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0. PREFACE

This thesis deals with various questions regarding normal surfaces and Heegaard splittings of

3-manifolds.

Chapter 1 The first chapter is divided into two parts. In the first, we give an outline of nor-

mal surface theory and mention some of its important applications. The second part gives an

overview of the theory of Heegaard splitting surfaces and a few of its applications. None of the

material covered in this chapter is original and it is meant solely as an exposition of known results.

Chapter 2 In this chapter, we give a lower bound on the Euler characteristic of a normal

surface, a topological invariant, in terms of the number of normal quadrilaterals in its embedding,

obtained from its combinatorial description. A closed connected normal surface having no normal

quadrilaterals is a vertex-linking sphere. We make the observation that a ‘strongly-connected’

normal surface (with boundary) having no normal quadrilaterals, is a planar surface. Using

this fact, we obtain the desired relation. In the smooth category, we expect normal triangles to

correspond to positive curvature pieces. Hence by Gauss-Bonnet, such a relation is to be expected

when the curvature of the quadrilateral pieces is bounded below.

Another result in a similar spirit is an upper bound on the number of normal triangles in terms

of the number of normal quadrilaterals of a normal surface (having no vertex-linking spheres).

Strongly-connected triangle components are shown to be subsets of vertex-linking spheres, so that

the number of triangles in one such component is bounded above by the maximum number of

triangles in a vertex-linking sphere. We think of quadrilaterals as ‘bridges’ linking the various

strongly-connected triangle components and by a combinatorial argument we obtain the desired

relation. Both these results pertain to original work published in the paper [43].

Chapter 3 Here we interpret a normal surface in a (singular) three-manifold in terms of the

homology of a chain complex. This allows us to study the relation between normal surfaces and

their quadrilateral co-ordinates. Specifically, we give a proof of an (unpublished) result of Casson-

Rubinstein saying that quadrilaterals determine a normal surface up to vertex linking spheres. We

also characterise the quadrilateral coordinates that correspond to a normal surface in a (possibly

ideal) triangulation. The results in this chapter are the outcome of joint work with my adviser,

Siddhartha Gadgil. They have been submitted as paper [45].
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Chapter 4 We describe a procedure for refining the given triangulation of a 3-manifold that

scales the PL-metric according to a given weight function while creating no new normal surfaces.

It is known that an incompressible surface F in a triangulated irreducible 3-manifold M is

isotopic to a normal surface that is of minimal PL-area in the isotopy class of F . Using the above

scaling refinement we prove the converse. If F is a surface in a closed 3-manifold M such that for

any triangulation τ of M , F is isotopic to a τ -normal surface F (τ) that is of minimal PL-area in

its isotopy class, then we show that F is incompressible. This is the result of original work and

has been published as paper [44].

Chapter 5 In the fifth chapter we define a space of projective maximal laminations fully carried

by a branched surface. Analogous to the space of geodesic laminations on surfaces, we shall show

that this space with the ‘quotient Hausdorff metric’ is compact, Hausdorff and that each point

can be written as the intersection of a sequence of open sets. The main idea used here is to look

at isotopy classes of ‘splitter surfaces’ in the complement of laminations (in neighbourhood of

branch surface), rather than isotopy classes of the laminations themselves.

Epilogue In the concluding chapter we give the motivation for introducing the space of projective

maximal laminations and give some conjectures regarding the structure of irreducible Heegaard

surfaces in Haken manifolds. We also outline our attempts to prove them.

Incompressible surfaces and (strongly irreducible) Heegaard surfaces are in some sense oppo-

site ends of the spectrum so it is surprising that both can be represented as ‘normal’ surfaces.

It was shown by Li in [21], that when an almost normal branched surface carries infinitely many

strongly irreducible Heegaard surfaces, their limit point in the projective measured lamination

space is an essential lamination, which after a perturbation becomes a closed incompressible sur-

face. As a result, it was shown that a non-Haken 3-manifold has only finitely many strongly

irreducible Heegaard splittings. This representation of strongly irreducible Heegaard surfaces and

incompressible surfaces as ‘normal’ surfaces is used in both our possible approaches to proving

our conjecture on the structure of Heegaard splittings of Haken manifolds.





1. THEORY OF NORMAL SURFACES AND HEEGAARD SPLITTINGS

This chapter is divided into two sections. In the first, we shall discuss the theory of normal

surfaces and mention some of its important applications. For a more detailed treatment of this

material we refer to [35] and [22] from which most of the definitions and theorems of this chapter

are sourced. In the second section, we shall give an outline of the theory of Heegaard splittings.

For an exhaustive study of this material we refer to the survey paper [31] from which most of the

theorems are taken. All theorems covered in this chapter are known results, and no claim is made

to the originality of any of them.

1.1 Normal Surfaces

Normal surfaces are surfaces that are embedded particularly ‘nicely’ with respect to the given

pseudo-triangulation of a 3-manifold. Normal surface theory was first introduced by Knesser in

1929 and later developed by Haken for use in an algorithm to detect the unknot. Much later,

Jaco and Oertel [16] and Hemion [14] used normal surfaces to develop an algorithm for solving

the homeomorphism problem for the class of manifolds that contain an incompressible two-sided

surface. Since then, normal surfaces have been used for a variety of tasks such as the construction

of algorithms for recognising the 3-sphere [26, 27], Seifert fibered spaces and handlebodies [17].

It has also been used for the decomposition of a closed 3-manifold into irreducible pieces and for

its JSJ decomposition [17].

Many interesting classes of embedded surfaces such as incompressible surfaces and strongly-

irreducible Heegaard splitting surfaces are isotopic to normal or almost-normal surfaces. The

reason normal surfaces are well suited for an algorithmic approach is because in many interesting

cases, if an embedded surface has a certain property, then one of a finite set of ‘fundamental’

surfaces must also have this property. Thus it is sufficient to check a finite set of surfaces for the

required property.

A brief description of a normal surface is an embedded surface that intersects each 3-simplex

of the triangulation in one of the seven types of disks, shown in Figure 1.1. We make this more

precise below.

Definition 1.1.1. An arc on a 2-dimensional face F of a 3-simplex is a normal arc if its endpoints

lie on distinct edges of F and its interior lies in the interior of F . A normal curve on ∆(2), the
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Fig. 1.1: The 4 Normal Triangle and 3 Normal Quadrilateral Types

2-dimensional faces of a 3-simplex ∆, is a closed curve c in general position with respect to ∆(2)

such that any component of intersection of c with a 2-dimensional face F of ∆, is a normal arc.

Definition 1.1.2. The length of a normal curve c on the 2-dimensional faces of a 3-simplex ∆ is

the number of points in c ∩∆(1), i.e. the number of intersections of c with the 1-skeleton of ∆.

Lemma 1.1.3 (Lemma 3.31 [35]). A normal curve on the 2-dimensional faces of ∆ that meets

each edge at most once either has length 3 or 4.

Proof. Here ∆(2) is homeomorphic to a sphere. The closed curve c is therefore a Jordan curve on

the sphere. Thus it separates ∆(2) into an ‘inside’ disk and an ‘outside’ disk. The set of vertices

∆(0) consists of four points. There are essentially two possibilities, the inside of c contains either

one or two points of ∆(0).

Suppose the inside of c contains only the vertex v. Let e1, e2, e3 be the edges incident to v.

Then c must intersect e1, e2, e3. Furthermore, since the other vertices to which e1, e2, e3 are

incident lie outside of c, c must intersect e1, e2, e3 an odd number of times. Similarly, it must

meet the remaining three edges an even number of times. Thus if c meets no edge more than

once, then c has length 3.

Suppose now that the inside of c contains the vertices v1, v2. Then there are four edges that

are met an odd number of times and two edges that are met an even number of times. So, the

former edges each meet c once and the latter are disjoint from c. Hence, the length of c is 4.

Definition 1.1.4. A normal disk in a 3-simplex ∆ is a disk D properly embedded in ∆, with

∂D a normal curve in ∆(2). A normal disk D with ∂D a normal curve of length 3 is called a

normal triangle, while a normal disk D with ∂D a normal curve of length 4 is called a normal

quadrilateral.

Definition 1.1.5. Two normal disks D and D′ in ∆ are said to be normally isotopic if there is

an isotopy of ∆ that leaves each vertex, edge and face of ∆ invariant and takes D to D′ (through

normal disks). We consider normal disks to be equivalent if they are normally isotopic.

Definition 1.1.6. Let M be a compact 3-manifold with a pseudo-triangulation τ . A normal

surface in M is a surface S ⊂ M such that for any 3-simplex ∆ in τ , S ∩∆ consists of disjoint

normal disks in ∆.
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Fig. 1.2: The Almost Normal Annulus and Octagon

Definition 1.1.7. An almost normal surface, is an embedded surface that intersects all except

one 3-simplex (say ∆) in disjoint normal disks and intersects ∆ in normal triangles and exactly

one octagon or annulus, as shown in Fig 1.2. The annulus must be an unknotted tube, i.e, its

core must be parallel to the boundary of the tetrahedron.

Definition 1.1.8. Let v be a vertex of the triangulation and let B(v) be a small ball neighbour-

hood of v. The boundary ∂B(v) is called the vertex-linking sphere linking vertex v.

As normal triangles are parallel to a face of the 3-simplex, and normal quadrilaterals separate

opposite edges of the 3-simplex, there are 4 types of normal triangles and 3 types of normal

quadrilaterals (up to normal isotopy) as shown in Figure 1.1. Therefore, if there are t 3-simplices,

then corresponding to a normal surface we get a vector in Z7t which records the number of normal

triangles and quadrilaterals of a normal surface in each of the t 3-simplices. An (unpublished)

result of Casson-Rubinstein states that quadrilaterals determine a normal surface up to vertex

linking spheres. This was proved by Tollefson [40] using geometric means. We prove this by

different means, associating a chain complex to normal surfaces, in Chapter 3.

As two normal quadrilaterals of different types within a 3-simplex intersect, an embedded

normal surface can have only one type of quadrilateral in each 3-simplex. This is called the

quadrilateral constraint.

Let ∆1 and ∆2 be adjacent 3-simplices in M that meet at a common face F . Let S be a

closed normal surface embedded in M , that intersects F . Then, S ∩ F is a union of normal arcs

in F . For a vertex v of F , there is exactly one type of normal triangle Ti (and one type of normal

quadrilateral Qi) in ∆i, i = 1, 2, such that Ti ∩ F (respectively Qi ∩ F ) is a normal arc in F

linking v. Let xi and yi be respectively the number of triangles Ti and number of quadrilaterals

Qi in ∆i, i = 1, 2. Then, as S is a closed surface x1 + y1 = x2 + y2. We get such a homogenous

linear equation for each vertex in each face of the triangulation. This system of homogenous

linear equations are called the matching equations. The vector represented by S is a non-negative

integer solution to the matching equations that satisfies the quadrilateral constraint. Conversely,

given a non-negative integer solution to the matching equations that satisfies the quadrilateral

constraints we obtain a (not necessarily connected) normal surface whose coordinates give the
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solution vector. Thus, properly embedded normal surfaces (up to normal isotopy) are in bijection

with the non-negative integer solutions of the matching equations that satisfy the quadrilateral

constraint. We refer to Theorem 3.3.27 of [22] for a proof of this theorem. Such solutions are

called admissible solutions of the matching equations.

A non-trivial non-negative integer solution x is called a fundamental solution if it cannot be

presented in the form x = y + z where y and z are non-trivial non-negative integer solutions of

the matching equations. A well known result of Haken is the following. We refer to [22], Theorem

3.2.8 for a proof.

Theorem 1.1.9. The set of fundamental solutions to any system of linear homogenous equations

with integer coefficients is finite and can be constructed algorithmically. Any non-negative integer

solution to the system can be presented as a linear combination of the fundamental solutions with

non-negative integer coefficients.

One of the reasons that normal surfaces are useful is that the operation of addition of the

admissible solutions has a geometric analogue called the Haken sum. In order to describe it, we

first look at addition of normal arcs.

Let λ1 and λ2 be normal arcs on a 2-dimensional simplex F . In normal coordinates on F

(which counts the number of normal arcs linking each vertex of F ), they correspond to (possibly

identical) unit vectors ei, ej in Z3. After a normal isotopy fixing the endpoints of λi, we can assume

that λ1 and λ2 intersect in at most one point. Let [λ] denote the vector in Z3 corresponding to a

normal arc λ.

If the two arcs are disjoint, then we define λ1 + λ2 to be the union of the two arcs, and we

observe that [λ1 + λ2] = [λ1] + [λ2]. If λ1 and λ2 intersect at a point A in F , then there are two

possible cut-and-paste operations, i.e., we cut both segments at the crossing points and glue the

ends together in one of the two possible ways. We will call these operations switches.

Definition 1.1.10. A switch at A is called a regular switch if it produces two normal arcs, i.e.,

two arcs such that the endpoints of each arc lie in different edges of the face F . Note that a

regular switch is unique.

We observe again, that [λ1 + λ2] = [λ1] + [λ2] for a regular switch.

We can now define a similar operation of geometric addition for normal surfaces. Let S1 and

S2 be normal surfaces in (M, τ) and let [S1] and [S2] denote their normal coordinates. For every

face F of τ we perform regular switches of the normal arcs S1 ∩ F and S2 ∩ F . Now, for each

3-simplex ∆, there exists a union of normal disks with the boundary given by normal curves on

∂∆ obtained after these regular switches. The coordinates of the union of these normal disks

corresponds to the vector [S1] + [S2]. As [S1] and [S2] are both admissible solutions to a system

of linear homogenous equations, [S1] + [S2] is a non-negative integer solution to the matching
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equations as well. If this solution satisfies the quadrilateral constraint, that is S1 and S2 do not

intersect a 3-simplex in different types of quadrilaterals, then we define S1 + S2 to be the normal

surface corresponding to the admissible solution [S1] + [S2]. This is called the Haken sum of S1

and S2, and by definition we have [S1 + S2] = [S1] + [S2].

Euler characteristic is additive under Haken sums. The normal surfaces S1 and S2 intersect in

a disjoint union of circles and the operation of Haken summing performs a cut-and-paste operation

in a neighbourhood of these circles. As the Euler characteristic of the circles is zero, it is easy to

see that χ(S1 + S2) = χ(S1) + χ(S2).

In Chapter 2, we shall show that the Euler characteristic of a normal surface is bounded below,

by a bound that depends only on the number of normal quadrilaterals in the surface.

Definition 1.1.11. The weight w(S) of a surface S in a compact triangulated 3-manifold (M, τ),

is the number of intersections of S with the 1-skeleton of the triangulation, i.e., |S∩τ (1)|. Similarly,

let m(S) = |S∩(τ (2)−τ (1))| be the number of components in the intersection of S with the interior

of the faces in τ . The pair (w(s),m(S)) is a measure of the complexity of the surface S.

The theory of normal surfaces is used extensively in algorithmic topology. Algorithms based

on it most often follow the General Scheme described below, following [22] Chapter 4, Section 4.1.

1. Reduce the problem at hand to one of the existence in M of a surface with some specific

characteristic property.

2. Choose a triangulation of M and show that if M contains at least one characteristic surface,

then there exists a normal characteristic surface.

3. Show that if there is a normal characteristic surface, then there is a fundamental charac-

teristic surface. One possible way to do that is to prove that if a characteristic surface F is not

fundamental, then M contains a less complicated characteristic surface. The weight of the normal

surface is one such candidate to measure the complexity of the surface.

4. Construct an algorithm to decide whether or not a given surface is characteristic.

Assume all four steps of the General Scheme are carried out. Then the algorithm that solves

the problem works as follows:

1. Choose a triangulation τ of M .

2. Write down the corresponding matching system of linear equations.

3. Find the finite set of fundamental solutions by normal surfaces.

4. Realize the fundamental solutions by normal surfaces.

5. Test each of the obtained fundamental surfaces for being characteristic.

It follows that M contains a characteristic surface (i.e, that the problem in question has a positive

answer) if and only if at least one of the fundamental surfaces is characteristic.

We conclude this section with an illustration of the use of this General Scheme, via the



1. Theory of Normal Surfaces and Heegaard splittings 10

following theorem:

Theorem 1.1.12. There is an algorithm to detect whether a 3-manifold has an incompressible

surface.

We give a complete proof of the following lemma as it shows some standard techniques used

in proving the second step of the General Scheme.

Lemma 1.1.13. Let M be an irreducible 3-manifold containing an incompressible surface S.

Then for any triangulation τ of M there is an isotopy that takes S to a normal surface in (M, τ).

Proof. Let (M, τ) be a triangulation of M and let S be an incompressible surface in M . Isotope

S so that (w(S),m(S)) is minimal (in lexicographic ordering). The minimality of w(S) implies

that for each 3-simplex ∆ in τ , S meets the 2-dimensional faces of ∆ in a finite number of disjoint

normal arcs along with simple closed curves entirely contained in the open 2-dimensional faces

(i.e., S is in general position).

Let F be a 2-dimensional face of ∆ and suppose that S ∩ F contains a simple closed curve

s. Further assume that s is an innermost such curve in F . Then, s bounds a disk D in F that

meets S only in its boundary. Since S is incompressible it follows that s also bounds a disk D′

in S. Since D is disjoint from S away from s = ∂D, D ∪D′ is a 2-sphere. Since M is irreducible,

D ∪D′ bounds a 3-ball. It follows that D′ can be isotoped to coincide with D. A further isotopy

then eliminates the component s of S ∩ τ (2). This contradicts the minimality of (w(S),m(S)).

Thus for each 3-simplex ∆ in τ , S meets each face F of ∆ in normal arcs. Hence S ∩ ∂∆ is a

finite number of disjoint normal arcs.

Let c be a normal curve in S∩∂∆. Let S′ be the component of S∩∆ such that c ⊂ ∂S′. Since

c bounds a disk E in the 3-ball ∆, it must in fact bound a disk E′ in S. Here E ∪E′ is a 2-sphere

in an irreducible 3-manifold and hence bounds a 3-ball B. A priori E may not be disjoint from S

but the procedure in the above paragraph shows how to eliminate curves of intersection in S ∩E.

If E′ does not lies entirely in ∆, then B describes an isotopy lowering (w(S),m(S)), a contra-

diction. Thus, S′ = E′. In particular, S′ is a disk.

Suppose that ∂S′ meets an edge e of ∆ more than once. Since S′ is a disk in the 3-ball ∆, it

is isotopic to one of the disks bounded by ∂S′ in ∂∆. In particular, there is a disk E′ such that

∂E′ = α∪ β with α ⊂ S′ and β ⊂ ∆(1) and such that E′ is disjoint from S′−α. The disk E′ now

describes an isotopy lowering w(S), a contradiction.

It now follows from Lemma 1.1.3 that ∂S′ has length 3 or 4. Thus S′ is a normal disk. Hence

S has been isotoped to a normal surface.

In Chapter 4 we shall prove a weak converse of the above lemma. We shall show that if F is

a closed surface in a closed 3-manifold M such that for any triangulation τ of M , F is isotopic
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to a τ -normal surface F (τ) that is of minimal PL-area in its isotopy class, then F is incompressible.

We complete the steps of the algorithm by stating the following lemmas. For proofs we refer

to Theorem 4.1.15 and related theorems of [22].

Lemma 1.1.14. If there is an incompressible normal surface, then there exists an incompressible

fundamental normal surface.

Lemma 1.1.15. There exists an algorithm to check whether a given normal surface is incom-

pressible.

Following the General Scheme, using the above lemmas, we will have proved Theorem 1.1.12.

1.2 Heegaard Splittings

In this section we introduce Heegaard splittings and detail some of its properties. For an exhaus-

tive treatment of this theory we refer to [31].

A Heegaard splitting is a splitting of a 3-manifold into simpler pieces called handlebodies.

A handlebody is the regular neighbourhood of a finite graph in R3. Its genus is its first Betti

number.

