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NOTATION

the polynomial ring Cl[z1, ..., 2] of m - complex variables

the set of non-negative integers

the group of all invertible linear transformations on C*

the maximal ideal of C[z] at the point w € C™

a bounded domain in C™

{z:2€ 0}

the open unit disc in C

the poly-disc {z € C™ : || < 1,1 <i<t},m>1

the module multiplication by the co-ordinate function z;, 1 <i <m
the adjoint of M;

the operator M — M & ... & M defined by f — ((M; —w;)*f)7,
the analytic localization (’)®@(Cm)H of the Hilbert module H
Cowen-Douglas class of operators of rank n, also

Hilbert modules such that M* = (M, ..., M) € B, (Q*)

the multi index (aq,...,am), o] =3 a; and al = aq!. .. au!
=11, (Cl:) for a = (a1,...,am) and k = (k1,..., kn)

ifk; <a;, 1 <i<m.

aq o
AR SR

7*(2) = q(Z)(= >_,, aaz®, for ¢ of the form )  an2z®)
o N Q— Y/ VAL

— [e] _x —
Oz tzpm? ozt zpm

the differential operator q(a%,l, ) (= D 0 @a0%, where ¢ =) aqnz®)

) Ozm

a reproducing kernel

the sheaf of holomorphic functions on (2

the germs of holomorphic function at the point w € C™

germ of the holomorphic function g at 0

the analytic subsheaf of Ogq, corresponding to the Hilbert module M € 91(Q2)
the evaluation functional (the linear functional induced by K(-,w))

supremum norm



Contents iv

the L? norm with respect to the volume measure

{z€Q: f(z) =0for all fe F}, where F C O(Q)

{g e Clz]: q(D)f’w =0, f € F} is the characteristic space of F C O,, at w
{g e Clz]: c% € Vy(F), 1 <i<m}, where F C O,

the completion of a polynomial ideal Z in some Hilbert module

the reproducing kernel of [Z]

the Fock inner product at wg, defined by (p, ¢)w, := ¢*(D)plw, = (¢*(D)p)(wo)
the orthogonal projection onto ran D(nj_q)=

ker Po D(n—o)+ for w €



0. Overview

One of the basic problem in the study of a Hilbert module H over the ring of polynomials
Clz] :== Clz1, ..., zm] is to find unitary invariants (cf. [15, 7]) for H. It is not always possible to
find invariants that are complete and yet easy to compute. There are very few instances where
a set of complete invariants have been identified. Examples are Hilbert modules over continuous
functions (spectral theory of normal operator), contractive modules over the disc algebra (model
theory for contractive operator) and Hilbert modules in the class B, (€2) for a bounded domain
Q C C™ (adjoint of multiplication operators on reproducing kernel Hilbert spaces). In this
thesis, we study Hilbert modules consisting of holomorphic functions on some bounded domain
possessing a reproducing kernel. Our methods apply, in particular, to submodules of Hilbert
modules in B;(Q).

Another important aspect of operator theory starts from the work of Beurling [4]. Beurling’s
theorem describing the invariant subspaces of the multiplication (by the coordinate function)
operator on the Hardy space of the unit disc is essential to the Sz.-Nagy — Foias model theory
and several other developments in modern operator theory. In the language of Hilbert modules,
Beurling’s theorem says that all submodules of the Hardy module of the unit disc are equivalent
(in particular, equivalent to the Hardy module). This observation, due to Cowen and Douglas
[9], is peculiar to the case of one-variable operator theory. The submodule of functions vanishing
at the origin of the Hardy module Hg (D?) of the bi-disc is not equivalent to the Hardy module
H?(D?). To see this, it is enough to note that the joint kernel of the adjoint of the multiplication
by the two co-ordinate functions on the Hardy module of the bi-disc is 1 - dimensional (it is
spanned by the constant function 1) while the joint kernel of these operators restricted to the
submodule is 2 - dimensional (it is spanned by the two functions z; and z3).

There has been a systematic study of this phenomenon in the recent past [1, 16] resulting
in a number of “Rigidity theorems” for submodules of a Hilbert module M over the polynomial
ring C[z] of the form [Z] obtained by taking the norm closure of a polynomial ideal Z in the
Hilbert module. For a large class of polynomial ideals, these theorems often take the form: two
submodules [Z] and [J] in some Hilbert module M are equivalent if and only if the two ideals 7

and J are equal. More generally

Theorem 0.1. Let 7, 7 be any two polynomial ideals and M, M be two Hilbert modules of the
form [T] and [T respectively. Assume that M, M are in B1(Q) and that the dimension of the

zero set of these modules is at most m — 2. Also, assume that every algebraic component of zero
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sets intersects Q. If M and M are equivalent, then T = 7.

We give a short proof of this theorem using the sheaf theoretic model developed in this thesis
and construct tractable invariants for Hilbert modules over C|[z].

Let M be a Hilbert module of holomorphic functions on a bounded open connected subset 2
of C™ possessing a reproducing kernel K. Assume that Z C C|[z] is the singly generated ideal (p).
Then the reproducing kernel Kz of [Z] vanishes on the zero set V(Z) and the map w — Kizj(-, w)
defines a holomorphic Hermitian line bundle on the open set QF = {w € C™ : w € Q\ V(Z)}
which naturally extends to all of 2*. As is well known, the curvature of this line bundle completely
determines the equivalence class of the Hilbert module [Z]. However, if 7 C C|[z] is not a principal
ideal, then the corresponding line bundle defined on {27 no longer extends to all of 2*. For example,
HZ(D?) is in the Cowen-Douglas class B1(D?\ {(0,0)}) but it does not belong to B1(D?). Indeed,
it was conjectured in [14] that the dimension of the joint kernel of the Hilbert module [Z] at w is

1 for points w not in V(Z), otherwise it is the codimension of V(7). Assuming that
(a) Z is a principal ideal or
(b) w is a smooth point of V(Z),

Duan and Guo verify the validity of this conjecture in [17]. Furthermore, they show that if m = 2

and Z is prime then the conjecture is valid.

To systematically study examples of submodules like Hg(}D)Q), or more generally a submodule

[Z] of a Hilbert module M in the Cowen-Douglas class B1(£2), we make the following definition

(ct. [6]).

Definition 0.2. Fix a bounded domain Q@ C C™. A Hilbert module M C O(f2) over the
polynomial ring C|z] is said to be in the class B,() if

(rk) it possess a reproducing kernel K (we don’t rule out the possibility: K (w,w) = 0 for w in

some closed subset X of Q) and

(fin) the dimension of M /m,,M is finite for all w € Q.

For a Hilbert modules M in 9B;(2) we have proved the following Lemma.

Lemma 0.3. Suppose M is a Hilbert modules in B1(2) which is of the form [Z] for some poly-
nomial ideal T. Then M is in B1(Q) if the ideal T is singly generated while if the cardinality of

the minimal set of generators is not 1, then M is in B1(Q1).

This ensures that to a Hilbert module in B;(Q2) of the form [Z], there corresponds a holo-
morphic Hermitian line bundle over Q7 defined by the joint kernel. However, since the map

w +— dim(M /m,, M) is only upper semi-continuous (the jump locus, which is V(Z), is an analytic
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set), it is not always possible to extend the holomorphic Hermitian line bundle defined on Q% to
all of Q*.

Refining the correspondence of locally free sheaf of modules over the analytic sheaf O(2) on
Q with holomorphic vector bundles on 2 (cf. [30]), we construct a coherent analytic sheaf S ()
which reflects a number of properties of the Hilbert module M in the class B1(2). Let O,, denotes
the germs of holomorphic function at the point w € C™. The sheaf SM(Q) is the subsheaf of the
sheaf of holomorphic functions O(£2) whose stalk at w € €2 is

{(fl)w0w++(fn)w0w : fla""fn GM}a

or equivalently,

SMU) = { (fir)gi = fie M, gi € O(U)}

1

n
1=

for U open in €.

Lemma 0.4. For a Hilbert module M in B1(9), the sheaf SM(Q) is coherent.

In the paper [6], we isolate circumstances when the sheaf S™ agrees with a very useful but
somewhat different sheaf model described in [18, Chapter 4].

It is well known that if the ideal Z is principal, say < p >, then the reproducing kernel K|z
factors as K7)(z,w) = p(2)x(2, w)p(w) where x(w,w) # 0 for w € Q. However if the ideal Z is not
principal, then no such factorization is possible. Nevertheless, using the Lemma 0.4, it is possible
to give a description of the reproducing kernel K in terms of the generators of the stalk S;¥!. For
any fixed point wg in 2, we find a neighborhood 2y of wq such that the reproducing kernel K for

M € B1(9), admits a useful decomposition described precisely in the following theorem.

Theorem 0.5. Suppose g?, 1 <i<d, be a minimal set of generators for the stalk Sﬁg. Then

(i) there exists an open neighborhood Q of wy such that

K(,w) = Ky = Q)KL + - +gg(w)Kq(Ud), w € Qo

for some choice of anti-holomorphic functions K&, ... K@ . Qy — M,

(ii) the vectors Kl(ui), 1 <i < d, are linearly independent in M for w in some neighborhood of

wo,
(i1i) the vectors {Kfjg | 1 <i<d} are uniquely determined by these generators ¢, ..., g3,

(iv) the linear span of the set of vectors {Kl(;g | 1 <i<d}in M is independent of the generators

0 0
9is---59g, and

(v) M;,‘Kfflfg = (wo)Kl(lfg for all i, 1 < i < d, where M, denotes the module multiplication by
the polynomial p.
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It is evident from the part (v) of Theorem 0.5 that the dimension of the joint kernel of the
adjoint of the multiplication operator Dy« at a point wq is greater or equal to the number of

minimal generators of the stalk S{U‘g‘ at wg € €, that is,

dim M /(m, M) > dim Syt /my,, St (0.0.1)

wo

It would be interesting to produce a Hilbert module M for which the inequality of (0.0.1) is

strict. We identify several classes of Hilbert modules for which equality is forced in (0.0.1).

Definition 0.6. A Hilbert module M over the polynomial ring C|z] is said to be an analytic
Hilbert module (cf. [7]) if we assume that

(rk) it consists of holomorphic functions on a bounded domain @ C C™ and possesses a repro-

ducing kernel K,
(dense) the polynomial ring C|z] is dense in it,

(vp) the set of virtual points which is {w € C™ : p — p(w), p € C|z], extends continuously to M}
equals €.

We apply Lemma 0.3 to analytic Hilbert modules, which are singly generated by the constant
function 1, to conclude that they must be in the class B;(£2*), where Q is the set of virtual points
of H. Evidently, in this case, we have equality in (0.0.1). However, we have equality in many

more cases.

Proposition 0.7. Let M = [Z] be a submodule of an analytic Hilbert module over C|z], where T

is an ideal in the polynomial ring C[z]. Then

dim S /m,, SM = t{minimal set of generators for S{l\}g} = dim M /m,, M.

0 0

More generally, consider the map 4., : M — M,, defined by f +— f,,, where f,, is the germ of
the function f at w. Clearly, this map is a vector space isomorphism onto its image. The linear
space M) = >z — wj)M = my, M is closed since M is assumed to be in B1(£2). Then
the map f — f, restricted to M) is a linear isomorphism from M®) to (M®),,. Consider

M Ly SM T, sM i (0,,)SM,

where 7 is the quotient map. Now we have a map ¢ : M,/ (M®), — SM/{m(0,)SM}
which is well defined because (M®)),, € M, NmM(Oy)SM. The question of equality in (0.0.1)
is same as the question of whether the map 1 is an isomorphism and can be interpreted as a
global factorization problem. To be more specific, we say that the module M € B1(Q)) possesses
Gleason’s property at a point wg € § if for every element f € M vanishing at wg there are
f1s .o, fm € M such that f=>"" (2 —wo;) fi. We further assume here M is a AF-cosubmodule
(cf. [7, page - 38)]).
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Proposition 0.8. Any AF-cosubmodule M has Gleason’s property at wo if and only if

dim M /myuyM = dim S /my,, SH7.

wo

Proposition 0.9. Let M = [Z] be a submodule of an analytic Hilbert module over Clz] on a
bounded domain €2, where T is a polynomial ideal, each of whose algebraic component intersects
Q. Then

dim M /mo M = dimS%/mwOS%, woy € Q.

Corollary 0.10. If M is a submodule of an analytic Hilbert module of finite co-dimension with
the zero set V(M) C 2, then the Gleason problem is solvable for M.

Corollary 0.11. Suppose M is a submodule of an analytic Hilbert module given by closure of a
polynomial ideal and wy € V(Z) is a smooth point then,

dim ker D(nj_y,)+ = codimension of V(Z).

Next, we obtain invariants for those modules in 81 (§2) for which equality holds in (0.0.1). Since
HZ(D?) is in By (D?\ {(0,0)}), the curvature of the associated Hermitian holomorphic line bundle
is a complete invariant (cf. [8]). However explicit computation of the curvature, even in this
simple case is difficult. An example is provided in the appendix (section 6.2). As was pointed out
in [12], the dimension of ker D(nj_yq)+» wo € D? is an invariant of the module Hg(D?). Therefore,
it may not be desirable to exclude the point (0, 0) altogether in any attempt to study the module
HZ(D?). Fortunately, implicit in the proof of Theorem 2.2 in [11], there is a construction which
makes it possible to write down invariants on all of D2. This theorem assumes only that the
module multiplication has closed range as in Definition 0.2. Therefore, it plays a significant role
in the study of the class of Hilbert modules %1(12).

We also note, from the Theorem 0.5, that the map I' : Qf — Gr(M, d) defined by I'x (w) =
(Ki(ul), o ,Ki(vd)) is holomorphic. The pull-back of the canonical bundle on Gr(M,d) under I'gk
defines a holomorphic Hermitian vector bundle on the open set ). Unfortunately, the decompo-
sition of the reproducing kernel given in Theorem above, is not canonical except when the stalk is
singly generated. In this special case, the holomorphic Hermitian bundle obtained in this manner
is indeed canonical. However, in general, it is not clear if this vector bundle contains any useful
information. Suppose we have equality in (0.0.1) for a Hilbert module M. Then it is possible to
obtain a canonical decomposition following [11], which leads in the same manner as above, to the
construction of a Hermitian holomorphic vector bundle in a neighborhood of each point w € €.

For any fixed but arbitrary wg €  and a small enough neighborhood ¢ of wg, the proof of
Theorem 2.2 from [11] shows the existence of a holomorphic function Py, : Qf — B(M) with the
property that the operator Py, restricted to the subspace ker D _y,)+ is invertible. The range
of Py, can then be seen to be equal to the kernel of the operator PoD(nj_.)+, where Py is the

orthogonal projection onto ranD v _y)«-
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Lemma 0.12. The dimension of ker PoD i)+ 15 constant in a suitably small neighborhood $g

of wg € .

Let {ep,...,er} be a basis for ker Dinj_yy)-- Since Py, is holomorphic on Qf, it follows
that v1(w) := Py, (w)e1, ..., V(W) := Pg,(w)ey are holomorphic on Q. Thus from Lemma 0.8,
[ Q5 — Gr(M,k), given by I'(w) = ker PgD(nj_y)-, w € o, defines a holomorphic Hermitian
vector bundle Py on € of rank k corresponding to the Hilbert module M.

Theorem 0.13. If any two Hilbert modules M and M belonging to the class B1(2) are iso-
morphic via an unitary module map, then the corresponding vector bundles Py and 730 on §j are

equivalent as holomorphic Hermitian vector bundles.

So the theorem above says that the equivalence class of the corresponding vector bundle Py
obtained from this canonical decomposition is an invariant for the isomorphism class of the Hilbert
module M. These invariants, are by no means easy to compute either. We give computation of
these invariants for the submodule Hé’\’” ) (D?) consisting of function vanishing at the origin of the
weighted Bergman module H M) (D?) determined by the reproducing kernel

1
(1 — Zl’lf)l))‘(l — ZQ?DQ)“

K()"“)(z,w) = , z,w e D2

It is therefore desirable to construct invariants which are more easily computable. In this
context, we show that the holomorphic Hermitian line bundle on 27 extends to a holomorphic
Hermitian line bundle £(M) on the “blow-up” space Q* via the monoidal transform under mild
hypothesis on the zero set V(Z). We also show that this line bundle determines the equivalence

class of the module [Z] and therefore its curvature is a complete invariant.

Theorem 0.14. Let M C B1(Q) and M C B1(Q) be two Hilbert modules of the form [I] and
[f], respectively, where I, 7 are polynomial ideals. Assume that the dimension of the zero set of
these modules is at most m — 2. Then M and M are equivalent if and only if the line bundles

*

L(M) and L(M) are equivalent as Hermitian holomorphic line bundle on A(wo;r)*.

However, computing it explicitly on all of Q* is difficult again. However if we restrict the line
bundle on Q* to the exceptional subset of Q*, then the curvature invariant is easy to compute. We
have calculated these invariant for a class of submodules of weighted Begman module A, g - (B?)
on the unit ball of C?, appeared in [26]. Also one can use the quadratic transform to calculate the
curvature invariant in the same way as above. Finally, we calculate these invariants for a class of
subspace of the weighted Bergman module H*#) (D?). We show, using quadratic transform, that
for fixed n € N, the submodules

{[Z4] € HX(D?) : T =< 27, 282077 > 1 <k < n}

of the Hardy module H?(ID?) are equivalent if and only if k& = &’
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A line bundle is completely determined by its sections on open subsets. To write down the
sections, we use the decomposition theorem for the reproducing kernel [6, Theorem 1.5]. The
actual computation of the curvature invariant require the explicit calculation of norm of these
sections. Thus it is essential to obtain a concrete description of the eigenvectors K9, 1 < i < d, in
terms of the reproducing kernel. We give two examples which, we hope, will motivate the results
that follow. Let H?(D?) be the Hardy module over the bi-disc algebra. The reproducing kernel for
H?(D?) is the Szego kernel S(z, w) = —2 L__ Let Zy be the polynomial ideal (21, z5) and let

1—2z1W9o 1—2z212

[Zo] denote the minimal closed submodule of the Hardy module H?(D?) containing Zy. Then the

joint kernel of the adjoint of the multiplication operators M7 and M, is spanned by the two linearly
independent vectors: z; = p1(51,52)8(z,w)|w1:0:w2 and zo = pg(él,ég)S(z,w)ml:O:w, where
p1,p2 are the generators of the ideal Zy. For a second example, take the ideal 73 = (21 — 29, z%)
and let [Z;] be the minimal closed submodule of the Hardy module H2(D?) containing Z;. The
joint kernel is not hard to compute. A set of two linearly independent vectors which span it are
p1(91,92)S(2, W) 1y, —0=w, and p2(01, 02)S(2, W)y 0=y, Where p1 = 21 — 22 and py = (21 + 22)%.
Unlike the first example, the two polynomials pq, ps are not the generators for the ideal 7; that
were given at the start, never the less, they are easily seen to be a set of generators for the ideal
71 as well. This prompts the question:

Question: Let M € B1(Q2) be a Hilbert module and Z C M be a polynomial ideal. Assume
without loss of generality that 0 € V(Z). We ask

1. if there exists a set of polynomials pq,...,p; such that
pi(%, ceuy %)K[I}(Z, w)‘w:(), 1= 1, oo ,t,
spans the joint kernel {7, : (M, — p(w))*y, = 0,p € C[z]} of [Z];

2. what conditions, if any, will ensure that the polynomials p1, ..., p:, as above, is a generating
set for 77

We show that the answer to the Question (1) is affirmative, that is, there is a natural basis for the
joint eigenspace of the Hilbert module [Z], which is obtained by applying a differential operator
to the reproducing kernel Kjz) of the Hilbert module [Z]. To facilitate this description, we make
the following definition. For wg € €, let

Vo (Z) :={q € Clz] : ¢(D)plw, =0 for all p € I}
and let

- 9
Vo (D) i={q € Clal s 57 € Vi, (D), L < i < m).
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Lemma 0.15. Fiz wg € Q0 and polynomials q1,...,q:. Let T be a polynomial ideal and K be the
reproducing kernel corresponding the Hilbert module [Z], which is assumed to be in B1(2). Then
the vectors

QT(D)K(WQU)‘”LU:wov oo 7q;tk(D)K('v w)|w=wo

form a basis of the joint kernel at wqy of the adjoint of the multiplication operator if and only if
the classes [qi], - .., [qt] form a basis of @wo (Z)/Vu, ().

Often, these differential operators encode an algorithm for producing a set of generators for
the ideal Z with additional properties. It is shown that there is an affirmative answer to the

Question (2) as well, if the ideal is assumed to be homogeneous.

Theorem 0.16. Let Z C C[z] be a homogeneous ideal and {p1,...,py} be a minimal set of gener-
ators for I consisting of homogeneous polynomials. Let K be the reproducing kernel corresponding
the Hilbert module [Z], which is assumed to be in B1(2). Then there exists a set of generators
q1, ..., @y for the ideal T such that the set {q;(D)K(-,w)|w=0: 1 <1i < v} is a basis for ker Dyy«.

It then follows that if there were two sets of generators which serve to describe the joint
kernel, as above, then these generators must be linear combinations of each other, that is, the
sets of generators are determined modulo a linear transformation. We call such a generating set,
a canonical set of generators. The canonical generators provide an effective tool to determine if
two ideal are equal. A number of examples illustrating this phenomenon is given. For instance,
consider the ideals 77 :=< z1, z% > and Is :=< 21 — 29, z% >. They are easily seen to be distinct:
A canonical set of generators for 7y is {21, 25} while for Z; it is {21 — 22, (21 + 22)?}. A brief
description of the chapters in this thesis follows.

In the Chapter Preliminaries, we recall the notion of a reproducing kernel and a functional
Hilbert space. Following [8] and [11], we show that operators in Cowen- Douglas class can be
realized as the adjoint of the multiplication operator defined by the co-ordinate functions. These
operators then define a natural action of the polynomial ring C[z] on the Hilbert space, making it
a “Hilbert module”. These Hilbert modules are semi-Fredholm but they also possess an additional
property, namely the dimension of H/m,H is constant for w in some open set. We point out
that in many natural example this additional property is absent making a case for study of

semi-Fredholm Hilbert modules.

In Chapter 2, we develop the sheaf model for a Hilbert module M in the class 91(£2). We prove
the decomposition theorem (Theorem 0.5). A relationship between the joint kernel M /m, M
and the stalk S{UV( is established. We solve the Gleason problem for an analytic Hilbert module
(Proposition 0.8 and Corollary 0.10). An alternative proof of the rigidity theorem is given, again,
using the sheaf model (Theorem 0.1).

Chapter 3 provides a canonical decomposition for the reproducing kernel using [11, Theorem

2.2]. We show that the canonical decomposition guarantees the existence of a vector bundle of



0. Overview 9

rank 7 (r possibly > 1). We extract invariants for the Hilbert module from this vector bundle
(Theorem 0.13). An explicit calculation of these invariants for a submodule of weighted Bergman
modules is given at the end of this chapter.

We address the questions (1) and (2) in Chapter 4 and prove Theorem 0.16. In this chapter,
the notion of canonical generators is introduced and several explicit examples are given.

In Chapter 5, we use the familiar technique of ‘resolution of singularities’ to construct the
blow-up space of 2 along an ideal Z. Applying the monoidal transform, we construct a Hermitian
holomorphic line bundle on the blow-up space and prove Theorem 0.14. We also describe the
construction of a Hermitian holomorphic line bundle using the quadratic transform. We have
given various examples which illustrate the utility of some of these results.

Most of the results in Chapters 2 and 3 are from [6] and those in Chapters 4 and 5 are from
[5].






1. Preliminaries

In this chapter, first recall the definition of the Cowen- Douglas class of operators and then recast
this definition in the language of Hilbert modules over the polynomial ring C[z]. We discuss the
notion of a reproducing kernel and the important role it plays in the study of Hilbert modules over
polynomial rings. Beyond the Hilbert modules defined by the action of adjoint of a commuting
tuple of operators in the Cowen-Douglas class, which have been studied vigorously over the last
two three decades, lies the semi-Fredholm modules. Submodules of Analytic Hilbert modules
provide large class of examples of semi-Fredholm Hilbert module. Following Chen and Guo [7],
we discuss the characteristic space of a polynomial ideal. We record a number of of well known

results on polynomial ideals which are used frequently in this thesis.

1.1 The reproducing kernel

Let © be an open connected subset of C™. Also let M,,(C) denotes the vector space of all n x n
complex matrices and ( , )cn be the standard inner product in C" (though we will mention it

only when it is not clear from the context or to distinguish from other inner products).

