MISCELLANEOUS NOTES

ON THE ORDER OF APPROXIMATION INVOLVED IN LAPLACE'S
CENTRAL LIMIT THEOREM IN PROBABILITY

By MANINDRA NATH GHOSH
Statinticul Laboratory, Calcutin

The oontral limiting theorem in probability is oftan put forward ss the final justification for the
fraquent use of the norrosl distribution. Aa far as the prosent author is aware no thurough investigations
have, however, been made sbout the sxact order of approximation involved, Professor Cramer (1037)
hes shown that whon absolute inoments upto third order exist for the summanda the approximation is of
the order of 1 11/;-'. This is the genoralisation of a previous roault of Lispounoff. Howover, although the
central limiting theorsm waa proved to Kold when moments of the order of 24 §{4 >0) exint by Liapounoff
(1900) and also under the more general ditions of Lindburgh no pproxi Tormaula swaz !
which might make the theorom suitable for ical and ical purp The object of thin paper
is to pooure an approximation formula for the case where absolute moments of the order of {2+§) (6>0)
are amuined to exist.

In order to arrive at the deaired spproximation we shall foliow the linss of proof by Kolmogoroff
of the contral limiting theorem as given by Khintchine (1933). Let Fy(z) be u distribution fanetion with
mean zero and varisace unity and let 2°, x's,. .#’a be n independant variates sulisfying the same distribu-
tion law Fi{z). For simplicity of analysis we shall introduco the variablee ‘:2’3'1/\/117. Y
satisfying the same distribution law Fl(\/n;)—l?(l) with variance 1/ and mean zero. Denote by U,(x)
the distribution function of the random variable z==x)+.. +r.

Then evidenlly we have

-
Urfr)=§ | Urlz—t) dFig) o
We shall now show that U.(z) tends to the cumulative normal distribution funotion
_ =
¢(x)=1,'\/17_§° oxp{—#2) dt

as 1 becomes large. The first part of the proof is 8 modification of the proof of Khintchine (1033} to
suit our present limited purpose.
Let lel/:
1t i5 easy to soe that ¢(1[Vx-) satisfios the differential equation 3¢/dr=1I/z. 3'@/2x*. Let us introduce
the function V{x,3) given by V{z, 2)=@lx/y/2)+ez so that

.oV 1 v

wrrwt S

We shall now prove that for a suitably chosen e(8) int the whols halfplane 2>,

z
=1 /\/sz_lm exp { - #f2n)dt

Vie, o U Vie—t) dF()

Proof : V(z—§,2) = Viz, 2) — § %‘LH ARy rTe)
o FEd
§ [or av ;
where P gz =13 | 2V - A T
9=t Izt ]z-a(,z dx ]z.: }0<0<l @

£ Vet dF0=Visa) + 2 TVt 17 ontatn a0
2 {Pare=1, {F dF@=0 apd §7p dF(E) = Un

Y ' le el '
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1
From (2) it followa that If ’ 1 et dRg <L R
1 v
then (7 V-2 dF0 < Yeart— 50- Gir o
1 . 1 v 1 v
i ( wit. J=ViRNF - - T
Aguin Y ( L ) tra+ - 2: T o [a;- ]z.:+.'/p|,l)<l'<l .o (8)
v .
Denoting by M,({§) the maximum value of g:' - in the region ¢>4 when M, (3)/n<z we have
1 1 3V »
V(:.=+"-)>V(=.=)+ "R w -
Hence from (5) and {7) we have
17 .,
V(s.z+T)> _{m Vi — & 0 dF(Y) .8
provided ¢ ia chosen to satisfy (4) and M.(8)in<e
From (8) we have  @lz/y{k+1}/n) | etk+1)/n >']: PUz—E) kin) dF(E) + ke/n )
Now from (1) we have U,,; (z—2a)=s.w Uy {e—t—2a) dF(£) )
Y

Combining these two results wo have

Uroste—20)— Pz B Tymd < &+ (sl - 2a) - Gn/ N Ta] 40 ~an
Denote by P, tho least upper bound of Ui(s)—@((x+2a)/4/k/n} for values of x. Then we have
Pia<Pitefn. From this recurrence relation we find that

U.(2)— Pz + 20 K P Puct e e, Ullz)—(3) < 2ala /27 4+ Prte - (12)

Woe shall now #es that P, can be made small by a suitable choice of k and n and eateblish  lenma similar
to the one given by Khintchine taking into consideration the existence of p-th order moments of the dis-
tribution function Fy(z).