Definition 1.2.1. Let H1 and H2 be handlebodies of the same genus. Let f : ∂H1 → ∂H2 be a

homeomorphism of their boundaries. Gluing H1 and H2 along their boundaries via f , we get a

closed 3-manifold M . This is said to be a Heegaard splitting of M and is denoted by M = H1∪SH2,

where S is the common boundary of the handlebodies in M . Every closed 3-manifold admits a

Heegaard splitting. The common boundary of the handlebodies in M , S = ∂H1 = ∂H2 is said

to be the splitting surface or the Heegaard surface of the Heegaard splitting. Two Heegaard

splittings of the same manifold M with splitting surfaces S and S′, are said to be isotopic if S

and S′ are isotopic in M . They are said to be homeomorphic if there is a homomorphism of M

that takes S to S′.

Natural questions regarding Heegaard splittings are of one of two types. Either we wish to

determine what Heegaard splittings a given 3-manifold admits or conversely, given the Heegaard

splittings of a manifold, we wish to say something about the manifold. We shall mention a few

results answering some facets of both these questions.

Firstly, we observe that every closed 3-manifold has a Heegaard splitting. Moise and Bing

[23, 2] showed that every compact 3-manifold can be triangulated. The regular neighbourhood of

the 1-skeleton of a triangulation is a handlebody. Its complement is the regular neighbourhood

of the graph dual to the 1-skeleton. As a result, we get a splitting of the manifold into two

handlebodies, which is precisely a Heegaard splitting.
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The simplest example of a Heegaard splitting is the splitting of S3 by any embedded S2 within

it. By the Schoenflies Theorem, both the complementary components of S2 are balls. This gives

a splitting of S3 into balls, which can be thought of as genus zero handlebodies. Manifolds which

admit a Heegaard splitting of genus one are called lens spaces.

Next we wish to address the question of uniqueness of this splitting. Heegaard splittings of a

3-manifold are far from unique. One way of increasing the genus of a splitting is by adding trivial

handles. This process, similar in nature to taking a connected sum with S3, is called stabilisation.

Definition 1.2.2. Let M = H1 ∪S H2 be a Heegaard splitting of a 3-manifold M . Let α be

a properly embedded arc in H2 parallel to an arc in S. Add a neighbourhood of α to H1 and

delete it from H2. This adds a 1-handle to both H1 and H2. The result is a Heegaard splitting

H ′
1 ∪S′ H

′
2, where the genus of each H ′

i is one more than the genus of Hi. This process is called a

stabilisation of S.

It was first shown by Reidemeister and Singer (see [1] for details) that any two splittings of a

3-manifold are isotopic after finitely many stabilisations. Until recently, it was conjectured that

precisely one stabilisation of the higher genus splitting (and suitably many of the lower genus

splitting) would suffice to make any two Heegaard splittings equivalent. This has been disproved

by Hass, Thompson, Thurston [12] where for any n > 0 they construct a manifold M(n) which has

a pair of splittings needing n stabilisations to become equivalent. There is however a bound on

the number of stabilisation required to make any two Heegaard splittings equivalent [28, 29, 30].

This bound depends polynomially on the genus of the two splittings.

As every splitting can be stabilised, we consider the question of uniqueness only for desta-

bilised splittings. Waldhausen [41] showed that any positive genus splitting of S3 is a stabilisation

of the standard genus zero splitting. Bonahaon and Ottal [4] obtained a similar result for lens

spaces. Scharlemann and Thompson [33] proved this uniqueness for (surface) × I, and Schul-

tens [36] generalised this proof, showing that Heegaard splittings of (surface)×S1 are standard.

Heegaard splittings of Seifert Fibered Spaces though not unique, are also well understood [24, 37].

Analogous to the concept of reducibility of a manifold, we have the following definition for

reducibility of a Heegaard splitting.

Definition 1.2.3. A Heegaard splitting H1∪SH2 is reducible if there is a 2-sphere which intersects

S in a single essential curve (of S).

A stabilised splitting, that is not the standard genus one splitting of S3, is reducible. Haken

showed that every splitting of a reducible manifold is a reducible splitting [11]. As a weak con-

verse, every reducible splitting of an irreducible 3-manifold is stabilised. As we shall henceforth

consider only destabilised splittings in irreducible closed 3-manifolds, we need consider only irre-
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ducible splittings.

Heegaard splittings can be thought of as a handle-decomposition of the 3-manifold. A standard

trick in handle theory is that the order of handle addition can be rearranged. An (r + 1)-handle

can be added before a r-handle precisely when the attaching r-sphere of the (r + 1)-handle is

disjoint from the belt (n − r − 1)-sphere of the r handle. In the case of Heegaard splittings, the

natural order of handle-addition can be rearranged exactly when there is an essential disk in H1

and an essential disk in H2 with disjoint boundaries. With this in mind, Casson and Gordon [6]

defined a notion of weak reducibility of Heegaard splittings.

Definition 1.2.4. A Heegaard splitting H1 ∪S H2 is weakly reducible if there are essential disks

Di ⊂ Hi, such that ∂D1 and ∂D2 are disjoint in S.

Any reducible Heegaard splitting H1∪SH2 in a closed orientable 3-manifold is weakly reducible,

by the following argument. Let Di be properly embedded disks in Hi with ∂D1 = ∂D2 = c a

simple closed curve in S. As S is an orientable surface in an orientable 3-manifold, a regular

neighbourhood of c is homeomorphic to c × [−1, 1], with ∂D1 = ∂D2 = c × {0}. Let D′
1 =

D1 ∪ (c× [0, 1]) and D′
2 = D2 ∪ (c× [−1, 0]). After a slight perturbation we can assume D′

1 and

D′
2 are properly embedded in H1 and H2 respectively, and are disjoint, so that S is a weakly

reducible splitting. A splitting that is not weakly reducible is called strongly irreducible.

Weak reducibility has many topological consequences, primarily, a manifold with an irre-

ducible, weakly reducible splitting contains an incompressible surface [6]. Thus in particular for

non-Haken manifolds, every irreducible splitting is strongly irreducible.

There are manifolds with infinitely many non-isotopic strongly irreducible splittings. The first

such examples were discovered by Casson, Gordon and Parris. Kobayashi [19] generalised their

examples and found a class of manifolds with p(g) (non-isotopic) strongly irreducible Heegaard

splittings of genus g, where p(g) increases polynomially fast in g.

The generalised Waldhausen conjecture states that orientable, atoroidal, irreducible 3-manifolds

have are only finitely many Heegaard splittings of each genus up to isotopy. This was recently

proved by Tao Li [20]. He also showed that for non-Haken 3-manifolds there are, in fact, only

finitely many irreducible Heegaard splittings up to isotopy [21].

Moriah, Schleimer and Sedgwick [25] have shown that for all known examples of manifolds

with infinitely many irreducible splittings, there exists a splitting surface H and a surface K,

such that each of the splittings is given by the Haken sum H +nK, where n is some non-negative

integer. They also show that such a surface K is incompressible.

These results lead us to state the following conjecture.

Conjecture 1.2.5. Let M be a closed, orientable, irreducible and atoroidal 3-manifold with in-

finitely many strongly irreducible Heegaard splittings. Then, there exists an incompressible surface
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K and a strongly irreducible Heegaard splitting H such that there are infinitely many strongly ir-

reducible Heegaard splittings given by the Haken sum H + nK, for n ∈ N.

As a first step in this direction we aim to prove the following weaker result.

Conjecture 1.2.6. Let M be a closed, orientable, irreducible and atoroidal 3-manifold, with

infinitely many strongly irreducible Heegaard splittings. Then, there exists a strongly irreducible

Heegaard splitting surface H and a sequence of (possibly disconnected) incompressible surfaces Kn

such that Hn = H + Kn is a sequence of strongly irreducible Heegaard splittings.

Strongly irreducible Heegaard surfaces are almost normal surfaces. There exists an almost

normal branch surface that carries all except finitely many of these surfaces. Tao Li [21] has shown

that the limit of strongly irreducible Heegaard surfaces in the projective measured lamination

space of this branch surface is an essential lamination.

We have defined a space of projective maximal laminations, and shown that it is compact and

Hausdorff (in Chapter 5). Our attempt then is to show that an ‘unbounded limit’ of strongly

irreducible Heegaard surfaces in this space is an essential lamination, using the same methods

employed in [21].





2. EULER CHARACTERISTIC AND QUADRILATERALS OF NORMAL SURFACES

2.1 Introduction

The goal of this chapter is to give a relation between the Euler characteristic of a normal surface,

a topological invariant, and the number of normal quadrilaterals in its embedding, obtained from

its combinatorial description. Secondly, we get a relation between the number of normal triangles

and normal quadrilaterals.

Theorem 2.1.1. Let M be a 3-manifold with a pseudo-triangulation τ . Let F be a normal surface

in (M, τ). Let Q be the number of normal quadrilaterals in F . Then,

χ(F ) ≥ 2− 7Q

In particular, if F is an oriented, closed and connected normal surface of genus g,

g ≤ 7
2
Q

Definition 2.1.2. Let F be a normal surface in M . Let t be a normal triangle of F that lies in

a tetrahedron ∆. The triangle t is said to link a vertex v of ∆ if t separates ∂∆ into two disks

such that the disk containing v has no other vertices of ∆. Similarly, a normal arc α in a face F
is said to link a vertex v of F if the segment containing v in ∂F − α has no other vertices of F .

Definition 2.1.3. Let S(v) be the boundary of a small ball neighbourhood of v. The sphere S(v)

is a normal surface composed of normal triangles linking v, each from a distinct normal isotopy

class. This is defined to be the vertex linking sphere linking vertex v.

Remark 2.1.4. Any closed connected normal surface S in M composed of normal triangles is

normally isotopic to a vertex-linking sphere. This is due to the following reasons.

Fig. 2.1: The 4 Normal Triangle and 3 Normal Quadrilateral Types
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Firstly, all normal triangles in S link the same vertex. If this were not true, there would

be normal triangles t1 and t2 in S, linking distinct vertices of τ , that intersect in normal arcs.

This is not possible as normal arcs linking different vertices of a face are not normally isotopic.

So, let v be the common vertex linked by triangles of S. Then S is a cover of S(v), as S(v)

is composed of one triangle from each of the normal isotopy classes of triangles linking vertex

v. As S(v) is a sphere and S is a closed connected cover of S(v), the covering projection map

is a homeomorphism. Therefore, there is only one triangle of S in each normal isotopy class of

triangles linking v and so S is normally isotopic to S(v).

This remark is the motivation for Theorem 2.1.1. The remark is not true for closed connected

normal surfaces embedded in 3-complexes. For example, take a triangulation of a surface F and

construct a 3-complex by taking the join with a common point of all triangles in F . Push F into

the interior of this 3-complex so that F is embedded as a closed normal surface composed entirely

of normal triangles.

We expect that in Riemannian 3-manifolds, triangles correspond to positive curvature pieces.

This would imply that when quadrilaterals have a curvature that is bounded below, the smaller

the Euler characteristic, the greater would be the number of quadrilaterals.

Remark 2.1.5. An inequality relating the Euler characteristic with the total number of normal

disks is easy to obtain. This is because the number of normal discs gives a bound on the number

of disjoint closed curves on the surface, up to isotopy. This, in turn, gives a lower bound on the

Euler characteristic.

Our second theorem, Theorem 2.1.7, gives a relation between the number of triangles and the

number of quadrilaterals of an embedded normal surface.

Definition 2.1.6. The degree of a vertex v with respect to a tetrahedron ∆, denoted by Nv(∆),

is the number of vertices of ∆ that are equal to v. The degree of the vertex v, denoted by Nv, is

the sum Σ∆∈τNv(∆). This is equal to the number of triangles in a vertex-linking sphere linking

the vertex v.

The degree N of the pseudo-triangulation τ is then defined as the maximum of Nv over all

vertices v. This is the maximum number of triangles in a vertex-linking sphere in τ .

Let A be the union of triangles of an embedded normal surface F . Let v be a vertex of the

pseudo-triangulation τ . Let σ be a strongly connected (defined in Definition 2.2.3) component

of the triangles of A linking vertex v. By lemma 2.2.4, σ has at most Nv triangles. Any two

such components are ‘connected’ by quadrilaterals. So we get an upper bound on the number of

triangles in terms of the number of quadrilaterals and the degree of the pseudo-triangulation N .

Theorem 2.1.7. Let F be a normal surface in (M, τ), no component of which is a vertex-linking

sphere. Let T and Q be the number of normal triangles and normal quadrilaterals of F respectively.
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Let N be the degree of the pseudo-triangulation τ of M . Then,

T ≤ 4NQ

2.2 An inequality relating the Euler characteristic and the number of quadrilaterals of

normal surfaces

In this section we give a proof of Theorem 2.1.1. Let F be a normal surface in M . Let Q be the

number of normal quadrilaterals in F . Let A (respectively B) be the union of normal triangles

(respectively normal quadrilaterals) of F . Note that A and B are 2-complexes which are subsets

of the surface F . Define the boundary of a 2-complex σ to be the union of edges of σ that do not

intersect int(σ).

An outline of the proof is as follows. We suitably modify the 2-complexes A and B, at singular

points, to get surfaces A′ and B′ that intersect in a disjoint union of circles with A′∪B′ = F . We

then show that the connected components of A′ are planar surfaces. We, therefore, get a lower

bound on the Euler characteristic of A′ in terms of the number of components |∂A′| of ∂A′. The

boundary of A′ is the same as the boundary of B′. We introduce weights and get an inequality

relating |∂B′| with the weight w(∂B) of ∂B. Now as w(∂B) ≤ w(B) = 4Q we obtain an upper

bound on |∂A′| in terms of the number of quadrilaterals. Thus, we get a lower bound on the Euler

characteristic of A′ in terms of the number of quadrilaterals.

For a bound on the Euler characteristic of B′, we take an increasing union of quadrilaterals

and use the fact that each new quadrilateral intersects the union of the preceding stage in a circle

or at most 4 disjoint segments. This again gives us a lower bound in terms of the number of

quadrilaterals.

As the Euler characteristic of F is the sum of Euler characteristics of A′ and B′, we get a

lower bound for the Euler characteristic of F in terms of Q.

Definition 2.2.1. Let Dn be the collection of normal discs of F . Let {D′′
m} be the collection

of triangles obtained by taking the second barycentric subdivision of all Dn. Then the regular

neighbourhood of a point w in F is defined as N(w) = int(∪{D′′
m : w ∈ D′′

m}).

Definition 2.2.2. A point w in A is said to be a singular point if N(w)∩A is not homeomorphic to

R2 nor to the upper-half plane. Let ω be the set of singular points and N(ω) = ∪{N(w) : w ∈ ω}.

Let A′ = A − N(ω), B′ = B ∪ N(ω). Therefore, A′ and B′ are compact surfaces with

F = A′ ∪ B′ and A′ ∩ B′ a disjoint union of circles. The surface A′ is the closure of the interior

of A, while B′ is the closure of a neighbourhood of B in F .

Definition 2.2.3. A subcomplex σ of A is said to be strongly connected if for any two triangles

t and t′ in σ, there exists a sequence of triangles {ti}n
i=0 with t = t0 and t′ = tn, such that for all

i, ti and ti+1 intersect in at least one normal arc. A subcomplex consisting of a single triangle is
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taken to be strongly connected. It is easy to see that A can be decomposed as a union of maximal

strongly connected components.

Lemma 2.2.4. The interior of a strongly connected component σ of A is a planar surface and

there are at most N triangles in σ.

Proof. Away from the singular vertices on the boundary, σ is locally R2 or the upper half plane.

So in particular, the interior of σ is a surface. We shall show that it is planar.

All triangles in σ link the same vertex. Otherwise, as σ is strongly connected, there would

be a common normal arc shared by normal triangles in σ linking distinct vertices. This is a

contradiction as normal arcs in a face, linking different vertices are not normally isotopic. So we

may assume that all triangles of σ link the same vertex v.

Let S(v) be a vertex-linking sphere linking the vertex v. Let π : σ → S(v) be the projection

map that takes each triangle in σ to the corresponding triangle in S(v) (in the same tetrahedron).

We claim that π|int(σ) is an embedding, so that int(σ) is a planar surface and as there are at most

N triangles in S(v) there are at most N triangles in σ as well.

If π|int(σ) is not an embedding, then there exist triangles t and t′ in σ such that π(t) = π(t′).

We say triangle t is below triangle t′ if t and t′ both link the same vertex v and lie in the same

tetrahedron with t in between v and t′. We may assume that t is below t′.

As σ is strongly-connected, there exists a sequence of triangles {ti}k
i=0 such that t0 = t′, tk = t

and ti intersects ti+1 in a normal arc. Note that tk is below t0. We now extend this sequence to a

maximal sequence of triangles in σ with the property that ti intersects ti+1 in a normal arc and

ti is below ti−k for all i ≥ k. As σ is compact, this sequence is finite.

Suppose this sequence extended till tN . Let ∆ be the tetrahedron containing tN−k+1. Let α

be the normal arc tN ∩∆ and let α′ be the normal arc tN−k ∩ tN−k+1. Then as tN is below tN−k,

α is below α′.

As the surface F has no boundary, there exists a normal disk D in ∆ that contains α. If D

were a triangle then we could extend the sequence {ti}N
i=0 by appending D to it, contradicting

the maximality of this sequence. So D must be a quadrilateral. But as α is below α′, D would

necessarily intersect the triangle tN−k+1, contradicting the fact that F is embedded in M . Hence,

π|int(σ) must be an embedding.

Lemma 2.2.5. Let |A′| denote the number of components of A′. Then,

χ(A′) ≥ 2|A′| − 4Q

Proof.
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Claim. χ(A′) = 2|A′| − |∂A′|.
Let {An} be the strongly connected components of A. Then, int(A′) = int(A) = ∪nint(An).

By Lemma 2.2.4, the interior of An are planar surfaces. So, as A′ is a surface (not just a 2-

complex), A′ is itself a disjoint union of connected planar surfaces.

A connected planar surface S with b boundary components has χ(S) = 2 − b. As A′ is a

disjoint union of connected planar surfaces χ(A′) = 2|A′| − |∂A′| as claimed.

Definition 2.2.6. Let σ be a 2-complex. Define w(e), weight of an edge e ∈ σ, to be

w(e) =

{
1 if e ⊂ ∂σ

2 otherwise

Define w(σ), the weight of σ, to be the total weight of all edges of σ.

For ψ a 1-complex. Define w(ψ) to be the total number of edges of ψ.

From the definition, it is clear that w(σ) ≥ w(∂σ).

Claim. 4Q ≥ |∂A′|

As ∂B′ is obtained from ∂B by smoothening around singular points, each component of ∂B′

contains the midpoint of some edge of ∂B. As ∂B′ is a disjoint union of circles, the midpoint of

an edge of ∂B can not lie in two components of ∂B′. As a result, the number of edges in ∂B is

at least the number of components of ∂B′, i.e w(∂B) ≥ |∂B′|. The weight of B is 4Q, so that

4Q = w(B) ≥ w(∂B) ≥ |∂B′|. As ∂B′ = ∂A′, we obtain the claimed inequality.

Using the above two Claims, we get the desired relation

χ(A′) ≥ 2|A′| − 4Q

Lemma 2.2.7. For B 6= φ, χ(B′) ≥
{
|ω| − 3Q when ω 6= φ

4− 3Q when ω = φ

Proof. Let B′
0 = N(ω). Let B′

n be a union of n quadrilaterals of B′ such that B′
n+1 ⊃ B′

n. For

a quadrilateral q such that B′
n+1 = B′

n ∪ q, B′
n ∩ q is either empty, a circle or is homotopically

equivalent to a set with at most four points. So, χ(B′
n ∩ q) ≤ 4, and we get

χ(B′
n+1) = χ(B′

n) + χ(q)− χ(B′
n ∩ q)

≥ (χ(B′
n) + 1)− 4

As N(ω) is a disjoint union of discs,

χ(B′
0) = |ω|
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Therefore by induction on n, we have χ(B′
n) ≥ |ω|−3n when ω 6= φ, and if ω = φ then χ(B′

1) = 1

and we get χ(B′
n) ≥ 1 − 3(n − 1). Putting n = Q, we have B′

Q = B′ giving us the desired

result.

Proof of Theorem 2.1.1. When B = φ, the surface F is composed of normal triangles and so is a

union of vertex linking spheres. Therefore χ(F ) ≥ 2.