Definition 1.1. A function K : Q x 2 — M,,(C) holomorphic in the first and anti-holomorphic

in the second variable, satisfying

P
Z <K(w(i),w(j))gj,g> >0, w, . w® e, G,... GpeCt,p>1 (1.1.1)
ij=1

is said to be a non negative definite kernel on 2.
Given a non negative definite kernel K, let H" be the linear span of all vectors from the set
S ={K(,w)(, we, (€C"}.
Define an inner product between two of the vectors from the set S by setting
(K(-,w)¢, K(-,w")n) = (K (w',w)¢,n)cn, for ¢,n e C", and w,w’ € Q, (1.1.2)

and extend it to the linear space H?. The completion H of the inner product space H? is a Hilbert

space. It is evident that it has the reproducing property, namely,

(f(w),Ocn = (fLEK(,w)()py, we, (€C", feH. (1.1.3)
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Remark 1.2. Although, in the definition of the kernel K, it is merely required to be non neg-
ative definite, the equation (1.1.2) defines a positive definite sesqui-linear form as is easy to see:
|{f(w), )] = |{f, K(-,w)()| which is at most || f||{ K (w, w)(, (>1/2 by the Cauchy - Schwarz inequal-
ity. It follows that if || f||2> = 0 then f = 0. Another application of the Cauchy-Schwarz inequality
shows that the linear transformation e,, : H — C", defined by e, (f) = f(w), is bounded for all
w € Q, f € H, that is,

n

lew(f)] = ‘Z< ) €i)ei| < Z’ ) eillleill < [IfII( Z (w, w) el,el>1/2),

=1

[y

1=

ei=(0,.,1,..,0) € C" with 1 in the i-th co-ordinate.

Conversely, let H be a Hilbert space of holomorphic functions on €2 taking values in C”. If the
linear transformation e,, : H — C™ of evaluation at w is bounded for all w € €). Then e,, admits
a bounded adjoint e}, : C" — H such that (e, (f),()cn = (f, el )y for all f € Hand ( € C". A
function f in H is then orthogonal to €}, (C") if and only if f = 0. Thus f = > ¥, e’ G with
wh o wP eq, ¢,... ,¢p € C", p> 0, form a dense set in H. Therefore we have

p
IF17 = D {ewm € Gir o),
ij=1
where f =" | e’ i Gis w® € Qand ¢; € C" for 1 < i < p. Since ||f]|? > 0, it follows that the
kernel K(z,w) = e,e}, is non-negative definite as in (1.1.1). Clearly, K(-,w)( is in ‘H for each
w € Q and ¢ € C" and that it has the reproducing property (1.1.3). It is not hard to see that

such a kernel is uniquely determined.

A Hilbert space of holomorphic functions on some bounded domain 2 C C™ will be called a
reproducing kernel Hilbert space if the evaluation e, at w is bounded for w in some open subset
of Q. Thus if K is the reproducing kernel for some Hilbert space H, then H = span{K (-, w)( :
weNCeC}.

There is a useful alternative description of the reproducing kernel K in terms of the orthonor-
mal basis {e; : & > 0} of the Hilbert space H. We think of the vector e;(w) € C" as a column

vector for a fixed w € Q and let e (w)* be the row vector (e, (w),...,ef(w)). We see that
<K(Z,’LU)C,7]> = < ( )C: 2 Z C,GJ jaz 777 €k ek>
j=0 k=0

{er(w), C)(ex(2),m)

NE

k=0

>
Il

0

- Z(K( w)C, ep) (K (-, 2)n, ex) =
w)*¢,

)
k::0

for any pair of vectors (,n € C"™. Therefore, we have the following very useful representation for
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the reproducing kernel K:

o

K(z,w) =) ep(2)er(w)", (1.1.4)

k=0
where {ej : £ > 0} is any orthonormal basis in H.

Differentiating (1.1.3), we also obtain the following extension of the reproducing property:
(& f)(w),n) = (£, K(,w)y) for1<i<m, j>0, we neCk feH. (1.1.5)

Familiar examples of reproducing kernel Hilbert spaces are the Hardy and the Bergman spaces
over the Euclidean ball and the polydisc. A detailed discussion of reproducing kernel can be found
in [3].

1.2 The Cowen-Douglas class

Let T = (T4,...,T,) be an m-tuple of commuting bounded linear operator on a separable complex
Hilbert space H. The operator Dy : H — H @ ... ® H is defined by Dr(x) = (Thz,...,Thx),
x € H. Let © be a bounded domain in C". For w = (wy,...,wy) € Q, let T — w denote the
operator tuple (T} —w1, ..., Ty —wp,). Note that ker Dp_,,, = N7y ker(Tj—wj). Let k be positive

integer

Definition 1.3. The m-tuple T is said to be in the Cowen-Douglas class By (Q) if
(1) ran Dp_,, is closed for all w € €;
(2) span{ker Dy_,, : w € Q} is dense in H; and

(3) dim ker Dp_,, =k for all w € Q.

For a commuting tuple of operators T in By((2), let
Er ={(w,z) € Q x H:x € ker Dyp_,}

with 7(w, z) = w be the sub-bundle of the trivial bundle 2 x H. For T € By(Q2), we recall from
[10] that the map w +— ker Dr_,, defines a holomorphic Hermitian vector bundle Er of rank k

over Q.

Theorem 1.4. [8, Theorem 1.14] Two commuting tuples of operators T and T in Bk (2) are
unitarily equivalent if and only if the vector bundle Ex and Ef are equivalent as holomorphic

Hermitian vector bundle.

Deciding when two holomorphic Hermitian vector bundles are equivalent is not an easy task

except when the rank of these bundles are 1. In this case, the curvature

L 92%log || y(w) || _
lC(w):—Z 8w|,-’8u()j)” dw; A\ dw;, w = (wi,...,wy) € Q
ij=1
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of the line bundle E defined with respect to a non-zero holomorphic section ~ is a complete
invariant. (It is not hard to see that the definition of the curvature does not depend on the choice
of the particular section ~: If g is another holomorphic section of E, then ~y = ¢y for some

holomorphic function ¢ on €2 and the harmonicity of log|¢| completes the verification.)

Thus Theorem 1.4 says that two commuting tuples of operators T and Tin B1(Q) are unitarily
equivalent if and only if the curvature of the corresponding line bundles Et and Ej are equal on
some open subset of 2. In general (Cf. [8] and [10]), the curvature of the bundle Ep along with
a certain number of derivatives forms a complete set of unitary invariants for the operator T

Every commuting m-tuple of operators in B (2) can be realized as the m-tuple of the adjoint
of multiplication by coordinate functions on a Hilbert space of holomorphic functions defined on
an open subset of Q* = {w € C™ : w € Q}: Pick a holomorphic frame v;(w),. ..,y (w) of the
vector bundle Et on some open subset g of . The map I' : Qy — £(C*, H) defined by the rule

k
=0

is holomorphic. Let O(2, CF) be the algebra of holomorphic functions on )5 taking values in C*
and Ur : H — O(Q%,CF) be the map defined by

(Urf)(w) =T(w)"f, feH, we Q. (1.2.1)
The map Ur is linear and injective. Therefore, it defines an inner product on Hr := ran Ur:

(Urf,Urg)r = (f,9), f,g € H.

Equipped with this inner product Hr consisting of C*-valued holomorphic functions on Q) be-

comes a Hilbert space. It is then shown in [11, Remarks 2.6] that
(a) K(z,w)=T(2)"T'(w), z,w € Q is the reproducing kernel for the Hilbert space Hr and
(b) M;Ur = UrT;, where (M;f)(2) = zif(2), 2 = (21,..., 2m) € Q5.

The map C[z] X Hr — Hr defined by (p, f) — p- f, p € C[z], f € Hr is a module map. Here p- f
is the function obtained by pointwise multiplication of the two functions p and f. Thus we think

of Hr as a module over the polynomial ring.

Clearly, the representation of the commuting m-tuple T as the adjoint of the multiplication
tuple M = (Mj,...,M,,) on the space Hr depends on the initial choice of the frame ~. It is
shown in [11] that there is a canonical choice for the Hilbert module Hr, namely, one where one

may assume that the kernel K is normalized.

Definition 1.5. A non negative definite kernel K is said to be normalized at wy if K(z,wg) = I

for z in some open subset €} of 2*.
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Fix wp € @* and note that K(z,wp) is invertible for z in some neighborhood Af C Q* of wy.
Let K,es be the restriction of K to Aj x Aj. Define a kernel function Ky on Af by

Ko(z,w) = ¢(2) K (z,w)p(w)*, z,w € Ag, (1.2.2)

where ¢(z) = Kres(w(),'w())l/QKres(Z7U)())_l. Clearly the kernel Ky is normalized at wg. Let My
denote the m-tuple of multiplication operators on the Hilbert space H. It is not hard to establish
the unitary equivalence of the two m - tuples M and My as in (cf. [11, Lemma 3.9 and Remark
3.8]). First, the restriction map res: f — fres, which restricts a function in H to Af is a unitary
map intertwining the m-tuple M on H with the m-tuple M on H,es = ran res. The Hilbert space
H:es is a reproducing kernel Hilbert space with reproducing kernel K. Second, suppose that the
m-tuples M defined on two different reproducing kernel Hilbert spaces H; and Hz are in By (2*)
and X : H; — Hs is a bounded operator intertwining these two operator tuples. Then X must
map the joint kernel of one tuple in to the other, that is, X K (-, w)¢ = Ka(-, w)p(w)¢, € € CF, for
some function ¢ : Q* — C***. Assuming that the kernel functions K; and K5 are holomorphic in
the first and anti-holomorphic in the second variable, it follows, again as in [11, pp. 472], that ¢
is anti-holomorphic. An easy calculation then shows that X* is the multiplication operator M-,
where p(w)* = Wtr. If the two operator tuples are unitarily equivalent then there exists an
unitary operator U intertwining them. Hence U* must be of the form M, for some holomorphic
function 1. Also, the operator U must map the kernel of Dj_,)- acting on H; isometrically
onto the kernel of Dnj_,)+ acting on Hy for all w € Q. The unitarity of U is equivalent to the
relation K1 (-, w)¢ = U*Ka(-,w)(w)*¢ for all w € Q and € € CF. Tt then follows that

K1(z,w) = ¢(2) Koz, w)p(w)”, (1.2.3)

where 1) : Q* — GL(C¥) is some holomorphic function. Here, GL(C*) denotes the group of all
invertible linear transformations on CF.
Conversely, if two kernels are related as in equation (1.2.3), then the corresponding tuples of

multiplication operators are unitarily equivalent since
MZ*K<.7w)C = sz('7w)C, w e Q? < e Ck?

where (M;f)(z) = zif(z), f € Hfor 1 <i<m.

In general, the adjoint of the multiplication tuple M on a reproducing kernel Hilbert space
need not be in the Cowen-Douglas class By (€2). However, one may impose additional conditions
(cf. [11]) on K to ensure this. The normalized kernel K (modulo conjugation by a constant
unitary on C"”) then determines the unitary equivalence class of the multiplication tuple M.

In conclusion, it is possible to answer a number of questions regarding the m-tuple of operators
T using either the corresponding vector bundle or the normalized kernel. An elementary discussion

on curvature invariant is given in appendix (section 6.1).
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1.3 Hilbert modules over polynomial ring and semi-Fredholmness

The notion of a Hilbert module was formulated and studied in [15]. This was introduced to
emphasize algebraic methods in the study of Hilbert space operators and more generally algebras

of operators on Hilbert space.

Definition 1.6. A Hilbert module H over the polynomial ring C[z] is a Hilbert space H together
with a unital module multiplication C|z] x H — H which is assumed to define a bounded operator
for each p, that is, the map M), : H — H defined by h — p - h is bounded for p € C[z].

We note that given a commuting m-tuple (71, ..., T},) on a Hilbert space H, it can be naturally
endowed with a module structure over the polynomial ring C[z] by setting p - h = p(T1, ... T )h.
We say two Hilbert modules H1 and Hs are unitarily equivalent if there exists a unitary operator
U : Hi1 — H2 which intertwines the module action, that is, UM, = M,U for all p € C[z]. Note
for equivalence of two Hilbert modules, it is enough to check that UM,, = M,,U, 1 <1i < m.

If H is a Hilbert module over Clz], then a set {h)}rea € H is called a generating set for H if

finite linear sum of the form

sz‘h,\“ pi € Clz], \i € A
i
are dense in H.

Definition 1.7. If H is a Hilbert module over C[z], then rankc(,;H, the rank of H over C[z], is

the minimum cardinality of a generating set for H.

A Hilbert module H over C[z] is said to be finitely generated if rankcp,)H < oo.

Definition 1.8. A Hilbert module H is said to be semi-Fredholm at the point w if
dimH/m,H < oo,

where m,, is the maximal ideal of C[z] at w.

We study the class of semi-Fredholm Hilbert modules which includes the finitely generated
ones (see [15, page - 89]). In particular, any submodule of an analytic Hilbert module M of the

form [Z] for some ideal Z C Clz] is semi-Fredholm.

Recall that if m,,H has finite codimension then m,,H is a closed subspace of H. A Hilbert

module H semi-Fredholm on (2 if it is semi-Fredholm for every w € €.
Definition 1.9. Consider the semi-Fredholm modules for which the two conditions
(const) dimH/m,H =n < oo for all w € ;

(span) NyeamyH =0,
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hold. We will say these Hilbert modules are in the Cowen-Douglas class B, (€2). (The adjoint of
the multiplication tuple defined on H is in B, (2*).)

For any Hilbert module H in B, (2), the analytic localization (’)@O(Cm)H is a locally free

module when restricted to ), see [18] for details. Let us denote, in short,

and let Fy = 7:{]9 be the associated holomorphic vector bundle. Fix w € €. The minimal
projective resolution of the maximal ideal at the point w is given by the Koszul complex K,(z —
w,H), where K,(z — w,H) = H ® AP(C™) and the connecting maps d,(w) : K, — Kp_1 are
defined, using the standard basis vectors e;, 1 < i < m for C™, by

P
Sp(w)(fei, Ao Aei) =3 (=17 z —wy) - fei, Ao Néi Al A,
j=1
Here, z; - f is the module multiplication. In particular é;(w) : H @ ... ® H — H is defined by
(f1y- s fm) — ZTZI(M]- — wj) f;, where M; is the operator M; : f — z; - f, for 1 < j < 'm and
f € H. The 0-th homology group of the complex, Hy(K,(z — w,H)) is same as H/m,H. For

w € €2, the map 0; (w) induces a map localized at w,

“~ S N
Ki(z —w, Hy) L) Ko(z — w, Hu).
Then H,, = coker d1,,(w) is a locally free O,, module and the fiber of the associated holomorphic

vector bundle E; is given by
EH,w = ﬂw ®Ow Ow/mwow-

We identify Ej,,, with ker d1(w)*. Thus Ej, is a Hermitian holomorphic vector bundle on
O :={z: 2z € Q}. Let D+ be the commuting m-tuple (M;*, ..., M,,*) from Hto H® ... ®H.
Clearly 01(w)" = DnM—w)~ and ker d1(w)* = ker D)+ = MLy ker(M; — w;)* for w € Q.

Let Gr(H,n) be the rank n Grassmanian on the Hilbert module H. The map I' : Q* —
Gr(H,n) defined by w ~ ker Dj_)+ is shown to be holomorphic in [8]. The pull-back of the
canonical vector bundle on Gr(#,n) under I' is then the holomorphic Hermitian vector bundle £},
on the open set 2*. A restatement of Theorem 1.4 is that equivalent Hilbert modules correspond
to equivalent vector bundles and vice-versa. Examples are the Hardy and the Bergman modules
over the Euclidean ball and the poly-disc.

We recall, from section 1.2, that a Hilbert module in the Cowen-Douglass class B;(2) consists
of

e a Hilbert space H of holomorphic functions on some bounded domain €y in C™,

e a reproducing kernel K for H on the Qg for H which is non-degenerate, that is, K (w,w) #
0, we Qo,
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e the module multiplication is the pointwise multiplication.

For Hilbert modules as above, E}, = Og«, that is, the associate holomorphic vector bundle
is trivial, with K,, := K(-,w) as a non-vanishing global section. For modules in B;(Q2), the
curvature of the vector bundle E3, is a complete invariant. However, in many natural examples
of submodules of Hilbert modules from the class B1(€2), the dimension of the joint kernel does
not remain constant. Let us look at an example. Let H?(D?) be the Hardy space on the bi-disc.
This may be thought of as a Hilbert space of holomorphic functions defined on D? determined by

the reproducing kernel
K(z,w) = (1—zw1) (1 — z0w2) 7", 2 = (21, 22), w= (w1, ws) € D?.
This follows from (1.1.4) as {z1227}; j>0 forms an orthonormal basis for H. Let
H§(D?) = {f € H*(D?) : f(0,0) = 0}

be the submodule of functions vanishing at the origin. Using (1.1.4), we see that the reproducing
kernel Ko for H3(D?) is
Ko(z,w) = K(z,w)—1

= (2117)1 —+ 299 — legwlﬁJQ)K<2, w)
where z = (21, 22), w = (w1, ws) € D?. We have

) 1 if w # (0,0)
dimker D(nj_ )+ = (1.3.1)
2 if w=(0,0).

Clearly, the map w +— ker D(nj_y)+« is not holomorphic on all of D? but only on D? \ {(0,0)}.
To extract invariants for Hilbert modules as above, we begin a systematic study of a class of
submodules of kernel Hilbert modules (over the polynomial ring C[z]) which are semi-Fredholm
on €.

Definition 1.10. A Hilbert module M C O(2) over the polynomial ring C[z] is said to be in the
class B1(Q) if

(rk) it possess a reproducing kernel K (we don’t rule out the possibility: K (w,w) = 0 for w in

some closed subset X of Q) and

(fin) the dimension of M /m,,M is finite for all w € Q.

The following Lemma isolates a large class of elements from B;(£2) which belong to B; ()

for some open subset Qg C €.
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Lemma 1.11. Suppose M € B1(Q) is the closure of a polynomial ideal . Then M is in B1(Q)
if the ideal T is principal while if pi,pa,...,pi (t > 1) is a minimal set of generators for I, then
M is in B1(Q\ X) for X =ni_{z:pi(z) =0} N Q.

Proof. The proof is a refinement of the argument given in [13, pp. 285]. Let =y, be any eigenvector

at w for the adjoint of the module multiplication, that is, M;v,, = p(w)yy for p € Clz].
First, assume that the module M is generated by the single polynomial, say p. In this
case, K (z,w) = p(2)x(z, w)p(w) for some positive definite kernel x on all of 2. Set K;(z,w) =

p(2)x(z,w) and note that K;(-,w) is a non-zero eigenvector at w € 2. We have

(Pq, Yw) = (P, Mgyw) = (0, g(w)yw) = ¢(w) (P, Yw)-

Also, we have

p(w)q(w)(p, Yw) = (pq, K (-, w)){(p, Yw) = p(w)(pq, (P, Yu) K1 (-, w)).

The analytic function g(w)(p, yw) — (pq, (P, Yw)K1(-,w)) on Q is equal to 0 on Q\ {z : p(z) = 0}

and hence is 0 on Q (as  is connected). Thus

(Pg; Yw) = (Pq; (P, Yw) K1 (-, w)).

Since vectors of the form {pq : ¢ € C[z]} are dense in M, it follows that v, = (p, ) K1 (-, w) and
the proof is complete in this case.

Now, assume that p1,...,p; is a set of generators for the ideal Z. Then for w ¢ X, there exist
ake{l,...,t} such that pp(w) # 0. We note that for any i, 1 <i < m,

Pr(W)(Pi, Yw) = (Pis My, ) = DiPk, Yw) = (Pl My, Yw) = Di(W0) (Pks Vo)

Therefore we have
t

t
O pigivw) = > (pi M)
i=1

i=1

= > ai(w)(pi, )
i=1

t

i=1 k(w)

kS

Setting c(w) = %, we have

(sz‘qz', Yw) = (Zpiq,-, c(w)K (-, w)).

Since vectors of the form {3¢_ pigi : ¢; € Clz], 1 < i < t} are dense in M, it follows that
Y = ¢(w)K (-, w) completing the proof of the second half. O
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Note that the lemma given above only says what happens to the dimension of the joint kernel
for points outside the zero set X. A complete formula for the dimension of the joint kernel (in

some cases) is given in [17] which we reproduced below.

Theorem 1.12 (Duan-Guo). Let [Z] be a polynomialideal and V(Z) be the common zero of the
ideal T. Let ‘H be an analytic Hilbert module over Q). Suppose Ho is a submodule of H which is
the completion of the ideal T in H. Then assuming that the ideal T satisfies one of the following

conditions
(1) is singly generated
(2) is prime ideal of C[z1, 22]
(3) is prime ideal of Clz1,...,2m,], m > 2 and w is a smooth point of V(Z),

we have

1 for w ¢ V(I) N,

dim N{2 ker(M; |y, —w;)* =
her(Mlr, 7 { codimension of V(Z) for w e V(Z)N Q.

We note that H3(D?) = [mg], where mg =< 21, 22 >, that is, the ideal generated by z; and z»

in C[z1, 22]. Consequently, the equation (1.3.1) follows from the theorem of Duan and Guo.

1.4 Some results on polynomial ideals and analytic Hilbert modules

a1

Let o = (a1, ... ) € (Z4+)™ be a multi index and 2® = 27" ... z%m. For ¢ € C[z] of the form

q(z) =, aaz", let ¢(D) denote the linear partial differential operator

q(D) = za: aaM
where |a| = )", a;. For an ideal Z, the characteristic space at w is the linear space
Vu(Z) ={q € Clz] : ¢(D)plw =0, p € I}.
Here q(D)plw = (¢(D)p)(w). The following identity is easily verified:
aD) (2 H)lw = wya(D)pl + gj],(D)f\w, f=1,..,m

for any analytic function f defined in a small neighborhood of w. The characteristic space V,,(Z)

is invariant under the action of the partial differential operators {8%1, e 8§m} and V,,(Z) # {0}
if and only if w € V(Z). The envelope, I, of Z at w is the ideal

g = {q € Clz] : ¢(D)plw = 0 for all g € V,(7)}, (1.4.1)
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containing 7. Let 7 = N7_;7; be an irredundant primary decomposition of the ideal Z. Thus each
ideal is Pj-primary for some prime ideal P;. The set {P; : 1 < j < n} is uniquely determined by
7 while the set {Z; : 1 < j < n} is not. Note that

V(I) = nj V(Fy).
For 1 < j <, the set V(P}) is called an algebraic component of Z.

Theorem 1.13. [25, Corollary 2.2] Let Q be a subset of C™. If each algebraic component of the
ideal I intersects 1, then

I == ﬂwEQI;.
For polynomial ideals Z1,Zs satisfying Z; D 75, we note that Zy,, C Zs,, for all w € C™. Let
V() \V(T1) := {w € V(T2) : Tow # Tiw}-

Lemma 1.14. [24, Corollary 2.5] If T1,Z are two ideals in C|z], I1 2 Iy, and dimZ; /Zy < oo,
then

dim 7, /7, = > dimToy /T
weV(Z2)\V (1)
We now state two important theorems about analytic Hilbert module. The first of these

theorems is a generalization of the result of Ahern and Clark [2].

Theorem 1.15. [16, Corollary 2.8] Let H be an analytic Hilbert module on a bounded domain
in C™. Then the maps T — [I] and M — M N Clz] define bijective correspondence between the
ideal T of C[z] with V(Z) C Q and the submodule M of H of finite codimension.

Theorem 1.16. [24, Theorem 3.1] Le H be an analytic Hilbert module on the domain  C C™,
and 11, Iy be two polynomial ideal satisfying Ty O Lo, and V(Z2) \ V(Z1) C Q. Let [I41], [Z2] be the

closures of I1,Zo respectively in H. Then

dim[Iﬂ/[IQ] = dimIl/Ig.






2. The sheat model

In this chapter, we develop the sheaf model for a Hilbert module M in the class 9B;(£2). We
prove the decomposition theorem. A relationship between the joint kernel M /m, M and the
stalk SM is established. We solve the Gleason problem for an analytic Hilbert module and its

finite codimensional submodules. An alternative proof of the rigidity theorem is given.

