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Chapter 0

Introduction

We consider two classical theorems of real analysis which deals with translation

invariant subspaces of integrable and smooth functions on R respectively. The first

one is a theorem of Norbert Wiener [63] which states that if the Fourier transform

of a function f ∈ L1(R) has no real zeros then the finite linear combinations

of translations f(x − a) of f with complex coefficients form a dense subspace in

L1(R), equivalently, span{g ∗ f | g ∈ L1(R)} is dense in L1(R). This theorem is

well known as the Wiener-Tauberian Theorem (WTT). The second theorem on

spectral analysis on R, due to Laurent Schwartz [56] states that a closed nonzero

translation invariant subspace of C∞(R) with its usual Fréchet topology contains

the map x 7→ eiλx for some λ ∈ C. This is equivalent to the statement that if

f ∈ C∞(R) then the closure of the set {W ∗ f |W ∈ C∞(R)′} in C∞(R) contains

the map x 7→ eiλx for some λ ∈ C, where C∞(R)′ denotes the set of compactly

supported distributions on R. We shall call this Schwartz’s theorem. It is well

known that the statement above is false for Rn if n > 1 (see [31]).

We use the terms spectral analysis and spectral synthesis in the sense of

Schwartz [56]. We endeavour to study these theorems in the context of homoge-

nous vector bundles on a noncompact rank one Riemannian symmetric space X.

We recall that such a space X can be identified with G/K where G is a connected

noncompact semisimple Lie group with finite centre having real rank one and K

is a maximal compact subgroup of G. This makes X a G-space with canonical

G-action. Any function on X can be identified with a right K-invariant function

on G and in particular left K-invariant functions on X are K-biinvariant (also

called radial) functions on G. In this setup we shall consider the two theorems

mentioned above. We shall discuss them one after the other.

Wiener-Tauberian Theorem was extended to abelian locally compact groups

where the hypothesis is on a Haar integrable function which has nonvanishing

1



Chapter 0: Introduction 2

Fourier transform on all unitary characters (see [51]). Analogues of this result hold

also for many nonabelian Lie groups (see e.g. [27, 43]). On the other hand back

in 1955 failure of WTT even for the commutative Banach algebra of integrable

radial functions on SL(2,R) was noticed by Ehrenpreis and Mautner in [22]. A

simple proof due to M. Duflo of the fact that the WTT based on unitary dual is

false for any noncompact semisimple Lie group appears in [43]. This failure can be

attributed to the existence of the nonunitary uniformly bounded representations

in groups of this class (see [23, 41]).

However a modified version of the theorem was established in [22] for radial

functions in L1(SL(2,R)). There were a few attempts to generalize this result

to more general semisimple Lie groups and with lesser restriction on functions

(see [57, 58, 7, 5, 6, 54, 55, 45, 18]). Research remains incomplete as almost all of

these papers deal only with radial functions. Apart from the group SL(2,R),

where we have the advantage of one dimensional K-types (see [54]), going beyond

the K-biinvariant setup is difficult, perhaps insuperably so.

Our departure in this thesis is in two directions. Firstly we come out of the

setup of the radial functions and deal with the radial sections of certain homoge-

nous vector bundle on the noncompact Riemannian symmetric spaces. For a

unitary representation (τ, Vτ ) of K we consider the vector bundle Eτ over G/K

which is defined as follows: The equivalence relation ρτ on G × Vτ is defined

by (g, v) ρτ (g′, v′) if and only if there exists k ∈ K such that g′ = gk and

v′ = τ(k−1)v. Then the quotient space Eτ = G× Vτ/ρτ with the projection

p : G×Vτ/ρτ → G/K defined by [(g, v)] 7→ gK is a vector bundle over G/K. There

is a one-to-one correspondence between the sections of Eτ and functions on G in

the class, Γ(G, τ) = {f : G→ Vτ | f(gk) = τ(k−1)f(g), for all g ∈ G, k ∈ K}. A

τ -radial section of this bundle is associated with an EndVτ -valued τ -radial function

on G defined by

f(k1gk2) = τ(k−1
2 ) ◦ f(g) ◦ τ(k−1

1 )

or with its scalar version f : G −→ C defined by f(x) = dτχτ ∗ f ∗

dτχτ (x), f(kxk−1) = f(x) for x ∈ G and k ∈ K. Here χτ and dτ are respec-

tively the character and dimension of τ . We restrict our attention to the vector

bundle associated with a K-type τ for which (G,K, τ) is a Gelfand triple, i.e.

when compactly supported (or integrable) τ radial functions form a commutative

algebra under convolution. This is perhaps the natural step after dealing with

radial functions. Here the role of the elementary spherical function φλ is taken up

by the τ -spherical function Φτ
σ,λ which is an eigensection (of the Laplace-Beltrami

operator of X) of the bundle Eτ . The τ -spherical transform f̂ of a τ -radial func-
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tion is defined using Φτ
σ,λ and is the object corresponding to the spherical Fourier

transform of a radial function. We denote Tr Φτ
σ,λ by φτ

σ,λ. For a function space

L(G) on G, L(G//K) and Lτ (G) denote respectively the set of radial and τ -radial

functions in L(G).

For the sake of being explicit, we will be working with the example of the

spinor bundle on the real hyperbolic spaces for which a well-developed L2 the-

ory is available (see [11, 13]). All the results we obtain here will go through for

many other examples of Gelfand triple (see towards the end of the section for

details of such Gelfand triples). In particular all the theorems are valid for K-

biinvariant functions of any noncompact semisimple Lie group with finite centre

which has real rank one. Our results however improve on the existing results for

K-biinvariant functions (cf. [7, 55]) and also add new results in that context. We

identify the real hyperbolic space as Spin0(n, 1)/Spin(n), where Spin0(n, 1) is the

identity component of the group Spin(n, 1). Camporesi and Pedon have used this

identification in [13]. Let τn be the classical complex spin representation of K.

The spinor bundle is the homogenous vector bundle
∑
Hn(R) = G× Vτn/ρτn and

the sections of this bundle are the spinors. It is known that τn is irreducible when

n is odd and splits into two inequivalent irreducible components when n is even.

We will work with the vector bundle corresponding to the irreducible components

of the representations τn.

As our second point of departure we view WTT as a problem associated to a

space of functions F1 acting on another say F2 by convolution. One tries to put

sufficient condition on a family of functions G ⊂ F2 so that G generates F2 under

F1 action. We point out that the Banach algebras like L1(G//K) or their counter

part L1
τ (G) (which forms the usual setup for WTT) can be considered as particular

cases of two different families of Banach algebras or modules. The first family

consists of analogues of Beurling algebras with analytic weights (see [14]) while the

second consists of Lorentz spaces and algebras. The first family remains close to

the classical in behavior, but that of the latter family which in particular includes

the Lp as well as the weak Lp spaces is rooted in the Kunze-Stein phenomenon

( [15]) and hence has no euclidean analogue. We can formulate WTT for all these

Banach algebras and modules and by a more or less uniform approach we can prove

the theorem in all the cases (see Theorem 6.1.1, Theorem 6.1.2, Remark 6.1.8),

except for a degenerate case which we shall treat separately (see (B) below).

We also see that two Wiener-Tauberian type theorems arise naturally in our

context which are based on the unitary dual.

(A) Unlike the classical WTT which considers L1(R) action on L1(R), we
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view WTT as a theorem involving naturally arising pairs of spaces (F1,F2) with

F1 acting on F2 by convolution. For the same space F2 we may find several

spaces {Fα
1 } so that WTT can be formulated for (Fα

1 ,F2) for each α. WTT

finds sufficient conditions on a collection of functions in F2 so that under Fα
1

action it generates a dense space in F2. The core of the sufficient condition is the

nonvanishing condition of the Fourier transform on its natural domain of definition

for the functions in F2 and thus depends solely on the function space F2. More

precisely this condition remains unaltered if we change the first space of the pair

say from Fα
1 to Fβ

1 .

However one can ask: Given a collection of functions G in F2 which satisfies

a weaker nonvanishing condition, can we bring in the action of some additional

convolutors on G which enables G to generate F2 ? In particular we are interested

in finding a WTT where the nonvanishing condition is only on the unitary dual.

Our next theorem (Theorem 6.2.1) is an attempt in this direction where (for

instance) we see that before the usual L1
τ (G)-action if we are allowed to convolve

the generator f ∈ L1
τ (G) with a few other measurable τ -radial functions, then

f can generate a dense space in L1
τ (G) if (apart from satisfying the estimate at

infinity of the usual WTT) its τ -spherical transform f̂ is nonvanishing only on

the unitary dual. That is, the condition of nonvanishing Fourier transform here

is much weaker than what is necessary for L1-action: f̂ is nonvanishing on the

Gelfand-Spectrum of the Banach algebra L1
τ (G).

(B) A reason why many theorems of harmonic analysis on X or on G are

unlike their euclidean analogue or have no analogue at all lies in the fact that the

elementary spherical function φλ (in particular φ0) satisfies certain decay estimate.

This is in deep contrast with the euclidean case where the modulus of the unitary

characters are constants and the nonunitary characters are unbounded functions.

The degenerate case of the weighted algebra we mentioned above is given by the set

of τ -radial functions which are integrable with weight φ0(x). This is a commutative

Banach algebra and is the largest space of measurable τ -radial functions for which

the τ -spherical transform exists as absolutely convergent integral. We observe that

unlike in other Banach algebras and modules mentioned above the domain of the

τ -spherical transform of the elements of this Banach algebra shrinks from the strip

to the line R. We consider this space as the test case where we have deactivated

the role of the decay of φλ. We show that indeed in this case the algebra loses

its semisimple flavor so far the WTT is concerned and we obtain a WTT which

resembles the theorem on R (see Theorem 6.2.2).

Our treatment relies on the method developed in [7] which substantially mod-
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ified the theorem for the radial functions in L1(SL(2,R)) and in [11,13,46,47,48]

which extensively studied radial functions of a K-type τ . We may add here that a

first systematic study of this subject appeared simultaneously in [11] and in [46].

(See also [47, 48] and the references in p.165 of [46].) Some of these results will

appear in [49].

Next we take the Schwartz’s theorem in the same setup as above. Here also we

work on the τ -radial sections of spinor bundle (see Theorem 7.1.3) though as in

the case of WTT the results are valid for some other Gelfand triples (see below).

Like WTT in the context of Riemannian symmetric spaces or of the semisimple

Lie groups the first account of Schwartz’s theorem is again in the celebrated work

of Ehrenpreis and Mautner [24] where it was proved for SL(2,R). For radial

functions in a real rank one noncompact semisimple Lie group with finite centre

the result is obtained by a different method in Bagchi and Sitaram [3].

As a consequence of the Schwartz’s theorem we obtain a Wiener Tauberian

type theorem for compactly supported distributions (see Theorem 7.2.1). Re-

calling that the elementary spherical functions φλ and its τ -radial version φτ
σ,λ

are in L2+ε for any ε > 0, we also observe how failure of the classical WTT for

Lp, 1 < p < 2 functions can be related to the failure of Schwartz type theorem for

Lp′ functions where 1/p+ 1/p′ = 1.

As mentioned earlier Schwartz’s theorem was extended for the group SL(2,R)

in [24]. We shall try to improve the result. We recall that SO(2) ∼= S1 is a

maximal compact subgroup of SL(2,R). We parametrize elements of K = S1

as {kθ | θ ∈ [0, 2π)}. The one dimensional K-types en are parametrized by

integers n where en(kθ) = einθ. For every pair of integers (m,n) of the same

parity we have a spherical function Φm,n
λ . In this setup the elementary spherical

function φλ = Φ0,0
λ . Theorem in [24] states that if V is a nonzero closed translation

invariant subspace of C∞(SL(2,R)), then either for every even m,n or for every

odd m,n, V contains Φm,n
λ for some λ ∈ C which depends on m,n. We consider

the bundle En over SL(2,R)/SO(2) (see definition of Eτ above). Then the C∞-

sections of this bundle can be identified with C∞(SL(2,R))n which are the right

n-type C∞-functions on SL(2,R). The object which corresponds to x 7→ eiλx

here is en
λ,k : x 7→ eλ(H(x−1k−1)e−n(K(x−1k−1)), λ ∈ C, k ∈ K where H(x) and

K(x) are the A-part and the K-part of the Iwasawa decomposition G = KAN

of the element x. We show that every left translation invariant nonzero closed

subspace of C∞(SL(2,R))n contains en
λ,k for some λ ∈ C and all k ∈ K. Since∫

K
en

λ,k(x)em(k) dk = Φn,m
λ−ρ(x) it follows from this result that for every m of the

parity of n, V contains Φn,m
ν (x) for some ν ∈ C which depends on m. Using
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this step we shall finally prove that any nonzero closed (both-sided) translation

invariant subspace V of C∞(SL(2,R)) contains en
λ,k either for every even n or

every odd n for some λ ∈ C which depends on n and for all k ∈ K (see Theorem

8.1.2).

We indicate at the end how our method applies, mutatis mutandis, to obtain

similar versions of WTT as well as Schwartz’s theorem in some other Gelfand

triples; e.g.

1. G = SL(2,R), K = SO(2), τ ∈ K̂;

2. G = SU(n, 1), K = S(U(n) × U(1)) and τ is some irreducible component of

Spin representation;

3. G = Sp(1, n), K = Sp(1) × Sp(n) and τ |Sp(n) ≡ 1;

4. G connected, noncompact real rank one semisimple Lie group with finite

centre and τ ∈ K̂ with τ |M is irreducible.

Actually our method relies on an explicit understanding of the images of certain

spaces of functions and distributions under τ -spherical transform. The proofs

work readily when as function spaces these images become identical with that of

our working example namely the spinor bundle.

Crucial ingredients for the proofs of our main results are: (a) Lp-Schwartz

space isomorphism theorems (0 < p ≤ 2) for τ -radial functions, (b) Paley-Wiener

theorem and (c) slice-projection property of the Abel transform; the latter two re-

sults for compactly supported τ -radial distributions. We prove these intermediate

results. Our proof of the Schwartz space isomorphism theorems is an adaptation

of the Anker’s proof ( [2]) of the corresponding theorem for the K-biinvariant

case.

The thesis is organized as follows:

In Chapter 1 we establish the required properties of the elementary spherical

functions and spherical transform, part of which is not so standard.

In Chapter 2 we extend some of the properties obtained in Chapter 1 to τ -

spherical functions and τ -spherical transform. We also define Abel transform

and its adjoint for τ -radial functions and distributions, obtain the slice-projection

theorem.

In Chapter 3 we obtain the Banach algebras and modules, on which we consider

the Wiener-Tauberian theorems in Chapter 6.

Chapter 4 contains preliminaries for the Spin group, Spin representations.
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Chapter 5 has the Lp-Schwartz space isomorphism theorem for τ -radial func-

tions and Paley-Wiener theorem for τ -radial distributions. These are intermediate

steps for the proofs of our main results.

In Chapter 6 we prove analogue of Wiener-Tauberian theorems for τ -radial

functions.

In Chapter 7 we prove an analogue of Schwartz’s theorem on spectral analysis

for τ -radial functions, a Wiener-Tauberian theorem for compactly supported τ -

radial distributions and some related results.

In Chapter 8 we revisit Schwartz’s theorem on SL(2,R) obtained in [24] and

establish a stronger version of it.

In Chapter 9 we provide some other examples of Gelfand triple for which all

the theorems proved in this thesis will hold. We indicate the reasons.

In Chapter 5, 6, 7 (G,K, τ) are as defined in Chapter 4.
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9 Notation

0.1 Notation

The following table summarizes some of the notation we shall use frequently.

R,C,Z,N are respectively set of real numbers, complex numbers, integers and

natural numbers.

For z ∈ C

ℜz : real part of z

ℑz : imaginary part of z

z : complex conjugate of z

For a set S in a topological space

S : closure of S

S◦ : interior of S

∂S : boundary of S

For any p ∈ R, p′ = p
p−1

Σ = {−2α,−α, α, 2α} : set of restricted roots

mα, m2α : dimensions of root spaces gα, g2α respectively

ρ : the half sum of positive roots

For 0 < p ≤ 2, δ > 0

γp = 2
p
− 1

Sp = {z ∈ C | |ℑz| ≤ γpρ}

Sp,δ = {z ∈ C | |ℑz| ≤ γpρ+ δ}

Ĝ : unitary dual of a group G

C∞(G) : infinitely differentiable functions on G

C∞
c (G) : compactly supported functions in C∞(G)

Cp(G) : Lp-Schwartz space on G

Lp,q(G) : Lorentz space on G with norm ‖ · ‖∗p,q

For a function space L(G) of G

L(G//K) : K-biinvariant functions in L(G)

Lτ (G) : τ -radial functions in L(G) where (τ, Vτ) ∈ K̂.
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For a topological vector space V

EndV : set of endomorphisms on V

V ′ : set of continuous linear functionals on V

Φτ
σ,λ : EndVτ valued τ -spherical function

φτ
σ,λ(x) : TrΦτ

σ,λ(x)

φλ : elementary spherical function

For a function space F on a symmetric domain in C or R:

Fe : set of even functions in F

Fo : set of odd functions in F

σ(x) : distance of the point x ∈ G/K

from origin in the metric induced from the Killing form

L1(wp,r) = {f measurable on G |
∫

G
|f(x)|φiγpρ(x)(1 + σ(x))r dx <∞}



Chapter 1

Elementary Spherical Functions

and Spherical Transform

We begin this chapter recalling some notation and establishing preliminaries which

will be used throughout this thesis. Most of our notation related to the semisim-

ple Lie groups and the associated symmetric spaces is standard and can be found

for example in [33, 28]. Here we shall recall a few of them which are required

to describe the results. We shall follow the standard practice of using the letter

C,C1, C2 etc. for constants, whose value may change from one line to another.

Occasionally the constants will be suffixed to show their dependency on impor-

tant parameters. Everywhere in this thesis the symbol f1 ≍ f2 for two positive

expressions f1 and f2 means that there are positive constants C1, C2 such that

C1f1 ≤ f2 ≤ C2f1. For a complex valued function f , f will denote its complex

conjugation and for a set S in a topological space S will denote its closure. For

a complex number z, we will use ℜz and ℑz to denote respectively the real and

imaginary parts of z.

Let G be a connected noncompact semisimple Lie group with finite centre and

g its Lie algebra. We fix a Cartan decomposition g = k + p. Let a be a maximal

abelian subspace of p. We assume that G is of real rank one, i.e. dim a = 1. We

denote the real dual of a by a∗. Let Σ ⊂ a∗ be the subset of nonzero roots of

the pair (g, a). We recall that either Σ = {−α, α} or {−2α,−α, α, 2α} where α

is a positive root and the Weyl group W associated to Σ is {Id,−Id} where Id is

the identity operator. Let mα = dim gα and m2α = dim g2α where gα and g2α are

the root spaces corresponding to α and 2α. As usual then ρ = 1
2
(mα + 2m2α)α

denotes the half sum of the positive roots. Let H0 be the unique element in a

such that α(H0) = 1 and through this we identify a with R as t ↔ tH0. Then

a+ = {H ∈ a | α(H) > 0} is identified with the set of positive real numbers.

11
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We also identify a∗ and its complexification a∗
C

with R and C respectively by

t ↔ tα and z ↔ zα, t ∈ R, z ∈ C. By abuse of notation we will denote

ρ(H0) = 1
2
(mα + 2m2α) by ρ. Let n = gα + g2α, N = exp n, K = exp k, A = exp a,

A+ = exp a+ and A+ = exp a+. Then K is a maximal compact subgroup of G, N

is a nilpotent Lie group and A is a one dimensional vector subgroup identified with

R. More precisely, A is parametrized by as = exp(sH0). The Lebesgue measure

on R induces the Haar measure on A as das = ds. Let M be the centralizer of

A in K. Let X = G/K be the Riemannian symmetric space of noncompact type

associated with the pair (G,K). Let σ(x) = d(xK, eK) where d is the distance

function of X induced by the Killing form on g. The sets of (equivalence classes

of) irreducible unitary representations of G,K,M are denoted respectively by

Ĝ, K̂, M̂ .

The group G has the Iwasawa decomposition G = KAN and the polar de-

composition G = KA+K. Using the Iwasawa decomposition we write an element

x ∈ G uniquely as K(x) expH(x)N(x) where K(x), H(x) and N(x) are respec-

tively the K-part, A-part and N -part of x in this decomposition. Let dg, dn, dk

and dm be the Haar measures of G, N , K and M respectively where
∫

K
dk = 1

and
∫

M
dm = 1. We have the following integral formulae corresponding to the

two decompositions above which hold for any integrable function:

∫

G

f(g)dg = C1

∫

K

∫

R

∫

N

f(katn)e2ρt dn dt dk, (1.0.1)

and

∫

G

f(g)dg = C2

∫

K

∫

R+

∫

K

f(k1atk2)(sinh t)mα(sinh 2t)m2α dk1 dt dk2. (1.0.2)

The constants C1, C2 depend on the normalizations of the Haar measures involved.

We also use the Iwasawa decomposition G = NAK which has the same Jacobian

as the decomposition G = KAN , and the decompositions G = KNA and G =

ANK each of which has Jacobian 1. The following identities will be useful in our

computations [34] :

H(ghk) = H(hk) +H(gK(hk)) and K(ghk) = K(gK(hk)). (1.0.3)

We also note, using the well known estimate sinh t ≍ tet/(1 + t), in (1.0.2)
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above that

∫

G

|f(g)|dg ≍ C3

∫

K

∫ 1

0

∫

K

|f(k1atk2)|t
d−1 dk1 dt dk2

+ C4

∫

K

∫ ∞

1

∫

K

|f(k1atk2)|e
2ρt dk1 dt dk2 (1.0.4)

where d = mα +m2α + 1.

A function is called K-biinvariant if f(k1xk2) = f(x) for all x ∈ G, k1, k2 ∈ K.

For any function space L(G) on G we denote the set of K-biinvariant functions

in L(G) by L(G//K). For any λ ∈ C we define the elementary spherical function

φλ by

φλ(x) =

∫

K

e−(iλ+ρ)H(xk) dk for all x ∈ G.

Then φλ is a K-biinvariant function and φλ = φ−λ, φλ(x) = φλ(x
−1). It is clear

that |φλ(x)| ≤ φiℑλ(x) for any λ ∈ C and x ∈ G. The spherical transform f̂ of a

function f ∈ L1(G//K) is defined by the formula

f̂(λ) =

∫

G

f(x)φλ(x
−1) dx for all λ ∈ R.

We have following Plancherel Theorem for spherical transform: For f ∈ L2(G//K)

∫

G

|f(x)|2 dx =

∫

R

|f̂(λ)|2|c(λ)|−2dλ

where c(λ) is the (suitably normalized) Harish-Chandra c-function, |c(λ)|−2 is the

Plancherel density and dλ is the Lebesgue measure on R (see [28]).

For p ∈ (0, 2] we define γp = (2/p− 1). We consider the strip

Sp = {z ∈ C | |ℑz| ≤ γpρ}

and note that when p = 2 then the strip becomes the line R. For 0 < p < 2 let

S◦
p and ∂Sp respectively be the interior and the boundary of the strip.

We have the following asymptotic estimate of φλ ( [33, p. 447]). For ℑλ < 0,

t > 0

lim
t→∞

e(−iλ+ρ)(tH)φλ(at) = c(λ). (1.0.5)

As the c-function has neither zero nor pole in the region ℑλ < 0 (see [33, Theorem

6.4, Ch. IV]) it follows that for every ε > 0 there is a Mε > 0 such that for all t
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with |t| > Mε

(1 − ε)e−(ℑλ+ρ)|t||c(λ)| ≤ |φλ(at)| ≤ (1 + ε)e−(ℑλ+ρ)|t||c(λ)|. (1.0.6)

Using continuity of φλ we get that for any fixed λ ∈ C with ℑλ < 0:

|φλ(at)| ≍ e−(ℑλ+ρ)|t| (1.0.7)

and in particular for λ = −iγpρ, 0 < p < 2, we have

φiγpρ(at) = φ−iγpρ(at) ≍ e−2/p′ρ|t|. (1.0.8)

This estimate becomes degenerate when p = 2, i.e. when γp = 0. However we

have the following estimate for λ = 0: φ0(at) ≍ (1 + |t|)e−ρ|t| (see [1]). Apart

from these pointwise or uniform estimates of φλ there are Lp estimates, which

leads to the celebrated Kunze-Stein phenomenon (see [41], [15]). It is clear from

the estimate of φ0 and the fact that |φλ| ≤ φ0 if λ ∈ R that for λ ∈ R, φλ ∈

L2+ε(G//K) for any ε > 0. From this it follows that for any function f in

Lp(G//K) with 1 ≤ p < 2, |f̂(λ)| ≤ C‖f‖p when λ ∈ R. Using Plancherel

theorem we immediately get that Lp(G//K) ∗ L2(G//K) ⊂ L2(G//K) with the

corresponding norm inequality. This can be considered as a starting point of the

Kunze-Stein phenomenon or at least the “convolution-inequality version” of it

(see [16] for comprehensive survey). Using an interpolation with the known fact

that L1(G//K) ∗ L1(G//K) ⊂ L1(G//K) we obtain Lp(G//K) ∗ Lq(G//K) ⊂

Lq(G//K) where 1 ≤ p < q ≤ 2 with the corresponding norm inequality.

More recently a sharper version of the Kunze-Stein phenomenon is obtained

for the groups of real rank one which involves Lorentz space estimates of φλ (see

[16, 39]). Before we embark upon further studies of the behavior of φλ along this

line we need the following definitions and results for the Lorentz spaces (see [30,59]

for details). Let (M,m) be a σ-finite measure space, f : M −→ C be a measurable

function and p ∈ [1,∞), q ∈ [1,∞]. We define

‖f‖∗p,q =





(
q
p

∫∞

0
[f ∗(t)t1/p]q dt

t

)1/q

when q <∞

supt>0 tdf(t)
1/p when q = ∞.

Here df is the distribution function of f , i.e. for α > 0, df(α) is the Haar measure

of the set {x ∈ G | |f(x)| > α} and f ∗(t) = inf{s | df(s) ≤ t} is the nonincreasing

rearrangement of f ( [30, p. 45]). We take Lp,q(M) to be the set of all measurable
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functions f : M −→ C such that ‖f‖∗p,q <∞. By L∞,∞(M) and ‖ · ‖∞,∞ we mean

respectively the space L∞(M) and the norm ‖ · ‖∞. The space Lp,∞(M) is also

called weak Lp-space on M .

For p, q ∈ [1,∞) the following identity gives an alternative expression of ‖ ·‖∗p,q

which we will use:

q

p

∫ ∞

0

(t1/pf ∗(t))q dt

t
= q

∫ ∞

0

(tdf (t)
1/p)q dt

t
.

Though this is well known and used in many places (see e.g. [8]) we give here a

sketch of the proof as we could not locate one.

Proof. We use the substitution t = sα where α = p
q

in the left hand side integral.

Then dt
t

= α ds
s

and we get,

q

p

∫ ∞

0

tq/pf ∗(t)q dt

t
=

q

p
α

∫ ∞

0

(sα)q/pf ∗(sα)q ds

s

=

∫ ∞

0

f ∗(sα)qds

=

∫ ∞

0

(
q

∫ f∗(sα)

0

λq−1dλ

)
ds

= q

∫ ∞

0

λq−1

∫

f∗(sα)≥λ

ds dλ.

To prove the assertion, it is now enough to show that
∫

f∗(sα)≥λ
ds = df(λ)q/p.

