Monte Carlo study. An application to the effect of aggregate Q on
corporate failure in the UK shows evidence of trend in the covariate effect, and violation of
proportional hazards assumption, whereas a traditional score test under the Cox regression

model failed to detect evidence of any covariate effect.
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5.2 Introduction

In Chapter 3 (Bhattacharjee, 2007a), we extended the notion of monotone hazard ratio in two
samples to the continuous covariate case, and proposed tests for proportionality against or-
dered alternatives. These tests are useful when there is random effects heterogeneity in the
nature of shared frailties, or when the distribution of individual level frailties belongs to a
known finite dimensional family. However, the above inferential approach is not applicable
when there is individual level frailty with arbitrary distribution. Our contribution here is to de-
velop tests for proportional hazards in the presence of individual level unobserved heterogeneity
with completely unrestricted and unknown frailty distribution. Allowing for an arbitrary frailty
distribution is particularly important in the hazard regression context, since the frailty distrib-
ution assumptions are very important. Both simulations (Bretagnolle and Huber-Carol, 1988;
Baker and Melino, 2000) and empirical applications (Heckman and Singer, 1984b; Trussell and
Richards, 1985; Hougaard et al., 1994; Keiding et al., 1997) show that inference is sensitive to
the choice of the frailty distribution.

The chapter is organised as follows. In Section 5.2, we formulate the proposed test for
proportional hazards under the mixed proportional hazards (MPH) model incorporating un-
restricted univariate frailty. Identifying conditions of the MPH model imply that testing for
the PH assumption is the same testing as testing for equality of conditional hazard functions.
Therefore, we extend tests for equality of hazard rates in two samples to testing for absence of
covariate dependence with respect to continuous covariates, and then adapt these tests to our
main testing problem. In Section 5.3, we develop the tests, outlining the relevant alternative
hypotheses, assumptions and asymptotic properties, and discuss choice of weight functions. We
present results of a Monte Carlo study in Section 5.4, followed by a real life application in

Section 5.5. Finally, Section 5.6 concludes.
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5.3 Formulation of the testing problems

5.3.1 Testing proportional hazards

We first consider the standard mixed proportional hazards (MPH) model (introduced in Section

1.2.2 and discussed elaborately in Section 1.2.6)

ANHX =2,Z=2U=u) = MI(t)exp [ﬁX.ﬂc—i—ﬁg.z—l-u]

<~ InAy(T)=- (ﬁX.x+ﬁ£.z +U +e), (5.1)

where Ag(t) = fg Ao(s).ds is an increasing function of arbitary shape (the cumulative baseline
hazard function), X is the covariate under test and Z the vector of other covariates, log-frailty
U has an arbitrary distribution that is independent of the covariates X and Z, and € has
an extreme value distribution; see, for example, Horowitz (1999). Since U has an arbitrary
distribution, so does U + ¢, and hence this is a special case of the monotonic transformation
model considered, for example, by Han (1987), Hirdle and Stoker (1989), Sherman (1993),
Cheng et al. (1995) and Horowitz (1996).

Since our interest here is in testing whether the hazard functions conditional on different
values of the covariate X are proportional, we now consider a more general MPH model with

time varying coeflicients
ANHX =2,Z=2U=u)= X (t)exp [Bx (t) .z + B,(t) .z +u] , (5.2)

with covariates X and Z, which are both allowed to have potentially time varying effects
(Bx (t) and B, (t)).} Under this model, the null hypothesis of proportional hazards corresponds

to covariate effects constant over lifetime

HO’pH : ﬁX(t) = b, (5.3)

'While we assume fixed covariates for the sake of simplicity, time varying covariates can be considered by
a simple extension. Specifically, we can place a histogram sieve (Grenander, 1981) on the covariate over the
lifetime scale, and restrict the time varying coefficient corresponding to every time interval to be zero except on
the specific interval considered.
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and the ordered alternative of monotone covariate effects

AtX =29, Z = 2,U = u)
ANt X =21, Z = 2,U = u)

Tt whenever zg >z, forall z, u, (5.4)

corresponds to increasing time varying coefficients

Hl,PH : ﬁX(t) Tt. (5.5)

While, we assume the above MPH model with time varying coefficients (5.2) for expositional

simplicity, the methods developed here are valid within the context of the model

ANHX =2,Z=2U=u)= X (t)exp[Bx (z,t) + B, (2,t) + u],

where the covariate effects are completely unrestricted. This is about the most general frailty
model that can be considered in this problem.?

As shown by McCall (1996), sufficient conditions for identifiability of the MPH model with
individual level frailty and time varying coefficients (5.2) is the inclusion of a covariate with
proportional hazards that has support over the whole real line. We feel this condition may be
justifiable in empirical applications. McCall (1996) suggests estimation of the model using the
histogram sieve estimator (Murphy and Sen, 1991) for time varying coefficients, in combination
with unrestricted frailty distribution modeled as a sequence of discrete multinomial mixtures
with increasing number of support points (Heckman and Singer, 1984a).

The alternative hypothesis (5.4, 5.5) is the IH RCC condition introduced in Definition 3.2.1
and developed in Chapters 3 and 4. This suggests that tests similar to those developed in
Chapter 3 may be useful here. However, the formulation of our testing problem has to be mod-
ified to reflect the identifying restrictions of the transformation model (5.1, 5.2).3 Specifically,

since the MPH model still continues to hold if a constant is added to both sides, a location

2The main assumption underlying this model is that of multiplicative separability of the effect of X, Z and
U on the conditional hazard rate; see also discussion in Section 4.2.

3Strictly speaking, the MPH model with time varying coefficients (5.2) is not a linear transformation model.
However, it can be cast as a transformation model, if one makes the (histogram sieve) assumption that the time
varying coefficients are piecewise constant, changing values across known or hypothesized intervals. The width
of these intervals will be allowed to decrease to zero with sample size.
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normalisation is required for identification. This can be achieved by setting
Ao (to) =1

for some fixed and finite ¢y > 0. In fact, our tests of the PH assumption will be based on the
shape of the estimated baseline hazard function conditional on different values of the covariate

X. Accordingly, the above normalisation here takes the form

Ao(to] X =2) = /0 Xo(s).exp [Bx (s) .x] .ds =1, (5.6)

conditional on every covariate value X =z

Because of the above scale normalisation, the baseline cumulative hazard function in (5.6)
is only identified upto a factor of proportionality, restricting it to take the value unity at
a fixed failure time tg. As a result, if the covariate X has proportional hazards effect, the
constrained baseline cumulative hazard function conditional on different covariate values will
be the same. Correspondingly, nonproportional covariate effects imply that cumulative baseline
hazard functions conditional on different covariate values, while constrained to be equal at
to, will be different at other failure times. Therefore, nonproportionality implies violation of
equality of the cumulative baseline hazard functions condtional on different covariate values.

In other words, the above normalisation renders testing for proportionality equivalent to
testing the equality of hazard functions conditional on different values of the chosen covariate,

X. Based on the above argument, our modified null hypothesis is

HQJDH : Ao(t‘X = .’L‘) = Ao(t) for all =

= M| X =z1) =M(t|X =22) forall z; # x9, (5.7)

where A\ (t|X = z) = Mo(t).exp [— (Bx (t) .x)]. The proposed test will extend two sample tests

4Note that, the MPH model has an important distinction from the standard transformation model, in that the
usual scale normalisation is not necessary here. In other words, Sy and 3, are exactly identified by the fact that
€ has the extreme value distribution. Since the scale of ¢ is fixed, a scale transformation is not required in this
case. However, the scale parameter is difficult to estimate, which has implications for the rate of convergence of
model estimates. The fastest achievable rate of convergence for the cumulative baseline hazard function estimates
is only n~%/% (Ishwaran, 1996), which is slower than the usual convergence rate of n~'/2; see Horowitz (1999)
for further discussion.
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for equality of hazard functions to the continuous covariate setup. The relevant alternative
hypothesis, discussed in Section 5.3, will determine the appropriate choice of the underlying

two-sample test statistics.

5.3.2 Testing absence of covariate dependence

We now turn to a related testing problem suggested by the modified null hypothesis (5.7).
Since, in the formulation above, the null hypothesis of proportional hazards is that of equality
of baseline hazard rates conditional on different values of the index covariate X, the above
testing problem is closely related to testing for the absence of covariate dependence. This itelf
is an important inference problem, particularly since understanding the nature of covariate
dependence is one of the main objectives of regression analysis of failure time data.

We consider the general hazard regression model
AHX =2,Z =2) = Xo (t) exp [Bx (z,1) + Bz (2,1)],

where, as before, X and Z are covariates with completely unrestricted covariate effects. Our
interest is to test whether the covariate X has any effect on the hazard rate. As discussed in
Section 4.2, by suitable transformations and use of the histogram sieve, the effect of the other

covariates Z can be approximated by time varying effects:

Bz (z,t) = /BZ(t)T'Za

which is a convenient form for regression modeling.
Within the context of the above model, the strength of covariate dependence can be assessed

by conducting a test of the hypothesis

Horg : XX =x)=c(t) forallzx

— MNE|X =z1) =Nt X =22) forall z; # x9 (5.8)

against relevant alternatives. The similarity between the above null hypothesis (5.8) and that

for testing proportional hazards (5.7) suggests that similar tests can be developed for either
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case.
The choice of the alternative hypothesis usually depends on the expected nature of covariate
dependence. We propose tests for the null hypothesis of absence of covariate dependence where

the covariate is continuous and the alternative hypothesis is either omnibus
H; gq : not Ho g, (5.9)

or trended (when the covariate has positive or negative effect), or changepoint trended (when
the sign of the covariate effect, positive or negative, varies over different regions of the sample
space). We will focus mainly on trended and changepoint trended alternatives since these are
more useful in regression modeling; we discuss relevant alternative hypotheses in Section 5.3.
Finally, note that we have not considered unrestricted frailty in our regression model spec-
ification for the test for absence of covariate dependence. In fact, an important implication of
the location normalisation (5.6) inherent in the corresponding MPH model with unrestricted
frailty distribution is that, absense of covariate dependence cannot be tested in this model.
This is because equality of the conditional hazard rates is also outcome of proportional haz-
ards. However, models with either shared frailty or with finite dimensional frailty distributions
are accommodated easily within our framework. Further, the case of unrestricted frailty distri-
bution can be addressed under the time varying coefficients model, by developing tests for the

condition S (t) = 0 for all ¢; we do not discuss this case here.

5.3.3 Estimation of baseline hazard functions

Our proposed inference procedures for the above two testing problems will be based on esti-
mates of the conditional baseline cumulative hazard and hazard functions. For this purpose,
we consider estimators for the cumulative baseline hazard Ag (t|z1), Ao (t|x2) .. ., conditional
on different covariate values X = x1,xo, ..., in models including additional covariates, Z, and
possibly unrestricted univariate frailty. Various candidate estimators are avaiable in the litera-
ture.

For the hazard regression model with time varying coefficients but without frailty, the

histogram sieve estimator (Murphy and Sen, 1991) can be used. While several alternative
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estimators have been proposed in the literature, including the ones proposed by Zucker and
Karr (1990) and Martinussen et al. (2002), we use the histogram sieve estimator in our tests
for absence of covariate dependence. The choice is based on simplicity for use and interpretation.

For lifetime data with shared frailties, one can either use the marginal modeling approach
with unrestricted frailty distribution (Spiekerman and Lin, 1998), or assume gamma frailties
and use the efficient estimator proposed by Parner (1998). Kosorok et al. (2004) have proposed
another estimator, which can be used when the distribution of individual level frailty can be

assumed to belong to a given one-parameter family of continuous distributions.

For the tests of proportional hazards, we focus lies in the unrestricted univariate frailty case.
Contributions in this area, reviewed earlier in Section 1.2.6, are rather limited. Of particular
interest are the kernel-based estimators of the baseline cumulative hazard function proposed
in Horowitz (1999) and Gergens and Horowitz (1999), in the presence of scalar unobserved
heterogeneity with completely unrestricted distribution. The proposed estimators for the base-
line hazard function and baseline cumulative hazard function, based on previous work on the
transformation model (Breiman and Friedman, 1985; Horowitz, 1996), can be made to converge
at a rate arbitrarily close to the optimal n=2/5 by suitable choice of bandwidths. However, the
choice of bandwidths and other tuning parameters is itself a difficult problem in implementa-
tion. Further, the methods do not allow for time varying covariates. While an extension to this
case is certainly possible, the properties of such estimators is yet to be studied.

With discrete lifetime data (discussed earlier in Section 1.2.7) over a finite dimensional
sample space, estimation of the baseline hazard function reduces to a simpler problem. Further,
if one approximates the unknown frailty distribution by a sequence of discrete mixtures of
degenerate distributions (Heckman and Singer, 1984a), estimation of the frailty distribution
also becomes a parametric problem. The approach, proposed by Jenkins (1995), of considering
the grouped time proportional hazards model (Prentice and Gloeckler, 1978) in combination
with discrete mixture frailty is therefore an attractive strategy.

An alternative approach based on maximum rank correlations (Han, 1987), proposed by
Hausman and Woutersen (2005), may also be useful. This method treats the unknown frailty

distribution as nuisance parameters.
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In summary, a variety of estimators of the conditional baseline hazard function are avail-
able. Most of these estimators, suitably normalised, converge weakly to a Gaussian processes
under appropriate assumptions. For the construction of our proposed tests, we assume that an
appropriate estimator has been chosen. In practise, an appropriate choice will have to be made

based on both the assumed underlying model and properties of the estimator itself.

5.4 Proposed tests

In this Section, we discuss test procedures for the two testing problems. We first describe the
alternative hypotheses, followed by the test for absence of covariate effect, and then the test for
proportionality. Like the two sample tests on which they are based, a class of tests are proposed
in either case, where the user can specify a relevant weight function; see also Chapters 2 and 3.

We establish the statistical properties of the tests, and discuss the choice of weight functions.

5.4.1 Alternative hypotheses

As discussed in the previous Section, the null hypothesis for both the tests posit that the
hazard functions conditional on different covariate values are the same. However, our alternative
hypotheses in these two cases are different, and reflect the expected nature of departures from
the null.