2.1 The sheaf construction and decomposition theorem

Let us consider a Hilbert module M in the class ®B;(€2) which is a submodule of some Hilbert
module H in B;(Q2), possessing a nondegenerate reproducing kernel K. Clearly then we have the

following module map
O@O(Cm)/\/l — O®O(CM)H ~ Oq. (2.1.1)

Let SM denotes the range of the composition map in the above equation. Then the stalk of S™M
at w € Q1is given by {(f1)wOuw + -+ (fn)wOuw : f1,-.., fn € M}

Motivated by the construction above and the analogy with the correspondence of a vector
bundle with a locally free sheaf [30, page-40], we construct a sheaf SM for the Hilbert module M
over the polynomial ring C[z], in the class B1(€2). The sheaf SM is the subsheaf of the sheaf of
holomorphic functions O(2) whose stalk SM at w € Q is

{(fl)w0w++(fn)w0w : fla---,fn GM}a

or equivalently,
SMWU) = {3 (Fuw)gi : £ € Mogi € OU) |
i=1
for U open in €.
For any two Hilbert module M; and My in the class B1(Q2) and L : M; — My a module
map between them, let S : SM1 (V) — SM2(V) be the map defined by

SYS " filvgi ==Y Lfilvgs, for fi € My, gi € O(V), n €N.
=1 =1

The map SL is Weﬂ deﬁned: lf Z?:l fi|Vgi = Z?:l fﬂv@;, then Z?:l Lfi|Vgi = Z?:l Lf7,|V§z
Suppose M is isomorphic to My via the unitary module map L. Now, it is easy to verify that
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(S¥)~1 = S”. Tt then follows that SM is isomorphic, as sheaves of modules over O(12), to SM2
via the map S*.

It is clear that if the Hilbert module M is in the class B1(Q), then the sheaf SM is locally
free. Also, if the Hilbert module is taken to be the maximal set of functions vanishing on an
analytic hyper-surface Z, then the sheaf S™ coincides with the ideal sheaf Zz(f2) and therefore

it is coherent (cf.[22]). However, much more is true

Proposition 2.1. For any Hilbert module M in B1(9), the sheaf SM is coherent.

Proof. The sheaf SM is generated by the family {f : f € M} of global sections of the sheaf
O(Q). Let J be a finite subset of M and S} C O(Q) be the subsheaf generated by the sections
f, f e J. It follows (see [23, Corollary 9, page. 130]) that SL/]V‘ is coherent. The family {Sf}" :
Jis a finite subset of M} is increasingly filtered, that is, for any two finite subset I and J of M, the
union I'UJ is again a finite subset of M and S}Vl USle C Sﬁ/}J. Also, clearly SM = U, Sf]\/t. Using
Noether’s lemma [22, page. 111] which says that every increasingly filtered family of coherent

sheaves must be stationary, we conclude that the analytic sheaf SM is coherent. O

For w € €, the coherence of SM ensures the existence of m,n € N and an open neighborhood
U of w such that
(O™ = (0" = (M) =0

is an exact sequence. Thus
{(sy/mwsy) Lwe Q}
defines a holomorphic linear space on € (cf. [20, 1.8 (page. 54)]). Although, we have not used

this correspondence in any essential manner in this thesis, we expect it to be a useful tool in the

investigation of some of the questions we raise here.

Remark 2.2. Let M is any module in 951 (£2) with Q pseudoconvex and a finite set of generators
{fi,..., ft}. From [7, Lemma 2.3.2], it follows that the associated sheaf SM(f2) is not only
coherent, it has global generators {f1,..., fi}, that is, { fiw, ..., frw} generates the stalk S{l‘,/l for
every w € Q. Theorem 2.3.3 of [7] (or equivalently [27, Theorem 7.2.5]) is a consequence of the
Cartan’s Theorem B(cf. [27, Theorem 7.1.7]) together with the coherence of every locally finitely
generated subsheaf of OF (cf. [27, Theorem 7.1.8]). It is then easy to verify that if M is any
module in B1(Q2) and if {f1,..., f:} is finite set of generators for M, then for f € M, there exist
g1, -+, 9t € O(2) such that

f=ho+ o+ fge (2.1.2)

More generally, if f € SM(U), then f = 3'_, figi, with g; € O(U).

The coherence of the sheaf SM implies, in particular, that the stalk (SM), at w € Q is

generated by a finite number of elements g1, . . ., g4 from O,,. Sometimes we also write g; to denote
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a holomorphic function as a representative of the germ ¢; at w € C™. If K is the reproducing
kernel for M and wq € €2 is a fixed but arbitrary point, then for w in a small neighborhood g of

wp, we obtain the following decomposition theorem.

Theorem 2.3. Suppose g?, 1 <i<d, be a minimal set of generators for the stalk S{;g. Then

(i) there exists an open neighborhood Q of wqy such that

for some choice of anti-holomorphic functions K&, ... K@ . Q) — M,

(ii) the vectors Kz(vi), 1 <@ < d, are linearly independent in M for w in some neighborhood of

wo,

(iii) the vectors {Kl(lf()) | 1 <i<d} are uniquely determined by these generators g%, ..., g9,

(iv) the linear span of the set of vectors {Kq(,fg | 1 <i<d}in M is independent of the generators
g?,...,gg, and

(v) M;;Kq(ﬁg = mlﬂ% for all i, 1 < i < d, where M, denotes the module multiplication by

the polynomial p.

Proof. For simplicity of notation, without loss of generality, we assume that 0 = wg € ). Let

{en}>2y be a orthonormal basis for M. From the equation (1.1.4), we write

w) = Zen(z)en(w), z,w € .
n=0

It follows from [23, Theorem 2, page. 82] that for every element f in S{!, and therefore in

particular for every e, we have
Z g; (z Z-n , 2 € A(0;7)

for some holomorphic functions hgn) defined on the closed polydisc A(0;7) C Q. Furthermore,
these functions can be chosen with the bound || hz(n) HA(O;r) < Cll en [|a(0;) for some positive
constant C' independent of n. Although, the decomposition is not necessarily with respect to the
standard coordinate system at 0, we will be using only a point wise estimate. Consequently, in
the equation given above, we have chosen not to emphasize the change of variable involved and

we have,

E{Zgl Yh™ (w)Yen (2 Zgl {Zh 2)}.

n=0 i=1



2. The sheaf model 26

Setting K (2)(= K;(z,w)) to be the sum Y > h(n)( )en(2), we can write

n=0 "%

K(z,w) = Zg?(w)Kg)(z), w € A(0;7).

The function K; is holomorphic in the first variable and antiholomorphic in the second by con-

struction. For the proof of part (i), we need to show that Kl(vi) € M where w € A(0;r). Or,
2

equivalently, we have to show that y \hz(n) (w)| < oo for each w € A(0;r). First, using the

(n)

estimate on h; ’, we have

B (w)] < || A 2@y < Cllen laom-

We prove below, the inequality > > || ex, ||25(0;T) < 0o completing the proof of part (i). We prove,
more generally, that for f € M,

If lar) < €l o, A0 (2.1.3)

where || . ||, denotes the L? norm with respect to the volume measure on A(0;7). It is evident
from the proof that the constant C’ may be chosen to be independent of the functions f. We will
give two proofs, of which the second one, although long, has the advantage of being elementary.

First Proof. Any function f holomorphic on €2 belongs to the Bergman space L2(A(0;7 +¢))
as long as A(0;7+¢) C Q. We can surely pick € > 0 small enough to ensure A(0;7+¢) C Q. Let
B be the Bergman kernel of the Bergman space L2(A(0;7 + ¢)). Thus we have

(ST

, we A(0;r +¢).

| fw) | = [{f;B(-w))| yB(w, w)

Since the function B(w,w) is bounded on compact subsets of A(0;7 + ), it follows that C'? :=
sup{ B(w,w) : w € A(0;7)} is finite. We therefore see that

I amy = sup{l f(w) [ w € A0;7)} < O f g, A1)

Since € > 0 can be chosen arbitrarily close to 0, we infer the inequality (2.1.3).

Second Proof. Let us take w € A(0;r). Let §; = rj— | w; |. Consider the neighborhood A(w;¢)
of polyradius € = (€1, ...,em),&; > 0,1 < j < m, around w such that A(w;e) C A(0;r). Now by
repeated application of Cauchy’s integral formula for holomorphic functions of one variable, we

have

N dzq dzo dzp,
I, [ B
(w) (2 oA (wrier) (21— W1) JoA(waies) (22 — W2) DA (wnsen) (Fm — W) (m)

27 27 27
= (2n)” / / f(wy + 1€, .. wy, + £me?™)d0ydb;...do,,

where z; = w; + sjewﬂ' which implies dz; = z'sjewﬂ'dﬁj for 1 < j < m. Let us denote (wy +

g1, wy, + Emewm) by w + ee'?. For a fixed point w, the integrand in the integral below is
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continuous on the compact domain of integration. Hence the iterated integral can be replaced by

the single multiple integral

Om o1
/ x / Em...c1f(w)dey...dey,

01 2 27
= (2n)” / / Eme- 81{/ f(w + ee’ )d61d02...d9m}d51...d8m

01 2 27
= (2m)” / / / / Em--E1f( w + eé’ )d91d92 dO,deq...dey,.

o1 5
Now / / Em---e1f(w)dey...dey, = H]21 4 f(w) and by Cauchy-Schwartz inequality, we

have

m 52
H | f(w)

o1 2 2 )
< (2m)” / / / Vem-e1f(w+ 56“9)\/5m...51d91d92...d0md51...dem

Om o1 21 21 ] 9 )
< (2ﬂ)m{/ / / / emenet| fw + 26 [2d0ydOs...dBpdzr...dem )5 X
01 27 27
{/ / / / Em-- 81d91d92 .db d61 dé‘m}2
1
;2 2
< (2m) —m{/ 2) Pdzy Az A oo A dzg A dZg )2 {M.(%)m}
’UJE
)
< Hﬂ_lmj {/ | £(2) Pdes Adz1 A oo A dzg AdZm )2
(4m)2 " JA(wie)
Now as A(w;e) C A(0;7), we have
1 2 _ _ 41
| flw) ] < — T | f(2) |“dz1 ANdzy A oo Ndzpy ANdZp, )2
{(H]’:1 5j )72 S A(wie)
1 2 _ _ 51
< {/ | F(2) Pdza A dE A o Adom A dEm) 3.
(T 67} Ao
The last inequality then imphes that [| f [[a0.) < Cll f ll2,a(0;), Where C = 1

{17 85%)m} 2
The inequality (2.1.3) implies, in particular, that

ZHenHA(OTgC’QZ/ | en(2) |2dzy AdZy A A dzm A dZn.
A(0;r)

Since K, = > s en(2)en (K. (2) = K(2,2)), the function G(z) := >.°° |en(2)|? is finite for each
z € ). The sequence of positive continuous functions G(z) := Zﬁzo len(2)]? converges uniformly

to G on A(0;7). To see this, we note that

1 Gr— G P20y < 0’2/( )|Gk(z)—G(z)|2dzl/\d21/\~-/\dzm/\d2m
O;r

IN

C’Z/_ { Z | en(2) PY2dzy AdZL A -+ Adzg A dZm,
A(0;r) neki1
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which tends to 0 as k — co. So, by monotone convergence theorem we can interchange the integral

and the infinite sum to conclude

ZH%”A(Or §C/ Z|en Y Pdzy AdzL A Adzm A dZm < o0
n=0 n 0

as G is a continuous function on A(0;7). This shows that

ZW <KZ||en X0y <

n=0

HenceK EM 1<¢<d.

To prove statement (ii), at 0, we have to show that whenever there exist complex numbers
Q1 , g such that Z _10;Ki(2,0) = 0, then o; = 0 for all i. We assume, on the contrary,
that there exists some i € {1,...,d} such that a; # 0. Without loss of generality, we assume
a1 # 0, then K;(z,0) = ZZ 2@ i(2,0) where (; = %,2 < i < d. This shows that K;(z,w) —
S, BiK;(z,w) has a zero at w = 0. From [27, Theorem 7.2.9], it follows that

d m
Ki(z,w) — ZﬂiKi(Z,w) = ZU_)J‘GJ‘(Z:U})
i=2 j=1

for some function G; : Q x A(0;7) — C,1 < j < m, which is holomorphic in the first and

antiholomorphic in the second variable. So, we can write

K(suw) = Zgl = B K1 (2, ) +f;g?<w>Ki<z,w>
- {Zﬁz 2w) i _zd;g?w)m(z,w)
= é(g?(w)wig?( (2, w) ijw (z,w).
For f € M and w € A(0; ), we have
F(w) = (. K (- w)) = i;@?(w) + B, il ) + ol(w iw (=)

We note that (f,» 7", w;G;(2,w)) is a holomorphic function in w which vanishes at w = 0. It
then follows that (f,» 7", w;Gj(z,w)) = 37", wjéj(w) for some holomorphic functions éj, 1<
j < m on A(0;r). Therefore, we have

d

F(w) = (g0 (w) + Bigh (w)(f, Ki(z,w)) + Y w;g (w)Gj(w).
j=1

=2
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Since the sheaf SM| N is generated by the Hilbert module M, it follows that the set {g9 +
529?, ... ,gg + Bdg?,zlg?, ..., Zmg}} also generates SM'A(()'r)' In particular, they generate the
stalk at 0. To arrive at a contradiction, it is enough to show that ¢ can not be written in

combination of the new set of generators. If possible, suppose

d
91(2) = 3 ai(2){g] (=) + Bigh ()} + Z bj(2)zg (2 (2.1.4)

where a;,b; are holomorphic functions on some small enough neighborhood of 0, say U, for
2 <i<d,1<j<m. First we suppose that a;(0) = 0 for all i,2 < i < d. Now, rewrite the

equation (2.1.4) as follows

d m d
{1 —Z@ai ij 2)z}gi (2 Zal (2.1.5)
=2 7j=1 =2

Let ¢(z) =1 — ELQ Biai(z) — > j21bj(2)z;. Since ¢(0) = 1, the germ of ¢ at 0 is a unit in Op.
Then considering the the equation (2.1.5) at the level of germs, we have g9 = Z?;Q(ca Yain)g?,
which contradicts the minimality of the generators of the stalk at 0. Hence there exist some
k,2 < k < d, such that ai(0) # 0. So ako is a unit in Op. Thus at the level of germs, equation

(2.1.5) is of the form
d

ko = g {cogio — Z ai0gio },
i=2,i#k

which is again a contradiction to the minimality of the generators of the stalk at 0. This contra-
diction is consequence of the assumption that a; # 0 for some 4,1 < ¢ < m. Therefore a; = 0 for
all i and so {K;(z,0)}%_; are linearly independent.

We point out that this constitute a proof of Nakayama’s Lemma (cf.[29, Page - 57]). Clearly
we obtain the same result as a consequence of Nakayama’s Lemma: Suppose A C Sé\" is generated
by germs of the functions g9 + 29y, . . ., gg + B499. Let m(Op) denotes the the only maximal ideal

of the local ring Oy, consisting of the germs of functions vanishing at 0. Then it follows that
m(O){S§"/A} = 5§ /A.

Using Nakayama’s lemma (cf. [29, p.57]), we see that Sg'/A = 0, that is, S} = A. This
contradicts the minimality of the generators of the stalk at 0 completing the proof of first half of
(ii).

To prove the slightly stronger statement, namely, the independence of the vectors Kl(f), 1<
i < d in a small neighborhood of 0, consider the Grammian (((Kg), K )>)) j”j:l. The determinant
of this Grammian is nonzero at 0. Therefore it remains non-zero in a suitably small neighborhood
of 0 since it is a real analytic function on {29. Consequently, the vectors Kq(ui), 1=1,...,d are

linearly independent for all w in this neighborhood.
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To prove statement (iii) we have to prove that K (()i) are uniquely determined by the generators
g?, 1 <i<d. Wewill let ¢ denote the germ of g at 0 as well. Let K(z,w) = Zle g?(w)f(fl(ui)

be another decomposition. Let I?l(j) =3 ﬁ?(w)en for some holomorphic functions on some

small enough neighborhood of 0. Thus we have

U

o0

SN P(w)Rr(w) - b (w) e, = 0.

n=0 i=1

Hence, for each n
d
> g (){h(z) = hi(2)} = 0.
i=1

Fix n and let o;(2) = h}'(z) — 71?(2:) In this notation, 3%, ¢%(z)a;(z) = 0. Now we claim that
a;(0) =0 for all i € {1,...,d}. If not, we may assume «;(0) # 0. Then the germ of o at 0 is a
unit in Oy. Hence we can write, in Oy,

d

9 =0 gevio)aro ",

i=2
where a9 denotes the germs of the analytic functions o; at 0, 1 < ¢ < d. This is a contradiction, as
¢Y,..., g% is a minimal set of generators of the stalk S3** by hypothesis. As a result, h?*(0) = ﬁf‘(())
for all i € {1,...,d} and n € NU {0}. This completes the proof of (iii).

To prove statement (iv), let {g?,...,¢9} and {g?,..., g9} be two sets of generators for SM
both of which are minimal. Let K® and K () 1 < i < d, be the corresponding vectors that

appear in the decomposition of the reproducing kernel K as in (i). It is enough to show that
spanc{K;(z,0): 1 <i<d} = span(c{f(l-(z,()) 1 <i<d}.

There exists holomorphic functions ¢;;, 1 < 4,5 < d, in a small enough neighborhood of 0 such
that g9 = Z?Zl qﬁijg?. It now follows that

d d d
K(z,w) = Zgg(w)f(i(z,w) = Z(Z&ij(w)g?(w))[}i(%w)
=1 P
d d ) B
- ng(w)(z ¢ij(w)K;(z,w))

for w possibly from an even smaller neighborhood of 0. But K (z,w) = Z;.lzl g?(w)Kj(z, w) and

uniqueness at the point 0 implies that
d ~
Kj(2,0) =) ¢i(0)Ki(2,0)
i=1

for 1 < j <d. So, we have spanc{K;(z,0):1<1i<d} C span(c{f(i(z,O) : 1 <i<d}. Writing g?

in terms of g¥, we get the other inclusion.
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Finally, to prove statement (v), let us apply M;* to both sides of the decomposition of the
reproducing kernel K given in part (i) to obtain w; K (z,w) = Zle G2 (w)M;*K;(z,w). Substitut-
ing K from the first equation, we get Zi:l G2 (w)(Mj — w;j)*K;(z,w) = 0. Let F;j(z,w) = (M; —
w;)*K;(z,w). For a fixed but arbitrary zy € €, consider the equation E‘f:l 2 (w)EF;j(z0,w) = 0.
Suppose there exists k,1 < k < d such that F;(z9,0) # 0. Then

d
g ={Fri(z0. )} D 9V Fij(z0, ),
i=1,i#k
This is a contradiction. Therefore Fj;(20,0) = 0,1 < i < d, and for all zy € . So M;*K;(2,0) =0,
1<i<d,1<j<m. This completes the proof of the theorem. O

Remark 2.4. Let Z be an ideal in the polynomial ring C[z]. Suppose M D Z and that Z is
dense in M. Let {p; € C[z] : 1 < i <t} be a minimal set of generators for the ideal Z. Let V(T)
be the zero variety of the ideal Z. If w ¢ V(Z), then SM = O,. Although p1,...,p; generate
the stalk at every point, they are not necessarily a minimal set of generators. For example, let
T =< 21(1 + 21),21(1 — 22),22 >C Cl[z1,22]. The polynomials z(1 + 21),21(1 — 22), 25 form a
minimal set of generators for the ideal Z. Since 1+ z; and 1 — 29 are units in Oy, it follows that

the functions z; and 22 form a minimal set of generators for the stalk S§".

For simplicity, we have stated the decomposition theorem for Hilbert modules which consists
of holomorphic functions taking values in C. However, all the tools that we use for the proof work
equally well in the case of vector valued holomorphic functions. Consequently, it is not hard to

see that the theorem remains valid in this more general set-up.

2.2 The joint kernel at wy and the stalk Su/}g

Let ¢9,..., gg be a minimal set of generators for the stalk S,L/U\g as before. For f € S{,}g, we can

find holomorphic functions f;, 1 < i < d on some small open neighborhood U of wg such that
/= Z ~ 199 fi on U. We write

d d d
F=Y"02fi=> gMfi— filwo)} + > g filwo).
=1 =1 =1

on U. Let m(Oy,) be the maximal ideal (consisting of the germs of holomorphic functions van-
ishing at the point wp) in the local ring O,,, and m((’)wo)S{,}g‘ = mwOSM Thus the linear span of

the equivalence classes [¢9], ..., [¢Y] is the quotient module Sp!/m,,,Sp!. Therefore we have
dim S5 /my, Syt < d.

It turns out that the elements [¢V],...,[¢9] in the quotient module are linearly independent.

Then dim SM /mwOSM = d. To prove the linear independence, let us consider the equation
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Z;jzl a;[g¥] = 0 for some complex numbers «;, 1 < i < d, or equivalently, Z?:l a;gd € my, St
Thus there exists holomorphic functions f;, 1 < i < d, defined on a small neighborhood of wy
and vanishing at wg such that Zle(ai — fi)gi = 0. Now suppose ay, # 0 for some k,1 < k < d.
Then we can write g = — 2 izk(on — fi)o (i — fi)og? which is a contradiction. From the

decomposition Theorem 2.3, it follows that
dimker D(nj_y)+ > #{minimal generators for S } dlmSM/meSM (2.2.1)

We will impose natural conditions on the Hilbert module M, which is always assumed to be in
the class B1(2), so as to ensure equality in (2.2.1). One such condition is that the module M is
finitely generated. Let V(M) :={w € Q: f(w) =0, for all f € M} . Then for wy ¢ V (M), the
number of minimal generators for the stalk at wq is one, in fact, 51/0\(/)1 = Oy, Also for wg ¢ V(M),
dim ker D(nj_yy0)+ = 1, following the proof of Lemma 1.11. Therefore, outside the zero set, we
have equality in (2.2.1). We will show, for a large class of Hilbert modules, even on the zero set
the reverse inequality is valid. For instance, for Hilbert modules of rank 1 over C[z], we have

equality everywhere. This is easy to see from [15, page - 89:
1 > dim M ®c[] Cy, = dimker Dipg_ypy« > dim S /mwOSM > 1.

Let H be a Hilbert module in B;(€Q) that possesses a reproducing kernel which is non-

degenerate on ). Let M is a submodule of H. Then the module map
ORocmM — SM
induced from (2.1.1) is surjective. This naturally defines a map
M /Mg M 22 Oy /My Oy @ M — St /iy St

for wp € Q. To understand the more general case, consider the map i, : M — M,,, defined
by f +— fu,, where fy,, is the germ of the function f at wy. Clearly, this map is a vector space
isomorphism onto its image. The linear space M(wo) .= > (2 — wo) M = my M is closed
since M is assumed to be in B1(Q). The map f + fu, restricted to M) is a linear isomorphism
from M(@0) to (M(®0)),, . Consider

ML M T M SM

wo ?

where 7 is the quotient map. Now we have a map 9 : My, /(M@0)),, . — SM/{m,,, SpA} which
is well defined because (M@0)),, . C My, N mwOS{L}g. Whenever ¢ can be shown to be one-one,

equality in (0.0.1) is forced. To see this, note that M & M) 22 M /M (®0) and

ker D(M—wg)* = ﬂ;”zl{ran(Mj - woj)}J_ =Mo Z(Zj - woj)./\/l =Mo M(wo)‘
=1
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Hence
d < dimker Dipg_yp)- = dim M/ M) < dim S /my,, SH = d. (2.2.2)

Suppose (f) = 0 for some f € M. Then f,, € mwOSM and consequently, f = >"" (2 — wo;) fi
for holomorphic functions f;, 1 < ¢ < m, on some small open set U. The main question is if the
functions f;, 1 < i < m, can be chosen from the Hilbert module M. We isolate below a class of

Hilbert modules for which this question has an affirmative answer.

Let ‘H be a Hilbert module over the polynomial ring C[z] in the class B;(£2). Pick, for each
w € Q, a C - linear subspace V,, of the polynomial ring C[z] with the property that it is invariant
under the action of the partial differential operators {8%1, oy 72—} (see [7]). Set

Y Ozm

M(w)={f eH:q(D)f|w =0 for all g € V,}.

For f € M(w) and q € V,,

+ 2L D)flu =0

Zj

q(D)(2 )lw = wiq(D) flw +

Now, the assumption on V,, ensure that M(w) is a module. We consider below, the class of

(non-trivial) Hilbert modules which are of the form M := ) cq M(w). It is easy to see that
w ¢ V(M) if and only if V,, = {0} if and only if M(w) = H.

Therefore, M = (e (rr) M(w). These modules are called AF- cosubmodule(see [7, page - 38]).
Let
V(M) :={q € C[z] : q(D)f’w =0 for all fe M}.