For a set A let |A| be its Lebesgue measure. Then
∫

f∗(sα)≥λ
ds = |{s | f ∗(sα) ≥

λ}|. The set

{s | f ∗(sα) ≥ λ} = {s | inf{u > 0 | df(u) ≤ sα} ≥ λ}

= {s | df(u) > sα for all u ∈ (0, λ)}

= {s | df(λ− ε) > sα for all ε > 0}

= {s | df(λ) ≥ sα} for almost every λ,

as df is monotone function. Thus
∫

f∗(sα)≥λ
ds = df(λ)1/α = df(λ)q/p for almost

every λ as α = p
q
. This completes the proof.

For p, q in the range above, Lp,p(M) = Lp(M) and if q1 ≤ q2 then ‖f‖∗p,q2
≤

‖f‖∗p,q1
and consequently Lp,q1(M) ⊂ Lp,q2(M). We recall that for 1 < p <∞ and

1 ≤ q < ∞, the dual of Lp,q(M) is Lp′,q′(M) where 1
p

+ 1
p′

= 1 = 1
q

+ 1
q′

and the

dual space of L1,q(M) is {0} for 1 < q < ∞ (see [30, p. 52]). Everywhere in this
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thesis any p ∈ [1,∞) is related to p′ as above.

Proposition 1.0.1. The elementary spherical function φλ satisfies the following

properties.

(1) For λ1, λ2 ∈ C with |ℑλ1| > |ℑλ2| > 0 and r ≥ 0, |φλ2(x)|(1 + σ(x))r ≤

C|φλ1(x)| for all x ∈ G for some constant C which depends on λ1, λ2.

(2) For 1 ≤ p < 2, φλ ∈ Lp′,∞(G//K) if and only if λ ∈ Sp.

(3) For 1 < p < 2 and 1 ≤ r ≤ ∞, φλ ∈ Lp′,r(G//K) if and only if λ ∈ S◦
p .

(4) φ0(ar)
(1+r)

∈ L2,∞(G//K).

Proof. The assertion (1) follows from (1.0.7), noting that φλ = φ−λ.

For proving (2) and (3) we first note that when λ = ξ + iγpρ where ξ ∈ R and

γp = 2/p− 1 then for t > 0, φλ(at) ≍ e−2ρt/p′ (see (1.0.8)).

Let f(at) = e−2ρt/p′ . Then

df(α) = m({t | e−2ρt/p′ > α}),

where m is the Haar measure on G in polar decomposition. Thus df(α) = 0 if

α > 1 and hence we need to consider α ∈ (0, 1). We have df(α) = m({t | t <

p′/2ρ log 1/α}).

If 0 < α < e−2ρ/p′ then p′/2ρ log 1/α > 1. Thus in this range of α using (1.0.4)

we have

df (α) ≍

[∫ 1

0

td−1dt+

∫ p′

2ρ
log 1

α

1

e2ρt dt

]
≍

1

αp′
. (1.0.9)

If e−2ρ/p′ < α < 1 then 0 < p′/2ρ log 1/α < 1 and hence for this range of α we

have

df(α) ≍

∫ p′

2ρ
log 1

α

0

td−1dt =
1

d

(
p′

2ρ
log

1

α

)d

. (1.0.10)

Thus from the definition of Lorentz spaces given above, (1.0.9) and (1.0.10) it

follows that φλ ∈ Lq,∞(G//K) if and only if

sup
0<α<e−2ρ/p′

α

αp′/q
<∞,

that is if and only if p′ ≤ q. Similarly it follows from (1.0.9) and (1.0.10) that
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φλ ∈ Lq,r(G//K) if and only if

∫ e−2ρ/p′

0

dα

α1−r+rp′/q
<∞,

that is if and only if p′ < q.

Now we take p > s. Then γp < γs and hence by (1.0.10) φiγpρ ∈ Ls′,r(G//K)

by taking s′ = q.

(4) As before let m be the Haar measure on G. We consider the function

f(r) = e−ρr for r ≥ 0. We note that for α ≥ 1, df(α) = m{r | e−ρr > α} = 0. For

α < 1 we have

df(α) = m{r | r <
1

ρ
log

1

α
}

≤

∫ 1/ρ log 1/α

0

e2ρr dr (as sinh r ≤ er)

=
1

2ρ

(
e2 log 1/α − 1

)
≤

1

2ρα2
.

Hence sup0<α<1 αdf(α)1/2 ≤ (2ρ)−1/2 <∞. As φ0(ar)/(1 + r) ≍ e−ρr, the proof is

complete.

Remark 1.0.2. Proposition 1.0.1(2) for the case p = 1 is well known as

the Helgason-Johnson theorem (see [35]) and holds for groups of arbitrary real

rank. In the language of Lorentz space Helgason-Johnson theorem restates as

φλ ∈ L∞,∞(G//K) if and only if λ ∈ S1. Proposition 1.0.1(2) is its expected

generalization: φλ ∈ Lp′,∞(G//K) if and only if λ ∈ Sp. However it is known

that for p > 1, Proposition 1.0.1(2) is false when real rank of G is more than one

(see [39]).

Proposition 1.0.1 readily determines the domain where the spherical transform

of a function exists as a convergent integral. For instance for Lp,1 functions with

1 ≤ p < 2 the domain is Sp and for Lp,q functions with 1 < p < 2, 1 < q ≤ ∞ it

is S◦
p . We may point out that the latter includes the weak Lp spaces for p > 1.

The phenomenon however fails for weak L1. For example we consider the K-

biinvariant function f(k1ark2) = r−(mα+m2α+1)χ[0,1](r) where χ[0,1] is the indicator

function of [0, 1]. Then it can be verified that f is in weak L1, but the integral∫
R
f(r)φ0(r)J(r) dr does not converge. Here J(r) is the Jacobian of the polar

decomposition. This shows that while for p > 1 the pointwise existence of the

spherical transform is guaranteed for weak Lp functions, the situation is different

for weak L1 functions (see [50] for details).
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Chapter 2

τ-Spherical Functions and

τ-Spherical Transform

2.1 τ-Radial Functions

In this section we recall the definitions of τ -radial functions and their τ -spherical

transforms. We discuss both endomorphism valued and scalar valued τ -radial

functions. We will follow mainly [11] for basic notation and argument.

Definition 2.1.1. For G and K as in Chapter 1 and (τ, Vτ ) ∈ K̂ a function

F : G → EndVτ is said to be τ -radial if F (k1xk2) = τ(k−1
2 )F (x)τ(k−1

1 ) for all

k1, k2 ∈ K, x ∈ G.

When τ is the trivial representation of K, a τ -radial function is simply a

K-biinvariant function. The τ -radial functions are radial sections of the homoge-

nous vector bundle Eτ over G/K associated with the representation τ ∈ K̂ (see

Introduction).

Let Γ(G, τ, τ) be the set of all τ -radial functions. Also let L2(G, τ, τ) be the

square integrable τ -radial functions with inner product

〈F1, F2〉 =

∫

G

Tr [F1(x)F2(x)
∗] dx,

where F2(x)
∗ denotes adjoint of F2(x). For suitable F1, F2 ∈ Γ(G, τ, τ) their

convolution is defined by

F1 ∗ F2(x) =

∫

G

F1(y
−1x)F2(y) dy.

Then for F1, F2 ∈ Γ(G, τ, τ), we can verify that F1 ∗ F2 ∈ Γ(G, τ, τ) whenever

19
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convolution makes sense. In fact

(F1 ∗ F2)(k1xk2) =
∫

G
F1(y

−1k1xk2)F2(y) dy

= τ(k−1
2 )
∫

G
F1(y

−1k1x)F2(y) dy

= τ(k−1
2 )
∫

G
F1(z

−1x)F2(k1z) dz

= τ(k−1
2 )
∫

G
F1(z

−1x)F2(z) dz τ(k
−1
1 )

= τ(k−1
2 )(F1 ∗ F2)(x)τ(k

−1
1 ).

We let Iτ (G) denote the set of all scalar valued functions f on G such that

f(kxk−1) = f(x) for k ∈ K, x ∈ G and dτχτ ∗ f = f = f ∗ dτχτ where χτ and dτ

are character and dimension of τ respectively. We call elements of Iτ (G) as scalar

valued τ -radial functions. For f1, f2 ∈ Iτ (G), their convolution is defined by

f1 ∗ f2(x) =

∫

G

f1(xy
−1)f2(y) dy,

whenever the integral converges and it can be verified that f1 ∗ f2 ∈ Iτ (G). We

have the following proposition which gives an bijection between Γ(G, τ, τ) and

Iτ (G).

Proposition 2.1.2. There is a one-to-one correspondence between the spaces

Γ(G, τ, τ) and Iτ (G).

Proof. For given F ∈ Γ(G, τ, τ) we define fF by fF (x) = dτTrF (x). Then

fF (kxk−1) = dτTrF (kxk−1) = dτTr(τ(k)F (x)τ(k−1)) = dτTrF (x) = fF (x), that

is fF is K-central. Now

(fF ∗ dτχτ ) (x) = dτ

∫
K
fF (xk)χτ (k) dk

= d2
τ

∫
K

TrF (xk)χτ (k) dk

= d2
τTr

[∫
K
τ(k−1)χτ (k) dk F (x)

]

= dτTrF (x)

= fF (x),
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where we have used the Schur orthogonality relation for K with normalization∫
K
dk = 1. Similarly we have dτχτ ∗ fF = fF . Hence fF ∈ Iτ (G). Conversely,

suppose f ∈ Iτ (G). We define Ff by

Ff(x) =

∫

K

τ(k)f(kx) dk.

Then

Ff(k1xk2) =

∫

K

τ(k)f(kk1xk2) dk.

We put kk1 = k3 in the above to get

Ff(k1xk2) =
∫

K
τ(k3k

−1
1 )f(k3xk2) dk3

=
∫

K
τ(k3)f(k3xk2) dk3 τ(k

−1
1 )

=
∫

K
τ(k3)f(k−1

2 k2k3xk2) dk3 τ(k
−1
1 )

=
∫

K
τ(k3)f(k2k3x) dk3 τ(k

−1
1 ), since f is K-central.

Also we put k2k3 = k4 in the above to get

Ff(k1xk2) =
∫

K
τ(k−1

2 k4)f(k4x) dk4 τ(k
−1
1 )

= τ(k−1
2 )
∫

K
τ(k4)f(k4x) dk4 τ(k

−1
1 )

= τ(k−1
2 )Ff(x)τ(k

−1
1 ).

Therefore Ff ∈ Γ(G, τ, τ). Also for F ∈ Γ(G, τ, τ) we have

FfF
(x) =

∫

K

τ(k)fF (kx) dk = dτ

∫

K

τ(k)Tr (F (kx)) dk.

Hence FfF
(x) = dτ

∫
K
τ(k)Tr (F (x)τ(k−1)) dk = F (x) by Schur orthogonality

relation.

Again for f ∈ Iτ (G) we have

fFf
(x) = dτTr(Ff (x)) = dτTr

(∫

K

τ(k)f(kx) dk

)
= dτ

∫

K

χτ (k)f(kx) dk.

Therefore fFf
(x) = dτχτ ∗ f(x) = f(x). This shows that F 7→ fF is a bijection

between Γ(G, τ, τ) and Iτ (G) with inverse f 7→ fF .



Chapter 2: τ -Spherical Functions and τ -Spherical Transform 22

For f1, f2 ∈ Iτ and F1, F2 ∈ Γ(G, τ, τ) we have Ff1∗f2 = Ff2 ∗ Ff1 and fF1∗F2 =

fF2 ∗fF1 whenever the convolutions make sense (see [62, p.3]). Therefore it follows

that Iτ (G) is commutative if and only if Γ(G, τ, τ) is commutative.

Let C∞
R (G, τ, τ) be the space of all τ -radial infinitely differentiable com-

pactly supported functions with support contained in the ball of radius R,

that is F ∈ C∞
R (G, τ, τ), when F (KatK) = 0, for all |t| > R. The set

of all compactly supported τ -radial infinitely differentiable functions is de-

noted by C∞
c (G, τ, τ). The corresponding sets for scalar valued functions are

denoted by C∞
c,τ(G)R and C∞

c,τ(G) respectively. Precisely, C∞
c,τ(G) = {f ∈

Iτ (G) | f is compactly supported and C∞} and C∞
c,τ(G)R = {f ∈ Iτ (G) |

f is compactly supported in a ball of radius R and C∞}. Also the set of infinitely

differentiable τ -radial functions and the set of corresponding scalar valued func-

tions are denoted by C∞(G, τ, τ) and C∞
τ (G) respectively. We topologize C∞

c,τ(G)

and C∞
τ (G) as follows (see [24]): A sequence {fi} in C∞

c,τ(G) converges to 0 if

and only if there exists a compact set C of G such that suppfi ⊆ C for all i and

fi along with all derivatives converges to 0 uniformly on C. A sequence {fi} in

C∞
τ (G) converges to 0 if and only if fi along with all derivatives converges to 0

uniformly on each compact subsets of G.

The τ -radial Lp-Schwartz spaces for 0 < p ≤ 2 are defined by

Cp(G, τ, τ) = {F ∈ C∞(G, τ, τ) | ∀D1, D2 ∈ U(g), ∀N ∈ N,

sup
t≥0

‖F (D1; at;D2‖EndVτ (1 + t)Ne
2
p
ρt <∞},

where U(g) is the universal enveloping algebra of G.

The corresponding space of scalar valued functions is defined by

Cp
τ (G) = {f ∈ C∞

τ (G) | ∀D1, D2 ∈ U(g), ∀N ∈ N,

sup
t≥0

|f(D1; at;D2)|(1 + t)Ne
2
p
ρt <∞}.

Here F (D1; at;D2) (respectively f(D1; at;D2)) is the usual left and right deriva-

tives of F (respectively of f) by D1 and D2 evaluated at at.

The spaces C∞
c (G, τ, τ), C∞(G, τ, τ) and Cp(G, τ, τ) are topologically isomor-

phic with the function spaces C∞
c,τ(G), C∞

τ (G) and Cp
τ (G) respectively through

the map F 7→ fF and its inverse f 7→ Ff . We will mostly work with the scalar

valued τ -radial functions. However it will be clear from the context whether we

are considering scalar or EndVτ valued functions. For any (scalar valued) function

space L(G) the set of τ -radial functions in L(G) will be denoted by Lτ (G). We
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recall the well known facts: For 0 < p ≤ q ≤ 2, C∞
c,τ(G) is dense in Cp

τ (G), Cp
τ (G)

is dense in Cq
τ (G) and for 1 ≤ p ≤ 2, Cp

τ (G) is dense in Lp
τ (G).

Let D(G, τ) denotes the algebra of left-invariant differential operators acting

on C∞(G, τ) = {f : G→ Vτ | f is C∞ and f(xk) = τ(k−1)f(x)}.

Definition 2.1.3. A function Φ ∈ C∞(G, τ, τ), with Φ(e) = Id is called τ -

spherical function if Φ is an eigenfunction for D(G, τ), i.e., there is a character χΦ

of D(G, τ) such that

DΦ(·)v = χΦ(D)Φ(·)v

for all D ∈ D(G, τ) and all v ∈ Vτ (the representation space of τ).

Then we have the following characterizations for the τ -spherical functions (see

[11], [46, Theorems B.2, B.12], [47, Theorems 6, 8]).

Theorem 2.1.4. Let Φ ∈ C∞(G, τ, τ), with Φ(e) = Id. Then the following con-

ditions are equivalent:

(1) Φ is a τ -spherical function,

(2) The map F 7→ λΦ(F ) = 1
dτ

∫
G

Tr [F (x)Φ(x−1)] dx is a character of

C∞
c (G, τ, τ),

(3) Φ ∗ F = λΦ(F )Φ, for all F ∈ C∞
c (G, τ, τ),

(4) Φ satisfies either one of the following (equivalent) functional equations:

(a) dτ

∫
K
τ(k)Φ(xky) dk = Tr(Φ(y))Φ(x),

(b) dτ

∫
K

Φ(xky)χτ (k) dk = Φ(y)Φ(x) for all x, y ∈ G.

Let P = MAN be a minimal parabolic subgroup of G. Given σ ∈ M̂ and

λ ∈ C, we have the representation σ ⊗ eλ ⊗ 1 of P where eλ(x) = eiλx is the (not

necessarily unitary) character of A and 1 is the trivial representation of N . The

minimal principal series representation πσ,λ = indG
P (σ⊗eλ⊗1) is the representation

induced by σ ⊗ eλ ⊗ 1 from P to G. In our parameterization πσ,λ is unitary if

and only if λ ∈ R and they are also irreducible except maybe for λ = 0. The

subquotient theorem of Harish-Chandra implies that each π ∈ Ĝ is infinitesimally

equivalent to a subquotient representation of a nonunitary principal series πσ,λ,

for suitable σ ∈ M̂ and λ ∈ C. For a detailed account on construction and

parametrization of representations we refer to [40, Ch. VII].

For π ∈ Ĝ, τ ∈ K̂ and σ ∈ M̂ we let m(τ, π) (respectively m(σ, τ)) denote the

multiplicity of τ in π|K (respectively multiplicity of σ in τ |M ). Also for τ ∈ K̂ we



Chapter 2: τ -Spherical Functions and τ -Spherical Transform 24

let M̂(τ) = {σ ∈ M̂ | m(σ, τ) > 0}. We have the following result regarding the

link between the commutativity of the algebra Iτ (G) and the multiplicity of τ in

the elements of Ĝ. (See [29], [19, Theorem 3]. See also Proposition 5.1 and the

Remarks following it in [46] for a relevant discussion.)

Proposition 2.1.5. The following conditions are equivalent:

(1) For f1, f2 ∈ Iτ (G), f1∗f2 = f2∗f1 whenever convolutions on both sides make

sense.

(2) m(τ, π) ≤ 1 for all π ∈ Ĝ.

We digress briefly to recall that for a unimodular locally compact group G, a

compact subgroup K of G and a unitary irreducible representation τ of K, if the

convolution algebra of continuous compactly supported τ -radial functions on G is

commutative, then (G,K, τ) is called a Gelfand triple. The term Gelfand triple

is coined by E. Pedon which generalizes the well known concept of Gelfand pair

(see [46, section 5.2, Appendix B].)

We come back to the context of G,K and τ of the previous proposition. From

now on we restrict our attention to those τ ∈ K̂ for which m(τ, π) ≤ 1 for any

π ∈ Ĝ. Then in particular C∞
c,τ(G) is commutative i.e. (G,K, τ) is a Gelfand

triple. We note that by Frobenius reciprocity theorem m(τ, πσ,λ) ≤ 1 is equivalent

to the condition that τ |M is multiplicity free. Unless stated otherwise, by τ ∈ K̂

we shall mean such a τ in K̂.

For τ ∈ K̂, σ ∈ M̂(τ) and λ ∈ C, let Φτ
σ,λ(x) be the matrix block of type τ of

πσ,λ(x). Precisely Φτ
σ,λ(x) := Pτπσ,λ(x

−1)(Pτ )
∗, where Pτ is the projection of Hπσ,λ

(the representation space of πσ,λ) onto Vτ given by Pτ = dτ

∫
K
πσ,λ(k)χτ (k

−1) dk.

(See [46, 12, 13]. See also [11] where by abuse of notation the author writes the

right-side projector Pτ to mean its dual operator P ∗
τ .) The subquotient theorem

implies that every (nonzero) τ -spherical function on G can be written as Φτ
σ,λ for

suitable σ ∈ M̂(τ) and λ ∈ C. Moreover this spherical function Φτ
σ,λ admits the

following integral representation

Φτ
σ,λ(x) =

dτ

dσ

∫

K

e−(iλ+ρ)H(xk)
[
τ(k) ◦ Pσ ◦ τ(K(xk)−1)

]
dk (2.1.1)

where

Pσ = dσ

∫

M

τ(m−1)χσ(m) dm

is the projection of Vτ onto Vσ (representation space of σ) ⊆ Vτ and dσ is the

dimension of σ. The corresponding scalar valued τ -spherical function φτ
σ,λ is given
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by:

φτ
σ,λ(x) = Tr(Φτ

σ,λ(x)) = dτ

∫

K×M

e−(iλ+ρ)H(xk)χτ (km
−1K(xk)−1)χσ(m) dmdk.

(2.1.2)

The following proposition indicates the relation between Φτ
σ,λ(x) and Φτ

σ,λ(x
−1).

Proposition 2.1.6. For A ∈ EndVτ , let A∗ be its adjoint. Then Φτ
σ,λ(x) =(

Φτ
σ,λ

(x−1)
)∗

and φτ
σ,λ(x) = φτ

σ,λ
(x−1) for τ ∈ K̂ as above, x ∈ G, λ ∈ C and

σ ∈ M̂(τ).

Proof. Putting g = h−1 in the identities H(ghk) = H(hk) + H(gK(hk)) and

K(ghk) = K(gK(hk)), we get

H(hk) +H(h−1K(hk)) = 0 and K(h−1K(hk)) = k.

Using these we have,

Φτ
σ,λ(x) = dτ

dσ

∫
K
e−(iλ+ρ)H(xk) [τ(k) ◦ Pσ ◦ τ(K(xk)−1)] dk

= dτ

dσ

∫
K
e(iλ+ρ)H(x−1K(xk)) [τ(K(x−1K(xk))) ◦ Pσ ◦ τ(K(xk)−1)] dk.

We put K(xk) = k1 in the above to get

Φτ
σ,λ(x) = dτ

dσ

∫
K
e(iλ+ρ)H(x−1k1)

[
τ(K(x−1k1)) ◦ Pσ ◦ τ(k−1

1 )
]
e−2ρH(x−1k1) dk1

= dτ

dσ

∫
K
e(iλ−ρ)H(x−1k1) [τ(k1) ◦ Pσ ◦ τ (K(x−1k1)

−1)]
∗
dk1

= dτ

dσ

∫
K
e−(iλ+ρ)H(x−1k1) [τ(k1) ◦ Pσ ◦ τ (K(x−1k1)

−1)]
∗
dk1

=
(
Φτ

σ,λ
(x−1)

)∗
.

We also have φτ
σ,λ(x) = Tr

(
Φτ

σ,λ(x)
)

= Tr
(
Φτ

σ,λ
(x−1)

)∗
= Tr

(
Φτ

σ,λ
(x−1)

)
=

φτ
σ,λ

(x−1).

One also has the following easier proof of the proposition above. For τ ∈ K̂,

σ ∈ M̂(τ), let πσ,λ(x)∗ be the adjoint of the operator πσ,λ(x). Then by unitarity it

follows that πσ,λ(x)
∗ = πσ,λ(x

−1) for λ ∈ R. Hence πσ,λ(x)
∗ = πσ,λ̄(x

−1) for λ ∈ C

by analytic continuation. This proves the assertion.
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Definition 2.1.7. For a suitable τ -radial function F ∈ Γ(G, τ, τ), its τ -spherical

transform at (σ, λ) ∈ M̂(τ) × C is defined by

F̂ (σ, λ) =
1

dτ

∫

G

Tr[F (x)Φτ
σ,λ(x−1)] dx, (2.1.3)

whenever the integral exists.

Correspondingly, for a suitable function f ∈ Iτ (G), its τ -spherical transform

is given by

f̂(σ, λ) =
1

dτ

∫

G

f(x)φτ
σ,λ(x

−1) dx, (2.1.4)

whenever the integral exists. We have the following theorem which shows that a

scalar valued function and its corresponding endomorphism valued function has

same τ -spherical transform.

Theorem 2.1.8. For a suitable function f ∈ Iτ (G) and F ∈ Γ(G, τ, τ) we have

f̂(σ, λ) = F̂f(σ, λ) for all σ ∈ M̂(τ), λ ∈ C

and

F̂ (σ, λ) = f̂F (σ, λ) for all σ ∈ M̂(τ), λ ∈ C.

Proof. Let e be the identity element of G. We have

f̂(σ, λ) =
1

dτ

∫

G

f(x)φτ
σ,λ(x

−1) dx =
1

dτ
(f ∗ φτ

σ,λ)(e) =
1

d2
τ

(f ∗ dτφ
τ
σ,λ)(e).

By Proposition 2.1.2 there is a F ∈ Γ(G, τ, τ) such that f(x) = dτTr(F (x)) =

fF (x). Therefore F = Ff . Also we have φτ
σ,λ(x) = Tr(Φτ

σ,λ(x)). This shows that

f̂(σ, λ) =
1

d2
τ

(fF ∗ fΦτ
σ,λ

)(e) =
1

d2
τ

fΦτ
σ,λ∗F

(e) =
1

dτ
Tr
(
Φτ

σ,λ ∗ F (e)
)
.

That is

f̂(σ, λ) =
1

dτ

Tr

(∫

G

Φτ
σ,λ(y−1)F (y) dy

)
=

1

dτ

∫

G

Tr
(
F (y)Φτ

σ,λ(y
−1)
)
dy.

Therefore f̂(σ, λ) = F̂ (σ, λ) = F̂f (σ, λ). The other equality will follow similarly.

This completes the proof.

The τ -spherical functions φτ
σ,λ, Φτ

σ,λ satisfy the following functional equations
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(see [11, Theorem 3.6], [46, Theorem B.2], [47, Theorem 6]):

dτ

∫

K

φτ
σ,λ(xkyk

−1) dk = φτ
σ,λ(x)φ

τ
σ,λ(y), (2.1.5)

dτ

∫

K

Φτ
σ,λ(xkyk

−1) dk = Φτ
σ,λ(x)φ

τ
σ,λ(y). (2.1.6)

Using these it is easy to verify that for f1, f2 ∈ Iτ (G)

f̂1 ∗ f2(σ, λ) = f̂1(σ, λ)f̂2(σ, λ),

for λ ∈ C and σ ∈ M̂(τ) whenever both sides make sense.

Indeed using K-central property of f1, f2 and φτ
σ,λ we have,

f̂1 ∗ f2(σ, λ) =
∫

G
(f1 ∗ f2)(x)φ

τ
σ,λ(x

−1) dx

=
∫

G

∫
G
f1(z)f2(y)φ

τ
σ,λ(y

−1z−1) dz dy

=
∫

G

∫
G

∫
K
f1(z)f2(kyk

−1)φτ
σ,λ(y

−1z−1) dk dz dy

=
∫

G

∫
G

∫
K
f1(z)f2(y1)φ

τ
σ,λ(k

−1y−1
1 kz−1) dk dz dy1

=
∫

G

∫
G

∫
K
f1(z)f2(y1)φ

τ
σ,λ(y

−1
1 kz−1k−1) dk dz dy1.

Therefore

f̂1 ∗ f2(σ, λ) =
∫

F
f1(z)φ

τ
σ,λ(z

−1) dz
∫

G
f2(y1)φ

τ
σ,λ(y

−1
1 ) dy1

= f̂1(λ)f̂2(λ).

From the integral representation (2.1.1) and (2.1.2) it follows that the oper-

ator norm of Φτ
σ,λ(x) and the absolute value of φτ

σ,λ are bounded by a constant

multiple of the elementary spherical function φℑλ(x). From the estimates of φλ

(see Proposition 1.0.1) we get the following:

Proposition 2.1.9. The τ -spherical functions satisfy the following properties.

(1) For 1 < p < 2 and 1 ≤ q ≤ ∞, φτ
σ,λ ∈ Lp′,q

τ (G) if λ ∈ S◦
p .

(2) φτ
σ,λ ∈ Lp′,∞

τ (G) if λ ∈ Sp for 1 ≤ p < 2.

Corresponding statements are easy to formulate for EndVτ -valued τ -spherical

functions Φτ
σ,λ. For this we substitute the absolute value by the norm of the
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matrix Φτ
σ,λ in the definition of Lp-norms, distribution functions etc.. The converse

of these statements are not immediate from the corresponding statements for

elementary spherical functions in Proposition 1.0.1. We will come back to this

question (see Remark 6.1.8 (2)).