Consider first the problem of testing whether the covariate X has proportional hazard effects
against ordered alternatives of the kind considered in Chapters 3 and 4. Specifically, we con-
sider alternatives defined by nonproportional partial orders, specifically IHRCC or DHRCC
(Definition 3.2.1):

ITHRCC : whenever x1 > xo, A(t|x1)/\(t|z2) Tt [E (T|X =x1) < (T|X = 332)} ,(5.10)

DHRCC : whenever x1 > 2, A(tz2) /A(t|z1) 1 ¢ [E (TIX = 23) < (T|X = ml)} (5.11)

where we supress dependence of other covariates Z and frailty U for notational convenience.
Let us initially consider two distinct covariate values, x1 and x2. As in Chapter 3, our
strategy will be to first test for proportional hazards against the partial order conditional on

these two values, and then extend the test by considering multiple covariate pairs. Without
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loss of generality, the two distinct values of the covariate X, x1 > x2, can be set to 1 = 1 and
x2 = 0. In this binary covariate case, the most general model (see discussion in Section 4.2) is

the time varying covariate effects model

A (b2, 2 ) = X003 (1) 5P [Baysny (-] - exp [z (a(8),0) + ],

under the assumption of multiplicative separability in the effects of X, Z and U. This implies

that the above null hypothesis can be restated as

HO,PH,(z1>a:2) : ﬁ(zl>x2)(t) = O, fOI’ all t,

where we add (1 > x2) to the index set to emphasize that the statement of the null is specific
to this covariate pair.
As discussed in Chapter 4 (Section 4.2) and Section 4 above, under the time varying coeffi-

cients model, the ordered alternative IHRCC

Hy, pH (@1>a0) * A1) /A(t22) T2

holds if and only if B, 4,)(t) T . Since identifiability restrictions under the model require

that A (to|z) = 1, the following conditions must therefore hold

to to
/ X0,z (8)ds =1 and / 0,25 (8) €xXp |:B(x1>x2)(s)] ds = 1.
0 0

In other words, under the alternative hypothesis B, 5,,)(t) starts from a negative value at
t = 0, rises to a positive value at t = t¢ such that the above relationship holds, and continues
to rise thereafter.

Thus, under this model with individual level frailty, the PH assumption is represented by a
null hypothesis of equal conditional hazards, and the alternative posits monotone covariate effect
with crossing hazards character. Following the approach in Chapter 3 (Bhattacharjee, 2007a),
we will consider tests of the above hypotheses by extending two sample tests for equality of
hazard functions. Several tests of this hypothesis will be conducted, corresponding to different

pairs of covariate values. Our tests for proportionality of hazards will be based on a combination
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of several two sample tests.

The underlying two sample tests are rank tests of the form

Ty, — /0 " L) dAy (1) — /0 " L()dRa(t), (5.12)

where L(.) is some appropriate weight function and 7 is a large failure time, either fixed or
random. Most of the standard censored data two sample tests for equality of hazard functions
belong to this general class with different choices of the weight function. The Mantel-Haenszel
or logrank test (Mantel, 1966; Peto and Peto, 1972), one of the most popular tests in this
class, has optimal power if the two compared groups have proportional hazard functions under
the alternative (Peto and Peto, 1972). The Gehan-Breslow (Gehan, 1965; Breslow, 1970) and
Prentice (1978) tests generalise the Wilcoxon and Kruskal-Wallis tests to right censored data.
Tarone and Ware (1977) and Harrington and Fleming (1982) have proposed weighted log-rank
tests. The theoretical properties of these tests and their use in applications has been discussed
elsewhere (Fleming and Harrington, 1991; Andersen et al., 1993). Later in the chapter, we will
discuss how these tests can be adapted to our specific testing problem, and the related issue of

choice of weight functions.

When the covariate is binary or categorical, the above tests are often used to test the
null hypothesis of absence of covariate dependence (5.8) against the omnibus alternative (5.9).
However, the omnibus alternative in the above tests is often too broad and does not convey
sufficient information about the nature of covariate dependence. In many empirical applications,
it is important to infer not only whether there is significant covariate dependence, but also about
the direction of the covariate effect, i.e., whether an increase in covariate value is expected to
increase or decrease the lifetime, according to some notion of relative ageing. In the k-sample
setup, several trend tests have been proposed; these procedures test for equality of hazards
against the alternatives Hy : A\ < Ao < ... < Apor Hy: 51 < Sy <...< Sk (one or more of the
inequalities being strict), where A; and S are the hazard and survival functions respectively in
the j-th sample.

Modified score tests against trend in hazard functions have been proposed by Tarone (1975)

and Tarone and Ware (1977), while Liu et al. (1993) and Liu and Tsai (1999) have proposed
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ordered weighted logrank tests to detect similar trend in survival functions. Mau (1988) pro-
posed trend tests for censored failure time data by applying isotonic regression to scores from
existing k-sample tests. These two-sample and k-sample tests are, however, of limited use in
applications. The usual method of extending these inference procedures to the case of contin-
uous covariates involves stratification with respect to the covariate, followed by application of
existing inference procedures for k£ samples. The outcomes of these inference procedures are
highly sensitive to the choice of such intervals, and relevant procedures for optimally choosing
these intervals are not available in general (Horowitz and Neumann, 1992; Neumann, 1997).
In our continuous covariate setting, the trended alternative that the covariate has a positive

or negative effect on the hazard function can be represented by the hypothesis
Hgtgq s A(t|z1,2) > A(t|xe,2)  for all zand ¢  whenever x; > x9 (or its dual),  (5.13)

the strict inequality holding for at least one covariate pair (x1,x2). The changepoint trended
alternative posits that the covariate has a positive effect on the hazard rate over one region of

the sample space and negative effect over another. A typical example is:

]I-]Igj)gq : there exists 2* such that A\(¢|z) T«  for all z and ¢

whenever x < ¥, and A(t|z) |  whenever x > z* (or its dual). (5.14)

Some trend tests in the literature are specific to continuous covariates and consider (5.13) as
the alternative hypothesis. If an underlying hazard hazard regression model is assumed (like the
Cox proportional hazards (PH) model or the accelerated failure time model), then one can use
score tests for the significance of the regression coefficient (Cox, 1972; Prentice, 1978). Other
tests assume a known covariate label function. Brown et al. (1974) developed a permutation
test based on ranking of both the covariate values and the observed lifetimes, and O’Brien
(1978) proposed inverse normal and logit rank tests using the respective transformations of
the ranked covariates. Jones and Crowley (1989, 1990) consider a more general class of test
statistics which nests most of the other trend tests as well as their robust versions. All the above
tests are rather restrictive since, they assume either validity of a specified regression model, or

a known covariate label function. Therefore, they fail to retain the attractive nonparametric

164



flavour of the corresponding two-sample or k-sample tests.

Further, these tests are not useful when covariate dependence is in the nature of a change-
point trend (5.14). Jespersen (1986) has proposed inference procedures in the context of a single
changepoint regression model; however, the assumptions of a specified regression model and a
single changepoint are quite restrictive. Thus, appropriate tests for absence of covariate depen-
dence for continuous covariates are not available in the literature, in applications where neither
the form of the regression relationship nor an appropriate covariate label function are known
a priori. In many applications, insignificance of the estimated parameter in a Cox regression
model is interpreted as a test for covariate dependence. Such an implication is inappropriate,
since lack of significance can be due to other reasons, like violation of proportionality or model

misspecification®.

5.4.2 Testing absence of covariate dependence

First, we consider the single covariate case. Let T be a lifetime variable, X a continuous
covariate and let A(¢|z) denote the hazard rate of T at T' = ¢, given X = z. We intend to
test the hypothesis (5.8) against the alternative Hy gq : A(t|z1) # A(t|x2) for some x1 # 2. In
particular, we are interested in test statistics that would be useful in detecting trend departures
from Hg, g4 of the form Hgt,)Eq (5.13), and changepoint trend departures like Hg%q (5.14).

As mentioned earlier, several two-sample tests of the equality of hazards hypothesis exist in

the literature. Many of these tests are of the form:

Tss
T2s,std = #, (515)

Var [Ths]
where

L(t)dAy(t) — /0 ’ L(t)dAy(t),

LX) {V1(t)Ya(t)} ' d (N1 + Na) (1),

b
i

L(t) = K@®Wi®)Ya(t){Y1(t) +Ya(t)} ",

5 A large simulation study by Li et al. (1996) highlights the serious consequences of these issues in the context
of the Cox PH model.
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T is a random stopping time (in particular, 7 may be taken as the time at the final observation in
the combined sample), K (t) is a predictable process depending on Y; + Y2, but not individually
on Y; or Ys, /A\j (t) is the Nelson-Aalen estimator of the cumulative hazard function in the j-th
sample (j = 1,2), Y;(t) (for j = 1,2) denote the number of individuals on test in sample j at

time ¢, and Ny, Ny are counting processes counting the number of failures in either sample.

In particular, for the logrank test,

K(t) = I[Yi(t) + Ya(t) > 0], (5.16)

and for the Gehan-Breslow modification of the Wilcoxon test,

K(t) = TVA(t) + Ya(t) > 0] {Y1(t) + Ya(t)}. (5.17)

These standardised two sample test statistics have zero mean under the null hypothesis of
equal hazards and positive (negative) mean accordingly as the hazard functions are trended
upwards (downwards). Further, they are asymptotically normally distributed under the null
hypothesis.

Based on the above test statistics, we propose a simple construction of our tests as follows.
We first select a fixed number, 7, of pairs of distinct points on the covariate space, and construct
the standard two-sample test statistics (755 stq) for each pair, based on counting processes
conditional on two distinct covariate values. We then construct our test statistics, by taking
maximum, minimum or average of these basic test statistics over the fixed number of pairs.

Thus, we fix r > 1, and select 2r distinct points

{171171'217 <oy XTpl, 12,222, - - - ,fUrz}
on the covariate space X', such that x;o > ;1,1 = 1,...,r. We then construct our test statistics
T;;nax), é;nin) and Ts based on the r statistics Ths sta(wi1, zi2), | = 1,...,7 (each testing
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equality of hazard rates for the pair of counting processes N (t,x;1) and N (t,x;2)), where

Tos(xi1, 712
Tos sta(xin, 12) = s(2n, 212) )

\/\7a\r [Tos (211, 212)]

Tos(z1, m2) = /OT L(fm,wzz)(t)df\(t,fvu)—/OTL(fUll,l‘lz)(t)d/A\(ta T12), (5.18)

@ [TQS(ZE“, l’lg)} = /(:— L2($11, l’lg)(t){Y(t, xll)Y(t, ﬂjlg)}_l.d (N(t, $11) + N(t, :L'lg) s

where L(x;1,z2)(t) is a random (predictable) process indexed on the pair of covariate values xj;
and x5, and A(t,z;1) and A(t, z0) are the Nelson-Aalen estimators of the cumulative hazard
functions for the respective counting processes.

Then, our test statistics are:

Tg(;max) = max {Ths sta(®11, T12), Tas sta(®21, ©22), - - -, Tos sta(Tr1, Tr2) } (5.19)

T = min {Tos a(@11, 12), Tos sta(@21, ©92), - - -, Tos stalr1, Tr2) } (5.20)
_ 1

and Tys = - ZZ; Tos sta(xi1, T12)- (5.21)

We now derive the asymptotic distributions of these test statistics.

Consider a counting processes {N(t,x) : te]0, 7], zeX}, indexed on a continuous covariate
x, with intensity processes [Y (¢, x).\(¢|z)] such that \(¢|z) = A(t) for all ¢ and = (under the
null hypothesis of equal hazards). Let, as before, L(z1,22)(.) be a process indexed on a pair of
distinct values of the continuous covariate x (i.e., indexed on (z1,x3), 1 # x2,x1, x2eX). Now,
let {11, o1, ..., 2Tr1,T12,T22,...,Zr2} be 2r (r is a fixed positive integer, r > 1) distinct points

on the covariate space X, such that x;o > z;1,l=1,...,7.

Assumption 5.3.1 For each 1, | = 1,2,...,r, let L(x;,x12)(t) be a predictable processes

indezed on the pair of fixred covariate values (xy1,x12).

Assumption 5.3.2 Let T be a random stopping time. In particular, T may be taken as the

time at the final observation of the counting process E}"le‘gle(t, x15). In principle, one could
also have different stopping times T (xp1,z2),l = 1,...,7 for each of the r basic test statistics
T28,std(xl17 (Elg),l = 17 sy T

Assumption 5.3.3 The sample paths of L(x;1,x0) and Y (t,2;)~" are almost surely bounded
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with respect to t, for i = 1,2 and | = 1,...,r. Further, for each | = 1,... 7, L(x;1,x12)(t) is
zero whenever Y (t,x;1) or Y (t,x12) are.

Assumption 5.3.4 There exists a sequence o™, o) — 0o as n — oo, and fized functions

y(t,x), li(xp, zi2)(t) and la(xp, z2)(t), L =1,...,7 such that

P
sup !Y(t,x)/a(”) —y(t,z)] — 0 as n — oo, VreX
te[0,7]
P
sup |L(zi1, i2)(t) — Uz, 22)(t) — 0 asn—oo, I=1,....r
te[0,7]
where |I(z1,212)(.)| is bounded on [0,7] for each I = 1,...,r, and y~'(.,z) is bounded on [0, 7],

for each xeX.

Assumptions 5.3.1 through 5.3.4 constitute a simple extension, to the continuous covariate
framework, of the standard set of assumptions for the counting process formulation of lifetime
data (see, for example, Andersen et al., 1993). As discussed in Chapter 2 (Sengupta et al.,
1998), the condition on probability limit of Y (¢, x) in Assumption 5.3.4 can be replaced by a set
of weaker conditions. All the assumptions are satisfied in the random censorship model with
continuous failure times, for any choice from the predictable weight functions discussed earlier.

Let the test statistics 7. Q(?ax) , TQ?in) and Tas be as defined earlier (5.19 — 5.21).

Theorem 5.3.1. Let Assumptions 5.5.1 through 5.3.4 hold. Then, under Ho gq : Ao(t|X =
x) =c(t) forall z, as n — oo,

(a) P T < 2| = @),
(b) P [Témin) > —z*] — [®(z")]), and

s jti

(C} \/;’TZS g N(Ov 1)1
where ®(2*) is the distribution function of a standard normal variate.

(Proof in Appendix.)
Corollary 5.3.1.
P [ar {Té;nax) — br} < z*} — exp[—exp(—2z¥)] asr — oo
and P [ar { 2(?1“) + b,«} > z*} — exp[—exp(z*)] as r — oo,
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where a, = (21n7")1/2 and b, = (21n7“)1/2 -1 (21n7“)71/2 (Inln7 4 In4r) .

(Proof in Appendix).

Corollary 5.3.2. Given a vector w = (w1, wa,...,w,) of T weights, each possibly dependent
on x; (1 =1,2,...,r;5 = 1,2) but not on the counting processes N (t,x5), let us define the

test statistics

Tz(;r,zx) = Dax {wi Tas sta(xin, z12) } 5
TQ(?:;) = l—Hllinr {wi Tas sta(xin, z12) } 5
and Tasy = Y oieq wiTos sta(xi1, x2) '

Z?:l wj

Let Assumptions 5.5.1 through 5.3.4 hold. Then, under Hy g4, as n — oo,
(a) P 1307 < 2] — TIiy (0= /),

(b) P T = =2 = [T [@(=* /), and

2s,w

2w T, 2 N0, 1
() i T — NOL:

(Proof in Appendix).

