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CHAPTER 1

Introduction

Let us fix some notations and conventions first. Unless otherwise stated, most of our results

hold for both real (R) or complex (C) scalars. We will denote the scalar field by F.

The closed unit ball and the unit sphere of a Banach space X will be denoted by BX and

SX respectively. By a subspace, we will mean a norm closed linear subspace. We denote by

NA(X) the set of all x∗ ∈ X∗ which attain their norm on BX . We will identify x ∈ X with

its canonical image in X∗∗.

For a closed and bounded set C in a Banach space X , the farthest distance map φC is

defined as

φC(x) = sup{‖z − x‖ : z ∈ C}, x ∈ X.

φC is a Lipschitz continuous convex function. For x ∈ X , we denote the set of points in C

farthest from x by FC(x), i.e.,

FC(x) = {z ∈ C : ‖z − x‖ = φC(x)}

Note that this set may be empty. Let R(C,X) = {x ∈ X : FC(x) 6= ∅}. We will write

R(C) when there is no confusion about the ambient space. Call a closed and bounded set C

remotal if R(C,X) = X and densely remotal if R(C,X) is norm dense in X .

Clearly, a compact set is remotal. The study of densely remotal sets was initiated by

Edelstein [19] who proved that any closed and bounded set in a uniformly convex space

is densely remotal. Asplund [3] extended this to show that any closed and bounded set

in a reflexive locally uniformly convex Banach space is densely remotal. In [39], Zizler

generalized Asplund’s result by showing that if X∗ is an Asplund space with a LUR dual

norm, then any closed and bounded set in X is densely remotal. Then Lau [30] showed that

Theorem 1.0.1. [30, Theorem 2.3] Any weakly compact set in any Banach space is densely remotal
with respect to any equivalent norm.

Deville and Zizler [17] proved a partial converse of this result :

Theorem 1.0.2. [17, Proposition 4] Let X be a Banach space and C is a closed bounded convex
subset of X . If C is densely remotal for every equivalent renorming on X , then C is weakly compact.
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They also proved that

Theorem 1.0.3. [17, Proposition 3] If X has the Radon-Nikodým Property (RNP), every w*-
compact set in X∗ is densely remotal with respect to any equivalent dual norm.

The survey article [14] contains many results on the existence of nearest and farthest

points of sets and its relation with some geometric properties of Banach spaces.

Note that BX is always a remotal set in any Banach space X . So it is natural to ask what

happens in case of BY for a subspace Y ? This issue was addressed in a recent paper [10].

Definition 1.0.4. Let us call a subspace Y of a Banach space X

(a) ball remotal (BR), if BY is remotal in X ;

(b) densely ball remotal (DBR), if BY is densely remotal in X .

The main object of this thesis is to study these properties more extensively. As noted in

[10], it follows from the results noted above that :

(a) Any finite-dimensional subspace is BR.

(b) Any reflexive subspace is DBR.

(c) If X∗ is an Asplund space with a LUR dual norm, then any subspace of X∗ is DBR.

(d) If X has the RNP, then for any w*-closed subspace of X∗ is DBR.

The point of departure in [10] is the observation that the space c0 is DBR in `∞. This

was proved by first showing that φBc0
(x) = ‖x‖ + 1 for all x ∈ `∞ and hence R(Bc0 , `∞) =

NA(`1) and then appealing to the Bishop-Phelps Theorem.

They observed that the nice expression of φBc0
is shared by a class of subspaces.

Let Y be a subspace of X . Clearly, φBY
(x) ≤ φBX

(x) = ‖x‖+ 1 for all x ∈ X .

Definition 1.0.5. Let us call a subspace Y of a Banach space X a (∗)-subspace of X if

φBY
(x) = ‖x‖+ 1 for all x ∈ X.

We will encounter these subspaces rather frequently in this thesis. We have the complete

description of R(BY , X) in this case [10] (see Proposition 2.3.13 below).

In [10], the authors used a different definition and proved that their definition implies

ours. They, however, used only the above expression for φBY
in most applications. We show

in Chapter 2 that the two definitions are actually equivalent.

A natural example of (∗)-subspace is X as a subspace of X∗∗. Since c∗∗0 = `∞, it follows

that c0 is a (∗)-subspace of `∞. To prove that R(Bc0 , `∞) = NA(`1), the authors in [10] also

used the fact that c0 is an M -embedded space, i.e., it is an M -ideal in its bidual.
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Definition 1.0.6. [26] A subspace Y of a Banach space X is an M -ideal in X if there is a

projection P on X∗ with ker(P ) = Y ⊥ and for all x∗ ∈ X∗, ‖x∗‖ = ‖Px∗‖+ ‖x∗ − Px∗‖.

They showed that for any two Banach space X and Y , the space K(X,Y ) of all compact

operators from X to Y , is (∗)-subspace of the space L(X,Y ) of all bounded operators from

X to Y . And they showed that :

(a) For a large class of Banach spaces that include all reflexive spaces, C(K) spaces and

L1(µ) spaces, K(X) is DBR in L(X).

(b) If X is a rotund Banach space with the RNP, and µ is the Lebesgue measure on [0, 1],

then K(L1(µ), X) is DBR in L(L1(µ), X).

They also noted that for a compact Hausdorff space K, the space C(K,X) of all X-

valued continuous functions on K is a (∗)-subspace of the space WC(K,X) of all contin-

uous functions from K to X when X is endowed with the weak topology. And if X is

reflexive, C(K,X) is DBR in WC(K,X).

Coming to stability results, they observed that many natural summands are BR. For

example,

(a) Any subspace of a Hilbert space is BR.

(b) For any measure space (Ω,Σ, µ), L1(µ) is BR in L1(µ)∗∗. In particular, `1 is BR in `∗∗1 .

Now, c0 is an M -ideal as well as a DBR subspace of `∞. The paper [10] has more ex-

amples of this phenomenon. Hence, it is natural to ask if any M -ideal is DBR, or, more

specifically, is any M -embedded space DBR in its bidual. Both the questions have been

answered in the negative in [10] (see Remark 7.2.13).

Observe that if z ∈ BY is farthest from x ∈ X , then it is nearest from any point on the

line [x, z] extended beyond z. So a natural question is : Is there any relation between ball

proximinality as introduced in [9] and ball remotality? Since an M -ideal is ball proximinal

[29, Corollary 5.1.1, p 86], the above example shows that a ball proximinal subspace need

not be DBR. We will show later a DBR subspace too need not be ball proximinal, or even

proximinal (Remark 4.2.34).

We now provide a chapter-wise summary of the principal results of this thesis.

In Chapter 2, we obtain several characterizations of (∗)-subspaces, including the equiva-

lence of our definition with that of [10]. In the process, we obtain a farthest distance formula,

which is also of independent interest. We completely characterize (∗)- and DBR/BR sub-

spaces of a Banach space. In this chapter, we also characterize 1-dimensional (∗)-subspaces.

It turns out that this depends on the existence of a strong unitary (Definition 2.4.2), a notion

related to that of geometric unitaries studied in [8].
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In Chapter 3, we study ball remotality in the classical Banach spaces c0, c and `∞. The

farthest distance formula of Chapter 2 takes a simpler form in these spaces. Using this, we

characterize (∗)- and DBR subspaces of c0, c and `∞. We observe that one can prove that c0
is DBR in `∞ without using the Bishop-Phelps Theorem. In the process, we prove that

(a) For a subspace Y ⊆ c0, the following are equivalent :

(i) Y is (∗)- and DBR in c0

(ii) Y is (∗)- and BR in c0

(iii) Y is (∗)- and DBR in c

(iv) Y is (∗)- and DBR in `∞.

(b) In particular, c0 is a (∗)- and DBR subspace of both c and `∞.

(c) If a subspace of c or `∞ contains the constant sequence 1, then it is (∗)- and BR.

(d) c and ĉ, the canonical image of c, are (∗)- and BR in `∞.

We also show that c0 has no finite dimensional (∗)-subspace. We characterize all hyper-

planes in c0 which are (∗)- and DBR in terms of the defining linear functionals.

Then we come to the space `1 and observe that `1 with its usual norm provides a simple

non-reflexive example of a Banach space in which every subspace is DBR (Corollary 3.3.2).

The existence of such spaces was observed in [10] with a more involved argument. We show

that a hyperplane in `1 is BR if and only if it contains a strong unitary.

We note that most of the above results extend without difficulty to subspaces of c0(Γ),

`∞(Γ) and `1(Γ) for some arbitrary index set Γ. However, if Γ is uncountable, a hyperplane

in `1(Γ) is always (∗)- and BR.

From sequence spaces, we shift our attention to function spaces. In Chapter 4, we study

ball remotality of subspaces of the space C(K) of all scalar-valued continuous functions

on K, where K is a compact Hausdorff space. We characterize (∗)- and (∗)- & DBR/BR

subspaces of C(K) in terms of the density of certain subsets of K. In the process, we prove

that any Banach space embeds isometrically as a (∗)- and DBR subspace of some C(K)

space.

We also study boundaries of a general subspace Y of C(K). In particular, we relate the

Choquet boundary of Y with other boundaries, in the process recapturing some classical

results. We show that if Y is a subspace of co-dimension n in C(K), then any closed bound-

ary for Y can miss at most n points of K. In particular, if K has no isolated points, then any

finite co-dimensional subspace cannot have any proper closed boundary.

Applying these results to the question of DBR subspaces, we show that an infinite com-

pact Hausdorff space K has no isolated point if and only if any finite co-dimensional sub-

space, in particular, any hyperplane in C(K) is DBR. We characterize (∗)- and DBR hy-
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perplanes in C(K) in terms of the defining measures. We show that a Banach space X is

reflexive if and only if X is a DBR subspace of any superspace. We also prove that any

M -ideal or any closed self-adjoint subalgebra of C(K) is DBR.

In Chapter 5, we study ball remotality of M -ideals in some function spaces and func-

tion algebras. Isolating a common feature of M -ideals in subspaces of C(K), we define an

Urysohn pair (A,D).

Definition 1.0.7. Let K be a compact Hausdorff space, A ⊆ C(K) a subspace and D ⊆ K a

closed set. We say that (A,D) is an Urysohn pair if

For any t0 ∈ K \D, there exists f ∈ A such that ‖f‖∞ = 1, f |D ≡ 0 and f(t0) = 1.

In Theorem 5.2.4, we show that for an Urysohn pair (A,D), the subspace Y = {f ∈ A :

f |D ≡ 0} forms a DBR subspace of A. As corollaries, we show that :

(a) Any M -ideal in C(K) is DBR, recapturing our earlier result with a new proof.

(b) For a locally compact Hausdorff space L, any M -ideal in the space C0(L) of all scalar-

valued continuous functions on L “vanishing at infinity”, is a DBR subspace.

(c) Any M -ideal in the disc algebra A is DBR in A.

In Chapter 5, we also consider the Banach space AF(Q) of scalar-valued affine continu-

ous functions, where Q is a compact convex set in some locally convex topological vector

space E. We denote by ∂eQ the set of all extreme points of Q. Our main result in this chapter

is that if Q is a Choquet simplex and ∂eQ \ ∂eQ is at most finite, then any M -ideal is a DBR

subspace of AF(Q). Some variants of this result are also considered.

In Chapter 6, we explore the stability of the properties (∗), BR and DBR. These properties

are better behaved with respect to superspaces than subspaces. A p-summand is a (∗)-
subspace if and only if p = 1.

Coming to sequence spaces, we show that the c0- or the `p-sum (1 < p ≤ ∞) of Yα’s is

a (∗)-/(∗)- and DBR/(∗)- and BR subspace in the corresponding sum of Xα’s if and only if

each Yα is such a subspace in Xα. In the process, we answer [10, Question 2.17] in the affir-

mative. On the other hand, if at least one Yα is a (∗)-/(∗)- and DBR/(∗)- and BR subspace

of Xα, then the `1-sum of Yα’s is such a subspace of the corresponding sum of Xα’s.

Coming to function spaces, we show that Y is a (∗)-/(∗)- and DBR/(∗)- and BR subspace

of X if and only if C(K,Y ) is such a subspace of C(K,X). For BR, the (∗)- assumption may

also be removed. If Y is a (∗)-/(∗)- and DBR subspace of X and (Ω,Σ, µ) is a probability

space, then the space L1(µ, Y ) of Y -valued Bochner integrable functions is such a subspace

of L1(µ,X).

In Chapter 7, we study ball remotality of a Banach space X in its bidual. In particular,

we consider the following properties :
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Definition 1.0.8. We will say that a Banach space X

(a) is BR in its bidual (BRB) if R(BX , X∗∗) = X∗∗.

(b) is DBR in its bidual (DBRB) if R(BX , X∗∗) = X∗∗.

(c) has remotally spanned bidual (RSB) if span(R(BX , X∗∗)) = X∗∗.

(d) is anti-remotal in its bidual (ARB) if R(BX , X∗∗) = X .

It is clear that reflexivity ⇒ BRB ⇒ DBRB ⇒ RSB. We show that none of the con-

verse holds. We show that a Banach space having a strong unitary is BRB, producing a

large class of non-reflexive examples. We show that X is wALUR [7] if and only if X is

rotund and ARB. We also obtain characterizations of reflexivity in terms of these phenom-

ena. For example, we show that a separable Banach space is reflexive if and only if it is

BRB/DBRB/RSB in every equivalent renorming. Some stability results are also obtained.
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(∗)-subspaces and
the farthest distance formula

2.1 Summary of results

As a generalization of (∗)-subspaces, we introduce (∗)-subsets and obtain several character-

izations. In the process, we obtain a farthest distance formula for a closed bounded balanced

subset of a Banach space, which is also of independent interest. We completely character-

ize (∗)- and DBR/BR subspaces of a Banach space. In this chapter, we also characterize

1-dimensional (∗)-subspaces. It turns out that this depends on the existence of a strong

unitary (Definition 2.4.2), a notion related to that of geometric unitaries studied in [8].

2.2 The farthest distance formula

Notation 1. Let T = {z ∈ F : |z| = 1}. Define sgn : F→ T by

sgn(z) =

{
1 if z = 0

|z|/z if z 6= 0

That is, for any z ∈ F, |sgn(z)| = 1 and sgn(z) · z = |z|.

Definition 2.2.1. For x ∈ X , let D(x) = {x∗ ∈ SX∗ : x∗(x) = ‖x‖}.

We say that A ⊆ BX∗ is a norming set for X if ‖x‖ = sup{|x∗(x)| : x∗ ∈ A} for all x ∈ X .

We say that B ⊆ SX∗ is a boundary for X if for every x ∈ X , there exists x∗ ∈ B such

that ‖x‖ = |x∗(x)|.

Theorem 2.2.2. Let C be a closed, bounded and balanced subset of a Banach space X . For x∗ ∈ X∗,
let ‖x∗‖C = supz∈C |x∗(z)|.

(a) Let A ⊆ BX∗ be a norming set for X . Then for any x ∈ X ,

φC(x) = sup{|x∗(x)|+ ‖x∗‖C : x∗ ∈ A}. (2.1)
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(b) If A ⊆ SX∗ is a boundary for X , then x ∈ R(C) if and only if there exists x∗ ∈ A and
z ∈ C such that the supremum in (2.1) is attained at x∗ and ‖x∗‖C = |x∗(z)|.

Proof. (a). Let x ∈ X .

φC(x) = sup
z∈C

‖x− z‖ = sup
z∈C

sup
x∗∈A

|x∗(x− z)| = sup
x∗∈A

sup
z∈C

|x∗(x− z)|
= sup

x∗∈A
sup
z∈C

[|x∗(x)|+ |x∗(z)|] (since C is balanced)

= sup
x∗∈A

[|x∗(x)|+ ‖x∗‖C ].

(b). Suppose x∗ ∈ A and z ∈ C are such that the sup in (2.1) is attained at x∗ and

‖x∗‖C = |x∗(z)|. Then for some α ∈ T,

φC(x) = |x∗(x)|+ ‖x∗‖C = |x∗(x)|+ |x∗(z)| = |x∗(x− αz)| ≤ ‖x− αz‖ ≤ φC(x).

Since C is balanced, αz ∈ C and hence, αz ∈ FC(x) and x ∈ R(C).

This argument does not need A to be a boundary.

Conversely, suppose x0 ∈ R(C). Let z0 ∈ C be such that ‖x0 − z0‖ = φC(x0). Since A is

a boundary, there exists x∗ ∈ A such that ‖x0 − z0‖ = |x∗(x0 − z0)|, then

|x∗(x0)|+‖x∗‖C ≥ |x∗(x0)|+|x∗(z0)| ≥ |x∗(x0−z0)| = ‖x0−z0‖ = φC(x0) ≥ |x∗(x0)|+‖x∗‖C

Hence, equality must hold everywhere. This completes the proof.

Corollary 2.2.3. Let X be a Banach space and Y ⊆ X a subspace.
(a) Let A ⊆ BX∗ be a norming set for X . Then for any x ∈ X ,

φBY
(x) = sup{|x∗(x)|+ ‖x∗|Y ‖ : x∗ ∈ A}. (2.2)

(b) If A ⊆ SX∗ is a boundary for X , then x ∈ R(BY ) if and only if there exists x∗ ∈ A and
z ∈ BY such that the sup in (2.2) is attained at x∗ and ‖x∗|Y ‖ = |x∗(z)|.

2.3 Characterization of (∗)-subsets

Definition 2.3.1. Let C ⊆ BX be closed and supz∈C ‖z‖ = 1. We call C a (∗)-subset of X if

for all x ∈ X , φC(x) = ‖x‖+ 1.

Definition 2.3.2. For a closed and balanced subset C ⊆ X with supx∈C ‖x‖ = 1, define

AC = {x∗ ∈ SX∗ : ‖x∗‖C = 1}

If Y is a subspace of X , we will simply write AY for ABY
.
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Definition 2.3.3. Let K be a subset of a vector space E. A nonempty set M ⊆ K is said

to be an extremal subset of K if x1, x2 ∈ K, 0 < λ < 1, and λx1 + (1 − λ)x2 ∈ M implies

x1, x2 ∈ M . A convex extremal set is called a face. A singleton face is an extreme point.

Proposition 2.3.4. For a closed and bounded set C ⊆ X , if FC(x) 6= ∅, FC(x) is a norm closed
extremal subset of C, but need not be a face.

Proposition 2.3.5. If C ⊆ X is closed and balanced with supx∈C ‖x‖ = 1, then AC is a norm
closed extremal subset of BX∗ , but is not a face.

Proof. Clearly
∣∣‖x∗‖C−‖y∗‖C

∣∣ ≤ ‖x∗−y∗‖ and hence, the function ‖·‖C is norm continuous.

It follows that AC is a norm closed set.

Let x∗1, x
∗
2 ∈ BX∗ and 0 < λ < 1 be such that λx∗1 + (1 − λ)x∗2 ∈ AC . Then there exists

(yn) ⊆ C ⊆ BX such that limn[(λx
∗
1 + (1− λ)x∗2)(yn)] = 1. It follows that

lim
n

x∗1(xn) = 1 and lim
n

x∗2(yn) = 1.

And hence, x∗1, x
∗
2 ∈ AC .

Since AC is T-invariant, AC cannot be convex.

We will also need the following lemma repeatedly.

Lemma 2.3.6. If A ⊆ SX∗ is such that {x ∈ X : D(x) ∩ A 6= ∅} is norm dense in X , then A is a
norming set for X .

Proof. Let x ∈ X and ε > 0. Find z ∈ {x ∈ X : D(x) ∩ A 6= ∅} such that ‖x − z‖ < ε/2. Let

z∗ ∈ D(z) ∩A. Then

|z∗(x)| = |z∗(z)− z∗(z − x)| ≥ ‖z‖ − ‖z − x‖ > ‖x‖ − ε/2− ε/2 = ‖x‖ − ε.

Since ε is arbitrary, A norms x.

Definition 2.3.7. For f : X → R, we define the subdifferential of f at an x ∈ X as

∂f(x) = {x∗ ∈ X∗ : Re x∗(z − x) ≤ f(z)− f(x), for all z ∈ X}

As a simple consequence of Hahn-Banach theorem, we have for each continuous convex

function f on X , ∂f(x) is a nonempty w*-compact, convex set in X∗.

We will also need the following result of Lau [30] (see also [16, Proposition II.2.7]). This

needs the scalars to be real. For any bounded set K, any x ∈ X , and any x∗ ∈ ∂φK(x), we

have ‖x∗‖ ≤ 1, and hence, supz∈K x∗(x− z) ≤ φK(x). Moreover, the set

G(K) = {x ∈ X : sup
z∈K

x∗(x− z) = φK(x) for all x∗ ∈ ∂φK(x)}
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is a dense Gδ in X .

Now we return to arbitrary scalars and to our main result of this chapter.

Theorem 2.3.8. Let C ⊆ BX be closed and balanced with supx∈C ‖x‖ = 1. Then the following are
equivalent :

(a) AC is a norming set for X .

(b) C is a (∗)-subset of X .

(c) There is a dense set G ⊆ X such that φC(x) = ‖x‖+ 1 for all x ∈ G.

(d) {x ∈ X : D(x) ⊆ AC} is a dense Gδ set in X .

(e) {x ∈ X : D(x) ∩AC 6= ∅} contains a dense Gδ set in X .

(f) {x ∈ X : D(x) ∩AC 6= ∅} is dense in X .

(g) For every boundary B for X , B ∩AC is a norming set for X .

(h) For some boundary B for X , B ∩AC is a norming set for X .

(i) Intersection of all balls containing C equals BX .

Proof. Clearly, (d) ⇒ (e) ⇒ (f), (g) ⇒ (h) ⇒ (a) and (b) ⇔ (i). Since φC and ‖ · ‖ are both

norm continuous, (b) ⇔ (c).

(f) ⇒ (a) follows from Lemma 2.3.6 with A = AC .

(a) ⇒ (b). By Theorem 2.2.2(a) with A = AC , we get

φC(x) = sup{|x∗(x)|+ ‖x∗‖C : x∗ ∈ AC} = sup{|x∗(x)|+ 1 : x∗ ∈ AC} = ‖x‖+ 1.

(b) ⇒ (d). First let us assume that the scalars are real.

It is easy to see that if f(x) = ‖x‖, then ∂f(x) = D(x). Thus, (b) ⇒ ∂φC(x) = D(x).

By the result of [30] quoted above, G(C) = {x ∈ X : for all x∗ ∈ D(x), supz∈C x∗(x−z) =

‖x‖+ 1} is a dense Gδ subset of X .

CLAIM : G(C) = {x ∈ X : D(x) ⊆ AC}.

Let x ∈ G(C) and x∗ ∈ D(x). Then supz∈C x∗(x − z) = ‖x‖ + 1. Since C is balanced, it

follows that ‖x∗‖C = 1. Hence x∗ ∈ AC .

Conversely, if x ∈ X is such that D(x) ⊆ AC and x∗ ∈ D(x), then supz∈C x∗(x − z) =

x∗(x) + ‖x∗‖C = ‖x‖+ 1. Thus, x ∈ G(C). This proves the claim.

If the scalars are complex, consider the real restriction XR of X . Recall that x∗ → Re x∗

establishes a real linear isometry between (X∗)R and (XR)
∗.

If (b) holds, then ∂φC(x) = D′(x) = {Re x∗ ∈ SX∗
R
: Re x∗(x) = ‖x‖}. Let A′

C = {Re x∗ ∈
SX∗

R
: ‖Re x∗‖C = 1}. Again, by the above arguments, G′ = {x ∈ XR : D′(x) ⊆ A′

C}
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is a dense Gδ set in XR. As x → x is an isometry from XR to X , it follows that the set

G = {x ∈ X : D(x) ⊆ AC} is a dense Gδ subset of X .

(d) ⇒ (g). Since B is a boundary, for every x ∈ X , TB ∩ D(x) 6= ∅. Since {x ∈ X :

D(x) ⊆ AC} ⊆ {x ∈ X : D(x) ∩ [TB ∩ AC ] 6= ∅}, by (d), the right hand set is dense in X .

By Lemma 2.3.6, TB ∩ AC is norming for X . Since AC is T-invariant, B ∩ AC is norming

for X .

Putting C = BY in Theorem 2.3.8 we obtain the following characterization theorem:

Theorem 2.3.9. For a subspace Y of a Banach space X , the following are equivalent :
(a) AY is a norming set for X .

(b) Y is a (∗)-subspace of X .

(c) There is a dense set G ⊆ X such that φBY
(x) = ‖x‖+ 1 for all x ∈ G.

(d) {x ∈ X : D(x) ⊆ AY } is a dense Gδ set in X .

(e) {x ∈ X : D(x) ∩AY 6= ∅} contains a dense Gδ set in X .

(f) {x ∈ X : D(x) ∩AY 6= ∅} is dense in X .

(g) For every boundary B for X , B ∩AY is a norming set for X .

(h) For some boundary B for X , B ∩AY is a norming set for X .

(i) Intersection of all balls containing BY equals BX .

Remark 2.3.10. In [10], the authors used (a) as the definition of a (∗)-subspace and proved

(a) ⇒ (b).

Here are some natural examples of (∗)-subspaces, as observed in [10].

Example 2.3.11. (a) X is a (∗)-subspace of X∗∗, since SX∗ ⊆ AX (See Chapter 7).

(b) If Y ⊆ Z ⊆ X and Y is a (∗)-subspace of X , then Z is a (∗)-subspace of X and Y is

a (∗)-subspace of Z.

(c) For any two Banach spaces X and Y , K(X,Y ) is a (∗)-subspace of L(X,Y ). To see

this, note that AK(X,Y ) ⊇ {x⊗ y∗ : x ∈ SX , y∗ ∈ SY ∗}, which already norms L(X,Y ).

