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Chapter 0O
Introduction

We consider two classical theorems of real analysis which deals with translation
invariant subspaces of integrable and smooth functions on R respectively. The first
one is a theorem of Norbert Wiener [63] which states that if the Fourier transform
of a function f € L'(R) has no real zeros then the finite linear combinations
of translations f(x — a) of f with complex coefficients form a dense subspace in
LY(R), equivalently, span{g * f | g € L'(R)} is dense in L'(R). This theorem is
well known as the Wiener-Tauberian Theorem (WTT). The second theorem on
spectral analysis on R, due to Laurent Schwartz [56] states that a closed nonzero
translation invariant subspace of C*°(R) with its usual Fréchet topology contains
the map = — e*® for some A € C. This is equivalent to the statement that if
f € C*°(R) then the closure of the set {W x f | W € C*(R)'} in C*°(R) contains
the map o — e for some A € C, where C*°(R)’ denotes the set of compactly
supported distributions on R. We shall call this Schwartz’s theorem. It is well
known that the statement above is false for R if n > 1 (see [31]).

We use the terms spectral analysis and spectral synthesis in the sense of
Schwartz [A6]. We endeavour to study these theorems in the context of homoge-
nous vector bundles on a noncompact rank one Riemannian symmetric space X.
We recall that such a space X can be identified with G/K where G is a connected
noncompact semisimple Lie group with finite centre having real rank one and K
is a maximal compact subgroup of G. This makes X a G-space with canonical
G-action. Any function on X can be identified with a right K-invariant function
on G and in particular left K-invariant functions on X are K-biinvariant (also
called radial) functions on G. In this setup we shall consider the two theorems
mentioned above. We shall discuss them one after the other.

Wiener-Tauberian Theorem was extended to abelian locally compact groups

where the hypothesis is on a Haar integrable function which has nonvanishing
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Fourier transform on all unitary characters (see [51]). Analogues of this result hold
also for many nonabelian Lie groups (see e.g. [20,43]). On the other hand back
in 1955 failure of WT'T even for the commutative Banach algebra of integrable
radial functions on SL(2,R) was noticed by Ehrenpreis and Mautner in [22]. A
simple proof due to M. Duflo of the fact that the WTT based on unitary dual is
false for any noncompact semisimple Lie group appears in [43]. This failure can be
attributed to the existence of the nonunitary uniformly bounded representations
in groups of this class (see [23,41]).

However a modified version of the theorem was established in [22] for radial
functions in L'(SL(2,R)). There were a few attempts to generalize this result
to more general semisimple Lie groups and with lesser restriction on functions
(see [B7,B8,7, 5, 6,54, 5 A5, T]]). Research remains incomplete as almost all of
these papers deal only with radial functions. Apart from the group SL(2,R),
where we have the advantage of one dimensional K-types (see [54]), going beyond
the K-biinvariant setup is difficult, perhaps insuperably so.

Our departure in this thesis is in two directions. Firstly we come out of the
setup of the radial functions and deal with the radial sections of certain homoge-
nous vector bundle on the noncompact Riemannian symmetric spaces. For a
unitary representation (7,V;) of K we consider the vector bundle E, over G/K
which is defined as follows: The equivalence relation p, on G x V, is defined
by (g,v) p- (¢',v") if and only if there exists k& € K such that ¢ = gk and
v = 7(k7')v. Then the quotient space E, = G x V,/p, with the projection
p: GXV,./p, — G /K defined by [(g,v)] — ¢gK is a vector bundle over G/K. There
is a one-to-one correspondence between the sections of E, and functions on G in
the class, T'(G,7) = {f: G — V. | f(gk) =7(k™")f(g), forall g € G,k € K}. A
T-radial section of this bundle is associated with an EndV, -valued 7-radial function
on G defined by

f(kigks) = T(kz_l) o f(g)o T(kh_l)

or with its scalar version f : G — C defined by f(x) = d.x; * [ *
d. X7 (x), f(kzk™') = f(x) for x € G and k € K. Here x, and d, are respec-
tively the character and dimension of 7. We restrict our attention to the vector
bundle associated with a K-type 7 for which (G, K, 7) is a Gelfand triple, i.e.
when compactly supported (or integrable) 7 radial functions form a commutative
algebra under convolution. This is perhaps the natural step after dealing with
radial functions. Here the role of the elementary spherical function ¢, is taken up
by the 7-spherical function ®7 , which is an eigensection (of the Laplace-Beltrami

operator of X)) of the bundle .. The 7-spherical transform fof a 7-radial func-



tion is defined using ®7 , and is the object corresponding to the spherical Fourier
transform of a radial function. We denote Tr @7 , by ¢7 ,. For a function space
L(G)on G, L(G//K) and L,(G) denote respectively the set of radial and 7-radial
functions in L(G).

For the sake of being explicit, we will be working with the example of the
spinor bundle on the real hyperbolic spaces for which a well-developed L? the-
ory is available (see [T1),[13]). All the results we obtain here will go through for
many other examples of Gelfand triple (see towards the end of the section for
details of such Gelfand triples). In particular all the theorems are valid for K-
biinvariant functions of any noncompact semisimple Lie group with finite centre
which has real rank one. Our results however improve on the existing results for
K-biinvariant functions (cf. [7,65]) and also add new results in that context. We
identify the real hyperbolic space as Sping(n, 1)/Spin(n), where Sping(n, 1) is the
identity component of the group Spin(n, 1). Camporesi and Pedon have used this
identification in [T3]. Let 7,, be the classical complex spin representation of K.
The spinor bundle is the homogenous vector bundle Y H"(R) = G x V,, /p.,, and
the sections of this bundle are the spinors. It is known that 7, is irreducible when
n is odd and splits into two inequivalent irreducible components when n is even.
We will work with the vector bundle corresponding to the irreducible components
of the representations 7,,.

As our second point of departure we view WT'T as a problem associated to a
space of functions F; acting on another say F, by convolution. One tries to put
sufficient condition on a family of functions G C F; so that G generates F, under
JFi action. We point out that the Banach algebras like L'(G//K) or their counter
part L1 (G) (which forms the usual setup for WTT) can be considered as particular
cases of two different families of Banach algebras or modules. The first family
consists of analogues of Beurling algebras with analytic weights (see [14]) while the
second consists of Lorentz spaces and algebras. The first family remains close to
the classical in behavior, but that of the latter family which in particular includes
the LP as well as the weak LP spaces is rooted in the Kunze-Stein phenomenon
( [15]) and hence has no euclidean analogue. We can formulate WTT for all these
Banach algebras and modules and by a more or less uniform approach we can prove
the theorem in all the cases (see Theorem BTl Theorem B2 Remark EI.),
except for a degenerate case which we shall treat separately (see (B) below).

We also see that two Wiener-Tauberian type theorems arise naturally in our
context which are based on the unitary dual.

(A) Unlike the classical WTT which considers L!'(R) action on L'(R), we
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view WTT as a theorem involving naturally arising pairs of spaces (Fi, F2) with
F1 acting on Fy by convolution. For the same space F> we may find several
spaces {Fi'} so that WTT can be formulated for (F{,F3) for each . WTT
finds sufficient conditions on a collection of functions in F, so that under F{*
action it generates a dense space in F5. The core of the sufficient condition is the
nonvanishing condition of the Fourier transform on its natural domain of definition
for the functions in F, and thus depends solely on the function space F5. More
precisely this condition remains unaltered if we change the first space of the pair
say from F}* to ]:f.

However one can ask: Given a collection of functions G in F, which satisfies
a weaker nonvanishing condition, can we bring in the action of some additional
convolutors on G which enables G to generate F5 7 In particular we are interested
in finding a WT'T where the nonvanishing condition is only on the unitary dual.
Our next theorem (Theorem EZT]) is an attempt in this direction where (for
instance) we see that before the usual LL(G)-action if we are allowed to convolve
the generator f € L!(G) with a few other measurable 7-radial functions, then
f can generate a dense space in L!(G) if (apart from satisfying the estimate at
infinity of the usual WTT) its 7-spherical transform ]/”\ is nonvanishing only on
the unitary dual. That is, the condition of nonvanishing Fourier transform here
is much weaker than what is necessary for L!-action: f is nonvanishing on the
Gelfand-Spectrum of the Banach algebra LL(G).

(B) A reason why many theorems of harmonic analysis on X or on G are
unlike their euclidean analogue or have no analogue at all lies in the fact that the
elementary spherical function ¢, (in particular ¢g) satisfies certain decay estimate.
This is in deep contrast with the euclidean case where the modulus of the unitary
characters are constants and the nonunitary characters are unbounded functions.
The degenerate case of the weighted algebra we mentioned above is given by the set
of -radial functions which are integrable with weight ¢o(z). This is a commutative
Banach algebra and is the largest space of measurable 7-radial functions for which
the 7-spherical transform exists as absolutely convergent integral. We observe that
unlike in other Banach algebras and modules mentioned above the domain of the
T-spherical transform of the elements of this Banach algebra shrinks from the strip
to the line R. We consider this space as the test case where we have deactivated
the role of the decay of ¢,. We show that indeed in this case the algebra loses
its semisimple flavor so far the WT'T is concerned and we obtain a WTT which
resembles the theorem on R (see Theorem G2Z7).

Our treatment relies on the method developed in [7] which substantially mod-



ified the theorem for the radial functions in L'(SL(2,R)) and in [T}, T3, 46l 47, 48]
which extensively studied radial functions of a K-type 7. We may add here that a
first systematic study of this subject appeared simultaneously in [I1] and in [46].
(See also [47,48] and the references in p.165 of [46].) Some of these results will
appear in [49].

Next we take the Schwartz’s theorem in the same setup as above. Here also we
work on the 7-radial sections of spinor bundle (see Theorem [[T3)) though as in
the case of WT'T the results are valid for some other Gelfand triples (see below).
Like WTT in the context of Riemannian symmetric spaces or of the semisimple
Lie groups the first account of Schwartz’s theorem is again in the celebrated work
of Ehrenpreis and Mautner [24] where it was proved for SL(2,R). For radial
functions in a real rank one noncompact semisimple Lie group with finite centre
the result is obtained by a different method in Bagchi and Sitaram [3].

As a consequence of the Schwartz’s theorem we obtain a Wiener Tauberian
type theorem for compactly supported distributions (see Theorem [LZ]). Re-
calling that the elementary spherical functions ¢, and its 7-radial version ¢ ,
are in L**¢ for any € > 0, we also observe how failure of the classical WTT for
LP;1 < p < 2 functions can be related to the failure of Schwartz type theorem for
L functions where 1/p+ 1/p’ = 1.

As mentioned earlier Schwartz’s theorem was extended for the group SL(2,R)
in [24]. We shall try to improve the result. We recall that SO(2) = S! is a
maximal compact subgroup of SL(2,R). We parametrize elements of K = S!
as {kg | @ € [0,2m)}. The one dimensional K-types e, are parametrized by
integers n where e,(kg) = e™?. For every pair of integers (m,n) of the same
parity we have a spherical function ®{"". In this setup the elementary spherical
function ¢y = ®}°. Theorem in [24] states that if V is a nonzero closed translation
invariant subspace of C*°(SL(2,R)), then either for every even m,n or for every
odd m,n, V contains ®\"" for some A € C which depends on m,n. We consider
the bundle E,, over SL(2,R)/SO(2) (see definition of E, above). Then the C'*°-
sections of this bundle can be identified with C*°(SL(2,R)),, which are the right
n-type C*°-functions on SL(2,R). The object which corresponds to z + ¢
here is e}, : z AHETR e (K(z7'k 1), A € C,k € K where H(z) and
K(x) are the A-part and the K-part of the Iwasawa decomposition G = KAN
of the element x. We show that every left translation invariant nonzero closed
subspace of C*(SL(2,R)), contains e}, for some A € C and all k¥ € K. Since
[ e’/(?k(x)ﬁ(k) dk = ®\" (z) it follows from this result that for every m of the

parity of n, V' contains ®"™(z) for some v € C which depends on m. Using
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this step we shall finally prove that any nonzero closed (both-sided) translation
invariant subspace V' of C*°(SL(2,R)) contains €Y, either for every even n or
every odd n for some A\ € C which depends on n and for all £ € K (see Theorem
RT12).

We indicate at the end how our method applies, mutatis mutandis, to obtain
similar versions of WTT as well as Schwartz’s theorem in some other Gelfand

triples; e.g.
1. G=SL(2,R), K =S0(2), 7 € K;

2. G =SU(n,1), K =S(U(n) x U(1)) and 7 is some irreducible component of

Spin representation;
3. G =5p(1,n), K =Sp(1) x Sp(n) and 7|gpm) = 1;

4. G connected, noncompact real rank one semisimple Lie group with finite

centre and 7 € K with 7|y is irreducible.

Actually our method relies on an explicit understanding of the images of certain
spaces of functions and distributions under 7-spherical transform. The proofs
work readily when as function spaces these images become identical with that of
our working example namely the spinor bundle.

Crucial ingredients for the proofs of our main results are: (a) LP-Schwartz
space isomorphism theorems (0 < p < 2) for 7-radial functions, (b) Paley-Wiener
theorem and (c) slice-projection property of the Abel transform; the latter two re-
sults for compactly supported 7-radial distributions. We prove these intermediate
results. Our proof of the Schwartz space isomorphism theorems is an adaptation
of the Anker’s proof ( [2]) of the corresponding theorem for the K-biinvariant
case.

The thesis is organized as follows:

In Chapter 1 we establish the required properties of the elementary spherical
functions and spherical transform, part of which is not so standard.

In Chapter 2 we extend some of the properties obtained in Chapter 1 to 7-
spherical functions and 7-spherical transform. We also define Abel transform
and its adjoint for 7-radial functions and distributions, obtain the slice-projection
theorem.

In Chapter 3 we obtain the Banach algebras and modules, on which we consider
the Wiener-Tauberian theorems in Chapter 6.

Chapter 4 contains preliminaries for the Spin group, Spin representations.



Chapter 5 has the LP-Schwartz space isomorphism theorem for 7-radial func-
tions and Paley-Wiener theorem for 7-radial distributions. These are intermediate
steps for the proofs of our main results.

In Chapter 6 we prove analogue of Wiener-Tauberian theorems for r-radial
functions.

In Chapter 7 we prove an analogue of Schwartz’s theorem on spectral analysis
for T-radial functions, a Wiener-Tauberian theorem for compactly supported 7-
radial distributions and some related results.

In Chapter 8 we revisit Schwartz’s theorem on SL(2,R) obtained in [24] and
establish a stronger version of it.

In Chapter 9 we provide some other examples of Gelfand triple for which all
the theorems proved in this thesis will hold. We indicate the reasons.

In Chapter 5,6,7 (G, K, 7) are as defined in Chapter 4.
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9 Notation

0.1 Notation

The following table summarizes some of the notation we shall use frequently.
R,C,Z,N are respectively set of real numbers, complex numbers, integers and

natural numbers.

For z € C

Rz :  real part of 2

Sz @ imaginary part of z

Z . complex conjugate of z
For a set S in a topological space

S closure of S

S° . interior of S

0S :  boundary of S

Forany pe R, p/ = 1%

Y ={-2a,—a,a,2a} set of restricted roots

My M2 : dimensions of root spaces g., g, respectively

P

For0<p<24>0

LP(G)

For a function space L(G) of G
L(G//K)
L(G)

the half sum of positive roots

Z_1

p

{2z € C|[S2] <o}
{z€C||Sz] <vpp+d}

unitary dual of a group G
infinitely differentiable functions on G

compactly supported functions in C*(G)

LP-Schwartz space on G

Lorentz space on G with norm || - |5

K-biinvariant functions in £(G)

r-radial functions in £(G) where (7,V;) € K.
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For a topological vector space V
EndV
V/

LN
;,)\(x)

P

set of endomorphisms on V'

set of continuous linear functionals on V'

EndV, valued 7-spherical function
Trd] | (7)

elementary spherical function

For a function space F on a symmetric domain in C or R:

Fe : set of even functions in F
Fo : set of odd functions in F
o(x) : distance of the point z € G/K

from origin in the metric induced from the Killing form

LY (wp,) = {f measurable on G| [,,|f(2)|®iy,p(2)(1 +0o(z))" dr < oo}



Chapter 1

Elementary Spherical Functions

and Spherical Transform

We begin this chapter recalling some notation and establishing preliminaries which
will be used throughout this thesis. Most of our notation related to the semisim-
ple Lie groups and the associated symmetric spaces is standard and can be found
for example in [33,28]. Here we shall recall a few of them which are required
to describe the results. We shall follow the standard practice of using the letter
C,C4,Cy ete. for constants, whose value may change from one line to another.
Occasionally the constants will be suffixed to show their dependency on impor-
tant parameters. Everywhere in this thesis the symbol f; < fy for two positive
expressions f; and f; means that there are positive constants C, Cy such that
Cifi < fo < Caofy. For a complex valued function f, f will denote its complex
conjugation and for a set S in a topological space S will denote its closure. For
a complex number z, we will use Rz and &z to denote respectively the real and
imaginary parts of z.

Let GG be a connected noncompact semisimple Lie group with finite centre and
g its Lie algebra. We fix a Cartan decomposition g = € 4+ p. Let a be a maximal
abelian subspace of p. We assume that G is of real rank one, i.e. dima = 1. We
denote the real dual of a by a*. Let ¥ C a* be the subset of nonzero roots of
the pair (g,a). We recall that either ¥ = {—a, a} or {—2a, —«, a, 2a} where «
is a positive root and the Weyl group W associated to ¥ is {Id, —Id} where Id is
the identity operator. Let m, = dim g, and ms, = dim gy, where g, and go, are
the root spaces corresponding to o and 2. As usual then p = %(ma + 2maq )
denotes the half sum of the positive roots. Let Hy be the unique element in a
such that a(Hy) = 1 and through this we identify a with R as t < tH,. Then
a, = {H € a | a(H) > 0} is identified with the set of positive real numbers.

11
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We also identify a* and its complexification ai with R and C respectively by
t < taand z <« za, t € R, z € C. By abuse of notation we will denote
p(Hy) = %(ma + 2mo,) by p. Let n =g, + g2a, N =expn, K =expt, A =-expa,
At =expay and AT = expa;. Then K is a maximal compact subgroup of G, N
is a nilpotent Lie group and A is a one dimensional vector subgroup identified with
R. More precisely, A is parametrized by as = exp(sHy). The Lebesgue measure
on R induces the Haar measure on A as day, = ds. Let M be the centralizer of
Ain K. Let X = G/K be the Riemannian symmetric space of noncompact type
associated with the pair (G, K). Let o(z) = d(zK, eK) where d is the distance
function of X induced by the Killing form on g. The sets of (equivalence classes

of) irreducible unitary representations of G, K, M are denoted respectively by

~ o~

G, K, M.

The group G has the Iwasawa decomposition G = KAN and the polar de-
composition G = KA+ K. Using the Iwasawa decomposition we write an element
x € G uniquely as K(x)exp H(z)N(z) where K(x), H(z) and N(x) are respec-
tively the K-part, A-part and N-part of z in this decomposition. Let dg, dn, dk
and dm be the Haar measures of G, N, K and M respectively where [ Ak =1
and | 4 dm = 1. We have the following integral formulae corresponding to the

two decompositions above which hold for any integrable function:

/Gf(g)dg:(Jl/K/R/Nf(k:atn)eQ”tdndtdk, (1.0.1)

and

/G F(g)dg = Cs /K /R ) /K F(kraghs)(sinh £)™ (sinb 26/ dly dt dky.  (1.0.2)

The constants C7, Cy depend on the normalizations of the Haar measures involved.
We also use the Iwasawa decomposition G = NAK which has the same Jacobian
as the decomposition G = KAN, and the decompositions G = KNA and G =
ANK each of which has Jacobian 1. The following identities will be useful in our

computations [34] :
H(ghk) = H(hk) + H(gK(hk)) and K(ghk) = K(gK(hk)). (1.0.3)

We also note, using the well known estimate sinht =< te'/(1 + ¢), in (CIL2)
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above that

1
/\f(g)\dg = 03// / | f(kyagks)|[t9Y diey dt diy
G K JO K
+ 04// /|f(k;1atk;2)|e2ptdk:1dtdk2 (104)
KJ1 K

where d = my + Mmoo + 1.

A function is called K-biinvariant if f(kixks) = f(z) for all z € G, ky, ko € K.
For any function space £(G) on G we denote the set of K-biinvariant functions
in L(G) by L(G//K). For any A € C we define the elementary spherical function
Px by

o) = / e~ HPHER) g1 for all x € G.
K

Then ¢, is a K-biinvariant function and ¢y = ¢_», ér(x) = ¢a(z~1). Tt is clear
that |pa(z)| < ¢iga(z) for any A € C and = € G. The spherical transform Fofa
function f € L'(G//K) is defined by the formula

f()\) = /Gf(x)gbk(x_l) dz for all A € R.