The above results establish the asymptotic properties of the proposed tests. Some other
features of the testing procedure (similar to Chapter 3) merit further discussion. First, the
number of covariate pairs, r, on which the statistics (T 2(:1“), Tg(;nin) and Ts) are based is fixed

a priori. This is crucial, since the process Tos stq(21,22) on the space
{(z1,22) : T2 > 21,21, 22X},

is pointwise standard normal and independent, but do not have a well-defined limiting process.
Therefore, if 7 is allowed to grow, the maximum (minimum) diverges to +oo (—o00). Second,
Corollary 5.3.1 provides a simple way to compute p-values for the test statistics when r is
reasonably large.5 Third, Corollary 5.3.2 shows that one can weight the underlying test statistics

by some measure of the distance between x;; and x;5. For example, one can give higher weight

%Note that r is fixed and finite; however, if it assumes a large enough value (say, 20 or higher), the approxi-
mation can be useful.
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to a covariate pair where the covariates are further apart. In practice, this is expected to
improve the empirical performance of the tests.

Fourth, since the covariate under consideration is continuous, it may not be feasible to
construct the basic tests Th, g based exactly on two distinct fixed points on the covariate
space. In our empirical implementation, we consider "small" intervals around these chosen
points, such that the hazard function within these intervals is approximately constant (across
covariate values). The average test statistics constructed in this way, however, sometimes fail to
maintain their nominal sizes under the null hypothesis because of correlation between statistics
based on overlapping intervals (see also Chapter 3, Bhattacharjee, 2007a). This issue can be
resolved by using a jacknife estimator for the variance of the average estimator.

Fifth, following arguments in Gill and Schumacher (1987) as well as Chapters 2 and 3
(Sengupta et al., 1998; Bhattacharjee, 2007a), the tests are consistent against the trended
alternative (5.13). The average test statistic T has asymptotically gaussian distributions
under both the null and alternative hypothesis, with mean zero under the null and positive mean
under the alternative. Under the null hypothesis of absence of covariate effect, the maxima test
statistic T. 2(?“) has the extreme value distribution given in Theorem 5.3.1, whereas under the
trended alternative (5.13), it diverges to +o0; therefore, the test is consistent. Similarly, the
average and minima test statistics are consistent when departures are trended in the opposite
direction: A(t|x1) < A(t|xr2) whenever z; > z3. Further, both the maxima and the minima
test statistics are consistent when there is a changepoint trend in the covariate effect (5.14).
The ability to detect both trended and changepoint trended covariate effects highlights an
important advantage of the proposed tests. The power of the tests depend on the choice of
weight functions, which we discuss in Section 5.3.4.

Finally, the choice of the r pairs of covariate values may be important in applications. The
issues regarding this choice are similar to those relating to stratification in goodness-of-fit tests.
Quantiles of the cross-sectional distribution of the covariate can be used to select these covariate
pairs and to construct the "small" intervals around the covariate values — this, in a simple way,
ensures that variations in the density of design points are adjusted for (none of the intervals
are too sparse) and that the intervals corresponding to each pair of covariate values do not

overlap. In our simulation studies (Section 5.4), we divided the sample into deciles by the
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magnitude of the covariate, and based our tests on the (120) = 45 covariate pairs generated by

this construction, while for the empirical application (Section 5.5), we used 20 covariate pairs

obtained by random sampling.

Extension of the tests to the case when other covariates, Z, are also present is straightfor-
ward. Here, we build an appropriate Cox model, possibly with time varying coefficients on Z,
and estimate the model by the histogram sieve method (Murphy and Sen, 1991). The regression
coefficients are estimated by partial likelihood estimators, B 7, and the baseline cumulative haz-
ard function by the standard Breslow estimator (Breslow, 1974), ZA\(t, x5, B 7). This estimator
of the baseline cumulative hazard function is plugged into the two sample test statistic (5.12)

in place of the Nelson-Aalen estimator of the cumulative baseline hazard function, giving

TS (2, 21) = / Lan, 2) () dA(t, 211, B ) — / Lz, zi2) (£)dA(L, 19, B ).
0 0

The asymptotic properties follow in a similar way as above, by noting that, in place of the

usual counting process martingale, we now have

—

M(ta .le) = N(t7 xlj) - /O Y (Sa xlj) - €eXp [BZ(S)T'Z(S)} 'dK(ta Lij, BZ)

which is a local martingale (Andersen et al., 1993).

When there is shared frailty or parametric frailty, the tests are constructed as above, using
an appropriate estimator for the baseline cumulative hazard function. Though martingale based
arguments are not valid any more, the asymptotic arguments still hold, with some minor mod-
ifications. For the shared frailty model, results from Spiekerman and Lin (1998) demonstrate
this; see Theorems 1 and 2 in Spickerman and Lin (1998). For the parametric individual level
frailty model, a procedure similar to continuously distributed unrestricted frailty can be used.

This is discussed below (Section 5.3.3) in the context of the Horowitz (1999) estimator.

Finally, in applications with multiple covariates, the tests developed here can be used to
sequentially evaluate the absence of covariate dependence for the covariates. This provides an
intuitive and convenient way to build an appropriate hazard regression model in such cases; see

also Scheike and Martinussen (2004).
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5.4.3 Testing the proportional hazards assumption

Our proposed tests for proportional hazards are similar to those for the previous testing problem.
Here, too, we estimate the baseline cumulative hazard function under maintained assumptions
on the model and nature of frailty, and plug these estimators into the two sample test statistic
(5.12) in place of the Nelson-Aalen estimator. The asymptotic properties are similar to those
given by Theorem 5.3.1 and Corollaries 5.3.1 and 5.3.2. However, the assumptions underlying
the tests reflect the differences in the models and methods, and similarly there are important
differences in the asymptotic arguments. Below, we discuss continuous failure time data with
arbitrary continuous frailty, followed by discrete failure time data combined with a discrete

mixture frailty distribution.

We first consider the kernel-based estimation procedure proposed by Horowitz (1999) under
the continuous failure time MPH model with unrestricted continuously distributed frailty. The
estimator for the baseline hazard function extends an estimator for the transformation model
(Horowitz, 1996), accounting for censoring and the fact that the scale of the MPH model
with time varying coefficients (5.2) is fixed by the extreme value distribution for e. Horowitz
(1999) proposed estimating the scale separately and plugging this into the transformation model
estimator for the baseline cumulative hazard function.

We assume that the effect of the other covariates Z has been modeled a priori and a well-

specified MPH model with time varying coefficients (5.2),
A(tX =2, 2z,u) = Ao (t,3) exp [B4 ()" .2(2) + 1] ,

has been found. The model is then estimated, conditional on various covariate values. We
denote by Xo’ 1 (t, z) the corresponding estimator of the baseline hazard function, incorporating
unrestricted frailty and conditional on X = .

The testing procedure will be similar to Section 5.3.2, starting with the choice of » > 1 and

selection of 2r (r is a fixed positive integer, r > 1) distinct points, {x11, Z21, ..., Tr1, T12, T22, . . ., T2},
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x> x11,l = 1,...,r on the covariate space X. Next, we construct the basic statistics as

Ty(xp,x
Ty sta(zin, xi2) = (an, 2iz) ; (5.22)

\/\/fa\r (Tr(z11, 212)]

* *

~

Ty(xn,v2) = / L(mllaxm)(t)-XO,H(t»xll)-dt_/ L(xp1, 212) (). Mo,m (L, x12) -dt,
0 0

Var [T (2, w2)] = / / 1) 2(5).52 (w10, 32) (5 A 1) ds.d,
0 0

where L(z1,x2)(t) is a random process indexed on the pair of covariate values x;; and 9,

72 (1, x12)(t) is the sample variance (pointwise) of L(x;1, z2)(t), and

at) = Xom (tan) — Ao (t,22) | -
As in (5.19 — 5.21), these basic statistics are combined to construct our maxima, minima and
average test statistics (denoted T]({max)’ T](qmin) and Ty, respectively).

We now state the assumptions required for our asymptotic results. The first two assumptions
pertain to our testing procedure, while the following three relate to the estimator for baseline
hazard function under unrestricted frailty. For the sake of brevity, we give only a brief flavour
of the kind of assumptions required for estimation, and refer to Horowitz (1999) for technical

details.

The failure time data (713, d;, X;, Z; (t) ,U;) are independently and identically sampled from
the MPH model with time varying coefficients (5.2), for ¢ = 1,...,n. Here, T; denotes the
observed lifetime, §; is the censoring indicator, X; and Z; (t) are covariates, and Uj; is the
unobserved frailty. The following additional assumptions apply.

Assumption 5.8.5 The cut-off failure time, 7* > tg > 0, is a (large) positive lifetime such that

Ao (7%, 215) < 00,0l =1,2,...,7,j =1,2. The intermediate lifetime to is specified in Assumption
5.3.7 (b) below.

Assumption 5.8.6 For each Il = 1,2,...,r, let L(x;1,x12)(t) be a monotonic stochastic

process with sample paths in D[0,00) (i.e., right continuous with left limits), and with pointwise
finite first and second moments over the interval [0, 7*].

Assumption 5.3.7 (Identifiability conditions)
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(a) Frailty U is independent of covariates Z and censoring, and there is a tail restriction on

the frailty distribution.”

(b) For every covariate value X = x, A (t,x) is strictly increasing on [0,00) and is zero at

a fixed to (location normalisation).

(¢) The covariate effect of at least one of the covariates, say Zi, is significant and spans the
whole of the real line. The distribution of Z1 is absolutely continuous with respect to all

the others. There is no perfect multicollinearity amongst the covariates Z.

(d) Censoring is random, and possibly dependent on Z, but only through the single index

BT .2(t). In particular,censoring can be dependent on X, the covariate under test.

Assumption 5.3.8 (Smoothness conditions and kernel properties)

(a) Smoothness conditions involving several bounded derivatives for the unknown frailty distri-
bution, the baseline cumulative hazard function, the regression single index, B,(t)T.2(t),

and the distribution of the leading covariate Z.

(b) Several technical restrictions on admissible kernel functions and bandwidths.

Assumption 5.3.9 (Conditions on regression estimator) The underlying regression estimator

for the transformation model converges at n~Y/? rate and has bounded second moments.

Some qualifying comments are necessary. First, dependence between frailty and X is not
ruled out. However, we view testing for ptoportional hazards as a step towards appropriate
specification of a regression model. The additional assumption of independence may be required
for further modeling. Second, unlike the standard literature (see, for example, Andersen et al.,
1993), the setup in Horowitz (1999) allows censoring to depend on the covariates through the
single index. This, in our view represents a strength of the methodology, particularly allowing
censoring to depend on the covariate under test. Third, the methodology does not directly

allow for time varying covariates. However, if the regression coefficient is fixed, a time varying

"The tail condition is stronger than Heckman and Singer (1984a), but facilitates achieving a faster convergence
rate (Horowitz, 1999).
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covariate can be naturally accomodated by replacing the time varying covariate by its average
value over the observed lifetime. A similar approach can also be easily applied if the covariate
has time varying coefficients modeled using a histogram sieve (i.e., the coefficient is constant over

8 Fourth, standard regression estimators for the transformation model satisfy

time intervals).
the covergence rate and finite second moments conditions. Fifth, the smoothness and kernel
conditions are satisfied by the Horowitz (1999) estimator. Further, it turns out that appropriate
choice of bandwidths and other tuning parameters is very important for good performance of
the estimator. Finally, the Assumptions 5.3.7 through 5.3.9 ensure pointwise consistency of the
baseline hazard estimator, which is required for our tests.’

Additional conditions required for the test are given in Assumptions 5.3.5 and 5.3.6. These
comprise a deterministic cut-off at a failure time where the cumulative hazard function is finite,
and existence of second moments and monotonicity of the stochastic weight function. Another

required assumption, that of continuity of the baseline hazard rate, is already assumed in the

estimation procedure.

We are now ready to state the asymptotic results.
Theorem 5.3.2. Let Assumptions 5.5.5 through 5.3.9 hold. Then, under Ho py : Ao(t|X =
x) = c(t) for all z, as n — oo,
(a) P [T < 2] = [o(=")]',
(b) P15 2 —2*] = [@(=")]", and
(c) i Ty 25 N(0,1).

(Proof in Appendix.)

Corollary 5.3.3.

P {ar {Tgnax) - br} < z*} — exp[—exp(—z")] as r —

and P {ar {Tgnin) + br} > z*} — exp[—exp(z¥)] as r — oo,

8 A standard assumption in the literature, that of bounded total variation in the time varying coefficients, is
not required in the current setup.

YHorowitz (1999) actually shows that the estimator is uniformly consistent and pointwise asymptotically
gaussian.
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where a, = (21n7")1/2 and b, = (21n7“)1/2 -1 (21n7“)71/2 (Inln7 4 In4r) .

(Proof in Appendix).

A result similar to Corollary 5.3.2 on covariate dependent weighted tests is also available.
Details are very similar to Section 5.2, and are omitted. A final point worth noting is that,
while the form of the above test is similar to the test for absence of covariate effects (Section
5.2), as well as the test in Chapter 3 (Bhattacharjee, 2007a), there is a major point of difference.
The asymptotics here is derived by interpreting the test statistic as an integral of the baseline
hazard function with respect to the weight function, which is exactly the opposite from our
earlier approach. This is because, in this case, the weight functions are independent while
the baseline hazard estimates are dependent across the sample points. Different asymptotic
arguments are therefore required.

For the alternative estimator, proposed by Ggrgens and Horowitz (1999), which we consider
next, the above approach is not directly applicable, since an estimator is available only for the
baseline cumulative hazard function.'® On the other hand, this estimator has the advantage
of convergence to a Gaussian process with continuous sample paths. Despite this, it seems
inevitable that either a mixing or a m-dependence kind of assumption would be necessary for
the asymptotics in this case. This appears to be too strong a condition. Hence, we attempted
an alternative strategy, which is intuitive and potentially promising. Though this approach is
not entirely satisfactory, we report this below for the sake of completeness.

The estimator proposed by Gergens and Horowitz (1999) is an extension of Horowitz (1996)
to include censoring. It is valid for the more general transformation model and imposes the scale
normalisation restricting one of the regression coefficients to be unity (positive or negative). Like
the estimator in Horowitz (1999), this estimator too cannot directly accomodate time varying
covariates. However, an attractive feature of this approach is that the estimator for the baseline
cumulative hazard function converges to a Gaussian process with a consistent estimator for the
covariance function.

For our purpose, we adjust the Ggrgens and Horowitz (1999) estimator in the following way.