When B 6= φ, as A′ ∩B′ is a disjoint union of circles, so using Lemmas 2.2.5 and 2.2.7 we get,

χ(F ) = χ(A′ ∪B′)

= χ(A′) + χ(B′)

≥
{

(2|A′| − 4Q) + (|ω| − 3Q) when ω 6= φ

(2|A′| − 4Q) + 4− 3Q when ω = φ

When |A′| = 0 the surface is composed entirely of quadrilaterals, so that B 6= φ and ω = φ. So,

we get the desired relation

χ(F ) ≥ 2− 7Q

2.3 An inequality relating the number of triangles and quadrilaterals of normal surfaces

In this section we prove an inequality relating the number of triangles and quadrilaterals of a

normal surface.

Proof of Theorem 2.1.7. Let F (v) be the union of normal triangles of F linking the vertex v. Let

{F (v)n} be the strongly connected components of F (v).

Consider a graph Γ whose vertices are the normal quadrilaterals of F and the non-empty

F (v)n. Call the former vertices Q-vertices and the latter as S-vertices. Let there be an edge

of Γ joining an S-vertex and a Q-vertex for every edge shared by the corresponding F (v)n and

the corresponding quadrilateral. Let there also be edges of Γ between Q-vertices corresponding

to every edge shared by the corresponding quadrilaterals. For a quadrilateral in the pseudo cell

decomposition of the surface we could have simple loops corresponding to quadrilaterals that are

not injective on its edges.

As each quadrilateral has 4 sides, the degree of each Q-vertex is 4 and as there are no vertex-

linking spheres, there are no isolated S-vertices. As each edge of Γ has at least one vertex incident

on a Q-vertex (no edges between S-vertices) therefore, 4Q = total degree of Q-vertices ≥ total

degree of S-vertices ≥ S, where Q and S are the number of Q-vertices and S-vertices respectively.

By Lemma 2.2.4 each F (v)n has at most N triangles, where N is the degree of the pseudo-

triangulation τ . Therefore, NS ≥ T , where T is the number of triangles in F . Therefore, we get
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the required relation,

T ≤ 4NQ

Remark 2.3.1. This proof also holds for a normal surface F embedded in a 3-complex, if we

assumed that no component of F was composed solely of normal triangles.





3. A CHAIN COMPLEX AND QUADRILATERALS FOR NORMAL SURFACES

3.1 Introduction

Casson-Rubinstein independently observed that a normal surface is essentially determined by its

normal quadrilaterals. Their (unpublished) observation was that normal surfaces are determined

up to vertex linking spheres by quadrilateral coordinates. This allows a considerable increase in

efficiency of algorithms based on normal surfaces.

The purpose of this chapter is to clarify this observation, as well as the complementary question

of when a given set of quadrilateral coordinates corresponds to a normal surface, by interpreting

normal surfaces in terms of the homology of a chain complex associated to M . Our methods also

allow us to address the analogous questions for ideal triangulations. A criterion for quadrilateral

coordinates determining a normal surface and a proof of Casson-Rubinstein’s observation was

earlier given by Tollefson[40] for compact manifolds, using geometric constructions. Tillmann [39]

proves a similar result for ideal triangulations in the context of spun-normal surfaces. Spun-normal

surfaces, introduced by Thurston, are the analogue of normal surfaces in ideal triangulations. For

a detailed treatment of spun-normal surfaces we refer to [39].

As we wish to consider ideal triangulations, we consider a context more general than triangu-

lated 3-manifolds. Namely, let M be an orientable three-dimensional simplicial complex that is a

manifold away from vertices, and so that the link of each vertex v is a closed, connected, orientable

surface (not necessarily a sphere). We can define normal surfaces in this situation exactly as in

the case of 3-manifolds.

Henceforth, we assume M is as above. We can associate to a vertex v the vertex linking

normal surface S(v), which is a closed orientable surface (but not in general a sphere). The space

M̂ obtained from M by deleting those vertices v for which S(v) is not a sphere is a (non-compact)

3-manifold with an ideal triangulation.

3.2 The chain complex

In this section, we associate a chain complex (C, ∂∗) to M , such that normal surfaces are in

bijection with cycles of C2 (Lemma 3.2.2).

Fix an orientation of M . For each vertex v, assume that S(v) is oriented so that its co-

orientation at each point is along a vector pointing away from v. As S(v) is a union of normal
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triangles (linking v), we get a triangulation of S(v). Let (C∗(v), ∂∗(v)) be the simplicial chain

complex associated to this triangulation. Then, we shall show that C2(v) embeds in C2, C1(v)

embeds in C1 and the restriction of the boundary map ∂2 (of C2) to C2(v) agrees with ∂2(v)

(Proposition 3.2.1).

We now define the chain complex (C∗, ∂∗) as follows.

Firstly, observe that a normal arc is uniquely determined up to normal isotopy by the face in

which it lies and the vertex that it links. Let v be a vertex of a face F , then we denote by α(F, v)

the normal arc that lies in F and links v.

We give an arbitrary orientation to the edges of the triangulation of M and let e(F, v) denote

the edge in F opposite to v. We orient the normal arc α(F, v) so that it is in the same direction

as e(F, v). Let C1 be the free abelian group generated by these oriented normal arcs up to normal

isotopy.

Let Ct
2 be the free abelian group generated by normal triangles (up to normal isotopy) and

Cq
2 be the free abelian group generated by normal quadrilaterals (up to normal isotopy). Define

C2 = Ct
2 ⊕ Cq

2 to be the free abelian group generated by normal disks (up to normal isotopy). For

all k < 1 and k > 2, let Ck be zero.

Next we define the boundary maps of (C∗, ∂∗). Take ∂k to be zero for all k 6= 2. To define the

boundary map ∂2, we proceed as follows.

Let v be a vertex of a face F of a tetrahedron ∆. Let e(F, v) denote the edge in F opposite

to v, and let ê(F, v) denote its midpoint. Let a(∆, F, v) denote a unit vector based at ê(F, v),

perpendicular to F pointing out of ∆ (when translated along ∂∆ so that its base point lies in the

interior of F ). Let F (∆, v) be the face in ∆ opposite to v. Let b(∆, F, v) denote the unit vector

based at ê(F, v) perpendicular to F (∆, v) pointing out of ∆ (when translated along ∂∆ so that its

base point lies in the interior of F (∆, v)). Let u(∆, F, v) = a(∆, F, v) × b(∆, F, v) be their cross

product with respect to the orientation of M . Observe that u(∆, F, v) either points along e(F, v)

or in the direction opposite to it.

Given a normal disk D in ∆, suppose that ∂D is the union of normal arcs {α(F, v)}(F,v)∈A.

Recall that α(F, v) is oriented in the direction of e(F, v). The boundary map ∂2(D) is defined

to be
∑

(F,v)∈A ε(F, v)α(F, v) where ε(F, v) is 1 if α(F, v) (and consequently e(F, v)) is oriented

along u(∆, F, v), and is (−1) otherwise. This extends uniquely to a homomorphism ∂2 : C2 → C1.

It is easy to see the following proposition.

Proposition 3.2.1. There is an embedding of C2(v) in Ct
2 ⊂ C2, and an embedding of C1(v)

in C1. When D is a triangle linking a vertex v, ∂2D has edges oriented cyclically. Also, the

co-orientation of D coming from the cyclically oriented edges is the normal vector pointing away

from v. So the boundary map ∂2 restricted to C2(v) is ∂2(v), the (usual) boundary map of C2(v).
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v
F

T

b(T, F, v)

a(T’, F, v)

b(T’, F, v)

a(T, F, v)

e(F, v)

T’

Fig. 3.1: The vectors determining the boundary map

We can interpret normal surfaces in terms of the chain complex (C∗, ∂∗) as follows.

Lemma 3.2.2. There is a bijective correspondence between normal coordinates and 2-chains of

the chain complex. Further, normal coordinates corresponding to a 2-chain ξ satisfy the matching

equations if and only if ∂2ξ = 0.

Proof. The first statement follows as C2 is the free abelian group generated by normal isotopy

classes of normal discs.

Let F = T ∩ T ′ be a common face of the tetrahedra T and T ′. Let D ⊂ T and D′ ⊂
T ′ be normal disks such that D ∩ F = D′ ∩ F = α(F, v) for some vertex v of F . Then

clearly a(T, F, v) = −a(T ′, F, v). Moreover, we can observe that there exists λ ∈ R such that

b(T, F, v) = b(T ′, F, v) + λa(T, F, v) (see Fig 3.1). Therefore, u(T, F, v) = −u(T ′, F, v) and so

ε(T, F, v) = −ε(T ′, F, v).

So, the boundary of a 2-chain ξ is zero if and only if for each normal arc α in face F = ∆1∩∆2,

the number of normal disks of ξ in ∆1 that have α in their boundary equals the number of

normal disks of ξ in ∆2 having α in their boundary. This is precisely when ξ is a solution of

the matching equations. Therefore, ∂2(ξ) = 0 if and only if its normal coordinates satisfy the

matching equations.

Thus, as there are no three-chains, normal surfaces are in bijective correspondence with the

homology H2(C).
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3.3 Quadrilateral co-ordinates

We now turn to the question regarding quadrilateral co-ordinates determining normal surfaces.

Quadrilateral co-ordinates are in bijective correspondence with chains ζ ∈ Cq
2 . We shall henceforth

consider such 2-chains.

Note that admissibility is a condition determined by the quadrilateral coordinates. We shall

assume that ζ corresponds to non-negative, admissible quadrilateral coordinates.

Corresponding to the decomposition C1 =
⊕

v∈V C1(v), we define homomorphisms ∂̄v : C2 →
C1(v) as the composition π(v) ◦ ∂2 of the boundary map with the projection onto C1(v). As

C1 =
⊕

v∈V C1(v), for ξ ∈ C2, ∂2(ξ) = 0 if and only if ∂̄v(ξ) = 0 for all v ∈ V .

As C2 = Ct
2 ⊕ Cq

2 , by Lemma 3.2.2 the 2-chain ζ corresponds to quadrilateral co-ordinates

of a normal surface F with normal coordinates ξ if and only if there is a 2-chain ζ ′ ∈ Ct
2 with

∂2(ζ + ζ ′) = 0. In this case, the normal co-ordinates of F are ξ = ζ + ζ ′.

We first give a necessary condition for ζ to correspond to the quadrilateral coordinates of a

normal surface.

Theorem 3.3.1. There is a normal surface F with quadrilateral coordinates corresponding to ζ

if and only if ∂̄vζ ∈ C1(v) is a boundary in C∗(v) for all v ∈ V .

Proof. First, assume that ζ corresponds to the quadrilateral co-ordinates of a surface F . Then

there is a 2-chain ζ ′ ∈ Ct
2 with ∂(ζ+ζ ′) = ∂ζ+∂ζ ′ = 0. Hence for each vertex v ∈ V , ∂̄vζ+∂̄vζ

′ = 0

As Ct
2 =

⊕
C2(v), we can write ζ ′ =

⊕
v∈V ζ ′(v), ζ ′(v) ∈ C2(v). For each v ∈ V , ∂̄vζ

′ =

∂2(v)ζ ′(v) is a boundary in the complex C∗(v). Hence ∂̄vζ = −∂̄vζ
′ is also a boundary.

Conversely, if ∂̄vζ is a boundary for each v ∈ V , then there are 2-chains ζ ′(v) ∈ C2(v) with

∂2(v)ζ ′(v) = −∂̄vζ. We claim that we can choose ζ ′(v) so that all the corresponding (triangle)

coordinates are non-negative. Namely, as S(v) is closed and oriented, the sum of the triangles in

S(v) is a cycle [S(v)]. By replacing ζ ′(v) by ζ ′(v) + k[S(v)], for k sufficiently large, we can ensure

that all the co-ordinates are non-negative.

Let ζ ′ = Σv∈V ζ ′(v) ∈ Ct
2. By construction ∂̄v(ζ +ζ ′) = 0 for all v ∈ V , and hence ∂(ζ +ζ ′) = 0.

Let ξ = ζ + ζ ′. By Lemma 3.2.2, ξ satisfies the matching equations. Further, as ζ is assumed

to correspond to admissible, non-negative quadrilateral coordinates, and the coordinates of ζ ′(v)

are non-negative triangular coordinates, ξ is an admissible, non-negative solution.

Remark 3.3.2. When ∂̄vζ is a cycle in C1(v) for all v ∈ V , then ζ is the quadrilateral coordinates

of a normal or spun-normal surface. The above theorem says that when ∂̄vζ is in fact a boundary

the normal or spun-normal surface is compact, so it is a normal surface.

In the important case where M is a manifold, Theorem 3.3.1 takes a particularly useful form.

Corollary 3.3.3. If M is a manifold, ζ corresponds to quadrilateral coordinates of a normal

surface if and only if ∂̄v(ζ) ∈ C1(v) is a cycle in C∗(v) for all v ∈ V .
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Proof. This follows from Theorem 3.3.1 as H1(S(v),Z) = 0.

The class ∂̄v(ζ) is a cycle if and only if its boundary is zero. This is a condition that is simple

to check and also conceptually very simple.

In the general case, we need to check whether ∂̄v(ζ) is a cycle and represents the trivial

homology class. The latter can be checked, for instance, by evaluating on a basis of cohomology.

We now turn to Casson-Rubinstein-Tollefson’s observation on uniqueness. The following is a

useful way to state the result.

Theorem 3.3.4 (Casson-Rubinstein-Tollefson). Let ζ be an admissible, non-negative set of quadri-

lateral coordinates that can be represented by a normal surface. Then there is a set of admissible,

non-negative normal surface coordinates ξ corresponding to ζ such that if ξ′ is another set of such

coordinates, then ξ′ = ξ +
∑

v∈V mv[S(v)], with mv ≥ 0.

Proof. By Theorem 3.3.1, ∂̄vζ is the boundary of a 2-chain ζ ′(v) ∈ C2(v). If ζ ′′(v) is another such

2-chain, then ζ ′(v)− ζ ′′(v) is a 2-cycle, hence represents an element of the homology H2(S(v),Z).

As H2(S(v),Z) = Z and is generated by S(v), ζ ′′(v) = ζ ′(v) + m[S(v)].

Consider the coefficients of the triangles of S(v) in ζ ′(v) and let m be the smallest such

coefficient. The chain ζ ′(v) − m[S(v)] then has all coefficients non-negative and at least one

coefficient zero. Further, if we replace ζ ′(v) by ζ ′(v)−m[S(v)], we see that for any non-negative

chain ζ ′′(v) with ∂(v)ζ ′′(v) = ∂(v)ζ ′(v), ζ ′′(v) = ζ ′(v) + m′[S(v)] with m′ ≥ 0.

Now let ζ ′ =
∑

v∈V ζ ′(v) and let ξ = ζ + ζ ′. It is easy to see that ξ is as claimed.

Let S be a normal surface, and let (S) denote its quadrilateral coordinates. Then the above

theorem says that there exists a normal surface F with (F ) = (S) such that if F ′ is any other

normal surface with (F ′) = (S) then F ′ is the union of F with some vertex-linking surfaces.





4. INCOMPRESSIBILITY AND NORMAL MINIMAL SURFACES

4.1 Introduction

Given a Riemannian manifold (M, g), we can scale the metric by multiplying g with a smooth

positive real-valued function. Such a rescaling may, however, introduce new minimal surfaces.

Given a triangulated 3-manifold (M, τ), we can scale the PL-metric by taking a refinement of

τ , by repeatedly subdividing the tetrahedra in τ according to a positive integer-valued scaling

function. In general, such a scaling may introduce new minimal normal surfaces. We describe

here a procedure for scaling the PL-metric that introduces no new normal surfaces.

Definition 4.1.1. Let ∆ be a tetrahedron with vertices labeled {a, b, c, d}. Let e be a point in

the interior of ∆. Take a simplicial triangulation of ∆ using the tetrahedra ∆A = [b, c, d, e], ∆B =

[a, c, d, e], ∆C = [a, b, d, e] and ∆D = [a, b, c, e]. Define φ on a triangulation τ to be the function

that gives a refinement of τ by dividing each tetrahedron ∆ of τ into 4 tetrahedra, as described

above. We call this the refinement function. This is shown in Figure 4.1 where the additional

edges in the refinement of ∆ are shown as dotted-lines.

Let f : {∆ : ∆ ∈ τ} → Z be a function that associates a non-negative integer to each

tetrahedron ∆ of τ . We call such a function a scaling function. Define φf on τ to be the function

that gives to each ∆ ∈ τ the triangulation φf(∆)(∆), obtained by taking f(∆) iterates of φ on ∆.

As the faces of ∆ are also faces of φ(∆), φf (τ) = τ ′ is a refined triangulation of τ .

The main theorem in this chapter is Theorem 4.1.2.

Theorem 4.1.2. Let F be a closed surface embedded in a 3-manifold M no component of which

a b

c

d

e

Fig. 4.1: A tetrahedron in τ , partitioned by φ.



4. Incompressibility and normal minimal surfaces 31

is a 2-sphere. Let τ be a triangulation of M . Let f : {∆ : ∆ ∈ τ} → Z be a scaling function and

let τ ′ = φf (τ) be the corresponding refinement of τ . Then, F is τ -normal ⇔ F is τ ′-normal.

Every τ -normal surface is τ ′-normal by observing that each τ -normal disk is a union of τ ′-

normal disks, as shown in lemma 4.2.5. For the converse, the proof depends on a simple ex-

amination of the possible τ ′-normal proper embeddings of a surface in a tetrahedron ∆ of the

triangulation τ . We show that every τ ′-normal surface within ∆ is in fact a τ -normal disk, hence

every τ ′-normal surface is also τ -normal.

In the second part of this chapter we use such a refinement of the triangulation to obtain a

PL-analogue of the theorem proved in [8]. It is known that if F is a smooth incompressible surface

in an irreducible Riemannian 3-manifold M , then the isotopy class of F has a least area surface.

The theorem proved by Gadgil in [8] proves the converse, that is, if F is a smooth surface in a

closed, irreducible 3-manifold M such that for each Riemannian metric g of M , F is isotopic to

a least-area surface F (g), then F is incompressible.

Similarly, in the PL case, it is known that an incompressible surface F in a triangulated 3-

manifold M is isotopic to a normal surface that is of minimal PL-area in the isotopy class of F .

We prove here the converse.

Theorem 4.1.3. Let F be a closed orientable surface in an irreducible orientable closed 3-manifold

M . Then, F is incompressible if and only if for any triangulation τ of M , there exists a τ -normal

surface F (τ) isotopic to F that is of minimal PL-area in the isotopy class of F .

If F is an incompressible surface that is not normal in a triangulation τ of M , then it is

known that a PL-area decreasing isotopy exists. To prove the converse, we show that given a

compressible surface F , there exists a triangulation τ ′ for which the isotopy class of F has no

normal minimal surface. An outline of the proof is as follows. Let F̂ be the surface obtained by

compressing F along a compressing disc. Therefore, F is obtained from F̂ by attaching a 1-handle

to F̂ . We start with a certain ‘prism’ triangulation of a regular neighbourhood N(F̂ ) of F̂ which

is such that any connected normal surface lying in N(F̂ ) is isotopic to a component of F̂ . We

extend this triangulation to a triangulation τ of M . Let Ar(F ) be the PL-Area of F in τ , then

as the 1-handle can be chosen to avoid all edges of τ , we always get a representative of F (in its

isotopy class) such that Ar(F ) = Ar(F̂ ).

We define a scaling function f : {∆ : ∆ ∈ τ} → Z that takes the value 0 on ∆ ⊂ N(F̂ ) and a

value greater than Ar(F̂ ) for ∆ not in N(F̂ ). We now take the refinement τ ′ of τ given by φf . As

every τ ′-normal surface is also τ -normal by Theorem 4.1.2, a τ ′-normal surface that does not lie

in N(F̂ ) has a τ -normal disk outside N(F̂ ). This disk has τ ′ PL-area more than the τ ′ PL-area

of F̂ . As F̂ is not homeomorphic to F , a normal surface that lies entirely in N(F̂ ) is not isotopic

to F , while a normal surface that does not lie in N(F̂ ) has τ ′ PL-area more than that of F̂ . As
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there is always a surface isotopic to F that has τ ′ PL-area equal to that of F̂ (and which is not

normal) so, the isotopy class of F has no normal minimal-area surfaces in τ ′.