We have following Plancherel Theorem for spherical transform: For f € L*(G//K)

/G @) de = / FOVPIe)] %A

where ¢(\) is the (suitably normalized) Harish-Chandra c-function, |c(\)| 72 is the
Plancherel density and d) is the Lebesgue measure on R (see [28]).
For p € (0,2] we define v, = (2/p — 1). We consider the strip

Sp={2€C |3z < yp}

and note that when p = 2 then the strip becomes the line R. For 0 < p < 2 let
S, and 0, respectively be the interior and the boundary of the strip.
We have the following asymptotic estimate of ¢, ( [33, p. 447]). For S\ < 0,
t>0
lim AT 6, (a,) = ¢(N). (1.0.5)

t—o00
As the c-function has neither zero nor pole in the region S\ < 0 (see [33, Theorem
6.4, Ch. IV]) it follows that for every € > 0 there is a M. > 0 such that for all ¢
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with [t| > M,
(1 —e)e” MMV < foalar)| < (1+e)e MM e(N)]. (1.0.6)
Using continuity of ¢, we get that for any fixed A € C with S\ < 0:
|ox(ay)| = e”CAPI (1.0.7)
and in particular for A = —iy,p, 0 < p < 2, we have

Ginyp(a1) = Din,plar) = e~ 2/PPI, (1.0.8)

This estimate becomes degenerate when p = 2, i.e. when v, = 0. However we
have the following estimate for A\ = 0: ¢g(a;) < (1 + |t|)e " (see [T]). Apart
from these pointwise or uniform estimates of ¢, there are LP estimates, which
leads to the celebrated Kunze-Stein phenomenon (see 1], [15]). It is clear from
the estimate of ¢ and the fact that |¢)| < ¢ if A € R that for A € R, ¢ €
L***(G//K) for any ¢ > 0. From this it follows that for any function f in
LP(G//K) with 1 < p < 2, [f(\)] < C||fll, when A € R. Using Plancherel
theorem we immediately get that LP(G//K) * L*(G//K) C L*(G//K) with the
corresponding norm inequality. This can be considered as a starting point of the
Kunze-Stein phenomenon or at least the “convolution-inequality version” of it
(see [16] for comprehensive survey). Using an interpolation with the known fact
that L'(G//K) « L'(G//K) C L'(G//K) we obtain L?(G//K) x L{(G//K) C
L9(G//K) where 1 < p < ¢ < 2 with the corresponding norm inequality.

More recently a sharper version of the Kunze-Stein phenomenon is obtained
for the groups of real rank one which involves Lorentz space estimates of ¢, (see
[T6,139]). Before we embark upon further studies of the behavior of ¢, along this
line we need the following definitions and results for the Lorentz spaces (see [30,09]
for details). Let (M, m) be a o-finite measure space, f : M — C be a measurable
function and p € [1,00), ¢ € [1,00]. We define

00 1/q
(2L @emprd) ™ when g < oo
£ 115 =

Sy td s (t)1/P when ¢ = co.

Here d; is the distribution function of f, i.e. for & > 0, ds(«) is the Haar measure
of the set {z € G| |f(x)| > a} and f*(¢t) = inf{s | d;(s) < t} is the nonincreasing
rearrangement of f ( [30), p. 45]). We take LP9(M) to be the set of all measurable
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functions f : M — C such that || f[|; , < co. By L>**°(M) and || - [|oc,cc We mean
respectively the space L>°(M) and the norm || - ||oo. The space LP>°(M) is also
called weak LP-space on M.

For p, q € [1,00) the following identity gives an alternative expression of |- ||* .

which we will use:

L@ pr =a [ ae g

p

Though this is well known and used in many places (see e.g. [8]) we give here a

sketch of the proof as we could not locate one.

Proof. We use the substitution ¢ = s* where av = g in the left hand side integral.

Then % = a% and we get,
q [~ dt q o ds
1 tQ/Pf* NI — —a/ S¢ Q/Pf* g¥)a 2
e = Lo [yt
_ / £ (s%)ds
0
00 f*(s)
= / q/ NN | ds
0 0
= q/ /\q_l/ ds dA.
0 F*(s%)>)

To prove the assertion, it is now enough to show that ff*(sa)>/\ ds = dp(\)VP.
For a set A let |A| be its Lebesgue measure. Then ff*(sa)»\ ds={s | f*(s*) >
A}. The set

{s|/7(s") 2 A} = {s]inf{u>0]d(u) <s%} > A}
= {s|ds(u) >s*forall ue (0,\)}
= {s|ds(A—¢) > s*forall e >0}
= {s]|ds(\) > s“} for almost every A,

as dy is monotone function. Thus ff*(sa)>/\ ds = d(\)Y* = ds(\)P for almost

every \ as o = g. This completes the proof. O

For p,q in the range above, LP?(M) = LP(M) and if q; < go then | f]5 ,, <
/1l ., and consequently L% (M) C LP9(M). We recall that for 1 < p < oo and
1 < ¢ < oo, the dual of LP4(M) is LP9 (M) where % —I—I% =1= % —I—i and the
dual space of LY(M) is {0} for 1 < ¢ < oo (see [30, p. 52]). Everywhere in this
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thesis any p € [1,00) is related to p’ as above.

Proposition 1.0.1. The elementary spherical function ¢, satisfies the following

properties.

(1) For Ai, A2 € C with |SA;| > [SAa] > 0 and r > 0, |¢r,(2)|(1 4+ o(z))" <
Cl|or, (z)] for all x € G for some constant C which depends on Ai, As.

(2) For 1 <p<2, ¢» € LP'*(G//K) if and only if X € S,.

(3) Forl<p<2and1<r<oo, ¢ € L’"(G//K) if and only if A € S,

(4) ) € L*>(G//K).
Proof. The assertion (1) follows from ([LIL7), noting that ¢, = ¢_».
For proving (2) and (3) we first note that when A\ = £ +i7,p where £ € R and

Y, = 2/p — 1 then for t > 0, ¢r(a;) < e 2P//?" (see (CIIH)).
Let f(a;) = e 2"?. Then

d(a) =m({t | e > a}),

where m is the Haar measure on G in polar decomposition. Thus df(a) = 0 if
a > 1 and hence we need to consider o € (0,1). We have ds(a) = m({t | t <
P'/2plogl/a}).

If 0 < o < e /7" then p//2plog 1/ > 1. Thus in this range of o using (ICIL4)

we have )
P

1 5 logé 1
de(ar) < [/ td_ldt—i—/ ’ e dt] =<~ (1.0.9)
0 1

If e=2°/"" < oy < 1 then 0 < p//2plog1/a < 1 and hence for this range of a we

%logé il 1 p/ 1 d

have

Thus from the definition of Lorentz spaces given above, (CILY) and (CILI0) it
follows that ¢, € L2>*(G//K) if and only if

«
sup

O<a<e=2r/P

— <00
/ ap,/q ’

that is if and only if p’ < ¢. Similarly it follows from (CIY) and (CILI0) that
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oy € L2 (G//K) if and only if

e—20/7 dov
; pErEE
that is if and only if p’ < ¢.

Now we take p > s. Then 7, < 7, and hence by (LILID) ¢;,,, € L*"(G//K)
by taking s = q.

(4) As before let m be the Haar measure on G. We consider the function
f(r)=e" for r > 0. We note that for a > 1, ds(a) = m{r | e > a} =0. For

o < 1 we have
a mar | r (0]
f g

1/plogl/a
< / e*"dr (as sinhr < e")
0

— i(e2log1/a_1) < 1

2p ~ 2pa?’

Hence supg.,<; ads(a)V? < (2p)7% < 00. As ¢o(a,)/(1+ 1) < =", the proof is
complete. m

Remark 1.0.2. Proposition [CIL(2) for the case p = 1 is well known as
the Helgason-Johnson theorem (see [35]) and holds for groups of arbitrary real
rank. In the language of Lorentz space Helgason-Johnson theorem restates as
¢ € L¥*(G//K) if and only if A € S;. Proposition [LCILT(2) is its expected
generalization: ¢, € LP*°(G//K) if and only if A\ € S,. However it is known
that for p > 1, Proposition [[TLT(2) is false when real rank of G' is more than one
(see [39]).

Proposition [Tl readily determines the domain where the spherical transform
of a function exists as a convergent integral. For instance for L' functions with
1 < p < 2 the domain is S, and for LP? functions with 1 <p < 2,1 < ¢ < o0 it
is S;. We may point out that the latter includes the weak LP spaces for p > 1.
The phenomenon however fails for weak L'. For example we consider the K-
biinvariant function f(kja,ky) = r~(matmza+l) X[0,1](7) where x[g1] is the indicator
function of [0,1]. Then it can be verified that f is in weak L', but the integral
Jo f(r)¢o(r)J(r) dr does not converge. Here J(r) is the Jacobian of the polar
decomposition. This shows that while for p > 1 the pointwise existence of the
spherical transform is guaranteed for weak LP functions, the situation is different

for weak L' functions (see [50)] for details).
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Chapter 2

T-Spherical Functions and

T-Spherical Transform

2.1 7-Radial Functions

In this section we recall the definitions of 7-radial functions and their 7-spherical
transforms. We discuss both endomorphism valued and scalar valued 7-radial

functions. We will follow mainly [IT] for basic notation and argument.

Definition 2.1.1. For G and K as in Chapter [l and (7,V;) € K a function
F : G — EndV; is said to be r-radial if F(kizks) = 7(ky ') F(2)7(k;!) for all
k’l,k'z EK, reQqG.

When 7 is the trivial representation of K, a 7-radial function is simply a
K-biinvariant function. The 7-radial functions are radial sections of the homoge-
nous vector bundle E. over G/K associated with the representation 7 € K (see

Introduction).
Let T'(G, 7, 7) be the set of all T-radial functions. Also let L?*(G, 7, 7) be the

square integrable T-radial functions with inner product
(F, Fy) = / Tv [F (2) F(o)] da,
el

where Fy(x)* denotes adjoint of Fy(z). For suitable Fi, Fy, € I'(G,7,7) their

convolution is defined by

Fix Fae) = [ Ry o)F() dy
G
Then for Fi, F, € I'(G,7,7), we can verify that F| « F, € I'(G,7,7) whenever

19
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convolution makes sense. In fact

(Fyx B)(kizks) = [, Fi(y kizks) Fa(y) dy
= 7(k3") [o Fily k) Fa(y) dy
= 7(kyY) [ Pz 2) Fa(ki2) d2
= 7(ky") [, Fi(z " 2) Fa(z) d= T(ki)

= 7(ky")(F1* Fy) ()7 (k).

We let I(G) denote the set of all scalar valued functions f on G such that
flkxk™) = f(z) for k € K,x € G and d,\; * f = f = [ xd,X; where Y, and d,
are character and dimension of 7 respectively. We call elements of I, (G) as scalar
valued 7-radial functions. For fi, fo € I.(G), their convolution is defined by

o fal) = /G fi(ey) foly) dy,

whenever the integral converges and it can be verified that f; x fo € I.(G). We

have the following proposition which gives an bijection between I'(G,7,7) and

L(G).

Proposition 2.1.2. There is a one-to-one correspondence between the spaces
(G, 7,7) and I.(G).

Proof. For given F' € I'(G,7,7) we define fr by fr(z) = d;TrF(xz). Then
fr(kxk™) = d, TvF(kxk™) = d, Te(7(k)F(x)7(k™Y)) = d, TrF(x) = fr(z), that
is fr is K-central. Now

(frrdoXe) (2) = dr [y fro(ak)x (k) dk
= &2 [, TeF (k) (k) dk
= &ETr ([, 7(k™)xr (k) dk F(x)]
= d,TvF(z)

= fF(J?),
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where we have used the Schur orthogonality relation for K with normalization
fK dk = 1. Similarly we have d,x; * fr = fr. Hence fr € I(G). Conversely,
suppose f € I.(G). We define F; by

Ff(x):/KT(k:)f(k‘x)dk

Then

K
We put kky = k3 in the above to get

Fy(kizks) = [ 7(kski")f(ksaks) dks
= [y 7(ks) f(kswhsy) dks 7(k; ")
= Ji m(ks) f (k3 okshy) dis 7(ki")
= [, T(ks) f(koks) dks 7(k;"), since f is K-central.
Also we put koks = k4 in the above to get
Fy(kizks) = [, 7(ky 'ka) f(kaz) dky T(k7)
= 7(ky") [y 7(ka) f (ky) dby T(kT)
= (k) Fy(x)r(ky ).
Therefore Fy € I'(G, 7,7). Also for F' € I'(G, 7, 7) we have
Fr.(x) = /KT(k:)fF(k:x) dk =d, /KT(I{:)Tr(F(k:x)) dk.
Hence Fy,(z) = d; [, 7(k)Tr (F(z)7r(k™"))dk = F(x) by Schur orthogonality

relation.
Again for f € I.(G) we have

fry(x) = d;Te(Fy(2)) = d,Tr ( /K (k) f(kx) dk:) =d, /K X+ (k) f (kz) dk.

Therefore fr,(v) = d; X7 * f(x) = f(x). This shows that F' +— fr is a bijection
between I'(G, 7, 7) and I(G) with inverse f — fp. O
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For fi, fo € I, and Fy, F;, € I'(G, 1, 7) we have Fy,.p, = Fy, * Fy, and fp.p, =
[r, * fr, whenever the convolutions make sense (see [62, p.3]). Therefore it follows
that I.(G) is commutative if and only if I'(G, 7, 7) is commutative.

Let C(G,7,7) be the space of all 7-radial infinitely differentiable com-
pactly supported functions with support contained in the ball of radius R,
that is FF € C¥(G,71,7), when F(Ka;K) = 0, for all |[t| > R. The set
of all compactly supported 7-radial infinitely differentiable functions is de-
noted by C®(G,1,7). The corresponding sets for scalar valued functions are
denoted by C2(G)r and CZ5(G) respectively.  Precisely, C25(G) = {f €
I(G) | [ is compactly supported and C*} and C(G)r = {f € I.(G) |
f is compactly supported in a ball of radius R and C*°}. Also the set of infinitely
differentiable 7-radial functions and the set of corresponding scalar valued func-
tions are denoted by C*(G, 7, 7) and C2°(G) respectively. We topologize C25(G)
and C7°(G) as follows (see [24]): A sequence {f;} in C2(G) converges to 0 if
and only if there exists a compact set C' of GG such that suppf; C C for all ¢ and
fi along with all derivatives converges to 0 uniformly on C. A sequence {f;} in
C(G) converges to 0 if and only if f; along with all derivatives converges to 0
uniformly on each compact subsets of G.

The 7-radial LP-Schwartz spaces for 0 < p < 2 are defined by

OP(G’T’ 7—) = {F S COO(G> T, T) | VDlaDQ € U(g),VN c N,
sup || F'(Dr1; ag; Da||gnav, (1 + t)Negpt < oo},
>0

where U(g) is the universal enveloping algebra of G.

The corresponding space of scalar valued functions is defined by

C2(G) ={f € C(G) | VD1, D, € U(g),VN €N,
sup | £(Dy; ag; Ds)|(1 + t)Ver” < oo}
t>0

Here F'(Dy;ay; Do) (respectively f(Dq;ay; D)) is the usual left and right deriva-
tives of F' (respectively of f) by D; and D, evaluated at a;.

The spaces CX(G, 7,7),C>(G, 7,7) and CP(G, 1, 7) are topologically isomor-
phic with the function spaces Cg5(G), C2°(G) and CP(G) respectively through
the map F' +— fr and its inverse f — Fy. We will mostly work with the scalar
valued 7-radial functions. However it will be clear from the context whether we

are considering scalar or EndV; valued functions. For any (scalar valued) function

space L(G) the set of T-radial functions in £(G) will be denoted by L£,(G). We
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recall the well known facts: For 0 < p < ¢ <2, C2%(G) is dense in C2(G), C2(G)
is dense in CZ(G) and for 1 < p <2, C?(Q) is dense in L2(G).

Let D(G, 7) denotes the algebra of left-invariant differential operators acting
on C®(G,7)={f:G—=V,| fis C® and f(zk)=7(k7)f(z)}.

Definition 2.1.3. A function ® € C*(G,7,7), with ®(e) = Id is called 7-
spherical function if ® is an eigenfunction for D(G, 7), i.e., there is a character xg
of D(G, 7) such that

D&()o = ya(D)B()0

for all D € D(G, 1) and all v € V, (the representation space of 7).

Then we have the following characterizations for the 7-spherical functions (see
[T1], [@6, Theorems B.2, B.12], [47, Theorems 6, §]).

Theorem 2.1.4. Let & € C*(G, 1,7), with ®(e) = Id. Then the following con-

ditions are equivalent:
(1) @ is a T-spherical function,

(2) The map F — Xo(F) = ifGTr [F(x)®(z™1)] dz is a character of
Cx(G,T,71),

(3) ®x F = A\o(F)D, for all F € CX(G,T,7),
(4) © satisfies either one of the following (equivalent) functional equations:

() d- [ 7(k)2(xky) dk = Tr(2(y)) (),
(b) d- [, ©(xky)x, (k) dk = ®(y)P(z) for all z,y € G.

Let P = M AN be a minimal parabolic subgroup of G. Given o € M and
A € C, we have the representation o ® ey ® 1 of P where ey (z) = €® is the (not
necessarily unitary) character of A and 1 is the trivial representation of N. The
minimal principal series representation 7, y = indg (c®e)y®1) is the representation
induced by 0 ® ey ® 1 from P to G. In our parameterization 7, ) is unitary if
and only if A € R and they are also irreducible except maybe for A = 0. The
subquotient theorem of Harish-Chandra implies that each m € G is infinitesimally
equivalent to a subquotient representation of a nonunitary principal series 7, ),
for suitable 0 € M and A € C. For a detailed account on construction and
parametrization of representations we refer to [, Ch. VII].

For € G, 7 € K and o € M we let m(7, ) (respectively m(eo, 7)) denote the

multiplicity of 7 in 7|k (respectively multiplicity of o in 7]3/). Also for 7 € K we
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let ]\/4\(7') ={o € M | m(o,7) > 0}. We have the following result regarding the
link between the commutativity of the algebra I,(G) and the multiplicity of 7 in
the elements of G. (See [29], [T9, Theorem 3]. See also Proposition 5.1 and the

Remarks following it in [46)] for a relevant discussion.)
Proposition 2.1.5. The following conditions are equivalent:

(1) For f1, fo € I.(G), fix fo = fax fi whenever convolutions on both sides make

sense.
(2) m(r,m) <1 forallme G.

We digress briefly to recall that for a unimodular locally compact group G, a
compact subgroup K of G and a unitary irreducible representation 7 of K, if the
convolution algebra of continuous compactly supported 7T-radial functions on G is
commutative, then (G, K, 7) is called a Gelfand triple. The term Gelfand triple
is coined by E. Pedon which generalizes the well known concept of Gelfand pair
(see [0, section 5.2, Appendix BJ.)

We come back to the context of GG, K and 7 of the previous proposition. From
now on we restrict our attention to those 7 € K for which m(7,7) < 1 for any
7 € G. Then in particular C2(G) is commutative i.e. (G, K,7) is a Gelfand
triple. We note that by Frobenius reciprocity theorem m(7, 7, ) < 1is equivalent
to the condition that 7]y, is multiplicity free. Unless stated otherwise, by 7 € K
we shall mean such a 7 in K.

ForreK,oe ]\//7(7') and A € C, let @7, (v) be the matrix block of type 7 of
Toa(z). Precisely @7, (z) := P\ (271)(P;)*, where P; is the projection of Hy_
(the representation space of 7, ) onto V; given by P, = d, fK o (k)X (k1) dk.
(See [H6LI2,[T3]. See also [IT] where by abuse of notation the author writes the
right-side projector P, to mean its dual operator P*.) The subquotient theorem
implies that every (nonzero) 7-spherical function on G can be written as ®7 , for
suitable o € M () and A € C. Moreover this spherical function ®7 , admits the

following integral representation
oxl@) = —/ e~ AP H(k) [7(k) o Py o7(K(zk)™)] dk (2.1.1)
K

where

P =d, /M (Yo (m) dm

is the projection of V. onto V, (representation space of o) C V, and d, is the

dimension of o. The corresponding scalar valued 7-spherical function ¢ , is given
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by:

pal@) = Tr(@] ,(2)) = d, / e~ MHAHER) (k™ K (2k) ™) xo (m) dm dk.
KxM
(2.1.2)

The following proposition indicates the relation between ®7 , (z) and @7, (z~).

Proposition 2.1.6. For A € EndV,, let A* be its adjoint. Then @] \(x) =
(@;X(:fl)> and ¢ \(z) = gb;X(x*l) for T € K as above, z € G,\ € C and
o€ M(T).

Proof. Putting ¢ = h™' in the identities H(ghk) = H(hk) + H(gK (hk)) and
K(ghk) = K(gK(hk)), we get
H(hk) + H(h " K(hk)) = 0 and K (h~"K(hk)) = k.

Using these we have,

@;)\(x) = & fK e~ (IA+p)H(wk) [7(k) o P, o 7(K (zk)™1)] dk

do’
= b [ eIHERED) (K (271K (2k))) 0 Py o (K (wk) )] dk.
We put K(zk) = k; in the above to get

B7 (7)) = %= [i TR [2(K (271 )) 0 Py o 7(ky )] e 20D gy

= g—; [ eA=PHE k) [k ) o Pyo 7 (K (27 k)™ dky

= g—; [i et HE ) [7(ky) o Py o 7 (K (27 k) ™Y diy

*

= (e75)

We also have ¢7 ,\(z) = Tr(®7,(z)) = Tr (Q)Tf(yc_l)yk = Tr <Q)T_(x*1)> =

o, [N

;X(xfl). O

One also has the following easier proof of the proposition above. For 7 € K ,
o€ ]\/4\(7), let 7, A (2)* be the adjoint of the operator 7, \(z). Then by unitarity it
follows that 7y \(z)* = m,a(271) for A € R. Hence m, 5 (2)* = m,5(x~ ") for A € C

by analytic continuation. This proves the assertion.
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Definition 2.1.7. For a suitable 7-radial function F' € I'(G, 7, 7), its T-spherical
transform at (o, \) € ]\7(7’) x C is defined by

F(o,\) = di /G Te[F(2) @], (a7")] da, (2.1.3)

T

whenever the integral exists.

Correspondingly, for a suitable function f € I.(G), its 7-spherical transform

is given by .
flo) = 7 [ 1wz, (2.1.4)

whenever the integral exists. We have the following theorem which shows that a
scalar valued function and its corresponding endomorphism valued function has

same T-spherical transform.

Theorem 2.1.8. For a suitable function f € I.(G) and F € I'(G, 1,7) we have
F(0,X) = Fy(o,)\) for allo € M(),A € C

and
F(o,\) = fr(o, ) for all o € M(7), ) € C.

Proof. Let e be the identity element of G. We have

- 1 ) 1 T 1 T
Flo) = 1 [ 1@)iala)de = (7 5 63,0() = 3(f d:05)(e)
T JG T T
By Proposition there is a F' € T'(G,7,7) such that f(z) = d,Tr(F(x)) =
fr(x). Therefore F' = Fy. Also we have ¢] ,(r) = Tr(®] ,(z)). This shows that

~ 1

1 1
[0, ) = 5 (frx fay )(€) = Zz fay wr(e) = —Tr (D7, + F(e)) .