First, we assume that the effect of the other covariates Z has been modeled a priori and an

""However, as in Chapter 3 (Bhattacharjee, 2007a), a related test based on the cumulative hazard function
can be developed. The natural alternative hypothesis here will be based on star (or negative) star ordering.
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appropriate MPH model with time varying coefficients (5.2) has been found. Next, we adjust
the model in a way suitable for our test. Specifically, what we require are estimators of the

processes

/ Lo, 20) (1) Mo(t, mg).dt, =12,
0

where L(x1,x2)(t) is the random weight function corresponding to the covariate pair (z;1, xj2).

Now, [o L(21, m12)(t). Mo (t, 215) is the cumulative baseline hazard function in the modified model
N (X = my5, 2,u) = [L(zn, 212) ()Xo (t, 15)] - exp [— In Lz, z12) () + BT 2(t) + ul

where In L(x1, z12)(t) is an additional time varying covariate.

This model can now be estimated using the Ggrgens and Horowitz (1999) estimator. An
attractive feature of this procedure is that the scale normalisation is automatically satisfied,
since the new covariate In L(z;1, z;2)(t) has a regression coefficient —1. Note that the estimation
method does not directly allow for time varying covariates. This is because the MPH model with
time varying covariates is not a transformation model. But, in the case that the corresponding
coeflicient is fixed, this can be addressed by substituting the covariate value by an average over
the lifetime of the time varying covariate. This procedure can be followed for the additional
covariate above, by substituting for it the average value fOT 7= In L(wyy, 20)(t).dt. Since time
varying coefficients are incorporated in the model using histogram sieves, a similar procedure
can also be followed for all other time varying covariates.

We denote the resulting estimator for the baseline cumulative hazard function, conditional
on a given value for the index covariate, X = x, by KGI—LL(.Z’“,.Z‘IQ) (t, Tij, BZ> Similar assump-
tions are required here as the above method using the Horowitz (1999) estimator, with the
following modifications:

Assumption 5.3.7a (Identifiability conditions)

(a) In addition to covariates and censoring, frailty U is independent of the weight function

L(.’Ell, $12) (t) .

(b) The effect of one of the covariates, in our case L(xy1,x12)(t), is scaled to +£1 (scale nor-

malisation).
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(d) Censoring is independent of Z, and possibly depends on X, but only through the weight
function L(xjy,x12)(t).

Some qualifying comments are required for our implementation of the Ggrgens and Horowitz
(1999) estimator. First, dependence between frailty and the weight function is a strong assump-
tion in our case. We take the view that the relevant component of frailty here is its projection
onto the orthogonal space of the covariates and the weight function. This is in line with inter-
pretation of frailty as the effect of omitted covariates. Second, Ggrgens and Horowitz (1999)
allow censoring to depend on the covariates through the single index, which in our case is
—In L2y, 72)(t) + B4 (t)T.2(t). We assume independent censoring. However, since the weight
function itself may depend on the censoring pattern, we allow censoring to depend on X, but
only through the weight function. Third, as discussed above, the scale normalisation has a
natural interpretation in our case, since the weight function has a regression coefficient of —1.
Fourth, like the Horowitz (1999) procedure, appropriate choice of bandwidths and tuning para-
meters is difficult, and a potential limitation of this approach. Finally, while the test statistic
is obtained quite easily using the above procedure, variance estimation is a bit more critical.
For this purpose, we suggest the weighted and nonparametric bootstrap procedures developed
in Kosorok et al. (2004). These methods are valid under a wide class of continuous frailty
distributions, but under some additional assumptions; see Kosorok et al. (2004) for details.

In summary, for arbitrary continuous frailties, the tests based on the estimator proposed
by Horowitz (1999) is implementable. We have proposed an alternative procedure based on
the Ggrgens and Horowitz (1999) which, though potentially attractive, requires some further

development before it can be implemented in real data situations.

We now turn to an alternative nonparametric procedure to accomodate unrestricted frailty.
This is based on the Heckman and Singer (1984a, 1984b) idea of chracterising the unknown

frailty distribution by discrete mixtures of degenerate distributions in a sequence with increasing
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number (s = 2,3,...) of components:

my  with prob. m;

mo with prob. o
uie{mlz(),mg,...,ms}: ) , 8:2,3,...

ms with prob. my

The sequential procedure is terminated when subsequent steps lead to degeneracy or no im-
provement in the maximised likelihood. This methodology for approximating any arbitrary
frailty distribution is very useful in that it approximates the nonparametric frailty distribu-
tion by an increasing sequence of parametric distributions, and it produces robust estimates of
regression parameters and the baseline hazard function.!!

In our implementation, we follow Jenkins (1995) in combining the above frailty distrib-
ution with a discrete grouped failure time version of the proportional hazards model (1.17),

or the complementary log-log model (Cox, 1972; Kalbfleisch and Prentice, 1973; Prentice and
Gloeckler, 1978; Cox and Oakes, 1984), discussed previously in Section 1.2.7.5

In[-In{l-h (X =a21;,Z =2U=u)}] =7, + Bgi.zt + u,

where the time intervals are indexed by ¢ (= 1,2,...), hy denotes the discrete hazard rate in
interval ¢ conditional on X = x;;, Z = z and U = u, and Vi, denotes the baseline hazard rate
conditional on X = x;;. The model can be estimated using parametric maximum likelihood, for
each chosen covariate value X = z;;, to obtain the estimates ﬁt,%, Bz,t, s, {m1 =0,ma,...,ms}

and {71,7g,...,ms =1—71 — Ty — ... — Ts—1}. The covariate pairs are chosen as before.

The assumptions underlying the testing procedure, and a brief description of assumptions
for estimation are as follows.
The discrete failure time data (7}, d;, X;, Z; (t) ,U;) are independently and identically sam-

pled from the above complementary log-log model with discrete mixture frailties, for ¢ =

"However, the method often suggests frailty distributions with only 2 or 3 support points even when the
original is known to be a well dispersed continuous distribution. This could be because estimation of the frailty
distribution is a very difficult problem, with well documented convergence problems (Horowitz, 1999) .
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1,...,n. The following additional assumptions hold.

Assumption 5.3.10 The cut-off failure time 0 < T < oo is large but finite, and subject to the

condition that, for each x = ;5,7 =1,...,7,j = 1,2, and for each t, t =1,2,...,T, we have a
positive baseline hazard rate: vy, , > 0.

Assumption 5.8.11 For each I, = 1,2,...,r, let Li(x1,z12) be a monotonic discrete time

stochastic process with finite first and second moments for each t =1,...,T.

Assumption 5.3.12 (Identifiability conditions)

(a) Frailty U is independent of covariates Z and censoring. A tail restriction is required on
the frailty distribution, for both discrete and continuous failure times. For the test, we

also assume independence between frailty and the index covariate X.

(b) There is minimal variation in covariate effect for each covariate in Z. There is at least one
covariate effect that spans the whole of the real line. There is no perfect multicollinearity

amongst the covariates.

(¢) Censoring is random, and independent of Z and X.

Assumption 5.3.13 (Identification of finite mixture frailty distribution) The conditions, orig-

inally given by Lindsay (1983a, 1983b), state that the density of the data at each mass point of
the frailty distribution is a bounded function of the regression parameters.

Assumption 5.3.14 Boundedness and right continuity of the baseline hazard function and the

regression parameters.

The above assumptions are fairly standard. They are also less restrictive than the previous
case, since estimation here is a finite dimensional parametric problem, for each candidate value
of s > 1. However, like most other problems with mixture distributions, convergence is slow,
whether one uses gradient based methods or the EM (Expectations-Maximisation) algorithm.

Having obtained estimates under an appropriate model with time varying coefficients, the test
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statistics are constructed as before. The basic statistics as

Tys(xp, T2
Tusstd(Tn, xi2) = (@, 212) ,

\/\/f?;“ (Trs(z,z12)]

T
Tys(wp,w2) = ZLt(ZCu,xzz)- [Vt o — Vtzsa) » (5.23)
t=1
- T T
Var [THS (.’Ell, le)] = Z Z [;y\ta-rll - ?t,a)lg] ° [:Y\S,aill - :y\s,xlg] 'a—\g/\t(m”? .’L'lQ),
t=1 s=1

where 62, (211, 212) is the (pointwise) sample variance of the weight process Ly(z1,2). As in
(5.19 — 5.21), these basic statistics are combined to construct our maxima, minima and average
test statistics (denoted T[({rr;ax)’ ngin) and Ty, respectively).

Then, we have the following asymptotic results.
Theorem 5.3.3. Let Assumptions 5.5.10 through 5.3.14 hold. Then, under Ho ppg : v, = ct
for all =, as n — oo,

(a) P |T(5% < 2| — [0,
(b) P [T}I“;f“) > —z*] L [®(=")], and

(c) Vi Tus - N(0,1).
(Proof in Appendix.)

Corollary 5.3.4.

P [ar {TI({néaX) — br} < z*} — exp[—exp(—z¥)] asr — oo

and P [ar {ngin) + br} > z*} — exp[—exp(z¥)] as r — o0,

where a, = (21117")1/2 and b, = (2 lnr)l/2 -3 (21n7‘)71/2 (Inlnr + In4m).
(Proof in Appendix).
As in the continuous frailty case, covariate dependent weighted tests can also be employed.

Details are omitted here.

This completes our description of the proposed tests. A final point to note is that, the

discrete mixture frailty can also be used to model the frailty distribution in the continuous
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time MPH model. This approach may have some advantages both in ease of implementation
and computational effort. Similarly, the method based on maximum rank correlations, recently
proposed by Hausman and Woutersen (2005), may be useful in the discrete failure time setting,
particularly if we are not as such interested in estimating the frailty distribution. We have not

pursued either of these approaches here.

5.4.4 Choice of weight functions

As emphasized earlier, the form of the null hypothesis in the two testing problems considered
here are remarkably similar, and so are the test statistics proposed in Sections 5.3.2 and 5.3.3.
However, the nature of departures from the null hypothesis that we are interested in is different
for the two problems. Further, the choice of weight functions for the tests is left unspecified,
and will depend on the type of violations expected in either case.

In our tests for absence of covariate dependence, the relevant null hypothesis is (5.8) and
the alternatives of special interest are either trended (5.13) or changepoint trended (5.14). For
the corresponding two sample tests, the logrank weight function (Mantel, 1966; Cox, 1972; Peto
and Peto, 1972), given by L(t) = Y1(¢).Y2(t), is optimal for proportional hazards alternatives;
see, for example, Gill and Schumacher (1987) and Andersen et al. (1993). The proportional
hazards model describes in a natural and intuitive way the notion of trend, as represented in
the alternative hypothesis (5.13). However, a one-sided score test for Sy = 0 under the null
hypothesis may be too restrictive, as demonstrated in an application considered later. Further,
the log rank weight function is also useful for a changepoint trend alternative of the kind
(5.14), because both positive and negative trends are evident on different regions of the sample
space. In other words, the log rank weight function may be quite appropriate for the proposed
test for absence of covariate dependence, particularly if the suspected alternative is of a PH
nature. The Gehan-Breslow weight function (Gehan, 1965; Breslow, 1970), given by L(t) =
Y1(t).Ya(t). [Y1(t) + Ya(t)], may also be useful, particularly if censoring is high. Compared to
the logrank test, this weight function places higher weight on differences in the hazard function
at shorter failure times (Andersen et al., 1993).

By contrast, the two sample Peto-Prentice generalisation of the Wilcoxon test (Peto and

Peto, 1972; Prentice, 1978) is optimal for a time-transformed logistic location family (An-

182



dersen et al., 1993), and has higher power against alternatives with hazard ratio ordering
(convex or concave ordering). This property of the Prentice weight function is discussed in
Prentice (1978) and Gill and Schumacher (1987), and demonstrated in simulation studies
(Krogen and Magel, 2000; Jung and Jeong, 2003). The above weight function is given by
L(t) = Y1(t).Ya(t) [Y1(t) + Ya(t)] L 5(¢), where S(t) is a predictable analogue for the Kaplan
Meier estimator. Our interest here is in tests for proportional hazards against order restricted
covariate dependence, where the two sample representation of order restrictions TH RCC and
DHRCC is described by convex or concave ordering of the two failure time distributions. Hence,
the Prentice weight function will be appropriate for testing proportionality against these ordered

alternatives.!?

5.5 Simulation study

The asymptotic distributions of the proposed test statistics were derived in Section 5.3. Here,
we report results of a two simulation studies exploring the performance of the proposed tests for
absence of covariate effect and proportional hazards respectively, with respect to a continuous
covariate.

For absence of covariate dependence, we consider models of the form

AL, z) = Ao(t)- exp [B(¢, z)]

where \o(¢) and B(t, z) are chosen to represent different shapes of the baseline hazard function
and patterns of covariate dependence. In all cases, the null hypothesis of absence of covariate
dependence, Hy g, (5.8), holds if and only if B(¢,z) = 0. If, for fixed =, B(t, ) increases (or
decreases) in z, we have trended alternatives of the type Hgt,)Eq (5.13). If, on the other hand,
B(t, x) increases in x over some range of the covariate space, and decreases over another, we
have changepoint trend departures of the type chj)g q (5.14). The tests discussed in Section 5.3.2

are consistent against the global alternative H; g, (5.9), but are also expected to be powerful

12Note that, because of frailty, a martingale based framework/\is not available here and the predictability
property is therefore not useful. However, the cadlag nature of S(¢) makes the weight function itself cadlag,
which is required for our tests.
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against the above kinds of specific alternatives to the null hypothesis. Specifically, we consider
2 different specifications of the baseline hazard function in combination with 3 patterns of
covariate dependence. The Monte Carlo simulations are based on independent right-censored

data from the following 6 data generating processes described in Table 5.4.1.

TABLE 5.4.1: DATA GENERATING PROCESSES

(TEST FOR ABSENCE OF COVARIATE DEPENDENCE)

Model | Ao(t) | B(¢,z) | Median cens.dur. | % cens. | Expected significance
DGPyq | 2 0 0.32 7.7 None

DGPys | 2 @ 0.30 9.2 | T\ T,

DGPy3 | 2 || 0.20 6.6 | Tim) pimin)

DGPy; | 20t 0 0.17 9.4 None

DGPyy | 20t | = 0.16 104 | T Ty,

DGPys | 20t | |z| 0.14 74 | T imin)

The covariate X is distributed as Uniform(—1,1). The independent censoring variable C'
is distributed as Fxp(6) for DGP11, DGP12 and DGPi3 and Exp(2) for DG Pa1, DG Pay and
DG Py3. The data generating processes DG P; and DG Py belong to the null hypothesis (5.8),
DGPi5 and DG Pys are trended, and DG Py and DG Pog are changepoint trended alternatives.
We use the logrank test to construct the basic test statistics, and 100 distinct pairs of covariate
values are used to construct the maxima, minima and average test statistics (Tz(;nax), T;;nin) and
Tas, respectively). Table 5.4.1 presents simulation results for 1,000 simulations from the above
data generating processes with sample sizes of 100 and 200.