4.2 Proof of Theorem 4.1.2

In this section, we first show lemma 4.2.4 which determines normal disks using normal arcs in the

boundary of the disk. Then, using Fig 4.2 we prove lemma 4.2.5 which says that a τ -normal disk

is a τ ′-normal surface. We then prove Theorem 4.1.2. We introduce the following notation:

Definition 4.2.1. A τ ′-normal triangle T in ∆X ⊂ ∆, X ∈ {A,B, C,D}, is said to link a vertex

w in ∆X if ∂∆X − ∂T has a component that contains the vertex w and no other vertices of ∆X .

We say the coordinates of T are [T ] = (X, Tw). When the context is clear we shall denote the

triangle T itself by its coordinates (X, Tw).

Similarly, a τ ′-normal quadrilateral Q in ∆X ⊂ ∆, X ∈ {A,B, C, D}, is said to link an edge yz

in ∆X if ∂∆X − ∂Q has a component that contains the vertices y and z, and no other vertices of

∆X . We say the coordinates of Q are [Q] = (X, Qyz). When the context is clear we shall denote

the quadrilateral Q itself by its coordinates (X, Qyz).

Definition 4.2.2. A τ ′-normal arc λ is said to link a vertex x (respectively an edge yz) in a face

F of τ ′ if F−λ has a component that contains the vertex x and no other vertices of F (respectively

contains the vertices y and z and no other vertices of F ). Denote the set of τ ′-normal arcs in

faces of tetrahedra of τ ′, linking vertex x (respectively edge yz) by Λx (respectively Λyz).

Definition 4.2.3. We define Λx ∗Λy (respectively Λx ∗Λxy) to be the set of τ ′-normal paths that

are not contained in a single face, and are given by the concatenation of an arc in Λx with an arc

in Λy (respectively Λxy).

We now state the following lemma which says that given a pair of contiguous normal arcs in

the boundary of a normal disc, we can determine whether the disc is a triangle or a quadrilateral

and we can determine which vertex (respectively which edge) it links. Also, if we are given that

the normal disk is a triangle (respectively a quadrilateral) and we are given one normal arc in

its boundary, then the vertex linked by the normal triangle (respectively the edge linked by the

normal quadrilateral) can be determined.

Lemma 4.2.4. For a τ ′-normal disk D with a normal path λ ⊂ ∂D,

(i) If D is a triangle with λ ∈ Λx then D is a triangle linking the vertex x.

(ii) If D is a quadrilateral with λ ∈ Λxy then D is a quadrilateral linking the edge xy.

(iii) If D is a quadrilateral in the tetrahedron [w, x, y, z] with λ in the face [x, y, z] and λ ∈ Λz,

then D is a quadrilateral linking the edge wz.

(iv) If λ ∈ Λx ∗ Λx then D is a triangle linking the vertex x.

(v) If λ ∈ Λx ∗ Λxy then D is a quadrilateral linking the edge xy.
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Proof. We make the following simple observations:

a. A normal disk D is a quadrilateral if and only if each normal arc in ∂D links a distinct vertex,

which is the same as saying normal arcs in ∂D link more than one vertex.

b. A normal triangle T in a tetrahedron [w, x, y, z] links the vertex x if and only if any normal

arc in ∂T links x.

c. A normal quadrilateral Q in a tetrahedron [w, x, y, z] links edge xy if and only if ∂Q∩ xy = φ.

The statement (i) follows from observation b.

Let D be a quadrilateral in a tetrahedron [w, x, y, z], with λ ∈ Λxy and λ contained in the face

F = [x, y, z]. Then ∂λ is contained in the arcs xz and yz. Therefore, if ∂D∩xy 6= φ then as ∂D is

transverse to edges, ∂D is a circle in ∂∆ transversely intersecting each edge of the triangle [x, y, z].

Therefore, ∂D must intersect some edge of this triangle more than once. This is a contradiction

as D is a normal disc, so that ∂D intersects each edge at most once. Therefore, ∂D∩xy = φ and

statement (ii) follows from observation c.

Statement (iii) follows from a similar argument replacing Λxy with Λz and observing that

quadrilaterals that link xy are precisely the quadrilaterals that link wz.

Statement (iv) follows from observations a and b.

The disk D in statement (v) is a quadrilateral from observation a. As there exists an arc

λ ⊂ ∂D with λ ∈ Λxy, from statement (ii) we can see that D links the edge xy.

We now state the lemma which shows that every τ -normal disk is a union of τ ′-normal disks

(see Figure 4.2).

Lemma 4.2.5. Let S be a properly embedded surface in ∆. Then,

(i) S is a τ ′-normal surface with S = (A, Td) ∪ (B, Td) ∪ (C, Td) or S = (A, Qde) ∪ (B, Qde) ∪
(C,Qde) ∪ (D, Te) ⇔ S is τ -isotopic to a τ -normal triangle linking vertex d.

(ii) S is a τ ′-normal surface with S = (D,Ta) ∪ (B, Qad) ∪ (C, Qad) ∪ (A, Td) or S = (B, Tc) ∪
(D, Qbc) ∪ (A,Qbc) ∪ (C, Tb) ⇔ S is τ -isotopic to a τ -normal quadrilateral linking edge ad.

(iii) S is a τ ′-normal surface with S = (A, Te)∪(B, Te)∪(C, Te)∪(D,Te) ⇔ S is a τ ′ vertex-linking

sphere linking the vertex e.

Proof. If S is a τ -normal triangle in the tetrahedron ∆, linking vertex d, then after a τ -normal

isotopy we may assume that S = ∂B(d)∩∆, where B(d) is a small ball neighbourhood of d in M .

This is shown in Figure 4.2 (i) a. Then, S intersects the faces of τ ′ as shown in Figure 4.2 (i) b, so

that S = (A, Td) ∪ (B, Td) ∪ (C, Td). Conversely, if S = (A, Td) ∪ (B, Td) ∪ (C, Td) (Figure 4.2 (i)

b) or S = (A, Qde)∪ (B, Qde)∪ (C, Qde)∪ (D, Te) (Figure 4.2 (ii) b.), then S is a properly embed-

ded disk in ∆ with ∂S a circle in ∂∆ linking vertex d. So, S is a τ -normal triangle linking vertex d.

If S is a τ -normal quadrilateral in the tetrahedron ∆, linking edge ad, then after a τ -normal
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b (C,Td)

(A,Td)(B,Td)

d

a

(i)
a. b.

(B,Qde) (A,Qde)

(C,Qde)

(D,Te)

a b

d

(ii)
a. b.

b (D,Ta)a

(iii)
a. b.

(C, Qad)(B, Qad)

(A,Td)d

Fig. 4.2: Diagrams (i) and (ii) represent a normal triangle linking vertex d. Diagram (iii) represents a

normal quadrilateral linking edge ad.

isotopy we may assume that S = ∂B(ad)∩∆, where B(ad) is a small ball neighbourhood of ad in

M . This is shown in Figure 4.2 (iii) a. Then, S intersects the faces of τ ′ as shown in Figure 4.2

(iii) b, so that S = (D,Ta)∪ (B,Qad)∪ (C, Qad)∪ (A, Td). Conversely if S = (D, Ta)∪ (B, Qad)∪
(C,Qad) ∪ (A, Td) (Figure 4.2 (iii) b) or S = (B, Tc) ∪ (D,Qbc) ∪ (A,Qbc) ∪ (C, Tb)(corresponding

to a quadrilateral linking the edge bc), then S is a properly embedded disk in ∆ with ∂S a circle

in ∂∆ linking the edge ad. So, S is a τ -normal quadrilateral linking edge ad.

If S is a vertex linking sphere linking vertex e, then S = ∂B(e) where B(e) is a small ball-

neighbourhood of e in M . So that S = (A, Te) ∪ (B, Te) ∪ (C, Te) ∪ (D, Te). Conversely, if

S = (A, Te) ∪ (B, Te) ∪ (C, Te) ∪ (D, Te) then it is easy to see that S = ∂B(e) and therefore S is

a vertex-linking sphere in τ ′ linking vertex e.

We now give a proof of Theorem 4.1.2.

Proof. If F is τ -normal then by lemma 4.2.5 it follows that F is a union of τ ′-normal disks and

hence is τ ′-normal as well.

To prove the converse, let S be a connected component of F ∩∆. We shall show in Claims 1

and 2 that if S contains a τ ′-normal triangle, then S must either be a τ -normal disk or a vertex-

linking sphere. In Claim 3 we shall show that S is not the union of τ ′-normal quadrilaterals. So

every component of F ∩∆ is either a τ -normal disk or a τ ′ vertex-linking sphere. Thus we would
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have shown that any τ ′-normal surface in M is either a τ -normal surface or it has a component

which is a τ ′ vertex-linking sphere.

Claim. If S′ ⊂ S is a τ ′-normal triangle with coordinates (X, Te) for some X ∈ {A,B, C,D}
then S is either a vertex linking sphere in τ ′ linking vertex e or S is a τ -normal triangle.

Without loss of generality, assume X = D. The boundary ∂S′ is composed of normal arcs

linking vertex e, i.e., for Y ∈ {A,B, C}, S′ ∩∆Y gives a normal arc in Λe.

If S′ ∩ ∆A meets a τ ′-normal triangle T in ∆A, then by lemma 4.2.4 (i), [T ] = (A, Te).

Let S′′ = S′ ∪ T . Now for Y ∈ {B,C}; S′′ ∩ ∆Y ∈ Λe ∗ Λe, therefore by lemma 4.2.4 (iv)

S′′ meets normal triangles with coordinates (B, Te) and (C, Te). So as S is connected, S =

(A, Te)∪ (B, Te)∪ (C, Te)∪ (D, Te), therefore by lemma 4.2.5, S is a vertex-linking sphere linking

vertex e.

If S′∩∆A meets a τ ′-normal quadrilateral Q in ∆A , then by lemma 4.2.4 (iii), [Q] = (A,Qde).

Let S′′ = S′ ∪ Q. Now for Y ∈ {B,C}; S′′ ∩ ∆Y ∈ Λe ∗ Λde, therefore by lemma 4.2.4 (v),

S′′ meets normal quadrilaterals with coordinates (B, Qde) and (C, Qde). So as S is connected,

S = (A,Qde) ∪ (B,Qde) ∪ (C, Qde) ∪ (D, Te), therefore by lemma 4.2.5, S is a τ -normal triangle

(linking vertex d).

Claim. If S′ ⊂ S is a τ ′-normal triangle with coordinates (X,Tw), for X ∈ {A, B,C, D}, where

w is a vertex in ∆X other than e, then S is either a τ -normal triangle or a τ -normal quadrilateral.

Without loss of generality, assume X = D and w = a. Then S′ ∩∆B and S′ ∩∆C are in Λa,

while S′ ∩∆A = φ.

If S′∩∆B meets a τ ′-normal triangle T , then by lemma 4.2.4 (i), [T ] = (B, Ta). Let S′′ = S′∪T .

Then S′′∩∆C ∈ Λa∗Λa therefore by lemma 4.2.4 (iv), S′′ meets a normal triangle with coordinates

(C, Ta) in ∆C . So we have S = (D, Ta) ∪ (B, Ta) ∪ (C, Ta), therefore by Lemma 4.2.5, S is a τ -

normal triangle (linking vertex a).

If S′ ∩∆B meets a τ ′-normal quadrilateral Q, then by lemma 4.2.4 (iii), [Q] = (B, Qad). We

have (S′∪Q)∩∆C ∈ Λa ∗Λad therefore by lemma 4.2.4 (v), S′∪Q meets ∆C in a quadrilateral Q′

with [Q′] = (C,Qad). Let S′′ = S ∪Q∪Q′. Then S′′∩∆A ∈ Λd ∗Λd. So that by lemma 4.2.4 (iv),

S′′ meets ∆A in a normal triangle with coordinates (A, Td). Therefore S = (D, Ta) ∪ (B, Qad) ∪
(C,Qad) ∪ (A, Td) and by Lemma 4.2.5, S is a τ -normal quadrilateral (linking edge ad).

Claim. S is not a union of τ ′-normal quadrilaterals.

Without loss of generality we assume S∩∆D 6= φ. Let Q be a normal quadrilateral in S∩∆D.

Then as the normal arcs in ∂Q link distinct vertices, there exists an arc λ ⊂ ∂Q that belongs to

Λe. Assume, without loss of generality, that Q∩∆A = λ ∈ Λe. By lemma 4.2.4 (iii), Q meets ∆A

in a normal quadrilateral QA with [QA] = (A,Qde). As QA ∩∆B ∈ Λde, by lemma 4.2.4 (ii), QA
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meets ∆B in quadrilateral QB with QB = (B,Qde). Let S′ = QA ∪QB. Then S′ ∩∆D ∈ Λe ∗Λe,

so by lemma 4.2.4 (iv), S′ must meet ∆D in a triangle with coordinates (D, Te) contradicting our

assumption that S is composed solely of τ ′-normal quadrilaterals.

4.3 The prism triangulation of N(F)

Let F be a closed oriented connected surface lying in an oriented 3-manifold M . Denote by I the

closed interval [−1, 1]. Let N(F ) ∼= F × I be a regular neighbourhood of F . In this section we

define a triangulation of N(F ), which is such that any closed connected normal surface lying in

N(F ) is normally isotopic to F × {0}.

Take a triangular disc T with oriented edges. Assume the edges are not cyclically oriented.

Label the vertices {v0, v1, v2} of T in such a way that the edges are oriented as {v0v1, v1v2, v0v2}.
In T × I, let T × {−1} be identified with [v0, v1, v2] labeled as above and T × {1} = [w0, w1, w2],

where vi and wi have the same image under the projection T×I → T . Then we get a triangulation

of T × I, using the tetrahedra ∆0 = [v0, w0, w1, w2], ∆1 = [v0, v1, w1, w2] and ∆2 = [v0, v1, v2, w2].

We call this the prism triangulation of T × I. (See proof of Theorem 2.10 [13] for details.)

Lemma 4.3.1. Let T1 and T2 be triangles with non-cyclic oriented edges that intersect in an edge

e = T1∩T2. Assume the orientation on the edge e coming from T1 is the same as that coming from

T2. Let τ1 and τ2 be the prism triangulations of T1 × I and T2 × I respectively. Then τ = τ1 ∪ τ2

is a triangulation of (T1 ∪ T2)× I.

Proof. In the prism triangulation of T, we note that the 1-skeleton lies in ∂T × I and is the union

of ∂T × ∂I and the edges {v0w0, v1w1, v2w2, v0w1, v0w2, v1w2}. Recall that the edges of T were

oriented as {v0v1, v1v2, v0v2}. So given an oriented edge e = [−1, 1] of T , with e oriented in the

direction from -1 to 1, e× I is the union of two triangles given by the join of e× {−1} with the

point (1, 1) and the join of e×{1} with the point (−1,−1). In particular, the triangles divide the

square e× I along the diagonal from (−1,−1) to (1, 1).

Therefore if two triangles T1 and T2 with oriented edges intersect in an edge e = T1∩T2, where

the orientation of e coming from T1 is the same as that from T2, then the prism triangulation

of T1 × I and T2 × I agree on the intersection e × I. So by taking the union τ1 ∪ τ2 we get a

triangulation on (T1 ∪ T2)× I.

We can now define the prism triangulation on F×I. Firstly, we claim that given a triangulation

τ of F there exists a refinement τ ′ of τ and an orientation of the edges of τ ′ such that no triangle

has edges oriented cyclically.

Give any orientation to the edges of the 1-skeleton of τ . Let Nτ be the number of triangles of
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τ with edges oriented cyclically. If Nτ > 0, then take a triangle T = [a, b, c] in τ with cyclically

oriented edges {ab, bc, ca}. Let d be a point in the interior of T . Define the triangulation τ ′ as

a refinement of τ given by subdividing T into the triangles [a, b, d], [b, c, d], [c, a, d]. Orient the

newly introduced edges of the 1-skeleton as da, db and dc. Then none of the triangles in the

subdivision of T has cyclically oriented edges. Therefore the number of triangles with cyclically

oriented edges in τ ′, Nτ ′ = Nτ − 1. So after Nτ such refinements we obtain a triangulation of F

with no triangles having edges oriented cyclically.

Now by lemma 4.3.1, we can patch up the prism triangulations of triangles of F to get a trian-

gulation of F×I. We call this the prism triangulation of F×I, relative to the triangulation τ ′ of F .

We now show that any properly embedded normal surface in the prism triangulation of T × I

with boundary in ∂T × I is normally isotopic to T × {0}.

Lemma 4.3.2. Let T = [v0, v1, v2] be a triangle with non-cyclic edges. Let τ be the prism

triangulation on T × I. Let S be a properly embedded normal surface with ∂S ⊂ ∂T × I. Then S

is normally isotopic to T × {0}.

Proof. In the prism T × I, let T × {−1} = [v0, v1, v2] and T × {1} = [w0, w1, w2] with vi and wi

projecting to the same point on T . Then, the prism triangulation of T × I is composed of the

tetrahedra ∆0 = [v0, w0, w1, w2], ∆1 = [v0, v1, w1, w2] and ∆2 = [v0, v1, v2, w2].

Observe that ∆0 contains the face [w0w1w2] = T ×{1}, while ∆2 contains the face [v0v1v2] =

T ×{−1}. As S does not intersect T ×∂I, S ∩∆0 is parallel to [w0w1w2] and is therefore a union

of triangles linking v0. Similarly, S ∩∆2 is a union of triangles linking w2. The tetrahedron ∆1

has a pair of opposing edges v0v1 and w1w2 that lie in T × ∂I. Therefore S ∩ ∆1 is a union of

normal disks that separates these pair of edges and is therefore a union of normal quadrilaterals

linking edge v0v1.

Note that ∆0 ∩∆1 = [v0w1w2] and ∆1 ∩∆2 = [v0v1w2]. So by the matching equations, the

number of triangles in ∆0 ∩S equals the number of quadrilaterals in ∆1 ∩S which is the same as

the number of triangles in ∆2 ∩ S.

Let T0 be a triangle in ∆0 ∩ S, Q1 a quadrilateral in ∆1 ∩ S and T2 a triangle in ∆2 ∩ S such

that T0 meets Q1 in ∆0 ∩∆1 and Q1 meets T2 in ∆1 ∩∆2. Then T0 ∪Q1 ∪T2 = S′ is a connected

properly embedded normal surface in T × I that projects homeomorphically onto T and so S′

is normally isotopic to T × {0}. Any normal surface in T × I that does not intersect T × ∂I is

therefore, a disjoint union of discs parallel to T ×{0}. As S is a normal connected surface, S = S′

as required.

Theorem 4.3.3. Let F be a closed oriented connected surface. Let τ be a prism triangulation

of N(F ) ' F × I. Then any normal closed connected surface F ′ ⊂ N(F ) is normally isotopic to
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F × {0}.

Proof. Let τ ′ be a triangulation of F , and let τ be the prism triangulation of N(F ) relative to τ ′.

Let T be a triangle in τ ′ then τ |T is the prism triangulation on T × I. As F ′ is normal in τ and is

closed, F ′ ∩ (T × I) is a τ |T -normal properly embedded surface S with ∂S ⊂ ∂T × I so by lemma

4.3.2, S is normally isotopic to T × {0}. As this is true for every triangle T in the triangulation

τ ′ of F and the surface F ′ is connected, F ′ is normally isotopic to F × {0}.

4.4 Proof of Theorem 4.1.3

As before, let F be a closed oriented surface in a compact oriented 3-manifold M . Let τ1 be a

triangulation of N(F ). In this section we firstly show that given any integer W , there exists an

extension of τ1 to a triangulation τ of M such that any τ -normal surface F ′ that does not lie in

N(F ) has PL-area more than W . This is shown in lemma 4.4.4, using which we prove Theorem

4.1.3.

Definition 4.4.1. Let Γ be a simplicial complex of dimension n. Then |Γ| denotes the number

of n-cells in Γ.

Definition 4.4.2. Let τ be a triangulation of M . Let the i-weight of F be defined as w(i)(F ) =

|F ∩ τ (i)|, where τ (i) is the i-the skeleton of the triangulation τ . Then, the PL-area of F is given

by the ordered pair w(F ) = (w(1)(F ), w(2)(F )).