That is

Flon = 51 ([ on6rrwan) = o [ 7 (Fws,07) dy

T

Therefore f(o,\) = F(o,)) = I/J’;(a, A). The other equality will follow similarly.
This completes the proof. O

The 7-spherical functions ¢7 ,, ®7 , satisfy the following functional equations
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(see [IIl, Theorem 3.6], A6, Theorem B.2], A7, Theorem 6)):

- [ G alabyl™) dk = 65067 0). (21.5)
i [ (kg ) dl = &7, (@), (0) (2.1.6)
K
Using these it is easy to verify that for fi, fo € I(G)

Fix (0, 0) = filo, M) Fa(o, \),

for \ € C and o € M (1) whenever both sides make sense.
Indeed using K-central property of fi, fo and ¢7 , we have,

Frehao,N) = [o(fis R)(@)o7 (") da
= JoJo h@) LW)eraly" =) dzdy
= Jo Jo Jx @) falkyk™)o7 \(y™"27") d dz dy
= o Jo S F1(2) fayn) @7 A (K oy k2 ™t) e dz dyy

Jo Jo Jie F12) fa(yn) o7 5 (yy k2 k) dks dz dy,.

Therefore

fix o)) = Jr 12055z dz [ fo(y) 975 (1) dun

= i) (V).

From the integral representation (ZIl) and (ZI2) it follows that the oper-
ator norm of @7 ,(x) and the absolute value of ¢, are bounded by a constant
multiple of the elementary spherical function ¢g)(x). From the estimates of ¢,

(see Proposition [LILTl) we get the following:

Proposition 2.1.9. The 7-spherical functions satisfy the following properties.
(1) Forl<p<2and1 < q< oo, ¢7, € L¥UG) if A\ € S5.
(2) g7\ € LE2(G) if N€ S, for 1 <p<2.

Corresponding statements are easy to formulate for EndV,-valued 7-spherical

functions @7 ,. For this we substitute the absolute value by the norm of the
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matrix @7 , in the definition of LP-norms, distribution functions etc.. The converse
of these statements are not immediate from the corresponding statements for
elementary spherical functions in Proposition [LILTl We will come back to this
question (see Remark (2)).

It is clear from Proposition that for a function f € LP1(G),1 < p < 2
(respectively for LP(G),1 < p < 2,1 < g < 00) its 7-spherical transform exists

as convergent integral on S, (respectively on Sy).

2.2 7-Radial Distributions

In this section we will introduce 7-radial distributions, tempered distributions and
compactly supported distributions and their 7-spherical transforms. We begin by
recalling some basic facts about distributions on R.

The set of compactly supported infinitely differentiable functions, Schwartz
space functions and infinitely differentiable functions on R are denoted by
C*(R),S(R) and C*°(R) respectively. Any continuous linear functional on C2°(R)
(respectively on S(R) and C*(R)) is called a distribution (respectively tempered
distribution and compactly supported distribution) on R. The set of all distri-
butions, tempered distributions and compactly supported distributions on R are
denoted by C°(R)",S(R)’, C>°(R)" respectively. Any locally integrable function
h on R can be considered as a distribution T), by T,(g) = [, h(t)g(t)dt for
g € CX(R). For T, T, € C*(R),h € CX(R) we define Ty * h(t) = T1(L(t)h),
(Ty x Ty)(h) = Ty % (T3 % h)(0) where (L(t)h)(s) = h(s —t).

Definition 2.2.1. For a compactly supported distribution 7" on R, its euclidean
Fourier transform is defined by T(\) = T(e=*0)) for A € C.

Then it follows that if T} is induced by a compactly supported function h on
R then T,(\) = Th(e =) = [, h(t)e ™ dt = h(N).

We define the Paley-Wiener space PW?P for distributions on R as the space
of entire functions f : C — C satisfying |f(A)] < C(1 + [A|)MefSN for all A €
C, for some M € NU {0} and R > 0. Let PW?P be the set of even functions
in PWP. We endow PW?P with the topology of “analytic uniform structure”
(see 21, p. 9], [38, p. 414]). The topology is defined as follows: Let P denote the
set of all continuous positive functions a(z) = a;(R2)ax(SFz) (2 € C), where a;
dominates all polynomials and a; dominates all linear exponentials. For an a € P
we let U, denotes the set of all functions F € PWP such that |F(z)| < a(z)
for all z € C. We topologize PW?P so that {U,}.cp is a fundamental system of
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neighborhoods of 0. Then a sequence {F;} converges to 0 in PW? if and only if
there exists a > 0 such that

sup |F;(2)] exp(—a|Sz])(1 + |2])™* — 0 as j — oo.
zeC

Let PW?P be topologized by the subspace topology of PW?. We have the follow-
ing topological Paley-Wiener theorem for distributions on R [21, Theorem 5.19]:

Theorem 2.2.2. The euclidean Fourier transform for distribution is a topological
isomorphism between C*®(R) and PWP (respectively between C*°(R)!, and PWP).

For a function f € C*°(G) we define its T-radial projection f, as

Fle) =& [ (s £ (k™) d

A distribution W on G is called 7-radial if W(f) = W (f.). Similarly we define 7-
radial tempered distribution and 7-radial compactly supported distribution. Let
C2(G), C2(G)" and CX(G) be the dual spaces of C22(G), C2(G) and CX(G)
respectively. Then their elements are 7-radial distributions, tempered distribu-
tions and compactly supported distributions respectively. We use on C25(G)" the
topology of the uniform convergence on bounded subsets of C2%(G).

We will be using the following notation:

fi(w) = fa™), f(2) = fla7), L(2)f(y) = fa7'y), and R(z)f(y) = f(yz)

where f is a function on G. Any locally integrable function f € I.(G) can be
considered as a 7-radial distribution Wy by Wy(g) = [, f(x)g"(z)dx for g €
C2(G). For W, Wy, W, € C.(G)" we define the following:

W) = W), WY(f) = W), W) = W), (W () = WY(L(z) ),

(f = W)(x) = WY (R(@™")f) and (W1 Wa)(f) = Wy [y« f¥](e)

where f € C25(G) and e is the identity element of G.

For suitable functions f, g € I.(G), following results are easy to verify:
Wy =Wp, W/ =Wy, Wi =W, Wysg=fxg,

gx Wy =gxfand Wy*x W, = Wg,.

Indeed,
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1. @( g) = = [, f( v)dr = [, f(z)g"(z)de = W+(g). This proves
W= Wf.

2. Wi(g) = = [ f(x)g(x) dv = Wy (g) which proves W} = Wv.

3. Wig) = = [ f( z)dr = [, f*(x)g"(x)dr = Wy-(g). This

proves Wf = Wf*.

4. (Wy*g) (z) = (Wp)" (L(2)g") = Jo f()(L(x)(9)")(y) dy = (f * g)(z). This
proves Wy x g = f * g. Similarly we can prove g * Wy = g * f.

5. Wf * W (h) = va [WV x hY](e) = va x [g¥ « hV](e) = [fY *x g¥ x hV](e) =
Ja )" (x) dz = Wy (h).

Definition 2.2.3. For W € C°(G)’, its T-spherical transform is defined pointwise
at (0, \) € M(r) x C by W(o,\) = LW (¢7 ).

It is clear that when a distribution W is induced by a function w € CZ5.(G),
then W(a, A) = w(o, A). Using denseness of C25(G) in C2°(G)" and the continu-
ity of the 7-spherical transform it can be verified that for Wy, Wy € C2(G)
and h € C2(G), Wy h(o,A) = Wi(o, Vh(o,\). Also (Wy * Wa) (o, \) =
Wi(o, ). Wa(o, A).

2.3 Abel Transform and its Adjoint for 7-Radial

Functions

This section is devoted to introduce Abel transform and the adjoint of Abel trans-
forms. We establish a relation between the 7-spherical transform and Abel trans-

form of suitable 7-radial functions and 7-radial compactly supported distributions.

Definition 2.3.1. For a function F' € I'(G, 7, 7) and 0 € ]\/4\(7') the Abel transform
of F'is defined as:
1

A F(t) = ik

pt/ Tr(F(an) o P,) dn for each o € M(7) (2.3.1)
N

whenever the integral make sense.
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Correspondingly for a function f € I(G) and o € M (1) Abel transform of f

is defined as:

A (f)(t) = ie”t /M . f(magn)xo(m) dmdn for each o € ]/\4\(7) (2.3.2)

d,
whenever the integral make sense.

Note that when 7 is trivial (i.e. the function f is K-biinvariant) then o is
also trivial and A, (f)(t) coincides with the well known Abel transform for K-
biinvariant functions. We have the following slice projection theorem for Abel
transform (cf. [46], eq. 7.1]). For a suitable function h on R let I be its euclidean
Fourier transform that is, h(\) = Jo h(x)e™ ™ d.

Theorem 2.3.2. For o € ]/\/[\(T) and f € I.(G), A(a, A) = m(—)\) whenever
both sides exist.

Proof. Let f be a suitable function in I (G). Then

flo.N)

/ f() / e~ DI\ (e~ (K (27 k) ™)Xo (m) dm dk dx
KxM

-/ / [ (ky™)e™ PO (k=) (K ()~ )xo () dy dim ds
KxM

We use the Iwasawa decomposition G = KNA and write y = kyn"ta_, to get

flo)) = / / f(kamky e 0 (km™ k7Y xo (m) dky das dn dm dk
KxM JKxAxN

= / / / f(kagnk e (km™ kT Y xo (m) dm dky day dn dk.
KxAXN

Substituting first km~' = ks and then kik;' = ky and using f(kszks!') = f(2)

we get

flo,N) = / / ) / f(ksmagnky V) xr(kskiY) dks dki e day dnx,(m) dm
KxAxXN
= / / / / f(ksmagnks ky V) x, (k) diy dkse P day dnx,(m) dm
M JAxN JK JK
1 .
= — / Xo (M) / / f(ksmagnks V) dkse ™ da, dn dm
AxN

_ / ( / F(magm)xs(m) dmdn) e di
_ / A, f (1) “]Y;tN
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O

From the theorem above and the injectivity of the Fourier transform it follows
that for two functions fi, fo € I, for which the 7-spherical transform and Abel

transform exist,
Ao (fi* fo) = Ay fix Ay fa forall o € J/\Z(T)

From the domain of existence of the 7-spherical transform (see Section EITI),
Theorem and Fubini’s theorem we have the following mapping properties of
the Abel transform:

Proposition 2.3.3. Let f be a measurable scalar valued T-radial function on G.
Then for all o € J/\I(T)

(1) If f € LPY(G),1 < p < 2 then [, | Ao f(t)| e»?lthdt < C|f|3 ;.

(2) If f € LP9(G),1 < p < 2,1 < q < oo then [, |Af(t)] e dt < C|f]z,
for any 0 < o < y,p.

Proof. We note that |A,f| < A,|f| and

/R Al f1 () dt = [F](o, Finpp) = / PG pim, (@) 2 < 1675, | I

This proves (1). Similar argument proves (2). O
Definition 2.3.4. For a measurable function f on R adjoint of Abel transform

A for o € M (1) is defined by

A f(y) = d—la /K F(eH W e=pHWR) (7(k) o P, o 7(K (yk) ™)) dk.

It is clear that if f is a bounded function then A f exists. As Iwasawa de-
composition is a diffeomorphism A’ f is infinitely differentiable whenever f €
C*(R). Also we observe that A% f is a EndV, valued 7-radial function. That is
Arf € C°(G,7,7). The following theorem justifies the definition of adjoint of

Abel transform.

Theorem 2.3.5. For a measurable function F' € I'(G,7,7) on G and a measurable
function f on R the following holds

(AF, f) = (F,ALS)

whenever the inner products on both sides make sense.
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Proof. We have

(AF, ) = fR Ao F(ay) f(ay)dt

= i Je €’ [y Tr(F(an) o P,) dnf(a,)dt

L Jrenen € Tr (F(kamn) o 7(k) o Py) f(az) dn dt dk.

We put ka;n = x in the above integral to get,

(AF, f) = L[, Tr(F(z)or(K(x))oP,)e @ f(eHw)) dy

= o JoTr (F(x) o f(eH@)e PH@) (K (x)) o P0> dr.
Again we put z = yk in the above and get,

(AF,f) = & [ fie T (707 0 Fly) o m(K (k) o Py [eF0R)e 2109 didy
= Jo T (Fly) o [ (K (k) o Py o (k) F(e0M)e 64 i) dy

= JoTr(F(y) o (ALf(y)") dy

= (FLALS).
O

Remark 2.3.6. It is clear from the definition that if f(a;) = e, then
A fy) = diq); 4 (y). Therefore by the theorem above and Proposition EZT.0 we
have the following slice projection theorem for endomorphism valued functions.

For a suitable 7-radial function F and o € M (1)
Flo,\) = A, F(=N), (2.3.3)

where A,F(=\) = Jo AcF(t)e™dt denotes the euclidean Fourier transform of
A F at —\. In fact

~

F@M:%Aﬁwmqu»mziéﬁ@m@;@ﬂmu
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Therefore,

F(o,0) = —(F, @7 ) = (F, A% (e ?0)) = (A, F, e ?0) = / A, F()edt
7 R

T

QL

We note that this result is equivalent to Theorem EZ32 We can extend the
definition of Abel transform to compactly supported 7-radial distributions in the

following way.

Definition 2.3.7. For W € C>®(G), its Abel transform A, W is defined by:
AW (f) = W(Tr AL f) for f € C(A), for each o € ]\//.7(7') (2.3.4)

We note that A,W is a compactly supported distribution on R and the slice
projection property is in-built in the definition above of the Abel transform for

compactly supported distributions. That is

W(o,\) = AW (N). (2.3.5)

In fact

W(o,\) = diW( ) = W (TrALe 0) = AW (e720) = A, (N).

T

Use of the slice projection property also yields the following for Wi, W, €
Cx(G)"

(AW A Wo) (0, 0) = AWy (0, \) A, Wa(0, A) = Wi (0, \)Wa(a, ).
Therefore

(A Wy % Ay Wa) (0, ) = (W % WaT (0, A) = Ay (Wy % Wa) (0, ).

By the injectivity of the euclidean Fourier transform from the relation above we
get
AU(Wl * Wg) = AU(Wl) * AO—(WQ).



Chapter 3

Some Banach Algebras and
Modules

In this chapter we shall continue to work with a Gelfand triple (G, K, 7). We shall
set our basic objects for which the Wiener-Tauberian type theorems will be proved
in Chapter . We shall consider two different sets of Banach spaces of scalar valued
T-radial functions. Members of these sets can be viewed as generalizations of the
group algebra L!(G). We shall investigate some properties of these spaces and
find the domains of the 7-spherical transforms of the functions in these spaces.
We shall also identify the Banach algebras and modules among these spaces.

For normed linear spaces U,V and W by V C W (respectively by U xV C W)

we mean both set inclusions and the associated norm inequalities:

|lvllw < Cllv||y (respectively ||u * v]jyw < Cllully||v]|y) for all uw e U, v € V.

3.1 Weighted Spaces

We shall consider the weights w,,(z) = ¢y, (2)(1 +o(x))", forr > 00 < p < 2,
which are naturally associated with the group. For r and p as above we define

the weighted L!-spaces:
LG, wy,) ={f:G— C| fis measurable and 7-radial with || f|.,, < co}

where

£y, = 2 /G | F(@)]wy () dar

Similar spaces have appeared already for instance in [I7,[I8]. It is clear that

the 7-spherical transform of any function in these weighted spaces has analytic

35
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extension (except for the degenerate case p = 2, which we shall treat separately).
For convenience henceforth we will write Ll (w,,) for LL(G, w,.).
We note that L (w;o) = LL(G) and if r > s > 0 then L (w,,) C Li(w,). A

few more such observations we write in the form of a proposition.

Proposition 3.1.1. We have the following set inclusions and corresponding norm

mequalities:

(a) If 1 < q < p < 2 then LY wys) C Li(wp,) for anyr > 0, s > 0. If
< q <p<2then LYw,s) C Li(wy,) for s > r > 0. In particular
)C L

LG Nwp,) if 1 <p<2andr>0.

(b) If0<p<1andr >0 then L (w,,) C LL(G).

—_

(¢) If 1 <p <2 then L2(GQ) C Li(wyp) and if r > 1 then L2 (G) ¢ L(wyp).
(d) For1<gq<p, L9*(Q) C LY (w,,) if 1 <s<oo,r>0.

Proof. Assertion (a) and (b) follow comparing the weights (see Proposition [LTLT])
and noting that LL(G) = L (wy ).

For (c) we note that ¢;,,, € LP"*°(G) by Proposition [T and hence L2Y(G) C
Lz (wp,0).

Next we shall show that Ll(w,p) \ L?!(G) is nonempty for 1 < p < 2. For
p in this range, we take a ¢ € L1(G) \ L?(G) and consider h = g(bw ,- Then
h € Li(wyp), but as gbw , > 1, [h(z)| > |g(z)| and hence h & L2(G). As L2 (G) C
LP(G), the assertion follows.

Next we show LP"(G) \ LL(w, o) is nonempty when r > 1.

As by Proposition [, ¢, ¢ LP»*(G//K) unless s = oo we have that there
exists a nonnegative function ¢ € LP"(G//K)\ LY(G//K,wyp). It is now easy
to construct a function f € LP"(G) \ LL(w,o) in the following way: We define
f: G — EndV, by

F@w = f(kragks)v = ¥(a)7(ky 'k v, v e V.

Let f(z) = Tl"(]?(l")) = (ay)Tr(r(ky 'k ")), Then f is a 7-radial function and
|f(z)] < Crab(z). Hence f € LP"(G). Also

L@yt = € [ b, fa)da

which is infinite by the choice of 1.
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For (d) we use that for any r > 0 and ¢ < p1 < p, @iy, p(7)(1+0(2))" < by, o(2)
and that ¢;,, , € L9°Y(@G) by Proposition [CIIl The result now follows from the

properties of the Lorentz spaces.

We need now the following lemma.

O

Lemma 3.1.2. Let wy and ws be two radial measurable positive functions on G

such that wy(x) < wi(x) for allx € G and

/K wo(zky) dk < wo(x).we(y).

Let fori=1,2

LYG,w;) ={f € I.(G) | f is measurable with || f||., = dz/ |f(x
G

Then Li(G’wl) C Li(G,w2) and Hfl * f2||w2 < ||f1||w1||f2||w2'

LY(G,ws) is a Banach algebra.

Proof. We suppose f; € L1 (G, wy), fo € LL(G,w;y). Then

/|f1 Jo(z)|wa(z / dy'wg( ) dx

W) dyws () de

IN

I
& \\\\

IA

)|w;(x) de < oo}

In particular

[ [t
/ )| o) lwalzy) dydz (putting 2y = 2)
[ desax <>dk] o) lwa(zy) dy dz

/// (R A GO () |wa(21ky) dk dy dz

2 /G /G /K el () folw) s ki (z1) d dy dz

< /G /G o) o (22) | o) )y

Therefore [|f1 % fallw, < [f1lluws [l f2lws-

O

From the lemma above and Proposition B.I the following corollary is imme-

diate.

Corollary 3.1.3. For p,q € (0,2] and positive real numbers r, s
(a) Li(w,,) is a Banach algebra,
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(b) L (w,s) is a L (w,,) module if r > s,
(¢) Li(wy,) is a Lt (w,s) module if ¢ < p. In particular if p > 1 then L:(w,,)
is a LL(G) module and if p < 1 then LL(G) is a L:(w,,) module.

Proposition 3.1.4. For anyr > 0 and 0 < p < 2, C?(G) is dense in L:(w,,)

and the inclusion map i : C?(G) — LY(w,,) is continuous.

Proof. We suppose that f € C2(G) and py(f) = sup,eq |£(2)](1+ o (x)) 557
for some s > 1. Then

1l = d7 Jo If @)1+ 0(2)) bir, p() dax

< &p(f) fG eigpa(x)gbi%p(x)m dz.

Therefore
—2po(x)

[ llwpe = Ep1(f) Jo Srays d2-

In the last step we have used the estimate ([[LILY) of ¢,. Now by using polar
decomposition it is easy to check that the integral is finite and thus || fl.,, <
Cpi(f). Therefore C?(G) C L (w,,) and the inclusion map i : C?(G) — Lk(w,,)
is continuous. Also we have C2%(G) C C2(G) C Li(wy,) and C%(G) is dense in

L(w,,). Therefore C?(G) is dense in LL(w,,). O

Proposition 3.1.5. The T-spherical transform of the functions in L:(w,,) have
the following properties:

(1) If f € L:(wy,),0 <p <2, r >0, then for all o € ]\//7(7'), flo,+) is analytic on
Sy and continuous on the boundary. If f € LL(wa,),r >0, then f(a, ),0 € ]/\/7(7')
exists as a convergent integral on R.

(2) Let f € Li(wp,) with 0 < p < 2 and r > 0. Then for all o € ]\/4\(7'),

Ao f € LY(R,w), where w(t) = e?1. Moreover

-~

lim f(o,&+1in) =0

|§|—o0

uniformly in n € [—Ypp, Ypp)-

Proof. (1) We take a function f € Ll (w,,) with0 <p <2andr > 0and A € S,.
Then

|95 ()]
Pirpp(2) (1 + 0 ()

as [¢7 \(7)] < C diga(r) < C iy p(w). For 0 < p <2, a standard use of Fubini’s

rdx<oo

/Glf(x)l |¢Z,A(x)|d$=L\f(x)\(1+0($))r¢iwpp($)
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~

theorem, Morera’s theorem and dominated convergence theorem shows that f(o,-)
is analytic on 5, and continuous on the boundary.