Note that V,,(M) =V,,. Fix a point in V/(M), say wy. Consider

Vo (M) = {geCl: 2

<3 < .
9= € VM), 1 <i<m}

For w € V(M), let

V(M) ifw # wy

V! (M) =4 _
V(M) ifw = wy.

Now, define M™°(w) to be the submodule (of H) corresponding to the family of the C-linear
subspaces Vi?(M) and let M™ = [,y ng M (w). So we have Vi, (M™) = Vi (M). For
f € M) we have f = > i21(25 — wojy) fj, for some choice of fi,..., f € M. Now for any
q € C[z], following [7], we have

D)f:ZQ(D) zj — woy) fi} = Z{  — wo;)a(D) [ + ( )i} (2.2.3)

J=1
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For w € V(M) and f € M®0) it follows from the definitions that
S (wj = wop)a(D) fjlw + FE(D)fjlu} =0 q € Vi, w # wy
S (D) fi g} = 0 7€V, w=wp,

Thus f € M®0) implies that f € M™0(w) for each w € V(M). Hence M) C M™0. Now we
describe the Gleason property for M at a point wy.

a(D)f|, =

Definition 2.5. We say that an AF- cosubmodule M has the Gleason property at a point
wy € V(M) if Mo = M(wo),

In analogy with the definition of V,,, (M) for a Hilbert module M, we define the space
Vo (i) = {a € Clz] - g(D)f|,,, =0, fuo € St}
It will be useful to record the relation between Vi, (M) and V,,(Sp!) in a separate lemma.

Lemma 2.6. For any Hilbert module M in B1(Q) and wy € 2, we have Vo (M) = Vo (S1).

Proof. We note that the inclusion Vi, (Sp!) € Vi, (M) follows from My, € S{t. To prove the
reverse inclusion, we need to show that q(D)h|w, = 0 for h € Sp!, for all ¢ € Vi, (M). Since
h € S%, we can find functions fi,...,fn, € M and g1,...,9n € Oy, such that h = Y"1, fig;
in some small open neighborhood of wy. Therefore, it is enough to show that ¢(D)(f¢)|w, =
0 for f € M, g holomorphic in a neighborhood, say U,, of wp, and ¢ € V,,,(M). We can
choose Uy, to be a small enough polydisc such that g = ) an(z — wo)®, z € Uy,. Then
q(D)(fg) = >, aaq(D){(z —wo)*f} for z € Uy,. Clearly, (z —wg)®f belongs to M whenever
f € M. Hence q(D){(z — wo)®f}|w, = 0 and we have ¢(D)(fg)|w, = 0 completing the proof of
Vo (M) C Vi (SH1). O

We will show that we have equality in (2.2.1) for all AF - cosubmodules satisfying Gleason’s
property.

Proposition 2.7. Any AF-cosubmodule M has Gleason’s property at wo if and only if
dim M /my, M = d1mSM/mw08M

Proof. We first show that ker(m o 4y,) = M™"0. Showing ker(m o 4,,) € M™"° is same as showing
Mgy Ny, St C (M™0),,,). We claim that

Vi (MupSig) = Vit (M) (= Vi (M)). (2.2.4)

If f € my, )1, then there exists f; € S

wo !

1 < j < m, such that f = 377" — wo;) fj. From

wo’

equation (2.2.3), we have

q € Vy, (mwOS ) if and only if ;;) € Ve (SM) = Vi (M)

Zj
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for all 7,1 < j < m. Now, from Lemma 2.6, we see that 6 € V(M) 1 < j < m, if and only if
q € Vi (M), which proves our claim. So for f € M, if fw0 € My, SHt, then f € M™0(w) for all

w € V(M). Hence f € M™0 and as a result, we find M, Ny, SHT C (M),
Now let f € M™0. From (2.2.4) it follows that

f €{9 € Ouy:a(D)g|,, =0 forall g€ Vy,(my,Su)}.

According to [7, Proposition 2.3.1] we have f € m,,,S;!. Therefore f € ker(m o iy,) and ker(m o
Ty ) = M™O.
Next we show that the map 7 o iy, is onto. Let Y ., figi € SM

wo ?

where f; € M and
g;’s are holomorphic function in some neighborhood of wg, 1 < i < n. We need to show that

there exist f € M such that the class [f] is equal to [0 figi] in St /my,Spl. Let us take
f = Z?:l figi(wo). Then

D figi— £ =Y filgi — gi(wo)} € mu, St
i=1 =1

This completes the proof of surjectivity.

Suppose Gleason’s property holds for M at wg. Since ker(m o iy, ) = M™°, it follows from the
Gleason’s property at wq that we have the equality ker(m 0 y,) = M(@0)  We recall then that the
map 1 : M/ M) —, SM 1 /{mu,Sp1} is one to one. The equality in (2.2.1) is established as in
the equation (2.2.2).

Now suppose equality holds in (0.0.1). From the above, it is clear that M /M™0 is isomorphic
to Spt/mey,Sid. Thus

dim M/ M™ = dim M /M ®0),

But as M®0) C M%0_ we have M®@0) = AM™0 and hence Gleason’s property holds for M at

wp. L]

A class of examples of Hilbert spaces satisfying Gleason’s property can be found in [19]. It
was shown in [19] that Gleason’s property holds for all analytic Hilbert modules. However it is
not entirely clear if it continues to hold for submodules of analytic Hilbert modules. Nevertheless
we will identify here, a class of submodules for which we have equality in (2.2.1). Let M be
a submodule of an analytic Hilbert module over C[z]. Assume that M is a closure of an ideal
Z C Clz]. From [7, 17], we note that

dim ker D(ng_yy)+ = dim Z/my,,Z.
Therefore from (2.2.1) we have

dimZ/m,,Z > dim SM/mwOSM
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So it remains to prove the reverse inequality. Fix a point wg € 2. Consider the map
7 o, SHt 5 S Syl

We will show that ker(m o 4y,) = my,Z. Let V(Z) denote the zero set of the ideal Z and V,,(7)
be its characteristic space at w. We begin by proving that the characteristic space of the ideal

coincides with that of corresponding Hilbert module.

Lemma 2.8. Assume that M = [Z] € B1(Q). Then V() = Vi (M) for wy € 2.

Proof. Clearly V,,(Z) D Vy,, (M), so we have to prove V,,,(Z) C Vy,(M). For ¢ € V,,,(Z) and
f € M, we show that ¢(D) f|w, = 0. Now, for each f € M, there exists a sequence of polynomial
pn € T such that p, — f in the Hilbert space norm. For w € Q and a compact neighborhood C

of w, from equation (1.1.5) we have

[g(D)pn(w) — q(D)f(w)| = [(pn— f,a(D)K(-,w))| <|| pn — f lmll ¢(D)K (-, w) [|m
< lpn—flim sup I ¢(D)K(-,w) [lm -

Therefore q(D)pn‘wO — q(D)f}w0 as n — 00. Since q(D)pn‘wO = 0 for all n, it follows that
D)f’w0 = 0. Hence ¢q € V,,,(M) and we are done. O

Now let J = my,,Z. Recall (cf. [17, Proposition 2.3]) that V(J7)\V(Z) :={w € C™ : V,,(Z) €
Vw(JT)} = {wo}. Here we will explicitly write down the characteristic space. Let

Vuo(D) = {4 € Clel : oL €V (2), 1 < < m)

and

VwO(I) _ Vw(I), w 7& wo;
v Vo (Z), w = wo.

Lemma 2.9. For w € C™, V,,(J) = V¥ (Z).

Proof. Since J C I, we have V,,(Z) C V,,(J) for all w € C™. Now let w # wg. For f € Z and
q € Vu(T), we show that q(D)f!w = 0 which implies ¢ must be in V(7).
Note that for any k € N and j € {1,...,m}, ¢(D){(z; — woj)kf}‘w =0as (zj —wy)*feJ.

This implies Zf:[)(wj - woj)l(’f) gz;‘f(D) f ‘w = 0. Hence (inductively) we have
i

k0%

(wj — wo;)*q(D)f],, = (—1) o (D)f|,, forall k€ Nand j € {1,...,m}.
J

So, if w # wy, then there exists i € {1,...,m} such that w; # wp;. Therefore, by choosing
k large enough with respect to the degree of ¢, we can ensure (w; — wo;)*q(D) f‘w = 0. Thus
D)f‘w = 0. For w = wy, we have ¢ € V,,,(J) if and only if ¢(D){(z; — woj)f}‘wo = 0 for all
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f€TZandje{l,...,m} if and only if %(D)ﬂwo =0 forall feZandje{l,...,m}if and
only if (%qj € Vi (Z) for all j € {1,...,m} if and only if ¢ € V,,(Z). This completes the proof of

the lemma. O

We have shown that Vi, (Z) = Vi, (M) = Vi, (S31). The next Lemma provides a relationship
between the characteristic space of J at the point wg and the sheaf Su/}g.

Lemma 2.10. V,,,(J) = Vwo(mwosM)

Proof. We have Vi, (M, Siy?) € Vo (7). From the previous Lemma, it follows that if ¢ € Vi, (J),
then ¢ € Vi, (Z), that is, gqu € Vio(Z) = Vo (SM) for all j € {1,...,m}. From (2.2.4), it follows
that ¢ € Vi, (M, Sil). O

Now, we have all the ingredients to prove that we must have equality in (2.2.1) for submodules

of analytic Hilbert modules which are obtained as closure of some polynomial ideal.

Proposition 2.11. Let M = [Z] be a submodule of an analytic Hilbert module over Clz] on a
bounded domain 2, where T is a polynomial ideal, each of whose algebraic component intersects
Q. Then

dim M /m,, M = dlmSwO/mwO {l}g, wo € L

Proof. Let p € T such that m o iy, (p) = 0, that is, pw, € Mw,S;. The preceding Lemma implies

D)p}wo = 0 for all ¢ € Vy,(J). Sop € Jy, (see the definition of envelope of an ideal in
the equation 1.4.1). Since each of the algebraic component of J (see section 1.4) intersects 2 ,
therefore, from Theorem 1.13, we have p € (,,cq Js = J. Thus ker(m 0iy,) = J = myZ. Then

the map 7 0 iy, : dimZ/my,,Z — dim S /m,,,S{1 is one-one and we have
dim7Z/m,,,Z < dim SM/mwOSM
Therefore, we have equality in (2.2.2). O

The following Corollary, which is an immediate consequence of Theorem 2.7 and the Propo-
sition 2.11.

Corollary 2.12. If M is a submodule of an analytic Hilbert module of finite co-dimension with
the zero set V(M) C 2, then the Gleason problem is solvable for M.

Proof. From Theorem 1.15, it follows that the submodule M corresponds to an ideal such that
M = [Z]. The proof is complete using Propositions 2.7 and 2.11. O

Remark 2.13. In fact, this Corollary is valid for all submodules of the form [Z] whenever it is

an AF- cosubmodule for some polynomial ideal 7.
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The following corollary to Proposition 2.11 proves the conjecture of [14, page - 262]. It was
first proved by Duan-Guo [17].

Corollary 2.14. Suppose M is a submodule of an analytic Hilbert module given by closure of a
polynomial ideal T and wy € V(Z) is a smooth point then,

dim ker Dng_,)+ = codimension of V(I).

Proof. From Remark 2.2, it follows that if 7 is generated by p1,...,p:, then 81% is generated by
Plwgs - - - » Pty 11 the course of the proof of the Theorem 2.3 in [17], a change of variable argument
is used to show that the stalk S{%‘ at wy is isomorphic to the ideal generated by the co-ordinate
functions z; — wou, ..., 2 — wo,, where r is the co-dimension of V(Z). Therefore, the number of
minimal generators for the stalk at a smooth point is equal to 7 which is the codimension of V(7).

The proof is complete by Propositions 2.11. ]

2.3  The rigidity theorem

Let K; be the reproducing kernel corresponding to M;, i = 1,2. We assume that the dimension
of the zero sets X; = V(M;) of the modules M;, i = 1,2, is less or equal to m —2. Recall that the
stalk Sﬁ\]/li is Oy for w € Q\ X;,i=1,2. Let X = X; U X, and assume that both M; and M,
are in B1(2\ X). From [6, Lemma 1.3] and [11, Theorem 3.7], it follows that there exists a non-
vanishing holomorphic function ¢ : Q\ X — C such that LKi(-,w) = ¢(w)Ka(-,w), L*f = ¢f
and Ki(z,w) = ¢(z)Ka(z,w)é(w). The function 1) = 1/¢ on Q\ X (induced by the inverse of L,
that is, L*) is holomorphic. Since dim X < m — 2, by Hartog’s theorem (cf. [28, Page 198]) there
is a unique extension of ¢ to  such that ¢ is non-vanishing on €2 (1) have an extension to 2 and
¢ = 1 on the open set 2\ X). Thus X; = Xo. For wy € X, the stalks are not just isomorphic

but equal:

n
8%1 = {Zhigi:gi € My, hi € Oy, 1 <i<n,neN}
i=1

= {Zhid)fi:fiEMQ,hiEOwo,lgz’gn,neN}

i=1
n
= D) _hifi: fi € Ma,hi € Oy, 1 < i <mym € N} =St

i=1
The following theorem is modeled after the well known rigidity theorem which is obtained by
taking M = M. While the spirit of the proof that follows is not very different from that of [7]
or [16], we believe, passing to the sheaf model obtained in [6], makes the proof of the rigidity
theorem somewhat more transparent. Since the dimension of the algebraic variety V(Z) for an
ideal Z C C|[z] is the same as the holomorphic dimension (cf. [29, Theorem 5.7.1]), it follows that

the hypothesis of [16, Theorem 3.6] coincides with the ones we make here.
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Theorem 2.15. Let 7, T be any two polynomial ideals and MM be two Hilbert modules of the
form [T] and [T respectively. Assume that M, M are in B1(Q2) and that the dimension of the
zero set of these modules is at most m — 2. Also, assume that every algebraic component of V(Z)
and V(I) intersects Q0. If M and M are equivalent, then T = 1.

Proof. For wy € €, we have Vy(Z) = Vyu,(Sp!) from Lemma 2.6 and 2.8, and S = Su/gl.

wo
Therefore V0 (Z) = Vi, (Z). From definition of envelope 1.4, we see that i, = fgo for all
wo € Q. The proof is now complete since T = Ny,cnZy,, (see Theorem 1.13). O

Example 2.16. For j = 1,2, let 7; C Clz1,...,2pn], m > 2, be the ideals generated by z{ and
z]fj P K Let [Z;] be the submodule in the Hardy module H*(D™). Now, from the Theorem
proved above, it follows that [Z;] is equivalent to [Zo] if and only if Z; = Zo. We will see, by
using the notion of canonical generators (Proposition 4.11), that these two ideals are same only
if k1 = ko.






3. The Curto - Salinas vector bundle

In this chapter, we give a canonical decomposition for the reproducing kernel for a Hilbert module
M in B1(Q), using [11, Theorem 2.2]. This naturally leads to the existence of a vector bundle of
rank possibly > 1. It is shown that if two Hilbert modules M and M in PB1(Q2) are equivalent,
then the corresponding holomorphic Hermitian vector bundles obtained from the decomposition
of the reproducing kernel are equivalent. Thus the curvature of these bundles, among others, is
an invariant for a Hilbert module M in 91(£2). We explicitly calculate the curvature invariant

for some submodule of the weighted Bergman module.

3.1 Existence of a canonical decomposition

Let M be a Hilbert module in B1(Q2) and wy € Q be fixed. The vectors Kg) e M, 1 <
i < d, produced in part (ii) of the decomposition Theorem 2.3 are independent in some small
neighborhood, say g of wg. However, while the choice of these vectors is not canonical, in

general, we provide below a recipe for finding the vectors Kg), 1 <14 < d, satisfying

K(w) = gd(w)KY) + - + gY(w) KW, w e Qg

following [11]. We note that m,, M is a closed submodule of M. We assume that we have equality
in (0.0.1) for the module M at the point wg € €2, that is, spanC{Kgg 11 <0 < d} = ker Dinvi—yy)+-
Let Div—w)x = VM (w)|Dv—w)+| be the polar decomposition of D(nj_q)«, where |Dng_qy)«| is
the positive square root of the operator (D(M_w)*)*D(M_w)* and Vjp(w) is the partial isometry
mapping ( ker D(M_w)*)J' isometrically onto ranDng_q)+. Let @nm(w) be the positive operator:

-1

QM(w)’kerD(M,w)* =0 and Cgl\/l(u))‘(kerDuv[,w)*)L = (‘D(M_w)*’ (kerD(M,w)*)l)

Let Rpv(w) : M@ -+ @& M — M be the operator Ry(w) = Qnm(w)Va(w)*. The two equations,
involving the operator Dj_)+, stated below are analogous to the semi-Fredholmness property

of a single operator (cf. [8, Proposition 1.11]):
RM(w)D(M—U})* = I - Pker D(M7w>* (311)
D(M*U})*RM ('LU) = Pran D(M,w)*v (312)

where Py, DM ) PranD(M_w)* are orthogonal projection onto ker D(M_w)* and ranD(M_w)* re-

spectively. Consider the operator

P(w,wo) = I — {I — Bai(wo)Dis—ap }~ Bt (wo) Din—wye» w € B(wos || R(wo) |7,
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where B(wo; || R(wp) || ™") is the ball of radius || R(wp) ||~ around wp. Using the equations (3.1.1)

and (3.1.2) given above, we write
P(w,wo) = {I = Rvi(wo) Dy } " Prer Ding g+ (3.1.3)

where Dyg_g, f = ((01 —wo1) f1, .-, (Wm — Wom) fm). The details can be found in [11, page - 452].
From the definition of P(w,wy), it follows that P(w, W) Pker Diat—uy+ = Fker Dipj_yy«- This implies

ker D(nj_y)+ C ranP(w,wo) for w € A(wo;e). Consequently K (-, w) € ranP(w, wy) and therefore

for some complex valued functions aq, ..., aq on A(wp;e). We will show that the functions a;, 1 <

1 < d, are holomorphic and their germs form a minimal set of generators for S{l}g. Now
RM(IU())D@_»LDOK(', w) e RM(wO)D(M—wO)* K(, w) = (I - Pker D(M—wo)* )K(, w)

Hence we have,
{1 = Rnvi(wo) Dap—ao FE (-, w) = Prer Doy )= K (5 W)

Since K (-, w) € ranP(w, wy), we also have
P(w,w0) " K (- w) = Prer Dipg_ gy K (- 0)-

Let v1,...,vq be the orthonormal basis for ker D)« Let g1,...,gq denotes the minimal set
of generators for the stalk at SM. Then there exist a neighborhood U, small enough such that
v; = Zz 19if], 1 < j <d, and for some holomorphic functions f] 1<i,57 <d,onU. We then

have
d
P(wuwo)ilK(')w) = PkerD(M “’0)* : Z
=1
d d ' ’ -
j—l i=1 i=1 j=1

= Zgz {ij w)vj}.
So K (z,w) = Sy gi(w){320_y f (w)P(@, @o)v; (=)} Let

d
=" f(w)P(w, wo)v;.
j=1

i)

Since the vectors Kl(vo, 1 < i < d are uniquely determined as long as g1, ..., gq are fixed and
P(wg, wy) = Pyer D(ni gy > 16 follows that Kl(fg = f(fjg = Z?:l fij(wo)vj, 1 < ¢ < d. Therefore, the
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d x d matrix (ff (wo))gjzl has a non-zero determinant. As Det (fij(w))gjzl is an anti-holomorphic

function, there exist a neighborhood of wy, say A(wg;e),e > 0, such that Det (fij(w))gj:1 #0

for all w € A(wo; ). The set of vectors {P(w, wo)v;}j_; is linearly independent since P(w, wo) is

injective on ker Dng_qy)+- Let (aw)zg L= {(fzj (wo))gjzl}_l, in consequence, v; = sz:1 aﬂKgg.

We then have

K(,w) = Zgl {ZfJ ZaﬂK(l
= Z{Z gi(w) f] (w)ai} P(w, o) K ()

=1 i,5=1

Since the matrices (f; I (w )) _, and (oz”)d _, are invertible, the functions

d

az) =Y gl f (Rag, 1<1<4,

ij=1

form a minimal set of generators for the stalk SM and hence we have the canonical decomposition,

3.2 Construction of higher rank bundle and equivalence

Let Py = ranP(w, @o) Prer Dypg_ )+ 10T w € Bluwo; || Baa(wo) || 71). Since P(w, wp) restricted to
the ker D(nj_yy)- is one-one, dim P, is constant for w € B(wo; || Rnm(wo) |~1). Thus to prove the
following lemma, we will show that P, = ker PoD(nj_q), where Pg is the orthogonal projection

onto ranD g )+

Lemma 3.1. The dimension of ker PoD )~ is constant in a suitably small neighborhood of

wo € Q, say Q.

Proof. From [11, pp. 453], it follows that PoD(nj_y)«P(w,wo) = 0. So, Py C ker Po D)+
Using (3.1.1) and (3.1.2), we can write

PoDv—-w)y = DM-wo) Bm(wo){ D M—-wo)* = Diw—ap)}
= D(M—wo)*{I - Pker D(M—wo)* - RM(wO)D(’lD—’IIIo)}
= DM—wo)* 11 — Rv(w0) D(—0)}-

Since {I — Ry (wo)D(p—ay)} is invertible for w € B(wo; || Ry (wo) |71), we have
dim P,, = dim ker D(Mfwg)* > dimkerPDD(M,w)*.

This completes the proof. ]
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From the construction of the operator P(w,wy), it follows that, the association w — Py,
forms a Hermitian holomorphic vector bundle of rank m over Qf = {Z : z € Qp} where Qy =

B(wo; || Rav(wo) ||71). Let P denote this Hermitian holomorphic vector bundle.

Theorem 3.2. If any two Hilbert modules M and M belonging to the class B1(2) are isomorphic
via an unitary module map, then the corresponding vector bundles Py and 750 on ) are equivalent

as holomorphic Hermitian vector bundles.

Proof. Since M and M are equivalent Hilbert modules, there exist a unitary U : M — M
intertwining the adjoint of the module multiplication, that is, UM;* = M U, 1<j < m. Here
M denotes the multiplication by co-ordinate function z;,1 < j < m on M. Tt is enough to show
that UP(w, wo) = P(w, W)U for w € B(wo; || Rav(wo) || 7).

Let | Dm+ [= {3071, Mij*}%, that is, the positive square root of (D« )*Dn+. We have

S =0 (VY = 0| Dy [0

= U* ‘ D"’* (M w )
P MoM---@®M(m times) — M be the orthogonal projection on the i-th component. In
this notation, we have PjDn+ = M;*,1 < j < m. Then,

Clearly, | Dm~

U. Similar calculation gives | Dn—wy)- |[= U™ | D57

PJD v = UP'D(M—wO)*U* = UPJVM(QUQ)U*U | D(M—wo)* | U~

(Mfwo)*
= UPVar(wo)U" | Dz |-

But ISjD(Mwa)* = ﬁjVM(wo) | D(Mwa)* |. The uniqueness of the polar decomposition implies
that P;V5;(wo) = UPjVam(wo)U™, 1 < j < m. It follows that Qyz(wo) = UQm(wo)U™.

Note that P;* : M — M @ ---® M is given by P;*h = (0,...,h,...,0),he M, 1 <j<m.
So we have Vﬁ(wo)*ﬁ; = UVai(wo)*Pi*U*, 1 < j <m. Let Dg: M — M@ --- ® M be the
operator: Dgf = (wif,...,0nf), f € M. Clearly, Dy = UDgU*, that is, U*P Dy = P;DgU*,
1 <7 < m. Finally,

Rﬁ(wo)ﬁw_wo
= Qg;(wo)Viz(wo) Doz, = Qz(wo)Vag(wo)* (PtDip—igs - - - PuDi—y)

= Qm(wo)vm(wo)*(z PrPiDy_a,)
j:l

= Qpz(wo)UVa(wo) ZP U*PjDg ;)
j—].

