
some results on

Cryptanalysis of RSA

and

Factorization

A thesis presented to the Indian Statistical Institute

in fulfillment of the thesis requirement for the degree of

Doctor of Philosophy in Mathematics

by

Santanu Sarkar

Applied Statistics Unit
INDIAN STATISTICAL INSTITUTE

Kolkata, West Bengal, India, 2011

some results on

Cryptanalysis of RSA

and

Factorization

A thesis presented to the Indian Statistical Institute

in fulfillment of the thesis requirement for the degree of

Doctor of Philosophy in Mathematics

by

Santanu Sarkar

under the supervision of

Professor Subhamoy Maitra

Applied Statistics Unit
INDIAN STATISTICAL INSTITUTE

Kolkata, West Bengal, India, 2011

Abstract

In this thesis, we propose some new results in Cryptanalysis of RSA and related

Factorization problems. Till date, the best known algorithm to solve the Integer

Factorization problem is the Number Field Sieve, which has a runtime greater

than exp(log1/3N) for factoring an integer N . However, if one obtains certain

information about the RSA parameters, there are algorithms which can factor the

RSA modulus N = pq quite efficiently. The intention of this thesis is to identify

such weaknesses of the RSA cryptosystem and its variants. Further we study

results related to factorization.

In Africacrypt 2008, Nitaj presented a class of weak keys in RSA considering

certain properties of the encryption exponent e. We show that this result can

be generalized from different aspects. We consider the cases when e satisfies an

equation of the form eX−ψY = 1 under some specific constraints on two integers

X, Y and a function ψ. Using the idea of Boneh and Durfee (Eurocrypt 1999,

IEEE-IT 2000), we show that the LLL algorithm can be efficiently applied to get

ψ in cases where Y satisfies certain bounds. This idea extends the class of weak

keys presented by Nitaj when ψ is of the form (p− u)(q − v) for RSA primes p, q

and integers u, v. Further, we consider the form ψ = N − pu− v for integers u, v

to present a new class of weak keys in RSA. This idea does not require any kind

of factorization as used in Nitaj’s work.

Next, we analyze the security of RSA where multiple encryption are available

for the same modulus N . We show that if n many corresponding decryption

exponents (d1, . . . , dn) are generated, then RSA is insecure when di < N
3n−1
4n+4 , for

all i, 1 ≤ i ≤ n and n ≥ 2. Our result improves the bound of Howgrave-Graham

and Seifert (CQRE 1999).

We also discuss the factorization of N by reconstructing the primes from ran-

domly known bits. We revisit the work of Heninger and Shacham (Crypto 2009)

and provide a combinatorial model for the reconstruction where some random bits

of the primes are known. This shows how one can factorize N given the knowledge

of random bits in the least significant halves of the primes. We also explain a

lattice based strategy in this direction. More importantly, we study how N can be

factored given the knowledge of some blocks of bits in the most significant halves

of the primes. We present improved theoretical result and experimental evidences

in this direction.

i

In PKC 2009, May and Ritzenhofen presented interesting problems related to

factoring large integers with some implicit hints. One of the problems considers

N1 = p1q1 and N2 = p2q2, where p1, p2, q1, q2 are large primes, and the primes

p1, p2 are of same bitsize such that certain amount of Least Significant Bits (LSBs)

of p1, p2 are same. May and Ritzenhofen proposed a strategy to factorize both

N1, N2 efficiently with the implicit information that p1, p2 share certain amount

of LSBs. We explore the same problem with a different lattice-based strategy.

In a general framework, our method works when implicit information is available

related to Least Significant as well as Most Significant Bits (MSBs). We show

that one can factor N1, N2 (simultaneously) efficiently when p1, p2 share certain

amount of MSBs and/or LSBs. We also solve the implicit factorization problem

given three RSA moduli N1 = p1q1, N2 = p2q2, N3 = p3q3, when p1, p2, p3 share

certain portion of LSBs as well as certain portion of MSBs. Furthermore, we study

the case when p1, p2 share some bits in the middle. Our strategy presents new and

encouraging results in this direction. Moreover, some of the observations by May

and Ritzenhofen get improved when we apply our ideas for the LSB case.

In CaLC 2001, Howgrave-Graham proposed a method to find the Greatest

Common Divisor (GCD) of two large integers when one of the integers is exactly

known and the other one is known approximately. We present two applications of

the technique. The first one is to show deterministic polynomial time equivalence

between factoring N = pq and knowledge of q−1 mod p. As the second application,

we consider the problem of finding smooth integers in a short interval. Next, we

analyze how to calculate the GCD of k (≥ 2) many large integers, given their ap-

proximations. Two versions of the existing approximate common divisor problem

are special cases of our analysis when k = 2. Further, we relate the approximate

common divisor problem to the implicit factorization problem. Our strategy can

be applied to the implicit factorization problem in a general framework considering

the equality of (i) Most Significant Bits (MSBs), (ii) Least Significant Bits (LSBs)

and (iii) MSBs and LSBs together. We present new and improved theoretical as

well as experimental results in comparison with the state of the art works in this

area.

ii

Acknowledgements

There are many people who helped in different ways to make this thesis possible.

I would like to thank them all for their suggestions and advice throughout the

tenure of my Doctoral studies.

I am extremely lucky to have worked with my supervisor Prof. Subhamoy

Maitra (our beloved Subhamoy-da). I do not want to belittle his contributions

towards my Doctoral research by thanking him. But, I would definitely like to

take this opportunity to express my gratitude for his warm guidance, patience and

tolerance during my Ph.D. course. I am indebted to him for all kinds of support

he has provided me throughout the last three years.

It is my honor to have worked as a part of the Cryptology Research Group at

ISI Kolkata, founded and guided by Prof. Bimal Roy. I would like to express my

heartfelt gratitude towards Prof. Roy, who always supported me for my research

and created opportunities for me to visit different places of the world to interact

with eminent researchers in the field. These interactions have immensely helped

me in broadening my horizon of knowledge.

I would also like to thank Prof. Rana Barua for his great teaching on Cryptog-

raphy that motivated me to initiate my research work in this field. I am grateful

to Prof. Palash Sarkar for his numerous invaluable advice during my research.

Further, it is my pleasure to thank Prof. Arup Bose and Dr. Amartya Dutta for

their teaching during my course work, and Prof. Goutam Mukherjee for allowing

me to use my office-space at the Stat-Math Unit, ISI Kolkata.

I am grateful to Mr. Sourav Sen Gupta, who helped me whenever I faced any

problem. We have detailed discussions on several technical issues and in particular,

I acknowledge his contribution in making substantial improvement towards the

editorial quality of my thesis.

I would especially like to thank Mr. Sumit Kumar Pandey, who have directly

had a positive impact on my interest in mathematics. I would like to express my

warm gratitude to Kishan-da, Venku-da, Mahavir-da, Somitra-da, Dalai-da, Prem-

da, Sumanta-da, Tanmoy-da, Sanjoy-da, Sushmita-di, Pinaki-da, Srimanta-da,

Biswarup, Rajat, Koushik, Ramij, Soumen, Debasis, Debabrata, Rishi, Goutam,

Sanjay, Butu and Somindu for being there beside me at times when I needed them

the most. My special thanks to each member of ASU, SMU, RS Hostel, Deans

Office and Cash Section of Indian Statistical Institute, Kolkata, for all the help

iii

and support they provided throughout my stay at the Institute.

I would like to thank my Didi (elder sister) for her love and support. Last but

not the least, I am grateful to my Parents for their understanding, never ending

blessings, faith and support in every step of my life. I love you Maa and Baba!

iv

To Thaakuma (Grandmother), the first teacher in my life.

v

vi

Contents

1 Introduction 1

1.1 Encryption and Decryption . 2

1.2 Symmetric Key Cryptography . 3

1.3 Asymmetric Key Cryptography . 5

1.4 Goal of this Thesis . 6

1.5 Organization of the Thesis . 7

1.6 Prerequisites . 9

2 Mathematical Preliminaries 11

2.1 Asymptotic Notation . 11

2.2 RSA Cryptosystem . 12

2.2.1 Classical Model of RSA . 13

2.2.2 Implementation of RSA . 15

2.2.3 Variants of RSA . 20

2.3 Cryptanalysis of RSA . 22

2.3.1 Factoring RSA Modulus . 23

2.3.2 Partial Exposure of Primes 24

2.3.3 Small Public Exponent Attack 24

2.3.4 Related Message Attack . 24

2.3.5 Broadcast Attack . 25

2.3.6 Timing Attack . 25

vii

2.3.7 Small Decryption Exponent Attack 25

2.4 Lattice and LLL Algorithm . 27

2.5 Solving Modular Polynomials . 31

2.5.1 Coppersmith’s Method . 32

2.5.2 General Method by Jochemsz and May 35

2.6 Solving Integer Polynomials . 38

2.6.1 Coron’s Method . 38

2.6.2 General Method by Jochemsz and May 40

2.7 Analysis of the Root Finding Techniques 43

2.7.1 Time Complexity Analysis 43

2.8 Experimental Framework . 44

2.9 Conclusion . 45

3 A class of Weak Encryption Exponents in RSA 47

3.1 Our Basic Technique . 48

3.2 Improvements over Existing Work 52

3.2.1 The Improvement in the Bounds of X, Y 52

3.2.2 Further Improvement in the Bounds 53

3.2.3 Experimental Results . 53

3.3 A New Class of Weak Keys . 55

3.3.1 Experimental Results . 56

3.3.2 Estimation of Weak Keys 59

3.4 Conclusion . 62

4 Cryptanalysis of RSA with more than one Decryption Exponent 63

4.1 Theoretical Result . 64

4.2 Experimental Results . 72

4.3 Conclusion . 73

viii

5 Reconstruction of Primes given few of its Bits 75

5.1 LSB Case: Combinatorial Analysis of Existing Work 76

5.1.1 The Reconstruction Algorithm 76

5.1.2 Growth of the Search Tree 78

5.1.3 Known Prime Bits: Complementary Sets for p, q 81

5.1.4 Known Prime Bits: Distributed at Random 82

5.1.5 Known Prime Bits: Distributed in a Pattern 83

5.2 LSB Case: Lattice Based Technique 85

5.3 MSB Case: Our Method and its Analysis 87

5.3.1 The Reconstruction Idea . 87

5.3.2 The Reconstruction Algorithm 88

5.3.3 Analysis of the Reconstruction Algorithm 89

5.3.4 Experimental Results . 93

5.4 Conclusion . 94

6 Implicit Factorization 95

6.1 Implicit Factoring of Two Large Integers 96

6.1.1 The General Result . 96

6.1.2 The MSB Case . 99

6.1.3 The LSB Case . 99

6.1.4 Implicit Factorization problem when k = 3 104

6.2 Two Primes with Shared Contiguous Portion of Bits at the Middle . 107

6.3 Exposing a Few MSBs of One Prime 111

6.4 Conclusion . 114

7 Approximate Integer Common Divisor Problem 115

7.1 Finding q−1 mod p ≡ Factorization of N 116

7.2 Finding Smooth Integers in a Short Interval 118

7.3 Extension of Approximate Common Divisor Problem 120

ix

7.4 The General Solution for EPACDP 123

7.4.1 Analysis for k = 2 . 127

7.4.2 Analysis for k = 3 . 131

7.5 Sublattice and Generalized Bound 132

7.5.1 Implicit Factorization problem with shared MSBs and LSBs

together . 135

7.5.2 Comparison with the work of [40, 86, 107] 137

7.6 Improved Results for Larger k . 139

7.6.1 Comparison with the work of [40, 86] 140

7.6.2 Comparing the Methods with respect to EPACDP 142

7.7 EGACDP . 143

7.7.1 Method I . 144

7.7.2 Method II . 145

7.7.3 Experimental Results . 146

7.8 Conclusion . 147

8 Conclusion 149

8.1 Summary of Technical Results . 149

8.2 Overview of Root Finding Techniques 152

8.3 Open Problems . 154

8.3.1 Weak Encryption Keys . 154

8.3.2 More than one Decryption Key 154

8.3.3 Reconstruction of Primes . 155

8.3.4 Implicit Factorization . 155

Bibliography 157

x

List of Tables

3.1 The numerical upper bounds of γ (in each cell) following Theo-

rem 3.2, given different values of α and τ 51

3.2 The numerical values of γ given α found by experiment when N

is of 1000 bits and p, q are as in Example 3.3. The lattice has the

parameters m = 7, t = 3, w = 60. 55

3.3 Values of γ for τ = 0.552, 100 bit N , and p, q as in Example 3.3. . . 58

3.4 Numerical values of ǫ3 following Theorem 3.2 where α = 1. 61

4.1 Comparison of our theoretical bounds with that of [62]. 68

4.2 Comparison of theoretical and experimental results for n = 2. . . . 72

5.1 Experimental results corresponding to Algorithm 7. 83

5.2 Experimental runs of the Lattice Based Technique with dimension

64. 86

5.3 Percentage of success of Algorithm 8 with 512-bit p, q, i.e., lN = 1024. 93

6.1 Values of α, β for which N1, N2 can be factored efficiently. 100

6.2 Comparison of experimental results when α = 0.35. 104

6.3 Theoretical and experimental values of α, β for which N1, N2, N3

can be factored efficiently. Results using our technique are obtained

with the lattice dimension 20. 107

6.4 Values of α, γ1, γ2 for which N1, N2 can be factored efficiently. . . . 110

6.5 Effect of knowing a few MSBs of q2. 112

xi

7.1 Experimental results following Theorem 7.1. The lattice parameters

are (m, t). 118

7.2 Comparison of our experimental results with that of [12]. We have

implemented the ideas of [12] for the comparison. LD denotes lattice

dimension. 120

7.3 For 1000 bit N , theoretical and experimental data of the number of

shared LSBs in [86] and shared LSBs in our case. (Time in seconds) 138

7.4 For 1024-bit N , theoretical and experimental data of the number of

shared MSBs in [40] and shared MSBs in our case. (Time in seconds)138

7.5 For 1000 bit N , theoretical and experimental data of the number of

shared LSBs in [86] and shared LSBs in our case. 141

7.6 For 1024-bit N , theoretical (bound for [40] and in our case) and

experimental data of the number of shared MSBs in [40] and shared

MSBs in our case. 142

7.7 EPACDP: Experimental results for 1000-bit a. 143

7.8 EGACDP: Experimental results for 1000-bit a. 146

8.1 Bounds for finding roots of a polynomial. 153

xii

List of Figures

1.1 Communication over an Insecure Channel. 3

5.1 Branching when both the bits p[i], q[i] are unknown. 78

5.2 Branching when exactly one bit of p[i], q[i] is known. 79

5.3 Branching when both the bits p[i], q[i] are known. 79

5.4 The feedback mechanism in MSB reconstruction. 88

6.1 Comparison of our experimental (case (i)) and theoretical results

(case (ii)) with that of [86] (case (iii)). 102

7.1 Comparison of theoretical results. Case (i): our result that works

for both MSBs and LSBs. Case (ii): result of [86] for LSBs and that

of [40] for MSBs. Case (iii): result of Chapter 6 for both MSBs

and LSBs. 131

xiii

Chapter 1

Introduction

The word ‘Cryptology’ originates from the Greek root words ‘kryptós’ (hidden)

and ‘logia’ (study). So, quite literally, cryptology is the study and practice of

hiding information, that is, the art and science of information security. It is quite

natural that the notion of security requires the presence of an adversary, and any

system must be tested against all potential attacks. Based on this idea, cryptol-

ogy has been branched into two parts - Cryptography and Cryptanalysis. While

cryptography ensures secure communication between two parties over insecure

communication channels (telephone, courier, fax, e-mail etc.), the field of crypt-

analysis deals with the study of breaking a cryptographic scheme by obtaining the

classified information without authorization.

Cryptology was used vastly in ancient civilizations throughout the world.

Around 3000 BC, the Egyptians could communicate securely by writing messages

in the coded Hieroglyph. ‘Artha-Sastra’ by the renowned Indian politician Kau-

tilya (350–283 BC) discussed the use of cryptology in political circles. Julius

Caesar (100–44 BC) used the Caesar cipher to send confidential messages.

The subject resurrected and evolved in a completely new form at the dawn of

the modern information era. During World War II, cryptology gained much more

importance in political affairs. It was the famous episode of Enigma that made the

world aware of the potential power of the subject. Today, cryptology has earned its

repute as a prime branch of modern science that deals with information security

issues in the arena of digital globalization. It is used for numerous purposes of

everyday life, including Internet banking, identification cards, secure databases,

e-mails, social networking, and many more.

1

Chapter 1: Introduction 2

The motive of Cryptography, as it stands in the modern society, has broadened

to cover not only encryption and decryption, but all of the following categories.

Confidentiality deals with the process of encryption and decryption of data. This

is the basic goal of cryptography that ensures secure data communication

over insecure channels, possibly at the presence of a malicious adversary.

Data Integrity is the mechanism to check and make sure that the data has not been

tampered. This process is important to verify the consistency of the data

and make sure no alterations have been made to the original communication.

Authentication ensures proper identification of the sender (entity authentication),

and the identification of the origin of communicated data (data origin au-

thentication). This feature is required to ensure that data is accepted only

from the authorized senders.

Non-Repudiation is another important aspect of cryptography to solve disputes

between the sender and the receiver. It may happen that the sender, after

communicating some data, maliciously claims that he/she has not sent it at

all. Non-repudiation provides the receiver with a proof to refute this claim.

The proof can also be presented to a third-party arbitrator in such a case.

In this thesis, we mainly concentrate on the Confidentiality aspect of cryptosys-

tems. For further details about modern day Cryptology, one may refer to “Cryp-

tography - Theory and Practice” by D. R. Stinson [126], or “Handbook of Applied

Cryptography” by A. J. Menezes, P. C. van Oorschot and S. A. Vanstone [87]. An

interested reader may also refer to “The Code Book” by S. Singh [122] to know

the exciting history of evolution of the subject.

1.1 Encryption and Decryption

Let us turn our attention to the functional aspect of a cryptographic scheme for

confidentiality. In this section, we shall introduce the notions of encryption, de-

cryption and the respective keys associated with these operations.

Suppose Alice wants to send some plaintext M to Bob, and Charles is a mali-

cious adversary who is eavesdropping on the insecure channel of communication.

The scenario is as shown in Figure 1.1. Using some encryption function E, Alice

3 1.2 Symmetric Key Cryptography

encrypts the plaintext M to get the ciphertext C = E(M) and sends C to Bob.

When Bob receives C, using his decryption function D, he decrypts the ciphertext

C to get back the plaintext M = D(C).

Alice

Sender

M → E(M) = C

Bob

Receiver

C → D(C) =M

Charles

Adversary

Ciphertext C

Figure 1.1: Communication over an Insecure Channel.

Intuitively, one must have the decryption function D to be the inverse of the

encryption function E. Kerckhoffs’ law [87] in cryptography mandates that the

security of a cryptosystem should not depend on the secrecy of either algorithm

E or D. The security should only depend on some secret parameter(s) used in the

process of encryption and/or decryption. This secret parameter is called the Key

of the system in cryptographic terms.

Thus, in a secure cryptographic protocol, Alice will encrypt plaintext M using

the modified encryption function C = E(ek,M), which is dependent on the encryp-

tion key ek. Likewise, Bob will use the modified decryption functionM = D(dk, C),

dependent on the decryption key dk. For correct encryption and decryption us-

ing these key-dependent functions, some mathematical relation between ek and dk

must exist in such a system. Depending on this relation between the encryption

key and the decryption key, the study of modern cryptography can be classified

under two major heads, namely Symmetric Key Cryptography and Asymmetric

Key Cryptography.

1.2 Symmetric Key Cryptography

In symmetric key cryptography, the encryption key is trivially related to the de-

cryption key. So either the encryption key ek is same as the decryption key dk, or

Chapter 1: Introduction 4

there is a simple transformation between them. These type of cryptosystems are

also called ‘secret key’ cryptosystems, as the keys are kept hidden from unautho-

rized users.

There are two major types of symmetric key cryptosystems, namely Block

Ciphers and Stream Ciphers. We can broadly characterize them as follows.

Block Ciphers. The goal of block ciphers is to scramble the plaintext block-by-

block using the basic tools of confusion and diffusion applied to the plaintext

over multiple rounds. A generic setup for a block cipher would use complex

substitution and permutation rounds on the plaintext block, using a secret

key, to create the effect of confusion and diffusion.

Stream Ciphers. On the other hand, the inherent goal of a stream cipher is

to generate a pseudo-random stream of data using a randomly chosen key

of fixed (preferably short) length. After the generation of such a pseudo-

random stream, the plaintext is simply XOR-ed with the stream to obtain

the ciphertext.

One may say that the security of a block cipher depends upon the amount of con-

fusion and diffusion created over rounds, whereas that of a stream cipher depends

upon the indistinguishability of its output stream from an actual random stream

of bytes. The reader may refer to [126] for further details.

One of the most well known Block Ciphers at present is the Advanced Encryp-

tion Standard (AES) [1]. Before this, the Data Encryption Standard (DES) [32]

was the most popular one. RC4 [108], SNOW [34], TURING [111] etc. are some

of the popular stream ciphers. One may refer to the eStream project [39] for re-

cent developments in the area of stream cipher design. Although symmetric key

cryptosystems are very fast in practice, there are few drawbacks, as follows.

Key distribution problem: A secure and authenticated secret channel should be

needed to distribute the secret keys beforehand.

Key management problem: In a network of n users, every pair of users must share

a secret key, for a total of
(
n
2

)
= n(n−1)

2
keys. If n is large, then the number

of keys becomes unmanageable.

Signature problem: Consider the situation where Alice sends a message (en-

crypted/signed using some symmetric key cipher) to Bob, and later refuses

5 1.3 Asymmetric Key Cryptography

this communication. Now, in case of such a dispute, Bob will have to prove

to an unbiased arbitrator (may be the judge or jury at the court) that the

message was in fact sent by Alice. Now, the arbitrator can not verify who

actually encrypted/signed that particular plaintext, as both Alice and Bob

are capable of encrypting/signing it using the same (shared) key. This prob-

lem of authentication is known as repudiation. This problem can not be

solved using symmetric key systems, as the concept of non-repudiation using

signatures can not be accomplished.

