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Chapter 0

Introduction

The main goal of this thesis is to study the topology of torus actions on manifolds

™ on algebraic varieties

and orbifolds. In algebraic geometry actions of the torus (C*)
with nice properties produce bridges between geometry and combinatorics see [Dan7y|,
[Odag8y] and [EaI33]. We see a similar bridge called moment map for Hamiltonian action
of compact torus on symplectic manifolds see [Buddll| and [GIo®]. In particular when-
ever the manifold is compact the image of moment map is a simple polytope, the orbit
space of the action. A topological counterpart called quasitoric manifolds, a class of
topological manifolds with compact torus action having combinatorial orbit space, were
introduced by Davis and Januskiewicz in [[II9I]. A class of examples of quasitoric man-
ifolds are nonsingular projective toric varieties, introduced by M. Demazure [[DemZd].
There are many properties of quasitoric manifolds akin to that of nonsingular complete
toric varieties. The combinatorial formula for the cohomology ring of a nonsingular com-
plete toric variety is analogous to the formula for quasitoric manifolds. Their K-theories
described by P. Sankaran and V. Uma in [SII03] and [EI04] are also similar. The sur-
vey [BEX| is a good reference for many interesting developments and applications of
quasitoric manifolds.

Inspired by the work of [[I.ITI] we generalize these quasitoric manifolds to quasitoric
orbifolds with compact torus action. We have studied structures and topological invari-
ants of quasitoric orbifolds. In addition, we have introduced a class of n-dimensional
orbifolds with Zg_l—action with nice combinatorial description. We have also given two
applications of quasitoric manifolds to cobordism theory. This section briefly intro-
duces the main ingredients of this thesis. We will meet all in much greater detail in the
following chapters.

We recall the definitions and topological invariants namely homology groups, co-
homology rings and Chern classes of quasitoric manifolds in Chapter M. A quasitoric
manifold M?" is an even dimensional smooth manifold with a locally standard action

of the compact torus T” = U(1)" such that the orbit space has the structure of an
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n-dimensional simple polytope. Cohomology rings of these manifolds can be computed
using equivariant cohomology [DJII]. As a special case, one obtain the cohomology
rings of nonsingular projective toric varieties without recourse to algebraic geometry.
Buchstaber and Ray [BRO| showed the existence of smooth and stable almost complex
structure on quasitoric manifolds. We present a different proof of this following [Eaddd].

In Chapter B we recall the definitions of small covers and orbifolds. The category
of small covers was introduced by Davis and Januszkiewicz [[LII]. Following them we
discuss some basic theory about small covers. The remaining sections of this chapter
describe the definition, tangent bundle and orbifold fundamental group of orbifolds
following [ATROA. Orbifolds were introduced by Satake [Bafid], who called them V-
manifolds. Precisely, orbifolds are singular spaces that locally look like the quotient of
an open subset of Euclidean space by an action of a finite group.

In Chapter B we study topological invariants and stable almost complex structure
on quasitoric orbifolds. We discuss equivalent definitions of quasitoric orbifolds, one is
an axiomatic definition of a quasitoric orbifold via locally standard action and the other
is constructive. Our constructive definition uses the combinatorial model (Q, N, {\;}),
where () is a simple polytope, N is a free Z-module of finite rank, ); is an assignment
of a vector in N to each facet F; of (Q satisfying certain conditions. Let N be the
submodule of N generated by the vectors A\;. We construct orbifold universal cover and

compute the orbifold fundamental group of quasitoric orbifold.

Theorem 0.0.1 (Theorem 3.2, [ESIO]). The orbifold fundamental group 9™ (X) of the
quasitoric orbifold X is isomorphic to N/]v

We compute the homology of quasitoric orbifolds with coefficients in Q. For this
we need to generalize the notion of C'W-complex a little. We introduce the notion of
q-CW complex where an open cell is the quotient of an open disk by action of a finite
group. We compute the rational cohomology ring of a quasitoric orbifold and show that
it is isomorphic to a quotient of the Stanley-Reisner face ring of the base polytope @,
Theorem B=2.

We show the existence of a stable almost complex structure on a quasitoric orbifold
corresponding to any given omniorientation. The universal orbifold cover of the qua-
sitoric orbifold is used here. As in the manifold case, we show that the cohomology
ring is generated by the first Chern classes of some complex rank one orbifold vector
bundles, canonically associated to facets of @), see Section BI0. We compute the top
Chern number of an omnioriented quasitoric orbifold. We give a necessary condition for
existence of torus invariant almost complex structure. Whether this condition is also
sufficient remains open. Finally we compute the Chen-Ruan cohomology groups of an
almost complex quasitoric orbifold.

In Chapter B we introduce some n-dimensional smooth orbifolds on which there



is ngl—action having a simple polytope as the orbit space. We call these orbifolds
small orbifolds. The classification problem of small orbifolds remains open. We show
that the orbifold universal cover of n-dimensional (n > 2) small orbifold is R". We
also show the space Z, constructed in Lemma 4.4 of [[XI9] associated to a simple n-
polytope @ (n > 2), is diffeomorphic to R™ if there is an s-characteristic function on @
(Theorem 3.3, [SarI0H]). The converse is an interesting open question. One application
of this result is the following. The space Z corresponding to the n-simplex (n > 2) is
homeomorphic to the n-sphere. So there does not exist any s-characteristic function of
n-simplex. Consequently there does not exist any small orbifold with the n-dimensional
simplex as orbit space when n > 2. We calculate the orbifold fundamental group of
n-dimensional small orbifolds. We compute the homology groups of small orbifolds in
terms of h-vector (see [[IX]) of the polytope. When @ is an even dimensional simple
polytope then small orbifolds over @) are orientable. We compute the cohomology rings
of even dimensional small orbifolds.

In Chapter B we compute the T?-cobordism group in the following category: the
objects are all 4-dimensional quasitoric manifolds and morphisms are T? equivariant
maps between quasitoric 4-manifolds. In this chapter we introduce a particular type of

polytope, which we call edge-simple polytope.

Definition 0.0.2. An n-dimensional convex polytope P is called an n-dimensional edge-
simple polytope if each edge of P is the intersection of exactly (n — 1) codimension one
faces of P.

The study of topology and combinatorics of these polytopes would be interesting.
However we have not dealt with these questions in this thesis.
We introduce the notion of isotropy function on the set of facets F(P) of an n-

dimensional edge-simple polytope P.

Definition 0.0.3. A function \: F(P) — Z"~! is called an isotropy function of the
edge-simple polytope P if the set of vectors {\(F,), ..., A(F;, _,)} form a basis of Z"*

whenever the intersection of the facets {F;,, ..., F;, |} is an edge of P.

Deleting a suitable neighborhood of each vertex of P we get a simple n-polytope Fg.
We construct an (2n — 1)-manifold with quasitoric boundary from simple n-polytope
Py and an isotropy function A of P. There is a natural T™!-action on these manifolds
with quasitoric boundary having P as the orbit space. We show that these manifolds
with quasitoric boundary are orientable and compute their Euler characteristic.

Now consider n = 2. Let m# : M — (@ be a quasitoric 4-manifold with the char-
acteristic pair (Q,n). Here @ is a simple 2-polytope and 7 is the assignment, called
characteristic function of M, of isotropy group to each facet of ). Suppose the number

of codimension one faces of @) is m. We construct an edge-simple 3-polytope P¢ such
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that Pc has exactly one vertex which is the intersection of m codimension one faces
and other vertices of P¢ are intersection of 3 codimension one faces. Extending the
characteristic function n we define an isotropy function A\ of Pg. The pair (Pg, A) helps

to construct an oriented T? manifold W with boundary
OW = M + k,CP? + k>CP

where k1, ko are some integers. Thus we obtain the following lemma and theorem.

Lemma 0.0.4 (Lemma 6.1, [§atI0d]). The T2-cobordism class of a Hirzebruch surface

18 trivial. In particular, oriented cobordism class of a Hirzebruch surface is also trivial.

Lemma 0.0.5. Any 4-dimensional quasitoric manifold is equivariantly cobordant to the
disjoint union I_IlICIP>2 for some 1, where the T2-action on different copies of CP? may

be distinct.

Theorem 0.0.6. The set {[CPEI] : [€leq € SL(2,Z)/ ~eq} is a set of generators of the

oriented torus cobordism group CGs.

In Chapter B, we give a new proof of the fact that the oriented cobordism class of
CP?**1 is trivial for each & > 0 (Theorem 5.1 in [Baridd]). The strategy of our proof
is to first construct an odd dimensional compact orientable manifold with boundary,
where the boundary is a disjoint union of three quasitoric manifolds. This involves
an adaptation of the usual combinatorial method for constructing quasitoric manifolds.
Moreover the combinatorial data is carefully chosen so that exactly one of the boundary
components is CP?**1 while the other two components are identifiable by an orientation

reversing homeomorphism.



Chapter 1

Quasitoric manifolds

1.1 Introduction

In these chapter we recall the definitions and topological invariants of quasitoric mani-
folds. We follow [OLTdT] for basic definitions, examples and a topological classification.
We compute the homology group of quasitoric manifolds following [DJ9I]. The next
two sections deal with the study of orientability of quasitoric manifolds and the concept
of connected sum of quasitoric manifolds respectively. The computation of the coho-
mology ring of quasitoric manifolds are explained following the work [XJAI]. The work
of Buchstaber and Ray [BROI] on the existence of smooth and stable almost complex
structure are the object of Section 4. Following this up one can show the existence of
Chern classes as an application of the stable almost complex structure and describe the

formulae for top Chern number.

1.2 Definition and examples

Quasitoric manifolds are essentially an even dimensional manifolds M?". The torus
T" = U(1)" action on M?" must be effective and locally resemble the standard action

of T on C™ up to an automorphism of T".

Definition 1.2.1. An n-dimensional simple polytope in R™ is a convex polytope where
exactly n bounding hyperplanes meet at each vertex. The codimension one faces of

convezx polytope are called facets.

The ready examples of simple polytopes are simplices and cubes. Through out the

thesis @ stands for simple polytope.

Definition 1.2.2. An action of T" on a 2n-dimensional manifold M>" is said to be

locally standard if every pointy € M has a T"-stable open neighborhood U, and a home-
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omorphism 1 : Uy — V', where V' is a T"-stable open subset of C" and an isomorphism

0y : T = T™ such that Y(t-x) = 0y(t) - Y(x) for all (t,x) € T™ x U,.

Definition 1.2.3. A T"-manifold M?>" is called quasitoric manifold over a simple poly-

tope Q if the following conditions are satisfied:

1. the T™ action is locally standard,

2. there is a projection map p : M>™ — Q constant on T™ orbits which maps every

I-dimensional orbit to a point in the relative interior of a l-dimensional face of Q.

Definition 1.2.4. A quasitoric manifold having a smooth structure such that the action

of torus is smoothly locally standard is called smooth quasitoric manifold.

Example 1.2.5. Consider the complex projective space CP? = (C3 —{0})/C* = §5/8S*.
Denote the coordinates on C3 by (21, 22, 23). So we may represent S° by the set

{lz1 + |22 + |2s” = 1}

and S by the subgroup {a - I3 : |a| = 1} of U(1)3 where I is a rank 3 identity matriz.

The points of T2 = U(1)3/S' and CP? can be identified to the class [ty : to : t3] and
[21 @ 2o : 23] respectively. The natural action of T?> on CP? and C? are the following
maps T? x CP? — CP? and T? x C2 — C2, defined by

([tl : t2 : tg], [Zl 129l 23]) — [tlzl : t222 : t323]

1.2.1
and ([t1 : to : t3], (21, 25)) — (tits~12), tatz~124) ( )

respectively. Clearly [1:0:0], [0:1:0] and [0: 0 : 1] are the only fived points of T?
action on CP?. Let U; = {[21 : 20 : 23] € CP? : 2z; # 0} for j =1,2,3 and

1 : Uy = C2, )y : Uy — C2, 43 : U — C2 (1.2.2)
be the maps defined by

P1([z1 1 22 1 23])) = (22/21,23/21), V221 : 22 ¢ 23]) = (21/ 22, 23/ 22)

and s([21 @ 29 1 23]) = (21/23, 22/ 23) (1.2.3)

respectively. The subsets Uy, Us and Us are T?-stable covering open subsets of CP%. The
maps Y1, Yo W3 are homeomorphisms. The map 11 satisfy the following relation.

W1ty s o c ta]- [21 0 22 1 28]) = ((taty '22) /21, (tat] '23)/21) = [ta, ts, ta]- (22/21, 23/ 21)
Let 61,69 and 63 are automorphism of T2 defined by

(51([t1 . tg . tg]) = [tg,tg,tl], (52([751 . tQ . tg]) = [tl,tg,tg] and 53([t1 ZtQ Ztg]) = [tl,tg,tg]
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respectively. Hence we get the following relation for all [ty : to : t3] € T?,

¢1([t1 :tQ . t3]- [21 LR 2’3}) = 51([t1 :tQ . t3])-’¢1([2’1 L 29 23]), v [21 [ I 2’3] S Ul,

So 1 is a d1-equivariant map. Similarly we can show that v; is a ;-equivariant map
fori=2,3. Hence the natural T? action on CP? is a locally standard action. The orbit
space can be identified to the triangle A% = {(|z1|%,|22|?) € R? : |52+ ||> < 1}. In
fact the projective space CP™ is a quasitoric manifold over the n-dimensional simplex
A" for each n.

Example 1.2.6. In example 23 we show that the projective space CP' is a quasitoric
manifold over the interval I' = {x € R : 0 < o < 1}. Then the space (CPY)" is a
quasitoric manifold over the standard cube I™. Here the torus T" action on (CPYH)™ is

the diagonal action.

By the definition 23 a zero dimensional orbit maps to a vertex of (). Since the
T™ action is locally standard, the fixed point sets are parameterized by the vertex set
of Q. Let F be a codimension k face of (). We denote its relative interior by int(F).
The space p~!(int(F)) is a trivial T *-bundle over p~!(int(F)). The isotropy group

T, :={teT": te =z} (1.2.4)

at each point z € p~!(int(F)) is locally constant on p~1(int(F)). Since p~1(int(F)) is

product of two connected sets and so,
T; =Ty for all points z,y € p~(int(F)). (1.2.5)

These common isotropy group is denoted by T%. The group T% is isomorphic to T*.
Hence the orbit of each point over the relative interior of codimension-k face is the
(n — k)-dimensional subtorus of T™.

Let F1,..., F,, be the facets of @), denoted by F(Q). So the isotropy subgroup of the
preimage p~!(int(F})) is the 1-dimensional subgroup T%, of T". Each F} is also a simple
polytope. Let M 32 ™= be the ’]I‘}j fixed subset of M?". Locally standardness of the
manifold M?" imply that the space p~1(F}) = Mjg(n_l) is a T 1 = 'I['"/']I‘%j manifold.
The T"! action on M ]2 (=1 4 locally standard and restriction of p on M ]2 (n=1) satisfy
the condition (2) of CZ3. Hence sz(nfl)

over F}, called the characteristic submanifold of M 2n corresponding to F};. The isotropy

is a 2(n — 1)-dimensional quasitoric manifold

subgroup ']1‘?;], may be identified to the elements of T" as

Tp = {(e¥™N7, ..., e?™i") e T" ; V r € R} (1.2.6)



Chapter 1: Quasitoric manifolds 8

for some primitive vector A\; = (A1j,...,Anj) € Z". The correspondence T?-}_ to the

vector A; is one-to-one upto a sign. Hence we can define a function
AL F(Q) = Z" by M(Fy) = Aj, (1.2.7)

called the characteristic function of M?". The vectors Aj’s are called the characteristic
vector corresponding to Fj.

Since @ is a simple polytope, the codimension-k face F' is the intersection of unique
collection of k facets F},,..., Fj,. Then the isotropy group T% is ']I'}@jl X ... X T’Z@jk. The
group T% is a direct summand of T", since comparing the action of T" on M 2 to the
standard action of T on C" we can conclude that the span of A; ,..., A, in Z" is a
k-dimensional direct summand of Z™. In particular, when unique collection of n facets
Fj, ..., F;, meet at a vertex of () the corresponding characteristic vectors A;,,..., A,

form a basis of Z™.

Example 1.2.7. Suppose in example 23 the projection p : CP? — A2 maps
[1,0,0] — (0,0) = 0O, [0,1,0] = (1,0) = A and [0,0,1] — (0,1) = B.

Hence the characteristic submanifolds are p~*(OA) = {[z1 : 29 : 0] € CP?}, p~(OB) =
{[21:0: 23] € CP?} and p~*(AB) = {[0: 2 : 23] € CP?}. Suppose

a=[1/vV2:1/v2:0], b=[1/vV/2:0:1/vV2] and ¢ =[0:1/v/2:1/V/2].

Then T2 = ’]I‘ZOA, ’IF% = T?)B and T? = TiB. Suppose the isomorphism T? =
U(1)3/81 is given by (t1,t2) — [t1 : t2 : 1. We can show that

’]I’?I = {(62”", e%") eT?:re R}, ']I'g = {(e%io, e%") eT?:re R}

and T? = {(?™", &*™0) € T? : r € R}.

Hence the characteristic function of CP? associated to the T2 action of example TZA is
the function \ : F(A?%) — Z? such that \(OA) = (1,1), A(OB) = (0,1), \(AB) = (1,0).

We give the definition of characteristic model combinatorially followed by the
construction of quasitoric manifold from this characteristic model. Let @ be an n-

dimensional simple polytope and F(Q) be the set of facets of Q.

Definition 1.2.8. A function § : F(Q) — Z" is called characteristic function if the span
of &(F},), ..., &(Fj,) is a k-dimensional direct summand of Z™ whenever the intersection
F;, n...NFj, is nonempty.

The vectors &; = £(Fj) are called characteristic vectors and the pair (Q,§) is called

a characteristic model.
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The orbit space of the standard T™ action on C" is the positive octant RZ,. Consider

the canonical projection p : T" x Ry — C™ given by
(t1, . ytn) =t X (21,...,2p) = ¢ —> (121, ... thzy) = tT. (1.2.8)

Let pc(t,z) = Z. The fiber over = € R" of the projection p. is the isotropy group of =
of the T™ action on C". Denote this isotropy group by T7. So we can identify C" with

the quotient space T" x Rg/ ~p, where the equivalence relation ~g is defined by
(t,x) ~o (s,y) if and only if 2 =y and ts~1 € T™. (1.2.9)

Let for each vertex v € @, C, = {p € F : F is a face of ) not containing v}. Let
U, be the open subset of Q complement to the set C,. Hence U, is diffeomorphic to
R%, as manifold with corner. We consider an identifications on faces of the product
’]T’?x U, similarly to the standard equivalence relation ~ for each vertex v. Gluing them

naturally one can reconstruct a quasitoric manifold from any characteristic model.

Theorem 1.2.9 (Subsection 1.5, [OIM]). A quasitoric manifold can be constructed

from a characteristic model.

Proof. Let @@ be a simple n-polytope and (Q,£) be a characteristic model. A
codimension-k face F' of the polytope () is the intersection Fj, N ... N Fj of unique
collection of k facets Fj,, ..., Fj, of Q. Let Z(F') be the submodule of Z" generated by
the characteristic vectors (F},),...,&(F},). The module Z(F) is a direct summand of
Z". Therefore the torus Tr := (Z(F) ®z R)/Z(F) is a direct summand of T". Define
Z(Q) = (0) and T¢q to be the trivial subgroup of T". If p € @, p belongs to relative
interior of a unique face F of Q).

Define an equivalence relation ~ on the product T™ x @) by
(t,p) ~ (s,q) if and only if p = g and s~ 't € Tp (1.2.10)
where F' is the unique face containing p in its relative interior. Let
M(Q, &) = (T" x Q)/ ~
be the quotient space. The natural left action of T™ on T™ x @ is given by
tx(sxp)r—tsxpforallt,seT" and p € Q. (1.2.11)

This action induces a natural action of T on M(Q,&). Then M(Q,§) is a T"-space.
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The projection onto the second factor of T™ x () descends to the quotient map

p: M(Q,€) — Q defined by p([t,p]) = p. (1.2.12)

So the orbit space of this T™ action on M(Q,¢&) is the polytope Q). We show that
the space M(Q,&) has the structure of a quasitoric manifold. The explanations are
discussed in the following paragraph.

Consider an open neighborhood U, of the vertices v of ) where U, is defined in the

paragraph before the statement of the theorem 9. Let

My(Q, &) :=p (U, = (T" x Uy,)/ ~ . (1.2.13)

Let the facets F},,..., F}, meet at the vertex v. So the facets of U, are Fj,...,F},.
Suppose ¢ : U, — R%, is a diffeomorphism such that ¢ sends the facets Fj,,..., F}, to
the facets B

{z1 = O}HRQO, ey {zn = O}QREO of RY,

respectively. Where z; = 0 is the j-th coordinate hyperplane in R" for j =1,...,n.
Let 6, be the automorphism of T™ corresponding to the automorphism of Z" ob-
tained by sending the basis vectors &;,,...,&;, to the standard basis vectors eq, ..., e,

of Z™ respectively. Since the quotient maps p and p, of equation ZH and XTA respec-

tively are continuous surjections and ¢ is a diffeomorphism, the following commutative
diagram ensure us that the lower horizontal map ¢, is a homeomorphism.
n 6UX¢ n n
(T" x Uy) ——— (T x R%)
| be| (1.2.14)
P
My(Q,§) —— cr

Again the commutativity of the following diagram show that the space M, (Q,¢&) is
T"-stable and T" action on M, (Q, &) satisfy the relation ¢, (t - z) = d,(¢) - ¢ (2).

T x (T" x U,) ~22X% n s (T x RE,)

]dxpl Idxml

T" x M, (Q,€) 2% T" x Cn (1.2.15)
M,(Q.6) " o

Where a, is the restriction of the T" action on M(Q,&) to the subset M,(Q,¢) and a,
is the standard T" action on C". Since {U,},ev(q) is an open covering of @, the T"
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stable subsets {M,(Q, &)} is an open covering of M (Q,&). From the diagram [CZTH we
get that every [-dimensional orbit in M,(Q,£) maps to a point in the relative interior

of a [-dimensional face of U,. Hence (Q,§) is a 2n-dimensional quasitoric manifold. [J

Definition 1.2.10. The manifold M (Q,£) is called the quasitoric manifold derived from
the characteristic model (Q,§).

Remark 1.2.11. The signs of the characteristic vectors {£;} in the characteristic model
do not affect the groups Tr. Hence they do not change the homeomorphism class of
M(Q,§). However the signs of the characteristic vectors &; affect the action of T™. If
the polytope of a characteristic model is replaced by a diffeomorphic polytope, we derive

the same quasitoric manifold modulo an equivariant homeomorphism.

In the following examples we use two notions, namely orientation and connected

sum of quasitoric manifolds which we discuss in the sections @ and L[4

Example 1.2.12. Let Q be a triangle A? in R%2.  The possible characteristic maps
are indicated by the following Figure 3. The quasitoric manifold corresponding to the

(0,1) (L1) (0,1) (1,-1)

(1,0) (1,0)
Figure 1.1: The characteristic models corresponding to a triangle.

first characteristic model is CP? with the usual T2 action. The orientation on CP? is
the standard orientation. The second correspond to the same T? action with the reverse
orientation on CP?, we denote it by CP’. The similar considerations can apply whenever
Q is an n-dimensional simplex A™. So the quasitoric manifold over A™ is either CP™
or CP".

Example 1.2.13. Suppose Q is combinatorially a square in R?. In this case there are
many possible characteristic maps. Some examples are given by the Figure 3.

The first characteristic pairs may construct an infinite family of 4-dimensional qua-
sitoric manifolds, denote them by M,? for each k € Z. The manifolds {M/,;l :k €Z} are
equivariantly distinct. Let L(k) be the complex line bundle over CPY with the first Chern
class k. The complex manifold CP(L(k) @ C) is the Hirzebruch surface for the integer
k, where CP(-) denotes the projectivisation of a complex bundle. So each Hirzebruch
surface is the total space of the bundle CP(L(k)®C) — CP! with fiber CP'. In [OdaZ3]
the author shows that with the natural action of T? on P(L(k) ® C) it is equivariantly
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(1, k) (1,-2)

(1,0) (1,0)

Figure 1.2: Some characteristic models corresponding to a square.

homeomorphic to M,? for each k. That is, with respect to the T?-action, Hirzebruch
surfaces are quasitoric manifolds where the orbit space is a combinatorial square and
the corresponding characteristic map is described in Figure 2.

Note that the second combinatorial model gives the quasitoric manifold CP? # CP?,

the equivariant connected sum of CP2.

Remark 1.2.14. Orlik and Raymond ( [OR7Q], p. 553) showed that any 4-dimensional
quasitoric manifold M* over 2-dimensional simple polytope is an equivariant connected
sum of some copies of CP?, TP and M,ﬁ‘ for some k € Z.

This classification result is used in Chapter B. In Chapter B we show that there do

not exist any combinatorial model corresponding to some simple polytope.

Lemma 1.2.15 ( [DaxZ8]). Suppose p : M?*™ — Q is a smooth quasitoric manifold.

Then there exists a continuous section s : Q — M?".

Proof. We give an outline of the proof. Suppose F is a smooth vector bundle of rank
k over a manifold M’. Let Ey denote the complement of the zero section. The positive
real numbers R act on F and Ey by fiberwise scalar multiplication. Consider the Rsq

1

action on the product Ey x [0, 00) defined by r(x,u) = (zr™",ru). So the quotient space

C+E = E() XRso [O, OO)

is a smooth bundle over M’ with fibers homeomorphic to S¥~! x [0,00). Denote the

image of (z,u) in CLE by [z, u]. The boundary of C E is the sphere bundle
Ey XRsg {0} = Eo/R>0.

There is a canonical projection map pr : CyE — E defined by pt[z,u] = ux which
is a diffeomorphism away from the zero section. Replacing E by C, F is called a real
blow-up. The projection pr may be called a real blow-down.

We can stratify M?" = | |M(F°, &) where F varies over all faces of Q. Then a
neighborhood of M (F°, ¢) in M?" is diffeomorphic to a R%*-bundle over M (F°, ¢), where
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k is the codimension of F. We start with the minimal strata (vertices) progressively
blow-up M?" along the strata of increasing dimension to finally get a smooth manifold
with boundary M. The precise description may be found in Chapter 4 of [Dax7y).
One can show that M is homeomorphic to T™ x ). The canonical blow-downs pt are
combined to give a continuous map p : M — M?". Now choose a continuous section

5:Q — M and compose with 1 to get a continuous section s : Q — M?". ]

Remark 1.2.16. We will show in Section IA that every quasitoric manifold has a
smooth structure. However the above lemma remains valid even if we drop the smooth-

ness assumption.

Corollary 1.2.17 (Lemma 1.8, [XI9T]). Suppose M>" is a quasitoric manifold with
characteristic model (Q,&). Suppose M(Q,&) is a quasitoric manifold derived from
(Q,€). Then M(Q,€) is equivariantly homeomorphic to M?".

Proof. Let s : Q — M?" be a continuous section. Consider the composition map

g1 T x Q L5 Tm 5 M2m 25 pp2n, (1.2.16)
where - is the T" action on M?". From the locally standardness of T™ action it is clear
that the fiber g~!(z) of each x € M?" is the isotropy group of . Hence the map g

factors through the maps p and f in following commutative diagram.

T" x Q —— (T" x Q)/ ~
gl fl (1.2.17)
M2n M2n

Clearly the map f is a bijection. The diagram gives that f is an equivariant map. Again

the locally standard property of T™ action ensure that f is a homeomorphism. O

Definition 1.2.18. Let M?" and M3" be quasitoric manifolds whose associated base
polytope is Q. Let § be an automorphism of T". A map f : M?™ — M2" is called a
0-equivariant homeomorphism if f is a homeomorphism and satisfies f(t-z) = 0(t)- f(z)
for all (x,t) € MZ™ x T™.

Two d-equivariant homeomorphisms f : MZ" — M2" and g : M?" — M3" are
said to be equivalent if there exist equivariant homeomorphisms h; : M ]2” — M jQ”, for

j =1, 2, such that the following diagram is commutative.

M12n f M22n

hll hgl (1.2.18)

M12n 9 M22n
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For the automorphism § we also define the §-translation of a characteristic model
(Q,€) to be the pair (Q,0" o £), where ¢’ is an automorphism of Z" induced by the
automorphism 4. We can determine quasitoric manifolds over a fixed polytope up to

d-equivariant homeomorphism class using the following lemma.

Lemma 1.2.19 (Proposition 2.6 of [BRO|). For any automorphism 6 of T™, the as-
signment of characteristic models defines a bijection between equivalence classes of -
equivariant homeomorphisms of quasitoric manifolds over Q and d-translations of char-
acteristic model (Q,§).

Proof. First we show that the inverse assignment is given by consisting the quasitoric

manifolds derived from characteristic models (@, ) and (@, 0’ o). To each d-translation

(Q,8) = (Q, 8 o &) we associate the d-equivariant diffeomorphism
(6 % Id)Y™ (T x Q) ~— (T" x Q)/ ~s,

where
(t,q) ~s (u,q) if and only if tu™" € &'(€)(Tp). (1.2.19)

Here F' is the unique face containing p in its relative interior. It is clear from the
definitions CZT0 and 2T that (0 x Id)™ descends to the original d-translation (@, &) —
(Q,8'(€)) of characteristic models.

Conversely, let f : M?" — M2" be a d-equivariant homeomorphism of quasitoric

manifolds over (). This diffeomorphism descends to a J-translation of characteristic
models. Let (§ x Id)™ be the J-equivariant homeomorphism derived from the corre-
sponding d-translation of characteristic models. The preferred section s1 : Q — Mf”
automatically extends to an equivariant homeomorphism S : (T" x Q)/ ~— MIZ" Let
sy = fosi. Since f is a -equivariant homeomorphism, s : Q — M2" is a section. The
section sy extends to an eqivariant homeomorphism Sy : (T" x Q)/ ~s— M2". Thus
foS1=520(dx Id)~. Hence f and (6 x Id)™ are equivalent, as required. O

1.3 Invariant closed submanifolds

Corresponding to the faces of the polytope @ there are certain T"-invariant submanifolds
of M?". If F is a face of Q of codimension-k, then define M(F,¢) := p~(F). Define
ZH(F) = Z")Z(F). Let gop : Z" — Z-(F) be the projection homomorphism. Let
J(F) C F(Q) be the index set of facets of @), other than F' in case k = 1, that intersect
F'. Observe that J(F') indexes the set of facets of the (n — k)-dimensional polytope F'.
Let {H; : j € J(F)} be the set of all facets of F. So H; = F'N F} for some facets F}j of
Q, j € J(F). If € is the characteristic function of M?" over Q, the assignment

fF(H]) = OF Of(Fj), j € J(F)7 (131)
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defines the characteristic function &g of the quasitoric manifold M (F,&p). With sub-
space topology on M (F, &), M(F,¢) is equivariantly homeomorphic to M (F,£r). Hence
M(F,€) is a quasitoric manifold of dimension 2n — 2k. One can show that if M’ is an
invariant closed submanifold of M?" then M’ = M (F, &) for some face F of Q.