= UQM(wo)VM(wO)*(ZPj*Pij,wOU*) = UQwm(wo)Vam(wo)* Dg—_a,U*
j=1
= URm(wo)Dg—a,U*.
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Hence {Rg;(wo)Dg—}* = U{Bnm(wo)Dg—a, }*U* for all k € N. From (3.1.3), P(w,@o) =

S22 o{ B (wo) Dip—ag }* Prer Dini— g+ - Also as U maps ker Dy« onto ker D . for each w,

(M—w)
we have in particular, U P, D) = Pier D5+ U. Therefore,
—1[}0
U P (w, w)
(o) (o) .
= Z U{RM(UJO)Dw—wO}kPkerD(M_wO)* = Z{RI\N/I (wo)Dw—wo}kUPker D(M—wp)*
k=0 k=0
e o~ ~
= D {Ry(wo) Do} Prerpyy_, .U = P, w0)U,
k=0
for w € B(wo; || Ry (wo) || 7). O
Remark 3.3. For any commuting m-tuple Dy = (17, ..., T,,) of operator on H, the construction

given above, of the Hermitian holomorphic vector bundle, provides a unitary invariant, assum-
ing only that ranDyt_,, is closed for w in  C C™. Consequently, the class of this Hermitian

holomorphic vector bundle is an invariant for any semi-Fredholm Hilbert module over C|[z].

3.3 Examples

Let M and M be two Hilbert modules in B1(£2) and Z, .J be two ideals in C[z]. Let Mz = [I] C
M (resp. My = [J] C .X/IV) denote the closure of 7 in M (resp. closure of J in Mv) Also we let
dimV(Z),dim V(J) < m — 2. The rigidity Theorem of section 2.3, says that if Mz and M are
equivalent, then 7 = J. We ask if Z = J, whether M7 is equivalent to MVI. Also if we assume
that M and Mv are minimal extensions of the two modules M7 and MVI respectively and that
M7 is equivalent to MVI, then does it follow that the extensions M and M are equivalent? The
answers for a class of examples is given below.

For \, i1 > 0, let HO#) (D?) be the reproducing kernel Hilbert space on the bi-disc determined
by the positive definite kernel

1
(1 — 2111)1)/\(1 — Zgwg)“

K()"“)(z,w) = . z,w e D2

As is well-known, H*#)(D?) is in By(D?). Let I be the maximal ideal in C[z, 2o of polynomials
vanishing at (0,0). Let H(g)"“ )(D2) := [I]. For any other pair of positive numbers X, 1/, we let
Héx’“ /)(]D)Z) denote the closure of I in the reproducing kernel Hilbert space H®™#)(D?). Let
KX#) denote the corresponding reproducing kernel. The modules HM#)(D?) and HX'#)(D?)
are in B1(D? \ {(0,0)}) but not in B;(D?). So, there is no easy computation to determine when
they are equivalent. We compute the curvature, at (0,0), of the holomorphic Hermitian bundle
P and P of rank 2 corresponding to the modules H(g’\’“ ) (D?) and Héx’“ /)(]D)Z) respectively. The
calculation of the curvature show that if these modules are equivalent then A = X and p = p/,
that is, the extensions HM#) (D?2) and HX#)(D?) are then equal.
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Since Hé’\’”)(Dz) = {f € HOM(D?) : £(0,0) = 0}, the corresponding reproducing kernel
Ké)"“ ) i given by the formula

1

-1 e D%
(1 — lef)l)’\(l — ZQ’LTJQ)“ » %W

K§ (2, w) =

The set {z]"z% : m,n > 0,(m,n) # (0,0)} forms an orthogonal basis for H(()/\’”)(D2). Also

(k25 Mfz?"”+1> = (z leQ,z{”H) =0, unless I = m,k =0 and m > 0. In consequence,

1 )™ (L)
(21", M2y = (20 201 = —~ = (1 )
(_1)m+1(m+1) ( 1)m+1( +)
Then
1
(ahah, Mzt — ST — 0 for all Lk > 0,(1K) # (0,0),

where (:n)‘) = (—l)mw Now, (2425, Miz) = (217125 21) =0, 1,k > 0 and (I, k) #
(0,0). Therefore, we have

mtl om oy S

M* m+1 Am “1
0 m=
Similarly,
n+1
2 n>0
M; ZglJrl A+n
0 n = 0.

We easily verify that (2t 25 M2t = (2LA+ 2mHly — 00 Hence M2t = 0 = Mjz0+ for

m,n > 0. Finally, calculations similar to the one given above, show that

m+1 n+1 M m+1 n+1 n+1 m—+1

* m+1 n+1
My 2" 2 )\—l—mzl 2o and Moz 2 _,u—i—nzl zy,m.n >0
Therefore we have
m+1 +1 _m+1 .
27— /’\ﬁ—mzl , for m > 0;
n+1 n+1 n+1 .
(MM} + M) : {2 * a2 for n > 0;
1441 24¥2) - m41_ntl (mtl 4 ntl) mAlntl g >0
2y (S T a)? 2o, for m,n > 0;

21,29 — 0.

Also, since Dyi=f = (M7 f, M3 f), we have

m+1 m+1 _m :

2] »—>()\+mzl ,0), for m > 0;

n+1 n+l n :

Das 2z — (0, sz) for n > 0;
m—+1_n+1 m+1 n+l n41 _m+1 .
“1 2 ()\erz 2y p,JrnZl ZS) for m,n > Oa

z1, 22 — (0,0).
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It is easy to calculate Vpr(0) and Qnm(0) and show that

m+1 m+1 .
2 = e (2T, 0), for m > 0;
Var(0) zg“ — ZJ%}L(O, 25, for n > 0;
M) m+1_n+1 1 m+1 n+l ntl _m+l_n )
A == A %), form,n >0;
\/)\+m+u+n
21, %22 (O’ 0)7
while )
m+1 1 m+1 .
2 == for m > 0;
A+m
P iﬂ P for n > 0;
Qm(0) : Vit
m—+1_n+1 1 m+1_n+1 .
z 2y P == % for m,n > 0;
)\+m+,u+n
21,29 /—— 0.
Now for w € A(0,¢),
[o.¢]
_ -1 } :
P(w70) = (I - RM(O)DE)) PkerDM* = (RM(O)DE)nPkerDM*a
n=0

where Ry (0) = Qnm(0)Va(0)*. The vectors z; and z9 forms a basis for ker Dy» and therefore
define a holomorphic frame: (P(w,0)z, P(w,0)22). Recall that P(w,0)z1 = Y2 ((Rm(0)Dg)™21
and P(w,0)z = > 7 ((Rm(0)Dyg)"22. To describe these explicitly, we calculate (Rnv(0)Dgp)z1
and (Rm(0)Dyg)za:

(RM(O)D@)Zl = RM(O) (1@1, 21, ’lI)QZQ)
= wlRM(O)(zl, 0) + U_JQRM(O)(O, 2’2)
= w1Qm(0)VMm(0)*(21,0) + w2Qm(0) Vi (0)*(0, 22).

We see that
W0 (z,00 = > (Va(0)*(21,0), )
1,k>0, (1,k)#(0,0) H 2142 ” H ZIZQ H
Therefore,

(V1 (0)*(21,0), 21 25) = (21, 0), Vaa(0)(2125)), L.k = 0, (1, k) # (0,0).

From the explicit form of Va1(0), it is clear that the inner product given above is 0 unless | =
2, k=0. Forl =2, k=0, we have

2 2 1

I S 2_ -

(21,00, Vaa(0)z) = [ 577 = | ¢A+1X
1AA+1 2 A1,

V =
(21,0 V:+1AH%|2 A+1 “ 2 !

Hence
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Again, to calculate Vag(0)*(0, 21), we note that (Var(0)*(0, 21), 24 25) is 0 unless I = 1, m = 1. For
=1, m=1, we have
(VMm(0)7(0,21), 2122) = ((0, 21), Vm(0)z122)

- <4444l4447(};z2’JLZI)’(0721)>

1,1 A
VxTu s
1 1 1 1
YT VxTu
Thus
" " 212 1
Var(0)*(0, 21) = (Var(0)*(0, 21), 21 20) o = 21 29.
| 2122 | 1,1
AT
Since
A+1
1
QM(O)Zl«ZQ = ﬁzlz%
VX Tu
+1
Qm(0) = (/F5=4,
it follows that N \
_ A+l A
Dgz1 = _— .
Rn(0)Dgzy = 5 A wg)\ n lezz
Similarly, we obtain the formula
A +1
Rnm(0)Dgze = wl)\ fﬂzlzg + wgu 5 z%
We claim that
(Rm(0)Dg)™ 2, (RM(0)Dg)"25) = 0 for all m #n and i,j =1, 2. (3.3.1)
This makes the calculation of
h(w,w) = ((<P(U_)70)2’iyp(w,0)2j>))1§i7js27 we U c D?

which is the Hermitian metric for the vector bundle P, on some small open set U C D? around

(0,0), corresponding to the module H(())"“) (D?), somewhat easier.

We will prove the claim by showing that (R (0)Dg)"2; consists of terms of degree n+ 1. For
this, it is enough to calculate Vi (0)*(2425,0) and Vag(0)*(0, 24 25) for different I, & > 0 such that
(I,k) # (0,0). Calculations similar to that of V(0)* show that

Vm(0)*(21",0) = Vinria VA (0)%(0, 25) = \/ mzzﬂ and,

1
Var(0)* (2251, 0) = Var(0)*(0, 2{" "1 25) = ——=z"""23 .
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Recall that (Rm(0)Dyg)z; is of degree 2. From the equations given above, inductively, we see that
(RM(0)Dg)"2 is of degree m 4 1. Since monomials are orthogonal in H*#)(D?), the proof of
claim (3.3.1) is complete. We then have

A+1

A (0@
P(w,0)z = 21 + w0y 5 zf + ’Lﬁgﬁzlzg + ,;Z(RM(O)DU))”Zl and

P(Ui, 0)22 = 29 + W1

1 o
2129 + wz'u 5 25+ Z(RM(O)DHJ)”Z?-

A+

Putting all of this together, we see that

A0
h(w,w) = (0 M) +ZaIJwIU_)J7

where the sum is over all multi-indices I, J satisfying |I],]J] > 0 and w! = ww?, @’ = @] w}’.
The metric h is (almost) normalized at (0,0), that is, h(w,0) = (0 i ) The metric hg obtained by

conjugating the metric h by the invertible (constant) linear transformation (\9 \%) induces an

equivalence of holomorphic Hermitian bundles. The vector bundle P equipped with the Hermitian
metric hy has the additional property that the metric is normalized: ho(w,0) = I. The coefficient
of dw; A dwj, i,j = 1,2, in the curvature of the holomorphic Hermitian bundle P at (0,0) is then
the Taylor coefficient of w; w; in the expansion of hy around (0,0) (cf. [30, Lemma 2.3]).

Thus the normalized metric ho(w, w), which is real analytic, is of the form

o ) MP(w,0)z1, P(w,0)z1) v/ Au(P(w,0)z1, P(w,0)z2)
w,w) =
" ﬁu<P<w,0>z2,P<w 0)21)  p(P(w,0)29, P(,0)z)
A+1 1 by 2 _
_ I+ + ’w1’2>\ >\2+u)2 ’U)Q‘Q \/T(Afﬂ) wlfUQ +O(|w|3),
\/1\7()\-5#) Wwawy ()\+u 2|w [ + Fgwa]?

where O(|w|?); ; is of degree > 3. Explicitly, it is of the form

[e.e]

> ((Bn(0)Dy)"2i, (Raa(0) Dip) " 25).

n=2
The curvature at (0, 0), as pointed out earlier, is given by 09hg(0,0). Consequently, if Hé)"“ ) (D?)
and Héx’“ /)(]D)z) are equivalent, then the corresponding holomorphic Hermitian vector bundles
P and P of rank 2 must be equivalent. Hence their curvatures, in particular, at (0,0), must be

unitarily equivalent. The curvature for P at (0,0) is given by the 2 x 2 matrices

A+l 1 Ap 2 A2
(2 N ><0 \/E(A-&-uu)>’< 1 0 20>’<(>\+ﬁ)2 31>
0 ohe 0 0 7 () 0 0 5
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The curvature for P has a similar form with A’ and i in place of A and p respectively. All of them
are to be simultaneously equivalent by some unitary map. The only unitary that intertwines the

2 X 2 matrices

L ()2 1 (N2
0 \/m()\—&-u) and 0 W(A’+u’)
0 0 0 0
is al with |a| = 1. Since this fixes the unitary intertwiner, we see that the 2 x 2 matrices

Atl 0 AN+l 0
( (2) /\/1'2 ) and < 2 )\/#/2 )
Ot 0 oy

2 1,0
must be equal. Hence we have % = %, that is A = \. Consequently, ( A A gives

) i M) T V)2
(AiM)Q = (}\iﬂ,)Q and then (u — p/){N2(n + i) + 2 up'} = 0. We then have pu = p’. Therefore,

Hé’\’“ ) (D?) and Héx’“ /)(]D)Z) are equivalent if and only if A = X and p = p/.




4. Description of the joint kernel

To compute the curvature invariant for Hilbert modules in 2B;(€2), the explicit description of a
basis for the joint kernel is essential. In fact, it will be desirable to obtain such description in
terms of derivatives of the reproducing kernel. Let us go back to the example of Hg(DQ). Let Ky
be the reproducing kernel for HZ(D?). For H in B:(Q), pick any g € H and p € C[z]. Then

(9, MyOiK (-, w)) = (pg,0iK(-,w)) = di(pg)(w) = dip(w)g(w) + p(w)d;g(w)
= Oip(w){g, K(-,w)) + p(w){g, ;K (-, w))
K(,w

= (g,0p(w)K (-, w) + p(w)0; )

which implies that

M;@K(-,w) = Oip(w)K(-,w) + p(w) K (-,w), 1 <i < m,

So we have M;éiKo(',w)lo = p(0)0; Ko(-,w)|o. In particular M;@Ko(-,w)\o =0,1<¢j<2 In
other words, 9; Ko(-,w)|o is in ker Dpg+, 4 = 1,2. Next we check that these vectors are independent.
Since

(f, 0101 Ko (-, w) + asdi Ko (-, w)) = @i f(w) + axdef (w), f € H§(D?),
assuming CL151K[)(',U))|0 + a251K0(-,w)|0 = 0 will force @181f(0) + ElQBQf(O) = 0. Choosing

f(2) = z1, we conclude that a; = 0. Similarly by choosing f(z) = 23, aa = 0. Hence we have
proved that 91 Ko (-, w)|o, 02Ko (-, w)|o are independent. Let 7y, € ﬂ?zl ker M C HZ(D?), and let

yw(z) = Y amzh, z=(21,2) € D,
(k,1)#(0,0)
Now Mjzkzh = 21712 and Mgzfzh = 28207! for k,1 > 1, which shows that 2§24 can not be
in ker Dyp« for k.1 > 1. So vy,(2) = a1pz1 + aprze. We note that 01 Ky(z,w)|lo = 21, and
Do Ko(z,w)|o = 2o (In fact, {5f5§K0(-,w)|0}k71207(k,l#(070) generates HZ(D?).) Thus we have
Yw(2) = a1001 Ko(2, w)|w=0 + 0102 Ko(2,w)|w—o and hence {0y Ko(-,w), 91 Ko(-,w)} is a basis of
ker Dpp=. Only the last argument is specific to the module HZ(D?). In general, using Lemma 5.11
in [15], or using Theorem 2.3 along with Remark 2.2, we arrive at the same conclusion. Thus we

have the following lemma.

Lemma 4.1. Let M be an analytic Hilbert module over Q C C™, and M,, be a submodule of M
of the form [I], where

m
T=(2"=2z".zpm:0; € NU{O}, |a| = Zai =n).
=1
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Let K, be the reproducing kernel corresponding to M,,. We have
(1) My, ={feM:0°f(0) =0, for ; e NU{0},|a] <n—1}

span{K,(-,w)}, for w #£0;

2) ker D —w)r = =
) (Mt =) { Span{aaKn('aw)|w:O ra; € NU {0}7 laf = n}’ for w=0.

The Lemma given above, describes the joint kernel for a particular class of submodules of
analytic Hilbert module. However it is not clear that such explicit calculation are possible for
modules which are closures of arbitrary polynomial ideal. In this chapter, we have addressed this
issue at length.

Construction of the Fock inner product. The Fock inner product of a pair of polynomials p and ¢
is defined by the rule:

(p:a)o = a* (5% s 5= plo, 4" (2) = a(2)
The map (, )o : C[z] x C[z] — C is linear in first variable and conjugate linear in the second

and for p =3 an2®, q¢=>_,baz" in C[z], we have
<pa Q>0 = Z a!aa(;a

since 2%(D)z"|,—¢0 = a! if @ = 3 and 0 otherwise. Also, (p,p)o = >, @!|aq|? > 0 and equals 0
only when a, = 0 for all . The completion of the polynomial ring with this inner product is the
well known Fock space L2(C™,dpu), that is, the space of all u-square integrable entire functions
on C™, where

du(z) = w_me_lz|2d1/(z)
is the Gaussian measure on C™ (dv is the usual Lebesgue measure).

The characteristic space (see section 1.4) of an ideal Z in C[z] at the point w is the vector

space
Vu(Z) = {q€Clz]: q(D)plw =0,p €I} = {g€Clz]: (p,q")w=0,p €L}
The envelope of the ideal 7 at the point w is defined to be the ideal

Iy, = {p€Clz:q(D)plw=0,q€ Vy(I)}
= {peClz]: (p,q")w=0,q€ Vyu()}.

It is known [7, Theorem 2.1.1, page 13| that Z = N,y (7)Z;,- The proof makes essential use of the
well known Krull’s intersection theorem. In particular, if V/(Z) = {w}, then Z¢, = 7. It is easy to
verify this special case using the Fock inner product. We provide the details below after setting
w = 0, without loss of generality.

Let my be the maximal ideal in C[z] at 0. By Hilbert’s Nullstellensatz, there exists a positive
integer N such that m)’ C Z. We identify C[z]/m}’ with spanc{z® : |a| < N} which is the same
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as (m)’)* in the Fock inner product. Let Zy be the vector space ZNspang{z® : |a| < N}. Clearly

7 is the vector space (orthogonal) direct sum Zy @ m}’. Let
~ L
V={qeClz]:deg ¢ < N and (p,q>0:0,p€IN}:(méV) OZIn.

Evidently, Vo(Z) = \N/*, where V* = {geV:q" € TN/} It is therefore clear that the definition of
V is independent of N, that is, if m™ € Z for some N, then (méVI)J- OIn, = (mY)t ©Zy. Thus

I§ = {peClz]:degp< N and (p,q*)o =0, ¢ € Vo(Z)} & m{)
= (mHtev)em)

= In®m

showing that Z§ = 7.

Let M be a submodule of an analytic Hilbert module H on 2 such that M = [Z], closure of
the ideal Z in H. It is known that V((Z) = Vo(M) (cf. [6, 16]). Since

MCMG:={feH:q(D)flo=0 for all ¢ € Vo(M)},
it follows that
dimH /Mg < dimH/M = dimC[z]/Z < dimC[z]/mY

N_l(k—l—m—l)
Z < +00.
m—1

k=0

IN

Therefore, from [16, Corollary 2.8], we have M§ N C[z] = Z§ and M N C[z] = Z, and hence

0 =Ll = [Z] = M. (4.0.1)

4.1 Modules of the form [Z]

Assumption: We assume that the Hilbert module M is (i) the completion with respect to some
inner product of the ideal Z C C[z] and that (i7) it is in the class B;(Q).

For notational convenience, in the following discussion, we let K be the reproducing kernel of
M = [Z], instead of K] (z]- To describe the joint kernel ker D(pj_vw)« using the characteristic space

Vw(Z), it will be useful to recall the auxiliary space

Vo(Z) = {geC[z: gj € Vyu(Z), 1 <i<m).

From [6, Lemma 3.4], it follows that V(m,Z) \ V/(Z) = {w} and V,(m,Z) = V,(Z). Therefore,

dimker Divi—w) = dimM/myM = dimZ/m,T (4.1.1)
= > dim Vy(my,Z)/Va(Z)
AV (my D\V/(Z)

= dimV,(Z)/Vu(Z).
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For the second and the third equalities, see [7, Theorem 2.2.5 and 2.1.7]. Since V,(Z) is a
subspace of the inner product space C[z], we will often identify the quotient space Vo, (Z)/V,(Z)
with the subspace of Vy,(Z) which is the orthogonal complement of Vo,(Z) in Vo, (Z). Equation
(4.1.1) motivates following lemma describing the basis of the joint kernel of the adjoint of the

multiplication operator at a point in 2. This answers the question (1) of the introduction.

Lemma 4.2. Fiz wg € Q and polynomials q1,...,q. Let T be a polynomial ideal and K be the
reproducing kernel corresponding the Hilbert module [I], which is assumed to be in B1(Q2). Then

the vectors
q1 (D)K(7 w)’w:wm SRR Qt(D)K(‘v w)|w:w0
form a basis of the joint kernel at wo of the adjoint of the multiplication operator if and only if

the classes [q%], ..., [q}] form a basis of Vi, (T)/ Vi, (T).

Proof. Without loss of generality we assume 0 € 2 and wg = 0.
Claim 1: For any ¢ € C[z], the vector ¢(D)K (-, w)|w=0 # 0 if and only if ¢* & Vo(Z).
Using the reproducing property f(w) = (f, K(-,w)) of the kernel function K, it is easy to see
(cf. [11]) that
0%f(w) = (f,0°K(-,w)), a €ZL, we, feM.

Thus

_ _ 5§ z
O f@)homo = (£, 0K (0]} umo = <f,8"{2(”;(!’mwﬁ}>lw:o

0" K(z,0 P K O
- f,{Z;)a Yo = (34, TEEO pay
Bza B>a

= (f,0"K (-, w)|w=0)-

So for f € M and a polynomial ¢ = )" ayz®, we have
(DK Cwmc) = (02 000K (om0 = 3 aalf 0K w0 (112
Zaa £, K () o = 0* (D) flu—o-

This proves the claim.

Claim 2: For any q € C[z], the vector ¢(D)K (-, w)|y=o is in ML, ker M7 if and only if ¢* €
Vo(Z).
For any f € M, we have
(f, Mjq(D)K (-, w)lw=0) = (M;f,q(D)K(-,w)|w=0) = ¢"(D)(2;f)lw=0
oq* oq*
= 12" (DI + 5 (D) Humo = 5 (D)l




4. Description of the joint kernel 55

verifying the claim.
As a consequence of claims 1 and 2, we see that ¢(D)K (-, w)|w—o is a non-zero vector in the

joint kernel if and only if the class [¢*] in Vo(Z)/Vo(Z) is non-zero.

Pick polynomials ¢, ..., q. From the equation (4.1.1) and claim 2, it is enough to show that
@1 (D)K (-, ) |w=0, - - -, gt(D) K (-, w)|w=0 are linearly independent if and only if [¢],...,[q] are
linearly independent in Vo(Z)/Vo(Z). But from claim 1 and equation (4.1.2), it follows that

> @D, w)hv=o = 0
=1

if and only if 3>¢_; a;[g}] = 0 in Vo(Z)/Vo(Z) for a; € C, 1 < i < t. This completes the proof. [J

Remark 4.3. The ‘if’ part of the theorem can also be obtained from the decomposition theorem
2.3. For module M in the class B1(Q), let S™ be the subsheaf of the sheaf of holomorphic
functions Oq whose stalk SM at w € Q is

{(fl)wow+"'+ (fn)wow : fla-"yfn € M}a
and the characteristic space at w € €2 is the vector space
Vu(S2') = {g€Cl]: q(D)f], =0, fu €Sy}

Since
dim S /meS = dim ker Dy = dim Vo(Z) /Vo(Z) = ¢,

there exists a minimal set of generators g1, --- , g; of S¢! and a r > 0 such that

Zg] w) for all w € A(0;7)

for some choice of anti-holomorphic functions KM, ..., K® : A(0;r) — M. Now for each

w € A(0;r) and 7, 1 < j <t, we can write

. 1 9°KW (-, w) o
K(])(’w) e Z aiau—]a ‘w:Ow .