To overcome these problems, Diffie and Hellman [33] introduced the notion of

‘asymmetric key’ cryptosystems in 1976. Invention of asymmetric key cryptosys-

tems is arguably the most celebrated breakthrough in modern day cryptography.

However, one should note that public key cryptosystems are much slower than

symmetric key cryptosystems in general.

1.3 Asymmetric Key Cryptography

In asymmetric key cryptography, the encryption and the decryption keys are dif-

ferent, but they are related by some mathematical relation. These type of cryp-

tosystems are also called ‘public key’ cryptosystems, as the encryption key is made

public while the decryption key is kept secret. Hence, it is required for the secu-

rity of the system that, finding the decryption key from the encryption key is

computationally infeasible.

The public key cryptosystems are most often based on some computationally

hard mathematical problem. A list of well known hard problems is as follows.

Integer Factorization Problem (IFP). The problem is to find a proper factor

of a given positive integer N > 1. The first usable public key cryptosystem

RSA [110] is based on the hardness of integer factorization problem. Rabin

cryptosystem [104] is also based on integer factorization problem.

Quadratic Residue Problem (QRP). The problem is to decide whether an

element x ∈ ZN has a modular square root where N is a composite number.

It can be proved that if factorization of N is known then QRP in ZN is no

longer hard. Goldwasser-Micali [45] cryptosystem is based on QRP.

Chapter 1: Introduction 6

Discrete Logarithm Problem (DLP). Let G be a large cyclic group with gen-

erator g. Then given any element y = ga in G, the problem of finding the

exponent a is called DLP over G. El Gamal system [35, 36] is a public key

cryptosystem based on DLP. In an elliptic curve group over a finite field,

a similar problem of ECDLP can be formulated using the additive struc-

ture of the group. Based on the hardness of ECDLP and ECDHP (elliptic

curve Diffie-Hellman problem), the notion of Elliptic Curve Cryptography

was proposed independently by Koblitz [71] and Miller [91].

Knapsack Problem. Given a set of n positive integers {ki} and a positive integer

N , the problem is to find whether it is possible to represent N =
∑n

i=1 aiki

where each ai is either 0 or 1. This is also called the subset sum problem.

Many cryptosystems like Merkle-Hellman cryptosystem [88] were proposed

based on this subset sum problem, and most of them have been broken. One

may refer to [117,118] for an account on such attacks.

Shortest Vector Problem (SVP). The problem is to find the shortest non-

zero vector in a high dimensional lattice. This is hard in general and a

few cryptosystems like NTRU [58], Ajtai-Dwork system [4, 5] are based on

this problem. It is worth noting that neither IPF nor DLP is hard under

the quantum computation model, but SVP continues to remain hard in the

quantum era.

1.4 Goal of this Thesis

The main goal of this thesis is Cryptanalysis of RSA modulus N = pq and related

Factorization problems. It is still unknown whether there is an efficient (polynomial

time) algorithm to solve the ‘Integer Factorization Problem (IFP)’ in the classical

model. The best known algorithm to solve this problem is the Number Field Sieve

(NFS) [76], which has runtime greater than exp(log1/3N). However, if one obtains

certain information about the RSA parameters, there are algorithms which can

factor N quite efficiently. Our intention is to identify such weaknesses of the RSA

cryptosystem and also to look into certain versions of factorization problem (in

this thesis, the implicit factorization problem) that can be solved efficiently.

7 1.5 Organization of the Thesis

1.5 Organization of the Thesis

The thesis presents several cryptanalytic results against the RSA cryptosystem

when parts of the secret key are known or known in disguise. Most of our results

use the LLL algorithm to obtain the secret key, and the main idea for each ap-

plication is how to phrase the problem as a lattice problem and how to compute

the dimension and determinant of the lattice. Lattice based root-finding ideas for

polynomials is the theme for most of the results presented here. Moreover, all

the results and discussions are targeted towards finding weaknesses in the RSA

cryptosystem and its implementation. There are several attempts at RSA crypt-

analysis in the same vein, and this thesis also illustrates how these results improve

on the previous state of the art.

It is recommended that one reads the chapters in the order they are presented.

However, the reader may choose to browse quickly to a chapter of his/her choice

and refer back to Chapter 2 for the mathematical background. A short summary

for each chapter is presented as follows.

Chapter 1: In the current chapter, we have discussed some introductory materials

regarding cryptography, and its major classifications. We also present the goal

and structure of this thesis.

Chapter 2: In the next chapter, we start with some basic mathematical definitions

and an overview of the RSA cryptosystem. In section 2.5, we introduce lattice

based root finding techniques for modular polynomials. In section 2.6, we discuss

the approach to find roots of a polynomial over integers. We will use these root

finding techniques frequently in the thesis.

Chapter 3: In this chapter, we discuss our work to identify encryption exponents

for which RSA becomes weak. The materials of this chapter are based on our

publication [81].

Chapter 4: Here we study the vulnerabilities of RSA in terms of its decryption

exponent. We go through the model of RSA in the presence of many decryption

exponents, and discuss our work regarding cryptanalysis of RSA within this model.

The materials of this chapter are based on our publications [114,115].

Chapter 1: Introduction 8

Chapter 5: In addition to the weaknesses of RSA due to weak keys, it may also be

vulnerable due to leaked information about the RSA primes. In this chapter, we

discuss the factorization of the RSA modulus N by reconstructing the primes from

randomly known bits. In Sections 5.1 and 5.2, we analyze the fact that N = pq

can be factored in reasonable time complexity when a few bits of the primes are

known from the least significant halves. In Section 5.3, we analyze the same when

a few bits are known from the most significant halves of the primes. The materials

of this chapter are based on our publication [82].

Chapter 6: At times, one may not obtain explicit bitwise information about

the primes, but have some implicit knowledge regarding those. An attempt at

RSA factorization based on this implicit knowledge is of interest as well. This

chapter deals with the analysis of a situation when one can factor RSA moduli

N1 = p1q1, N2 = p2q2, . . . , Nk = pkqk in polynomial time if p1, p2, . . . , pk share a

few bits. This problem is called the implicit factorization problem, introduced by

May and Ritzenhofen in [86]. In Section 6.1, we present the implicit factorization

strategy for two or three large integers when they share MSBs and/or LSBs. Next,

in Section 6.2, we analyze the same problem when the primes p1, p2 share a (con-

tiguous) portion of bits at the middle. The materials of this chapter are based on

our publications [113,116].

Chapter 7: In this chapter, we present two generalizations, Extended Partially

Approximate Common Divisor Problem (EPACDP) and Extended General Ap-

proximate Common Divisor Problem (EGACDP), of the ‘approximate common

divisor problem’ introduced by Howgrave-Graham [61]. We also propose two ap-

plications of ‘approximate common divisor problem’. In Sections 7.4 and 7.6, we

propose two methods to solve EPACDP, and in Section 7.7, we discuss the solution

of EGACDP. Most importantly, continuing from Chapter 6, we discuss the appli-

cations of EPACDP for implicit factorization when p1, p2, . . . , pk share some MSBs

and or LSBs. The materials of this chapter are based on our publications [112,116].

Chapter 8: This chapter concludes the thesis. Here we present a comprehensive

summary of our work that has been discussed throughout the thesis. We analyze

and compare our work with the contemporary advances in the field of cryptography

and also discuss open problems which might be interesting for further investigation

along this line of research.

9 1.6 Prerequisites

1.6 Prerequisites

Public Key Cryptography is a highly mathematical endeavor. RSA itself is based

on the integer factorization problem, which has baffled the mathematicians for

ages. To understand the intricate details of RSA and lattice-based results proposed

in this thesis, one requires a strong foundation in Mathematics. We frequently use

involved results of number theory, linear algebra and probability in this thesis, and

expect the reader to possess a good grasp on these topics.

Although we present a comprehensive overview of all necessary mathematical

preliminaries in Chapter 2, a graduate level training in mathematics is recom-

mended to read the material comfortably.

Chapter 2

Mathematical Preliminaries

This chapter is dedicated to provide the reader with a comprehensive overview

of the mathematical framework one may need to read this thesis. Due to the

requirement for complexity analysis of the algorithms we discuss in this thesis, let

us start with a brief overview of the basic asymptotic notations in Section 2.1.

In Section 2.2, we discuss the RSA cryptosystem in detail and also describe the

different variants of RSA used in practice. Next, we move on to our basic focus,

cryptanalysis of RSA, in Section 2.3 and present a comprehensive summary of

attacks on the RSA cryptosystem proposed in the last few decades. Most of the

works in this thesis, as well as many partial key exposure attacks on RSA depend

on lattice based polynomial solving techniques. Thus we study the basic properties

of lattices in Section 2.4, and discuss the existing techniques to solve modular and

integer polynomials in Sections 2.5 and 2.6 respectively.

2.1 Asymptotic Notation

In mathematics, computer science, and other fields related to computation, the

time and space requirement for an algorithm to run is generally represented as a

function of the size of the input(s). In this context, the asymptotic notations are

used to describe the limiting behavior of these functions, in an asymptotic sense,

as the input size tends to a specific value or towards infinity. Bachmann-Landau

notations [27] are a family of asymptotic notations used to compare computational

complexity (time or space) of algorithms. This family comprises of notations ‘Big

O’ (O), ‘Small o’ (o), ‘Big Omega’ (Ω), ‘Big Theta’ (Θ) and ‘Small Omega’ (ω),

11

Chapter 2: Mathematical Preliminaries 12

and we shall use the first two in this thesis.

Definition 2.1 (Small o Notation). Given two functions f(n) and g(n), we say

that f(n) ∈ o (g(n)) if, for any constant c > 0, there exists a constant N > 0 such

that 0 ≤ f(n) < cg(n) for all n ≥ N .

Definition 2.2 (Big O Notation). Given two functions f(n) and g(n), we say that

f(n) ∈ O (g(n)) if there exist constants c > 0 and N > 0 such that 0 ≤ f(n) ≤
cg(n) for all n ≥ N .

In other words, we say that f(n) ∈ o (g(n)) if lim sup f(n)
g(n)

= 0, and f(n) ∈
O (g(n)) if lim sup f(n)

g(n)
is some finite constant. For example, n2 + 1 ∈ o (n3),

and n2 + 1 ∈ O (n2), where n is a positive integer. But n2 + 1 6∈ o (n2), as

limn→∞
n2+1
n2 = 1. From the discussion so far, one may observe that if f(n) ∈

O (g(n)), then f is asymptotically bounded above by g, up to a constant factor.

However, f(n) ∈ o (g(n)) indicates that f is asymptotically dominated by g. Thus,

the Small o is a stricter condition compared to Big O. In formal terms, we have

o (g(n)) ⊆ O (g(n)). One may refer to [27] for further technical details regarding

asymptotic notations.

Throughout this thesis, we shall denote the bitsize of an integer N by lN and

it is defined as the number of bits in N . That is, lN = ⌈log2N⌉ when N is not a

power of 2 and lN = log2N +1, when N is a power of 2. We say that an algorithm

A is a polynomial time algorithm if its running time is polynomial in the bitsize of

its input. For an example, consider the algorithm for schoolbook multiplication.

It is a polynomial time algorithm, because for any two integer inputs a, b, we can

find a× b in time O(log a · log b), which is polynomial (quadratic) in the combined

input bitsize of log a+ log b.

2.2 RSA Cryptosystem

RSA was designed by R. Rivest, A. Shamir and L. Adleman in 1977, when they

were at the Massachusetts Institute of Technology (MIT). It was published in

1978 and over the last three decades, RSA has become the most popular public

key cryptosystem. One of the main reasons behind the soaring popularity of

RSA is the simplicity of its theory and computations. It is widely used in modern

electronic commerce protocols and is believed to be secure provided the parameters

13 2.2 RSA Cryptosystem

are implemented properly. In 2002, all three inventors of RSA received the Turing

Award for their ingenious contribution for making public-key cryptography useful

in practice. Let us systematically study the RSA cryptosystem before proceeding

any further.

2.2.1 Classical Model of RSA

In a public key cryptosystem, there exists three major components, namely the

key generation process, and the algorithms for encryption and decryption. Key

generation and decryption are performed by the recipient, whereas the encryption

occurs on the side of the sender. In case of RSA, the three phases can be described

as follows. We shall henceforth assume that Alice is the sender and Bob is the

receiver in our cryptographic scheme.

Key Generation

To create a public/private key pair for the RSA cryptosystem, Bob first chooses

randomly two ‘large’ primes p, q (recommended to use primes of same bitsize with

minimum size of 512 each). Then he calculates the product N = pq and Euler’s

totient function φ(N) = (p− 1)(q − 1). Bob keeps the values p, q, φ(N) secret, as

any one who knows any one of these values will be able to decrypt messages sent

to Bob.

Bob’s next step is to find two positive integers e, d such that ed ≡ 1

(mod φ(N)). Bob publishes the pair (e,N) as his public key, which can be used

to encrypt messages meant for Bob. The pair (d,N) is Bob’s secret key and these

are used to decrypt the received ciphertexts.

Encryption

To send a plaintext to Bob, Alice first transforms her message in to an element m

of ZN , and calculates c ≡ me (mod N). The ciphertext c is sent to Bob.

Decryption

After receiving the ciphertext c, Bob decrypts c by computing cd mod N and gets

back m.

Chapter 2: Mathematical Preliminaries 14

Correctness of RSA algorithm

Here we present the proof of the correctness of the RSA algorithm, that is cd mod

N = m. We know that ed ≡ 1 (mod φ(N)). So, we can write ed = 1 + kφ(N) for

some integer k. Let us first assume that m ∈ Z
∗
N (integers less than and co-prime

to N). Then,

cd ≡ med (mod N)

≡ m1+kφ(N) (mod N)

≡ m · (mφ(N))k (mod N)

≡ m (mod N) (as mφ(N) ≡ 1 (mod N) by Euler’s Theorem [126]).

Now assume that m ∈ ZN \ Z∗
N , that is gcd(m,N) > 1. If m ≡ 0 (mod p) and

m ≡ 0 (mod q), then m ≡ 0 (mod N). Then cd ≡ med ≡ m ≡ 0 (mod N). On

the other hand, let us assume without loss of generality that m ≡ 0 (mod p) and

m 6≡ 0 (mod q). Then cd ≡ med ≡ m ≡ 0 (mod p). So, p divides med −m. We

also have

med ≡ m1+kφ(N) (mod q)

≡ m ·mk(p−1)(q−1) (mod q)

≡ m ·
(
mq−1

)k(p−1)
(mod q)

≡ m (mod q) as mq−1 ≡ 1 (mod q).

So, q divides med −m. Hence, pq = N divides med −m i.e., med ≡ m (mod N).

Example of RSA Cryptosystem

Let us present a toy example to illustrate the basic operations.

Example 2.3. Bob chooses two primes p = 653, q = 877, and calculates N =

pq = 572681, φ(N) = (p− 1)(q − 1) = 571152. Suppose that Bob picks an integer

e = 13 as the encryption exponent. Now he has to find the decryption exponent d

which is e−1 in Zφ(N). One can check that 13× 395413 ≡ 1 (mod 571152). Hence,

the RSA parameters for Bob are

• public key: (13, 572681), and

15 2.2 RSA Cryptosystem

• private key: (395413, 572681).

To encrypt a plaintext m = 12345, Alice uses Bob’s public key (13, 572681), and

calculates c = 1234513 mod 572681 = 536754 and sends c to Bob. To decrypt

c = 536754, Bob calculates 536754395413 mod 572681 = 12345 = m.

However, one may note that if an adversary can factor N , then he/she can

find d from the public key (e,N). In Example 2.3, it is not very hard to factor

N = 572681 into its prime factors. In practice though, the bitsize of N is taken

large enough so that it can not be factored efficiently using the current computation

power. It is recommended to use N of bitsize 1024 or more to prevent factorization.

Security issues of RSA will be discussed in more details later in this chapter.

Example 2.4. In a practical scenario, the RSA parameters will look as follows.

p = 846599862936164736402988177812099956013778770876315707836731563770

5880893839981848305923857095440391598629588811166856664047346930517527

891174871536167839,

q = 1217643468620406884679731818277104033968965197246189229334942736503

0339100965821711975719883742949180031386696753968921229679623132353468

174200136260738213,

N = 10308567936391526757875542896033316178883861174865735387244345263

7137208314161521669308869345882336991188745907630491004512656603926295

3518502967942206721243236328408403417100233192004322468033366480788753

9303481101449158308722791555032457532325542013658355061619621556208246

3591629130621212947471071208931707,

e = 216 + 1 = 65537, and

d = 101956309423526004076893177133219940094766772585504692321252302615

1120238295258506352584280960487541607315458593878388760777253827593350

0788233193317652234750616708162985718345962209115090210535366860135950

1135207708372912478251719497009548072271475262211661830196811724409660

406447291034092315494830924578345.

The public key will be (e,N) and the private key (d,N), as usual.

2.2.2 Implementation of RSA

The practical implementation of the RSA algorithm follows the structure as shown

in Algorithm 1. To discuss the implementation cost of RSA in terms of time and

Chapter 2: Mathematical Preliminaries 16

space complexity, one may need to refer back to the basic definitions of asymptotic

notations at the beginning of this chapter.

Generate randomly two large primes p, q;1

Compute N = pq, φ(N) = (p− 1)(q − 1);2

Generate e randomly such that gcd (e, φ(N)) = 1;3

Compute d such that ed ≡ 1 (mod φ(N));4

Encryption: m 7→ me mod N ;5

Decryption: c 7→ cd mod N ;6

Algorithm 1: Implementing RSA [126].

Primality Testing

In Step 1 of Algorithm 1, one needs to generate large random primes p, q. This is

done by generating large random numbers and thereafter testing those for primal-

ity. This approach works well due to the Prime Number Theorem (PNT) [126].

Theorem 2.5 (PNT). There are approximately N
lnN

primes smaller than N .

In simpler words, the Prime Number Theorem states that on an average, one will

find a prime if he/she chooses ln p many random integers of bitsize lp.

The next step is primality test. There are many efficient primality testing al-

gorithms in practice. One may use the Solovay-Strassen Algorithm [123] or the

Miller-Rabin Algorithm [90, 105] for this purpose. The time complexity of both

Solovay-Strassen and Miller-Rabin algorithms is O(l3p) to test an lp bit integer. For

practical RSA instances, lp will be 512 or 1024-bit integers, and hence both the

algorithms work well to test whether a number is prime or not. However, both

are probabilistic algorithms, and in practice Miller-Rabin algorithm fares better

than the Solovay-Strassen algorithm. This is because the probability of failure

of Miller-Rabin test (at most 4−k for k different candidates) is much less com-

pared to the one for Solovay-Strassen (at most 2−k for k different candidates). If

the Generalized Riemann Hypothesis is true then Miller-Rabin Algorithm can be

run deterministically with time complexity O(l5p). There are many more proba-

bilistic polynomial time primality test algorithms based on elliptic curves, namely

Goldwasser-Kilian [44], Atkin-Morain [6] etc.

Finding a deterministic polynomial time primality test was a open question

for a long period. In 2002, Agrawal, Kayal and Saxena [3] proposed a determin-

17 2.2 RSA Cryptosystem

istic primality test called the AKS algorithm. The time complexity of AKS was

of O(l12+ǫ
p), and in 2005, Pomerance and Lenstra [101] improved the time com-

plexity up to O(l6+ǫ
p). However, Miller-Rabin algorithm is much faster than AKS

in practice and hence it is the one used in the implementation of RSA. A formal

description of the Miller-Rabin test is presented in Algorithm 2.

Input: n > 3, an odd integer to be tested for primality
Output: ‘composite’ if n is composite, otherwise ‘probably prime’

Write n− 1 = 2s · d with d odd;1

Pick random a ∈ [1, n− 1];2

Set x← ad mod n;3

if x = 1 then4

Return (‘probably prime’);5

end
for i = 0 to s− 1 do6

if x ≡ −1 (mod n) then7

Return (‘probably prime’);8

end
else9

x← x2 mod n;10

end

end
Return (‘composite’);11

Algorithm 2: Miller-Rabin Primality Test [126].

Product of Two Integers

Multiplication is fast. Even if one uses a trivial schoolbook multiplication algo-

rithm to find N and φ(N) in Step 2 of Algorithm 1, it can be done in polynomial

number (lp × lq = O(l2p), as lp ≈ lq) of single digit multiplications. However, with

large sized integers like p and q, it may be useful to try the Karatsuba multiplica-

tion algorithm [87], which reduces the complexity to 3 · llog2 3p ≈ 3 · l1.585p number of

single digit multiplications.

Extended Euclidean Algorithm (EEA)

In Step 3 of Algorithm 1, we choose random integers e and test if gcd(e, φ(N)) = 1.

To find the GCD, one can use the Euclidean algorithm as follows.

Chapter 2: Mathematical Preliminaries 18

Input: Two positive integers a, b
Output: gcd(a, b), the GCD of the two input integers

Initialize r0 = a, r1 = b and m = 1;1

while rm 6= 0 do2

qm ← ⌊ rm−1

rm
⌋;3

rm+1 ← rm−1 − qmrm;4

m = m+ 1 ;5

end
m=m-1 ;
Return rm;6

Algorithm 3: The Euclidean Algorithm [126].

Let us present a simple proof that the Euclidean algorithm is efficient, that is,

it runs in time polynomial in the size of the inputs. Note that we can list down

the steps of the Euclidean algorithm as follows (with a = r0, b = r1).

r0 = q1r1 + r2 with 0 < r2 < r1,

r1 = q2r2 + r3 with 0 < r3 < r2,
...

rm−2 = qm−1rm−1 + rm with 0 < rm < rm−1,

rm−1 = qmrm + 0 as rm+1 = 0.