It is clear from Proposition 2.1.9 that for a function f ∈ Lp,1
τ (G), 1 ≤ p < 2

(respectively for Lp,q
τ (G), 1 < p < 2, 1 < q ≤ ∞) its τ -spherical transform exists

as convergent integral on Sp (respectively on S◦
p).

2.2 τ-Radial Distributions

In this section we will introduce τ -radial distributions, tempered distributions and

compactly supported distributions and their τ -spherical transforms. We begin by

recalling some basic facts about distributions on R.

The set of compactly supported infinitely differentiable functions, Schwartz

space functions and infinitely differentiable functions on R are denoted by

C∞
c (R),S(R) and C∞(R) respectively. Any continuous linear functional on C∞

c (R)

(respectively on S(R) and C∞(R)) is called a distribution (respectively tempered

distribution and compactly supported distribution) on R. The set of all distri-

butions, tempered distributions and compactly supported distributions on R are

denoted by C∞
c (R)′,S(R)′, C∞(R)′ respectively. Any locally integrable function

h on R can be considered as a distribution Th by Th(g) =
∫

R
h(t)g(t) dt for

g ∈ C∞
c (R). For T1, T2 ∈ C∞

c (R)′, h ∈ C∞
c (R) we define T1 ∗ h(t) = T1(L(t)h),

(T1 ∗ T2)(h) = T1 ∗ (T2 ∗ h)(0) where (L(t)h)(s) = h(s− t).

Definition 2.2.1. For a compactly supported distribution T on R, its euclidean

Fourier transform is defined by T̃ (λ) = T (e−iλ(·)) for λ ∈ C.

Then it follows that if Th is induced by a compactly supported function h on

R then T̃h(λ) = Th(e
−iλ(·)) =

∫
R
h(t)e−iλt dt = h̃(λ).

We define the Paley-Wiener space PWD for distributions on R as the space

of entire functions f : C → C satisfying |f(λ)| ≤ C(1 + |λ|)MeR|ℑλ| for all λ ∈

C, for some M ∈ N ∪ {0} and R > 0. Let PWD
e be the set of even functions

in PWD. We endow PWD with the topology of “analytic uniform structure”

(see [21, p. 9], [38, p. 414]). The topology is defined as follows: Let P denote the

set of all continuous positive functions a(z) = a1(ℜz)a2(ℑz) (z ∈ C), where a1

dominates all polynomials and a2 dominates all linear exponentials. For an a ∈ P

we let Ua denotes the set of all functions F ∈ PWD such that |F (z)| ≤ a(z)

for all z ∈ C. We topologize PWD so that {Ua}a∈P is a fundamental system of
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neighborhoods of 0. Then a sequence {Fj} converges to 0 in PWD if and only if

there exists α > 0 such that

sup
z∈C

|Fj(z)| exp(−α|ℑz|)(1 + |z|)−α → 0 as j → ∞.

Let PWD
e be topologized by the subspace topology of PWD. We have the follow-

ing topological Paley-Wiener theorem for distributions on R [21, Theorem 5.19]:

Theorem 2.2.2. The euclidean Fourier transform for distribution is a topological

isomorphism between C∞(R)′ and PWD (respectively between C∞(R)′e and PWD
e ).

For a function f ∈ C∞(G) we define its τ -radial projection fτ as

fτ (x) = d2
τ

∫

K

(χτ ∗ f ∗ χτ )(kxk
−1) dk.

A distribution W on G is called τ -radial if W (f) = W (fτ ). Similarly we define τ -

radial tempered distribution and τ -radial compactly supported distribution. Let

C∞
c,τ(G)′, C2

τ (G)′ and C∞
τ (G)′ be the dual spaces of C∞

c,τ(G), C2
τ (G) and C∞

τ (G)

respectively. Then their elements are τ -radial distributions, tempered distribu-

tions and compactly supported distributions respectively. We use on C∞
c,τ(G)′ the

topology of the uniform convergence on bounded subsets of C∞
c,τ(G).

We will be using the following notation:

f∨(x) = f(x−1), f ∗(x) = f(x−1), L(x)f(y) = f(x−1y), and R(x)f(y) = f(yx)

where f is a function on G. Any locally integrable function f ∈ Iτ (G) can be

considered as a τ -radial distribution Wf by Wf (g) =
∫

G
f(x)g∨(x) dx for g ∈

C∞
c,τ(G). For W,W1,W2 ∈ C∞

c,τ(G)′ we define the following:

W (f) = W (f), W∨(f) = W (f∨), W ∗(f) = W (f ∗), (W ∗ f)(x) = W∨(L(x)f∨),

(f ∗W )(x) = W∨(R(x−1)f∨) and (W1 ∗W2)(f) = W∨
1 ∗ [W∨

2 ∗ f∨](e)

where f ∈ C∞
c,τ (G) and e is the identity element of G.

For suitable functions f, g ∈ Iτ (G), following results are easy to verify:

W f = Wf ,W
∨
f = Wf∨ ,W ∗

f = Wf∗ ,Wf ∗ g = f ∗ g,

g ∗Wf = g ∗ f and Wf ∗Wg = Wf∗g.

Indeed,



Chapter 2: τ -Spherical Functions and τ -Spherical Transform 30

1. Wf(g) = Wf(g) =
∫

G
f(x)g∨(x) dx =

∫
G
f(x)g∨(x) dx = Wf(g). This proves

W f = Wf .

2. W∨
f (g) = Wf (g

∨) =
∫

G
f(x)g(x) dx = Wf∨(g) which proves W∨

f = Wf∨ .

3. W ∗
f (g) = Wf (g∗) =

∫
G
f(x)(g∗)∨(x) dx =

∫
G
f ∗(x)g∨(x) dx = Wf∗(g). This

proves W ∗
f = Wf∗ .

4. (Wf ∗ g) (x) = (Wf)
∨ (L(x)g∨) =

∫
G
f(y)(L(x)(g)∨)(y) dy = (f ∗ g)(x). This

proves Wf ∗ g = f ∗ g. Similarly we can prove g ∗Wf = g ∗ f .

5. Wf ∗Wg(h) = W∨
f ∗ [W∨

g ∗ h∨](e) = W∨
f ∗ [g∨ ∗ h∨](e) = [f∨ ∗ g∨ ∗ h∨](e) =∫

G
h(x)(f ∗ g)∨(x) dx = Wf∗g(h).

Definition 2.2.3. ForW ∈ C∞
τ (G)′, its τ -spherical transform is defined pointwise

at (σ, λ) ∈ M̂(τ) × C by Ŵ (σ, λ) = 1
dτ
W (φτ

σ,λ).

It is clear that when a distribution W is induced by a function w ∈ C∞
c,τ(G),

then Ŵ (σ, λ) = ŵ(σ, λ). Using denseness of C∞
c,τ(G) in C∞

τ (G)′ and the continu-

ity of the τ -spherical transform it can be verified that for W1,W2 ∈ C∞
τ (G)′

and h ∈ C∞
c,τ(G), Ŵ1 ∗ h(σ, λ) = Ŵ1(σ, λ)ĥ(σ, λ). Also (W1 ∗ W2)̂(σ, λ) =

Ŵ1(σ, λ).Ŵ2(σ, λ).

2.3 Abel Transform and its Adjoint for τ-Radial

Functions

This section is devoted to introduce Abel transform and the adjoint of Abel trans-

forms. We establish a relation between the τ -spherical transform and Abel trans-

form of suitable τ -radial functions and τ -radial compactly supported distributions.

Definition 2.3.1. For a function F ∈ Γ(G, τ, τ) and σ ∈ M̂(τ) the Abel transform

of F is defined as:

AσF (t) =
1

dτ

eρt

∫

N

Tr(F (atn) ◦ Pσ) dn for each σ ∈ M̂(τ) (2.3.1)

whenever the integral make sense.
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Correspondingly for a function f ∈ Iτ (G) and σ ∈ M̂(τ) Abel transform of f

is defined as:

Aσ(f)(t) =
1

dτ
eρt

∫

M×N

f(matn)χσ(m) dmdn for each σ ∈ M̂(τ) (2.3.2)

whenever the integral make sense.

Note that when τ is trivial (i.e. the function f is K-biinvariant) then σ is

also trivial and Aσ(f)(t) coincides with the well known Abel transform for K-

biinvariant functions. We have the following slice projection theorem for Abel

transform (cf. [46, eq. 7.1]). For a suitable function h on R let h̃ be its euclidean

Fourier transform that is, h̃(λ) =
∫

R
h(x)e−iλx dx.

Theorem 2.3.2. For σ ∈ M̂(τ) and f ∈ Iτ (G), f̂(σ, λ) = Ãσ(f)(−λ) whenever

both sides exist.

Proof. Let f be a suitable function in Iτ (G). Then

f̂(σ, λ) =

∫

G

f(x)

∫

K×M

e−(iλ+ρ)H(x−1k)χτ (km
−1(K(x−1k)−1)χσ(m) dmdk dx

=

∫

K×M

∫

G

f(ky−1)e−(iλ+ρ)H(y)χτ (km
−1(K(y)−1)χσ(m) dy dmdk.

We use the Iwasawa decomposition G = KNA and write y = k1n
−1a−t to get

f̂(σ, λ) =

∫

K×M

∫

K×A×N

f(katnk
−1
1 )e(iλ+ρ)tχτ (km

−1k−1
1 )χσ(m) dk1 dat dn dmdk

=

∫

K

∫

K×A×N

∫

M

f(katnk
−1
1 )e(iλ+ρ)tχτ (km

−1k−1
1 )χσ(m) dmdk1 dat dn dk.

Substituting first km−1 = k3 and then k1k
−1
3 = k2 and using f(k3xk

−1
3 ) = f(x)

we get

f̂(σ, λ) =

∫

M

∫

K×A×N

∫

K

f(k3matnk
−1
1 )χτ (k3k

−1
1 ) dk3 dk1e

(iλ+ρ)t dat dnχσ(m) dm

=

∫

M

∫

A×N

∫

K

∫

K

f(k3matnk
−1
3 k−1

2 )χτ (k2) dk2 dk3e
(iλ+ρ)t dat dnχσ(m) dm

=
1

dτ

∫

M

χσ(m)

∫

A×N

∫

K

f(k3matnk
−1
3 )dk3e

(iλ+ρ)t dat dn dm

=
1

dτ

∫

A

(
eρt

∫

M×N

f(matn)χσ(m) dmdn

)
eiλt dt

=

∫

R

Aσf(t)eiλt dt.
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From the theorem above and the injectivity of the Fourier transform it follows

that for two functions f1, f2 ∈ Iτ for which the τ -spherical transform and Abel

transform exist,

Aσ(f1 ∗ f2) = Aσf1 ∗ Aσf2 for all σ ∈ M̂(τ).

From the domain of existence of the τ -spherical transform (see Section 2.1),

Theorem 2.3.2 and Fubini’s theorem we have the following mapping properties of

the Abel transform:

Proposition 2.3.3. Let f be a measurable scalar valued τ -radial function on G.

Then for all σ ∈ M̂(τ):

(1) If f ∈ Lp,1
τ (G), 1 ≤ p < 2 then

∫
R
|Aσf(t)| eγpρ|t| dt ≤ C‖f‖∗p,1.

(2) If f ∈ Lp,q
τ (G), 1 < p < 2, 1 < q ≤ ∞ then

∫
R
|Aσf(t)| eα|t| dt ≤ C‖f‖∗p,q

for any 0 < α < γpρ.

Proof. We note that |Aσf | ≤ Aσ|f | and

∫

R

Aσ|f |(t)e
±γpρt dt = |̂f |(σ,∓iγpρ) =

∫
|f(x)|φτ

σ,∓iγpρ(x
−1) dx ≤ ‖φτ

σ,∓iγpρ‖
∗
p′,∞‖f‖∗p,1.

This proves (1). Similar argument proves (2).

Definition 2.3.4. For a measurable function f on R adjoint of Abel transform

A∗
σ for σ ∈ M̂(τ) is defined by

A∗
σf(y) =

1

dσ

∫

K

f(eH(yk))e−ρ(H(yk))
(
τ(k) ◦ Pσ ◦ τ(K(yk)−1)

)
dk.

It is clear that if f is a bounded function then A∗
σf exists. As Iwasawa de-

composition is a diffeomorphism A∗
σf is infinitely differentiable whenever f ∈

C∞(R). Also we observe that A∗
σf is a EndVτ valued τ -radial function. That is

A∗
σf ∈ C∞(G, τ, τ). The following theorem justifies the definition of adjoint of

Abel transform.

Theorem 2.3.5. For a measurable function F ∈ Γ(G, τ, τ) on G and a measurable

function f on R the following holds

〈AσF, f〉 = 〈F,A∗
σf〉

whenever the inner products on both sides make sense.
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Proof. We have

〈AσF, f〉 =
∫

R
AσF (at)f(at) dt

= 1
dσ

∫
R
eρt
∫

N
Tr (F (atn) ◦ Pσ) dnf(at) dt

= 1
dσ

∫
K×A×N

eρtTr (F (katn) ◦ τ(k) ◦ Pσ) f(at) dn dt dk.

We put katn = x in the above integral to get,

〈AσF, f〉 = 1
dσ

∫
G

Tr (F (x) ◦ τ(K(x)) ◦ Pσ) e
−ρH(x)f(eH(x)) dx

= 1
dσ

∫
G

Tr
(
F (x) ◦ f(eH(x))e−ρH(x)τ(K(x)) ◦ Pσ

)
dx.

Again we put x = yk in the above and get,

〈AσF, f〉 = 1
dσ

∫
G

∫
K

Tr
(
τ(k−1) ◦ F (y) ◦ τ(K(yk)) ◦ Pσf(eH(yk))e−ρH(yk)

)
dk dy

=
∫

G
Tr
(
F (y) ◦ 1

dσ

∫
K
τ(K(yk)) ◦ Pσ ◦ τ(k−1)f(eH(yk))e−ρH(yk) dk

)
dy

=
∫

G
Tr (F (y) ◦ (A∗

σf(y))∗) dy

= 〈F,A∗
σf〉.

Remark 2.3.6. It is clear from the definition that if f(at) = e−iλt, then

A∗
σf(y) = 1

dτ
Φτ

σ,λ(y). Therefore by the theorem above and Proposition 2.1.6 we

have the following slice projection theorem for endomorphism valued functions.

For a suitable τ -radial function F and σ ∈ M̂(τ)

F̂ (σ, λ) = ÃσF (−λ), (2.3.3)

where ÃσF (−λ) =
∫

R
AσF (t)eiλtdt denotes the euclidean Fourier transform of

AσF at −λ. In fact

F̂ (σ, λ) =
1

dτ

∫

G

Tr
(
F (x)Φτ

σ,λ(x
−1)
)
dx =

1

dτ

∫

G

Tr
(
F (x)(Φτ

σ,λ
(x))∗

)
dx.
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Therefore,

F̂ (σ, λ) =
1

dτ

〈F,Φτ
σ,λ

〉 = 〈F,A∗
σ(e

−iλ(·))〉 = 〈AσF, e
−iλ(·)〉 =

∫

R

AσF (t)eiλtdt.

We note that this result is equivalent to Theorem 2.3.2. We can extend the

definition of Abel transform to compactly supported τ -radial distributions in the

following way.

Definition 2.3.7. For W ∈ C∞
τ (G)

′
, its Abel transform AσW is defined by:

AσW (f) = W (TrA∗
σf) for f ∈ C∞(A), for each σ ∈ M̂(τ). (2.3.4)

We note that AσW is a compactly supported distribution on R and the slice

projection property is in-built in the definition above of the Abel transform for

compactly supported distributions. That is

Ŵ (σ, λ) = ÃσW (λ). (2.3.5)

In fact

Ŵ (σ, λ) =
1

dτ
W (φτ

σ,λ) = W
(
TrA∗

σe
−iλ(·)

)
= AσW (e−iλ(·)) = ÃσW (λ).

Use of the slice projection property also yields the following for W1,W2 ∈

C∞
τ (G)′:

(AσW1 ∗ AσW2)˜(σ, λ) = ÃσW1(σ, λ)ÃσW2(σ, λ) = Ŵ1(σ, λ)Ŵ2(σ, λ).

Therefore

(AσW1 ∗ AσW2)˜(σ, λ) = (W1 ∗W2)̂ (σ, λ) = Aσ(W1 ∗W2)˜(σ, λ).

By the injectivity of the euclidean Fourier transform from the relation above we

get

Aσ(W1 ∗W2) = Aσ(W1) ∗ Aσ(W2).



Chapter 3

Some Banach Algebras and

Modules

In this chapter we shall continue to work with a Gelfand triple (G,K, τ). We shall

set our basic objects for which the Wiener-Tauberian type theorems will be proved

in Chapter 6. We shall consider two different sets of Banach spaces of scalar valued

τ -radial functions. Members of these sets can be viewed as generalizations of the

group algebra L1
τ (G). We shall investigate some properties of these spaces and

find the domains of the τ -spherical transforms of the functions in these spaces.

We shall also identify the Banach algebras and modules among these spaces.

For normed linear spaces U ,V and W by V ⊆ W (respectively by U ∗V ⊆ W)

we mean both set inclusions and the associated norm inequalities:

‖v‖W ≤ C‖v‖V (respectively ‖u ∗ v‖W ≤ C‖u‖U‖v‖V) for all u ∈ U , v ∈ V.

3.1 Weighted Spaces

We shall consider the weights wp,r(x) = φiγpρ(x)(1 + σ(x))r, for r ≥ 0 0 < p ≤ 2,

which are naturally associated with the group. For r and p as above we define

the weighted L1-spaces:

L1
τ (G,wp,r) =

{
f : G→ C | f is measurable and τ -radial with ‖f‖wp,r <∞

}

where

‖f‖wp,r = d2
τ

∫

G

|f(x)|wp,r(x) dx.

Similar spaces have appeared already for instance in [17, 18]. It is clear that

the τ -spherical transform of any function in these weighted spaces has analytic

35
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extension (except for the degenerate case p = 2, which we shall treat separately).

For convenience henceforth we will write L1
τ (wp,r) for L1

τ (G,wp,r).

We note that L1
τ (w1,0) = L1

τ (G) and if r ≥ s ≥ 0 then L1
τ (wp,r) ⊆ L1

τ (wp,s). A

few more such observations we write in the form of a proposition.

Proposition 3.1.1. We have the following set inclusions and corresponding norm

inequalities:

(a) If 1 ≤ q < p ≤ 2 then L1
τ (wq,s) ⊆ L1

τ (wp,r) for any r > 0, s > 0. If

1 ≤ q ≤ p ≤ 2 then L1
τ (wq,s) ⊆ L1

τ (wp,r) for s > r > 0. In particular

L1
τ (G) ⊆ L1

τ (wp,r) if 1 ≤ p ≤ 2 and r ≥ 0.

(b) If 0 < p < 1 and r ≥ 0 then L1
τ (wp,r) ⊆ L1

τ (G).

(c) If 1 < p < 2 then Lp,1
τ (G) ( L1

τ (wp,0) and if r > 1 then Lp,r
τ (G) 6⊂ L1

τ (wp,0).

(d) For 1 ≤ q < p, Lq,s
τ (G) ⊆ L1

τ (wp,r) if 1 ≤ s ≤ ∞, r ≥ 0.

Proof. Assertion (a) and (b) follow comparing the weights (see Proposition 1.0.1)

and noting that L1
τ (G) = L1

τ (w1,0).

For (c) we note that φiγpρ ∈ Lp′,∞(G) by Proposition 1.0.1 and hence Lp,1
τ (G) ⊂

L1
τ (wp,0).

Next we shall show that L1
τ (wp,0) \ L

p,1
τ (G) is nonempty for 1 < p ≤ 2. For

p in this range, we take a g ∈ L1
τ (G) \ Lp

τ (G) and consider h = gφ−1
iγpρ. Then

h ∈ L1
τ (wp,0), but as φ−1

iγpρ ≥ 1, |h(x)| ≥ |g(x)| and hence h 6∈ Lp
τ (G). As Lp,1

τ (G) ⊆

Lp
τ (G), the assertion follows.

Next we show Lp,r
τ (G) \ L1

τ (wp,0) is nonempty when r > 1.

As by Proposition 1.0.1, φiγpρ 6∈ Lp′,s(G//K) unless s = ∞ we have that there

exists a nonnegative function ψ ∈ Lp,r(G//K) \ L1(G//K,wp,0). It is now easy

to construct a function f ∈ Lp,r
τ (G) \ L1

τ (wp,0) in the following way: We define

f̃ : G→ EndVτ by

f̃(x)v = f̃(k1atk2)v = ψ(at)τ(k
−1
2 k−1

1 )v, v ∈ Vτ .

Let f(x) = Tr(f̃(x)) = ψ(at)Tr(τ(k−1
2 k−1

1 )). Then f is a τ -radial function and

|f(x)| ≤ Cτψ(x). Hence f ∈ Lp,r
τ (G). Also

∫

G

|f(x)|φiγpρ(x)dx = C ′
τ

∫

G

ψ(x)φiγpρ(x)dx

which is infinite by the choice of ψ.
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For (d) we use that for any r ≥ 0 and q < p1 < p, φiγpρ(x)(1+σ(x))r ≤ φiγp1ρ(x)

and that φiγp1ρ ∈ Lq′,1(G) by Proposition 1.0.1. The result now follows from the

properties of the Lorentz spaces.

We need now the following lemma.

Lemma 3.1.2. Let w1 and w2 be two radial measurable positive functions on G

such that w2(x) ≤ w1(x) for all x ∈ G and

∫

K

w2(xky) dk ≤ w2(x).w2(y).

Let for i = 1, 2

L1
τ (G,wi) = {f ∈ Iτ (G) | f is measurable with ‖f‖wi

= d2
τ

∫

G

|f(x)|wi(x) dx <∞}.

Then L1
τ (G,w1) ⊂ L1

τ (G,w2) and ‖f1 ∗ f2‖w2 ≤ ‖f1‖w1‖f2‖w2. In particular

L1(G,w2) is a Banach algebra.

Proof. We suppose f1 ∈ L1
τ (G,w1), f2 ∈ L1

τ (G,w2). Then

∫

G

|f1 ∗ f2(x)|w2(x) dx =

∫

G

∣∣∣∣
∫

G

f1(xy
−1)f2(y) dy

∣∣∣∣w2(x) dx

≤

∫

G

∫

G

|f1(xy
−1)| |f2(y)| dyw2(x) dx

=

∫

G

∫

G

|f1(z)| |f2(y)|w2(zy) dy dz (putting xy−1 = z)

=

∫

G

∫

G

∣∣∣∣
∫

K

dτf1(zk
−1)χτ (k) dk

∣∣∣∣ |f2(y)|w2(zy) dy dz

≤ dτ

∫

G

∫

G

∫

K

|χτ (k)| |f1(z1)||f2(y)|w2(z1ky) dk dy dz1

= d2
τ

∫

G

∫

G

∫

K

|f1(z1)|w1(z1)|f2(y)|w2(z1ky)w
−1
1 (z1) dk dy dz1

≤ d2
τ

∫

G

∫

G

|f1(z1)|w1(z1)|f2(y)|w2(y)dy.

Therefore ‖f1 ∗ f2‖w2 ≤ ‖f1‖w1‖f2‖w2.

From the lemma above and Proposition 3.1.1 the following corollary is imme-

diate.

Corollary 3.1.3. For p, q ∈ (0, 2] and positive real numbers r, s

(a) L1
τ (wp,r) is a Banach algebra,
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(b) L1
τ (wp,s) is a L1

τ (wp,r) module if r > s,

(c) L1
τ (wp,r) is a L1

τ (wq,s) module if q < p. In particular if p > 1 then L1
τ (wp,r)

is a L1
τ (G) module and if p ≤ 1 then L1

τ (G) is a L1
τ (wp,r) module.

Proposition 3.1.4. For any r ≥ 0 and 0 < p ≤ 2, Cp
τ (G) is dense in L1

τ (wp,r)

and the inclusion map i : Cp
τ (G) → L1

τ (wp,r) is continuous.

Proof. We suppose that f ∈ Cp
τ (G) and ρ1(f) = supx∈G |f(x)|(1 + σ(x))r+se

2
p
ρσ(x)

for some s > 1. Then

‖f‖wp,r = d2
τ

∫
G
|f(x)|(1 + σ(x))rφiγpρ(x) dx

≤ d2
τρ1(f)

∫
G
e−

2
p
ρσ(x)φiγpρ(x)

1
(1+σ(x))s dx.

Therefore

‖f‖wp,r ≤ d2
τρ1(f)

∫
G

e−2ρσ(x)

(1+σ(x))s dx.

In the last step we have used the estimate (1.0.8) of φλ. Now by using polar

decomposition it is easy to check that the integral is finite and thus ‖f‖wp,r ≤

Cρ1(f). Therefore Cp
τ (G) ⊆ L1

τ (wp,r) and the inclusion map i : Cp
τ (G) → L1

τ (wp,r)

is continuous. Also we have C∞
c,τ(G) ⊆ Cp

τ (G) ⊆ L1
τ (wp,r) and C∞

c,τ(G) is dense in

L1
τ (wp,r). Therefore Cp

τ (G) is dense in L1
τ (wp,r).

Proposition 3.1.5. The τ -spherical transform of the functions in L1
τ (wp,r) have

the following properties:

(1) If f ∈ L1
τ (wp,r), 0 < p < 2, r ≥ 0, then for all σ ∈ M̂(τ), f̂(σ, ·) is analytic on

S◦
p and continuous on the boundary. If f ∈ L1

τ (w2,r), r ≥ 0, then f̂(σ, ·), σ ∈ M̂(τ)

exists as a convergent integral on R.

(2) Let f ∈ L1
τ (wp,r) with 0 < p < 2 and r ≥ 0. Then for all σ ∈ M̂(τ),

Aσf ∈ L1(R, w), where w(t) = eγpρ|t|. Moreover

lim
|ξ|→∞

f̂(σ, ξ + iη) = 0

uniformly in η ∈ [−γpρ, γpρ].

Proof. (1) We take a function f ∈ L1
τ (wp,r) with 0 < p ≤ 2 and r ≥ 0 and λ ∈ Sp.

Then

∫

G

|f(x)| |φτ
σ,λ(x)| dx =

∫

G

|f(x)|(1 + σ(x))rφiγpρ(x)
|φτ

σ,λ(x)|

φiγpρ(x)(1 + σ(x))r
dx <∞

as |φτ
σ,λ(x)| ≤ C φiℑλ(x) ≤ C φiγpρ(x). For 0 < p < 2, a standard use of Fubini’s
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theorem, Morera’s theorem and dominated convergence theorem shows that f̂(σ, ·)

is analytic on S◦
p and continuous on the boundary.

(2) From (1) above we know that f̂(σ, ·) exists on Sp. We recall that for a suitable

function h on R, h̃ is its Euclidean Fourier transform i.e., h̃(λ) =
∫

R
h(x)e−iλx dx.

As f ∈ L1
τ (wp,r) with 0 < p < 2, r ≥ 0, |Aσf | ≤ Aσ|f | and Ãσf(−λ) = f̂(σ, λ) for

λ ∈ Sp, we have: ∫

R

|Aσf(t)|eγpρ|t| dt <∞.

Thus g = Aσf is in the weighted space L1(R, w) with weight w(t) = eγpρ|t|. This

reduces the assertion to the Riemann-Lebesgue lemma for functions on R which

are integrable with an exponential weight. It is also clear that for η as in the

hypothesis

|g̃(ξ + iη)| ≤

∫

R

|g(t)|eη|t| dt ≤ ‖g‖w,1,

where ‖g‖w,1 =
∫

R
|g(x)|eγpρ|x| dx the weighted L1-norm of g. To complete the

proof of the assertion we now approximate g in L1(R, w) by finite sums h of step

functions and use h̃(ξ+ iη) → 0 as |ξ| → ∞ uniformly in η ∈ [−γpρ, γpρ] and note

that
|g̃(ξ + iη)| ≤ |g̃(ξ + iη) − h̃(ξ + iη)| + |h̃(ξ + iη)|

≤ ‖g − h‖w,1 + |h̃(ξ + iη)|.