(d) For a compact Hausdorff space K, C(K,X) is a (∗)-subspace of WC(K,X).

Remark 2.3.12. Recall that a Banach space X has the Mazur Intersection Property (MIP) if

every closed bounded convex set in X is the intersection of closed balls containing it. From

(i) above, it follows that a space with the MIP cannot have a proper (∗)-subspace. On the

other hand, it has been noted in [10, Proposition 2.8] that a wLUR Banach space also has no

proper (∗)-subspace.
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It now follows from Corollary 2.2.3 that

Proposition 2.3.13. [10, Proposition 2.10] If Y is a (∗)-subspace of X , then x0 ∈ R(BY ) if and
only if there exists x∗ ∈ SX∗ and y ∈ SY such that

x∗(x0) = ‖x0‖ and x∗(y) = 1.

As noted in [10, Remark 2.11], it follows from the result above that for (∗)-subspaces,

R(BY ) is closed under scalar multiplications. We will show later in Example 5.2.11 that this

need not be true if Y is not a (∗)-subspace.

Since the sets involved are T-invariant, we actually get

Corollary 2.3.14. If Y is a (∗)-subspace of X , then x0 ∈ R(BY ) if and only if there exists x∗ ∈ SX∗

and y ∈ SY such that

|x∗(x0)| = ‖x0‖ and |x∗(y)| = 1.

Proposition 2.3.15. Let NY = {x∗ ∈ SX∗ : x∗(y) = 1 for some y ∈ SY }. Then

(a) Y is (∗) and DBR if and only if {x ∈ X : NY ∩D(x) 6= ∅} is dense in X . In particular, if
Y is (∗)- and DBR, then NY is norming for X .

(b) Y is a (∗) and BR subspace of X if and only if NY is a boundary for X .

Proof. Clearly, NY ⊆ AY . If {x ∈ X : NY ∩D(x) 6= ∅} is dense in X ; in particular, if NY is a

boundary for X , then by Theorem 2.3.9, Y is a (∗)-subspace.

On the other hand, if Y is a (∗)-subspace of X then, by Proposition 2.3.13, R(BY ) = {x ∈
X : NY ∩D(x) 6= ∅}. Hence the result.

The last part of (a) follows from the first part and Lemma 2.3.6.

Corollary 2.3.16. If Y is a (∗)-subspace and AY ∩NA(X) = NY , then Y is DBR in X .

Proof. Clearly, NY ⊆ AY ∩NA(X). Note that NA(X) is a T-invariant boundary for X . So, if

Y is a (∗)-subspace then as in the proof of Theorem 2.3.8 (d) ⇒ (g), {x ∈ X : AY ∩NA(X)∩
D(x) 6= ∅} is dense in X . Since AY ∩NA(X) = NY and R(BY ) = {x ∈ X : NY ∩D(x) 6= ∅},

Y is DBR.

Corollary 2.3.17. (a) If Y ⊆ Z ⊆ X and Y is a (∗)- and BR subspace of X , then Z is a (∗)-
and BR subspace of X .

(b) If Y ⊆ Z ⊆ X and Y is a (∗)- and DBR subspace of X , then Z is a (∗)- and DBR subspace
of X .
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Remark 2.3.18. However, if Y ⊆ Z ⊆ X and Y is a (∗)- and DBR subspace of X , then we

do not know if Y must be a (∗)- and DBR subspace of Z. Also if Y ⊆ Z ⊆ X and Y is a DBR

subspace of X , then Z need not be a DBR subspace of X (Example 4.2.50).

Proposition 2.3.19. (a) If Y is a (∗)-subspace of a strictly convex Banach space X , then
R(BY ) = Y .

(b) A strictly convex space cannot have a proper (∗) and DBR subspace.

(c) A reflexive strictly convex space has no proper (∗) subspace.

(d) Any Hilbert space, the spaces Lp([0, 1]) and `p, 1 < p < ∞ has no proper (∗) subspace.

Proof. (a). Let X be a strictly convex space and Y be a (∗)-subspace of X .

Let x ∈ R(BY ). We may assume ‖x‖ = 1. Then there exists y ∈ BY such that ‖x+ y‖ =

φBY
(x) = 2. Since X is strictly convex, x = y.

Now, (a) ⇒ (b) ⇒ (c) by Theorem 1.0.1 and (c) ⇒ (d).

Remark 2.3.20. (d) also follows from [10, Proposition 2.8] since these spaces are LUR.

2.4 Strong unitaries and 1-dimensional (∗)-subspaces

It may seem that a (∗)-subspace must be somewhat large. This, however, is not the case. A

Banach space may even have 1-dimensional (∗)-subspaces.

Theorem 2.4.1. Let X be a Banach space and x0 ∈ SX . The following are equivalent :
(a) D(x0) is a norming set for X .

(b) D(x0) is a boundary for X .

(c) Fx0 is a (∗)-subspace of X .

Proof. (a) ⇔ (c). Observe that if Y = Fx0, then for any x∗ ∈ X∗, ‖x∗|Y ‖ = |x∗(x0)|. It

follows that AY = {x∗ ∈ SX∗ : |x∗(x0)| = 1} = TD(x0).

Thus, Y is a (∗)-subspace of X ⇔ D(x0) is a norming set for X .

Since D(x0) is w*-compact, (a) ⇔ (b).

Definition 2.4.2. Let X be a Banach space. Let us call x0 ∈ SX a strong unitary if the

equivalent conditions in Theorem 2.4.1 are satisfied.

For the origin of this terminology and related results, see [8] or the survey article [33].

Corollary 2.4.3. If x0 ∈ SX is a strong unitary in X and Y is a subspace with x0 ∈ Y , then
(a) x0 is a strong unitary in Y .
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(b) Y is (∗) and BR in X .

Example 2.4.4. Here are some natural examples of strong unitaries in Banach spaces.

(a) The constant sequence 1 in c or `∞ is a strong unitary.

(b) The canonical unit vectors in `1 are strong unitaries.

(c) Any unimodular function in C(K) is a strong unitary in C(K).

(d) A commutative C∗ algebra A with identity contains strong unitaries. To see this,

note that the Gelfand transform induces an isometric (∗)-isomorphism from A onto

C(Σ), where Σ is the maximal ideal space of A [15, Theorem VIII.2.1].

On the other hand, if A is a commutative C∗ algebra without identity then it does not

contain any strong unitaries. Indeed, we show later (Corollary 4.3.8) that such a space

has no finite-dimensional (∗)-subspaces.

There are also 2-dimensional (∗)-subspaces that do not contain a strong unitary.

Example 2.4.5. Consider the subspace Y ⊆ c spanned by x = (sin 1
n) and y = (cos 1

n).

Taking vectors of the form sin 1
k ·x+cos 1

k ·y, one can see that AY contains all the coordinate

functionals. Hence, Y is a (∗)-subspace.

This example appears in a related context in [4, Example 2.34].



CHAPTER 3

Ball remotality in
some classical Banach spaces

3.1 Summary of results

In this chapter, we study ball remotality in the classical Banach spaces c0(Γ), c(Γ), `∞(Γ) for

some arbitrary index set Γ. The farthest distance formula—Theorem 2.2.2—takes a simpler

form in these spaces. Using this, we first characterize (∗)- and densely remotal subsets (The-

orem 3.2.3) and thereby, (∗)- and DBR subspaces of c0(Γ), c(Γ) and `∞(Γ) (Corollary 3.2.4).

In the process, we prove that (Corollaries 3.2.5 and 3.2.6) :

(a) For Y ⊆ c0(Γ), the following are equivalent :

(1) Y is (∗)- and DBR in c0(Γ)

(2) Y is (∗)- and BR in c0(Γ)

(3) Y is (∗)- and DBR in c(Γ)

(4) Y is (∗)- and DBR in `∞(Γ).

(b) In particular, c0(Γ) is a (∗)- and DBR subspace of both c(Γ) and `∞(Γ).

(c) If a subspace of c(Γ) or `∞(Γ) contains the constant vector 1, then it is (∗)- and BR.

(d) c(Γ) and ĉ(Γ), the canonical image of c(Γ), are (∗)- and BR in `∞(Γ).

We also show that c0(Γ) has no finite dimensional (∗)-subspace (Theorem 3.2.8). We char-

acterize all hyperplanes in c0(Γ) which are (∗)- and DBR in terms of the defining linear

functionals (Theorem 3.2.16).

Then we come to the space `1(Γ) and observe that `1(Γ) with its usual norm provides

a simple non-reflexive example of a Banach space in which every subspace is DBR (Corol-

lary 3.3.2). We show that a hyperplane in `1 is BR if and only if it contains a strong unitary

(Theorem 3.3.6). However, if Γ is uncountable, a hyperplane in `1(Γ) is always (∗)- and BR

(Theorem 3.3.8).
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3.2 Ball remotality in c0(Γ), c(Γ) and `∞(Γ)

Notation 2. Let Γ be an arbitrary index set. Define

(a) c0(Γ) = {x = (xγ)γ∈Γ : given ε > 0, there exists a finite subset Γ1 ⊆ Γ such that

|xγ | < ε for all γ /∈ Γ1}.

(b) `∞(Γ) = {x = (xγ)γ∈Γ : ‖x‖∞ = supγ∈Γ |xγ | < ∞}.

(c) `1(Γ) = {x = (xγ)γ∈Γ : there exists M > 0 such that
∑

γ∈A |xγ | ≤ M , for all finite

subsets A of Γ}.

(d) c(Γ) = {x = (xγ)γ∈Γ : there exists λ ∈ C such that for all ε > 0 there exists a finite

subset Γ1 ⊆ Γ such that |xγ − λ| < ε for all γ /∈ Γ1}.

If Γ = N, we get back the classical sequence spaces c0, `∞, `1 and c.

Let {eγ} denote the canonical unit vectors in X = c0(Γ), c(Γ) or `∞(Γ) and {e∗γ} is the

coordinate functionals in `1(Γ) ⊆ X∗. Note that {e∗γ : γ ∈ Γ} ⊆ `1(Γ) is a boundary for

X = c0(Γ) and is a norming set for X = c(Γ) or `∞(Γ).

Remark 3.2.1. (a) It is clear that c(Γ) = C(Γ∞), where Γ∞ = Γ ∪ {∞} is the one-point

compactification of Γ endowed with discrete topology. Clearly, c0(Γ) is identified with

the subspace of C(Γ∞) that "vanish at" ∞.

(b) Clearly, c(Γ) is a subspace of `∞(Γ). Since c(Γ)∗∗ = `∞(Γ), there is also a canonical

embedding ĉ(Γ) of c(Γ) in `∞(Γ). However, due to the nature of the action of `1(Γ) on

c(Γ), ĉ(Γ) 6= c(Γ). For a fixed γ0 ∈ Γ, it can be shown that ĉ(Γ) = {x ∈ c(Γ) : xγ0 = λ}
where λ ∈ C corresponds to x as in the definition of c(Γ).

Proposition 3.2.2. Let X be one of c0(Γ), c(Γ) or `∞(Γ). Let C ⊆ X be closed, bounded and
balanced. For γ ∈ Γ, let

Mγ = sup
z∈C

|zγ | (3.1)

Then
(a) for any x0 = (xγ) ∈ X ,

φC(x0) = sup{|xγ |+Mγ : γ ∈ Γ}. (3.2)

(b) If there exist γ ∈ Γ and z ∈ C such that φC(x0) = |xγ | + Mγ = |xγ | + |zγ |, then
x0 ∈ R(C). If X = c0(Γ), the converse is also true.

If X = c(Γ) and C ⊆ c(Γ) is closed, bounded and balanced. Then

(c) for any x0 ∈ c(Γ),
φC(x0) = sup{|xγ |+Mγ : γ ∈ Γ∞}, (3.3)

where M∞ = supz∈C |z∞|.
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(d) x0 ∈ R(C, c(Γ)) if and only if there exist γ ∈ Γ∞ and z ∈ C such that φC(x0) =

|xγ |+Mγ = |xγ |+ |zγ |.

Proof. For (a) and (b), apply Theorem 2.2.2 with A = {e∗γ : γ ∈ Γ} ⊆ `1(Γ) ⊆ X∗.

For (c) and (d), take A = {e∗γ : γ ∈ Γ∞} ⊆ c(Γ)∗.

Theorem 3.2.3. Let X be one of the spaces c0(Γ), c(Γ) or `∞(Γ) and C ⊆ X be closed, balanced
and supx∈C ‖x‖ = 1.

(a) C is a (∗)-subset of X if and only if for all γ ∈ Γ, Mγ = supz∈C |zγ | = 1.

(b) C is a (∗)-subset and densely remotal if and only if for all γ ∈ Γ, there exists y ∈ C such
that |yγ | = 1.

(c) A (∗)-subset C ⊆ c0(Γ) is densely remotal if and only if it is remotal.

(d) If X = c(Γ) or `∞(Γ) and C contains the constant vector 1, then C is remotal.

Proof. (a). Necessity follows from Proposition 3.2.2.

If for some α ∈ Γ, Mα < 1, let 0 < δ < 1 −Mα. Then for all y ∈ C, |yα| ≤ Mα < 1 − δ.

Therefore, for all y ∈ C, ‖eα − y‖∞ = max{|1 − yα|, supβ 6=α |yβ|} ≤ 1 + |yα| ≤ 2 − δ. So

φC(eα) < 2 = ‖eα‖∞ + 1.

(b). If C is a (∗)-subset and densely remotal, then by (a), Mγ = 1 for all γ ∈ Γ. Suppose

there exists α ∈ Γ such that for all y ∈ C, |yα| < 1.

CLAIM : If z ∈ X such that |zα| = ‖z‖∞ > supγ 6=α |zγ |, then z /∈ R(C).

Otherwise, there exists y ∈ C, ‖z − y‖∞ = ‖z‖∞ + 1 = |zα| + 1. For any γ 6= α,

|zγ − yγ | ≤ |zγ |+ 1. It follows that supγ 6=α |zγ − yγ | ≤ supγ 6=α |zγ |+ 1 < |zα|+ 1. Therefore,

we must have |yα| = 1. This proves the claim.

Now, if ‖z− eα‖∞ < 1/3, then supγ 6=α |zγ | < 1/3 and |zα| > 2/3 and hence, by the claim,

z /∈ R(C). Hence C cannot be densely remotal.

Conversely, if for all γ ∈ Γ, there exists y ∈ C such that |yγ | = 1, then clearly Mγ = 1 for

all γ ∈ Γ and this value is attained. Thus, by (a), C is a (∗)-subset.

Let R = {x ∈ X : ‖x‖∞ = |xγ | for some γ ∈ Γ}. By Proposition 3.2.2, R ⊆ R(BY ).

If X = c0(Γ), R = c0(Γ) and (c) follows. If X = `∞(Γ) or c(Γ), and x /∈ R, let ε > 0.

Let ‖x‖∞ = m. There exists α ∈ Γ such that m − ε < |xα| ≤ m. Define z = (zγ) by the

following

zγ =

{
xγ if γ 6= α

sgn(xα)
−1m if γ = α

then z ∈ R and ‖z − x‖∞ = |xα − zα| = m− |xα| < ε. Hence, R is dense in X .

(d). Suppose 1 ∈ C. If x /∈ R, then there exists a sequence {γn} ⊆ Γ such that |xγn | →
‖x‖∞. Passing to a subsequence, if necessary, we may assume that {xγn} is convergent, to
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x0 ∈ F, say. Then ‖x‖∞ = |x0|. Let α = sgn(x0)
−1. Now

‖x+ α1‖∞ ≥ lim
n

|xγn + α| = |x0 + α| = |x0|+ 1 = ‖x‖∞ + 1.

Hence x ∈ R(C).

Corollary 3.2.4. Let Y be a subspace of X = c0(Γ), c(Γ) or `∞(Γ). Let AY and NY be as in
Definition 2.3.2 and Proposition 2.3.15 respectively. Then

(a) Y is a (∗)-subspace of X if and only if e∗γ ∈ AY for all γ ∈ Γ.

(b) Y is (∗)- and DBR in X if and only if e∗γ ∈ NY for all γ ∈ Γ, that is, for all γ ∈ Γ, there
exists y ∈ BY such that |yγ | = 1.

Corollary 3.2.5. For Y ⊆ c0(Γ), the following are equivalent :

(a) Y is (∗)- and DBR in c0(Γ)

(b) Y is (∗)- and BR in c0(Γ)

(c) Y is (∗)- and DBR in c(Γ)

(d) Y is (∗)- and DBR in `∞(Γ).

Corollary 3.2.6. (a) c0(Γ) is a (∗)- and DBR subspace of both c(Γ) and `∞(Γ).

(b) If a subspace of c(Γ) or `∞(Γ) contains the constant vector 1, then it is (∗)- and BR.

(c) c(Γ) and ĉ(Γ) are (∗)- and BR in `∞(Γ).

(d) c0(Γ) is not BR in c(Γ) or `∞(Γ).

Proof. (c). Since the constant vector 1 ∈ c(Γ), c(Γ) is (∗)- and BR in `∞(Γ).

By Remark 3.2.1, ĉ(Γ) is a subspace of `∞(Γ) that contains 1. Hence, ĉ(Γ) is also (∗)- and

BR in `∞(Γ).

(d). Let X = c(Γ) or `∞(Γ).

CLAIM : If R = {x ∈ X : ‖x‖∞ = |xγ | for some γ ∈ Γ}, then R = R(Bc0(Γ)).

As noted above, R ⊆ R(Bc0(Γ)). If x ∈ R(Bc0(Γ)), there exists y ∈ Bc0(Γ) such that

‖x − y‖∞ = ‖x‖∞ + 1. Since y ∈ Bc0(Γ), there is a finite set Γ1 such that ‖yα‖ < 1/2 for all

α /∈ Γ1. It follows that for all α /∈ Γ1,

|xα − yα| ≤ |xα|+ |yα| < ‖x‖∞ + 1/2 < ‖x‖∞ + 1 = ‖x− y‖∞.

Therefore, ‖x− y‖∞ = supα∈Γ1
‖xα − yα‖ and the supremum is attained at some α ∈ Γ1. It

follows that |xα| = ‖x‖∞, proving the claim.

Clearly, R 6= X . Hence the result.
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Remark 3.2.7. Note that if X = c(Γ) and Y = c0(Γ), then 1 ∈ R(BY ) and X = span(Y ∪{1}),
but Y is not BR. Thus, even for a (∗)-subspace, R(BY ) need not be a subspace of X .

A strong unitary is necessarily an extreme point. Since c0(Γ) has no extreme points, it

has no strong unitaries, and hence, it has no 1-dimensional (∗)-subspaces. Indeed, stronger

result holds.

Theorem 3.2.8. c0(Γ) has no finite-dimensional (∗)-subspaces.

Proof. If Y ⊆ c0(Γ) is finite-dimensional, then SY is compact. Hence there exists α0 ∈ Γ

such that |yα0 | < 1/2 for all y ∈ SY . Hence, the result follows from Corollary 3.2.4.

We have essentially proved that

Corollary 3.2.9. A compact subset of c0(Γ) cannot be a (∗)-subset.

We will need the following result from [10]. We include the proof for completeness.

Lemma 3.2.10. [10, Lemma 3.1] Suppose X = Y ⊕ Z and there exists a monotone map % :

R+ × R+ → R+ such that if x = y + z, then ‖x‖ = %(‖y‖, ‖z‖).
(a) Let E ⊆ Y and F ⊆ Z be remotal sets, then E +F is remotal in X . In particular, BY and
BZ are remotal in X .

(b) Let E ⊆ Y and F ⊆ Z be densely remotal sets, then E + F is densely remotal in X if the
convergence in X is equivalent to the component-wise convergence.

Proof. (a). Let x0 = y0 + z0. If e0 ∈ FE(y0) and f0 ∈ FF (z0), then for any e ∈ E and f ∈ F ,

‖y0 + z0 − e− f‖ = %(‖y0 − e‖, ‖z0 − f‖) ≤ %(‖y0 − e0‖, ‖z0 − f0‖) = ‖y0 + z0 − e0 − f0‖

by the monotonicity of %.

(b). Let x0 = y0 + z0 and ε > 0. By assumption, there exists δ > 0 such that B(x0, ε) ⊇
B(y0, δ) ⊕ B(z0, δ). Let y1 ∈ R(E) ∩ B(y0, δ) and z1 ∈ R(F ) ∩ B(z0, δ). If e1 ∈ FE(y1) and

f1 ∈ FF (z1), then by (a), e1 + f1 ∈ FE+F (y1 + z1). That is, x1 = y1 + z1 ∈ R(E + F ) and

‖x0 − x1‖ < ε.

As an immediate corollary, we get

Theorem 3.2.11. Any M -ideal in c0 is BR.

Proof. It is well known [26] that any M -ideal in c0 is of the form {x ∈ c0 : xn = 0 for all n ∈
J} for some J ⊆ N and therefore, is an M -summand. By Lemma 3.2.10, it is BR.

Question 3.2.12. Is there any subspace of c0 that is DBR but not BR?
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Theorem 3.2.13. Let {Xi : i ∈ Λ} be a family of reflexive Banach spaces and X =
⊕

c0
Xi. If Y is

any finite co-dimensional subspace of X , where the linear functionals are finitely supported, then Y

is DBR in X .

Proof. Let Y =
⋂n

i=1 kerx
∗
i and each x∗i = (x∗ij)j∈Λ ∈ X∗ =

⊕
`1
X∗

i is nonzero only at finitely

many α ∈ Λ. Thus, there exist a finite set J ⊆ Λ such that x∗ij = 0 for j /∈ J , i = 1, 2, . . . , n.

Then

Y = {(xj) ∈ X :
∑

j∈J
x∗ij(xj) = 0, i = 1, 2, . . . , n}

Let XJ = (
⊕

j∈J)`∞Xj and ZJ = (
⊕

j /∈J)c0Xj . Then X = XJ ⊕∞ ZJ . Let YJ = {(xj) ∈
XJ :

∑
j∈J x

∗
ij(xj) = 0, i = 1, 2, . . . , n}. Then Y = YJ ⊕∞ ZJ .

Since XJ is reflexive, YJ is DBR in XJ . And since BY = BYJ
⊕∞BZJ

, by Lemma 3.2.10(b),

Y is DBR in X .

Corollary 3.2.14. If Y is a finite co-dimensional subspace of c0(Γ) where the linear functionals are
finitely supported then Y is BR in c0(Γ).

Proof. If each Xi = F, XJ and hence YJ are finite dimensional, making YJ BR in XJ . Thus,

the result follows again from Lemma 3.2.10.

Remark 3.2.15. From [10, Theorem 3.6], the authors conclude that for any proximinal finite

co-dimensional subspace Y ⊆ c0 is DBR. As noted there, the proximinality of Y implies that

linear functionals are finitely supported. Thus, by Corollary 3.2.14, Y must, in fact, be BR.

Coming to hyperplanes in c0(Γ) not covered above, we have

Theorem 3.2.16. Let a = (aγ) ∈ S`1(Γ) be such that aγ 6= 0 for infinitely many γ ∈ Γ. Then
Y = ker a is (∗)- and BR in c0(Γ) if and only if |aγ | < 1/2 for all γ ∈ Γ.

Proof. Let γ0 ∈ Γ be such that |aγ0 | = sup
γ

|aγ |. Observe that, for any γ 6= γ0, if we define

yα =





−sgn(aγ) if α = γ

|aγ |/aγ0 if α = γ0

0 otherwise

then y ∈ BY and |yγ | = 1.

It follows from Corollary 3.2.4 that Y is (∗)- and BR in c0(Γ) if and only if e∗γ0 ∈ NY , i.e.,
there exists y ∈ BY such that |yγ0 | = 1.

Now, y ∈ BY implies
∑

γ aγyγ = 0, and hence,

|aγ0 | = |aγ0yγ0 | =
∣∣∣∣∣∣
∑

γ 6=γ0

aγyγ

∣∣∣∣∣∣
≤

∑

γ 6=γ0

|aγyγ | ≤
∑

γ 6=γ0

|aγ | = 1− |aγ0 | (3.4)



3.2. Ball remotality in c0(Γ), c(Γ) and `∞(Γ) 21

It follows that |aγ0 | ≤ 1/2. If |aγ0 | = 1/2, equality must hold everywhere in (3.4). Since

y ∈ c0(Γ) and (aγ) is infinitely supported, this is impossible. Therefore, |aγ0 | < 1/2.

Conversely, suppose |aγ0 | < 1/2. Define b ∈ `1(Γ) by

bγ =

{
aγ if γ 6= γ0

0 if γ = γ0

Then ‖b‖1 =
∑

γ 6=γ0
|aγ | = 1 − |aγ0 | > 1/2 > |aγ0 |. So there exists z ∈ Bc0(Γ) such that∑

bγzγ = |aγ0 |. Define y ∈ c0(Γ) by

yγ =

{
zγ if γ 6= γ0

−sgn(aγ0) if γ = γ0

Then y ∈ SY and |yγ0 | = 1.

Remark 3.2.17. If |aγ0 | = 1/2, since infinitely supported elements of `1(Γ) are non-norm

attaining on c0, arguing as in Theorem 4.2.38 below, we can show that Y is a (∗)-subspace,

but not DBR.

For subspaces of `∞(Γ), we have

Proposition 3.2.18. (a) Any w*-closed subspace of `∞(Γ) is DBR.

(b) If c0(Γ) ⊆ Y ⊆ `∞(Γ), then Y is (∗)- and DBR in `∞(Γ).

(c) If Λ ∈ ∂e(B`∞(Γ)∗), then Y = kerΛ is a DBR subspace of `∞(Γ).

Proof. (a). If Y ⊆ `∞(Γ) is w*-closed, then BY is w*-compact and therefore, Y is DBR by

Theorem 1.0.3, since `1(Γ) has RNP.