Thus, we have a = r0 > b = r1 > r2 > r3 > · · · > rm−1 > rm = gcd(a, b)

from the algorithm. Again, we know that qi ≥ 1 for each i = 1, . . . ,m, and thus

r0 ≥ r1 + r2 > 2r2, r2 ≥ r3 + r4 > 2r4, and so on. This produces the relation

b =

{

r1 > 2r3 > 4r5 > · · · > 2m−1rm if m is odd,

r1 > r2 > 2r4 > 4r6 > · · · > 2m−2rm if m is even,

which, in turn, gives m < log2 b+2. Notice that m is the number of steps the loop

in the Euclidean algorithm runs, and hence, the time complexity of the algorithm

to find gcd(a, b) comes as O(log b) divisions. Each of these divisions takes at most

O(log2 a) operations where a ≥ b. Hence, the time complexity of finding gcd(a, b)

amounts to O(log2 a · log b), that is O(log3 a). If we perform a more rigorous

analysis, the computational complexity to find the GCD of two integers, each of

size lN , can be proved to be O(l2N) [126], and one needs to iterate this step a few

times to obtain a suitable e.

19 2.2 RSA Cryptosystem

After finding an e which is relatively prime to φ(N), one needs to find its inverse

modulo φ(N) in Step 4 of the algorithm. That is, one needs to find an integer

d such that ed ≡ 1 (mod φ(N)). For that one can use the Extended Euclidean

algorithm, as presented in Algorithm 4. The time complexity of this algorithm is

the same as that of the Euclidean algorithm, i.e, O(l2N) for a, b with bitlength lN .

Input: Two positive integers a, b
Output: r, s, t with r = sa+ tb where r = gcd(a, b)

Initialize a0 = a, b0 = b, t0 = 0, t = 1, s0 = 1, s = 0;1

q = ⌊a0
b0
⌋;2

r = a0 − qb0;3

while r > 0 do4

t1 = t0 − qt;5

t0 = t;6

t = t1 ;7

t1 = s0 − qs;8

s0 = s;9

a0 = b0;10

b0 = r;11

q = ⌊a0
b0
⌋;12

r = a0 − qb0;13

end
r = b0;14

return r, s, t.15

Algorithm 4: The Extended Euclidean Algorithm [126].

Square and Multiply Algorithm

For Steps 5 and 6 in Algorithm 1, one has to perform modular exponentiations.

For this purpose, one may use the Square and Multiply Algorithm [126]. The

time complexity of a single modular exponentiation xy mod N using the square

and multiply algorithm is O(lyl
2
N), which is O(l3N) as the exponents e, d are both

less than N . For a quick reference, we present the famous square and multiply

algorithm for modular exponentiation in Algorithm 5.

Chapter 2: Mathematical Preliminaries 20

Input: x, y,N
Output: xy mod N
z = y, u = 1, v = x;1

while z > 0 do2

if z ≡ 1 (mod 2) then3

u = uv mod N ;4

end
v = v2 mod N ; z = ⌊ z

2
⌋ ;5

end
return u.6

Algorithm 5: Square and Multiply Algorithm.

2.2.3 Variants of RSA

CRT-RSA

To speed up the decryption phase of RSA, Quisquater and Couvreur [103] proposed

the use of Chinese Remainder Theorem (CRT) in the decryption phase. This

variant of RSA is known as CRT-RSA, and it is the most widely accepted version

of RSA in practice. The backbone of the scheme is CRT, stated as follows.

Theorem 2.6 (CRT). Suppose p1, p2, . . . , pk (k ≥ 2) are pairwise relatively prime

positive integers. Then for any set of integers a1, a2, . . . , ak, there exists a unique

x < p1p2 · · · pk such that

x ≡ a1 (mod p1), x ≡ a2 (mod p2), . . . , x ≡ ak (mod pk).

In case of CRT-RSA, we consider the special case of k = 2. In this scenario, x

can be deduced as follows.

x ≡ a2 (mod p2) ⇒ x = a2 + lp2 for some integer l, and thus

x ≡ a1 (mod p1) ⇒ a2 + lp2 ≡ a1 (mod p1)

⇒ l ≡ (a1 − a2)×
(
p−1
2 mod p1

)
mod p1.

This value of l, put back into the first congruence, gives the formula for x as

x = a2 + lp2 =
(
a2 + ((a1 − a2)× (p−1

2 mod p1) mod p1)× p2
)
mod p1p2.

Example 2.7. Take p1 = 2, p2 = 3 and a1 = 1, a2 = 2. The goal is to find an

21 2.2 RSA Cryptosystem

integer x < p1p2 = 6 such that x ≡ a1 (mod p1) and x ≡ a2 (mod p2). One can

check x = 5 uniquely satisfies such conditions.

Let us now describe the CRT-RSA model. Recall that the decryption key in

RSA is (d,N). In CRT-RSA, the decryption key is (dp, dq, p, q) where

dp ≡ d mod p− 1 and dq ≡ d mod q − 1.

In the decryption phase of CRT-RSA, one have to first calculate

cp ≡ cdp (mod p) and cq ≡ cdq (mod q).

Note that m ≡ cd ≡ cdp ≡ cp (mod p) by Fermat’s little Theorem [126], as dp ≡
d mod p− 1. Similarly, m ≡ cq (mod q). Using cp, cq, p and q, one can find unique

solution for m mod N using Chinese Remainder Theorem (CRT), as follows.

m =
(
cq +

(
(cp − cq)×

(
q−1 mod p

)
mod p

)
× q
)
mod N.

Example 2.8. Consider Example 2.3 in RSA, with p = 653, q = 877, N =

572681, e = 13 and d = 395413. In this case dp = 301 and dq = 337. So when Bob

gets the ciphertext c = 536754 as in Example 2.3, he first calculates

cp = 536754301 mod 653 = 591 and cq = 536754337 mod 877 = 67.

After finding cp and cq, Bob gets the plaintext m = 12345 using CRT on cp =

591, cq = 67, p = 653 and q = 877.

Note that the computation of m involves 1 modular subtraction (modulo p),

1 modular addition (modulo N) and 2 modular multiplications (modulo p and

N). Each of these operations is very fast in practice. The most time consuming

operation in the formula is the modular inversion q−1 mod p. Hence, to make the

calculation of m faster, q−1 mod p is stored as a part of the CRT-RSA decryption

keys. As lp ≈ lq ≈ lN
2

and the computations in CRT-RSA are performed modulo

p, q instead of modulo N , the decryption phase in CRT-RSA is four times faster

than RSA (three times if RSA uses Karatsuba multiplication [87] techniques).

Chapter 2: Mathematical Preliminaries 22

CRT-RSA with dp − dq = 2

To reduce the storage space for the CRT-RSA parameters, Qiao and Lam [102]

proposed using CRT-RSA with dp − dq = 2. In this case, one needs to store

only one of the decryption exponents and the other one can be generated trivially

at runtime. This variant of RSA is very useful in case of hand-held devices like

smart-cards, which have comparatively low storage capacities. However, Jochemsz

and May [65] showed that some lattice-based attacks on CRT-RSA can be made

stronger if dp − dq = 2, and this is a major drawback of this variant of RSA.

Multi Prime RSA

Some time it is useful to choose an RSA modulus N = p1p2 · · · pr with distinct

primes pi, or to choose N = prq with p 6= q. The first one is known as multi prime

RSA, and the second variant was proposed by Takagi [127]. The reader may refer

to [53] for various interesting results related to multi prime RSA.

Common Prime RSA

A special instance of RSA where gcd(p − 1, q − 1) is large, is known as common

prime RSA. Attacks on RSA which exploit small decryption exponent d work less

efficiently [52] in this variant of RSA. The reader may refer to [54] to know the

current results related to common prime RSA.

2.3 Cryptanalysis of RSA

From the previous discussion, we may recall that c = me mod N is the main

relation between the plaintext and the ciphertext in RSA. From the point of view

of an attacker, the RSA Problem can be framed as follows.

Problem 2.9 (RSA Problem). Consider an RSA setup with public key (e,N),

private key (d,N) and c = me mod N . Given just 〈c, e,N〉, find message m.

As c1/e is m in ZN , if one can find the e-th root of the ciphertext c in ZN ,

then he/she can obtain the plaintext m. So RSA problem can also be stated as a

problem to find the e-th root of a given integer modulo N . However it is believed

23 2.3 Cryptanalysis of RSA

to be hard when one chooses the RSA parameters properly. In this section, we

shall take a tour of the existing attempts to solve the RSA problem in practice. A

nice treatise on this topic can also be found in the recent book by Yan [131].

2.3.1 Factoring RSA Modulus

Note that if one can factor the RSA modulus N into its prime factors p, q, then

one can easily calculate φ(N). So the decryption exponent d can be efficiently

calculated from e, φ(N) using Extended Euclidean Algorithm. In this case RSA

problem will no longer be hard. It is still unknown whether the converse is true.

In 1998, Boneh and Venkatesan [18] provided some evidence to conclude that RSA

problem may be easier than the factorization problem. After this work, a lot of

research have been done in this direction [2, 19, 67].

Currently, the best known factorization algorithm is the Number Field Sieve

(NFS) [76], with a time complexity of

exp
(

(1.902 + o(1)) ln(N)
1
3 (ln (ln(N)))

2
3

)

in an asymptotic sense (N → ∞). In December 2009, 768-bit RSA modulus [69]

has been factored using the Number Field Sieve. This factorization took over 2

years to execute and is currently the record in the field.

When one of the prime factors of N is significantly smaller than the other, one

can use the Elliptic Curve Method (ECM) [79] for factorization. In March 2010,

the current record for ECM factorization was set by factoring an integer with the

smallest prime factor of size 241 bits [132]. For more results regarding integer

factorization, the reader may refer to [75].

Shor [119,120] proved that the factorization problem can be solved in polyno-

mial time in the quantum computation model. However it is not yet clear whether

quantum computers with sufficiently large register can be constructed.

Under the scope of this thesis, we concentrate on the factorization of RSA

modulus N = pq. A lot of research has been done on general purpose factorization

and there exist numerous interesting results. For example, one may refer to the

result of Boneh et al [17] about the factorization of n = prq for large r. Similarly,

the paper of Erdös and Pomerance [37] can be cited as a relevant work on the

largest prime factors of n and n + 1. One may also see the papers by Luca

Chapter 2: Mathematical Preliminaries 24

and Stănică [80], and Chen and Zhu [20] for results related to the prime power

factorization of n! for any positive integer n. There have been many attempts to

factor integers of other special forms as well; namely the factorization of Fermat

numbers [78], the factorization of Mersenne numbers [132] etc.

2.3.2 Partial Exposure of Primes

Coppersmith [22,24] proved that factorization of the RSA modulus can be achieved

in polynomial time given half of the Most Significant Bits (MSBs), that is the

contiguous top half, of one of the factors. Later Boneh et al [16] proved a similar

result when half of the Least Significant Bits (LSBs), that is the contiguous lower

half, of one of the factors is known.

2.3.3 Small Public Exponent Attack

Bob may choose the public exponent e very small (3, say) to allow Alice the

privilege of faster encryption. Suppose an attacker knows a contiguous chunk of

Most Significant Bits (MSBs) of m, and constructs an approximation m1, such

that m1 and m share the known chunk of bits at the top. If |m−m1| < N
1
e , then

Coppersmith [23] proved that the attacker can find m in polynomial time. For an

example, if e = 3, the attacker needs to know the top 2
3
-rd portion of the plaintext

m to recover the whole of m in polynomial time.

2.3.4 Related Message Attack

In 1995, Franklin and Reiter [42] proved that when two plaintexts are sent using

the same RSA modulus N with small public exponent e, then RSA may be weak

in cases where the two plaintexts are polynomially related. This result was later

improved by Coppersmith, Franklin, Patarin and Reiter [26].

Suppose that Alice sends the messages m1 and m2 = αm1 + β to Bob where

the integers α and β are known. Also suppose that Bob uses e = 3. So, we have

c1 = m3
1 mod N and c2 = m3

2 mod N.

25 2.3 Cryptanalysis of RSA

The attacker can find m1 and m2 by computing

β(c2 + 2α3c1 − β3)

α(c2 − α3c1 + 2β3)
≡ m1 (mod N) and m2 = αm1 + β mod N.

2.3.5 Broadcast Attack

H̊astad [48, 49] proved that for small encryption exponent e, if the same plain-

text m is sent to different receivers, then RSA may be weak. In 2008, May and

Ritzenhofen [85] improved this attack of H̊astad.

2.3.6 Timing Attack

In 1995, Kocher [72] proposed a new attack on RSA to obtain the private exponent

d. He showed that an attacker can get a few bits of d by timing characteristic of an

RSA implementing device. After the publication of this idea, the vulnerabilities

of RSA were tested against a lot of side channel attacks in this direction [8,16,38].

2.3.7 Small Decryption Exponent Attack

In 1990, Wiener [130] proved that if the decryption exponent d < 1
3
N

1
4 , one can

factor N in polynomial time when the primes p, q are of the same bitsize. He used

certain results from Continued Fractions to prove this. Let us first take a look at

the theoretical background.

Continued Fraction (CF)

Given a positive rational number a
b
, it can be represented as a finite CF expression

as follows.
a

b
= q1 +

1

q2 +
1

q3 + · · ·+
1

qm

Chapter 2: Mathematical Preliminaries 26

In short, one can write the CF representation as [q1, q2, q3, . . . , qm]. For example,

take the rational number 34
99
. One can write this as 34

99
= [0, 2, 1, 10, 3], that is,

0 +
1
99
34

= 0 +
1

2 + 31
34

= 0 +
1

2 + 1
34
31

= 0 +
1

2 + 1
1+ 3

31

= 0 +
1

2 + 1
1+ 1

31
3

= 0 +
1

2 + 1
1+ 1

10+1
3

.

Now consider a subsequence [0, 2, 1] of [0, 2, 1, 10, 3]. Note that 0 + 1
2+ 1

1

=
1
3
= 33

99
, which is very close to 34

99
. This indicates that a subsequence of a CF

representation may produce a good approximation to the rational number. Any

initial subsequence of [q1, q2, q3, . . . , qm], i.e, [q1, q2, q3, . . . , qr], where 1 ≤ r ≤ m

is called a convergent of the original sequence [q1, q2, q3, . . . , qm]. For example,

[0, 2, 1] is a convergent of [0, 2, 1, 10, 3], which implies that 1
3
= 33

99
is a convergent

of 34
99
. Also note that if the subsequence has a 1 at the end then it may also be

represented by adding that 1 to the previous integer and thus shortening the length

of the subsequence. For example, both [0, 2, 1] and [0, 3] provide the same rational

number. There are many interesting results about the convergence of continued

fraction representations. For the purpose at hand, we need the following result [47].

Theorem 2.10. Suppose gcd(a, b) = gcd(c, d) = 1 and |a
b
− c

d
| < 1

2d2
. Then c

d
is

represented by one of the convergents of the continued fraction expansion of a
b
.

It is also important to note that for t bit integers a, b, the CF expression

[q1, q2, q3, . . . , qm] of
a
b
can be computed in O(poly(t)) time and can be stored in

O(poly(t)) space. Let us see how this may be utilized to attack RSA.

Wiener’s Attack

We have ed ≡ 1 (mod N). So we can write ed = 1 + kφ(N) for some integer k.

So,

e

φ(N)
− k

d
=

1

dφ(N)
.

27 2.4 Lattice and LLL Algorithm

Note that N −φ(N) = pq− (p− 1)(q− 1) = p+ q− 1 < 3
√
N when p, q are of the

same bitsize. In this case,

∣
∣
∣
∣

e

N
− k

d

∣
∣
∣
∣

=

∣
∣
∣
∣

ed− kN
Nd

∣
∣
∣
∣

=

∣
∣
∣
∣

1 + k(φ(N)−N)

Nd

∣
∣
∣
∣

<
3
√
Nk

Nd
=

3k

d
√
N

Recall that d < N
1
4/3. As k < d, we have 3k < 3d < N

1
4 . Hence,

∣
∣ e
N
− k

d

∣
∣ < 1

dN
1
4
.

Thus, ∣
∣
∣
∣

e

N
− k

d

∣
∣
∣
∣
<

1

3d2
<

1

2d2
.

In such a case, we can find d, k by computing convergents of the CF expansion of
e
N
, as indicated by the Theorem 2.10. Even when d > N

1
4/3, Wiener’s attack may

work sometimes, but the success probability approaches zero [125] as d grows.

Recall the RSA equation ed = 1+kφ(N), i.e., ed = 1+k(N+1−p−q). If one can
find the root (x0, y0) = (k mod e, (1− p− q) mod e) of the modular polynomial

fe(x, y) = 1 + x(N + y) in Ze, one can factor N as long as |1 − p − q| < e. In

Eurocrypt 1999, Boneh and Durfee [14] proved that one can find the root of the

polynomial fe(x, y) in polynomial time as long as d < N0.292.

The approach of Boneh and Durfee was based on certain results of lattices.

Many other results in RSA cryptanalysis rely on the study of lattices as well. We

shall also exploit some lattice-based tools throughout this thesis. Hence, let us get

familiar with some basic concepts and a few specialized tools from the theory of

lattices before proceeding any further.

2.4 Lattice and LLL Algorithm

In this section we discuss a few facts about lattices and lattice basis reduction

techniques. For basic results in linear algebra that we may use, the reader may

refer to [57]. Let us present a set of definitions to initiate our discussion.

Definition 2.11 (Inner Product). Let v1 = (a1, a2, . . . , am) ,v2 = (b1, b2, . . . , bm)

be two vectors in Z
m. Then the inner product of v1,v2 is denoted by 〈v1,v2〉 and

Chapter 2: Mathematical Preliminaries 28

defined as 〈v1,v2〉 = a1b1 + a2b2 + · · ·+ ambm =
m∑

i=1

aibi.

Definition 2.12 (Euclidean norm). Euclidean norm of a vector v1 is denoted by

||v1|| and defined as ||v1|| =
√

〈v1,v1〉.

Definition 2.13 (Lattice). Let v1, . . . ,vn ∈ Z
m (m ≥ n) be n linearly indepen-

dent vectors. A lattice L spanned by {v1, . . . ,vn} is the set of all integer linear

combinations of v1, . . . ,vn. That is,

L =

{

v ∈ Z
m | v =

n∑

i=1

aivi with ai ∈ Z

}

.

We often say that L is the lattice spanned by the rows of the matrix M whose

rows are v1, . . . ,vn. We say m is the rank of the lattice L. The set of vectors

B = {v1, . . . ,vn} is called a basis for L. The dimension of L is the number of

linearly independent vectors in B, that is, dim(L) = n. If m = n, then lattice L is

called full rank lattice.

We say that two vectors v1,v2 are mutually orthogonal if 〈v1,v2〉 = 0. Given a

basis B = {v1, . . . ,vn} for a lattice L, a question of interest is whether it is possible

to produce another basis B∗ of L such that all the new basis vectors are orthogonal

to each other. This question had given rise to orthogonalization techniques in

lattices, and the main algorithm used for lattice basis orthogonalization is the

Gram-Schmidt orthogonalization process, as stated in Definition 2.14.

Definition 2.14 (Gram-Schmidt Orthogonalization). The Gram-Schmidt orthog-

onalization of the set of vectors {v1, . . . ,vn} in Z
m is denoted by {v1

∗, . . . ,vn
∗}

where

vi
∗ = vi −

i−1∑

j=1

µi,jvj
∗ with µi,j =

〈vi,vj
∗〉

||vj
∗||2 .

After the Gram-Schmidt orthogonalization is performed on a lattice L, we can

define another invariant of the lattice, called the Determinant.

Definition 2.15 (Determinant). The determinant of L is defined as det(L) =
n∏

i=1

||vi
∗||, where ||v|| denotes the Euclidean norm of v, and vi

∗ arise from Gram-

Schmidt orthogonalization algorithm (Definition 2.14) applied to L.

29 2.4 Lattice and LLL Algorithm

When L is full rank, then det(L) = |det(M)|, whereM is a matrix correspond-

ing to L. For our purpose, we consider only full rank lattices in this thesis.

Example 2.16. Consider two vectors v1 = (1, 2),v2 = (3, 4). Then 〈v1,v2〉 =
1 · 3 + 2 · 4 = 11, and ||v1|| =

√
5. The lattice L generated by v1,v2 is L =

{v ∈ Z
2 | v = a1v1 + a2v2 with a1, a2 ∈ Z}. Matrix M corresponding to L

is M =

(

1 2

3 4

)

and B = {v1,v2} is a basis of L. Since v1,v2 are linearly

independent, the dimension of L is 2 and L is a full rank lattice. Therefore,

det(L) = | det(M)| = 2.

A problem of interest in the theory of lattices is the Shortest Vector Problem

(SVP) [89]. This problem has been studied for ages and no exact solution to this

has been found till date. The problem is as follows.

Problem 2.17 (SVP). Given a lattice L generated by a basis B, find the shortest

vector v ∈ L with respect to a predetermined norm.

Though no one could ever produce an algorithm that will solve SVP in poly-

nomial time, there had been a lot of research in this area. A well known result by

Minkowski [92] deals with this problem as well.

Theorem 2.18 (Minkowski). Every n-dimensional lattice L contains a nonzero

vector v with ||v|| ≤ √n (det(L)) 1
n .

Finding the shortest nonzero vector in a lattice is very hard in general. How-

ever, one can use the famous LLL reduction algorithm [77] of A. K. Lenstra, H.

W. Lenstra Jr., and L. Lovász to approximate the shortest vector. The technique

is as presented in Algorithm 6. LLL algorithm performs some elementary row

operations on the matrix M corresponding to L, and produces an alternate basis

with certain nice properties, as follows [77].

Definition 2.19 (LLL Reduced Basis). We say that a set of basis vectors B =

{r1, r2, . . . , rn} is LLL reduced if

(i) |µij| ≤
1

2
for all 1 ≤ i ≤ n and j < i,

(ii)
3

4
||ri∗||2 ≤ ||µi+1,iri

∗ + ri+1
∗||2 for all 1 ≤ i ≤ n.

Chapter 2: Mathematical Preliminaries 30

A natural question to ask in this direction is the measure of reduction using

LLL. It is also of interest to know the running time of the algorithm for practical

purpose. In this respect, we have the following result.