(2) From (1) above we know that f(a, -) exists on S,. We recall that for a suitable
function h on R, % is its Euclidean Fourier transform i.e., h(\) = [, h(z)e ™" dz.
As f € LM (w,,) with 0 < p < 2,7 >0, | A, f| < A,|f] and A, f(=)) = (0, \) for

A €5, we have:
/ | A, f(t) | dt < oo.
R

Thus g = A, f is in the weighted space L'(R, w) with weight w(t) = e**ll. This
reduces the assertion to the Riemann-Lebesgue lemma for functions on R which
are integrable with an exponential weight. It is also clear that for n as in the

hypothesis
g+ i) < [ lotole de < gl
R

where [|g|lw1 = [ |g(z)|e”1*l dz the weighted L'-norm of g. To complete the
proof of the assertion we now approximate g in L'(R,w) by finite sums h of step
functions and use h(§ +1in) — 0 as |{]| — oo uniformly in n € [—v,p, 7,p] and note

that - ~
19§ +in)| < [g(§+1in) — h(€+ )| + |R(E +in)]

< g = Bllws + |R(E + in)].

Remark 3.1.6. The following remarks are in order.

(a) The spaces L!(ws,),r > 0 stand apart as the domains of the 7-spherical
transforms of the functions in these spaces are no longer strips in the com-
plex plane. We shall call this the degenerate case. The Wiener-Tauberian

theorem for this case will be proved separately.

(b) Onme can also consider weighted spaces L!(w,,) for 1 < p < 2 and r < 0.
Using the inequality (1+0(y))/(1+0(z)) < (14+0(zy)) < (140(z))(14+0(y))
( [28, Prop. 4.6.11]) it can be shown that Ll(w,,) is an L}(w,s) module
when p,r are as above and |r| < s. Argument similar to what we have
used in the previous proposition shows that the 7-spherical transform of
functions in L} (w,,) extends analytically on S, and a Riemann-Lebesgue

lemma holds on S;.
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3.2 Lorentz Spaces

Our second set consists of Lorentz spaces LP?(G) of scalar valued 7-radial func-
tions.

We have seen in Chapter B that like the elementary spherical function ¢, the
T-spherical function ¢7 , also satisfies some uniform estimates, L estimates as well
as the Lorentz space estimates. The LP estimates of ¢, leads to the Kunze-Stein
phenomenon for K-biinvariant functions (see Chapter 1). From Similar argument
it follows that L2(G) * L1(G) C Li(G) with the associated norm inequality: || f *
ally < Cllfllpllglly when 1 < p < ¢ < 2 for 7-radial functions f,g. This is the
Kunze-Stein phenomenon in its classical form for 7-radial functions.

Through the works of Herz, Lohoué, Lohoué and Rychner, Cowling and Ionescu
sharper version of Kunze-Stein phenomenon is obtained for groups of real rank
one which involves Lorentz spaces (see [16] for a comprehensive survey and for
the references, see also [H4L[17,89]). This gives rise to new modules and algebras,

which we shall see now.

Proposition 3.2.1. The spaces LP9(G) satisfy the following properties:
(1) For1<p<2, L?»Y(G) is a Banach algebra.
(2) LY"(GQ) is an LYY (G) module for 1 < g < a <2 and 1 <r < oo.

(3) If 1 < q < p < 2 then CUQG) is dense in LP"(G) for 0 < r < oo and the

inclusion map i : C4(G) — LP"(G) is continuous.
We need the following theorem. [64][16].
Theorem 3.2.2 (Zafran). Suppose T is a bilinear operator which is bounded from

L%mi(A) x Lbisi(B) to L%(C) fori=0,1 and ay < ay,by < by, co < ¢1. Suppose
for 8 € (0,1),
1 1-6 6 1 1-6 6 1 1-0 ¢

+—
Qg Qo (117 bg bo b17 Cy Co C1

and (r,s,t) € [1,00] x [1,00] x [1,00] satisfies 2 + 1 > 14 1. Then T is bounded
operator from L% (A) x Lb*(B) to L' (C).

Proof of Proposition [ZZZ. Assertion (1) is proved in [#4[T6]. However it is pos-
sible to give a unified proof of (1) and (2). In this regard we need the following

fundamental end point estimate of Ionescu ( [39]):

L*Y(G) * L*Y(G) C L**(G).
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Specializing to 7-radial functions we get,
LYHG) = L7H(G) € L2™(G).

We also have
LX(G)  LA(G) € L2(G)

for p > 1. This can be restated as:
LPP(G) x LYY (G) C LPP(G), for p > 1, in particular for 1 < p < 2.
Using Theorem we get
L27(G) » LT (G) € LY(G)

where %—i—% > 1+% and ¢ < a (varying 1 < p < 2 we get all ¢ such that ¢ < «).

We note that (r, 1, r) satisfies the relation above. Therefore
LY (G) x LYY(G) € L*"(G) when ¢ < a.

This proves (2). In particular taking r = 1 and o = ¢ = p we get LPY(G) is a
Banach algebra. This proves (1).

(3) We recall that C4(G) C Li(G) C L>(G). Again C4(G) C LA(G) C L2>(G).
Therefore by interpolation ( [80, p. 64]) C4(G) C LP"(G) when ¢ < p < 2 and
0<r<oo.

For a function g € C9(G) we consider the seminorm

2 o\
p1(g) = sup |g(z)|ea” ™.
zeG

A function g € C%(G) implies p1(g) < oo, that is for all x € G,
lg(x)] < Befgpg(z), where B = p1(g) > 0.

Let f = £g. We have, |f(z)| < e~ 7).
We recall that

T / dy(8)7 dt

where d;(t) = m{z | |f(x)| > t} for t > 0, m being the Haar measure of G.
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Then we have,

ds(t) = 0if ¢t > 1
= m{z|o(z) < Qiplog%} ift <1.

Let us write § for m, + mo,. A direct calculation using the expression of the

measure m yields the estimates

1 1 1 1 _2p
de(t) <O | —— + —(e?87 — 27| < B t 7
f()_0|:ﬁ+1+2p(€ e“’) _C+2ptq10< <e

and

25108 ¢ C ,
df(t)gc/ rdr = ——(Llog 2y ife s <t <1

o +1'2

Now

2p
00 1 C q 1 1/p e 4 1 1/p
de()VP dt < (L ]og =)At! dt / C+— dt.
/0 ) _/e-%ﬁ {ﬁﬂ(?p &3 } " 0 +2ptq

The first integral converges as the integrand is continuous in ¢ and the second
integral converges as ¢ < p. Thus [|f][y, < C, where C is independent of f.
Therefore [[gs, < Cpi(g) for all g € CI(G). Also since ||gl5, < g5, for
7 > 1 the second part of the assertion follows. As C25(G) is dense in L2"(G) and
C(G) C CYG) it follows that CZ(G) is dense in L2 (G). O

Remark 3.2.3. Note that it follows as a special case of a more general result
proved in [9] that the spaces LP4(G) are L(G) modules for 1 < p < oo and for
1 < ¢ < 00. Using a result of Saeki modified by Cowling ( [53},[I6]) one can show
that L>"(G),r > 1 is not an algebra and LY"(G) is not an L%*(G) module for
s> 1.

Since by Proposition BT, LP'(G) C Li(w,o),1 < p < 2 and LP"(G) C
Li(wys),1 < p < ¢ < 2,r > 1, the following proposition is immediate from
Proposition BTH.

Proposition 3.2.4. The 7-spherical transform of the functions in LP%(G) have

the following properties:

~

(1) Let f € LP(GQ), 1 < p < 2. Then for all o € ]\/4\(7'), (0,-) is analytic on
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Sy, continuous on 95, and

~

lim f(o,§+1in) =0

|§]—o0

uniformly in n € (=0, Vpp)-

~

(2) Let f € L2"(G) with 1 <p <2, r > 1. Then for all o € ]/\/[\(T), (0,-) is
analytic on Sy and

~

lim f(o,§+1in) =0

|§]—o0

uniformly inn € [—(pp — 06), (7pp — 0)] for any 0 < & < v,p.
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Chapter 4

Spin Group, Spin
Representations and Spherical

Functions

4.1 Spin Group and Spin Representations

In this section we establish the required preliminaries for our main working exam-
ple namely: G = Spiny(n, 1), the identity component of Spin(n,1) and the spin
representations. First we recall the algebraic definition of Spin(n, 1) (see [42] for
details).

Let V' be a vector space over a field k, ¢ a quadratic form on V and F(V) =
Y e ®"V the tensor algebra of V. We suppose that [,(V) is the ideal in F(V)
generated by all elements of the form v ® v + ¢(v)1, v € V. Then the Clifford
algebra is defined by Cl(V,q) = F(V)/I,(V). The vector space V is naturally
embedded in CI(V, q) as the image of V = ®'V under canonical projection 7, :
F(V) — ClV,q).

Proposition 4.1.1. Let A be an associative k-algebra with unit and f:V — A,
be a linear map such that f(v).f(v) = —q(v).1 for all v € V. Then f extends
uniquely to a k-algebra homomorphism f: Cl(V,q) — A. Moreover CI(V,q) is

the unique associative k-algebra with this property.

We consider the automorphism « : CI(V, ¢) — CI(V, q) which extends the map
a(v) = —v on V. Since o? is the identity, there is a decomposition CI(V,q) =
CI(V, q) & CIN(V, q) where CI(V, q) = {¢ € CL(V.q) : a(¢) = (—1)'¢} for i = 0, 1

are the eigenspaces of a.

45
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An element ¢ € CI(V,q) is invertible if there is a ¥ € CI(V,q) such that
¢ = ¢ = Id, where Id is the identity in Cl(V, ). Then the set CI*(V,q) of all
invertible elements in Cl(V]¢) forms a group containing all elements v € V' such
that ¢(v) # 0. Let P(V, q) be the subgroup of C1*(V, q) generated by all elements
v eV with ¢(v) # 0.

Definition 4.1.2. The subgroup of P(V, q) generated by all v € V with ¢(v) = +1
is called the Pin group of (V,¢) and is denoted by Pin(V, ). The Spin group of
(V. q) is Spin(V; q) = Pin(V, ¢) N CI°(V, q).

Let V be an n dimensional vector space over R which we identify with R™ by
choosing a basis. Let ¢(z) = 2i+- - -+a2—a?  — - —22,, r+s=n,0<r <nbe
a non-degenerate quadratic form on V. Then we denote Spin(V,¢q) by Spin(r, s).
In particular when s = 0, i.e., when g(z) = 23+ - -+ 2 then Spin(n, 0) is denoted
by Spin(n). We also denote C1(V, ¢) by Cl, and CI°(V,q) by CI° for V and q as
above and s = 0.

Definition 4.1.3. The complex spin representation of Spin(n) is the homomor-
phism 7,, : Spin(n) — GL¢(S), given by restricting an irreducible complex repre-
sentation Cl, — Home(S,S) to Spin(n) C C1° C Cl,.

Note that the definition of 7, does not depend on the choice of the (equiva-
lence class of the) irreducible representation of the Clifford algebra Cl,, which is
restricted.

Let G be Sping(n, 1), the identity component of Spin(n,1). Then in the no-
tation of Chapter [l K = Spin(n) and M = Spin(n — 1). We recall that G and
K are respectively the universal two-fold coverings of SOg(n, 1) and SO(n). The
rest of the chapter is a reproduction of the relevant part from [I3].

If 7,, is the classical complex spin representation of K then dimr, = c2?

where [-] denotes the integral part and:

(a) If n is even then 7, splits into two irreducible components positive and
negative half-spin representations 7, = 7,7 @ 7,, and 7|y = 0,1, where

0n—1 18 the spin representation of M.

(b) If n is odd then 7, is irreducible and 7,y = o | @ o, ,, where o | are

irreducible components of the spin representation o,_; of M.

We note that 0,1 = 7,,_1. Following [I3] we use different notation to emphasize

the group M or K of which this is a representation.
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The Lie algebras of G and K are g = spin(n, 1) = so(n, 1) and ¢ = spin(n) =

s0(n) respectively. We consider the element

HOZ cp,

_ o O
o O O
i
—

o

where 0,,_1 is the (n—1) x (n—1) zero matrix. Then a := {tH, | t € R} is a Cartan
subspace in p, and the corresponding analytic Lie subgroup A = {a; | t € R} where

cosht 0 sinh ¢
a; ;= exp(tHy) = | 0 I,.1 0 ,
sinht 0 cosht

I,,_1 being the (n — 1) x (n — 1) identity matrix. As usual we define o € a* by
a(Hy) = 1. Then ¥ = {—a, a}, and the corresponding Weyl group W = {£Id}.
We shall use the identification of a* and af with R and C respectively as in
Chapter [l We have here n = g,, the unique positive root subspace and N the

corresponding (abelian) analytic subgroup of GG. Then the half-sum of positive

n—1
2

p= ”T_l by the above identification.

roots p reduces simply to p = «, and will always be considered as a scalar

4.2 71-Spherical Functions

Instead of an arbitrary element 7 € K , from now on we will confine ourselves
to the irreducible components of the complex spin representations 7,. Precisely
when n is even, then 7 will denote one of {7, 7, } and when n is odd then 7 will

denote 7,,. Also for n odd ot and o~ will denote respectively the representations
+

n—1

in this chapter and in Chapter 5,6,7 we shall use the expression “n is even”

o and o,_; and for n even o will denote the representation o,_;. Henceforth
and “n is odd” to distinguish between these two cases. For n even as M (1)
contains only one o sometimes we will suppress o and write ¢, @7, f, Af instead
of ¢7 5, P75, f(a, 1), Ay f respectively.
We recall that for an integer n > 2, the real hyperbolic space of dimension n
is given by
H"(R) = {z € R""! | L(x,2) = —1, 2,4, > 0}
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where x = (x1, 22, ...,2,41) and

L(z,y) = 1121 4 - 4 YnTp — Ynt1Tn41-

We realize H*(R) as G/K instead of more well known SOg(n,1)/SO(n). Then
the 7-radial functions for 7 as above are radial sections of the spinor bundles.

It is clear from the above that (G, K, ) is a Gelfand triple by virtue of the
multiplicity free criterion for 7|, when 7 € K is either 7.7 or 7,7 if n is even and
is 7, if n is odd (see Chapter [, Proposition 2.15).

The 7-spherical functions reduces to,

O (z) = /K e~ MPHER L (LK (k) ™) dk when n is even and

Do y(z) = 2/ e~ HPHER) (- (kY o Pos o 7(K (xk)™Y)] dk, when n is odd.
K
In the above P,= is the orthogonal projection of V; onto its o*-isotypical compo-
nent of V,(o%) 2 V.
It follows from the action of the nontrivial Weyl group element on the principal
series representations (see [, Chapter VII]) that ¢f(z) = ¢7,(x) when n is
even and ¢7, () = ¢ _\(z), ¢7- \(x) = ¢]; _ () when n is odd. From this

we get the corresponding properties of the 7-spherical transform: For n even,

~ -~ -~ -~

) = J(=A) and for nodd f(o*, ) = J(o, =), (0=, 3) = f(o", =).
If Q4 denotes the Casimir operatorin the enveloping algebra of g then (see [T3])

—1)(n —2)

(0@p,() = (24 2 - =)

}®7 5(+) for each o € ]/\/[\(T) (4.2.0)

Also if D is the Dirac operator then we have (see [13])

n(n —1)

Id.
8

D? = —Q, —
This shows that
D@7, (-) = A2®] () for each o € M(r) and A € C.

Let dv(X\) = v(A)dA denote the Plancherel measure on a* which is identified
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as R. Here d\ is the Lebesgue measure on R and the density () is given by,

2
v(\) = 23_2”[(g — 1)!]72 X coth(m\) H [A2 + 52 for n even and
=1
v(A) = 2727{_71[—”—1(%—1_’_1 H j—— %) for n odd
2 2 o '

We have the following inversion formula for 7-radial functions. We note that

the discrete series representations of G does not appear in the formula (see [13]).

Theorem 4.2.1. Let F € C*(G,7,7). Then for n even and n odd respectively we
have

Flz) = / T PN (@) dv(\) and (4.2.1)

=) / F(o, )@ () dv()) = / F(om, )0, \(z)dv().  (4.2.2)

R
UGM

Consequently for f € C*(G) and n even and n odd respectively

f@)zdiAMfOMK@ﬁWO)mm (4:23)
j=d. 3 / o7 A () dv(A) = d, /R Flo* N 5(x) du(N).
oceM (7)
(4.2.4)

We also have the following Plancherel formula (see [13]):

Theorem 4.2.2. Let F € C*(G,7,7). Then for n even and n odd respectively we
have

HWQWﬂzﬁl/\ﬂ»mmwmd

0

Pl =2 [ (1P DE+ 1B AF] do(3) = 27 [ 1Flot )Pl
Now we have

Pl = (F) = [ Te(F@F)) do =T ([ )Py as)
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Therefore
||F||%2(G7W) =Tr (/ F(z)G(z™) d:p) where G(x) = F(z™)*.
G

This shows that (see Chapter B)

IF I = T ((F < G)(€) = T frcle) = (e + fr)e).

Hence HFH%Q(G,T’T) = & Jo fe(@) fr(z7") dz. Since fo(x) = fr(z=1) it follows that

1
L e (1.25)

As a consequence of Plancherel Theorem and equation ({ZZH) we have the

following Plancherel Theorem for scalar valued functions:

Theorem 4.2.3. Let f € C%(G). Then for n even and n odd respectively we have

1F 72y =221, | |F(N)Pdv(N) and

S~ 5—
8 3

s =25, [ [T N+ 1o NF] o) = 2°5d, [ 1Fio™ DPan().



Chapter 5

Schwartz Space Isomorphism and

Paley-Wiener Theorems

5.1 Introduction

In this Chapter we shall prove two theorems which characterize 7-radial elements
of two spaces on G, namely the LP-Schwartz spaces (0 < p < 2) and the space of
compactly supported distributions, where G and 7 are as in the previous chapter.
These characterizations will be used to prove the main theorems.

Our starting point is the following Paley-Wiener theorem for 7-radial function
which is proved in [I3]. For R > 0 we define the Paley-Wiener space PWgr(C) as
the space of all entire functions h : C — C satisfying for each N € N

|h(N)| < Cn (14 X)) Nef3M for all A € C

for some constant Cy > 0 depending on N. We will denote the set of all even
functions in PWg(C) by PWg(C).. Also we let PW(C) = Ug-oPWg(C) and
PW(C), = UgrsoPWg(C).. We topologize PWg(C) in the following way: A
sequence {F;} in PWg(C) converges to 0 in PWg(C) if and only if for any poly-
nomial P, P(X)Fj(\) converges to 0 uniformly in some strip about A = 0. We
endow PW(C) with the inductive limit topology (see [24]).

We quote the following Paley-Wiener theorem from [T3:

Theorem 5.1.1 (Camporesi-Pedon). The following Paley- Wiener theorem is true

for T-radial functions:

(a) For n even, the map F + Fis a topological isomorphism between:
Cx(G,1,7) and PWg(C).. As a consequence the map f — f is a topo-
logical isomorphism between CZS.(G)g and PWg(C)e.

o1
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(b) For n odd, the maps F — F(o",-) and F — F(o~,-) both are topological
isomorphisms between: C¥F(G,7,7) and PWg(C). As a consequence the

maps f +— f(ot,:) and f — f(o~,-) both are topological isomorphisms
between C5(G)r and PWgr(C).

From this it follows (as in the K-biinvariant case) that if n is even the map
F — F is a topological isomorphism between: C(G,7,7) and PW(C),.. Also
if n is odd the maps F' +— F\(aﬂ ), F— 1/7’\(0_, -) are topological isomorphisms
between: C°(G, 1, 7) and PW(C).

Let C%(R) denote the set of infinitely differentiable functions on R supported
in [-R, R] and let C¥(R). be the set of even functions in C(R). From the
euclidean Paley-Wiener Theorem (see [52]) and the slice-projection property of the
Abel transform (see Section 23), it is clear that for n even F' +— AF is a topological
isomorphism between C% (G, 7,7) and CF(R),; also for n odd F +— A,+F and
F +— A,-F are topological isomorphsims between C% (G, 7, 7) and CF(R).

We shall first take up the Schwartz space isomorphism theorem.

5.2 Schwartz Space Isomorphism Theorem

Our proof for LP-Schwartz space isomorphism theorem for 7-radial function is
an adaptation of Anker’s proof of the corresponding theorem for K-biinvariant
functions (see [I]) which cleverly uses the Paley-Wiener Theorem to avoid the
intricacies of asymptotic expansion of spherical functions. The LP-Schwartz spaces
CP(G,1,7) and CP(G) are defined in Section 21

We recall the following properties of the 7-spherical functions for both n even

and odd (see Chapter [, Chapter Bl and equation (B33) below):

(1) 1975 (2)lmnav, < Cdiga(x) < C(1 4 o(x)) e e ISM),
for all z € G,A € C and 0 € M (1),

(2) 197 \(Ev; 25 Bo) |gnav, < C(LHA)diga () < C1+ ) (140 (x))melo A
for each F1, By € U(g) and for z, A\, o as above,

(3) (=Qg)®7,\(-) = {)\2 + p? — ("71)8#} @7 \(+) for A and o as above.

We also recall that for both the cases n even and odd the Plancherel density v
satisfies [v(\)| < C(1+]|A|)® for some constant b > 0, for all A € R. It is well known
that PW(C) (respectively PW(C).) is a dense subspace of S(R) (respectively of
S(R)e).
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We define S§(S,) to be the set of all functions h : S, — C which are continuous
on Sy, holomorphic on S; (when p = 2 then the function is simply C*° on Sy =
R) and satisfies supycg (1 + |A[)" A=h(N)| < oo, for all r,m € NU{0}. Let
S(Sp)e and S(S,), denote the subspaces of S(S,) consisting of even and odd
functions respectively. Topologized by the seminorms above it can be verified
that S(S,),S(Sp)e and S(S,), are Fréchet spaces. With this preparation we are

ready to state the theorems.

Theorem 5.2.1. Let 0 < p < 2 be fized. Then for any o € ]\/4\(7') F ﬁ(a,-)
is a topological isomorphism between CP(G,T,T) and S(S,). when n is even and

between CP(G, 1, 7) and S(S,) when n is odd.