Definition 1.3.1. When F is a facet of Q, the space M (F, &) is called a characteristic
submanifold of M>™ corresponding to F.

1.4 Face vectors and face ring of polytopes

The face vector or f-vector is an important concept in the combinatorics of polytopes.
Let £ be a simplicial n-polytope and f; be the number of j-dimensional faces of £. The
integer vector f(£) = (fo,..., fn—1) is called the f-vector of the simplicial polytope £.
Let h; be the coefficients of t"~* in the polynomial

(t— 1"+ 207t — 1) (1.4.1)

The vector h(£) = (ho, ..., hy) is called h-vector of £. Obviously hg = 1, and Xh; =
fn—1. The f-vector and h-vector of a simple n-polytope @ is the f-vector and h-vector
of its dual simplicial polytope Q* respectively, that is

f(Q) = f(Q%) and h(Q) = h(Q").

Hence for a simple n-polytope @,

F(Q) = (fos---s fa-1), (1.4.2)

where f; is the number of codimension (j + 1) faces of ). Then h,, = 1 and ET h; is the
number of vertices of ). The face vectors are a combinatorial invariant of polytopes,
that is it depends only on the face poset of the polytope.

Let wy, ..., wy, be the vertices of a simplicial complex £. Let R be a commutative
ring with unity. Consider the polynomial ring R[wy,...,w,,| where the w;’s are inde-
terminates. Let I be the homogeneous ideal generated by all monomials of the form

w;, ... w;, such that the set of vertices {wj,, ..., w;} does not span a simplex in £.

Definition 1.4.1. The face ring or Stanley-Reisner ring of £ with coefficients in R is
the quotient ring Rlwi, ..., wn]|/Ie, denoted by SR(L, R).

We define the face ring of a polytope Q. Let £ be the simplicial complex dual to Q.

Definition 1.4.2. The face ring or Stanley-Reisner ring SR(Q, R) of Q over R is the
ring SR(L,R). The face ring is graded by declaring the degree of each v;.
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1.5 Homology groups of quasitoric manifolds

Following [OJ4N] we compute the homology groups of quasitoric manifolds with co-
efficients in Z. The combinatorial type of the orbit space (essentially a simple convex
polytope) of quasitoric manifold makes the computation of the singular homology groups
easier. First we decompose the polytope into a disjoint union of relative open subsets
such that this collections correspond to the set of vertices of polytope bijectively. Cor-
responding to each of these relative open subsets we get an even dimensional cell. These
cells give a perfect CW-complex structure on the manifold. We decompose the polytope
using the notion of index of a vertex that will describe the degree of each cell. Though
there is no canonical choice of index, the homology group of any degree can be computed
up to isomorphism.

Let M2 & Q@ be a quasitoric manifold of dimension 2n. Suppose @ is a simple
polytope in R™. Choose a vector z € R™ which is not perpendicular to any line joining
two vertices of Q). Let ( : R™ — R be the linear functional defined by

((x) := (z,2z) for all z € R™. (1.5.1)

Where (-, -) is the standard inner product in R™. Choice of z distinguishes the vertices
linearly according to ascending value of . Since ( is linear, we make the 1-skeleton of
Q into a directed graph by orienting each edge such that ( increases along it. For each
vertex v of () the number of incident edges that point towards v is called its index,
denoted by f(v).

Let F, denote the smallest face of ) which contains the inward pointing edges
incident to v. Since @ is simple polytope and ( is a linear functional distinguishing
the vertices of @), such a face F, exist uniquely corresponding to each vertex v. Then
dim F,, = f(v) and if F’ is a face of @ with top vertex v then F” is a face of F,. By top
vertex we mean that f(v) > f(u) for all vertices u other than v. Let F, be the relative
open subset F,, obtain by deleting all faces of F}, not containing v. So Q = I_IUI?U, where
v run over the vertices of (). The space ﬁv is diffeomorphic to the positive octant Rgg).

Some combinatorial arguments show that the number of vertices v with f(v) - J
is hj for j = 0,...,n. For each vertex v put e, = pfl(ﬁv). By the locally standard

property at the fixed point corresponding to the vertex v we can show

ey = (Tp, x T x B))/ ~ = (TH) x RIY)/ ~y = DA, (1.5.2)

where D?(%) is an open disk in R*("), Hence e, is a 2f(v)-dimensional cell in M?".

So M?" can be given the structure of a CW-complex structure as follows. Define
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the 2k-skeleton
Moy = | J M(F,,¢) for 0<k <n. (1.5.3)
f(v)=k
Define Moy 1 = My, for 0 < k < n — 1, and Ms, = M?". The 2k-skeleton My, can
be obtained from My, by attaching those cells e, for which f(v) = k. The attaching
maps are to be described.
Define Z*+(F) := Z"/Z(F). Then

T(F)! := Z+(F) @ R/Z(F) = T"/T(F). (1.5.4)

Let ~ be the equivalence relation such that M(F,,¢) = F, x T(F,)*/ ~. The disk
EQHU)) can be identified with T(F,)* x F,/~ where

(t,p) = (s,q) if p=q and s~'t € T(F')/T(F,) (1.5.5)

where F’ is the minimal face of F, containing p whose top vertex is v. The attaching

map S2(®)-1 Mp;(,)—1 is the natural quotient map from
(F, — F,)) x T(F))* /~ = (F, — E,) x T(F,)*/~. (1.5.6)

Hence M?" is a CW-complex with no odd dimensional cells and with (k) = hy,

number of 2k dimensional cells. Hence by cellular homology theory

@D, Z if0<p<nandpiseven,

i (1.5.7)
0 otherwise.

HP(M%; Z) = {

1.6 Orientation of quasitoric manifolds

Let M2 By @ be a 2n-dimensional quasitoric manifold. From the previous section 3
we get that the top homology group of M?" is Z. So the manifold M?" is orientable.
In fact a choice of orientation on T and @ gives an orientation on M?". We fix the
standard orientation on T". Hence an orientation on () C R" determines an orientation
on M?",

Suppose the manifold M?" has a smooth structure. Clearly the isotropy group of a
characteristic submanifold is a circle subgroup of T™. So there is a natural S' action on
the normal bundle of that characteristic submanifold. Thus the normal bundle has a
complex structure and consequently an orientation. Whenever the sign of the character-
istic vector of a facet is reverse, we get the opposite orientation on the normal bundle.
An orientation on the normal bundle together with an orientation on AM?" induces an
orientation on the characteristic submanifold. A structure called omniorientation pro-

vides a combinatorial description for a stable complex structure on quasitoric manifold.
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Definition 1.6.1. An omniorientation on a quasitoric manifold M>" is a choice of

orientation for M*™ as well as for each characteristic submanifold of M>™.

If the polytope @ has m facets, there are 2! possible omniorientations for M?".

From the above discussion we get the following remark.

Remark 1.6.2. A choice of omniorientation is equivalent to a choice of orientation for

Q and a choice of sign for each characteristic vector.
We will apply the same terminology in the case of quasitoric orbifolds in Chapter B.

Example 1.6.3. Consider a triangle whose edges in counterclockwise order have char-
acteristic vectors (1,0),(0,1) and (1,1). The corresponding manifold is CP?.

Now consider the orientation reversing map on R? that maps (1,0) — (0,1) and
(0,1) = (1,—1). Then (1,1) — (1,0). Rotating the triangle observe that CP” has char-
acteristic vectors (1,0),(0,1), (1, —1). There are other choices of characteristic vectors
for CP” such as those given by applying an orientation reversing automorphism of R?

to the standard one.

D | C (1,-1)

(1,0) (1,0)

Figure 1.3: Omniorientation of CP? and TP’

1.7 Equivariant connected sums

Following [BRON] we define connected sum of polytopes to perform the equivariant
connected sums of quasitoric manifolds. Let @1, Q2 be two n-dimensional polytopes in

R™. Consider the polyhedral template
F={(z1,22,...,2,) ER":0< zg,...,2p and zo + ... + x, < 1}.

Let
Gj = {(21,72,...,7,) €[ 125 =0} for 2 < j <,

and
G1={(z1,22,...,2p) €l 1o+ ...+ 2, =1}
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So G1,Go,...,G, are the facets of I'. The sets I',Gq,...,G, are divided into two
halves, namely positive and negative halves, determined by the sign of the coordinate
x1. Let v and w are two distinct vertices of Q1 and Qo respectively. Considering the
local orientation at v,w € R"™, we order the facets of )1 meeting at v as F J’ and the
facets of Q2 meeting at w as Fj’ for 1 < j <n. Let C, and C,, are union of facets not
containing the vertices v and w of @)1 and (2 respectively. Suppose ¢q, is a projective
transformation which maps v to z; = 400 and embeds @); into I' such that following

two conditions are satisfied;

1. The hyperplane defining F’ ]’ is identified with the hyperplane defining G5, for each
1<j<n.

2. The images of the hyperplanes defining C, under the map ¢g, belong to the
negative half of I'.

Suppose v1,v2,. .., v, are vertices of C, such that there is an edge joining v and v; for

for each 1 < j < n. We may define the map ¢g, in the following way. Let
AL = {(=1,za,...,24) eR"™ . 0<29,...,2pand 2o + ...+ 2, < 1}.

Let gZ)’Ql be an affine equivalence mapping which sends v and vy, va, ..., v, to (1,0,...,0)
and vertices of A"! respectively. Consider the map A defined by A(z) = z/(1 — x1).
Then the composition ¢g, = Ao gb/Ql of maps qﬁ’Ql and A is the required projective
transformation. Similarly we can choose ¢g, such that it sends w to 1 = —oo and
identifies the hyperplanes defining F](’ and G, in such a way that the images of the
hyperplanes defining C,, belong to the positive half of I'. We define the connected sum
Q17w Q2 of Q1 at v and @2 at w to be the n-dimensional simple polytope determined
by all the hyperplanes in ¢g,(Cy) and ¢q,(Cyw) together with G; for 1 < j < n. The
connected sum is defined only up to combinatorial equivalence. Different choices for the
vertices v and w or the orderings for Fj’ and FJ(’ may affect the combinatorial type of
resulting polytope. When the choices are clear, we use the abbreviation Q1#Q2.

Let M(Q1,§) and M(Q2, 1) be two quasitoric manifolds over Q1 and Q2 with fixed
points x and y corresponding to the vertices v € (1 and w € Q)2 respectively. We state

the following Lemma and Theorem of Buchstaber and Ray without the proof.

Lemma 1.7.1 (Lemma 6.7, [BRO)). Up to o-translation, we may assume that & iden-
tifies T, with the j-th coordinate subtorus Tj, for each 1 < j < n.

Applying the previous lemma to both £ and p we can define a characteristic function

€u of Q1#Q2
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E(F) if Fis a facet in C,
Eu=19q Ty for F=Gjand1<j<n (1.7.1)
u(EF) if Fis a facet in C,,.

Theorem 1.7.2 (Theorem 6.9, [BRO)). The quasitoric manifold M(Q1#Q2,§,) is
equivariantly homeomorphic to the connected sum of M (Q1,&) at x and M(Q2, p) at y.

Example 1.7.3. Let the triangles Q1 = ABC and Qo = DEF be the orbit space of
quasitoric manifolds CP? and CP’ respectively. Suppose the characteristic vectors along
AB,BC,CA,DE,EF and FD are (1,0),(0,1),(1,1),(0,1),(1,—1) and (1,0) respec-
tively. To perform an equivariant connected sum we fix the vertices B and D of Q1 and
Q2 respectively. Cut off the corners at these vertices by open halves Hi and H!, (see the
Figure [T3). Straighten out the remaining portions of the lines AB', CB" to make them
perpendicular to AC. We do the same for the lines ED', FD". Now identify B'B"
with D'D" such that A, B’ = D', E lie on a line (say AE) and C,B" = D" F lie on
the line (say CF). So we get a quadrilateral Q = AEFC. Let us retain (1,0), (1,1)
and (0,1) as characteristic vectors for AE, AC and CF respectively. That means the
characteristic vector (0,1) of DE is mapped to (1,0) and the characteristic vector (1,0)
of FD is mapped to (0,1). These determine an orientation reversing isomorphism of
R2. Using this we get that the characteristic vector (1,—1) of EF should transform to
the characteristic vector (—1,1) for EF in Q. Thus the quadrilateral AEFC with char-
acteristic vectors (1,0),(1,—-1),(0,1),(1,1) as in the Figure represents CP?#CP2.

- - Hj Hy 7
L . C (0,1) r
& (0,1) (1,0)
> # 5 = (1,1) (-1,1)
\B' D'
(1,0)! 10,1) E—
A (1,0) E
P1 P2
P

Figure 1.4: Equivariant connected sum for CP? and CP?.

It is well known that CP*#CP? does not have any almost complex structure. This
example then shows that not every quasitoric manifold is a toric variety. Note that the
quasitoric manifold Mf, defined in example TZ13, is the equivariant connected sum
CP? # CP”.

Considering the omniorientation we can construct the omnioriented connected sum

of quasitoric manifolds similarly. The Figure 3 describe how to perform an omniori-
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(_17_1) #

(1,0)

Figure 1.5: Omnioriented connected sum for CP? and CP.

ented connected sum of CP? and @2.

1.8 Cohomology ring

We compute the cohomology ring of quasitoric manifold M?™ over simple n-polytope Q
following [DXM]. The main idea is to make use of the equivariant cohomology of M?"

with respect to the T™ action. Consider the Borel space
BQ := ET" X0 M?*"

of the T" action on M?". Where ET" is a contractible space and T" action on ET"
is free. Let 2 be the degree of each w; € SR(Q,Z). All homology and cohomology
modules in this section will have coefficients in Z. We show that the cohomology ring
H*(BQ,Z) is isomorphic to the face ring SR(Q,Z).

We study the Leray spectral sequence of the fiber bundle M?" — BQ — BT™.
The spectral sequence degenerates at Fy. Knowledge of the cohomology ring of BQ) and
BT™, together with the cohomology group of M?" is sufficient to deduce the cohomology
ring of M?". In our approach we use the localization principle of Atiyah-Bott [AB=d].

We show that M?2" is the union of 2n-dimensional disks centered around fixed points
of T" action in the following. Let £ be the simplicial complex associated to the boundary
of the dual polytope of ). Then there is a bijective correspondence between (n — 1)-
dimensional faces of £ and the vertices of ). Also @ is the cone on the barycentric
subdivision of £. So @ can be written as the union of cubes ), where v varies over the

vertices of Q). Recall the projection map p : M?" — Q. Define

M, = p_l(Qv)-

Then M?" = U, My. The space BQ has a corresponding decomposition as follows. We
regard the k-cube [0,1]* as the orbit space of standard k-dimensional torus action on

the 2k-disk

D = {(21, ) €CF 1 |z] <11 (1.8.1)
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Define
BQ, = ET" xqn M, ~ ET" x7x D"". (1.8.2)

Then BQ = |J, BQy. Let by, : BQ — BT" be the Borel map which is a fibration with
fiber M?". So we have a homomorphism b,* : H*(BT",Z) — H*(BQ,Z) induced by
by.

Theorem 1.8.1 (Theorem 4.8, [II|). The homomorphism b,* is a surjection and
induces an isomorphism of graded rings H*(BQ,Z) = SR(Q,Z).

Proof. Let F;,,..., F;, be the facets meeting at a vertex v of the polytope (). Then
BQ, = ET" x1n (ﬁ%) isa D" fiber bundle over BT". The associated complex vector
bundle is v, : ET™ xpn C* — BT"™. Regard BT"™ as the product of n copies of BU(1).
Let p; be the projection from H;‘L:1 BU(1) to the j-th coordinate. Denote the universal
complex line bundle over BU(1) by 71, Since the action of T" on C" is diagonal,
Yo = @;Pj(1n,00). That is pj(y1,00) corresponds to j-th coordinate line in C". So

without confusion, we may set
c1(p} (11,00)) = wi, € H*(BT"; Z).

Note that H*(BT",Z) = Zlwi,,...,w;,]. Since D" is contractible, H*(BQ,;Z) =
H*(BT™ Z) = Z|w;,, - -+ ,w;,|. We compute H*(BQ,Z) by gluing the spaces BQ, with
the Mayer-Vietoris argument. We need the cohomology of

BQg, = ET" xqu 0(D™") = ET" xn §21,

The fiber bundle b; : BQg, — BT" can be identified with the sphere bundle of the
vector bundle ~,. By the Whitney product formula we get that ¢,(v,) = w;, - - - w;

n*

Hence e := wj, - - - w;, is the Euler class of the sphere bundle b;.

n

Now consider the Gysin exact sequence for sphere bundles (see [MSZd))

-~ — H*(BQg,) - H*(BT™) e H*T2n(BT") LN H*T2"(BQg,) — - -
(1.8.3)
Since the map Ue is an injection in equation X33, by exactness of this sequence the

map b} is a surjection and one get the following commutative diagram

0 H*(BT") —, gy P get2(BQg) - 0

idl idi (1.8.4)

Wiq - Wiy,

Zlwiy, -+ w;,] Zwiy, ..., w;,]

Hence from diagram (C=X4) H*(BQs,) = Zlwi,, - ,w;,]/(wi, ... w;,). Now applying

the Mayer-Vietoris argument for cohomology the theorem can be obtained. O
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Let hy : N — N be the Hilbert function of the face ring SR(Q,Z). Stanley (Propo-
sition 3.2, [Sfa7d]) shows that

Eé;})fi F10y if k=21
by(k) =4 1 if k=1 (1.8.5)
0 if k£ is odd

Here f;’s and h;’s are f-vectors and h-vectors of () respectively defined in Section 4.
So the Poincaré series of SR(Q, Z) is X322 jhn (k). Using the relations between f-vectors
and h-vectors of () see [BPOA], one can show that there is an identity of formal power
series

(1= 2" (52 gbw (k) = Sphyt¥. (18.6)

Theorem 1.8.2 (Corollary 4.13, [OXT]). Let ¢ : M?™ — BQ be an inclusion of the
fiber. The induced map * : H*(BQ,Z) — H*(M?",7) is a surjection.

Proof. Consider the Leray-Serre spectral sequence of the fibration p : BQ — BT" with
fiber M?". The Er-terms of this sequence is EY'? = HP(BT"; H4(M?*")). Since BT"
is simply connected we have EY'? = HP(BT™) @ HY(M?"). The Poincaré series of the
FE,-terms is by definition

> (Y dimER9)R. (1.8.7)

k  pt+q=k

The Poincaré series of H*(BT") is 1/(1 — ¢2)". The Poinearé series of H*(M?") is
h(t) == ho + hit®> + ... + hpt®".

Hence, the Poinearé series of Ej is h(t)/(1 —t2)™. It turns out from Theorem X1 and
equation XM that the Poincaré series of Ey equals to the Poincaré series of H*(BQ) or
FE+. However since F is an iterated subquotient of Fy and they have the same Poincaré
series, we get the following equality; E5? = EX. Hence it follows that H*(BQ,Z) =
H*(BT",7Z) ® H*(M?",Z) as Z-modules. Thus the map * : H*(BQ) — H*(M?") is a

surjection. O

Recall that F(Q) is the set of facets of the polytope Q. Let m be the cardinality of
F(Q). Consider the standard local model (RZ, ) for C™, where € corresponds to the
assignment of standard basis elements of Z" to the facets of RY,. Let p, : C™ — RY,
be the projection map. Embed the polytope @ in RZ}, by the m;p dr: @ - R™ whe;e
the i-th coordinate of dx(q) is the Euclidean distance d(q, F;) of ¢ from the hyperplane
of the i-th facet F; € F(Q) in R™. Define the moment angle complex Z(Q) as follows.

Z(Q) = ;' (dr(Q)). (1.8.8)
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Let A : Z™ — Z" be the map of Z-modules which maps the standard generator e; of

Z™ to the characteristic vector &. Let K denote the kernel of this map. The sequence
0—K—2m 272" —0 (1.8.9)

splits and we can write Z™ = K & Z"™. The torus Tk := (K ® R)/K is a subtorus of

T™ and we have a split exact sequence
1 —Tg — T 251 51 (1.8.10)

Denote the Z-module Z™ by N. For any face F' of @ let N(F') be the submodule of
N generated by the basis vectors e; such that dz(F') intersects the i-th facet of RY), that
is the coordinate hyperplane {x; = 0}. Note that image of N(F') under A is precisely
Z(F), so that the preimage A~*(Z(F)) = K - N(F). Consider the exact sequence

K - N(F) N A zZ"

O="NmE) T NE )

—0 (1.8.11)

Since the characteristic vectors corresponding to the facets whose intersection is F
are linearly independent, it follows from the definition of K and A that K NN (F) = {0}.

Hence by the second isomorphism theorem we have a canonical isomorphism

K - N(F)

=K 1.8.12
NF) (1.8.12)
So the equation [T yields
N A 7z
0 K 0 1.8.13
— —>N(F)—>Z(F)—> ( )

We obtain the following split exact sequence of tori
0 — T — T(F;N)* — T(F;Z")* — 0 (1.8.14)

where T(F;Z")* is the fiber of p : M?" — Q and T(F; N)* is the fiber of p, : Z(Q) — Q
over any point in the relative interior of the arbitrary face F. It follows that M?" is a
quotient of Z(Q) by the above action of Tx. This action of Tk is same as the restriction
of its action on C™ as a subtorus of T™.

Denote the standard basis of N by {e; : 1 < j <m}. The dual N* := Homg(N,Z)
of N is the character group of T". That is any character is uniquely represented by
>_ajej where {e} : 1 < j < m} denote the basis of L* dual to {e;} and a; € Z. Denote
the irreducible representation of T™ corresponding to €} by (C(e;f). So the irreducible

representation of T™ corresponding to the character 3 aje} is C(3_ aje}) :== @); C(e)™.
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Define a line bundle v(F;) := Z(Q) xT, C(e}) corresponding to each facet F; of . The
following Lemma’s are proved in [XJ@]. We prove these Lemma’s in a different way
following [Paddd].

Lemma 1.8.3. ¢;(v(F})) = " (w;).

Proof. Note that
ET™ xm (Z(Q) x C(e7)) = ET™ xn (Z(Q) X1, C(ej)) = ET"™ xXn v(F).

Let x € M(F;,€) be a fixed point of T" action on M?". Then as T"-representations,
v(EF;)|e = C(&). The line bundle ET™ xpn C(£) over BT™ is equal to prf(v1,00). Let
7 :x <> M?" be the inclusion map. So there is an associated umkehrungs homomorphism
in equivariant cohomology 7, : H*(BT") — H*(BQ). Let b, : BQ — BT" is the
equivariant version to the collapsing map M?" + {z}. The map z, can be identified with
the map b,* : H*(BT") — H*(BQ). In Theorem [ we have identified z.c1(priy1,00)
with w; € H*(BQ). We consider the inclusion ¢ : M?" < BQ as a fiber of b,. Then we

have the following commutative diagram

v(F;) —— ET" x1n v(F;) ——— ET" x1a C(£))

(2

l l l (1.8.15)

N — BQ — BT".
Thus ¢ (v(F;) = *b*e1(pri(71,00)) = 5 (wi). O

Lemma 1.8.4. The line bundle @, v(F;)% over M?" is trivial if and only if the vector

(a1,...,am) belongs to the row space of the matriz of A.

Proof. Since v(F;) = Z(Q) x1, C(e}), Q,v(F;)* = Z(Q) x1, C(3>_ase;). This line
bundle is trivial if and only if the character ) a;e} restricts to the trivial character on
Tx. This holds if and only if ) aef(u) = 0 for all u € K = Ker(A). This is equivalent

to saying that (a1,...,a,) is a linear combination of rows of A. O
Corollary 1.8.5. >, a;t"(w;) = 0 whenever (a1, ...,am) is in the row space of A.

The above calculations in terms of characters imply that b,* : H2(BT") — H?(BQ)
can be identified with the map A* : (Z™)* — (Z™)*, where A* denotes the dual of the

characteristic map A. So we have the following short exact sequence,

0 — H2(BT") —2 H?(BQ) —“— H2(N)—0
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Let J be the homogeneous ideal in Z[wy,...,w,] generated by the polynomials
{€¢7 .= 3" ajwi|l <j <n}, where (aj,...,a;,) denotes the j-th row of A. The
element &7 can be identified with the image of the j-th generator of H?(BT"™) under A*.
Let J be the image of J in SR(Q,Z). Since ¢* : SR(Q,7Z) — H*(M?",Z) is onto and
J is belongs to its kernel, ¢* induces a surjection SR(Q,Z)/J — H*(M?",Z).

Theorem 1.8.6 (Theorem 4.14, [XIM]). Let M?" be the quasitoric manifold associated
to the characteristic model (Q,€). Then H*(M?";7) is the quotient of the face ring
SR(Q,Z) by J. That is H*(M*";Z) = Z[wy, . .., wn] /(T + J).

Proof. We know that the cohomology ring H*(BT"™,Z) is a polynomial ring on n gen-
erators. The face ring H*(BQ,Z) = H*(BT") ® H*(M?") as Z-modules. Also the map
b*: H*(BT",Z) — H*(BQ,Z) is an injection and 7 is identified with the image of b.*.
Thus H*(M?") = H*(BQ,Z)/J = Zwi, ..., wy]/(T + J), where T is an ideal defined
in definition 2. O

1.9 Smooth and stable complex structure

In Section 6 of [BROI| the authors describe the existence of smooth equivariant con-
nected sum operation for quasitoric manifolds. In this section we follow the paper BRI
and the lecture note [Paddl]. We will realize the quasitoric manifold M?" as the quo-
tient of an open subset of C™. We follow the notation of Section [X. Identify R™ with
the space of functions R7(@). Consider the thickening W C RZ, of the image dr(Q),
defined by B

W= {f:F(Q) — Rxolf(0) € £r(Q)} (1.9.1)

where £7(Q) denotes the face lattice of Q). Let Vy be the n-dimensional linear subspace
of R™ parallel to dr(Q) and VQL be its orthogonal complement in R™. The group
G := exp(VQL) acts naturally on R™ and W by coordinatewise multiplication. We want
to produce a thickening @ C W of dz(Q) which will be close to a G principal bundle

over dr(Q).

Lemma 1.9.1 (Lemma 5.1, [Baddl]). The tangent spaces to the orbits of G-action on

R™ form an integrable distribution.

Proof. Let (yi1,...,Ym) be the standard coordinates on R"™. Let % be the binary
operation of coordinatewise multiplication of two vectors in R™. Let the vectors
¢j =(¢jy,--,6¢,), 1 <j<m—n, form a orthogonal basis for the subspace VQL of R™.
Suppose ¢ is any fixed point in R™ with coordinate vector y(q) = (y1(q),- .., ym(q)).
Then the vectors y(q) * ¢j, 1 < j < m —n, span the tangent space to the orbit through
q of G-action. Clearly the Lie bracket of any two vector fields y(q) * ¢; = Zyi(q)cjia%i
and y(q) * ¢, = Zyickia%i is zero. Thus the distribution is integrable. O
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Definition 1.9.2. We will denote the distribution consisting of tangent vectors to orbits

of G-action on R™ by x.

Consider the following decomposition of the space W as in [BRI|. Observe that
each point ¢ € @ determines a function dr(q) : F(Q) — R, where d(q, F;) is the
Euclidean distance between p and the hyperplane containing the facet F; € F(Q) for
i =1,...,m. These maps produce an embedding dr(Q) C R™ of ). For any subset
G(Q) C F(Q), we realize R(@) as a subspace of R7(@) by choosing those coordinates y;
to be zero for which F; € F(Q) — G(Q). Let F be a face (may be empty) of Q. Denote
the set of facets of @ that contain F' by Fp. Let Gp = F(Q) — Fp. Then W is the

: gr
union of open cones (JRf).

Lemma 1.9.3 (Lemma 5.2, [Baddd]). For any face F' of Q the orbits of G-action define

a foliation on Riﬁ.

Proof. Clearly the open cone ]Riﬁ is an invariant subset under the G-action. Let ¢ € Rg’g
be any point. Let B be a matrix whose row vectors ¢; form a basis for V(j. Consider
the matrix B(q) whose rows are y(gq) * ¢;. Then the row vectors of B(q) span the vector
space x(q). Denote the columns of the matrix B by 5;, 1 < i < m. Then the i-th
column of B(q) is y;(q)B;. This Lemma is clear if F' is an empty face.

Now suppose F' is a vertex v of Q). Let dr(v) = ¢q. Then exactly n coordinates of
y(q) are zero. Without loss of generality we may assume that the facets Fi,..., F, of
@ meet at v. So we get that y1(¢) = ... = yn(q) = 0. Note that the vectors uy, ..., u,
tangent to the edges of dz((Q)) meeting at ¢ form a basis of V. By our assumption each
vector u; has 0 in the first n positions except for the i-th position. A vector z belongs

to ch- if and only if it satisfies the following system of linear equations;

z-u; =0, foreach1l<j <n. (1.9.2)

Let eq,...,en be the standard basis of R™. Solving the above system we get a basis
Cly. -y Cm—n Of Vé‘ where ¢ has the form ¢y, e1 +... + ¢k, en +€pyn for 1 <k <m—n.
Hence we can assume that 5,41,..., By are linearly independent. Since the coor-

dinates {y;(q) : n + 1 < i < m} are each positive we get Yn+1(q)Bn+1s-- - Ym(q)Bm
are linearly independent. Hence B(q) has the rank m — n. Therefore the integrable
distribution x has constant rank and corresponds to a foliation.

The argument for faces of higher dimension is similar and follows from the zero

dimensional case. O

Lemma 1.9.4 (Lemma 5.3, [Baddl]). The integrable distribution x forms a foliation
on a neighborhood W of W in R™.

Proof. 1t is enough to show that the distribution x has constant rank m —n in a neigh-

borhood of each point ¢ in Riﬁ where F ; Q is a face of Q). Without loss of generality
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we may assume that y;(¢) > 0 for all ¢ > n + 1 and that B,41,..., [0, are linearly
independent. Let U be a small open ball in R™ around ¢q. Let s be any point in U.
Then we may assume that y;(s) > 0 for all i > n + 1. Hence yn41(8)Bnt1s- - Ym(S)Bm

are linearly independent. Hence the vector space x(s) has the rank m — n. O
Lemma 1.9.5 (Lemma 5.4, [Baddl]). The orbits of G-action are transverse to dr(Q).

Proof. Let g be a point in dr(Q) with coordinate vector y(q). Then a tangent vector
to the orbit of G-action through ¢ has the form ¢ * y(q) where ¢ = (c1,...,¢m) € Vé‘.
The inner product (c,c* y(q)) = > c?y;(g). This is a strictly positive quantity. Thus
the set x(q) () Vg is singleton. Since x(¢) and Vi have complementary dimensions, they

are transversal. O
Definition 1.9.6. Define Q to be the union of all G orbits that pass through dr(Q).
Lemma 1.9.7 (Lemma 5.5, [Boddi]). The space Q is an open subset of RY,.