Lemma 2.20. Let L be an integer lattice of dimension n generated by the basis

vectors {v1,v2, . . . ,vn}. Then the LLL algorithm applied on L outputs a reduced

basis of L spanned by {r1, . . . , rn} with

||r1|| ≤ ||r2|| ≤ · · · ≤ ||ri|| ≤ 2
n(n−1)

4(n+1−i) det(L)
1

n+1−i , for i = 1, . . . , n

in time polynomial in the lattice dimension n and the bitsize of the entries of the

matrix M corresponding to L.

Input: A lattice L with basis {v1,v2, . . . ,vn} ∈ Z
n.

Output: LLL reduced basis {r1, r2, . . . , rn} for L.
Compute v1

∗,v2
∗, . . . ,vn

∗;1

for i = 2 to n do2

for j = i− 1 to 1 do3

vi = vi − [µi,j]vj; // [µi,j] means the integer closest to µi,j4

end

end
if ∃ i such that 3

4
||vi

∗||2 ≥ ||µi+1,ivi
∗ + vi+1

∗|| then5

c = vi;6

vi = vi+1;7

vi+1 = c;8

end
go to 1;9

return {r1, r2, . . . , rn} = {v1,v2, . . . ,vn}.10

Algorithm 6: LLL algorithm for lattice reduction.

Example 2.21. Consider the Example 2.16, where lattice L is generated by B =

{v1,v2} with v1 = (1, 2),v2 = (3, 4). Now we discuss how Algorithm 6 works on

this basis B.

1. v1
∗ = v1 = (1, 2).

2. [µ2,1] =
[
〈v2,v1

∗〉
||v1

∗||2

]

= [11
5
] = 2.

3. v2 = (3, 4)− 2(1, 2) = (1, 0).

31 2.5 Solving Modular Polynomials

4. 3
4
||v1

∗||2 = 3
4
·5 = 15

4
> ||µ2,1v1

∗+v2
∗|| = ||1

5
(1, 2)+(4

5
,−2

5
)|| = ||(1, 0)|| = 1.

5. v1 = (1, 0),v2 = (1, 2).

6. v1
∗ = v1 = (1, 0).

7. [µ2,1] =
[
〈v2,v1

∗〉
||v1

∗||2

]

= [1
1
] = 1.

8. v2 = (1, 2)− 1(1, 0) = (0, 2).

9. 3
4
||v1

∗||2 = 3
4
< ||µ2,1v1

∗ + v2
∗|| = ||0(1, 0) + (0, 2)|| = 2.

Hence LLL reduced basis is B′ = {r1, r2} with r1 = (1, 0), r2 = (0, 2).

There are numerous applications of lattices in cryptology, both for cryptanal-

ysis and for constructive cryptographic design. In this thesis we mainly focus on

Coppersmith’s [24] idea and its modifications for solving polynomials using lattice

basis reduction. The root finding techniques proposed by Coppersmith are com-

prehensively discussed in the Doctoral thesis of Jochemsz [64]. For many more

applications of lattices, the reader may refer to the papers by Joux and Stern [68],

and Nguyen and Stern [94]. For more results related to lattices and lattice basis

reduction, refer to [21, 95,106,121].

2.5 Solving Modular Polynomials

In 1996, Coppersmith [23] introduced a method for finding small modular roots of

univariate polynomial. Since then, the method is used in various applications in

Public Key Cryptography.

Let fN(x) =
∑

i

aix
i be a univariate modular polynomial over ZN . The terms

xi of fN with nonzero coefficients are called monomials. The norm of the poly-

nomial is defined as ||fN || =
√∑

i a
2
i . In general, the roots of fN(x) can not be

found [25, Section 6] efficiently. However, finding small roots may be possible in

polynomial time. To find a small modular root x0 of fN(x), one needs to find

a polynomial h(x) such that h(x0) = 0 holds over integers. Then following the

method of Sturm sequence [70], the root x0 may be obtained efficiently. This is

the main idea behind Coppersmith’s method.

Chapter 2: Mathematical Preliminaries 32

2.5.1 Coppersmith’s Method

Suppose we have a modular polynomial fN(x) with a small root x0 in ZN . To

construct the polynomial h(x), we fix a positive integer m and generate a set of

univariate polynomials gjk, called the shift polynomials, as follows.

gjk(x) = xj(fN(x))
kNm−k for k = 0, . . . ,m and some choice of j.

Clearly, gjk(x0) = 0 mod Nm. Thus, any integer linear combination h(x) of gjk(x)

has also got a root x0 modulo Nm. Now if |h(x0)| < Nm, then h(x0) = 0 holds

over integers as well, and we have obtained our desired function h(x).

The following theorem due to Howgrave-Graham [59] reformulates Copper-

smith’s idea of finding modular roots to prescribe a condition under which we can

conclude that h(x0) = 0 holds over integers.

Theorem 2.22. Let h(x) ∈ Z[x] be an integer polynomial with n monomials.

Further, let m be a positive integer. Then, h(x0) = 0 over integers if the following

two conditions are satisfied.

• h(x0) ≡ 0 (mod Nm) and |x0| < X

• ||h(xX)|| < Nm√
n
.

Proof. Notice that we have

|h(x0)| =
∣
∣
∣
∣
∣

∑

i

hix
i
0

∣
∣
∣
∣
∣
≤
∑

i

∣
∣hix

i
0

∣
∣ ≤

∑

i

|hi|X i ≤ √n · ||h(xX)|| < Nm.

Now since Nm divides h(x0) by the first condition, h(x0) = 0.

To obtain the desired function h(x), we construct a lattice L with basis vectors

coming from the coefficient vectors of the polynomials gjk(xX). Now, our goal is

to find an integer linear combination of these coefficient vectors, that is a vector

in the lattice L, for which the norm is smaller than Nm√
n
. Such a function will

satisfy the conditions of Theorem 2.22. But this problem is analogous to finding

a short vector in a given lattice, and one can use the LLL algorithm to the basis

spanned by the coefficient vectors of gjk(xX) to do so. Note that the polynomial

r1(x) corresponds to the smallest vector generated by the LLL algorithm over an

33 2.5 Solving Modular Polynomials

n dimensional lattice L satisfies

||r1(xX)|| < 2
n−1
4 (det(L))

1
n .

Thus, if 2
n−1
4 (det(L))

1
n < Nm√

n
, then the LLL reduction gives us a polynomial

h(x) = r1(x) such that ||h(xX)|| < Nm√
n

and hence h(x0) = 0. This h(x) is our

desired polynomial to find x0 using common root finding algorithms.

We can extend the idea for multivariate case as well. But in that case, we need

some assumptions, and hence the method becomes heuristic. Consider a multivari-

ate polynomial fN(x1, . . . , xt) with root (x
(0)
1 , . . . , x

(0)
t). Similar to the univariate

case, we can construct a lattice L using shift polynomials gi1,...,it,k(x1, . . . , xt) =

xi11 · · · xitt (fN(x1, . . . , xt))
kNm−k, for some fixed m, k = 0, . . . ,m and i1, . . . , it

non-negative integers. Clearly, gi1,...,it,k(x
(0)
1 , . . . , x

(0)
t) ≡ 0 (mod Nm). Now one

can extend Theorem 2.22 for the multivariate case as follows.

Theorem 2.23. Let h(x1, . . . , xt) ∈ Z[x1, . . . , xt] be the sum of at most ω mono-

mials. Suppose that h(x
(0)
1 , . . . , x

(0)
t) ≡ 0 (mod Nm) where |x(0)1 | ≤ X1, . . . , |x(0)t | ≤

Xt and ||h(x1X1, . . . , xtXt)|| < Nm√
ω
. Then h(x

(0)
1 , . . . , x

(0)
t) = 0 over integers.

Therefore, combining Lemma 2.20 and Theorem 2.23, we can say that if

2
ω(ω−1)

4(ω+1−t) det(L)
1

ω+1−t <
Nm

√
ω
, (2.1)

then the LLL basis reduction algorithm will produce r1(x
(0)
1 , . . . , x

(0)
t) = · · · =

rt(x
(0)
1 , . . . , x

(0)
t) = 0. One can now collect the root (x

(0)
1 , . . . , x

(0)
t) from the polyno-

mials r1(x1, . . . , xt), . . . , rt(x1, . . . , xt) if they are algebraically independent. We say

polynomials r1, . . . , rt are algebraically independent if and only if P (r1, . . . , rt) =

0⇔ P ≡ 0 for any polynomial P defined over Q[x1, . . . , xt]. However, all we know

that the basis vectors r1, . . . , rt generated by LLL are linearly independent, and in

general one can not prove their algebraic independence.

If r1, . . . , rt are algebraically independent, one can find the common root using

the method of resultants [30, Section 3]. For our purpose we need the following.

Proposition 2.24. Suppose that r1(x1, . . . , xt) and r2(x1, . . . , xt) share the com-

mon root (x
(0)
1 , . . . , x

(0)
t). Let R(r1, r2) be the resultant of r1, r2 with respect to xt.

Then, we have

• R(r1, r2) is a polynomial in t− 1 variables x1, . . . , xt−1,

Chapter 2: Mathematical Preliminaries 34

• R(r1, r2) 6= 0 if r1, r2 are algebraically independent, i.e., gcd(r1, r2) = 1, and

• R(r1, r2)(x(0)1 , . . . , x
(0)
t−1) = 0.

Using the method of resultants recursively, we can find a polynomial in x1

(with root x
(0)
1) in t − 1 iterations. We can then find x

(0)
1 easily using some root

finding algorithm. Furthermore, using back-substitution t − 1 times, we can find

x
(0)
2 , . . . , x

(0)
t as well, one in each step of back-substitution.

Similarly one can use the technique of Gröbner Basis [30] to find the roots.

The Gröbner Basis G = {g1, g2, . . . , gl} is a set of polynomials such that

g1(x
(0)
1 , . . . , x

(0)
t) = g2(x

(0)
1 , . . . , x

(0)
t) = · · · = gl(x

(0)
1 , . . . , x

(0)
t) = 0.

Each polynomial gi can be computed with respect to some ordering that eliminates

the variables. So it is easy to extract the desired root. However, the elimination

of variables fails if the variety V (I) of the ideal I generated by r1, r2, . . . , rt is not

zero-dimensional. An interested reader may refer to [30] for more details regarding

Gröbner Basis.

Occasionally, one can collect the roots by examining special structure in the

polynomials as well. For example, if we get a polynomial f(x, y) = ax − by + b

where a, b are constants, then (b, a+ 1) is quite clearly a root of f(x, y).

From our discussion so far, we can conclude that in case of solving multivariate

modular polynomials, one needs the following assumption before attempting a

lattice based technique.

Assumption 1: The common root (x
(0)
1 , . . . , x

(0)
t) can be efficiently collected from

the polynomials r1, . . . , rt using the method of resultants, Gröbner Basis technique

or exploiting the structure of the polynomials.

Once we assume the above mentioned statement, (2.1) reduces the condition for

solving a modular polynomial using LLL to the following:

2
ω(ω−1)

4(ω+1−t) det(L)
1

ω+1−t <
Nm

√
ω
.

If we treat the number of variables t, and the dimension of lattice L as constants,

then we can simply state the condition as det(L) < Nmω. This technique of finding

35 2.5 Solving Modular Polynomials

modular solutions to polynomials was generalized by Jochemsz and May [65], and

we shall discuss their method in the next section.

2.5.2 General Method by Jochemsz and May

In Asiacrypt 2006, Jochemsz and May [65] proposed a method to find a small

root (x
(0)
1 , . . . , x

(0)
t) of a polynomial fN(x1, . . . , xt) modulo a composite integer

N of unknown factorization. Let us first study the basic strategy proposed by

Jochemsz and May.

Basic Strategy

Suppose one knows an upper bound for the root, namely |x(0)j | < Xj for some given

Xj , for j = 1, . . . , t. First choose a monomial l of fN such that no monomial in

fN besides l is divisible by l. Let al be the coefficient of l in fN . Assume N, al are

relatively prime. Otherwise we have a proper factor of N by computing gcd(N, al).

Define f ′
N = a−1

l fN mod N . Also define the sets Mk as in [65, Basic Strategy] for

0 ≤ k ≤ m, where m is a positive integer satisfying certain properties that we

shall discuss shortly.

Mk = {xi11 xi22 · · · xitt | xi11 xi22 · · · xitt is a monomial of fm
N

and
xi11 x

i2
2 · · · xitt
lk

is a monomial of fm−k
N }.

Also denote Mm+1 = ∅. Define the shift polynomials as follows:

gi1,...,it,k(x1, x2, . . . , xt) =
xi11 x

i2
2 · · · xitt
lk

fk
N(x1, x2, . . . , xt)

kNm−k

for k = 0, . . . ,m and xi11 x
i2
2 · · · xitt ∈Mk \Mk+1.

Note that for any shift polynomial g, we have g(x
(0)
1 , . . . , x

(0)
t) ≡ 0 (mod Nm). Now

one needs to form a lattice L by taking the coefficient vectors of the polynomials

g(x1X1, . . . , xtXt) as a basis. In [65], it is proved that when Xs1
1 · · ·Xst

t < N s0−ǫ

for some arbitrary small ǫ > 0 with sr =
∑

x
i1
1 ···xit

t ∈M0
ir for r = 1, . . . , t and s0 =

∑

1≤k≤m |Mk|, then one can find tmany polynomials ri such that ri(x
(0)
1 , . . . , x

(0)
t) =

0 after the LLL lattice reduction over L. Corresponding to the arbitrary small

ǫ > 0, it is always possible to get some positive integer m which satisfies the

Chapter 2: Mathematical Preliminaries 36

above condition. This m is what we choose to define the sets Mk as before. After

obtaining the polynomials ri, one can collect the root (x
(0)
1 , . . . , x

(0)
t) efficiently

under Assumption 1.

Extended Strategy

Now we may move on to the extended strategy of [65]. In some cases it is useful

for some polynomial to have extra shifts over some variable(s). Suppose we use

extra µ many shifts over x1. Then the definition of the sets Mk will be change

from the previous case, as follows.

Mk =
⋃

0≤j≤µ

{xi1+j
1 xi22 · · · xitt | xi11 xi22 · · · xitt is a monomial of fm

N

and
xi11 x

i2
2 · · · xitt
lk

is a monomial of fm−k
N }.

Rest of the techniques are the same as those in the basic strategy. Let us illustrate

the effectiveness of the extended strategy of [65] in cryptanalysis of RSA, using

the following example.

Boneh-Durfee [14] Attack

The attack by Boneh and Durfee [14] for low decryption exponent follows the

extended strategy of [65]. Recall the RSA equation ed = 1+k(N+1−p−q). Hence
1+k(N+1−p−q) ≡ 0 (mod e). The aim is to find the root (x0, y0) = (k,−p−q+1)

of the modular polynomial fe(x, y) = 1 + x(N + y) mod e. Towards the solution,

define the following sets (note that we are dealing with a bivariate polynomial).

Mk =
⋃

0≤j≤µ

{xi1yi2+j | xi1yi2 is a monomial of fm
e

and
xi1yi2

lk
is a monomial of fm−k

e }, for l = xy.

37 2.5 Solving Modular Polynomials

Let us discuss the technique for m = 3, µ = 1, say. Then we have

M0 = {x3y4, x3y3, x3y2, x2y3, x3y, x2y2, x3, x2y, xy2, x2, xy, x, y, 1},
M1 = {x3y4, x3y3, x3y2, x2y3, x3y, x2y2, x2y, xy2, xy},
M2 = {x3y4, x3y3, x3y2, x2y3, x2y2},
M3 = {x3y4, x3y3}, and
M4 = ∅.

The shift polynomials for the extended strategy in this case are as follows.

P = {ye3, e3, x2e3, x3e3, xe3, x2fe2, xfe2, fe2, yfe2, xf 2e, f 2e, yf 2e, f 3, yf 3}.

Now take positive integers X, Y such that |k| ≤ X and |−p−q+1| ≤ Y , and build
a lattice L with the basis elements coming from the coefficients of the polynomials
p(xX, yY) where p ∈ P . The lattice L is represented as follows.

poly y 1 x2 x3 x x3y x2y xy xy2 x3y2 x2y2 x2y3 x3y3 x3y4

ye3 Y e3

e3 e3

x2e3 X2e3

x3e3 X3e3

xe3 Xe3

x2fe2 − − X3Y e2

xfe2 − − X2Y e2

fe2 − − XY e2

yfe2 − − XY 2e2

xf2e − − − − − X3Y 2e

f2e − − − − − X2Y 2e

yf2e − − − − − X2y3e

f3
− − − − − − − − − X3Y 3

yf3
− − − − − − − − − x3y4

Here ‘−’ denotes nonzero elements not belonging to the diagonal. If we perform

LLL lattice reduction over L as defined by the above mentioned matrix, we shall

obtain two polynomials f1(x, y), f2(x, y) such that f1(x0, y0) = f2(x0, y0) = 0.

Thereafter, we can collect the x0 and y0 from f1(x, y), f2(x, y) efficiently, subject

to Assumption 1.

In [14], Boneh and Durfee proved that when m → ∞, if a proper choice of

µ is made depending on m, then one can solve fe(x, y) in Ze when |d| < N0.284.

However, in the same paper [14], they improved the bound to |d| < N0.292 using

a sublattice of the lattice L described above. This is the best bound till date.

Though they [14] conjectured that RSA may be insecure for |d| <
√
N , it is still

an open problem.

Chapter 2: Mathematical Preliminaries 38

2.6 Solving Integer Polynomials

Although there exist several techniques for solving univariate polynomials over

integers, it is not so easy to solve bivariate integer polynomials. Coppersmith [22]

introduced a method to find small integer roots for a bivariate polynomial f(x, y).

Without loss of generality, we can assume that f(x, y) is irreducible. If f(x, y) is

reducible, we can factor f(x, y) by the method of Wang and Rothschild [129] and

try to find the roots of its factors individually. Coron [28] reformulated Copper-

smith’s method to propose the following idea.

2.6.1 Coron’s Method

The main aim is to find a polynomial h(x, y) which is algebraically independent

of f(x, y) and which shares the integer root (x0, y0) of f(x, y). Let, |x0| ≤ X,

|y0| ≤ Y , and assume that f(x, y) =
∑

i,j aijx
iyj. Now, defineW = max

i,j
|aijX iY j|.

Define R = X l1Y l2W for some non-negative integers l1, l2. Further let us define

gij(x, y) = xiyjf(x, y)
R

WX iY j
and hij(x, y) = xiyjR,

for some pair of integers i, j. Note that these gij(x, y)’s are analogous to the shift

polynomials as in Section 2.5.2. To ensure that all the shift polynomials gij(x, y)

have integer coefficients, choose l1 ≥ i and l2 ≥ j. Also note that gij(x0, y0) ≡ 0

(mod R) and hij(x0, y0) ≡ 0 (mod R). Now, construct a lattice L using the coef-

ficient vectors of gij(xX, yY) and hij(xX, yY) as a basis. Let ω be the dimension

of the lattice L, and assume that r1(xX, yY), . . . , rω(xX, yY) are the polynomials

corresponding to the vectors of the LLL reduced basis of L.

Now, from Lemma 2.20, we know that ||r1(xX, yY)|| ≤ 2
ω−1
4 det(L)

1
ω . Also,

from Theorem 2.22, we know that if ||r1(xX, yY)|| < R√
ω
, then r1(x0, y0) = 0.

So, when 2
ω−1
4 det(L)

1
ω < R√

ω
, then r1(x0, y0) = 0. Since we choose R = X l1Y l2W ,

r1(x, y) is divisible by X
l1Y l2 . Now it can be shown that r1(x, y) is algebraically in-

dependent of f(x, y). One can deduce this from the following result by Coron [28].

Theorem 2.25. If h(x, y) is a multiple of f(x, y), then h(x, y) is divisible by

X l1Y l2 if and only if it has norm at least 2−(ρ+1)2+1X l1Y l2W , where ρ is the max-

imum degree of the polynomials f, h in each variable separately.

Hence, if ||r1(xX, yY)|| ≤ 2
ω−1
4 det(L)

1
ω ≤ 2−(ρ+1)2+1X l1Y l2W = 2−(ρ+1)2+1R,

39 2.6 Solving Integer Polynomials

then r1(x, y) is algebraically independent from f(x, y) and if ||r1(xX, yY)|| ≤
2

ω−1
4 det(L)

1
ω ≤ R√

ω
, then r1(x0, y0) = 0. The reader may note the difference

between the above conditions and those in case of modular polynomials; here the

terms do not depend on N anymore. So we can assume that when det(L) < Rω,

one can find a polynomial h(x, y) = r1(x, y) such that h(x, y) is independent of

f(x, y), and h(x, y) share the root (x0, y0) with f(x, y). Thereafter, we can collect

the root (x0, y0) efficiently using the method of resultants.

Similar to the modular case, we can extend the above idea to multivariate

polynomials as well. But in that case we would need some assumptions, and hence

the method becomes heuristic. Suppose we want to find the root (x
(0)
1 , . . . , x

(0)
t) of

f(x1, x2, . . . , xt) =
∑

ai1i2...it x
i1
1 x

i2
2 · · · xitt .

Let |x(0)i | ≤ Xi for 1 ≤ i ≤ t. We define W = ||f(x1X1, x2X1, . . . , xtXt)||∞ =

maxi1,i2,...,it |ai1i2...itX i1
1 X

i2
2 · · ·X it

t |. Let us also define R = WX l1
1 X

l2
2 · · ·X lt

t for

some specific choices of li. Now, we define the shift polynomials:

gi1...it(x1, . . . , xt) = xi11 · · · xitt f (x1, . . . , xt) ·
R

WX i1
1 · · ·X it

t

, and

hi1...it(x1, . . . , xt) = xi11 · · · xitt ·R,

for some set of integers i1, . . . , it. Choose li such that all shift polynomials

gi1...it , hi1...it have integer coefficients. Now, one may construct a lattice L using the

coefficient vectors of gi1...it(x1X1, . . . , xtXt) and hi1...it(x1X1, . . . , xtXt) as a basis.