(b). Since c0(Γ) is (∗)- and DBR in `∞(Γ), so is Y , by Corollary 2.3.17.

(c). Recall that `∞(Γ)∗ = `1(Γ) ⊕1 c0(Γ)
⊥. Since Λ ∈ ∂e(B`∞(Γ)∗), either Λ ∈ `1(Γ) or

Λ ∈ c0(Γ)
⊥ [26, Lemma I.1.5]. And the results follows from (a) or (b).

Remark 3.2.19. A complete characterization of (∗)- and DBR hyperplanes in `∞(Γ) can be

obtained from Theorem 4.2.41 below by identifying `∞(Γ) with C(βN). However, since we

do not know any simple description of norm-attaining functionals on `∞(Γ), we only derive

a sufficient condition for (∗)- and DBR hyperplanes in `∞(Γ).

Theorem 3.2.20. If Λ ∈ `∞(Γ)∗, and |Λ(eγ)| < 1
2‖Λ|c0(Γ)‖ for all γ ∈ Γ, then ker(Λ) is (∗)- and

DBR in `∞(Γ).
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Proof. Since `∞(Γ)∗ = `1(Γ) ⊕1 c0(Γ)
⊥, Λ = Λ1 + Λ2 for some Λ1 ∈ c0(Γ)

⊥ and Λ2 ∈ `1(Γ)

and ‖Λ‖ = ‖Λ1‖+ ‖Λ2‖. Let a = Λ2/‖Λ2‖ ∈ S`1(Γ). Since Λ(eγ) = Λ2(eγ) <
1
2‖Λ2‖ we have

|aγ | < 1/2 for all γ ∈ Γ. Then by Theorem 3.2.16, Y = ker a = kerΛ2 in c0(Γ) is (∗)- and BR

in c0(Γ). Also ker(Λ) ⊇ ker(Λ1) ∩ ker(Λ2) ⊇ c0(Γ) ∩ ker(Λ2) = Y . Since Y is a (∗)- and DBR

subspace in c0(Γ), it is also (∗)- and DBR in `∞(Γ) (Corollary 3.2.5). By Corollary 2.3.17,

ker(Λ) is a (∗)- and DBR subspace in `∞(Γ).

Similar to Theorem 3.2.16, we have

Theorem 3.2.21. Let a = (aγ) ∈ S`1(Γ) and Y = ker a ⊆ `∞(Γ). Then Y is a (∗)-subspace in
`∞(Γ) if and only if |aγ | ≤ 1/2 for all γ ∈ Γ.

Proof. By Proposition 3.2.18(a), Y is DBR. Hence, by Corollary 3.2.4(b), Y is a (∗)-subspace

in `∞(Γ) if and only if for all γ ∈ Γ, there exists y ∈ BY such that |yγ | = 1.

The proof now is essentially that of Theorem 3.2.16, modulo the following observation.

If |aγ | = 1/2 for some γ ∈ Γ, define y ∈ `∞(Γ) by

yα =

{
sgn(aγ) if α = γ

−sgn(aα) if α 6= γ

Then y ∈ BY and |yγ | = 1 for all γ ∈ Γ.

3.3 Ball remotality in `1(Γ)

Now let {eγ} denote the canonical basis of `1(Γ). Note that each eγ is a strong unitary.

Theorem 3.3.1. Any infinite dimensional subspace Y of `1(Γ) is a (∗)- and DBR subspace of `1(Γ).

Proof. For any finite set Λ ⊆ Γ, let XΛ = span{eγ : γ ∈ Λ} and ZΛ = span{eγ : γ /∈ Λ}.

Clearly, `1(Γ) = XΛ ⊕1 ZΛ.

Let A = {x = (xγ) ∈ `1(Γ) : xγ = 0 for all but finitely many γ ∈ Γ}.

If x ∈ A, x ∈ XΛ for some finite set Λ ⊆ Γ. Since Y is infinite dimensional and ZΛ

is of finite co-dimension, there exists y ∈ Y ∩ ZΛ such that ‖y‖1 = 1. Then ‖x + y‖1 =

‖x‖1 + ‖y‖1 = ‖x‖1 + 1. It follows that φBY
(x) = ‖x‖1 + 1 and x ∈ R(BY ).

Since A is dense in `1(Γ), Y is a (∗)- and DBR subspace of `1(Γ).

Corollary 3.3.2. Every subspace of `1(Γ) is a DBR subspace.

Remark 3.3.3. It was noted in [10] that there are non-reflexive Banach spaces in which every

subspace is DBR. Indeed, if X∗∗ is separable, then X∗ is an Asplund space and has an
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equivalent LUR dual norm [16, Theorem II.2.6]. Hence, by a result of [39] quoted in the

Introduction, any subspace Y of X∗ is DBR. However, such a space need not be reflexive

(see e.g., [18, p 214]). Clearly, the space `1 with its natural norm produces a much simpler

example.

Remark 3.3.4. Analogous result for closed bounded balanced sets appears to be difficult.

For example, [17, Proposition 1] produces a (∗)-subset of `1 that has no farthest points.

Lemma 3.3.5. Let Y be a (∗)-subspace of `1(Γ). Then x ∈ R(BY ) if and only if there exists y ∈ SY

such that for all γ ∈ Γ, either xγ = 0 or yγ = 0 or sgn(yγ) = sgn(xγ).

Proof. For α, β ∈ F, it is easy to see that |α+β| = |α|+ |β| if and only if either α = 0 or β = 0

or sgn(α) = sgn(β).

Since Y is a (∗)-subspace, −y ∈ FBY
(x)

⇐⇒ ‖x+ y‖1 =
∑
γ

|xγ + yγ | =
∑
γ

(|xγ |+ |yγ |) = ‖x‖1 + 1

⇐⇒ |xγ + yγ | = |xγ |+ |yγ | for all γ ∈ Γ

⇐⇒ xγ = 0 or yγ = 0 or sgn(yγ) = sgn(xγ) for all γ ∈ Γ

We now characterize BR hyperplanes in `1.

Theorem 3.3.6. Let a = (an) ∈ `∞ and Y = ker a ⊆ `1. Then the following are equivalent :
(a) Y is BR in `1

(b) an = 0 for some n ≥ 1.

(c) Y contains a strong unitary.

Proof. (b) ⇒ (c). If an = 0 for some n ≥ 1, then en ∈ Y , a strong unitary.

(c) ⇒ (a) follows from Corollary 2.4.3(b).

(a) ⇒ (b). By Theorem 3.3.1, Y is a (∗)-subspace.

If an 6= 0 for all n ≥ 1, let z = (sgn(an)/2
n), then z ∈ S`1 and z /∈ Y .

If z ∈ R(BY ), then by Lemma 3.3.5, there exists y ∈ SY such that for all n ≥ 1, either yn =

0 or sgn(yn) = sgn(zn) = (sgn(an))
−1. Thus

∑
n anyn =

∑
n |an||yn| 6= 0. A contradiction

since y ∈ Y .

Hence, z /∈ R(BY ) and Y is not BR.

Remark 3.3.7. On the contrary, c0 has (∗)- and BR hyperplanes by Theorem 3.2.16, but no

strong unitaries.
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If Γ is uncountable, the situation is quite different.

Theorem 3.3.8. If Γ is an uncountable set, then any finite co-dimensional subspace of `1(Γ) is BR.

Proof. The argument is similar to Theorem 3.3.1.

For any countable set Λ ⊆ Γ, let XΛ = span{eγ : γ ∈ Λ} and ZΛ = span{eγ : γ /∈ Λ}.

Clearly, `1(Γ) = XΛ ⊕1 ZΛ.

If x ∈ `1(Γ), x ∈ XΛ for some countable set Λ ⊆ Γ. Since Y is finite co-dimensional, there

exists y ∈ Y ∩ ZΛ such that ‖y‖1 = 1. Then ‖x + y‖1 = ‖x‖1 + ‖y‖1 = ‖x‖1 + 1. It follows

that x ∈ R(BY ).



CHAPTER 4

Ball remotality in C(K)

4.1 Summary of results

In this chapter, we study ball remotality of subspaces of C(K). We characterize (∗)-, (∗)-
and DBR/BR subspaces of C(K) in terms of the density of certain subsets of K. As before,

we first prove the results for closed bounded balanced subsets. In the process, we prove that

any Banach space embeds isometrically as a (∗)- and DBR subspace of some C(K) space.

In subsection 4.2.1, we study boundaries of a subspace of C(K). In particular, we relate

the Choquet boundary with other boundaries, in the process recapturing some classical

results. We also show that if Y is a subspace of co-dimension n in C(K), then any closed

boundary for Y can miss at most n points of K. In particular, if K has no isolated points,

then any finite co-dimensional subspace cannot have any proper closed boundary.

Applying these results to the question of DBR subspaces, in subsection 4.2.2, we show

that an infinite compact Hausdorff space K has no isolated point if and only if any finite

co-dimensional subspace, in particular, any hyperplane is DBR in C(K) (Theorem 4.2.38).

We characterize (∗)- and DBR hyperplanes in C(K) in terms of the defining measures (The-

orem 4.2.41). We also show that a Banach space X is reflexive if and only if X is a DBR sub-

space of any superspace in which it embeds isometrically as a hyperplane (Corollary 4.2.44).

In subsection 4.2.3, we obtain some partial results in the remaining cases. As applica-

tions, we prove that any M -ideal or any closed ∗-subalgebra of C(K) is a DBR subspace.

In Section 4.3, we extend some of these results to the space C0(L), where L is a locally

compact Hausdorff space.

4.2 Ball remotality of subspaces in C(K)

Notation 3. Let K be a compact Hausdorff space. We denote by C(K) the space of all F-

valued continuous functions on K with the sup norm. Recall that C(K)∗ = M(K), the

space of all regular Borel measures on K with the total variation norm. For µ ∈ M(K), we

will write

µ(f) =

∫

K
fdµ, f ∈ C(K).
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For t ∈ K, let δt be Dirac measure at t, and for a subspace Y of C(K), let et = δt|Y .

Since {δt : t ∈ K} is a boundary for C(K), it follows from Theorem 2.2.2 that

Theorem 4.2.1. Let C ⊆ C(K) be closed, bounded and balanced set. For t ∈ K, let Mt =

supg∈C |g(t)|. Then
(a) for any f ∈ C(K),

φC(f) = sup{|f(t)|+Mt : t ∈ K}. (4.1)

(b) f ∈ R(C) if and only if there exists t0 ∈ K and g ∈ C such that Mt0 = |g(t0)| and
φC(f) = |f(t0)|+Mt0 = |f(t0)|+ |g(t0)|.

Lemma 4.2.2. T ⊆ K is dense in K if and only if {δt : t ∈ T} is a norming set for C(K).

Proof. Clearly, if T is dense in K, then {δt : t ∈ T} is a norming set for C(K).

Conversely, if T is not dense in L, there exists t0 ∈ K \ T . Get g ∈ C(K) such that

0 ≤ g ≤ 1, g(t0) = 1 and g|T ≡ 0. Clearly, {δt : t ∈ T} cannot norm this g.

Remark 4.2.3. For a locally compact Hausdorff space L, essentially the same argument

shows that T ⊆ L is dense in L if and only if {δt : t ∈ T} is a norming set for C0(L).

Definition 4.2.4. Let C ⊆ C(K) be a closed balanced subset with supg∈C ‖g‖∞ = 1. Let

T ′ = {t ∈ K : δt ∈ AC} = {t ∈ K : Mt = 1}.
T0 = {t ∈ K : |g(t)| = 1 for some g ∈ C}.

where AC is as in Definition 2.3.2.

In addition to Theorem 2.3.8, we have

Theorem 4.2.5. For a closed balanced subset C ⊆ C(K) with supg∈C ‖g‖∞ = 1, the following are
equivalent :

(a) C is a (∗)-subset of C(K).

(b) T ′ is dense in K.

(c) T ′ is residual, i.e., contains a dense Gδ set in K.

Proof. (c) ⇒ (b) ⇒ (a) is clear.

(a) ⇒ (c). Let F (t) = Mt. Then F is clearly lower semi-continuous (lsc).

CLAIM : T ′ = {t ∈ K : F is continuous at t}.

Let t0 ∈ T ′ = {t ∈ K : F (t) = 1} and tα → t0. Since F is lsc and F ≤ 1,

1 = F (t0) ≤ lim inf
α

F (tα) ≤ lim sup
α

F (tα) ≤ 1.
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Hence F is continuous at t0.

Conversely, suppose F is continuous at some t0 /∈ T ′. Then F (t0) < 1. Let 0 < ε < (1−
F (t0))/2. By continuity, there is an open neighbourhood U of t0 such that |F (t)−F (t0)| < ε

for all t ∈ U . Let f ∈ C(K) be such that f(K) ⊆ [0, 1], f(t0) = 1 and f |K\U ≡ 0.

By (a), φC(f) = ‖f‖∞ + 1 = 2. Therefore, there exists g ∈ C such that ‖f − g‖∞ > 2− ε.

It follows that f − g must attain its norm at some t1 ∈ U . But

|g(t1)| ≤ Mt1 = F (t1) < F (t0) + ε.

Thus,

‖f − g‖∞ = |f(t1)− g(t1)| ≤ |f(t1)|+ |g(t1)| < 1 + F (t0) + ε < 2− ε,

a contradiction that proves the claim.

Now by [23], points of continuity of an lsc function on a compact Hausdorff space forms

a residual set. Hence T ′ is residual.

Remark 4.2.6. (a) If the scalars are real, then (a) ⇒ (c) can also be proved using The-

orem 2.3.8(i) and the characterization of sets in C(K) that are intersection of closed

balls [32, Proposition 4.1].

(b) A much simpler and direct proof of (a) ⇒ (b) can also be obtained from Theo-

rem 2.3.8 and Lemma 4.2.2, as {δt : t ∈ K} is a boundary for C(K).

Proposition 4.2.7. Let C ⊆ C(K) be a closed balanced subset with supg∈C ‖g‖∞ = 1. Let

A = {f ∈ C(K) : f(t) = ‖f‖∞ for some t ∈ T0}.

Then A ⊆ R(C). If C is a (∗)-subset, then A = R(C).

Proof. Let f ∈ A and t ∈ T0 be such that |f(t)| = ‖f‖∞. By definition of T0, there exists

g ∈ C such that |g(t)| = 1. By Theorem 4.2.1(b), f ∈ R(C).

Conversely, if f ∈ R(C), then by Theorem 4.2.1(b) there exists t0 ∈ K and g ∈ C such

that φC(f) = |f(t0)| + Mt0 and |g(t0)| = Mt0 . Since C is a (∗)-subset, φC(f) = ‖f‖∞ + 1.

Hence |f(t0)| = ‖f‖∞ and Mt0 = |g(t0)| = 1. It follows that t0 ∈ K0 and hence, f ∈ A.

Lemma 4.2.8. Let L ⊆ K be such that L = K. Then for any Banach space X , f ∈ C(K,X) and
ε > 0, there exists g ∈ C(K,X) such that g attains its norm on L and ‖f − g‖∞ < ε.

Proof. Let ‖f‖∞ = M . There exists x0 ∈ f(K) such that ‖x0‖ = M .

Since L is dense in K, there exists u ∈ L such that ‖f(u)− x0‖ < ε.
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Let x1 = f(u). Choose r0 such that ‖x1 − x0‖ < r0 < ε and split X into three disjoint

regions :

X1 = {x ∈ X : ‖x− x0‖ > ε},
X2 = {x ∈ X : ‖x− x0‖ ≤ r0} and

X3 = {x ∈ X : r0 < ‖x− x0‖ ≤ ε}.

Define φ : X1 ∪X2 → X as follows :

φ(x) = x if x ∈ X1, φ(x) = x0 if x ∈ X2.

To define φ on X3, notice that any point in X3 is of the form x0 + ry for some r ∈ (r0, ε]

and y ∈ SX . Define h : [r0, ε] → [0, ε] by h(r) = r−r0
ε−r0

ε and define φ : X3 → X by φ(x0+ry) =

x0 + h(r)y.

CLAIM: φ : X → X is continuous.

It clearly suffices to check the continuity of φ on X3.

Let (zn), z0 ∈ X3 such that zn → z0. Then zn = x0 + rnyn and z0 = x0 + ry, for some

rn, r ∈ [r0, ε] and yn, y ∈ SX .

Clearly, rn → r, and since r ≥ r0 > 0, rn
r yn → y. Therefore, ‖yn − y‖ ≤ ∥∥yn − rn

r yn
∥∥ +∥∥ rn

r yn − y
∥∥ → 0 as n → ∞. Now

‖φ(zn)− φ(z0)‖ = ‖h(rn)yn − h(r)y‖ ≤ |h(rn)− h(r)|+ |h(r)|‖yn − y‖
≤ ε

(∣∣∣∣
rn − r

ε− r0

∣∣∣∣+ ‖yn − y‖
)

→ 0

as n → ∞. This proves the claim.

Define g : K → X by g = φ ◦ f .

Note that g(K) ⊆ φ(MBX) ⊆ MBX as the last set is convex and φ maps a point z of X3

to a point on the straight line [z, x0]. It follows that ‖g‖∞ ≤ M = ‖x0‖ = ‖φ(x1)‖ = ‖g(u)‖.

Thus, g attains its norm on L. Moreover,

‖f − g‖∞ ≤ sup{‖x− φ(x)‖ : x ∈ X} = sup{‖x− φ(x)‖ : x ∈ X2 ∪X3}
= max{sup{‖x− φ(x)‖ : x ∈ X2}, sup{‖x− φ(x)‖ : x ∈ X3}}
= max{r0, sup{|r − h(r)| : r ∈ (r0, ε]}}
= max

{
r0, sup

{
r0(ε− r)

ε− r0
: r ∈ (r0, ε]

}}
≤ r0 < ε.

Thus completes the proof.

Remark 4.2.9. For a locally compact Hausdorff space L, the above proof still works if

C(K,X) is replaced by C0(L,X).
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Theorem 4.2.10. Let C ⊆ C(K) be a closed balanced subset with supg∈C ‖g‖∞ = 1. Then C is a
(∗)- and densely remotal subset of C(K) if and only if T0 is dense in K.

Proof. Since T0 ⊆ T ′, if T0 is dense in K, then by Theorem 4.2.5, C is a (∗)-subset of C(K).

Putting L = T0 in Lemma 4.2.8, we get that the set A in Proposition 4.2.7 is dense in

C(K). And hence, C is densely remotal.

Conversely, if C is a (∗)-subset, by Proposition 4.2.7, A = R(C). It follows that for any

f ∈ R(C), ‖f‖∞ = ‖f |T0‖∞. If C is densely remotal, then it follows that ‖f‖∞ = ‖f |T0‖∞
for all f ∈ C(K). Hence T0 is dense in K.

Coming to subspaces of C(K), we will use the following notations :

Definition 4.2.11. Let Y be a subspace of C(K). Let

K ′ = {t ∈ K : δt ∈ AY } = {t ∈ K : ‖et‖ = 1}.
K0 = {t ∈ K : |g(t)| = 1 for some g ∈ SY } = {t ∈ K : δt ∈ NY }

where AY and NY are as in Definition 2.3.2 and Proposition 2.3.15 respectively. Clearly,

K0 ⊆ K ′.

Putting C = BY in the above results, we obtain

Theorem 4.2.12. Let Y be a subspace of C(K).
(a) Then for any f ∈ C(K),

φBY
(f) = sup{|f(t)|+ ‖et‖ : t ∈ K}. (4.2)

(b) f ∈ R(BY ) if and only if there exists t0 ∈ K such that the supremum in (4.2) is attained
at t0 and et0 ∈ NA(Y ).

Theorem 4.2.13. Let Y be a subspace of C(K). The following are equivalent :
(a) Y is a (∗)-subspace of C(K).

(b) K ′ is dense in K.

(c) K ′ is residual in K.

Proposition 4.2.14. Let Y be a subspace of C(K). Let

A = {f ∈ C(K) : f(t) = ‖f‖∞ for some t ∈ K0}.

Then A ⊆ R(BY ). If Y is a (∗)-subspace, then A = R(BY ).

And our main characterization theorem becomes
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Theorem 4.2.15. Let Y be a subspace of C(K). Then Y is a (∗)- and DBR subspace of C(K) if and
only if K0 is dense in K.

Now we are ready for few further consequences.

Corollary 4.2.16. Any Banach space X is a (∗)- and DBR subspace of C(K), where K = (BX∗ , w∗)
if X is infinite dimensional, and K = (SX∗ , norm), if X is finite dimensional.

Proof. If X is finite dimensional, it is BR in any superspace.

If X is infinite dimensional, let K = (BX∗ , w∗). Then X embeds isometrically as a

subspace of C(K). Now notice that K0 = NA(X) ∩ SX∗ , which is norm dense in SX∗ by

Bishop-Phelps Theorem, and hence w*-dense in BX∗ .

The following result should be known. The proof is, nevertheless, included.

Proposition 4.2.17. For a compact Hausdorff space K, the following are equivalent :

(a) K is first countable.

(b) Each singleton in K is a Gδ set in K.

(c) For any t0 ∈ K, there exists f ∈ C(K) such that f(t0) = 1 and 0 ≤ f(t) < 1 for all
t 6= t0.

Proof. (a) ⇒ (b) is clear.

(b) ⇒ (a). Let t0 ∈ K. By (b), there exists open sets {Un} such that {t0} = ∩nUn. Now

for each n ≥ 1, get an open set Vn such that t0 ∈ Vn ⊆ V n ⊆ Un. Let Wn = ∩n
i=1Vi. We will

show that {Wn} is a local base at t0.

CLAIM: Let U be an open neighbourhood of t0. Then Wn ⊆ U for some n ≥ 1.

If not, then Rn = Wn \ U 6= ∅ for all n. Now, {Rn} is a decreasing sequence of closed

sets, hence ∩nRn 6= ∅. But Wn ⊆ ∩n
i=1V i ⊆ ∩n

i=1Ui. Hence ∩nRn ⊆ ∩nWn ⊆ ∩nUn = {t0}.

This implies t0 /∈ U , a contradiction.

(b) ⇒ (c). Let t0 ∈ K. By (b), there exists open sets {Un} such that {t0} = ∩nUn.

Get {fn} ⊆ C(K) such that fn : K → [0, 1], fn(t0) = 1 and fn(U
c
n) = 0. Define f(t) =∑

n 2
−nfn(t). Clearly, f ∈ C(K) and f(t0) = 1. If t ∈ K and t 6= t0, there exists Um such that

t /∈ Um. So fm(t) = 0, and hence, f(t) < 1.

(c) ⇒ (b). If such an f ∈ C(K) exists, then {t0} = f−1({1}) is a Gδ set in K.

Remark 4.2.18. Note that if K is metrizable, then the above conditions hold. But a first

countable compact Hausdorff space need not be metrizable (see e.g., [21, Exercise 3.2.E]).
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Proposition 4.2.19. (a) If K0 is finite, then Y is BR.

(b) If K0 = K, then Y is (∗)- and BR in C(K). If K is first countable, then the converse is
also true.

Proof. (a). If K0 is finite, it is closed and clearly, Y embeds isometrically into C(K0). It

follows that Y is finite dimensional, and hence, BR.

(b). If K0 = K, it follows from Theorem 4.2.13 that Y is a (∗)-subspace. Moreover, in

Proposition 4.2.14, A = C(K) and therefore, Y is BR.

If Y is (∗)- and BR, let t0 ∈ K. By Proposition 4.2.17, there exists f ∈ C(K) such that

f(t0) = 1 and 0 ≤ f(t) < 1 for all t 6= t0. Since f ∈ R(BY ), by Proposition 4.2.14, t0 ∈ K0,

that is, K0 = K.

Corollary 4.2.20. (a) If 1 ∈ Y ⊆ C(K) then Y is (∗)- and BR in C(K).

(b) Y = {g ∈ C[0, 1] :
∫ 1
0 g(t)dt = 0} is (∗)- and BR in C[0, 1].

Remark 4.2.21. (a) also follows from the fact that Y contains the constant function 1, which

is a strong unitary.

If the scalars are real, (b) produces an example of a subspace of C(K) which is (∗)- and

BR but does not contain a strong unitary.

4.2.1 On boundaries of subspaces of C(K)

Some of the results in this section may be folklore, but we have not found them recorded

anywhere, hence we include proofs.

Definition 4.2.22. Let Y be a subspace of C(K). A set B ⊆ K is said to be a boundary for Y

if for every g ∈ Y , there exists t ∈ B such that |g(t)| = ‖g‖∞.

Clearly, K0 defined above is a boundary for Y and K1 = K0 is a closed boundary.

We first recall some standard, and some not-so-standard, results on the Choquet bound-

ary of a subspace Y of C(K). We follow the terminology from [35].

Let Y be a subspace of C(K) which separates points of K and contains the constants.

The state space of Y is defined as

SY = {Λ ∈ SY ∗ : Λ(1) = 1}.

This is a weak*-compact convex subset of BY ∗ . The evaluation map e : K → (BY ∗ , w∗)
defined by e(t) = et is a homeomorphism of K into SY . The Choquet boundary of Y is

defined to be the set :

∂Y = {t ∈ K : et ∈ ∂eSY }.
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Definition 4.2.23. Let Y be a subspace of C(K). Any µ ∈ M(K) satisfying

f(t) = µ(f) for all f ∈ Y,

will be called a representing measure for t.

An useful characterization of ∂Y in this situation is given by

Proposition 4.2.24. [34, Proposition 6.2, page 29] Let Y be a subspace of C(K) that separates
points of K and contains constants. Then t ∈ ∂Y if and only if µ = δt is the only probability
measure on K representing t.

It follows that for every t ∈ ∂Y , δt is the unique Hahn-Banach, i.e., norm-preserving

extension of et to C(K).