The nominal sizes are approximately maintained in the random samples, and the tests have
good power, with the exception of DG Pi3 and DG Pss. This is not surprising, since these two
data generation processes are changepoint trended, so that when a pair of points are drawn at
random from the covariate space, only a quarter of them will reflect the increasing nature of
covariate dependence, and another quarter reflect the decreasing trend. The results also reflect
the strength of the maxima and minima test statistics (TQ?aX) and TQ(;nin) respectively) in their

ability to detect non-monotonic departures (DG P35 and DGPa3) from the null hypothesis of

absence of covariate dependence.
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TABLE 5.4.2: TEST FOR ABSENCE OF COVARIATE DEPENDENCE

(REJECTION RATES (%) AT 5 % AND 1 % AsympTOTIC CONFIDENCE LEVELS)

Model | Test Sample size, Confidence level
statistic | 100, 5% | 200, 5% | 100, 1% | 200, 1%
DGPyy | T{&™ 3.76 5.59 0.67 1.08
(min) 7.23 5.66 1.18 0.88
Tas 5.46 5.35 1.19 0.99
DGPyy | T 95.46 | 100.00 | 82.98 | 100.00
{min) 2.43 1.91 0.41 0.80
T 96.82 | 100.00 | 87.95 | 100.00
DGPys | ™™ 26.06 63.30 5.67 29.41
{min) 38.19 70.62 12.29 40.40
Tas 5.67 4.83 1.23 0.94
DGPy, | T{™™) 3.90 5.51 0.53 1.61
T 7.24 6.12 1.45 0.79
Tas 5.62 5.68 0.92 1.35
DGPyy | T{M™ 97.18 | 100.00 | 86.03 99.87
T{mn) 2.69 1.85 0.41 0.82
Tas 97.71 | 100.00 | 92.02 | 100.00
DGPyy | TS 21.26 54.50 4.39 23.04
(min) 36.44 69.35 11.64 37.73
Tas 7.18 6.96 1.56 2.06

Though the tests proposed here are not directly comparable with other trend tests, we have
examined how these two categories of tests compare in terms of power. For the purpose of
applying the trend tests in the current context, we had to stratify the samples with respect to
the value of the covariate. This comparison shows our tests to perform favourably in comparison
with the Tarone (1975) and Liu and Tsai (1999) tests. For the models DG P2 and DG Pa3, and
sample size 200, the Tarone (1975) test had rejection rates at the 5% confidence level, of 73
and 7 per cent respectively. The corresponding figures for the test proposed by Liu and Tsai

(1999) were 81 and 9 per cent respectively.

Next, we examine the performance of the tests for the proportional hazards assumption in

the presence of frailty (5.3) against ordered alternatives of the IHRCC type (5.4, 5.5). The
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design of the data generating process is a combination of Horowitz (1999) and our Chapter 3

(Bhattacharjee, 2007a), and samples are generated from the model

A(t|z, z,u) = Ao(t).exp [— (Bx(t).x + B2 +u)],

with two scalar covariates X and Z, and independent frailty U. The covariate Z has pro-
portional hazards effect, §, = 1, while X has potentially time varying coefficients. In the
experiments, Z ~ N(0,1) while X has a right censored normal distribution with mean zero,
variance 0.25 and censoring point 1.9.13 We consider a single specification of the baseline hazard
function as

Xo(t) = 0.087¢,

and 2 different patterns of covariate dependence

1
Bx (t) = )
In(t)
in combination with 2 frailty distributions. One frailty distribution is continuous and defined

by the distribution function

F(u) = exp [~ exp (—u)],

so that exp (—U) has the unit exponential distribution, while the other is a discrete mixture with
masspoints at 0.48 and 0.64, and corresponding probabilities 0.6 and 0.4. The simulated lifetime
data are right censored by independent censoring times distributed as Uniform (0.5, 25.5).
Therefore, these Monte Carlo simulations are based on independent right-censored data
from 4 data generating processes (DGPs), defined by combinations of 2 specifications of the
regression function and 2 specifications of the frailty distribution. The description of the DGPs
and expected results are summarised in Table 5.4.3. The two DGPs with 5y (¢) = 1 belong to
the null hypothesis of proportional hazards, while the other two, with Sy (t) = In(t), are of the

THRCC type. There is substantial censoring, around 25 per cent, in each of the four models.

3The censoring addressed a discontinuity in the inverse of the distribution function at z = 2, and makes
simulations easier; this adjustment should not affect our results.
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TABLE 5.4.3: DATA GENERATING PROCESSES

(TEST FOR PROPORTIONAL HAZARDS, WITH FRAILTY)

Model | Mo(t) | Bx(t) Frailty Median cens.dur. | % cens. | Expected significance
DGPs; | 0.087¢ | 1 Continuous 5.23 23.4 None

DGPs, | 0.087t | In(t) | Continuous 5.37 25.8 | TUW™ Ty

DGPy; | 0.087¢ | 1 Mixture 5.16 23.6 None

DGP,, | 0.087t | In(t) | Mixture 5.37 25.4 | TUW) Ty

For constructing the test statistics, we divide the sample into deciles by the value of the
covariate X. The 45 pairwise combinations of these 10 deciles are used to construct the maxima,
minima and average tests.

However, implementing the test procedures for continuous unrestricted frailty using the
Horowitz (1999) estimator turned out to be very challenging. The main problem was finding
appropriate bandwidths and tuning parameters in a consistent manner to make the Monte Carlo
useful.'* Horowitz (1999) suggests the use of cross-validation or bootstrap for this purpose.
Using cross-validation, we could implement the method fairly well for individual samples, but
not consistently over repeated runs of the Monte Carlo experiment. How far the bootstrap
procedures suggested in Kosorok et al. (2004) are useful remains a research question. On the
positive side, our study shows that, using cross-validation, the method can be implemented in
individual applications fairly well.

Implementing the Heckman and Singer (1984a) method was relatively more straightforward.
For this purpose, we transformed our data into grouped data form by censoring over unit
intervals. As noted in the literature (see, for example, Jenkins, 1995), the maximum likelihood
procedure had convergence problems. Making use of multiple starting values, different candidate
maximisation algorithms, and by adjusting tolerance levels on the Hessian, we were able to
implement the procedure with sample sizes upwards of 1000.'> The results presented in Table
5.4.4 are based on a larger sample size of 10, 000, which was convenient for working with repeated
Monte Carlo samples. Our exercise also suggests that it may be useful to use the entire data

to estimate the frailty distribution, while using data for each decile to estimate the baseline

M The critical issue is that estimation of the scale parameter is a difficult problem. Further, attempts to
estimate this parameter well compromises the baseline hazard estimate, which is the main input for our tests.

15With a sample size of 1000, each decile has only 100 data points, which makes estimation of the frailty
distribution quite challenging.
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hazard function; we have not investigated this approach further.

TABLE 5.4.4: TEST FOR PROPORTIONAL HAZARDS, WITH FRAILTY

(REJECTION RATES (%) AT 5 % AND 1 % AsympToTIC CONFIDENCE LEVELS)

Model | Test Sample size, Confidence level
statistic | 10000, 5% 10000, 1%
DGPyy | T 8.5 0.5
T 3.0 1.0
Tus 3.5 2.0
DGP3y | T 91.0 61.5
T 15 0.0
Tus 100.0 100.0
DGPy, | T 7.5 0.5
T 3.5 L5
Tus 5.5 1.5
DGPyy | T 96.5 69.0
T 2.0 0.0
Tus 100.0 99.5

Considering the challenges noted above, and slow convergence of the maximum likelihood
procedure, we report results based on a modest 200 Monte Carlo replications for each of the four
DGPs. The performance of the tests is encouraging, in that nominal sizes are approximately

maintained, and power is very good.

Overall, our Monte Carlo study confirms the usefulness of the proposed tests for both the

testing problems considered. In the next Section, we put our methods to test on real life data.

5.6 An application

Here, we illustrate the use of the tests proposed in this chapter using an application based
on real life data. The objective is to study the effect of aggregate Q on the hazard rate of
corporate failure in the UK. The data are on firm exits through bankruptcy over the period
1980 to 1998 and pertain to 2789 listed manufacturing companies, covering 24,034 company

years and includes 95 bankruptcies. The data are right censored (by the competing risks of
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acquisitions, delisting etc.), left truncated in 1980, and contain staggered entries. Here the focus
of our analysis is on the impact of aggregate (Q on corporate failure. Following usual practice,
we consider the reciprocal of Q as the continuous covariate in our regression model.'¢

A priori, we expect periods with higher values of the covariate to correspond to lower
incidence of bankruptcy. However, estimates of the Cox proportional hazards model on these
data reports a hazard ratio (exponential of the regression coefficient) of 0.92, with p-value 0.156
per cent. Taking this evidence on face value, one might therefore be inclined to believe that
covariate dependence is absent. However, such lack of evidence for the covariate effect could

also result from model misspecification. This possibility suggests that we could take a more

nonparametric approach that does not assume a prior: the structure of the regression model.

TABLE 5.5.1: TESTS FOR ABSENCE OF COVARIATE DEPENDENCE

(UK CORPORATE BANKRUPTCY DATA)

Test Test Statistic | p-value
T{™™) _ Logrank 0.592 1.0000
T{™™ - Logrank —3.732 0.0188
T{"*) _ Gehan-Breslow 0.500 1.0000
T{™™) . Gehan-Breslow —3.046 0.0370

Descriptive graphical tests based on counting processes conditional on several pairs of co-
variate values indicate significant trend in the hazard functions. Since our tests of absence of
covariate dependence are powerful against trended alternatives, we apply the tests to these data
(Table 5.5.1). Each of the tests were based on 20 pairs of distinct covariate values, drawn at
random from the marginal distribution of the covariate. The results of the tests support our a
priori belief; the null hypothesis is rejected at 5 per cent level of significance in favour of the al-
ternative of negative trend, Hf : A(t|x1) < A(t|xz) for all z; > x9 (with strict inequality holding
for some 1 > x2). This implies that, contrary to estimates of a standard Cox regression model,
higher aggregate Q significantly depresses the hazard of business exit due to bankruptcy.

Further, the maxima and minima test statistics provide additional information on the co-

variate pairs for which the basic test statistics assume their extreme values, which may be

1The dataset constitutes the empirical context behind much of the work in this thesis. It has been discussed
earlier in Chapters 3 and 4, and will be used in Chapter 6 too. More detailed analysis of these data, based on
Bhattacharjee et al. (2008a, 2008b) will be discussed in Chapter 7.
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useful for investigating the nature of departures from proportionality.!” For example, the sig-
nificant test-statistics Tz(znin) are attained for the covariate pairs {—0.058,0.116} (7th and 63rd
percentile) for the logrank weight function (and {—0.017,0.098} (10th and 50th percentile) for

the Gehan-Breslow weight function). This provides further evidence of trend.

TABLE 5.5.2: TIME VARYING COEFFICIENTS MODEL
(ESTIMATES BASED ON UK CORPORATE BANKRUPTCY DATA)
Model/ Parameter | Hazard Ratio | z-stat.
Q.1 [te[0,9)] 0.947 —0.54
Q.1 [te]9,17)] 0.773 ~1.30
QI
QI

te[17,26)] 0.147 —2.06
t€[26, 00)] 0.193 —2.96

[
[
[
[

To explore whether this apparent trend in conditional hazard functions was masked in the
Cox regression model (and the score test) by lack of proportionality, we present in Table 5.5.2 a
time varying coefficient model for the same data estimated using the histogram sieve estimators
(Murphy and Sen, 1991).

The results confirm the presence of trend, particularly at higher ages. Similarly, tests for
proportional hazards against order restricted covariate effects in the absence of frailty, discussed
in Chapter 3 (Bhattacharjee, 2007a), reject the null hypothesis of proportionality against a
DHRCC (5.11) alternative.!

However, the above inference could also be misleading because of model misspecification,
particularly in the form of omitted covariates. In fact, the estimated empirical model, with a
single covariate, is rather simplistic and it is quite likely that frailty is present in these data.
Therefore, we include firm size (measured by logarithm, of fixed assets divided by 10 and
incremented by one), as an additional covariate and apply the proposed tests for proportional
hazards allowing for unrestricted frailty. The measure of size considered assumes both positive
and negative values, and is expected to be an important firm level covariate. We allow size to
have age varying coefficients, model frailty using the Heckman and Singer (1984a) procedure,

and estimate grouped failure time proportional hazards models conditional on various values

'"This is in line with the way we approximately located changepoints in Chapter 3 (Bhattacharjee, 2007a).
'8Specifically, the test statistics ngm) and Tgs are both significant at the 1 per cent level of significance.
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of the covariate under test, Q. As expected, there is significant frailty in the data. However,
the tests for proportional hazards, based on 20 randomly chosen covariate pairs, produce the
same inference as before. The null hypothesis of proportionbal hazards is rejected in favour of
a DHRCC alternative. Both T, C(gin) and Tgg are significant, at the 5 per cent and 1 per cent

levels of significance respectively.

The above application demonstrates the use of the proposed test statistics. The first set of
tests are useful not only for detecting presence of covariate dependence for continuous covariates,
but also for detecting trend and changepoint trend in the effect of a covariate. Further, these
tests can provide clues about the approximate location of such changepoints, when present.
Similarly, the proposed tests for proportional hazards are powerful against ordered covariate
effects, in the presence of arbitrary frailty. These tests are useful not only for detecting violation
of the proportional hazards assumption, but also for understanding the nature of departures

from proportionality and for subsequent modeling.

5.7 Conclusion

In summary, the tests described in this chapter add important tools to the armoury of a lifetime
or duration data analyst. Our work extends an important class of two sample tests for equality
of hazards to a continuous covariate framework, both for discrete and continuous failure time
data, and with and without the presence of frailty. The work extends the horizon of inference
procedures beyond martingale based continuous failure time methods described in Fleming and
Harrington (1991) and Andersen et al. (1993), extensions to discrete life history data (Hjort,
1985; Sengupta and Jammalamadaka, 1993), shared frailty models (Spiekerman and Lin, 1998;
Andersen et al., 1999) and recurrent failure time data (Lin et al., 2000; Lin and Ying, 2001).
The proposed tests for absence of covariate effect are powerful against trended and change-
point trended alternatives. Hence, they allow more precise inferences on the direction of co-
variate effects. Perhaps most importantly, the methods do not make any strong assumptions
regarding the underlying regression model, and thereby provide robust inference. Using simu-
lated data and a real life application, the strength of the tests is demonstrated and more specific

inferences are derived regarding the nature of covariate dependence.
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Further, our main contribution here is in extending tests for proportionality with respect
to a continuous covariate against ordered alternatives in the presence of individual level frailty
with unrestricted distribution. Here, counting process arguments do not hold, but we use
empirical process theory to extend standard two sample tests to this setup. In conjunction
with Chapter 3 (Bhattacharjee, 2007a), this work therefore extends many of the two sample
tests to the continuous covariate setup, and thereby makes these tests more readily usable in
real life applications.