Proof. Let y € Q and X, denote the G orbit through y. By definition of Q, X, meets
dr(Q) at some point y;. Let a be any path in X, from y; to y. Let T be a transversal
to the foliation y on W at y. Let Q := )/NVﬂ(VQ + y(q)) where ¢ is any point on dz(Q).
Since @ is transversal to x at i1, there exists small open set U; C é around y; which
maps diffeomorphically onto a small open set U C T around y via the holonomy of the
foliation y along «. Note that each leaf of x that intersects W lies completely in W.
Hence the holonomy of y along o maps Uy Ndz(Q) onto U N W. Thus there exists a
small foliation chart X C W around y such that every plaque in X N'W lies in a leaf
that hits d7(Q). Therefore the neighborhood X N W of y in W is contained in Q. Thus
Q is open in W. Since W is open in RY, so is the space Q. O

Let Oy, be the origin of R™. Let Q' be a small tubular neighborhood of dz(Q) in
Q such that:

1. @' is diffeomorphic to the product of ) x S where S is an open neighborhood of
the identity in G,

2. @' is bounded and the Euclidean distance from Q' to O,, is positive.

Being a foliation local triviality is provided and global triviality follows from contractibil-
ity of dz(Q). Denote the restriction of the foliation y on Q' by the same.

Consider the group T = G x Tg. So T is a subgroup of (C*)™. Let 2’ := p;1(Q').
The map ps : 2’ — Q' is smooth and transversal to . Also Tk acts on Z’ freely. These
two fact induce a foliation, say x’, on Z’. Let M be the leaf space of this foliation. In
fact this is a fiber bundle over M. From the choice of Q" we get that each fiber of Z’
over M is diffeomorphic to S x Tk where S is an open neighborhood of the identity in
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G. We use Lie groupoid theory to show a smooth structure on M. Now we give the
definition of Lie groupoid following [ATR{TA].

Definition 1.9.8. A Lie groupoid G consists of two smooth Hausdorff manifolds, one
is a set of objects Gy and another is a set of invertible arrows Gi, together with the

following smooth maps where the maps s,t are submersions.
1. The source map s : Gy — Gy which assigns each arrow g to its source s(g).

2. The target map t : G — Go which assigns each arrow g to its target t(g). For an
arrow g € Gy, we write g : y — x to indicate that s(g) =y and t(g) = x.

3. The composition map ¢ : Gy X (s,t) G1 — G1, where
G X (s,t) G = {(gah) €G1xG1: S(h) = t(g)}v

is defined in the following. If g : x — y and h : y — z are two arrows then we
can define their composition arrow hg : © — z. That is the composition map ¢ is

defined by ¢(g,h) = hg and is required to be associative.

4. The identity map i : Gy — G1 such that si(z) = x = ti(x) and gi(z) = g = i(y)g
forallx,y € Gy and g € Gy with g:x — y.

5. An inverse map u: G1 — Gy, written by u(g) = g~ !

1

, 1s a two-sided inverse for the

composition. That is, if g : & — y then g~' : y — x such that g~'g = i(z) and

99~ =i(y).

Example 1.9.9. Let M be a connected manifold. Then the fundamental groupoid I1(M)
of M is the groupoid with the space of objects II(M )y = M and each homotopy class g

of paths from x to y is an arrow g : x — .

Example 1.9.10. Let R be a Lie group which acts smoothly on a manifold M from the
left. Define a Lie groupoid K x M by setting (R X M)o =M and (RAx M); = 8 x M,
where the source map s : R x M — M 1is the projection onto the second factor and the
target map t : K Xx M — M 1is the group action. Let g : x1 — kix1 and h : x9 — koxo
be two arrows in (& X M)y such that kix1 = xo. The composition map is defined by
hg : ©1 — (koki)xi. The identity map i : M — K x M is defined by i(z) = (1k,x).
This groupoid is called the translation groupoid associated to the group action. The unit
groupoid is the translation groupoid for the action of the trivial group. Also by taking

M to be a point we can view any Lie group K as a Lie groupoid with a single object.

Definition 1.9.11. Let G be a Lie groupoid with the set of objects Gy and the set of
arrows G1. For a point x € Gy, the set of all arrows g : © — x is a Lie group. Denote

it by Gu, called the isotropy group at x. The set ts~'(x) of targets of arrows out of x
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is called the orbit of x. The orbit space |G| of G is the quotient space of Gy under the
equivalence relation x ~ y if and only if x and y are in the same orbit. Conversely, G

is called a groupoid presentation of |G]|.

Definition 1.9.12. A Lie groupoid G is called proper if the map (s,t) : G1 — Gy X Go

1S a proper map.

Note that in a proper Lie groupoid G, every isotropy group is compact (see Propo-
sition 1.37 of [ATRUZ]).

Theorem 1.9.13 (Theorem 5.6, [BEaddl]). The leaf space M of the foliation x' can be
identified with the quasitoric manifold M>™. Thus M?" has a smooth structure.

Proof. Let G be the Lie groupoid with the set of objects Go = Z’ and the set of arrows
G ={(z,9):2z€ 2, ge Y, z-g € Z'}. Since the group G acts on R™ coordinatewise
and Tx is compact, this is a proper Lie groupoid. Clearly isotropy group of each
x € G is trivial. So the set ts~!(z), the orbit of x in G, is diffeomorphic to S x Tx
for each € Gy. That is ts_l(q:) the leaf of the foliation Y’ on Gy. Thus M is the
orbit space of G. So there exists an embedded submanifold U, transversal to ts~!(z)
at x and a neighborhood S,, C S of identity in G such that the map U, x S, — Gy
given by the action is diffeomorphic onto its image. So the space M has a natural
smooth structure (see Chapter 5, [MMO3]). Topologically M can be identified with
the quotient Z(P)/Tk that is M?". As the T™ C (C*)™ action on Z’ is smooth, the
induced T™ action on M is smooth. Hence M is a smooth quasitoric manifold with
same characteristic pair. Therefore by the classification result X114 it is equivariantly
homeomorphic to M?". O

The following Theorem was first proved by Buschtabar and Ray in [BRII|. We give
a different proof following the lecture note [Eaddd|.

Theorem 1.9.14. A quasitoric manifold M?" has a stable complex structure.

Proof. Let T Z' be the tangent bundle of Z’. T acts naturally on 7 Z’. Define the space
D := TZ'/Y, so that a point of D is a field of tangent vectors to Z’, defined along
one of its fibers, and invariant under Y. Let U denote the subbundle of 7Z’ formed by
vectors tangential to the fibers of Z’ over M. Then T acts on ¢ and define R =U/Y.
The arguments of Atiyah [BIiRd] apply, with complex analytic replaced by smooth.
Therefore D has a natural vector bundle structure over M?" and R is a subbundle of D.
Moreover the following sequence of vector bundles, where 7M?" denotes the tangent

bundle of M?", is exact.

0—+R—=D—TM" =0 (1.9.3)
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The standard complex structure on C™ restricts to a complex structure J on T Z’.
The action of T commutes with J. Thus D inherits a complex structure, which we
again denote by J.

Let 7 denote the Lie algebra of Y. Since every fiber of Z’ can be identified as a Lie
groupoid to a neighborhood of the identity in T, and Y is commutative, following [AZIn]
we obtain that R is isomorphic to T x M?". Thus we get a complex structure on
TM?" @ (R?™m=2n x M?7) i.e. a stable complex structure on M?". ]

Remark 1.9.15. Note that each omniorientation determines a stable complex structure
by the above procedure. That is there is a canonical choice of stable complex structure

only if omniorientation is fixed.

The space T Z’ splits naturally into a direct sum of m complex line bundles cor-
responding to the complex coordinate directions. These directions correspond to the

facets of Q). We get a corresponding splitting D = @ v(F;).

1.10 Chern classes

The existence of stable almost complex structure on M?" implies that Chern classes

can be defined. These classes depend on the choice of omniorientation on M?™.

Definition 1.10.1. The total Chern class of an omnioriented quasitoric manifold M>"
is defined to be the total Chern class of its stable tangent bundle D, ¢(T M?") := ¢(D).

Since D = @ v(F;), by the Whitney product formula we obtain

m m

o(TM?) =[]+ ca(w(F))) = [ [ (1 + wi). (1.10.1)

i=1 =1

Note that in our notation, w; depends on the characteristic vectors \; and if we want
to compare different omniorientations the signs of w;s have to be adjusted with respect
to some fixed choice.

From the combinatorial information of the combinatorial model we can calculate
the Chern numbers of M?" by localization. In a different approach, Panov [Pan(l]
uses results from index theory to give a beautiful formula for the x,-genus of M I To
present the formula we need to first introduce some notation.

Suppose v is a vertex of simple polytope @) which is the intersection of n facets
F; ..., F;,. To each facet Fj, assign the unique edge Ej such that E N Fj, =v. Let
er be a vector along Fj with origin v. Order the facets at v such that eq,...,e, form
a positively oriented basis of R™. The characteristic vectors associated to these facets
are also ordered accordingly. Adopting this convention on ordering for each vertex, we

make the following definition.
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Definition 1.10.2. The sign sign(v) of a vertex v = F;; N...N F;, is defined to be the

determinant of the n x n matriz Ay = [Aiy - A, |-

Let E be an edge of (). Recall the module Z(FE) from Theorem ITZ9. Let a be a
generator of the module Z(E)* := {v € Z" | (v,w) = 0Yw € Z(E)}. We refer to a as
the edge vector corresponding to F. It is determined up to choice of sign. For a given
omniorientation, the sign of o may be locally fixed at a vertex v = F;, N...N F;, of
E = F,,N...NF;, by requiring that (c, A;;) > 0. Then each vertex has n well defined

edge vectors oy, ..., a, (ordered according to the convention discussed above).

Definition 1.10.3. Let n € Z™ be a primitive vector such that {(a,n) # 0 for any edge
vector a of Q). Then define the index of a vertex v = F;, N...NF;, of Q with respect to

n to be
ind,(v) := #{1 < k < n| (o, n) <0}

Theorem 1.10.4 (Theorem 3.1, [Bandl)). Let M?" be an omnioriented quasitoric man-
ifold. For any primitive vector n € Z™ such that (ag,n) # 0 for any edge vector oy, of
Q, the xy-genus of M*" may be calculated as

() = ()" sign(v).
v
For the values 1,0, 1 of y the x,-genus specializes to the top Chern number, the Todd
genus and signature or L-genus of M?" respectively. Thus we readily obtain formulae
for these important invariants from the above theorem. For instance, formula for the

top Chern number of quasitoric manifold M?" over Q is,

cn (M) =) " sign(v). (1.10.2)
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Small covers and orbifolds

2.1 Introduction

The category of small covers were introduced by Davis and Januszkiewicz [[OI9]. Fol-
lowing the paper [[LI4] we discuss some basic theory about small covers.

Orbifolds were introduced by Satake [Safhd], who called them V-manifolds. Orb-
ifolds are singular spaces that are locally look like as a quotient of an open subset of
Euclidean space by an action of a finite group. Following [ALRIZ|, we provide a def-
inition of effective orbifolds. We recall the tangent bundle and Orbifold fundamental

group of an orbifold.

2.2 Small covers

Small covers are real analog of quasitoric manifolds. Let Ng be an n-dimensional man-
ifold and p : Z§ x R™ — R" be the standard action.

Definition 2.2.1. An action n : Z5 x Ny — Ny is said to be locally standard if the
followings hold.

1. Every pointy € Ny has a Zy-stable open neighborhood Uy, that is n(Z5 xUy) = U,,.

2. There exists a homeomorphism ¢ : Uy, — V, where V is a Zy-stable (that is
p(Z5 x V) =V ) open subset of R™.

3. There exists an isomorphism &y : 25 — 7§ such that ¥(n(t,x)) = p(oy(t), ¢ (z))
for all (t,x) € Zy x U,,.

Definition 2.2.2. A closed n-dimensional manifold Ny is said to be a small cover if

there is an effective Z4-action on Ny such that

1. the action is a locally standard action,

33
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2. the orbit space of the action is a simple polytope.

Example 2.2.3. Suppose T' = {(x,y) € R? : |z|> + |y|? = 1} is the unit circle in R2.
Let 1 be a line in R? passing through the origin. The group Zs acts on T by a reflection
along the line l. Denote this action by

12 Zo x TV — T 2.2.1
P

Clearly the orbit space is an interval and the action is locally standard.

Example 2.2.4. Consider the n-fold product T* = (T')" C (R?)". An action of 7%
defined on T™ by

pn((gla.927 cee >gn)> (t1>t27 o 7tn)) - (Ph (glatl)a < Pl (gna tn))7 (222)

where l; is a line belongs to the i-th component of (R?)", fori=1,2,...,n. The action
Pn 18 locally standard and the orbit space is the standard n-cube in R™. So T™ is a small

cover over the n-cube.

Example 2.2.5. The natural action of Zy defined on the real projective space RP™ by

(915 9n) - [T0, 21, - 0] = [0, G121, -+, Gnn] (2.2.3)

18 locally standard and the orbit space is diffeomorphic as manifold with corners to the

standard n-simplex. Hence RP" is a small cover over the n-simplex A™.

Remark 2.2.6. We can define an equivariant connected sum of small covers follow-
ing the Section [ of Chapter M. The equivariant connected sum of n-dimensional
finitely many small covers is also a small cover. For example, the connected sum
RP"#RP"# ... #RP" of k copies of RP" is a small cover over the connected sum
AN HNAT (K times) of AT

Let F(Q) = {F1,...,Fy} be the set of facets of a simple n-polytope Q). We denote
the underlying additive group of the vector space I} by Zj.

Definition 2.2.7. The function 5 : F(Q) — F4 is called Zsa-characteristic function on
Q if the span of {B(F},),...,B(Fj)} is an l-dimensional subspace of F5 whenever the
intersection of the facets Iy, ..., Fj is nonempty.

The vectors B(Fj) = p; are called Zy-characteristic vectors and the pair (Q,[) is

called Zo-characteristic pair.

We show that associated to a small cover there exists a Zs-characteristic pair. Then

we construct a small cover from a Zs-characteristic pair.
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Let ¢ : Ny — @ be a small cover over n-polytope (). By the locally standard
property of the Zj-action on Ny we can show that each Np, = ¢L(Fj) is a connected
(n — 1)-dimensional submanifold of Ny for j = 1,...,m. The submanifold NV F; s fixed
pointwise by the subgroup G; (= Z3) of (Z2)". So we can correspond each facet F}j to
the subgroup G;. Let §; € (Z2)"™ be the nonidentity element of G;. Hence we can define
a function

B F(Q) — F5 by B(F;) = p;. (2.2.4)

If the intersection of the facets Fj,, ..., F}, is nonempty then F' = F; N...NF}, is a
codimension-k face of Q. Then the isotropy group G of the submanifold ¢~!(F) C Nj
is the subgroup of Z" generated by f3;,,...,3;,. Let v be a vertex of I' and y = s Hw).
Comparing the action of Z% on a Zj-stable neighborhood of y in Ny to the standard
action we get that G is a k-dimensional subspace of F3. So we can assign a unique
subgroup G to each face F' of Q. Hence (@, 3) is a Zy-characteristic pair.

Let (@, B) be a Zy-characteristic function. Let G be the subgroup of Z% generated
by {Bj.,...,B;} whenever F' = F; N...N Fj,. Define an equivalence relation ~, on
Zy x @Q by

(t,p) ~, (s,q)if p=qand s—t € Gp (2.2.5)

where F' C @ is the unique face whose relative interior contains p. Let

N(Q,B) = (Z3 x Q) ~=

be the quotient space. Following the proof of the theorem X9 we can show that the
quotient space N (@, 8) is a manifold. The action of Z by the left translations descends
to a locally standard Z%-action on N(Q, ). The projection onto the second factor of
Zy x @ descends to a projection ¢g : N(Q, ) — Q. Hence N(Q, ) is an n-dimensional

small cover over Q).

Theorem 2.2.8 (Proposition 1.8, [I4]). Let ¢ : Ny — Q be a small cover over Q
and the function B : F(Q) — F4 defined in be its Zo-characteristic function. Let
sg: N(Q,B) = Q be the constructed small cover from the pair (Q,3). Then there exists
an equivariant homeomorphism from Ns to N(Q, B) covering the identity over Q). Hence

small cover is determined up to equivalence over @QQ by its Zo-characteristic function.

Remark 2.2.9. The constructive definition of small cover give an idea to introduce the

notion of small orbifolds, see Chapter .

Example 2.2.10. Let Q? be the standard 2 simplex in R%2. The only possible Zs-
characteristic vectors are described by the Figure 2. The product Z% x Q2 is 4 copies
of Q2. Identifying the faces of Z3 x Q* according to the equivalence relation ~, we can
show that the small cover N(Q?, 3) is the real projective space RP?. By theorem ZZ3,
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B2
(0,1)

Figure 2.1: The Zs-characteristic function corresponding to a triangle.

we can show that the small cover N (A", 5) corresponding to the Za-characteristic pair

(A™, B) is equivariantly homeomorphic to RP™.

Remark 2.2.11. Suppose A is the characteristic function of a 2n-dimensional quasitoric
manifold N = N(Q, \). Consider the involution 7 on T™ x Q defined by (t,p) — (t~1,p).
The fized point set of T is Zy x (). The involution T descends to the involution T on
N(Q, ) with the fized point set homeomorphic to N(Q, ), where 8 : F(Q) — Fy is
the mod 2 reduction of X\ : F(Q) — Z™. For example, the fixed point set of the complex

conjugation on the complex projective space CP™ is the real projective space RP™.

Following [T, we give some examples of simple polytopes on which there exist

no Zso-characteristic function.

Example 2.2.12. For each integer n and k > (n + 1), cyclic polytope is defined as
the conver hull of k distinct points on the moment curve p : R — R" defined by
o(t) = (t,t2,...,1") € R". We denote this cyclic polytope by Cy. The Vandermonde
determinant identity gives that no (n+ 1) vertices of C' lie on a common affine hyper-
plane. Hence C}! is a simplicial n-polytope with k vertices.

Letn >4 and k > 2". Let Q7. be the dual polytope of C}'. Since n > 4, the 1-skeleton
of C} is a complete graph. So for any two facets F;, Fj € F(Q}), the intersection F;NF;

is a nonempty face of Q.. Suppose there exist a Zz-characteristic function
B F(QR) — Fy.

So B(F;) and B(Fj) are distinct nonzero vectors in Fy. This contradicts to the definition

of Zo-characteristic function. Hence, there can be mo such function S when k > 2™.

Therefore there does not exists a Zg-characteristic function on the set of facets of Q7.
Hence by remark ZZI1, when n > 4 and k > 2" the polytope Q7. cannot be the orbit

space of a quasitoric manifold.
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2.3 Classical effective orbifolds

Following [ATROA| we give the definition of classical effective orbifolds. Let Y be a
Hausdorff topological space.

Definition 2.3.1. An n-dimensional orbifold chart on an open subset VC Y is given
by a triple (‘7,H, ¢) where

1. V is a connected open subset of R™,
2. H is a finite subgroup of smooth automorphisms of 17,

3. ¢ is a map from V to Y such that ¢ is H-invariant map and induces a homeo-

morphism from V /H onto V.

Definition 2.3.2. An embedding ¢ : (V, H, ¢) — (ﬁ,G,Lp) between two orbifold charts
18 a smooth embedding & : VU of manifolds with o p = &.

Definition 2.3.3. Two orbifold charts (V,H,() on'V = ¢(V) CY and (U,G,p) on
U = go(ﬁ) C Y with a point x € V NU are locally compatible if there exists an open
neighborhood W C V NU of x and an orbifold chart (W,K, ) on W such that there

are smooth embeddings (W,K, ) — (V,H, ¢) and (W, K, u) — (U,G,gp).

Definition 2.3.4. A smooth orbifold atlas on'Y is a family V = {(V,H, ¢)} of locally
compatible orbifold charts such that {o(V) : V € V} is an open cover of Y .

Definition 2.3.5. An atlasV is a refinement of an atlas U if for any chart (17, H, () eV
there exists an embedding & : (17,H, () — ((7, G, ) into some chart (17, G,p)elU.
Two orbifold atlases are said to be equivalent if they have a common refinement.

Denote the equivalence class of an atlas V by [V].

Definition 2.3.6. Let Y be a paracompact Hausdorff space equipped with an equivalence
class [V] of n-dimensional smooth orbifold atlases. The pair (Y,V), denoted by Y, is

called an effective smooth orbifold of dimension n.

Throughout this section we assume that all orbifolds are effective. We enlist some

observations about the definition.

Observation 2.3.7. 1. For each orbifold chart (17,H, ¢) the group H is acting
smoothly and effectively on V. In particular H acts freely on a dense open subset
of V. With this property Y is called a reduced orbifold.

2. A linear chart is the triple (R™, H, (), where H is a finite subgroup of O(n). The
group H acts on R™ wvia an orthogonal representation. Since smooth actions are

locally smooth, any orbifold has an atlas consisting of linear charts.
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8. Given two embeddings of orbifold charts &1,&s : (‘7, H, () — (ﬁ, G, ), there exists
a unique g € G such that & = g o &. The proof follows from Lemma 2.11

in [MI73].
As a consequence, an embedding of orbifold charts £ : (‘N/,H, () — (ﬁ, G, ) in-
duces a monomorphism g : H — G of groups.

4. Given an embedding & : (‘N/,H, () — (ﬁ,G, ©), if there exists g € G such that
E(V)Ngo&(V) # ¢ then g € Im(Enc) and so §(V) = go&(V).

5. If (17, H,() and ([7, G, ) are two charts for the same orbifold structure on V. CY
and if Vs sitmply connected, then there exists an embedding & : (V,H, () <
(U, G, @) whenever (V) C o(U) C V.

6. Every orbifold atlas for Y is contained in a unique mazimal atlas.

7. If the finite group actions on all the charts are free, then Y is locally Fuclidean,
hence a manifold.

Definition 2.3.8. Let Y = (Y, V) be an orbifold andy € Y. Let (f/, H, () be an orbifold

chart so that y = p(x) € (V) C Y. The local group at y is defined by the group
Hy={heH:h-x=uz}.

The group H, is uniquely determined up to conjugacy. We use the notion of local

group to define the singular set of the orbifold ) in the following definition.

Definition 2.3.9. A point y € Y is called a smooth point if the group H, is trivial,
otherwise y is called singular point. The set of singular points of an orbifold Y = (Y, V)
1s called its singular set, denoted by 3'Y. That is,

Xy={yeY:H,#1}.

Definition 2.3.10. Let H x M — M be an smooth and effective action of a finite
group H on a smooth manifold M. The associated orbifold Y = (M/H, V) is called an
effective global quotient, where V is constructed from a manifold atlas using the locally

smooth structure.

Example 2.3.11. Let H be a finite subgroup of GL,(C) and let Y = C"/H. This
is a singular complex manifold called a quotient singularity. Y has the structure of
an algebraic variety, arising from the algebra of H-invariant polynomials on C™. If
H C SL,(C), the quotient C"/H ‘s called Gorenstein.
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Example 2.3.12. Consider
Sl — L2, ... 2n) € C'TL N2 = 13, (2.3.1)
the circle S* > a act on S?"H1 by
a(zo, ..., 2n) = (a%20,...,a%2y,),
where the a;’s are coprime integers. The quotient space
WP(ag, . ..,a,) = S*T1/8!

has an orbifold structure, denoted by WP(ay, .. .,ay). This orbifold is called a weighted
projective space. The orbifold WP(1,a) is the famous teardrop. It is well known that
these orbifolds are non-global quotient orbifold. We will show in Chapter B that teardrops

are quasitoric orbifolds.

Example 2.3.13. Orbifold Riemann surfaces are generalization from the teardrop.
These are a fundamental class of examples in orbifold theory. We need to specify the
isolated singular points and the order of the local group at each one. Let y; is a singular
point with order n;. Then the local chart at y; is (DZ,Zni, Cy;) where D? is an open ball
centered at origin and Cy, s the orbit map of the action ¢ - z = ez for a generator ¢ of
L, .

Let 3 be an orbifold Riemann surface of genus g and k singular points. Thurston
[Thu3m] has shown that ¥ is a global quotient if and only if g + 2k > 3 or g = 0 and
k = 2 with ny = na. An orbifold Riemann surface can be expressed as a orbit space
M3/T' for some 3-dimensional Seifert fiber manifold M3 with an effective action of T*.

Next we define the notion of smooth maps between orbifolds.

Definition 2.3.14. Let Y = (Y,V) and W = (W,U) be two orbifolds. A map f:Y —
W is called smooth if for any point y € Y there are charts (XN/, H,() containing y and
(U, G, ¢) containing f(y), such that f maps V = ((V) into U = @(U) and f can be
lifted to a smooth map fv: V = U with Qo fv: foc.

Using this we can define the notion of diffeomorphism of orbifolds.

Definition 2.3.15. Two orbifolds Y and W are diffeomorphic if there are smooth maps
of orbifolds f: Y =W and g: W =Y with fog=1w and go f = 1y.

2.4 Tangent bundle of orbifolds

In this section we define the tangent of an orbifold and related notions following [ATRII|.
We show the identifications of orbifold charts to yield the original orbifold.
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Let Y = (Y, V) be an orbifold. Let (V,H,¢) and (U, G, ¢) be two orbifold charts
with y € (V) N(U). So by definition there is a chart (W, K, i) and embeddings

gl : (W,K,M) — (‘77H7 C_:) and 62 : (Wa Kmu) — ([77 G7 90)
These two embeddings give rise the following equivariant diffeomorphisms
&L & (W) = Wand & : W — &(W). (2.4.1)

between K-spaces. Here K acts on & (W) and fg(W) via the subgroups &1, (K) C G
and &2, (K) C H respectively. The composition of these maps give an equivariant

diffeomorphism
Lol (W) = &LW). (2.4.2)

between K-spaces. Hence we can glue the sets 1% /H and U /G according to the equiva-

lence relation ~; defined by

(D) ~ () if &0 &7 (D) = . (2.4.3)

Let
Y=||(V/H)/ ~ (2.4.4)
Vey
be the space obtained by gluing the sets {V/H : (V,H,¢) € V}. So we get a homeo-
morphism & : Y — Y induced by the maps ( : VY.
We may consider the function & o §; ! as a transition function. Suppose there exist

another two embeddings
& (W, K u) = (V,H,Q), &: (W,K,p) = (U,G,p).
We have observed in 3 of EZ37 that there exist unique h € H and g € G such that

& =ho& and & = go&s.

Hence go ({208, 1) o h™! is the resulting transition function.

Using this explicit computations, we construct the tangent bundle of the orbifold Y.
Given an orbifold chart (XN/, H, (), we consider the tangent bundle TV of the manifold
V. By the observation 1 of EE37 the group H acts smoothly on V. Hence H also acts
smoothly on TV. Suppose (U, ) is an element of 7'17, then h € H acts by

h-(@,a) = (h- 5, Dhy(a)). (2.4.5)
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Let TV = TV /H and (ry : TV — TV be the orbit map. So the triple (TV, H, (rv)
is an orbifold chart on TU. The projection map TV =V is an equivariant map. This
map induces a natural projection py : TV — V. We describe the fibers of the map py .
IfjeVand y=((y) €V, then

py'(y) = {H(z0): 2 =5} C TV. (2.4.6)

We claim that py,'(y) is homeomorphic to the orbit space 7'27[7 /H, of H, action on
Tyvﬁ , where H, denotes the isotropy group of the H-action on V at y. Define the map

Iy oyt (W) = TV /Hy by f,(H(7,0)) = Hyo (247)
Observe that
H(y,a1) = H(y, ) if and only if there exists a h € H such that h - (y,a1) = (y, a2).
Again
h-(y,a1) = (y, az2) if and only if h € Hy, and Dyh(a1) = as.

This is equivalent to the assertion that Hya; = Hyao. So f, is both well defined and
injective. From the following commutative diagram it is clear that f, is a surjection

and continuous map. N N
TV ——— V

CTVI Cl (2-4'8)
TV 25 v

Hence we established our claim. The fiber p‘_/1 (y) is a quotient of the form R™/H),
where Hy C GL,(R) is a finite group. So the fiber p;;'(y) may not be a vector space.

Hence we have constructed a bundle-like object TV over V.

Definition 2.4.1. The map py : TV — V is called an orbifold tangent bundle associ-
ated to the orbifold chart (V, H, ().

It may be clear how to construct the tangent bundle on an orbifold Y = (Y, XN/) Let
TV ={(TV,H,¢rv) : (V,H,C) € V}.

We need to identify the orbifold tangent bundles 7V — V associated to the charts
(V,H,(). We observe that the gluing maps £12 = &3 0 51_1 for orbifold charts of V in

equation 22 are smooth. We may use the equivariant differential

Déra : TE(W) — TE(W) (2.4.9)
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as the transition functions to identify the bundles TV — V and TU — U. Let TY be

the resulting identification space

(L] 7v)/ ~r. (2.4.10)
Vey
We consider the minimal topology on TY such that each inclusion TV — TY is home-
omorphic onto an open subset of TY. With this topology, 7Y has an orbifold struc-
ture. TV is a family of locally compatible orbifold charts such that the collection
{Cry(TV) : (V,H,() € V} is an open cover of TY. So the family T is an orbifold at-

las on TY. By the identification ~7, there exists a continuous surjection py : 7Y — Y
such that py |7y =py. Let TY = (TY,TV).

Definition 2.4.2. The triple (TY,py,Y) is called the orbifold tangent bundle of the
orbifold Y.

We summarize the above computations in the next proposition.

Proposition 2.4.3 ( [ALROY], Proposition 1.21). The tangent bundle of an n-
dimensional orbifold Y has the structure of a 2n-dimensional orbifold. Also the map py

s a smooth map of orbifolds with fibers 7{,47/Hy

Now we define the frame bundle of an orbifold ). Note that for each local chart
(V,H,¢) we can define an H-invariant inner product on 7V. Let O(Tyf/) be the

orthogonal transformations of 75‘7 We can construct the frame manifold

Fr(V)={(@,A): Ac O(T;V)} (2.4.11)

and the induced left H-action on Fr(V) is given by
h-(y,A) = (hy, DhjA). (2.4.12)

Since the H-action on V is an effective action, the H-action on the frame manifold
Fr(V) is free. So the quotient space Fr(V)/H is a smooth manifold. Denote the orbit
of (3, A) by [7, A]. There is a right O(n) action on Fr(V)/H induced from the natural

translation action on Fr(V'), given by
[y, A] - B = [y, AB] for B € O(n). (2.4.13)

Observe that this action is transitive on the fibers. Indeed, [y, A] = [y,I] - A. The

isotropy subgroup for this orbit consists of those orthogonal matrices A such that

(y, A) = (hy, Dhgl)
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for some h € H. This is equivalent to say that h € H, and A = Dhy. So the differential
establishes an injection H, — O(Tyvf/) Hence we conclude that H, is the isotropy
subgroup of the O(n)-action on Fr(V)/H. The fiber is the associated homogeneous
space O(n)/H,.