Lemma  Given two random variables with maan zero and absolute pth moment ¥, possessing
digtribation functions F{(z)and G{z), then for a >0, Fiz)— G{x+ 2a) 4,/ ab holds for ali values of »

Proof. When 2< —e, Fiz){F(—a)<#,/ar and the lemma is true. When z>—a wo have
F(z)—0(z+2a) & 1—Qr+2a) 1 — Gla) o (13)

Now Gla) » 1 —#,/ar, and hence F(z)  F(— a) #y/aP (12) bolds for all values of x. Putting k/n=_§ wo get
from {12) by the ahove lemma

Oux) — i) <

(14)
Bince the veriance of Us(z) and @(z/4/8) ave both § therefore chosing a=3" we have
el =g (i + 1) st -+ 6
\/21r
Now we can prove the opposite inequality by taking V(r,z)=@(z/4/z)— ez and the ocorreaponding valuss
of 3 and & will be the same as above . Thus wa may state

2
i< (53 + 1) ot e )
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whioh holils for all x. Now if wa chooss .>Mu[ui°°y|p(z, £ dr-*(;)..u,m] . the inequality (4) is
o

natisfied. Now

av_ F oo
W T

an
1 .
<— +5F ‘_,< & when : i small
Thus we have M;(3)=Max a'v,a:-<|/a- whan § is small.  Let us now coneider the integral,
2>8,
n§ % B1p(z.62) [dF g =n 56‘IP(-u.t)ldF(€)+n‘se'lﬁ(x,£.z) |4F0) .. U8y
® &< i>r
<nleer, mn[e' dF(E)+n Max)P(z.,2)| §8° dF(E)
1g)<r >3 6>
where 0<8< 1 beeause of the continuity of [Ptz §, :)| Now
av av v
= — — o =¢
P =5 );-Hv,: cxt )z,: \&@ )z—:'y,g
o<l
~z02r
_*t (19)
B
Thus the maxioum value of {3w/dxs| when z>§ is found to bo lw_'?s-u. On the other hand
an
PV [der=—zja/272 . exp (—223). Thorofore Max v =< \-/— et which gives
>4
Max P(x.e.:)‘ < F___ (20)
2>§ Virg
Consider now the integral, nf @ dF(E) = (g dF.(§) -2
1€1>r 1§y >nr
If 4/n7->- 0 then from tho existence of p-th order ubsolutp moment of Fat§)
§Ep AF () <hy= g0 dF ) - (22)
1g| >7Nn —-=
.. (23)
from which we have fé' dF ()< !
€1>ynr (' e
. 2001 By
Thus fnally we have > Iz T Bws ey (24

and ¢ 1jng* Thus chosing ¢ en above wo havo

(o)t

2 My
Un(z) ~ Plz) 7t VI, T

whichever is greater « {25

or ‘ U.(z)— iz

ns?
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Wo shall pow ahoto § and 7 5 funolions of 1 iew §=1/n% T=n8 in wuch & menuer that tho cxprssion
on the right har 4 minimum order in A,

Lot iy= —af fa~L.i\=3e/2- f, (\=f(p -2 +a~(p=2)2 douote the indices of n in the four yuan.
tities on the right. Then the probiem is to minimise m =Maur (i),izs.i.) for values of a and B. Ttisclear
that for an oxtre:num, three of four indices iiéwi i, shoulkl bo oqual or thoy should b equat in Pairs,
Among neven munlt axds of sxtroras wa have to pick one that gives an absolute minimum for m. The different
sots of solutions are given below

) h=GL=ia R n
_ 1 L DL | t Z2p—
o=y B n{ T T
nhip) 2p — 1)!7 which is inadmissible as m,(p)>0
2 i i N
_3 _ 1 4. ( 3 P2 (]
== B = o= ey - .= T
7 B= g =t~ 7 T =2y T T )
malp) = {p+2{7(p—23) which in also inadmissible
(B) f= iy i =iy
a=3 = M{_ PO, el el )
7 4p—-1) 7 T Up=1)" (p—D))
malp) = (p+1)/7(p—1) which in inadmissible
(4
— L+¢—l _ d—p R Bp—4 i-p hp—4
2 p—20 B_Tlp " 2-11p"  FWTITp’28-l1p)

This ix inadmixible far 2 p<d

P

_ dp-2 p—2
TTHp-14  lp—14” ”p-N}

Mp=2) o _Llp--2)f
Hp—14" 22p—2§ lp- 14

me(p)= —(p—2) ] {11p~—14) which ia admissible for all p

a=

(6) &)= i =iy

3‘1"2’,;;:1—1 (_ p=2 3p+2 3p+2
Ip—14 2 U T gp— T4 ap—14 3p_ 13" T ape

a=
This is inadmissible
n i

a=1, p:é{_; _1.1.|}

nh(p) = 1 which i» inacinissible
Thus we can write
5= —(p~2 - — —(@p—2)(11p—

1§~ Ul | <(3;V2ZT +1)n te=2ilp=14 alime a0 1 p— 14y (26)
We see, therefore, that when absol upto the pth orcler oxist tho urder of upproximation depends
upon p. For a given n thorefore wa can get the beat numerical spproximation by suitably chosing £ the
highest order moment that exists. However since the index of 1/n is Jarge for the second torm for large values
of n the first factor dorainatey. It is evident however that the above upproximation is useless for p»3
for in that ease & rouch better order of approximation has beon shown to exist by Linpounuf and Cramer.
The sbove approximation is interesting only when 2<p<3.

Thanks are due to 8. N. Roy of tho Statintical Laboratory, Calcutta, for help snd sdvice in the pre-
peration of this note.
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