Proof. Suppose n is even. Since in this case 7|y contains unique o € M we
omit o from the notation. Let F' € CP(G,7,7). It is clear from Proposition
3.1.4 and Proposition 3.1.5 that F()\) is analytic on Sy and continuous on the
boundary of S,. As ¢] = ¢, it follows that F is even. We shall first show that

SUPyeg, (14 [A])" ’dcfsl/?’\()\)’ < oo for any nonnegative integers r and s, which will

prove F' € 8(S,).. For this it is sufficient to show that

{0ty

sup < 00 (5.2.0)

AES,

for any polynomial P and any nonnegative integer s. Indeed if we assume (5.2.0),

then taking P to be a constant and using the continuity of F we get

sup (1 + A" |F(\)| < oo
AES,

for any r > 0. Using this and

(A2 + CQ)SC%?M < |2sAA2 + ATV + '% [(A? + CQ)Sﬁ(A)]

I

~

s4 F(N)| < oo. Estimates defining

the seminorms of S(.5,) involving higher derivatives will follow in a similar fashion.

for any constant ¢, we have supycg [(A* + ¢?)

Now using the fact that the Casimir operator () is formally self-adjoint with

respect the L? inner product and (4.2.0) we have,
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P [{¥ 0t = 2} POy
= P [V - DL [T (F () 0 #5(a 7)) de
= P() [ Jo T (F(@) o (-9 @3 () da]
= P [ ST (-9 F(a) 0 0527 de]

- i Jo Tr ((=Qg)*F(z) o P(L) 0% (z71)) da.

Using the polar decomposition (see Chapter [l, equation ([LIL])) we get

[P [+ o2 - =02 By |

IN

C Jr i }Tr ((—Qq)*F(kiatks) o (P(L)®3 (k3 'a_ik;i ")) y 2Pt dky dt dks

< C fxviwrerx 1(=9Qg)° F(kraiks) |l gqy. HP(%)@;(k;la_tk:l_l)HEndVT et dky dt dks.
We have (see [32])

d 3
HP(—)@;(@la_tkll) <O+ |t))relPA=I < ¢(1 4 |t|)r26(%_2)p‘t|.

EndV;

d\

Also since F' € CP(G, 1, 7) we have
|(= Q)" F (kra1ks) [ mnay, < C(1+ )"0 27 B(F) for ¢ > 0

where (3 is a seminorm of the LP-Schwartz space function. Therefore, we have

Py HA? o ln=bn=2) } ]3()\)} ’ < CB(F).

sup

AES, d\ 8

This shows that F € S(Sp)e and the map F — F is continuous.
Since CP(G,7,7) C L*(G,7,7) by Plancherel theorem (Theorem EEZZ) it fol-
lows that F — F is injective. Now we shall show that the map F' +— F from

CP(G,1,7) to S(S,). is surjective and the inverse map is continuous. We note
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that C°(G, 7,7) and PW(C), are dense in CP(G,7,7) and S(S,). respectively.
Therefore to complete the theorem it is sufficient to show that given a seminorm
B of CP(G, T, 7), there is a seminorm ~ on S(S,). such that

B(F) < CH(F), for all F € CX(G,T,71).

We shall break the remainder of the proof in a few steps and use the following

notation. Let v (f) = supyes, (14 )75 f(A)] for f € S(S,). and

B(F) = sup(1 + o(x))"||F(Ey; x; E2)||EndVTe%pU(m) for F € CP(G,T,T).

zelG

From now on we shall use the notation || - || to mean | - ||gnav. -
For each positive integer [, let C; = [—Ip,lp] and G; = K exp(C;Hy)K. Then
G is disjoint union of Gg, G3 \ G2, G4 \ G, - .

Step 1: From inversion formula of C2° function (Theorem EZZTl) we have
F(BEya; Ey) = )7 ﬁ(A)CI)f\(El;:E; Es)v(M) d\. Therefore using the estimates of
O, (Ey; ; Ey) and v(\) given above we have,

1F (B B <[5 [FOW|9F(Ey; ; Ea) [v(X) dA
< Coola) f7(1+ AN F(N)] dA.
Now, sup,eq, (1+ 0(2)) || F(By; 23 By) s’
< Osup,eq, (1 +0(2)) do(@)er” ™ [(1+ [A)Y[F(N)] dA
< C'supyep(l + IADPT2|F(N)]| (since Gy is compact)
= 0715?2,0(?)-
Hence we have

sup (1 + o(2))[|F(D; z; B) || er*7® < Cyf, o(F). (5.2.1)

z€G2
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o6

Step 2: Let w € C*(R) be such that
0 on (—o00,0]
1 on [1,00).
We define wy(t) = w(l + f)w(l — £). Then w; is an even function and

1 on C_
w; =
0 on CF.

Here Cf denotes the complement of C; in R. We have AF = w;AF + (1 —w,;)AF.
Let gi(t) = (1 — wy(t))AF(t). Since F € C*(G,1,7), AF € C°(R), and hence

g1 € CX(R),. Therefore, there is F; € C2°(G, 1, 7) such that AF; = g;.

Step 3: As AF = wAF + g;, AF and g; are equal on Cf. That is AF and g
may differ only on C). This shows that F' and F; may differ only on G;. Hence

for x € G141\ Gy, F(z) = Fi(x). Also arguing as in Step 1 we have,
|F(Bs;; Ba)l| < Coola) ol F).

Step 4: Let V denotes the Laplacian on R. Then,
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2 s —~
12 ao(F) = supyer(1+ AN 2 F (V)]
= suprer(l + A)" 2G| since Fy = G
= supyer(1+ AN gult)e M|

< CSUP,\eRZk URQZ t)Vke _Z’\tdt’

= Csupyeg Y | [ VEqu(t)edt|
< OXUR [, [V d
< O supger(1+ [H)? [ VEa(t))]

= O supeg [(1+[¢)? | VE{(1 — wi(t) AF(1)}]
= O sups e, [(1+E)? | VF{(1 — wi(t)AF(t)}]

< CXY supgy o, (1+[t])*[VRAF(2)].

The last inequality follows as 1 — w; and all its derivatives are bounded.
Step 5: Now SupﬂCEGlH\Gl(l + U(x))THF(El; T EQ)He%pU(m)

2 o\ T
= SW,cqy, 6, (1 + 0 (@) | (B a; By) e

IA

SUP,eq, \a (1 + U($))r€( 1)pa(z)%§112 O(Fl) (by Step 3)

IA

Clreel pl”YZEQZFQ o(F1)

IN

C Yo supgg,, (1+ [ty 2P [ TEAR(E)| (by Step 4)

IN

m=0

C Xy Jol0 1IN 2 |9 F (A (2 = 1)p) | dA

IN

C Yoo supses, (14 AP HVmE()].
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The last but one inequality follows from the fact that

PO (L yg(t) = C/RP(Z'(%) {Q(M ~ (= DO+ - 1>p>} v,

where g(t) = ¢ [ h(A)e*dA and P, Q are polynomials. Hence we have

r1+2
sup (14 0(@))[|F(Ey; a3 Ba)[| e < C 3~ sup (14 ANV F(N)].
z€G111\G) m—0 NE5p
(5.2.2)
Therefore, it follows from equation (B2Jl) and equation (B2ZZ) that
r1+2
sup(1 -+ o(2))'| F(Ds.; B)ler™ < C 3 sup(1+ A" V" F ()|
z€G m=0 AESp

where C' is independent of F. Hence

~

B(F) < Cy(F) for all F' e C*(G, T, 1) for some seminorm vy on S(.Sp)e.

This completes the proof for n even.
Similarly for n odd we can prove that F' +— ﬁ(a*, ) and F +— F\(U*, -) are

topological isomorphisms between C?(G) and S(S,). O
As an immediate consequence we have the following corollary:

Corollary 5.2.2. Let 0 < p < 2 be fized. Then for any o € ]\/4\(7') f— f(a, )) is
a topological isomorphism between C?(G) and S(Sy,). when n is even and between

C?(G) and S(S,) when n is odd.

Remark 5.2.3. The theorem can also be proved relating 7-spherical transform
to Jacobi transform (see [I3]) and using the corresponding theorems for Jacobi
transform (see [26]). In [I3] Camporesi-Pedon proved the case p = 2 of the

theorem above using Jacobi transform.

5.3 Paley-Wiener Theorem for Distributions

Let G, K, 7 be as in the previous section. We associate a locally integrable function
f on R, with a distribution W; on R in the following way: For g € C2°(R),

Wi(g) = d2 /000 F(N)g(A) dv(X) if n is even and (5.3.1)
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Wy(g) = d /R FOVg(A) dv(N) if n is odd, (5.3.2)

where dv(A) = v(A)dA\ is the Plancherel measure for 7-radial function on G.
A distribution W on R is called even if W (f) = W(f.) where f.(x) = (f(z) +
f(=z))/2. Let C*(R)" and C*°(R), denote the set of compactly supported and

compactly supported even distributions on R respectively.

Definition 5.3.1. Let W € C(G)'. For any o € ]/\/[\(T), we define its 7-spherical
transform /W(a, ) = W, by

~

W,(f(o,) = W(f).

We recall that when n is even 7| contains a unique o € M. Therefore in this
case W, will be denoted by W and the definition above reduces to W(f) =W(f).
Note that in this case (i.e. when n is even) f — f is an isomorphism between
C?(G) and S(R).. We extend W on S(R) as for any g € S(R), /W(g) = /W(ge).
This makes W an even tempered distribution on R.

When 7 is odd we note that f — f(o, ) is an isomorphism between C?(G) and
S(R) for any o € M (7). Therefore in this case W, defines a tempered distribution

on R. We also note that
W (Flom,) = Wo (Flo*.))

which can be verified by noting that for any f € C%(G) (with n odd) there exists
g € C?(@G) such that g(ot,-) = flo~,-) and consequently §(o—,-) = f(o™,").

It is easy to verify that the Definition B3] matches with Definition
when W € C°(G)". Here we indicate the proof. It is enough to prove that the
two definitions coincide for functions in Cg5(G) as C25(G) is dense in C°(G)'.

When n is even, for a function w in CZ%(G) using Theorem EEZT] we have

~

/G w(e) f¥(z) do = & / T BT dv(n),

for every f € C?(G) where we recall that f¥(z) = f(z~!). The left hand side of
this identity is w(f) when w is interpreted as a tempered distribution (see Chapter
B) and hence is the same as @(f) by Definition B3l Here @ is the 7-spherical
transform of w interpreted as a tempered distribution. Again interpreting the
function w (which is the 7-spherical transform of the function w) as a distribution
on R, the right hand side is its action on the function f (see equation (B3TI))

which is in the Schwartz space on R. Thus the two definitions of 7-spherical
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transform agree for functions in Cg5(G) when n is even. Similarly for n odd we
can show that the definitions coincide for W € C(G)'.

Lemma 5.3.2. For W € C2(G), f € C2(G) and h € C3(G), W(hx f) =
(W h)(f)-

Proof. We have (h x f)(z) = [ h(zy)f(y )dy = [, (Ly)h")" (x)f"(y)dy

Therefore,

Wk« f) = /W WY P y) dy = /G(W*h)(y)fv(y) dy = (W 5 )(f).

O

A function f : C — C is said to be rapidly decreasing if for each N € N
there is Cy > 0 such that |f(\)] < On(1+ |A])™" for all A € C. Also a function
f: € — Cis called slowly increasing if there exists a nonnegative integer M such
that [f(A)| < C(1 + [M\)M for all A € C. We recall that the spaces PWP and
PWP are Paley-Wiener spaces for distributions defined in Section 222

We prove the following Paley- Wiener theorem for t-radial distributions.

Theorem 5.3.3. For any o € ]\/4\(7'), the T-spherical transform W +— WU is a

!/

topological isomorphisms between C>°(G)" and PWZP when n is even and between

C>=(G) and PWP when n is odd.

Proof. We shall deal with cases n even and odd separately.

(a) Suppose n is even. As mentioned above in this case 7|3, contains a unique
o € M and we will omit o from the notation. We take a W, in PWP. Using
W, we define a tempered 7-radial distribution W : C%*(G) — C by W(f) =
= Wi (M) f(A) dv()). Since v(A) has polynomial growth on R and Wi()\) is
slowly increasing, by dominated convergence theorem it follows that f +— W(f) is
continuous. We shall show that W is actually compactly supported. For this it is
sufficient to show that W h € C2%.(G), for all h € C25(G) (see [20, Theorem 1]).
We note that for all h € C25(G), W h is a tempered distribution and W * h is an
even tempered distribution on R (since by Corollary B222) any element f € S(R).,
can be written as f(\) = g()\) for some g € C%(G)).

For f € C2(G) and h as above we have,

d?/ WARO)FO) di()).
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Therefore by Lemma
/ Wi (AN F(V) dr(X).

Let g(\) = Wi(A)R(A), A € C. Then W « h(f) = g(f) for all f € C2(G), i.e.,
Wah = g (where equality is in the sense of distribution). Hence, m()\) =
g(A). Since W is slowly increasing and h is rapidly decreasing, ¢ is rapidly
decreasing. Again as both of them are of exponential type, so is g. Moreover g
is even. Therefore by Theorem BT, W x h € CZ5(G). This proves that W is a
compactly supported distribution.

We shall show that /W(/\) = Wi(A) for all A € C. Since W is compactly
supported for h(;é 0) € CX(G), we have I/I//*\h()\) = W(A)/f;()\) and hence
W()\)h()\) Wl()\)h()\) ie., [W()\) - Wl()\)]ﬁ()\) = 0. Since both the factors are
entire and h # 0, W( ) = Wi(A), for all A € C.

For the converse we take an element W € C>°(G)". Then /W()\) =W (=\), as
B(2) = 67 (1),

Since, W : C>°(G) — C is continuous with respect to the topology of C°(G),
there exists X, X, -+ X, € U(gc) and a compact set 2 in G such that for any
fex(G),

W (f) < C’Z sup | f(X;; )| for some C' > 0.
i—1] T
Now
SUpP,eq |93(Xi; )]
= SUp,cq | G|, 3 (exp(tX;)z)|
= SUp,cq } dt’t OfK (@ tp)H(exp(tXa)ek)y [k K (exp(tX;)zk)™ dk}

= SUP,cq |fK £ (6 (z)\er)H(eXp(tXi)zk)) Xr [k‘K(eXp(tXl)xk:)*l] }t:()

+ [ emFoHEXgrk 4 (\ [E K (exp(tX;)xk)” dk|

Dl
< Ci(supgeq |0 (Xis )| + sup,cq |oa(2)])
< Co((1 4 |A)%RISA 4 RIS,

for some positive constants C, Cs, R, d.
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In the last step we have used the inequality (see [28, Proposition 4.6.2])
|pa (X3 2)] < C(1+ |A])higa(z) for some constants C,d > 0. (5.3.3)

Therefore sup, ., [6%(Xi; )| < a(l+ |A|)%e®SM. This shows that |W()\)| <C(1+
IN)MefISN for some C, M, R > 0, (M € 7).

We shall show that A — /W(A) is entire. Firstly A — /W(/\) is continuous (since,
An — Ap implies ¢§ = — ¢5  in the topology of C°(G). So W()\n) — W()\O)).
Let T be a closed rectangular path in (C We shall show that |, W()\) d\ = 0.
Let F = [.¢%d\, then F(z) = [, ¢5(x /\ = 0 (since A\ +— ¢} (x) is entire)
Therefore F' = 0. This shows that 0 = = [[W(¢3)dX\ = fr
Hence A — /W(A) is entire.

Hence the 7-spherical transform gives a bijection between these two spaces
C>=(G) and PWP. Therefore we give the topology on PWZP so that the 7-
spherical transform becomes a topological isomorphism. The proof of [38, Propo-
sition 1] shows that this topology coincide with the topology given by the analytic
uniform structure. This implies that the 7-spherical transform is a topological
isomorphism.

(b) Suppose n is odd. Temporarily for this proof we shall use the following

notation for convenience

-~ -~

f-i—() - (U+’ ')a J/C\—() - f(g_, ')’ W+ = Wose, W_ = W,-.
Let W; be in PWP. We define
W) =& [ WF0) ), for f € C(G).
R

Then as in the case (a) we can show that IV is a tempered distribution. Next we
shall show that W is compactly supported distribution. For this we shall show
Wk h € C2(G), for all h € C2.(G) (see [20, Theorem 1]). Let f € CZ(G), then

W(h f) = d? [, Wi(AN)hi (V) Fo(A) dv(N),
e (W h)(f) =d2 [y Wi(\he(N) Fo(A) du(N),
e (Wh), (F) = 2 fy WA (V) (V) dv ().

—

Thus we have (W x h)+(j/:L) = g+(j/:L), where g (\) = Wl(/\)ﬁJr(/\) . This shows
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that (I/I//*\h) . = g+ in the sense of distribution on R. Therefore, (I/I//*\h) L(A) =
Wl()\)ﬁJr()\). As in (a) above we can show that, (V[//;L)+ is rapidly decreasing,
exponential type function. So by Theorem BT W * h is a compactly supported
function. Therefore, W is a compactly supported 7-radial distribution on G. Also
similar to the even case it follows that W+()\) = Wi(A).

For the converse direction our argument is similar to that of (a).

Therefore, W +— /W+ is a bijection between C*(G)" and PWP. Since the
map W — /V[7+ is a bijection we give the topology on PWP so that the map is
a topological isomorphism. Here also the proof of [38, Proposition 1] shows that
this topology coincides with the topology given by “analytic uniform structure”
on PWP. So the 7-spherical transform W /V[7+ is a topological isomorphism
between C*°(G)" and PWP.

Exactly through the same steps as above we can also prove that W +— W
is a topological isomorphism between C>°(G) and PW?P. This completes the
proof. O

It follows from Theorem and slice projection property (233H) that if n is
even then for X € C*°(G)’, AX is a unique element of C*°(R)’, such that

AX(\) = AX(¥y) = X(TrA")y) = X(\) where 1y (z) = (€% + e~ /2,

Similarly when n is odd then for X € C>®(G), A,+X and A,-X are unique
elements in C*°(R)’ such that

At X(N) = Ay X (e7P0) = X(TrA% e 0) = X, () and

A X (V) = Ao X (e70) = X (TrA:_e 0) = X, (\).

From the Paley-Wiener theorems for distributions (Theorem and Theo-
rem [B3.3) it is immediate that for n even A : C2°(G)" — C*®(R),, is a topological
isomorphism and for n odd both A,+ and A,- : C°(G) — C*(R)" are topological

isomorphisms.
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Chapter 6

Wiener-Tauberian Theorems

6.1 Wiener-Tauberian Theorems for Lorentz Spaces
and Weighted Spaces

In this section we shall state and prove analogues of Wiener-Tauberian theorem
for the Banach algebras and modules considered in Chapter B, where the triple
(G, K,T) is as in Chapter 1

We state here the two main theorems of this section.
Theorem 6.1.1. For some index set A, let {f, | o € A} be a collection of
functions in L' (G) N LYY (G) where 1 < g <p < 2. Foro € ]\/4\(7') let

ZJ:{ZGSP|fa(a,z):(]forallael\}.

If for all o € ]\/4\(7'), Zy 1is empty and there exists an o(o) € A such that JZ(;)
satisfies fort € R

lim sup |jZ(:)(a, t)eKeM| >0 for all K >0 (6.1.1)

|t|—o0

then the ideal generated by {fo | @ € A} in LPY(G) is dense in LP1(G).
Theorem 6.1.2. Let 0 < p < 2,7 > 0 and {f, : « € A} be a collection of

functions in Lt(w,,) for some 0 < ¢ < p where A is an index set. For o € ]/\/[\(7'),
let
Z,={2€5,| f;(a,z) =0 for all a € A}.

If for every o € ]\/4\(7'), Z, is emply and there exits a(o) € A such that fuo
satisfies [BIT) then the ideal generated by {f, : a € A} in Li(w,,) is dense in
Li(wp,r)-

65
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Before entering into the proofs we shall discuss the necessity of the hypothesis.
First we shall give a brief sketch of the construction of a function in L2(G)
whose 7-spherical transform does not vanish anywhere in S,, which does not
satisfy condition (GI1]) and the ideal generated by f is not dense in L2'(G).
This will establish the necessity of an additional condition like (EI1I). This is
an adaptation of the corresponding construction of a K-biinvariant integrable
function on SL(2,R) (see [25]).

Let n be even. We fix py, ps such that po < p < p;. Let o = 7/27,,p. For
A € C, we define the functions F(\) = e~ <02 and G(\) = 4(e* + e +2)7!
It is easy to check that both F,G € S(S,,).. By Corollary there exist
f,9 € CP2(G) such that f = [ and g = G. It is clear that F' does not vanish
anywhere on S,. We recall that C?2(G) is a dense subspace of L2(G) (see Chapter
B). We assume that I; = {3« f | 3 € LL(G)} is dense in L2}(G). Then there is
a sequence {g,} in LL(G) such that g, * f converges to g in LP!. For A € S, we

have,

g0 % JO) —G(N)| < /G (g * = 9)(@)5(x ") do < Crllgn * f — gl lldisalll -

Therefore
[gn * fF(A) =GN < Crllgn = f = gl 116,17 oo

This implies that m — ¢ uniformly on S,,. That is
gn(A)F(X) — G(A) uniformly on S, . (6.1.2)

Let D be the open unit disc and let D be its closure. Let A(ID) be the disc algebra,
that is the algebra of all functions f : D — C which are holomorphic on D and
continuous on D, endowed with the supremum norm. Let Ay(D) = {f € A(D) |
f(z) = f(=2)Vz € D and f(i) = f(—i) = 0}. We equip Ay(D) with the subspace
topology of A(D).