Now if Y separates points of K but does not contain the constants, we cannot define the

state space. To define the Choquet boundary in this case, we observe that if Λ ∈ ∂eBY ∗ , then

Λ has a Hahn-Banach extension that is in ∂eBC(K)∗ . Therefore, there exists t ∈ K and α ∈ T
(not necessarily unique) such that Λ = αet. Then et ∈ ∂eBY ∗ , and

Definition 4.2.25. The Choquet boundary of Y is defined to be the set :

∂Y = {t ∈ K : et ∈ ∂eBY ∗}.

This definition coincides with the earlier definition when Y contains the constants. We

note that the same definition works even for general subspaces of C(K) and that is what

we work with. It is clear that ∂Y is a boundary for Y .

It is well-known that when Y separates points of K and contains the constants, ∂Y is

contained in any closed boundary [34, Proposition 6.4, p 30]. We now relate the Choquet

boundary with other closed boundaries for a general subspace Y of C(K).

Theorem 4.2.26. Let Y be a subspace of C(K) and B ⊆ K a closed boundary for Y . Then

(a) e(∂Y ) ⊆ Te(B).

(b) If Y contains the constants and separates points of K, then ∂Y ⊆ B.

(c) If {|f | : f ∈ Y } separates points of K then also ∂Y ⊆ B.

(d) If K0, as in Definition 4.2.11, is closed, then ∂Y ⊆ K0.

Proof. (a). The map e : K → (BY ∗ , w∗) is clearly continuous and hence, Te(B) is a w*-

compact subset of BY ∗ . Since e(B) is a norming set for Y , by separation arguments,

BY ∗ = cow
∗
(Te(B)).
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By Milman’s theorem [34, Proposition 1.5, page 6], we have

e(∂Y ) ⊆ ∂eBY ∗ ⊆ Te(B).

(b). If t ∈ ∂Y , then by (a), there are γ ∈ T and b ∈ B such that g(t) = γg(b) for all g ∈ Y .

Taking g ≡ 1 ∈ Y , we get γ = 1. Now, since Y separates points, t = b and (b) follows.

(c). By (a), if t ∈ ∂Y , then there is b ∈ B such that

|g(t)| = |g(b)| for all g ∈ Y. (4.3)

Now the hypothesis implies t = b, i.e., ∂Y ⊆ B.

(d) follows from (4.3) and the definition of K0.

Remark 4.2.27. (a) If Y = {f ∈ C(K) : f |D ≡ 0}, where D ⊆ K is a closed set, then

K ′ = K \D and points of K ′ are separated by non-negative functions in Y . Therefore,

(c) holds.

(b) Though ∂Y ⊆ K0 when K0 is closed, the two sets need not be equal. For example,

if Y = {f ∈ C[0, 1] : f(0) =
∫ 1
0 f(t) dt}, then K0 = [0, 1] is closed but 0 /∈ ∂Y as it has a

representing measure other than δ0, namely, the Lebesgue measure on [0, 1].

Lemma 4.2.28. Let B ⊆ K be a closed boundary for Y . For any t ∈ K, there exists µt ∈ M(B)

such that ‖µt‖ = ‖et‖ and µt represents t on B.
If Y separates points of K, the map t → µt is one-one.

Proof. Since B is a closed boundary for Y , the map g → g|B is an isometry between Y and

Y |B ⊆ C(B). Therefore, et induces a functional Λ ∈ (Y |B)∗ with ‖Λ‖ = ‖et‖. Any norm

preserving extension of Λ on C(B) corresponds to a µt ∈ C(B)∗ such that ‖Λ‖ = ‖µt‖.

The last statement in the lemma is obvious.

Theorem 4.2.29. If Y is a subspace of co-dimension n in C(K) and B ⊆ K is a closed boundary
for Y , then K \B contains at most n distinct points.

In particular, if K has no isolated points, then B = K.

Proof. Suppose there are (n+1) distinct points t1, t2, . . . , tn+1 in K \B. Let µi be a represent-

ing measure for ti on B. If eti = 0 for some i, then µi = 0 and δti ∈ Y ⊥. Since each µi has no

point mass outside of B, it is clear that the measures µi− δti are linearly independent. Since

each µi − δti ∈ Y ⊥, this contradicts the fact that Y has co-dimension n.

Now, if K \B is nonempty, it contains at most n points and necessarily these points are

isolated. Thus, if K has no isolated points, then B = K.

Since ∂Y is a boundary, we obtain
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Corollary 4.2.30. If Y is a subspace of co-dimension n in C(K), then K \ ∂Y contains at most n
distinct points. And if K has no isolated points, then ∂Y = K.

Remark 4.2.31. The stronger result that the set K \ ∂Y itself contains at most n points, was

proved, under the additional assumption that Y separates points of K, in [24, Lemma 5.6,

Theorem 7.3] and in full generality in [5, Proposition 3.1]. Our argument is significantly

simpler.

4.2.2 Finite co-dimensional subspaces of C(K)

Coming back to DBR subspaces, let Y be a subspace of finite co-dimension in C(K) and

K1 = K0. Now, Theorem 4.2.29 yields

Corollary 4.2.32. If Y has co-dimension n, then there can be at most n distinct points in K \K1.
And if K has no isolated points, then K1 = K.

And therefore,

Theorem 4.2.33. If K has no isolated points, then any finite co-dimensional subspace of C(K) is a
(∗)- and DBR subspace.

Remark 4.2.34. Observe that if K is infinite and has no isolated points, e.g., K = [0, 1], then

C(K) clearly has hyperplanes that are not proximinal. Thus, DBR subspaces need not be

proximinal. And BR hyperplanes in `1 (see Theorem 3.3.6) produce examples that even BR

subspaces need not be proximinal.

It also follows that

Corollary 4.2.35. If λ1, λ2, . . . , λn are non-atomic measures, then Y = ∩n
i=1 ker(λi) is a (∗)- and

DBR subspace of C(K).

Proof. If K \K1 is nonempty, let t1, t2, . . . , tm ∈ K \K1 for some m ≤ n.

Let µi be a representing measure for ti on K1. Then µi − δti ∈ Y ⊥. It follows that at least

some elements of Y ⊥ must put nonzero mass on the points t1, t2, . . . , tm. Hence the result

follows.

Theorem 4.2.36. If Y is of co-dimension n and K \K1 contains exactly n points, then K0 is closed.
Moreover, ∂Y = ∂Y = K0 = K1.

Proof. For simplicity, we give the proof for n = 2 as no new ideas are required for other

values of n.
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Let t1, t2 ∈ K \K1 with representing measures µ1, µ2 respectively. Let Yi = ker(µi − δti),

i = 1, 2. Then Y = Y1 ∩ Y2.

Find f1, f2 ∈ C(K) such that fi(tj) = δij and fi|K1 = 0 for i, j = 1, 2. Then (µi−δti)(fj) =

−δij . It follows that for f ∈ C(K), if we put g = f + (µ1 − δt1)(f) · f1 + (µ2 − δt2)(f) · f2,

then g ∈ Y .

Now define f ∈ C(K) by f |K1 = 1, f(t1) = f(t2) = 0 and consider g ∈ Y as above. Then

g|K1 = 1 and g(ti) = µi(K1), i = 1, 2. Thus, ‖g‖∞ = max{1, |µ1(K1)|, |µ2(K1)|}.

Since g attains its norm only on K0 ⊆ K1, we must have |µ1(K1)| < 1, |µ2(K1)| < 1 and

K1 ⊆ K0 as g ∈ SY and g|K1 ≡ 1, and so, K0 is closed.

Now by Theorem 4.2.26 (d), ∂Y ⊆ ∂Y ⊆ K0. If K0 \ ∂Y were non-empty, there would

be more than n points outside ∂Y contradicting [5, Proposition 3.1].

Remark 4.2.37. What happens if Y is of co-dimension n but K \K1 has fewer than n points?

We don’t know the answer but a look at some examples seems to suggest that if t /∈ K1, then

et /∈ ∂eBY ∗ , and so ∂Y ⊆ K1.

Theorem 4.2.38. For an infinite compact Hausdorff space K, the following are equivalent :
(a) K has no isolated point.

(b) Any finite co-dimensional subspace of C(K) is DBR.

(c) Any hyperplane in C(K) is DBR.

Proof. (a) ⇒ (b) ⇒ (c) is clear from Theorem 4.2.33.

(c) ⇒ (a). Suppose t0 ∈ K is an isolated point. Then K = T ∪ {t0}, where T is closed.

Since C(T ) is non-reflexive, there exists µ ∈ SC(T )∗ such that µ is not norm attaining on

C(T ). Now let Y = ker(δt0 − µ), i.e.,

Y = {f ∈ C(K) : f(t0) = µ(f |T )}.

It follows that given any h ∈ C(T ), if we define f : K → F as

f(t) =

{
h(t) if t ∈ T

µ(h) if t = t0

then f ∈ Y and ‖f‖∞ = ‖h‖∞. Thus, T ⊆ K0.

CLAIM : ‖et0‖ = 1, but t0 /∈ K0.

Since ‖µ‖ = 1, there exists (hn) ⊆ SC(T ) such that µ(hn) → 1. If we define the corre-

sponding fn ∈ SY as above, then fn(t0) → 1. Thus, ‖et0‖ = 1.

On the other hand, since µ is not norm attaining on C(T ), t0 /∈ K0.

It follows that K0 = T and K ′ = K. Therefore, Y is a (∗)-subspace, and hence, cannot

be a DBR subspace of C(K).
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Remark 4.2.39. (a) If K is finite, C(K) is finite dimensional and hence, any subspace

is BR, but any point of K is also isolated.

(b) Since K = T ∪ {t0}, C(K) = C(T ) ⊕∞ F. Therefore by Lemma 3.2.10, C(T ) is

BR in C(K). Clearly, Y is isometric to C(T ), but Y is not even DBR in C(K). This

emphasizes the fact that this property not only depends on the norm, but also on how

Y ‘sits’ in X .

A simple example of the above phenomenon is given by

Example 4.2.40. Let K = [0, 1]∪{2} and µ be the measure on [0, 1] defined by µ = λ|[0,1/2]−
λ|[1/2,1], where λ denotes the Lebesgue measure on [0, 1]. Now define

Y = {F ∈ C(K) : F (2) =

∫ 1
2

0
F (x)dx−

∫ 1

1
2

F (x)dx}.

It is easy to see that µ is not norm attaining on C[0, 1]. It follows that K0 = [0, 1] and

K ′ = K. Therefore, Y is a (∗)-subspace of C(K). But Y cannot be DBR in C(K).

Similar examples can be constructed for any finite co-dimension. For example for n = 2,

let K = [0, 1] ∪ {−1} ∪ {2}, and let Y = ker(µ1) ∩ ker(µ2) where

µ1 =
1

2
· δ2 + λ|[ 1

2
, 3
4
] − λ|[ 3

4
,1]

µ2 =
1

2
· δ−1 + λ|[ 1

4
, 1
2
] − λ|[0, 1

4
]

One can check as before that Y is a (∗)-subspace, but not DBR in C(K).

Now we can characterize (∗)- and DBR hyperplanes in C(K).

Theorem 4.2.41. If µ ∈ SC(K)∗ , then Y = ker(µ) is not (∗)- and DBR in C(K) if and only if the
following conditions hold :

(a) There is an isolated point t0 ∈ K such that |µ({t0})| ≥ 1/2.

(b) If we write µ = αδt0 + ν and |α| = 1/2, then ν is not norm attaining on C(K \ {t0}).
Proof. First assume Y is not (∗)- and DBR in C(K).

Then K1 6= K and hence, by Theorem 4.2.36, K0 is closed and there exists exactly one

isolated point t0 ∈ K such that t0 /∈ K0 and K = K0 ∪ {t0}.

Now we can write µ = αδt0 + ν, where ν is supported on K0. Moreover, 1 = ‖µ‖ =

|α|+ ‖ν‖.

If |α| < 1/2, then ‖ν‖ = 1 − |α| > 1/2 > |α|. So there exists g ∈ BC(K0) such that

ν(g) = |α|. Define f ∈ BC(K) by

f(t) =

{
g(t) if t ∈ K0

−sgn(α) if t = t0
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Clearly f ∈ SY and |f(t0)| = 1, which implies t0 ∈ K0. This contradiction ensures that

|α| ≥ 1/2.

Now suppose |α| = 1/2, then ‖ν‖ = 1/2. If ν is norm attaining on C(K0), we can get

g ∈ BC(K0) such that ν(g) = ‖ν‖ = 1/2 = |α| and hence, f ∈ BC(K) as defined above

satisfies f ∈ SY and |f(t0)| = 1. This again implies t0 ∈ K0. A contradiction!

Conversely assume that (a) and (b) hold. It is enough to prove that t0 /∈ K0.

If t0 ∈ K0, then there exists f ∈ BY with |f(t0)| = 1. It follows that

|α| = |αf(t0)| = |ν(f)| ≤ ‖ν‖ = 1− |α|
which implies |α| ≤ 1/2. This together with (a) implies |α| = 1/2, and hence, ‖ν‖ = 1/2.

It follows that |ν(f)| = |α| = 1/2. Thus ν is norm attaining, contradicting (b). Hence

t0 /∈ K0.

Remark 4.2.42. In the above, if |α| = ‖ν‖ = 1/2 and ν is norm attaining on C(K \{t0}), then

Y = ker(µ) is actually (∗)- and BR. Indeed, from the above proof, it follows that t0 ∈ K0.

Now define g on BC(K) by

g(t) =

{
1 if t 6= t0

−ν(1)/α if t = t0

Since |ν(1)| ≤ ‖ν‖ = |α| = 1/2, g ∈ SY and therefore, K = K0.

We now obtain a characterization of reflexivity. For a subspace Y of a Banach space X ,

let AY and NY be as in Definition 2.3.2 and Proposition 2.3.15 respectively.

Theorem 4.2.43. Let X be a non-reflexive Banach space. Then there exists a Banach space Z and a
hyperplane Y in Z such that X is isometric to Y and Y is not a DBR subspace of Z.

Proof. Define Z = X ⊕∞ F. Since X is non-reflexive, there exists x∗0 ∈ SX∗ \NA(X).

Let Y = {(x, x∗0(x)) : x ∈ X}. Clearly, Y is a hyperplane in Z. Since ‖x∗0‖ = 1, Y is

isometric to X .

CLAIM 1 : Y is a (∗)-subspace of Z.

Clearly, {(x∗, 0) : x∗ ∈ SX∗} ⊆ AY . And since ‖x∗0‖ = 1, it also follows that (0, 1) ∈ AY .

Thus AY is norming for Z.

CLAIM 2 : NY = {(x∗, 0) : x∗ ∈ NA(X) ∩ SX∗}.

Let z∗ = (x∗, α) ∈ NY . Then for some x ∈ SX ,

1 = |(x∗, α)(x, x∗0(x))| = |x∗(x) + αx∗0(x)| ≤ |x∗(x)|+ |α| · |x∗0(x)| ≤ ‖x∗‖+ |α| = 1.

Since x∗0 /∈ NA(X), α = 0 and |x∗(x)| = ‖x∗‖. Hence the claim.

But clearly, NY cannot be norming for Z and hence, by Proposition 2.3.16, Y cannot be

a DBR subspace of Z.
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Corollary 4.2.44. For a Banach space X , the following are equivalent :

(a) X is reflexive.

(b) X is a DBR subspace of any superspace.

(c) X is a DBR subspace of any superspace in which it embeds isometrically as a hyperplane.

4.2.3 Other DBR subspaces of C(K)

Let Y be a subspace of C(K). We may assume K1 6= K. Note that g 7→ g|K1 is an isometric

embedding of Y into C(K1), and BY |K1 = B(Y |K1
) is densely remotal in C(K1).

Theorem 4.2.45. Let K2 = K \K1. Suppose BY |K2 is remotal in C(K2), then Y is a DBR
subspace of C(K).

Proof. Let h ∈ C(K) and ε > 0. Let h1 = h|K1 . Since BY |K1 is densely remotal in C(K1),

there is some f1 ∈ C(K1) such that ‖f1−h1‖∞ < ε and f1 ∈ R(BY |K1). By Tietze’s extension

theorem, there is f ∈ C(K) such that ‖f − h‖∞ < ε and f |K1 = f1. Let g1 ∈ BY be

such that for all g ∈ BY , ‖(f + g)|K1‖∞ ≤ ‖(f + g1)|K1‖∞. Let f2 = f |K2 . Since BY |K2

is remotal in C(K2), there exist g2 ∈ BY such that ‖(f + g)|K2‖∞ ≤ ‖(f + g2)|K2‖∞ for

all g ∈ BY . Then for all g ∈ BY , ‖f + g‖∞ = max{‖(f + g)|K1‖∞, ‖(f + g)|K2‖∞} ≤
max{‖(f + g1)|K1‖∞, ‖(f + g2)|K2‖∞}. Now, depending on which of the two terms on the

RHS is bigger, either −g1 or −g2 is farthest from f in BY . Hence Y is DBR in C(K).

Remark 4.2.46. If Y is finite co-dimensional, K2 is finite and hence, as soon as BY |K2 is

closed in C(K2), it is remotal and Theorem 4.2.45 applies. However, as Theorem 4.2.38

shows, BY |K2 need not be closed in C(K2).

Interchanging the roles of K1 and K2 in the above argument, we also obtain

Theorem 4.2.47. Suppose K0 is closed and BY |K2 is densely remotal in C(K2), then Y is a DBR
subspace of C(K).

Corollary 4.2.48. Suppose for all g ∈ Y , g|K2 ≡ 0, then Y is a DBR subspace of C(K).

Theorem 4.2.49. If Y is an M -ideal in C(K), then Y is a DBR subspace of C(K).

Proof. Recall that any M -ideal in C(K) is of the form Y = JD = {f ∈ C(K) : f |D ≡ 0} for

some closed set D ⊆ K (see [26, Example 1.4 (a)]).

It is easy to see that in this case, K0 = K \ D and therefore, K2 = D. Thus, the result

follows from Corollary 4.2.48.
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Example 4.2.50. We now give an example to show that if Y ⊆ Z ⊆ X and Y is a DBR

subspace of X , but Z need not be DBR in X .

Let K = [0, 1] ∪ {2} and

Z = {F ∈ C(K) : F (2) = 2

∫ 1
4

0
F (x)dx− 2

∫ 1
2

1
4

F (x)dx}.

As before, Z is a (∗)-subspace but not DBR in C(K). Let D = [0, 1/2] ∪ {2}, then JD is an

M -ideal in C(K), and hence, DBR. Also, JD ⊆ Z ⊆ C(K), but Z is not DBR in C(K).

Theorem 4.2.51. Let {µn} be countable family of regular Borel measures on K. Let S(µn) denote
the support of µn. Suppose

(a) for each n ≥ 1, K \ S(µn) is dense in K, and

(b) ∪nS(µn) is a closed subset of K.

Then Y = ∩n ker(µn) is a DBR subspace of C(K).

Proof. Let D = ∪nS(µn). Let Z = {f ∈ C(K) : f |D ≡ 0}. By Baire Category Theorem, K \D
is dense in K. Therefore, by Theorem 4.2.15 and Theorem 4.2.49, Z is a DBR (∗)-subspace

of C(K). Since Z ⊆ Y ⊆ C(K), Y is also a DBR (∗)-subspace of C(K).

Proposition 4.2.52. Let K and S be compact Hausdorff spaces, σ : K → S a continuous onto map,
and s0 ∈ S. Then

Y = {h ◦ σ : h ∈ C(S) and h(s0) = 0}

is a DBR subspace of C(K).

Proof. Since σ is onto, ‖h ◦ σ‖K = ‖h‖S for h ∈ C(S).

Let D = σ−1({s0}). If t /∈ D, then there is h ∈ C(S) such that h(S) ⊆ [0, 1], h(s0) = 0 and

h(σ(t)) = 1. It follows that g = h ◦ σ ∈ Y and ‖g‖K = 1.

Thus K0 = K \D and therefore, K2 = D. Clearly, Y |K2 ≡ 0 and the result again follows

from Corollary 4.2.48.

Theorem 4.2.53. Any closed self-adjoint subalgebra A of C(K) is a DBR subspace of C(K).

Proof. Let A be a closed self-adjoint subalgebra of C(K).

If A contains the unit, i.e., the constant function 1, then by Corollary 4.2.20, A is a BR

subspace of C(K).

If A does not contain the unit, then it follows from [36, 38] that there is a compact Haus-

dorff space S, s0 ∈ S and a continuous onto map σ : K → S such that A = {h ◦ σ : h ∈
C(S) and h(s0) = 0}. Now by Proposition 4.2.52, A is a DBR subspace of C(K).
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4.3 Ball remotality of subspaces in C0(L)

Let L be a locally compact Hausdorff space. Let C ⊆ C0(L) be closed, bounded and bal-

anced set. Since {δt : t ∈ L} is a boundary for C0(L), it follows from Theorem 2.2.2 that

Theorem 4.3.1. Let C ⊆ C0(L) be closed, bounded and balanced. For t ∈ L, let Mt =

supg∈C |g(t)|. Then

(a) for any f ∈ C0(L),

φC(f) = sup{|f(t)|+Mt : t ∈ L}. (4.4)

(b) f ∈ R(C) if and only if there exists t0 ∈ L and g ∈ C such that the supremum in (4.4) is
attained at t0 and Mt0 = |g(t0)|.

Definition 4.3.2. Let C ⊆ C0(L) be a closed balanced subset with supg∈C ‖g‖∞ = 1. Let

L′ = {t ∈ L : δt ∈ AC} = {t ∈ L : Mt = 1}.
L0 = {t ∈ L : |g(t)| = 1 for some g ∈ C}.

Theorem 4.3.3. Let C ⊆ C0(L) be a closed balanced subset with supg∈C ‖g‖∞ = 1. Then C is a
(∗)-subset of C0(L) if and only if L′ is dense in L.

Proof. Since B = {δt : t ∈ L} is a boundary for C0(L), by Theorem 2.3.8, C is a (∗)-subset

of C0(L) ⇔ B ∩ AC = {δt : t ∈ L′} is a norming set for C0(L) ⇔ L′ is dense in L, by

Remark 4.2.3.

Similar to Proposition 4.2.7, we also have

Proposition 4.3.4. Let C ⊆ C0(L) be a closed balanced subset with supg∈C ‖g‖∞ = 1. Let

A = {f ∈ C0(L) : f(t) = ‖f‖∞ for some t ∈ L0}.

Then A ⊆ R(C). If C is a (∗)-subset, then A = R(C).

Similar to Theorem 4.2.10, we obtain

Theorem 4.3.5. Let C ⊆ C0(L) be a closed balanced subset with supg∈C ‖g‖∞ = 1. C is (∗)-subset
and densely remotal if and only if L0 = L.

Coming to subspaces, we get
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Theorem 4.3.6. (a) Y ⊆ C0(L) is a (∗)-subspace if and only if {t ∈ L : δt ∈ AY } is dense
in L.

(b) Y ⊆ C0(L) is a (∗)- and DBR subspace if and only if {t ∈ L : δt ∈ NY } is dense in L.

Similar to c0, we have

Theorem 4.3.7. C0(L) has no finite dimensional (∗)-subspace.

Proof. If Y ⊆ C0(L) is finite-dimensional, then SY is compact.

Let {g1, g2, . . . , gn} be a finite 1/4-net in SY . Then K =
⋃n

k=1{t ∈ L : |gk(t)| ≥ 1/4} is

compact in L. Therefore, L \K is a nonempty open set.

If g ∈ SY , then ‖g−gk‖∞ < 1/4 for some k. Now if t ∈ L\K, then |g(t)| < |gk(t)|+1/4 <

1/2. It follows that ‖δt|Y ‖ ≤ 1/2 and hence, {t ∈ L : δt ∈ AY } cannot be dense in L.

Corollary 4.3.8. If A is a commutative C∗-algebra without identity then A has no finite dimensional
(∗)-subspace.

Proof. If A is a commutative C∗-algebra without identity then there exists a locally compact

Hausdorff space Σ (viz. the state space of A) and the Gelfand transform induces an iso-

metric (∗)-isomorphism from A onto C0(Σ) [15, Page 237, Corollary 2.2]. The result now

follows from the above theorem.





CHAPTER 5

Ball remotality of M -ideals
in some function spaces

5.1 Summary of results

In this chapter, we study ball remotality of M -ideals in some function spaces and function

algebras. Isolating a common feature of M -ideals in function spaces, we define an Urysohn
pair (A,D) (Definition 5.2.2), where A is a subspace of C(K) and D ⊆ K a closed set.

In Theorem 5.2.4, we show that for an Urysohn pair (A,D), the functions in A that

vanishes on D forms a DBR subspace of A. As corollaries, we show that :

(a) Any M -ideal in C(K) is DBR, recapturing Theorem 4.2.49 with a new proof.

(b) If L is a locally compact Hausdorff space, then any M -ideal in C0(L) is a DBR sub-

space.

(c) Any M -ideal in the disc algebra A is DBR.

Some generalizations of the last result are also obtained.

In this chapter, we also consider M -ideals in AF(Q), where Q is a compact convex set in

some locally convex topological vector space E. Our main result in this chapter is that if Q

is a Choquet simplex and ∂eQ \ ∂eQ is at most finite, then any M -ideal is a DBR subspace of

AF(Q). Some variants of this result are also considered.