Remark 3.1.6. The following remarks are in order.

(a) The spaces L1
τ (w2,r), r ≥ 0 stand apart as the domains of the τ -spherical

transforms of the functions in these spaces are no longer strips in the com-

plex plane. We shall call this the degenerate case. The Wiener-Tauberian

theorem for this case will be proved separately.

(b) One can also consider weighted spaces L1
τ (wp,r) for 1 ≤ p ≤ 2 and r < 0.

Using the inequality (1+σ(y))/(1+σ(x)) ≤ (1+σ(xy)) ≤ (1+σ(x))(1+σ(y))

( [28, Prop. 4.6.11]) it can be shown that L1
τ (wp,r) is an L1

τ (wp,s) module

when p, r are as above and |r| < s. Argument similar to what we have

used in the previous proposition shows that the τ -spherical transform of

functions in L1
τ (wp,r) extends analytically on S◦

p and a Riemann-Lebesgue

lemma holds on S◦
p .
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3.2 Lorentz Spaces

Our second set consists of Lorentz spaces Lp,q
τ (G) of scalar valued τ -radial func-

tions.

We have seen in Chapter 2 that like the elementary spherical function φλ, the

τ -spherical function φτ
σ,λ also satisfies some uniform estimates, Lp estimates as well

as the Lorentz space estimates. The Lp estimates of φλ leads to the Kunze-Stein

phenomenon for K-biinvariant functions (see Chapter 1). From Similar argument

it follows that Lp
τ (G) ∗ Lq

τ (G) ⊂ Lq
τ (G) with the associated norm inequality: ‖f ∗

g‖q ≤ C‖f‖p‖g‖q when 1 ≤ p < q ≤ 2 for τ -radial functions f, g. This is the

Kunze-Stein phenomenon in its classical form for τ -radial functions.

Through the works of Herz, Lohoué, Lohoué and Rychner, Cowling and Ionescu

sharper version of Kunze-Stein phenomenon is obtained for groups of real rank

one which involves Lorentz spaces (see [16] for a comprehensive survey and for

the references, see also [44, 17, 39]). This gives rise to new modules and algebras,

which we shall see now.

Proposition 3.2.1. The spaces Lp,q
τ (G) satisfy the following properties:

(1) For 1 ≤ p < 2, Lp,1
τ (G) is a Banach algebra.

(2) Lα,r
τ (G) is an Lq,1

τ (G) module for 1 < q ≤ α < 2 and 1 ≤ r ≤ ∞.

(3) If 1 ≤ q < p ≤ 2 then Cq
τ (G) is dense in Lp,r

τ (G) for 0 ≤ r < ∞ and the

inclusion map i : Cq
τ (G) → Lp,r

τ (G) is continuous.

We need the following theorem. [64, 16].

Theorem 3.2.2 (Zafran). Suppose T is a bilinear operator which is bounded from

Lai,ri(A)×Lbi,si(B) to Lci,ti(C) for i = 0, 1 and a0 < a1, b0 < b1, c0 < c1. Suppose

for θ ∈ (0, 1),

1

aθ

=
1 − θ

a0

+
θ

a1

;
1

bθ
=

1 − θ

b0
+
θ

b1
;

1

cθ
=

1 − θ

c0
+
θ

c1

and (r, s, t) ∈ [1,∞] × [1,∞] × [1,∞] satisfies 1
r

+ 1
s
≥ 1 + 1

t
. Then T is bounded

operator from Laθ ,r(A) × Lbθ ,s(B) to Lcθ,t(C).

Proof of Proposition 3.2.1. Assertion (1) is proved in [44, 16]. However it is pos-

sible to give a unified proof of (1) and (2). In this regard we need the following

fundamental end point estimate of Ionescu ( [39]):

L2,1(G) ∗ L2,1(G) ⊆ L2,∞(G).
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Specializing to τ -radial functions we get,

L2,1
τ (G) ∗ L2,1

τ (G) ⊆ L2,∞
τ (G).

We also have

Lp
τ (G) ∗ L1

τ (G) ⊆ Lp
τ (G)

for p ≥ 1. This can be restated as:

Lp,p
τ (G) ∗ L1,1

τ (G) ⊆ Lp,p
τ (G), for p ≥ 1, in particular for 1 ≤ p < 2.

Using Theorem 3.2.2 we get

Lα,r
τ (G) ∗ Lq,s

τ (G) ⊆ Lα,t
τ (G)

where 1
r

+ 1
s
≥ 1 + 1

t
and q ≤ α (varying 1 ≤ p < 2 we get all q such that q ≤ α).

We note that (r, 1, r) satisfies the relation above. Therefore

Lα,r
τ (G) ∗ Lq,1

τ (G) ⊆ Lα,r
τ (G) when q ≤ α.

This proves (2). In particular taking r = 1 and α = q = p we get Lp,1
τ (G) is a

Banach algebra. This proves (1).

(3) We recall that Cq
τ (G) ⊆ Lq

τ (G) ⊆ Lq,∞
τ (G). Again Cq

τ (G) ⊆ L2
τ (G) ⊆ L2,∞

τ (G).

Therefore by interpolation ( [30, p. 64]) Cq
τ (G) ⊆ Lp,r

τ (G) when q < p < 2 and

0 < r ≤ ∞.

For a function g ∈ Cq
τ (G) we consider the seminorm

ρ1(g) = sup
x∈G

|g(x)|e
2
q
ρσ(x).

A function g ∈ Cq
τ (G) implies ρ1(g) <∞, that is for all x ∈ G,

|g(x)| ≤ Be−
2
q
ρσ(x), where B = ρ1(g) > 0.

Let f = 1
B
g. We have, |f(x)| ≤ e−

2
q
ρσ(x).

We recall that

‖f‖∗p,1 =

∫ ∞

0

df(t)
1/p dt

where df(t) = m{x | |f(x)| > t} for t > 0, m being the Haar measure of G.
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Then we have,

df(t) = 0 if t > 1

= m{x | σ(x) < q
2ρ

log 1
t
} if t ≤ 1.

Let us write β for mα +m2α. A direct calculation using the expression of the

measure m yields the estimates

df(t) ≤ C

[
1

β + 1
+

1

2ρ
(eq log 1

t − e2ρ)

]
≤ C +

1

2ρtq
if 0 < t < e−

2ρ
q

and

df(t) ≤ C

∫ q
2ρ

log 1
t

0

rβ dr =
C

β + 1
(
q

2ρ
log

1

t
)β+1 if e−

2ρ
q ≤ t ≤ 1.

Now

∫ ∞

0

df(t)
1/p dt ≤

∫ 1

e
−

2ρ
q

[
C

β + 1
(
q

2ρ
log

1

t
)β+1

]1/p

dt+

∫ e
−

2ρ
q

0

[
C +

1

2ρtq

]1/p

dt.

The first integral converges as the integrand is continuous in t and the second

integral converges as q < p. Thus ‖f‖∗p,1 ≤ C, where C is independent of f .

Therefore ‖g‖∗p,1 ≤ Cρ1(g) for all g ∈ Cq
τ (G). Also since ‖g‖∗p,r ≤ ‖g‖∗p,1 for

r ≥ 1 the second part of the assertion follows. As C∞
c,τ(G) is dense in Lp,r

τ (G) and

C∞
c,τ(G) ⊂ Cq

τ (G) it follows that Cq
τ (G) is dense in Lp,r

τ (G).

Remark 3.2.3. Note that it follows as a special case of a more general result

proved in [9] that the spaces Lp,q
τ (G) are L1

τ (G) modules for 1 < p < ∞ and for

1 ≤ q ≤ ∞. Using a result of Saeki modified by Cowling ( [53, 16]) one can show

that Lα,r
τ (G), r > 1 is not an algebra and Lα,r

τ (G) is not an Lα,s
τ (G) module for

s > 1.

Since by Proposition 3.1.1, Lp,1
τ (G) ⊆ L1

τ (wp,0), 1 ≤ p < 2 and Lp,r
τ (G) ⊆

L1
τ (wq,s), 1 < p < q < 2, r > 1, the following proposition is immediate from

Proposition 3.1.5.

Proposition 3.2.4. The τ -spherical transform of the functions in Lp,q
τ (G) have

the following properties:

(1) Let f ∈ Lp,1
τ (G), 1 ≤ p < 2. Then for all σ ∈ M̂(τ), f̂(σ, ·) is analytic on
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S◦
p , continuous on ∂Sp and

lim
|ξ|→∞

f̂(σ, ξ + iη) = 0

uniformly in η ∈ [−γpρ, γpρ].

(2) Let f ∈ Lp,r
τ (G) with 1 < p < 2, r > 1. Then for all σ ∈ M̂(τ), f̂(σ, ·) is

analytic on S◦
p and

lim
|ξ|→∞

f̂(σ, ξ + iη) = 0

uniformly in η ∈ [−(γpρ− δ), (γpρ− δ)] for any 0 < δ < γpρ.
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Chapter 4

Spin Group, Spin

Representations and Spherical

Functions

4.1 Spin Group and Spin Representations

In this section we establish the required preliminaries for our main working exam-

ple namely: G = Spin0(n, 1), the identity component of Spin(n, 1) and the spin

representations. First we recall the algebraic definition of Spin(n, 1) (see [42] for

details).

Let V be a vector space over a field k, q a quadratic form on V and F(V ) =∑∞
r=0 ⊗

rV the tensor algebra of V . We suppose that Iq(V ) is the ideal in F(V )

generated by all elements of the form v ⊗ v + q(v)1, v ∈ V . Then the Clifford

algebra is defined by Cl(V, q) = F(V )/Iq(V ). The vector space V is naturally

embedded in Cl(V, q) as the image of V = ⊗1V under canonical projection πq :

F(V ) → Cl(V, q).

Proposition 4.1.1. Let A be an associative k-algebra with unit and f : V → A,

be a linear map such that f(v).f(v) = −q(v).1 for all v ∈ V . Then f extends

uniquely to a k-algebra homomorphism f̃ : Cl(V, q) → A. Moreover Cl(V, q) is

the unique associative k-algebra with this property.

We consider the automorphism α : Cl(V, q) → Cl(V, q) which extends the map

α(v) = −v on V . Since α2 is the identity, there is a decomposition Cl(V, q) =

Cl0(V, q) ⊕ Cl1(V, q) where Cli(V, q) = {φ ∈ Cl(V, q) : α(φ) = (−1)iφ} for i = 0, 1

are the eigenspaces of α.
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An element φ ∈ Cl(V, q) is invertible if there is a ψ ∈ Cl(V, q) such that

φψ = ψφ = Id, where Id is the identity in Cl(V, q). Then the set Cl×(V, q) of all

invertible elements in Cl(V, q) forms a group containing all elements v ∈ V such

that q(v) 6= 0. Let P (V, q) be the subgroup of Cl×(V, q) generated by all elements

v ∈ V with q(v) 6= 0.

Definition 4.1.2. The subgroup of P (V, q) generated by all v ∈ V with q(v) = ±1

is called the Pin group of (V, q) and is denoted by Pin(V, q). The Spin group of

(V, q) is Spin(V, q) = Pin(V, q) ∩ Cl0(V, q).

Let V be an n dimensional vector space over R which we identify with Rn by

choosing a basis. Let q(x) = x2
1+· · ·+x2

r−x
2
r+1−· · ·−x2

r+s, r+s = n, 0 ≤ r ≤ n be

a non-degenerate quadratic form on V . Then we denote Spin(V, q) by Spin(r, s).

In particular when s = 0, i.e., when q(x) = x2
1 + · · ·+x2

n then Spin(n, 0) is denoted

by Spin(n). We also denote Cl(V, q) by Cln and Cl0(V, q) by Cl0n for V and q as

above and s = 0.

Definition 4.1.3. The complex spin representation of Spin(n) is the homomor-

phism τn : Spin(n) → GLC(S), given by restricting an irreducible complex repre-

sentation Cln → HomC(S, S) to Spin(n) ⊆ Cl0n ⊆ Cln.

Note that the definition of τn does not depend on the choice of the (equiva-

lence class of the) irreducible representation of the Clifford algebra Cln which is

restricted.

Let G be Spin0(n, 1), the identity component of Spin(n, 1). Then in the no-

tation of Chapter 1 K = Spin(n) and M = Spin(n − 1). We recall that G and

K are respectively the universal two-fold coverings of SO0(n, 1) and SO(n). The

rest of the chapter is a reproduction of the relevant part from [13].

If τn is the classical complex spin representation of K then dim τn = C2[n/2]

where [·] denotes the integral part and:

(a) If n is even then τn splits into two irreducible components positive and

negative half-spin representations τn = τ+
n ⊕ τ−n and τ±n |M = σn−1, where

σn−1 is the spin representation of M .

(b) If n is odd then τn is irreducible and τn|M = σ+
n−1 ⊕ σ−

n−1, where σ±
n−1 are

irreducible components of the spin representation σn−1 of M .

We note that σn−1 = τn−1. Following [13] we use different notation to emphasize

the group M or K of which this is a representation.
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The Lie algebras of G and K are g = spin(n, 1) ∼= so(n, 1) and k = spin(n) ∼=

so(n) respectively. We consider the element

H0 =




0 0 1

0 0n−1 0

1 0 0


 ∈ p,

where 0n−1 is the (n−1)×(n−1) zero matrix. Then a := {tH0 | t ∈ R} is a Cartan

subspace in p, and the corresponding analytic Lie subgroup A = {at | t ∈ R} where

at := exp(tH0) =




cosh t 0 sinh t

0 In−1 0

sinh t 0 cosh t


 ,

In−1 being the (n − 1) × (n − 1) identity matrix. As usual we define α ∈ a∗ by

α(H0) = 1. Then Σ = {−α, α}, and the corresponding Weyl group W = {±Id}.

We shall use the identification of a∗ and a∗
C

with R and C respectively as in

Chapter 1. We have here n = gα, the unique positive root subspace and N the

corresponding (abelian) analytic subgroup of G. Then the half-sum of positive

roots ρ reduces simply to ρ = n−1
2
α, and will always be considered as a scalar

ρ = n−1
2

by the above identification.

4.2 τ-Spherical Functions

Instead of an arbitrary element τ ∈ K̂, from now on we will confine ourselves

to the irreducible components of the complex spin representations τn. Precisely

when n is even, then τ will denote one of {τ+
n , τ

−
n } and when n is odd then τ will

denote τn. Also for n odd σ+ and σ− will denote respectively the representations

σ+
n−1 and σ−

n−1 and for n even σ will denote the representation σn−1. Henceforth

in this chapter and in Chapter 5, 6, 7 we shall use the expression “n is even”

and “n is odd” to distinguish between these two cases. For n even as M̂(τ)

contains only one σ sometimes we will suppress σ and write φτ
λ,Φ

τ
λ, f̂ ,Af instead

of φτ
σ,λ,Φ

τ
σ,λ, f̂(σ, ·),Aσf respectively.

We recall that for an integer n ≥ 2, the real hyperbolic space of dimension n

is given by

Hn(R) = {x ∈ Rn+1 | L(x, x) = −1, xn+1 > 0}
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where x = (x1, x2, . . . , xn+1) and

L(x, y) = y1x1 + · · ·+ ynxn − yn+1xn+1.

We realize Hn(R) as G/K instead of more well known SO0(n, 1)/SO(n). Then

the τ -radial functions for τ as above are radial sections of the spinor bundles.

It is clear from the above that (G,K, τ) is a Gelfand triple by virtue of the

multiplicity free criterion for τ |M when τ ∈ K̂ is either τ+
n or τ−n if n is even and

is τn if n is odd (see Chapter 2, Proposition 2.15).

The τ -spherical functions reduces to,

Φτ
λ(x) =

∫

K

e−(iλ+ρ)H(xk)τ(kK(xk)−1) dk when n is even and

Φτ
σ±,λ(x) = 2

∫

K

e−(iλ+ρ)H(xk)[τ(k) ◦ Pσ± ◦ τ(K(xk)−1)] dk, when n is odd.

In the above Pσ± is the orthogonal projection of Vτ onto its σ±-isotypical compo-

nent of Vτ (σ
±) ∼= Vσ± .

It follows from the action of the nontrivial Weyl group element on the principal

series representations (see [40, Chapter VII]) that φτ
λ(x) = φτ

−λ(x) when n is

even and φτ
σ+,λ(x) = φτ

σ−,−λ(x), φ
τ
σ−,λ(x) = φτ

σ+,−λ(x) when n is odd. From this

we get the corresponding properties of the τ -spherical transform: For n even,

f̂(λ) = f̂(−λ) and for n odd f̂(σ+, λ) = f̂(σ−,−λ), f̂(σ−, λ) = f̂(σ+,−λ).

If Ωg denotes the Casimir operator in the enveloping algebra of g then (see [13])

(−Ωg)Φ
τ
σ,λ(·) = {λ2 + ρ2 −

(n− 1)(n− 2)

8
}Φτ

σ,λ(·) for each σ ∈ M̂(τ). (4.2.0)

Also if D is the Dirac operator then we have (see [13])

D2 = −Ωg −
n(n− 1)

8
Id.

This shows that

D2Φτ
σ,λ(·) = λ2Φτ

σ,λ(·) for each σ ∈ M̂(τ) and λ ∈ C.

Let dν(λ) = ν(λ)dλ denote the Plancherel measure on a∗ which is identified
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as R. Here dλ is the Lebesgue measure on R and the density ν(λ) is given by,

ν(λ) = 23−2n[(
n

2
− 1)!]−2λ coth(πλ)

n
2
−1∏

j=1

[λ2 + j2] for n even and

ν(λ) = 2−2π−1[
n− 1

2
(
n− 1

2
+ 1) · · · (n− 2)]−2

n−1
2∏

j=1

(λ2 + (j −
1

2
)2) for n odd.

We have the following inversion formula for τ -radial functions. We note that

the discrete series representations of G does not appear in the formula (see [13]).

Theorem 4.2.1. Let F ∈ C2(G, τ, τ). Then for n even and n odd respectively we

have

F (x) =

∫ ∞

0

F̂ (λ)Φτ
λ(x) dν(λ) and (4.2.1)

F (x) =
∑

σ∈cM (τ)

∫ ∞

0

F̂ (σ, λ)Φτ
σ,λ(x) dν(λ) =

∫

R

F̂ (σ+, λ)Φτ
σ+,λ(x) dν(λ). (4.2.2)

Consequently for f ∈ C2
τ (G) and n even and n odd respectively

f(x) = dτ

∫ ∞

0

f̂(λ)φτ
λ(x) dν(λ) and (4.2.3)

f(x) = dτ

∑

σ∈cM (τ)

∫ ∞

0

f̂(σ, λ)φτ
σ,λ(x) dν(λ) = dτ

∫

R

f̂(σ+, λ)φτ
σ+,λ(x) dν(λ).

(4.2.4)

We also have the following Plancherel formula (see [13]):

Theorem 4.2.2. Let F ∈ C2(G, τ, τ). Then for n even and n odd respectively we

have

‖F‖2
L2(G,τ,τ) = 2

n
2
−1

∫ ∞

0

|F̂ (λ)|2dν(λ) and

‖F‖2
L2(G,τ,τ) = 2

n−1
2

∫ ∞

0

[
|F̂ (σ+, λ)|2 + |F̂ (σ−, λ)|2

]
dν(λ) = 2

n−1
2

∫

R

|F̂ (σ+, λ)|2dν(λ).

Now we have

‖F‖2
L2(G,τ,τ) = 〈F, F 〉 =

∫

G

Tr (F (x)F (x)∗) dx = Tr

(∫

G

F (x)F (x)∗ dx

)
.
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Therefore

‖F‖2
L2(G,τ,τ) = Tr

(∫

G

F (x)G(x−1) dx

)
where G(x) = F (x−1)∗.

This shows that (see Chapter 2)

‖F‖2
L2(G,τ,τ) = Tr ((F ∗G)(e)) =

1

dτ

fF∗G(e) =
1

dτ

(fG ∗ fF )(e).

Hence ‖F‖2
L2(G,τ,τ) = 1

dτ

∫
G
fG(x)fF (x−1) dx. Since fG(x) = fF (x−1) it follows that

‖F‖2
L2(G,τ,τ) =

1

dτ
‖fF‖

2
L2

τ (G). (4.2.5)

As a consequence of Plancherel Theorem 4.2.2 and equation (4.2.5) we have the

following Plancherel Theorem for scalar valued functions:

Theorem 4.2.3. Let f ∈ C2
τ (G). Then for n even and n odd respectively we have

‖f‖2
L2

τ (G) = 2
n
2
−1dτ

∫ ∞

0

|f̂(λ)|2dν(λ) and

‖f‖2
L2

τ (G) = 2
n−1

2 dτ

∫ ∞

0

[
|f̂(σ+, λ)|2 + |f̂(σ−, λ)|2

]
dν(λ) = 2

n−1
2 dτ

∫

R

|f̂(σ+, λ)|2dν(λ).



Chapter 5

Schwartz Space Isomorphism and

Paley-Wiener Theorems

5.1 Introduction

In this Chapter we shall prove two theorems which characterize τ -radial elements

of two spaces on G, namely the Lp-Schwartz spaces (0 < p ≤ 2) and the space of

compactly supported distributions, where G and τ are as in the previous chapter.

These characterizations will be used to prove the main theorems.

Our starting point is the following Paley-Wiener theorem for τ -radial function

which is proved in [13]. For R > 0 we define the Paley-Wiener space PWR(C) as

the space of all entire functions h : C → C satisfying for each N ∈ N

|h(λ)| ≤ CN(1 + |λ|)−NeR|ℑλ| for all λ ∈ C

for some constant CN > 0 depending on N . We will denote the set of all even

functions in PWR(C) by PWR(C)e. Also we let PW (C) = ∪R>0PWR(C) and

PW (C)e = ∪R>0PWR(C)e. We topologize PWR(C) in the following way: A

sequence {Fj} in PWR(C) converges to 0 in PWR(C) if and only if for any poly-

nomial P , P (λ)Fj(λ) converges to 0 uniformly in some strip about ℜλ = 0. We

endow PW (C) with the inductive limit topology (see [24]).

We quote the following Paley-Wiener theorem from [13]:

Theorem 5.1.1 (Camporesi-Pedon). The following Paley-Wiener theorem is true

for τ -radial functions:

(a) For n even, the map F 7→ F̂ is a topological isomorphism between:

C∞
R (G, τ, τ) and PWR(C)e. As a consequence the map f 7→ f̂ is a topo-

logical isomorphism between C∞
c,τ(G)R and PWR(C)e.
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(b) For n odd, the maps F 7→ F̂ (σ+, ·) and F 7→ F̂ (σ−, ·) both are topological

isomorphisms between: C∞
R (G, τ, τ) and PWR(C). As a consequence the

maps f 7→ f̂(σ+, ·) and f 7→ f̂(σ−, ·) both are topological isomorphisms

between C∞
c,τ(G)R and PWR(C).

From this it follows (as in the K-biinvariant case) that if n is even the map

F 7→ F̂ is a topological isomorphism between: C∞
c (G, τ, τ) and PW (C)e. Also

if n is odd the maps F 7→ F̂ (σ+, ·), F 7→ F̂ (σ−, ·) are topological isomorphisms

between: C∞
c (G, τ, τ) and PW (C).

Let C∞
R (R) denote the set of infinitely differentiable functions on R supported

in [−R,R] and let C∞
R (R)e be the set of even functions in C∞

R (R). From the

euclidean Paley-Wiener Theorem (see [52]) and the slice-projection property of the

Abel transform (see Section 2.3), it is clear that for n even F 7→ AF is a topological

isomorphism between C∞
R (G, τ, τ) and C∞

R (R)e; also for n odd F 7→ Aσ+F and

F 7→ Aσ−F are topological isomorphsims between C∞
R (G, τ, τ) and C∞

R (R).

We shall first take up the Schwartz space isomorphism theorem.

5.2 Schwartz Space Isomorphism Theorem

Our proof for Lp-Schwartz space isomorphism theorem for τ -radial function is

an adaptation of Anker’s proof of the corresponding theorem for K-biinvariant

functions (see [1]) which cleverly uses the Paley-Wiener Theorem to avoid the

intricacies of asymptotic expansion of spherical functions. The Lp-Schwartz spaces

Cp(G, τ, τ) and Cp
τ (G) are defined in Section 2.1.

We recall the following properties of the τ -spherical functions for both n even

and odd (see Chapter 1, Chapter 4 and equation (5.3.3) below):

(1) ‖Φτ
σ,λ(x)‖EndVτ ≤ Cφiℑλ(x) ≤ C(1 + σ(x))re−(ρ−|ℑλ|)σ(x),

for all x ∈ G, λ ∈ C and σ ∈ M̂(τ),

(2) ‖Φτ
σ,λ(E1; x;E2)‖EndVτ ≤ C(1+|λ|)r1φiℑλ(x) ≤ C(1+|λ|)r1(1+σ(x))re(−ρ+|ℑλ|)σ(x)

for each E1, E2 ∈ U(g) and for x, λ, σ as above,

(3) (−Ωg)Φ
τ
σ,λ(·) =

{
λ2 + ρ2 − (n−1)(n−2)

8

}
Φτ

σ,λ(·) for λ and σ as above.

We also recall that for both the cases n even and odd the Plancherel density ν

satisfies |ν(λ)| ≤ C(1+|λ|)b for some constant b > 0, for all λ ∈ R. It is well known

that PW (C) (respectively PW (C)e) is a dense subspace of S(R) (respectively of

S(R)e).
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We define S(Sp) to be the set of all functions h : Sp → C which are continuous

on Sp, holomorphic on S◦
p (when p = 2 then the function is simply C∞ on S2 =

R) and satisfies supλ∈Sp
(1 + |λ|)r| dm

dλmh(λ)| < ∞, for all r,m ∈ N ∪ {0}. Let

S(Sp)e and S(Sp)o denote the subspaces of S(Sp) consisting of even and odd

functions respectively. Topologized by the seminorms above it can be verified

that S(Sp),S(Sp)e and S(Sp)o are Fréchet spaces. With this preparation we are

ready to state the theorems.

Theorem 5.2.1. Let 0 < p ≤ 2 be fixed. Then for any σ ∈ M̂(τ) F 7→ F̂ (σ, ·)

is a topological isomorphism between Cp(G, τ, τ) and S(Sp)e when n is even and

between Cp(G, τ, τ) and S(Sp) when n is odd.

Proof. Suppose n is even. Since in this case τ |M contains unique σ ∈ M̂ we

omit σ from the notation. Let F ∈ Cp(G, τ, τ). It is clear from Proposition

3.1.4 and Proposition 3.1.5 that F̂ (λ) is analytic on S◦
p and continuous on the

boundary of Sp. As φτ
λ = φτ

−λ it follows that F̂ is even. We shall first show that

supλ∈Sp
(1 + |λ|)r

∣∣∣ ds

dλs F̂ (λ)
∣∣∣ <∞ for any nonnegative integers r and s, which will

prove F̂ ∈ S(Sp)e. For this it is sufficient to show that

sup
λ∈Sp

∣∣∣∣P (
d

dλ
)

[{
λ2 + ρ2 −

(n− 1)(n− 2)

8

}s

F̂ (λ)

]∣∣∣∣ <∞ (5.2.0)

for any polynomial P and any nonnegative integer s. Indeed if we assume (5.2.0),

then taking P to be a constant and using the continuity of F̂ we get

sup
λ∈Sp

(1 + |λ|)r|F̂ (λ)| <∞

for any r > 0. Using this and

|(λ2 + c2)s d

dλ
F̂ (λ)| ≤ |2sλ(λ2 + c2)s−1F̂ (λ)| +

∣∣∣∣
d

dλ

[
(λ2 + c2)sF̂ (λ)

]∣∣∣∣ ,

for any constant c, we have supλ∈Sp
|(λ2 + c2)s d

dλ
F̂ (λ)| < ∞. Estimates defining

the seminorms of S(Sp) involving higher derivatives will follow in a similar fashion.