We consider the conformal map 1(\) = i(e™/?%1P — 1)(e™/?%1° 4+ 1)~ from
the strip S,, onto D, which maps R on the line segment joining i and —i. In
particular $(0) = 0, $(00) = i, $(—00) = —i, P p) = —1 and (=i, p) = 1.
Then from [EIZ) we have g,(v~1(2))F(¢¥~(2)) — G(¢1(2)) uniformly on D.
Since F(v™1(2)) = exp( ’1) and G(¢v~1(z)) = 2% + 1, it follows that 2% + 1 is

2+1
in the closed ideal I (with respect to topology of uniform convergence) generated

by exp ( 2;) in Ap(D). This is not possible since every element of I decays very

fast along imaginary axis. Therefore Iy is a proper subset of L2} (G). We note



67 Wiener-Tauberian Theorems for Lorentz Spaces and Weighted Spaces

that f does not satisfy condition (EIT]). This construction works also for the case
n odd where we have to substitute fby f(a*, -) in the argument above.

For the nonvanishing condition of the 7-spherical transform, we suppose that
there is a Ay € Z, for a fixed ¢ € M. We define T(f) = f(o,X). Then T :
LPY(G) — C is an algebra homomorphism and hence KerT is a proper maximal
ideal in LPY(G) where KerT = {f € LPY(G) | T(f) = 0}. Precisely KerT 2
{fa : @ € A}. Hence the ideal generated by {f, : @ € A} is proper, which shows
the necessity of the nonvanishing condition in Theorem BTl Similar argument
works for Theorem

We may point out here that all the available analogues of WTT (see [22[7]) im-
pose the nonvanishing condition of the Fourier transform in a strip slightly larger
than the domain of the Fourier transform. Only exceptions are [6] (announced
in [5]) and [I8]. But both of these papers deal only with the case of integrable
K-biinvariant functions on SL(2,R) and it appears difficult to extend the method
for more general groups or for more general functions. Here for 7-radial functions
we have considered the nonvanishing condition only on the appropriate domain.

We shall isolate a few steps of the proof of the theorems as the following
lemmas. We recall that for any p € (0,2], v, = 2/p — 1. For any § > 0 we define
the augmented strip

Sps = {2 € C| 92/ < 7o+ 0},

Let AP(9) be the space of continuous functions F : S, s — C which are holomorphic
on S5, and satisfy limj¢ o F/(§ +4n) = 0 on S,5. We endow AP(§) with the
supremum norm topology. Let Af(d) be the subspace of even functions in AP(9),
equipped with the subspace topology. Let T = 0D be the boundary of D and
A (D) = {f € AD) | f(2) = f(=7) = 0}.

We equip both A;(D) and Ay(D) with the subspace topology of A(D). We
denote the closed ideal generated by a function f € A(D) in A(D) by (f(2)).
Henceforth by an ideal we will mean a closed ideal unless mentioned otherwise.
It is easy to show that A;(D) = ((z —¢)(z +4)). We recall that every maximal
ideal of A(D) is of the form M, = {f € A(D) | f(A\) = 0} for some point A in the
closed unit disc (see [B7, p. 87]). We also need the following generalization of a

theorem given in [37, p.88].

Lemma 6.1.3. If J is a non-zero closed ideal of A(D) contained in precisely two
mazximal ideals My, and My, with K = {1, A2} C T then J is the closed principal
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1deal generated by

Z—f—/\l_'_ Z+/\2
Z—)\l pQZ—)\Q

f(2) = (z = A)(z = Ag) exp |1

where py, po are non-negative real numbers.

Proof. Clearly J C H'(D) where H'(D) is the class of analytic functions f in
the open unit disc D for which the functions f,(8) = f(re?) are bounded in L!-
norm as r — 1. If the greatest common divisor of the inner parts of the nonzero
functions in J is F' = B.S then B =1 and S(z) = exp [— i ZZZ—Z d,u(é’)] for some
unique singular positive measure g on T (see [37, Theorem p. 67, Lemma p. 85]).
Therefore J = {Sg | g € A(D) which vanishes on K} (see [37, Theorem on p.
85] ). We know that, S is analytic on I and continuous on T \ K; where K;
is the closed support of p (see [31, second Theorem on p. 68]). Also S is not
extendable continuously to the points of K. Let g be any element of A(D) which
vanishes exactly on K. The continuity of Sg on T then implies that K; C K.
Therefore S(z) = exp [,01% —i—,og%} where p; = p({A\1}) and po = p({A2}).
Let J; = ((z — M) (2 — A2)S(2)). We have J; C J. Suppose RA;, RAy > 0. Then
for any g € A(D), which vanishes on K,

(Z — )\1)(2 — )\2)
(Z—/\l—%)(z—/\g— 1)

n

S(z)g(z) € Ji.

Also
(Z — )\1)(2 — /\2)

(Z—)\l—l)(z—)\g—%)

n

5(2)g(2)

— 5(2)9(2)

uniformly in D as n — oo. Therefore J C J; as J; is closed. Hence J = .J;.
Similar argument works for the other cases (i.e when both R\; and R\, are

nonpositive or one of them is positive while the other is negative). Therefore

J = <(z — A1) (z — Ag)exp [m zth p2ﬁ]> where py, po are non-negative real

Z—A1
numbers. This completes the proof. O

Lemma 6.1.4. If Iy and I, are ideals of Ag(D) and A;(D) respectively then there
are ideals Jy and Jy of A(D) such that Iy = Jy N Ao(D) and I = J, N Ay(D).

The proof of this lemma is omitted as it is similar to [7, Lemma 1.2].

We say that a function f on D decays less than exponential at y if for all K > 0

lim sup |f(z)eKZ%rj| > 0. (6.1.3)

Z—
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Lemma 6.1.5. (a) Let I, be an ideal in A;(D). If the functions in Iy have no

common zero other than +i and if I, contains a function which satisfies

ET3) for p= =+i, then I = A;(D).

(b) Let Iy be an ideal in Ayg(D). If the functions in Iy have no common zero other
than +i and if Iy contains a function which satisfies (L) for p = +i, then
[0 = Ao(ID))

Proof. (a) We have by Lemma BT I; = J;NA;(D) where J is an ideal of A(D).

If J; is contained in three or more maximal ideals, then the zero set of J;
has at least three elements. This contradicts the fact that I; = J; N Ay (D) since
the zero set of I; has two elements. Hence J; can be contained in precisely one
maximal ideal or in precisely two maximal ideals.

If J; is contained in only one maximal ideal then by Beurling-Rudin theorem
(see |37, Corollary p. 88 ]) J; is ((z — a)*) where « is a point in open unit disc
D and k is a positive integer, or it is of the form ((z — )\)ep%> where A is a
point on the boundary T and p is a non-negative real number. But the first case
is not possible as the functions in I; have no common zero in D. The second case
with A € T\ {i, —i} contradicts the hypothesis as the only common zero of the
functions in I; C J; is {£i}. Also the second case with p > 0 and A = % is not
also possible as it contradicts (E13). Only possibility thus is p = 0 and A = +i in
the second case. Hence J; = (z—i) or J; = (z+1). Since A;(D) = ((z —i)(z+1)),
J1 2 A;1(D). Therefore I = A;(D).

If J; is contained in precisely two maximal ideals, say P and () then P and
Q) are of the foorm P = M; = {f € AD) | f(:) =0},Q = M_;, = {g € A(D) |
g(—i) = 0}. Therefore by Lemma

J1:<(z—i)(z+i)exp pljfl}p Z"D

2 -
1 zZ 41

where p; and py are non-negative real numbers. But this is possible only when
p1 = p2 = 0 as otherwise it contradicts (EI13)). Therefore J; = ((z —i)(z + 1)) =
A1(D). Hence I = A;(D). This completes the proof.

(b) Slight modification of the argument above proves (b). O

Lemma 6.1.6. Let 6 > 0 and 0 < p < 2 be fized.

(a) Ifn is odd then the set of functions

~ ~

Fos={f €CPG): f(o,\) € AP(6) and f(o*, NN € AP(0) for some K > 0}
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is dense in CP(G).

(b) If n is even then the set of functions

~ ~

Fos ={f € CEG): f(N) € Aj(0) and FNEEN € AV(6) for some K > 0}

is dense in CP(G).

Proof. We will prove (a). For proving (b) we only have to replace f(a*, -) by fand
AP(5) by AG(0). Let g € C2(G). Since f +— ]/f\(aJ“, 1) is a topological isomorphism
between CP(G) and S(S,) (see Chapter H), it is sufficient to show that there is
a sequence f,, € F,s such that f/\m(aJr,-) converges to g(o*t,:) in S(S5,). Let
En.(\) = glot, )(\)e /™ for m € N. Clearly F,, € S(S,). By Corollary
there is f,, € C?(G) such that J/C,\n(aJr, A) = F,,(X\). Therefore f,, € F, 5. We shall
show that ﬁ\n(aﬂ -) converges to g(o™, -) in the topology of S(S,). For fixed r € N,
we consider |/\7"[f/\m(a+,)\) — Gt ]| = INGLN)|[1 — e /™|, The first term
converges to zero as |\| — oo and the second term converges to zero uniformly
on every compact subset of S,s as m — oo. Hence |)\’"[f/\m(a+,)\) o camyll
converges to zero uniformly on S, s as m — oo. Since ?,\n(a+, ) and g(o™,-) are
analytic, by Cauchy’s integral formula it follows that on the smaller strip .S, the
same is true for all derivatives of )\T(f/\m(aJr, A) —g(c™,A)). This completes the

proof. O

Lemma 6.1.7. Let 6 > 0 and 0 < p < 2 be fixred. For n even, let f be a T-radial
measurable function and {f;} be a sequence of T-radial measurable functions such
that fi, f € AB(5). If there is a K > 0 such that F)eEX ¢ Ab(9) and if Fi(N)
converges to f(/\)eK)‘2 in the topology of Ay(9), then ﬁ-()\)e*K)‘Q converges to f(/\)
in the topology of S(Sp)e.

For n odd if we replace f and f; respectively by f(aﬂ ‘) and ﬁ(0'+, ) and
Ab(9) by AP(0) in the hypothesis then Filor, Ne 5% converges to f(ot,\) in the
topology of S(S,).

Proof. We will prove only for the case when n is even. The case of odd n can be
proved through similar steps.

As f(N)ef¥ € AP(5) and fi(\) € AL(8), using Cauchy’s integral formula it
can be shown that f and ]?Z-()\)e_K’\2 are in S(Sp)e.

Since both ﬁ()\)e_K A and f()\) are holomorphic, it is sufficient to prove that,
for an arbitrary r € N, |[X"[f;(A)e =5 — F(A)]| converges to zero uniformly in the
strip S, 5 as i — oo. Now IX[H(N)e B — FO]| = [Ae KX F(N)eEX — F()].

The first factor is a bounded function and the second factor converges to zero
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uniformly on S,s. Hence |)\’“[]?i()\)eK)‘2 - ]/f\()\)]\ converges to zero uniformly on

Sp.s as © — oo. Therefore the lemma follows. OJ
With this preparation we shall enter into the main part of the proof.

Proof of Theorem [611. We shall first prove the theorem for n even. In this case
7|y contains a unique o € M. Therefore we can omit o from the notation for this
case and in particular denote the function f,() simply by fa,.

Since f, € LPY(G) N LYY(G), fa is analytic on S, and continuous on S, by
Proposition B2Z4] (1). That is j/’; is analytic on S) ; and continuous on S, 5, where
0 = (vq—p)p > 0. Also by Proposition B2 lim¢| j/’;(f—l—m) = 0 for |n]| < v,p.
We consider the strip

T= {Z | < 32 Svperg}-
We take a function fs from the collection {f, | @ € A}. Let Z(T) be the set of
all zeros of j/’/\g in 7.

As zeros of an analytic function in a connected open set are isolated we choose
countably many disjoint open rectangles R; such that Z(T') C U;R; C T and each
R; contains only one zero of fg

We suppose R; has a zero of fg at a; of order ny. Note that a; is at a positive
distance from S,. As f3(A) = fs(—A), we have fz(A\) = (A2 — a2)™ g(A) where
g(A) is an even function which is analytic on S ; /o and g(Faq) # 0. We choose a
¢ < @1 < p such that v, p < |Sa;|. That is a; &€ S,

We define a function H on S,, by

2
€>\

1= o =a

Then H € §(S,, ). and hence by Corollary there exists h € C'#(G) such that
h(\) = HQ\) for A € S,,. Let f3*h = fs1. Then f3, € LP'(G) by Proposition
B21 (3) and fg\l()\) = fg(z\)ﬁ()\) = g(\)e™ for A € S,,. But as g is analytic on
Sy 5/2 1t follows that fﬁ\l extends analytically on .57 5 » and limg .o fﬁ\l(ﬁ—i—m) =0
on S, ;5/2. From this using Cauchy’s integral formula and Corollary we get
that fz; € C#(G) C L»(G). We also note that 7,;1()\) # 0 for all A € Ry
and ﬁ;()\) # 0 whenever ﬁ;()\) # 0. In this way we can construct a collection
fsi € L2Y(G) such that fg\z(/\) # 0 on R; and f{/g\l()\) # 0 whenever fﬁ(/\) # 0. By
definition the functions fg; is in the ideal generated by {f, | « € A} in LPY(G)
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as C?(G) C LPY(@). We consider the collection

['={fa failacAi=12- -}

~

Then Zr = {2z € S, 52 | f(2) =0, for all f €'} is empty.
It is clear that f € Ab(6/2) for all f € T. We consider the conformal map

i(e™/20met3) 1)

P(A) = e™M20wp+3) 11

from the strip S, /2 onto the closure of D, which maps R on the line segment
joining ¢ and —i. In particular ¢(0) = 0, ¥(c0) = 4, (—00) = —i, ¥(i(yp+2)) =
—1 and ¢(—i(y,p + 2)) = 1. Through ¢ we can identify the functions on A5(5/2)
as the functions on Ay(D). We abuse the notation to denote both the function on
AP(5/2) and its realization on Ag(ID) by f. Note that it follows from (BELT]) that,
as a function in Ay(D), fa\o satisfies (E13).

Let 1 be the algebraic ideal in Ay(ID) generated by the 7-spherical transforms
of the functions in T . Then I satisfies the hypothesis of LemmaBTH(b) and hence
is dense in A§(d/2) under the supremum norm. We note that A5(6/2) = AL (&)
for some p; < p such that v, p < e +6/2 and 0 < &' < §/2. We take a
function £ € F,, s C C?*(G) (as described in Lemma BET6). Then by definition
the function \ +— g()\)eK’\2 is in Af'(¢') for some K > 0. Now by denseness of
T there exists {F.} C T such that F.(\) — A()\)eK’\Q as n — oo uniformly in
A€ S, . Since e K> € AP(§') we have that F,(\)e %> € T.

Therefore by Lemma B2, F,(\)e ¥ — £ (A) in S(Sp, )e. It follows easily
from Cauchy’s integral formula that the function F,(A)e 5" is in S(S,,)..

Since F, € ./f\, we can assume without loss of generality that F,, = f hy for
some f € ' and hy € AP (&'). Thus for K = K; + Ky, K1, Ky > 0, F,(\)e ¥ =
FO)e K2y (N e 52X = (my * ma) ) where mi(A) = f(A)e 1% and mz(\) =
hi(A\)e 22 and my, My € S(S,,)e. As the 7-spherical transform is a topological
isomorphism from CP'(G) to S(S, ) it follows that my, my € CP'(G). It is also
clear that m; and hence my * msy is in the ideal generated by elements of I' in
LPY(G). This completes the proof for the case n even.

For the case when n is odd we have to modify the proof in the following way.

~ ~ ~

First we note that as f(oy,\) = f(o_,—A), it is enough to work with f(o., ).
In the above line of argument we take H (o, \) = (/\e_;i)nl, and proceed in an

analogous fashion. O

For the proof of Theorem one can follow the similar line of argument and
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use the corresponding Propositions and Lemmas. We omit the proof.

Remark 6.1.8. The following remarks are in order.
(1) The Kunze-Stein phenomenon (see Chapter B), Corollary B T3 and Proposition

B2 T show that we can formulate WTT also in many other setup; for instance:
(a) L2(G) under L2"(G) action where 1 < g < p, 1 <r <gq,

(b) LP"(G) as an L2 (G) module, where 1 < g <p < 2and 1 <r < oo, LP"(G)
as L1(G) module for 1 <p < 2and 1 <r < oo,

(¢) LY (w,s) as LL(w,,) module where r > s > 0,
(d) Li(wys) as L(w,,) module where ¢ < p and r, s € R with s > 0.

We notice that (b) includes the weak L spaces for 1 < p < 2. Starting from similar
hypothesis and with easy modifications of the method used in Theorem and

in Theorem we can prove these theorems. We omit them for brevity.

(2) We recall that for 1 < p < 2, the elementary spherical function ¢, € Lp/’OO(G)
if and only if A € S, and from this it follows that if A € S, then ¢7 , € LE">°(G)
(see Chapter ). The following simple argument using WTT proves that if ¢ , €
LP>°(@) then \ € S,,.

We suppose for some point (o, Ag) € ]\//7(7') x (C\ S,), oI

e € LEX(G).
Then ¢ ,, defines a continuous linear functional on L2'(G). In other words 7-
spherical transform of any function in LP! exists as a convergent integral at Ag.
We choose a 6 > 0 such that the augmented strip S, 5 does not contain A\g. We
consider a collection of 7-radial C'>° functions on G such that the 7-spherical
transforms of this collection have no common zero in S, 5, but all of them vanish
at Ag. Then by Theorem B2, this collection of functions generates a dense ideal
in LP'(G) because any C'° function automatically satisfies condition (GIT) by
Phragmén-Lindelof Theorem. Using continuity of spherical transform for LP:!-
functions, thus all functions in LP'(G) has zero T-spherical transform at \g. This
contradicts the fact that there is a 7-radial C2°(G) function which has nonzero 7-
spherical transform at Ag. (Such a function can be constructed using Paley-Wiener

Theorem.)
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6.2 Wiener-Tauberian Theorems based on Uni-

tary Dual

In this section we shall prove two Wiener-Tauberian type theorems to point out
two different features of the theorem. In both of these theorems the nonvanishing
condition imposed on the function will be only on the unitary dual of the group.
The triple (G, K, 7) is as in the previous section.

In Remark we have observed that it is possible to formulate and prove
WTT for many function spaces acting by convolution on many others. Thus the
basic formulation of the Wiener-Tauberian theorem involves two function spaces
F1 and F;, where F; acts on F, by convolution. We find sufficient condition which
we put on a set of functions G in F5 such that under F; action G generates a dense
linear subspace of F;,. Often the sufficient condition is also necessary, for instance
for a WTT for LP! functions the generator should have nonvanishing T-spherical
transform on the strip \S,. This makes the situation extremely rigid. We will see
below that the rigidity of the condition on the generator can be weakened.

To keep things simple we shall consider only the Banach algebra L!(G) and
we shall put condition on a single function instead of an arbitrary collection. It is
not difficult to see how the theorem below generalizes for other Banach algebras
and modules discussed in Chapter B and for arbitrary collection of functions as
generators. Easy modification of the argument will prove these generalizations.
We recall that

Sis={z][32| <140}

-~

Theorem 6.2.1. Let f € LL(G) be such that f(o,-) extends holomorphically to
S7 5 for some § > 0. Furthermore if

-~

(1) [f(o, € +in)| — 0 as [§] — 00 on Sy,

(2) f satisfies (E1T))

(3) For each o € ]\//.7(7'), f(a, A) # 0 forall N € R,

then there exists a vector subspace A of C*(G) such that hx f € LL(G) for all
h € A and the ideal generated by {h = f | h € A} in LL(G) is dense in L1(G).

Proof. First we take up the case n even. Since fis holomorphic on S7 5, zeros of
fcannot have limit point in a smaller strip Si /2 except at £oo. We can divide
the strip 51,52 into countably many rectangles R; with disjoint interiors such that
exactly one zero of ]/”\is in R7. By hypothesis this zero does not lie on the real
line. Suppose R; has a zero of f at a; of order n;. Then f()\) = F;(A\)(\? — a?)™

where Fj(ta;) # 0. It is clear that a; is at a positive distance from the real line.



75 Wiener-Tauberian Theorems based on Unitary Dual

We consider the function H;(\) e

= 7()\2—6122)7% .

One verifies that H;|r is in S(R). and hence using Schwartz space isomorphism
there is a h; € C%(G) such that i/z\l()\) = H;(\) for all A € R.

Now

— ~ 2

hi % F(A) = (V) F(N) = e ¥ Fi(\)

has analytic extension on S 5/2, does not vanish anywhere on R; and satisfies (1)

~

of the hypothesis. We also note that m()\) # 0 whenever f(\) # 0.

From the condition |f(¢ + in)| — 0 as |¢| — oo on S1s, it follows that
|Fi(& +1n)] — 0 as || — oo on S} 5/2. Using Cauchy’s integral formula it can
be shown that the derivatives of F; are bounded on Sy and hence Fj(\).e™" is
in the image of C}(G) under 7-spherical transform. This shows that the function
f*h;is in LYG).

In this way for each 7, we can construct h; and consider the collection of
functions {h; x f | i = 0,1,2,...}. We note that 7-spherical transform of these
collection of functions have no common zero in Sy s5/. It is also clear that f * h;
satisfies condition (2) of the hypothesis. Thus this collection satisfy the conditions
of Theorem for p =1, = 0. Therefore by Theorem the ideal generated
by h; % f in L1(G) is dense in L!(G). Tt is clear that A = {h;} C C(G).

For the case when n is odd a routine modification will prove the theorem. [

Next we take up the WT'T for a degenerate case of the algebras described in
Chapter BL We recall that for » > 0

L (wy,) = {f measurable | /G\f(x)wo(x)(l +o(z))" dr < oo}

is an algebra and LE(G) C L(ws,) for 1 < p < 2. We shall prove the following

Wiener-Tauberian theorem for this algebra.

Theorem 6.2.2. For an index set A let {f, : o € A} be a collection of functions
such that for every a € A, fo, € LP*(G) for some p, € [1,2). Then the ideal
generated by the collection in L:(ws,),r > 0 is dense in L (wso,) if and only if
for any o € ]\//7(7) the collection {fa(a, A) | @ € A} does not have common zero
on R.