5.2 Urysohn pair

Let Y be an M -ideal of X , then as in [26, Remark I.1.13], we can identify Y ∗ as a subspace of

X∗. Moreover, X∗ = Y ⊥ ⊕1 Y
∗. As a consequence of Corollary 2.2.3, we get the following :

Theorem 5.2.1. Let Y be an M -ideal in a Banach space X . Then

φBY
(x) = max[d(x, Y ), ‖x|Y ∗‖+ 1].
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Proof. Since X∗ = Y ⊥ ⊕1 Y
∗, SY ⊥ ∪ SY ∗ is a boundary for X . So we have from Corollary

2.2.3,

φBY
(x) = sup{|x∗(x)|+ ‖x∗|Y ‖ : x∗ ∈ SY ⊥ ∪ SY ∗}

= max[sup{|x∗(x)|+ ‖x∗|Y ‖ : x∗ ∈ SY ⊥}, sup{|x∗(x)|+ ‖x∗|Y ‖ : x∗ ∈ SY ∗}]
= max[sup{|x∗(x)| : x∗ ∈ SY ⊥}, sup{|x∗(x)|+ 1 : x∗ ∈ SY ∗}]
= max[d(x, Y ), ‖x|Y ∗‖+ 1].

Notation 4. If K is compact Hausdorff space and X is a Banach space, C(K,X) will denote

the space of all X-valued continuous functions on K with the norm ‖f‖∞ = supt∈K ‖f(t)‖.

It is well-known that C(K,X) = C(K)⊗ε X , the injective tensor product of C(K) and X .

(a) If x ∈ X , define 1⊗ x ∈ C(K,X) by 1⊗ x(t) = x, for all t ∈ K.

(b) If f ∈ C(K) and x ∈ X , define f ⊗ x ∈ C(K,X) by f ⊗ x(t) = f(t)x.

(c) If t ∈ K and x∗ ∈ X∗, define δt ⊗ x∗ ∈ C(K,X)∗ by δt ⊗ x∗(f) = x∗(f(t)).

Definition 5.2.2. Let K be a compact Hausdorff space, X a Banach space, A ⊆ C(K,X) a

subspace, and D ⊆ K a closed set. We say that (A,D) is an Urysohn pair if :

For any t0 ∈ K \D and x ∈ SX , there exists f ∈ SA such that f |D ≡ 0 and f(t0) = x.

Proposition 5.2.3. Let (A,D) be an Urysohn pair and Y = {f ∈ A : f |D ≡ 0}. Then
(a) for any f ∈ A, φBY

(f) = max{‖f |D‖∞, ‖f |K\D‖∞ + 1}.

(b) f ∈ R(BY ) if and only if φBY
(f) = ‖f |D‖∞ or ‖f |K\D‖∞ = ‖f(t0)‖ for some t0 ∈

K \D.

Proof. (a). Clearly, B = {δt ⊗ x∗ : t ∈ K,x∗ ∈ NA(X)} is a boundary for C(K,X). Note

that if t ∈ D, ‖δt ⊗ x∗|Y ‖ = 0 for any x∗ ∈ NA(X). Now, if t /∈ D and x∗ ∈ NA(X), let

x0 ∈ SX such that x∗(x0) = 1. Since (A,D) is an Urysohn pair, there exists g ∈ SY such that

g(t) = x0. Thus, ‖δt ⊗ x∗|Y ‖ = 1. It follows from Corollary 2.2.3 that for any f ∈ C(K,X),

φBY
(f) = sup{|δt ⊗ x∗(f)|+ ‖δt ⊗ x∗|Y ‖ : t ∈ K,x∗ ∈ NA(X)}

= max [sup{|x∗(f(t))|+ ‖δt ⊗ x∗|Y ‖ : t ∈ D,x∗ ∈ NA(X)},
sup{|x∗(f(t))|+ ‖δt ⊗ x∗|Y ‖ : t ∈ K \D,x∗ ∈ NA(X)}]

= max [sup{|x∗(f(t))| : t ∈ D,x∗ ∈ NA(X)},
sup{|x∗(f(t))|+ 1 : t ∈ K \D,x∗ ∈ NA(X)}]

= max [sup{‖f(t)‖ : t ∈ D}, sup{‖f(t)‖+ 1 : t ∈ K \D}]
= max

[‖f |D‖∞, ‖f |K\D‖∞ + 1
]
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(b). If φBY
(f) = ‖f |D‖∞, then φBY

(f) = d(f, Y ) and therefore, any g ∈ BY is farthest

from f . Thus, f ∈ R(BY ).

If φBY
(f) = ‖f |K\D‖∞ + 1 and there is t0 ∈ K \D such that ‖f(t0)‖ = ‖f |K\D‖∞. Then

by Corollary 2.2.3(b), f ∈ R(BY ).

Conversely, let f ∈ R(BY ). If ‖f |D‖∞ ≥ 1 + ‖f |K\D‖∞, then φBY
(f) = ‖f |D‖∞ and we

are done.

If ‖f |D‖∞ < 1 + ‖f |K\D‖∞, then φBY
(f) = ‖f |K\D‖∞ + 1. By Corollary 2.2.3(b), there

exist t0 ∈ K and x∗ ∈ NA(X) such that ‖f |K\D‖∞+1 = |x∗(f(t0))|+‖δt0 ⊗x∗|Y ‖. It follows

that t0 /∈ D and ‖f |K\D‖∞ = |x∗(f(t0))| = ‖f(t0)‖.

Theorem 5.2.4. If A is a subspace of C(K,X) and D ⊆ K is a closed set such that (A,D) is an
Uryshon pair, then Y = {f ∈ A : f |D ≡ 0} is a DBR subspace of A.

Proof. If φBY
(f) = ‖f |D‖∞ or ‖f |K\D‖∞ = ‖f(t0)‖ for some t0 ∈ K \ D, then by Proposi-

tion 5.2.3(b), f ∈ R(BY ).

Let K1 = K \D. Suppose φBY
(f) = ‖f |K1‖∞ + 1 > ‖f |D‖∞ and ‖f(t0)‖ = ‖f |K1‖∞

only for some t0 ∈ ∂D. In this case, we will show that f ∈ R(BY ).

Let ε > 0. We may assume that ‖h|K1‖∞ +1 > ‖h|D‖∞ whenever ‖h− f‖ ≤ ε. Consider

U = {t ∈ K : ‖f(t)− f(t0)‖ < ε/2}. Since t0 ∈ ∂D, there exists t1 ∈ K \D such that t1 ∈ U .

Let x0 = f(t1)/‖f(t1)‖ if f(t1) 6= 0. Otherwise choose x0 ∈ SX arbitrarily.

Since (A,D) is an Urysohn pair, there exists g ∈ SY such that g(t1) = x0. Set h = f + εg.

Then ‖h − f‖∞ ≤ ε. Therefore, ‖h|K1‖∞ + 1 > ‖h|D‖∞. Thus, φBY
(h) = ‖h|K1‖∞ + 1.

Moreover, ‖h(t1)‖ = ‖f(t1) + ε · x0‖ = ‖f(t1)‖+ ε ≥ ‖f(t0)‖+ ε/2 > ‖f |K1‖∞.

Let s0 ∈ K1 be such that ‖h(s0)‖ = ‖h|K1‖∞. If s0 ∈ ∂D, then ‖h|K1‖∞ = ‖h(s0)‖ =

‖f(s0)‖ ≤ ‖f |K1‖∞ < ‖h(t1)‖ ≤ ‖h|K1‖∞, a contradiction. Hence, s0 ∈ K \D. By Proposi-

tion 5.2.3(b), h ∈ R(BY ). Since ε > 0 is arbitrary, f ∈ R(BY ).

Proposition 5.2.5. If A is a subspace of C(K) and D ⊆ K is a closed set such that (A,D) is
an Uryshon pair, then for any Banach space X , (A ⊗ε X,D) is an Uryshon pair as a subspace of
C(K,X). In particular, Y = {f ∈ A⊗ε X : f |D ≡ 0} is a DBR subspace of A⊗ε X .

Proof. Let t0 ∈ K \D and x ∈ SX . Since (A,D) is an Uryshon pair, there exists f ∈ SA such

that f |D ≡ 0 and f(t0) = 1. Then g = f ⊗ x ∈ A⊗ε X has the required properties.

If D ⊆ K is closed, (C(K), D) is clearly an Uryshon pair. And by Proposition 5.2.5, so is

(C(K,X), D). Therefore, we obtain

Theorem 5.2.6. Let Y = {f ∈ C(K,X) : f |D ≡ 0} for some closed set D ⊆ K. Then Y is a DBR
subspace of C(K,X).
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Corollary 5.2.7. If X has no non-trivial M -ideals, any M -ideal in C(K,X) is DBR.

Proof. If X has no non-trivial M -ideals, any M -ideal in C(K,X) is of the form {f ∈
C(K,X) : f |D ≡ 0} for some closed set D ⊆ K [26, Corollary VI.3.4]. Hence the result.

Specializing to X = F, we recapture Theorem 4.2.49.

Corollary 5.2.8. An M -ideal in C(K) is a DBR subspace.

Corollary 5.2.9. Let t0 ∈ K and A = {f ∈ C(K) : f(t0) = 0}. Any M -ideal in A is DBR.

Proof. Let Y ⊆ A be an M -ideal. Since A is an M -ideal in C(K), it follows from [26, Proposi-

tion I.1.17 (b)] that there is a closed set D ⊆ K such that Y = {f ∈ C(K) : f |D ≡ 0}. Clearly,

t0 ∈ D and Y = {f ∈ A : f |D ≡ 0}. Thus, (A,D) is an Urysohn pair.

Corollary 5.2.10. Let L be a locally compact Hausdorff space. Any M -ideal in C0(L) is DBR.

Proof. Let K be the one-point compactification of L and let t0 be the “point at infinity”. Then

this is a special case of Corollary 5.2.9.

Example 5.2.11. We now show that if Y is not a (∗)-subspace then R(BY ) need not be closed

under scalar multiplication.

Let X = C[0, 1] and Y = {f ∈ C[0, 1] : f |[0, 1
2
] ≡ 0}. Let f ∈ C[0, 1] be defined by

f(x) =

{
2− 3x if x ∈ [0, 12 ]

1− x if x ∈ [12 , 1]

Then 2 = ‖f |[0, 1
2
]‖∞ > ‖f |( 1

2
,1]‖∞ + 1 = 3

2 . By Proposition 5.2.3(b), f ∈ R(BY ).

On the other hand, ‖1
2f |[0, 12 ]‖∞ = 1 < ‖1

2f |( 12 ,1]‖∞ + 1 = 5
4 . Since ‖1

2f |( 12 ,1]‖∞ = 1
4 is

attained only at 1
2 /∈ (12 , 1], again from Proposition 5.2.3(b), it follows that 1

2f /∈ R(BY ).

Theorem 5.2.4 can also be used to obtain sufficient conditions for an M -ideal in a Banach

space to be a DBR subspace.

Proposition 5.2.12. Let X be a Banach space and Y ⊆ X an M -ideal. Suppose there exists a
w*-closed subset T ⊆ BX∗ such that

(a) T is a norming set for X .

(b) Let T1 = {x∗ ∈ T : x∗ ∈ Y ⊥} and T2 = T \ T1. Suppose T2 ⊆ NY .
Then Y is a DBR subspace of X .

Proof. Since T is w*-compact and norming, X ⊆ C(T ). Arguing as in the proof of [26,

Theorem I.1.18], Y = {x ∈ X : x|T1 ≡ 0}. And, (b) implies (X,T1) is an Urysohn pair.
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Corollary 5.2.13. Let Y be an M -ideal in a Banach space X . Suppose T = NA(X) ∩ ∂eBX∗ is
w*-closed and T ∩AY ⊆ NY . Then Y is a DBR subspace of X .

Question 5.2.14. Is there any example of this phenomenon other than those described here?

Remark 5.2.15. Definition 5.2.2 is apparently stronger than necessary. Instead of the separa-

tion for all t0 ∈ K\D, it often suffices to have the separation for sufficiently many t0 ∈ K\D.

The results of Section 5.3 illustrate this phenomenon.

5.2.1 Application to the disc algebra and its generalizations

In this section, we work with complex scalars. Let A be the disc algebra, i.e., the Banach

space of continuous functions on the closed unit disc D that are analytic on the open unit

disc. By the maximum modulus principle A can be realized as a subspace of C(T).
Let λ be the Lebesgue measure on T. Recall that [26, Example 1.4 (b)] any nontrivial M -

ideal in A is of the form Y = {a ∈ A : a|D ≡ 0}, where D ⊆ T is a closed set with λ(D) = 0.

We will need the following result [27, p 81].

Theorem 5.2.16. (Rudin) Let D ⊆ T be a closed set with λ(D) = 0 and F ∈ C(D). Then there
exists f ∈ A such that f |D ≡ F and |f(z)| ≤ ‖F‖∞ for all z ∈ D.

Theorem 5.2.17. The M -ideals in the disc algebra are DBR subspaces.

Proof. If Y ⊆ A is an M -ideal, then there is a closed set D ⊆ T of Lebesgue measure zero

such that Y = {a ∈ A : a|D ≡ 0}.

CLAIM : (A, D) is an Urysohn pair.

Let t0 ∈ T\D. Define g ∈ C(D∪{t0}) by g|D ≡ 0 and g(t0) = 1. Now by Theorem 5.2.16,

there exists f ∈ A with f |D∪{t0} = g and ‖f‖∞ = 1.

This proves the claim and hence, the theorem.

We now isolate the crucial property of the disc algebra that makes the above proof work.

Proposition 5.2.18. If µ ∈ A⊥, then µ ¿ λ. In particular, every µ ∈ A⊥ is non-atomic.

Proof. If µ ∈ A⊥, all the negative Fourier coefficients of µ vanish. Therefore, by F. and M.

Riesz Theorem [37, Theorem 17.13], µ ¿ λ. Since λ is non-atomic, so is µ.

Now we are ready for a generalization of Theorem 5.2.17. We will need the following

strengthening of Rudin’s theorem obtained by combining [25, Theorem II.12.5] with the

remark immediately following its proof.
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Theorem 5.2.19. Let A be a subspace of C(K). Let D be a closed subset of K such that µ|D = 0 for
all µ ∈ A⊥. Let f ∈ C(D) and p : K → (0,∞) be continuous such that |f(t)| ≤ p(t) for all t ∈ D.
Then there is g ∈ A such that g|D ≡ f and |g(t)| ≤ p(t) for all t ∈ K.

We will also need some results from subsection 5.3.1 below.

Theorem 5.2.20. (a) Let K be a compact Hausdorff space, A ⊆ C(K) a subspace such that
every µ ∈ A⊥ is non-atomic. Then the Choquet boundary ∂A = K.

(b) If D ⊆ K is a closed set such that |µ|(D) = 0 for all µ ∈ A⊥, then

Y = {a ∈ A : a|D ≡ 0}

is an M -ideal in A.

(c) Y is a DBR subspace of A.

Proof. (a). First note that the hypothesis implies A separates points of K.

If possible, let t ∈ K \ ∂A. By Hustad’s theorem (see Theorem 5.3.14 below), there exists

a boundary measure µt such that ‖δt|A‖ = ‖µt‖ and

f(t) = µt(f), f ∈ A.

So µt − δt ∈ A⊥, but (µt − δt)({t}) = −1, since a boundary measure has no point mass

outside ∂A (see Theorem 5.3.15 below), contradicting our hypothesis about A⊥.

(b). To show that Y is an M -ideal, we follow the argument in [26, p 4]. If p ∈ A∗,

find σ ∈ M(K) such that ‖σ‖ = ‖p‖ and σ|A = p. Define q = (χDσ|A) ∈ A∗, where

χD denotes the characteristic function of D. Then P : A∗ → A∗ defined by P (p) = q is

unambiguous, for if p = σ̃|A is another representation for p, then (σ̃ − σ) ∈ A⊥ and it

follows that |(σ̃ − σ)|(D) = 0 whence χDσ = χDσ̃. We have

‖p‖ = ‖σ‖ = ‖χDσ‖+ ‖χDcσ‖ ≥ ‖q‖+ ‖p− q‖ ≥ ‖p‖

and it follows that P is an L-projection with ker(P ) = Y ⊥.

(c). By Theorem 5.2.4, it suffices to show that (A,D) is an Urysohn pair. So let t0 ∈
K \ D. Define f ∈ C(D ∪ {t0}) by f(t0) = 1 and f |D = 0. All µ ∈ A⊥ being non-atomic,

|µ|(D ∪ {t0}) = 0. Hence by Theorem 5.2.19, there exists g ∈ A with g|D∪{t0} ≡ f and

‖g‖∞ = ‖f‖∞ = 1.

Remark 5.2.21. (a) The result in (a) above is suggested by [24, Corollary 5.11], where

it is assumed that 1 ∈ A, a simpler situation.
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(b) It seems highly unlikely, given hypothesis (a) alone, that all M -ideals in A are of

the form given in (b), unlike the disc algebra case.

Corollary 5.2.22. Let K be a compact Hausdorff space, µ ∈ SM(K) non-atomic. Let D ⊆ K be a
closed set such that |µ|(D) = 0. Let A = {f ∈ C(K) : µ(f) = 0}. Then Y = {g ∈ A : g|D ≡ 0}
is an M -ideal as well as a DBR subspace of A.

5.3 M -ideals in AF(Q)

5.3.1 Preliminaries

Here we briefly recall some notions and results that will be needed in our discussion. [1]

and [34] are standard references for the background and unexplained terminology of this

section. In this section, Q will always denote a compact convex set in some locally convex

topological vector space E and K a compact Hausdorff space. AF(Q) is the Banach space

of scalar-valued affine continuous functions. AR(Q) will be denoted simply by A(Q). We

denote by

(1) S(Q), the set of all continuous convex functions on Q.

(2) M+(K), the set of all non-negative regular Borel measures on K.

(3) M+
1 (K), the set of all regular Borel probability measures on K.

Definition 5.3.1. [34]

(a) Let µ be a regular probability measure on Q. A point x ∈ E (if it exists!) is said to

be represented by µ if f(x) = µ(f) for all f ∈ E∗. Also, one says that x is the resultant
or barycenter of µ and writes x = r(µ).

(b) Let µ ∈ M+(Q) and S ⊆ Q a Borel set. We say that µ is supported by S if µ(Q\S) =
0.

With this terminology, the Krein-Milman Theorem can be reformulated as :

For each x ∈ Q, there exists µ ∈ M+
1 (Q) such that x = r(µ) and µ is supported by ∂eQ.

Theorem 5.3.2. (Bauer’s Maximum Principle) Suppose f : Q → R is convex and upper semi-
continuous (usc). Then f attains its maximum on Q at some point of ∂eQ.

Definition 5.3.3. If f : Q → R is a bounded function, the upper envelope of f is defined as

f̂(x) = inf{h(x) : h ∈ A(Q), f ≤ h}, x ∈ Q.

Here are some very well-known properties of f̂ [34, Chapter 3]:
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(a) f̂ is concave, bounded and usc (hence Borel measurable).

(b) f ≤ f̂ and if f is concave and usc then f = f̂ .

(c) If f and g are bounded, then (i) f̂ + g ≤ f̂ + ĝ; (ii) |f̂ − ĝ| ≤ ‖f −g‖; (iii) f̂ + g = f̂ +g

if g ∈ A(Q); (iv) if r > 0, then r̂f = rf̂ .

(d) If {fα} ⊆ CR(Q) and fα ↓ f , then f̂α ↓ f̂ [1, p 23].

Definition 5.3.4. For µ, ν ∈ M+
1 (Q), say that µ ∼ ν if µ(f) = ν(f) for all f ∈ A(Q).

Proposition 5.3.5. [34, Proposition 3.1] If f : Q → R is continuous, then for each x ∈ Q,
f̂(x) = sup{µ(f) : µ ∼ δx}.

Proposition 5.3.6. [1, Proposition I.4.1] For x ∈ Q, the following are equivalent :

(a) x ∈ ∂eQ.

(b) f(x) = f̂(x) for all f : Q → R continuous.

(c) f(x) = f̂(x) for all f : Q → R ∪ {−∞} usc.

Definition 5.3.7. The Choquet ordering on M+(Q) is defined as : For λ, µ ∈ M+(Q), λ ≺ µ

if λ(f) ≤ µ(f) for all f ∈ S(Q). By a judicious use of Zorn’s lemma it can be shown that :

If λ ∈ M+(Q), then there exists a maximal measure µ ∈ M+(Q) such that λ ≺ µ.

Proposition 5.3.8. (Mokobodzki) [1, Proposition I.4.5] For µ ∈ M+(Q), the following are equiv-
alent :

(a) µ is a maximal element in M+(Q).

(b) µ(f̂) = µ(f) for all f ∈ CR(Q).

(c) µ(f̂) = µ(f) for all f ∈ S(Q).

(d) µ(f̂) = µ(f) for all usc f .

Theorem 5.3.9. If µ is a maximal probability measure on Q, then µ({x}) = 0 for all x ∈ Q \ ∂eQ.

Proof. If x ∈ Q\∂eQ, then from Proposition 5.3.6, it follows that there exists f ∈ CR(Q) such

that f(x) < f̂(x). Now g = f̂ − f ≥ 0 and from Proposition 5.3.8, it follows that
∫
Q gdµ = 0.

Hence µ({x}) = 0.

In a finite dimensional vector space, a closed bounded set is a simplex if it is a closed

convex hull of affinely independent points. There are many ways of defining a Choquet

simplex (or, simply a simplex) in infinite dimensions. We will consider the following char-

acterization theorem as our definition of a Choquet simplex.
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Theorem 5.3.10. (Choquet) [34] A compact convex set Q is a Choquet simplex if and only if every
x ∈ Q is the barycenter of a unique maximal probability measure on Q.

The following characterization of a simplex follows from [1, Theorem II.3.7 & 3.8].

Theorem 5.3.11. The following are equivalent :

(i) Q is a simplex.

(ii) µ(f) = f̂(x) for all x ∈ Q, µ ∈ M+
1 (Q) such that r(µ) = x and f ∈ S(Q).

(iii) f̂ + ĝ = f̂ + g for all f, g ∈ S(Q).

(iv) For all f ∈ S(Q), f̂ is an affine function.

(v) For all usc convex f : Q → R ∪ {−∞}, f̂ is an affine function.

We have the following separation theorem in a simplex.

Theorem 5.3.12. (Edwards) [1, Theorem II.3.10] If f and −g are usc convex functions on a
simplex K with f ≤ g, then there exists an h ∈ A(K) such that f ≤ h ≤ g.

Definition 5.3.13. [24, Definition 7.1] Let A be a subspace of C(K) which separates points

of K. Given a nonzero ν ∈ M(K), define µ = |ν| ◦ e−1 on BA∗ as follows : If S ⊆ BA∗ is a

Borel set, then µ(S) = |ν|({t ∈ K : et ∈ S}).
A nonzero ν ∈ M(K) is called a boundary measure if |ν| ◦ e−1 is a maximal measure on

BA∗ . ν = 0 is also considered a boundary measure.

The following is a generalization of Hustad’s theorem [34, Theorem 1.2].

Theorem 5.3.14. [24, Theorem 7.3] Let A be a subspace of C(K) which separates points. To each
Λ ∈ A∗ there corresponds ν ∈ M(K) such that

(a) ‖Λ‖ = ‖ν‖.

(b) Λ(h) = ν(h), for all h ∈ A.

(c) ν is a boundary measure.

Theorem 5.3.15. [24, Lemma 5.5] Let K be a compact Hausdorff space and A be a subspace of
C(K) which separates points. If µ is a boundary measure then µ({t}) = 0 for all t ∈ K \ ∂A.

Proof. If µ is a boundary measure, then |µ| ◦ e−1 is a maximal measure on BA∗ . If t /∈ ∂A

then et ∈ BA∗ \ ∂eBA∗ , hence the result follows from Theorem 5.3.9.

Let A ⊆ X , then co(A) will denote the convex hull of A.
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Definition 5.3.16. If G ⊆ Q, its complementary set G′ is the union of all faces of Q that are

disjoint from G.

In general, G′ need not be convex, but if it is convex, it is a face.

Proposition 5.3.17. [1, Proposition II.6.5] If F is a closed face of Q and F ′ is its complementary
set, then every x ∈ Q can be written as a convex combination

x = λy + (1− λ)z with y ∈ F, z ∈ F ′, and λ = χ̂F (x).

It follows that χ̂−1
F (1) = F , χ̂−1

F (0) = F ′ and Q = co(F ∪ F ′). In particular, F ′ is a Gδ set.

Definition 5.3.18. A closed face F of Q is said to be a split face if it’s complementary set F ′

is a face of Q. Equivalently, a closed face F of Q is a split face if there is another face F ′ of

Q (called the complementary face) such that every x ∈ Q \ (F ∪F ′) can be written uniquely

as a convex combination

x = λy + (1− λ)z with y ∈ F, z ∈ F ′.

It is well-known that a closed face in a simplex is a split face [1, Theorem II.6.22].

Proposition 5.3.19. [1, Corollary II.6.8] If F and G are non-empty split-faces of Q, then F ∩ G

and co(F ∪G) are also split faces of Q.

Definition 5.3.20. A Borel subset B ⊆ Q is said to be measure convex if µ ∈ M+
1 (Q) and

µ(B) = 1 imply that r(µ) ∈ B.

If F is a split face, then both F and F ′ are measure convex [1, Corollary II.6.11].

We will need the following extension result.

Theorem 5.3.21. [2, Theorem 2.10.5(ii)] Let G be a split face of Q and −f, g ∈ S(Q). If g ≤ 0 < f

and a1 ∈ A(G) with g|G ≤ a1 ≤ f |G, then there exists a ∈ A(Q) such that a|G = a1 and
g ≤ a ≤ f .

We will also need the following result

Theorem 5.3.22. (Mokobodzki) [1, Proposition I.5.1] Let f : Q → R ∪ {−∞} be an usc
function. For every x ∈ Q we have

f(x) = inf{g(x) : g ∈ S(Q), g > f}.