Now using the fact that the Casimir operator Ωg is formally self-adjoint with

respect the L2 inner product and (4.2.0) we have,
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P ( d
dλ

)
[{
λ2 + ρ2 − (n−1)(n−2)

8

}s

F̂ (λ)
]

= P ( d
dλ

)
[{
λ2 + ρ2 − (n−1)(n−2)

8

}s
1
dτ

∫
G

Tr (F (x) ◦ Φτ
λ(x

−1)) dx
]

= P ( d
dλ

)
[

1
dτ

∫
G

Tr (F (x) ◦ (−Ωg)
sΦτ

λ(x
−1)) dx

]

= P ( d
dλ

)
[

1
dτ

∫
G

Tr ((−Ωg)
sF (x) ◦ Φτ

λ(x
−1)) dx

]

= 1
dτ

∫
G

Tr
(
(−Ωg)

sF (x) ◦ P ( d
dλ

)Φτ
λ(x

−1)
)
dx.

Using the polar decomposition (see Chapter 1, equation (1.0.4)) we get

∣∣∣P ( d
dλ

)
[{
λ2 + ρ2 − (n−1)(n−2)

8

}s

F̂ (λ)
]∣∣∣

≤ C
∫

K×R+×K

∣∣Tr
(
(−Ωg)

sF (k1atk2) ◦ (P ( d
dλ

)Φτ
λ(k

−1
2 a−tk

−1
1 )
)∣∣ e2ρt dk1 dt dk2

≤ C
∫

K×R+×K
‖(−Ωg)

sF (k1atk2)‖EndVτ

∥∥P ( d
dλ

)Φτ
λ(k

−1
2 a−tk

−1
1 )
∥∥

EndVτ
e2ρt dk1 dt dk2.

We have (see [32])

∥∥∥∥P (
d

dλ
)Φτ

λ(k
−1
2 a−tk

−1
1 )

∥∥∥∥
EndVτ

≤ C(1 + |t|)r1e(|ℑλ|−ρ)|t| ≤ C(1 + |t|)r2e(
2
p
−2)ρ|t|.

Also since F ∈ Cp(G, τ, τ) we have

‖(−Ωg)
sF (k1atk2)‖EndVτ ≤ C(1 + t)−(r2+2)e−

2
p
ρtβ(F ) for t ≥ 0

where β is a seminorm of the Lp-Schwartz space function. Therefore, we have

sup
λ∈Sp

∣∣∣∣P (
d

dλ
)

[{
λ2 + ρ2 −

(n− 1)(n− 2)

8

}s

F̂ (λ)

]∣∣∣∣ ≤ Cβ(F ).

This shows that F̂ ∈ S(Sp)e and the map F 7→ F̂ is continuous.

Since Cp(G, τ, τ) ⊆ L2(G, τ, τ) by Plancherel theorem (Theorem 4.2.2) it fol-

lows that F 7→ F̂ is injective. Now we shall show that the map F 7→ F̂ from

Cp(G, τ, τ) to S(Sp)e is surjective and the inverse map is continuous. We note
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that C∞
c (G, τ, τ) and PW (C)e are dense in Cp(G, τ, τ) and S(Sp)e respectively.

Therefore to complete the theorem it is sufficient to show that given a seminorm

β of Cp(G, τ, τ), there is a seminorm γ on S(Sp)e such that

β(F ) ≤ Cγ(F̂ ), for all F ∈ C∞
c (G, τ, τ).

We shall break the remainder of the proof in a few steps and use the following

notation. Let γ
(p)
r,s (f) = supλ∈Sp

(1 + |λ|)r| ds

dλs f(λ)| for f ∈ S(Sp)e and

β(F ) = sup
x∈G

(1 + σ(x))r‖F (E1; x;E2)‖EndVτ e
2
p
ρσ(x) for F ∈ Cp(G, τ, τ).

From now on we shall use the notation ‖ · ‖ to mean ‖ · ‖EndVτ .

For each positive integer l, let Cl = [−lρ, lρ] and Gl = K exp(ClH0)K. Then

G is disjoint union of G2, G3 \G2, G4 \G3, · · · .

Step 1: From inversion formula of C∞
c function (Theorem 4.2.1) we have

F (E1; x;E2) =
∫∞

0
F̂ (λ)Φτ

λ(E1; x;E2)ν(λ) dλ. Therefore using the estimates of

Φλ(E1; x;E2) and ν(λ) given above we have,

‖F (E1; x;E2)‖ ≤
∫∞

0
|F̂ (λ)|‖Φτ

λ(E1; x;E2)‖ν(λ) dλ

≤ Cφ0(x)
∫∞

0
(1 + |λ|)b1|F̂ (λ)| dλ.

Now, supx∈G2
(1 + σ(x))r‖F (E1; x;E2)‖e

2
p
ρσ(x)

≤ C supx∈G2
(1 + σ(x))rφ0(x)e

2
p
ρσ(x)

∫∞

0
(1 + |λ|)b|F̂ (λ)| dλ

≤ C supλ∈R(1 + |λ|)b+2|F̂ (λ)| (since G2 is compact)

= Cγ
(2)
b+2,0(F̂ ).

Hence we have

sup
x∈G2

(1 + σ(x))r‖F (D; x;E)‖ e
2
p
ρσ(x) ≤ Cγ

(2)
b+2,0(F̂ ). (5.2.1)
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Step 2: Let w ∈ C∞(R) be such that

w =





0 on (−∞, 0]

1 on [1,∞).

We define wl(t) = w(l + t
ρ
)w(l− t

ρ
). Then wl is an even function and

wl =





1 on Cl−1

0 on Cc
l .

Here Cc
l denotes the complement of Cl in R. We have AF = wlAF +(1−wl)AF .

Let gl(t) = (1 − wl(t))AF (t). Since F ∈ C∞
c (G, τ, τ), AF ∈ C∞

c (R)e and hence

gl ∈ C∞
c (R)e. Therefore, there is Fl ∈ C∞

c (G, τ, τ) such that AFl = gl.

Step 3: As AF = wlAF + gl, AF and gl are equal on Cc
l . That is AF and gl

may differ only on Cl. This shows that F and Fl may differ only on Gl. Hence

for x ∈ Gl+1 \Gl, F (x) = Fl(x). Also arguing as in Step 1 we have,

‖Fl(E1; x;E2)‖ ≤ Cφ0(x)γ
(2)
b1+2,0(F̂ ).

Step 4: Let ∇ denotes the Laplacian on R. Then,
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γ
(2)
b1+2,0(F̂l) = supλ∈R(1 + |λ|)b1+2|F̂l(λ)|

= supλ∈R(1 + |λ|)b1+2|g̃l(λ)| since F̂l = g̃l

= supλ∈R(1 + |λ|)b1+2
∣∣∫

R
gl(t)e

−iλtdt
∣∣

≤ C supλ∈R

∑b1+2
k=0

∣∣∫
R
gl(t)∇

ke−iλtdt
∣∣

= C supλ∈R

∑b1+2
k=0

∣∣∫
R
∇kgl(t)e

−iλtdt
∣∣

≤ C
∑b1+2

k=0

∫
R

∣∣∇kgl(t)
∣∣ dt

≤ C
∑b1+2

k=0 supt∈R(1 + |t|)2
∣∣∇kgl(t)

∣∣

= C
∑b1+2

k=0 supt∈R

[
(1 + |t|)2

∣∣∇k {(1 − wl(t))AF (t)}
∣∣]

= C
∑b1+2

k=0 supR\Cl−1

[
(1 + |t|)2

∣∣∇k {(1 − wl(t))AF (t)}
∣∣]

≤ C
∑b1+2

k=0 supR\Cl−1
(1 + |t|)2|∇kAF (t)|.

The last inequality follows as 1 − wl and all its derivatives are bounded.

Step 5: Now supx∈Gl+1\Gl
(1 + σ(x))r‖F (E1; x;E2)‖e

2
p
ρσ(x)

= supx∈Gl+1\Gl
(1 + σ(x))r‖Fl(E1; x;E2)‖e

2
p
ρσ(x)

≤ supx∈Gl+1\Gl
(1 + σ(x))re(

2
p
−1)ρσ(x)γ

(2)
b1+2,0(F̂l) (by Step 3)

≤ Clr1e(
2
p
−1)ρlγ

(2)
b1+2,0(F̂l)

≤ C
∑b1+2

k=0 supR\Cl−1
(1 + |t|)r1+2e(

2
p
−1)ρt

∣∣∇kAF (t)
∣∣ (by Step 4)

≤ C
∑r1+2

m=0

∫
R
(1 + |λ|)b1+2

∣∣∣∇mF̂ (λ+ i(2
p
− 1)ρ)

∣∣∣ dλ

≤ C
∑r1+2

m=0 supλ∈Sp
(1 + |λ|)b1+4|∇mF̂ (λ)|.
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The last but one inequality follows from the fact that

P (t)e(
2
p
−1)ρtQ(

∂

∂t
)g(t) = C

∫

R

P (i
∂

∂λ
)

{
Q(iλ− (

2

p
− 1)ρ)h(λ+ i(

2

p
− 1)ρ)

}
eiλtdt

where g(t) = c
∫

R
h(λ)eiλtdλ and P,Q are polynomials. Hence we have

sup
x∈Gl+1\Gl

(1 + σ(x))r‖F (E1; x;E2)‖e
2
p
ρσ(x) ≤ C

r1+2∑

m=0

sup
λ∈Sp

(1 + |λ|)b1+4|∇mF̂ (λ)|.

(5.2.2)

Therefore, it follows from equation (5.2.1) and equation (5.2.2) that

sup
x∈G

(1 + σ(x))r‖F (D; x;E)‖e
2
p
ρσ(x) ≤ C

r1+2∑

m=0

sup
λ∈Sp

(1 + |λ|)b1+4|∇mF̂ (λ)|

where C is independent of F . Hence

β(F ) ≤ Cγ(F̂ ) for all F ∈ C∞
c (G, τ, τ) for some seminorm γ on S(Sp)e.

This completes the proof for n even.

Similarly for n odd we can prove that F 7→ F̂ (σ+, ·) and F 7→ F̂ (σ−, ·) are

topological isomorphisms between Cp
τ (G) and S(Sp).

As an immediate consequence we have the following corollary:

Corollary 5.2.2. Let 0 < p ≤ 2 be fixed. Then for any σ ∈ M̂(τ) f 7→ f̂(σ, ·) is

a topological isomorphism between Cp
τ (G) and S(Sp)e when n is even and between

Cp
τ (G) and S(Sp) when n is odd.

Remark 5.2.3. The theorem can also be proved relating τ -spherical transform

to Jacobi transform (see [13]) and using the corresponding theorems for Jacobi

transform (see [26]). In [13] Camporesi-Pedon proved the case p = 2 of the

theorem above using Jacobi transform.

5.3 Paley-Wiener Theorem for Distributions

LetG,K, τ be as in the previous section. We associate a locally integrable function

f on R, with a distribution Wf on R in the following way: For g ∈ C∞
c (R),

Wf(g) = d2
τ

∫ ∞

0

f(λ)g(λ) dν(λ) if n is even and (5.3.1)



59 Paley-Wiener Theorem for Distributions

Wf (g) = d2
τ

∫

R

f(λ)g(λ) dν(λ) if n is odd, (5.3.2)

where dν(λ) = ν(λ)dλ is the Plancherel measure for τ -radial function on G.

A distribution W on R is called even if W (f) = W (fe) where fe(x) = (f(x) +

f(−x))/2. Let C∞(R)′ and C∞(R)′e denote the set of compactly supported and

compactly supported even distributions on R respectively.

Definition 5.3.1. Let W ∈ C2
τ (G)′. For any σ ∈ M̂(τ), we define its τ -spherical

transform Ŵ (σ, ·) = Ŵσ by

Ŵσ(f̂(σ, ·)) = W (f).

We recall that when n is even τ |M contains a unique σ ∈ M̂ . Therefore in this

case Ŵσ will be denoted by Ŵ and the definition above reduces to Ŵ (f̂) = W (f).

Note that in this case (i.e. when n is even) f 7→ f̂ is an isomorphism between

C2
τ (G) and S(R)e. We extend Ŵ on S(R) as for any g ∈ S(R), Ŵ (g) = Ŵ (ge).

This makes Ŵ an even tempered distribution on R.

When n is odd we note that f 7→ f̂(σ, ·) is an isomorphism between C2
τ (G) and

S(R) for any σ ∈ M̂(τ). Therefore in this case Ŵσ defines a tempered distribution

on R. We also note that

Ŵσ+

(
f̂(σ−, ·)

)
= Ŵσ−

(
f̂(σ+, ·)

)

which can be verified by noting that for any f ∈ C2
τ (G) (with n odd) there exists

g ∈ C2
τ (G) such that ĝ(σ+, ·) = f̂(σ−, ·) and consequently ĝ(σ−, ·) = f̂(σ+, ·).

It is easy to verify that the Definition 5.3.1 matches with Definition 2.2.3

when W ∈ C∞
τ (G)′. Here we indicate the proof. It is enough to prove that the

two definitions coincide for functions in C∞
c,τ(G) as C∞

c,τ(G) is dense in C∞
τ (G)′.

When n is even, for a function w in C∞
c,τ(G) using Theorem 4.2.1 we have

∫

G

w(x)f∨(x) dx = d2
τ

∫ ∞

0

ŵ(λ)f̂(λ) dν(λ),

for every f ∈ C2
τ (G) where we recall that f∨(x) = f(x−1). The left hand side of

this identity is w(f) when w is interpreted as a tempered distribution (see Chapter

2) and hence is the same as ŵ(f̂) by Definition 5.3.1. Here ŵ is the τ -spherical

transform of w interpreted as a tempered distribution. Again interpreting the

function ŵ (which is the τ -spherical transform of the function w) as a distribution

on R, the right hand side is its action on the function f̂ (see equation (5.3.1))

which is in the Schwartz space on R. Thus the two definitions of τ -spherical
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transform agree for functions in C∞
c,τ(G) when n is even. Similarly for n odd we

can show that the definitions coincide for W ∈ C∞
τ (G)′.

Lemma 5.3.2. For W ∈ C2
τ (G)′, f ∈ C2

τ (G) and h ∈ C∞
c,τ(G), W (h ∗ f) =

(W ∗ h)(f).

Proof. We have (h ∗ f)(x) =
∫

G
h(xy)f(y−1) dy =

∫
G

(L(y)h∨)∨ (x)f∨(y) dy.

Therefore,

W (h ∗ f) =

∫

G

W
(
(L(y)h∨)

∨)
f∨(y) dy =

∫

G

(W ∗ h)(y)f∨(y) dy = (W ∗ h)(f).

A function f : C → C is said to be rapidly decreasing if for each N ∈ N

there is CN > 0 such that |f(λ)| ≤ CN(1 + |λ|)−N for all λ ∈ C. Also a function

f : C → C is called slowly increasing if there exists a nonnegative integer M such

that |f(λ)| ≤ C(1 + |λ|)M for all λ ∈ C. We recall that the spaces PWD and

PWD
e are Paley-Wiener spaces for distributions defined in Section 2.2.

We prove the following Paley-Wiener theorem for τ -radial distributions.

Theorem 5.3.3. For any σ ∈ M̂(τ), the τ -spherical transform W 7→ Ŵσ is a

topological isomorphisms between C∞
τ (G)′ and PWD

e when n is even and between

C∞
τ (G)′ and PWD when n is odd.

Proof. We shall deal with cases n even and odd separately.

(a) Suppose n is even. As mentioned above in this case τ |M contains a unique

σ ∈ M̂ and we will omit σ from the notation. We take a W1 in PWD
e . Using

W1 we define a tempered τ -radial distribution W : C2
τ (G) → C by W (f) =

d2
τ

∫∞

0
W1(λ)f̂(λ) dν(λ). Since ν(λ) has polynomial growth on R and W1(λ) is

slowly increasing, by dominated convergence theorem it follows that f 7→W (f) is

continuous. We shall show that W is actually compactly supported. For this it is

sufficient to show that W ∗h ∈ C∞
c,τ(G), for all h ∈ C∞

c,τ(G) (see [20, Theorem 1]).

We note that for all h ∈ C∞
c,τ(G), W ∗h is a tempered distribution and Ŵ ∗ h is an

even tempered distribution on R (since by Corollary 5.2.2, any element f ∈ S(R)e,

can be written as f(λ) = ĝ(λ) for some g ∈ C2
τ (G)).

For f ∈ C2
τ (G) and h as above we have,

W (h ∗ f) = d2
τ

∫ ∞

0

W1(λ)ĥ(λ)f̂(λ) dν(λ).
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Therefore by Lemma 5.3.2

Ŵ ∗ h(f̂) = d2
τ

∫ ∞

0

W1(λ)ĥ(λ)f̂(λ) dν(λ).

Let g(λ) = W1(λ)ĥ(λ), λ ∈ C. Then Ŵ ∗ h(f̂) = g(f̂) for all f ∈ C2
τ (G), i.e.,

Ŵ ∗ h = g (where equality is in the sense of distribution). Hence, Ŵ ∗ h(λ) =

g(λ). Since W1 is slowly increasing and ĥ is rapidly decreasing, g is rapidly

decreasing. Again as both of them are of exponential type, so is g. Moreover g

is even. Therefore by Theorem 5.1.1, W ∗ h ∈ C∞
c,τ (G). This proves that W is a

compactly supported distribution.

We shall show that Ŵ (λ) = W1(λ) for all λ ∈ C. Since W is compactly

supported, for h( 6≡ 0) ∈ C∞
c,τ (G), we have Ŵ ∗ h(λ) = Ŵ (λ)ĥ(λ) and hence

Ŵ (λ)ĥ(λ) = W1(λ)ĥ(λ), i.e., [Ŵ (λ)−W1(λ)]ĥ(λ) = 0. Since both the factors are

entire and h 6= 0, Ŵ (λ) = W1(λ), for all λ ∈ C.

For the converse we take an element W ∈ C∞
τ (G)′. Then Ŵ (λ) = Ŵ (−λ), as

φτ
λ(x) = φτ

−λ(x).

Since, W : C∞
τ (G) → C is continuous with respect to the topology of C∞

τ (G),

there exists X1, X2, · · ·Xr ∈ U(gC) and a compact set Ω in G such that for any

f ∈ C∞
τ (G),

|W (f)| ≤ C
r∑

i=1

sup
x∈Ω

|f(Xi; x)| for some C > 0.

Now

supx∈Ω |φτ
λ(Xi; x)|

= supx∈Ω | d
dt

∣∣
t=0

φτ
λ(exp(tXi)x)|

= supx∈Ω

∣∣ d
dt

∣∣
t=0

∫
K
e−(iλ+ρ)H(exp(tXi)xk)χτ [kK(exp(tXi)xk)

−1] dk
∣∣

= supx∈Ω |
∫

K
d
dt

(
e−(iλ+ρ)H(exp(tXi)xk)

)
χτ [kK(exp(tXi)xk)

−1]
∣∣
t=0

+
∫

K
e−(iλ+ρ)H(exp(tXi)xk) d

dt
(χτ [kK(exp(tXi)xk)

−1])
∣∣
t=0

dk|

≤ C1(supx∈Ω |φλ(Xi; x)| + supx∈Ω |φλ(x)|)

≤ C2((1 + |λ|)deR|ℑλ| + eR|ℑλ|),

for some positive constants C1, C2, R, d.
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In the last step we have used the inequality (see [28, Proposition 4.6.2])

|φλ(Xi; x)| ≤ C(1 + |λ|)dφiℑλ(x) for some constants C, d > 0. (5.3.3)

Therefore supx∈Ω |φτ
λ(Xi; x)| ≤ a(1 + |λ|)deR|ℑλ|. This shows that |Ŵ (λ)| ≤ C(1 +

|λ|)MeR|ℑλ|, for some C,M,R > 0, (M ∈ Z).

We shall show that λ 7→ Ŵ (λ) is entire. Firstly λ 7→ Ŵ (λ) is continuous (since,

λn → λ0 implies φτ
λn

→ φτ
λ0

in the topology of C∞
τ (G). So Ŵ (λn) → Ŵ (λ0)).

Let Γ be a closed rectangular path in C. We shall show that
∫
Γ
Ŵ (λ) dλ = 0.

Let F =
∫
Γ
φτ

λ dλ, then F (x) =
∫
Γ
φτ

λ(x) dλ = 0 (since λ 7→ φτ
λ(x) is entire).

Therefore F ≡ 0. This shows that 0 = W (F ) =
∫
Γ
W (φτ

λ) dλ =
∫
Γ
Ŵ (λ) dλ.

Hence λ 7→ Ŵ (λ) is entire.

Hence the τ -spherical transform gives a bijection between these two spaces

C∞
τ (G)′ and PWD

e . Therefore we give the topology on PWD
e so that the τ -

spherical transform becomes a topological isomorphism. The proof of [38, Propo-

sition 1] shows that this topology coincide with the topology given by the analytic

uniform structure. This implies that the τ -spherical transform is a topological

isomorphism.

(b) Suppose n is odd. Temporarily for this proof we shall use the following

notation for convenience

f̂+(·) = f̂(σ+, ·), f̂−(·) = f̂(σ−, ·), Ŵ+ = Ŵσ+ , Ŵ− = Ŵσ− .

Let W1 be in PWD. We define

W (f) = d2
τ

∫

R

W1(λ)f̂+(λ) dν(λ), for f ∈ C∞
c,τ(G).

Then as in the case (a) we can show that W is a tempered distribution. Next we

shall show that W is compactly supported distribution. For this we shall show

W ∗ h ∈ C∞
c,τ(G), for all h ∈ C∞

c,τ(G) (see [20, Theorem 1]). Let f ∈ C2
τ (G), then

W (h ∗ f) = d2
τ

∫
R
W1(λ)ĥ+(λ)f̂+(λ) dν(λ),

i.e., (W ∗ h)(f) = d2
τ

∫
R
W1(λ)ĥ+(λ)f̂+(λ) dν(λ),

i.e., ̂(W ∗ h)+(f̂+) = d2
τ

∫
R
W1(λ)ĥ+(λ)f̂+(λ) dν(λ).

Thus we have ̂(W ∗ h)+(f̂+) = g+(f̂+), where g+(λ) = W1(λ)ĥ+(λ) . This shows
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that ̂(W ∗ h)+ = g+ in the sense of distribution on R. Therefore, ̂(W ∗ h)+(λ) =

W1(λ)ĥ+(λ). As in (a) above we can show that, ̂(W ∗ h)+ is rapidly decreasing,

exponential type function. So by Theorem 5.1.1 W ∗ h is a compactly supported

function. Therefore, W is a compactly supported τ -radial distribution on G. Also

similar to the even case it follows that Ŵ+(λ) = W1(λ).

For the converse direction our argument is similar to that of (a).

Therefore, W 7→ Ŵ+ is a bijection between C∞
τ (G)′ and PWD. Since the

map W 7→ Ŵ+ is a bijection we give the topology on PWD so that the map is

a topological isomorphism. Here also the proof of [38, Proposition 1] shows that

this topology coincides with the topology given by “analytic uniform structure”

on PWD. So the τ -spherical transform W 7→ Ŵ+ is a topological isomorphism

between C∞
τ (G)′ and PWD.

Exactly through the same steps as above we can also prove that W 7→ Ŵ−

is a topological isomorphism between C∞
τ (G)′ and PWD. This completes the

proof.

It follows from Theorem 5.3.3 and slice projection property (2.3.5) that if n is

even then for X ∈ C∞
τ (G)′,AX is a unique element of C∞(R)′e such that

ÃX(λ) = AX(ψλ) = X(TrA∗ψλ) = X̂(λ) where ψλ(x) = (eiλx + e−iλx)/2.

Similarly when n is odd then for X ∈ C∞
τ (G)′, Aσ+X and Aσ−X are unique

elements in C∞(R)′ such that

Ãσ+X(λ) = Aσ+X(e−iλ(·)) = X(TrA∗
σ+e−iλ(·)) = X̂σ+(λ) and

Ãσ−X(λ) = Aσ−X(e−iλ(·)) = X(TrA∗
σ−e−iλ(·)) = X̂σ−(λ).

From the Paley-Wiener theorems for distributions (Theorem 2.2.2 and Theo-

rem 5.3.3) it is immediate that for n even A : C∞
τ (G)

′
→ C∞(R)

′

e is a topological

isomorphism and for n odd both Aσ+ and Aσ− : C∞
τ (G)′ → C∞(R)′ are topological

isomorphisms.
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Chapter 6

Wiener-Tauberian Theorems

6.1 Wiener-Tauberian Theorems for Lorentz Spaces

and Weighted Spaces

In this section we shall state and prove analogues of Wiener-Tauberian theorem

for the Banach algebras and modules considered in Chapter 3, where the triple

(G,K, τ) is as in Chapter 4.

We state here the two main theorems of this section.

Theorem 6.1.1. For some index set Λ, let {fα | α ∈ Λ} be a collection of

functions in Lp,1
τ (G) ∩ Lq,1

τ (G) where 1 ≤ q < p < 2. For σ ∈ M̂(τ) let

Zσ = {z ∈ Sp | f̂α(σ, z) = 0 for all α ∈ Λ}.

If for all σ ∈ M̂(τ), Zσ is empty and there exists an α(σ) ∈ Λ such that f̂α(σ)

satisfies for t ∈ R

lim sup
|t|→∞

|f̂α(σ)(σ, t)e
Ke|t|| > 0 for all K > 0 (6.1.1)

then the ideal generated by {fα | α ∈ Λ} in Lp,1
τ (G) is dense in Lp,1

τ (G).

Theorem 6.1.2. Let 0 < p < 2, r ≥ 0 and {fα : α ∈ Λ} be a collection of

functions in L1
τ (wq,r) for some 0 < q < p where Λ is an index set. For σ ∈ M̂(τ),

let

Zσ = {z ∈ Sp | f̂α(σ, z) = 0 for all α ∈ Λ}.

If for every σ ∈ M̂(τ), Zσ is empty and there exits α(σ) ∈ Λ such that fα(σ)

satisfies (6.1.1) then the ideal generated by {fα : α ∈ Λ} in L1
τ (wp,r) is dense in

L1
τ (wp,r).

65
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Before entering into the proofs we shall discuss the necessity of the hypothesis.

First we shall give a brief sketch of the construction of a function in Lp,1
τ (G)

whose τ -spherical transform does not vanish anywhere in Sp, which does not

satisfy condition (6.1.1) and the ideal generated by f is not dense in Lp,1
τ (G).

This will establish the necessity of an additional condition like (6.1.1). This is

an adaptation of the corresponding construction of a K-biinvariant integrable

function on SL(2,R) (see [25]).

Let n be even. We fix p1, p2 such that p2 < p < p1. Let α = π/2γp1ρ. For

λ ∈ C, we define the functions F (λ) = e− cosh λα and G(λ) = 4(eλα + e−λα + 2)−1.