We note that unlike the Wiener-Tauberian theorems proved in Section B.],

this theorem resembles the euclidean Wiener-Tauberian theorem.
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For a tempered distribution W on R and g € S(R), we define a tempered
distribution W.g on R by the rule W.g(h) = W (gh), where h € S(R).

We need the following two lemmas.

Lemma 6.2.3. Let W be a tempered distribution on R and {g, | « € A} C S(R)
be a collection of functions such that W.g, = 0 for all « € A. Then support of W
is contained in Naep{\ € R | go(A) = 0}.

Proof. We suppose that ¢ is in the support of W but g,,(f) # 0 for some o € A.
Since go,(t) # 0, there is a neighbourhood V; of ¢ such that g,,(s) # 0 for all
s € V;. Therefore there is a function ¢ € C*(R) such that g,,(s)¥(s) = 1 for
all s € V;. Also t is in the support of W implies that there is a C'2° function ¢
supported on V; such that W(¢) # 0. Therefore g,,v¢ = ¢. Now W.gs, = 0
implies W.g,,(¢10) = 0. This shows that W (ga,¢1) = 0. Therefore W(¢) = 0,
which is not possible. Hence g,(t) = 0 for all o € A. O

Lemma 6.2.4. Let {f, | « € A} C S(R) (respectively {fo | a € A} C S(R),)
be a collection of functions such that {f, | o € A} has no common zero on R,
where f, is the euclidean Fourier transform of f,. Then the ideal generated by f,

(under convolution) in S(R) (respectively in S(R)) is dense in S(R) (respectively

in S(R).).

Proof. Let V' be the ideal generated by {fo}aea € S(R). Let T be a tempered
distribution on R such that T'(¢) = 0 for all ¢ € V. Then for any g € S(R) w

have T'(g * f,) = 0 which h implies that (T * fo)(g) = 0. Hence T'x f, =0 as a
distribution. Therefore T % fa =0, i.e., T. fa = (0. So support of T is contained
in Neea{A | fa( ) =0} by Lemma 223 By the hypothesis it follows that T =0.

Hence T'= 0. Similar argument works when f,’s are also even. O

Proof of Theorem [lZA Let n be even. Then o € M (7) is unique and we shall
omit the obvious o from the notation. We take f, € LP>(G) from the collection
in the hypothesis. By Corollary there exists a function g € CP*(G) such
that G(\) = e for all A € S,_. Then for any p € (pa, 2), by Theorem BZ4 o is
bounded on S,. Using Cauchy’s integral formula it follows that f;/g\ € §(5s). =
S(R).. Using Corollary EEZZ again we have f,*xg € C?(G). Let hy, = f,*g. In this
way we get a collection {h, | @ € A} inside the ideal generated by {f, | @« € A} in
C?(G). We notice that ﬁ;()\) # 0 whenever an()\) # 0. Therefore the collection
{ﬁ; | @ € A} does not have common zero on R. It is thus sufficient to prove that
the ideal generated by {h, | @ € A} in LL(ws,) is dense in Ll(ws,).

As Abel transform is a topological isomorphism between C?(G) and S(R).,
we also have Ah, € S(R), for all & € A. Let I and J respectively be the ideal
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generated by {h, | @ € A} in C?(G) and the ideal generated by {Ah, | a € A}
in S(R).. Let T and J be the closure of I in C?(G) and the closure of J in S(R),
respectively. By Theorem .Zl\h/a has no common zero. Hence by Lemma
J = S(R)..

Let *g be the convolution on R. For any g, € S(R). as g *r Ahe = A(A gy *
ha) where A7lg, € C*(G) we have J C Al and hence Al = S(R).. But as
A(I) = Al we have AT = S(R),. As Abel transform is a topological isomorphism
between C%(G) and S(R), we finally have I = C2(G). The result now follows
from the facts that topology of C?(G) is stronger than the topology of L} (wsy,)
and C%(G) is dense in L!(ws,) (see Chapter B).

A routine modification of the argument above proves the assertion for the case
when n is odd. O

Remark 6.2.5. We note that this proof cannot be adopted for the Wiener-
Tauberian theorems we have proved earlier. For example in the case of LL(G)
we have to work with an L'-tempered distribution W and a function g € S(S))
in Lemma To make W.g(¢1) meaningful ¢¢) has to be in S(S;) which is
the image of C!(G) under 7-spherical transform. Here ¢ cannot be compactly
supported as ¢ has to be analytic on S7. So we can only assume that ¢ analytic
on ST and very rapidly decreasing. Therefore to make ¢ rapidly decreasing 1
cannot grow fast. But the function ¢ chosen in the proof has to be analytic on

ST and that takes away the liberty to make it decay arbitrarily outside V;.
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Chapter 7

Invariant Subspace Theorem of

Schwartz

7.1 Schwartz’s Theorem

We recall Schwartz’s theorem on R ( [56]).

Theorem 7.1.1. (Schwartz 1947) Let f be a nonzero function in C*°(R). Then

the space V; = {W x f | W € C>(R)'} contains the function x +— €% for some
Az

A € C. Moreover the linear space generated by these ¢?* and their derivatives

%e’”, Jj=1, 2,... which are in V;, is dense in Vy.

For even functions on R we have the following version of this theorem (see [3]):

For \ € C, let iy () = €222

Theorem 7.1.2. Let f be a nonzero even function in C*°(R). Then the space
Vi={W=x f|W e C®R).} contains 15 for some A € C. Moreover the linear
space generated by these y(x) and their derivatives %1@(1‘), j=1, 2,...which

are in Vi, 1s dense in Vy.

With G, K, 7 as in Chapter ll, for 7-radial functions the object which corre-

sponds to the plane wave z — €”\* is the 7-spherical function @7 - In view of this

we offer the following analogue of the theorem above.

Theorem 7.1.3. Let f be a nonzero function in C(G) and Vy is the closure

of {Wxf | W e CX(G)} (in C2(G) topology). Then for each o € M(T), V;

contains the function x — @7 ,(z) for some A € C (X depends on o). Moreover
& T

the linear space generated by these ¢7 ,(x) and their derivatives 7 ¢7 (), j =

1,2,... which are in Vy, is dense in V.

79
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Remark 7.1.4. We recall that for a 7-radial function f, its translations are not
in general 7-radial. The appropriate operation which substitute translation in
this setup is the 7-radial translation, by which we mean the projection of the
translated function on the space of 7-radial functions. We note that the space V;
defined in the statement above is also the closure of the 7-radial translations of
f. Precisely we define the 7-radial translation pZ(f) of a function f € C>°(G) by
an element x € G by

(D) = ds / (G L(z) f)(kyk ™) dk = d. /K /K F (Y k™)X, (Rr) dlky

K

Let Wy be the closure of {pI(f) | = € G}. Then V; = W;. Indeed using the
denseness of C29(G) in C°(G) it is not difficult to show that V; C Wy, For
the other side for every x € G, we define W, € C>®(G) by W,(g9) = g(z™!)
for g € C(G). A straightforward computation then shows that (W, * f)(y) =
o= f(y). Thus Theorem can be rewritten using 7-radial translations, instead

of convolution with elements in C°(G)'".

Proof of Theorem [T.1-3 (a) Suppose n is even. Then as in this case 7|5 contains
a unique o € M we will omit o from the notation. Using the isomorphism of the
Abel transform A between C2°(G)" and C*°(R)’, and the reflexivity of C*°(R), we
define a linear operator T': C2°(G) — C*°(R), by the following:

AW (Tg) = diW(g) for W € C=(GY, g € C=(G).
As A is a topological isomorphism between the dual spaces C2°(G)" and C*(R).,
(see Section 3 and Section B3)), T is also a topological isomorphism.

Since A(W)(T'¢5) = W (¢3) = W(A) = A(W)(%) for all W € C(G)’ and
as A is an isomorphism, we have T'¢} = 1y, equivalently T~ 11, = ¢7.

We note that

Yagn — Ua

d
. Haw,\ash—ﬂ)

in the topology of C*°(R).. Using the fact that 7" is a topological isomorphism

7t (P ()

we have
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as h — 0 in the topology of C°(G). But (T)~* (¢¥ats) = ¢35, Therefore

Y Wy
55 ()

In other words we have T’ (<£.¢7) = - (¢).

By repeated use of the argument above we get,

& a’ ‘
T(ng/\) = Ww)\a J= 071a27“‘
and equivalently
T*l(d—jw)—d—jf 1 =0,1,2 (7.1.1)
d)\j)\_d)\j n J=U 404 il

Now we consider T'f where f is as in the hypothesis.

Let Vi ={S*Tf|S € C>®R).}. We claim that

Vep = {T(W* f) | W € C=(G)'}. (7.1.2)

Note that every S € C*(R). can be written as S = AW for some W €

e

C(G)'. Thus we have Vpy = {AW «Tf | W € C=(G)'}. It is sufficient to show
that

AW « T = T(W x f). (7.1.3)

We take an arbitrary S; € C*°(R).. Then S; = AW for some W; € C>(G)'.
Now,
AW (AW «Tf) = AW;x (AW =T f)(0)
(AW« AW) T f(0)
AWy« W)« T f(0)
AW« W)(T(f))
= (W xW)(f).

On the other hand,

ATV % ) = Wi 5 £) = ZWA(f W) = (s s ()
As both sides of (ZI3) are functions in C*(R). and S; = AW; is an arbitrary
element of the dual space, this proves ([LI3) and establishes the claim.
Now it is clear from Theorem that Vs contains v, for some A and these
¥y and their derivatives %
From (LT2) and ([ZT) now the theorem follows using that 7" is a topological

1y which are in Vr; generate a dense subspace in Vry.
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isomorphism.

(b) Suppose n is odd. As in (a) using the isomorphism A,+ : C*(G) —
C*(R)" and the reflexivity of C*°(R) we define a linear operator 7' : C*(G) —
C*(R) by the following:

1

A+ W (Tyg) = d—W(g) for W € C(GQ), g € CZ(G).

Since A,+ is a topological isomorphism between C°(G)" and C*°(R)’ (see Sec-
tion 3 and Section B3)), 7" is also a topological isomorphism. Also since
At WNTOL. ) = EW (674 ) = Wor (A) = Ags (W)(e™20) for all W € C2(GY
,Z',\(.

and as A,+ is an 1som0rphlsm, we have T'¢? | =¢ . Following the steps sim-

ilar to (a) we get

& d’ o—iAC)
T(d)\] U+>\) d)\j A()7JIO71727"'
and equivalently
-1 ! —iA(+)
T (d)\ﬂe )—d/\]gzﬁa+/\, =0,1,2,--- (7.1.4)

Let Vpp ={S*Tf|S e C>®R)}. Then as in (a) we have

Vip ={T(Wx f) | W € C=(G)'}.

By Theorem [T V; contains e~ for some A € C. These e~*() and their

derivatives 2-e~A0) which are in Vry generate a dense subspace in Vyy. From

NI

([CTE) it follows that V; contains ¢7. , and these ¢7, , and their derivatives
&
NI

follows for 0 = ¢~ also. This completes the proof. O

T 3 1 T —_ T
o+ generate a dense subspace in Vy. Since ¢7, , = ¢ _,, the theorem

We shall conclude this section with the observation that if a higher derivative
of a 7-spherical function belongs to V; then so does any of its lower derivative.
Apart from those used in the theorem above we shall use the notation:

d* d*
7/{o,k(x) d)\k ( )‘)\ Ao 7(250'i A0, k( ) d)\k (bTi A )’)\:)\O and w/\OJf = W’l/})\ ‘A:)\O .

We claim that if @3 ,(x) (respectively ¢7. , (z)) is in V} for n even
(respectively for n odd) then so is @3 ,(x) (vespectively ¢7. , ,(x)) for any
0<I<E.

We consider the case when n is even. We suppose that ¢ ; € V;. Then
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%0,1 = T((ﬁ;o’l) € VTf. This implies that s — QﬂAO,l(S + t) + 1/1)\071(8 — t) € VTf
for any ¢ € R as Vg is invariant under convolutions by even compactly supported
distributions (hence invariant under even translations). We use the following

identity

1/})\0,1(8 + t) + w/\o,l(s - t) - Qw/\o (t)w/\o,l(s> =2t Sin()‘0t>w)\o (3)

to infer that the map s r— 1, (s) = T(¢5, )(s) € Vry. Therefore ¢ € V,
since T is a topological isomorphism. A repeated use of this argument proves the
assertion.

For the case n odd the argument is similar except we have to use the identity:

d izt i ine o iny s
G e one = (—ite”")e " for all s,t € R.

7.2 Some Related Results

In this section we continue to work with GG, K and 7 as in the previous section.
The following is a consequence of Theorem which can be thought of as a

Wiener-Tauberian theorem for distributions.

Corollary 7.2.1. Let {T,}acn be a collection of compactly supported T-radial
distributions on G such that for each o € M( ), Ta( -) has no common zero in
C. Then the space generated by {Ty}aen defined by {ToxW | W € C®(G),a € A}
is dense in C°(G)'.

Proof. We suppose that the space generated by {Ty}aen is not dense in C>*(G)'.
Then there exists f € C2°(G) such that (T, *W)(f) =0 for all W € C*(G),a €
A. Therefore we have T,,(Wxf) = 0 forall W € C(G)', o € A. Hence T, (Vy) =0
for all € A. But for each o € M (1) by Theorem V contains ¢7 , for some
Ao € C. Hence ﬁ(a, Xo) = 0 for all & € A. This contradicts the hypothesis. This
completes the proof. O

Mean periodic functions: A function in f € C°(G) is mean periodic if there
isa W € C(G)" such that W x f = 0 (see [24]), equivalently if V} is proper
subspace of C2°(G), where V7 is as defined in Theorem We shall see that
if a nonzero 7-radial C'"*° function is in one of the following classes then it is not
mean periodic:

(1) fel2(G),1<p<2,

(2) f e L2>(G),1 <p< 2, that is f is weak-L?,
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(3) f € Li(G,wy0) = {f measurable and 7-radial | [ |f(z)|¢o(z)dz < oo},

We notice that by the properties of ¢, mentioned in Chapter [l it follows that
LY (G, wy) contains the classes described in (2) and hence in particular contains
LP(G),1 < p < 2. Tt is also clear that LL(G,wq0) D LL(G) as ¢y is bounded by
1. Therefore we shall check the property only for functions in L1 (G, ¢g) N C(G)
and in L2(G) N C>(Q).

Let f be anonzero function either in LL(G, w20)NC>(G) or in L2(G)NC(G).
We suppose that for some W € C®(G)', W * f = 0. Then /W(a, )\)f(a, A) =0 for
almost every A € R. Since f is a nonzero function ]?(0, -) is nonzero on a set of
positive measure. Therefore /W(a, -) is zero on that set of positive measure. Since
by Paley-Wiener Theorem (see Theorem B33 /W(O, -) is an entire function, it
follows that /W(a, -) = 0. Therefore W = 0.

The range 1 < p < 2 is sharp in the sense that for any ¢ > 2, there are
functions in LI(G) N C2°(G) which are mean periodic. Indeed for a fixed ¢ > 2
we consider the function f = ¢7 , for some A € S¢,. Then f € L1(G)NCF(G). Tt
is easy to construct a nonzero W € C2°(G)’ such that W (o, A\) = 0 (see Theorem

E33). For this W,

Wodi@) = [V sag ) abyd= [ WY (LG k)7, () di

1 o~

= [ W(opa(k™"ak)) dk = —W (67 \(2)5 () = W (o, \) @\ (2).

K dT

Therefore W x ¢7 , (z) = 0. This shows that ¢7 , is mean periodic.

A question connected with failure of the Wiener-Tauberian Theorem:

As the functions ¢7, € LZ®(G) when A € Sy,q > 2, (see Chapter B) a
natural question at this point is: Does an arbitrary closed L!-invariant subspace
of LL*°(G) contain ¢7  for some A\? That is we ask if we can have an analogue
of Schwartz’s theorem where the space C2°(G) is replaced by L2*°(G). We shall
show that the answer is negative. Precisely for any ¢ > 2 there is a function
g € L2°(G) such that the closure of I, = {3* ¢ | 8 € LL(G)} does not contain
¢y 5 for any o € M (1), A € C. Interestingly this is related with the failure of the
Wiener-Tauberian theorem of the commutative Banach algebra LP!(G),1 < p < 2
which we shall discuss now.

We fix a p € [1,2). We have noted in Chapter B that the Gelfand spectrum
of L»1(@) is S, and hence the 7-spherical transform of a function f € L2 (Q)
has to be necessarily nonvanishing on S, so that f generates a dense ideal under

convolution in LP!(G). However we recall that this condition is not sufficient. A
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counter example is constructed in Chapter Bl to show that there is a function f
in L?!(G) whose 7-spherical transform does not vanish anywhere in S, but the
ideal generated by f is not dense in LP''(G).

We take that function f € LP!(G), whose T-spherical transform is nonzero for
all A € S, but I; = {Bxf | € LL(G)} is not dense in L2 (G). Then there exists
g € L¥**(G) such that Jo 9(x)h(z) dz = Oforall b € Iy. A use of Fubini’s theorem
shows that [, f(x)k(z) dz = 0 for all k € I, where I, = {8 g | 8 € L}(G)}. We
suppose that ¢ , € I, C LP">*(@) for some Ao € C. Then [, f(x)m dxr =0,
ie., [, [f(x) ;Afo(:c_l) dz = 0 by Proposition ZT0. Therefore f(o, o) = 0. But
as @7, € LP°(G), \g € S, (see Chapter B{). Hence \g € S,. This contradicts

20

the assumption.

We may point out that the argument above works also for L!-invariant sub-
space of LZ"(G), with ¢ > 2,1 < r < oco. Precisely, we recall that (see Chapter
B) for ¢ > 2, if A € S, then ¢, € LI"(G) for 1 < 7 < oo. We can show as
above that there exists a function g € L2"(G), such that the closed L!'-invariant
subspace generated by g does not contain any ¢7 ,.

Conversely we suppose that there exists a function g € L2"(G) with ¢ > 2,
1 <r < oo such that the closed L'-invariant subspace I, generated by g does not
contain any ¢; . Then for any A € 5/, there exists a function f) € L9 (@) such
that fi(I;) = 0 and fA(¢],) # 0. Thus we get a collection F = {fy | A € S5}
in L9 (G) such that their 7-spherical transform do not have common zero in
S But as fa(Iy) = 0, we have g(If,) = 0 for all A € S, where Iy, = {8 * fy |
B € LLYG)}. Therefore g(I) = 0 where I is the closure of span Unese, Ir,- Thus
assuming that there is a L'-invariant subspace of L%"(G) which does not contain
any ¢ ,, we can show that the Wiener-Tauberian theorem for LY (G) based on

nonvanishing 7-spherical transform on its domain fails.
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Chapter 8

Revisiting Schwartz’s Theorem
on SL(2,R)

8.1 Statement of the Theorem

In this Chapter we shall prove a version of the Schwartz’s theorem for the group
SL(2,R) without any restriction on K-finiteness. This result will strengthen the
analogue of Schwartz’s theorem proved in [24]. Our method is based on a gener-
alization of the notion of simplicity (see [34, p.315] for the corresponding notion
on right K-invariant functions). Our theorem is inspired by a result of Helgason
and Sengupta where the corresponding result is proved for rank one symmetric
spaces (see [360]).

Throughout this chapter G and g will denote the group SL(2,R) and its Lie
algebra s[(2, R) respectively. In the notation of Chapter [l here K = SO(2) = S*
which we parametrize as {ky | 0 € [0,27)} and equip with the normalized Haar
measure dk = df/2m. The unitary dual K of K is parametrized by integers.
Precisely K = {e, | n € Z} where e,(kg) = ™. We note that for any integer
n, (G, K, e,) is a Gelfand triple (see [H]). By abuse of notation we shall denote
the K-types simply by the integers n. For each pair of integers (m,n) of the
same parity (i.e. either both even or both odd integers) we have the (m,n)-
th spherical function ®\"" which is the object corresponding to the elementary
spherical function in analysis of K-biinvariant functions. In particular ®}™" is the
n-spherical function in the language of Section Bl An explicit definition of ®1""
and other required preliminaries are given in the next Section.

The following theorem is due to Ehrenpreis and Mautner (see [24]).

Theorem 8.1.1 (Ehrenpreis-Mautner). Let V' be a (both sided) translation in-

87
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variant nonzero closed subspace of C*°(G). Then either for each m,n € 27 or for
each m,n € 2Z + 1, there exists A € C such that V' contains x — ®\""(x) where

A depends on m,n.

We shall prove the following stronger version. Here C'*°(G),, is the set of right
n type functions in C*°(G).

Theorem 8.1.2. Let V,, be a (left) translation invariant nonzero closed subspace
of C*(G),. Then there exists A € C such that V,, contains the function

ey T e METE e (K(z7 %)) for all k € K.

If V is a (both sided) translation invariant nonzero closed subspace of C*(QG)
then either for each n € 27 or for each n € 27 + 1, there exists A € C which

depends on n such that V' contains the function x +— e’j?k(x) forallk € K.

The spaces C*°(G) and C*°(G), are equipped with the usual Fréchet topol-
ogy (see Chapter B). We note that the elements of C*°(G),, can be considered
as smooth sections of the line bundle E,, (see Introduction for definition) associ-
ated with the K-type n. Here the object which naturally corresponds with the
exponential function e** is the function el - It is an eigensection (of the Laplace-
Beltrami operator of SL(2,R)/SO(2)) of the bundle E,,. It is not difficult to verify

that Theorem follows from Theorem as [, €8 p(@)enm (k) dk = O3V ().
Theorem will be proved in Section B3

8.2 Preliminaries

We need the following additional preliminaries apart from those given above. Four

important elements of g are

X = 01 ,H:1 Lo Y = 01 and Y = 00 .
-1 0 2\ 0 —1 0 0 -1 0

We suppose that exp(0X) = kg, exp(2tH) = a;,exp(§Y) = ne. Then A = {a; :
t € R} is a vector subgroup and N = {n¢ : £ € R} is a nilpotent subgroup of G.
We fix the Iwasawa decomposition G = KAN and if for x € G, x = kga;ne is its
corresponding decomposition then we write H(z) for ¢t and K (x) for ky. Clearly H
is left K-invariant and right N-invariant. In this group m, = 0 and ms, = 1 and

hence p = 1. The Haar measure splits according to the Iwasawa decomposition as
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dx = e*dk dt dn where dk = dky = % is the normalized Haar measure of K and
dn = dng = d§ as well as da = da; = dt are both Lebesgue measures on R.