Let ω be the dimension of the lattice L. From Lemma 2.20 and Theorem 2.23, we

know that if

2
ω(ω−1)

4(ω+2−t) det(L)
1

ω+2−t <
R√
ω
,

then we can find polynomials r1, r2, . . . , rt−1 such that ri(x
(0)
1 , . . . , x

(0)
t) = 0, for

1 ≤ i ≤ t − 1. Moreover, the following generalization of Coron’s Theorem by

Hinek and Stinson [56] guarantees the algebraic independence of all ri from f .

Theorem 2.26. If h(x1, . . . , xt) is a multiple of f(x1, . . . , xt), then h is divisible by

X l1
1 X

l2
2 · · ·X lt

t if and only if it has norm at least 2−(ρ+1)2+1X l1
1 X

l2
2 · · ·X lt

t W , where

ρ is the maximum degree of the polynomials f, h in each variable separately.

Since it may be possible that ri and rj are algebraically dependent for some

1 ≤ i 6= j ≤ t − 1, we need to assume that the polynomials ri, generated by LLL

Chapter 2: Mathematical Preliminaries 40

lattice reduction on L, are algebraically independent. If so, then we can collect

the root (x
(0)
1 , . . . , x

(0)
t) from f, r1, r2, . . . , rt−1 using the method of resultants. The

reader may note that this method is heuristic, depending on the validity of alge-

braic independence assumption. However, in Eurocrypt 2007, Bauer and Joux [7]

proposed a deterministic method for finding integer roots of a trivariate polyno-

mial. But now, let us study a generalization of the above method.

2.6.2 General Method by Jochemsz and May

In Eurocrypt 2005, Blömer and May [10] presented a general technique for solving

a bivariate integer polynomial. In Asiacrypt 2006, Jochemsz and May [65] gener-

alized the same and proposed a method to find a small root (x
(0)
1 , . . . , x

(0)
t) of a

polynomial f(x1, . . . , xt). In this section we discuss this generalized idea.

Let di be the maximal degree of xi in f for 1 ≤ i ≤ t. Let us define

W = ||f(x1X1, x2X2, . . . , xtXt)||∞, and
R = WX

d1(m−1)
1 X

d2(m−1)
2 · · ·Xdt(m−1)

t .

Let a0 = f(0, 0, . . . , 0) and assume that a0 6= 0. If a0 = 0, then find

some (y1, . . . , yt) such that f(y1, . . . , yt) 6= 0, and define a new polynomial

f1(x1, x2, . . . , xt) = f(x1 + y1, x2 + y2, . . . , xt + yt). Clearly, the constant term

of the new polynomial f1 is nonzero as f1(0, 0, . . . , 0) = f(y1, y2, . . . , yt) 6= 0, and

one can find the roots of f1. Next, assume that gcd(a0, R) = 1. If not, then using

the idea of [28, Appendix A], we increase Xi,W such that gcd(a0, R) = 1. Now

we define f ′(x1, x2, . . . , xt) = a−1
0 f (mod R), and start with the basic strategy.

Basic Strategy

Define the following sets for some positive integer m.

S =
⋃

{xi11 xi22 · · · xitt | xi11 xi22 · · · xitt is a monomial of fm}, and

M =
⋃

{xi11 xi22 · · · xitt | xi11 xi22 · · · xitt is a monomial of fm+1}.

Let lj be the largest exponent of xj that appears in the monomials of S.

41 2.6 Solving Integer Polynomials

Also define the following polynomials:

gi1,i2,...,it = xi11 x
i2
2 · · · xitt · f ′ (x1, x2, . . . , xt) ·

t∏

j=1

X
lj−ij
j for xi11 x

i2
2 · · · xitt ∈ S, and

hi1,i2,...,it = xi11 x
i2
2 · · · xitt ·R for xi11 x

i2
2 · · · xitt ∈M \ S.

Note that for any shift polynomial g or h,

g(x
(0)
1 , . . . , x

(0)
t) ≡ h(x

(0)
1 , . . . , x

(0)
t) ≡ 0 (mod R).

Now one have to construct a lattice L by taking the coefficient vectors of the

polynomials g(x1X1, . . . , xtXt) and h(x1X1, . . . , xtXt) as a basis. In [65], it is

proved that if

Xs1
1 · · ·Xst

t < W s−ǫ

with sr =
∑

x
i1
1 ···xit

t ∈M\S ir for r = 1, . . . , t and s = |S|, then one can find t − 1

many polynomials ri as the basis vectors of the LLL reduced basis of L, such that

ri(x
(0)
1 , . . . , x

(0)
t) = 0 for all 1 ≤ i ≤ t− 1. Thereafter, subject to Assumption 1, we

can efficiently collect the common root (x
(0)
1 , . . . , x

(0)
t) from f, r1, . . . , rt−1. Note

that, similar to the modular case, the choice of m here depends on the arbitrary

constant ǫ > 0. Let us now discuss the extended strategy of [65] for finding integer

roots of a polynomial.

Extended Strategy

Alike the modular case, it is useful for some polynomials to use extra shifts for

some variable(s). Suppose that we use extra µ many shifts over x1. Then the

modified sets S, M will be defined as follows.

S =
⋃

0≤j≤µ

{xi1+j
1 xi22 · · · xitt | xi11 xi22 · · · xitt is a monomial of fm}, and

M =
⋃

{monomials of xi11 x
i2
2 · · · xitt · f | xi11 xi22 · · · xitt ∈ S}.

Now every idea of the basic strategy will remain the same except for the fact that

we have to define R = W ·∏t
j=1X

lj
j , where lj is the maximum degree of xj in the

monomials of S. Let us now give a practical example of this strategy.

Chapter 2: Mathematical Preliminaries 42

Attack by Ernst et al [38]

In 2005, Ernst et al [38] studied the case when some most significant bits (MSBs)

of the decryption exponent d are known to the attacker. In such a situation,

the attacker needs to find out the root of a polynomial of the form f(x, y, z) =

a0 + a1x+ a2y + a3yz. Let (x0, y0, z0) be the root of f(x, y, z) satisfying |x0| < X,

|y0| < Y and |z0| < Z. Now suppose that we use extra shifts over the variable z.

Let us discuss the technique with m = 1, µ = 1. In this case, we have

S = {1, x, y, z, xz, yz, yz2}, and
M = {1, x, y, z, xz, yz, yz2, x2, xy, xyz, y2, y2z, x2z, xyz2, y2z2, y2z3}.

In this case W = max{|a0|, |a1X|, |a2Y |, |a3Y Z|}. Define R = XY Z2W , and

calculate f ′(x, y, z) = a−1
0 f(x, y, z) mod R = 1 + ax + by + cyz. In this case, one

uses the shift polynomials

P1 ={f ′XY Z2, xf ′Y Z2, yf ′XZ2, zf ′XY Z, xzf ′Y Z, yzf ′XZ, yz2f ′X}, and
P2 ={x2R, xyR, xyzR, y2R, y2zR, x2zR, xyz2R, y2z2R, y2z3R},

and builds a lattice L with the basis elements coming from the coefficients of
p(xX, yY, zZ) where p ∈ P1 ∪ P2. The lattice L is represented as follows.

poly 1 x y z xz yz yz2 x2 xy xyz y2 y2z x2z xyz2 y2z2 y2z3

f ′XY Z2 T − − −

xf ′Y Z2 T − − −

yf ′XZ2 T − − −

zf ′XY Z T − − −

xzf ′Y Z T − − −

yzf ′XZ T − − −

yz2f ′X T − − −

x2R X2R

xyR XY R

xyzR XY ZR

y2R Y 2R

y2zR Y 2ZR

x2zR X2ZR

xyz2R XY Z2R

y2z2R Y 2Z2R

y2z3R Y 2Z3R

Here T = XY Z2 and ‘−’ denotes the non zero elements in the matrix. If we

perform the LLL lattice reduction on L, we get two polynomials f1(x, y, z) and

f2(x, y, z) which share the root (x0, y0, z0) of f(x, y, z). From f, f1, f2, we can

collect the root (x0, y0, z0) by calculating the resultants, subject to Assumption 1.

43 2.7 Analysis of the Root Finding Techniques

2.7 Analysis of the Root Finding Techniques

In the previous sections we have studied a few root finding techniques for modular

and integer polynomials using lattice based methods. We have so far analyzed the

correctness and method of operation of these techniques. We shall now analyze

the time complexity of the generic approach by Coppersmith [22], taking it as a

representative of all similar techniques.

2.7.1 Time Complexity Analysis

The running time Coppersmith’s root finding approach can be split into its two

major components: lattice reduction, and root extraction using resultant method

or Gröbner Basis calculation. The individual analysis of the two is as follows.

LLL Lattice Reduction

The runtime of Coppersmith’s method is dominated by the lattice basis reduction

which runs in time polynomial in the dimension ω of the lattice and bitsize of

the entries of the lattice. The time complexity of lattice reduction algorithm by

Nguyen and Stehlé [93] is O (ω5 (ω + A)A) , where A is the maximum bitsize of

an entry in the lattice. In Coppersmith’s construction, dim(L) depends only upon

ǫ. Also, the bitsize of the entries in L are bounded by poly(log2 N). Hence we can

find the LLL reduced basis vectors in time poly(log2 N).

Root Extraction

It is also worth noting that the degrees of r1, . . . , rω are fixed as they depend only

upon ǫ, and the coefficients of r1, . . . , rω are bounded by a polynomial in log2N .

If r1(x1, x2, . . . , xt) and r2(x1, x2, . . . , xt) are two polynomials with degrees of x1

equal to d1, d2 respectively, then to calculate the resultant R(r1, r2) with respect to

x1, one needs to find the determinant of a matrix of size (d1+ d2)× (d1+ d2). One

can calculate the determinant of a matrix of size D in O(D3) time. For detailed

calculation of the resultant, the reader may consult [30, Chapter 3]. Similarly,

the Gröbner Basis calculation is in general double-exponential in the degree of the

polynomial, which in case of Coppersmith’s method, is dependent only on ǫ.

Chapter 2: Mathematical Preliminaries 44

Cumulative Runtime

From the earlier discussion, one may deduce that for a fixed positive number ǫ, and

for a fixed number of variables, the time complexity of Coppersmith’s lattice based

root finding techniques is poly(log N). Although lattice reduction can be done in

polynomial time, it is almost impossible to reduce a lattice of large dimension

(larger than 400, say) that has large entries. The same problem occurs for the

calculation of resultant or Gröbner Basis when the number of variables is too

large.

2.8 Experimental Framework

Throughout this thesis, we have furnished numerous experimental results support-

ing our claims. These experiments, in most of the cases, are implementations of the

lattice based root finding techniques and the algorithms that we have proposed.

We have performed almost all (except for a few in Chapter 5) experiments using

the following computing framework.

• Symbolic Computation Package: Sage [124] (versions 2.10 through 4.2)

• Operating System: Linux Ubuntu (8.10 through 9.10)

• System Configuration: Dual Core Intel R© Pentium R© D CPU 1.83 GHz with 2

GB RAM and 2 MB Cache

For the examples of prime reconstruction from random known bits of the primes

from the LSB side, as presented in Chapter 5, we have implemented the recon-

struction algorithm in the following framework.

• Coding Platform: C/C++ with gcc/g++ compiler using GMP library [43].

• Operating System: Linux Ubuntu 9.04

• System Configuration: Intel R© Pentium R© 4 CPU 1.7 GHz with 1 GB RAM

and 2 MB Cache

45 2.9 Conclusion

2.9 Conclusion

Now that we have covered the preliminary topics of mathematics and cryptography

that constitute the foundation of this thesis, we can get into the technical results.

In a major part of the thesis, the lattice based root finding techniques serve as a

backbone. One may refer back to the preliminaries whenever similar methods in

the following chapters are encountered.

Chapter 3

A class of Weak Encryption

Exponents in RSA

A lot of weakness of RSA have been identified in the past three decades, but still

RSA can be securely used with proper precautions as a public key cryptosystem.

In 1990, Wiener [130] proved that RSA is insecure if d < 1
3
N

1
4 . Later 1999,

Boneh and Durfee [14] improved this bound up to N0.292. In [9], Blömer and May

have shown that p, q can be found in polynomial time for every (N, e) satisfying

eX + φ(N)Y = −y, with X ≤ 1
3
N

1
4 and |y| = O(N− 3

4 ex). Some extensions

considering the difference p − q have also been studied. The work of [9] uses the

result of Coppersmith [24] as well as the idea of CF expression [130] in their proof.

The number of such weak keys has been estimated as N
3
4
−ǫ.

In a similar direction of [9], further weak keys were presented by Nitaj [96,97].

The idea of [96] is as follows. Suppose that e satisfies the following property: there

exist u, v,X, Y such that eX − (p − u)(q − v)Y = 1 with 1 ≤ Y < X < 2−
1
4N

1
4 ,

|u| < N
1
4 , v =

[

− qu
p−u

]

([x] means the nearest integer of the real number x). If all

the prime factors of p− u or q− v are less than 1050, then N can be factored from

the knowledge of N, e. The number of such weak exponents is estimated as N
1
2
−ǫ.

So, in this case [96] number of weak exponents is smaller than [9].

In [96], Continued Fraction (CF) expression is used to find the unknowns X, Y

among the convergents of e
N
. We get immediate improvements over the results

of [96] using the LLL [77] algorithm. Our results are as follows.

47

Chapter 3: A class of Weak Encryption Exponents in RSA 48

• The bound on Y can be extended till Nγ, with

γ < 4ατ

1

4τ
+

1

12α
−
√
(

1

4τ
+

1

12α

)2

+
1

2ατ

(
1

12
+

τ

24α
− α

8τ

)

 ,

given e = Nα and |N − (p− u)(q − v)| = N τ .

• The only constraint on X is to satisfy the equation eX−(p−u)(q−v)Y = 1,

which gives

X =
1 + (p− u)(q − v)Y

e
, i.e., X = ⌈N1+γ−α⌉.

• In [96], the constraint 1 ≤ Y < X < 2−
1
4N

1
4 forces that the upper bound of

e is O(N). However, in our case the value of e can exceed this bound. Our

results work for e up to N1.875 for τ = 1
2
.

In fact, our result is more general. Instead of considering some specific form

eX − (p − u)(q − v)Y = 1, we consider equations like eX − ZY = 1, where

Z = ψ(p, q, u, v) is a function of the RSA primes p, q and integers u, v. Given

e = Nα and the constraint |N −Z| = N τ , we can efficiently find Z using the LLL

algorithm when |Y | = Nγ, where

γ < 4ατ

1

4τ
+

1

12α
−
√
(

1

4τ
+

1

12α

)2

+
1

2ατ

(
1

12
+

τ

24α
− α

8τ

)

 .

We consider Z = ψ(p, q, u, v) = N − pu − v to present a new class of weak keys

in RSA. This idea does not require any kind of factorization as used in [96]. We

estimate a lower bound of N0.75−ǫ for the number of weak keys in this class. Hence

the number of weak exponents is of the same magnitude as Blömer and May [9].

3.1 Our Basic Technique

In this section we build the framework for our analysis related to weak keys. First

we present a result based on continued fraction (CF) expansions.

49 3.1 Our Basic Technique

Lemma 3.1. Let N = pq be the RSA modulus. Consider that e satisfies the

equation eX −ZY = 1 where |N −Z| = N τ . Then Y
X

is one of the convergents in

the CF expansion of e
N

when 2XY < N1−τ .

Proof. It is quite easy to note that

e

N
− Y

X
=
eX −NY
NX

=
1− (N − Z)Y

NX
≈ −(N − Z)Y

NX

⇒
∣
∣
∣
∣

e

N
− Y

X

∣
∣
∣
∣
≈
∣
∣
∣
∣

(N − Z)Y
NX

∣
∣
∣
∣
=
N τY

NX
=
N τ−1Y

X
.

So, Y
X

will be one of the convergents of e
N

if Nτ−1Y
X

< 1
2X2 ⇔ 2XY < N1−τ .

We will use the above result later to demonstrate certain improvements over

existing schemes. Next we present the following theorem which is the core of our

results. For detailed ideas related to lattices, one may refer back to Chapter 2 or

have a look at [14, 15].

Theorem 3.2. Let N = pq be the RSA modulus. Consider that e (= Nα) satisfies

the equation eX − ZY = 1 where |N − Z| = N τ , and |Y | = Nγ. Then we can

apply LLL algorithm to get Z efficiently when

γ < 4ατ

1

4τ
+

1

12α
−
√
(

1

4τ
+

1

12α

)2

+
1

2ατ

(
1

12
+

τ

24α
− α

8τ

)

 .

Proof. We have eX −ZY = 1, which can also be written as eX = 1+NY + (Z −
N)Y . Hence, 1 +NY + (Z −N)Y = 0 mod e. Thus, we have to find the solution

of f(x, y) = 1 +Nx+ xy in Ze, where x = Y, y = Z −N (the unusual assignment

of Y to x is to maintain similar notation as in [14] in the rest of the proof).

We have to find x, y such that 1+x(N +y) ≡ 0 (mod e), where |x| = Nγ = e
γ
α

and |y| = N τ = e
τ
α . Let X1 = e

γ
α , Y1 = e

τ
α . One may refer to [14, Section 4] for

det x = em(m+1)(m+2)/3 ·Xm(m+1)(m+2)/3
1 · Y m(m+1)(m+2)/6

1 ,

det y = etm(m+1)/2 ·X tm(m+1)/2
1 · Y t(m+1)(m+t+1)/2

1 .

Chapter 3: A class of Weak Encryption Exponents in RSA 50

Plugging in the values of X1 and Y1, we obtain the following.

det x = em
3·(1

3
+ γ

3α
+ τ

6α)+o(m3),

det y = etm
2·(1

2
+ γ

2α
+ τ

2α)+
mt2τ
2α

+o(tm2).

Now det(L) = det x det y and we need to satisfy det(L) < emw, where w =

(m+ 1) (m+ 2) /2 + t (m+ 1), the dimension of L. To satisfy det(L) < emw, we

needm3·
(
1
3
+ γ

3α
+ τ

6α

)
+tm2·

(
1
2
+ γ

2α
+ τ

2α

)
+mt2τ

2α
< m3

2
+tm2, ignoring the smaller

terms. This leads to m2 ·
(
1
3
+ γ

3α
+ τ

6α
− 1

2

)
+ tm ·

(
1
2
+ γ

2α
+ τ

2α
− 1
)
+ t2τ

2α
< 0.

After fixing an m, the left hand side is minimized at t = m
(

α
2τ
− 1

2
− γ

2τ

)
. Putting

this value we have,
(

1
12

+ τ
24α
− α

8τ

)
+ γ ·

(
1
4τ

+ 1
12α

)
− γ2

8ατ
< 0. So,

γ < 4ατ

1

4τ
+

1

12α
−
√
(

1

4τ
+

1

12α

)2

+
1

2ατ

(
1

12
+

τ

24α
− α

8τ

)

 .

Similar to the idea in [14, Section 4], if the first two elements (polynomials

P1(x, y), P2(x, y)) of the reduced basis out of the LLL algorithm are algebraically

independent (i.e., nonzero resultant R(P1, P2) which is a polynomial of y, say),

then we get y by solving R(P1, P2) = 0. The value of y gives Z − N . (This

actually happens in practice as we have also checked by experimentation.)

Based on Theorem 3.2, one can design a probabilistic polynomial time algo-

rithm A, which takes N, e = Nα as inputs and provides the correct Z if

• eX − ZY = 1, with |N − Z| = N τ , and Y = Nγ, where

γ < 4ατ

1

4τ
+

1

12α
−
√
(

1

4τ
+

1

12α

)2

+
1

2ατ

(
1

12
+

τ

24α
− α

8τ

)

 ,

• and the resultant polynomial R(P1, P2) on y is nonzero with integer solution.

If Z is known, one can try to get further information on the primes. In [96],

Z = ψ(p, q, u, v) = (p− u)(q− v) and this knowledge presents a class of weak keys

in RSA. In our analysis (Section 3.3), we use Z = ψ(p, q, u, v) = N − pu− v.

We would now like to list the following points in this direction.

51 3.1 Our Basic Technique

• For a fixed α, the value of γ decreases when τ increases, and

• given a fixed τ , the value of γ increases as α increases.

In Table 3.1, we present the numerical values of γ corresponding to α following

Theorem 3.2 for three different values of τ , namely 1
4
, 1
2
and 3

4
.

α 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.875

τ = 1
4 0.482 0.555 0.629 0.704 0.780 0.856 0.934 1.012 1.091 1.150

τ = 1
2 0.284 0.347 0.412 0.477 0.544 0.612 0.681 0.751 0.821 0.875

τ = 3
4 0.131 0.188 0.245 0.305 0.365 0.427 0.489 0.553 0.618 0.667

Table 3.1: The numerical upper bounds of γ (in each cell) following Theorem 3.2,
given different values of α and τ .

In the work of [96], the value of τ has been taken as 1
2
. Thus we discuss some

cases when τ = 1
2
to highlight the improvements we achieve over [96]. Note that

for randomly chosen e with e < φ(N), the value of e will be O(N) in most of the

cases. In such a case, putting α = 1 and τ = 1
2
, we get that γ < 0.284.

When α < 1 and τ = 1
2
, the bound on γ will decrease and it will become 0

at α = 1
2
. However, for randomly chosen e with e < φ(N), this will happen in

negligibly small proportion of cases.

Most interestingly, the bound of γ will increase further beyond 0.284 when

α > 1. Wiener’s attack [130] becomes ineffective when e > N1.5 and the attack

proposed by Boneh and Durfee [15] becomes ineffective when e > N1.875. Similar to

the result of [15], equations of the form eX−ZY = 1 cannot be used for e > N1.875,

since in such case no X will exist given the bound on Y . For τ = 1
2
, we have

presented the theoretical results for e reaching N1.875 in Table 3.1. Experimental

results will not reach this bound as we work with small lattice dimensions in

practice, but even then the experimental results for e reach close to the value

N1.875 as we demonstrate results for N1.774 in Section 3.2.3 for 1000-bit N .