The basic statistics encountered in our tests for proportional hazards are of the form
n
> / Ki(t).H(t).dt, (5.24)
i=1

where K;(.) (¢ =1,...,n) are iid copies of stochastic processes, and H(.) involves data from all
the n observations. By contrast, for testing absence of covariate dependence, we used statistics
like
n
> / Ki(t).dM;(t), (5.25)
i=1

which are standard in the analysis of failure time data based on counting processes. For (5.25),
asymptotic results typically follow from martingale theory, under the conditions that M;(.) are
martingales and K;(.) are predictable processes. Using empirical process arguments, Lin et al.
(2000) and Lin and Ying (2001) have extended inference methods for (5.25) to statistics where
the K;(.) are replaced by a process H(.) involving data from all the observations. We show how
modern empirical process theory in combination with Theorem 2.3.1 (Sengupta et al., 1998)

can be used to derive asymptotic theory for the statistics like (5.24).

Several areas of further research emerge from our work. First, the development of asymptotic
arguments for statistics like (5.24) is useful in contexts well beyond the current application. In
fact, the tests proposed here do not fully use the strengths of this methodology. While the
fact that K;(.) are monotonic simplifies arguments in our case, the condition required is that
the process has a finite pseudodimension, as defined by Pollard (1990). Similarly, the main
condition required of H(¢) is that it has a continuous probability limit. For example, in the

context of frailty models, one can think of alternate statistics constructed by plugging-in the
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estimated frailty distribution in the counting process martingale. Exploration of these and
other applications is beyond our current scope.

Second, the tests for absence of covariate dependence extend a well-known family of two-
sample tests to the continuous covariate setup. Together with related tests for proportional
hazards developed in Chapter 2, these methods raise important new research questions, par-
ticularly relating to inference on the changepoint in hazard regression models, and on effective
and efficient ways to conduct joint inference on several continuous covariates. These problems
will be retained for future work.

Third, development of new tests for the proportional hazards assumption using either the
Gorgens and Horowitz (1999) estimator, or by pooled estimation of the frailty distribution using
the Heckman and Singer (1984a) approach, will be useful extensions of the current work.

Fourth, the proposed tests for proportional hazards in the presence of frailty, together with
the application considered here, further emphasize the importance of considering frailty together
with monotonic covariate effects in empirical studies. In Section 7.4 (Bhattacharjee, 2007c),
we return to this issue and consider joint modeling of nonproportional covariate effects and
unrestricted frailty.

Fifth, our work here demonstrates that appropriate specification of the frailty distribution
is important not only for inference on the nature of and order restrictions on the covariate
effects, but also on the shape of the baseline hazard function. In Chapter 6 (Bhattacharjee and
Bhattacharjee, 2007), we develop Bayesian methods to address the issue of joint inference on
potentially nonproportional covariate effects and order restrictions on ageing, in the presence
of unrestricted frailty.

Finally, and perhaps most importantly, our simulation study as well as the application con-
sidered point to the need to make important progress in the estimation of hazard regression
models under unrestricted frailty. This is statistically a difficult problem. As we have dis-
cussed, currently available methods are not satisfactory, either due to convergence issues or
the degree of specific tuning required for their implementation. We have discussed some al-
ternative approaches earlier. In particular, developing an appropriate bootstrap procedure for

the Horowitz (1999) estimator and the maximum rank correlation approach of Hausman and
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Woutersen (2005) may both be useful.! This is currently an active research area, and further

developments will emerge in coming years.

Appendix to Chapter 5

Proof of Theorem 5.3.1
It follows from standard counting process arguments (see, for example, Andersen et. al, 1993)

that, under Hy g, (5.8), for [ =1,...,r,

2 T
Tgs (:Cll, 3312) = Z/O K(l‘ll, xlg)(t). [5” — Y(t, xll) {Y(t, :Cll) -+ Y(t, le)}*l
j=1

AM(t, 15),
where ¢ is the Kronecker delta function, and M(¢,x;;),l = 1,...,7,j = 1,2 are the innovation
martingales corresponding to the counting processes N(t,x;;),l =1,...,7,5=1,2.
Therefore, M(t,x;;),l = 1,...,r,j = 1,2 are independent Gaussian processes with zero
means, independent increments and variance functions
T dA (s, zy;
Var [M(t, z1;)] = / dA (5, 2i)
0 y(S, xl])

Since Var [T (771, x12)] is a consistent estimator for the variance of Ths (21, x2), we have as

n — 00,

Tog (@17@2) ﬂ) N(O 1) l=1,....m7.
\/\//zﬁ [Tos (11, 712)]

The proof of the Theorem would follow, if it further holds that Thg g (1, 212), L =1,...,7

Tos sta (T11,T12) =

are asymptotically independent.
This follows from a version of Rebolledo’s central limit theorem (see Andersen et al.,

1993), noting that the innovation martingales corresponding to components of a vector count-

19 Another recent approach developed in Zeng and Lin (2007) makes it possible to computationally address
frailty issues in much more challenging models; the statistical content of their work uses empirical process
methods. However, their development appears to be heavily specific to the assumption of the lognormal frailty
distribution, which appears to be quite restrictive (Bickel, 2007; Horowitz, 2007).

194



ing process are orthogonal, and the vector of these martingales asymptotically converge to a
Gaussian martingale. A similar argument in the context of testing for proporional hazards is
given in Chapter 3 (Bhattacharjee, 2007a).

It follows that

Tos std (T11, T12)

Tos sta (21, T
2s,st ( 21 22) gN(Q,Ir),

i T25,std ($T17x7“2) ]

where I, is the identity matrix of order r.

Proofs of (a), (b) and (c) follow.

Proof of Corollary 5.3.1
Proof follows from the well known result in extreme value theory regarding the asymptotic
distribution of the maximum of a sample of iid N(0,1) variates (see, for example, Berman,

1992), and invoking the §-method by noting that maxima and minima are continuous functions.

O
Proof of Corollary 5.3.2
From Theorem 5.3.1, we have:
Ths std (11, T12)
T std (221, T22
s.std ( ) D, N (0.1,
L TZs,std (1'7‘17 331"2)
where I, is the identity matrix of order r.
The proof follows straightaway.
O
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Proof of Theorem 5.3.2
Recall that our basic statistics, conditional on the covariate pair (z;1, z2), are

* *

TH(IL’”, $12) = / L(:L‘ll, :L’lg)(t).XQH (t, IL‘“) .dt — / L(xll, 3312)(?5).3\\07}[ (t, xlg) .dt.
0 0

We first show that the above statistic converges weakly to a mean zero normal distribution
under the null hypothesis, then show that the variance estimator is consistent, so that the
standardised statistic is asymptotically standard normal, and finally that the statistics are
aysmptotically independent for different pairs of covariate values. The proof then follows from

Theorem 5.3.1 above.

For proving weak convergence of the basic statistic, we make use of Theorem 2.3.1 (Sengupta
et al., 1998). In order to study the convergence of 7,7 = 1,2, we replace K, (t) and X, (¢) in
the above theorem by [/):Oﬂ (t,zp) : XQH (¢, .%'12>:|T and [L(x1,x12)(t)], respectively.

It follows from Horowitz (1999) (Corollary 1.1) that

(EO,H (, wn)) P, <)\07H (t, x11)>
Ao,u (T, 712) Ao (t,212))
for t € [0, 7], and by our assumptions, Ao g (¢, ;) are continuous functions on [0, 7*].

Now, by our assumption, the weight function L(z;1,x;2)(t) is monotone. Since monotone
functions have pseudodimension 1, the process L(x;1, z;2)() is manageable (Pollard, 1990; Bilias
et al., 1997). It then follows from the functional central limit theorem (Pollard, 1990) that
L(z1,712)(t) converges weakly to a Gaussian process. Example 2.11.16 in van der Vaart and
Wellner (1996) can also be slightly modified to show that a monotonic process with finite first
and second moments on an interval converges weakly to a Gaussian process. However, we
prefer the first approach because it can be used in other applications where the process is not
necessarily monotonic.

Now, by applying Theoren 2.3.1, we have

~

(CC“, $12)(t)] .)\07[-[ (t, ZL‘ll) Clt) A) <f(;—* )\O,H (t, 5611) .W(.Tll, In)(t).dt)

-1
! A f(;* Xo,H (t, ) W(xp, z2)(t).dt

<f0T* n1/2 [L(z1, 212)(t)
(xlla $l2)(t)] .>\07H (t, .’L'lg) .dt

foT* n=Y2 [L(xg1, 22) ()
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where [(x;1, 2;2) (%) is the asymptotic mean process corresponding to L(x;1, z2)(t), and W (xj1, x12)(t)

is a Gaussian process. It follows that

*

/ n~ Y2 [L(w, w12) (t) — U, 212) (t)] - /)\\071{ (t,xpn) — Xo,H (t,z2) | -dt
0

p [T
— / No,m (t,x11) — Ao, (8, 212)] W (211, 212) (8).dt.
0
This completes the first part of the proof.

The above limiting distribution is Gaussian with mean zero, and variance

/OT* /OT* c(t).c(s).V (s A t) .dsdt,

where

c(t) = [Mo,m (t,z11) — Ao, (£, 212)]

and V(.) is the variance process of the limiting distribution of n=1/2 [L(zg1, xp2) () — Uz, 212) ()]

Since, conditional on the covariate pair (z;1,xj2), ¢(t) is consistently estimated by

[XO,H (t, 1) — X[)’H (¢, xlg)] , and V(¢) is estimated consistently (pointwise) by the sample vari-

ance of L(xjy,x12)(t), Var [T (21, x12)] is a consistent estimator of the variance of Ty (1, z52).
Since Var [T (211, x12)] is a consistent estimator for the variance of Ty (xj1, 212), we have as

n — oo,

T
H($117$12> iN(O, 1), l=1,...,r

T sta (T11,T12) = ——
V/Var [Ty (@, @)

The proof of the Theorem will now follow, if it further holds that Ty stq (211, 212) , 1 = 1,...,7
are asymptotically independent. This follows because sampling is independent for the counting

processes N (t,x;;) conditional on different covariate values z;; (I =1,...,7r;7 = 1,2).
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It follows that

Th,sta (211, T12)

T T91, T
H,std (T21, T22) £>N(Q,Ir),

L TH,std (xrlvmrﬂ) ]

where I, is the identity matrix of order r.

Proofs of (a), (b) and (c) follow.

Proof of Corollary 5.3.3

Proof follows exactly in the same way as Corollary 5.3.1.

Proof of Theorem 5.3.3
With discrete data, the problem here is finite dimensional, and therefore the proofs are simpler.
Our basic statistics, conditional on the covariate pair (x;1, z2), are

Trs(xi,x2) (@1, 12)- Viwy — Vo)

IIMH

We follow a similar approach to the proof of Theorem 5.3.1, first showing that the above statistic
converges weakly to a mean zero normal distribution under the null hypothesis, then showing
that the variance estimator is consistent, so that the standardised statistic is asymptotically
standard normal, and finally that the statistics are aysmptotically independent for different

pairs of covariate values. The proof then follows from Theorem 5.3.1.

Since Tys(xp1,22) is a finite linear combination of statistics like Lt(ﬂl@&)ﬁt,% (t =
LT 1=1,...,m; 7 =1,2), weak convergence of the basic statistic follows from weak con-
vergence of a vector comprising all the above statistics to the multivariate normal distribution.
Arguing as in Theorem 5.3.2, monotonicity of the weight function L;(z;1,x2) implies it has
pseudodimension 1, and therefore the process L;(xj1,xj2) is manageable (Pollard, 1990; Bilias
et al., 1997). It then follows from the functional central limit theorem (Pollard, 1990) that

Li(xp1, x12) converges weakly to a Gaussian process.
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Further, :V\t&vu are consistent estimators of the corresponding parameters Ve implying
~ P
that f)/t,a?l]' - 7t,xlj-
Weak convergence of Tyg(zi1,x12) to a mean zero Gaussian distribution now follows by
routine application of Slutsky’s theorem, continuous mapping theorem and the multivariate

central limit theorem.

As in proof of Theorem 5.3.2, the variance of the limiting distribution is given by

T T

ZZ [fYt,z‘“ - f)/t,a:m] . [757$l1 - 75,&:12] 'Uz/\t(xlla xl2)7

t=1 s=1

where O'% (x11, 212) is the variance process of the limiting distribution of L¢(xj1, xj2). Since, condi-
tional on the covariate pair (11, i2), [Vi.2, — Vi) 1S Consistently estimated by [y 2., — Ve.e1)»
and o2(w1, 212) is estimated consistently by the sample variance of Ly (z1, 72), Var (Trs(x,z2)]
is a consistent estimator of the variance of Trs(xj1,z2).

Further, since Var [Trs (x11,x12)] is a consistent estimator for the variance of Trg (1, 22),
we have as n — o0,

T
ms (T, T12) AN(O,I), l=1,...,r

Tus,sta (T11,T12) = ——
\/Var (Tus (211, 212)]

The proof of the Theorem would follow, if it further holds that Trg stq (@11, 212) , L = 1,...,7
are asymptotically independent. This follows because sampling is independent for the counting
processes N (t,x;;) conditional on different covariate values z;; (I =1,...,7m;7 = 1,2).

It follows that

Tys,std (11, T12)

THsS, std (T21, T22
,st ( ) L N(Q, Ir),

| Tus,std (Tr1, Tr2) |

where I, is the identity matrix of order r.

Proofs of (a), (b) and (c) follow.
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Proof of Corollary 5.3.4

Proof follows exactly in the same way as the proof of Corollary 5.3.1.
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Chapter 6

Bayesian Analysis of Hazard
Regression Models under Order
Restrictions on Covariate Effects

and Ageing

6.1 Chapter summary

In this chapter, based on Bhattacharjee and Bhattacharjee (2007), we propose Bayesian infer-
ence in hazard regression models where the baseline hazard is unknown, covariate effects are
possibly non-proportional, and there is multiplicative frailty with unknown distribution. The
covariate effects, which are potentially ordered rather than proportional, are estimated and eval-
uated using time varying coefficients. In addition, we consider restrictions on ageing, specifically
in the nature of a decreasing baseline hazard function. Thus, the proposed framework enables
evaluation of order restrictions in the nature of both covariate and duration dependence (age-
ing), and in the presence of unrestricted frailty. The usefulness of the proposed Bayesian model

and inference methods are illustrated with an application to corporate bankruptcies in the UK.
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6.2 Introduction

Understanding the nature of covariate dependence and ageing are the main objectives of regres-
sion analysis of lifetime data. In many applications, relevant underlying theory or preliminary
analysis may suggest that there are important order restrictions on either covariate dependence,
or the shape of the baseline hazard, or both. Parametric inference in such situations can be
conducted by making functional form or distributional assumptions that impose the above order
restrictions. However, such assumptions can be very restrictive and may lead to weak inference.
Instead, one may aim to conduct order restricted nonparametric analysis under the constraints
implied by theory or past experience. In fact, such inference can also be used to judge the
validity of the order restrictions themselves.