Lemma 4.4.3. Let φ be the refinement function (Definition 4.1.1) that gives the refinement of a

tetrahedron ∆ into 4 tetrahedra. Let τ be a triangulation of ∆ consisting of the single tetrahedron

∆. Let τn = φn(τ) be a triangulation of ∆ obtained by taking n iterates of φ. Let D be a τ -normal

disk. Then the 1-weight of D in τn is greater than n.

Proof. As D is τ -normal, by Theorem 4.1.2, D is τn - normal. Let dn be the number of τn-normal

disks in D. Let wn(D) = w(1)(D) in τn, be the 1-weight of D in τn. As D is a τ -normal disk, its

weight in τ0 = τ is greater than equal to 3, therefore d0 = 1 and w0(D) ≥ 3. Now we claim that

for n > 0, dn ≥ 3dn−1 and wn(D) ≥ wn−1(D) + dn−1.

By lemma 4.2.5, D is divided into at least 3 τ1-normal disks on taking the refinement along

φ, and its weight is increased by at least one. Therefore d1 ≥ 3d0 and w1 ≥ w0 + d0.

Similarly now, if D is the union of dn−1 τn−1-normal disks then each such disk is divided into

at least 3 τn-normal disks by taking the refinement along φ, while its weight is incremented by at

least one for each of the τn−1-normal disks. Therefore dn ≥ 3dn−1, while wn ≥ wn−1 + dn−1. So

by induction, wn ≥ w0 + Σn−1
i=0 di ≥ w0 + (Σn−1

i=0 3i)d0

Therefore the weight wn(D) ≥ 3 + 1 + 3 + 32 + 33... + 3n−1 > n for all n > 0.
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Lemma 4.4.4. Let F̂ be a closed surface in M and let W be a positive integer. Let τ1 be a

triangulation of a regular neighbourhood N(F̂ ) of F̂ in M . Then, there exists an extension of τ1

to a triangulation τ of M such that for any τ -normal surface S that is not contained in N(F̂ ),

w(1)(S) > W .

Proof. We extend the triangulation of ∂N(F̂ ) given by τ1, to a triangulation τ2 of M−int(N(F̂ )).

Then, τ ′ = τ1 ∪ τ2 is a triangulation of M . Let f be the scaling function that takes the value

W on tetrahedra of τ2 and the value 0 on tetrahedra of τ1. Let τ = φf (τ ′) be the corresponding

refined triangulation. We claim that τ is the required triangulation.

Let S be a τ -normal surface in M that is not contained in N(S). By Theorem 4.1.2 then, S is

τ ′-normal as well. As S is not contained in N(F̂ ) there exists a τ2-normal disk D in S−int(N(F̂ )).

By lemma 4.4.3 now, the 1-weight of D in τ is greater than W , therefore w(1)(S) > W in τ .

We are now in a position to prove Theorem 4.1.3.

Proof. Assume F is incompressible. Let τ be any triangulation of M . Let F ′ be a surface isotopic

to F of minimal PL-area in the isotopy class of F . If F ′ is not τ -normal then it is known that

there exists a weight minimising isotopy of F ′, which is a contradiction. So every minimal PL-area

surface in the isotopy class of F is normal.

Conversely, suppose F is compressible. Let F̂ be the surface obtained by compressing F along

a compressing disk. The surface F is obtained from F̂ by attaching a 1-handle γ.

Let τ ′ be a prism triangulation of N(F̂ ) ∼= F̂×I. Let the 1-weight of the normal surface F̂×{0}
be denoted by W . By applying lemma 4.4.4, we obtain an extension of τ ′ to a triangulation τ of

M such that any normal surface that does not lie in N(F̂ ) has 1-weight greater than W .

We can assume the 1-handle γ is disjoint from the 1-skeleton of τ . As F is obtained from

F̂ × {0} by attaching this 1-handle, the 1-weight W = w(1)(F̂ × {0}) = w(1)(F ).

Assume there exists a normal minimal surface F ′ isotopic to F . By construction of τ , any

normal surface that does not lie in N(F̂ ) has 1-weight more than W = w(F ). So, F ′ lies in N(F̂ ).

By Theorem 4.3.3 then, F ′ is isotopic to a connected component of F̂ . As F ′ is isotopic to F ,

we have F isotopic to a connected component of F̂ . This is a contradiction as F is compressible

and hence every component of F̂ has genus strictly lower than the genus of F .





5. SPACE OF MAXIMAL LAMINATIONS

5.1 Introduction

Geodesic laminations on surfaces were first introduced by Thurston, and have since been an im-

portant tool in hyperbolic geometry, low-dimensional topology and dynamical systems [3]. We

wish to study laminations in 3-manifolds, along the lines of geodesic laminations on surfaces [7].

The concept of a lamination whose leaves are totally geodesic surfaces is, however, not that inter-

esting. A theorem of Zeghib [42] says that in a compact Riemannian manifold of dimension n ≥ 3

and of negative curvature, if λ is a codimension 1 lamination whose leaves are totally geodesic,

then all leaves of λ are compact.

Definition 5.1.1. A branch surface B is a compact subset of M locally modeled on Fig 5.1

(a) (Figure 1.1 of [7]). We denote by N(B) a fibered regular neighbourhood of B in M locally

modeled on Fig 5.1 (b). Fig 5.1 (b) also shows the horizontal boundary components ∂hN(B) and

the vertical boundary components ∂vN(B) of N(B).

The branch locus L of B is the union of those points of B that are not locally R2. The closure

(under the path metric) of components of B − L are called the branch sectors of B.

Every lamination in a closed 3-manifold is fully carried by a branch surface (after ‘splitting’

finitely many leaves) (Remark 4.4 [7]). In this chapter, we restrict our attention to laminations

fully carried by a fixed branch surface B, in a closed 3-manifold M . We can now use the additional

structure of the transverse I-fibers of the regular fibered neighbourhood of the branch surface, to

study the space of laminations.

Fig. 5.1: Branched surface
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Hyperbolic surfaces have the special property that the homotopy class of a closed curve has a

unique geodesic. As a result, geodesic laminations are ‘rigid’ under isotopy via geodesic lamina-

tions. Laminations carried by a branch surface have no such property, so we consider laminations

only up to isotopy.

A geodesic lamination λ has no interior, and therefore the closed subset of N(B) representing

λ is uniquely foliated. Laminations in neighbourhood of branched surfaces, on the other hand,

may have interior. So we identify laminations with the closed subset of N(B) representing λ. That

is, two laminations that have different foliations but are represented by the same closed subset of

N(B) are said to be equivalent. In particular, if l is a surface (without boundary) carried by B,

then the subset l × I ⊂ N(B) may have different foliations, but we consider all such laminations

the same. If a lamination λ fully carried by B has a point p ∈ int(λ) then, p lies in a component

of λ homeomorphic to l× I, for l a surface (without boundary and possibly non-compact) carried

by B. If λ has no interior, then it is uniquely foliated by the closed set representing λ, so the

only ambiguity we have allowed is different foliations of l× I components of λ. Let F ′(B) be the

space of closed subsets of N(B) with the Hausdorff metric. Then the space of laminations is a

sub-space of F ′(B).

A maximal geodesic lamination is defined as a geodesic lamination that is maximal with

respect to inclusion of geodesic laminations on the surface. This is equivalent to saying that its a

geodesic lamination all of whose complementary components (in the surface) are ideal triangles.

We wish to similarly define the notion of maximality for laminations carried by B.

We shall only consider laminations λ for which ∂hN(B) ⊂ λ. We say a lamination λ is a max-

imal lamination if each component of N(B)− λ contains a component of ∂vN(B). This implies,

in particular, that no component of N(B)−λ is of the form l×I for a surface l without boundary

(carried by B). We denote by L′(B) the space of maximal laminations. As L′(B) is a subspace

of the metric space of closed subsets of N(B), L′(B) has a metric topology.

The projectivisation of two measured laminations carried by B are considered equivalent if

the ratio of their weights (on all branch sectors) is a constant. So if each leaf l of a measured

lamination λ is replaced by l × I the projectivisation of λ does not change.

A B-isotopy is an isotopy that fixes each I-fiber of N(B) (as a set). We define the space of

projective maximal laminations PL(B) as the space of B-isotopy classes of maximal laminations

that have no interior. We say a lamination λ̄ is the projectivisation of a lamination λ, if λ̄ has no

interior and λ can be obtained from λ̄ by ‘thickening’ some of the leaves, i.e., by replacing some

of the leaves l of λ by l × I.

As mentioned above, the space of laminations with no interior is exactly the space of those
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laminations which do not have a component of the form l × I (for l a possibly non-compact sur-

face without boundary, carried by B). Therefore, there is a surjective map from L′(B) to PL(B)

which collapses every l × I component (of a lamination in L′(B)) to the leaf l. As laminations

are taken up to isotopy, this collapsing is well-defined. This map gives us an equivalence relation

on L′(B). Maximal laminations λ and λ′ in L′(B) are considered equivalent if after collapsing

all l × I components of λ and of λ′, there is an isotopy that takes one to the other. We shall

henceforth consider PL(B) as equivalence classes of laminations in L′(B), and give it the quotient

topology.

The natural topology on the space of geodesic laminations is the one induced by the Hausdorff

metric. With this topology, the space of geodesic laminations becomes sequentially compact. One

way of showing this is that the space of closed subsets of a surface is compact under the Hausdorff

metric. The space of geodesic laminations is a closed subset of this space, and is therefore compact.

For an attempt along similar lines, to show that PL(B) is compact under the quotient topology,

a naive approach would be to show that L′(B) is a closed subset of F ′(B). As F ′(B) is compact,

L′(B) would be as well. So PL(B), being the quotient of a compact set, would be compact. Such

an approach fails however as L′(B) is not closed in F ′(B).

As a counter example, consider a closed connected surface S fully carried by B, and assume

∂hN(B) ⊂ S. Then S is a maximal lamination. Assume that J is an I-fiber of N(B) that

intersects S more than once. Let Ŝ be a closed set formed by squeezing S along J so that S ∩ J

is a single point. Then, Ŝ equals S outside a neighbourhood of J while Ŝ ∩ J is a single point.

Any neighbourhood of Ŝ contains a surface parallel to S, but Ŝ is not a lamination. Therefore,

the complement of L′(B) is not open in F ′(B).

Instead, we shall show that PL(B) is sequentially compact by the following arguments. Given

a sequence [λn] in PL(B), we shall obtain a subsequence λnk
and by thickening its leaves get a

sequence µnk
∼ λnk

in L′(B) which is such that µnk
→ µ in L′(B). As a result, [λnk

] converges

to [µ] in PL(B) as required.

The subspace L′(B) of F ′(B) has an induced Hausdorff metric and the topology is, therefore,

normal. In order to show that PL(B) is a Hausdorff space, it is enough to show that the equiv-

alence class [λ] of a given lamination λ ∈ L′(B) is a closed subset of L′(B). This will also show

that [λ] is the intersection of a decreasing sequence of open sets of PL(B).

Our aim in this chapter is to show these three properties for the space PL(B), that is, we

wish to show that PL(B) is sequentially compact (Theorem 5.3.20), Hausdorff (Corollary 5.3.25)

and each point of PL(B) is the intersection of a decreasing sequence of open sets (Corollary 5.3.25).

The splitting of a branch surface B is defined as follows:
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Definition 5.1.2. Let K be a compact surface (possibly with boundary and possibly discon-

nected) carried by B such that N(B)− int(N(K)) = N(B′) is the fibered regular neighbourhood

of a branch surface B′. We say B′ is the splitting of B along K.

We characterise such compact surfaces K whose complements are branch surfaces. We call

such surfaces branch-splitters.

Similarly, we show that the complement of a lamination is the neighbourhood of a lamination-

splitter surface. We characterise laminations by the existence of such a surface in its complement

(in N(B)).

An advantage of such an approach is that both branch splittings and laminations can be dealt

with in one stroke, by looking at the splitters in their complements. Another (more genuine)

advantage is that isotopy classes of projective maximal laminations are difficult to deal with,

however the isotopy classes of a minimal lamination-splitter surface is easier to handle. This is

because it has only finitely many components each of which has a boundary in ∂vN(B).

Firstly, to go back-and-forth between laminations and the splitter surfaces in their complement,

we show that an inclusion isotopy of laminations or ‘normal’ splitter surfaces can be extended to

an ambient isotopy of N(B) (in Theorem 5.2.19).

Next, we get a convenient basis of opens sets in PL(B). Let V ′
B1

be the set of maximal

laminations fully carried by B1. Let VB1 be the set of isotopy classes of maximal laminations with

a representative that is fully carried by B1. We shall show (in lemma 5.3.4 and theorem 5.3.21)

that the set of VB1 , for B1 any ‘maximal’ branch splitting of B, forms a basis of the topology on

PL(B).

An outline of the proof is as follows. For B1 a maximal branch splitting of B, the neighbour-

hood int(N(B1)) is an open subset of N(B). We shall show that the set V ′
B1

is an open subset of

PL′(B). Consequently, the set VB1 is an open subset of PL(B).

Let [λ] ∈ PL(B) and let V be an open set containing [λ]. Then we shall show that there

is an open set W of N(B) that contains λ such that the if µ is a maximal lamination in W

then [µ] ∈ V . Lemma 4.2 [7] shows that a maximal lamination λ is precisely the inverse limit

of a ‘strictly decreasing’ sequence of ‘maximal’ branch-splittings along λ (stated in these terms

in Theorem 5.3.17). Therefore, there exists a maximal branch splitting B1 of B along λ with a

neighbourhood N(B1) such that N(B1) ⊂ W . We can then conclude that VB1 ⊂ V as required.

If B1 is a maximal branch splitting of B, then we can speak of the space of laminations of B1.

We shall later show in this chapter, that PL(B1) = VB1 . In other words, two laminations carried

by B1 are isotopic in N(B1) if and only if they are isotopic in N(B) (Theorem 5.3.8).
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We divide this chapter into two parts. In the first we shall show (in Theorems 5.2.6 and 5.2.7)

that the complements (in N(B)) of laminations (and similarly neighbourhood of branch surfaces)

are exactly the neighbourhoods of splitter surfaces in N(B). Then, the main effort shall be to

prove Theorem 5.2.19 which says that inclusion isotopies of a normal splitter surface, lamination

or the neighbourhood of a branch splitting in N(B) can be extended to an identity isotopy of

N(B).

In section 5.3, we shall show that PL(B) is sequentially compact (Theorem 5.3.20), Hausdorff

(Corollary 5.3.25) and that each point in PL(B) can be obtained as the intersection of a sequence

of open sets (Corollary 5.3.25) . We also show, in Theorem 5.3.8, that if B1 is a maximal branch

splitting of B, then PL(B1) = VB1 . That is, laminations carried by B1 are isotopic in N(B1) if

and only if they are isotopic in N(B).

5.2 Splitters and Isotopies

We divide this section into two parts. In the first part, we shall characterise laminations (and

branch splittings) in terms of the lamination-splitter surfaces (and similarly branch-splitter sur-

faces) in their complements. In the second, we shall show that an isotopy of laminations or

‘normal’ splitter surfaces in N(B) can be extended to an an ambient isotopy of N(B).

5.2.1 Splitter Surfaces

Our goal in this subsection is to prove Theorem 5.2.6 and Theorem 5.2.7.

Let π : N(B) → B be the map that collapses each I-fiber of N(B) to a point. A lamination

is a closed disjoint union of connected surfaces in N(B) (called leaves of λ), transverse to the

I-fibers of N(B). We say a lamination λ is fully carried by B if π−1(x) ∩ λ 6= φ for all x ∈ B.

Similarly, we say a branch surface B1 is fully carried by B if the neighbourhood N(B1) ⊂ N(B)

is fibered by sub-fibers of I-fibers of N(B), and the set N(B1) ∩ π−1(x) 6= φ for all x ∈ B.

Remark 5.2.1. Unless stated explicitly, surfaces carried by B may not be properly embedded in

N(B), i.e., they may have a boundary in the interior of N(B). They may also be non-compact

or disconnected, but they are always required to be closed subsets of N(B).

Definition 5.2.2. Let K be a surface in N(B) transverse to the I-fibers of N(B) that intersects

∂vN(B) in circles. Let K ∩ ∂hN(B) = φ and assume K intersects no component of ∂vN(B) in

more than one circle. Then, K is called a splitter surface.

If K intersects each component of ∂vN(B) and ∂K ⊂ ∂vN(B) then we say K is a lamination-

splitter surface. If K is a compact surface we call it a branch-splitter surface. A splitter surface
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may be simultaneously both a branch and a lamination-splitter.

Definition 5.2.3. For a splitter surface K, we denote by N(K) the fibered closed neighbour-

hood of K in N(B) and let ∂hN(K) and ∂vN(K) denote respectively the horizontal and vertical

boundary components of ∂N(K). We define int(N(K)) to be N(K)− ∂hN(K). Furthermore, if

K intersects the annulus V of ∂vN(B), then we require V to be a component of ∂vN(K).

Similarly for a branch surface B1 obtained by splitting B, we denote by N(B1) the fibered

closed neighbourhood of B1 in N(B). We insist that ∂nN(B) ⊂ ∂hN(B1).

The following lemma shows the existence of splitter surfaces.

Lemma 5.2.4. Let λ ⊂ N(B) be a lamination that is fully carried by B. Assume ∂hN(B) ⊂ λ.

Then there exists a lamination-splitter surface K and a fibered neighbourhood N(K) of K such

that N(B)− λ = int(N(K)).

Proof. Let σ be a component of N(B) − λ. Let Jp = π−1(π(p)) be the I-fiber containing the

point p ∈ N(B). For each p ∈ N(B), σ ∩ Jp is an open subset of Jp. As ∂Jp ⊂ ∂hN(B) ⊂ λ, so

σ∩∂Jp = φ. Therefore, σ∩Jp is a disjoint union of open intervals. As N(B) = ∪{Jp : p ∈ N(B)},
so σ = ∪{Jp ∩ σ : p ∈ N(B)}. Therefore, σ is an open sub-manifold of N(B) that is fibered by

open sub-intervals of the I-fibers of N(B). We shall show that σ is the total space of a (−1, 1)-

bundle over a surface with boundary in ∂vN(B).

Let J ′p be the component of Jp − ∂hN(B) that contains p (so if p ∈ int(∂vN(B)) then J ′p is a

fiber of int(∂vN(B)), otherwise J ′p is a component of Jp−∂N(B)). For any point p ∈ int(N(B)),

there exists an open disk Dp in N(B) transverse to the I-fibers such that p ∈ W (p) = Dp × J ′p.

For any point p ∈ int(∂vN(B)) there exists a half-open disk Dp (i.e., a closed disk minus an arc

in the boundary) whose boundary lies in int(∂vN(B)), such that p ∈ W (p) = Dp × J ′p.

The set W = {W (p) : p ∈ N(B) − ∂hN(B)} then becomes a cover of N(B) − ∂hN(B). As

σ ⊂ N(B) − ∂hN(B), the set {W (p) ∩ σ : p ∈ σ} forms a cover of σ. As ∂hN(B) ⊂ λ, so

∂hN(B) ∩ ∂vN(B) = ∂(∂vN(B)) ⊂ λ. Therefore, for each fiber J ′ of σ, either J ′ ⊂ int(N(B))

or J ′ is a fiber of int(∂vN(B)). So, σ with cover W, becomes the total space of a (−1, 1)-bundle

over a surface (with boundary in ∂vN(B)) as required.

We denote this surface, obtained by collapsing each fiber of σ to a point, by Kσ. We

can represent Kσ by a surface properly embedded in σ, transverse to the fibers of σ, with

∂Kσ ⊂ ∂vσ ⊂ ∂vN(B). Also we observe that σ is a fibered neighbourhood of Kσ.