It is easy to check that both F,G ∈ S(Sp2)e. By Corollary 5.2.2 there exist

f, g ∈ Cp2
τ (G) such that f̂ = F and ĝ = G. It is clear that F does not vanish

anywhere on Sp. We recall that Cp2
τ (G) is a dense subspace of Lp,1

τ (G) (see Chapter

3). We assume that If = {β ∗ f | β ∈ L1
τ (G)} is dense in Lp,1

τ (G). Then there is

a sequence {gn} in L1
τ (G) such that gn ∗ f converges to g in Lp,1

τ . For λ ∈ Sp1 we

have,

|ĝn ∗ f(λ) − ĝ(λ)| ≤

∫

G

|(gn ∗ f − g)(x)φτ
λ(x

−1)| dx ≤ Cτ‖gn ∗ f − g‖∗p,1‖φiℑλ‖
∗
p′,∞.

Therefore

|ĝn ∗ f(λ) − ĝ(λ)| ≤ Cτ‖gn ∗ f − g‖∗p,1‖φiγp1ρ‖
∗
p′,∞.

This implies that ĝn ∗ f → ĝ uniformly on Sp1 . That is

ĝn(λ)F (λ) → G(λ) uniformly on Sp1 . (6.1.2)

Let D be the open unit disc and let D be its closure. Let A(D) be the disc algebra,

that is the algebra of all functions f : D → C which are holomorphic on D and

continuous on D, endowed with the supremum norm. Let A0(D) = {f ∈ A(D) |

f(z) = f(−z) ∀z ∈ D and f(i) = f(−i) = 0}. We equip A0(D) with the subspace

topology of A(D).

We consider the conformal map ψ(λ) = i(eπλ/2γp1ρ − 1)(eπλ/2γp1ρ + 1)−1 from

the strip Sp1 onto D, which maps R on the line segment joining i and −i. In

particular ψ(0) = 0, ψ(∞) = i, ψ(−∞) = −i, ψ(iγp1ρ) = −1 and ψ(−iγp1ρ) = 1.

Then from (6.1.2) we have ĝn(ψ−1(z))F (ψ−1(z)) → G(ψ−1(z)) uniformly on D.

Since F (ψ−1(z)) = exp
(

z2−1
z2+1

)
and G(ψ−1(z)) = z2 + 1, it follows that z2 + 1 is

in the closed ideal I (with respect to topology of uniform convergence) generated

by exp
(

z2−1
z2+1

)
in A0(D). This is not possible since every element of I decays very

fast along imaginary axis. Therefore If is a proper subset of Lp,1
τ (G). We note
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that f does not satisfy condition (6.1.1). This construction works also for the case

n odd where we have to substitute f̂ by f̂(σ+, ·) in the argument above.

For the nonvanishing condition of the τ -spherical transform, we suppose that

there is a λ0 ∈ Zσ for a fixed σ ∈ M̂ . We define T (f) = f̂(σ, λ0). Then T :

Lp,1
τ (G) → C is an algebra homomorphism and hence KerT is a proper maximal

ideal in Lp,1
τ (G) where KerT = {f ∈ Lp,1

τ (G) | T (f) = 0}. Precisely KerT ⊇

{fα : α ∈ Λ}. Hence the ideal generated by {fα : α ∈ Λ} is proper, which shows

the necessity of the nonvanishing condition in Theorem 6.1.1. Similar argument

works for Theorem 6.1.2.

We may point out here that all the available analogues of WTT (see [22,7]) im-

pose the nonvanishing condition of the Fourier transform in a strip slightly larger

than the domain of the Fourier transform. Only exceptions are [6] (announced

in [5]) and [18]. But both of these papers deal only with the case of integrable

K-biinvariant functions on SL(2,R) and it appears difficult to extend the method

for more general groups or for more general functions. Here for τ -radial functions

we have considered the nonvanishing condition only on the appropriate domain.

We shall isolate a few steps of the proof of the theorems as the following

lemmas. We recall that for any p ∈ (0, 2], γp = 2/p− 1. For any δ > 0 we define

the augmented strip

Sp,δ = {z ∈ C | |ℑz| ≤ γpρ+ δ}.

Let Ap(δ) be the space of continuous functions F : Sp,δ → C which are holomorphic

on S◦
p,δ, and satisfy lim|ξ|→∞ F (ξ + iη) = 0 on Sp,δ. We endow Ap(δ) with the

supremum norm topology. Let Ap
0(δ) be the subspace of even functions in Ap(δ),

equipped with the subspace topology. Let T = ∂D be the boundary of D and

A1(D) = {f ∈ A(D) | f(i) = f(−i) = 0}.

We equip both A1(D) and A0(D) with the subspace topology of A(D). We

denote the closed ideal generated by a function f ∈ A(D) in A(D) by 〈f(z)〉.

Henceforth by an ideal we will mean a closed ideal unless mentioned otherwise.

It is easy to show that A1(D) = 〈(z − i)(z + i)〉. We recall that every maximal

ideal of A(D) is of the form Mλ = {f ∈ A(D) | f(λ) = 0} for some point λ in the

closed unit disc (see [37, p. 87]). We also need the following generalization of a

theorem given in [37, p.88].

Lemma 6.1.3. If J is a non-zero closed ideal of A(D) contained in precisely two

maximal ideals Mλ1 and Mλ2 with K = {λ1, λ2} ⊂ T then J is the closed principal
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ideal generated by

f(z) = (z − λ1)(z − λ2) exp

[
ρ1
z + λ1

z − λ1
+ ρ2

z + λ2

z − λ2

]

where ρ1, ρ2 are non-negative real numbers.

Proof. Clearly J ⊆ H1(D) where H1(D) is the class of analytic functions f in

the open unit disc D for which the functions fr(θ) = f(reiθ) are bounded in L1-

norm as r → 1. If the greatest common divisor of the inner parts of the nonzero

functions in J is F = B.S then B = 1 and S(z) = exp
[
−
∫

eiθ+z
eiθ−z

dµ(θ)
]

for some

unique singular positive measure µ on T (see [37, Theorem p. 67, Lemma p. 85]).

Therefore J = {Sg | g ∈ A(D) which vanishes on K} (see [37, Theorem on p.

85] ). We know that, S is analytic on D and continuous on T \ K1 where K1

is the closed support of µ (see [37, second Theorem on p. 68]). Also S is not

extendable continuously to the points of K1. Let g be any element of A(D) which

vanishes exactly on K. The continuity of Sg on T then implies that K1 ⊆ K.

Therefore S(z) = exp
[
ρ1

z+λ1

z−λ1
+ ρ2

z+λ2

z−λ2

]
where ρ1 = µ({λ1}) and ρ2 = µ({λ2}).

Let J1 = 〈(z − λ1)(z − λ2)S(z)〉. We have J1 ⊆ J . Suppose ℜλ1,ℜλ2 ≥ 0. Then

for any g ∈ A(D), which vanishes on K,

S(z)g(z)
(z − λ1)(z − λ2)

(z − λ1 −
1
n
)(z − λ2 −

1
n
)
∈ J1.

Also

S(z)g(z)
(z − λ1)(z − λ2)

(z − λ1 −
1
n
)(z − λ2 −

1
n
)
→ S(z)g(z)

uniformly in D as n → ∞. Therefore J ⊆ J1 as J1 is closed. Hence J = J1.

Similar argument works for the other cases (i.e when both ℜλ1 and ℜλ2 are

nonpositive or one of them is positive while the other is negative). Therefore

J =
〈
(z − λ1)(z − λ2) exp

[
ρ1

z+λ1

z−λ1
+ ρ2

z+λ2

z−λ2

]〉
where ρ1, ρ2 are non-negative real

numbers. This completes the proof.

Lemma 6.1.4. If I0 and I1 are ideals of A0(D) and A1(D) respectively then there

are ideals J0 and J1 of A(D) such that I0 = J0 ∩A0(D) and I1 = J1 ∩A1(D).

The proof of this lemma is omitted as it is similar to [7, Lemma 1.2].

We say that a function f on D decays less than exponential at µ if for all K > 0

lim sup
z→µ

|f(z)eK µ+z
µ−z | > 0. (6.1.3)
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Lemma 6.1.5. (a) Let I1 be an ideal in A1(D). If the functions in I1 have no

common zero other than ±i and if I1 contains a function which satisfies

(6.1.3) for µ = ±i, then I1 = A1(D).

(b) Let I0 be an ideal in A0(D). If the functions in I0 have no common zero other

than ±i and if I0 contains a function which satisfies (6.1.3) for µ = ±i, then

I0 = A0(D).

Proof. (a) We have by Lemma 6.1.4, I1 = J1∩A1(D) where J1 is an ideal of A(D).

If J1 is contained in three or more maximal ideals, then the zero set of J1

has at least three elements. This contradicts the fact that I1 = J1 ∩ A1(D) since

the zero set of I1 has two elements. Hence J1 can be contained in precisely one

maximal ideal or in precisely two maximal ideals.

If J1 is contained in only one maximal ideal then by Beurling-Rudin theorem

(see [37, Corollary p. 88 ]) J1 is 〈(z − α)k〉 where α is a point in open unit disc

D and k is a positive integer, or it is of the form
〈
(z − λ)eρ z+λ

z−λ

〉
where λ is a

point on the boundary T and ρ is a non-negative real number. But the first case

is not possible as the functions in I1 have no common zero in D. The second case

with λ ∈ T \ {i,−i} contradicts the hypothesis as the only common zero of the

functions in I1 ⊆ J1 is {±i}. Also the second case with ρ > 0 and λ = ±i is not

also possible as it contradicts (6.1.3). Only possibility thus is ρ = 0 and λ = ±i in

the second case. Hence J1 = 〈z− i〉 or J1 = 〈z+ i〉. Since A1(D) = 〈(z− i)(z+ i)〉,

J1 ⊇ A1(D). Therefore I1 = A1(D).

If J1 is contained in precisely two maximal ideals, say P and Q then P and

Q are of the form P = Mi = {f ∈ A(D) | f(i) = 0}, Q = M−i = {g ∈ A(D) |

g(−i) = 0}. Therefore by Lemma 6.1.3

J1 =

〈
(z − i)(z + i) exp

[
ρ1
z + i

z − i
+ ρ2

z − i

z + i

]〉

where ρ1 and ρ2 are non-negative real numbers. But this is possible only when

ρ1 = ρ2 = 0 as otherwise it contradicts (6.1.3). Therefore J1 = 〈(z − i)(z + i)〉 =

A1(D). Hence I = A1(D). This completes the proof.

(b) Slight modification of the argument above proves (b).

Lemma 6.1.6. Let δ > 0 and 0 < p < 2 be fixed.

(a) If n is odd then the set of functions

Fp,δ = {f ∈ Cp
τ (G) : f̂(σ+, λ) ∈ Ap(δ) and f̂(σ+, λ)eKλ2

∈ Ap(δ) for someK > 0}
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is dense in Cp
τ (G).

(b) If n is even then the set of functions

Fp,δ = {f ∈ Cp
τ (G) : f̂(λ) ∈ Ap

0(δ) and f̂(λ)eKλ2

∈ Ap
0(δ) for some K > 0}

is dense in Cp
τ (G).

Proof. We will prove (a). For proving (b) we only have to replace f̂(σ+, ·) by f̂ and

Ap(δ) by Ap
0(δ). Let g ∈ C∞

c,τ(G). Since f 7→ f̂(σ+, ·) is a topological isomorphism

between Cp
τ (G) and S(Sp) (see Chapter 5), it is sufficient to show that there is

a sequence fm ∈ Fp,δ such that f̂m(σ+, ·) converges to ĝ(σ+, ·) in S(Sp). Let

Fm(λ) = ĝ(σ+, ·)(λ)e−λ2/m for m ∈ N. Clearly Fm ∈ S(Sp). By Corollary 5.2.2

there is fm ∈ Cp
τ (G) such that f̂m(σ+, λ) = Fm(λ). Therefore fm ∈ Fp,δ. We shall

show that f̂m(σ+, ·) converges to ĝ(σ+, ·) in the topology of S(Sp). For fixed r ∈ N,

we consider |λr[f̂m(σ+, λ) − ĝ(σ+, λ)]| = |λrĝ+(λ)||1 − e−λ2/m|. The first term

converges to zero as |λ| → ∞ and the second term converges to zero uniformly

on every compact subset of Sp,δ as m → ∞. Hence |λr[f̂m(σ+, λ) − ĝ(σ+, λ)]|

converges to zero uniformly on Sp,δ as m → ∞. Since f̂m(σ+, ·) and ĝ(σ+, ·) are

analytic, by Cauchy’s integral formula it follows that on the smaller strip Sp the

same is true for all derivatives of λr(f̂m(σ+, λ) − ĝ(σ+, λ)). This completes the

proof.

Lemma 6.1.7. Let δ > 0 and 0 < p < 2 be fixed. For n even, let f be a τ -radial

measurable function and {fi} be a sequence of τ -radial measurable functions such

that f̂i, f̂ ∈ Ap
0(δ). If there is a K > 0 such that f̂(λ)eKλ2

∈ Ap
0(δ) and if f̂i(λ)

converges to f̂(λ)eKλ2
in the topology of Ap

0(δ), then f̂i(λ)e−Kλ2
converges to f̂(λ)

in the topology of S(Sp)e.

For n odd if we replace f̂ and f̂i respectively by f̂(σ+, ·) and f̂i(σ
+, ·) and

Ap
0(δ) by Ap(δ) in the hypothesis then f̂i(σ

+, λ)e−Kλ2
converges to f̂(σ+, λ) in the

topology of S(Sp).

Proof. We will prove only for the case when n is even. The case of odd n can be

proved through similar steps.

As f̂(λ)eKλ2
∈ Ap

0(δ) and f̂i(λ) ∈ Ap
0(δ), using Cauchy’s integral formula it

can be shown that f̂ and f̂i(λ)e−Kλ2
are in S(Sp)e.

Since both f̂i(λ)e−Kλ2
and f̂(λ) are holomorphic, it is sufficient to prove that,

for an arbitrary r ∈ N, |λr[f̂i(λ)e−Kλ2
− f̂(λ)]| converges to zero uniformly in the

strip Sp,δ as i → ∞. Now |λr[f̂i(λ)e−Kλ2
− f̂(λ)]| = |λre−Kλ2

||f̂(λ)eKλ2
− f̂i(λ)|.

The first factor is a bounded function and the second factor converges to zero



71 Wiener-Tauberian Theorems for Lorentz Spaces and Weighted Spaces

uniformly on Sp,δ. Hence |λr[f̂i(λ)eKλ2
− f̂(λ)]| converges to zero uniformly on

Sp,δ as i→ ∞. Therefore the lemma follows.

With this preparation we shall enter into the main part of the proof.

Proof of Theorem 6.1.1. We shall first prove the theorem for n even. In this case

τ |M contains a unique σ ∈ M̂ . Therefore we can omit σ from the notation for this

case and in particular denote the function fα(σ) simply by fα0 .

Since fα ∈ Lp,1
τ (G) ∩ Lq,1

τ (G), f̂α is analytic on S◦
q and continuous on Sq by

Proposition 3.2.4 (1). That is f̂α is analytic on S◦
p,δ and continuous on Sp,δ, where

δ = (γq−γp)ρ > 0. Also by Proposition 3.2.4 lim|ξ|−→∞ f̂α(ξ+iη) = 0 for |η| ≤ γqρ.

We consider the strip

T =

{
z | γpρ < |ℑz| ≤ γpρ+

δ

2

}
.

We take a function fβ from the collection {fα | α ∈ Λ}. Let Z(T ) be the set of

all zeros of f̂β in T .

As zeros of an analytic function in a connected open set are isolated we choose

countably many disjoint open rectangles Ri such that Z(T ) ⊂ ∪iRi ⊂ T and each

Ri contains only one zero of f̂β.

We suppose R1 has a zero of f̂β at a1 of order n1. Note that a1 is at a positive

distance from Sp. As f̂β(λ) = f̂β(−λ), we have f̂β(λ) = (λ2 − a2
1)

n1g(λ) where

g(λ) is an even function which is analytic on S◦
p,δ/2 and g(±a1) 6= 0. We choose a

q < q1 < p such that γq1ρ < |ℑa1|. That is a1 6∈ Sq1.

We define a function H on Sq1 by

H(λ) =
e−λ2

(λ2 − a2
1)

n1
.

Then H ∈ S(Sq1)e and hence by Corollary 5.2.2 there exists h ∈ Cq1
τ (G) such that

ĥ(λ) = H(λ) for λ ∈ Sq1. Let fβ ∗ h = fβ,1. Then fβ,1 ∈ Lp,1
τ (G) by Proposition

3.2.1 (3) and f̂β,1(λ) = f̂β(λ)ĥ(λ) = g(λ)e−λ2
for λ ∈ Sq1. But as g is analytic on

S◦
p,δ/2 it follows that f̂β,1 extends analytically on S◦

p,δ/2 and lim|ξ|→∞ f̂β,1(ξ+iη) = 0

on Sp,δ/2. From this using Cauchy’s integral formula and Corollary 5.2.2 we get

that fβ,1 ∈ Cq1
τ (G) ⊆ Lp,1

τ (G). We also note that f̂β,1(λ) 6= 0 for all λ ∈ R1

and f̂β,1(λ) 6= 0 whenever f̂β(λ) 6= 0. In this way we can construct a collection

fβ,i ∈ Lp,1
τ (G) such that f̂β,i(λ) 6= 0 on Ri and f̂β,i(λ) 6= 0 whenever f̂β(λ) 6= 0. By

definition the functions fβ,i is in the ideal generated by {fα | α ∈ Λ} in Lp,1
τ (G)
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as Cq1
τ (G) ⊆ Lp,1

τ (G). We consider the collection

Γ = {fα, fβ,i | α ∈ Λ, i = 1, 2, · · · }.

Then ZΓ = {z ∈ Sp,δ/2 | f̂(z) = 0, for all f ∈ Γ} is empty.

It is clear that f̂ ∈ Ap
0(δ/2) for all f ∈ Γ. We consider the conformal map

ψ(λ) =
i(eπλ/2(γpρ+ δ

2
) − 1)

eπλ/2(γpρ+ δ
2
) + 1

from the strip Sp,δ/2 onto the closure of D, which maps R on the line segment

joining i and −i. In particular ψ(0) = 0, ψ(∞) = i, ψ(−∞) = −i, ψ(i(γpρ+ δ
2
)) =

−1 and ψ(−i(γpρ+ δ
2
)) = 1. Through ψ we can identify the functions on Ap

0(δ/2)

as the functions on A0(D). We abuse the notation to denote both the function on

Ap
0(δ/2) and its realization on A0(D) by f̂ . Note that it follows from (6.1.1) that,

as a function in A0(D), f̂α0 satisfies (6.1.3).

Let Î be the algebraic ideal in A0(D) generated by the τ -spherical transforms

of the functions in Γ . Then Î satisfies the hypothesis of Lemma 6.1.5(b) and hence

is dense in Ap
0(δ/2) under the supremum norm. We note that Ap

0(δ/2) = Ap1

0 (δ′)

for some p1 < p such that γp1ρ < γpρ + δ/2 and 0 < δ′ < δ/2. We take a

function ξ ∈ Fp1,δ′ ⊂ Cp1
τ (G) (as described in Lemma 6.1.6). Then by definition

the function λ 7→ ξ̂(λ)eKλ2
is in Ap1

0 (δ′) for some K > 0. Now by denseness of

Î there exists {Fn} ⊂ Î such that Fn(λ) → ξ̂(λ)eKλ2
as n → ∞ uniformly in

λ ∈ Sp1,δ′ . Since e−Kλ2
∈ Ap1

0 (δ′) we have that Fn(λ)e−Kλ2
∈ Î.

Therefore by Lemma 6.1.7, Fn(λ)e−Kλ2
→ ξ̂(λ) in S(Sp1)e. It follows easily

from Cauchy’s integral formula that the function Fn(λ)e−Kλ2
is in S(Sp1)e.

Since Fn ∈ Î, we can assume without loss of generality that Fn = f̂ h1 for

some f ∈ Γ and h1 ∈ Ap1

0 (δ′). Thus for K = K1 +K2, K1, K2 > 0, Fn(λ)e−Kλ2
=

f̂(λ)e−K1λ2
h1(λ)e−K2λ2

= (m1 ∗m2)̂ (λ) where m̂1(λ) = f̂(λ)e−K1λ2
and m̂2(λ) =

h1(λ)e−K2λ2
and m̂1, m̂2 ∈ S(Sp1)e. As the τ -spherical transform is a topological

isomorphism from Cp1
τ (G) to S(Sp1)e it follows that m1, m2 ∈ Cp1

τ (G). It is also

clear that m1 and hence m1 ∗ m2 is in the ideal generated by elements of Γ in

Lp,1
τ (G). This completes the proof for the case n even.

For the case when n is odd we have to modify the proof in the following way.

First we note that as f̂(σ+, λ) = f̂(σ−,−λ), it is enough to work with f̂(σ+, λ).

In the above line of argument we take H(σ+, λ) = e−λ2

(λ−a1)n1
, and proceed in an

analogous fashion.

For the proof of Theorem 6.1.2 one can follow the similar line of argument and
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use the corresponding Propositions and Lemmas. We omit the proof.

Remark 6.1.8. The following remarks are in order.

(1) The Kunze-Stein phenomenon (see Chapter 3), Corollary 3.1.3 and Proposition

3.2.1 show that we can formulate WTT also in many other setup; for instance:

(a) Lp
τ (G) under Lq,r

τ (G) action where 1 ≤ q < p, 1 ≤ r ≤ q,

(b) Lp,r
τ (G) as an Lq,1

τ (G) module, where 1 < q ≤ p < 2 and 1 ≤ r ≤ ∞, Lp,r
τ (G)

as L1
τ (G) module for 1 < p < 2 and 1 ≤ r ≤ ∞,

(c) L1
τ (wp,s) as L1

τ (wp,r) module where r > s ≥ 0,

(d) L1
τ (wp,s) as L1

τ (wq,r) module where q < p and r, s ∈ R with s ≥ 0.

We notice that (b) includes the weak Lp spaces for 1 < p < 2. Starting from similar

hypothesis and with easy modifications of the method used in Theorem 6.1.1 and

in Theorem 6.1.2 we can prove these theorems. We omit them for brevity.

(2) We recall that for 1 < p < 2, the elementary spherical function φλ ∈ Lp′,∞(G)

if and only if λ ∈ Sp and from this it follows that if λ ∈ Sp then φτ
σ,λ ∈ Lp′,∞

τ (G)

(see Chapter 2). The following simple argument using WTT proves that if φτ
σ,λ ∈

Lp′,∞
τ (G) then λ ∈ Sp.

We suppose for some point (σ, λ0) ∈ M̂(τ) × (C \ Sp), φ
τ
σ,λ0

∈ Lp′,∞
τ (G).

Then φτ
σ,λ0

defines a continuous linear functional on Lp,1
τ (G). In other words τ -

spherical transform of any function in Lp,1
τ exists as a convergent integral at λ0.

We choose a δ > 0 such that the augmented strip Sp,δ does not contain λ0. We

consider a collection of τ -radial C∞
c functions on G such that the τ -spherical

transforms of this collection have no common zero in Sp,δ, but all of them vanish

at λ0. Then by Theorem 6.1.2, this collection of functions generates a dense ideal

in Lp,1
τ (G) because any C∞

c function automatically satisfies condition (6.1.1) by

Phragmén-Lindelöf Theorem. Using continuity of spherical transform for Lp,1
τ -

functions, thus all functions in Lp,1
τ (G) has zero τ -spherical transform at λ0. This

contradicts the fact that there is a τ -radial C∞
c (G) function which has nonzero τ -

spherical transform at λ0. (Such a function can be constructed using Paley-Wiener

Theorem.)
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6.2 Wiener-Tauberian Theorems based on Uni-

tary Dual

In this section we shall prove two Wiener-Tauberian type theorems to point out

two different features of the theorem. In both of these theorems the nonvanishing

condition imposed on the function will be only on the unitary dual of the group.

The triple (G,K, τ) is as in the previous section.

In Remark 6.1.8 we have observed that it is possible to formulate and prove

WTT for many function spaces acting by convolution on many others. Thus the

basic formulation of the Wiener-Tauberian theorem involves two function spaces

F1 and F2, where F1 acts on F2 by convolution. We find sufficient condition which

we put on a set of functions G in F2 such that under F1 action G generates a dense

linear subspace of F2. Often the sufficient condition is also necessary, for instance

for a WTT for Lp,1 functions the generator should have nonvanishing τ -spherical

transform on the strip Sp. This makes the situation extremely rigid. We will see

below that the rigidity of the condition on the generator can be weakened.

To keep things simple we shall consider only the Banach algebra L1
τ (G) and

we shall put condition on a single function instead of an arbitrary collection. It is

not difficult to see how the theorem below generalizes for other Banach algebras

and modules discussed in Chapter 3 and for arbitrary collection of functions as

generators. Easy modification of the argument will prove these generalizations.

We recall that

S1,δ = {z | |ℑz| ≤ 1 + δ}.

Theorem 6.2.1. Let f ∈ L1
τ (G) be such that f̂(σ, ·) extends holomorphically to

S◦
1,δ for some δ > 0. Furthermore if

(1) |f̂(σ, ξ + iη)| −→ 0 as |ξ| −→ ∞ on S1,δ,

(2) f satisfies (6.1.1)

(3) For each σ ∈ M̂(τ), f̂(σ, λ) 6= 0 for all λ ∈ R,

then there exists a vector subspace A of C2
τ (G) such that h ∗ f ∈ L1

τ (G) for all

h ∈ A and the ideal generated by {h ∗ f | h ∈ A} in L1
τ (G) is dense in L1

τ (G).

Proof. First we take up the case n even. Since f̂ is holomorphic on S◦
1,δ, zeros of

f̂ cannot have limit point in a smaller strip S1,δ/2 except at ±∞. We can divide

the strip S1,δ/2 into countably many rectangles Ri with disjoint interiors such that

exactly one zero of f̂ is in R◦
i . By hypothesis this zero does not lie on the real

line. Suppose R◦
i has a zero of f̂ at ai of order ni. Then f̂(λ) = Fi(λ)(λ2 − a2

i )
ni

where Fi(±ai) 6= 0. It is clear that ai is at a positive distance from the real line.
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We consider the function Hi(λ) = e−λ2

(λ2−a2
i )ni

.

One verifies that Hi|R is in S(R)e and hence using Schwartz space isomorphism

there is a hi ∈ C2
τ (G) such that ĥi(λ) = Hi(λ) for all λ ∈ R.

Now

ĥi ∗ f(λ) = ĥi(λ)f̂(λ) = e−λ2

Fi(λ)

has analytic extension on S1,δ/2, does not vanish anywhere on Ri and satisfies (1)

of the hypothesis. We also note that ĥi ∗ f(λ) 6= 0 whenever f̂(λ) 6= 0.

From the condition |f̂(ξ + iη)| −→ 0 as |ξ| −→ ∞ on S1,δ, it follows that

|Fi(ξ + iη)| −→ 0 as |ξ| −→ ∞ on S1,δ/2. Using Cauchy’s integral formula it can

be shown that the derivatives of Fi are bounded on S1 and hence Fi(λ).e−λ2
is

in the image of C1
τ (G) under τ -spherical transform. This shows that the function

f ∗ hi is in L1
τ (G).

In this way for each i, we can construct hi and consider the collection of

functions {hi ∗ f | i = 0, 1, 2, . . .}. We note that τ -spherical transform of these

collection of functions have no common zero in S1,δ/2. It is also clear that f ∗ hi

satisfies condition (2) of the hypothesis. Thus this collection satisfy the conditions

of Theorem 6.1.2 for p = 1, r = 0. Therefore by Theorem 6.1.2 the ideal generated

by hi ∗ f in L1
τ (G) is dense in L1

τ (G). It is clear that A = {hi} ⊆ C2
τ (G).