In this chapter, we propose Bayesian models to conduct order restricted nonparametric in-
ference in applications with single spell lifetime data. Specifically, our framework for inference
in hazard regression models incorporates three important features. First, we do not assume
proportional hazards with respect to all covariates included in the analysis. As discussed ear-
lier in Chapters 2, 3, 4 and 5 (Sengupta et al., 1998; Bhattacharjee, 2004a, 2007a, 2007b),
the proportionality assumption underlying the Cox regression hazards model does not hold in
many applications. At the same time, credible inference under the model depends crucially
on the validity of the proportionality assumption. Further, the effect of a covariate is often
monotone, in the sense that the lifetime (or duration) conditional on a higher value of the co-
variate ages faster or slower than that conditional on a lower value (Chapter 3, Bhattacharjee,
2007a). In particular, we consider relative ageing in the nature of convex or concave ordering
(Kalashnikov and Rachev, 1986) of lifetime distributions conditional on different values of the
covariate in question. Ordered departures of this kind are common in applications, and the
models provide useful and intuitively appealing descriptions of covariate dependence in non-
proportional situations. Further, as discussed in Chapter 4, ordered departures of the above
kind can be convenienty studied in a Cox type regression model with time varying coefficients
(Bhattacharjee, 2003, 2004a), where positive ageing for higher covariate values implies that the
time varying effect of the covariate is a nondecreasing function of lifetime. In other words,
our hypothesized covariate efects are of the ITHRCC or DHRCC type (Definition 3.2.1), with

monotone time varying coefficients for some selected covariates, in cases when the proportional
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hazards assumption fails to hold.

Second, in addition to order restricted covariate dependence, we allow for constraints on the
shape of the baseline hazard function. These order restrictions will typically be in the nature of
monotone increasing or decreasing baseline hazard rates. They could also be characterised by
weaker notions of ageing, such as "new better than used". As discussed above, these kinds of
ordering are important in many applications, and reflect the inherent structural nature of the
ageing process, irrespective of differences in observed or unobserved covariates.

The third feature of our work is in the treatment of frailty. In our approach, unobserved
covariates induce hazard rates to vary across individuals in two different ways. Unobserved
covariates that act at the group level (and are therefore identified by group membership) are
incorporated in our model as fixed effects heterogeneity. In addition, as in Chapter 5 (Bhat-
tacharjee, 2007b), we allow a scalar unobserved covariate independent of the included regressors
which has a completely unspecified distribution. Our approach is in contrast of much of the lit-
erature that specifies a parametric frailty distribution. Our chosen nonparametric approach to
modeling frailty (Heckman and Singer, 1984a) operates through a sequence of discrete multino-
mial distributions. Each of these distributions comprises a set of mass points along with the
probabilities of a subject being located at each mass point. By progressively increasing the
number of mass points, we are able to approximate any arbitrary frailty distribution; see also
Section 1.2.6 and Chapter 5 (Bhattacharjee, 2007b) for previous discussion of the Heckman and
Singer (1984a) approach.

The Bayesian approach adopted in the current work offers three main advantages. First,
as discussed above, we develop Bayesian inference incorporating order restrictions jointly on
covariate and duration dependence, in the presence of unrestricted univariate frailty. As dis-
cussed in Chapter 5 (Bhattacharjee, 2007b), frequentist inference on nonproportional covariate
effects with an unrestricted frailty distribution is itself a challenging problem. As one may
imagine, the computational challenges would be further enhanced in the presence of additional
order restrictions on ageing. In this regard, the Bayesian framework, with its associated effi-
cient MCMC implementations, offers an attractive and implementable approach. Second, the
framework enables prior beliefs to be explicitly incorporated in the model, particularly beliefs

regarding the assumed order restrictions. Therefore, this constitutes a natural and particularly
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attractive approach for inference under order restrictions. Further, if these prior beliefs can be
represented by models that place zero mass on specific regions of the parameter space, the pos-
terior distributions too would have the same property. This feature of the Bayesian approach
makes it an useful framework for studying order restrictions. Third, the Bayesian framework
offer the important advantage of accommodating, in a natural way, parameter uncertainty in-
volved in the inference process. As discussed in Chapter 4 (Bhattacharjee, 2004a), it is difficult
in the frequentist approach to adjust estimation procedures for such uncertainty, and obtain
standard errors accounting for pretesting. This issue is addressed in a very natural way in the
Bayesian approach adopted in this chapter.

The chapter is organised as follows. Section 6.2 presents a selective review of the literature.
We describe our model in Section 6.3 and our application is presented and discussed in Section

6.4. Finally, Section 6.5 concludes.

6.3 Background

Here, our context is order restricted Bayesian semiparametric inference for hazard regression
models. Specifically, we consider the MPH model with time varying coefficients (1.14, 5.2)

A () X,;(t) = Ao(t). exp [@(t)T.Xi(t)] A, u;e (0, 00) i Fy,
where order restrictions on covariate dependence posit monotone time varying coefficients for
some of the covariates, and order restricitions on ageing imply shape constraints on A\o(t).
Further, the distribution of individual level frailty is completely unrestricted.

The work here is quite unique in that there is very little prior literature in this specific
area. However, there is literature in several related areas, both in a Bayesian paradigm as
well as frequentist inference. Earlier, in Section 1.2.8, we have surveyed the related literature
on Bayesian semiparametric inference in the hazard regression models. Similarly, the relevant
literature in the frequentist framework has been discussed in Chapters 1, 2 and 3.

Here, we briefly survey the literature on order restricted Bayesian and frequentist inference
with a view to place our current work within the context of the literature and to highlight the

distinctive nature of our approach.
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6.3.1 Bayesian semiparametric inference

Semiparametric approaches to Bayesian inference in hazard regression models usually assume
the standard Cox proportional hazards model with (time varying) covariates. The covariate
effects are held constant over the lifetime, but the baseline hazard function is unrestricted.
Various Bayesian formulations of the model differ mainly in the nonparametric specification of
Ao(t); see Section 1.2.8 for further discussion. A notable departure is the work of Gamerman
(1991), where time varying coefficients are modeled using a Markov process, and a subsequent
refinement proposed by Sargent (1997).

As discussed in Section 1.2.8.3, Bayesian approaches have genrally addressed the presence
of frailty using various parametric distributions. At the same time, in its ability to deal with
potentially large number of latent variables, the Bayesian framework offers the possibility of
a more nonparametric approach to modeling individual level frailty. Based on repeated fail-
ures data, Bhattacharjee et al. (2003) and Arjas and Bhattacharjee (2003) have proposed
a hierarchical Bayesian model based on a latent variable structure for modeling unobserved
heterogeneity; the model is very powerful and shown to be useful in applications. Since our
application here is based on single failure per subject data, we use a latent variable structure
but with the objective of inferring on the frailty distribution rather than the latent variables
themselves. We model frailty in two different ways. First, we divide the subjects into groups
and incorporate fixed effects unobserved heterogeneity across these different groups. Second,
as in Chapter 5 (Bhattacherjee, 2007b), we model individual level frailty in a more nonpara-
metric tradition (Heckman and Singer, 1984a) by introducing a sequence of multinomial frailty
distributions with increasing number of support points; for a related Bayesian implementation,

see Campolieti (2001).

However, our main focus in this chapter is on order restricted inference in hazard regression
models. The literature on order restricted Bayesian inference, with restrictions either on the
shape of the baseline hazard function or on the nature of covariate depence, is rather limited.
Contributions in this area relevant to our current work include Arjas and Gasbarra (1996),
Sinha et al. (1999), Gelfand and Kottas (2001) and Dunson and Herring (2003).

Arjas and Gasbarra (1996) developed models of the hazard rate processes in two samples
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under the restriction of stochastic ordering. They defined their prior on the space of pairs
of hazard rate functions; the unconstrained prior in this space consists of piecewise constant
gamma distributed hazards which incorporate path dependence. The constrained prior is then
constructed by restricting to a subspace on which the maintained order restriction holds. In
their work, Arjas and Gasbarra (1996) propose a coupled and constrained Metropolis-Hastings
algorithm for posterior elicitation based on the order restriction and also for Bayesian evaluation
of the stochastic ordering assumed in the analysis. For the same problem, Gelfand and Kottas
(2001) developed an alternative prior specification and computational algorithm. The Bayesian
model in Arjas and Gasbarra (1996), in combination with the general treatment of Bayesian
order restricted inference (for example, in Gelfand et al., 1992), is related to the current work.

Sinha et al. (1999) proposed Bayesian analysis with interval censored data where covariate
dependence is possibly nonproportional. They modeled the baseline hazard function using an
independent Gamma prior and the time varying coefficients were endowed with a Markov type
property By 1|61,---,8; ~ N (By,1) .While Sinha et al. (1999) did not explicitly consider
order restrictions either on covariate dependence or on ageing, they provide Bayesian inference
procedures to infer on the validity of the proportional hazards assumption.

In another important contribution related to our work, Dunson and Herring (2003) consid-
ered order restriction on covariate dependence, and developed Bayesian methods for inferring on
the restriction that the effect of an ordinal covariate is higher for higher levels of the covariate.
In other words, similar to our tests on absence of covariate effects (Chapter 5, Bhattacharjee,
2007b), they conducted inference on trend in conditional hazard functions. By contrast, our
current work with restrictions on covariate dependence is different in two respects. First, in
our case the covariate is continuous and not categorical. Second, our order restriction is re-
lated to convex or concave partial ordering of conditional hazard functions rather than trend.
Consequently, we express our constraints in terms of monotonic time varying coefficients, and

propose a different methodology for Bayesian inference.

6.3.2 Order restricted frequentist inference

Order restrictions relating both to the shape of the baseline hazard function (ageing) as well as

the effect of covariates (covariate dependence) are important in the study of hazard regression
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models. However, as discussed in Sections 1.2.4 and 1.2.5, the literature on frequentist order
restricted inference in hazard regression models mainly addresses covariate dependence. In the
two sample (binary covariate) setup, testing for proportionality of hazards against different
notions of relative ageing has been an active area of research. The monotone hazard ratio
alternative was considered by Gill and Schumacher (1987) and Deshpande and Sengupta (1995),
while in Chapter 2 (Sengupta et al., 1998), we develop tests for proportionality against the
weaker alternative hypothesis positing a monotone ratio of cumulative hazards. Order restricted
estimation in two samples under the corresponding partial orderings (convex ordering and star
ordering) has not been explicitly considered in the literature, though methods developed in
Chapter 3 (Bhattacharjee, 2004a) can be adapted to this problem. Further, estimation in two
samples with right-censored survival data under the stronger constraint of stochastic ordering
has been considered in Dykstra (1982), and extended to uniform conditional stochastic ordering
in the k-sample setup by Dykstra et al. (1991). These inference procedures are, however, not
very useful in the hazard regression context, where covariates are typically continuous in nature.

In Chapter 3 (Bhattacharjee, 2007a), we extended the notion of monotone hazard ratio in
two samples to the situation when the covariate is continuous, and proposed tests for propor-
tional hazards against ordered alternatives. Specifically, the alternative hypothesis here states
that, lifetime conditional on a higher value of the covariate is convex (or concave) ordered with

respect to that conditional on a lower covariate value:

IHRCC : whenever x1 > o, A(t|x1)/A(t|z2) T t(= (T)X = 21)<(T|X = x2),
c

DHRCC : whenever x1 > x2, A(t|z2)/A(t|x1) TH(= (T X = 22)<(T|X = 1), (6.1)

Cc

where x1 and x5 are two distinct values of the covariate under study, < denotes convex or-
C

dering, and THRCC (DHRCC) are acronyms for "Increasing (Decreasing) Hazard Ratio for

Continuous Covariates" (Definition 2.3.1). In Section 4.2 (Bhattacharjee, 2003), we showed

that monotone covariate dependence of this type can be naturally represented by monotonic
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time varying coefficients, so that

THRCC : A(t|z;) = A(t).exp [B(t).zs], B(E) T ¢, (6.2)
DHRCC : At|z;) = Ag(t). exp [B(t).z;], B(¢) | t.

Thus, the above partial orders (6.1) can be studied using time varying coefficients. In Chapter
4 (Bhattacharjee, 2004a), we used this representation to propose biased bootstrap methods
(like data tilting and local adaptive bandwidths) to estimate hazard regression models under
these order restrictions. Finally, in Chapter 5 (Bhattacharjee, 2007b), we extended the test
for proportionality to a regression model with individual level unobserved heterogeneity with

unrestricted frailty distribution.

In this chapter, we consider order restrictions on the shape of the baseline hazard function
in addition to constraints on covariate dependence. This kind of ordering is relevant in many
applications. For example, relevant theory may suggest that the the effect of a covariate is
positive but decreases to zero with age. In addition, the baseline hazard function may be

expected to decrease with age.

6.4 QOur Bayesian model

As discussed above (Section 6.1), the Bayesian framework offers several advantages, including
computational convenience, opportunity to incorporate beliefs into prior distributions, account-
ing for parameter uncertainty. The major challanges, on the other hand, are (a) appropriate
representation of prior beliefs in the model, and (b) ensuring numerical tractability of poste-
rior simulations. Here, we describe how our model specification takes account of the specific
empirical features of our application, and addresses the challenges mentioned above.

As discussed earlier, our proposed inference procedures are illustrated by an application to
firm exits due to bankruptcy in the UK. In this context, the major objective of our empirical
analysis is to understand the effect of macroeconomic conditions on business failure. Age of the
firms is measured in years post-listing. The lifetime data are right censored, left truncated and

contain staggered entries. Most of the covariates included in the regression model (firm-specific
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and macroeconomic) are time-varying. In addition, our data includes industry dummies which
are fixed over age.
Initially, we consider the Cox proportional hazards model with time varying covariates, fixed

regression coefficients and completely unrestricted baseline hazard function (1.4)
A(HX(8) = Ao(t). exp [B7.X,(1)] (6.3)

where X (t) are a set of (potentially time varying) covariates with proportional covariate effects.
We will incorporate into the model additional features of our analysis: (a) order restricted
covariate dependence — time varying (and possibly monotonic) covariate effects, (b) unobserved
heterogeneity — fixed effects heterogeneity and frailty, and (c) order restrictions on ageing.