Furthermore, as σ∩∂hN(B) = φ and Kσ ⊂ σ, Kσ∩∂hN(B) = φ. Also as Kσ∩∂(∂vN(B)) = φ,

so Kσ intersects the annuli of ∂vN(B) in circles. As Kσ intersects each fiber of σ in exactly one

point and each fiber of σ is either a fiber of int(∂vN(B)) or is disjoint from ∂vN(B), so Kσ
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intersects each fiber of ∂vN(B) in at most one point. Therefore, Kσ intersects each component

of ∂vN(B) in at most one circle. Hence, Kσ is a splitter surface.

Let K = ∪{Kσ : σ is a component of N(B) − λ}. As ∂K ⊂ ∂vN(B), K intersects each

component of ∂vN(B) and by construction there exists a fibered neighbourhood N(K) of K such

that int(N(K)) = N(B)− λ, so K is in fact the required lamination-splitter surface.

We now prove that the complement of a fibered neighbourhood of a lamination-splitter surface

is a lamination fully carried by B.

Lemma 5.2.5. Let K be a lamination-splitter surface. Then there exists a fibered neighbourhood

N(K) of K and a lamination λ fully carried by B such that λ = N(B)− int(N(K)).

Proof. As K intersects each annulus of ∂vN(B) in exactly one essential circle and ∂K = K ∩
∂vN(B), so there exists a fibered neighbourhood N(K) of K such that ∂vN(B) = ∂vN(K). Let

λ = N(B)− int(N(K)). Observe that λ is disjoint from int(∂vN(B)) = int(∂vN(K)). We shall

show that λ is a lamination.

Along the lines of lemma 5.2.4, let J ′p be the component of Jp − int(∂vN(B)) that contains

the point p ∈ λ. Then, for each such point, there exists a disk D(p) transverse to the I-fibers

such that for W (p) = D(p)× J ′p. The set {W (p) ∩ λ : p ∈ λ} forms a cover of λ.

Let Fp ⊂ Jp be the closed set J ′p− int(N(K)). Observe that int(∂vN(B)) equals int(∂vN(K))

and ∂hN(K) is transverse to the J-fibers. So for any point s ∈ Fp, we can choose the open disk

D(p) so that D(p)× {s} ⊂ λ. Then, W (p) ∩ λ = D(p)× Fp. Therefore λ is covered by open sets

D(p) × Fp where D(p) is homeomorphic to R2, Fp is a closed subset of R and these open sets

match-up nicely. So λ is a lamination.

Combining the above two lemmas, Lemma 5.2.4 and Lemma 5.2.5, we get the following theo-

rem.

Theorem 5.2.6. Let λ ⊂ N(B) be a lamination fully carried by B. Assume ∂hN(B) ⊂ λ. Then,

there exists a lamination-splitter surface K ⊂ N(B) and a fibered neighbourhood N(K) of K,

such that int(N(K)) = N(B)− λ.

Conversely, let K be a lamination-splitter surface. Then there exists a fibered neighbourhood

N(K) of K and a lamination λ fully carried by B such that λ = N(B)− int(N(K)).

We say λ is a splitting of B and denote it by λ = B −K.

Working in exactly the same way, we show the similar result for branch splittings.

Theorem 5.2.7. Let B1 be a branch surface fully carried by B and let N(B1) ⊂ N(B) be a fibered

neighbourhood of B1. Assume ∂hN(B) ⊂ N(B1). Then, there exists a branch-splitter surface

K ⊂ N(B) and a fibered neighbourhood N(K) of K, such that int(N(K)) = N(B)−N(B1).



5. Space of maximal laminations 48

Conversely, let K be a branch-splitter surface. Then there exists a fibered neighbourhood N(K)

of K and a branch surface B1 fully carried by B such that N(B1) = N(B)− int(N(K)).

We say B1 is a splitting of B and denote it by B1 = B −K.

Proof. Similar in nature to above Theorem 5.2.6.

Remark 5.2.8. When K is both a lamination and a branch splitter, then β = B−K is the neigh-

bourhood of a closed surface. We may then refer to β as either a lamination or the neighbourhood

of a branch surface fully carried by B.

Lemma 5.2.9. Let B1 = B −K1 be a branch-splitting of B and let λ = B −Kλ be a lamination

fully carried by B1. Then, after a B-isotopy of K1 (in N(K1)) we may assume that K1 ⊂ Kλ.

Proof. By definition of branch splitting, there exists a fibered neighbourhood N(B1) of B1 and

a neighbourhood N(K1) of K1 such that N(B1) = N(B) − int(N(K)). So in particular, as

N(K) ∩ ∂hN(B) = φ so ∂hN(B) ⊂ ∂hN(B1).

Let λ be a lamination fully carried by B1, then after an isotopy of λ (in N(B1)) we may

assume that ∂hN(B1) ⊂ λ (after possibly replacing some leaf l of λ by l × I).

So, we have ∂hN(B) ⊂ ∂hN(B1) ⊂ λ. As λ ⊂ N(B1), so N(K1) ⊂ N(Kλ). Secondly as

∂hN(B1) ⊂ λ, so N(K1) ∩ λ = ∂hN(K1). So if a fiber of int(N(Kλ)) intersects N(K1) then it is

in fact a fiber of int(N(K1)). Therefore, N(K1) is a union of fibers of N(Kλ), so Kλ intersects

each fiber of N(K1) exactly once. Hence there is an isotopy of K1 (in N(K1)) that takes it to a

subsurface of Kλ.

5.2.2 Isotopies

Our aim in this subsection is to prove Theorem 5.2.19.

We firstly, define normal surfaces carried by B.

Definition 5.2.10. Let Λb be a union of transversally intersecting paths or circles properly

embedded in a branch sector b of B, such that b−Λb is a disk. Let Λ = ∪{Λb : b ∈ B}. Let L be

the branch locus of B. Then L′ = L ∪ Λ is called a normal branch locus of B and the closure of

components of B − L′ is called a system of normal branch sectors of B.

A system of normal branch sectors of B partitions B into disks {b′ : b ∈ B} such that

L ⊂ ∪{∂b′ : b ∈ B}.

Henceforth we fix a system of normal branch sectors of B.

Definition 5.2.11. Let K ⊂ N(B) be a surface transverse to the I-fibers of N(B) such that

π(∂K) ⊂ L′, where L′ is the normal branch locus of B. For each component δ of ∂hN(B) we

assume that either δ ⊂ K or δ ∩K = φ. We call such a surface a normal surface.
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Let ∆ be a normal branch sector of B, then K ∩π−1(∆) is a disjoint union of disks B-isotopic

to ∆. We call these the normal disks of K. Let |B′| be the number of normal branch sectors of

B. There are at most |B′| (types of) normal disks up to B-isotopy.

A curve γ in K is said to be a normal curve if it is transversal to ∂D for every normal disk D

of K.

For a set A ⊂ K, the normal neighbourhood of A in K, NK(A) is the union of all normal

disks of K that intersect A.

Definition 5.2.12. Let B1 ⊂ N(B) be a branch surface such that π(∂vN(B1)) ⊂ L′, where

L′ is the normal branch locus of B. For each component δ of ∂hN(B) we assume that either

δ ⊂ ∂hN(B1) or δ ∩ ∂hN(B1) = φ. We call such a branch surface a normal branch surface.

Definition 5.2.13. For a set A ⊂ N(B), an injection i : A → N(B) is said to be a B-injection

if π(i(a)) = π(a) for all a ∈ A. We further insist that i(a) ∈ ∂vN(B) if and only if a ∈ ∂vN(B).

An isotopy Ht : A → N(B) is said to be a B-isotopy if each Ht is a B-injection of A in N(B).

We say an isotopy Ht : A → N(B) takes A to A′ if H0 is the inclusion map of A in N(B) and

H1(A) = A′. We say an isotopy Ht : N(B) → N(B) takes A to A′ if H0 is the identity map of

N(B) and H1(A) = A′.

Our aim in the rest of this sub-section is to prove Theorem 5.2.19 which says that any inclusion

B-isotopy of a normal surface, lamination or the neighbourhood of a normal branch surface in

N(B) can be extended to an ambient B-isotopy of N(B). We start with a cell-decomposition of

B along the normal branch sectors. We then obtain an ambient isotopy by inductively extending

along each i-skeleton of B as shown in lemmas 5.2.15, 5.2.16 and 5.2.18.

Definition 5.2.14. Let E ⊂ R2 be a closed set. Let J be a closed interval. Let K ⊂ E × J

be a closed set such that E × ∂J ⊂ K. We say an injection i : K → E × J is an E-injection,

if π(i(x)) = π(x) for all x ∈ K ⊂ E × J , where π : E × J → E is the map that collapses each

J-fiber to a point. We say i is a monotonic E-injection if, in addition, i restricted to each J-fiber

is a monotonic map (in J) that fixes the endpoints of J (i.e., it point-wise fixes E × ∂J ⊂ K).

Suppose for every such monotonic E-injection of K in E × J , there exists an extension ĩ :

E × J → E × J that is an E-homeomorphism (i.e, it is invariant on each J-fiber of E). We then

say that ĩ is a canonical extension of i, if for any continuous family it of monotonic E-injections,

the corresponding family of extensions ĩt is continuous (i.e., i → ĩ is a continuous map from the

space of monotonic E-injections of K in E × J to the space of E-homeomorphisms of E × J).

We shall now prove lemmas 5.2.15, 5.2.16 and 5.2.18 which give canonical extensions of E-

injections to E-homeomorphisms, for E a single point, an edge and a disk respectively. For

uniformity, we assume that if E is a single point, then ∂E = φ and ∂E × J = φ.

Lemma 5.2.15. Let E be a single point. Let K0 be a closed subset of E × J = J such that

E × ∂J ⊂ K0. Let K = (∂E × J) ∪ K0 = K0. Then for any monotonic E-injective map
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i : K → E× J there exists a canonical extension of i to an E-homeomorphism ĩ : E× J → E× J

that fixes E × ∂J .

If i is the inclusion of K ⊂ E × J in E × J , then ĩ is the identity map of E × J .

Proof. As K ⊂ J is a closed set, J −K = ∪int(Jn) where Jn are closed sub-intervals of J . Let

Jn = [an, bn], for an, bn ∈ K. As i is monotonic, we assume i is increasing so that i(an) ≤ i(bn).

Then there exists a unique linear map in : [an, bn] → [i(an), i(bn)] such that in(an) = i(an) and

in(bn) = i(bn). Define ĩ(t) = i(t) if t ∈ K, ĩ(t) = in(t) if t ∈ Jn.

Then, ĩ is clearly a well defined and continuous map from J to J . Note that ∂J ⊂ K and i

point-wise fixes S1×∂J by definition of monotonicity of i. So as ĩ(J) is a closed sub-interval of J

that contains the end-points of J , ĩ is surjective. As i is monotonic, ĩ(int(Jn)) ∩ ĩ(int(Jm)) = φ

for all n 6= m and ĩ(int(Jn))∩ ĩ(K) = φ for all n. As ĩ(= i) is injective on K and ĩ is injective on

each Jn therefore, ĩ is injective on J as well. Hence, ĩ is a homeomorphism of J . A similar argu-

ment shows the existence of such an E-homeomorphism that extends i when i is monotonically

decreasing.

Observe that if it is a continuous family of monotonic injections of K, then ĩt(Jn) = [it(an), it(bn)].

As ĩt is a linear extension of it on Jn, ĩt restricted to Jn is continuous with respect to t, and ĩt = it

on K therefore ĩt is a continuous family of extensions. So, ĩ is a canonical extension of i.

Clearly if i is the inclusion map of K in J , then each of the linear extensions on Jn are identity

maps and ĩ : J → J is the identity map of J .

Lemma 5.2.16. Let E = [0, 1]. Let K1 be a closed disjoint union of arcs in E × J that are

transverse to the J-fibers and such that E × ∂J ⊂ K1. Let K = (∂E × J) ∪ K1. Then for

any monotonic E-injective map i : K → E × J there exists a canonical extension of i to an

E-homeomorphism ĩ : E × J → E × J that fixes E × ∂J .

If i is the inclusion of K ⊂ E × J in E × J , then ĩ is the identity map of E × J .

Proof. We first prove the following claim.

Claim: Let σ0 and σ1 be homeomorphisms of J that point-wise fix ∂J . Then, there exists an

isotopy of homeomorphisms ht : J → J such that h0 = σ0 and h1 = σ1.

Define ht(x) = σ0(x)(1− t) + σ1(x)t for all x ∈ J , t ∈ I. Then, ht is a homotopy taking σ0 to

σ1. As σi(0) = 0 and σi is a homeomorphism, σi is strictly increasing (for i = 1, 2). Therefore, for

x < y in J , ht(x) = σ0(x)(1− t) + σ1(x)t < σ0(y)(1− t) + σ1(y)t = ht(y). So that ht is injective

for all t ∈ I. As ht(0) = 0, ht(1) = 1 and ht(J) is a closed sub-interval of J , for all t ∈ I, ht is

surjective as well. So, ht : J → J is an isotopy of homeomorphisms taking σ0 to σ1.

Define h : E×J → E×J by h(t, x) = (t, ht(x)). Then h is an E-homeomorphism that extends

σ0 ∪ σ1 (which is defined on ∂E × J) to E × J . We also observe that if (σ0)s and (σ1)s is a
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continuous family of homeomorphisms of J , then the corresponding family of homeomorphisms

hs is a continuous family.

Let ∪int(An) = (E×J)−K, where An is a fibered neighbourhood of an arc (transverse to the

J-fibers) carried by E × J (i.e, An is a fibered open rectangle). We denote An by E × Jn, where

Jn = An∩({0}×J). As in above claim, we can canonically extend i|∂E×Jn to an E-homeomorphism

in : E × Jn → E × Jn. We define ĩ(x) = i(x) if x ∈ K, and ĩ(x) = in(x) if x ∈ An. By arguments

as in lemma 5.2.15, ĩ restricted to each J-fiber {e}×J is a homeomorphism of {e}×J . Therefore,

ĩ is an E-homeomorphism of E × J . As the extension on each An is a canonical extension, ĩ is a

canonical extension of i.

Also, if i is the inclusion of K in E × J , then ĩ is the identity map of E × J .

Lemma 5.2.17. Let E = S1 × [0, 1]. Let K2 be a closed disjoint union of annuli in E × J that

are transverse to the J-fibers and such that E × ∂J ⊂ K2. Let K = (∂E × J) ∪ K2. Then

for any monotonic E-injective map i : K → E × J there exists a canonical extension of i to an

E-homeomorphism ĩ : E × J → E × J that fixes E × ∂J .

If i is the inclusion of K ⊂ E × J in E × J , then ĩ is the identity map of E × J .

Proof. We first prove the following claim.

Claim: Let σ0 and σ1 be S1-homeomorphisms of S1×J that point-wise fix ∂J . Then, there exists

an isotopy of homeomorphisms ht : S1 × J → S1 × J such that h0 = σ0 and h1 = σ1.

Let p ∈ S1. Let E′ = cl(S1 − p) then E′ = [0, 1]. Also σ0 (similarly σ1) restricted to E′ × J ,

is an E′-homeomorphisms that is identical on {0} × J and {1} × J . Let ht be the extension as

described in the claim in lemma 5.2.16 (taking E′ as E). Then as ht is uniquely determined by

σ0 and σ1, so ht on {0} × J is identical to ht on {1} × J for all t ∈ I. Therefore, ht is an isotopy

of S1-homeomorphisms of S1 × J taking σ0 to σ1.

Let h : [0, 1] × (S1 × J) → [0, 1] × (S1 × J) be defined by h(t, x) = (t, ht(x)). Then h is an

E-homeomorphism that extends σ0 ∪ σ1 (defined on ∂E × J) to E × J . We also observe that

if (σ0)s and (σ1)s is a continuous family of homeomorphisms of E × J , then the corresponding

family of homeomorphisms hs is a continuous family.

Let ∪int(An) = (E×J)−K, where An is the fibered neighbourhood of an annulus (transverse

to the J-fibers) carried by E × J . We denote An by E × Jn, where Jn = An ∩ ({e} × J) for some

fixed point e ∈ E. As in above claim, we can extend i|∂E×Jn to a canonical homeomorphism

in : E × Jn → E × Jn. We define ĩ(x) = i(x) if x ∈ K, and ĩ(x) = in(x) if x ∈ An. By arguments

as in lemma 5.2.15, ĩ restricted to each J-fiber {e}×J is a homeomorphism of {e}×J . Therefore,

ĩ is an E-homeomorphism of E × J . As the extension on each An is a canonical extension, ĩ is a
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canonical extension of i.

Also, if i is the inclusion of K ⊂ E × J in E × J , then ĩ is the identity map of E × J .

Lemma 5.2.18. Let E be a closed 2-disk. Let K2 be a closed disjoint union of disks in E × J

that are transverse to the J-fibers and such that E × ∂J ⊂ K2. Let K = (∂E × J) ∪ K2 be a

closed subset of E × J . Then for any monotonic E-injective map i : K → E × J there exists a

canonical extension of i to an E-homeomorphism ĩ : E × J → E × J that fixes E × ∂J .

If i is the inclusion of K ⊂ E × J in E × J , then ĩ is the identity map of E × J .

Proof. Let p be a point in int(E) and let Jp be the I-fiber π−1(π(p)). Let Kp = K ∩ Jp and let

ip be the restriction of i to Kp. Then by lemma 5.2.15, there exists a canonical extension of ip to

a homeomorphism ĩp of Jp. We extend i : K → E × J to i : K ∪ Jp → E × J by defining i = ĩp

on Jp.

Let E′ = S1 × [0, 1], let c be the boundary component S1 × {1} and let σ : E′ × J → E × J

be a bundle map that identifies E′ − c with E − p, sends c to p and identifies the J-fiber Je

with the J-fiber Jσ(e), ∀e ∈ E′. Let K ′ = σ−(K). Then, K ′ is closed disjoint union of annuli in

E′ × J that are transverse to the J-fibers and such that E′ × ∂J ⊂ K ′. Also, for any s, t ∈ c,

K ′∩Js = K ′∩Jt where Js and Jt are the J-fibers on s and t respectively. Let i1(x) = σ−1(i(σ(x)))

for x ∈ K ′ ∪ ∂E × J , where i1 acts identically on J-fibers of c.

By the above lemma 5.2.17 then, there is a canonical extension of i1 to a homeomorphism

ĩ1 : E′×J → E′×J . By construction, this extension is identical on J-fibers of c (because K ′ and

i1 are identical on J-fibers of c). Therefore, ĩ : E × J → E × J , defined as ĩ(x, s) = i(σ−1(x, s))

is a well defined E-homeomorphism that canonically extends i.

Theorem 5.2.19. Let B be a branch surface. Let K ⊂ N(B) be a normal surface, lamination

or the neighbourhood of a normal branch surface fully carried by B. Let ht : K → N(B) be a

B-isotopy of K such that h0 is the inclusion map of K in N(B). For each component δ of ∂hN(B)

assume that either ht(K) ⊃ δ for all t ∈ I or ht(K) ∩ δ = φ for all t ∈ I. Then there exists a

B-isotopy Ht : N(B) → N(B) that extends ht, such that Ht point-wise fixes ∂hN(B) and H0 is

the identity map of N(B).

As Ht point-wise fixes ∂hN(B), in particular, Ht is invariant on ∂vN(B).

Proof. If a component δ of ∂hN(B) is not contained in K then include it in K and define ht on δ

as the inclusion map of δ in N(B), for all t ∈ I. Therefore we may assume that ∂hN(B) ⊂ ht(K)

for all t ∈ I and by hypothesis, ht is still an isotopy of K.

Let J be an I-fiber of N(B). Take x, y ∈ J with x < y. As h0 is the inclusion map of K,

h0(x) = x, h0(y) = y so that h0(x) < h0(y). Suppose for some t ∈ I, ht(x) > ht(y) then by

continuity of ht there exists s ∈ I such that hs(x) = hs(y) contradicting the injectivity of hs.
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Therefore, ht is a monotonic B-injection for all t ∈ I.

We take a cell decomposition of B, with Bi denoting the i-th skeleton of B, as follows. Let B0

be the set of double points in the normal locus L′, let B1 = L′ and B2 = B. Let F i = π−1(Bi)

and let Ki = K ∩ F i for i = 0, 1, 2, where π : N(B) → B is the map that collapses each I-fiber

to a point.