Note that here we present a theoretical estimate on the bound of γ. These

bounds may not be achievable in practice due to the large lattice dimensions.

However, the experimental results, presented in Sections 3.2.3, 3.3.1, are close to

the theoretical estimates.

Chapter 3: A class of Weak Encryption Exponents in RSA 52

3.2 Improvements over Existing Work

In this section we present various improvements over the work of [96]. For this,

first we present an outline of the strategy in [96]. Consider that e satisfies eX −
(p− u)(q − v)Y = 1 with 1 ≤ Y < X < 2−

1
4N

1
4 , |u| < N

1
4 , v =

[

− qu
p−u

]

. If all the

prime factors of p− u or q− v are less than 1050, then N can be factored from the

knowledge of N, e. The number of such weak exponents are estimated as N
1
2
−ǫ.

The flow of the algorithm in [96] is as follows.

1. Continued Fraction algorithm is used to find the unknowns X, Y among the

convergents of e
N
.

2. Then, the Elliptic Curve Factorization Method (ECM [79]) is used to par-

tially factor eX−1
Y

, i.e., into the factors (p− u)(q − v).

3. Next, an integer relation detection algorithm (LLL [77]) is used to find the

divisors of Becm-smooth part of eX−1
Y

in a small interval.

4. Finally, if p− u or q − v is found, the method due to [24] is applied.

After knowing (p− u)(q − v), if one gets the factorization of p− u or q − v, then
it is possible to identify p − u or q − v efficiently and the overall complexity is

dominated by the time required for factorization. According to [96], if ECM [79]

is used for factorization, and if all prime factors of p−u or q−v are less than 1050,

then getting p − u or q − v is possible in moderate time. Once p − u or q − v is

found, as u, v are of the order of N
1
4 , using the technique of [24], it is possible to

find p or q efficiently.

3.2.1 The Improvement in the Bounds of X, Y

In [96] the bounds of X and Y are given as 1 ≤ Y < X < 2−
1
4N

1
4 . Since, u, v are

of O(N
1
4), we get that (p − u)(q − v) is O(N). When e is O(N1+µ), µ > 0 and

X is O(N ν), 0 < ν ≤ 1
4
, the value of eX is O(N1+µ+ν). In such a case, Y will be

O(Nµ+ν), which is not possible as Y < X. Thus the values of e are bounded by

O(N) in the work of [96]. Next we generalize the bounds on X, Y .

The method of [96] requires 1 ≤ Y < X < 2−
1
4N

1
4 . For τ = 1

2
, our result

in Lemma 3.1 implies that it is enough to have 2XY < N
1
2 , which gives better

bounds than [96] due to the following reasons.

53 3.2 Improvements over Existing Work

• There is no need to have Y < X when X, Y are of O(N
1
4).

• The bound of either X or Y can be greater than N
1
4 when the other one is

less than N
1
4 .

We have already noted that the values of e are bounded by O(N) in the work

of [96]. In our case, this bound is increased as well. The exponent e is of the order

of (p−u)(q−v)·Y
X

, which is O
(

N2−τ

X2

)

. Given τ = 1
2
, when X is O(N

1
4), we get the

bound on e as O(N), which is same as what given in [96]. However, our bound

increases as X decreases.

3.2.2 Further Improvement in the Bounds

With our results in Theorem 3.2, we get further bounds on X, Y . Note that

Y = Nγ and thus X = ⌈N1+γ−α⌉. This gives XY = N1+2γ−α, where

γ < 4ατ

1

4τ
+

1

12α
−
√
(

1

4τ
+

1

12α

)2

+
1

2ατ

(
1

12
+

τ

24α
− α

8τ

)

 ,

as in Theorem 3.2. Our result implies the following improvements.

• The bound on Y can be extended till Nγ. One may have a look at Table 3.1

for the numerical values of the theoretical bounds of γ given some α. The

experimental results are presented in Section 3.2.3.

• X has to satisfy the equation eX − (p − u)(q − v)Y = 1, which gives X =

⌈N1+γ−α⌉. The value of X becomes smaller as α increases.

• The constraint 1 ≤ Y < X < 2−
1
4N

1
4 in [96] forces that the upper bound

of e has to be O(N). However, in our case the value of e can exceed this

bound and the result works for e up to N1.875 theoretically, as described in

Section 3.1.

3.2.3 Experimental Results

Let us start with a complete example, as follows.

Chapter 3: A class of Weak Encryption Exponents in RSA 54

Example 3.3. Let us consider that N, e are available. We choose a 1000-bit N

which is a product of two 500-bit primes. Let N be

6965301839116252842151601289304534942713324759565286529653767647876815

5930430666799437161475057925109785426932854120387907825516676039893976

7348434594081678022491354913429428712241705242402188329351298522684586

6182664930993217767070732004829330778668319338402258431072292258308654

308889461963963786753

and e be a 1000-bit number

6131104587526715137731121962949288372067853010907049196083307936858983

5495733258743040864963707793556567754437239459230699951652411404917214

6335728027441527646511562295901427592480445339976342362901246792172093

7327176882146018075507772227029755907501291937300116177647310527785231

764272675507839815927.

Running our method as explained in Theorem 3.2, we get (p− u)(q − v) as
6965301839116252842151601289304534942713324759565286529653767647876815

5930430666799437161475057925109785426932854120387907825516676039893976

7348434593866189401923798371559862126676390152959012118814413687219025

3575242273886606436919626785397201816501702315901845767585961196177847

672535848282542000103.

The factorization of (p− u)(q − v) is as follows:
34× 1724× 6168124× 2297 × 141803 × 345133 × 1412745718201607004385882806

3633385965304567483679 × 1734403587161852748161040884417992576345006759

8688121780826850377496712904460130651142191039.

This requires 112151.62 seconds (less than 1.3 days) using the ECM method

of factoring. In this case, p− u is 3× 1724 × 6168124 × 345133 and the rest of the

terms will give q − v. Since, p− u < N
1
4 , p can be found using the idea of [24] in

polynomial time. Finally, one can find p, q as follows.

3232329308513348128043498783477144091769556249463616612811415899259655

9541241660031449960551292345720627446011227767334525515385020845432088

00320998727,

2154886205675565418695665855651429394513037499642411075207610599506437

3027494440020966640367528230480418297340818511556350343590013896954725

33547333239 respectively.

In this example, X, Y are respectively 275 and 274 bit numbers as follows.

3035420144102701673311659229411748291628760686018968001955956890217037

55 3.3 A New Class of Weak Keys

9456331382787 and

2671883975804894456278842490580443758950128272095600125097638973022749

4745205672316.

Note that these numbers are clearly greater than N
1
4 (in contrary to the bound

presented in [96] where 1 ≤ Y < X < 2−
1
4N

1
4) as N is a 1000 bit integer here.

Now we show that the technique of [96] will not work here. We calculate the CF

expansion of e
N

and study all the convergents Y
X

with denominator X < 2−
1
4N

1
4 .

ExceptX = Y = 1, no eX−1
Y

is an integer. WhenX = Y = 1, we have eX−1
Y

= e−1.
Thus in this case, (p− u)(q− v) = e− 1. As given in [96, Lemma 4], one needs to

satisfy the condition |(p − u)(q − v) − N | < 2−
1
2N

1
2 . Thus, in this example, one

needs to satisfy |e− 1−N | < 2−
1
2N

1
2 , which is not true.

Then we attempted different cases with e = Nα having varying α, given the

same p, q as in Example 3.3. The experimental results are as shown in Table 3.2

where each run to find (p− u)(q − v) requires less than 15 minutes.

α 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.875

γ 0.274 0.336 0.399 0.464 0.529 0.596 0.659 0.726 – –

Table 3.2: The numerical values of γ given α found by experiment when N is of
1000 bits and p, q are as in Example 3.3. The lattice has the parameters m =
7, t = 3, w = 60.

Note that compared to Table 3.1, the results in Table 3.2 gives slightly lower

values of γ. Further, we do not get the solutions for these p, q values when α =

1.8, 1.875 as 1+γ−α becomes very close to zero and hence X does not exist given

the bound of Y . The maximum e for which we get a valid X is of size 1774 bits in

this example. Thus the maximum value of α for which our method works in this

example is 1.774. The value of γ in this example is 0.778 as Y is a 778-bit integer.

3.3 A New Class of Weak Keys

The problem with the idea of [96] is that one needs to factorize (p− u)(q − v) in
order to attack RSA, and this is only possible when the factors of either (p − u)
or (q− v) are relatively small. In this section we present a new class of weak keys

Chapter 3: A class of Weak Encryption Exponents in RSA 56

where there is no involvement of factorization at all. For this, let us first refer to

the following existing result from [83, Theorem 10].

Theorem 3.4 (from [83]). Let N = pq be an RSA modulus with q < p < 2q.

Let u be an (unknown) integer that is not a multiple of q. Suppose we know an

approximation P̂ of pu with |pu − P̂ | ≤ 2N
1
4 . Then N can be factorized in time

polynomial in logN .

After finding X and Y from the continued fraction expression (as given in

Lemma 3.1 of e
N
, one can get N − pu− v and hence pu+ v. In our case, the P̂ of

Theorem 3.4 is pu+ v. Following Theorem 3.4, if |v| < N
1
4 and u is not a multiple

of q, then one can get p.

Next we present further extension on this class of weak keys using the idea of

Theorem 3.2 and noting Z = ψ(p, q, u, v) = pq − pu − v = N − pu − v. In this

case, |N − Z| = |pu+ v| = N τ . When Y = Nγ and e = Nα then X = ⌈N1+γ−α⌉.
This gives, XY = N1+2γ−α, where

γ < 4ατ

1

4τ
+

1

12α
−
√
(

1

4τ
+

1

12α

)2

+
1

2ατ

(
1

12
+

τ

24α
− α

8τ

)

 ,

as in Theorem 3.2.

It is clear that when N1+2γ−α is greater than the bound N
pu+v

= N1−τ of

Lemma 3.1, then we get a larger class of weak keys using the LLL method in-

stead of the technique using continued fraction expression. This happens when

1 + 2γ − α > 1− τ , which is true taking the value of the upper bound on γ.

For example, taking α = 1 and τ = 1
2
the upper bound of γ is 0.284 and in this

case XY will be N0.568. However, the bound from Lemma 3.1 in this case is N0.5.

For larger values of α, the bound on XY will increase further.

3.3.1 Experimental Results

We consider the same N as used in Example 3.3.

Example 3.5. Let us first apply the continued fraction method as explained in

Lemma 3.1. The public exponent e is a 1000-bit number

6924191794904822444331919988065675834958089478755604021224486550741286

9094970482880973033565767568702443953304958933817087359916417417403418

57 3.3 A New Class of Weak Keys

8975911152337295179208385986195123683049905106852500834430037397316270

0864249336588337032797599912676619611066951994203277539744143449608166

337312588384073377751.

Then the continued fraction of e
N

gives X, Y (respectively) as

1684996666696914987166688442938726917102321526408785780068975640579,

1675051614915381290330108388747571693885770140577513454985303531396.

Then we find pu+ v as

1455711706935944763346481078909022402000177527246411623972976816582783

4476154028615829072068297700713978442098223807592204425878660324320671

085270850022954001141596160.

From pu + v we get p using the idea of Theorem 3.4 as in this case u = 252 is

not a multiple of q and v = 2175 is less than N
1
4 .

Next we give an example using the LLL technique that cannot be done using

the technique of Lemma 3.1.

Example 3.6. The public exponent e is a 1000-bit integer as follows.

6875161700303375704546089777254797601588535353918071259131130001533282

9990657553375889250468602806539681604179662083731636763206733203004319

5254536198882701786034369526609680993429591977911304810695130485689008

4599364131003915783164223278468592950590533634401668968574079388141851

069809468480532614755.

Using Theorem 3.2 we get Y (a 240 bit integer) as follows.

1743981747042138853816214839550693531666858348727675018411981662762169

193.

We also get pu+ v (a 552 bit integer) as follows.

1455711706935944763346481078909022402000177527246411623972976816582783

4476154028615829072068297700713978442098223807592204425878660324320671

085270850022954001141596160.

In this case u, v are same as in Example 3.5 and hence p can be found using

the idea of Theorem 3.4. It is to note that in this case X is a 241 bit integer

17668470647783843295832975007429185158274838968756189581216062012

92619790.

Note that ⌈ N
pu+v
⌉ is a 448-bit integer. Now 2XY should be less than 448 bit

for a success using the technique of Lemma 3.1, which is not possible as X, Y are

Chapter 3: A class of Weak Encryption Exponents in RSA 58

241 and 240 bit integers respectively. Thus the idea of continued fraction method

can not be applied here.

Now we like to point out that the weak key of Example 3.6 is not covered by

the works of [9,31,130]. In this case, the decryption exponent d is a 999-bit integer

and hence the bound of [130] that d < 1
3
N

1
4 will not work here.

Here p− q > N0.48 and according to [31, Section 6] one can consider β = 0.48.

If d = N δ, then according to [31, Section 6] the bound of δ will be 2−4β < δ < 1−
√

2β − 1
2
for RSA to be insecure. Putting β = 0.48, one can get 0.08 < δ < 0.3217,

which is much smaller than 0.999 (in Example 3.6, d ≈ N0.999) and hence the weak

keys of [31] does not cover our result.

In [9, Theorem 4, Section 4], it has been shown that p, q can be found in polyno-

mial time for every N, e satisfying ex+ y = kφ(N), with 0 < x ≤ 1
3

√
φ(N)
e

N
3
4

p−q
and

|y| ≤ p−q

φ(N)N
1
4
ex. According to [9], convergents of the CF expression of e

N−⌊2
√
N⌋ will

provide k
x
. For the parameters in Example 3.6, we calculated all the convergents

with x ≤ 1
3

√
φ(N)
e

N
3
4

p−q
and we find that for each such k, x, |ex−kφ(N)| > p−q

φ(N)N
1
4
ex.

As y = ex−kφ(N), the bound on |y| is not satisfied. Thus the weak key presented

in Example 3.6 is not covered by the work of [9].

Next, we attempt different cases with e = Nα having varying α given the same

p, q in Example 3.3. As the strategy works for the values u = 252 and v = 2175

(given in Example 3.5), we get N τ = pu + v, which implies τ = 0.552. In the

first row of Table 3.3, we present the values of α where e = Nα; the second row

provides the theoretical upper bound on γ according to Theorem 3.2, given the

values of α in the first row and τ = 0.552; the third row presents the experimental

values of γ, which is obtained from the bitsize of Y as found in the experiments.

The lattice used in these cases has the parameters m = 7, t = 3, w = 60.

α 1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.72

γ (theory) 0.250 0.311 0.374 0.438 0.504 0.570 0.638 0.706 0.720

γ (exp.) 0.240 0.300 0.362 0.426 0.491 0.555 0.621 – –

Table 3.3: Values of γ for τ = 0.552, 100 bit N , and p, q as in Example 3.3.

In experiments, we do not get the solutions for these p, q values when α ≥ 1.7

as 1 + γ − α becomes very close to zero and hence X does not exist given the

bound of Y . The maximum e for which we get a valid X is of size 1653 bits in

59 3.3 A New Class of Weak Keys

this example. Thus the maximum value of α for which our method works in this

example is 1.653. The value of γ in such a case is 0.656 as Y is a 656-bit integer.

We like to point out that one can exploit the techniques using sublattices given

in [15] for improvement in the bound of γ than in Theorem 3.2 (where we use

the idea of lattices following [14]). In practice, the idea of sublattices helps in

getting the same result with less lattice dimension. During actual execution, for

fixed N, e, u, v, Y , consider that t1 is the time in seconds to run the LLL algo-

rithm, t2 is the time in seconds to calculate the resultant and t3 is the time in

seconds to find the integer root of the resultant; and let us refer this as a tuple

〈(lN , le, lu, lv, lY) , t1, t2, t3〉a, where lN , le, lu, lv, lY are the bitsizes of N, e, u, v, Y re-

spectively; and a = L for full rank lattice and a = S for sublattice. Our examples

are with lattice parameters m = 7, t = 3 and thereby giving the dimension 60 for

full rank lattice (following the idea of [14]) and dimension 43 for sublattice (exactly

following [15] the dimension should be 45, but due to the upper bounds X1, Y1 in

Theorem 3.2, we get lower sublattice dimension). The examples are as follows:

〈(1000, 1000, 52, 175, 240) , 20, 373, 4〉L, 〈(1000, 1000, 52, 175, 240) , 14, 377, 4〉S,
〈(2000, 1995, 104, 350, 465) , 79, 1074, 16〉L, 〈(2000, 1995, 104, 350, 465) , 68, 1075,
15〉S, 〈(9999, 9999, 520, 1750, 2350) , 4722, 5021, 248〉L, 〈(9999, 9999, 520, 1750,
2350) , 4426, 5028, 198〉S.
As long as t1 is much less than t2, using sublattices (following [15]) instead of

lattices (following [14]) will not provide significant improvement in total execu-

tion time. However, when t1 becomes dominant, then the implementation using

sublattices will provide faster execution.

3.3.2 Estimation of Weak Keys

In this section, we estimate the number of exponents for which our method works.

We first present a simple analysis.

Lemma 3.7. Consider RSA with N = pq, where p, q are primes such that q < p <

2q. Let e be the public encryption exponent that satisfies eX− (N − pu− v)Y = 1.

Then for X = Y = 1, N can be factorized in poly(log N) time from the knowledge

of N, e when u is not a multiple of q and |v| < N
1
4 . The number of such weak keys

e, such that e < N is N
3
4
−ǫ, where ǫ > 0 is arbitrarily small for suitably large N .

Proof. Given the equation eX − (N − pu − v)Y = 1, we consider the scenario

Chapter 3: A class of Weak Encryption Exponents in RSA 60

when X = 1, Y = 1, i.e., when e = N − pu − v + 1. In such a case, from e,

we will immediately get pu + v and then following Theorem 3.4, one can get p

in O(poly(log N)) time when |v| < N
1
4 and u is not a multiple of q. Considering

1 < e < φ(N), we get that pu + v < N . Considering p, q are of same bitsize, i.e.,

q < p < 2q, one may find
√
N < p <

√
2N and

√
N
2
< q <

√
N . As, |v| < N

1
4

and v may be a negative integer, a conservative upper bound of u is
√

N
2

and

clearly in such a case u is not a multiple of q. The total number of options of u, v

pairs when 0 < u <
√

N
2
and |v| < N

1
4 is

√
N
2
× 2N

1
4 =
√
2N

3
4 . As we have to

consider those e’s which are co-prime to φ(N), we can only consider those u, v pairs

such that gcd (N − pu− v + 1, φ(N)) = 1. Similar to the arguments of [9, Lemma

13] and [96, Theorem 6], the number of such u, v pairs is N
3
4
−ǫ, where ǫ > 0 is

arbitrarily small for suitably large N .

The result of Lemma 3.7 will actually work in a similar manner for any X, Y

which are bounded by a small constant as one can search those values of X, Y

pairs to guess pu+ v. Now we discuss a more general scenario.

Consider τ ≤ 1 − ǫ1 for some arbitrarily small positive constant ǫ1. We have√
N < p <

√
2N , pu + v = N τ and |v| < N

1
4 . Thus, it is enough to consider

u ≤ 1√
2
N

1
2
−ǫ1 . In such a case, N−pu−v will be c1N for some constant 0 < c1 < 1.

Considering e = c2N , with 0 < c2 < 1, a constant, we find that X, Y are of

the same order. As we consider e = c2N , we can estimate α as 1. Following

Theorem 3.2 and putting α = 1, we find that as τ goes towards 1 (i.e., ǫ1 goes to

0), the value of

4ατ

1

4τ
+

1

12α
−
√
(

1

4τ
+

1

12α

)2

+
1

2ατ

(
1

12
+

τ

24α
− α

8τ

)

goes towards 0. Now, γ is less than this bound, and |Y | = Nγ. Hence, given that

X, Y are of the same order, this puts a constraint on X as well, and we need to

consider X < N ǫ3 where α = 1, τ = 1− ǫ1, and

ǫ3 = 4ατ

1

4τ
+

1

12α
−
√
(

1

4τ
+

1

12α

)2

+
1

2ατ

(
1

12
+

τ

24α
− α

8τ

)

 .

Let us provide some computational results in this direction. Table 3.4 shows some

numerical values of ǫ3 (i.e., the bound of γ) following Theorem 3.2, corresponding

61 3.3 A New Class of Weak Keys

to different values of τ when α = 1.

τ 0.5 0.6 0.7 0.75 0.8 0.85 0.9 0.95 0.97 0.99

ǫ3 0.284 0.220 0.160 0.130 0.100 0.077 0.051 0.025 0.015 0.005

Table 3.4: Numerical values of ǫ3 following Theorem 3.2 where α = 1.

Let us refer to the following result from [41] due to Ford and Tenenbaum.

Theorem 3.8 (from [41]). Consider a large integer N that has a divisor d1 in an

interval (y, z] for a large y. Then N has exactly one divisor (almost certainly) in

this interval if z ≈ y + y
(log y)log 4−1 .

Now we can present a technical result required for counting the weak keys.

Lemma 3.9. Let N = pq with q < p < 2q and 0 ≤ u, u′ ≤ 1√
2
N

1
2
−ǫ1. Let

X be an integer with 1 ≤ X < N ǫ3 such that gcd(X,N − pu − v) = 1 and

gcd(X,N − pu′ − v′) = 1, where |v|, |v′| < N
1
4 . Let e ≡ X−1 (mod N − pu − v)

and e′ ≡ X−1 (mod N − pu′ − v′). If e = e′ then almost surely u = u′, v = v′.

Proof. We have e = e′. So N − pu − v and N − pu′ − v′ both divides eX − 1.

Since u, u′ ≤ 1√
2
N

1
2
−ǫ1 , and |v|, |v′| < N

1
4 so N − pu − v and N − pu′ − v′ are

in the interval I =
[

N −N1−ǫ1 −N 1
4 , N +N

1
4

]

. Let y = N − N1−ǫ1 − N 1
4 and

y′ = N +N
1
4 . One can check that y′ < y+ y

(log y)log 4−1 for a fixed ǫ1 and a large N .