For the case when n is odd a routine modification will prove the theorem.

Next we take up the WTT for a degenerate case of the algebras described in

Chapter 3. We recall that for r ≥ 0

L1
τ (w2,r) = {f measurable |

∫

G

|f(x)|φ0(x)(1 + σ(x))r dx <∞}

is an algebra and Lp
τ (G) ⊆ L1

τ (w2,r) for 1 ≤ p < 2. We shall prove the following

Wiener-Tauberian theorem for this algebra.

Theorem 6.2.2. For an index set Λ let {fα : α ∈ Λ} be a collection of functions

such that for every α ∈ Λ, fα ∈ Lpα
τ (G) for some pα ∈ [1, 2). Then the ideal

generated by the collection in L1
τ (w2,r), r ≥ 0 is dense in L1

τ (w2,r) if and only if

for any σ ∈ M̂(τ) the collection {f̂α(σ, λ) | α ∈ Λ} does not have common zero

on R.

We note that unlike the Wiener-Tauberian theorems proved in Section 6.1,

this theorem resembles the euclidean Wiener-Tauberian theorem.
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For a tempered distribution W on R and g ∈ S(R), we define a tempered

distribution W.g on R by the rule W.g(h) = W (gh), where h ∈ S(R).

We need the following two lemmas.

Lemma 6.2.3. Let W be a tempered distribution on R and {gα | α ∈ Λ} ⊆ S(R)

be a collection of functions such that W.gα = 0 for all α ∈ Λ. Then support of W

is contained in ∩α∈Λ{λ ∈ R | gα(λ) = 0}.

Proof. We suppose that t is in the support of W but gα0(t) 6= 0 for some α0 ∈ Λ.

Since gα0(t) 6= 0, there is a neighbourhood Vt of t such that gα0(s) 6= 0 for all

s ∈ Vt. Therefore there is a function ψ ∈ C∞(R) such that gα0(s)ψ(s) = 1 for

all s ∈ Vt. Also t is in the support of W implies that there is a C∞
c function φ

supported on Vt such that W (φ) 6= 0. Therefore gα0ψφ = φ. Now W.gα0 = 0

implies W.gα0(φψ) = 0. This shows that W (gα0φψ) = 0. Therefore W (φ) = 0,

which is not possible. Hence gα(t) = 0 for all α ∈ Λ.

Lemma 6.2.4. Let {fα | α ∈ Λ} ⊆ S(R) (respectively {fα | α ∈ Λ} ⊆ S(R)e)

be a collection of functions such that {f̃α | α ∈ Λ} has no common zero on R,

where f̃α is the euclidean Fourier transform of fα. Then the ideal generated by fα

(under convolution) in S(R) (respectively in S(R)e) is dense in S(R) (respectively

in S(R)e).

Proof. Let V be the ideal generated by {fα}α∈Λ ⊆ S(R). Let T be a tempered

distribution on R such that T (φ) = 0 for all φ ∈ V . Then for any g ∈ S(R) we

have T (g ∗ fα) = 0 which implies that (T ∗ fα)(g) = 0. Hence T ∗ fα ≡ 0 as a

distribution. Therefore T̃ ∗ fα ≡ 0, i.e., T̃ .f̃α ≡ 0. So support of T̃ is contained

in ∩α∈Λ{λ | f̃α(λ) = 0} by Lemma 6.2.3. By the hypothesis it follows that T̃ ≡ 0.

Hence T = 0. Similar argument works when fα’s are also even.

Proof of Theorem 6.2.2. Let n be even. Then σ ∈ M̂(τ) is unique and we shall

omit the obvious σ from the notation. We take fα ∈ Lpα
τ (G) from the collection

in the hypothesis. By Corollary 5.2.2 there exists a function g ∈ Cpα
τ (G) such

that ĝ(λ) = e−λ2
for all λ ∈ Spα. Then for any p ∈ (pα, 2), by Theorem 3.2.4 f̂α is

bounded on Sp. Using Cauchy’s integral formula it follows that f̂α.ĝ ∈ S(S2)e =

S(R)e. Using Corollary 5.2.2 again we have fα∗g ∈ C2
τ (G). Let hα = fα∗g. In this

way we get a collection {hα | α ∈ Λ} inside the ideal generated by {fα | α ∈ Λ} in

C2
τ (G). We notice that ĥα(λ) 6= 0 whenever f̂α(λ) 6= 0. Therefore the collection

{ĥα | α ∈ Λ} does not have common zero on R. It is thus sufficient to prove that

the ideal generated by {hα | α ∈ Λ} in L1
τ (w2,r) is dense in L1

τ (w2,r).

As Abel transform is a topological isomorphism between C2
τ (G) and S(R)e,

we also have Ahα ∈ S(R)e for all α ∈ Λ. Let I and J respectively be the ideal
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generated by {hα | α ∈ Λ} in C2
τ (G) and the ideal generated by {Ahα | α ∈ Λ}

in S(R)e. Let I and J be the closure of I in C2
τ (G) and the closure of J in S(R)e

respectively. By Theorem 2.3.2 Ãhα has no common zero. Hence by Lemma 6.2.4

J = S(R)e.

Let ∗R be the convolution on R. For any gα ∈ S(R)e as gα∗RAhα = A(A−1gα∗

hα) where A−1gα ∈ C2
τ (G) we have J ⊂ AI and hence AI = S(R)e. But as

A(I) = AI we have AI = S(R)e. As Abel transform is a topological isomorphism

between C2
τ (G) and S(R)e we finally have I = C2

τ (G). The result now follows

from the facts that topology of C2
τ (G) is stronger than the topology of L1

τ (w2,r)

and C2
τ (G) is dense in L1

τ (w2,r) (see Chapter 3).

A routine modification of the argument above proves the assertion for the case

when n is odd.

Remark 6.2.5. We note that this proof cannot be adopted for the Wiener-

Tauberian theorems we have proved earlier. For example in the case of L1
τ (G)

we have to work with an L1-tempered distribution W and a function g ∈ S(S1)

in Lemma 6.2.3. To make W.g(φψ) meaningful φψ has to be in S(S1) which is

the image of C1
τ (G) under τ -spherical transform. Here φ cannot be compactly

supported as φ has to be analytic on S◦
1 . So we can only assume that φ analytic

on S◦
1 and very rapidly decreasing. Therefore to make φψ rapidly decreasing ψ

cannot grow fast. But the function ψ chosen in the proof has to be analytic on

S◦
1 and that takes away the liberty to make it decay arbitrarily outside Vt.
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Chapter 7

Invariant Subspace Theorem of

Schwartz

7.1 Schwartz’s Theorem

We recall Schwartz’s theorem on R ( [56]).

Theorem 7.1.1. (Schwartz 1947) Let f be a nonzero function in C∞(R). Then

the space Vf = {W ∗ f |W ∈ C∞(R)′} contains the function x 7→ eiλx for some

λ ∈ C. Moreover the linear space generated by these eiλx and their derivatives
dj

dλj e
iλx, j=1, 2,. . . which are in Vf , is dense in Vf .

For even functions on R we have the following version of this theorem (see [3]):

For λ ∈ C, let ψλ(x) = eiλx+e−iλx

2
.

Theorem 7.1.2. Let f be a nonzero even function in C∞(R). Then the space

Vf = {W ∗ f |W ∈ C∞(R)′e} contains ψλ for some λ ∈ C. Moreover the linear

space generated by these ψλ(x) and their derivatives dj

dλjψλ(x), j=1, 2,. . . which

are in Vf , is dense in Vf .

With G,K, τ as in Chapter 4, for τ -radial functions the object which corre-

sponds to the plane wave x 7→ eiλx is the τ -spherical function φτ
σ,λ. In view of this

we offer the following analogue of the theorem above.

Theorem 7.1.3. Let f be a nonzero function in C∞
τ (G) and Vf is the closure

of {W ∗ f | W ∈ C∞
τ (G)′} (in C∞

τ (G) topology). Then for each σ ∈ M̂(τ), Vf

contains the function x 7→ φτ
σ,λ(x) for some λ ∈ C (λ depends on σ). Moreover

the linear space generated by these φτ
σ,λ(x) and their derivatives dj

dλj φ
τ
σ,λ(x), j =

1, 2, . . . which are in Vf , is dense in Vf .

79
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Remark 7.1.4. We recall that for a τ -radial function f , its translations are not

in general τ -radial. The appropriate operation which substitute translation in

this setup is the τ -radial translation, by which we mean the projection of the

translated function on the space of τ -radial functions. We note that the space Vf

defined in the statement above is also the closure of the τ -radial translations of

f . Precisely we define the τ -radial translation ρτ
x(f) of a function f ∈ C∞

τ (G) by

an element x ∈ G by

ρτ
x(f)(y) = dτ

∫

K

(χτ∗L(x)f)(kyk−1) dk = dτ

∫

K

∫

K

f(x−1k−1
1 kyk−1)χτ (k1) dk1 dk.

Let Wf be the closure of {ρτ
x(f) | x ∈ G}. Then Vf = Wf . Indeed using the

denseness of C∞
c,τ (G) in C∞

τ (G)′ it is not difficult to show that Vf ⊆ Wf . For

the other side for every x ∈ G, we define Wx ∈ C∞
τ (G)′ by Wx(g) = g(x−1)

for g ∈ C∞
τ (G). A straightforward computation then shows that (Wx ∗ f)(y) =

ρτ
xf(y). Thus Theorem 7.1.3 can be rewritten using τ -radial translations, instead

of convolution with elements in C∞
τ (G)′.

Proof of Theorem 7.1.3. (a) Suppose n is even. Then as in this case τ |M contains

a unique σ ∈ M̂ we will omit σ from the notation. Using the isomorphism of the

Abel transform A between C∞
τ (G)′ and C∞(R)′e and the reflexivity of C∞(R)e we

define a linear operator T : C∞
τ (G) −→ C∞(R)e by the following:

AW (Tg) =
1

dτ
W (g) for W ∈ C∞

τ (G)′, g ∈ C∞
τ (G).

As A is a topological isomorphism between the dual spaces C∞
τ (G)′ and C∞(R)′e

(see Section 2.3 and Section 5.3), T is also a topological isomorphism.

Since A(W )(Tφτ
λ) = 1

dτ
W (φτ

λ) = Ŵ (λ) = A(W )(ψλ) for all W ∈ C∞
τ (G)′ and

as A is an isomorphism, we have Tφτ
λ = ψλ, equivalently T−1ψλ = φτ

λ.

We note that

ψλ+h − ψλ

h
→

d

dλ
ψλ as h→ 0

in the topology of C∞(R)e. Using the fact that T is a topological isomorphism

we have

(T )−1

(
ψλ+h − ψλ

h

)
→ (T )−1

(
d

dλ
ψλ

)
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as h→ 0 in the topology of C∞
τ (G). But (T )−1 (ψλ+h) = φτ

λ+h. Therefore

lim
h→0

φτ
λ+h − φτ

λ

h
= (T )−1

(
d

dλ
ψλ

)
.

In other words we have T
(

d
dλ
φτ

λ

)
= d

dλ
(ψλ).

By repeated use of the argument above we get,

T (
dj

dλj
φτ

λ) =
dj

dλj
ψλ, j = 0, 1, 2, . . .

and equivalently

T−1(
dj

dλj
ψλ) =

dj

dλj
φτ

λ, j = 0, 1, 2, . . . . (7.1.1)

Now we consider Tf where f is as in the hypothesis.

Let VTf = {S ∗ Tf | S ∈ C∞(R)′e}. We claim that

VTf = {T (W ∗ f) | W ∈ C∞
τ (G)′}. (7.1.2)

Note that every S ∈ C∞(R)′e can be written as S = AW for some W ∈

C∞
τ (G)′. Thus we have VTf = {AW ∗ Tf |W ∈ C∞

τ (G)′}. It is sufficient to show

that

AW ∗ Tf = T (W ∗ f). (7.1.3)

We take an arbitrary S1 ∈ C∞(R)′e. Then S1 = AW1 for some W1 ∈ C∞
τ (G)′.

Now,

A(W1)(AW ∗ Tf) = AW1 ∗ (AW ∗ Tf)(0)

= (AW1 ∗ AW ) ∗ Tf(0)

= A(W1 ∗W ) ∗ Tf(0)

= A(W1 ∗W )(T (f))

= 1
dτ

(W1 ∗W )(f).

On the other hand,

A(W1)(T (W ∗ f)) =
1

dτ

W1(W ∗ f) =
1

dτ

W1(f ∗W ) =
1

dτ

(W1 ∗W )(f).

As both sides of (7.1.3) are functions in C∞(R)e and S1 = AW1 is an arbitrary

element of the dual space, this proves (7.1.3) and establishes the claim.

Now it is clear from Theorem 7.1.2 that VTf contains ψλ for some λ and these

ψλ and their derivatives dj

dλjψλ which are in VTf generate a dense subspace in VTf .

From (7.1.2) and (7.1.1) now the theorem follows using that T is a topological
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isomorphism.

(b) Suppose n is odd. As in (a) using the isomorphism Aσ+ : C∞
τ (G)′ →

C∞(R)′ and the reflexivity of C∞(R) we define a linear operator T : C∞
τ (G) →

C∞(R) by the following:

Aσ+W (Tg) =
1

dτ
W (g) for W ∈ C∞

τ (G)′, g ∈ C∞
τ (G).

Since Aσ+ is a topological isomorphism between C∞
τ (G)′ and C∞(R)′ (see Sec-

tion 2.3 and Section 5.3), T is also a topological isomorphism. Also since

Aσ+(W )(Tφτ
σ+,λ) = 1

dτ
W (φτ

σ+,λ) = Ŵσ+(λ) = Aσ+(W )(e−iλ(·)) for allW ∈ C∞
τ (G)′

and as Aσ+ is an isomorphism, we have Tφτ
σ+,λ = e−iλ(·). Following the steps sim-

ilar to (a) we get

T (
dj

dλj
φτ

σ+,λ) =
dj

dλj
e−iλ(·), j = 0, 1, 2, · · ·

and equivalently

T−1(
dj

dλj
e−iλ(·)) =

dj

dλj
φτ

σ+,λ, j = 0, 1, 2, · · · (7.1.4)

Let VTf = {S ∗ Tf | S ∈ C∞(R)′}. Then as in (a) we have

VTf = {T (W ∗ f) | W ∈ C∞
τ (G)′}.

By Theorem 7.1.1 VTf contains e−iλ(·) for some λ ∈ C. These e−iλ(·) and their

derivatives dj

dλj e
−iλ(·) which are in VTf generate a dense subspace in VTf . From

(7.1.4) it follows that Vf contains φτ
σ+,λ and these φτ

σ+,λ and their derivatives
dj

dλj φ
τ
σ+,λ generate a dense subspace in Vf . Since φτ

σ+,λ = φτ
σ−,−λ, the theorem

follows for σ = σ− also. This completes the proof.

We shall conclude this section with the observation that if a higher derivative

of a τ -spherical function belongs to Vf then so does any of its lower derivative.

Apart from those used in the theorem above we shall use the notation:

φτ
λ0,k(x) =

dk

dλk
φτ

λ(x)|λ=λ0
, φτ

σ±,λ0,k(x) =
dk

dλk
φτ

σ±,λ(x)
∣∣
λ=λ0

and ψλ0,k =
dk

dλk
ψλ |λ=λ0

.

We claim that if φτ
λ0,k(x) (respectively φτ

σ±,λ0,k(x)) is in Vf for n even

(respectively for n odd) then so is φτ
λ0,l(x) (respectively φτ

σ±,λ0,l(x)) for any

0 ≤ l ≤ k.

We consider the case when n is even. We suppose that φτ
λ0,1 ∈ Vf . Then



83 Some Related Results

ψλ0,1 = T (φτ
λ0,1) ∈ VTf . This implies that s 7→ ψλ0,1(s + t) + ψλ0,1(s − t) ∈ VTf

for any t ∈ R as VTf is invariant under convolutions by even compactly supported

distributions (hence invariant under even translations). We use the following

identity

ψλ0,1(s+ t) + ψλ0,1(s− t) − 2ψλ0(t)ψλ0,1(s) = −2t sin(λ0t)ψλ0(s)

to infer that the map s 7→ ψλ0(s) = T (φτ
λ0

)(s) ∈ VTf . Therefore φτ
λ0

∈ Vf ,

since T is a topological isomorphism. A repeated use of this argument proves the

assertion.

For the case n odd the argument is similar except we have to use the identity:

d

dλ
e−iλ(s+t) − e−iλt d

dλ
e−iλs = (−ite−iλt)e−iλs for all s, t ∈ R.

7.2 Some Related Results

In this section we continue to work with G,K and τ as in the previous section.

The following is a consequence of Theorem 7.1.3 which can be thought of as a

Wiener-Tauberian theorem for distributions.

Corollary 7.2.1. Let {Tα}α∈Λ be a collection of compactly supported τ -radial

distributions on G such that for each σ ∈ M̂(τ), T̂α(σ, ·) has no common zero in

C. Then the space generated by {Tα}α∈Λ defined by {Tα∗W |W ∈ C∞
τ (G)′, α ∈ Λ}

is dense in C∞
τ (G)′.

Proof. We suppose that the space generated by {Tα}α∈Λ is not dense in C∞
τ (G)′.

Then there exists f ∈ C∞
τ (G) such that (Tα ∗W )(f) = 0 for all W ∈ C∞

τ (G)′, α ∈

Λ. Therefore we have Tα(W ∗f) = 0 for allW ∈ C∞
τ (G)′, α ∈ Λ. Hence Tα(Vf) = 0

for all α ∈ Λ. But for each σ ∈ M̂(τ) by Theorem 7.1.3 Vf contains φτ
σ,λ0

for some

λ0 ∈ C. Hence T̂α(σ, λ0) = 0 for all α ∈ Λ. This contradicts the hypothesis. This

completes the proof.

Mean periodic functions: A function in f ∈ C∞
τ (G) is mean periodic if there

is a W ∈ C∞
τ (G)′ such that W ∗ f = 0 (see [24]), equivalently if Vf is proper

subspace of C∞
τ (G), where Vf is as defined in Theorem 7.1.3. We shall see that

if a nonzero τ -radial C∞ function is in one of the following classes then it is not

mean periodic:

(1) f ∈ Lp
τ (G), 1 ≤ p ≤ 2,

(2) f ∈ Lp,∞
τ (G), 1 < p < 2, that is f is weak-Lp,
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(3) f ∈ L1
τ (G,w2,0) = {f measurable and τ -radial |

∫
G
|f(x)|φ0(x)dx <∞},

We notice that by the properties of φλ mentioned in Chapter 1, it follows that

L1
τ (G,w2,0) contains the classes described in (2) and hence in particular contains

Lp
τ (G), 1 < p < 2. It is also clear that L1

τ (G,w2,0) ⊃ L1
τ (G) as φ0 is bounded by

1. Therefore we shall check the property only for functions in L1
τ (G, φ0)∩C

∞
τ (G)

and in L2
τ (G) ∩ C∞

τ (G).

Let f be a nonzero function either in L1
τ (G,w2,0)∩C

∞
τ (G) or in L2

τ (G)∩C∞
τ (G).

We suppose that for some W ∈ C∞
τ (G)′, W ∗ f = 0. Then Ŵ (σ, λ)f̂(σ, λ) = 0 for

almost every λ ∈ R. Since f is a nonzero function f̂(σ, ·) is nonzero on a set of

positive measure. Therefore Ŵ (σ, ·) is zero on that set of positive measure. Since

by Paley-Wiener Theorem (see Theorem 5.3.3) Ŵ (σ, ·) is an entire function, it

follows that Ŵ (σ, ·) ≡ 0. Therefore W = 0.

The range 1 ≤ p ≤ 2 is sharp in the sense that for any q > 2, there are

functions in Lq
τ (G) ∩ C∞

τ (G) which are mean periodic. Indeed for a fixed q > 2

we consider the function f = φτ
σ,λ for some λ ∈ S◦

q′ . Then f ∈ Lq
τ (G)∩C∞

τ (G). It

is easy to construct a nonzero W ∈ C∞
τ (G)′ such that Ŵ (σ, λ) = 0 (see Theorem

5.3.3). For this W ,

W ∗ φτ
σ,λ(x) =

∫

K

(W ∗ φτ
σ,λ)(k

−1xk) dk =

∫

K

W∨
(
L(k−1xk)(φτ

σ,λ)
∨(·)
)
dk

=

∫

K

W (φτ
σ,λ(·k

−1xk)) dk =
1

dτ
W (φτ

σ,λ(x)φ
τ
σ,λ(·)) = Ŵ (σ, λ)φτ

σ,λ(x).

Therefore W ∗ φτ
σ,λ(x) = 0. This shows that φτ

σ,λ is mean periodic.

A question connected with failure of the Wiener-Tauberian Theorem:

As the functions φτ
σ,λ ∈ Lq,∞

τ (G) when λ ∈ Sq′ , q > 2, (see Chapter 2) a

natural question at this point is: Does an arbitrary closed L1-invariant subspace

of Lq,∞
τ (G) contain φτ

σ,λ for some λ? That is we ask if we can have an analogue

of Schwartz’s theorem where the space C∞
τ (G) is replaced by Lq,∞

τ (G). We shall

show that the answer is negative. Precisely for any q > 2 there is a function

g ∈ Lq,∞
τ (G) such that the closure of Ig = {β ∗ g | β ∈ L1

τ (G)} does not contain

φτ
σ,λ for any σ ∈ M̂(τ), λ ∈ C. Interestingly this is related with the failure of the

Wiener-Tauberian theorem of the commutative Banach algebra Lp,1
τ (G), 1 ≤ p < 2

which we shall discuss now.

We fix a p ∈ [1, 2). We have noted in Chapter 2 that the Gelfand spectrum

of Lp,1
τ (G) is Sp and hence the τ -spherical transform of a function f ∈ Lp,1

τ (G)

has to be necessarily nonvanishing on Sp so that f generates a dense ideal under

convolution in Lp,1
τ (G). However we recall that this condition is not sufficient. A
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counter example is constructed in Chapter 6 to show that there is a function f

in Lp,1
τ (G) whose τ -spherical transform does not vanish anywhere in Sp, but the

ideal generated by f is not dense in Lp,1
τ (G).

We take that function f ∈ Lp,1
τ (G), whose τ -spherical transform is nonzero for

all λ ∈ Sp but If = {β ∗ f | β ∈ L1
τ (G)} is not dense in Lp,1

τ (G). Then there exists

g ∈ Lp′,∞
τ (G) such that

∫
G
g(x)h(x) dx = 0 for all h ∈ If . A use of Fubini’s theorem

shows that
∫

G
f(x)k(x) dx = 0 for all k ∈ Ig, where Ig = {β ∗ g | β ∈ L1

τ (G)}. We

suppose that φτ
σ,λ0

∈ Ig ⊂ Lp′,∞
τ (G) for some λ0 ∈ C. Then

∫
G
f(x)φτ

σ,λ0
(x) dx = 0,

i.e.,
∫

G
f(x)φτ

σ,λ0
(x−1) dx = 0 by Proposition 2.1.6. Therefore f̂(σ, λ0) = 0. But

as φτ
σ,λ0

∈ Lp′,∞
τ (G), λ0 ∈ Sp (see Chapter 6). Hence λ0 ∈ Sp. This contradicts

the assumption.

We may point out that the argument above works also for L1-invariant sub-

space of Lq,r
τ (G), with q > 2, 1 ≤ r < ∞. Precisely, we recall that (see Chapter

2) for q > 2, if λ ∈ S◦
q′ , then φτ

σ,λ ∈ Lq,r
τ (G) for 1 ≤ r < ∞. We can show as

above that there exists a function g ∈ Lq,r
τ (G), such that the closed L1-invariant

subspace generated by g does not contain any φτ
σ,λ.

Conversely we suppose that there exists a function g ∈ Lq,r
τ (G) with q > 2,

1 ≤ r <∞ such that the closed L1-invariant subspace Ig generated by g does not

contain any φτ
σ,λ. Then for any λ ∈ S◦

q′ there exists a function fλ ∈ Lq′,r′

τ (G) such

that fλ(Ig) = 0 and fλ(φ
τ
σ,λ) 6= 0. Thus we get a collection F = {fλ | λ ∈ S◦

q′}

in Lq′,r′

τ (G) such that their τ -spherical transform do not have common zero in

S◦
q′ . But as fλ(Ig) = 0, we have g(Ifλ

) = 0 for all λ ∈ S◦
q′ where Ifλ

= {β ∗ fλ |

β ∈ L1
τ (G)}. Therefore g(I) = 0 where I is the closure of span ∪λ∈S◦

q′
Ifλ

. Thus

assuming that there is a L1-invariant subspace of Lq,r
τ (G) which does not contain

any φτ
σ,λ, we can show that the Wiener-Tauberian theorem for Lq′,r′

τ (G) based on

nonvanishing τ -spherical transform on its domain fails.
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Chapter 8

Revisiting Schwartz’s Theorem

on SL(2,R)

8.1 Statement of the Theorem

In this Chapter we shall prove a version of the Schwartz’s theorem for the group

SL(2,R) without any restriction on K-finiteness. This result will strengthen the

analogue of Schwartz’s theorem proved in [24]. Our method is based on a gener-

alization of the notion of simplicity (see [34, p.315] for the corresponding notion

on right K-invariant functions). Our theorem is inspired by a result of Helgason

and Sengupta where the corresponding result is proved for rank one symmetric

spaces (see [36]).

Throughout this chapter G and g will denote the group SL(2,R) and its Lie

algebra sl(2,R) respectively. In the notation of Chapter 1, here K = SO(2) ∼= S1

which we parametrize as {kθ | θ ∈ [0, 2π)} and equip with the normalized Haar

measure dk = dθ/2π. The unitary dual K̂ of K is parametrized by integers.

Precisely K̂ = {en | n ∈ Z} where en(kθ) = einθ. We note that for any integer

n, (G,K, en) is a Gelfand triple (see [4]). By abuse of notation we shall denote

the K-types simply by the integers n. For each pair of integers (m,n) of the

same parity (i.e. either both even or both odd integers) we have the (m,n)-

th spherical function Φm,n
λ which is the object corresponding to the elementary

spherical function in analysis of K-biinvariant functions. In particular Φn,n
λ is the

n-spherical function in the language of Section 2.1. An explicit definition of Φm,n
λ

and other required preliminaries are given in the next Section.

The following theorem is due to Ehrenpreis and Mautner (see [24]).

Theorem 8.1.1 (Ehrenpreis-Mautner). Let V be a (both sided) translation in-

87
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variant nonzero closed subspace of C∞(G). Then either for each m,n ∈ 2Z or for

each m,n ∈ 2Z + 1, there exists λ ∈ C such that V contains x 7→ Φm,n
λ (x) where

λ depends on m,n.

We shall prove the following stronger version. Here C∞(G)n is the set of right

n type functions in C∞(G).

Theorem 8.1.2. Let Vn be a (left) translation invariant nonzero closed subspace

of C∞(G)n. Then there exists λ ∈ C such that Vn contains the function

en
λ,k : x 7→ e−λH(x−1k−1)en(K(x−1k−1)−1) for all k ∈ K.

If V is a (both sided) translation invariant nonzero closed subspace of C∞(G)

then either for each n ∈ 2Z or for each n ∈ 2Z + 1, there exists λ ∈ C which

depends on n such that V contains the function x 7→ en
λ,k(x) for all k ∈ K.