5.3. M -ideals in AF(Q) 53

5.3.2 Main Results

Let Q be a compact convex set in a locally convex topological vector space E. Recall that

any M -ideal in AC(Q) is of the form Y = {f ∈ AF(Q) : f |F ≡ 0}, where F is a closed split

face of Q [26, Example I.1.4 (c)].

Lemma 5.3.23. Let f be an usc convex function on a Choquet simplex Q. If t∞ ∈ Q and λ is the
unique maximal probability measure representing t∞, then

f̂(t∞) = λ(f).

Proof. By Theorem 5.3.22, there exists {fα} ⊆ S(Q) such that fα ↓ f and hence f̂α ↓ f̂ .

Since Q is a simplex, f̂α and f̂ are affine functions (Theorem 5.3.11). Hence combining

Theorem 5.3.11 and [1, (2.3), p 10], we get

f̂(t∞) = lim
α

f̂α(t∞) = lim
α

λ(fα) = λ(f).

We will need the following basic lemma repeatedly.

Lemma 5.3.24. (a) Let Q be a compact convex set such that each point of ∂eQ is split. If F is
a closed split face of Q, F ′ its complementary face and t1, t2, . . . , tn ∈ ∂eQ \ ∂eF , then there
exists b ∈ A(Q) such that 0 ≤ b ≤ 1, b|F ≡ 0, b(tj) = 1, 1 ≤ j ≤ n.

(b) If Q is a Choquet simplex and t1∞, t2∞, . . . , tm∞ ∈ F ′ with χ̂{t1,t2,...,tn}(t
i∞) < 1/2, 1 ≤

i ≤ m, then the above b can be chosen to have the additional property that b(ti∞) < 1/2,
1 ≤ i ≤ m.

Proof. (a). By Proposition 5.3.19, G = co(F ∪ {t1, t2, . . . , tn}) is a closed split face of Q and

clearly there exists a1 ∈ A(G) such that 0 ≤ a1 ≤ 1, a1|F ≡ 0, a1(ti) = 1, 1 ≤ i ≤ n. Now

apply Theorem 5.3.21 with g ≡ 0, f ≡ 1 to extend a1 to a ∈ A(Q) such that a|G = a1 and

0 ≤ a ≤ 1.

(b). Since χ{t1,t2,...,tn} is usc convex and Q is a simplex, by Theorem 5.3.11, χ̂{t1,t2,...,tn} is

an usc affine function. From the definition, it is easily checked that

χ̂{t1,t2,...,tn} = χ̂co{t1,t2,...,tn}

and co{t1, t2, . . . , tn} being a closed split face of Q, it follows by Proposition 5.3.17 that

χ̂{t1,t2,...,tn}(ti) = 1, 1 ≤ i ≤ n

χ̂{t1,t2,...,tn}(x) = 0 if x ∈ ∂eQ \ {t1, t2, . . . , tn} and

χ̂{t1,t2,...,tn}(y) < 1 if y ∈ Q \ co{t1, t2, . . . , tn}.
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Since χ̂{t1,t2,...,tn}(t
j∞) < 1/2 for 1 ≤ j ≤ m, there exists hj ∈ A(Q) such that hj >

χ{t1,t2,...,tn} and hj(t
j∞) < 1/2. Now hj − χ{t1,t2,...,tn} is a strictly positive lsc function on Q,

hence there exists α > 0 such that hj−χ{t1,t2,...,tn} ≥ α on Q. Thus, hj ≥
(
α+ χ{t1,t2,...,tn}

)̂
=

α + χ̂{t1,t2,...,tn} > χ̂{t1,t2,...,tn} on Q. Note that the a ∈ A(Q) constructed in (a) satisfies

χ̂{t1,t2,...,tn} ≤ a. By Theorem 5.3.12, we can find b ∈ A(Q) such that

χ̂{t1,t2,...,tn} ≤ b ≤ min{h1, h2, . . . , hm, a}

and this b will have all the required properties.

Similar to Proposition 5.2.3, we have

Lemma 5.3.25. Let Q be a compact convex set such that each point of ∂eQ is split and F is a closed
split face of Q. Let Y = {f ∈ AF(Q) : f |F ≡ 0}. Then

(a) φBY
(f) = max{‖f |∂eF ‖∞, ‖f |∂eQ\∂eF ‖∞ + 1}.

(b) f ∈ R(BY ) if and only if φBY
(f) = ‖f |∂eF ‖∞ or ‖f |∂eQ\∂eF ‖∞ = |f(t0)| for some

t0 ∈ ∂eQ \ ∂eF .

Proof. (a). By Theorem 5.3.2, ∂eQ is a boundary for AF(Q). And ∂eF = ∂eQ ∩ F .

Note that if t0 ∈ ∂eF , ‖δt0 |Y ‖ = 0. And if t0 ∈ ∂eQ \ ∂eF , by Lemma 5.3.24, there

exists g ∈ SY such that g(t0) = 1. Thus, ‖δt0 |Y ‖ = 1. Now the rest of proof is similar to

Proposition 5.2.3.

Theorem 5.3.26. Suppose Q be a compact convex set such that all points of ∂eQ are split and ∂eQ

is closed. Then any M -ideal is a DBR subspace of AF(Q).

Proof. If Y ⊆ AF(Q) is an M -ideal, then there is a closed split face F of Q such that Y =

{f ∈ AF(Q) : f |F ≡ 0}.

Since ∂eQ is closed, AF(Q) ⊆ C(∂eQ). It follows from Lemma 5.3.24 that (AF(Q), ∂eF ) is

an Urysohn pair. Hence the result.

Remark 5.3.27. This again recaptures Theorem 4.2.49, since C(K) ∼= AF(M
+
1 (K)), and

M+
1 (K) is a Bauer simplex, that is, a Choquet simplex with ∂eQ closed.

Our main result in this section is the following :

Theorem 5.3.28. Let Q be a Choquet simplex such that ∂eQ \ ∂eQ is at most finite. Then any
M -ideal is a DBR subspace of AF(Q).
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Proof. Let Y = {f ∈ AF(Q) : f |F ≡ 0}, where F is a closed (necessarily split) face of Q. If

∂eQ is closed, the result follows from Theorem 5.3.26.

For notational simplicity, let us put ∂eQ \ ∂eF = ∂eQ \ ∂eF .

Case 1 : Suppose ∂eQ \ ∂eQ is a singleton, {t∞}, say.

Let f ∈ AF(Q). If f /∈ R(BY ), then by Lemma 5.3.25, ‖f |∂eQ\∂eF ‖∞+1 > ‖f |∂eF ‖∞. And

if t0 ∈ ∂eQ \ ∂eF is such that |f(t0)| = ‖f |∂eQ\∂eF ‖∞, then t0 /∈ ∂eQ \ ∂eF .

We will show that f ∈ R(BY ). Let ε > 0. Here and anywhere else in the sequel, we will

always choose ε > 0 such that ‖h|∂eQ\∂eF ‖∞ + 1 > ‖h|∂eF ‖∞, whenever ‖h− f‖∞ ≤ ε.

Let U = {t ∈ ∂eQ : |f(t)− f(t0)| < ε/2}. Then there exists t1 ∈ (∂eQ \ ∂eF ) ∩ U .

Get a ∈ AF(Q) such that a : Q → [0, 1], a|F ≡ 0 and a(t1) = 1. Let α = sgn(f(t1)) and

f1 = f+εα−1a. Then ‖f1−f‖∞ ≤ ε. And hence, ‖f1|∂eQ\∂eF ‖∞+1 > ‖f1|∂eF ‖∞. Moreover,

|f1(t1)| = |f(t1)|+ ε > |f(t0)|+ ε/2 > ‖f |∂eQ\∂eF ‖∞.

Let s1 ∈ ∂eQ \ ∂eF be such that |f1(s1)| = ‖f1|∂eQ\∂eF ‖∞. If s1 ∈ ∂eQ \ ∂eF , then

f1 ∈ R(BY ) and we are done. If s1 ∈ F , then ‖f1|∂eQ\∂eF ‖∞ = |f1(s1)| = |f(s1)| ≤
‖f |∂eQ\∂eF ‖∞ < |f1(t1)| ≤ ‖f1|∂eQ\∂eF ‖∞, a contradiction.

Thus we may assume s1 = t∞. Since s1 /∈ F , we may assume t∞ /∈ F . We will show that

in this case, f1 ∈ R(BY ).

Let λ be the (unique) maximal probability measure representing t∞. Since F is measure

convex, and t∞ /∈ F , it follows that 0 ≤ λ(F ) < 1. There are two cases to consider :

CASE 1.1 : 0 < λ(F ) < 1.

Let U = {t ∈ ∂eQ : |f1(t∞)− f1(t)| < ελ(F )}. Then there exists t1 ∈ (∂eQ \ ∂eF ) ∩U . By

Lemma 5.3.24, find a ∈ AF(Q), a : Q → [0, 1], a(t1) = 1, a|F ≡ 0 and set f2 = f1 + εα−1a,

where α = sgn(f1(t1)).

Since χF is an usc function on Q and λ is maximal, it follows from Proposition 5.3.8 that

λ({x ∈ Q : χ̂F (x) > χF (x)}) = 0. Now it follows from Proposition 5.3.17 that {x ∈ Q :

χ̂F (x) > χF (x)} = Q \ (F ∪ F ′). Hence λ is supported by F ∪ F ′. Therefore, a(t∞) =∫
F∪F ′ adλ =

∫
F ′ adλ ≤ λ(F ′). And therefore

|f2(t∞)| = |f1(t∞) + εα−1a(t∞)| ≤ |f1(t∞)|+ ελ(F ′)

< |f1(t1)|+ ελ(F ) + ελ(F ′) = |f1(t1)|+ ε = |f2(t1)|

Let s2 ∈ ∂eQ \ ∂eF be such that |f2(s2)| = ‖f2|∂eQ\∂eF ‖∞. It follows that s2 6= t∞, and

hence, s2 ∈ ∂eQ. Now again, if s2 ∈ F , then |f2(s2)| = |f1(s2)| ≤ |f1(t∞)| < |f1(t1)| + ε =

|f2(t1)|, a contradiction. Thus, s2 ∈ ∂eQ \ ∂eF and f2 ∈ R(BY ).

CASE 1.2 : λ(F ) = 0.

So λ(F ′) = 1 and since F ′ is measure convex, t∞ ∈ F ′.
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Let λ =
∑∞

n=1 αnδxn + λ′ be the decomposition of λ into atomic and non-atomic parts.

By Theorem 5.3.9, xn ∈ ∂eQ.

Let U = {t ∈ ∂eQ : |f1(t∞) − f1(t)| < ε/2}. Since U is necessarily infinite, if at most

finitely many xn ∈ U , there is t1 ∈ U such that λ({t1}) = 0 < 1/2. On the other hand, if

infinitely many xn ∈ U , then since
∑

αn ≤ 1, λ({xn}) = αn → 0 as n → ∞. And hence,

putting t1 = xn for some sufficiently large n, we get t1 ∈ U with λ({t1}) < 1/2. Thus, in

both the cases, we have by Lemma 5.3.23,

χ̂t1(t∞) = λ(χt1) = λ({t1}) < 1/2.

By Lemma 5.3.24, find a ∈ A(Q), a : Q → [0, 1], a(t1) = 1, a|F ≡ 0, a(t∞) < 1/2. Define

f2 = f1 + εα−1a as before, where α = sgn(f1(t1)). Then

|f2(t∞)| ≤ |f1(t∞)|+ εa(t∞) < |f1(t1)|+ ε/2 + ε/2 = |f2(t1)|.

Hence again as in Case 1.1, if s2 ∈ ∂eQ \ ∂eF is such that |f2(s2)| = ‖f2|∂eQ\∂eF ‖∞, then

s2 ∈ ∂eQ \ ∂eF and f2 ∈ R(BY ).

Case 2 : Now, suppose that ∂eQ \ ∂eQ = {t1∞, t2∞}.

If both f1, f2 constructed in Case 1 (for t∞ = t1∞) are not in R(BY ), then s1, s2 ∈ ∂eQ\∂eQ,

and s1 6= s2. Moreover, s1, s2 /∈ F . Thus, we may assume that t1∞, t2∞ ∈ ∂eQ \ ∂eF \ F . We

will show that in this case, at least one of f1, f2 ∈ R(BY ). For convenience, let f be one of

f1 or f2. We may assume that |f(t1∞)| = ‖f |∂eQ\∂eF ‖∞ ≥ |f(t2∞)| and 1 + ‖f |∂eQ\∂eF ‖∞ >

‖f |∂eF ‖∞.

For i = 1, 2, let λi be the unique maximal probability measure representing ti∞. As

before, 0 ≤ λi(F ) < 1. There are three cases to consider :

CASE 2.1 : 0 < λ1(F ), λ2(F ) < 1.

If |f(t1∞)| = |f(t2∞)|, let ε > 0 be arbitrary. And if |f(t1∞)| > |f(t2∞)|, let 0 < ε′ <

|f(t1∞)| − |f(t2∞)| and 0 < ε < ε′/(λ1(F ) + λ2(F )).

As in Case 1.1, we can find t1, t2 ∈ ∂eQ \ ∂eF such that

|f(ti∞)− f(ti)| < ελi(F ), i = 1, 2.

If |f(t1∞)| = |f(t2∞)|, interchanging the role of t1∞ and t2∞ if necessary, we may assume

|f(t1)| ≥ |f(t2)|. And if |f(t1∞)| > |f(t2∞)|, note that

|f(t2)| < |f(t2∞)|+ ελ2(F ) < |f(t1∞)| − ε′ + ελ2(F )

< |f(t1)|+ ελ1(F )− ε′ + ελ2(F ) < |f(t1)|

By Lemma 5.3.24, find b ∈ A(Q) such that 0 ≤ b ≤ 1, b(t1) = b(t2) = 1 and b|F ≡ 0. As

before, b(ti∞) ≤ λi(F
′).



5.3. M -ideals in AF(Q) 57

Define h = f + α−1εb, where α = sgn(f(t1)). Then

|h(ti∞)| ≤ |f(ti∞)|+ εb(ti∞) < |f(ti)|+ ελi(F ) + ελi(F
′) = |f(ti)|+ ε

Thus, |h(t1∞)| < |f(t1)|+ ε = |h(t1)| and |h(t2∞)| < |f(t2)|+ ε ≤ |f(t1)|+ ε = |h(t1)|.
Again, let s ∈ ∂eQ \ ∂eF be such that |h(s)| = ‖h|∂eQ\∂eF ‖∞. It follows that s 6= ti∞, and

hence, s ∈ ∂eQ. Now again, if s ∈ F , then |h(s)| = |f(s)| ≤ |f(t1∞)| < |f(t1)|+ ε = |h(t1)|, a

contradiction. Thus, s ∈ ∂eQ \ ∂eF and h ∈ R(BY ) as before.

CASE 2.2 : 0 < λ1(F ) < 1 and λ2(F ) = 0.

This implies λ2(F
′) = 1 and hence, t2∞ ∈ F ′ as in Case 1.2.

If |f(t1∞)| = |f(t2∞)|, let ε > 0 be arbitrary. And if |f(t1∞)| > |f(t2∞)|, let 0 < ε′ <

|f(t1∞)| − |f(t2∞)| and 0 < ε < ε′/(λ1(F ) + 1/2). Let

U1 =
{
t ∈ ∂eQ : |f(t1∞)− f(t)| < ελ1(F )

}
and

U2 =
{
t ∈ ∂eQ : |f(t2∞)− f(t)| < ε/2

}

As before, we can find ti ∈ (∂eQ \ ∂eF ) ∩ Ui such that λ2({t1, t2}) < 1/2.

The function χ{t1,t2} = max{χt1 , χt2} is an usc convex function and hence by Theo-

rem 5.3.11, χ̂{t1,t2} is an usc affine function on Q and therefore, χ̂{t1,t2}(t
2∞) = λ2(χ{t1,t2}) =

λ2({t1, t2}) < 1/2.

Note also that χ̂{t1,t2}(t1) = χ̂{t1,t2}(t2) = 1. By Lemma 5.3.24, we can find b ∈ A(Q),

0 ≤ b ≤ 1, b|F ≡ 0, b(t1) = b(t2) = 1, b(t2∞) < 1/2. As before, b(t1∞) ≤ λ1(F
′).

As before, we may assume (or prove) that |f(t1)| ≥ |f(t2)|.
Define h(t) = f(t) + α−1εb(t), (where α = sgn(f(t1))). Then

|h(t1∞)| = |f(t1∞) + α−1εb(t1∞)| < |f(t1)|+ ελ1(F ) + ελ1(F
′)

= |f(t1)|+ ε = |h(t1)| and

|h(t2∞)| = |f(t2∞) + α−1εb(t2∞)| ≤ |f(t2∞)|+ ε/2

< |f(t2)|+ ε ≤ |f(t1)|+ ε = |h(t1)|

Again, let s ∈ ∂eQ \ ∂eF be such that |h(s)| = ‖h|∂eQ\∂eF ‖∞. It follows that s 6= ti∞, and

hence, s ∈ ∂eQ. Now again, if s ∈ F , then |h(s)| = |f(s)| ≤ |f(t1∞)| < |f(t1)|+ ε = |h(t1)|, a

contradiction. Thus, s ∈ ∂eQ \ ∂eF and h ∈ R(BY ) as before.

CASE 2.3 : Similar arguments work in the case λ1(F ) = 0 and 0 < λ2(F ) < 1,

CASE 2.4 : λ1(F
′) = λ2(F

′) = 1 (if and only if t1∞, t2∞ ∈ F ′).

For i = 1, 2, as before, find ti ∈ {t ∈ ∂eQ \ ∂eF : |f(ti∞) − f(t)| < ε/2} such that

χ̂{t1,t2}(t
i∞) = λi({t1, t2}) < 1/2 and find b ∈ A(Q) by Lemma 5.3.24 such that 0 ≤ b ≤
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1, b|F ≡ 0, b(ti) = 1, b(ti∞) < 1/2. Now define h as before and draw the appropriate

conclusions. Hence we are done.

Finally, it is clear from the above analysis that at each finite step we can similarly use

Lemma 5.3.24 to construct an approximating function that is either in R(BY ) or attains its

maximum modulus over ∂eQ\∂eF at a new point of ∂eQ\∂eQ. If ∂eQ\∂eQ is finite, at some

stage there will be no more new points available and therefore, the approximating function

must be in R(BY ), completing the proof.

Remark 5.3.29. We don’t know whether Theorem 5.3.28 is true when ∂eQ \ ∂eQ is infinite.

But there is a possibility that our proof may fail. The proof depends on finding points ti ∈
∂eQ \ ∂eF ‘near’ the points ti∞ ∈ ∂eQ \ ∂eQ from which the function b was constructed with

the help of Lemma 5.3.24. In the present situation, however, there are an infinite number

of such ti’s and it may no longer be true that co{F ∪ {t1, t2, . . .}} is a split face as Størmer’s

axiom no longer holds [1, Theorem II.7.19] and therefore, Lemma 5.3.24 cannot be used.

Here is an easy example which satisfies the assumptions of Theorem 5.3.28.

Example 5.3.30. Let A = {f ∈ C[0, 1] :
∫ 1
0 fdλ = f(0)} where λ is Lebesgue measure in

[0, 1]. It is quite easy to see that the Choquet boundary ∂A = [0, 1] \ {0} = (0, 1]. Hence the

state space SA is a Choquet simplex with ∂eSA \ ∂eSA singleton.

An interesting variant of Theorem 5.3.28 is the following :

Theorem 5.3.31. Suppose Q is a metrizable compact convex set such that all points of ∂eQ are split
and ∂eQ \ ∂eQ is finite. Then any M -ideal is a DBR subspace of AF(Q).

Proof. The proof is more-or-less the same as that of Theorem 5.3.28 with some simplifica-

tions, sketched below, due to metrizability of Q, thus avoiding the pathologies associated

with boundary measures [1, Proposition II.3.17].

If ∂eQ is closed, this is Theorem 5.3.26. Metrizability is not needed.

Suppose Q is metrizable and ∂eQ \ ∂eQ is finite. Let Y = {f ∈ AF(Q) : f |F ≡ 0}, where

F is a split face of Q. Harking back to the proof of Theorem 5.3.28, we need only consider

the function f1 constructed in Case 1, |f1(s1)| = ‖f1|∂eQ\∂eF ‖∞, s1 ∈ ∂eQ \ ∂eQ, s1 /∈ F .

As before, we have two cases to consider : (1) If λ is a (not necessarily unique) maximal

probability measure representing s1 with 0 < λ(F ) < 1, i.e., s1 /∈ F ′. This is handled as

in Case 1.1 (needing only Lemma 5.3.24 (a)) and the subsequent inductive analysis. (2)

λ(F ′) = 1, i.e., s1 ∈ F ′ for all maximal representing measures λ. We have

|f1(s1)| =
∣∣∣∣
∫

F ′
f1(t)dλ

∣∣∣∣ ≤
∫

F ′
|f1(t)| dλ =

∫

∂eQ\∂eF
|f1(t)| dλ
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by metrizability. This implies |f1(t)| = |f1(s1)| a.e. [λ] on ∂eQ \ ∂eF , hence there is s ∈
∂eQ \ ∂eF with |f1(s)| = ‖f1|∂eQ\∂eF ‖∞ and f1 ∈ R(BY ) by Lemma 5.3.25.

Remark 5.3.32. Examples are furnished by the state spaces of uniform algebras as their

extreme points are split. This follows from [20, Theorem 1] and the remarks immediately

preceding it.

Although we are unable to prove Theorem 5.3.28 in full generality, it is interesting and

relevant to observe that the following is true :

Theorem 5.3.33. If Q is a metrizable simplex and Y ⊆ AF(Q) is an M -ideal, then span(R(BY )) =

AF(Q).

Proof. Let Y = {f ∈ AF(Q) : f |F ≡ 0}, where F is a closed (necessarily split) face of Q.

Let Σ := {f ∈ A(Q) : ‖f |∂eQ\∂eF ‖∞ + 1 > ‖f |∂eF ‖∞, f(t0) = ‖f |∂eQ\∂eF ‖∞ for some t0 ∈
∂eQ \ ∂eF and 0 ≤ f ≤ 1}. By Lemma 5.3.25, it suffices to show that span(Σ) = AF(Q).

The proof is simpler for F = R, so we argue with F = C.

Let Φ ∈ Σ⊥ ⊆ AC(Q)∗. By Theorem 5.3.14, there is a complex boundary measure µ such

that ‖Φ‖ = ‖µ‖ and Φ = µ|AC(Q). Write µ = µ1+ iµ2 and observe that both µ1 and µ2 are real

boundary measures. If f ∈ Σ then µ(f) = µ1(f) + iµ2(f) = 0, so that µ1(f) = µ2(f) = 0 for

all f ∈ Σ. We will prove that µ1 = µ2 = 0 and hence, µ = 0. Let µ1 = µ+
1 − µ−

1 be the Hahn

decomposition of µ1. µ+
1 and µ−

1 are easily verified to be maximal measures, hence µ+
1 , µ

−
1

live on F ∪ F ′ and have disjoint supports. Let A = Sµ+
1
∩ F ′ and B = Sµ−

1
∩ F ′, where Sν

denotes the support of ν. We claim that

µ+
1 (A) = µ−

1 (B) = 0. (5.1)

First note that by metrizability, both A,B ⊆ ∂eQ ∩ F ′ = ∂eQ \ ∂eF . Let ε > 0, take

an arbitrary compact set C1 ⊆ A and a compact set C2 ⊆ B such that µ−
1 [B \ C2] < ε.

Observe that co(F ∪ (co(C2))) and co(C1) are disjoint closed split faces of Q. Indeed, by

[2, Lemma 3.1.6], both co(C1) and co(C2) are closed faces of Q, hence split faces as Q is a

simplex. Consequently, co(F ∪ (co(C2))) is also a closed split face (by Corollary 5.3.19). If

x ∈ co(C1) ∩ [co(F ∪ (co(C2)))], x can be represented by a (maximal) measure on C1 as also

by a (maximal) measure on ∂eF ∪C2. But the last two sets are disjoint, hence x would have

two distinct maximal representing measures contradicting the fact that Q is a simplex.

Now, arguments similar to Lemma 5.3.24 enable us to find f ∈ A(Q), 0 ≤ f ≤ 1, f = 1

on co(C1), f = 0 on co(F ∪ (co(C2))). Clearly f ∈ Σ, hence, µ1(f) = 0. Thus,
∫
A fdµ+

1 =∫
B fdµ+

1 , i.e.,

µ+
1 (C1) +

∫

A\C1

fdµ+
1 =

∫

B\C2

fdµ−
1
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Thus, µ+
1 (C1) < ε. This implies µ+

1 (A) = 0 as ε is arbitrary. Similarly, µ−
1 (B) = 0. This

proves the claim.

Now, let A′ = Sµ+
1
∩ F and B′ = Sµ−

1
∩ F . Take ε > 0, an arbitrary compact set C ⊆

A′ ∩ ∂eQ and a compact set D ⊆ B′ ∩ ∂eQ such that µ−
1 [(B

′ \ D)] < ε. Now, FC := co(C)

and FD := co(D) are disjoint split faces. Take any p ∈ ∂eQ\F and observe that co(FC ∪{p})
is a split face disjoint from FD. Again, by arguments similar to Lemma 5.3.24, we can find

f ∈ A(Q) such that 0 ≤ f ≤ 1, f = 1 on co(FC ∪ {p}), f = 0 on FD. Again, f ∈ Σ and we

see that ∫

A′
fdµ+

1 =

∫

B′
fdµ−

1

Thus,

µ+
1 (C) +

∫

A′\C
fdµ+

1 =

∫

B′\D
dµ−

1 < ε.