Observe that on each edge e of L′, K1 ∩ π−1(e) is a disjoint union of arcs transversal to the

J-fibers of N(B). And as ∂hN(B) ⊂ K, e × ∂J ⊂ K1. Similarly, for each disk D in B − L′,

K2 ∩ π−1(D) is a closed disjoint union of disks transversal to the J-fibers of N(B). And as

∂hN(B) ⊂ K, D × ∂J ⊂ K2.

Then taking E as B0, by lemma 5.2.15 we get a canonical extension of ht : K0 → F 0 to a B-

homeomorphism Ht : F 0 → F 0 for all t ∈ I (As K ⊃ ∂hN(B), and ∂Jp ⊂ ∂hN(B) so K ∩ Jp 6= φ

for all p ∈ B0). Next, taking E as the edges of B1, by lemma 5.2.16 we get a canonical extension

of Ht ∪ ht : F 0 ∪K1 → F 1 to a B-homeomorphism Ht : F 1 → F 1 for all t ∈ I. And lastly, taking

E as the disks of B2, by lemma 5.2.18 we get a canonical extension of Ht ∪ ht : F 1 ∪K2 → F 2 to

a B-homeomorphism Ht : F 2 → F 2.

As h0 is the inclusion map of K in N(B), so H0 is the identity on F 2 = N(B) as required.

As Ht is a canonical extension of ht for all t ∈ I, Ht is a continuous family of homeomorphisms

of N(B) as required. Also, as ht restricted to ∂hN(B) is identity, therefore Ht point-wise fixes

∂hN(B).

This theorem implies the following proposition.

Proposition 5.2.20. Let λ1 = B −K1 and λ2 = B −K2 be maximal lamination with, K1 and

K2 their lamination-splitter surfaces. Then λ1 ∼ λ2 if and only if K1 is B-isotopic to K2.

Proof. If there exists an isotopy ht : λ1 → N(B) taking λ1 to λ2 then by Theorem 5.2.19, there

is an extension of ht to an ambient isotopy Ht : N(B) → N(B) such that H0 is the identity map.

Then Ht takes N(K1) to N(K2), so H1(K1) ⊂ N(K2) intersects each I-fiber of N(K2) exactly

once, therefore K1 is isotopic to K2.

Conversely, if K1 is inclusion-isotopic to K2, we can extend the isotopy to an ambient isotopy

Ht of N(B) that takes K1 to K2 and therefore the complement of N(K1) in N(B) is taken

to the complement of H1(N(K1)) = N ′(K2) in N(B). Let λ′2 = N(B) − int(N ′(K2)). Then

λ′2 ∼ λ2 = N(B)− int(N(K2)) and so, λ1 ∼ λ2 as required.
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5.3 Space of laminations

In this section we shall show that PL(B) is sequentially compact (Theorem 5.3.20), Hausdorff

(Corollary 5.3.25) and that each point of PL(B) is the intersection of a sequence of open sets

(Corollary 5.3.25). We shall also show, in Theorem 5.3.8, that laminations carried by a maximal

splitting B1 of B are isotopic in N(B1) if and only if they are isotopic in N(B), i.e, PL(B1) = VB1 .

Definition 5.3.1. Let λ = B − K be a lamination (with K its lamination-splitter surface). If

each component of K intersects ∂vN(B), then we say K is a minimal lamination-splitter surface

and we say λ is a maximal lamination. In other words, we do not want (l× I) components in the

complement of λ, where l is a surface without boundary (carried by B).

Similarly let B1 = B −K1 be a branch surface (with K1 its branch-splitter surface). If each

component of K1 intersects ∂vN(B), we say K1 is a minimal branch-splitter surface and we say

B1 is a maximal branch surface.

Given a splitter K we can discard components of K that do not intersect ∂vN(B) to obtain

a minimal splitter surface.

Remark 5.3.2. Let K be a minimal lamination-splitter surface and let K ′ be a sub-(lamination-

splitter) surface of K. Then each component of K and K ′ intersects ∂vN(B). Also K and K ′

intersect each annulus of ∂vN(B) in exactly one circle. So K ′ is a subsurface and a closed subset

of K, with ∂K ′ = ∂K. Also, K ′ intersects each component of K and therefore, K ′ = K.

Definition 5.3.3. Let β1 = B − K1 and β2 = B − K2 be laminations or neighbourhoods of

normal branch surfaces fully carried by B. We say β2 ≤ β1, if after a B-isotopy of K2 in N(B),

K1 ⊂ K2. If β1 ≤ β2 and β2 ≤ β1 then we say β1 is isotopic to β2, and denote it by β1 ' β2.

By this notation, λ ≤ B1 if after a B-isotopy of λ in N(B), λ is fully carried by N(B1) (see

Lemma 5.2.9). Laminations λ2 ≤ λ1 if after a B-isotopy of λ2 in N(B), λ2 is a sub-lamination of

λ1. Similarly, B2 ≤ B1 if after a B-isotopy of N(B2), N(B2) ⊂ N(B1). This happens precisely

when B2 is a splitting of B1.

For any maximal branch splitting B1, V ′
B1

was defined to be the set of maximal laminations

fully carried by B1 while VB1 was defined to be the equivalence classes of laminations [λ] such

that λ ≤ B1. Let B = {VB1 : B1 is a maximal splitting of B}.
Lemma 5.3.4. The set B is a basis for a topology on PL(B).

Proof. Let B1 = B − K1 and B2 = B − K2 be splittings of B and let B − Kλ = λ for some

[λ] ∈ VB1 ∩ VB2 . Then we shall show that there exists a maximal branch surface B′ = B − K ′

obtained by splitting B such that [λ] ∈ VB′ and VB′ ⊂ VB1 ∩ VB2 .

As λ ≤ B1, we may assume after a B-isotopy of Kλ in N(B) that K1 ⊂ Kλ (Lemma 5.2.9).

Let Ht : N(B) → N(B) be an isotopy that takes Kλ to Kλ′ , where K2 ⊂ Kλ′ . As Kλ is a
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minimal splitter surface each component of Kλ intersects ∂vN(B). So there exists a minimal

branch-splitter K ′ ⊂ Kλ that contains H−1
1 (K2) ∪K1. By construction, as K ′ ⊂ Kλ therefore λ

is fully carried by B′ = B −K ′.

Let µ = B −Kµ be a lamination fully carried by B′, then K1 ⊂ K ′ ⊂ Kµ, that is µ is fully

carried by B1. As K2 ⊂ H1(K ′) ⊂ H1(Kµ), so H isotopes µ to a lamination that is fully carried

by B2. Hence, [λ] ∈ VB1 ∩ VB2 , so we have VB′ ⊂ VB1 ∩ VB2 .

Let X be the set PL(B), with the topology generated by B. From now on, we shall prove

results about X and then later show that X is homeomorphic to the quotient Hausdorff metric

topology of PL(B) (Theorem 5.3.21).

Our aim now is to prove Theorem 5.3.8, which says that laminations carried by a maximal

splitting B1 of B are isotopic in N(B1) if and only if they are isotopic in N(B).

Let K1 and K2 be splitter surfaces, let F ⊂ K1 be a connected subsurface and let h : F →
N(B) be a B-injection such that h(F ) ⊂ K2. Then the following lemma says that image of a

single point of F determines h uniquely.

Lemma 5.3.5. Let K1 and K2 be splitter surfaces. Let F be a connected subsurface of K1. Let

h1 : F → N(B) and h2 : F → N(B) be B-injections such that h1(F ) ⊂ K2 and h2(F ) ⊂ K2. Let

p ∈ F be such that h1(p) = h2(p) then h1(x) = h2(x) for all x ∈ F .

Proof. Let A = {x ∈ F : h1(x) = h2(x)}. By continuity of h1 and h2, A is closed in F . As F and

K2 are transverse to the I-fibers of N(B), for all a ∈ A there exists a neighbourhood N(a) ⊂ F

such that π−1(N(a)) ∩K2 is a disjoint union of disks {Dj}j∈J such that for all x ∈ N(a), for all

j ∈ J , π−1(x) ∩Dj is a single point.

As h1(F ) ⊂ K2 and h2(F ) ⊂ K2 and h1, h2 are invariant on I-fibers, therefore h1(N(a)) ⊂ Dj

and h2(N(a)) ⊂ Dk for some j, k ∈ J . As h1(a) = h2(a), Dj = Dk. As π−1(x) ∩Dj is a single

point for each x ∈ N(a), h1(x) = h2(x) = π−1(x)∩Dj for all x ∈ N(a). Therefore N(a) ⊂ A and

A is open in F .

By hypothesis A 6= φ and F is connected, therefore A = F as required.

The following technical lemma will be used repeatedly, and is one of the reasons why we

deal only with maximal branch surfaces obtained by splitting B and not just any branch surface

obtained by splitting B. Let F be a sub-surface (and a closed subset) of a lamination-splitter

K and let K ′ any other lamination-splitter. Then, in general, there may exist B-injections

g : F → N(B) and h : F → N(B) such that g(F ) ⊂ K ′ and h(F ) ⊂ K ′ however g 6= h. For F a

minimal lamination-splitter, this doesn’t happen.

Lemma 5.3.6. Let K be a lamination-splitter surface and let F1 ⊂ F2 ⊂ K be minimal branch-

splitter surfaces. Let K ′ be another lamination splitter surface. Let g : F1 → N(B) and h : F2 →
N(B) be B-injections such that g(F1) ⊂ K ′ and h(F2) ⊂ K ′. Then, h|F1 = g.
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Proof. By previous lemma 5.3.5, all we need to show is that for each connected component σ of

F1 there exists a point p ∈ σ such that h(p) = g(p).

As F1 is a minimal splitter surface, σ intersects an annulus V of ∂vN(B). Let σ∩V = γ be an

essential circle in V . As K ′ is a lamination splitter surface, K ′ ∩V = γ′ is another essential circle

in V . As g and h are invariant on V (by definition of B-isotopy) and as g(F1) ⊂ K ′, h(F1) ⊂ K ′

therefore g(γ) = h(γ) = γ′. For any point p ∈ γ, π−1(p) intersects γ′ in a single point, say p′. As

g and h are both invariant on I-fibers of N(B), therefore g(p) = h(p) = p′.

Lemma 5.3.7. Let K0 and K1 be lamination-splitter surfaces and let F ⊂ K0∩K1 be a minimal

branch-splitter surface. Then K0 is isotopic to K1 in N(B) if and only if K0 is isotopic to K1

(in N(B)) point-wise fixing F .

Proof. Let ht : N(B) → N(B) be an isotopy that takes K0 to K1. Let i : F → N(B) be the

inclusion of F in N(B) and let it : F → N(B) be it = ht|F .

As h0 is the identity map of N(B), i0 = i. Taking F1 = F2 = F , K = K0, K ′ = K1, g = i and

h = i1 in lemma 5.3.6, i1 = i as well. That is, both i0 and i1 are just the inclusion of F in N(B).

Let ĩt : N(B) → N(B) be the canonical extension of it. Then as i0 and i1 are inclusion maps

of F in N(B), ĩ0 and ĩ1 are identity maps of N(B). Let Ht = ĩ−1
t ◦ ht : N(B) → N(B). Then

H0 is the identity map of N(B) while H1 = h1. Also for all t ∈ I, Ht|F = ĩ−1
t |ht(F ) ◦ ht|F =

h−1
t ◦ ht|F = i. Therefore, Ht : N(B) → N(B) is an isotopy that point-wise fixes F and takes K0

to K1.

Looking at the complement in N(B), we get the following theorem.

Theorem 5.3.8. Let λ0 and λ1 be laminations fully carried by a maximal branch surface B1

inside N(B). Then λ0 ∼ λ1 in PL(B) if and only if λ0 ∼ λ1 in PL(B1).

Proof. Let λ0 = B −K0, λ1 = B −K1 and let B1 = B − F then F ⊂ K0 ∩K1. By lemma 5.3.7,

there exists an isotopy Ht : N(B) → N(B) taking K0 to K1, while point-wise fixing F . It therefore

takes the complements, λ0 to λ1 while point-wise fixing F . After a slight modification of Ht we

can obtain an isotopy H ′
t : N(B) → N(B) taking λ0 to λ1 while point-wise fixing N(F ), where

N(F ) is a fibered neighbourhood of F with N(B) = N(B1)∪N(F ) and N(B1)∩N(F ) ⊂ ∂N(F ).

Therefore, restricting H ′
t to N(B1) we get an isotopy of N(B1) taking λ0 to λ1.

Conversely, if λ0 is isotopic to λ1 in N(B1), then there is an extension to an isotopy in N(B),

taking λ0 to λ1.

Remark 5.3.9. This theorem is certainly not true if the branch splitting B1 is not minimal. For

example, let F be a closed disk in N(B), transverse to the fibers of N(B), with D ∩ ∂N(B) = φ.
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Let N(F ) = F × [0, 1] ⊂ int(N(B)) be a fibered neighbourhood of F and let B1 = B − F . Let

λ be a lamination fully carried by B1 such that λ ∩ π−1(F ) is a disjoint union of finitely many

disks. Suppose λ1 is a lamination obtained from λ by an isotopy across N(F ). Then, λ1 is not

isotopic to λ in N(B1).

Our goal now is to prove Theorem 5.3.20, which says that X is sequentially compact. Along

the way we shall prove Theorem 5.3.17, which says that every maximal lamination is the inverse

limit of a sequence of maximal normal branch surfaces.

Definition 5.3.10. Let |B′| be the number of normal branch sectors in the branch surface B. Let

K be a compact normal surface carried by B. Let [K] be the ‘coordinates’ of K corresponding

to the weight of K on each normal branch sector of B. Let |K| be the sum of the coordinates of

[K]. Let |∂K| be the sum of the coordinates of [∂K] on the normal branch locus L′.

Remark 5.3.11. Given a compact normal surface K, there are up to B-isotopy only finitely many

normal surface Ki, such that [Ki] = [K].

Lemma 5.3.12. For some N ∈ N, let Kn ⊂ N(B) be normal surfaces such that |Kn| ≤ N . Then

there exists an infinite subsequence Kni of Kn and a normal surface K ⊂ N(B) such that Kni

are B-isotopic to K.

Proof. Let d = |B|. There are only finitely many points (xi) ∈ Zd which satisfy the system

of equations xi ≥ 0, Σd
i=1xi ≤ N . Therefore there exists a subsequence Km of Kn such that

[Km] = v for some vector v ∈ Zd. There are up to B-isotopy only finitely many normal surfaces

with coordinate v. Therefore, there exists a normal surface K and a subsequence Kni of Km such

that Kni ' K for all i ∈ N.

Definition 5.3.13. Assume B has a Riemannian metric, which induces a metric on N(B). Let

K be a splitter surface in N(B) and F1, F2 subsets of K. Then dK(F1, F2) denotes the distance

in K between F1 and F2. By convention, if F1 = φ or F2 = φ, then dK(F1, F2) = ∞.

We now show that given a sequence of lamination-splitter surfaces Kn, there is an increasing

sequence of normal minimal branch-splitter surfaces in each Kn, that ‘uniformly’ increases on the

family Kn.

Lemma 5.3.14. Let Kn be a sequence of lamination-splitter surfaces. Then there exists a real

number d > 0 and for each n ∈ N, a sequence of normal minimal branch-splitter surfaces

{Fn(i)}∞i=1 such that

(i) ∂Kn ⊂ ∂Fn(1), Fn(i) ⊂ Fn(i + 1) and Fn(i) ⊂ Kn for all n, i ∈ N.

(ii) |Fn(1)| ≤ |∂Kn| and |Fn(i + 1)| ≤ |Fn(i)|+ |∂Fn(i)| for all n, i ∈ N.

(iii) Let ∂Fn(i) = ∂1Fn(i)∪∂2Fn(i), where ∂1Fn(i) = ∂Kn. Then dFn(i+1)(∂2Fn(i+1), ∂2Fn(i)) ≥
d for all n, i ∈ N.
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Proof. Let Fn(1) = N(∂Kn), the normal neighbourhood of ∂Kn in Kn, for all n ∈ N. Let

Fn(i + 1) = N(Fn(i)) = Fn(i) ∪N(∂2Fn(i)) for all i, n ∈ N. Then, by construction ∂Kn ⊂ Fn(1)

and Fn(i) ⊂ Fn(i + 1) ⊂ Kn.

Let d be the minimum distance between non-intersecting edges of L′. If ∂2Fn(i) = φ (i.e.,

Fn(i) = Fn(i + 1)) then dFn(i+1)(∂2Fn(i + 1), ∂2Fn(i)) = ∞. If ∂2Fn(i) 6= φ, then as ∂2Fn(i) ∩
∂2Fn(i + 1) = φ so dFn(i+1)(∂2Fn(i + 1), ∂2Fn(i)) ≥ d.

As Fn(i + 1) is obtained from Fn(i) by attaching at most |∂Fn(i)| normal disks to ∂Fn(i),

|Fn(i + 1)| ≤ |Fn(i)|+ |∂Fn(i)|.
As each component of Fn(i) contains a component of Fn(1) = N(∂Kn), each component of

Fn(i) intersects ∂Kn. As Kn is a lamination-splitter surface and ∂Kn = Fn(i) ∩ ∂vN(B), Fn(i)

intersects ∂vN(B) in circles, with at most one circle in each annulus of ∂vN(B). Also, Fn(i)

is closed and bounded, hence compact. Therefore, Fn(i) is a normal minimal branch-splitter

surface.

Lemma 5.3.15. Let F (n) be a sequence of minimal normal branch-splitter surfaces and d >

0, such that F (n) ⊂ F (n + 1) and dF (n+1)(∂2F (n), ∂2F (n + 1)) > d and F (1) intersects each

component of ∂vN(B). Then K = ∪F (n) is a minimal lamination-splitter surface.

Proof. Suppose there exists p ∈ cl(K)−K. As K = ∪∞n=1F (n), there exists a sequence pn → p in

K, such that pn ∈ ∂2F (n) for all n ∈ N. This contradicts the assumption that dF (n+1)(∂2F (n), ∂2F (n+

1)) > d for all n ∈ N. Therefore K is a closed set.

Let ∂K = ∂1K ∪ ∂2K where ∂1K = K ∩ ∂vN(B). We shall show that ∂2K = φ. Let c be a

component of ∂2K. Then there exists m ∈ N such that c ⊂ ∂2F (m). So c ⊂ int(N(F (m))) =

int(F (m + 1)). Therefore, c ⊂ int(K) which is a contradiction as c ⊂ ∂K. Therefore, ∂K =

K ∩ ∂vN(B).

As F (n) are splitter surfaces, K ∩ ∂hN(B) = φ and K intersects ∂vN(B) in circles. As each

F (n) intersects annuli of ∂vN(B) in not more than one circle and K is an increasing union of

F (n), K intersects no component of ∂vN(B) in more than one circle. By assumption, K ⊃ F (1)

intersects each component of ∂vN(B). Therefore, K is a minimal lamination-splitter surface.

We now give the converse of the above lemma 5.3.15

Lemma 5.3.16. Let K be a minimal lamination-splitter surface. Then there exists a sequence

F (i) of normal minimal branch-splitter surfaces such that ∂K ⊂ ∂F (1), F (i) ⊂ F (i + 1),

dF (i+1)(∂2F (i), ∂2F (i + 1)) > d and K = ∪∞i=1F (i).

Proof. Taking Kn = K for all n ∈ N in Lemma 5.3.14, we get F (i) as the required normal minimal

branch-splitter surfaces. Let F = ∪∞i=1F (i), we need to show that K = F . By previous lemma

5.3.15, F is a lamination-splitter surface. By remark 5.3.2 then, as K is a minimal splitter surface,

F = K.
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The above two lemmas imply the following theorem, which is a re-statement of Lemma 4.2 of

[7].

Theorem 5.3.17. Let λ be a maximal lamination. Then, there exists a sequence of maximal

branch surfaces Bn obtained by splitting B and a real number d > 0 such that Bn+1 is a splitting

of Bn, d(Bn, Bn+1) > d and λ = ∩N(Bn).

Conversely given a sequence of branch surfaces Bn obtained by splitting B such Bn+1 is a

splitting of Bn and d(Bn, Bn+1) > d, ∩N(Bn) is a maximal lamination.