Therefore for w € A(0;7),

bt o ) (. w
Kew = Sa(E 5 g o)

_ Yy TR g,

=1 «

and thus

t o f () _
dD)K(w) =330 LIEECW) Dy @),

ow™
J=1
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for any ¢ € C[z]. We can interchange the sum as the convergence is uniform and absolute on

Qm

compact subsets of A(0;7). Now for z* = z{" -+ 2%

o «Q a—k8|k|q
a(D)0) = 3 ()= S L D)w) (413
k<a

where (}) =[], (Z‘z) for the multi indices o = (aq,...,am),k = (k1,..., k). The order k < «
if and only if k; < o4 for all 4,1 < ¢ < m. This shows that at z = 0, the only term that
survives is when k; = «; for all 4, 1 < i < m, that is, ¢(D)(2%¢g)|o = %(D)(g). We note that
Vo(moSgt) = Vo(Z) (Lemma 2.10). Therefore for ¢f € Vo(Z), g; € S¢*, 1 <4,7 <t and |a| > 0,
we have ¢;(D)(2%g)|o = 0, since for |a| > 0, 2% € Vo(Z) = Vo(SgM). Thus for 1 < 4,5 < t,

) Oz

gi(D)K (-, w)lw=0 = Y _{KD(-;w)uw=0}{a:(D)g; (w) w=0}.
j=1

From part (i) of Theorem 2.3, we note that {K (j)(-,w)]w:()};:l is a linearly independent set of

vectors. Also ¢;(D) gj(w)\wzo = m Therefore to prove the set of vectors
{qi(D)K('¢w)”w=w0 1< < t}

is linearly independent, it is enough to prove that the matrix A = (a;;)! j—1 is non-singular, where
aij = ¢ (D)gjlo, 1 <i,j <t. Now the matrix above is singular if and only if there exists scalars

a;, 1 <1 <t not all zero, such that 25:1 aia;j = 0 for all j,1 < j < t. This shows that
t
(Z a;q;)(D)gjlo =0 for all j, 1 <j <t
i=1

Since ¢ € QO(I) and g1,...,g; are generators for S§, it follows that Zle aiqf € Vo(SM) =
Vo(Z). Thus [32F_, augi] = S3F_ aulgf] = 0. Since the classes [g}],...,[g;] form a basis of the
quotient space Vo(Z)/Vo(Z), it follows that a; = 0 for all i, 1 < ¢ < ¢. This shows that the

matrix A is invertible. Therefore the vectors q1(D)K (-, w)|w=0, - - -, @ (D) K (-, w)|y=o are linearly
independent. The proof is then complete by equation (4.1.1).

Remark 4.4. We give details of the case where the ideal 7 is singly generated, namely 7 =< p >.

From [14], it follows that the reproducing kernel K admits a global factorization, that is, K (z,w) =

p(2)x (2, w)p(w) for z,w € Q where x(w,w) # 0 for all w € Q. So we get K1(-,w) = p(-)x(-, w)

for all w € 2. We use Lemma 4.2 to write down this section in term of reproducing kernel. Let

0 € V(Z). Let qo be the lowest degree term in p. We claim that [¢j] gives a non-trivial class in

Vo(Z)/Vo(T). All partial derivatives of ¢& have degree less than that of . Hence from (4.1.3)
a\allqaf

4 (D)(z"9)lo = =+ (D)(P)], = 0, @, [a| > 0.
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Consequently, € Vo(Z) for all i, 1 < i < m, that is, ¢ € iV/o(I). Also as the lowest degree of
p—qo is strlctly greater than that of g,

a5(D)plo = q3(D)(p — g0 + 90)lo = 45 (D)qolo =/ qo [|5> 0

This shows that ¢ ¢ Vo(Z) and hence its class in Vo(Z)/Vo(Z) is nontrivial. Therefore, from the

proof of Lemma 4.2, we have

qo(D)K (-, w)|w=0 = K1(-, w)lw=0g0(D)p(w)|o =l g5 11§ K1(-,w)|w=0-

Let g, denotes the term of lowest degree in the expression of p around wg. Then we can write

K('aw)|w=wo .
— et ifwy ¢ V(Z)N N
Kl(-, w)|w:wo = qwof(Dl;[}g(.7w)|w:wO » V(T Q0 (414)
FER ifwo € V(Z) N Q2.

For a fixed set of polynomials ¢y, ..., ¢, the next lemma provides a sufficient condition for the
classes [¢]], ..., [gf] to be linearly independent in @'wo (Z)/Vu,(Z). The methods of two proof we
give below will be used repeatedly in the sequel.

Lemma 4.5. Let q1,...,q are linearly independent polynomials in the polynomial ideal T such

that qi,...,q¢; € @wo (Z). Then [qi],...,[q] are linearly independent in X~7w0 (Z)/Vu, ().

First Proof. Suppose ' ailg] = 0 in Vo (Z)/ Vi (T) for some oy € C,1 < i < t. Thus
St aigf = g for some g € V,, (Z). Taking the inner product of 3"i_; a;qf with g; for a fixed j,

we get

Zaz QJv(Iz wo Zazqz QJ|wo = Q( )Qj’wo =0.

The Grammian (((qj, qi)wo ))t .. of the linearly independent polynomials ¢, . .., ¢; is non-singular.

2,7=1
Thus o; =0, 1 <1 < t, completing the proof.
Second Proof. If [¢7],...,[qf] are not linearly independent, then we may assume without loss
of generality that [¢f] = Y.'_, aig}] for ay,...,aq € C. Therefore [¢f — > '_, a;p}] = 0 in the

quotient space @wo (T)/ Vo (), that is, ¢f — >>'_, ciq? € Vi (Z). So, we have
Za,ql D)q|y, =0 for all ¢ € 7.

Taking ¢ = q1 — ZE:Q a;q; we have || ¢ — 22:2 ;G ||,3)0: 0. Hence ¢1 = 22:2 @;q; which is a

contradiction. O

In the rest of this chapter, we continue our discussions assuming wg = 0, however the results,
properly translated, remain valid in general. Suppose {pi,...,p:} is a minimal set of genera-

tors for Z. Let M be the completion of 7 with respect to some inner product induced by a
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positive definite kernel. We recall from [15] that rankc;;M = t. Let wp be a fixed but ar-

bitrary point in . We ask if there exist a choice of generators qi, ..., q: such that the vectors

q1(D)K (-, w)lo, - - -, q(D)K (-, w)o form a basis for N7, ker M. We isolate some instances where
the answer is affirmative. However, this is not always possible (see remark 4.16). From [15,

Lemma 5.11, Page-89], we have
dim N7 ker Mj* = dimM /moM = dimM ®¢[,) Co < ranke, M.dimCq < ¢,

where my denotes the maximal ideal of C[z] at 0. So, dim N7y ker M¥ < t. If the germs pio, . . ., pro
is a minimal set of generators of the stalk S, then we would have dim pFis) ker M j’f = t. However,

the set of generators pig,...,pw need not be minimal in general.

For example, let Z be the ideal generated by the polynomials z1(1 + 21), 21(1 — 22), 23, which
form a minimal set of generators for the ideal Z. Hence they also form a minimal set of generators
of M, but not of S§!. Since {z1,22} is a minimal set of generators for S, it follows that
{21(1 + 21),21(1 — 23),22} is not minimal for S{. This was pointed out by R. G. Douglas.

However minimality can be assured under some additional hypotheses.

Lemma 4.6. Let p1,...,p; be a minimal set of generators for an ideal T C Clz]. Assume that
Pi,...,pr are homogeneous polynomials not necessarily of the same degree. Let M € B1(Q2) be of
the form [I]. Then the germs pio,...,pw at O form a minimal set of generators for S.

Proof. For 1 < i <t, let deg p; = o;. Without loss of generality we assume that a; < 41, 1 <

1 <t — 1. Suppose the germs pig, ..., pyp are not minimal. Then we have
Pk = Z ¢i,o¢k—aipia
o <oy

where ¢; o, —q, is the Taylor polynomial of degree ay, —cv; of the holomorphic function ¢;. Therefore
p1,...,pt can not be a minimal set of generators for the ideal Z. This contradiction completes
the proof. O

Consider the ideal Z generated by the polynomials z1 +z2+22, 25 —22. We will see later that the

joint kernel at 0, in this case is spanned by the independent vectors p(D)K (-, ) |w—=0, ¢(D) K (-, w)|w=o0,

where p = 21 + 23 and ¢ = (21 — 22)°.

(ap + Bq)(D)K (-, w)|w=o for some a,3 € C. It then follows that ap + B¢ and o’p + ('q can

Therefore any vectors in the joint kernel is of the form

not be a set of generators of Z for any choice of «, 3,a/,3' € C. However in certain cases, this
is possible. We describe below the case where {p1(D)K (-, w)|w=0, ---, pt(D)K (-, w)|y=0} forms a

basis for N_; ker M7 for an obvious choice of generating set in 7.

Lemma 4.7. Suppose that {p1,...,p:} is a minimal set of generators for the homogeneous ideal
T C Clz] and that py, ..., p: be homogeneous polynomials of same degree. Let K be the reproducing
kernel corresponding the Hilbert module [Z], which is assumed to be in B1(2). Then the set

{pl(D)K('a w)|w=0> "'7pt(D)K('a w)|w=0}
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. m *
forms a basis for N, ker M.

Proof. For 1 < i < t, let deg p; = k. It is enough to show, using Lemma 4.2, 4.5 and 4.6,

that the polynomials pj,...,p; are in YN/O(I). The degree of gij isat most k —1, 1 < i <t

1 < 7 <m. The term of lowest degree in each polynomial p in the ideal Z is at least k. It follows

that gi;*_ (D)plo=0,peZ, 1 <i<t1<j<m. This completes the proof. O

Remark 4.8. Lemma 4.1 follows from the proposition above.

A similar description of the joint kernel is possible even if the restrictive assumption of “same

degree” is removed. We begin with the simple case of two generators.

Proposition 4.9. Suppose {p1,p2} is a minimal set of generators for the ideal I. and are
homogeneous with deg p1 # deg pa. Let K be the reproducing kernel corresponding the Hilbert
module [Z], which is assumed to be in B1(2). Then there exist polynomials q1,q2 which generate

the ideal T and
{Q1(D)K(‘aw)|w:0, QZ(D)K('aw)|w:O}

is a basis for ker Dygx.

Proof. Let deg p1 = k and deg pa = k + n for some n > 1. The set {p1,p2 + (Z|z’|:n 72 )p1} is
a minimal set of generators for Z, v; € C where ¢ = (i1,...,4,) and |i| = i1 + ... + i, We will

take g1 = p1 and find constants ~; in C such that

g =p2+ (D wz)p.
li|=n

We have to show (cf. Lemma 4.2) that {[¢]],[¢5]} is a basis in Vo(Z)/Vo(Z). From the equation
(4.1.1) and Lemma 4.5, it is enough to show that ¢} is a in Vo(Z). To ensure that g%i eVy(Z),1<

k < m, we need to check:
alalq; 9l gq
0z% 0z%

for all multi-index o = (@, ..., ) with 1 < |a| < n and i = 1,2. For |a| > n, these conditions

(D)pilw=0 = {pis o =0,

are evident. Since the degree of the polynomial ¢, is k + n, we have (pa, 8(';;‘32 )0=0,1<|a] <n.
If n > 1, then (pi, 8{‘;'52)0 =0,1 < |a| <n. To find ~;, i = (i1,-..,im), we solve the equation
(p1, 8(‘9&:(?2”0 = 0 for all a such that |a| = n. By the Leibnitz rule,

ol g ol ps A\ pav - iy O"Ip}
- £ 3(0)or 3 e

0z¢ 0z%
v<a li|]=n

@|0“p§ «a = il i—a+v a|’/|p’{
O +Z(u>( Z %(i—oH—I/)!Z )az’/'

v<a li|=n,i>a—v
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Now (using (4.1.3)) 85;'5* (D)pi|w=0 = 0 gives

- (G2 () 3 H>>m s

v<o li|=n,i>a—v

o]
= <pla8 p2 +ZZA(M

r=0|i|=n

where given the multi-indices «, 7,

o il 8\u|p1 a\ifoH»u\pl Jl = . .
A L oty =rv<aqi>a—v
Aai(r) _ ZV (l/) (z—a—i—u)!( 0z¥ ) Pzi—ot >0 ‘ | ) ) ) (416)

0 otherwise.

Let A(r) = ((Aai(r))) be the ("I 1) x (e ") matrix in colexicographic order on a and i. Let
A=3" . A(r) and v, be the ("/"") x 1 column vector (7i)jij=n- Thus the equation (4.1.5) is

of the form

Ax, =T, (4.1.7)

where T' is the (”;’f;l) X 1 column vector (—(pi, g;£2>0)|a\=n' Invertibility of the coefficient

matrix A then guarantees the existence of a solution to the equation (4.1.7). We show that the

matrix A(r) is non-negative definite and the matrix A(0) is diagonal:

a! 2 fa=i
A(0)as = I7r] (4.1.8)
0 if a #£ 4.

and therefore positive definite. Fix ar, 1 <r < n. To prove that A(r) is non-negative definite, we

show that it is the Grammian with respect to Fock inner product at 0. To each p = (u1,. .., fm)

n+m— 1)

such that |u| =n — r, we associate a 1 x ( A tuple of polynomials X, defined as follows

alB—kl .
N!(gfu) 87;5*51 if8>nu

0 otherwise,

Xu(B) =

where 8= (81,...,0m), |8 =n (8 > p if and only if 8; > p; for all i). By X, - (X;)t, we denote

the (”+m_1) X (”j’n"ffl) matrix whose ai-th element is (X,(a), X],(i))o, |a| = n = [i|. We note

m—1 1
that
||Z :!(X;-(X;)t)ai = ||Z L(X5(0), XJ (0o (419)
H|=n—T pl=n—r

. Z i< | o alaf'u'pl | Z a|i71u'|p1>
N 1! e a—p) OzoH e i—p) 9zin Y

lul=n—razpizp

B Z (- )l a i <8|a’“|p1 8'““'P1>
B er <o v/ \i—a+v)  gzon ' grin /0

= Am-(r).
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Since X, - (X;)t is the Grammian of the vector tuple X7, it is non-negative definite. Hence
Alr) = Xj=n—r i(X; - (X},)") is non-negative definite. Therefore A is positive definite and

hence equation (4.1.7) admits a solution, completing the proof. O

Let Z be a homogeneous polynomial ideal. As one may expect, the proof in the general
case is considerably more involved. However the idea of the proof is similar to the simple case
of two generators. Let {pi,...,p,} be a minimal set of generators, consisting of homogeneous
polynomials, for the ideal Z. We arrange the set {p1,...,p,} in blocks of polynomials P!, ..., P*

according to ascending order of their degree, that is,

{P',...,P*} = {pl,....pu YDy Ph Dl DY PR T

where each P! = {pll, e plul }, 1 <1 < k consists of homogeneous polynomials of the same degree,
say n; and nyg4q > ng, 1 <1 < k — 1. As before, for [ = 1, we take qjl- = p}, 1 < j < wuy and for
[ > 2 take

—1 uy
pj+22%jps,where%f() = Y Ao
f=1s=1 lil=ni—ns

Each ’ylfjs is a polynomial of degree n; —ny for some choice of 'yl *(i) in C. So we obtain another set
of polynomials {Q*, ..., QF} with Q' = {¢!, ..., qul}, 1 <1 < k satisfying the the same property
as the set of polynomials {P!, ..., Pk}. From Lemma 4.2 and 4.5, it is enough to check qé* is in
Vo(Z). This condition yields a linear system of equation as in the proof of Proposition 4.9, except
that the co-efficient matrix is a block matrix with each block similar to A defined by the equation
(4.1.6). For qé-* in Vo(Z), the constants ylfjs(z') must satisfy:

8|a‘ql4*
0= 3zaj (D)plo

alalp Sy il plimartvipe glvlpf
_ J “fsia . Dy Ds
SEE - TED 5595 DI 6 I DIRNRTAGE o T e = S Y

f=ls=1v<a li|=n;—ny,i>a—v

All the terms in the equation are zero except when |a| =n; —ng, 1 <d<[l—-1. Fore=d = f,

we have the equations

a Oc p UuUg nNy— .
~W gt = 2 Z > (AL0) i), (4.1.10)
s=1 r=0 [i|=n;—nq

where

i alvl g gli—atv|yd . )
> (3) (i—oi+u)!< g gm0 vl=rv<ai>a—;

(Aglt(r))ai =

0 otherwise.

Let A% (r) be the ("~ "4-1Tm=1) o (m=nrd1m=1) matrix whose ai-th element is (A% (r)) . We

m—1 at

consider the block-matrix A%(r) = (A%(r)), 1 < s,t < ug.
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Fixar, 1 <r <mn —mng Toeach u= (u1,...,41n) such that |u| = n;j — ng — r, associate a
1x (”Z_ijf@_l) tuple of polynomials Xff;f, where

olB—nlpd
n(s2,) g i8>

X (B) =
0 otherwise,

with 6= (B1,...,0m), |8] = ni — ng. Let Xﬁr = (Xfﬁ, - ,Xg,(nnlfnd)). Using same argument as
in (4.1.8) and (4.1.9), we see that the matrix
Aty = 3 (X (X))
lul=n—r
is non-negative definite when r > 0 and A%(0) is positive definite. Thus A% = > "t " Ad(r) is
positive definite. Let

d dly- d(n;— .
Vi = ((7lj1 (Z))\i\:nl—ndv SRR (ﬂ)/lj(nl nd)(z)>|i\=nl—nd)tr>
where each (’yldjs(i))mzm,nd is a ("Z_Zjﬂﬂ_l) x 1 column vector. Define
8|a|pl‘ 8‘0‘|pl.
d d d
Flj = ((—= {1, 8,204] >0)|a|=m*nd7 SRR (_<pud’ aza] >0)|a\:”l*”d)'

{;» which admits a solution (as A is

invertible) for each d,l and j. Thus we have proved the following theorem.

The equation (4.1.10) is then takes the form Adyldj = I

Theorem 4.10. Let Z C C[z] be a homogeneous ideal and {p1,...,p,} be a minimal set of gener-
ators for T consisting of homogeneous polynomials. Let K be the reproducing kernel corresponding
the Hilbert module [Z], which is assumed to be in B1(2). Then there exists a set of generators
1, -, Qv for the ideal T such that the set {q;(D)K (-, w)|w=0: 1 <i < v} is a basis for ker Dyy«.

We remark that the new set of generators ¢1,...,q, for Z is more or less “canonical”! It is
uniquely determined modulo a linear transformation as shown below.

Let Z C Clz] be an ideal. Suppose there are two sets of homogeneous polynomials {p1,...,py}
and {p1,...,py} both of which are minimal set of generators for Z. Theorem 4.10 guarantees the
existence of a new set of generators {q1,...,q,} and {q1,...,q,} corresponding to each of these
generating sets with additional properties which ensure that the equality

v
@)= ailg;l, 1<i<w
j=1
holds in QO(I) /Vo(Z) for some choice of complex constants «;;, 1 < i,j < v. Therefore g —
> i1 @iq; € Vo(Z). Since ¢; — i ai5g5 is in Z, we have

v v v
0= (@ =D ayd)D) (@ — Y ijgy) =ll G — D> cijas [I§, 1<i <,
=1 =1 =1

and hence ¢; = >.7_; a45qj, 1 < i <v. We have therefore proved the following.
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Proposition 4.11. Let T C C[z] be a homogeneous ideal. If {qi,...,q,} is a minimal set of
generators for T with the property that {[¢¥] : 1 < i < v} is a basis for Vo(T)/Vo(T), then

qi,---,qu s unique up to a linear transformation.

We end this section with the explicit calculation of the joint kernel for a class of submodules

of the Hardy module which illustrate the methods of Proposition 4.9.

Example 4.12. Let p;, p2 be the minimal set of generators for an ideal Z C Clzq, z9]. Assume
that pi,p2 are homogeneous, degpy = degp; + 1 and V(Z) = {0}. As in Proposition 4.9, set
q1 = p1 and g2 = p2 + (71021 + Yo122)p1 subject to the equations

o1 g + [ o1 15 (D21, 81p1)0 Mo \ _ [ (P1,0ip2)o (41.11)
(01p1, O2p1)0 | ap1 |12 + || p1 I|2 Vo1 (p1, 02p2)0

In this special case, the invertibility of the coefficient matrix follows from the positivity (Cauchy

- Schwarz inequality) of its determinant

o1 1o+ [ Opr 1§11 21 15 + 1| Dop1 1G]] 21 115
+ (Il 01p1 5]l D201 11§ —1(01p1, Dop1)ol?).

Specifically, if the ideal Z C C|z1, 22 is generated by z; + 2z and 23. We have V(Z) = {0}.
The reproducing kernel K for [Z] C H?(D?) is

1 _ o
Kigy(z,w) = = ___azmfh-mwm)
(]_ — zlwl)(l — 22w2) 2
(Z1+2’2)(ZD1+1D2) > S
= 5 + Z 2] 25w w3,
i+j>2

The vector 95 K7)(z,w)]o = 223 is not in the joint kernel of Pz(M7, M5 )|z since M (23) = 2
and Pjzo = (21 + 22)/2 # 0. However, from the equation (4.1.11), we have q; = 21 + 22 and
g2 = (21— 22)?, we see that qi, g2 generate the ideal Z and {(0 + 02) K (-, w)]o, (01 — 02)2K (-, w)|o}

forms a basis of the joint kernel.

Remark on Example 4.12. Let 7 be the ideal generated by z; and z3. Since 21 is not a linear

combination of ¢; and ¢, it follows (Proposition 4.11) that Z # 7.

Example 4.13. This example is similar to the previous one except that it is of higher order.
Take T =< 22 + 23,2123, 23 >. The set {2? + 22, 2122, 23} forms a minimal set of generators and
V(Z) = {0}. Now the reproducing kernel is ,

1 2 L2V (2 2
— 1 — 2,1y — zyiiy — (21 — 23)(wi — w3)

K(z,w) — 2129W1 W2

(1 — Zl’u_Jl)(l — 2’2’[1_)2)

2 2N(m2 2 o0 _

- RN St
ij=3
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Note then 93K (z,w)|g = 625 and M;(623) = 6(23,2%“%)'2%23 = 3(2? + 22) # 0. Taking

V2 V2
pt =22+ 22, p? = 2123 and p3 = z3, as in Theorem 4.10. The new set of generators are

a = 2 + 23,
qi = 2125 + (731 (10)z1 + 721 (01)22) (27 + 23),
g2 = 23 + (133(10)21 + 733 (01)20) (22 + 23).
Coefficient of these polynomials then satisfy the following equations:

95(23 + 23)|o + (307 + 95) (21 + 23) |01 (10) + 20102(2F + 23)|0721 (01) = 0,
2010227 + 23)|o0 + 20102(21 + 23)|0731 (10) + (97 + 303) (21 + 23) 0731 (01) = 0,

and

(30F + 05) (21 + 23)l0722 (10) + 2012 (27 + 23)]0722(01) = 0,
305 (21 + 23)lo + 20102(21 + 23) 10722 (10) + (8F + 305) (7 + 23)[0722(01) = 0.

This amounts to solving the following matrix equation

8 0 v31(10) \ [ -2 q 8 0 733(10) '\ 0
08 )\ dton )\ o) Lo s )\ atton )\ -6

Ignoring the constants, we get gf = 23 + 23, ¢} = 23 — 32123, ¢3 = 23 — 32325 which will then
generate the ideal Z and {(07 + 02)K (-, w)|o, (0] — 30102)K (-, w)|o, (03 — 30%02) K (-, w)|o} forms

a basis of ker Dyy«.

Example 4.14. Take 7 =< zi” + 223, 32%22 — zlz%, z% >.. The set 2513 + 225’, 32%22 — zlz%, z% forms

a minimal set of generators and V(Z) = {0}. Now the reproducing kernel is given by the formula

3 3\ (3 —3 2 2 _ _9 _ 9 o)
2 + 2 3 — 3 — S
K(z,w) = (27 + 22)éw1 w3) N (32125 2122)50101102 W1w5) Z i,

1,j=4

Again we have,

1_ .3 3 1 _ 2 2 2 4
p1 = 2] + 225, py = 32125 — 2125, P = 23

The new set of generators are q% = p%, q% = p% and
qi = 25 + (921 (10)21 + 71 (01)22) (27 + 223) + (97 (10) 21 + 57 (01)22) (32 — 2123).

The corresponding matrix equation is

36 0 0 -—12 Y21 (10) 0
0 90 18 0 v31(01) [ [ -8
0 18 58 —12 ~210) |

-12 0 -12 42 v42(01)
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The determinant of the coefficient matrix is 6231168 showing that it is invertible. So the solution
to the linear system of equation produces the polynomials g1, g3, g5 generates the ideal Z and the
set

{a1 (D)K (-, w0)|w=0, 43 (D) K (-, w) w0, ¢} (D)K (-, w)|w—0}

forms a basis for ker Dyy«.

Example 4.15. Take 7 =< z; — 29, zg’ >. The set {z1 — 29, zg’} forms a minimal set of generators
and V(Z) = {0}. Recall that the reproducing kernel K (Theorem 2.3) can be written as

K(z,w) = (01 — W) K1(z,w) + w3 Ko(z, w).
Differentiating this relationship repeatedly and evaluating at 0, we see that
Ki(z,w) = (01 — 02)K (z,w)|o and ko(z,w) = (207 + 60702 + 30,05 + 03) K (2, w)]o.
It then easily follows that z; — 2o and 2z} + 62222 + 32123 + 235 also generate the ideal Z.