A complex valued function f on G is said to be of left (respectively right)
K-type n if f(kox) = €™ f(x) (respectively f(zky) = f(x)e™’). Functions of left
K-type m and right K-type n are also referred as functions of type (m,n). By
fm.n We denote the projection of f in left type m and right type n, which is defined

(whenever possible) by

fonn(2) = / / f(kgzky)e ™ e dkgdk .
K JK

It can be verified that f,,, is a (m,n)-type function. It will also be called to as
the (m, n)-th component of f. Let C*(G),,.,, and C*(G), respectively denote the
set of (m,n) type and right n type C* functions on G. We recall that (see []) if
f€C®(G) then f =3 fmnin the C*(G) topology. The following results

are easy to verify:
(1) If f is of type (m,n) where m is odd and n is even then f =0,
(2) If n# r then f,, * g.s =0 and f,,, * g5 is of type (m,s),
(3) If either m # —r or n # —s then [, frn(x)grs(z)dz = 0.

The complexification of g is denoted by gc and the universal algebra of g¢ is
denoted by U. The Casimir element €2 of U is defined by

QO=H*+H-YY.

The centre Z of U is generated by 2. Each X € g gives a left invariant vector
field Lx and right invariant vector field Rx by the formulas

fo(l') = f(fL',X) = %f(xexp(tX))}tzo

Rxf(z) = f(X;z) = %f(exp(tX)x)’t:O.

These identifications give an isomorphism between U and the algebra of left in-
variant differential operators on GG, and an anti-isomorphism between U and the
algebra of right invariant operators. If g1, go € U are considered as right invariant
and left invariant differential operators respectively, then their action at any x € G
will be denoted by f(g1;2;g2). The elements of Z corresponds to the biinvariant

differential operators on G.
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Let M = {£I} where I is the identity matrix. Then M is the centre of G and
M = {o",07} where o~ is the only nontrivial element of M. We let Z° = 27 if
oc=oc"and Z° = 27+ 1 if 0 = 0. Corresponding to each o € M and A € C the

principal series representation 7, ) in the compact picture is given by
Ton(@) f(k) = e OTDHEED p(f (27 k1)) for f € LA(K,0) (8.2.1)

where L?(K, o) is the subspace of L?(K) generated by {e, | n € Z°}. Precisely
L*(K,o0) = {f € L*(K) | f(km) = o(m)f(k), forall k € K,0 € M}. We also

have the following relation:
o (z)" = 7TU77X(:E_1) for each z € G, A € C,

where 7, (x)* is the adjoint of the operator =, (z). For o € M,\ € C and

m,n € Z° we define
(I)Z?}\n(l') — <7T07A(¢’L')€m,€n> — / e*()\Jrl)H(:v*lk*l)em(K(l.flkfl>71>€n(k> dk
K

where (-, -) is the inner product in L*(K, o). Thus ®)y"(z) is the (m, n)-th matriz
coefficient of the operator 7, »(x) . In particular when m =n =0 and 0 = o™,
then @2:2 is the elementary spherical function ¢,. It is easy to check that @:3\” is of

type (n,m). For an (m,n) type function f on G its (m,n)-th spherical transform
is defined by

F(0, N = /G F @) (@) da.

It also follows from (3) above that if f is of type (m,n), then
Flo, Nrs = / f@)®5 (e ) de = 0if r #morif s #n.
G

We note that an integer n determines a 0 = o(n) € M by the condition

n € Z°. Therefore sometimes we may omit the obvious o and write ®Y"" for ®'"

~ ~

and f(A)mn for f(o, A)mn.

The infinitesimal representation of g induced by 7, ) is given by

d
o (L)v = gwm)\(exp tL)v for L € g,v € L*(K,0).
=0

We define E = 2H +i(Y —Y) and F = —2H +i(Y —Y). Then {X,E, F}
form a basis of g¢ and for o € ]\//7, A € Cand n € Z°, we have (see [, 4.4 and
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4.6])
Tox(E)en, = (n+ A+ 1)eqio
Tox(F)en =(n—X—1)e,o

o (X)e, = ine,.

Using these it is easy to verify that:

2

O0N'(Erx) = (n+ A =107 (2) (8.2.2)
O (25 B) = (m + A+ 1)@ " (x) (8.2.3)
OO (Fiz) = (n— A+ 1)<I>m "“(x) (8.2.4)
O (w; F) = (m — A — 107" (x) (8.2.5)

for m,n € Z° and A € C.

It follows from equation (BZ4), (BZH) that CIDZf;\rz’"J(F; 271 F) is a constant
multiple of @Z;\"(x_l) where the constant is a polynomial in A\, depending on m, n.
We take a nonzero function f € C®(G),,,. Then there is a A € C such that
Jo f @Z”;LQ "2(F; 27 F) dx is nonzero. Hence by change of variable it follows
that fG (F;x; F)@Z?;LZ” (") dx is nonzero. This implies that f(F;-; F) is of
type (m+2,n — 2). Through similar argument we can show that f(x; E), f(x; F)
and f(E;x) are of type (m,n + 2), (m,n — 2) and (m — 2,n) respectively. Thus
given integers (r, s) of the parity of (m,n) repeating the process above we can find
Dy, Dy in U such that f(Dy;x; Dsy) is of type (7, s).

These facts and a density argument yields the following:

Proposition 8.2.1. For a right n type C* function f on G and a fized integer m
(same parity of n), there is a D € U such that f(-; D) is a right m type function.

8.3 Proof of the Theorem

The following lemma gives a symmetry property of ®3™".
Lemma 8.3.1. For each n € Z° we have,

o (y )
= [ [ CEHETE D X HOT Y e (K (0 ) e (K (y TR )| dk
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Proof. We have
QLN () = (moa(y'w)en, en)
= (Toa(@)en, (Taa(y™"))en)
= (Toa(@)en, 155 (y)en)

=[x Toa(@)en(k)my 5 (y)en(k) dk.

The lemma now follows from the definition of 7, , (see equation (R21)). O

Definition 8.3.2. For a fited n € 7Z° and X € C, the Poisson transform of
F e L*(K,0) is defined by

PL(F)(x) = /K F(k)emMDHERDe (K (27 %171 dk.

The map z +— PY(F)(z) is of right type n. For n and X as above and k € K

the Helgason Fourier transform for a right n type function f is defined by
f()\, k,n) = / Fla)eMDHE R Do (K (27 'k~")) dz, whenever the integral converges.
G

Since M is the centre of G, H(z 'k~ 'm™) = H(z7'k™ 1) and K(z7'k~'m™1) =
K(z~ 'k~ )m~L. Therefore f(X, km,n) = e_,(m)f(\ k,n) = a(m)f(\ k m), ie
f(\,-,m) € L*(K, o). The following lemma gives a relation between the Poisson

transform and the Helgason Fourier transform.

Lemma 8.3.3. For a right n-type function f, f+ @\ (z) = Pf{(f()\, . n))(z) for

n € Z°, whenever both sides make sense.

Proof. Using Lemma and Fubini’s theorem we have
f* 255 (@)
= Jo FW)® 3y w) dy
— fG f(y) fK e—(A+1)H(z*1k*1)e(A—l)H(yflkfl)en(K(x—1k—1)-1)€n(K(y—1k—1>) dk dy
_ fK ef(AJrl)H(x_lk_l)en(K 1 f f (A DH(y 'k _l)en(K(yflkfl))dydk:

= [ O e (K (e k)Y F( &, ) d
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Hence
f#@73(x) = PY(f(A - n)) ().
O

Definition 8.3.4. For a fixed integer n, a point A € C is said to be n-simple if
the map F'+— PY(F) is injective on L?(K, o) where n € Z°.

The following lemma gives a criterion for n-simplicity of a point A € C.

Lemma 8.3.5. Let n be a fixed integer and o € M such thatn € Z°. A point \

in € us n-simple, if for every m € 27, @\ is a non-zero function.

Proof. Let f be a function in L*(K, o). Let PY(f)(x) be denoted by F(z).
We suppose F' = 0. Then F,, =0, for all m € Z, where

= [ F(kx)e_n (k) dk

= [ ( [ fly)em CHDHG >en(K(x—1k—1k;1)—1)dk1) e (k) dk.
We put k1k = ko in the above to get,

fK fK ~OHDHEE e, (K(x_lkgl)_l)efm(kfle) dksy dky
= [y (Jic 1) em(kn) dhy)eCHHE 0D, (K (27 k1) ™ e (ks) dks

= [y fem)em O e (K (27 kg ) oo (kz) dks

~

= f=m)@gy (2).
Therefore if A is such that ®\" # 0 for every m € Z7, then f(—m) = 0, for
allm € Z°. As f € L*(K,0) it is clear that f(r) =0 forall r € Z\ Z°. Thus

Fm) = 0 for all m € Z and hence f = 0. Then from Definition it follows
that A is n-simple. O

An explicit description of the combinations of {\,m,n} for which ®J'\" = 0
is given in [ Proposition 7.1, 7.2]. Using that we get the following immediate
Corollary.

Corollary 8.3.6. For a fixed integer n and any A € C, either A or,—\ is n-simple.



Chapter 8: Revisiting Schwartz’s Theorem on SL(2,R) 94

Lemma 8.3.7. Let o € M. If A € C is n-simple for some n € Z° then,

N
B= {k > Zajef(’\H)H(xfl’“_l)en(K(x?llfl)*l) ra; € C,z; € G,N € N}

is dense in L*(K, o).

Proof. Tf B is not dense then there is a nonzero function F' € L*(K, o) such that
for all x € G,

/ F(k)e"OHDHE R D0 (K (2%~ dk = 0.
K

That is PY(F) = 0. As A is n-simple we have F' = 0. This contradicts our

assumption on F. O

Lemma 8.3.8. If —\ is n-simple for some n € Z° then span{yq)Z:;L cy € G}
contains Py (L*(K, o)) where Y@\ denotes the left translation of @\ by y € G.

Proof. Let F € L*(K, o), then by Lemma there is a sequence {f,} in B
such that f, — F as a — co. As Poisson transform is continuous, PY(fa)(y) —
Py (F)(y). Therefore

Na
>ty [P (K ) e OO e () )
j=1 K

converges to PY(F)(y). Therefore by Lemma R3], Zj\[:“l ;@ (x5 4y) con-
verges to PY(F)(y). This shows that the space span{*®_"{ | z € G} contains
PHL*(K,0)). O

We need the following Corollary of Theorem which can also be proved
using the method of Section [T as (G, K, n) is a Gelfand triple.

Theorem 8.3.9. For a nonzero function f € C®(G),, the closure of the set
(W fIW e C®(G), .} contains the function x — O™ for some X € C.

Here C*°(G);, ,, is the dual space of C*°(G)y,,; in other words the set of com-
pactly supported distributions on G of type (n,n).

Proof of theorem [T Let V,, be a left translation invariant closed subspace of
C*°(G),. We consider V,, ,, the closed subspace of left n type functions in V,,. That
is V,,, contains all (n,n) type functions in V,,. We take a nonzero function g € V,,.

Since V,, is left translation invariant we may assume that g(e) # 0 where e is the



95 Proof of the Theorem

identity element of the group G. Let g,(z) = [, g(kgx)e ™?df. Then it follows
that g, € V,,., and g,(e) = g(e) # 0 which shows that V,, ,, is a nonzero subspace.
As 'V, is left translation invariant and g, € V,,, for any h € C°(G)pp h* gn € Vi,.
This implies that V;, contains the closure of the set {W * g, | W € C*(G);, .},

since C°(G)n,pn is dense in C°(G);, . Hence V,,, contains the closure of the
set {W g, | W € C®(G),.,} as W g, is of type (n,n) for W € C®(G);, .

By Theorem B9, closure of {W x g, | W € C*(G);, .} contains ®3" for some
A € C. That is there is a A € C such that ®\" € V,,,, C V,,. We consider that
fixed X\. Since by Corollary either X or —\ is n-simple and ®}" = &™
without loss of generality we assume that —\ is n-simple. By Lemma K38,
PYL*(K,0)) C span{¥®}" | y € G}. But we have span{V®\" | y € G} C V.
Therefore PY(L*(K, o)) C V.

For an integer [ € Z° let F; = e_; € L*(K,c). Then

Pr(F)(z) = / e OEDHE ) (o Y Y () dk = B (a).

K

Thus ®}'(z) € V, for all [ € Z°. We note that \ is independent of .
For a fixed k € K, €}, ; is a right n-type function on GG. We decompose €}, ; ,
in left K-types as a absolutely and uniformly convergent series in the C*(G)

topology:

exi1i(®) = Z eiil,k(x) (8.3.1)

leZe

where
eﬁ’frl’k(x) = fK €§+1,k;(klx)€fl(k1)dkl
= [ e MHDHE SRR e (K (2 ) ey (k) dky.
Substituting kk; = k5 in the above, we have,
Sip(®) = [ IIETE e (K (a7 g ) T et (K k) dks
= (k) [ e OTVHE R e (K (0 ke ) ey (ky) diy
= a(k)2) (@).

As @' € V, for each | € 77, the function z — ¢;(k)®V'(z) = eﬁilyk(:c) is
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also in V,,, for each [ € Z7 and each k € K. Hence by equation (831l we have
x> ey, ,(z) € Vy, for all k € K. This completes the first part of the theorem.
For the second part we let V' be a both sided translation invariant subspace
of C*(G). For each integer n, we let V,, be the closed subspace of right n type
functions in V. Then V,, is left translation invariant. It is also clear that there is
an integer n such that V,, is nonzero. From Proposition it then follows that
if n € Z° then V,, is nonzero for each m € Z?. That is, either for each even n or
for each odd n, V,, is nonzero. Now it follows from the first part of the theorem
that each nonzero V,, contains z +— e} ; (z) for some A € C (A depends on n), for
all k£ € K. This completes the proof. O

Remark 8.3.10. We note that there are (both sided) translation invariant
nonzero closed subspace of C'°(G) which contain e}, only for one parity of n
(even or odd). For instance we take a C'*°-function f such that f(z) = f(—=x) for
all x € G. Then all the K-types of f in its decomposition are n € 2Z. From this
it is clear that the closed translation invariant subspace V; generated by f does
not contain e} , with n € 2Z + 1. Similarly if our function f € C*°(G) is odd i.e.
f(=z) = —f(x) for all z € G then V; will not contain Y, for n € 2Z.



Chapter 9
Some Other Examples

The readers will observe that important ingredients of the proofs of the main re-
sults are the LP-Schwartz space isomorphism theorem and the Paley-Wiener the-
orem for compactly supported distributions along with an explicit understanding
of the images of these spaces under the 7-spherical transform. If these are avail-
able for a Gelfand triple then one can expect that the results in this thesis can be
extended to that. For the proof LP-Schwartz space isomorphism theorem we can
adapt the method of Anker (see [2]) as we have done in the case of spinor bundle
on the real hyperbolic case. In doing so one needs to define the Abel transform for
7-radial functions along with its adjoint and prove the slice projection property
of the Abel transform (see Chapter 2 and Chapter 5). An alternative approach
would be relating the 7-spherical transform with the Jacobi transform and then
use the corresponding theorems for the Jacobi transform (see [26]). For the Paley-
Wiener theorem for compactly supported 7-radial distributions, the starting point
is Paley-Wiener theorem for compactly supported infinitely differentiable 7-radial
functions. We mention here a few examples of Gelfand triple where we can achieve
these targets and to which therefore all our results in Chapter Bl and Chapter [
can be readily extended.

(A) Let G be Sp(1,n) and K be a maximal compact subgroup of G. Then K can

be realized as

{ ( g ?] ) cu € Sp(1),U € Sp(n)} = Sp(1) x Sp(n).

Let N/2 be the set of non-negative half integers {0, %, 1, %, 2,---}. Then @ is
parametrized by N/2 (for details see [60]). Let (7,V]),l € N/2 be an element of

Sp(1). We extend 7; to a representation of K by setting 7, = 1 on Sp(n). We
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shall continue to call this representation as 7, € K. Then (G, K,7) is a Gelfand
triple. It can be shown that for a suitable 7;-radial function f on G, its 7j-spherical

transform is given by,

where Fn-124+1) ig the Jacobi transform and that fi(A) = fi(=A) (see [60).
We also note that when 2I < 2n — 1, there is no discrete series representation
which contains 7;. Therefore it is straightforward to use the LP-Schwartz space
isomorphism for Jacobi functions to prove the corresponding theorems for 7;-radial
functions. With this preparation we can prove analogues of all the theorems men-
tioned above for the triple (G, K, 7). We note that in the cases where there are
discrete series representation relevant for 7 = 7;-radial functions our scheme works
easily if none of the discrete series representations is embedded as a subrepresen-
tation of a principal series representation parametrized by a A in the domain of
the 7-spherical transform. Because in that scenario through the inversion for-
mula, CP(G) can be divided explicitly into the principal and discrete parts as
CP(G) = CP(G)p ® CP(G)p. For the principal part C?(G)p we prove the isomor-
phism again using Jacobi transform. For the discrete part we note that there can
only be finitely many discrete series representations containing 7 (see [61]) and
therefore any function defined on this finite set (which parametrizes the discrete
series representations containing 7) will be in the image of C?(G)p. A similar

argument is used in [54].

(B) Let us now consider the complex hyperbolic spaces H"(C) = G/K where
G = SU(n,1) and K = S(U(n) x U(1)). The L? harmonic analysis of the Dirac
spinors on H"(C) were developed in [I2]. Let 7 be the spin representation of K.
Then 7 has the decomposition into irreducible K-types as 7 = 101 B+ - -B7,. We
note that for 7;-radial functions j = 0,...,n,j # n/2 there is no relevant discrete
series representations. There is a discrete series representation, restriction to
K of which contains 7,, when n is even. This discrete series is infinitesimally
embedded in this parametrization at i/2. We notice that for 4n(2n+1)"1' <p <2,
i/2¢ 5, = {zeC |32 < (2/p—n}.

Relating the 7;-spherical functions to the Jacobi function and thus the 7;-
spherical transform to the Jacobi transform, a Paley-Wiener theorem is obtained
in ( [T2Z, section 4]). It is natural to expect that in an analogous way (i.e. through

Jacobi transform) the LP-Schwartz space isomorphism theorems for 0 < p < 2
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and Paley-Wiener Theorem for compactly supported distributions can also be
proved. We observe that the relation between the 7;-spherical transform and
Jacobi transform for the cases j = 0 and 7 = n are somewhat simpler than that
for the other 7;. A straightforward adaptation of the proofs given in the thesis
will yield the Schwartz space isomorphism theorems and Paley-Wiener theorem
respectively for 7;-radial functions and distributions when j = 0 or n. It appears to
us that with a little more effort the corresponding theorems for 7;-radial functions
with 1 < 7 < n—1,j # n/2 can also be proved. Lastly for the case of an
even n and j = n/2, the proof of LP-Schwartz space isomorphism theorem for
dn/2n + 1 < p < 2 will not face any further obstacle as for this range of p a
function in C’fn/Q(G) can be decomposed in principal and discrete parts through
the inversion formula. We have discussed a similar situation in (A) above.

Once these results are obtained, it will not be difficult to verify that the main
results proved in this thesis will hold for 7;-radial functions. As commented in [I2]
there is a strong similarity between the results obtained in [T2] with those obtained
in [46] for the p-forms on the real hyperbolic spaces. We note that harmonic
analytic aspects of these differential forms were extensively studied in [46]. It will

be interesting to see if the methods of this thesis can be applied for these cases.

(C) Let G be a connected, noncompact semisimple Lie group of real rank one
with finite centre and K be a maximal compact subgroup of G. We also assume
(7,V;) € K is such that (7], V) is irreducible. Then (G, K, 7) is a Gelfand triple.
A Paley-Wiener theorem for this is proved by Campoli (see [I0, Theorem 3.3.1]).
We note that in this case the T-spherical transform is even and it is possible to
adapt the proof in [2] to prove the LP-Schwartz space isomorphism theorems for
7-radial functions (see Chapter H). Staring from the Paley-Wiener theorem for
functions one can also prove the corresponding theorem for distributions. This
will enable us to extend the main results to this case.

(D) We recall that if G = SL(2,R), K = SO(2) and 7 € K, then (G,K,T) is a
Gelfand triple. The LP-Schwartz space theorem and the Paley-Wiener theorem are
available for this case (see for instance [4]). In general the K-type 7 is contained
in a finite number of discrete series representations of G. However apart from the
case of Wiener-Tauberian theorem for L' functions the discrete series will pose no
difficulty (see the argument in (A) above). The case of integrable functions can
also be dealt with along the line of argument in [54] and thus all the theorems in
Chapter 6 are extendable here. Schwartz’s theorem for this case has been already
discussed in Chapter B

We conclude with the following remarks.



Chapter 9: Some Other Examples 100

Remark 9.0.11. All the results in this thesis are valid for the K-biinvariant
functions of a connected noncompact semisimple Lie group of real rank one with
finite centre. All the theorems in Chapter il are new in this context.

Our basic objects in this thesis were homogenous vector bundles associated
with Gelfand triples. Apart from those which are mentioned above some notable
examples of Gelfand triples are G/K = H"(R) or H"(C) and 7 is an arbitrary
representation in K (see Remarks 2 and 3 in 6, p. 82]). There are Gelfand
triples also for quaternionic hyperbolic spaces. It is natural to ask if the targets

of this thesis could be achieved for these cases.
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