Thus following Theorem 3.8, N − pu− v = N − pu′ − v′ holds almost surely.

Given N − pu − v = N − pu′ − v′, we get pu + v = pu′ + v′ if and only if

p(u − u′) = v′ − v. Since p is O(
√
N) and v, v′ are O(N

1
4), we get u = u′ and

v = v′.

Thus if any one (or both) of the pairs u, u′ and v, v′ are distinct, then e, e′ are

almost surely distinct once X is fixed. The number of such distinct u, v pairs is
1√
2
N

3
4
−ǫ1 . Fixing X, for each pair of values of u, v, the exponent e need to be

co-prime to φ(N). Similar to the arguments of [9, Lemma 13] and [96, Theorem

6], the number of such u, v pairs is 1√
2
N

3
4
−ǫ1−ǫ2 , where ǫ2 > 0 is arbitrarily small

for suitably large N . Once again, we like to highlight the constraint that X < N ǫ3 ,

where the value of ǫ3 goes towards 0 as ǫ1 goes to zero. Following Table 3.4, we

get that when ǫ1 is 0.01, then ǫ3 = 0.005. Thus, in this case, for any X < N0.005,

we get approximately 1√
2
N0.74−ǫ2 many weak keys.

Chapter 3: A class of Weak Encryption Exponents in RSA 62

Note that, the problem becomes more complicated when we consider the set

of weak keys for two unequal values of X, say X ′, X ′′. Let HX′ and HX′′ be two

different sets of weak keys for X ′ 6= X ′′. However, it is not clear what is the

intersection between HX′ and HX′′ . If it can be shown that for distinct values of

X, the corresponding sets HX does not have quite a large intersection, then the

total number of weak keys will be much higher than what demonstrated in this

section. Further in this section we have only considered e < N . As the result of

Theorem 3.2 shows that our technique can be applied for e > N too, that will

provide much larger class of weak keys.

3.4 Conclusion

In this chapter we present some new weak keys of RSA. We study the public

exponents e (= Nα) when eX − ZY = 1 under the constraint |N − Z| = N τ .

We show that the LLL algorithm can be efficiently applied to get Z = ψ(p, q, u, v)

when |Y | = Nγ and

γ < 4ατ

1

4τ
+

1

12α
−
√
(

1

4τ
+

1

12α

)2

+
1

2ατ

(
1

12
+

τ

24α
− α

8τ

)

 .

Some specific forms of ψ(p, q, u, v) are then studied. We improve the results of [96]

taking ψ(p, q, u, v) = (p−u)(q−v). Further, we consider ψ(p, q, u, v) = N−pu−v
to provide a new class of weak keys in RSA. A very preliminary analysis of this class

shows that the number of weak keys is at least N0.75−ǫ and it seems that a better

analysis will provide a better bound than this. Further, the study of different forms

of ψ(p, q, u, v) may provide additional weak keys that are not known till date.

Following a similar line of thought, one may wonder if there exist any weak-

nesses associated with the RSA decryption exponent. A lot of research in crypt-

analysis of RSA has been done in this direction, and there exist several results. In

the next chapter, we study a special vulnerability of RSA in the case when more

than one decryption exponents are used with the same modulus.

Chapter 4

Cryptanalysis of RSA with more

than one Decryption Exponent

From the work of Boneh and Durfee [14], we know that one can factor N in

polynomial time when d < N0.292. Instead of one decryption exponent, consider

that n many decryption exponents (d1, . . . , dn) are used with the same N . Let

(e1, e2, . . . , en) be their corresponding public exponents. As explained in [60, Page

121] such a situation can arise if a person is using the same RSA modulus N , but

different exponents di to sign different messages. It has been shown by Howgrave-

Graham and Seifert [62] that in case of n many decryption exponents, one can

factor N efficiently when di < N δ, for 1 ≤ i ≤ n, where

δ <

(2n+ 1) · 2n − (2n+ 1)
(

n
n/2

)

(2n− 2) · 2n + (4n+ 2)
(

n
n/2

) if n is even.

(2n+ 1) · 2n − 4n ·
(

n−1
(n−1)/2

)

(2n− 2) · 2n + 8n ·
(

n−1
(n−1)/2

) if n is odd.

(4.1)

However, Hinek et al [55, Section 5] proved that one needs to satisfy another

condition for the idea of [62] to work. That condition makes the upper bound of

decryption exponents di <
√
N for 1 ≤ i ≤ n.

We show in this chapter that if n many decryption exponents (d1, . . . , dn) are

used with the same N , then RSA is insecure when di < N
3n−1
4n+4 , for 1 ≤ i ≤ n

and n ≥ 2. Our result improves the bound of Howgrave-Graham and Seifert [62].

The time complexity of our technique as well as that of [62] is polynomial in the

63

Chapter 4: Cryptanalysis of RSA with more than one Decryption Exponent 64

bitsize of N and exponential in the number of decryption exponents n. Putting

n = 2, we find δ < 0.416. However, for this special case of n = 2, we show that our

strategy can extend the bound till δ < 0.422. Our result has another component

that it takes care of the case when some of the most significant bits (MSBs) of the

decryption exponents are same (but unknown). This implicit information increases

the bounds on the decryption exponents even further. We present experimental

results to support our claim. As explained in the introduction of [62], we also agree

that studying this kind of cryptanalysis may not have direct impact to RSA used

in practice. However, there are few issues for which this problem is interesting.

• This shows how one can find further weaknesses of RSA with additional

public information – in this case more than one encryption exponents.

• Moreover, this shows how one can extend the ideas of [15,130], where a single

encryption exponent is considered, to more than one exponents.

4.1 Theoretical Result

We need the following technical result that will be used later. A general treatment

in this direction is available in [63, Theorem 1, Page 230].

Lemma 4.1. For any fixed positive integer r ≥ 1, and a large integer m,

m∑

t=1

tr =
mr+1

r + 1
+ o(mr+1).

Proof. Let S = 1r + 2r + . . .+mr. Then we have

∫ m

0

xr dx < S <

∫ m+1

1

xr dx

⇒ mr+1

r + 1
< S <

(m+ 1)r+1 − 1

r + 1

⇒ mr+1

r + 1
< S <

(m+ 1)r+1

r + 1
.

Now, (m+1)r+1

r+1
− mr+1

r+1
contains the terms mi for i ≤ r. Thus, for a fixed r and large

m, one can write

S =
mr+1

r + 1
+ o(mr+1).

65 4.1 Theoretical Result

Hence the required result.

Now we may proceed to our main result for this section.

Theorem 4.2. Suppose that n ≥ 2 and (e1, . . . , en) are n RSA encryption ex-

ponents with common modulus N . Also suppose that gcd(ei, ej) = 1 for all

i 6= j where 1 ≤ i, j ≤ n. Let d1, . . . , dn be the corresponding decryption expo-

nents with d1, . . . , dn < N δ. Then, under Assumption 1, one can factor N in

poly{log N, exp(n)} time if

δ <

0.422 for n = 2

3n− 1

4n+ 4
for n ≥ 3

Proof. We have, e1d1 = 1 + k1(N + r), e2d2 = 1 + k2(N + r), . . ., endn = 1 +

kn(N+r), where r = −p−q+1. Let
∏n

i=1 ei = E. Multiplying the n equations by
E
e1
, E
e2
, . . . , E

en
respectively, and then subtracting all the other equations from the

first one, we get

E

(

d1 −
n∑

i=2

di

)

=
E

e1
−

n∑

j=2

E

ej
+ (N + r)

(

E

e1
k1 −

n∑

j=2

E

ej
kj

)

.

Now, we want to find a solution (d1−d2−· · ·−dn, k1, . . . , kn, r) of the polynomial

f(x1, x2, . . . , xn+2) = Ex1 −
(

E

e1
−

n∑

j=2

E

ej

)

− (N + xn+2)

(

E

e1
x2 −

n∑

j=2

E

ej
xj+1

)

.

Note that f(x1, x2, . . . , xn+2) is an irreducible polynomial as the encryption expo-

nents are relatively prime. Since di < N δ for 1 ≤ i ≤ n, |d1 −
∑n

i=2 di| < N δ,

treating n as a constant and neglecting it. Also, we have |r| <
(
1 +
√
2
)
N

1
2 and

ki < N δ for 1 ≤ i ≤ n. Let X1 = X2 = · · · = Xn+1 = N δ and Xn+2 = N
1
2 . Then

X1, X2, . . . , Xn+2 are the upper bounds of (d1 −
∑n

i=2 di) , k1, . . . , kn, r respectively,

neglecting constant terms. Using the extended strategy of Section 2.6.2, we define

S =
⋃

0≤j≤t

{xi11 xi22 · · · xin+2+j
n+2 : xi11 x

i2
2 · · · xin+2

n+2 is a monomial of fm}

M = {monomials of xi11 x
i2
2 · · · xin+2

n+2 · f : xi11 x
i2
2 · · · xin+2

n+2 ∈ S},

Chapter 4: Cryptanalysis of RSA with more than one Decryption Exponent 66

where t is a non-negative integer. Thus we get the following:

xi11 x
i2
2 · · · xin+2

n+2 ∈ S ⇔

i1 = 0, . . . ,m

i2 = 0, . . . ,m− i1
...

in+1 = 0, . . . ,m− i1 − · · · − in
in+2 = 0, . . . , i2 + · · ·+ in+1 + t

xi11 x
i2
2 · · · xin+2

n+2 ∈M ⇔

i1 = 0, . . . ,m+ 1

i2 = 0, . . . ,m+ 1− i1
...

in+1 = 0, . . . ,m+ 1− i1 − · · · − in,
in+2 = 0, . . . , i2 + · · ·+ in+1 + t.

Apart from f , we need to find at least n+1 more polynomials f1, f2, . . . fn+1 that

share the same root (d1 − d2 − · · · − dn, k1, . . . , kn, r) over the integers.

Considering a small fixed n, we know that these polynomials can be found by

LLL [77] algorithm in poly(log N) time if

Xs1
1 X

s2
2 · · ·Xsn+2

n+2 < W s

for sj =
∑

x
i1
1 ···xin+2

n+2 ∈M\S ij with j = 1, . . . , n+ 2, s = |S|, and

W = ||f(x1X1, . . . xn+2Xn+2)||∞ ≥ Ne2 · · · enX2 ≈ Nn+δ,

assuming the ei’s are of full bitsize for 2 ≤ i ≤ n. From the structure of the

polynomial f , it is clear that s2, . . . , sn+1 are equal. Thus we only need to calculate1

1The detailed calculations for s, s1, . . . , sn+2 are quite tedious and these are presented a little
later, not to hamper the continuity of this proof.

67 4.1 Theoretical Result

s, s1, s2 and sn+2. We get,

s ≈ 1

(n− 1)!
· mn+2

(n+ 1)(n+ 2)
+

t

(n− 1)!
· mn+1

n(n+ 1)
,

s1 ≈
mn+2

(n− 1)! · (n+ 2)(n+ 1)
+

tmn+1

(n− 1)! · n(n+ 1)
,

s2 = · · · = sn+1 ≈
mn+2

n! · (n+ 2)
+

tmn+1

(n− 2)! · n(n− 1)(n+ 1)
,

sn+2 ≈
mn+2

(n− 1)! · 2(n+ 2)
+ t · mn+1

(n− 1)! · (n+ 1)
+ t2 · mn

(n− 1)! · 2n.

Consider t = τm, where τ ≥ 0 is a real number. Putting the values of

X1, X2, . . . , Xn+2, s1, . . . , sn+2, s, and the lower bound of W in the condition

Xs1
1 X

s2
2 . . . X

sn+2

n+2 < W s, we get

n2τ 2+4n2τδ− 2n2τ +3nτ 2+4n2δ+8nτδ− 3n2− 4nτ +2τ 2+4nδ+n < 0. (4.2)

The optimal value of τ to maximize δ is (1−2δ)n
1+n

. One may note that τ ≤ 0 when

the maximum value of δ is greater than 1
2
. For the cases n ≥ 3, we get that the

upper bound of δ greater than 1
2
for τ = 0. Thus in these cases, it is enough to

consider τ = 0, i.e., t = 0. In these cases, putting τ = 0 in (4.2), we get

δ <
3n− 1

4n+ 4
.

For the cases n ≥ 3, extra shifts over the variable xn+2 does not provide any

improvement in the theoretical bound. Thus, it is enough to consider in+2 =

0, . . . , i2 + · · · + in+1 instead of in+2 = 0, . . . , i2 + · · · + in+1 + t. For the case

n = 2 though, the extra shifts over x4 provide theoretical improvements. Putting

τ = (1−2δ)n
1+n

in (4.2), we get δ < 0.422, which provides a better bound compared to
3×2−1
4×2+4

≈ 0.416.

Using the strategy of Section 2.6, one can construct a lattice L from S,M . The

bitsize of the entries of L is poly(log N), and

dim(L) = |M | = 1

(n− 1)!
· (m+ 1)n+2

(n+ 1)(n+ 2)
+

t

(n− 1)!
· (m+ 1)n+1

n(n+ 1)
+ o((m+1)n+2).

The running time of our algorithm is dominated by the LLL algorithm run on L,

which takes time polynomial in the dimension of the lattice and in the bitsize of

Chapter 4: Cryptanalysis of RSA with more than one Decryption Exponent 68

the entries. Since the lattice dimension in our case is exponential in n, so the total

running time for this method is poly{log N, exp(n)}.

Remark 4.3. If the encryption exponents are not relatively prime, as assumed

in Theorem 4.2, then f(x1, x2, . . . , xn+2) will not be an irreducible polynomial.

However, the GCD of any two encryption exponents will be small in general, and

hence f(x1, x2, . . . , xn+2) will be of the form cg(x1, x2, . . . , xn+2), where c is a small

constant. In this case, one needs to find the root of g(x1, x2, . . . , xn+2) instead.

n = 2 n = 3 n = 4 n = 5 n = 6
Method of [62] 0.357 0.400 0.441 0.468 0.493
Our Method 0.422 0.500 0.550 0.583 0.607

Table 4.1: Comparison of our theoretical bounds with that of [62].

Our bound in Theorem 4.2 is clearly better than that of Howgrave-Graham

and Seifert [62]. Our approach works when upper bound of di is less than N
0.75 for

1 ≤ i ≤ n as n→∞, whereas the bound is N0.5 in [62]. In Table 4.1, we present

comparative upper bounds of di for different values of n.

Theorem 4.2 may be extended when some of the most significant bits (MSBs)

of the decryption exponents are same (but unknown). This implicit information

increases the bound of decryption exponents even further, as follows.

Corollary 4.4. Let e1, . . . , en (where n ≥ 2) be RSA encryption exponents with

common modulus N , and suppose that d1, . . . , dn are the corresponding decryption

exponents. Also suppose that gcd(ei, ej) = 1 for all i 6= j where 1 ≤ i, j ≤ n. Let

d1, d2, . . . , dn < N δ and |du − dv| < Nβ for u 6= v ∈ [1, n]. Then one can factor N

in poly{log N, exp(n)} time when τ = max{0, −2nδ+n−2β+2δ
n+1

} and

n2τ 2 + 4n2τδ−2n2τ + 3nτ 2 + 4nτβ + 4n2δ

+4nτδ − 3n2 − 4nτ + 2τ 2 + 4nβ + 8τβ − 8τδ + n < 0.

Proof. First consider the case when n is even. If E =
∏n

i=1 ei, we have

E ·
n∑

i=1

(−1)i+1di =
n∑

j=1

(−1)j+1E

ej
+ (N + r) ·

(
n∑

j=1

(−1)j+1E

ej
kj

)

.

69 4.1 Theoretical Result

We want to find a solution (d1 − d2 + d3 − · · · − dn, k1, . . . , kn, r) of the polynomial

f (x1, x2, . . . , xn+2) = Ex1 −
n∑

j=1

(−1)j+1 E

ej
− (N + xn+2)

(
n∑

j=1

(−1)j+1E

ej
xj+1

)

.

In this case we have |d1 − d2 + d3 − · · · − dn| < Nβ, assuming that n is a fixed

small integer, negligible compared to Nβ. Let X1 = Nβ, X2 = · · · = Xn+1 = N δ

and Xn+2 = N
1
2 . Then X1, X2, . . . , Xn+2 are the upper bounds of d1 − d2 + d3 −

· · · − dn, k1, . . . , kn, r respectively, neglecting constant terms. Now proceeding as

in the proof of Theorem (4.2), we get the claimed bound. The situation can

be handled in a similar manner for odd n as |2d1 − d2 + d3 − · · · − dn−1 − dn| =
|(d1 − d2 + d3 − · · · − dn−1) + (d1 − dn)| can be bounded above by Nβ.

Detailed Calculations related to Theorem 4.2

Calculation of s

One may note that s is the number of solutions of 0 ≤ i1 + · · · + in+1 ≤ m,

0 ≤ in+2 ≤ i2 + · · ·+ in+1 + t. Using Lemma 4.1 and neglecting lower order terms,

s =
m∑

r=0

(1 + r + t) (m+ 1− r)
(
r + n− 1

r

)

≈
m∑

r=0

(1 + r + t)(m+ 1− r) rn−1

(n− 1)!

which gives the following:

s ≈
m∑

r=0

(r + t)(m− r) rn−1

(n− 1)!

≈ 1

(n− 1)!
· mn+2

(n+ 1)(n+ 2)
+

t

(n− 1)!
· mn+1

n(n+ 1)
.

Chapter 4: Cryptanalysis of RSA with more than one Decryption Exponent 70

Calculation of s1

s1 =
m+1∑

i1=0

m−i1+1∑

r=0

(
r + n− 1

r

)

(r + t+ 1) · i1

−
m∑

i1=0

m−i1∑

r=0

(
r + n− 1

r

)

(r + t+ 1) · i1

Now, using Lemma 4.1 and neglecting the lower order terms, we obtain

m+1∑

i1=0

m−i1+1∑

r=0

(
r + n− 1

r

)

(r + t+ 1) · i1

≈
m+1∑

i1=0

m−i1+1∑

r=0

rn−1

(n− 1)!
(r + t) · i1

≈
m+1∑

i1=0

(m− i1 + 1)n+1

(n− 1)! · (n+ 1)
· i1 +

m+1∑

i1=0

(m− i1 + 1)n

(n− 1)! · n · ti1

≈
m+1∑

T=0

T n+1(m− T + 1)

(n− 1)! · (n+ 1)
+

m+1∑

T=0

t · T
n(m− T + 1)

(n− 1)! · n , where T = m− i1 + 1

≈ (m+ 1)n+3

(n− 1)! · (n+ 3)(n+ 2)(n+ 1)
+

t

(n− 1)!
· (m+ 1)n+2

n(n+ 1)(n+ 2)
.

Thus, the final expression for s1 is as follows.

s1 ≈
(m+ 1)n+3

(n− 1)! · (n+ 3)(n+ 2)(n+ 1)
+

t

(n− 1)!
· (m+ 1)n+2

n(n+ 1)(n+ 2)

− mn+3

(n− 1)! · (n+ 3)(n+ 2)(n+ 1)
− t

(n− 1)!
· mn+2

n(n+ 1)(n+ 2)

≈ mn+2

(n− 1)! · (n+ 2)(n+ 1)
+

tmn+1

(n− 1)! · n(n+ 1)

71 4.1 Theoretical Result

Calculation of s2

s2 =
m+1∑

i1=0

m−i1+1∑

i2=0

m+1−i1−i2∑

r=0

r+t+i2∑

in+2=0

(
r + n− 2

r

)

· i2

−
m∑

i1=0

m−i1∑

i2=0

m−i1−i2∑

r=0

r+t+i2∑

in+2=0

(
r + n− 2

r

)

· i2.

Now, using Lemma 4.1 and neglecting lower order terms, we obtain

m+1∑

i1=0

m−i1+1∑

i2=0

m+1−i1−i2∑

r=0

r+t+i2∑

in+2=0

(
r + n− 2

r

)

· i2

=
m+1∑

i1=0

m−i1+1∑

i2=0

m+1−i1−i2∑

r=0

(
r + n− 2

r

)

· i2 · (r + t+ i2 + 1)

≈
m+1∑

i1=0

m−i1+1∑

i2=0

m+1−i1−i2∑

r=0

(
rn−1

(n− 2)!
· i2 +

rn−2

(n− 2)!
(i22 + ti2)

)

≈ 1

(n− 2)!

m+1∑

i1=0

m−i1+1∑

i2=0

(

i2 ·
(m+ 1− i1 − i2)n

n
+ (i22 + ti2)

(m+ 1− i1 − i2)n−1

n− 1

)

=
1

(n− 2)!

m+1∑

r1=0

r1∑

i2=0

(

i2 ·
(r1 − i2)n

n
+ (i22 + ti2)

(r1 − i2)n−1

n− 1

)

=
1

(n− 2)!

m+1∑

r1=0

r1∑

T=0

(

(r1 − T)
T n

n
+ (r1 − T)2

T n−1

n− 1
+ t · (r1 − T)

T n−1

n− 1

)

≈ 1

n! · (n+ 2)
· (m+ 1)n+3

n+ 3
+

t

(n− 2)!
· (m+ 1)n+2

(n− 1)n(n+ 1)(n+ 2)
,

denoting T = r1 − i2. Hence, we get the expression for s2 as follows.

s2 ≈
mn+2

n! · (n+ 2)
+

tmn+1

(n− 2)! · n(n− 1)(n+ 1)

Calculation of sn+2

sn+2 =
m+1∑

i1=0

m−i1+1∑

r=0

r+t∑

in+2=0

(
r + n− 1

r

)

· in+2 −
m∑

i1=0

m−i1∑

r=0

r+t∑

in+2=0

(
r + n− 1

r

)

· in+2

Chapter 4: Cryptanalysis of RSA with more than one Decryption Exponent 72

Then, using Lemma 4.1 and neglecting lower order terms, we obtain

m+1∑

i1=0

m−i1+1∑

r=0

r+t∑

in+2=0

(
r + n− 1

r

)

· in+2

=
m+1∑

i1=0

m−i1+1∑

r=0

(
r + n− 1

r

)
(r + t)(r + t+ 1)

2

≈ 1

2(n− 1)!

m+1∑

i1=0

(
(m− i1 + 1)n+2

n+ 2
+

2t · (m− i1 + 1)n+1

n+ 1
+
t2 · (m− i1 + 1)n

n

)

≈ (m+ 1)n+3

(n− 1)! · 2(n+ 2)(n+ 3)
+

2t · (m+ 1)n+2

(n− 1)! · 2(n+ 2)(n+ 1)
+

t2 · (m+ 1)n+1

(n− 1)! · 2(n+ 1)n
.