Consider the orbit space of the action ZZI3 on Fr(V)/H. Clearly this orbit space
is homeomorphic to V. So we obtain the natural projection Fr(V)/H — V. Let Fr())
be the space obtained by identifying the local charts Fr(V)/H — UV using the O(n)-
transition functions obtained from the tangent bundle of ). Let pp, : Fr(Y) — Y be

the induced continuous surjection.

Definition 2.4.4. The triple (Fr(Y),prr,Y) is called the frame bundle of an orbifold
y=(V).

This frame bundle has some useful properties, which we summarize below.

Theorem 2.4.5 ( [ATLROY|, Theorem 1.23). For a given orbifold ), its frame bundle
Fr(Y) is a smooth manifold with a smooth, effective and almost free O(n)-action. The
orbifold Y is naturally isomorphic to the resulting quotient orbifold Fr())/O(n).

The following is a very important consequence of the theorem PZZ3.

Corollary 2.4.6 ( [ATRO?|, Corollary 1.24). Every smooth effective n-dimensional
orbifold Y is diffeomorphic to a quotient orbifold for a smooth, effective and almost free

O(n)-action on a smooth manifold M.
Definition 2.4.7. Let Y = (Y, V) denote an orbifold with tangent bundle (TY,py,Y).

1. A non-degenerate symmetric 2-tensor of S*(TY) is called a Riemannian metric

on ).

2. An almost complex structure on Y is an endomorphism J : TY — TY such that
J? = —Id.

3. A stable almost complex structure on Y is an endomorphism
J:TY® (Y xR¥ - TY @ (Y x RF)

such that J? = —Id for some positive integer k.
4. We call Y a complex orbifold if all the defining maps are holomorphic.

Using the frame bundle of an orbifold, we see that techniques applicable to quotient
spaces of almost free smooth action of a compact Lie group will yield results about
orbifolds. For example, we have the following proposition. The proof of this proposition
can be found in [APY3].
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Proposition 2.4.8 ( [ALROY|, Proposition 1.28). If a compact, connected Lie group
G acts smoothly and almost freely on an orientable, connected, compact manifold M,
then H*(M/G;Q) is a Poincaré duality algebra. Hence, if Y is a compact, connected,
orientable orbifold, then H*(Y; Q) will satisfy Poincaré duality.

2.5 Orbifold fundamental group

The goal of this section is to provide an idea how one can compute the orbifold funda-
mental group of an effective smooth orbifold.

A covering orbifold or orbifold cover of an n-dimensional orbifold ) is a smooth map
of orbifolds p : X — ) whose associated continuous map (also denoted by p) p: X — Y
between underlying spaces satisfies the following condition:

Each point y € Y has a neighborhood V = 17/H with V homeomorphic to a
connected open set in R, for which each component U; of p~1(V) is homeomorphic
to 1~//HZ for some subgroup H; C H such that the natural map p; : ‘7/Hz — \7/H

corresponds to the restriction of p on Us.

Definition 2.5.1. Given an orbifold cover p : X — YV, a diffeomorphism f: X — X is

called a deck transformation if poh =p.

Definition 2.5.2. An orbifold cover p : X — Y is called a universal orbifold cover of
Y if given any orbifold cover p1 : W — Y, there exists an orbifold cover ps : X — W
such that p = p1 o po.

Every orbifold has a universal orbifold cover which is unique up to diffeomor-
phism, see [Thu3m]. The corresponding group of deck transformations is called the
orbifold fundamental group of J and denoted by ™ ().

Example 2.5.3 (Hurwitz cover). Suppose that p : 31 — X2 is a holomorphic map

between two compact orbifold Riemann surfaces X1, Xo. Usually, p is not a covering

map. Instead, it ramifies in finitely many points z1, ...,z € Xo. Hence the restriction
map, namely,

peS—{Uip ()} = B2 — {2 ) (2.5.1)
is a manifold covering map. Suppose that the preimage of z; is yiy, - .. »Yiy, - Let ny, be

the ramification order at y;,. That is, under suitable coordinate system near y;,, the
map p can be written as z — 2.

We assign an orbifold structure on 31 and o as follows. We first assign an orbifold
structure at y;, with order n;,. Let n; be the largest common factor of the n;,’s. Then
we assign an orbifold structure at z; with order n;. One readily verifies that under these
assignments, p : 21 — Yo becomes an orbifold cover. The map p : X1 — Yo is referred

to as a Hurwitz cover.
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Example 2.5.4. If Y = M/H is a global quotient and M — M is a universal cover,
then M — M — Y is the orbifold universal cover of Y. This gives an extension of
groups

1= m(M) = ™) - H— 1. (2.5.2)

This implies that an orbifold Y can not be a global quotient if w9™(Y) is trivial, unless

Y is itself a manifold.

Definition 2.5.5. An orbifold is a good orbifold if its orbifold universal cover is smooth

manifold.

Observation 2.5.6. The following observation is very useful in computations of orbifold
fundamental groups. Suppose that p : X — Y is an orbifold universal cover. Then the
restriction

p:X—p (X)) =Y -—%Y (2.5.3)

is a manifold cover. The covering group H of this cover is the orbifold fundamental
group m"(Y). The sets X and XY are the singular points of X and Y respectively.

Therefore, Y = X /H and there is a surjective homomorphism
¢ :m(Y—-XY)— H. (2.5.4)

In general, there is no reason to expect that q, will be an isomorphism. However, to
compute the group T™(Y), we can start with the group m (Y — XY) and then specify

the additional relations if required.

Example 2.5.7. Consider the orbifold Riemann surface X4 of genus g with k orbifold

points Oy, = {x1,...,x} of orders ni,...,ng. Then, according to [ScaZ3], (p. 424) a
presentation for its orbifold fundamental group is given by

ﬂfrb(zg) = {041,61, e ,Ozk,ﬁk,al, ey Ok 101 .. .okﬂﬁ’[ai,ﬁi] = 1,0’;” = 1}, (255)

where a; and fB; are the generators of m(Xy) and o; are the generators of ¥4 — O,
represented by a loop around each orbifold point. Note that W‘l’Tb(Zg) 1 obtained from
7m1(Xg — Ok) by introducing the relations o™ = 1.

Consider the special case when ¥ = i/H, where H is a finite group of automor-
phisms ofi In this case, the orbifold fundamental group is isomorphic to wl(EHxHi),

which in turn fits into a group extension

1= m(%) = ™) = H— 1. (2.5.6)

In other words, the orbifold fundamental group is a virtual surface group. This will be

true for any good orbifold Riemann surface.
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Chapter 3
Quasitoric orbifolds

In this chapter we study structures and invariants of quasitoric orbifolds. In particu-
lar, we discuss the constructive and axiomatic definitions of quasitoric orbifolds. We
compute the orbifold fundamental group of these orbifolds. We determine whether any
quasitoric orbifold can be the quotient of a smooth manifold by a finite group action
or not. To calculate the rational homology groups of quasitoric orbifolds we need to
generalize the usual C'W-complex little bit. The cohomology ring of a quasitoric orb-
ifold with coefficient in Q is computed in this chapter. We prove existence of stable
almost complex structure and describe the Chen-Ruan cohomology groups of an almost

complex quasitoric orbifold.

3.1 Definition by construction and orbifold structure

For any Z-module N denote N ®z R by Ngr. Let N be a free Z-module of rank n.
The quotient Ty = Ng/N is a compact n-dimensional torus. Suppose N’ is a free
submodule of N of rank n’. Let Txs denote the torus N/N’. Let j : N, — Ng and
j« : Tny = Ngr/N’ be the natural inclusions. The inclusion ¢ : N’ — N induces a

homomorphism
ix : Ng/N' — Nr/N = Ty defined by i.(a + N') =a+ N

on cosets. Denote the composition i, o j. : Tyr — Ty by &y and also denote the
image of {n by Im(En/). Ker(ix) ~ N/N'. If n’ = n, then j, is identity and i, is
a surjection. In this case &ns @ Ty — Ty is a surjection group homomorphism with
kernel Gy = N/N’, a finite abelian group.

A 2n-dimensional quasitoric orbifold may be constructed from the following data: a
simple polytope @ of dimension n with set of facets F(Q) ={F;:i € {1,...,m} =1},

a free Z-module N of rank n and a dicharacteristic function, defined below.

47
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Definition 3.1.1. Let there exists an assignment of a vector A\; in N to each facet F;
of Q such that whenever F;, N ... N EF;, # 0 the corresponding vectors i, ..., N, are
linearly independent over Z. The function A : F(Q) — N defined by A(F;) = \; is called

a dicharacteristic function of Q.

These data will be referred to as a combinatorial model and abbreviated as
(Q,N,{A\i}). The vector )\; is called the dicharacteristic vector corresponding to the
i-th facet.

Example 3.1.2. The quasitoric orbifolds associated to the first and second combinato-

rial model has 1 and 3 singular points respectively.

(_37 _5)

(1,2) (1,0)

Figure 3.1: Some dicharacteristic function of triangle and receptacle.

We give the constructive definition of quasitoric orbifolds below. Each face F' of
@ of codimension k& > 1 is the intersection of a unique set of k facets F; ,..., F;,.
Let I(F) = {i1,...,ix} C I. Let N(F') denote the submodule of N generated by the
characteristic vectors {\; : j € I(F)}. So Ty(py = N(F)r/N(F) is a torus of dimension
k. We will adopt the convention that Ty ) = 1.

Define an equivalence relation ~ on the product @ x Ty by

(p,t) ~ (¢q,s) if p=gqand st € Im(§n(r)), (3.1.1)

where F' is the unique face whose relative interior contains p. Let X = @ x Ty/ ~
be the quotient space. Let q : @ X Ty — X denote the quotient map. Then X is a
Ty-space and let 7 : X — @ defined by 7([p,t]~) = p be the associated map to the
orbit space (. The space X has the structure of an orbifold, which we explain next.
Pick open neighborhoods U, of the vertices v of () such that U, is the complement

in @ of all facets that do not contain v. Let
X, =7 YU,) =U, x Tn/ ~.

For a face F' of () containing v the inclusion {\; : ¢ € I(F)} in {\; : i € I(v)} induces an
inclusion of N (F) in N(v) whose image will be denoted by N (v, F'). Since {\; : i € I(F)}
extends to a basis {\; : i € I(v)} of N(v), the natural map from the torus

Tn(,r) = N(v, F)r/N(v, F) to Tn) = N(v)r/N(v)
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defined by a + N(v, F) — a + N(v) is an injection. We will identify its image with
Tn(v,F)- Denote the canonical isomorphism Ty gy — Ty, ) by i(v, F).

Define an equivalence relation ~, on U, X Ty, by

(p,t) ~v (¢,5) if p=q and st € Ty p)

where F' is the face whose relative interior contains p. Then W, = U, X ']I‘N(v) / ~u
is f-equivariantly diffeomorphic to an open ball in C" where 6 : Ty(,) — U (1)™ is an
isomorphism, see [IIT]. Note that the map {y(p) factors as {y(p)y = {n(w) © i(v, F).
Since i(v, F) is an isomorphism, ¢ € Ty, ) if and only if {y(,)(t) € Im&n ). Hence
the map {n(y) : Ty(v) = T induces a map

§o: Wy = X, defined by & ([(p, 1)]™) = [(p, En (o) (D))]™

on equivalence classes.The group G, = N/N(v), the kernel of {x ), is a finite subgroup
of Tx(y) and therefore has a natural smooth, free action on T, induced by the group
operation. This induces smooth action of G, on W,. This action is not free in gen-
eral. Since Ty = Ty, /Gy, Xy is homeomorphic to the quotient space W,/G,. So
(Wy, Gy, &) is an orbifold chart on X,,. To show the compatibility of these charts as v
varies, we introduce some additional charts.
For any proper face E of dimension k > 1 define Ug = (| U,, where the intersection
is over all vertices v that belong to E. Let Xp = 7~ }(Ug). For a face F containing E
there is an injective homomorphism Ty z) — Ty (g) whose image we denote by Ty (g, r).
Let
N*(E)=(N(E)®zQ) NN and Gg= N*"(E)/N(E). (3.1.2)

G is a finite group. Let { g @ Tn(g) — Ty+(g) be the natural homomorphism. The
map &, g has kernel Gg. Denote the quotient N/N*(E) by N1(E). It is a free Z-
module and N = N*(E) @ N+(F). Fixing a choice of this isomorphism (or fixing
an inner product on N) we may regard N+ (E) as a submodule of N. Consequently
Ty =Tn+®) X Tnim)-

Define an equivalence relation ~g on Ug X Ty gy X Ty (g) by

(p1.t1,51) ~E (p2,t2,52) if p1 = p2, 51 =sz and t3't1 € Tn(e,F)
where F' is the face whose relative interior contains p;. Let
WE = UE X TN(E) X TNL(E)/ ~E .

It is diffeomorphic to C** x (C*)*. There is a natural map &g : Wg — Xp induced
by &k - Ty = Tar) and the identity maps on Ug and TNL(E). The triple
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(Wg,GE,&E) is an orbifold chart on Xpg.

Given E, fix a vertex v of @) contained in E. N(v) = N(E) @® N’ where N’ is the
free submodule of N (v) generated by the dicharacteristic vectors {\; : j € I(v)—I(E)}.
Consequently Ty,) = Ty (g) x Tn. We can, without loss of generality, assume that
N’ ¢ N*(E). Thus we have a covering homomorphism Tpys — Tyi(g)- For a point
xz = [p,t,s] € Xg, choose a small neighborhood B of s in Ty (g such that B lifts to
Tpv. Choose any such lift and denote it by [ : B — Tpr. Let

WIZUEXTN(E) XB/NE.

So (W,,Gg,&E) is an orbifold chart on a neighborhood of x, and it is induced by
(Wg,GE,&g). The natural map W, < W, induced by the map [ and the identification
Tnw) = Tn(g) © Tnr, and the natural injective homomorphism Gg < G, induce an
embedding of orbifold charts

(Wra GE)gE) — (an Gmgv)-

The existence of these embeddings shows that the charts {(W,,, Gy, ;) : vvertexof Q}
are compatible and form part of a maximal 2n-dimensional orbifold atlas A for X. We
denote the pair {X, A} by X. We say that X" is the quasitoric orbifold associated to
the combinatorial model (Q, N, {\;}).

Remark 3.1.3. Note that the orbifold X is a reduced orbifold. Also note that changing

the sign of a dicharacteristic vector gives rise to a diffeomorphic orbifold.

In the case of a quasitoric orbifold X, for any x € X, w(x) belongs to the relative
interior of a uniquely determined face E* of Q. The isotropy group G, = Gpg= (see
(B812)). We adopt the convention that Gg = 1.

Definition 3.1.4. A quasitoric orbifold is called primitive if all its dicharacteristic

vectors are primitive.

Note that in a primitive quasitoric orbifold the local group actions are devoid of
complex reflections (that is, maps which have one as an eigenvalue with multiplicity
n—1) and the classification theorem of [Prifd] for germs of complex orbifold singularities

applies.

3.2 Axiomatic definition of quasitoric orbifolds

Analyzing the structure of the quasitoric orbifold associated to a combinatorial model,
we make the following axiomatic definition. This is a generalization of the axiomatic def-
inition of a quasitoric manifold using the notion of locally standard action, as mentioned

in the introduction.
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Definition 3.2.1. A 2n-dimensional quasitoric orbifold Y is an orbifold whose under-
lying topological space Y has a Ty action, where N is a fixed free Z-module of rank
n, such that the orbit space is (diffeomorphic to) a simple n-dimensional polytope Q.
Denote the projection map from'Y to Q by w:Y — Q. Furthermore every point x € Y

has
Aq. a Ty-invariant neighborhood V.,

As. an associated free Z-module N' of rank n with an isomorphism 0 : Ty — U(1)"
and an injective module homomorphism v : N' — N which induces a surjective

covering homomorphism Enr : Tyr — Thy,

As. an orbifold chart (W,G,§) over V. where W is 0-equivariantly diffeomorphic to
an open set in C", G = Kerén: and £ : W — V is an equivariant map i.e.
E(t-y) =Ene(t) - &(y) inducing a homeomorphism between W/G and V.

It is obvious that a quasitoric orbifold defined constructively from a combinatorial
model satisfies the axiomatic definition. We now demonstrate that a quasitoric orbifold
defined axiomatically is associated to a combinatorial model.

Take any facet F; of @ and let F be its relative interior. By the characterization of
local charts in A3), the isotropy group of the T action at any point z in 7= 1(F) is a
locally constant circle subgroup of Ty. It is the image under & of a circle subgroup of
Tp+. Thus it determines a locally constant vector, up to choice of sign, A; in N. Since
Tl (FZ-O) is connected, we get a characteristic vector A;, unique up to sign, for each facet
of Q. That the characteristic vectors corresponding to all facets of ) which meet at
a vertex are linearly independent follows from the fact that their preimages under the
appropriate ¢ form a basis of N’. Thus we recover a combinatorial model (Q, N, {\;})

starting from ).
Definition 3.2.2. Call the triple (Q, N,{\;}) a combinatorial model of Y.

Remark 3.2.3. Similarly to the quasitoric manifolds case we can prove that a quasitoric
orbifold has a smooth structure. In [GEOA], the authors give an explicit smooth orbifold

charts for 4-dimensional quasitoric orbifolds.

Lemma 3.2.4. Let X be the quasitoric orbifold obtained from the combinatorial model
(Q, N,{\i}) of Y by the construction @A. Then X and Y are diffeomorphic orbifolds.

Proof. The hard part is to show the existence of T y-equivariant a continuous map from
X — Y. This can be done following Lemma IZT3 and Corollary CZT4. The idea is to
stratify ) according to normal orbit type, see Davis [Dax78]. Here we need to use the
fact that the orbifold ) being reduced, is the quotient of a compact smooth manifold
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by the foliated action of a compact Lie group. Then one can blow up (see [DaxZ8]) the
singular strata of Y to get a manifold Y equivariantly diffeomorphic to Ty x Q.

One has to modify the arguments of Davis slightly in the orbifold case. The im-
portant thing is that by the differentiable slice theorem each singular stratum has a
neighborhood diffeomorphic to its orbifold normal bundle, and is thus equipped with a
fiberwise linear structure so that the constructions of Davis go through. Finally there
is a collapsing map Y Y and by composition with the above diffeomorphism a map
Ty x Q@ — Y. It is easily checked that this map induces a continuous equivariant map
X =Y. O

Definition 3.2.5. Let X and Xy be quasitoric orbifolds whose associated base polytope
Q and free Z-module N are identical. Let 6 be an automorphism of Ty. A map f :
X1 — Xy of quasitoric orbifolds is called a 0-equivariant diffeomorphism if £ is an
diffeomorphism of orbifolds and the induced map on underlying spaces f : X1 — Xo
satisfies f(t-x) =0(t) - f(z) for allz € Xq and t € Ty.

Definition 3.2.6. Two 0-equivariant diffeomorphisms f,g : X1 — X9 are said to be
equivalent if there exists equivariant diffeomorphisms hy : X; — X, fori =1, 2, such
that gohy =hgof.

We also define, for 0 as above, the O-translation of a combinatorial model (Q, N,{\;})
to be the combinatorial model (Q, N,{60'(\;)}), where ¢ is an automorphism of N in-
duced by 0.

The following lemma classifies quasitoric orbifolds over a fixed polytope up to 6-

equivariant diffeomorphism.

Lemma 3.2.7. For any automorphism 6 of Ty, the assignment of combinatorial model
defines a bijection between equivalence classes of 0-equivariant diffeomorphisms of qua-

sitoric orbifolds and 0-translations of combinatorial models.

Proof. Proof is similar to the Lemma IZT9, which we discuss in details. Note that
the existence of a preferred section s : Q — Y for an axiomatically defined quasitoric

orbifold Y follows from the blow up construction in the proof of Lemma B=Z4. 0

3.3 Characteristic subspaces

Of special importance are certain T y-invariant subspaces of X corresponding to the
faces of the polytope Q. If F' is a face of @ of codimension k, then define X (F) :=
7~ 1(F). With subspace topology, X (F) is a quasitoric orbifold of dimension 2n — 2k.
Recall that

N*(F) = (N(F)®zQ)NN and N*(F) = N/N*(F).
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Let o : N — N+(F) be the projection homomorphism. Let .J(F) C I be the index set
of facets of @, other than F' in case k = 1, that intersect F'. Note that J(F) indexes the
set of facets of the n — k dimensional polytope F. The combinatorial model for X (F)

is given by (F, N*(F), 0r o A j(r))})-
Definition 3.3.1. X(F) is called a characteristic subspace of X, if F is a facet of Q.

Example 3.3.2. Let Q' be the 1-polytope with vertices vi,vy and N = Z. Let \; =
Av1) =1 and Ay = Mv1) = a € Z — {-1,0,1}. So (Q', N,{\;}) is a combinatorial
model. The quasitoric orbifold associated to this model is the weighted projective space

WP(1,a).

3.4 Orbifold fundamental group

We first give a canonical construction of a quasitoric orbifold cover O for any given
quasitoric orbifold X. We will prove later that O is the universal orbifold cover of X.
Let N be the submodule of N generated by the characteristic vectors of X.

Definition 3.4.1. Let 3\\1 denote the characteristic vector \; as an element of N. Let
O be the quasitoric orbifold associated to the combinatorial model (Q, N, {)TZ)} Denote
the corresponding equivalence relation by ~ so that the underlying topological space of
0 is O =Q x Tg/~. Denote the quotient map Q@ x Tg — O by 7.

Proposition 3.4.2. The quasitoric orbifold O is an orbifold cover of the quasitoric
orbifold X with deck group N/N

Proof. The inclusion ¢ : N < N induces a surjective group homomorphism
u:Tg=(N®R)/N = Ty = (N ®@R)/N

with kernel N/ N. In fact for any face F' of (Q we have commuting diagram

3I0s
(F) TN

Lol l (3.4.1)

Trn(r) v, Tn

where N(F) is N(F) viewed as a sublattice of N and ¢, is an isomorphism induced by

t. Thus there is an induced surjective map



Chapter 3: Quasitoric orbifolds 54

We obtain a torus equivariant map f : O — X defined fiberwise by B2, that is,
for any point ¢ € ) belonging to the relative interior of the face F', the restriction of
f:7Y(q) — 7 1(q) matches ¢;.

The map f lifts to a smooth map of orbifolds f : O — X. Consider orbifold charts
on X and O corresponding to vertex v. Identifying N(v) and N (v, F) with N(v) and
N (v, F) respectively, we note that

o~

W, = U, x Tgy,)/~v may be identified with Wy, = Uy x Ty () /~u-

Hence O, = v/@v and f : O, — X, is given by the projection Wv/éy — W,/G,
where G, = N/N(v) is a subgroup of G, = N/N(v). So f : © — X is in fact an orbifold
covering. The deck group for this covering is clearly N/ N. O

Theorem 3.4.3. The quasitoric orbifold O is the orbifold universal cover of the qu-
asitoric orbifold X. The orbifold fundamental group m$*®(X) of X is isomorphic to
N/N.
Proof. Let 3 denote the singular loci of X (refer to definition ZZ39). The set 3 has real
codimension at least 2 in X. Note that 7(X) is a union of faces of Q. Let Qy, = Q—7(X).
Observe that

X—T=nQy) = (Qs x Tw)/ ~.

Since @, is contractible, m(Qy x Tn) = m(Ty) = N. When we take quotient of
Q@ x Ty by the equivalence relation ~, certain elements of this fundamental group are
killed. Precisely, if ()5, contains a point p which belongs to the intersection of certain
facets Fi,...,Fy of @, then the elements Aj,..., A; of N given by the corresponding
characteristic vectors map to the identity element of 71 (X — X).

Let I(X) be the collection of facets of @) that have nonempty intersection with Q.
Let N(X) be the submodule generated by those A; for which i € I(X). Then the

argument above suggests that
(X —X) = N/N(2).

Indeed, this can be established easily by systematic use of the Seifert-Van Kampen
theorem.

It is instructive to first do the proof in the case X’ is primitive (see Definition B14).
Here Gy, = 1 (see BI) for each facet F;. Hence I(X) = I and Ny = N. Therefore
m1(X — %) = N/N. Hence by Proposition B2,

fo:O— [N =X -3,

where fy is the restriction of f, is the universal covering.
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Now if p: W — X is any orbifold cover then the induced map
po:W—pH(Z) =X -%

is a manifold cover. Since p~!(X) has real codimension at least two in W, W — p~1(X)

is connected. Hence fy factors through pg and f factors through p. Let
90:0—fHE) =W —p ()

be the covering map such that fy = pg o gg. We’ll show that gg can be extend to an
orbifold covering g : O — W such that f = po g. Locally the orbifold cover f: O — X
is given by

f:0, =W, /Gy — W, /Gy = X,

for each vertex v € Q). Also we have the commutative diagram

Oy — 718 -2 pH(X,) —p~ (D)

fvl pvl

XU_E p— Xv_z

where f,, gy, Dy are restrictions of f, g, p respectively. The orbifold O is compact,

Hausdorff, second countable topological space, so by Urysohn metrization theorem O is

a metric space with metric d, and the topology induced by d, is the topology of O.
Let G; = m (W — p~1(%)). Define

d2 W —p_l(E) x W *p_l(z) — [O, OO) by dg(yl,yQ) = dl(Gll‘l,Glﬂfg),

where 7; € O and go(z;) = ¥i,i = 1,2. Then ds is a metric on W — p~1(X). The
topology induced by da on W — p~1(X) is quotient topology which is subspace topology
on W — p~}(X)(C W). Suppose (W, dy) is metric completion of (W — p~1(X), da). So
W —p~1(2) is a dense open subset of W. Since W — p~1(X) is a dense open subset of
compact spaces W, W is compact subset of W and the topology induced by JQ on W
is the topology of W.

Now suppose € O, N f~1(X). From the construction of O there exist a Cauchy

sequence {z,} in O, — f~1(¥) C O converging to z. Since gq is a covering map
d2(90(x1), go(zm)) = d2(Grar, Grom) < di(@1, Tm)

Hence {go(z,)} is a Cauchy sequence in W — p~1(X) and converge to y € W. Define
g(x) =y. So go can be extend to g : O — W.

p(y) =pog(x)
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=po litnﬂoog(JUn)

=lit ___pog(z,) ;since p is continuous map

=it flan) = f(2).

Hence f factors through p. From the above commutative diagram it is clear that
g : O — W is an orbifold cover.

For the general case we will use an argument which is similar to that of Scott [ScaX3|
for orbifold Riemann surfaces. The underlying idea also appeared in remarks after
Proposition 13.2.4 of Thurston [Thu3mi].

The group N/N is naturally a quotient of 7 (X — ¥) = N/N(Z) and the corre-
sponding projection homomorphism has kernel K = N /N(X). Consider the manifold
covering fo : f~1(X — ) — X — X obtained by restricting the map f : O — X. Note
that

m(fHX - D) = K

and the deck group of fy is N/ N. Let W be any orbifold covering of X with projection
map p. Then Wy = W — p~1(X) is a covering of X — ¥ in the usual sense. We claim
that m (W) contains K as a subgroup.

Let \; denote the image of \; in N/N(X). Obviously {\;, : i € [ — I(X)} generate
K. Physically such a \; can be represented by the conjugate of a small loop ¢; in X — 3
going around some point z; € m1(F?) once in a plane transversal to 7~ 1(F;), where
F? denotes the relative interior of the facet Fj.

The point x; has a neighborhood U in X homeomorphic to C*~! x (C/GF,). There-
fore a connected component V of the preimage p~'(U) C W is homeomorphic to
C" ! x (C/GY,) where G, is a subgroup of Gp,. We may assume, without loss of
generality, that

¢; lies in the plane {0} x C/Gp,.

By the definition of G, \; is trivial in G r; and hence in G},ﬂi. Identifying G, with
the deck group of the covering C* — C*/GF,, we infer that ¢; lifts to a loop in C* and
consequently in C*/ G/ﬂ-' Hence ¢; lifts to a loop in V — p~1(X). Thus each generator
and therefore every element of K is represented by a loop in Wy. This induces a
homomorphism

K — 7T1(W0).

This homomorphism is injective since K is a subgroup of the fundamental group of the
space X — ¥ which has Wy as a cover.

For any orbifold covering W of X, the associated covering Wy of X — ¥ admits a
covering by f~}(X —X) C O since 71 (f~1(X —X)) = K is a normal subgroup of w1 (Wp).
Thus O is an orbifold cover of W. Hence O is the universal orbifold cover of X and H
is the orbifold fundamental group of X. O
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Remark 3.4.4. Note that the orbifold fundamental group of a quasitoric orbifold is
always a finite group. It follows that a quasitoric orbifold is a global quotient if and only
if its orbifold universal cover is a smooth manifold. Therefore Theorem BZ-3 yields a
rather easy method for determining if a quasitoric orbifold is a global quotient or not.
For example, by Theorem B3 n{"*(WP(1,a)) = 1 which imply that WP(1,a) is not a
global quotient.

Example 3.4.5. If N = N, then X is not a global quotient unless X is a man-
ifold. For instance, let QQ be a 2-dimensional simplex with characteristic vectors
(1,1), (1,=1), (—=1,0) and let X be the quasitoric orbifold corresponding to this model.
Then N = ]/\\7, but X has an orbifold singularity at ' (v) where v = Fy N Fy. Therefore

X is not a global quotient.

3.5 q-Cellular homology groups

We introduce the notion of g-C'W complex where an open cell is the quotient of an open
disk by action of a finite group. Otherwise the construction mirrors the construction of
usual CW complex given in Hatcher [Hailld]. We show that our g-cellular homology of

a q-C'W complex is isomorphic to its singular homology with coefficients in Q.

Definition 3.5.1. Let G be a finite group acting linearly, preserving orientation, on an
n-dimensional disk D" centered at the origin. Such an action preserves S" ' = dD".
We call the quotient ﬁn/G an n-dimensional q-disk. Call S"~/G a q-sphere.

An n-dimensional q-cell es = €™ (G) /G is defined to be a copy of D™/G where € (G)
is G-equivariantly homeomorphic to D". We will denote the boundary of e"(G) by S !

without confusion.

Start with a discrete set X , where points are regarded as 0-dimensional g-cells. In-
ductively, form the n-dimensional g-skeleton X,, from X, _; by attaching n-dimensional

qg-cells e, via continuous maps
-1
qba : SZ /Ga — Xn—l-

This means that X,, is the quotient space of the disjoint union X,_1 U, ?&a of X,,_1

with a finite collection of n-dimensional g-disks €7 (Gq)/Go under the identification
T~y Go(x) for € SPH/G,.

Assume X = X, for some finite n. The topology of X is the quotient topology built
inductively. We call a space X constructed in this way a finite q-C'W complex.
By Proposition 2.22 and Corollary 2.25 of [HaillZ],
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DG
e Sa /Ga
Note that
77 EZ/Ga prl(sg_l/GaSQ) ifp>2
Hy(—=7+:Q) = 3.5.2
p(Sg_l/Ga ® { 0 otherwise ( )

Lemma 3.5.2. Let D" /G be a q-disk. Then S"~1/G is a Q-homology sphere.