Conclude from this and (5.1) that µ+
1 = µ−

1 = 0. Similarly for µ+
2 and µ−

2 , hence µ1 =

µ2 = 0.

Question 5.3.34. Is the above result true for non-metrizable simplexes?

Remark 5.3.35. A variant of the disc algebra A considered in [24] is the algebra A1 = {f ∈
A : f(1) = λ(f)}, where λ is the Lebesgue measure on T. As proved in [24], ∂A1 = T \ {1},

A⊥
1 = {hλ : h ∈ H1

0 (λ)}⊕{α(λ−δ1) : α ∈ C} and state space ofA1 is a simplex. Observe that

a subspace Y ⊆ A1 is an M -ideal if and only if it is of the form Y = {f ∈ A1 : f |D = 0} for

some closed subset D ⊆ Twith λ(D) = 0 and D∩{1} = ∅. Indeed, if Y is of the above form,

then arguments similar to Theorem 5.2.20(b) (using the above description ofA⊥
1 ) shows that

Y is an M -ideal in A1. Conversely, if Y ⊆ A1 is an M -ideal, arguments of the proof of [26,

Example I.1.14 (b)] for the disc algebra produces a closed set D ⊆ Twith λ(D) = 0 such that

Y = {f ∈ A1 : f |D = 0}. Note that 1 /∈ D as δ1 /∈ ∂eBA∗
1
. Now again, by Theorem 5.2.19,

given t1 /∈ D ∪ {1}, there exists f ∈ A1 such that f(t1) = 1, f |D = 0 and ‖f‖∞ = 1.

By this observation, the fact that 1 is the only point in ∂A1 \ ∂A1 and λ is the only

(maximal) representing measure of {1}, the same method of proof—in fact, simpler—as in

Theorem 5.3.28, Case 1.2 shows that all M -ideals in A1 are DBR subspaces.

The close similarity between the proof of Theorem 5.3.28 and the proof just sketched

seem to suggest that one should be able to deduce these results (for algebras) directly from

Theorem 5.3.28 since the associated state spaces in both cases are simplexes. However, we

don’t quite see how to do this, the principal difficulty being that a general uniform algebra

A cannot be realized as AC(Q) on its state space Q and therefore ball remotality (which

depends heavily on the norm) doesn’t seem to follow by this approach.



CHAPTER 6

Stability results

6.1 Summary of results

In this chapter, we explore the stability of the properties (∗), BR and DBR. These proper-

ties are better behaved with respect to superspaces than subspaces. We have seen before

that any p-summand is BR, but a p-summand is a (∗)-subspace if and only if p = 1 (Theo-

rem 6.2.2).

Coming to sequence spaces, we show that the c0- or the `p-sum (1 < p ≤ ∞) of Yα’s is

a (∗)-/(∗)- and DBR/(∗)- and BR subspace in the corresponding sum of Xα’s if and only

if each Yα is such a subspace in Xα. In the process, we answer [10, Question 2.17] in the

affirmative.

On the other hand, if at least one Yα is a (∗)-/(∗)- and DBR/(∗)- and BR subspace of Xα,

then the `1-sum of Yα’s is such a subspace of the corresponding sum of Xα’s.

Coming to function spaces, we obtain a formula for φB(CK,Y ) in C(K,X), characterize

R(B(CK,Y ), C(K,X)) and show that

(a) Y is a (∗)-subspace of X if and only if C(K,Y ) is a (∗)-subspace of C(K,X).

(b) Y is a BR subspace of X if and only if C(K,Y ) is a BR subspace of C(K,X).

(c) Y is a (∗)- & DBR subspace of X if and only if C(K,Y ) is a (∗)- & DBR subspace of

C(K,X).

If Y is a (∗)-/(∗)- and DBR subspace of X and (Ω,Σ, µ) is a probability space, then the space

L1(µ, Y ) of Y -valued Bochner integrable functions is such a subspace of L1(µ,X).

6.2 Subspaces, etc.

We have noted in Example 2.3.11 and Corollary 2.3.17 that

Proposition 6.2.1. (a) If Y ⊆ Z ⊆ X and Y is a (∗)-subspace of X , then Z is a (∗)-subspace
of X and Y is a (∗)-subspace of Z.

(b) If Y ⊆ Z ⊆ X and Y is a (∗)- and BR subspace of X , then Z is a (∗)- and BR subspace of
X and Y is a (∗)- and BR subspace of Z.
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(c) If Y ⊆ Z ⊆ X and Y is a (∗)- and DBR subspace of X , then Z is a (∗)- and DBR subspace
of X . However, it is not clear if Y must be a (∗)- and DBR subspace of Z.

Theorem 6.2.2. For 1 ≤ p ≤ ∞, let Y be a p-summand in X , that is, there is a subspace Z ⊆ X

such that X = Y ⊕p Z. Then Y is a (∗)-subspace of X if and only if p = 1.

Proof. Let x0 = y0 + z0 for some y0 ∈ Y and z0 ∈ Z. We have for 1 ≤ p < ∞,

φp
BY

(x0) = sup
y∈BY

‖x0 − y‖p = sup
y∈BY

[‖y0 − y‖p + ‖z0‖p] = (‖y0‖+ 1)p + ‖z0‖p

Similarly, for p = ∞,

φBY
(x0) = max{‖y0‖+ 1, ‖z0‖}.

Now if p = 1 then φBY
(x0) = ‖y0‖+ ‖z0‖+ 1 = ‖x0‖+ 1 and hence Y is a (∗)-subspace

of X .

On the other hand, if p 6= 1, y0 = 0 and z0 6= 0, then

φBY
(x0) =

{
[1 + ‖z0‖p]1/p if 1 < p < ∞
max{1, ‖z0‖} if p = ∞ < ‖z0‖+ 1 = ‖x0‖+ 1.

Hence Y cannot be a (∗)-subspace of X .

Remark 6.2.3. (a) Any p-summand in a Banach space is however BR (Lemma 3.2.10).

(b) It follows that a 1-summand in a Banach space is always a (∗)- and BR subspace.

(c) It also follows that any Banach space embeds isometrically as a (∗)- and BR hyper-

plane in some superspace Z. Just take Z = X⊕1F. Compare this with Corollary 4.2.16

and Corollary 4.2.44.

(d) If a subspace Y is of finite dimension or co-dimension, more generally if Y is com-

plemented in X , then X can be so renormed that the norm on Y remains unchanged

and it becomes a (∗)- and BR subspace of X . We do not know if this is true for any

subspace.

(e) However, if Y ⊆ X and y0 ∈ SY , X can clearly be renormed to make y0 a strong

unitary and hence Y a (∗)- BR subspace.

Example 6.2.4. It is clear from Proposition 6.2.1 that a (∗)-subspace is intersection of (∗)-
hyperplanes. The converse is not true. By Theorem 3.3.1, any hyperplane in `1 is (∗)- and

DBR. However, the intersection of all of them is clearly {0}.

Similarly, intersection of two (∗)- and DBR subspaces need not be either a (∗)- or a DBR

subspace. In `1, for m ≥ 1, let Y = span{ei : 1 ≤ i ≤ m} and Z = span{ei : i > m}, then

clearly Y and Z are two (∗)- and BR subspaces in `1, but Y ∩ Z = {0}.
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6.3 Sequence spaces

Notation 5. Let {Xα : α ∈ Λ} be a family of Banach spaces. For 1 ≤ p ≤ ∞, let X̃p =⊕
`p
Xα, and X̃0 =

⊕
c0
Xα. If Λ = N and Xα = X for all α, then

(a) c0(X) =
⊕

c0
X = {(xn) : (xn) ⊆ X, limn ‖xn‖ = 0}.

(b) `p(X) =
⊕

`p
X = {(xn) : (xn) ⊆ X, (‖xn‖) ∈ `p}, 1 ≤ p ≤ ∞.

(c) c(X) = {(xn) : (xn) ⊆ X, limn xn exists}.

Proposition 6.3.1. Let {Xα : α ∈ Λ} be a family of Banach spaces and Yα ⊆ Xα be subspaces. If
at least one Yα is a (∗)-subspace of Xα, then Ỹ1 is a (∗)-subspace in X̃1.

Proof. If Yα is a (∗)-subspace in Xα, then for any x ∈ X̃1, ‖x‖1 + 1 ≥ φB
Ỹ1
(x) ≥ φBYα

(xα) +∑
β 6=α ‖xβ‖ = ‖xα‖+ 1 +

∑
β 6=α ‖xβ‖ = ‖x‖1 + 1.

Proposition 6.3.2. Let Xα, Yα be as above. If at least one Yα is a (∗)- and BR (DBR) subspace of
Xα, then Ỹ1 is a (∗)- and BR (DBR) subspace of X̃1.

Proof. By Proposition 6.3.1, Ỹ1 is a (∗)-subspace in X̃1. And it is easy to see that if x ∈ X̃1

such that xα ∈ R(BYα) for some α ∈ Λ, then x ∈ R(B
Ỹ1
). The BR part follows.

Now let x ∈ X̃1 and ε > 0. Let yα ∈ R(BYα) such that ‖yα−xα‖ < ε. Defining z ∈ X̃1 by

zβ =

{
yα if β = α

xβ otherwise
,

it follows ‖x− z‖∞ = ‖xα − yα‖ < ε and z ∈ R(B
Ỹ1
). Hence the DBR part follows.

Coming to infinite sums, we can show that

Theorem 6.3.3. Let {Xα : α ∈ Λ} be a family of Banach spaces and Yα ⊆ Xα be subspaces such
that Yα 6= {0} for infinitely many α ∈ Λ. Then Ỹ1 is a (∗)- and DBR subspace of X̃1.

Proof. The proof is similar to that of Theorem 3.3.1.

Let A = {x = (xγ) ∈ X̃1 : xγ = 0 for all but finitely many γ ∈ Γ}. If x ∈ A, there exists

a finite set Λ1 ⊆ Λ such that xα = 0 for α /∈ Λ1. Since infinitely many Yα 6= {0}, we can

find β /∈ Λ1 and yβ ∈ SYβ
. Define y ∈ B

Ỹ1
by putting yα = 0 if α 6= β. It follows that

φB
Ỹ1
(x) ≥ ‖x + y‖1 = ‖x‖1 + 1 and hence φB

Ỹ1
(x) = ‖x‖1 + 1 and x ∈ R(BY ). Since A is

dense in X̃1, Ỹ1 is a (∗)- and DBR subspace of X̃1.

Theorem 6.3.4. Let {Xα : α ∈ Λ} be a family of Banach spaces and Yα ⊆ Xα be subspaces. Then
the following are equivalent :

(a) Each Yα is a (∗)-subspace in Xα.
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(b) Ỹ0 is a (∗)-subspace in X̃0.

(c) Ỹ∞ is a (∗)-subspace in X̃∞.

(d) Ỹ0 is a (∗)-subspace in X̃∞.

Proof. (a) ⇒ (d). Let x ∈ X̃∞ and ε > 0. There exists α ∈ Λ such that ‖xα‖ > ‖x‖∞ − ε/2.

Get yα ∈ BYα such that ‖xα − yα‖ > ‖xα‖+ 1− ε/2. Define y ∈ B
Ỹ0

by

yβ =

{
yα if β = α

0 otherwise
(6.1)

Then

‖x− y‖∞ ≥ ‖xα − yα‖ > ‖xα‖+ 1− ε/2 > ‖x‖∞ + 1− ε.

Hence, Ỹ0 is a (∗)-subspace of X̃∞.

(d) ⇒ (b) and (c). Since Ỹ0 ⊆ X̃0 ⊆ X̃∞ and Ỹ0 ⊆ Ỹ∞ ⊆ X̃∞, the result follows from

Example 2.3.11(b).

(b) or (c) ⇒ (a). Let X̃ and Ỹ stand for either X̃0 and Ỹ0 or X̃∞ and Ỹ∞ as the case may

be. Suppose Ỹ is a (∗)-subspace of X̃ .

Fix α ∈ Λ. Let xα ∈ Xα. Define x ∈ X̃ by

xβ =

{
xα if β = α

0 otherwise
(6.2)

Then

‖xα‖+ 1 = φBY
(x) ≤ max{φBYα

(xα), 1} ≤ ‖xα‖+ 1.

It follows that φBYα
(xα) = ‖xα‖+ 1. Hence Yα is a (∗)-subspace of Xα.

Lemma 6.3.5. Let {Xα : α ∈ Λ} be a family of Banach spaces and Yα ⊆ Xα be (∗)-subspaces. Then
x ∈ R(B

Ỹ0
, X̃∞) if and only if there exists α ∈ Λ such that ‖xα‖ = ‖x‖∞ and xα ∈ R(BYα).

Proof. If α ∈ Λ is such that ‖xα‖ = ‖x‖∞ and xα ∈ R(BYα), get yα ∈ BYα such that ‖xα −
yα‖ = ‖xα‖+ 1. Define y ∈ B

Ỹ0
as in (6.1). Then

‖x‖∞ + 1 ≥ ‖x− y‖∞ ≥ ‖xα − yα‖ = ‖xα‖+ 1 = ‖x‖∞ + 1.

Conversely, if x ∈ R(B
Ỹ0
), find y ∈ B

Ỹ0
such that ‖x − y‖∞ = ‖x‖∞ + 1. Since y ∈ B

Ỹ0
,

there is a finite set Λ1 such that ‖yα‖ < 1/2 for all α /∈ Λ1. It follows that for all α /∈ Λ1,

‖xα − yα‖ ≤ ‖xα‖+ ‖yα‖ ≤ ‖x‖∞ +
1

2
< ‖x‖∞ + 1 = ‖x− y‖∞.

Therefore, ‖x− y‖∞ = supα∈Λ1
‖xα − yα‖ and the supremum is attained at some α ∈ Λ1. It

clearly follows that ‖xα‖ = ‖x‖∞ and xα ∈ R(BYα).
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Theorem 6.3.6. Let {Xα : α ∈ Λ} be a family of Banach spaces and Yα ⊆ Xα be subspaces. Then
the following are equivalent :

(a) Each Yα is (∗)- and DBR in Xα.

(b) Ỹ0 is (∗)- and DBR in X̃0.

(c) Ỹ∞ is (∗)- and DBR in X̃∞.

(d) Ỹ0 is (∗)- and DBR in X̃∞.

Proof. (a) ⇒ (d). Ỹ0 is a (∗)-subspace of X̃0 follows from Theorem 6.3.4.

To prove Ỹ0 is DBR in X̃∞, let x ∈ X̃∞ and ε > 0.

Let α ∈ Λ be such that ‖xα‖ > ‖x‖∞ − ε/3. Since Yα is DBR in Xα, there exists uα ∈
R(BYα) such that ‖xα − uα‖ < ε/3. Define z ∈ X̃∞ by

zβ =

{ ‖x‖∞
‖uα‖ uα if β = α

xβ if otherwise

Clearly, ‖zα‖ = ‖x‖∞ = ‖z‖∞ and by Proposition 2.3.13, zα ∈ R(BYα). Hence, by

Lemma 6.3.5, z ∈ R(B
Ỹ0
). Moreover,

‖x− z‖∞ = ‖xα − zα‖ =

∥∥∥∥xα − ‖x‖∞
‖uα‖ uα

∥∥∥∥

≤
∥∥∥∥xα − ‖xα‖

‖uα‖uα
∥∥∥∥+ (‖x‖∞ − ‖xα‖)

≤ ‖xα − uα‖+
∣∣‖xα‖ − ‖uα‖

∣∣+ (‖x‖∞ − ‖xα‖) < ε

(d) ⇒ (b) and (c). Since Ỹ0 ⊆ X̃0 ⊆ X̃∞ and Ỹ0 ⊆ Ỹ∞ ⊆ X̃∞, the result follows from

Corollary 2.3.17.

(b) or (c) ⇒ (a). Let X̃ and Ỹ stand for either X̃0 and Ỹ0 or X̃∞ and Ỹ∞ as the case may

be. Suppose Ỹ is (∗)- and DBR in X̃ .

Fix α ∈ Λ. That Yα is a (∗)-subspace of Xα follows from Theorem 6.3.4.

If for some α ∈ Λ, Yα is not DBR in Xα, then there exist xα ∈ Xα and ε > 0 such that

B(xα, ε) ∩R(BYα) = ∅.

Define x ∈ X̃ as in (6.2). Let δ < min{ε, ‖xα‖/3}.

CLAIM : B(x, δ) ∩R(BY ) = ∅.

If z ∈ B(x, δ) ∩ R(B
Ỹ
), then ‖zα‖ > 2‖xα‖/3 and ‖zβ‖ < ‖xα‖/3 if β 6= α. Hence,

‖z‖∞ = ‖zα‖ > 2 supβ 6=α ‖zβ‖.

Let y ∈ B
Ỹ

be such that ‖z + y‖∞ = ‖z‖∞ + 1 = ‖zα‖+ 1.

If ‖z + y‖∞ = ‖zα + yα‖, then zα ∈ B(xα, ε) ∩ R(BYα), a contradiction. So, ‖z + y‖∞ >

‖zα + yα‖.
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Choose η > 0 such that η < ‖z‖∞/2 and ‖z+ y‖∞ > ‖zα + yα‖+ η. Find β ∈ Λ such that

‖zβ+yβ‖ > ‖z+y‖∞−η. It follows that β 6= α and ‖zβ‖+‖yβ‖ ≥ ‖zβ+yβ‖ > ‖z‖∞+1−η >

‖zα‖/2 + 1. Since ‖yβ‖ ≤ 1, ‖zβ‖ ≥ ‖zα‖/2, again a contradiction.

Remark 6.3.7. It follows that X̃0 is DBR in X̃∞, answering [10, Question 2.17].

If the subspaces are not assumed to be (∗)-, we have

Theorem 6.3.8. Let {Xα : α ∈ Λ} be a family of Banach spaces and Yα ⊆ Xα be DBR subspaces.
Then

(a) Ỹ0 is DBR in X̃0.

(b) Ỹ∞ is DBR in X̃∞.

Proof. (a). Let x ∈ X̃0. Then ‖x‖∞ = ‖xα‖ for some α ∈ Λ. Let 0 < ε < ‖xα‖. There exists a

finite set Λ1 ⊆ Λ, such that if β /∈ Λ1 then ‖xβ‖ < ε. For β ∈ Λ1, since Yβ is DBR in Xβ , find

zβ ∈ R(BYβ
) such that ‖xβ − zβ‖ < ε and get yβ ∈ BYβ

such that ‖zβ + yβ‖ = φBYβ
(zβ).

Define z ∈ X̃0 by putting zβ as above for β ∈ Λ1 and zβ = 0 if β /∈ Λ1. It is easy to see

that

φB
Ỹ0
(z) ≤ max{max{φBYβ

(zβ) : β ∈ Λ1}, 1}
Fix α /∈ Λ1 and yα ∈ SYα . Define y ∈ B

Ỹ0
by

yβ =





yβ if β ∈ Λ1, yβ as above

yα if β = α

0 if otherwise

Then ‖z + y‖∞ = max{max{φBYβ
(zβ) : β ∈ Λ1}, 1} = φB

Ỹ0
(z). And hence, z ∈ R(B

Ỹ0
)

and ‖x− z‖ < ε.

(b). Let x ∈ X̃∞. Observe that φB
Ỹ∞

(x) = supβ φBYβ
(xβ). For β ∈ Λ, since Yβ is DBR

in Xβ , find zβ ∈ R(BYβ
) such that ‖xβ − zβ‖ < ε and get yβ ∈ BYβ

such that ‖zβ + yβ‖ =

φBYβ
(zβ).

Now if z ∈ X̃∞ and y ∈ Ỹ∞ are defined with these values, it follows that ‖z + y‖∞ =

φB
Ỹ∞

(z) = supβ φBYβ
(zβ) and ‖x− z‖ < ε.

Theorem 6.3.9. Let {Xα : α ∈ Λ} be a family of Banach spaces and Yα ⊆ Xα be (∗)- and BR
subspaces. Then

(a) Ỹ0 is (∗)- and BR in X̃0.

(b) Ỹ∞ is (∗)- and BR in X̃∞.

Proof. (a) follows from Lemma 6.3.5. (b) follows from the proof of Theorem 6.3.8(b), with

ε = 0.
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Remark 6.3.10. Since c0 in `∞ is DBR but not BR, Ỹ0 need not be BR in X̃∞.

Theorem 6.3.11. If Y is (∗)-subspace of X , then c(Y ) is (∗)-subspace of c(X).

Proof. Since c0(Y ) ⊆ c(Y ) ⊆ c(X) ⊆ `∞(X), the result follows from Proposition 6.2.1.

Corollary 6.3.12. If X is any Banach space then c(X) is a (∗)- and DBR subspace of `∞(X).

Theorem 6.3.13. If Y is (∗)- and DBR (BR) in X , then c(Y ) is (∗)- and DBR (BR) in c(X).

Proof. Since c0(Y ) ⊆ c(Y ) ⊆ c(X) ⊆ `∞(X), the DBR part follows from Theorem 6.3.6.

To prove the BR part, let x ∈ c(X). Let x0 = limn xn. If ‖x‖∞ is attained at some n ∈ N,

then the c0 argument works. Otherwise, ‖x‖∞ = limn ‖xn‖ = ‖x0‖. Let y0 ∈ FBY
(x0).

Define y ∈ Bc(Y ) as the constant sequence yn = y0. Then

‖x− y‖∞ ≥ lim
n

‖xn − yn‖ = ‖x0 − y0‖ = ‖x0‖+ 1 = ‖x‖∞ + 1

That is, y ∈ FBc(Y )
(x).

Remark 6.3.14. It follows that for any Banach space X , c0(X) is (∗)- and DBR in both c(X)

and `∞(X). And c(X) is (∗)- and DBR in `∞(X).

We now come to 1 < p < ∞.

Theorem 6.3.15. Let {Xα : α ∈ Λ} be a family of Banach spaces and Yα ⊆ Xα be (∗)-subspaces.
Let 1 < p < ∞. Then Ỹp is a (∗)-subspace of X̃p.

Proof. Let x = (xα) ∈ S
X̃p

. We may write xα = uαzα, where uα = ‖xα‖ ≥ 0, zα ∈ SXα and

(uα) ∈ S`p .

Put vα = up−1
α . Then (vα) ∈ S`q and

∑
α uαvα = 1.

Let ε > 0. Find x∗α ∈ AYα such that x∗α(zα) > 1− ε.

Define x∗ = (vαx
∗
α), then

x∗(x) =
∑
α

uαvαx
∗
α(zα) > (1− ε)

∑
α

uαvα = 1− ε,

as uα, vα ≥ 0.

CLAIM : x∗ ∈ A
Ỹp

.

Let η > 0. Let yα ∈ SYα such that x∗α(yα) > 1− η. Define y = (uαyα). Then y ∈ S
Ỹp

. Now

x∗(y) > (1− η)
∑
α

uαvα = 1− η,

as before.
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Lemma 6.3.16. Let {Xα : α ∈ Λ} be a family of Banach spaces and Yα ⊆ Xα be (∗)-subspaces. Let
1 < p < ∞. Then x = (xα) ∈ R(B

Ỹp
) if and only if for every α ∈ Λ, xα ∈ R(BYα).

Proof. Let x ∈ R(B
Ỹp
) such that ‖x‖p = 1. By Proposition 2.3.13, there exists x∗ ∈ S

X̃∗
p

and

y ∈ S
Ỹp

such that

x∗(x) = 1 = x∗(y).

Let z stands for either x or y. Now,

1 = |
∑
α

x∗α(zα)| ≤
∑
α

|x∗α(zα)| ≤
∑
α

‖x∗α‖‖zα‖ ≤ (
∑
α

‖x∗α‖q)1/q(
∑
α

‖zα‖p)1/p = 1

It follows that |x∗α(zα)| = ‖x∗α‖‖zα‖, and hence,

| x∗α
‖x∗α‖

(xα)| = ‖xα‖ and | x∗α
‖x∗α‖

(
yα

‖yα‖)| = 1.

It follows that ‖xα − yα
‖yα‖‖ = ‖xα‖+ 1. So that xα ∈ R(BYα).

Conversely, let x ∈ X̃p such that for every α ∈ Λ, xα ∈ R(BYα). We may assume

‖x‖p = 1. Write xα = uαzα, where uα = ‖xα‖ ≥ 0, zα ∈ R(BYα) ∩ SXα and (uα) ∈ S`p .

By Proposition 2.3.13, there exists x∗α ∈ SX∗
α

and yα ∈ SYα such that

x∗α(zα) = 1 = x∗α(yα).

Put vα = up−1
α . Define x∗ = (vαx

∗
α) and y = (uαyα). Then x∗ ∈ S

X̃∗
p
, y ∈ S

Ỹp
and

x∗(x) = 1 = x∗(y).

By Proposition 2.3.13 again, x ∈ R(B
Ỹp
).

Theorem 6.3.17. Let {Xα : α ∈ Λ} be a family of Banach spaces and Yα ⊆ Xα be subspaces. Let
1 < p < ∞. Then Ỹp is a (∗)- and DBR/BR subspace of X̃p if and only if each Yα is a (∗)- and
DBR/BR subspaces of Xα.

Proof. If each Yα are (∗)- and DBR subspaces of Xα, then by Theorem 6.3.15, Ỹp is a (∗)-
subspace of X̃p.

Let x = (xα) ∈ X̃p. We may write xα = uαzα, where uα = ‖xα‖, zα ∈ SXα and (uα) ∈ `p.

Let ε > 0. Since each R(BYα) is dense in Xα, there exists wα ∈ R(BYα) such that ‖wα‖ = 1

and ‖zα − wα‖ < ε. Define w = (uαwα). By Lemma 6.3.16, w ∈ R(BYp) and ‖x− w‖p < ε.