Remark 4.16. If the generators of the ideal are not homogeneous then the conclusion of Theorem
4.10 is not valid. For instance, take the ideal Z C C[z1, 22] generated by 21(1 + 21), 21(1 — 22), 23
which is also minimal for Z. We have V(Z) = {0}. We note that the stalk S§* at 0 is generated
by 21 and z2. Similar calculations, as above, shows that {01 K (-,w)|o, 93K (-,w)|o} is a basis of
ker Dyp+. But 21 and 23 can not be a set of generators for Z C C[z1, 22] which has rank 3. On the
other hand, let Z be the ideal generated by 21 + 29 + 27, 25 — 22 which is minimal and V(Z) = {0}.
In this case { (014 02) K (-,w)|o, (01 —92)? K (-,w)|o} is a basis of ker Dy« But 21429 and (21 —22)?

is not a generating set for the stalk at 0.






5. Invariants using resolution of singularities

We will use the familiar technique of ‘resolution of singularities’ and construct the blow-up space of
Q) along an ideal Z, which we will denote by Q). There is a map 7 : ! — Q which is biholomorphic
on 1\ 77 1(V(Z)). However, in general, { need not even be a complex manifold. Abstractly, the
inverse image sheaf of S™ under = is locally principal and therefore corresponds to a line bundle
on Q. Here, we explicitly construct a holomorphic line bundle, via the monoidal transformation,
on ™ Y(wp), wg € V(T), and show that the equivalence class of these Hermitian holomorphic
vector bundles are invariants for the Hilbert module M.

In the paper [14], submodules of functions vanishing at the origin of H (Aom) (D?) were studied
using the blow-up D? \ (0,0) UP! of the bi-disc. This is also known as the quadratic transform.
However, this technique yields useful information only if the generators of the submodule are
homogeneous polynomials of same degree. We will compute invariants via quadratic transform
for submodules of Hardy module. The monoidal transform, as we will see below, has wider

applicability.

5.1 The monoidal transformation

Let M = [Z] be a Hilbert module in %B;(f2) for some polynomial ideal Z. Assume that the
dimension of the zero set V(Z) is at most m — 2. Let K denote the corresponding reproducing
kernel. Let wg € V(M). Set

t = dim S5 /mu, St = dim N7, ker (M — wo;)* = dim Vi (Z)/ Vi, (T).-

0 wo

By the decomposition Theorem [6, Theorem 1.4], there exists a minimal set of generators g1, -+ , g
of 8{1}31 and a r > 0 such that

t
K(yw) =Y gj(w)K9 (- w), we Alwo;r) (5.1.1)
i=1
for some choice of anti-holomorphic functions KW, ..., K® . A(wg;r) — M.

Assume that Z := V(g1,...,9:) N2 be a singularity free analytic subset of C™ of codimension
t. We point out that Z depends on M as well as wg. Define

~

A(wo;7) == {(w, m(u)) € Alwo;r) x P12 uigi(w) — ujgi(w) =0, 1 <i,5 <t}
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Here the map 7 : C*\ {0} — P'~! is given by 7(u) = (u : ... : u;), the corresponding projective
coordinate. The space ﬁ(wo; ) is the monoidal transformation with center Z ([21, page 241]).
Consider the map p := pry : E(wo;r) — A(wp; ) given by (w,m(z)) — w. For w € Z, we have
p~Y(w) = {w} x PI"1. This map is holomorphic and proper. Actually p : A(wo;r) \ p~1(Z) —
A(wo;r) \ Z is biholomorphic with p~! : w — (w, (g1 (w) : ... : gi(w))). The set E(M) :=p~1(2)

which is Z x P*~1, is called the exceptional set.

We describe a natural line bundle on the blow-up space A(wg;r). Consider the open set
U = (A(wp;r) x {ug #0})N ﬁ(wo;r). Let Z—i = 0]1-, 2 < j <t. On this chart gj(w) = 0]1-gj(w).

From the decomposition given in the equation (5.1.1), we have

]~
SR
<
—
S
S~—
—

K('7w) = W{K(l)(ﬂ w) +
=2

This decomposition then yields a section on the chart U; of the line bundle on the blow-up space

ﬁ(wo; )

t
s1(w,8) = KO (w) + Y 01 K0 (- w).
j=2

The vectors K )(~, w) are not uniquely determined. However, there exists a canonical choice of

these vectors starting from a basis {v1,..., v} of the joint kernel N ; ker(M; — w;)*:

t

K(,w) = g;(w)P(w, wo)vj, w € Alwo; )
j=1

for some r > 0 and generators gy, ..., g; of the stalk 8{,}3‘. Thus we obtain the canonical choice
KW (- w) = P(w,wo)vj, 1 < j <t (cf. [6, Section 6]). Let L£(M) be the line bundle on the
blow-up space ﬁ(wo; r) determined by the section (w,8) — s1(w, @), where

t
s1(w,0) = P(w, wo)v1 + Y 0} P(w, wo)v;, (w,0) € Uy
j=2
Let M be a second Hilbert module in B1(2), which is again the closure of some polynomial ideal
7 but with respect to a second inner product. Assume that M is equivalent to M via a unitary
module map L, that is, LK (-, w) = cp(w)l?(-, w),w € Q) for some nonzero holomorphic function ¢

on €. In the proof of Theorem 1.10 in [6], we have shown that LP(w,wy) = P(w,wp)L. Thus

t t

(W) K (,w) = LK(-,w) = > g;(w)LP(w,wo)v; = Y _ g;(w)P(w, o) Lv;.
=1 i=1

Therefore,

(i) $1(w,0) = ﬁ(ﬁ(m, wo) Ly + 3y 0L P(w, %) Lv;) and

(ii) Lsi(w,0) = (w)31(w,h).
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Hence the line bundles £(M) and £(M) are equivalent as Hermitian holomorphic line bundle on
Alwo;r)* = {(w, m(1)) : (w,m(u)) € E(wo;r)}. Since the vectors KU (-, w),1 < j < t, are linearly
independent [6, Theorem 1.5], it follows that V(M) N A(wg;r) = Z. Thus if w € A(wo;r) \ Z,
then g;(w) # 0 for some i, 1 < i < t¢. Hence s;(w,0) = I;(('i;) on (A(wp;r) x {u; # 0}) N A(wo; ).
Therefore the restriction of the bundle £(M) to A(we;r) \ p~1(Z) is the pull back of the Cowen-
Douglas bundle for M on A(wp;r) \ Z via the biholomorphic map 7 on ﬁ(wo; )\ p 1(Z). We

have therefore proved the following Theorem.

Theorem 5.1. Let M and M be two Hilbert modules of the form [Z] and [Z] (Z, T are polynomial
ideals), respectively. Assume that they are in B1(Q) and that the dimension of the zero set of
these modules is at most m — 2. Then M and M are equivalent if and only if the line bundles

L(M) and L(M) are equivalent as Hermitian holomorphic line bundles on A(wg;r)*.

Although, in general, Z need not be a complex manifold, the restriction of s to p~!(wq) for
wo € Z determines a holomorphic line bundle on p~!(wg)* := {(wo, 7 (%)) : (wo, w(u)) € p~(wo)},
which we denote by Lo(M). Thus s1 = s1(w, ) |{u,} x{u,20} 15 given by the formula

¢
s1(0) = KW (-, wo) + Y 03KV (- wp).
j=2
Since the vectors KU )(~, wp), 1 < j <t, are uniquely determined by the generators g1, ..., g, we

infer that s; is well defined.

The following theorem follows from the one we have just proved. All we have to do is to
restrict the line bundles to suitable subsets of the exceptional set. However, the details given in

the proof below will be useful in studying exlicit examples in the next section.

Theorem 5.2. Let M and M be two Hilbert modules of the form [Z] and [Z] (Z, T are polynomial
ideals), respectively. Assume that they are in B1(Q) and that the dimension of the zero set of
these modules is at most m — 2. If the modules M and M are equivalent, then the corresponding
bundles Lo(M) and EO(M) they determine on the projective space p~'(wq)* for wo € Z, are

equivalent as Hermitian holomorphic line bundles.

Proof. Let L : M — M be the unitary module map and K and K be the reproducing kernels
corresponding to M and M respectively. From [6, Lemma 1.3] and [11, Theorem 3.7], it follows
that (i) LK (-, w) = ¢(w)K (-, w), (i) L*f = ¢f and (iii) K(z,w) = ¢(2)K (2, w)é(w) for some
holomorphic function ¢ on Q\V(M). As we have pointed out earlier, ¢ extends to a non-vanishing
holomorphic function on 2.

Since M is in B;(Q2), it admits a decomposition as given in equation (5.1.1), with respect

the generators gi,...,g; of S,L/U\g. However, we may assume that g; = g; for 1 < i < ¢, because
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S{;ﬁ = S{UTA; for all wg € Q. Thus for some r > 0, we have

K(w) =Y gj(w)KD (- w), we Alw;r).
i=1

By applying the unitary L to equation (5.1.1), we get

SR (w) = LK (w) = 3 g LKV, w)

Since ¢ does not vanish on €2, we may choose

o LEW(.
RO(w) = U0y oot e Ao,
p(w)
From part (iii) of the decomposition Theorem ([6, Theorem 1.4]), the vectors KU )(-,wp), 1 < j <
t, are uniquely determined by the generators g1, ..., g;. Therefore K @ (-, wp) = % Now
0

the decomposition for K yields a holomorphic section 31(6) = KM (-, wg) + Z GlK @) (-, wp) for
the holomorphic line bundle £o(M) on the projective space p~*(wp)*. Therefore

t
Lsi(0) = LKW (- wo)+> LK (- wy

t
= S(wo){KD(swo) + 3 KD wo)k = 6(wo)si(6).
j=2
From the unitarity of L, it follows that

I's1(6) =l Ls1(8) [I= Ie(wo)l* || 31.(6) || (5.1.2)

and consequently the Hermitian holomorphic line bundles £y(M) and L (Mv) on the projective

space p~!(wp)* are equivalent. O

Remark 5.3 (The case, where the dimension of the zero set V(Z) is m — 1). Let M Be a Hilbert
module in B;(2). Assume that M = [Z]¢ for some polynomial ideal Z and the dimension of
the zero set of M is m — 1. Let the polynomials pi,...,p; be a minimal set of generators for
M. Let ¢ = g.c.d{p1,...,pt}. Then the Beurling form (cf. [7]) of Z is ¢J, where J is generated
by {p1/q,...,p:/q}. From [7, Corollary 3.1.12], dim V(J) < m — 2 unless J = C[z]. The
reproducing kernels K of M is of the form K(z,w) = q(2)x(z,w)q(w). Let M; be the Hilbert
module determined by the non-negative definite kernel x. The Hilbert module M is equivalent
to M;. Now M; = [J] and V(M;) = V(T). If V(J) = ¢, then the modules M; belongs to
Cowen-Douglas class of rank 1. Otherwise, dim V(J) < m — 2 and Theorem 5.1 determines its

equivalence class.
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The existence of the polynomials g1, ..., ¢; such that KU (-, w)|y—w, = q}-‘(D)K(-, W) |lw=wy, 1 <
j < 't, is guaranteed by Lemma 4.2. From the decomposition Theorem ([6, Theorem 1.4]) and
Lemma 2.1 that I?(j)(-,w)\w:wo is a linear combination of ¢;(D)K (-, w)|y=w,, 1 < i < t. But the

following Lemma shows that

KD 0)|wmwe = ¢ (D)E (-, )|, 1 <5 < 8,

which makes it possible to calculate the section for the line bundles £Ly(M) and Ly(M) without any
explicit reference to the generators of the stalks at wg. In the following lemma, the decomposition

of the reproducing kernels K and K are with respect to a common set of generators.

Lemma 5.4. Let M and M be two Hilbert modules both of which are completion of some polyno-
mial ideal T with respect to two different inner products on the polynomial ring. Assume that they
belong to the class B1(Q) and dimV(Z) < m—2. Let K and K be the corresponding reproducing
kernels. Find polynomials q1,. .., q, for which the vectors K9 (-, w) = q; (D)K(-,w) form a basis
for the joint kernel at w = wo. Then K@ (- w) = q;(l_?)f?(-, W) |w=w, S a basis for the joint kernel
at wg in M.

Proof. For f € M and 1 <i < m, we have
(f,OLE (-, w)) = 0i(f, LK(-,w)) = Oi(L" f, K (-,w)) = (L" [, 0K (-,w)) = (f, LOK (-, w)),
implying 0; LK (-,w) = LO; K (-,w). Thus

p(D)LK(-,w) = Lp(D)K(-,w) for any p € C|[z].

From equation (4.1.3), it follows that

LKV (;wo) = L{gj(D)K (-, w0)lw=uwy} = {Laj(D)K (-, ) Hu=uq
= {g(D)LE( ) Humwo = {a(D)d(w)K (-, )=
= D aala;(D) (@ — @0)* K (s w0)}fuw=uwo

_ 0%, = ~
= Za:aa az‘j (DK (- w)|w=wp>

where ¢(w) = > ao(w — wp)®, the power series expansion of ¢ around wg. Now for any p € T

we have
8066]]' _ |~ _ 80‘(]]- o~
<p’ 20 (D)K(‘vw)|w=w0> - <p’ 20 (D)K('vw)>|w=w0
0%q*
azo‘[] (D>p(w>‘w1’w0
Since Lemma 4.2 ensures that {[¢}],...,[g}]} is a basis for Vo, (Z)/Vu,(Z), it follows that

0% ~
<pv 8;(11] (D)K(',w)|w:wo> =0for all peZ and ‘Oz| > 0.
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Therefore, we have 3% (D) K (-, w)|u—uw, = 0 for |a| > 0. Hence LKW (-, wp) = dog;(D)K (-, w)|uweuwo =
(j)(w())qj(D)f((', W) |lw=w,and consequently f{(j)(ww)‘w:wo = Qj(D)f{('vw)’w:wm 1<j<t O

We illustrate, by means of some examples, the nature of the invariants we obtain from the line
bundle £ that lives on the projective space. From Theorem 5.2, it follows that the curvature of
the line bundle £y is an invariant for the submodule. An example was given in [14] showing that
the curvature is is not a complete invariant. However the following lemma is useful for obtaining

complete invariant in a large class of examples.

Lemma 5.5. Let H and H are Hilbert modules in B1(Q2), for some bounded domain 2 in C™.
Suppose that H and H are such that they are in the Cowen-Douglas class Bi(2\ X) where
dim X <m —2. Let M C H and M C 'H be submodules satisfying the following conditions:

(i) Vip(M) = V(M) for all w € Q and

(1)) M = NyeaMS, and M = ﬁwegﬂ/lvi,, where as before M, = {f € H : ¢(D)flw =
0 for all ¢ € Vyy(M)}.

If H and H are equivalent, then M and M are equivalent.

Proof. Suppose U : H — His a unitary module map. Then U is induced by a non-vanishing
holomorphic function, say 1, on 2\ X (cf. [11]). This function ¢ extends to all of {2 by Hartog’s
Theorem. As before, this extension does not vanish on Q. Let wy € Q and ¢ € V(M) =
Voo (M) Also let ¢(w) = ), aa(w —wo)® be the power series expansion around wy. For f € M,

we have

aD)Uflw=wo = a(D)Wf)lw=w, = q(D){Zaa(w_WO)af}’w:wo

k
= St = w0 Mhmy = {3 ()0 = w0 LD
et k<«

=0
since g L € Vy, (M) for any multi index k whenever ¢ € V,,,(M). Therefore it follows that
Uf € M. A similar arguments shows that U *M C M. The result follows from unitarity of
U. O

5.1.1 The («, 3,0) examples: Weighted Bergman modules in the unit ball

Let B2 = {z = (21,22) € C? : |21]? + |22/? < 1} be the unit ball in C2. Let Liﬁg(IB%Q) be the

Hilbert space of all (equivalence classes of) Borel measurable functions on B? satisfying

17 po= [ 1 EPdnCer,20) < +oc.
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where the measure is
du(z1, 22) = (0 + B+ 0+ 2) 22/ (1 — | — |222)°(1 — |222)PdA(z1, 22)

for (21,22) € B, —1 < ,3,0 < +oo and dA(z1,22) = dA(z1)dA(z2). Here dA denote the
normalized area measure in the plane, that is dA(z) = %dmdy for z = x + iy. The weighted
Bergman space Ai B,GGB?) is the subspace of L(z% 5,9(1832) consisting of the holomorphic functions
on B2. The Hilbert space Ai 5.0 (B?) is non-trivial if we assume that the parameters a, 3, 6 satisfy
the additional condition:

at+B+0+2>0.
The reproducing kernel K, 3¢ of Ai 3 Q(IB%Q) is given by

1 1
a+B+460+2 (1 — zpwp)xtFAto+3

+o0 _ k
(a+B+0+Ek+2)(a+0+2);( 2w
X{E: (0 + 1)y <1—ﬁ@) }

Kopo(z,w)

k=0

where z = (21, 22),w = (w1, ws) € B% and (a)g = a(a +1)...(a +k — 1) is the Pochhammer
symbol. This kernel differs from the kernel P, 3¢ given in [26] only by a multiplicative constant.

The reader may consult [26] for a detailed discussion of these Hilbert modules.

Let Zp be an ideal in C|z1, 2] such that V(Zp) = {P} C B2 We have

1 for w € B2\ {P};

dim ker D pj_w)yx =
(M=w) {dMLW@LJ>Uimw—R

Hence [Ip]Ai’ﬁ’e(BQ) (the completion of Zp in Aiﬂﬂ(ﬂg?)) is not equivalent to [IP’]Ai/ﬁ/’gr

completion of 7}, in AZ{/’ &0 (B?)) if P # P’. Now let us determine when two modules in the set

(B2) (the

{[IP]AQM(EQ) —1<a,B,0 <4ocand a+3+60+2>0}.
are equivalent. In the following proposition, without loss of generality, we have assumed P = 0.

Proposition 5.6. Suppose T is an ideal in C[z1, zo] with V(Z) = {0}. Then the Hilbert modules
[Z] 42 50(B) and [I] 42 (B2) are unitarily equivalent if and only if a = o/, =" and 0 = 0.

04/,6,,9/

Proof. From the Hilbert Nullstellensatz, it follows that there exist an natural number N such
that mY C Z. Let Z,,,, be the polynomial ideal generated by 27 and z§. Combining (4.0.1) with

Lemma 5.5 we see, in particular, that the submodules [Z,, ] 42 50(B?) and [Zy,n) 42, , ,(B2) are

unitarily equivalent for m,n > N. Let K,,, be the reproducing kernel for [Z,, ] 42 50(E2)" We

write Ko go(2,w) =37, i~ bijzi 2} where

a+B+0+j+2 (a+60+2); (a+B+60+j+3)

bij = :
J a+B+0+2 (0+1); i

(5.1.3)
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Let I n :=A{(i,j) €Z X Z:i,j7>0,i>mor j>n}. We note that

_ im0,
Km,n(z7w) = Z bijZIZQU)le.
(ivj)ejm,n

One easily see that the set {2]", 24’} forms a minimal set of generators for the sheaf corresponding

t0 [Zimn] 42 50(B2) The reproducing kernel then can be decomposed as
Kin(z,w) = 0" K" (z,w) + wy K3 (2,w), for some r >0 and w € A(0;r).

Successive differentiation, using Leibnitz rule, gives

K)o = 00 Ko 0) Hum(00) = boe]" and
K5 (2 w)homo = 08 Ko 0) o 00) = bonh-
Therefore
s1(01) = bmoz]" + 01bonzy,

where #; denotes co-ordinate for the corresponding open chart in P'. Thus
Fs1(01) 117 = bio Il 21" 12 +63, | 25 17 101° = bmo + bonl6n]*.

Let amn = bon/bmo. Let Ky, denote the curvature corresponding to the bundle Lo, ,, which is

determined on the projective space P! by the module [Z, ] 42 5.0(B2)- Thus we have

Kinn(61) = 09,05, 10l| s1(61) |* = 09,0, In(1 + a,nl61]?)

am,nel Um,n

6 — .
911+am,n|91|2 (1 +am,n|91|2)2

Let K7, ,, denote the curvature corresponding to the bundle £j ., which is determined on the
projective space P! by the module [Z,, ,,] A2, (B As above, from Lemma 5.4, we have

!/

/ . a’m,n
Cnal®) = W, R

This easily follows from Lemma 5.5. Since the submodules [Z,, ,,] 42 50(B?) and [Zp,.n) 42 o/ (B2)
.8, ol \B',0!
are unitarily equivalent, from Theorem 5.2, it follows that K, »(61) = KC},, ,,(61) for 61 in an open

chart P! and m,n > N. Thus

!/

Amn am,n

L+ amnl01)? (14 af,,[01]%)%

This shows that (amn — al, ,)(1 + Gmnap, ,1011*) = 0. S0 amn = aj,,, and hence

bon b
—_— == 5.1.4
boo B (5.1.4)
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for all m,n > N. This also follows directly from the equation (5.1.2). It is enough to consider
the cases (m,n) = (N,N),(N,N +1),(N,N +2) and (N + 1, N) to prove the Proposition. From

equation (5.1.4), we have

bn+no _ binsno  bov+n) _ Bo(N+1) and bov+2) Bo(N-+2) (5.1.5)

bno bno bon bon bo(n+1) b/O(N—H)

Let A=a++60,B=a+6and C = 6. From equation (5.1.3), we have

b(N+1)0_A+N+3 bo(v+1) B A+N+3‘B+N+2
bvo  N+1 ' by  A+N+2 C+N+1

and
bO(NJrQ) _ A+N+4 B+ N+3

bonty A+N+3 C+N+2
From (5.1.5), it follows that A = A" and

BC'+ B(N+1)+C'(N+2) = B'C+B'(N+1)+C(N +2), (5.1.6)

BC'+B(N+2)+C'(N+3) = B'C+ B'(N+2)+C(N +3). (5.1.7)

Subtracting (5.1.7) from (5.1.6), we get B — C' = B’ — C’ and thus 0 = ¢'. Therefore 1202277;1) =

56(N+1)
b/ N

implying B = B’ and hence a = o’. Lastly A = A’ and in consequence 3 = [3'. O

5.2 The quadratic transformation

For a homogeneous ideal Z, let M be a Hilbert module in B () is of the form [Z]. Assume that
{p1,...,pt} be a minimal set of generators for Z consisting of homogeneous polynomials of same
degree, say k. From Lemma 4.6, we knew that {pig,...,pw0} is a minimal set of generators for S(/]V‘.

Then on a neighborhood A(0;¢) of 0, the reproducing kernel K of M admits a decomposition:

as in Theorem 2.3. The set
AQ(O; g) := {(w,m(u)) € A(0;e) x P s wyw; — ujw; =0, 1 < i, j < m}

is called the blow up of the poly-disc A(0;¢) at the point 0 (also called the quadratic transformation
of A(0;¢) at the point 0).

There is a natural line bundle on the blow-up space AQ(O; ¢), which we describe below. Con-
sider the open chart where Uy = (A(0;7) x {u1 # 0}) N AQ(O;E). On U, let Z—i =0;,2<j<m.

Thus w; = H}wl, 2<j3<mon (71 and we have

K(yw) =@M 5@ Kl w)}.
=1
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Set
t
s1(0) =Y _Pi(0)Ki(-,0), 6 € P" ' n{m(u): uy #0}.
i=1
For 2 < i < m, define s; on U; = P™~ ! N {x(u) : u; # 0} similarly. s;(#) is called quadratic
transformation of the reproducing kernel K on U;. The set {s1,..., S} defines a holomorphic

Hermitian line bundle on P™~!. Let us denote this line bundle by Q(M). The blow up space
along a linear subspace is defined similarly (cf. [21, Example 2.5.2]). Let the linear subspace be
V ={z4+1=...= 2y, =0} and the blow up of A(0;r) along V is

85(0; e) := {(w,m(u)) € A(0;e) x P "1 ww; —ujw; =0, 7 +1<4,5 <m, m—r>2}.