Proof. S™1 admits a simplicial G-complex structure. Apply Theorem 2.4 of Bredon
[Bre7d] and Poincaré duality for orbifolds. O

Lemma 3.5.3. If X is a q-CW complez, then

0 forp#mn
D, Q forp=n

where I, is the set of n-dimensional q-cells in X.

1. Hy((Xpn, Xn-1);Q) = {

2. Hy(Xp;Q) =0 for p>n. In particular, Hy(X;Q) =0 for p > dim(X).

3. The inclusion i : X, — X induces an isomorphism i, : Hy(Xy; Q) = Hp(X;Q) if
p<n.

Proof. Proof is similar to the proof of Lemma 2.3.4 of [Haflld]. The key ingredient is
Lemma B2 O

Using Lemma B3 we can define g-cellular chain complex (Hp,(X,, Xp—1), dp) and g-
cellular groups H;}_CW(X ;Q) of X in the same way as cellular chain complex is defined
in [Haild|, page 139.

Theorem 3.5.4. HY Y (X, Q) = H,(X;Q) for all p.

Proof. Proof is similar to the proof of Theorem 2.35 of [Hail]. O

3.6 Rational homology of quasitoric orbifolds

Following Goresky [GarZ8] one may obtain a CW structure on a quasitoric orbifold.
However it is too complicated for easy computation of homology. We now follow the
main ideas of the computation for the manifold case as in Section I3 to compute the
rational homology groups of quasitoric orbifold X over ). First we construct a g-CW
structure on X. We adhere the notations of Section 3.

Let v € @ be a vertex of index f(v) = k. We put e, = ﬂ_l(ﬁv). Then e, is a
contractible subspace of X (F,) homeomorphic to the quotient of an open disk D(®) in
R(*) by a finite group G(v) determined by the orbifold structure on X (F,) described
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in Section B33. ﬁv is homeomorphic to the intersection of the unit disk in Rf(*) with
Rgg). Since the action of the group G(v) is obtained from a combinatorial model, see
Section B3, e, is a 2f(v)-dimensional g-cell.

X can be given the structure of a q-C'W complex as follows. Define the k-skeleton
Xop = Uf(y):kX(Fv) for 0 < k <m. Xop11 = Xop for 0 <k <n-—1and Xo, = X.
Xoi can be obtained from X1 by attaching those g-cells e, for which f(v) = k. The

attaching maps are to be described. Let ~ be the equivalence relation such that
X(F,)) = Fy x Tyi(py/~
The g-disk 52“”)/6’(1)) can be identified with F, x Ty (g,)/~ where
(p,t) =~ (q,5) if p = q € F' for some face F’ whose top vertex is v and (p,t) ~ (g, s).
The attaching map ¢, : SZ®)~1/G(v) — Xoj(v)—1 18 the natural quotient map
(Fo — Fy) x Tyap,)/~ — (Fy — Fy) x Ty )/~

So X is a g-CW complex with no odd dimensional cells and with §~!(k) = hj, number
of 2k-dimensional g-cells. Hence by g-cellular homology theory

Hq'CW(X; Q) = @f—l(p/z) Q ifp<nandpiseven (36.1)
P 0 otherwise

Hence by Theorem B4

P .
g}h(?m Q if p <n and pis even (3.6.2)

otherwise

Hp(XJQ) :{

3.7 Gysin sequence for g-sphere bundle

Let p: E — B be a rank n vector bundle with paracompact base space B. Restricting
p to the space Ey of nonzero vectors in E, we obtain an associated projection map pg :
FEy — B. Fix a finite group G and a representation of G on R™. Such a representation

induces a fiberwise linear action of G on E and Ej. Consider the two fiber bundles
G . G .
p” : EJ/G — B and py : Ey/G — B.

There exist natural fiber bundle maps f1 : E — E/G and fy : Ey — FEy/G. These

induce isomorphisms

£ HP(E/G) — HP(E) and f; : HP(Ey/G) — HP(E)
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for each p. The second isomorphism is obtained by applying Theorem 2.4 of [BreZd|
fiberwise and then using Kunneth formula, Mayer-Vietoris sequence and a direct limit

argument as in the proof of Thom isomorphism in [MS74]. The commuting diagram

By, —*% E % (B E)
le fll lfs
Eo/G —2— E/G —2 (E/G,Ey/G)
induces a commuting diagram of two exact rows

*

6 5k ;%
. HPY(E,)) —Y»  HP(E,E)) —2» HP(E) —1s HP(Ey) —---

fﬂ fé‘T Tfl* Tf;

6* >k 5k
.= HY(Ey/G) —2— HP(E/G,Ey/G) —2— HP(E/G) —2— HP(Ey/G) — -
By the five lemma f3 is an isomorphism. Using the Thom isomorphism Uu : HP™"(E) —
HP(E, Ey) we get the isomorphism

Uug : HP™(E/G) — HP(E/G, Ey/G) where Uug = fi ' oUuo ff.

Substituting the isomorphic module HP™"(E/G) in place of HP(E/G, Ey/G) in the

second row of the above diagram, we obtain an exact sequence
... HP"™(E/G) —— HP(E/G) — H?(Ey/G) — HP """ Y(E/G) — - --

where g = j; o Uug. The pull back of cohomology class ug|(E/G) in H"(B) by the
zero section of p@ will be called the Euler class ¢ of p&. Now substitute the isomorphic
cohomology ring H*(B) in place of H*(E/G) in the above sequence. This yields the
Gysin exact sequence for the g-sphere bundle pOG : Ey/G — B

s HP(B;Q) — HP(B;Q) — HP(Ey/G;Q) — HP""Y(B;Q) — -+ (3.7.1)

Remark 3.7.1. Euler classes of p: E — B and p© : E/G — B are the same since f;

is an isomorphism.

3.8 Cohomology ring of quasitoric orbifolds

Again we will modify some technical details but retain the broad framework of the ar-
gument in LTI to get the anticipated answer. All homology and cohomology modules
in this section will have coefficients in Q. Let £ be the simplicial complex associated

to the boundary of the dual polytope of (). Then ) is the cone on the barycentric
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subdivision of £. @ can be split into cubes @), where o varies over (n — 1)-dimensional
faces of £. These correspond bijectively to vertices of (). We regard the k-cube as the

orbit space of standard k-dimensional torus action on the 2k-disk

D ={(z1, ) €CF |z < 1} (3.8.1)

Define
BQy = ETx x1,, (Qo x Tx)/ ~) ~ ETy x1,, (D" /Gy),

where G, = G,,, v, being the vertex in @) dual to o. If o1 is another (n — 1) simplex
in L such that o N oy is an (n — 2) simplex then BQ, and BQ,, are glued along the
common part of the boundaries of @), and Q,. In this way BQ, fit together to yield

BQ =FETy XTy X.

Let p : BQ — BTy be the Borel map which is a fibration with fiber X. The fibration
p: BQ — BTy induces a homomorphism

p*: H*(BTN; Q) — H*(BQ; Q).

The face ring SR(Q, Q) is graded by declaring the degree of each w; to be 2. The
following result resembles Theorem 4.8 of [[LITT].

Theorem 3.8.1. Let Q be an n-polytope and SR(Q, Q) be the face ring of Q. The map
p* : H*(BTN;Q) — H*(BQ;Q) is surjective and induces an isomorphism of graded
rings H*(BQ; Q) = SR(Q, Q).

Proof. Suppose o is an (n — 1)-simplex in L with vertices ws, ..., w,. Note that there
is a one-to-one correspondence between facets of () meeting at v, and vertices of o. Let
() be the corresponding n-cube in Q). Then BQ, = ETy X1, (ﬁQn/GU) isa ﬁQn/GU
fiber bundle over BT . Hence

ETy x1, (8*"7'/G,) — BTy
give the associated g-sphere bundle p, : BQgy, — BT . Also consider the disk bundle
——2n
'CZETN XTND —>BTN.
It is bundle homotopic to the complex vector bundle
t/ : ETN XTy CcC" — BTN.

Since Ty acts diagonally on C™, the last bundle is the sum of line bundles £; ®---® L,
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where £; corresponds to j-th coordinate direction in C" and hence to w;. Without

confusion, we set

c1(L;) = w; € H*(BTy; Q).

By the Whitney product formula ¢, (t') = wy - - - w,. Hence from Section B2 the Euler
class of the g-sphere bundle p, is ¢ = w1 - - - wy,.

Now consider the Gysin exact sequence for g-sphere bundles

+oo = H*(BQo,) — H*(BTy) —— H*™"(BTy) e, H**?"(BQas)
— H*T2"(BTy) — - --

(3.8.2)

Since the map Ue is injective, by exactness pl is surjective and we get the following

diagram

0— H*(BTy) —% H*2(BTy) —"s H**?"(BQsy,) — 0
z‘dl idl (3.8.3)
Qwy, - ,wy] =% Qlwy, . .., wy).

Hence from diagram (B83) H*(BQas) = Qw1, - -+ ,wy]/ (w1 ... wy,). Since ﬁQn/GU
is contractible, H*(BQ,; Q) = H*(BTy; Q) = Q[wy, - ,w,]. Using induction on the
dimension of L and an application of the Mayer-Vietoris sequence we get the conclusion
of the Theorem. O

Let j : X — BQ@ be inclusion of the fiber. Consider the Serre spectral sequence of
the fibration p : BQ — BTy with fiber X. It has Es-term

EDY = HP(BTy; HY(X)) = H?(BTy) ® HY(X).

Using the formula for Poincaré series of X it can be proved that this spectral se-
quence degenerates, EY'? = EL (see Theorem CX3). So it follows that H*(BQ, Q) =
H*(BT",Q) ® H*(M?",Q) as Q-modules. Hence j* : H*(BQ,Q) — H*(X,Q) is sur-
jective.

We have natural identifications Ho(BQ) = Q™ and Hy(BTy) = Q™. Here Q™ is
regarded as the Q vector space with basis corresponding to the set of codimension one
faces of Q. The map

P« : Ho(BQ) — Ho(BTy)

is naturally identified with the characteristic map Ay : Q™ — Q" that sends w;, the
i-th standard basis vector of Q™, to \;. The map p* : H*(BTy) — H?(BQ) is then
identified with the dual map A3 : (Q")* — (Q™)*. Regarding the map Ay as an n x m
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matrix A;;, the matrix for AY is the transpose. Column vectors of A} can then be

regarded as linear combinations of wq, ..., w;,. Define
)\i = 1w + -+ AWy, (3.8.4)
We have a short exact sequence

0 — H%(BTy) —— H2(BQ) —L— H*X) -0

| H

A*
Let J be the homogeneous ideal in Q[wy, . .., w,,] generated by the A’ and let J be
its image in SR(Q, Q). Since j*: SR(Q,Q) — H*(X) is onto and J is in its kernel, j*
induces a surjection SR(Q,Q)/J — H*(X).

Theorem 3.8.2. Let X be the quasitoric orbifold associated to the combinatorial model
(Q,N,\). Then H*(X;Q) is the quotient of the face ring of Q by J; i.e., H*(X;Q) =
Qwy, ..., wn]/(Z+ T).

Proof. We know that H*(BTy) is a polynomial ring on n generators, and H*(BQ) is
the face ring. Since the spectral sequence degenerates, H*(BQ) ~ H*(BTxy) ® H*(X).
Furthermore, p* : H*(BTy) — H*(BQ) is injective and J is identified with the image
of p*. Thus H*(X) = H*(BQ)/J = Q[w1, ..., wn]/(T+ J). O

3.9 Stable almost complex structure

Buchstaber and Ray [BROI| have shown the existence of a stable almost complex struc-
ture on omnioriented quasitoric manifolds. We generalize their result to omnioriented
quasitoric orbifolds (see Section A for definition). Let m be the cardinality of I, the
set of facets of the polytope Q). We will realize the orbifold X as the quotient of the
action of an appropriate subgroup of (C*)™ on an open set of C™. Consider the natural
combinatorial model (R, L = Z™, {e;}) for C™, where e; is the i-th standard vector
of Z™. Let -
ms : C™ = RY,

be the projection map corresponding to taking modulus coordinatewise. Embed the
polytope @ in R by the map
dr: Q — R™

where the i-th coordinate of dz(p) is the Euclidean distance (d(p, F;)) of p from the
hyperplane of the i-th facet F; in R™. Consider the thickening WR(Q) c RZ, of dx(Q),
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defined by
WEQ) ={f: 1 —Rxolf'(0) € £r(Q)} (3.9.1)

where £r((Q)) denotes the face lattice of Q.

Denote the n-dimensional linear subspace of R parallel to dx(Q) by Vg and its
orthogonal complement by VQl. As a manifold with corners, W®(Q) is canonically
diffeomorphic to the Cartesian product dz(Q) x exp(VCj-) (see [BRMI|, Proposition 3.4).

Define the spaces W(Q) and Z(Q) as follows.

W(Q) =7"WHQ),  Z(@Q):=m;"(dr(Q)). (3.9.2)

W(Q) is an open subset of C™ and there is a canonical diffeomorphism

W(Q) = 2(Q) x exp(Vy). (3.9.3)

Let A : L — N be the map of Z-modules which maps the standard generator e; of
L to the dicharacteristic vector \;. Let K denote the kernel of this map. Recall the
submodule N of N generated by the dicharacteristic vectors and the orbifold universal

cover O from Section B. Since the Z-modules L and N are free, the sequence
0— K —L-25N-—0 (3.9.4)

splits and we may write L = K & N. Hence K rN L= K and applying the second iso-
morphism theorem for groups we can consider the torus T := Kr/K to be a subgroup

of Tr. In fact we get a split exact sequence
1 — T —Tp 25Ty — 1 (3.9.5)

For any face F' of @ let L(F') be the sublattice of L generated by the basis vectors
e; such that dz(F') intersects the i-th facet of RY, that is the coordinate hyperplane
{z; = 0}. Note that image of L(F) under A is precisely N(F), so that the preimage
A~Y(N(F)) = K - L(F). Consider the exact sequence
K - L(F) L A N

— = — 0. (3.9.6)

R 70 R 70y B o

Since the dicharacteristic vectors corresponding to the facets whose intersection is F'
are linearly independent, it follows from the definition of K and A that K N L(F') = {0}.

Hence by the second isomorphism theorem we have a canonical isomorphism

K - L(F)
L(F)

1

K. (3.9.7)
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So B™ yields
L N
0— K —» LT ) (3.9.8)
L(F)  N(F)
N A A
In general N(F) is not a free Z-module. Let N'(F) = (N(F) ®z Q) N N. Define
N=Aog¢ (3.9.9)
where ¢ is the canonical projection
N N
¢ — (3.9.10)

~

N
Since T is free, the following exact sequence splits

AYN'(F)) L n~ N
0— L(F) — L(F) — ) — 0. (3.9.11)

Denoting the modules in BEIID by K, L and N respectively we obtain a split exact

sequence of tori

0 — T 25 Ty 25 Ty — 0, (3.9.12)

Note that K is a submodule of same rank of the free module K and there is a natural

exact sequence

N'(F
0 NN )—>’]I‘Kﬂ>1r?—>o. (3.9.13)
N(F)
The composition
91 o 92 : TK — TE (3914)

defines a natural action of Tx on Ty with isotropy Gr = N'(F)/N(F) and quotient
Ty

Since Ty is the fiber of 7 : O — @Q and Ty is the fiber of 7, : Z(Q) — Q over any
point in the relative interior of the arbitrary face F, it follows O is quotient of Z(Q)
by the above action of Tg. This action of Tg is same as the restriction of its action on
C™ as a subgroup of T, and hence (C*)™. By B3 it follows that O is the quotient of
the open set W(Q) in C™ by the action of the subgroup Tx x eXp(VQL) of (C*)™,

o W@

- Tk x exp(VQL)'

(3.9.15)

The induced action of H := Tg x exp(VCj-) on the real tangent bundle 7W(Q) of
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W(Q) commutes with the almost complex structure
J:TW(Q) = TW(Q)

obtained by restriction of the standard almost complex structure on 7C™. Therefore
the quotient 20 of TW(Q) by H has the structure of an almost complex orbibundle (or
orbifold vector bundle) over . Moreover this quotient splits, by an Atiyah sequence
( [ATnd]), as the direct sum of a trivial rank 2(n—m) real bundle b over O corresponding
to the Lie algebra of H and the orbifold tangent bundle 7O of O. The existence of a
stable almost complex structure on 7O is thus established.

The tangent bundle 7 C™ splits naturally into a direct sum of m complex line bundles
corresponding to the complex coordinate directions which of course correspond to the

facets of Q. We get a corresponding splitting
TW(Q) = &Cp.

The bundles Cr are invariant under J as well H. Therefore the quotient of Cr by H is

a complex orbibundle ¥(F') of rank one on O and
W = OU(F).

It is not hard to see that the natural action of T 5 on @ commutes with the almost

complex structure on it. The quotient
2 := W/(N/N)

is an orbibundle on X with an induced almost complex structure since (NN /N ) is a
subgroup of T 5. Furthermore 7 & is the quotient of 7O by N/ N. Therefore

W=TXDh

where b is the quotient of 6 by N/ N. Since the action of T 5 and hence N/ N on H is
trivial, b is a trivial vector bundle on X. Hence the almost complex structure on 20

induces a stable almost complex structure on TX. We also have a decomposition
W = ov(F)

where the orbifold line bundle v(F) := 5(F)/(N/N).
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3.10 Line bundles and cohomology

Recall the manifold Z(Q) of dimension m + n defined in equation BIA. Let BrQ =
ETp, xt, Z(Q). Since O = Z2(Q)/Tk,

BLQ = ETy x7, Z(Q) = ETy x1, 2(Q)/(T1/T) = BT, x (£(Q)/Tx)/(Tg) =
ETg xr, O = ETg xty O/(N/N) ~ ETy x1, X = BQ.

Let w1, ..., w, be the generators of H?(BQ) as in Section B and let F; denote the

facet of @) corresponding to w;. Let
o; 2 T — T!

be the projection onto the i-th factor and C(c;) denote the corresponding 1-dimensional

representation space of Ty. Define

L; = ETp x1, L;,

where L; = C(ay) x Z(Q) is the trivial equivariant line bundle over Z(Q). Then L; is
an orbifold line bundle over BQ. Let c1(L;) be the first Chern class of L; in H?(BQ; Q).
We will show that ¢;(L;) = w;.

Since the i-th factor of Ty, acts freely on Z(Q) — 75 ' (F;), the restriction of L; to

BQ — BF; is trivial. Consider the following commutative diagram

L* (Ll) —_— Lz’

| !

(BQ — BF;) —— BQ

where ¢ is inclusion map. By naturality ¢ (¢*(L;)) = ¢*(c1(L;)). Since the bundle ¢*(L;)
over BQ) — BF; is trivial 1*(c1(L;)) = c1(¢*(L;)) = 0. It is easy to show that

B(Q — F)) = ETy, xt, (7,1(Q — F,)) ~ BQ — BF,.

From the proof of Theorem BX it is evident that H*(BQ — BF;; Q) = SR(Q — F;, Q).
Hence H?(BQ — BF;,Q) = ®,.; Quw;. The map

*: H(BQ; Q) — H*(BQ — BF;;Q)

is a surjective homomorphism with kernel Quw; implying ¢1(L;) € Qw;. Naturality axiom
ensures, as follows, that ¢1(L;) is nonzero, so that we can identify ¢;(L;) with w;.
Let F' be an edge in F;. Then

BF := ETy x, (n;"(F)) = ETy x, (x7'(F)) = (ETy x1, 7 (F))/(Tx/Tr)
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= (ETn x (n~'(F)/Tr))/(Tn/TF) = E(Tn/TF) Xqy 1, 7 (F) = ES' xg1 52,

where Tr is the isotropy subgroup of F' in Ty and action of S on S? is corresponding
action of Ty /Tr on 7~ 1(F). Let L;(F) is the pullback of orbibundle L;. Using Thom

isomorphism and cohomology exact sequence obtained from
BF —>— Ly(F)— (Li(F), BF)

where s is zero section of L; bundle, we can show ¢;(L;(F')) is nonzero. Since ¢1(L;(F))
is pullback of ¢1(L;), c1(L;) is nonzero. Hence c¢;(L;) = w;. Note that if F; is the facet
of () corresponding to L;,

Li = BTy, x1, L; = ETg x1, (Li/Tk) = ETg x1  9(F;) = ETg xt,, 2(F;)/(N/N)

~ ETN XTn V(Fz) Let
jiv(F) = L;

be the inclusion of fiber covering j : X — BQ. Then j*(L;) = v(F;). Hence
a(v(F)) = j (L) = j wi.

Hence by Theorem B2 the first Chern classes of the bundles v(F;) generate the coho-
mology ring of X. We also obtain the formula for the total Chern class of 7X with the

stable almost complex structure determined by the given dicharacteristic.

1+ (v(F))) (3.10.1)

-
3
I
—:

3.11 Chern numbers

Chern numbers of an omnioriented quasitoric orbifold, with the induced stable almost
complex structure, can be computed using standard localization formulae, given for
instance in Chapter 9 of [CK9|. The fixed points of the Ty action correspond to the
vertices of (). While computing the numerator contributions at a vertex, one needs to
recall that T 5 action on the bundle § is trivial. We will give a formula for the top Chern
number below. In the manifold case similar formula was obtained by Panov in [Pan(l).
In principle any Hirzebruch genus associated to a series may be computed similarly.

Fix an orientation for X by choosing orientations for @ C R™ and Tpy. We order the
facets or equivalently the dicharacteristic vectors at each vertex in a compatible manner
as follows.

Suppose the vertex v of @) is the intersection of facets Fj,, ..., F;,. To each of these
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facets Fj, assign the unique edge Fj, of ) such that

Fik NE, =w.
Let é, be a vector along Fj with origin at v. Then €y, ..., é, is a basis of R” which is ori-
ented depending on the ordering of the facets. We will assume the ordering Fj, , ..., F;,
to be such that é;,...,é, is positively oriented.

For each vertex v, let A(,) be the matrix
Ay = [Niy -+ Al

whose columns are ordered as described above. Let o(v) := detA(,). Then we obtain

the following formula for the top Chern number,

(3.11.1)

Remark 3.11.1. If the stable almost complex structure of an ommnioriented quasitoric
orbifold admits a reduction to an almost complex structure, then o(v) is positive for each
vertex v. This follows from comparing orientations, taking X to be oriented according to
the almost complex structure. The converse is true in the case of quasitoric manifolds,
see subsection 5.4.2 of [BEOB]. The orbifold case remains unsolved at the moment.

3.12 Chen-Ruan cohomology groups

We refer the reader to [[CRO4, ATROM| for definition and motivation of the Chen-Ruan
cohomology groups of an almost complex orbifold. They may roughly be thought of as a
receptacle for a suitable Chern character from orbifold or equivariant K-theory. Briefly,
the Chen-Ruan cohomology with coefficients in Q is the direct sum of the cohomology
of the underlying space and the cohomology of certain subspaces of it called twisted
sectors which are counted with multiplicities and rational degree shifts depending on
the orbifold structure. The verification of the statements below is straightforward.

For an almost complex quasitoric orbifold X, each twisted sector is a T y-invariant
subspace X (F) as described in Section B33. The contribution of X (F') is counted with
multiplicity one less than the order of the group G, corresponding to the nontrivial
elements of Gr. However the degree shift of these contributions depend on the particular

element of Gr to which the twisted sector corresponds. If
g=(a+N(F)) e Gp

where a € N*(F'), then the degree shift 2:(g) can be calculated as follows.
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Suppose Aq, ..., Ag is the defining basis of N(F'). Then a can be uniquely expressed

as
k
a= Z qiNi
i=1

where each ¢; is a rational number in [0,1), and ¢(g) = Z?Zl gi- Note that the ra-
tional homology and hence rational cohomology of X (F') can be computed using its

combinatorial model given in Section B33.



Chapter 4

Small orbifolds over simple

polytopes

4.1 Introduction

In this chapter we introduce some n-dimensional orbifolds on which there is a natural
ngl action having a simple polytope as the orbit space. We call these orbifolds small
orbifolds. Small orbifolds are closely related to the notion of small covers.

We give the precise definition of small orbifold and show that they are smooth.
We calculate the orbifold fundamental group of small orbifolds. We show that the
universal orbifold cover of an n-dimensional (n > 2) small orbifold is diffeomorphic to
R™. Theorem B34 shows that the space Z, constructed in Lemma 4.4 of [[OLTYT], is
diffeomorphic to R™ if there is an s-characteristic function (definition B=2) of simple
n-polytope. We compute the singular homology groups of small orbifold with integer
coefficients. We establish a relation between the modulo 2 Betti numbers of a small
orbifold and h-vector of the polytope. In the last section we discuss intersection theory
of small orbifold and rewrite the Poincaré duality theorem for even dimensional small
orbifold. We compute the singular cohomology groups and cohomology ring of even

dimensional small orbifold.

4.2 Definition and orbifold structure

Let @ be a simple polytope of dimension n. Let F(Q) = {F;, : = 1,2,...,m} be the set
of facets of Q. Let V(Q) be the set of vertices of ). We denote the underlying additive
group of the vector space F3~! by Z5~ 1.

Definition 4.2.1. A function 9 : F(Q) — Z5~ ' is called an s-characteristic function
of the polytope Q if the facets F;,, Fi,, ..., F

in

intersect at a vertex of () then the set

71
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~

{iy, iy, 0 v Vs, }, where 9; := 9(F;), is a basis of Fy ™" over Fy for
each k, 1 <k <n. We call the pair (Q,V) an s-characteristic pair.

ip—19 gy Yigpro oo o

Here the symbol ~ represents the omission of corresponding entry. We give examples
of s-characteristic function in examples 2274 and E—ZA.
Now we give the constructive definition of small orbifold using the s-characteristic

pair (Q,v). Let F' be a face of the simple polytope @ of codimension k > 1. Then
F=F,NF,Nn...NF,,

for some facets I, € F(Q) containing F'. Let G be the subspace of Fgfl spanned by
{01, V45, ...,04, }. Without any confusion we denote the underlying additive group of
the subspace Gg by Gg. By the definition of ¢, G, = Zg_l for each v € V(Q). So
the s-characteristic function ¢ determines a unique subgroup of Zg_l associated to each
face of the polytope ). Note that if £k < n then Gp = ZIQ’“. The subgroup G of Zgil
is a direct summand.

Each point p of @ belongs to relative interior of a unique face F(p) of Q. Define an

equivalence relation ~4 on Zg_l X @ by
(a,p) ~s (b,q) if p=qand b—a € Gp(. (4.2.1)

Let X(Q,9) = (Z3! x Q)/ ~s be the quotient space. Then X (Q,v) is a Zi *-space
with the orbit map

7 X(Q,9) — Q defined by 7([a,p]™) = p. (4.2.2)

Let 7 : (Zg_l X Q) = X(Q,9) be the quotient map. Let B™ be the open ball of radius
1in R™.

We claim that the space X (Q, ) has a smooth orbifold structure. To prove our claim
we construct a smooth orbifold atlas. We show that for each vertex v of () there exists
an orbifold chart (B™,Zs, ¢,,) of X(Q,9) where ¢,(B™) is an open subset X,(Q, ) of
X(Q,9) and {X,(Q,V) : v e V(Q)} cover X(Q,V). To show the compatibility of these
charts as v varies over V (@), we introduce some additional orbifold charts to make this
collection an orbifold atlas.

Let v € V(Q) and U, be the open subset of @) obtained by deleting all faces of @

not containing v. Let

X,(Q,9) :=n Y U,) = (25 x U,)/ ~s .
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The subset U, is diffeomorphic as manifold with corners to
BY ={x = (v1,22,...,2,) € Ry, : Yz < 1} (4.2.3)
Let f, : B — U, be a diffeomorphism. Suppose the facets
{r1 =0} NBY, {zo=0}NDBY, ..., {z,=0}NDB}

of Bf' map to the facets F;,, Fi,, ..., Fj, of U, respectively under the diffeomorphism
fv. Then F;, N F;, N...NF;, = v. Define an equivalence relation ~g on the product
Z5~ ' x B} by

(a,z) ~o (b,y) if z =y and b — a € Gp(y,(2))- (4.2.4)

Let Yy = (Zg_1 x BT")/ ~o be the quotient space with the orbit map mp : Yo — B} Let
o - Zg_l x BT = Y( be the quotient map. The diffeomorphism
id x f,: Zh ' x BY = 757! < U,
descends to the following commutative diagram.
n—1 n WX fo n—1
Zy = x Bl ——= Z5 x U,
frol frvl (4.2.5)
Yo I X,(Q0).

Here 7, is the map 7 restricted to ngl x Uy. It is easy to observe that the map
fv is a bijection. Since the maps 7, and 7y are continuous and the map id x f, is a
diffeomorphism, the map fv is a homeomorphism.
Let u € [0,1) and H, be the hyperplane {E?:z;j =u} in R". Then Qo = HyN B} is
the origin of R™ and
Qu =H,NB ?11

is an (n — 1)-simplex for each uw € (0,1). When u € (0, 1), the facets of @, are

{Fu; ={z; =0} NQu; j=1,2,...,n}.

The map
Oy {Fy, :j=1,...,n} = Z5~" defined by 9,(F,,) = ¥;, (4.2.6)

satisfies the following condition.

If F, is the intersection of unique I (0 <1 <n —1) facets Iy, ,..., Fy;, of Qu
then the vectors Jy(Fy; ), ..., Ju(Fy, ) are linearly independent vectors of Fo-t
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Hence 9, is a Za-characteristic function (see definition EZ274) of a small cover over the
polytope @Q,,. Since @, is an (n — 1)-simplex, the small cover corresponding to the Zo-
characteristic pair (Qy,v,,) is equivariantly homeomorphic to the real projective space

RP" !, see Chapter B. Here consider RP"~! as the identification space
(B" 'z =—-2}:2€dB" '}
So at each point (u,0,...,0) € B} — {0} we get an equivariant homeomorphism
(2571 x Qu)/ ~o= RP™L, (4.2.7)

which sends the fixed point [a, u|™® to the origin of B"". It is clear from the definition
of the equivalence relation ~¢ that at (0,...,0) € BY, (Zg’*1 X Qo)/ ~p is a point.

Hence Y} is equivariantly homeomorphic to the open cone
(RP"! x [0,1))/RP"! x {0}
on real projective space RP"~!. Consider the following map
S"1 % [0,1) = B™ define by ((x1,x2,...,2,),7) — (roy, rae, ..., 7x,).

This map induces a homeomorphism f : B® — (S"~1x[0,1))/S" ! x {0}. The covering

map S" 1 — RP" ! induces a projection map
do: (8" % [0,1))/8" 7 x {0} — (RP"! x [0,1))/RP" x {0}.

Observe that this projection map ¢q is nothing but the orbit map ¢ of the antipodal

action of Zs on B"™. In other words the following diagram is commutative.

B —L o (571 x[0,1))/8" " x {0}

ql %l (4.2.8)

B"/Zy —I— (RP" x [0,1))/RP"! x {0}
Since the map ¢ is induced from the antipodal action on S”~! the commutativity of
the diagram ensure that the map f is a homeomorphism. Let ¢, be the composition of

the following maps.

f

B" —1 B"/Z, (RP" 1 x [0,1))/RP*! x {0} =Y, BN X (Q, ).