To facilitate analysis and presentation, we partition the time axis [0, c0) into a finite number

of disjoint intervals (in our case, in years), say Iy, Is,...,Ig41, where I; = [aj_1,a;) for j =
1,2,...,9 +1 with ap = 0 and ag41 = oo. We assume the baseline hazard function to be
constant within each of these intervals (taking values A1, Aa,...,Ag41), and the time varying

coefficients are also similarly piecewise constant.

6.4.1 Order restricted covariate dependence

Like other applied disciplines, economic theory does not usually imply functional forms or exact
distributions, but rather order restrictions such as monotonicity, convexity, homotheticity etc.
In the context of failure time hazard regression models, there are many applications where there
is evidence of order restrictions of the kind described by (6.1) or (6.2) on the nature of covariate
dependence.

For example, Metcalf et al. (1992) and Card and Olson (1992) observed that the impact
of real wage changes varied with duration of strikes, and the variation was in the nature of
ordered departures. In particular, Card and Olson (1992) found that, while longer duration
strikes (lasting more than 4 weeks) were most common for strikes with wage changes of less than
15 per cent, shorter duration strikes (1 to 3 days) were most frequent for wage changes above 15
per cent. Similarly, Narendranathan and Stewart (1993) found that the effect of unemployment

benefits on unemployment durations decreases the closer one gets to the termination of benefits.

209



Using the current data on firm exits, Bhattacharjee et al. (2008a, 2008b) found that the
impact of macroeconomic instability on business exit decreases with age of the firm post-listing;
these results are presented in further detail in Chapter 7. Further, as discussed in Chapters 1,
3 and 4, such evidence of monotonic covariate effects are not confined to economic applications.
For survival with malignant melanoma, for example, Andersen et al. (1993) observed that, while
conditional hazard rates increase with tumor thickness, the hazard ratios decrease decrease with
lifetime.

Based on the above discussion, we allow some covariates in our analysis to have fixed coeffi-
cients and some others with time varying coefficients. For some covariates with nonproportional
hazards, the time varying coefficients could monotonically increase or decrease with time, ac-

cordingly as the covariate effects are THRCC or DHRCC.

6.4.2 Frailty

We account for unobserved covariate effects in two distinct ways. First, there are unobserved
covariates at the industry level which create variation in exit rates across industries (other
factors remaining constant). Since industry membership is observed for all firms, these factors
can be incorporated by including fixed effects heterogeneity. In essence, we include a dummy
variable for each industry in our regression model. The estimates for these fixed effects will
then be interpreted as the effect of all unobserved regressors at the industry level.

Second, we include scalar multiplicative frailty that is independent of all other covariates.
Unlike previous Bayesian studies, the frailty distribution is fully nonparametric in our case.
We implement this feature using a method suggested by Heckman and Singer (1984a), where
the unknown distribution is approximated by a sequence of multinomial distributions based on
progressively increasing number of mass points; see also Chapter 5 (Bhattacharjee, 2007b). For
example, with two mass points, log-frailty is assumed to have a two point distribution (say, with
mass at m; = 0 and mg, and corresponding probabilities 1 and w3 = 1 — 71); one of the mass
points is set to zero because of scaling. The number of mass points is increased sequentially
until no substantial improvement in the model is observed. At that point, the multinomial

distribution approximates the unknown frailty distribution reasonably well.!

' Modeling frailty distribution in this way offers good opportunities for inference and interpretation. For
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6.4.3 Order restrictions on ageing

In addition to covariate dependence, it is often reasonable to expect order restrictions on the
shape of the baseline hazard function. For example, in an application based on the current data
discussed in Chapter 7 (Bhattacharjee et al., 2008a), we find that the baseline hazard function
exhibits some negative ageing. However, this evidence is not in the nature of a decreasing
hazard rate, but perhaps a weaker form of partial order, indicating thereby a weak form of
learning not related to other observed covariates. This suggests an additional order restriction,
perhaps in the nature of a "new worse than used" lifetime distribution. We incorporate such

order restrictions in our application to evaluate any evidence on ageing.

Incorporating the above three features in the Cox PH model (6.3), we have the following

hazard regression model:

A (LD, 20,(8), 290, (8), v3) = Mo(#).exp [BD I D, + 80T 2D (8) + BO BT 2 (8)] i,
(6.4)

where \o(t) is the unknown baseline hazard function which could potentially incorporate order
restrictions on ageing, ﬂl is a vector of dummy variables indicating membership in the var-
ious industry groups, &1(1‘/) are covariates with proportional effects on the hazard function,
ﬁz(t) are covariates with nonproportional effects potentially represented by order restrictions

on covariate dependence, and v; is a multiplicative frailty variable with arbitrary distribution.

6.4.4 Prior specification

We explore several models with different specifications for the prior distributions. These prior
distributions are related to models considered in the literature, for example in Sinha et al.
(1999). However, our models are unique in that they explicitly consider order restrictions in
covariate dependence and ageing, in the presence of individual level multiplicative frailty. Below
we describe specification of priors for the three main categories of parameters for our model:

covariate effects, baseline hazard and frailty.

example, a two support point distribution with 71 = 0.25 would indicate that, with respect to the unobserved
covariate, there are two types of subjects. 25% of these subjects draw a lower value from the population and
consequently have a lower hazard rate.
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Covariate effects

We use three alternative prior distributions for modeling the covariate effects:

1. Truncated normal, with truncation reflecting whether the covariate effect is expected to
be positive or negative. For the industry fixed effects, there is no truncation, and the

distribution is centered at zero.

2. Truncated normal, with variance proportional to the number at risk (for time varying

coefficients).

3. Exponential prior. Like the truncated normal prior above, the shape parameter is pro-

portional to the number at risk (for time varying coefficients).

For the covariates with potentially time varying coefficients, we model order restrictions in

three different ways:

1. Initially, no order restriction is imposed, leaving the effects free to assume any value (posi-
tive or negative). However, a first order smoothing condition is assumed: E [§ (tx) |8 (tg—1)] =
B (tx—1) . Further, variance is set at 10 for S (¢x)’s up to age 35, and at 1 thereafter. This
adjustment is a measure to control for the cumulative uncertainty effect due to the Markov

smoothing assumption.
2. Order restrictions in the posterior mean.

3. Stochastic ordering: For example, for decreasing covariate effects, mean is set at a reason-
able level initially, decreasing by a step each year. Steps have exponential distributions,

with parameter proportional to number at risk.

We make use of the well known consistency property of Bayesian updating procedures that

if the prior is supported completely by a subset of the parameter space, then so is the posterior.

Baseline hazard

Four different specifications for the baseline hazard prior are explored.

1. Gamma independent increments.
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2. Truncated normal independent increments.
3. Neutral to the right gamma process.

4. Gamma independent increments till age 10, stochastically decreasing thereafter (this re-

flects a weak form of negative ageing).

Frailty

Our empirical work is based on a two-point support frailty distribution. Since we do not
find substantial evidence of individual level frailty, we did not extend the analysis to frailty

distributions with higher number of support points.

6.4.5 Model Implementation

We formulate the model in the Bugs language and performed parameter estimation using Win-

BUGS 1.4 (Spiegelhalter et al., 1999).

6.5 Results and discussion

The data on firm exits due to bankruptcy in the UK, used for our analysis here, pertain to
around 4300 listed manufacturing companies over the period 1965 to 2000.2 The data are right
censored (by the competing risks of acquisitions, delisting etc.), left truncated in 1965, and
contain staggered entries. Age is measured in years post-listig, and all time varying covariatesare
measured at an annual frequency. An important focus of the current analysis is the effect of
macroeconomic conditions and instability on business failure. Industry dummies are included
in the analysis — these are fixed covariates.

To address the issue of staggered entries, we take two distinct approaches, leading to separate
analyses. In the first approach, we include covariate information retrospectively for firms that

were not covered in the sample for the first few years of their lifetime. Such retrospective data

2See Chapters 3, 4 and 5 for previous analyses of these data in the thesis. Further analysis will be reported
in Chapter 7, Sections 7.2, 7.3 and 7.4.
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on the macroeconomic environment can be collected in this way, but not for the firm level
covariate — size, or for industry dummies.?

In the second approach, our inference is based solely on the partial likelihood based on
an appropriate definition of risk sets, ignoring the past history for the staggered entry firms.
This limited information strategy is valid in a wide range of situations with staggered entries
(Andersen et al., 1993; Sellke and Siegmund, 1983), even though some standard properties of
counting processes do not hold here.

Four measures of macroeconomic conditions and instability are considered: (a) US business
cycle (Hodrick-Prescott filter of US output per capita), (b) instability in foreign currency mar-
kets (maximum monthly change, year on year for each month, in exchange rates over a year),
(c) instability in prices (similar to exchange rates, but measured in terms of RPT inflation), and
(d) a measure of business cycle turnaround (measured by the curvature, or second order differ-
ence, of the annual Hodrick-Prescott filtered series of UK output per capita). Theory suggests
that the effect of the first and the fourth measure on bankruptcy may be negative, and the
second and third ones positive. Because of learning effects, the adverse impact of instability is
expected to decline in the age of the firm, post-listing. Similarly, the effect of the US business
cycle, negative initially, may also rise with age.

A firm level variable — size, measured as logarithm of gross fixed assets in real terms — is also
included as a covariate. Industry dummies are used as fixed effects to control for unobserved
factors at the industry level.

Next, we report results of the two models under different treatments for staggered entry, as

well as different specifications of the prior distribution and order restrictions.

6.5.1 Model using retrospective data

First, we describe our model using retrospective data on a limited set of covariates. For the i-th
subject (in this case company), let the corresponding counting process be denoted by N;(t).
We model the process as having increments dN;(t) in the time interval [t, ¢ 4 dt) distributed as

independent Poisson random variables with means A;(t)dt.

3An alternative approach might be treating the unobserved firm level information as missing at random
(MAR) (Little and Rubin, 1987). Adjusting for such missing data is quite convenient in WinBUGS. However,
the MAR assumption itself may be rather strong in teh current context.
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For computational simplicity we use the conjugacy property of Poisson-Gamma distributions
in this context and model the baseline hazard function as a Gamma distributed random variable
for each distinct age (measured in years). In our implementation, we model the baseline hazard
Ao(t) using a Gamma process prior with unit mean.

Two time varying macroeconomic indicators are included as covariates, namely instability
in exchange rates and business cycle turnaround. Note that these indicators are calender time
specific, while their effect on a company could potentially depend on the age of the company.
Therefore, these two covariates are assumed to have time varying coefficients; we denote the
covariates by Z?(t) and Z/ (t) respectively.

Because we use retrospective data to account for staggered entry, information on company
size and industry dummies cannot be used in this preliminary model. Also, no order restriction
on ageing is included in the model.

Annual unbalanced panel data on 4320 listed companies over the period 1965 to 2000 are
used for the analysis, accumulating to a total of 45546 company years. The maximum age
observed in this data was 50 years. As mentioned above, calender year specific data on exchange
rates and US business cycle were included in the analysis.

A total of 166 exits due to bankruptcy (involuntary liquidation) were observed for these
4320 companies. Age at exit ranges form 1 year to 48 years. However, very few exits were
observed after the age of 35 years. The lack of failure data on the age range between 35-48
years requires a slightly stronger modeling assumption in order to obtain usable inference.

The distributional assumptions for the likelihood and priors for this model are as follows:

dN;(t) ~ Poisson[A;(t)dt],
Ai(t)dt = dho(t) x exp [Be(t) x Z: (1) + i (t) x 2, ()], (6.5)

dAo(t) ~ Gamma(1,1), for t=1, ..., 50,

where dA(t) = Ao(t)dt is the increment in the integrated baseline hazard function during the
time interval [t, ¢+ dt), with Z’s and 3’s being the corresponding (time varying) covariates and

(possibly time varying) regression coefficients.
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Economic intuition, and prior empirical evidence, indicates that the effect of the business
cycle on bankruptcy hazard is negative while te covariate effect of exchange rate instability is
positive. Further, these effects are strong for a newly listed firm but gradually wane off with
age; this issue will be discussed in further detail in Chapter 7 (Bhattacharjee et al., 2008a). As
mentioned above we will not assume any order restrictions on the covariate effects explicitly,
however we would like to infer on the direction of effect and variation of covariate effects with

age. This structure is incorporated in the prior distributions as follows:

a) BY(1) ~ Normal(25,0.1) and 87 (1) ~ Normal(—25,0.1). Note that the second parameter

of normal indicates precision (i.e. inverse variance) and not variance.
b) Bi(t) ~ Normal(Bi(t —1),0.1) where k =e,t and t =1,...,35.

c) Br(t) ~ Normal(5}(t —1),1) where k = e,t and ¢ = 36, ...,50. Note that, data for later
ages do not contain as much information as earlier ones. The precision is accordingly set at
a higher value to adjust for the lack of data and to control the compounding propagation

of uncertainty through the first order model.

The posterior distributions for the time varying coefficients and the baseline hazard function
offer useful and intuitively appealing interpretation. The baseline hazard estimates do not show
any apparent trend. In other words, no substantial ageing is evident in the data, after accounting
for covariate effects of exchange rate instability and business cycle turnaround.

However noticeable trend over time is evidenced in the regression coefficients. The posterior
estimates strongly reflect time variation on the effect of exchange rate instability (Figure 6-1).
There is a strong positive effect on exits when the firm is newly listed, but the effect decreases
with age and dies out at about the age of 13 years post-listing.

Similarly, the time varying coefficient of business cycle turnaround is negative initially and
rises to zero with age (Figure 6-2).

It is worth noting that these observed trends in the posterior is actually a contribution
from the data and not from the prior. In fact, other than setting positive or negative direction
for only the initial starting values for regression coefficients of the two covariates no further

structural assumptions were made.
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Figure 6-1: Time varying coefficients for exchange rate volatility:(a) Prior (b) Posterior
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Figure 6-2: Time varying coefficients for business cycle turnaround:(a) Prior (b) Posterior
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Therefore the results confirm the economic intuition and prior evidence on order restrictions
in covariate dependence. In summary, the model which is rather simplistic nevertheless seems

to yield meaningful and useful results.

6.5.2 Model using data with staggered entries

Having experimented with a rather simplistic hazard regression model in the preceding subsec-
tion, we now enhance the model in several important ways. First, in addition to macroeconomic
factors, we include covariate effect in an important firm level covariate — size (measured by the
log of gross fixed assets). Second, we drop business cycle turnaround and include instability in
price and the US business cycle as covariates. Third, we include several industry dummies to
account for unobserved fixed effects heterogeneity at the industry level. Fourth, and in addition
to the above, we include a multiplicative frailty term representing unobserved heterogeneity or-
thogonal to observed covariates. The frailty distribution is modeled as a two support point
multinomial distribution. Fifth, we now measure age in years since inception, rather than years
post-listing. This change is motivated partly by the lack of evidence on negative ageing in the
baseline hazard function, with 