The spaces C∞(G) and C∞(G)n are equipped with the usual Fréchet topol-

ogy (see Chapter 2). We note that the elements of C∞(G)n can be considered

as smooth sections of the line bundle En (see Introduction for definition) associ-

ated with the K-type n. Here the object which naturally corresponds with the

exponential function eiλx is the function en
λ,k. It is an eigensection (of the Laplace-

Beltrami operator of SL(2,R)/SO(2)) of the bundle En. It is not difficult to verify

that Theorem 8.1.1 follows from Theorem 8.1.2 as
∫

K
en

λ,k(x)em(k) dk = Φn,m
λ−1(x).

Theorem 8.1.2 will be proved in Section 8.3.

8.2 Preliminaries

We need the following additional preliminaries apart from those given above. Four

important elements of g are

X =

(
0 1

−1 0

)
, H =

1

2

(
1 0

0 −1

)
, Y =

(
0 1

0 0

)
and Y =

(
0 0

−1 0

)
.

We suppose that exp(θX) = kθ, exp(2tH) = at, exp(ξY ) = nξ. Then A = {at :

t ∈ R} is a vector subgroup and N = {nξ : ξ ∈ R} is a nilpotent subgroup of G.

We fix the Iwasawa decomposition G = KAN and if for x ∈ G, x = kθatnξ is its

corresponding decomposition then we write H(x) for t and K(x) for kθ. Clearly H

is left K-invariant and right N -invariant. In this group mα = 0 and m2α = 1 and

hence ρ = 1. The Haar measure splits according to the Iwasawa decomposition as
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dx = e2tdk dt dn where dk = dkθ = dθ
2π

is the normalized Haar measure of K and

dn = dnξ = dξ as well as da = dat = dt are both Lebesgue measures on R.

A complex valued function f on G is said to be of left (respectively right)

K-type n if f(kθx) = einθf(x) (respectively f(xkθ) = f(x)einθ). Functions of left

K-type m and right K-type n are also referred as functions of type (m,n). By

fm,n we denote the projection of f in left type m and right type n, which is defined

(whenever possible) by

fm,n(x) =

∫

K

∫

K

f(kθxkφ)e
−imθe−inφdkθdkφ.

It can be verified that fm,n is a (m,n)-type function. It will also be called to as

the (m,n)-th component of f . Let C∞(G)m,n and C∞(G)n respectively denote the

set of (m,n) type and right n type C∞ functions on G. We recall that (see [4]) if

f ∈ C∞(G) then f =
∑

m,n∈Z
fm,n in the C∞(G) topology. The following results

are easy to verify:

(1) If f is of type (m,n) where m is odd and n is even then f ≡ 0,

(2) If n 6= r then fm,n ∗ gr,s ≡ 0 and fm,n ∗ gn,s is of type (m, s),

(3) If either m 6= −r or n 6= −s then
∫

G
fm,n(x)gr,s(x)dx = 0.

The complexification of g is denoted by gC and the universal algebra of gC is

denoted by U . The Casimir element Ω of U is defined by

Ω = H2 +H − Y Y .

The centre Z of U is generated by Ω. Each X ∈ g gives a left invariant vector

field LX and right invariant vector field RX by the formulas

LXf(x) = f(x;X) = d
dt
f(x exp(tX))

∣∣
t=0

RXf(x) = f(X; x) = d
dt
f(exp(tX)x)

∣∣
t=0

.

These identifications give an isomorphism between U and the algebra of left in-

variant differential operators on G, and an anti-isomorphism between U and the

algebra of right invariant operators. If g1, g2 ∈ U are considered as right invariant

and left invariant differential operators respectively, then their action at any x ∈ G

will be denoted by f(g1; x; g2). The elements of Z corresponds to the biinvariant

differential operators on G.
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Let M = {±I} where I is the identity matrix. Then M is the centre of G and

M̂ = {σ+, σ−} where σ− is the only nontrivial element of M̂ . We let Zσ = 2Z if

σ = σ+ and Zσ = 2Z + 1 if σ = σ−. Corresponding to each σ ∈ M̂ and λ ∈ C the

principal series representation πσ,λ in the compact picture is given by

πσ,λ(x)f(k) = e−(λ+1)H(x−1k−1)f(K(x−1k−1)−1) for f ∈ L2(K, σ) (8.2.1)

where L2(K, σ) is the subspace of L2(K) generated by {en | n ∈ Zσ}. Precisely

L2(K, σ) = {f ∈ L2(K) | f(km) = σ(m)f(k), for all k ∈ K, σ ∈ M}. We also

have the following relation:

πσ,λ(x)
∗ = πσ,−λ(x

−1) for each x ∈ G, λ ∈ C,

where πσ,λ(x)∗ is the adjoint of the operator πσ,λ(x). For σ ∈ M̂, λ ∈ C and

m,n ∈ Zσ we define

Φm,n
σ,λ (x) = 〈πσ,λ(x)em, en〉 =

∫

K

e−(λ+1)H(x−1k−1)em(K(x−1k−1)−1)en(k) dk

where 〈·, ·〉 is the inner product in L2(K, σ). Thus Φm,n
σ,λ (x) is the (m,n)-th matrix

coefficient of the operator πσ,λ(x) . In particular when m = n = 0 and σ = σ+,

then Φ0,0
σ,λ is the elementary spherical function φλ. It is easy to check that Φm,n

σ,λ is of

type (n,m). For an (m,n) type function f on G its (m,n)-th spherical transform

is defined by

f̂(σ, λ)m,n =

∫

G

f(x)Φm,n
σ,λ (x−1) dx.

It also follows from (3) above that if f is of type (m,n), then

f̂(σ, λ)r,s =

∫

G

f(x)Φr,s
σ,λ(x−1) dx = 0 if r 6= m or if s 6= n.

We note that an integer n determines a σ = σ(n) ∈ M̂ by the condition

n ∈ Zσ. Therefore sometimes we may omit the obvious σ and write Φm,n
λ for Φm,n

σ,λ

and f̂(λ)m,n for f̂(σ, λ)m,n.

The infinitesimal representation of g induced by πσ,λ is given by

πσ,λ(L)v =
d

dt
πσ,λ(exp tL)v

∣∣∣∣
t=0

for L ∈ g, v ∈ L2(K, σ).

We define E = 2H + i(Y − Y ) and F = −2H + i(Y − Y ). Then {X,E, F}

form a basis of gC and for σ ∈ M̂, λ ∈ C and n ∈ Zσ, we have (see [4, 4.4 and
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4.6])

πσ,λ(E)en = (n+ λ+ 1)en+2

πσ,λ(F )en = (n− λ− 1)en−2

πσ,λ(X)en = inen.

Using these it is easy to verify that:

Φm,n
σ,λ (E; x) = (n+ λ− 1)Φm,n−2

σ,λ (x) (8.2.2)

Φm,n
σ,λ (x;E) = (m+ λ+ 1)Φm+2,n

σ,λ (x) (8.2.3)

Φm,n
σ,λ (F ; x) = (n− λ+ 1)Φm,n+2

σ,λ (x) (8.2.4)

Φm,n
σ,λ (x;F ) = (m− λ− 1)Φm−2,n

σ,λ (x) (8.2.5)

for m,n ∈ Zσ and λ ∈ C.

It follows from equation (8.2.4), (8.2.5) that Φm+2,n−2
σ,λ (F ; x−1;F ) is a constant

multiple of Φm,n
σ,λ (x−1) where the constant is a polynomial in λ, depending on m,n.

We take a nonzero function f ∈ C∞
c (G)m,n. Then there is a λ ∈ C such that∫

G
f(x)Φm+2,n−2

σ,λ (F ; x−1;F ) dx is nonzero. Hence by change of variable it follows

that
∫

G
f(F ; x;F )Φm+2,n−2

σ,λ (x−1) dx is nonzero. This implies that f(F ; ·;F ) is of

type (m+ 2, n− 2). Through similar argument we can show that f(x;E), f(x;F )

and f(E; x) are of type (m,n + 2), (m,n − 2) and (m − 2, n) respectively. Thus

given integers (r, s) of the parity of (m,n) repeating the process above we can find

D1, D2 in U such that f(D1; x;D2) is of type (r, s).

These facts and a density argument yields the following:

Proposition 8.2.1. For a right n type C∞ function f on G and a fixed integer m

(same parity of n), there is a D ∈ U such that f(·;D) is a right m type function.

8.3 Proof of the Theorem

The following lemma gives a symmetry property of Φn,n
λ .

Lemma 8.3.1. For each n ∈ Zσ we have,

Φn,n
σ,λ(y−1x)

=
∫

K

[
e−(λ+1)H(x−1k−1)e−(−λ+1)H(y−1k−1)en(K(x−1k−1)−1)en(K(y−1k−1)−1)

]
dk.
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Proof. We have

Φn,n
σ,λ(y−1x) = 〈πσ,λ(y

−1x)en, en〉

= 〈πσ,λ(x)en, (πσ,λ(y
−1))∗en〉

= 〈πσ,λ(x)en, πσ,−λ̄(y)en〉

=
∫

K
πσ,λ(x)en(k)πσ,−λ̄(y)en(k) dk.

The lemma now follows from the definition of πσ,λ (see equation (8.2.1)).

Definition 8.3.2. For a fixed n ∈ Zσ and λ ∈ C, the Poisson transform of

F ∈ L2(K, σ) is defined by

Pn
λ (F )(x) =

∫

K

F (k)e−(λ+1)H(x−1k−1)en(K(x−1k−1)−1) dk.

The map x 7→ Pn
λ (F )(x) is of right type n. For n and λ as above and k ∈ K

the Helgason Fourier transform for a right n type function f is defined by

f̃(λ, k, n) =

∫

G

f(x)e(λ−1)H(x−1k−1)en(K(x−1k−1)) dx, whenever the integral converges.

SinceM is the centre ofG,H(x−1k−1m−1) = H(x−1k−1) andK(x−1k−1m−1) =

K(x−1k−1)m−1. Therefore f̃(λ, km, n) = e−n(m)f̃(λ, k, n) = σ(m)f̃(λ, k,m), i.e.,

f̃(λ, ·, m) ∈ L2(K, σ). The following lemma gives a relation between the Poisson

transform and the Helgason Fourier transform.

Lemma 8.3.3. For a right n-type function f , f ∗ Φn,n
σ,λ(x) = Pn

λ (f̃(λ, ., n))(x) for

n ∈ Zσ, whenever both sides make sense.

Proof. Using Lemma 8.3.1 and Fubini’s theorem we have

f ∗ Φn,n
σ,λ(x)

=
∫

G
f(y)Φn,n

σ,λ(y−1x) dy

=
∫

G
f(y)

∫
K
e−(λ+1)H(x−1k−1)e(λ−1)H(y−1k−1)en(K(x−1k−1)−1)en(K(y−1k−1)) dk dy

=
∫

K
e−(λ+1)H(x−1k−1)en(K(x−1k−1)−1)

∫
G
f(y)e(λ−1)H(y−1k−1)en(K(y−1k−1)) dy dk

=
∫

K
e−(λ+1)H(x−1k−1)en(K(x−1k−1)−1)f̃(λ, k, n) dk.
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Hence

f ∗ Φn,n
σ,λ(x) = Pn

λ (f̃(λ, ·, n))(x).

Definition 8.3.4. For a fixed integer n, a point λ ∈ C is said to be n-simple if

the map F 7→ Pn
λ (F ) is injective on L2(K, σ) where n ∈ Zσ.

The following lemma gives a criterion for n-simplicity of a point λ ∈ C.

Lemma 8.3.5. Let n be a fixed integer and σ ∈ M̂ such that n ∈ Zσ. A point λ

in C is n-simple, if for every m ∈ Zσ, Φn,m
σ,λ is a non-zero function.

Proof. Let f be a function in L2(K, σ). Let Pn
λ (f)(x) be denoted by F (x).

We suppose F ≡ 0. Then Fm ≡ 0, for all m ∈ Z, where

Fm(x) =
∫

K
F (kx)e−m(k) dk

=
∫

K

(∫
K
f(k1)e

−(λ+1)H(x−1k−1k−1
1 )en(K(x−1k−1k−1

1 )−1) dk1

)
e−m(k) dk.

We put k1k = k2 in the above to get,

Fm(x) =
∫

K

∫
K
f(k1)e

−(λ+1)H(x−1k−1
2 )en(K(x−1k−1

2 )−1)e−m(k−1
1 k2) dk2 dk1

=
∫

K

(∫
K
f(k1

)
em(k1) dk1)e

−(λ+1)H(x−1k−1
2 )en(K(x−1k−1

2 )−1)e−m(k2) dk2

=
∫

K
f̂(−m)e−(λ+1)H(x−1k−1

2 )en(K(x−1k−1
2 )−1)e−m(k2) dk2

= f̂(−m)Φn,m
σ,λ (x).

Therefore if λ is such that Φn,m
σ,λ 6≡ 0 for every m ∈ Zσ, then f̂(−m) = 0, for

all m ∈ Zσ. As f ∈ L2(K, σ) it is clear that f̂(r) = 0 for all r ∈ Z \ Zσ. Thus

f̂(m) = 0 for all m ∈ Z and hence f ≡ 0. Then from Definition 8.3.4 it follows

that λ is n-simple.

An explicit description of the combinations of {λ,m, n} for which Φm,n
σ,λ ≡ 0

is given in [4, Proposition 7.1, 7.2]. Using that we get the following immediate

Corollary.

Corollary 8.3.6. For a fixed integer n and any λ ∈ C, either λ or,−λ is n-simple.
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Lemma 8.3.7. Let σ ∈ M̂ . If λ ∈ C is n-simple for some n ∈ Zσ then,

B =

{
k 7→

N∑

j=1

aje
−(λ̄+1)H(x−1

j k−1)en(K(x−1
j k−1)−1) : aj ∈ C, xj ∈ G,N ∈ N

}

is dense in L2(K, σ).

Proof. If B is not dense then there is a nonzero function F ∈ L2(K, σ) such that

for all x ∈ G,

∫

K

F (k)e−(λ+1)H(x−1k−1)en(K(x−1k−1)−1) dk = 0.

That is Pn
λ (F ) ≡ 0. As λ is n-simple we have F ≡ 0. This contradicts our

assumption on F .

Lemma 8.3.8. If −λ̄ is n-simple for some n ∈ Zσ then span{yΦn,n
σ,λ : y ∈ G}

contains Pn
λ (L2(K, σ)) where yΦn,n

σ,λ denotes the left translation of Φn,n
σ,λ by y ∈ G.

Proof. Let F ∈ L2(K, σ), then by Lemma 8.3.7 there is a sequence {fα} in B

such that fα → F as α → ∞. As Poisson transform is continuous, Pn
λ (fα)(y) →

Pn
λ (F )(y). Therefore

Nα∑

j=1

aj,α

∫

K

e(λ−1)H(x−1
j,αk−1)en(K(x−1

j,αk
−1)−1)e−(λ+1)H(y−1k−1)en(K(y−1k−1)−1) dk

converges to Pn
λ (F )(y). Therefore by Lemma 8.3.1,

∑Nα

j=1 aj,αΦn,n
σ,λ(x−1

j,αy) con-

verges to Pn
λ (F )(y). This shows that the space span{xΦn,n

σ,λ | x ∈ G} contains

Pn
λ (L2(K, σ)).

We need the following Corollary of Theorem 8.1.1 which can also be proved

using the method of Section 7.1 as (G,K, n) is a Gelfand triple.

Theorem 8.3.9. For a nonzero function f ∈ C∞(G)n,n the closure of the set

{W ∗ f |W ∈ C∞(G)′n,n} contains the function x 7→ Φn,n
λ for some λ ∈ C.

Here C∞(G)′n,n is the dual space of C∞(G)n,n; in other words the set of com-

pactly supported distributions on G of type (n, n).

Proof of theorem 8.1.2. Let Vn be a left translation invariant closed subspace of

C∞(G)n. We consider Vn,n the closed subspace of left n type functions in Vn. That

is Vn,n contains all (n, n) type functions in Vn. We take a nonzero function g ∈ Vn.

Since Vn is left translation invariant we may assume that g(e) 6= 0 where e is the
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identity element of the group G. Let gn(x) =
∫

K
g(kθx)e

−inθdθ. Then it follows

that gn ∈ Vn,n and gn(e) = g(e) 6= 0 which shows that Vn,n is a nonzero subspace.

As Vn is left translation invariant and gn ∈ Vn, for any h ∈ C∞
c (G)n,n h ∗ gn ∈ Vn.

This implies that Vn contains the closure of the set {W ∗ gn | W ∈ C∞(G)′n,n},

since C∞
c (G)n,n is dense in C∞(G)′n,n. Hence Vn,n contains the closure of the

set {W ∗ gn | W ∈ C∞(G)′n,n} as W ∗ gn is of type (n, n) for W ∈ C∞(G)′n,n.

By Theorem 8.3.9, closure of {W ∗ gn | W ∈ C∞(G)′n,n} contains Φn,n
λ for some

λ ∈ C. That is there is a λ ∈ C such that Φn,n
λ ∈ Vn,n ⊆ Vn. We consider that

fixed λ. Since by Corollary 8.3.6 either λ or −λ is n-simple and Φn,n
λ = Φn,n

−λ

without loss of generality we assume that −λ is n-simple. By Lemma 8.3.8,

Pn
λ (L2(K, σ)) ⊆ span{yΦn,n

λ | y ∈ G}. But we have span{yΦn,n
λ | y ∈ G} ⊆ Vn.

Therefore Pn
λ (L2(K, σ)) ⊆ Vn.

For an integer l ∈ Zσ let Fl = e−l ∈ L2(K, σ). Then

P n
λ (Fl)(x) =

∫

K

e−(λ+1)H(x−1k−1)en(K(x−1k−1)−1)el(k) dk = Φn,l
λ (x).

Thus Φn,l
λ (x) ∈ Vn for all l ∈ Zσ. We note that λ is independent of l.

For a fixed k ∈ K, en
λ+1,k is a right n-type function on G. We decompose en

λ+1,k

in left K-types as a absolutely and uniformly convergent series in the C∞(G)

topology:

en
λ+1,k(x) =

∑

l∈Zσ

en,l
λ+1,k(x) (8.3.1)

where

en,l
λ+1,k(x) =

∫
K
en

λ+1,k(k1x)e−l(k1)dk1

=
∫

K
e−(λ+1)H(x−1k−1

1 k−1)en(K(x−1k−1
1 k−1)−1)e−l(k1) dk1.

Substituting kk1 = k2 in the above, we have,

en,l
λ+1,k(x) =

∫
K
e−(λ+1)H(x−1k−1

2 )en(K(x−1k−1
2 )−1)e−l(k

−1k2) dk2

= el(k)
∫

K
e−(λ+1)H(x−1k−1

2 )en(K(x−1k−1
2 )−1)e−l(k2) dk2

= el(k)Φ
n,l
λ (x).

As Φn,l
λ ∈ Vn for each l ∈ Zσ, the function x 7→ el(k)Φ

n,l
λ (x) = en,l

λ+1,k(x) is
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also in Vn, for each l ∈ Zσ and each k ∈ K. Hence by equation (8.3.1) we have

x 7→ en
λ+1,k(x) ∈ Vn, for all k ∈ K. This completes the first part of the theorem.

For the second part we let V be a both sided translation invariant subspace

of C∞(G). For each integer n, we let Vn be the closed subspace of right n type

functions in V . Then Vn is left translation invariant. It is also clear that there is

an integer n such that Vn is nonzero. From Proposition 8.2.1 it then follows that

if n ∈ Zσ then Vm is nonzero for each m ∈ Zσ. That is, either for each even n or

for each odd n, Vn is nonzero. Now it follows from the first part of the theorem

that each nonzero Vn contains x 7→ en
λ,k(x) for some λ ∈ C (λ depends on n), for

all k ∈ K. This completes the proof.

Remark 8.3.10. We note that there are (both sided) translation invariant

nonzero closed subspace of C∞(G) which contain en
λ,k only for one parity of n

(even or odd). For instance we take a C∞-function f such that f(x) = f(−x) for

all x ∈ G. Then all the K-types of f in its decomposition are n ∈ 2Z. From this

it is clear that the closed translation invariant subspace Vf generated by f does

not contain en
λ,k with n ∈ 2Z + 1. Similarly if our function f ∈ C∞(G) is odd i.e.

f(−x) = −f(x) for all x ∈ G then Vf will not contain en
λ,k for n ∈ 2Z.



Chapter 9

Some Other Examples

The readers will observe that important ingredients of the proofs of the main re-

sults are the Lp-Schwartz space isomorphism theorem and the Paley-Wiener the-

orem for compactly supported distributions along with an explicit understanding

of the images of these spaces under the τ -spherical transform. If these are avail-

able for a Gelfand triple then one can expect that the results in this thesis can be

extended to that. For the proof Lp-Schwartz space isomorphism theorem we can

adapt the method of Anker (see [2]) as we have done in the case of spinor bundle

on the real hyperbolic case. In doing so one needs to define the Abel transform for

τ -radial functions along with its adjoint and prove the slice projection property

of the Abel transform (see Chapter 2 and Chapter 5). An alternative approach

would be relating the τ -spherical transform with the Jacobi transform and then

use the corresponding theorems for the Jacobi transform (see [26]). For the Paley-

Wiener theorem for compactly supported τ -radial distributions, the starting point

is Paley-Wiener theorem for compactly supported infinitely differentiable τ -radial

functions. We mention here a few examples of Gelfand triple where we can achieve

these targets and to which therefore all our results in Chapter 6 and Chapter 7

can be readily extended.

(A) Let G be Sp(1, n) and K be a maximal compact subgroup of G. Then K can

be realized as

{(
u 0

0 U

)
: u ∈ Sp(1), U ∈ Sp(n)

}
= Sp(1) × Sp(n).

Let N/2 be the set of non-negative half integers {0, 1
2
, 1, 3

2
, 2, · · · }. Then Ŝp(1) is

parametrized by N/2 (for details see [60]). Let (τl, Vl), l ∈ N/2 be an element of

Ŝp(1). We extend τl to a representation of K by setting τl = 1 on Sp(n). We
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shall continue to call this representation as τl ∈ K̂. Then (G,K, τl) is a Gelfand

triple. It can be shown that for a suitable τl-radial function f on G, its τl-spherical

transform is given by,

f̂l(λ) = ClF
(2n−1,2l+1)

(
f(at)

(cosh t)2l

)
(iλ)

where F (2n−1,2l+1) is the Jacobi transform and that f̂l(λ) = f̂l(−λ) (see [60]).

We also note that when 2l < 2n − 1, there is no discrete series representation

which contains τl. Therefore it is straightforward to use the Lp-Schwartz space

isomorphism for Jacobi functions to prove the corresponding theorems for τl-radial

functions. With this preparation we can prove analogues of all the theorems men-

tioned above for the triple (G,K, τl). We note that in the cases where there are

discrete series representation relevant for τ = τl-radial functions our scheme works

easily if none of the discrete series representations is embedded as a subrepresen-

tation of a principal series representation parametrized by a λ in the domain of

the τl-spherical transform. Because in that scenario through the inversion for-

mula, Cp
τ (G) can be divided explicitly into the principal and discrete parts as

Cp
τ (G) = Cp

τ (G)P ⊕Cp
τ (G)D. For the principal part Cp

τ (G)P we prove the isomor-

phism again using Jacobi transform. For the discrete part we note that there can

only be finitely many discrete series representations containing τ (see [61]) and

therefore any function defined on this finite set (which parametrizes the discrete

series representations containing τ) will be in the image of Cp
τ (G)D. A similar

argument is used in [54].

(B) Let us now consider the complex hyperbolic spaces Hn(C) = G/K where

G = SU(n, 1) and K = S(U(n) × U(1)). The L2 harmonic analysis of the Dirac

spinors on Hn(C) were developed in [12]. Let τ be the spin representation of K.

Then τ has the decomposition into irreducible K-types as τ = τ0⊕τ1⊕· · ·⊕τn. We

note that for τj-radial functions j = 0, . . . , n, j 6= n/2 there is no relevant discrete

series representations. There is a discrete series representation, restriction to

K of which contains τn/2 when n is even. This discrete series is infinitesimally

embedded in this parametrization at i/2. We notice that for 4n(2n+1)−1 < p ≤ 2,

i/2 6∈ Sp = {z ∈ C | |ℑz| ≤ (2/p− 1)n}.

Relating the τj-spherical functions to the Jacobi function and thus the τj-

spherical transform to the Jacobi transform, a Paley-Wiener theorem is obtained

in ( [12, section 4]). It is natural to expect that in an analogous way (i.e. through

Jacobi transform) the Lp-Schwartz space isomorphism theorems for 0 < p ≤ 2
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and Paley-Wiener Theorem for compactly supported distributions can also be

proved. We observe that the relation between the τj-spherical transform and

Jacobi transform for the cases j = 0 and j = n are somewhat simpler than that

for the other τj . A straightforward adaptation of the proofs given in the thesis

will yield the Schwartz space isomorphism theorems and Paley-Wiener theorem

respectively for τj-radial functions and distributions when j = 0 or n. It appears to

us that with a little more effort the corresponding theorems for τj-radial functions

with 1 ≤ j ≤ n − 1, j 6= n/2 can also be proved. Lastly for the case of an

even n and j = n/2, the proof of Lp-Schwartz space isomorphism theorem for

4n/2n + 1 < p ≤ 2 will not face any further obstacle as for this range of p a

function in Cp
τn/2

(G) can be decomposed in principal and discrete parts through

the inversion formula. We have discussed a similar situation in (A) above.

Once these results are obtained, it will not be difficult to verify that the main

results proved in this thesis will hold for τj-radial functions. As commented in [12]

there is a strong similarity between the results obtained in [12] with those obtained

in [46] for the p-forms on the real hyperbolic spaces. We note that harmonic

analytic aspects of these differential forms were extensively studied in [46]. It will

be interesting to see if the methods of this thesis can be applied for these cases.

(C) Let G be a connected, noncompact semisimple Lie group of real rank one

with finite centre and K be a maximal compact subgroup of G. We also assume

(τ, Vτ ) ∈ K̂ is such that (τ |M , Vτ ) is irreducible. Then (G,K, τ) is a Gelfand triple.

A Paley-Wiener theorem for this is proved by Campoli (see [10, Theorem 3.3.1]).

We note that in this case the τ -spherical transform is even and it is possible to

adapt the proof in [2] to prove the Lp-Schwartz space isomorphism theorems for

τ -radial functions (see Chapter 5). Staring from the Paley-Wiener theorem for

functions one can also prove the corresponding theorem for distributions. This

will enable us to extend the main results to this case.

(D) We recall that if G = SL(2,R), K = SO(2) and τ ∈ K̂, then (G,K, τ) is a

Gelfand triple. The Lp-Schwartz space theorem and the Paley-Wiener theorem are

available for this case (see for instance [4]). In general the K-type τ is contained

in a finite number of discrete series representations of G. However apart from the

case of Wiener-Tauberian theorem for L1 functions the discrete series will pose no

difficulty (see the argument in (A) above). The case of integrable functions can

also be dealt with along the line of argument in [54] and thus all the theorems in

Chapter 6 are extendable here. Schwartz’s theorem for this case has been already

discussed in Chapter 8.

We conclude with the following remarks.
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Remark 9.0.11. All the results in this thesis are valid for the K-biinvariant

functions of a connected noncompact semisimple Lie group of real rank one with

finite centre. All the theorems in Chapter 6 are new in this context.

Our basic objects in this thesis were homogenous vector bundles associated

with Gelfand triples. Apart from those which are mentioned above some notable

examples of Gelfand triples are G/K = Hn(R) or Hn(C) and τ is an arbitrary

representation in K̂ (see Remarks 2 and 3 in [46, p. 82]). There are Gelfand

triples also for quaternionic hyperbolic spaces. It is natural to ask if the targets

of this thesis could be achieved for these cases.
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