Hence (B"™, Za, ¢,) is an orbifold chart of X, (Q, ) corresponding to the vertex v of the
polytope.
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Now we introduce some additional orbifold charts corresponding to each face F' of

codimension-k (0 < k < n) and the interior of polytope Q. Let

UF = ﬂUva

where the intersection is over all vertices v of F. Let Xp(Q,9) := 7 }(Ur). Fix a
vertex v of F'. Consider the diffeomorphism f, : B} — U,. Observe that Ur can be
obtained from U, by deleting unique n — k facets of U,. Let Fy,,...,F; , be the facets
of U, such that

Up=U,—{F,U...UF,__,},

where {l1,...,l,—r} C {1,2,...,n}. Let BX = f,}(Up). Let {z;, =0},...,{z;, , =0}
be the coordinate hyperplanes in R™ such that

fol{my, =0}nBY) = Fy, ..., fol{a, , =0} BY) =F, .

So B = B} — {{x;, =0} U...U{z;,_, = 0}}. Then f,(my (Br)) = Xr(Q,7).

Let uw € (0,1) and Q!, = Q. — {x;;, = 0}. Since (Qu, V) is a Za-characteristic pair,
there exist an equivariant homeomorphism from (Zjy ' x Q',)/ ~¢ to B"~* ¢ R*! such
that (Z5~ ' x Fy,;)/ ~o maps to a coordinate hyperplane Hj := {z;; = 0} N B""!, for
je{{1,2,...,n} = l1}. Clearly H; # H; for i # j.

Let QI = Q) — {{z1, =0}U...U{x;, , =0}}. Then

(Z5 P x QM) ~ =B ' —{H,U...UH,, }and BE=(0,1) x Q"
So 7y H(B}) = (25! x B})/ ~p is homeomorphic to

(0,1) x {(Z5~" % Q)] ~o} = (0,1) x {B" = {H, U...UH,,_,}}.
By our assumption

0,1) x {B" ' —{H,U...UH, ,}} = RP" x[0,1))/RP"! x {0}.

So there exist two open subsets D, D, of B"™ such that D%, = —Dp and the following

restrictions are homeomorphism.
1. ¢oo flpp : Dr — (0,1) x {B" 1 —{H,U...UH,,_,}}.
2. ¢oo flp, : Dip — (0,1) x {B" ' = {H;, U...UH, _,}}.

Hence the restriction ¢,|p, : Dr — Xr(Q,?) is homeomorphism. Clearly

~ n n—k—
Dp 2= {{B" N {z, > 0}} — ug.:l’xljl;mn{xlj =0}}. (4.2.9)
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The set Dp is homeomorphic to an open ball in R" if k = n — 1. When £k = n — 1,
F is an edge of the polytope Q. Let E(Q) be the set of edges of the polytope @ and
e € E(Q). Let ¢e, = dulp, : De = Xc(Q, ), where v € V(e). Hence (D, {0}, ¢e,) is
an orbifold chart on X (Q,¥) for each e € E(Q) and v € V(e).

The set Dp is disjoint union of open sets {Apg 17 =1,...,2(n —k — 1)} in R

whenever 0 < k < n — 1. Here all Ap(;) are homeomorphic to an open ball in R". Let

O, (i) = Polape + Are) = Xr(Q, ) (4.2.10)

be the restriction of the map ¢, to the domain Ap(;), where v € V(F). So for each
(i,v) €{1,2,...,2(n—k—1)} x V(F'), the triple (Ar(;), {0}, ¢, (;)) is an orbifold chart
on the image of ¢p, ;) in Xr(Q,7) C X(Q,7).

Let Q° be the interior of @ and Xg(Q,9) = 7~1(Q°). Hence

Dg = {{B" N {2, > 0}} — Uj=Ha; = 0})

is homeomorphic to Xg(Q,?) under the restriction of ¢, on Dg. The set Dg is dis-
joint union of connected open sets {B; : j = 1,...,2(n — 1)} in R™ where each Bj; is

homeomorphic to the open ball B™. Let

¢Q.(j) = PulB; + Bj = Xo(Q, ) (4.2.11)

be the restriction of the map ¢, to the domain B;. Hence for (j,v) € {1,...,2(n—1)} x
V(Q), (Bj,{0}, ¢q,(;)) is an orbifold chart on the image of ¢¢, ;) in Xo(Q, V). Let

W = {(B" Z2.0,)} U {(De. {0}, 06,)} U {(Ar): {0} 61,0)} U {(B. {0 00,1}
(4.2.12)
where v € V(Q), e € E(Q), F run over the faces of codimension k£ (0 < k < n — 1),
i=1,...,2(n—k—1)and j=1,...,2(n—1).
From the description of orbifold charts corresponding to each faces and interior
of polytope it is clear that the collection U’ is an orbifold atlas on X (Q,d). Clearly
the inclusions D, — B", Ap <> B" and B; < B" induce the following smooth

embeddings respectively:
(D€7 {0}7 ¢eu) — (an Ly, ¢’U)7 (AF(z)a {0}7 (z)Fv(z)) — (Bna La, ¢v)

and (B},{0}, ¢q, () = (B",Z2, ¢v).

So #I" is a part of a maximal atlas 4 for X (Q, ). Thus X(Q,¥) = (X,4) is a smooth

n-dimensional orbifold.

Definition 4.2.2. We call the smooth orbifold X(Q,) small orbifold corresponding to
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the s-characteristic pair (Q,19).

Remark 4.2.3. 1. The small orbifold X(Q, V) is reduced, that is, the group in each
chart has an effective action. Singular set of the orbifold X (Q, V) is

2X(Q,0) ={[t,v]™ € X(Q,9) :v e V(Q)}
We call an element of XX (Q, ) an orbifold point of X(Q, V).

2. We can not define an s-characteristic function for an arbitrary polytope. Later we

will see some examples.
3. The small orbifold X(Q,V) is compact and connected.

Example 4.2.4. Let Q? be a simple 2-polytope in R%. Define
0 F(Q?) = Zy by 9(F) = LVF € F(Q?). (4.2.13)

So ¥ is the s-characteristic function of Q*. The resulting quotient space X (Q?,9) is
homeomorphic to the sphere S%. These are the only cases where the identification space

s a manifold.

Ug
(07 1) I U7
|
|
l (1,0)
Uy | U3
|
| A
7N | Us B
Ly | 7T R
VA
. 2wy
(1,0) 1)

Figure 4.1: An s-characteristic function of I3.

Example 4.2.5. Let I? = {(z,y,2) € R3: 0 < 2,9,z < 1} be the standard cube in R3.
Let vy, ..., vg be the vertices of I3, see Figure GA. So the facets of I® are the following
squares

Fy = vivgugvy, Fo = vivovgus, F3 = vivsvgvy, Fy = vovgusvy,
F5 = vqvgvrvg and Fg = vsvgurvsg.

Define ¥ : F(I%) — Z3 by

19(F1) = 19(F6) = (1’0)7 19(F2) = 19(F5) = (O’ 1)7 "9(F3) = 19(F4) = (1’ 1)'
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Hence ¥ is an s-characteristic function of I>. Then
Grp =Gr, = {(070)7 (170)}7 Gp, =GR = {(070)7 (0, 1)}7 Gp,=Gp, = {(070)7 (L 1)}

For other proper face F of I3, Gp = 7Z3. Hence X(I3,9) is a 3-dimensional small
orbifold.

Observation 4.2.6. Let F' be a codimension-k (0 <k <mn—1) face of Q. Then F is
a simple polytope of dimension n — k. Let F(F) = {FJ’»17 e ,F]{l} be the set of facets of
F'. So there exist unique facets Fj,, ..., F}, of Q such that

FjlﬂF:FJ{I, ce FjlﬂF:Fj{l.
Fiz an isomorphism b from the quotient field IFZ_I/GF to Fg_l_k. Define a function

O F(F) — 237178 by V' (F} ) =b(d;, + Gr).

Observe that the function ¥ is an s-characteristic function of F. Let ~, be the restric-
tion of ~s on Z YR x F. So X(F,') is an (n — k)-dimensional smooth small orbifold
associated to the s-characteristic pair (F,¢'). The orbifold X (F,¥') is a suborbifold of
X(Q,9). We have shown that for each edge e of Q, the set X¢(Q,1) is homeomorphic
to the open ball B". Let €' be an edge of F' and U., = U N F. Hence

We = (Zy ' 7F x Up) [ ~e= (2571 x Ug)/ ~s

is homeomorphic to the open ball B"~*.

4.3 Orbifold fundamental group

Let X(Q, ) be a small orbifold over simple n-polytope Q). The set of smooth points
M(Q,9) == X(Q,0) — ZX(Q, V)

of small orbifold X(Q, ) is an n-dimensional manifold. For each v € V(Q) we have
X, (Q,9) — [0,v]~ = RP" ! x I,

The sphere S"~! is the double sheeted universal cover of RP"!. So the universal cover
of Xu(Q,09) —[0,v]™* is S"~1 x IV = B" — 0. Actually the map ¢, : B™ — X,(Q,9) is
the orbifold universal covering. Let e be an edge containing the vertex v of ). Define
e.=enU,.

Identifying the faces containing the edge € of U, according to the equivalence relation
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~s we get the quotient space Xz(U,, ) homeomorphic to
B! .= {(z1,x2,...,xy,) € B" : z, > 0}.

The set X,(Q,?) is obtained from Xz(U,,?¥) by identifying the antipodal points of
the boundary of Xz(U,, ") around the fixed point [0,v]|~*. Identifying two copies of
Xz(Uy, 1) along their boundary via the antipodal map on the boundary we get a space
homeomorphic to B".

Doing these identification associated to the orbifold points we obtain that the uni-
versal cover of M(Q,v) is homeomorphic to R™ — N for some infinite subset N of Z™

where N depends on the polytope @) in R™. Let
C:R"— N — M(Q,9) (4.3.1)

be the universal covering map. This map locally resemble the chart maps.

The chart maps ¢, : B — X,(Q,¥) are uniformly continuous on a compact neigh-
borhood of 0 € B™ and @ is an n-polytope in R”. So for each z € N there exists a
neighborhood V,, C R"™ of = such that the restriction of the universal covering map (
on V, — z is uniformly continuous. Hence the map ¢ has a unique extension, say é , on
their metric completion. The metric completion of R” — N and M(Q, ) are R and
X (Q, ) respectively. The map ¢ sends N onto V(Q).

We show the map ¢ is an orbifold covering. Let o : Z — X (Q,9) be an orbifold
cover. Then the restriction p: Z —XZ — M(Q,?) is an honest cover. Hence there exist

a covering map (, : R" — N — Z — ¥.Z so that the following diagram is commutative.

R"-N -, 7%z

Cl gl (4.3.2)
M(Q,0) —L M(Q,v)

Since the map ¢ is locally uniformly continuous and the maps (,, 0 are continuous,
all the maps in the diagram B33 can be extended to their metric completion. That is

we get a commutative diagram of orbifold coverings.
R™ i) Z
él @l (4.3.3)
X(Q.9) = X(Q,9)
Hence ¢ : R" — X (@, ¥) is an orbifold universal cover of X' (@, ). Since the orbit map

of antipodal action is smooth, the map é is a smooth map. Thus we get the following.
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Theorem 4.3.1. The universal orbifold cover of an n-dimensional small orbifold is
diffeomorphic to R™.

,
s U3

W2 ] L2 U2

Figure 4.2: Identification of faces containing the edge vsvg of I3.

Example 4.3.2. Recall the small orbifold X (I®,9) of evample -2-3. The set of smooth
points
M(I3,9) := X(I3,9) — SX(I3,9)

is a 3-dimensional manifold. The universal cover of M (I3,19) is homeomorphic to R3 —
Z3. To show this we need to observe how the faces of Z3 x I3 are identified by the
equivalence relation ~ (see equation B=21) on Z3 x I®. For each v € V(I?)

X, (I3,9) — [a,v]™ = RP? x I°.

The sphere S? is the double sheeted universal cover of RP%. So the universal cover of
Xo(I3,9) — [a,v]™s is S? x IV = B3 — 0. Hence the identification of faces around each
vertex of I tells us that the universal cover of M(I3,9) is R® — Z3. We illustrate the
identification of faces by the Figure .3, where © ~s —x on the upper face and y ~5 —y

on the lower face in that figure.

We use the observation EZ28 to compute the orbifold fundamental group of X (Q, ¥).
Let {51, 52,...,0m} be the standard basis of Z35". Define a map g : F(Q) — ZJ" by
B(F;) = p;. For each face F' = Fj N Fj, N...NFj, let Hp be the subgroup of Z3*
generated by Bj, 8j,,...,3;,. Define an equivalence relation ~g on Z35' x @ by

(s,p) ~p (t,q) ifand only if p=qand t —s € Hp

where F' C @ is the unique face whose relative interior contains p. So the quotient space
N(Q,B) = (Z3' x Q)/ ~p is an n-dimensional smooth manifold. N(Q, 3) is a Z5'-space
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with the orbit map

7 i N(Q, B) = Q defined by m,([s,p]™*) = p.

We show @ has a smooth orbifold structure. Recall the open subset U, of @) associ-
ated to each vertex v € V(Q). Note that open sets {U, : v € V(Q)} cover Q. Let d be
the Euclidean distance in R™. Let Fj,, F,, ..., F;, be the facets of @) such that v is the
intersection of F; , Fi,,..., F;,. For each p € U,, let

z;(p) = d(p, Fy;), for all j = 1,2,...,n.
Let By = {(z1(p),...,zn(p)) € RY, : p € Uy}. So the map
f Uy — By defined by p — (21(p), .- -, zn(p))

gives a diffeomorphism from U, to B;’. Consider the standard action of Zj on R™ with
the orbit map

§:R" = RY,,.
Then ¢~1(B?) is diffeomorphic to B". Hence (6~1(B?), f~1 o0&, Z5) is a smooth orbifold
chart on U,. To show the compatibility of these charts as v varies over V(Q), we
can introduce some additional smooth orbifold charts to make this collection a smooth

orbifold atlas. From the definition of ~ it is clear that 7 : X(Q,¥) — @ is a smooth

orbifold covering.

Definition 4.3.3. Let £ be the simplicial complex dual to Q. The right-angled Coxeter
group I' associated to Q is the group with one generator for each element of V(£) and

relations between generators are the following; a®> = 1 for all a € V(£), (ab)? = 1 if
{a,b} € E(L).

For each p € Q, let F(p) C @ be the unique face containing p in its relative interior.
Let F(p) = F;,N...NFj,. Let aj,,...,a; be the vertices of £ dual to F},,. .., F}, respec-
tively. Let I'p(,) be the subgroup generated by aj;,,...,a; of I'. Define an equivalence
relation ~. on I' X @ by

(g:p) ~c (h,q) if p=qand h™'g € T ().

Let Y = (I' x Q)/ ~¢ be the quotient space. We follow this construction from [[OLI9].
So Y is a I'-space with the orbit map

r 1Y — Q defined by &r([g,p]™°) = p. (4.3.4)

Then Y is an n-dimensional manifold and &r is an orbifold covering. Since each facet
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is connected, whenever two generators of I' commute the intersection of corresponding
facets of @ is nonempty. From Theorems 10.1 and 13.5 of [DaxZ3], we get that Y is
simply connected. Hence &t is a universal orbifold covering and the orbifold fundamental
group of @ is T'.

Let H be the kernel of abelianization map I' — I'*’. The group H acts on Y freely
and properly discontinuously. So the orbit space Y/H is a manifold. The space Y/H is
called the universal abelian cover of (). Note that N(Q,5) =Y/H. Let

£5:Y = N(Q, ) (4.3.5)

be the corresponding orbit map.
Define a function ¥ : ZJ* — Z5 ! by 9(8;) = 9(F;) = 9, on the basis of ZJ*. So ¥

is a linear surjection. ¥ induces a surjection
9 : N(Q, B) = X(Q,9) defined by 9([s,p]™*) = [s,p]™*. (4.3.6)
That is the following diagram commutes.

9
N(Q,B) — X(Q,9)
ﬁul ﬁl (4.3.7)
) id
From this commutative diagram we get J is a smooth orbifold covering of X (Q,v).

Hence the composition map
Jots:Y = X(Q,9)

is a smooth universal orbifold covering. From [IIu3m] and Theorem EZ3T we obtain

the following necessary condition for existence of an s-characteristic function.

Theorem 4.3.4. Let v : F(Q) — ngl be an s-characteristic function of the n-polytope
Q (n>2). Then the space Y is diffeomorphic to R™.

Note that when @ is an n-simplex, Y is homeomorphic to the n-dimensional sphere
S™. So by this theorem there does not exist an s-characteristic function of n-simplex.
Consequently there does not exist any small orbifold with the n-dimensional simplex as
orbit space when n > 2.

Let &y be the following composition map
P e 0y zn-1 (4.3.8)

Clearly Ker(&y), kernel of &, acts on Y with the orbit map Jo &s. Now using the

observation E2@, we get the following corollary.
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Corollary 4.3.5. The orbifold fundamental group of X(Q,1) is ker(§y) which is a
normal subgroup of the right-angled Coxeter group assoctated to the polytope Q.

4.4 Homology and Euler characteristic

To calculate the singular homology groups of small orbifold X (Q,¥) we will construct
a C'W-structure on these orbifolds and describe how the cells are attached. We redefine
index function precisely. Realize () as a convex polytope in R™ and choose a linear
functional

¢:R" =R (4.4.1)

which distinguishes the vertices of @, as in the proof of Theorem 3.1 in [OJ@I]. The
vertices are linearly ordered according to ascending value of ¢. We make the 1-skeleton
of @ into a directed graph by orienting each edge such that ¢ increases along edges. For
each vertex of ) define its index indg(v), as the number of incident edges that point

towards v.

Definition 4.4.1. A subset Q C Q of dimension k is called a proper subcomplex of @

if Q is connected and Q is the union of some k-dimensional faces of Q.

In particular each face of @ is a proper subcomplex of (). The 1-skeleton of a proper
subcomplex Q is a subcomplex of the 1-skeleton of (). The restriction of ¢ on the 1-
skeleton of Q makes it a directed graph. We define index indQ (v) of each vertex v of Q
as the number of incident edges in ) that point towards v. Let V(Q) and §(Q) denote
the set of vertices and the set of faces of Q respectively. We construct a CW-structure
on X (Q, ) in the following. Let

Io = {(u,ey) € V(Q) x E(Q) : indg(u) = n and e, is the edge joining the vertices

u, x,, such that ¢(u) > ¢(z,) > ¢(z) for all x € V(Q) — {u, z,}}.

Let Uy, = Uy, NU,, and Q" = Q. Then W,, = (25! x U,,)/ ~s is homeomorphic to
the n-dimensional open ball B” C R". Let

Q" '=Q-U.,. (4.4.2)

Then Q™! is the union of facets not containing the edge e, of Q. So Q™! is an
(n — 1)-dimensional proper subcomplex of Q and V(Q) = V(Q"1). Let v € V(Q"1)
with indg,-1(v) =n — 1. Let F=1 € F(Q™ 1) be the smallest face which contains the

inward pointing edges incident to v in Q”_l. If v1,v9 are two vertices of Q”_l with
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indgn-1(v1) =n — 1 =indg,-.(v2) then Fp=t £ Fiimt Let

T ={(v,e0) € V(Q) x E(Q) : indgn—1(v) =n — 1 and e, is the edge joining the

vertices v, y, € V(FI'1) such that ¢(v) > ¢(y») > ¢(y) for all y € V(F' 1) — {v,y,} }.

Let

Ue, = U, NU,, N EM! for each (v,e,) € Ton-1-

From the observation EZ8, W, = (Z4 ' x U,,)/ ~s is homeomorphic to the (n — 1)-
dimensional open ball B"~! ¢ R*™!. Let

Q2=0-{{ U UIu{ U U (4.4.3)

(uveu)GIQn (Uvev)EIanl

So Q"2 is an (n — 2)-dimensional proper subcomplex of @ and V(Q) = V(Q”*Q). Let
w € V(Q"?) with indgn—2(w) =n—2. Let F2 ¢ F(Q™2) be the smallest face which
contains the inward pointing edges incident to w in Q”_2. If wq,wy are two vertices of

Q"2 with indp, »(w1) = n—1=indg, »(ws) then Fi2 # F 2. Let

Tgn-—2 ={(w,ew) € V(Q) x E(Q) : indy,—2(w) =n — 2 and e, is the edge joining the

vertices w, 2, € FI'~2 such that ¢(w) > ¢(zy) > ¢(2) for all z € V(F2) — {w, 2, } }.

Let

Ue = Uy NU,, N F[j*Q for each (w,ey) € 1'an2~

From the observation EZ8, W,, = (Z3 ' x U, )/ ~s is homeomorphic to the (n — 2)-
dimensional open ball B"~2 ¢ R"2,

Continuing this process we observe that Q'(= (Zi~! x Q')/ ~,) is a maximal
tree of the 1-skeleton of @ and QO = V(Q). Hence relative interior of each edge of
(2371 x Q')/ ~4 is homeomorphic to the 1-dimensional ball in R. So corresponding to
each edge of polytope @, we construct a cell of dimension > 1 of X (Q,9).

Recall the h-vectors h; of the simple polytope Q. The integer h,_; is the number
of vertices v € V(Q) with indg(v) = i. The Dehn-Sommerville relation is

hi=hp—i ¥i=0,1,...,n,
see Theorem 1.20 of [BPM|. Hence the number of k-dimensional cells in X (Q, 9) is
ol = S, (4.4.4)

We describe the attaching map for a k-dimensional cell. Here k-dimensional cells
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are

{We, : (v,ey) € IQk}~

Let (v,e,) € I5,. Let FF € S(Qk) be the smallest face containing the inward pointing

edges to v in Q. Define an equivalence relation ~e, ON Zg_l x FF by
(t,p) ~e, (s,q)if p=q€ F and s —t € Gp (4.4.5)

where F’ € F(FF¥) is a face containing the edge e,. The quotient space (Z5 ! x F¥)/ ~,
is homeomorphic to the closure of open ball B¥ ¢ R¥. The attaching map ¢ij is the

natural quotient map

P Ght (Zg_l X (Ff —Ue,)/ ~e, — (Zg_l x (Ff —Ue,)/ ~s - (4.4.6)

k
Let Xj = U U We,. Then X, is the k-th skeleton of X (Q, 1) and
=1 (viev)€lpy

k=1

So we get a CW-complex structure on X (Q,) with XA, cells in dimension k, 0 < k <
n. Since singular homology and cellular homology are isomorphic, we compute cellular
homology of X (@, ¥). To calculate cellular homology we compute the boundary map
of the cellular chain complex for X (@Q,?). To compute the boundary map we need to
compute the degree of the following composition map Sye,

gk

— = (BT X (R = Ue)/ ~ — = ST e s

Sk—l

(w,ew)€l k-1

(4.4.7)
where F¥ is a face of QF of dimension k (k > 2), §5~1 2 51 and ¢, q,, are the quotient
maps. Clearly the above composition map Sy, is either surjection or constant up to
homotopy. When the map is constant the degree of the composition S, is zero. We
calculate the degree of the composition when it is surjection.

Let (w,ey) € IQk—l be such that Sy, is a surjection. Let z, be the vertex of the
edge e, other than w. Let FF~! ¢ S(Qk_l) be the smallest face which contains the

inward pointing edges to w in Qkil. Let
_ k—1
Ue, =Uy,nNU,, NE; .

So U,

Cw

is an open subset of qu*l and U,,, contains the relative interior of e,,. The face
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Fk=1 c FF — U.,, is a facet of F*. Note that
We, = (Zg_l xUe,)/ ~s = Sqlfz_l — {X—2/Xi—2}.

The quotient group G pr-1/G Fk 18 isomorphic to Zy. Hence from equations 23 and
EZ8 we get that (Bye,) ! (We, ) has two components Y and Y2 in S*~!. The restric-
tions (Bue, )yt and (Buwe, )|y2, on Y! and Y2 respectively, give homeomorphism to W, .

Let y, be the vertex of the edge e, other than v. Observe that
(Z5™ 1 % (Fy = {Ue, U{v, 9} })/ ~e, =10 x 8%

Hence from the definition of equivalence relation ~g, it is clear that Y2 is the image

of Y'! under the map (possibly up to homotopy)
(id x a) : 1 x S¥72 — 1% x §*72 defined by (id x a)(r,z) = (r, —z), (4.4.8)

where 1Y = (0,1) ¢ R. The degree of (id x a) is (—1)*~!. Hence the degree of the

composition map Bye, is

2 if k> 21is odd and j,, is a surjection
dyw = deg(Buwe,) = 0 if k> 2is even and f3,, is a surjection (4.4.9)

0 if Bg, is constant.

Hence the cellular chain complex of the constructed CTW-complex of X (Q,?) is

0—>7Z L @‘[Qn_1|Z—> L) @‘IQ2|Z L @‘[Q”Z L) @‘IQO|Z_>O
(4.4.10)
where dj, is the boundary map of the cellular chain complex. If £ > 2 the formula of dy

1S

dk(W%) = Z deWewa (4411)

(wyew)GIQkfl

where (v,e,) € I Ok and d,,, is the degree of the composition map fSy.,. Hence the map

dy, is represented by the following matrix with entries
{dpw : (v,€y) € IQk; (w,ey) € IQk,l}. (4.4.12)

So the map dj, is the zero matrix for all even k. When k£ > 2 is odd, the map dj is an

injection and the image of the map dj is the submodule generated by

{ D> duwWe, : (ve) € Ini}- (4.4.13)
(w,ew)EIQk,l
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Hence the quotient module (& Ioiot] 7)/Imdy, is isomorphic to

@ e 7).
h " h

Xy hi

The 1-skeleton X is a tree with X{h; vertices and E? h; edges. The boundary map
dy is an injection and image of d; is X7h; dimensional direct summand of &, I@oIZ over
Z. Hence (EBIIQo\Z)/dl(@\I@IZ) is isomorphic to Z. From the previous calculation we

have proved the following theorem.

Theorem 4.4.2. The singular homology groups of the small orbifold X (Q,v) with co-

efficients in Z is

Y/ if k=0 and if k =n even
H(X(Q,9),Z) =< (®n, Z)® (@EZ_H}H Zs) ifkis even, 0 <k <mn
0 otherwise.

Remark 4.4.3. If ) is an even dimensional simple polytope then the small orbifold

over () is orientable.

Corollary 4.4.4. The singular homology groups of the orbifold X (Q, ) with coefficients

m Q is
Q if k=0 and if k = n even
Hp(X(Q,9),Q) =1 &n, Q ifkiseven, 0 <k <n
0 otherwise.

With coefficients in Zs the cellular chain complex 210 is

0 0 0 d 0
0= Zy —— @\IQn—ﬂZQ —_— sy e @‘IQ”ZQ A @|IQ0|Z2 — 0
(4.4.14)
Where d; is an injection. Hence (@‘IQMZQ)/dl(@I]QﬂZQ) is isomorphic to Zy. So we get

the following corollary.

Corollary 4.4.5. The singular homology groups of the orbifold X (Q, ) with coefficients

n Zo 18
Zo if k=0andifk=n
Hk(X(Q,ﬂ),ZQ) = @Zzhi Zo if 1<k<n
0 ifk=1.

Remark 4.4.6. The k-th modulo 2 Betti number by(X(Q, 1)) of small orbifold X (Q, 1)
is zero when k =1 and bp(X(Q,V)) = X3h; if 1 < k < n and bo(X(Q,V)) = ho = 1.
Hence modulo 2 Euler characteristic of X (Q,0) is

X(X(Q,9)) = ho+ EZZQ(—I)kEZhi = E([)H/Z]hgi. (4.4.15)
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Observe that b(X(Q,0)) # bp—x(X(Q,9)) if 1 < k < n. Hence the Poincaré Duality

for small orbifolds is not true with coefficients in Zs.

4.5 Cohomology ring of small orbifolds

We have shown that the even dimensional small orbifolds are compact, connected, ori-
entable. Let X'(Q, ) be an even dimensional small orbifold over the polytope Q. Hence
by the Proposition 228 we get that the cohomology ring of X' (Q, ) satisfy the Poincaré
duality with coefficients in rationals.

We rewrite Poincaré duality for small orbifolds using the intersection theory. The
purpose is to show the cup product in cohomology ring is Poincaré dual to intersection,
see equation ™. The proof is akin to the proof of Poincaré duality for oriented
closed manifolds proved in [GHZS|. To show these we construct a q-CW complex
structure on X (Q,9). The q-CW complex structure on a Hausdorff topological space
is discussed in Section B. Similarly to the g-cellular homology case, we can show that
g-cellular cohomology of a q-CW complex is isomorphic to its singular cohomology with
coeflicients in rationals.

Let @ be an n-dimensional simple polytope where n is even and 7 : X(Q,9) — Q
be a small orbifold over Q. Let Q' be the second barycentric subdivision of Q. Let

(¥ :aeAlk)and k=0,1,...,n} (4.5.1)
be the simplices in @'. Here k is the dimension of #* and A(k) is an index set. Let

(n%)° be the relative interior of k-dimensional simplex 7" .

Definition 4.5.1. A subset Y C X(Q, ) is said to be relatively open subset of dimen-
sion k if for each pointy € Y there exist an orbifold chart (ﬁ, G, ) such that (V) >y

is an open subset of Y, for some k-dimensional submanifold V' of U.

Then (7~1)(n¥) is disjoint union of the following relatively open subsets

{(eh )P CcX(@9):i=1,...,ak)}

for some natural number a(k). Here o% is the closure of (0% )° in X(Q,9). The

restriction of 7 on o’;i is a homeomorphism onto the simplex n* for i = 1,...,a(k).
Then the collection
{aﬁi ci=1,...,a(k) and o € A(k) and k =0,1,...,n} (4.5.2)

gives a simplicial decomposition of the small orbifold X (@, ). So

K= {0k 0}aik (4.5.3)
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is a simplicial complex of X (Q, ).

Definition 4.5.2. The transversality of two relatively open subsets U and V' of X (Q, 1)
atp e UNYV is defined as follows:

1. Ifp is a smooth point of X (Q, ), we say U intersect V transversely at p whenever
TP(U) + Tp(V) = Tp(X(Q, 7).

2. If p is an orbifold point of X(Q, V) there exist an orbifold chart (B", Za, ¢,) such
that ¢,(0) = p. We say U intersect V transversely at p whenever To(¢;H(U)) +
To(¢, (V) = To(B").

Let 0& and pgj be two simplices of dimension k1 and ks respectively in the simplicial

complex K of X(Q, 7).

Definition 4.5.3. We say Uf& and pgj intersect transversely at p € O'f& N pgj if there
exist two relatively open subsets U C X(Q,9) and V C X(Q,¥) containing algg and pgj
respectively such that dim(U) = ki, dim(V') = ka and U intersect V transversely at p.