Conversely, if Ỹp is a (∗)- and DBR subspace of X̃p, then for each α ∈ Λ, the projection of

R(B
Ỹp
) onto the α-component is dense in Xα.

Now, as argued in Lemma 6.3.16, if x ∈ R(B
Ỹp
), then φBYα

(xα) = ‖xα‖ + 1 and xα ∈
R(BYα). By density of such xα’s, Yα is a (∗)- and DBR subspace of Xα.

The proof of (∗)- and BR is simpler.
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Theorem 6.3.18. Let {Xα : α ∈ Λ} be a family of Asplund spaces. Then any w*-compact subset of
(X̃0)

∗∗ = (X∗∗
α )∞ is densely remotal and hence any w*-closed subspace of (X∗∗

α )∞ is DBR.

Proof. Follows from Theorem 1.0.3, since (X̃0)
∗ = (X∗

α)1 has the RNP.

6.4 Spaces of functions

Theorem 6.4.1. Let K be a compact Hausdorff space, X a Banach space and Y a subspace of X .
(a) For f ∈ C(K,X), φBC(K,Y )

(f) = supt∈K φBY
(f(t)).

(b) f ∈ R(BC(K,Y )) if and only if there exists t0 ∈ K such that φBC(K,Y )
(f) = φBY

(f(t0))

and f(t0) ∈ R(BY ).

Proof. (a). If g ∈ BC(K,Y ), then for any t ∈ K, g(t) ∈ BY . On the other hand, if z ∈ BY , then

1⊗ z ∈ BC(K,Y ). It follows that

φBC(K,Y )
(f) = sup

g∈BC(K,Y )

‖f − g‖∞ = sup
g∈BC(K,Y )

sup
t∈K

‖f(t)− g(t)‖

= sup
t∈K

sup
g∈BC(K,Y )

‖f(t)− g(t)‖ = sup
t∈K

φBY
(f(t))

(b). Let f ∈ R(BC(K,Y )) then there exists g ∈ BC(K,Y ) such that ‖f − g‖∞ = φBC(K,Y )
(f).

Let t0 ∈ K be such that ‖f(t0)− g(t0)‖ = ‖f − g‖∞. Then

‖f(t0)− g(t0)‖ = ‖f − g‖∞ = sup
t∈K

φBY
(f(t)) ≥ φBY

(f(t0)) ≥ ‖f(t0)− g(t0)‖.

Hence f(t0) ∈ R(BY ).

Conversely, suppose there exists t0 ∈ K such that φBC(K,Y )
(f) = φBY

(f(t0)) and f(t0) ∈
R(BY ). Then there exists y0 ∈ BY such that ‖f(t0) − y0‖ = φBY

(f(t0)). Now 1 ⊗ y0 ∈
BC(K,Y ) and clearly ‖f − 1 ⊗ y0‖∞ ≥ ‖f(t0) − y0‖ = φBY

(f(t0)) = φBC(K,Y )
(f). Hence,

f ∈ R(BC(K,Y )).

Corollary 6.4.2. Let K be a compact Hausdorff space, X a Banach space and Y a subspace of X .
Then Y is a (∗)-subspace of X if and only if C(K,Y ) is a (∗)-subspace of C(K,X).

Theorem 6.4.3. Let K be a compact Hausdorff space, X a Banach space and Y a subspace of X .
Then Y is a BR subspace of X if and only if C(K,Y ) is a BR subspace of C(K,X).

Proof. Since φBY
is continuous, if f ∈ C(K,X), then there exists t0 ∈ K such that

supt∈K φBY
(f(t)) = φBY

(f(t0)). If Y is a BR subspace of X , f(t0) ∈ R(BY ). Therefore,

by Theorem 6.4.1 (b), f ∈ R(BC(K,Y )).

Conversely, let x0 ∈ X . If C(K,Y ) is a BR subspace of C(K,X), 1 ⊗ x0 ∈ R(BC(K,Y )).

Therefore, by Theorem 6.4.1 (b), x0 ∈ R(BY ).
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Corollary 6.4.4. Let K be a compact Hausdorff space, X a Banach space and Y a subspace of X .
Then the following are equivalent :

(a) Y is a (∗)- and BR subspace of X .

(b) C(K,Y ) is a (∗)- and BR subspace of C(K,X).

For DBR, we will need the following modification of Lemma 4.2.8.

Lemma 6.4.5. Let D ⊆ X be a dense set. For f ∈ C(K,X) and ε > 0, there exists g ∈ C(K,X),
z ∈ D and t ∈ K such that g(t) = z, ‖z‖ = ‖g‖∞ and ‖f − g‖∞ < ε.

Proof. Let ‖f‖∞ = M . Let t0 ∈ K be such that ‖f(t0)‖ = M and let f(t0) = x0.

Since D is dense in X , there exists x1 ∈ D, ‖x1‖ > ‖x0‖ such that ‖x1 − x0‖ < ε/3.

As in Lemma 4.2.8, split X into three disjoint regions :

X1 = {x ∈ X : ‖x− x0‖ > ε},
X2 = {x ∈ X : ‖x− x0‖ ≤ ε/3} and

X3 = {x ∈ X : ε/3 < ‖x− x0‖ ≤ ε},

and define φ : X1 ∪X2 → X as follows :

φ(x) = x if x ∈ X1, φ(x) = x1 if x ∈ X2.

As before, any point in X3 is of the form x0+ry for some r ∈ (ε/3, ε] and y ∈ SX . Define

h : [ε/3, ε] → [0, ε] by h(r) = r−ε/3
ε−ε/3ε and define φ : X3 → X by φ(x0 + ry) = x1 + h(r)y.

An argument similar to Lemma 4.2.8 proves that φ : X → X is continuous. Define

g : K → X by g = φ ◦ f .

As before, g(K) ⊆ φ(MBX) ⊆ ‖x1‖BX . It follows that x1 = g(t0) ∈ D and ‖g‖∞ =

‖x1‖ = ‖g(t0)‖. Moreover,

‖f − g‖∞ ≤ sup{‖x− φ(x)‖ : x ∈ X} = sup{‖x− φ(x)‖ : x ∈ X2 ∪X3}
= max{sup{‖x− φ(x)‖ : x ∈ X2}, sup{‖x− φ(x)‖ : x ∈ X3}}
= max{sup{‖x− x1‖ : ‖x− x0‖ ≤ ε/3},

sup{‖(x0 − x1) + (r − h(r))y‖ : r ∈ (ε/3, ε], y ∈ SX}}
≤ max{2ε/3, ε/3 + sup{|r − h(r)| : r ∈ (ε/3, ε]}} ≤ 2ε/3 < ε.

This completes the proof.

Theorem 6.4.6. Let K be a compact Hausdorff space, X a Banach space and Y a subspace of X .
Then the following are equivalent :
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(a) Y is a (∗)- and DBR subspace of X .

(b) C(K,Y ) is a (∗)- and DBR subspace of C(K,X).

Proof. The (∗)- part follows from Corollary 6.4.2.

(a) ⇒ (b). Let f ∈ C(K,X). Let t0 ∈ K be such that ‖f(t0)‖ = ‖f‖∞ and put x0 = f(t0).

Let ε > 0. By Lemma 6.4.5 with D = R(BY ), there exists g ∈ C(K,X), x1 ∈ R(BY ) and

t ∈ K such that g(t) = x1, ‖x1‖ = ‖g‖∞ and ‖f − g‖∞ < ε. Hence by Theorem 6.4.1 (b),

g ∈ R(BC(K,Y )). Hence the result follows.

(b) ⇒ (a). Let x0 ∈ X and ε > 0. Consider 1 ⊗ x0 ∈ C(K,X). Let f ∈ R(BC(K,Y )) be

such that ‖1⊗x0−f‖∞ < ε. By Theorem 6.4.1 (b), there exists t ∈ K such that f(t) ∈ R(BY ).

Then ‖x0 − f(t)‖ ≤ ‖1⊗ x0 − f‖∞ < ε. Since ε is arbitrary, the result follows.

Remark 6.4.7. Arguments similar to (b) ⇒ (a) above shows that if C(K,Y ) is a DBR sub-

space of C(K,X), then Y is a DBR subspace of X .

Question 6.4.8. Can we prove the converse without assuming the (∗)- property?

Coming to spaces of Bochner integrable functions, let (Ω,Σ, µ) be a probability space

and G be a closed bounded subset of a Banach space X . Our first result is a simpler proof

of [28, Theorem 1.1]. The assumption that G is remotal is also not needed.

Theorem 6.4.9. If f ∈ L1(µ,X), then φL1(µ,G)(f) =
∫
Ω φG(f(t))dµ.

Proof. If f ∈ L1(µ,X) and g ∈ L1(µ,G), then

‖f − g‖1 =
∫

Ω
‖f(t)− g(t)‖dµ ≤

∫

Ω
φG(f(t))dµ

Hence,

φL1(µ,G)(f) ≤
∫

Ω
φG(f(t))dµ

Now, let f =
∑n

i=1 xiχAi ∈ L1(µ,X) be a simple function. Without loss of generality, we

may assume
∑n

i=1 µ(Ai) = 1. Given ε > 0, there exists yi ∈ G such that ‖xi−yi‖ > φG(xi)−ε.

Let g =
∑n

i=1 yiχAi . Then g ∈ L1(µ,G) and

‖f − g‖1 =
n∑

i=1

‖xi − yi‖µ(Ai) >
n∑

i=1

(φG(xi)− ε)µ(Ai)

=

n∑

i=1

φG(xi)µ(Ai)− ε =

∫

Ω
φG(f(t))dµ− ε.

Since ε is arbitrary,

φL1(µ,G)(f) =

∫

Ω
φG(f(t))dµ.
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Since φG is Lipschitz, so is the map f 7→ ∫
Ω φG(f(t))dµ from L1(µ,X) to R+. In particular, it

is continuous. Since simple functions are dense in L1(µ,X), the result follows.

Theorem 6.4.10. [28, Corollary 1.2] If f ∈ L1(µ,X), then g ∈ L1(µ,G) is farthest from f if and
only if g(t) ∈ G is farthest from f(t) a.e. [µ].

Proof. Let g ∈ L1(µ,G) be farthest from f . By above theorem, this means
∫

Ω
‖f(t)− g(t)‖dµ =

∫

Ω
φG(f(t))dµ.

Since ‖f(t)− g(t)‖ ≤ φG(f(t)) a.e. [µ], this implies ‖f(t)− g(t)‖ = φG(f(t)) a.e. [µ].

Conversely, if g ∈ L1(µ,G) is such that ‖f(t)− g(t)‖ = φG(f(t)) a.e. [µ], then ‖f − g‖1 =∫
Ω ‖f(t)− g(t)‖dµ =

∫
Ω φG(f(t))dµ = φL1(µ,G)(f). That is, g is farthest from f .

Corollary 6.4.11. Let G ⊆ BX be closed and supz∈G ‖z‖ = 1. The following are equivalent :
(a) G is a (∗)-subset of X .

(b) L1(µ,G) is a (∗)-subset of L1(µ,X).

Theorem 6.4.12. Let G ⊆ X be a closed bounded set. The following are equivalent :
(a) G is densely remotal in X .

(b) L1(µ,G) is densely remotal in L1(µ,X).

Proof. (a) ⇒ (b). This is proved in [10, Lemma 3.7]. We include the details for completeness.

Let f =
∑n

1 xiχAi be a simple function in L1(µ,X). Since R(G) is dense, given ε > 0,

we can get a simple function g =
∑n

1 yiχAi with yi ∈ R(G) and ‖f − g‖1 < ε. For each i, let

zi ∈ G be farthest from yi, then h =
∑n

1 ziχAi is point-wise farthest from g and hence, by

Theorem 6.4.10, it is farthest from g in L1(µ,G) as well.

(b) ⇒ (a). Let x ∈ X . Consider xχΩ ∈ L1(µ,X).

Given ε > 0 there exists f ∈ L1(µ,X), and g ∈ L1(µ,G) such that ‖xχΩ − f‖1 < ε and g

is farthest from f . By Theorem 6.4.10, it follows that ‖f(t)− g(t)‖ = φG(f(t)) a.e. [µ].

Now there exists A ∈ Σ with µ(A) > 0 such that ‖x − f(t)‖ < ε and ‖f(t) − g(t)‖ =

φG(f(t)) for all t ∈ A. Put z = f(t) for some t ∈ A. Then z ∈ R(G) and ‖x− z‖ < ε.

Corollary 6.4.13. If L1(µ,G) is a remotal subset of L1(µ,X), then G is a remotal subset of X .

Since L1(µ,BY ) ⊆ BL1(µ,Y ), we have

Corollary 6.4.14. (a) If Y is a (∗)-subspace of X , then L1(µ, Y ) is a (∗)-subspace of
L1(µ,X).

(b) If Y is (∗)- and DBR in X , then L1(µ, Y ) is (∗)- and DBR in L1(µ,X).



CHAPTER 7

Ball remotality of X in X∗∗

7.1 Summary of results

In this chapter, we study ball remotality of a Banach space X in its bidual. In particular, we

consider the following properties mentioned in the Introduction :

Definition 7.1.1. We will say that a Banach space X

(a) is BR in its bidual (BRB) if R(BX) = X∗∗.

(b) is DBR in its bidual (DBRB) if R(BX) = X∗∗.

(c) has remotally spanned bidual (RSB) if span(R(BX)) = X∗∗.

(d) is anti-remotal in its bidual (ARB) if R(BX) = X .

It is clear that reflexivity ⇒ BRB ⇒ DBRB ⇒ RSB. We show that none of the converse

holds. We show that a Banach space having a strong unitary is BRB, producing a large class

of non-reflexive examples. We show that X is wALUR ([7], see Definition 7.2.11) if and only

if X is rotund and ARB. We also obtain characterizations of reflexivity in terms of these

phenomena. For example, we show that a separable Banach space is reflexive if and only if

it is BRB/DBRB/RSB in every equivalent renorming.

In stability results, We show that the `1-sum of a finite family of Banach spaces is

BRB/DBRB if at least one coordinate space is such. c0-sum of a family of Banach spaces

is DBRB if and only if each coordinate space is DBRB. And `p-sum (1 < p < ∞) of a family

of Banach spaces is DBRB/BRB/ARB/RSB if and only if each coordinate space is such.

7.2 Main results

We will use the following notations in this chapter.

Notation 6. (a) We will consider the duality map only on SX , that is, D : SX → SX∗ is

a set-valued map defined as D(x) = {x∗ ∈ SX∗ : x∗(x) = 1}, x ∈ SX .

(b) The inverse duality map D−1 : SX∗ → SX is a set-valued map defined as D−1(x∗) =
{x ∈ SX : x∗(x) = 1}. Note that this set is empty unless x∗ ∈ D(SX) = NA(X) ∩ SX∗ .
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(c) Dn will denote the duality map from SX(n) to SX(n+1) . Similarly, we can define D−1
n .

(d) For a subspace Y of a Banach space X and y∗ ∈ Y ∗, let HB(y∗) be the set of all Hahn-

Banach (i.e., norm preserving) extensions of y∗ to X . Note that, by Hahn-Banach

Theorem, HB(y∗) is always nonempty.

When we consider X as a subspace of X∗∗, then

AX = {x∗∗∗ ∈ SX∗∗∗ : ‖x∗∗∗|X‖ = 1} = HB(SX∗) ⊇ SX∗ ,

which is clearly norming for X∗∗. Therefore, X is always a (∗)-subspace of X∗∗.

Let R = R(BX , X∗∗) and R1 = R ∩ SX∗∗ . By Proposition 2.3.13, R is closed under scalar

multiplications. Therefore, R = FR1. By Proposition 2.3.13 again, we have

Proposition 7.2.1. R1 = D−1
2 (D2(SX)) = D−1

2 (HB[D(SX)]).

Proposition 7.2.2. If X is a Banach space X , then
(a) X is BRB if and only if R1 = SX∗∗ if and only if D2(SX) is a boundary for X∗∗.

(b) X is DBRB if and only if R1 = SX∗∗ .

(c) X has RSB if and only if span(R1) = X∗∗.

(d) X is ARB if and only if R1 = SX .

The following set has been introduced in [10]. Let

NA2(X) = {x∗∗ ∈ X∗∗ : x∗∗(x∗) = ‖x∗∗‖ for some x∗ ∈ NA(X) ∩ SX∗}.

It is easy to see that NA2(X) ⊆ R [10, Proposition 2.13]. The following is a mild improve-

ment.

Definition 7.2.3. We call a Banach space X is weakly Hahn-Banach smooth if every x∗ ∈
NA(X) has a unique norm-preserving extension to all of X∗∗.

Proposition 7.2.4. If X is weakly Hahn-Banach smooth then R = NA2(X).

Proof. Clearly, NA2(X) ∩ SX∗∗ = D−1
2 (D(SX)) ⊆ D−1

2 (D2(SX)) = R1. And if X is weakly

Hahn-Banach smooth, then R1 = D−1
2 (HB[D(SX)]) = D−1

2 (D(SX)) = NA2(X) ∩ SX∗∗ .

Remark 7.2.5. (a) In [10], this result is proved under the additional assumption that

BX∗ is w*-sequentially compact.

(b) Clearly, a reflexive space is BRB. On the other hand, if X is weakly Hahn-Banach

smooth and BRB, then it follows that X is reflexive. However, BRB does not charac-

terize reflexivity.
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Let A ⊆ X , then co(A) will denote the convex hull of A and aco(A) will denote the

absolute convex hull of A, that is, aco(A) = co(TA). We will need the following Lemma.

Lemma 7.2.6. Let A be a w*-compact convex subset of BX∗ , then acow
∗
(A) = aco‖·‖(A).

Proof. If F = R, since A is w*-compact and convex, aco(A) = co(A ∪ −A) is w*-compact,

and hence norm closed. Thus,

acow
∗
(A) = aco(A) = aco‖·‖(A).

If F = C, this follows from [31, Lemma 2.1]. We include the details for completeness.

Let D be the closed unit disc in C. Note that aco(A) = co(TA) = co(DA) as well. Given

δ > 0, we can find z1, z2, . . . , zn ∈ C such that D ⊆ Dδ = co{z1, z2, . . . , zn} ⊆ (1+ δ)D. Hence

aco(A) ⊆ co(DδA) ⊆ (1 + δ)aco(A).

Now since A is w*-compact and convex and co(DδA) = co(
⋃n

j=1 zjA), co(DδA) is w*-

compact, hence w*-closed. It follows that

acow
∗
(A) ⊆ co(DδA) ⊆ (1 + δ)(aco‖.‖(A))

and hence,

acow
∗
(A) ⊆ (1 + δ)(aco‖.‖(A)).

Since δ > 0 is arbitrary,

acow
∗
(A) ⊆ aco‖.‖(A)

The other inclusion is obvious.

Corollary 7.2.7. If A ⊆ BX∗ is a w*-compact convex set that is norming for X , then it is norming
for X∗∗ as well.

Proof. If A ⊆ BX∗ is w*-compact convex and norming for X , then acow
∗
(A) = BX∗ . From

the above lemma it follows that aco‖·‖(A) = BX∗ . Hence A is norming for X∗∗ as well.

Theorem 7.2.8. If x0 is a strong unitary in X , then it is also a strong unitary in X∗∗.

Proof. Let x0 be a strong unitary in X . Then D(x0) ⊆ SX∗ is a w*-compact convex norming

set for X . From the above corollary, it follows that D(x0), and hence D2(x0), is a norming

set for X∗∗.

Corollary 7.2.9. Any Banach space containing a strong unitary is BRB. And hence, each of the
following spaces is BRB :
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(a) C(K) and any subspace of C(K) containing an unimodular function, in particular, any
function space;

(b) `∞ and any subspace of `∞ containing the constant sequence 1, in particular, c;

(c) `1 and any subspace of `1 containing any of the canonical unit vectors.

Theorem 7.2.10. Reflexivity ⇒ BRB ⇒ DBRB ⇒ RSB and none of the converse holds.

Proof. It is clear that reflexivity ⇒ BRB ⇒ DBRB ⇒ RSB.

By Corollary 7.2.9, BRB 6⇒ reflexivity. Since c0 is DBRB, but not BRB, DBRB 6⇒ BRB.

Let X1 be ARB and X2 be BRB and let X = X1 ⊕∞ X2. We show that X is RSB, but not

DBRB. It follows from Lemma 6.3.5 that

R1 = [SX1 ×BX∗∗
2
] ∪ [BX∗∗

1
× SX∗∗

2
].

Thus R1 is a closed subset of SX∗∗ and if x∗∗1 ∈ SX∗∗
1

\ SX1 and x∗∗2 ∈ BX∗∗
2

\ SX∗∗
2

, then

(x∗∗1 , x∗∗2 ) /∈ R1. Thus, X is not DBRB.

Nevertheless, span(R1) = X∗∗. That is, X is RSB.

To see this, note that if (x∗∗1 , x∗∗2 ) ∈ SX∗∗ \ R1, then 1 = ‖x∗∗1 ‖ > ‖x∗∗2 ‖ and x∗∗1 /∈ X1. If

x∗∗2 6= 0, put u∗∗ = x∗∗2 /‖x∗∗2 ‖, and if x∗∗2 = 0, take any u∗∗ ∈ SX∗∗
2

. Then (x∗∗1 ,±u∗∗) ∈ R1

and (x∗∗1 , x∗∗2 ) ∈ co({(x∗∗1 ,±u∗∗)}).

We recall the following definitions from [7].

Definition 7.2.11. We say that x ∈ SX is :

(a) A rotund point of BX if ‖y‖ =
∥∥x+y

2

∥∥ = 1 implies x = y.

(b) An LUR point of BX if for any {xn} ⊆ BX the condition

lim
n

∥∥∥∥
xn + x

2

∥∥∥∥ = 1

implies xn → x in norm.

(c) An ALUR (resp. wALUR) point of BX if for any {xn} ⊆ BX and {x∗m} ⊆ BX∗ , the

condition

lim
m

lim
n

x∗m

(
xn + x

2

)
= 1

implies xn → x in norm (resp. in the weak topology).

We say that a Banach space X has one of the above properties if every point of SX has the

same property.

Notice that any x∗∗ ∈ X∗∗ \ X is in R if and only if it is not rotund in some direction in

SX . Indeed, we have
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Theorem 7.2.12. X is wALUR if and only if X is rotund and ARB.

Proof. We recall [7, Corollary 8] that x ∈ SX is a wALUR point of BX if and only if x is a

rotund point of BX∗∗ .

Let X be wALUR. Then X is clearly rotund. Now, let x∗∗ ∈ X∗∗ \ X with ‖x∗∗‖ = 1.

Then φBX
(x∗∗) = 2. If there exists x ∈ BX such that ‖x∗∗ + x‖ = 2, then x is not a rotund

point of BX∗∗ . It follows that x∗∗ /∈ R. Thus, R = X .

To prove the converse, let x ∈ SX . If x∗∗ ∈ BX∗∗ is such that
∥∥x∗∗+x

2

∥∥ = 1, then −x ∈
FBX

(x∗∗). Since R = X , x∗∗ ∈ X . Now since X is rotund, it follows that x∗∗ = x. Therefore,

x is a rotund point of BX∗∗ .

Remark 7.2.13. Consider the quotient space X = C(T)/A, whereA is the disc algebra. Then

it is known that X is an M -embedded space and X∗ = H1
0 is a smooth space [26]. It follows

that X is wALUR [6] and hence, X is ARB. This shows that an M -ideal need not be DBR

and an M -embedded space need not be DBRB [10].

Theorem 7.2.14. The following are equivalent :
(a) X is reflexive.

(b) X is WCG and BRB for every equivalent renorming on X .

(c) X is WCG and DBRB for every equivalent renorming on X .

(d) X is WCG and RSB for every equivalent renorming on X .

Proof. Clearly, (a) ⇒ (b) ⇒ (c) ⇒ (d). Since RSB + ARB ⇒ reflexivity and every WCG

Banach space has an LUR renorming [22, Theorem 11.20], (d) ⇒ (a) follows from Theo-

rem 7.2.12.

Question 7.2.15. Can the assumption that X is WCG be dropped or at least weakened?

Corollary 7.2.16. For a separable Banach space X , the following are equivalent :
(a) X is reflexive.

(b) X is BRB for every equivalent renorming on X .

(c) X is DBRB for every equivalent renorming on X .

(d) X is RSB for every equivalent renorming on X .

Remark 7.2.17. Since reflexivity is separably determined, the answer to Question 7.2.15

would be clearly positive if these properties were hereditary. It however follows from the

fact that any C(K) space is BRB (Corollary 7.2.9) that they are not. On the other hand, it is

easy to see that ARB is hereditary. In particular, if X is ARB, it does not contain isometric

copies of c0 or `1.
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Coming to stability results, it follows from results of Chapter 6 (Proposition 6.3.1(b),

Theorem 6.3.6, Lemma 6.3.16 and Theorem 6.3.17, in particular) that

Corollary 7.2.18. If {X1, X2, . . . , Xn} is a finite family of Banach spaces such that at least one Xi

is BRB/DBRB, then so is
⊕

`1
Xi.

Corollary 7.2.19. Let {Xα : α ∈ Λ} be a family of Banach spaces. Then
⊕

c0
Xα is DBRB if and

only if each Xα is DBRB.

Corollary 7.2.20. Let {Xα : α ∈ Λ} be a family of Banach spaces and 1 < p < ∞. Then
⊕

`p
Xα

is DBRB/BRB/ARB/RSB if and only if each Xα is such.

Remark 7.2.21. (a) It follows again from Corollary 7.2.18 that BRB or DBRB are not

hereditary properties.

(b) Since c0 is DBRB, but not BRB, there is no analogue of Corollary 7.2.19 for BRB.
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