Proof. The proof is a combination of lemmas 5.3.16 and 5.3.15. Let λ = B − K, where K

is a minimal lamination-splitter surface. Then, by lemma 5.3.16 we get a real number d > 0

and an increasing sequence of minimal branch-splitter surfaces F (n), such that K = ∪F (n)

and dF (n+1)(∂2F (n), ∂2F (n + 1)) > d. Let Bn = B − F (n). Then Bn+1 is a splitting of Bn,

d(Bn, Bn+1) > d and ∩N(Bn) = λ.

Conversely, given a sequence of branch surfaces Bn such that Bn+1 is a splitting of Bn and

d(Bn, Bn+1) > d, taking complements we have F (n) ⊂ F (n+1), dF (n+1)(∂2F (n), ∂2F (n+1)) > d

and F (1) intersects each component of ∂vN(B). Therefore, by lemma 5.3.15, ∪F (n) = K is a

minimal lamination-splitter surface. Taking complement again, ∩N(Bn) = B −K is a maximal

lamination, as required.

Definition 5.3.18. Let λn = B−Kn be a sequence of laminations. If λn converges to λ = B−K

in X, then we say Kn converges to K.

The sequence λn converges to λ, if given any maximal branch splitting B1 that fully carries

λ, there exists m ∈ N such that for all n > m, λn is isotopic to a lamination fully carried by B1.

Looking at the complements, the sequence Kn converges to K, if for any compact sub-surface F of

K there exists an m ∈ N such that for all n > m there exists a B-isotopy H(n)t : N(B) → N(B)

taking Kn to K ′
n where K ′

n ⊃ F .

In the following theorem we shall show sequential compactness for minimal lamination-splitter

surfaces. Given a sequence Kn, we shall exhaust them by an increasing union of minimal branch-

splitters Kn(i) that increases uniformly as per lemma 5.3.14. As Kn(1) is a compact normal

surface, by lemma 5.3.12 we shall obtain a subsequence K1
n of Kn and a minimal branch-splitter

F (1) so that after an isotopy K1
n(1) = F (1).

Having got a subsequence Km
n of Km−1

n for which Km
n (m) = F (m) we shall proceed to obtain

a subsequence Km+1
n of Km

n and a minimal branch-splitter F (m + 1) ⊃ F (m) such that after an

isotopy we may assume Km+1
n (m + 1) = F (m + 1).

Finally, let K = ∪F (m). We shall show that K is a minimal lamination splitter. Then we

take a diagonal sequence Kni of Ki
n to get a subsequence of Kn such that given any m ∈ N for

all i > m, there exists an isotopy after which Kni(i) = F (i) ⊃ F (m). So we would have shown

that Kni converges to K.
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Lemma 5.3.19. Let Kn be a sequence of lamination-splitter surfaces. Then, there exists a sub-

sequence Kni of Kn and a minimal lamination-splitter surface K such that Kni → K.

Proof. For each Kn, we take an increasing union of normal minimal branch-splitter surfaces Kn(i)

as defined in Lemma 5.3.14. We shall now obtain an increasing sequence of branch-splitter sur-

faces F (i) such that ∪F (i) = K is the limit lamination-splitter surface.

As ∂Kn consists of an essential circle in each component ∂vN(B), |∂Kn| is a constant c

for all n ∈ N. As |Kn(1)| ≤ |∂Kn| = c for all n ∈ N, by Lemma 5.3.12 there exists a nor-

mal surface K ′(1) and a subsequence K1
n of Kn such that K1

n(1) ' K ′(1). Let F (1) = K1
1 (1).

As K1
n(1) ' F (1) for all n ∈ N, by Theorem 5.2.19, we can extend this isotopy to an ambi-

ent B-isotopy Hn
t : N(B) → N(B), taking K1

n(1) to F (1), i.e., Hn
0 is the identity map while

F (1) = Hn
1 (K1

n(1)) ⊂ Hn
1 (K1

n). So, after such a B-isotopy for each K1
n we may assume that

F (1) = K1
n(1) ⊂ K1

n for all n ∈ N.

Suppose for i = m − 1, there exists F (i) such that F (i − 1) ⊂ F (i) and there exists a

subsequence Ki
n of Ki−1

n such that Ki
n(i) = F (i) for all n ∈ N.

By Lemma 5.3.14, |Km−1
n (m)| ≤ |Km−1

n (m − 1)| + |∂Km−1
n (m − 1)| for all n ∈ N. As

Km−1
n (m − 1) = F (m − 1) for all n ∈ N, |Km−1

n (m)| ≤ |F (m − 1)| + |∂F (m − 1)|. By

Lemma 5.3.12, there exists a normal surface K ′(m) and a subsequence Km
n of Km−1

n such that

Km
n (m) ' K ′(m). Let F (m) = Km

1 (m). Then as F (m − 1) = Km−1
n (m − 1) for all n ∈ N, so

F (m−1) = Km
1 (m−1) ⊂ Km

1 (m) = F (m) as required. Again, by Theorem 5.2.19, after isotopies

of Km
n we may assume that F (m) = Km

n (m) for all n ∈ N.

Observe that Ki+1
n is, up to isotopy, a subsequence of Ki

n for all i ∈ N. Let Kni be a diagonal

sequence of Ki
n. Then, for all i ∈ N there exists a B-isotopy H(i)t : N(B) → N(B) such that

F (i) = H(i)1(Kni(i)).

Let F = ∪∞i=1F (i). Given a compact subsurface F ′ of F , there exists m ∈ N such that

F ′ ⊂ F (m). For all i > m, there exists an ambient isotopy of N(B) that takes Kni to a surface

that contains F (i) ⊃ F (m). Therefore, F is the limit of Kni . We now show that F is a minimal

lamination splitter surface.

For each n ∈ N, dF (n+1)(∂2F (n), ∂2F (n + 1)) = dKn+1
1

(∂2K
n+1
1 (n), ∂2K

n+1
1 (n + 1)) > d by

construction of the sequence {Kn+1
1 (i)}i. Also, as K1

1 is a lamination-splitter surface, F (1) =

K1
1 (1) intersects each component of ∂vN(B). So, by lemma 5.3.15, K = ∪F (n) is a minimal

lamination-splitter surface.

Taking the complements, we get the desired sequential compactness of laminations.
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Theorem 5.3.20. The space X is sequentially compact.

Proof. Let λn = B −Kn be a sequence of maximal laminations, then by the above lemma 5.3.19

there exists a maximal lamination λ = B −K and a subsequence Kni of Kn such that Kni → K.

So given any maximal branch-splitter surface B1 = B − F1 such that λ ≤ B1, there exists m ∈ N
such that for all i > m, λni ≤ B1.

We now show that the topology on X is the same as the topology on PL(B).

Theorem 5.3.21. The space X is homeomorphic to PL(B).

Proof. What we need to show is that the set B = {VB1 : B1 is a maximal branch splitting of B} is

a basis for PL(B) as well. That is, we need to show VB1 is an open set in PL(B) and that given

any point [λ] ∈ PL(B) and an open set V containing [λ], there exists a maximal branch splitting

B1 such that [λ] ∈ VB1 ⊂ V .

For a maximal branch splitting B1, let B1 be represented as a closed subset of N(B) (i.e., a

branched surface embedded in N(B)). Then for δ > 0, N ′
δ(B1), a δ-neighbourhood of B1 in L′(B)

(i.e., a δ-neighbourhood in F ′(B) intersected with L′(B)), is the union of those maximal lamina-

tions that lie in a δ-neighbourhood Nδ(B1) of B1 (in N(B)) and are fully carried by B1. So the

corresponding neighbourhood N̂δ(B1) in PL(B), is exactly VB1 which is all those isotopy classes

of maximal laminations that have a representative fully carried by B1. Therefore, in particular,

VB1 is open.

Given [λ] ∈ V , take a δ-neighbourhood N ′
δ(λ) in L′(B) such that the corresponding neighbour-

hood N̂δ([λ]) ⊂ V . Let Nδ(λ) be a δ neighbourhood of λ in N(B). Then if a maximal lamination

µ lies in Nδ(λ) and intersects each I-fiber of Nδ(λ), then [µ] ∈ N̂δ([λ]).

By Theorem 5.3.17 there exists a sequence of maximal branch splittings Bn such that λ =

∩N(Bn). Therefore, there exists m ∈ N such that λ ⊂ N(Bm) ⊂ Nδ(λ) and each fiber of Nδ(λ)

intersects N(Bm). Now if [µ] ∈ VBm , then after an isotopy µ ⊂ N(Bm) ⊂ Nδ(λ) and each fiber of

Nδ(λ) intersects µ. Therefore, [µ] ∈ N̂δ([λ]) ⊂ V and VBm ⊂ V as required.

As detailed in the introduction, to show that PL(B) is Hausdorff and that each point in

PL(B) is the intersection of a sequence of open sets it is enough to show that for each λ ∈ L′(B)

the equivalence class [λ] of λ is a closed subset of L′(B).

Definition 5.3.22. Let K ⊂ N(B) be a lamination-splitter surface. Let h : K × [0, n] → N(B)

and i : K×[0, m] → N(B) be B-isotopies such that hn = i0. Then we define h∗i : K×[0, n+m] →
N(B) by (h ∗ i)t = h(t) if t ∈ [0, n] and (h ∗ i)t = it−n if t ∈ [n, n + m]. This is the concatenation

of paths in the space of B-injections of K in N(B).

We define h : K × [0, n] → N(B) as the isotopy ht = hn−t.
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Lemma 5.3.23. Let K and K ′ be minimal lamination-splitter surfaces in N(B). Let Fn be an

increasing sequence of minimal normal branch-splitter surfaces such that ∪Fn = K. For each

n ∈ N, let h(n)t : Fn → N(B) be an isotopy taking Fn to a subsurface of K ′. Then there exists

an isotopy f : K → N(B) taking K to K ′.

Proof. By lemma 5.2.19, there exists an extension of the inclusion isotopy h(n) : Fn × [0, 1] →
N(B) to an ambient isotopy of N(B). Let h̃(n) : K × [0, 1] → N(B) be the restriction of this

ambient isotopy to the lamination splitter surface K.

Let us assume there exists a family of isotopies g(n) : K × [0, n] → N(B) having the following

properties.

(i) g(1)0 is the inclusion map i : K → N(B)

(ii) g(n)t = g(n− 1)t, ∀ t ∈ [0, n− 1], n > 1

(iii) g(n)t(x) = g(n)n−1(x) = g(n− 1)n−1(x), ∀ t ∈ [n− 1, n], x ∈ Fn−1, n > 1

(iv) g(n)n = h̃(n)1, n ≥ 1

Then for all positive integers k ≤ n, ∀x ∈ Fk, ∀ t ∈ [k, n], g(n)t(x) = g(n)k(x) = g(k)k(x) =

h̃(k)1(x). That is, g(m) isotopes K so that Fm ‘sticks’ to h(m)(Fm) = F ′
m ⊂ K ′ in time t ∈ [0,m].

Then, for all time t ≥ m, Fm remains stuck to F ′
m. In particular, F ′

m ⊂ F ′
m+1.

As g(n)t = g(n−1)t for t ∈ [0, n−1], we can think of g(n) as an increasing sequence of paths in

the space of B-injections of K in N(B). We now define the composite path g(∞) : K × [0,∞) →
N(B) by g(∞)t = g(n)t for t ∈ [0, n]. This is a well-defined inclusion isotopy of K in N(B).

Let σ : [0, 1) → [0,∞) be a homeomorphism. Define f : K × [0, 1] → N(B) by ft(x) =

g(∞)σ(t)(x) for t ∈ [0, 1) and f1(x) = h(k)1(x) for x ∈ Fk.

For positive integers k < n, Fk ⊂ Fn and by lemma 5.3.6, h(n)1|Fk
= h(k)1 therefore f1 is

well-defined on ∪Fn = K. As each h(n)1 : Fn → N(B) is a B-injection and Fn is an increasing

sequence with ∪Fn = K, f1 : K → N(B) is a B-injection as well.

For all positive integers k, ∀x ∈ Fk, t ∈ [k,∞), g(∞)t(x) = g(k)k(x) = h̃(k)1(x), i.e., for each

x ∈ K, g(∞)t(x) is eventually constant (as a function of t). Therefore for x ∈ Fk, f1(x) = ft(x)

for all t > σ−1(k) so that f is continuous with respect to t at t = 1.

Therefore, f is an isotopy taking K to a sublamination of K ′. As K ′ is a minimal lamination

splitter surface by Remark 5.3.2, f is the required isotopy taking K to K ′.

We now give a construction of the family of isotopies g(n). Let g(1) = h̃(1). Then g(1)0 =

h̃(1)0 = i the inclusion of K in N(B) and g(1)1 = h̃(1)1 as required.

Having defined g(n) with the required properties, we now define g(n+1) : K×[0, n+1] → N(B)

by g(n + 1) = g(n) ∗ g′(n) where g′(n) : K × [0, 1] → N(B) is defined as follows.
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Let K0 = g(n)n(K) = h̃(n)1(K) and let K1 = h̃(n+1)1(K). By lemma 5.3.6, as h̃(n+1)1|Fn =

h(n) therefore, F ′
n = h(n)(Fn) ⊂ K0 ∩K1. The isotopy g(n) ∗ h̃(n + 1) : K × [0, n + 1] → N(B)

takes K0 (via K) to K1 therefore by lemma 5.3.7, there is an isotopy g′(n) : K × [0, 1] → N(B)

taking K0 to K1 while point-wise fixing F ′
n.

So by construction of g(n+1), g(n+1)t = g(n)t for all t ∈ [0, n] and g(n+1)n+1 = h̃(n+1)1.

Furthermore, by the construction of g′(n), as g′(n)t(x) = x for all x ∈ F ′
n, t ∈ [0, 1]. So ∀x ∈

Fn, ∀t ∈ [n, n + 1], g(n + 1)t(x) = g(n)n(x) = h(n)(x). Therefore, g(n) is the required family of

isotopies.

Looking at the complement now, we have the required theorem.

Theorem 5.3.24. The equivalence class of a lamination is closed in L′(B).

Proof. Let λn be a sequence of laminations such that λn converges to µ in L′(B) and each λn is

isotopic to a fixed lamination λ. Then, we shall show that λ is equivalent to µ.

By Theorem 5.3.17, there exists a sequence of maximal branch splittings Bn such that ∩N(Bn) =

µ. As λn → µ in L′(B), for every m > 0, there exists k > 0 such that for all n > k, λn lies in

N(Bm). In terms of complementary splitter surfaces, if Bn = B−F ′
n, λ = B−K and µ = B−K ′,

then there is an isotopy h(n) of K such that that h(n)1(K) ⊃ F ′
n. Let Fn ⊂ K be such that

h(n)1(Fn) = F ′
n. Applying lemma 5.3.23, we get an isotopy h : N(B) → N(B) that takes K to

K ′, and therefore takes the complements λ to µ as required.

Corollary 5.3.25. The space of maximal laminations PL(B) is Hausdorff and each point in it

is the intersection of a sequence of open sets.

Proof. As L′(B) is a metric space, the topology generated by it is normal. Therefore, for λ ∈ L′(B)

if [λ] is a closed set, then identifying equivalence classes, we get L(B) to be a Hausdorff space

and each point in it as the intersection of a sequence of open sets.

Remark 5.3.26. The topology on PL(B), coming from the Hausdorff metric on L′(B), is in many

respects close to a metric topology. However the obvious topology of distance in L′(B) between

closed sets (equivalence classes of laminations) fails. With respect to this ‘metric’, the distance

between any two isotopy classes of laminations is zero.

To see this, take equivalence classes [λ] and [µ] and let B be represented by an embedded

branched surface in N(B). Then, for any neighbourhood Nδ(B) of B in N(B), there is a lam-

ination isotopic to λ (similarly to µ) that lies in Nδ(B). So there is a sequence of laminations

λn isotopic to λ (similarly a sequence µn isotopic to µ) that converges to B in F ′(B). Therefore,

d(λn, µn) → 0 in L′(B) and the ‘distance’ between [λ] and [µ] is zero.





6. EPILOGUE

It was shown by Tao Li in [21] that a non-Haken manifold has only finitely many strongly irre-

ducible Heegaard splittings. Moriah, Schleimer and Sedgwick [25] have shown that for all existing

examples of manifolds with infinitely many irreducible splittings, there exists a splitting surface

H and a surface K, such that each of the splittings is given by then Haken sum H + nK, where

n is some non-negative integer. They also show that such a surface K is incompressible.

These results lead us to state the following conjecture.

Conjecture 6.0.27. Let M be a closed, orientable, irreducible and atoroidal 3-manifold with

infinitely many strongly irreducible Heegaard splittings. Then, there exists an incompressible sur-

face K and a strongly irreducible Heegaard splitting H such that there are infinitely many strongly

irreducible Heegaard splittings given by the Haken sum H + nK, for n ∈ N.

As a first step in this direction we first aim to prove the weaker result.

Conjecture 6.0.28. Let M be a closed, orientable, irreducible and atoroidal 3-manifold, with

infinitely many strongly irreducible Heegaard splittings. Then, there exists a strongly irreducible

Heegaard splitting surface H and a sequence of (possibly disconnected) incompressible surfaces Kn

such that Sn = H + Kn is a sequence of strongly irreducible Heegaard splittings.

In our first approach at proving this conjecture, we attempt to extend the methods employed

by Li in[21] to the space of projective maximal laminations carried by an almost normal branch

surface. We give an outline of the proof here.

Let M be a closed orientable irreducible atoroidal 3-manifold that is not a small Seifert fiber

space, that contains infinitely many strongly irreducible Heegaard splittings. By a theorem in [20],

there is a finite collection of branch surfaces in M such that every strongly irreducible Heegaard

surface is fully carried by a branch surface in this collection. Moreover, the branch surfaces in

this collection do not carry any normal 2-sphere or normal torus. Let B be a branch surface in

this collection that carries infinitely many strongly irreducible Heegaard surfaces {Sn}.
We have defined a space of projective maximal laminations PL(B) fully carried by B, anal-

ogous to the space of geodesic laminations on surfaces, and the space of projective measured

laminations carried by branch surfaces. We have shown that this space is compact and Hausdorff,

so the sequence {Sn} has a limit point.

By passing to a subsequence we can assume that for each branch sector b ∈ B, the weight of

Sn at b, wb(Sn), is either a constant with respect to n or tends to infinity as n tends to infinity.
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Let B− be the sub-branch surface of B obtained by taking the union of those branch sectors b ∈ B

where wb(Sn) → ∞. We construct a lamination µ fully carried by B− that is the ‘unbounded

limit’ of Sn. Our main task then is to prove that µ is an essential lamination. We use the same

techniques employed by Li in [21], with the difference being that µ is not a point in the projective

measured lamination space and in fact may not have a measure.

Once we show that µ is an essential lamination we show that there is a splitting B1 of B

along µ that carries infinitely many of the Sn, and is such that B−
1 (a splitting of B−) is an

essential branch surface. By passing to a subsequence, we shall show that for each branch sec-

tor b ∈ B1 − B−
1 the weight of Sn is a constant c(b) (independent of n). As each coordinate

(wb(Sn))b∈B− of Sn tends to infinity as n → ∞, there exists k, m ∈ N such that for all n > m,

wb(Sn)−wb(Sk) > 0 if b ∈ B−
1 (while wb(Sn)−wb(Sk) = 0 for all b ∈ B1−B−

1 ). Let H = Sk and

Kn = Sn − S. Then Kn is a closed surface fully carried by the essential branch surface B−
1 , and

therefore by [7] is an incompressible surface. So we will have shown that Sn = H +Kn as required.

In our second approach at proving this conjecture, we first try and prove the result of Li

for non-Haken manifolds, by different means. We shall extend the ideas developed in [44] to

characterise incompressible surfaces as ‘canonically stable normal’ surfaces and to characterise

strongly irreducible Heegaard surfaces as ‘canonically stable almost normal’ surfaces. This is

analogous, in the smooth category, to saying that incompressible surfaces are minimal area surfaces

while strongly irreducible Heegaard surfaces are minimal surfaces of index 1. We shall then show

that the projective limit of canonically stable almost normal surfaces is a canonically stable normal

surface.
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