Let U and V' be two complementary dimensional relatively open subset of X (@, )
that intersect transversely at p e UNV.

Definition 4.5.4. Define the intersection index of U and V at p to be 1 if there ex-
ist oriented bases {£1,...,&k } and {n1,...,ng,+ for T,(U) (To(é, (U))) and T,(V)
(To(p;1(V)) respectively such that {1, ..., kM1, MKy} 45 an oriented basis for
T,X(Q,9)(ToB™) whenever p is smooth (respectively orbifold) point of X (Q, V). Other-

wise the intersection index of U and V at p is —1.
Since antipodal action on B™ (as n is even) is orientation preserving there is no
ambiguity in the above definition. Let

A =Yn,0" and B = Zlmﬁjpl€2

o7 5]'

be two cycles of the simplicial complex K such that n = k; + ko and they intersect

transversely.

Definition 4.5.5. Define the intersection number of A and B is the sum of the inter-

section indizes (counted with multiplicity) at their intersection points.

The number is finite since A and B are closed subsets of compact space X (Q, ).
We show that the intersection number depends only on the homology class of the cycle.
Let a(’;; and pgi be two simplices in K with k1 + ko = n. From the construction of the

simplicial complex K we make some observations.

Observation 4.5.6. 1. afﬁ and pgi can not contain different orbifold points when-

ever their intersection is nonempty.
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2. FEach Jlg& and pgj can contain at most one orbifold point.

s, If JZE and pgj contain an orbifold point or not, whenever their intersection is

nonempty, we can find a Zo-invariant smooth homotopy
G:[0,1] x X,(Q,9) = X,(Q,0)

fizing the orbifold point of X,(Q, ) such that G(0 x Uéfll) and G(1 x V[ZQ) intersect
transversely where U(ﬂfll and V;f containing JI(E and pgj respectively are suitable
relatively open subsets of X,(Q, ) and dimU!jil =k, alz'mvgfj2 = ko.

Let o + ... + 0”;}61 be the boundary of (k1 + 1)-simplex ¢¥1¥1. The observations
E5E also hold for the simplices o¥1*! and pgi although k1 +1+ ko =n+1. If G is the
smooth homotopy and G'(0 x UM *1) N G'(1 x V;jz) is nonempty then the subset

G'(0x UM NG (1 x Vg?)

of X(Q,?) is a collection of piecewise smooth curves. After lifting a curve to an orbifold
chart (if necessary), using the similar arguments as in [GHZS] we can show that inter-

section number of U’O% +...+ Ué}q and pgj is zero. Integrating these computation to
k1

the boundary A = ¥ng,, 0, and the cycle B = Xmg, pgj we ensure that the intersection
number of A and B is zero.

Let K = {7* 0} be the first barycentric subdivision of the complex K. Now we
construct the dual g-cell decomposition of the complex K. For each vertex agi in the
complex IC, let

xoo, = |J 74 (4.5.4)

0 n
Ta; ETﬁj

be the n-dimensional g-cell which is the union of the n-simplices ng € K’ containing

agi as a vertex. Then for each k-simplex aﬁi in the decomposition I, let
* 0'(];_ = ﬂ *O'gj (4.5.5)
d%j E'rgi

be the intersection of the n-dimensional g-cells associated to the k£ + 1 vertices of a’;i.
The g-cells {AZF = xo* } give a g-cell decomposition of X (Q, 1), called the dual g-cell
decomposition of K. So the dual g-cell decomposition {A?~*} is a q-CW structure on
X(Q,0).

From the description of dual g-cells it is clear that AZ:]’“ intersects afm transversely
when dimension of 022_ is greater than zero. A7 is a quotient space of the antipodal

action on a symmetric convex polyhedral centered at origin in R™. Since the antipodal
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action on R™ (n even) preserve orientation of R™, we can define the intersection number
of agi and A7, to be 1. We consider the orientation on the dual g-cell {Af, } such that
the intersection number of aﬁi and A’;;k is 1.

Using the same argument as Grifiths and Harris have made in the proof of Poincaré
duality theorem in [GHZS], we can prove the following relation between boundary oper-
ator d on the cell complex {a’oii} and coboundary operator § on the dual g-cell complex

{A7~*} when dimension of 6% is greater than one,
SH{ARTFY) = (—1)" % (90k ). (4.5.6)

Let {agi} =< x,y >€ K be a one simplex with the vertices z,y. The orientation on
{ok.} comes from the orientation of X(Q,). Since we are considering g-cell structure
on X(Q,9), define §({AZ1}) = *02 —*09. So we get amap o — A”~* which induces
an isomorphism

& Hi(X(Q,9),Q) — HI 5 (X(Q,0),Q), (4.5.7)

where H g__CkW(X (Q,9),Q) is n — k th g-cellular cohomology group. Hence we have the

following theorem for even dimensional small orbifold.
Theorem 4.5.7 (Poincaré duality). Let X (Q, 1) be an even dimensional small orbifold.

The intersection pairing

Hk(X(Qvﬂ)JQ) X Hn—k(X(Qaﬂ)aQ) - Q

is nonsingular; that is, any linear functional H, (X (Q,?),Q) — Q is expressible as
the intersection with some class © € Hi(X(Q,V),Q). There is an isomorphism & from

Hi,(X(Q,9),Q) to H"*(X(Q,9),Q).

Using this Poincaré duality theorem for even dimensional small orbifold we can

calculate the cohomology groups of small orbifold X (Q,¥).

Theorem 4.5.8. The singular cohomology groups of the even dimensional small orbifold
X(Q, V) with coefficients in Q is

Q if k=0 and if k = n even
H*(X(Q,9),Q) = ®n, Q ifkiseven, 0 <k<n
0 otherwise.

We can also define a product pi,x, similarly as in [GHZS] but some care is needed

at orbifold points. The product

Hkiko * ankl (X(Qaﬁ)a Q) X ankg (X(Q7 19)7@) — Hn*]ﬂ*kz (X(Qaﬁ)7(@) (458)
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on the homology of X (@, ) in arbitrary dimensions satisfying the following commuta-

tive diagram.

Hkq ko

ankl (X(Q, 19)7 Q) X ankg (X(Qv 19); Q) anklfkg (X(Qa 19)7 Q)
En—kq ><£n7k2l £n7klfk2l (4.5.9)

HM(X(Q,9),Q) x H?(X(Q,9),Q) —— H""(X(Q,9),Q)

where the lower horizontal map u is the cup product in cohomology ring.

We write some observations about the transversality of faces of an n-dimensional
polytope @ (n even). Let F and F’ be two faces of Q. F and F’ intersect transversely
if codim(F N F') = codimF + codimF”. Since @ is simple polytope, the following two

properties are satisfied.

Property 1. Let F be a 2k-dimensional face of Q and u be a vertex of F'. Then there is

a unique (n — 2k)-dimensional face F' of Q such that F' and F' meet at u transversely.

Property 2. Let F be a face of codimension 2k. Then there is k many distinct faces

of codimension two such that they intersect transversely at each point of F.

Lemma 4.5.9. Let 7 : X(Q,9) — @ be an even dimensional small orbifold and
X(F,9") = 7= Y(F) for each face F of Q. Then

1. For each 2k-dimensional face F of Q, the homology class represented by X (F, 1),
denoted by [ X (F,)], is not zero in H,(X(Q,9),Q).

2. The cohomology ring H*(X (Q,9),Q) is generated by 2-dimensional classes.

Proof. The space X (F,9) is a 2k-dimensional suborbifold of X (Q,), for each 2k-
dimensional (0 < 2k < n) face F' of ). By Corollary 22 we get that the homology
in degree 2k of X(Q, ) is generated by the classes of form [X(F,9)], where F is a
2k-dimensional face.

By equation B5, the dual of X(F N F',¢) is the cup product of the dual of
[X (F,9")] and the dual of [X (F',¢')], if F and F’ intersect transversely and otherwise
the dual of X (F N F',v¥) is zero.

The property @O tells that there is an (n — 2k)-dimensional face F’ which intersects
F transversely at a vertex of @). Since the homology classes [X (F,¢)] and [X (F', )]
are dual in intersection pairing of Poincaré duality, they are both nonzero. This proves
(1) of the above Lemma.

In theorem B we show the odd dimensional cohomology group is zero. The
cohomology in degree 2k is generated by Poincaré duals of classes of the form [X (F,9')],
codimF' = 2k. By property B, F is the transverse intersection of distinct faces of
codimension two. Hence, the Poincaré dual of [X (F,9')] is the product of cohomology

classes of dimension 2. This proves (2) of the above Lemma. O
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Recall the index function indg from Section EA. Let F, € §(Q) be the smallest
face containing the inward pointing edges incident to the vertex v of (). Let w be the
Poincaré dual of class of the form [X (F,,?)], also denoted by [v]. Let {v1,va,..., v}
be the set of vertices of @ such that indg(v;) = n — 2. We show that {wi,wo,...,w,}
is a minimal generating set of H*(X(Q,v), Q).

Let Aj = {v € V(Q) : indg(v) = j. Let Up be the open subset of F, obtained
by deleting all faces of F, not containing the vertex v. From Section B3 it is clear
that == 1(U ) is homeomorphic to the orbit space BY /7, where Zo action on B7 is
antipodal. So W_I(UFU) is j-dimensional g-cell in X (Q, ). Clearly

X@9)= |J = '(Us).
veV(Q)

This gives a q-CW structure on X (Q,?). From Theorem 1.20 of [BPO2|, we get the
number of j-dimensional cells is h,,—;, cardinality of A;. So the corresponding g-cellular
chain complex gives that {[v] : v € A;} is a basis of H;(X(Q,?),Q) if j is even. Theorem
E53 tells that {w = &;([v]) : v € 4;} is a basis of H" (X (Q,9),Q) if j is even.

Let F' be a codimension 2k face of () with top vertex v of index n — 2k. By prop-
erty B F' is unique intersection of £ many distinct codimension 2 faces FU . ka
with top vertices vj,,...,v;, € {v1,v2,..., v,} respectively. Hence w;, ...w;, = w in
H*(X(Q,v),Q). Consider the polynomial ring Q[w1, we, ..., w,]. Let the map

fing, gy Hng (X(Q,9), Q) X -+ X Hy, (X(Q,7),Q) = Hpn, —.n, (X(Q, V), Q)
(4.5.10)
be defined by the repeated application of the product map pn, n,,. Let I be the ideal
of Q[wy,ws,...,w,| generated by the following elements
Wi, Wi .« . . W, if nyy, ..., ng, are even and fn, .., (Viy, Vig, - .-, v5,) =0

in Hn—{ni1+~--+nil}(X(Qa 19)7 Q)

S = l11 w;, — lf wj, if . (Viys Vigy v oy Uizl) = Hngyngy, (Vj1, Vjgs - - ijQ) in
Hpy(ng 4otmi } (X (@, 0), Q) for some ng, ..o ymg 1y,
nj,, such that ng, +...+n; =n; +...+n;,

(4.5.11)
The Poincaré Duality theorem and intersection theory ensure that the relations among

w;’s are exactly as described above. Hence we have the following theorem.

Theorem 4.5.10. The cohomology ring of an even dimensional small orbifold X (Q, 1)

over the simple polytope Q is isomorphic to the quotient ring Qwy,wa, ..., wy|/I.
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Chapter 5

T?-cobordism of quasitoric

4-manifolds

5.1 Introduction

In this chapter we introduce the notion of edge-simple polytope. We give the brief
definition of some manifolds with quasitoric and small cover boundary in a constructive
way. There is a natural torus action on these manifolds with quasitoric boundary having
a simple convex polytope as the orbit space. Interestingly, we show that such a manifold
with quasitoric boundary could be viewed as the quotient space of a quasitoric manifold
corresponding to a certain circle action on it. We show these manifolds with quasitoric
boundary are orientable and compute their Euler characteristic.

We consider the following category: the objects are all quasitoric manifolds and
morphisms are torus equivariant maps between quasitoric manifolds. We compute the
T2-cobordism group of 4-dimensional manifolds in this category. We show that the T?-
cobordism group of 4-dimensional quasitoric manifolds is generated by the T?-cobordism
classes of the complex projective space CP?, see Theorem B-778. We also show that T2-
cobordism class of a Hirzebruch surface is trivial, see Lemma BE73. The main tool is

the theory of quasitoric manifolds.

5.2 Edge-Simple Polytopes

In this section we introduce a particular type of polytopes, which we call an edge-simple

polytopes.

Definition 5.2.1. An n-dimensional convex polytope P is called an n-dimensional edge-

simple polytope if each edge of P is the intersection of exactly (n — 1) facets of P.
piLe poLytop g Y
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Example 5.2.2. 1. An n-dimensional simple polytope is an n-dimensional edge-

simple polytope.

2. The following convex polytopes are edge-simple polytopes of dimension 3.

3. The dual polytope of a 3-dimensional simple polytope is a 3-dimensional edge-
simple polytope. This result is not true for higher dimensional polytopes, that is if
P is a simple polytope of dimension n > 4 the dual polytope of P may not be an
edge-simple polytope. For example the dual of the 4-dimensional standard cube in

R* is not an edge-simple polytope.

Proposition 5.2.3. (a) If P is a 2-dimensional simple polytope then the suspension
SP on P is an edge-simple polytope and SP is not a simple polytope.
(b) If P is an n-dimensional simple polytope then the cone CP on P is an (n+1)-

dimensional edge-simple polytope.

Proof. (a) Let P be a 2-dimensional simple polytope with m vertices {v;: i € I =
{1,2,...,m}} and m edges {e;: i € I}. Let a and b be the other two vertices of SP.
Then facets of SP are the cone (Ce;), on e; at x = a,b. Edges of SP are {zv;: = a,b
and i € I} U{e; : i € I}. The edge zv; is the intersection of (Ce;, ), and (Ce;,), if
v; = e, Ne;, for x = a,band e; = (Ce;)N(Ce;)p. Hence SP is an edge-simple polytope.
Each vertex v; of P is the intersection of 4 facets of SP. So SP is not a simple polytope.

(b) Let P be an n-dimensional simple polytope in R x 0 C R"*! with m facets
{Fi:ieI=1{12,...,m}} and k vertices {v1,va,...,vp}. Assume that the cone are
taken at a fixed point a in R"*! —R” lying above the centroid of P. Then facets of CP are
{(CF;):i=1,2,...,m}U{P}. Edges of CP are {av; = C({vi}): i =1,2,...,k}U{e :
e; is an edge of P}. Since P is a simple polytope, each vertex v; of P is the intersection
of exactly n facets of P, namely {v;} = Nj_1Fi; and each edge ¢ is the intersection
of unique collection of (n — 1) facets {F,..., ], ,}. Then C{v;} = NJ_,CF;; and
ee=PNCF,NCF,N...NCF, _,. That is C{v;} and {¢;} are the intersection of
exactly n facets of CP. Hence C'P is an (n + 1)-dimensional edge-simple polytope. [

Cut off a neighborhood of each vertex v;,i = 1,2,...,k of an n-dimensional edge-
simple polytope P C R™ by an affine hyperplane H;,i = 1,2,...,k in R™ such that
H; N H;N P are empty sets for i # j. Then the remaining subset of the polytope P is a
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simple polytope of dimension n, denote it by Qp. Suppose Py, = H;NP = H;NQp for
t=1,2,... k. Then Py, is a facet of QJp called the facet corresponding to the vertex v;
for each ¢ = 1,..., k. Since each vertex of Pg, is an interior point of an edge of P and
P is an edge-simple polytope, Py, is an (n — 1)-dimensional simple polytope for each
1=1,2,...,k.

Lemma 5.2.4. Let F' be a codimension | < n face of P. Then F is the intersection of
unique set of | facets of P.

Proof. The intersection F'NQ p is a codimension [ face of Q) p not contained in Uf:o{PHi}-
Since Qp is a simple polytope, FNQp = ﬁé‘:lFin for some facets {Fy ,..., Fj } of Qp.
Let F, be the unique facet of P such that Fi’j C F;. Then F = ﬂllFij. Hence each face

of P of codimension [ < n is the intersection of unique set of [ facets of P. O

Remark 5.2.5. If v; is the intersection of facets {F;,, ..., F;,} of P for some positive
integer 1, the facets of Py, are {Pu, N F;,,..., Py, N Fj}.

5.3 Manifolds with quasitoric boundary

Definition 5.3.1. A manifold with quasitoric boundary is a manifold with boundary

where the boundary is a disjoint union of some quasitoric manifolds.

Let P be an edge-simple polytope of dimension n with m facets Fi,..., F,, and k
vertices vy, ..., v;. Let e be an edge of P. Then e is the intersection of unique collection
of (n — 1) facets {Fj; : j=1,...,(n —1)}. Suppose F(P) = {F1,..., Fy}.

Definition 5.3.2. The function \: F(P) — Z"~' is called an isotropy function of the
edge-simple polytope P if the set of vectors {\(Fi,),...,A(F;,_,)} form a basis of Z"*
whenever the intersection of the facets {Fj,,...,F; |} is an edge of P.

The vectors \; == M(F;) are called isotropy vectors and the pair (P, )\) is called an

1sotropy pair.

We define some isotropy functions of the edge-simple polytopes I? and Py in exam-
ples B33 and B=3@ respectively.

Remark 5.3.3. It may not possible to define an isotropy function on the set of facets of
arbitrary edge-simple polytopes. For example there does not exist an isotropy function
of the standard n-simplex A™ for each n > 3.

We construct a manifold with quasitoric boundary from the isotropy pair (P, \). Let
F be a face of P of codimension [ < n. Then F is the intersection of a unique collection
of [ facets F;,, Fi,, ..., Fi, of P. Let T be the torus subgroup of T"! corresponding to

the submodule generated by A;;, Ay, ..., A, in 7"~ 1. Assume T, = T" ! for each vertex
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v of P and Tp = 1. We define an equivalence relation ~j, on the product T"~! x P as
follows.
(t,p) ~b (u,q) if and only if p = ¢ and tu™! € Tp (5.3.1)

where ' C P is the unique face containing p in its relative interior. We denote the
quotient space (T"~! x P)/ ~ by X (P, ). The space X (P, \) is not a manifold except
when P is a 2-dimensional polytope. If P is 2-dimensional polytope the space X (P, \)
is homeomorphic to the 3-dimensional sphere.

But whenever n > 2 we can construct a manifold with boundary from the space
X(P,)\). We restrict the equivalence relation ~ on the product (T" ! x Qp) where
@p C P is a simple polytope as constructed in Section B2 corresponding to the edge-
simple polytope P. Let

W(Qp,\) = (T" ' xQp)/ ~y C X(P,N) (5.3.2)

be the quotient space. The natural action of T"~! on W(Qp, \) is induced by the group

operation in T" 1.

Theorem 5.3.4. The space W(Qp, ) is a manifold with boundary. The boundary is a

disjoint union of quasitoric manifolds.

For each edge e of P, ¢ = eNQp is an edge of the simple polytope Qp. Let U be
the open subset of Qp obtained by deleting all facets of Qp that does not contain €’ as
an edge. Then the set U, is diffeomorphic to I° x Rggl where I is the open interval
(0,1) in R. The facets of I° x Rggl are 10 x {1 = 0},...,1° x {z,_1 = 0} where
{z; =0, j=1,2,...,n — 1} are the coordinate hyperplanes in R"~*. Let Fl,...,F |

be the facets of Qp such that ﬁ?__llFi’j = ¢’. Suppose the diffeomorphism

g: Us — I° x RZ;!

sends Fi’j NUe to 1Y x {z; =0} for all j = 1,2,...,n— 1. Define an isotropy function .
on the set of all facets of I° x Rggl by Ae(I°x {z; =0}) = A;; forall j =1,2,...,n— 1.

We define an equivalence relation ~, on (T"~1 x I? x Rggl) as follows.
(t,b,x) ~¢ (u,c,y) if and only if (b,z) = (¢,y) and tu™! € Tq(r)- (5.3.3)

where g(F) C IV x Rgal is the unique face containing (b, z) in its relative interior, for
a unique face F' of Uy and Typy = Tp. So for each a € IY the restriction of A\, on
{{a} x {z; =0}) : j =1,2,...,n — 1} define a characteristic function (see definition
1) on the set of facets of {a} x R;Lal. From the constructive definition of quasitoric

manifold given in [T it is clear that the quotient space {a} x (T"~! x ]Rgal) / ~e is
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diffeomorphic to {a} x R2"=1)_ Hence the quotient space
(T x IO x RZGY)/ ~e = 10 x (T x REGY)/ ~e = 10 x R2D,
Since the quotient maps
T (T”fl X Ug) — (T”fl X Uer)/ ~p

and
e (T 1 x I x RZGY) — (T x 19 x RZ1)/ ~e

are continuous surjection and g is a diffeomorphism, the following commutative diagram

ensure that the lower horizontal map g. is a homeomorphism.

(Tl x Uy) 28 (Tn1 x I x R

ﬂl nel (5.3.4)

(T"Y X Up)/ ~y =2 (TP x IO X REGY)/ ~ve —— 10 x R2™D

Let v} and v4 be the vertices of the edge € of Qp. Suppose H; Ne’ = {v|} and
Hyne' = {v,}, where H; and Hj are affine hyperplanes as considered in Section 52
corresponding to the vertices v; and vy of e respectively. Let Uy and Uy, be the open
subset of Qp obtained by deleting all facets of @ p not containing v} and v} respectively.
Hence there exist diffeomorphism g : Uy — [0,1) x R;‘al and g : Uy, — [0,1) x Rgal
satisfying the same property as the map g. We get the following commutative diagram
and homeomorphisms gg for j =1,2.

(T xUy) 25 (T x [0,1) x RYGY)

”l wel (5.3.5)

o

J
(T1 X Uy)/ ~p —E— (T [0,1) X REGY)/ ~e —— [0,1) x R2D

Hence each point of (T"~! x Qp)/ ~p has a neighborhood homeomorphic to an open
subset of [0,1) x R2™~1). So W(Qp,\) is a manifold with boundary. From the above
discussion the interior of W (Qp, A) is

U, (T" X Ue)/ ~p = W(Qp,A) N (T x Uy Pry,)/ ~}

and the boundary is LE_ {(T""! x Py,)/ ~}. Let F(H);, be a facet of Py,. So there
exists a unique facet F;j of P such that F(H);; = F; N Qp N H;. The restriction of the
function A on the set of facets of Py, (namely A(F(H);;) = );) give a characteristic
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function of a quasitoric manifold over Pp,. Hence restricting the equivalence relation ~;,
on (T"~! x Pp,) we get that the quotient space W; = (T"~! x Pp,)/ ~y is a quasitoric
manifold over Pg,. The boundary OW (Qp, A) is the disjoint union I_Ifz Wi, where W is
a quasitoric manifold. So W(Qp, ) is a manifold with quasitoric boundary. In Section

bd we have shown that these manifolds with quasitoric boundary are orientable.

Example 5.3.5. An isotropy function of the standard cube I® is described in the follow-
ing Figure B70. Here simple convex polytopes Py, ..., Py, are triangles. The restriction
of the isotropy function on Py, gives that the space (T? x Py,)/ ~y is the complex projec-
tive space either CP? or TP, Since antipodal map in R3 is an orientation reversing map
we can show that the disjoint union L}_, CP? u;*:l@Q is the boundary of (T?x Qys)/ ~y.

(0,1) ‘ U7
| (1,0)
Vy I U3
RN 3 s T /
Ly |y STy Vg
7)1 \ 1‘2 (17 1)
(1,0) (0.1)
(13,3)

(@, )

Figure 5.1: An isotropy function A of the edge-simple polytope I°

Example 5.3.6. In the following Figure B3 we define an isotropy function of the
edge-simple polytope Py. Here simple polytopes Py, , Pr,, Pr,, Pr, are triangles and
the simple polytope Py is a rectangle. The restriction of the isotropy function on Py,
gives that the space (T? x Py,)/ ~y is either CP? or CcP’ for each i € {1,2,3,4} and
(T2 x Py,)/ ~p is CP* x CP'. Hence the space L2, L CP? LUTP U (CP! x CP) is the
boundary of (T? x Qp,)/ ~u, see Section B1.

5.4 Manifolds with small cover boundary

Definition 5.4.1. A manifold with small cover boundary is a manifold with boundary

where the boundary is a disjoint union of some small covers.
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Vg

U1 V2

Qr,

Figure 5.2: An isotropy function A of the edge-simple polytope P

Definition 5.4.2. The function \*: F(P) — Fgfl is called a Fy-isotropy function of
the edge-simple polytope P if the set of vectors {\°(F},),...,\°(F;, _,)} form a basis of
F2~1 whenever the intersection of the facets {Fy,, ..., F;,_,} is an edge of P.

The vectors X] := X°(F;) are called Fa-isotropy vectors and the pair (P, \°) is called
Fo-isotropy pair.

We can construct a manifold with small cover boundary from the pair (P, A*). Assign
each face F' to the subgroup G of Zg_l determined by the vectors A7 ,..., A} where
F' is the intersection of the facets Fj,,...,F;,. Let ~4 be an equivalence relation on

(257t x P) defined by the following.
(t,p) ~s (u,q) if and only if p=¢q and t —u € Gp (5.4.1)

where F' C P is the unique face containing p in its relative interior. Consider the
restriction of ~¢ on (Z4~! x Qp). The quotient space (Z§ ™ x Qp)/ ~s C (Z3 ! x
P)/ ~s, denoted by S(Qp, \?), is a manifold with boundary. This can be shown by the
same arguments given in the Section B33. The boundary of this manifold is {(Zg_1 X
Uk Py.)/ ~s} = Uk {(Z57" x Pg,)/ ~s}. Clearly the restriction of the Zs-isotropy
function A® on the set of facets of Py, gives the Zg-characteristic function of a small
cover over Pp,. So (Zi~' x Pp,)/ ~s is a small cover for each i = 0,...,k. Hence

S(Qp, ) is a manifold with small cover boundary.

5.5 Some observations

The set of facets of the simple convex polytope Qp are

]:(QP):{PHj:j:172>'-'7k}U{F‘z’/:i:1’2""’m}’
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where F/ = F; N Qp for a unique facets F; of P. Define the function : F(Qp) — Z"

as follows.

S(F)z{ (0,...,0,1) € Z" if F=Py, andj €{l,...,k} (5.5.1

N €ZVEx {0y CZ® if F=F;andi€ {1,2,...,m}.

So the function ¢ satisfies the condition for the characteristic function (see definition
[23) of a quasitoric manifold over the n-dimensional simple convex polytope @ p. Hence
from the characteristic model (Qp, &) we can construct the quasitoric manifold M (Qp, &)
over @Qp, see [OTA]. There is a natural T" action on M(Qp,&). Let Ty be the circle
subgroup of T" determined by the submodule {0} x {0} x ... x {0} x Z of Z". Hence
W(Qp, ) is the orbit space of the circle Ty action on M(Qp,&). The orbit map
g M(Qp,&) — W(Qp, ) is not a fiber bundle map.

Remark 5.5.1. The manifold S(Qp, As) with small cover boundary constructed in Sec-

tion 1s the orbit space of Zs action on a small cover.

5.6 Orientability of W(Qp, \)

Suppose W = W(Qp, A). The boundary OW has a collar neighborhood in W. Hence by
the Proposition 2.22 of [Hafld] we get H;(W,dW) = H;(W/dW) for all i. We show the
space W/OW has a CW-structure. Actually we show that corresponding to each edge
of P there exist an odd-dimensional cell of W/0W. Realize Qp as a simple polytope in
R™ and choose a linear functional ¢ : R — R which distinguishes the vertices of Qp,
as in the proof of Theorem 3.1 in [[IM]. The vertices are linearly ordered according to
ascending value of ¢. We make the 1-skeleton of Qp into a directed graph by orienting
each edge such that ¢ increases along edges. For each vertex v of Qp define its index,
ind(v), as the number of incident edges that point towards v. Suppose V(Qp) is the set
of vertices and £(Qp) is the set of edges of Qp. For each j € {1,2,...,n}, let

I = {(v,ey) € V(Qp) x E(Qp) : ind(v) = j and e, is the incident edge that points

towards v such that e, = eNQp for an edge e of P}.

Suppose (v, ey) € I;. Let F,, denote the smallest face of @Qp which contains the inward
pointing edges incident to v. Then F¢, is a unique face not contained in any Pp,. Let
U., be the open subset of F; obtain by deleting all faces of F,, not containing the edge
ey. The restriction of the equivalence relation ~, on (T ! x U, ) gives that the quotient
space (T"! x U,,)/ ~p is homeomorphic to the open disk B%~!. Hence the quotient

space (W/OW) has a CW-complex structure with odd dimensional cells and one zero
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dimensional cell only. The number of (2j — 1)-dimensional cell is |I;|, the cardinality of

I for j =1,2,...,n. So we get the following theorem.

Pz ifi=2j—1andje{l,...,n}

I.
Theorem 5.6.1. H;(W,0W) = LZJI ifi=0
0 otherwise

When j = n the cardinality of I; is one. So Ha,—1(W,0W) = Z. Hence W is an

oriented manifold with boundary.

Example 5.6.2. We adhere the notations of example B23@. Here I3 = {(vi4,€y,,)},
Iy = {(vs, evg), (13, €013), (V15, €015) } and It = {(vs, ewy), (V6, €vg), (V9 €uy)}, see Figure
B33, The face Fev13 corresponding to the point (vi3,€y,4) 1S VoU3V5V13V12V1. Thus we
can give a CW -structure of W(Qp,, \)/OW (Qp,, ) with one 0-cell, two 1-cells, three

3-cells and one 5-cell.

Qr,

Figure 5.3: The index function of Qp,.

In [T the authors showed that the odd dimensional homology of quasitoric man-
ifolds are zero. So Ha;—1(0W) = 0 for all i. Hence we get the following exact sequences
for the collared pair (W,0W).
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0 — Hop (W) —2— Hop 1 (W,0W) —2 Hop o(dW) —2 Hop o(W) — 0

0= Hy(W) —=s Hy(W,0W) —2% Hy@W) —2s Hy(W)—0
0= Hi(W) —=s HmW,0w) —2% Hy@W) —Ss Hy(W)—Z

(5.6.1)

Where Z = Ho(W,0W). Let (hiy,...,hi, ,) be the h-vector of Pp,, for i =
1,2,...,k. The definition of h-vector of simple polytope is given in Section 4 of
Chapter M. Hence the Euler characteristic of the manifold W with quasitoric boundary
S T 1)

Fix the standard orientation on T""!. Let I, = {(v',e,)}. Then the (2n — 1)-
dimensional cell (T"~! x U, ,)/ ~C W represents a fundamental class of W/OW with
coefficient in Z. Thus an orientation of U , (hence of Qp) determines an orientation of
W. Note that an orientation of @) p is induced by orienting the ambient space R".

So the boundary orientation on Pp, induced from the orientation of Qp gives the
orientation on the quasitoric manifold W; C OW. In the next section we consider the
orientation of Q’s and Qp’s induced from the standard orientation of R™ and R"+!

respectively.