We illustrate, by means of a number of examples, the nature of the invariants we obtain from the
line bundle Q that lives on the projective space.
Example of blowing up along a linear subspace. Let H be an analytic Hilbert module over 2 C C™

)

containing the origin. Let Hén be the submodule of H denoting the closure of the polynomial

ideal Z generated by
{zﬁirllz;? ti; e NU{Ob,r+1<j<mipp1+ ...+ 0m=n, m—r>2}

Let Kén) be the reproducing kernel corresponding to H(()"). Let us fix a point (p,0) € C" x C™™"

in . From decomposition theorem and Lemma 4.6, K(()") admits a decomposition:
KM Cwy = Y et Ky, (),
ipt1+t...Fim=n

in some neighborhood of the point (p,0). Clearly for ¢ = (iy4+1,...,im), we have
8_ZKv(()n)(v w)‘(p,O) = Z‘Kl(v w)’(p,O)-

Let 6 = (0,42, ...,0) be the usual homogeneous coordinates on the open sets U,+1 = {m(u) :

ur41 # 0} in the complex projective space P ~"~1. Thus, following the construction given above,
51(0) = {(Drr1 + Or120r12 + v 4 0m0n) " K" (,10)Hw— ) (5.2.1)

determines a section of the line bundle Q(M) over U, 41, with respect to the point (p,0). The

proposition below and its proof is a straightforward generalization of [14, Theorem 5.1].

Proposition 5.7. Let H((]n) CH and ﬁ(()n) C 'H be two analytic Hilbert submodules consisting of

Holomorphic functions on 2 vanishing to order n. If Hén) and ﬁén) are equivalent via a unitary

module map, then the corresponding bundles Q and 0 are equivalent.

Proof. Let L : H(()n) — ﬁ(()n) be the unitary module map and K(()n) and I?(()n) be the reproducing

kernels corresponding to H(()n) and ﬁ(()") respectively. The existence of a holomorphic function ¢ on
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Q\V(Z) such that LK(gn)(~,w) = qﬁ(w)l?én)(-,w), L*f =¢f and K(gn)(z,w) = ¢(2) ~én)(z,w)¢(w)
follows from Lemma 1.11 and [11, Theorem 3.7]. As we have seen before, since m —r > 2, ¢

extends to a non-vanishing holomorphic function on €.

Fix p’ = (p,0) € C" x C"™ " in V(Z). Now we have
(F LK (w)) = Bi(f, LK (- w)) = B(L* £, K§Y () = (f, LOKS” (-, w).

Since f is arbitrary in H(()n), it follows that &-LKén)(-,w) = L@-Ko(n)(-,w), i =1,2. Let s; and
5, be sections of Q and Q respectively, of the form (5.2.1), on U,;1 C PL. As L commutes with

differentiation with respect to w, we have,

le(e) = L(§T+1 + 0T+2(§r+2 + ...+ Hmém)nKén)(v w)|w=il7'
= (Drs1 + Org2Bria + oo+ OO )"LES (- 0) [y
= {(Bys1+ Ori2Brin + oot OnB) WKL (-, 10) Huoy

= {50 (1) @rp1 400120, g2+ AH0m B ) $(w) (Fr 1074 20 240 Bn) " K (0) H -

Since IN(O(H)(-, w) belongs to the canonical subspace ﬁén), it follows that
(Frs1 + Ors2Bpi2 + oo+ O O)" K () |uymyy = 0
at w=7p' € V(Z) for i > 0 Hence we have
L51(01) = 64)Dr1 + Or420r2 + v+ 0D K" (- 0) [y = 9(0)51.(6).
From the unitarity of L, we conclude that

IL51(O)]1* = |o(0")[151(0) .

Consequently, the line bundles determined by H(()n) and ﬁén) on P71 are equivalent. O

5.2.1 The (A, p) examples: Weighted Bergman modules on unit bi-disc

Let HO#) (D?) be the weighted Bergman space determined by the reproducing kernel

1

(M) —
Kz e) = e ar a = o)

z,w e D2

Let ng’g)’n) be the submodule of H X (D?) consists of holomorphic functions vanishing up to

order n at the point (p,q) € D?, n > 2. From discussions in the section 1.3, it is clear that

the dimension of the joint kernel of Hgg’g)’n) jumps at the point (p,q) and hence HE;’;L)’H) is not

equivalent to HE;{’% n) i

equivalence of any two module in the class {H

(p,q) # (9',q"). So for a fixed point (p,q) € D?, we want to determine
(Apm)
(p,9)

we have done the case when (p,q) = (0,0) using the above theorem. For general (p,q), both

: A,u > 0}. In the following proposition

the theorem and proposition can be proved similarly with a change in coordinates by Mobius

transformation (see [14]).
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Proposition 5.8. Forn > 2, HE ’“)’ " and H( ) e unitarily equivalent if and only if X = X

(0,01
and p = '
Proof. The reproducing kernel K(() )(z w) of ’HES ’g)’ ") s given by
K (zw) = (1—z1i1) (1~ z0wz)” Z > biziawiw)

k=014,5>0,i+j=k
oo

where (ri—1)
A 1 Rt
bij = <> (M> =———, and <V> :{ r -
N 44 | Vool =0
Then
3 3 \n pn n 15t 51 g
s101) = {(01+019)"Ki (o w)tueo0) = D L DNOFKEG (-, w) Huw=(0,0)
i,j>0,i+j=n
= Z <ﬁ>i!j!bijzizg91j = n! Z bijz§Z§91j
1,7 >0,i+j=n ! 1,7>0,i+j=n

Let us denote b; = bj,—; for 0 < i < n. Hence s1(01) =n!)_ ", biz{zg_i91”_i. We note that

| s1(61) | = (n!) Zb2H 123_’ ”2’61‘2@%) — (n!)QZbiwlP(n%).
=0

Let a; = b;/by. Let K denote the curvature corresponding to the bundle Q which is determined
by the module HMM  We obtain

(0,0)
n a6y + +nan01”0" 1
K(61) = —0p,05,108(1+ a1]01]* + ... + an|61*") = —3911+a1,91‘2 a0
_ab— |61 |22

b2

where a = a1 +...+n2an|01 2"V, b= 14a1[61*+.. . +an|61]*" and ¢ = a1 +. .. +na,|6; 2.

The curvature corresponding to the bundle @', which is determined by HEO O’f) ), is given by
a'b — ’91‘2012
/C/ (91) — _b/—2
This easily follows from Lemma 5.5. If the modules HES [’f)n) and HEO 0,)’ ") are unitarily equivalent,

then K(01) = K'(01) for 6; € PPN {n(u) : u1 # 0}. Thus

ab— 16:2c* 'V — 10122

b2 b/2




5. Invariants using resolution of singularities 79

which implies
b (ab’ — a'b) = |012(V'c — bc) (V¢ + bc). (5.2.2)
Now we have

b = (14+a1]61|*+...4an|01]%")(1+a} |61 2 +...4al|01|2™)

= {l+(ar+a))|01*+(az+ah+aray)|6r]*...},

ab'—a’b = (a1+4as|01|2+9as)01 | +...4+n2an |01|2* V) (14a} |01]2+ah 01| +...+al, |61 ]27)
f(a’1+4a’2\91 |2+9a’3|91 |4+,..+n2a%|01 \2("’1>)(1+a1 ‘91 |2+a|01 \4+...+an|91 ‘Qn)

= [(a1—a})+{4(az—a}y)—(a1—a})}01*+{3(a] az—aray)+9(as—aj) }01]*+..],

Ve—bd = (14a}|01)%+a}|01]*+...4al|01]2") (a1+2a2|01|%+3a3 |01 |*+...4nan 012~ D)
—(14a1]601 2 4a2)01 [*+...4anl01>) (0} +2a5|61 |2 +3a5 |01 |*+...+nal, |01 22— 1)
= [(a1—a})+2(a1—ab) |01 [ +{3(as—a})+azd), —aha1 }|61 [*+...],

betbe = {(a1+a))+2(az+ay+aia))|01]?+3(as+as+aiay+a)az)|61]*+...}
From (5.2.2), equating coefficients of |01|?", for n > 2, we find that A = X’ and u = p/. Equating
the constant term we get

a; —ay =0, that is, a; = af, hence by /by = b’ /bj,. (5.2.3)

Now equating the coefficient of |61]2 we have, {4(ag — ab) — (a1 —a})} + (a12 — d}?) = (a1 — d}?).
Thus from (5.2.3), we have

as = ab, that is, by /by = bl /bjy, and by /by = bl /V. (5.2.4)
Now (p+1)..(p+n—1-1)
bi _ b1 _ (D)2 _ A= _ o nA
bo  bon ) ® el Dnlutn=l) - g — 1
Also AA+1) p(p+1)...(pt+n—2-1)
o (pFn—2—
bj _ bon—2 _ (/2\) (n}i2) __ 2 HE (n—2)! _ n—1)(A+1)
i b (D)) asletleleasioD 2(u+n—2)
From (5.2.3), we have
M = XNp)+(n—-1)A=X) =0. (5.2.5)
Also from (5.2.4), we have
M = Np)+(n—=2)A=XN)=pu—y. (5.2.6)

Subtracting (5.2.6) from (5.2.5), we get A— X = —(u—p') = k(say), then N = A—k and ¢/ = p+k.
Again we use (5.2.3) to get A(u+K) —(A—Kr)u+ (n — 1)k = 0, that is, A+ pu+n — 1)k = 0.
Since A + 1 +n —1 > 0, we have k = 0 and consequently A = X\ and pu = p/'. O
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Remark 5.9. From Lemma 5.5, it follows that HE “) Y and Hgg‘,(’)‘)‘ "D are unitarily equivalent if
and only if A =\ and p = /.

5.2.2 The (n,k) examples

For a fixed natural number j, let I; be the polynomial ideal generated by the set {z7, zlj nhi 7},
k; # 0. Let M; be the closure of I; in the Hardy space H?*(D?). We claim that M; and Mo
are inequivalent as Hilbert module unless k1 = ky. From Lemma 1.11, it follows that both the
modules M; and My are in By(D?\ X), where X := {(0,2) : |z| < 1} is the zero set of the
ideal I;, j = 1,2. However, there is a holomorphic Hermitian line bundle corresponding to these
modules on the projectivization of D?\ X at (0,0) (cf. [14, pp. 264]). Following the proof of [14,
Theorem 5.1], we see that if these modules are assumed to be equivalent, then the corresponding
line bundles they determine must also be equivalent. This leads to contradiction unless ki # ks.

Suppose L : My — Moy is given to be a unitary module map. Let Kj, j = 1,2, be the
corresponding reproducing kernel. From Lemma 1.11, it follows that the joint kernel of M; at the
point w € D?\ X are one dimensional and spanned by the corresponding reproducing kernel K s
J = 1,2. Since L intertwines module actions, it follows that M; LK (-, w) = p(w)LK; (-, w), p €
Clz]. Hence,

LK (-, w) = p(w) K (-, w), for w ¢ X. (5.2.7)

We conclude that ¢ must be holomorphic on D? \ X since both LK (-,w) and Ka(-,w) are anti-
holomorphic in w. For j = 1,2, let Q; be the holomorphic line bundle on P! whose section on the
affine chart U; = {m(u) : u; # 0}, by blowing up the origin, is given by

s{(@) = 2 +0" kﬁz 2y b,
Consider the co-ordinate change (w1, ws) — (p,0) where w1 = p and wy = pf on D? \ X. Note
that

1+ en—kl 2
i Jp(p0)P = 10 ]

w2 =0,w—0 B 1+ |0n—k2’2'

wl

(5.2.8)

Thus ¢(p.0) has a finite limit at (0, 6), say ¢(6). Then from (5.2.7), and the expression of

s1(f) = lim 7](7’10),
1 n
%ze,wﬂo wy

by a limiting argument, we find that Lsi(6) = ¢(0)s3(#). The unitarity of the map L implies that
Is1 @)1 = ILs1(O)I* = ¢ (0)*lIsT(0)]1*.

Consequently the line bundles Q; determined by M;, j = 1,2, on P! are equivalent. We now

calculate the curvature to determine when these line bundles are equivalent. Since the monomials
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are orthonormal, we note that the square norm of the section is given by
; 2
| s](0) || = 1+ |0)2™ k). (5.2.9)

In this case, the equation (5.2.8) is also straight forward from (5.2.9). Consequently the curvature

(actually coefficient of the (1,1) form df A df) of the line bundle on the affine chart U is given by

o |
Ki(0) = —dpdglog|l 1(8) |~ = — Bpdglog(1 + |6]2 k)
(n — k;)0(n—k)gn—k;—1)

- 1+ [6Z0F5)

B (n _ kj)2‘9’2(n—kj—1){1 + |0|2(n—k]-)} _ (n _ kj)2‘9’2(n—kj)|0‘2(n—kj—1)
{1+ [pe 2

(n — ky)?loPn =)
{1 + ‘H‘Q(n—kj)}2

So if the bundles are equivalent on P!, then K1 () = Ko(6) for § € U, and we obtain

(n . k1)2{|9|2(n_k1_1) + 2|9|2(n—k2)|9‘2(n—k1—1) + ‘9|4(n—k2)|0|2(n—k1—1)}
- (n o kQ)Z{‘H‘Q(nkafl) + 2|0‘2(n7k1)’0|2(n7k271) + ’0|4(n7k1)‘9’2(n7k271)} —0.

Since the equation given above must be satisfied by all 6 corresponding to the affine chart U,
it must be an identity. In particular, the coefficient of |9|2{("_k1)+(”_k2)_1} must be 0 implying
(n —k1)? = (n — k)2, that is, k; = ko. Hence M; and My are always inequivalent unless they

are equal.






6. Appendix

6.1 The curvature invariant

The usual proof that curvature is a complete invariant for a holomorphic Hermitian line bundle
makes crucial use of the existence of harmonic conjugate on a simply connected domain. Here we
give a simple proof using the existence of power series expansion for a real analytic function over
a domain in C.

Let (E, h) be a holomorphic Hermitian line bundle over 2 C C, where h(w) = (y(w),v(w)), w €
), is the metric with respect to some nonzero holomorphic cross section v for E. and X denote
the curvature of E. Let (E, h) be another holomorphic Hermitian line bundle over €. Two vector
bundles (E, k) and (E, k) are said to be locally equivalent if there exists open subset €2 of € and

a nowhere vanishing holomorphic function ¢ on Qg such that h(w) = ¢(w)h(w)é(w) for w € Q.

Remark 6.1. Though in general one should get ¢ on all of 2, since we are dealing with equiva-

lences in Cowen-Douglas class, it is enough to consider this local equivalence.

Let K be the curvature of the line bundle (E, k). Then assuming (E, h) and (E, k) are locally

equivalent, we have

2 2 2

Rlo) = —go—loghle) = — o log{o(@h(@d)} = — 5 log{lo@)Ph()}
2 2 2
D gl - 2O loghw) = — 20 logh(s) = K(w),

in some open subset of Q.Here, we have %{;wlomgb(wﬂz = 0, since ¢ is holomorphic. Now we

prove the converse.

Proposition 6.2. IfK = K in some open subset of ), then (E, h) and (E, h) are locally equivalent.

Proof. Since h is real (positive) analytic on €, log h is also real analytic for w € Q and admits power

o0

series expansion around w € €. Assume w = 0 for simplicity. Let logh(w) = > " @mpw™w"

on some open subset )y of €2 containing 0. Then

Klw) = - logh(w) = — Z mn appw™ @t

m,n=1

= Y (m+ 1)+ Dapprppw"@"

m,n=0
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So if, K(w) = >° kmnw™@", we get kyyn = — (m+1)(n+ 1)amy1,n41 for m,n > 0, which

m,n=0

implies,

k
e m,n > 0. (6.1.1)

Am+1n+l = m =z

Thus to determine the metric from curvature, we see that all coefficients except those of the

form an,o and ag, are known. Since log h is real analytic, it follows that

[o.¢] [o.¢]
g AWt = E Ammw" o
m,n=0 m,n=0
Equating coefficients w™@", we get a;mn = Gnm for m,n > 0. In particular, we have a,,0 = aom

for m > 0. The power series
oo
(a00/2) + Z amowm
m=1

defines a holomorphic function in a neighborhood of 0, say ¢. Also let

> k
h — mn m+1—n+1
o) mzn;O m+ D+~ “

for w € Qp. From (1) it follows that logh(w) = ¢(w) + ¢(w) + ho(w) implying that

hw) = exp(d(w)) exp(ho(w)) exp(¢(w))

for w € Q.

Now K (w) = K(w) implies that ho(w) = ho(w) in some small enough neighborhood of 0 € Q.
Thus fiw) = exp(3(w) —~ 6()) h(w) exp(@lw) — o), that is, Fw) = () hw) P() for

the holomorphic function p(w) = exp(¢p(w) — ¢(w)) on 2 in some small enough neighborhood
of 0. This completes the proof. O

Now suppose (F, h) and (E , ﬁ) are holomorphic Hermitian vector bundle of rank n over Q C C.
In this case, (E, h) and (E, h) are said to be locally equivalent if there exist a holomorphic function
X : Qo — GL(C™), Qo open subset of €2, such that h(w) = X(w)*h(w)X(w). Again, assuming
that (F,h) and (E,ﬁ) are locally equivalent, we have

-1

Kw) = 0{h(w) 0h(w)}

= 9 [X(w) (@) X (@) THX (W) Oh(w) X (w) + X (W) h(w)dX (w)}]
= X (w) th(w) ToMw) X (W) + X (w)raX (W)}
= X(w) 'Kw)X(w)

In this case the curvatures are conjugate to each other rather than being equal. We want to see

to what extent it is possible to recover the metric from curvature. We show that if the metric
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is normalized in the sense of Curto and Salinas[11, page - 473], then it is determined from the
curvature.
Since h is a real analytic function on 2, we can find a positive definite kernel h:Qx

Q — M, (C), holomorphic in the first and anti-holomorphic in the second variable, such that

=< tr
h(w,w) = h(w), by polarising h. A kernel K is said to be normalized at wy € Q if K(z,wg) = 1.
Definition 6.3. The metric A is said to be normalized at wg € € if h is normalized at wo € .

Remark 6.4. Assume wy = 0. If h(w) = > 7 _  hmpw™@", then

m,n=0

—tr .
2 : hnm MG n

m,n=0

where hpn € My (C). If h is normalized at 0, then h(z,0) = I, z € . Hence Yoo o iom 2™ = 1.
Comparing the coefficients both sides we have hT)O” = I and ﬁtr = 0, that is, hgg = I and
hom = 0 for all m > 0. As his positive definite, we also have h,,o = 0 for all m > 0.

Theorem 6.5. If (E, h) and (ENJ,E) are holomorphic vector bundles equipped with the normalized
metric over Q0 and K and K be respectively the corresponding curvatures, then (E,H) and (E,h)
are locally equivalent if and only if there exist a constant unitary U such that /z(w) = U'K(w)U

for w in some open subset of €.

Proof. If h and I be respectively the metric and curvature for the rank n complex bundle F,

then we know that X = 9(h~'0h). There exist a real analytic function g on € such that
hg = 1. (6.1.2)

Let h(w) = 3775 hijw'w’ and g(w) = > =0 gijw'w’ for w in some open subset {2 of €,
where hij, gij € My(C) for i,j > 0. Putting w = 0, from (6.1.2), we get hgg goo = I. For

I,k >0, we also have

! Ik .
= 39 (hg) = Z() (0"h &'g) ZZ()() @9 ih) (@0'g)
=0 1=0 j=0
Putting w = 0 we get
Ik
N (k

Z () < .)hli,kj 9i; = 0. (613)
i=0 j=0 \"/ \J

From (6.1.3), for [ = 1 and k = 0 we have
g10 = —hoo™" hio hoo™"

and for [ =0 and k=1,
g10 = —hoo ' hio hoo !
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Then by inductively we first get gmo (putting [ = m and k& = 0) and go, (putting [ = 0 and
k =n). Recursively then we get g,i’s for k < m and gg,’s for k& < n and hence we can calculate

Jmn for general m and n. Now we have
9'omK = 9"9™{d(g Oh)} = §"0™(dg Oh + g Do)

-y ()2 (@)@ + @ g)@F0n)
( ) Y (’f‘){(ﬁljai+1h)(af“am—i)+(6”jﬁ’”‘ig)(8’+18m‘ih)}]
- i Z <T> <?> (@ o+ @ oy + (@ o) @ o ingy

Let K(w) = > 750 kijw'w’ for w in some small enough neighborhood of 0, where k;; € M,,(C).

Putting w = 0, from the above equations we have,

min! kpn = ii(’j) (?){(z’+1)1(n—j)!hi+1,n_j (m = )G+ D)gmi a1 +

i—0 j—=0
(m — i)l (n — ))gm—in—j (G + DG+ D) hip101}

m n
= > mnl(i+ 1) + D(hitin—j Gmeijet + his1jr1 Gm—in—j)
i=0 j=0
which implies that
m n
Kmn = Z Z(Z + D + D (hit1n—j Gm—ij+1 + Pit1,j+1 Gm—in—j) (6.1.4)
i=0 j=0
Now as h is a normalized metric, via Remark 6.4, we have, hgg = Id, and h,,0 = 0 = hgy,.

Thus from equation (6.1.3), we get goo = Id, and g0 = 0 = gon. Putting m =0 =n in
(6.1.4), we get h11 = koo. Then by inductively we first get h,,; and hy,. Recursively then we
get hpi’s for kK < m and hyg,’s for £ < n and hence we can calculate h,,, for general m and n

which shows that the metric in this case is determined uniquely.

Following [11] or by comparing coefficients, we note that if both h and h are normalized
then (E,h) and (E,h) are locally equivalent if there exist a constant unitary U such that
h(w) = U*h(w)U, for w in some open subset g of . Hence

~ . 0 ~ -1 0 ~ - 0 * —1 9 *
K@) = (i) 2hw@) = (U)o Uh()U)
_ 0 * —1 * i _ *i fli
= 8w[U h(w)"UU {&Uh(w)}U] =U 8w{h(w) 8wh(w)}U
= U'K(w)U.
Conversely if the corresponding curvatures are equivalent, that is, if K(w) = U *K(w)U, for w in

some open subset Qg of 2, then from the preceding computations, it follows that E(w) = U*h(w)U,
w € Q. ]
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For simplicity, we have given the proof of the theorem above over domains in C. However,
similar but somewhat more involved computation show that the proof is valid for domains in
C™ m>1.

6.2 Some curvature calculations

Let H*# be a reproducing kernel Hilbert space of holomorphic functions on D? with reproducing

kernel
1
K(z,w) A= 2o P (0 = )" or z = (21, 22), w = (w1, ws)

Define Hgg’g)) to be the subspace of functions in H**) which vanish at the point (0,0) in the

bidisc, that is, Hgg’g)) = {f € H™® : £(0,0) = 0}. From Lemma 1.11 and Corollary 2.14, we
know that HES"SL)) does not belong to the class By(ID?), but it is in By (D?\ {(0,0)}) To decide when

two modules in the set
Av
{HGY) A > 0} (6.2.1)

are unitary equivalent, we calculate curvature of the line bundle corresponding to HES ’g)), A, >0,

on D?\ {(0,0)}. Let K(())"“) be the reproducing kernel for HES:SL))' Then we have

1
(1 — 211171))‘(1 — 2’2’[172)“

K(())"”)(z,w) — — 1, for z = (21, 22), w = (w1, w2) € D?.

We have KSA’“)(P, P) = m —1>0for P = (p,0) € D?\ {(0,0)}. We normalize the kernel
K(()A’“) at P, as in the equation 1.2.2. Then

I?(())"“)(z,w)
1 _ 1 411 1 _ 111 1 —
e Ma—pr Y taeyr Y T mara—aar

for z = (21,292),w = (w1, w2) € Q, for some neighborhood g of P. From [30, Lemma 2.3], to

calculate the curvature, it is enough to calculate the coefficients of |wi — p|?, |ws|?, (w1 — p)ws

(

and (w; — p)wsg in the expansion of I?O)\’H) (w,w) around P. To calculate these coefficients, we

note that evaluation of certain number of derivative of I?é)"“) at P will be enough. Let us first

calculate the coefficient of |ws|*, which is

1 2\A1—1 2\A 1 —1
=pu{———5—-1}(1—|p =p{l—(1—|p .
[{(1—|p|2))‘ A= 1pI7)7 {1—=(1—1[p)"}
Hence if the modules HES"(’;)) and HESI(’]’; ) are equivalent, then
[0 w

-0 —pP*  {T-a-pP"}
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for arbitrary p € D\ {0}. Let us take p = 1/v/2 and p = v/3/2. We have the following equations,

p{l— ()Y = (1= () and {1 = (¥ =1 - ().
Then
-G _ -G 1 Y
(1— é))\,} "o é))\}, which implies s (%))\,} s (%)A}, and therefore 2% = 2V

Thus A = X and then it follows that u = p/. Clearly, these computions would be impractical if we

have to compare two modules vanishing to order k, k > 1 or on a variety of positive dimension.
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