5.7 Torus cobordism of quasitoric manifolds

Let € be the following category: the objects are all quasitoric manifolds and morphisms
are torus equivariant maps between quasitoric manifolds. We are considering torus
cobordism in this category only. Quasitoric manifolds are orientable manifolds, see the
Section A of Chapter M.

Definition 5.7.1. Two 2n-dimensional quasitoric manifolds My and Mo are said to
be T"-cobordant if there exist an oriented T™ manifold W with boundary OW such that
OW is T™ equivariantly homeomorphic to My U (—Ms) under an orientation preserving

homeomorphism. Here — My represents the reverse orientation of Ms.
We denote the T"-cobordism class of quasitoric 2n-manifold M by [M].

Definition 5.7.2. The n-th torus cobordism group is the group of all cobordism classes
of 2n-dimensional quasitoric manifolds with the operation of disjoint union. We denote

this group by CG,,.

Let M — @ be a 4-dimensional quasitoric manifold over the square Q with the
characteristic function ¢ : F(Q) — Z2. Consider that the orientation on M comes from

the standard orientation on T? and @ C R%. We construct an oriented T? manifold W



105 5.7 Torus cobordism of quasitoric manifolds

with boundary OW, where OW is equivariantly homeomorphic to —M UL, (CIPQI_II_I;CQ@2
for some integer ki, ko. To show this we construct a 3-dimensional edge-simple polytope
Pe such that Pc has exactly one vertex O which is the intersection of 4 facets with
PN Hp = @Q and other vertices of P¢ are intersection of 3 facets. We define an isotropy
function A, extending the characteristic function £ of M, from the set of facets of Pg
to Z2. Then W(Q Pe» A) is the required oriented T? manifold with quasitoric boundary.
We have done an explicit calculation in the following.

Let @ = ABCD be a rectangle (see Figure B4) belongs to {(z,y,2) € RS, : 2z +y+
z=1}. Let ¢ : {AB, BC,CD, DA} — Z? be the characteristic function for ;quasitoric

manifold M over ABCD such that the characteristic vectors are

§(AB) =&, £(BC) =&, {(CD) = &3 and {(DA) = &.

We may assume that & = (0,1) and & = (1,0). From the classification results given

in Section A, it is enough to consider the following cases only.

¢ =(0,1) and & = (1,0) (5.7.1)
£3=(0,1) and & = (1,k), k=1or —1 (5.7.2)
¢=(0,1) and & = (1,k), k€ Z — {~1,0,1} (5.7.3)
&= (—1,1) and & = (1,-2) (5.7.4)

For the case bZ1: In this case the edge-simple polytope ﬁl, given in Figure b4,
is the required edge-simple polytope. The isotropy vectors of Py are given by

MOGH) = &, NOHI) = &, MOLJ) = &, MOGJ) = & and N(GHIJ) = & + &.

So we get an oriented T? manifold W(Qﬁl’)‘) with quasitoric boundary where the
boundary is the quasitoric manifold —M L I_Ikl(CIP’2 U uk2@2 for some integers ki, ko.
Note that orientation on P, C R3,, comes from the standard orientation of R3. Let A4’
and B’ be the midpoints of G'.J an_d H respectively. Let H be the plane passing through
O, A’ and B’ in R3. Since a reflection in R? is an orientation reversing homeomorphism,
it is easy to observe that the reflection on H induces the following orientation reversing

equivariant homeomorphisms.

(T? x Pp,)/ ~— (T? x P,,)/ ~ and (T? x Py,)/ ~— (T?> x P,..)/ ~ .
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So ky = ky. Since [CP’] = —[CP?], [M] = 0[CP?.

For the case EZ2: In this case |det(¢2,£4)] = 1. Let O be the origin of R3. Let
Cq be the open cone on rectangle ABCD at the origin O. Let G, H,I,J be points on
extended OA, OB, OC, OD respectively. Let E and F be two points in the interior of
the open cones on AB and C'D at O respectively such that |OG| < |OE|, |OH| < |OF]
and |OI| < |OF], |OJ| < |OF|. Then the convex polytope P; C Cg on the set of
vertices {O,G,E,H,I,F,J} is an edge-simple polytope (see Figure B4) of dimension
3. Define a function, denote by A, on the set of facets of P; by

MOGEH) =&, MOHI) = &, MOJFI) =&, AMOJG) =&,

(5.7.5)
NHIFE) = & and N(GJFE) = &.

Hence X is an isotropy function on the edge-simple polytope P;. The boundary of
the oriented T2 manifold W(Qp,, ) is the quasitoric manifold M U Ly, CP? U |_Ik2@2
for some integers ki, ks. Similarly to the previous case we can show that a suitable

reflection induces the following orientation reversing equivariant homeomorphisms.
(T2 X PlH)/ ~— (TQ X Pl])/ ™~ (T2 X PlE)/ ~— (T2 X Plj)/ ~

and
(T? x Pyg)/ ~— (T2 x Py,)/ ~ .

So ki = ke. Hence [M] = 0[CP?].

By

S

\ ! 1

,,,,, . ,

AN P H Av
3 2

B,

Figure 5.4: The edge-simple polytope P, ﬁl and the convex polytope P| respectively.

For the case B3: Suppose det(£2,&4) = k > 1. Define a function A on the set
of facets of P; except GEFJ by

AD(OGEH) = &, \D(OHI) = &, \V(OIFJ) = &, AD(0G]) = &,

and \O(EHIF) = & + €. (5.7.6)
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Figure 5.5: The edge-simple polytope Px.

So the function A(V) satisfies the condition of an isotropy function of the edge-simple
polytope P; along each edge except the edges of the rectangle GEF'J. The restriction
of the function AV on the edges GE,EF, FJ,GJ of the rectangle GEFJ gives the

following equations,

|det XD (GE), \V(EF)|| =1, |det[]\V(EF), A(l)(FJ)H
|det NV (F1), \D(GT)]| =1, |det\V(GJ), \D(GE)]| =
and det NO(EF), \D(GJ) =k -1 < k.

(5.7.7)

Let P{ be a 3-dimensional convex polytope as in the Figure BE4. Identifying the facet
GEFJ of P, and A;B1C1D; of P{ through a suitable diffeomorphism of manifold with
corners such that the vertices G, E, F, J maps to the vertices A1, By, C1, D1 respectively,
we can form a new convex polytope P, see Figure B. After the identification following
holds.

1. The facet of P; containing GE and the facet of P| containing A1 B; make the facet
OHH1E1G1 Of Pz.

2. The facet of P, containing EF and the facet of P containing By Cy make the facet
HH1 11] of P2 .

3. The facet of Py containing F'.J and the facet of P| containing C; D make the facet
OIIlFljl Of PQ.

4. The facet of P; containing JG and the facet of P containing D; A; make the facet
OJ 1G1 of PQ.

The polytope P, is an edge-simple polytope. We define a function A on the set of
facets of P, except G1E1F1J1 by
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N (OHH E\Gy) = &, A\®(OIH) = &, \B(OILFJ)) = &3,
AD(ONGy) = &, \O(HHILT) =&+ & (5.7.8)
and )\(2)(H111F1E1) = 52 + 251.

So the function A(?) satisfies the condition of an isotropy function of the edge-simple
polytope P» along each edge except the edges of the rectangle G1F1FyJi. The restric-
tion of the function A on the edges namely Gy Fq, F1Fy, F1Jq, G1J1 of the rectangle
G1E1F1J; gives the following equations,

|d6t[)\2(G1E1), )\Q(ElFl)” = 1, ‘det[)\Z(ElFl),)\2(F1J1)]| = 1,
|det[N2(F1J1), \2(G1J1)]| = 1, |det[N2(G1J1), \2(G1Ey)]| = 1 (5.7.9)
and det[)\2(E1F1),)\2(G1J1)] =k—-2<k-—1.

Proceeding in this way, at k-th step we construct an edge-simple polytope P, with
the function (), extending the function AE=D) "on the set of facets of Py such that

A (Hy o Hy 1T 1Ij—2) = &+ (k — 1)& = AV (Hy oIy o F) 2 Ej_»),

AE(OG,_1J11) = &4 = \FD(0G,_oJy_2),

AP (Hyp Iy 1 Fyo1Bp_q) = & and AB) (G 1 By Fr_1Jj—1) = & + (k — 1)&1.

(5.7.10)

Observe that the function A := A*) is an isotropy function of the edge-simple polytope
Py. So we get an oriented T2?-manifold with boundary W (Q P.»A) where the bound-
ary is the quasitoric manifold M U Liy, CP* i qu@Q for some integers ki, ko.Similarly
to the previous cases we can construct the following orientation reversing equivariant

homeomorphisms.
(T? X Piy)/ ~= (T2 X Pyy)/ ~, (T2 X Py )] ~= (T2 % Py, )/ ~,

(T? X Phy, )/ ~—= (T? X Py, )/ ~ and (T? x Py, )/ ~—= (T2 x Py, )/ ~

fori=1,...,k—1. So k1 = ko. Hence [M] = O[CP?]. If k < —1, similarly we can show
[M] = 0[CP?].

From the calculations for the cases B, 72 and 73 we get the following lemma.

Lemma 5.7.3. The T?-cobordism class of a Hirzebruch surface is trivial. In particular,

oriented cobordism class of a Hirzebruch surface is also trivial.

For the case BE7A: In this case |det[¢1,£3]] = 1. Following case B272, we can
construct an edge simple polytope P” and an isotropy function A over this edge-simple
polytope, see Figure EB. Hence we can construct an oriented T? manifold with quasitoric
boundary W(Qpr, \) where the boundary is —M L |_I;€1(CIP’2 U uk2@2 for some integers



109 5.7 Torus cobordism of quasitoric manifolds

P//

Figure 5.6: The edge-simple polytope P” and an isotropy function A\ associated to the
case b4.

k1, ko. We may assume that the angles between the planes OHI and HIFE’ and ’the
angles between the planes FFJG and HIFE’ are equal. Clearly a suitable reflection

induces the following orientation reversing equivariant homeomorphisms.
(T? x Ppy)) ~— (T? x Pg)/ ~ and (T? x P})/ ~— (T2 x P{)/ ~. (5.7.11)

Let CP% = (T? x PY)/ ~ and CP% = (T2 x P/))/ ~. Observe that the characteristic
functions of the triangles P/ and P/ are differ by a non-trivial automorphism of T?
(or Z?). So (CIP’?] and CIP% are complex projective space CP? with two non-equivariant
T2-actions. Hence [M] = [CP%] + [CPZ].

To compute the group CGo we use the induction on the number of facets of 2-
dimensional simple convex polytope in R?. We rewrite the proof of well-known following

lemma briefly.

Lemma 5.7.4. The equivariant connected sum of two quasitoric manifolds is equivari-

ant cobordant to the disjoint union of these two quasitoric manifolds.

Proof. Let My, and M, be two quasitoric manifolds of dimension 2n. Then Wj :=
[0,1] x M; and Wy := [0, 1] x My are oriented T"-manifolds with boundary such that

8W1:0X(—M1)|_|1><M1 andaWQZOX(—Mg)U1XM2.

Let 21 € My and z9 € Ms be two fixed points. Let Uy € Wi and Uy C Wy be
two T" invariant open neighborhoods of 1 x x; and 1 X xo respectively. Identifying
oU; € (W7 —Uy) and Uy C (W — Us) via an orientation reversing equivariant map

we get the lemma. O



Chapter 5: T?-cobordism of quasitoric 4-manifolds 110

Now consider the case of a quasitoric manifold M over a convex 2-polytope P with
m facets, where m > 4. By the classification result of 4-dimensional quasitoric manifold

which is discussed in Section 32, M is one of the following equivariant connected sum.

M = N, #CP? (5.7.12)
M = No#CP’ (5.7.13)
M = Ny# M (5.7.14)

The quasitoric manifolds N1, No and N3 are associated to the 2-polytopes (@1, Q2 and
Q3 respectively. The number of facets of Q1,Q2 and @3 are m — 1, m — 1 and m — 2
respectively. The quasitoric manifold M ,;l is defined in Section A of Chapter M. In
previous calculations we have shown that [M}}] = 0[CP?]. So by the Lemma EZ4 we
get either [M] = [Ny] + [CP?] or [M] = [N3] — [CP?] or [M] = [N3]. Thus using the

induction on m, the number of facets of (), we can prove the following.

Lemma 5.7.5. Any 4-dimensional quasitoric manifold is equivariantly cobordant to the
disjoint union UYCP? for some I, where the T?-action on different copies of CP? may

be distinct.

We classify the equivariant cobordism classes of all T?-actions on CP?. Let Q be
a triangle and {Fy, F», F3} be the edges (facets) of Q. Let ¢ : {Fy, Fy, F3} — Z? be a
characteristic function such that £(F1) = (a1,b1) and &(F») = (ag, by). Because of the
Corollary ITXT7, we may assume that

det(§(F1),§(F2)) = [(a1,b1;a2,b2)| =1

where (a1, b1;ag,bs) is the 2 x 2 matrix in SL(2,Z) with row vectors {(F1) and &(F3).
We denote this matrix by & also. Then either {(F3) = (a1 + a2,b1 + b2), &(F3) =
—(a1 + az,b1 +ba), £(F3) = —(a1 —az,by — ba) or {(F3) = (a1 — ag, by — bz). Let & and
£” be two characteristic function defined respectively by,

E(F1) = (a1,b1),& (Fa) = (a2, b2),&'(F3) = (a1 + a2, by + ba)

and
§"(F1) = (a1,01),"(F2) = (ag, b2), " (F3) = (a1 — ag, by — ba).

Denote the quasitoric manifolds associated to the pairs (Q,¢’) and (@, &) by (CIP’g, and
(CIP%/ respectively. The quasitoric manifolds associated to other posible characteristic

function are equivariantly homeomorphic to either (C]P’g/ or (CIP%,,. Define an equivalence
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relation ~., on SL(2,Z) by
(a1,b1;a2,b2) ~eq (—a1, —bi; —az, —ba).

Denote the equivalence class of £ € SL(2,7Z) by [€]eq. Using Corollary XT3 we get the

following classification.

Lemma 5.7.6. A T?-actions on CP? is equivariantly homeomorphic to either (CIP’? or
(CIP’%,, for a unique [§leg € SL(2,Z)] ~eq-

Note that the natural T2-actions on C]P’g, and (CIP’E,, are same. Consider the linear
map L¢ : Z? — Z?, defined by L¢(1,0) = (a1,b1),Le(0,1) = (az,b2). The map L
induces orientation preserving homeomorphisms CP? — (CIP%, and @i — (C]P)g//. Thus
[(CIP’?,] = —[(CIP’?,,]. Observe that if [£1]eq # [€2]eq then the corresponding characteristic
functions are differ by d,, for some non trivial auto morphism ¢ : T2 — T2. So [(CIP’QQ] #
[CIF’ZQ]. Hence we get the following.

Theorem 5.7.7. The set {[CPE,] t [€leqg € SL(2,Z)/ ~eq} is a set of generators of the

oriented torus cobordism group CGa.
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Chapter 6

Oriented cobordism of CP2F+1

6.1 Introduction

In this chapter we have given a new construction of oriented manifold with the boundary
CP**! for each k > 0. The main tool is the theory of quasitoric manifolds. The strat-
egy of our proof is to first construct some compact orientable manifolds with quasitoric
boundary. Then identifying suitable boundary components using certain homeomor-
phisms we obtain oriented manifold with the boundary CP?**! for each k > 0, see
Theorem B2

6.2 Some manifolds with quasitoric boundary

Set n = 2(k + 1). Corresponding to each even k > 0 we construct a manifold with
quasitoric boundary. Let {4; : j =0,...,n} be the standard basis of R 1. Let

A" = {(z0,71,...,2n) € R ¢ 2, >0 and Sfz; = 1}. (6.2.1)
Then A™ is an n-dimensional simplex with vertices {A4; : j =0,...,n} in R"™*1. Define
A" ={(wg, w1, ) €A™z =0} (6.2.2)

J

So A?_l is the facet of A™ not containing the vertex A;. Let I’ be the largest face of

A" not containing the vertices A;,,..., Aj,. Then
F=n_ A" ={(zo,21,...,20) € A" 15, =0, i =1,...,1}. (6.2.3)
Define a function 7 : {A?‘l :j=0,...,n} — Z" 1 as follows.

113
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(0,...,0,1,0,...,0) if0<j <5 —1, here 1is in the (j + 1)-th place
H(AZ:}) _ (1,...,1,1,0,...,0) ?fj = % — 1, here 1 c‘>cc‘urs up'to 5-th place
(0,...,0,1,0,...,0) if § <j <mn, here 1is in the j-th place
(0,...,0,1,1,...,1) if j = n, here 0 occurs up to (§ — 1)-th place
(6.2.4)
Define
n; = n(AZ:}), forall j =0,1,...,n. (6.2.5)

Example 6.2.1. Forn =4, let A* be the 4-simplex in R® with vertices Ao, Ay, As, As,
Ay (see Figure G3). Define a function n from the set of facets of A* to Z3 by,

;

(1,0,0) ifj=0
(1,1,0) ifj=1
n(A3_;) =14 (0,1,0) ifj=2 (6.2.6)
(0,0,1) ifj=3
(0,1,1) ifj=4

Figure 6.1: The 4-simplex A%

Suppose the faces F’ and F” of A™ are the intersection of facets {A7™1 A1 |
AT} and {AZH AT ...,Ag_l} respectively. Then
2 2

5
F' ={(xp,m1,...,2) € A" : T2 =0,...,2, = 0}, (6.2.7)
F" = {(z0,21,...,2n) € A" 129 = 0,...,zz =0}. (6.2.8)

Hence dim(F') = dim(F”) = § —1 > 1. The set of vectors {no,...,mz} and
{n%, ...,nn} are linearly dependent sets in Z"~!. But the submodules generated by
the vectors {no, ..., 7j,... ,77%} and {77§777§+1a .oy My -, M} are G-dimensional direct
summands of Z" ! for each j =0,..., 5 and [ = 5,...,n respectively. Here the symbol

~ represents the omission of the corresponding entry.
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Suppose € is an edge of A™ not contained in F/UF”. Then e = ﬂ;:ll AZ:}j for some
{l:j=1,...,n—1} c{0,1,...,n}. Observe that {no,...,n%} < {my,--m, ,} and
{n%,n(%g), coosnt € A{mys .o m, . . Hence the set of vectors {m,,...,m, ,} form a
basis of Z"~ 1.

Let 71,79 be two positive real numbers such that vy < r9 and ry + 2r9 < 1. Consider

the following affine hyperplanes in R™*1.

Hy = {(zo,21,...,20) ER"™ ¢ wn 4 2 = 12}, (6.2.9)
Hy = {(z0,x1,...,xn) € R g+ fan = ra}. (6.2.10)
Hs = {(v0,21,...,7,) € R": o =1-r}. (6.2.11)

H = {(zo,21,...,2,) ER"™ ¢ 20+ 42, =1} (6.2.12)

Then A™ C H and the intersections A"NH1NHy, A"NH{NHs, A"NH3NHy are empty.

Figure 6.2: The 4-simplex A% and the affine hyperplanes Hi, Hy and Hs.

We cut off an open neighborhood of faces F’, F” and {Az} by affine hyperplanes H1NH,
Hy N H and Hs N H respectively in H. Let H ]’ be the closed half space associated to
the affine hyperplane H; such that the interior of half spaces H1, Hj, H; do not contain
the faces F', F", {A%} respectively. We illustrate such hyperplanes for the case n = 4
in Figure BE2. Define

%ZA”QH{QH&QH&, P =/A"NH{, P,=/A"NHyand P; =A"N Hs. (6.2.13)

The convex polytope A% is a simple convex polytope of dimension n and the poly-

topes P, P, and P3 are also facets of A’é. The polytopes P, P, and P3 are given by
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the following equations.
Py ={(zo,x1,...,2n) EA" : mo+---+an_y =1-rzandzz+---+x, =12} (6.2.14)

Py ={(zo,x1,...,2,) € A" 20+~ an =71y and Topgt+etan = 1—7r9}. (6.2.15)

Py ={(xo,x1,...,2,) € A" : rn =1-r1 and $0+--'+§%+"-—|—$n =ry}. (6.2.16)

By equations E2ZT4 and BE2ZT4, the convex polytopes P; and P, are diffeomorphic

to the product A3~ x A3, From equation XT3 Pj is diffeomorphic to the simplex
A" L The facets of P;, P, and P3 are given by the following equations respectively.

AVE AP = {(zo, 1, .., x) € Py =0} for all j € {0,...,n}. (6.2.17)
APy = {(wo, 41, .., n) € Py wj = 0} for all j € {0,...,n}. (6.2.18)
_ , n

A% NPy = {(w0,21,...,2,) € Py:2zj =0} for all j € {0,...,5,...,11}. (6.2.19)

Now we want to construct (2n — 1)-dimensional manifold with quasitoric boundary.

Let F be a face of A" of codimension [. Then

_ aAn—1 n—1
F=Arln...nA

n—j

for a unique {j1,...,5} € {0,1,...,n}. Suppose Tr be the torus subgroup of T"~!
determined by the submodule generated by {n;,,...,n;,} in Z"71. Assume Tan = {1}.

We define an equivalence relation ~, on the product T x A™ as follows,
(s,p) ~y (t,q) if and only if p = g and ts~' € Tr (6.2.20)

where F' C A" is the unique face containing the point p in its relative interior. Restrict

the equivalence relation ~, on 1 x A’é. Define
W (AG,n) = (T x AB)/ ~y
to be the quotient space. So W(Ag, n) is a T" l-space. Let
p:W(AY,n) — LY,

defined by p([s,p]) = p, be the corresponding orbit map.
Let n', % and n> be the restriction of the function 1 on the set of facets of Py, P,
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and Pj respectively. Define

(6.2.21)

; ; _ i ifi=1,2and j€{0,1,...,n
n=n(artapy=4 M 1t 7€ 0.1,
nj ifi=3and je{0,1,...,5,...,n}.

Let v be a vertex of P;. So v belongs to the relative interior of a unique edge e, of
A" not contained in F' U F”. If

for some {l; : j=1,...,n—1} C {0,1,...,n}, the vectors {m,,...,m, ,} form a basis
of Z"7 1. So
n—1 _
v = mj:l (AZ—llj N -PZ)

and the vectors {nlil, e ,nfn_l} form a basis of Z"~!. So 7’ defines the characteris-
tic function of a quasitoric manifold M (P;,n') over P;. Hence from the definition of

equivalence relation ~;, we get that
M(P;,n') = (T" ' x B;)/ ~, fori=1,23. (6.2.22)

Let U; be the open subset of A7, obtained by deleting all faces F' of Af such that
the intersection FNF; is empty. Then A% = Uy UUsUU;s. The space U; is diffeomorphic

as manifold with corners to [0,1) x P;. Let
fi U; — [0,1) X B;

be a diffeomorphism. From the definition of n and ~, we get the following homeomor-

phisms
(T x 57 ({a} x B))/ ~ = {a} x M(P;,n") for all a € [0, 1). (6.2.23)
Hence the space p~!(U;) is homeomorphic to
(T F00,1) x P))/ ~y 2 [0,1) x M(P ).

Since W (A%, n) = p~ L (U Up~H(Uz) Up~!(U3), the space W (A%, n) is a manifold with
quasitoric boundary. The intersections P, N Py, P, N P3 and P, N P3 are empty. Hence

the boundary
8W( 22777) = M(Plvnl) U M(P27772) U M(P37773)'
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6.3 Orientability of W(Ap,n)

Fix the standard orientation on T" 1. Then the boundary orientations on P;, P, and Ps
induced from the orientation of Af give the orientations of M (Pr,n'), M(Py,n?) and
M (Ps3,n?) respectively.

Let W := W(A’é, 7n). The boundary OW has a collar neighborhood in W. Hence by
the proposition 2.22 of [Haild],

Hy(W,0W) = H;(W/0W) for all i.

We show the space W/OW has a CW-structure. Assuming A’é C R"™, we choose a linear

functional
(:R" =R

which distinguishes the vertices of A%, as in the Section I3 of Chapter 0. The vertices
are linearly ordered according to ascending value of (. We make the 1-skeleton of Ag
into a directed graph by orienting each edge such that ¢ increases along edges. For
each vertex v of A7) define its index ind(v) as the number of incident edges that point
towards v. Suppose V(Ag) is the set of vertices and E(A7) is the set of edges of Af.
For each j € {1,2,...,n}, let

Ij = {(v,ey) € V(AH) x E(AD) »ind(v) = j and e, is the incident edge that

points towards v such that e, = e N Afy for an edge e of A"}

Suppose (v, €,) € Ij and F,, C Af is the smallest face containing the inward pointing
edges incident to v in Af). Then ind(v) = dim(F,). Let Ue, be the open subset of F,
obtained by deleting all faces of F},, not containing the edge e,. The restriction of the
equivalence relation ~, on (T"~1 x U,,) gives that the quotient space (T" ! x U, )/ ~n
is homeomorphic to the open disk B¥~1 ¢ R¥~1,

Hence the quotient space (W/0OW) has a CW-complex structure with odd dimen-
sional cells and one zero dimensional cell only. The number of (25 — 1)-dimensional cell

is |I;], the cardinality of I; for j =1,2,...,n. So we get the following theorem.

Pz ifi=2j—1andje{l,...,n}

I,
Theorem 6.3.1. H;(W,0W) = %J| ifi=0
0 otherwise

When j = n the cardinality of I; is one. So Ha,—1(W,0W) = Z. Hence W is
an oriented manifold with quasitoric boundary. From the definition we get that
the boundary orientation on M (P;,n') is same as the orientation on M (P;,n) as the

quasitoric manifold, for all 1 = 1,2, 3.
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6.4 Oriented cobordism of CP%*!

We show the quasitoric manifolds M (P;,n') and M(P,n?) are equivariantly homeo-

morphic up to an automorphism of T"~!. Consider the permutation

p:{0,1,...,n} —{0,1,...,n}

defined by
n—1-j if0<j<5—-land 5<j<n
] n ifj=2-1
o) =9 e (641
2 Lr=z3
n1 o ifj=n

So p is an even or odd permutation if n = 4 or n = 41 + 2 respectively. Define a linear

automorphism ® on R"*! by

Q(w0, -y Tjy e Tn) = (Tp(0)s - > Tp(j)s - - Tp(n))- (6.4.2)

Hence ® is an orientation preserving or reversing diffeomorphism if n = 4l or n = 41+ 2

respectively. From equations BEZT4 and E22T3 it is clear that ® maps P; diffeomorphi-

cally onto P,. We denote the restriction of ® on the faces of P; by ®. Also from the
equations BZT70 and E2ZT8 we get that ® maps the facet A;”_l N P, of P; diffeomor-
phically onto the facet AZ(;)I NP, of Py. So

@(A?il NP = AZ(;)l NP, forall j=0,...,n. (6.4.3)
Let a1,...,an_1 be the standard basis of Z"~! over Z. Let ¢’ be the linear auto-

morphism of Z"~! defined by
§ ) =an_iVi=1,...,(n—1). (6.4.4)

Hence
' (i) = M) and &' (1)) = ms for i = 0,1,...,n. (6.4.5)

Let § be the automorphism of T"~! induced by ¢’. Hence the automorphism ¢ is

orientation reversing if n = 4l and it is orientation preserving if 4/ 4+ 2. From the

equations B2721, BZ2=3 and B3 we get that the following commutative diagram.

F(P) —2 F(P)

o &

_ 1) _
AL 1 AL 1.
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So the diffeomorphism
Sx®: T I x P T x P

induces a d-equivariant orientation reversing homeomorphism
gn s M(Pr,n') = M(Pa,1°).

From the definition EZZZT of the characteristic function 7% we get that the quasitoric
manifold M (P3,7?) is equivariantly homeomorphic to CP" ! if n = 41 4 2 and cp !
if n =4l.

Define an equivalence relation ~, on W(Af),n) by

x ~y y if and only if 2 € M(P1,n') and y = gn(z). (6.4.6)

So the quotient space W(A{,n)/ ~n is an oriented manifold with boundary. The
boundary of these manifold is CP"~! if n = 41 +2 and the boundary is TP it n =4l
So the quotient space W(Af, 1)/ ~n is an oriented manifold with boundary and the

boundary is CP"~!. Hence we have proved the following theorem.

Theorem 6.4.1. The complex projective space CP***1 is boundary of an oriented man-
ifold, for all k > 0.

Example 6.4.2. We adhere to definition and notations given in the example EZ.
The faces AgA1 and AzAy are the intersection of facets {3, A3, A3} and {3, A3, A3}
respectively of A%

Here the polytopes Py, Py are prism and Ps is 3-simplex, see the Figure BZ3. The
restriction of n (namely n*, n* and n®) on the facets of Py, Py and P3 are given in
following Figure 04.

Py

P

Figure 6.3: The simple convex polytope A4Q with the facets Py, P, and Ps.
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. (Ps, %)
(Pla"ll) (P2>7]Z)

Figure 6.4: The characteristic functions 7', n? and 73 of Py, P, and P3 respectively.

Let &' be the automorphism of Z3 defined by
§'(1,0,0) = (0,0,1), §(0,1,0) = (0,1,0) and §'(0,0,1) = (1,0,0).

Clearly the combinatorial pairs (P1,n') and (Py,n?) give two 0-equivariantly homeo-
morphic quasitoric manifolds, namely M(Py,n") and M(Py,n?) respectively. The com-
binatorial pair (Ps,n®) gives the quasitoric manifold TP over P3. So the boundary of
W (Lh,n) is M(Pr,n") U M (Ps,n*) UCP.

Hence after identifying M (Py,n") and M (Py,n?) via an orientation reversing home-

omorphism, we get an oriented manifold with boundary and the boundary is CP’.

Now we briefly give the previous proof of Theorem BEZ following a notes by Andrew
J. Baker. Consider the unit sphere S*+*3 ¢ HF*! where H denotes the quaternions.
This is acted on freely by the unit quaternions $® C H and its subgroup of unit complex
numbers S' € C C H. Note that the conjugation action of S® on H restricted to the
pure quaternions gives a realization of S% as Spin(3) acting on R? via the natural map
to SO(3). Furthermore, S C S is identifies with Spin(2) and we have

Spin(3)/Spin(2) = SO(3)/S0(2) = S2. (6.4.7)

Also
HP* = 5443 /95, CP**+! = g4++3 /gt (6.4.8)

and the natural map CP?**! — HP* can be identified with the sphere bundle of

SHH3 X gpinz) R® — HPF.
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Thus we have a commutative diagram

(C]P;2k+1 - ; S4k+3 XSpin(?)) D3

l l (6.4.9)

HPF —— HP*

in which CP?k + 1 identifies with the boundary of S*+3 x Spin(3) D3. Tt is easy to show
that cohomology groups of W(Af),n)/ ~n (n = 2(k + 1)) and Gak+3 X Spin(3) D? are
different for all £ > 0, . So we get two different construction of manifold with the

boundary CP*+1,

Remark 6.4.3. We can give a nice CW-structure on W (A, n)/ ~n with one cell in
dimension greater than zero and two cells in dimension zero from the combinatorial

information. So the Theorem [641 may be helpful in some computations.
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