Hence, the final expression for sn+2 is as follows.

sn+2 ≈
mn+2

(n− 1)! · 2(n+ 2)
+ t · mn+1

(n− 1)! · (n+ 1)
+ t2 · mn

(n− 1)! · 2n

4.2 Experimental Results

Let us now present the experimental results. As the lattice used in [62] is of

smaller dimension, the time required was of the order of a few seconds. However,

using our strategy, one requires a lattice of higher dimension than that of [62], and

thus the time required is of the order of a few hours. We get substantially better

experimental results than [62] for m = 3, t = 0, i.e., when the lattice dimension is

105, in the presence of two decryption exponents (n = 2). We list the experimental

results to show that they improve the bounds presented in [62].

lN ldi (Theory of [62]) ldi (Expt. of [62]) ldi (Thm. (4.2)) ldi (Our expt.)

500 178 178 208 192

700 250 249 291 267

1000 357 - 416 383

Table 4.2: Comparison of theoretical and experimental results for n = 2.

In Theorem 4.2, we have considered Assumption 1 for finding common root

of polynomials, as mentioned earlier in Section 2.5.1. Let us now clarify how it

actually worked in our experiments. In the proof of Theorem 4.2, we considered

that we will be able to get at least three polynomials f0, f1, f2 along with f , that

73 4.3 Conclusion

share the integer root. In experiments, we found more than 4 polynomials (other

than f) after the LLL algorithm that share the root. Let us call them f0, f1, f2, f3.

We calculate f4 = R(f, f0), f5 = R(f, f1), f6 = R(f, f2), f7 = R(f, f3) and then

iterate the process to obtain f8 = R(f4, f5), f9 = R(f6, f7). In all the experiments,

we observe that x43x
4
4 = gcd(f8, f9). Thus we calculate

f10 = R

(
f8
x43x

4
4

,
f9
x43x

4
4

)

and we find that f10 is a polynomial in only x4, which corresponds to k2 in the

proof of Theorem 4.2. Since d1, d2 < N0.416 and p+ q <
(√

2 + 1√
2

)

N0.5, we have

p+ q < e2. Thus, we can find p+ q by calculating
(
N + 1 + k−1

2

)
mod e2 and this

immediately provides the factorization of N .

We have also studied the case n = 3. In this case, we take m = 2 which makes

the lattice dimension 98. We consider 1000-bit N and three decryption exponents

d1, d2, d3, each of 420 bits. We could factor N under Assumption 1 (Section 2.5.1)

in time 12390 seconds. The previous work of [62] could only achieve the solution

with three decryption exponents of 400 bits each. Thus we get an experimental

advantage over [62] as well for the case n = 3. We could not attempt experiments

for n > 3 as in those cases the lattice dimension becomes quite high.

4.3 Conclusion

In this chapter we prove that if n decryption exponents are used with the same

RSA modulus N , then RSA becomes insecure when di < N
3n−1
4n+4 for 1 ≤ i ≤ n and

n ≥ 2. This improves the current best known bound [62]. We have experimentally

demonstrated better results than that of [62] for the cases n = 2 and n = 3.

In Chapters 3 and 4, we have presented an analysis of the vulnerabilities of

RSA due to weak keys. Apart from these, RSA may be vulnerable in case certain

information regarding the bits of RSA primes are compromised due to some side-

channel leakage. In the next chapter, we study this and present a discussion on

RSA prime reconstruction if certain random bits of the primes are known.

Chapter 5

Reconstruction of Primes given

few of its Bits

An extensive amount of research has been done in RSA factorization and we re-

fer the reader to the survey papers by Boneh [11] and May [84] for a complete

account. One major class of RSA attacks exploit partial knowledge of the RSA

secret keys or the primes. Rivest and Shamir [109] pioneered these attacks using

Integer Programming and factored RSA modulus given two-third of the LSBs of

a factor. Later, a seminal paper [24] by Coppersmith proved that factorization of

the RSA modulus can be achieved given half of the MSBs of a factor. His method

used LLL [77] lattice reduction technique to solve for small solutions to modular

equations. This method triggered a host of research in the field of lattice based

factorization, e.g., the works by Howgrave-Graham [59], Jochemsz and May [65].

These results require knowledge of contiguous blocks of bits of the RSA secret

keys or the primes. However, in an actual practical scenario of side-channel attacks,

it is more likely that an adversary will gain the knowledge of random bits of

the RSA parameters instead of contiguous blocks. In fact, the cold-boot attack

proposed by Halderman et al [46] in 2009 was mounted to recover random bits of

RSA secret parameters exploiting data remanence in the computer memory. Thus

the motivation comes from side channel attack on RSA where some bits of p and

q are revealed but not the entire key. In this model, the application of the earlier

factorization methods prove insufficient, and one requires a way to extract more

information out of the random bits obtained via the side channel attacks. In [51],

it has been shown how N can be factored with the knowledge of a random subset

75

Chapter 5: Reconstruction of Primes given few of its Bits 76

of the bits (distributed over small contiguous blocks) in one of the primes. Later,

a similar result has been studied by Heninger and Shacham [50] to reconstruct the

RSA private keys given a certain fraction of the bits, distributed at random. This

is the work [50] where the random bits of both the primes are considered unlike

the earlier works (e.g., [16, 24, 51]) where knowledge of the bits of a single prime

have been exploited.

This chapter studies how the least (respectively most) significant halves of the

RSA primes can be completely recovered from some amount of randomly chosen

bits from the least (respectively most) significant halves of the same. Thereafter

one can exploit the existing lattice based results towards factoring the RSA mod-

ulus N = pq when p, q are of the same bitsize. It is possible to factor N in any

one of the following cases in poly (log N) time: (i) when the most significant half

of any one of the primes is known [24, Theorem 4], (ii) when the least significant

half of any one of the primes is known [16, Corollary 2.2].

5.1 LSB Case: Combinatorial Analysis of Exist-

ing Work

In this section, we analyze the reconstruction algorithm by Heninger and

Shacham [50, Section 3] from combinatorial point of view. Though the algorithm

extends to all relations among the RSA secret keys, we shall concentrate our atten-

tion to the primary relation N = pq for the sake of factorization. The algorithm

is a smart brute-force method on the total search space of unknown bits of p and

q, which prunes the solutions those are infeasible given the knowledge of N and

some random bits of the primes.

5.1.1 The Reconstruction Algorithm

Definition 5.1. Let us define X[i] to be the i-th bit of X with X[0] being the

LSB. Also define Xi to be the partial approximation of X through the bits 0 to i.

Then Algorithm 7 creates all possible pairs (pi, qi) by appending (p[i], q[i]) to

the partial solutions (pi−1, qi−1) and prunes the incorrect ones by checking the

validity of the available relation. A formal outline of Algorithm 7, which retrieves

77 5.1 LSB Case: Combinatorial Analysis of Existing Work

the least significant t many bits of both p, q, is as follows. It is easy to see that

the correct partial solution till the t many LSBs will exist in the set of all pairs

(pt−1, qt−1) found from Algorithm 7.

Input: N, t and p[i], q[j], for some random values of i, j
Output: Contiguous t many LSBs of p, q
Initialize: i = 1 and p0 = p[0] = 1, q0 = q[0] = 1 (as both are odd);1

for all (pi−1, qi−1) do2

for all possible (p[i], q[i]) do3

pi := APPEND(p[i], pi−1);4

qi := APPEND(q[i], qi−1);5

if N ≡ piqi (mod 2i+1) then6

ADD the pair (pi, qi) at level i;7

end

end

end
if i < t− 1 then8

i := i+ 1;9

GOTO Step 2;10

end
REPORT all (pt−1, qt−1) pairs;11

Algorithm 7: The search algorithm.

As one may notice, there are at most 4 possible choices for (p[i], q[i]) branches

at any level i. Algorithm 7 works with all possible combinations of the bits p[i], q[i]

at level i and hence one may want to obtain a relation between p[i] and q[i] in terms

of the known values of N, pi−1, qi−1 so that it poses a constraint on the possibilities.

Heninger and Shacham [50, Section 4] uses Multivariate Hensel’s Lemma to obtain

such a relation

p[i] + q[i] ≡ (N − pi−1qi−1) [i] (mod 2). (5.1)

Now, this linear relation between p[i], q[i] restricts the possible choices for the bits.

Thus, at any level i, instead of 4 possibilities, the number cuts down to 2.

If we construct the search tree, then these possibilities for the bits at any level

give rise to new branches in the tree. The tree at any level i contains all the partial

solutions pi, qi up to the i-th LSB (the correct partial solution is one among them).

It is quite natural to restrict the number of potential candidates (i.e., the partial

solutions) at any level so that the correct one can be found easily by exhaustive

search among all the solutions and the space to store all these solutions is within

Chapter 5: Reconstruction of Primes given few of its Bits 78

certain feasible limit. This calls for restricting the width of the search tree at each

level. Let us denote the width of the tree at level i by Wi. Now we take a look

at the situations (depending on the knowledge of the random bits of the primes)

that control the branching behavior of the tree.

5.1.2 Growth of the Search Tree

Consider the situation where we have a pair of partials (pi−1, qi−1) and do not

have any information of (p[i], q[i]) in Step 3 of Algorithm 7. Naturally there are 4

options, (0, 0), (0, 1), (1, 0) and (1, 1) for getting (pi, qi). However, Equation (5.1)

and the knowledge of N , pi−1, qi−1 impose a linear dependence between p[i], q[i]

and hence restrict the number of choices to exactly 2. If (N − pi−1qi−1) [i] = 0 then

we have p[i] + q[i] ≡ 0 (mod 2) and (N − pi−1qi−1) [i] = 1 implies p[i] + q[i] ≡ 1

(mod 2). Hence the width of the tree at this level will be twice the width of the

tree at the previous one, as shown in Figure 5.1.

(0, 0) (1, 1) (1, 0) (0, 1)

p[i] + q[i] ≡ 0 (mod 2) p[i] + q[i] ≡ 1 (mod 2)

Figure 5.1: Branching when both the bits p[i], q[i] are unknown.

Next, let us have a look at the situation when exactly one of p[i], q[i] is known.

First, the number of branches restricts to 2 by Equation (5.1), as discussed before.

Moreover, the knowledge of one bit fixes the other in this relation. For example,

if one knows the value of p[i] along with N, pi−1, qi−1 in Equation (5.1), then q[i]

gets determined. Thus the number of choices for p[i], q[i] and hence the number

of pi, qi branches reduces to a single one in this case. This branching, which keeps

the tree-width fixed, may be illustrated as in Figure 5.2 (p[i] = 0 is known, say).

Though the earlier two cases are easy to understand, the situation is not so

simple when both p[i], q[i] are known. In this case, the validity of Equation (5.1)

comes under scrutiny. If we fit in all the values p[i], q[i], N, pi−1, qi−1 in Equation

(5.1) and it is satisfied, then we accept the new partial solution pi, qi at level i

79 5.1 LSB Case: Combinatorial Analysis of Existing Work

(0, 0) (1, 1) (1, 0) (0, 1)

p[i] = 0 p[i] = 0

p[i] + q[i] ≡ 0 (mod 2) p[i] + q[i] ≡ 1 (mod 2)

Figure 5.2: Branching when exactly one bit of p[i], q[i] is known.

and otherwise we do not. In the case where neither of the possibilities for pi, qi

generated from pi−1, qi−1 satisfy the relation, we discard the whole subtree rooted

at pi−1, qi−1. Thus, the pruning procedure not only discards the wrong ones at level

i, but also discards subtrees from level i − 1, thereby narrowing down the search

tree. An example case (p[i] = 0 and q[i] = 1 are known, say) may be presented as

in Figure 5.3.

(0, 0) (1, 1) (1, 0) (0, 1)

p[i] = 0
q[i] = 1

p[i] = 0
q[i] = 1

p[i] + q[i] ≡ 1 (mod 2) p[i] + q[i] ≡ 1 (mod 2)

Figure 5.3: Branching when both the bits p[i], q[i] are known.

Based on our discussion so far, let us try to model the growth of the search

tree following Algorithm 7. As both p, q are odd, we have p[0] = 1 and q[0] = 1.

Thus the tree starts from W0 = 1 and the expansion or contraction of the tree at

each level can be modeled as follows.

• p[i] = UNKNOWN, q[i] = UNKNOWN: Wi = 2Wi−1.

• p[i] = KNOWN, q[i] = UNKNOWN: Wi = Wi−1.

• p[i] = UNKNOWN, q[i] = KNOWN: Wi = Wi−1.

• p[i] = KNOWN, q[i] = KNOWN: Wi = γiWi−1.

Chapter 5: Reconstruction of Primes given few of its Bits 80

Here, we assume that the tree narrows down to a γi fraction (0 < γi ≤ 1) from the

earlier level if both the bits of the primes are known. One may note that Heninger

and Shacham [50, Conjecture 4.3] conjectures the average value of γi (call it γ) to

be 1
2
. We shall discuss this in more details later.

Suppose that randomly chosen α fraction of bits of p and β fraction of bits

of q are known (by some side channel attack, e.g., cold boot). Then the joint

probability distribution table for the bits of the primes will be as follows.

↓ q[i], p[i] → UNKNOWN KNOWN

UNKNOWN (1− α)(1− β) α(1− β)

KNOWN (1− α)β αβ

As shown before, the growth of the search tree depends upon the knowledge of

the bits in the primes. Hence, we can model the growth of the tree as a recursion

on the level index i:

Wi = (1− α)(1− β)2Wi−1 + α(1− β)Wi−1 + (1− α)βWi−1 + αβγiWi−1

= (2− α− β + αβγi)Wi−1.

If we want to restrictWi (that is the growth of the tree) as a polynomial of i (that is

the number of level), we would like (roughly speaking) the value of (2−α−β+αβγi)
close to 1 on an average. Considering the average value γ (instead of γi at each

level), we get, 2 − α − β + αβγ ≈ 1 which implies 1 − α − β + αβγ ≈ 0. If

we assume that the same fraction of bits are known for p and q, then α = β

and we get 1 − 2α + α2γ ≈ 0 ⇒ α ≈ 1−√
1−γ
γ

. If we assume [50, Conjecture

4.3], then γ ≈ 0.5 and hence α ≈ 2 −
√
2 ≈ 0.5858, as obtained in [50, Section

4.4]. One may note that our idea is simpler compared to the explanation in [50].

This simplification is achieved here by using average value for γi in the recurrence

relation of Wi.

The most natural strategy is to first apply Algorithm 7 to retrieve the least

significant half of any one of the primes and then apply the result of Boneh et

al [16, Corollary 2.2] to factorize N . One may note that [50] utilizes their prime

reconstruction algorithm to reconstruct the whole primes p, q whereas our idea is

to use lattice based results after reconstructing just one half of any prime. This is

more practical as it requires the knowledge of lesser number of random bits of the

primes, namely, just about 0.5858× 0.5 ≈ 0.3 fraction of bits (from the LSB half)

instead of 0.5858 fraction of the primes as explained in [50]. Moreover, factorization

81 5.1 LSB Case: Combinatorial Analysis of Existing Work

being the main objective, one need not reconstruct the primes completely, but just

requires to obtain enough information that suffices for factoring the product N

based on the existing efficient techniques. In this direction, let us first present the

following result.

5.1.3 Known Prime Bits: Complementary Sets for p, q

Theorem 5.2. Let N = pq, when p, q are primes of same bitsize. Let S =

{0, . . . , ⌈lN/4⌉}. Consider U ⊆ S and V = S \ U . Assume that p[i]’s for i ∈ U
and q[j]’s for j ∈ V are known. Then one can factor N in poly (log N) time.

Proof. Let us apply Algorithm 7 in this case to retrieve the bits of the primes at

each level. We shall use induction on the index of levels in this case.

For level 0, we know that p[0] = 1 and q[0] = 1. Hence, the width of the search

tree is W0 = 1 and we have a single correct partial (p0, q0). Let us suppose that we

have possible pairs of partials (pi−1, qi−1) at level i− 1, generated by Algorithm 7.

At level i, two cases may arise. If i ∈ U then we know p[i], N, pi−1, qi−1 which

restricts the branching to a single branch and keeps the width of the tree fixed

(Wi = Wi−1). Else one must have i ∈ V (V = S\U) and we know q[i], N, pi−1, qi−1.

This restricts the branching to a single branch as well and keeps the width fixed

(Wi = Wi−1). Hence, by induction on i, Wi = Wi−1 for i = 0, . . . , ⌈lN/4⌉. As

W0 = 1, this boils down to Wi = 1 for i ≤ ⌈lN/4⌉.
Thus we obtain a single correct partial pair pi, qi at level i = ⌈lN/4⌉ using

Algorithm 7 in O(log3N) time (⌈lN/4⌉ iterations and O(log2N) computing time

for each iteration) and O(lN/2) space (actually we need space to store a single

partial pair at the current level). This provides us with the least significant half

of both the primes and using any one of those two, the lattice based method

of [16, Corollary 2.2] completes the factorization of N = pq in poly (log N) time.

It is interesting to analyze the implications of this result in a few specific cases.

An extreme case may be U = S, that is we know all the bits in the least significant

half of a single prime p and do not know any such bits for q. In this scenario, one

need not apply Algorithm 7 at all and the lattice based method in [16, Corollary

2.2] suffices for factorization. Second case is when |U | = |S| − x, i.e., missing x

bits of p at random positions. In such a case, one can use a brute force search for

these missing bits and apply lattice based factoring method [16, Corollary 2.2] for

Chapter 5: Reconstruction of Primes given few of its Bits 82

all of the 2x possibilities, if x is small. However, for large x, e.g., x ≈ |U |, i.e.,
around half of the random bits from the least significant halves of p as well as q are

known, then the brute force strategy fails, and one must use Algorithm 7 before

applying the lattice based method in [16, Corollary 2.2].

5.1.4 Known Prime Bits: Distributed at Random

Here we consider the case when random bits of p, q are available, lifting the con-

straint V = S \ U . That is, here we only consider U, V to be random subsets of

S. For 512-bit primes, we observed that knowledge of randomly chosen half of the

bits from least significant halves of p, q is sufficient to recover the complete least

significant halves of p as well as q using Algorithm 7.

Now let us present a select few of our experimental results in Table 5.1. The

first column represents the size of the RSA primes and the second column gives

the fraction of bits known randomly from the least significant halves of the primes

(call these αp, βq respectively). The value of t in the third column is the target

level we need to run Algorithm 7 for, and is half the size of the primes. Wt is the

final width of the search tree at the target level t. This denotes the number of

possible partial solutions for p, q at the target bit level t, whereas the next column

gives us the maximum width of the tree observed during the run of Algorithm 7.

The last column depicts the average value of the shrink ratio γ, as we have defined

earlier.

A few crucial observations can be made from the data presented in Table 5.1.

We have run the experiments for different sizes of RSA keys, and though the

theoretical requirement for the fraction of known bits (α, β) is 0.5858, we have

obtained better results when lN ≤ 2048. For 512-bit N , the knowledge of just

0.45 fraction of random bits from the least significant halves of the primes proves

to be sufficient for Algorithm 7 to retrieve the halves, whereas for 1024 and 2048

bit N , we require about 0.5 fraction of such bits. The main reason is that the

growth of the search tree increases with increasing size of the target level t. As

we have discussed before, the growth will be independent of the target if we know

0.5858 fraction of bits instead. One may also note that for 1024-bit N , we have

obtained successful results when the fraction of bits known is not the same for the

two primes. For such skewed cases, the average requirement of known bits stay

the same, i.e, 0.5 fraction of the least significant halves. The examples for (0.7,

83 5.1 LSB Case: Combinatorial Analysis of Existing Work

Size |p|, |q| Known αp, βq Target t Final Wt maxti=1Wi Average γ

256, 256 0.5, 0.5 128 30 60 0.56
256, 256 0.5, 0.5 128 2816 5632 0.52
256, 256 0.47, 0.47 128 106 1508 0.54
256, 256 0.45, 0.45 128 6144 6144 0.49
512, 512 0.5, 0.5 256 352 928 0.53
512, 512 0.5, 0.5 256 8 256 0.55
512, 512 0.5, 0.5 256 716 3776 0.53
512, 512 0.5, 0.5 256 152 2240 0.59
512, 512 0.55, 0.45 256 37 268 0.51
512, 512 0.55, 0.45 256 64 334 0.51
512, 512 0.6, 0.4 256 1648 13528 0.55
512, 512 0.6, 0.4 256 704 5632 0.56
512, 512 0.7, 0.3 256 158 1344 0.53
512, 512 0.7, 0.3 256 47 4848 0.52
1024,1024 0.55, 0.55 512 1 352 0.53
1024,1024 0.53, 0.53 512 16 764 0.53
1024,1024 0.51, 0.51 512 138 15551 0.54
1024,1024 0.51, 0.5 512 17 4088 0.52

Table 5.1: Experimental results corresponding to Algorithm 7.

0.3) in such skewed cases provides interesting results compared to the result by

Herrmann and May [51]. Knowing about 70% of the bits of one prime is sufficient

for their method to factorize N , but the runtime is exponential in the number of

blocks over which the bits are distributed. By knowing 35% of one prime (70%

from the least significant half) and 15% of the other (30% of the least significant

half), Algorithm 7 can produce significantly better results in the same direction.

Another important point to note from the results is the average value of the

shrink ratio γ. It is conjectured in [50] that γ = 0.5. However, our experiments

clearly show that the value of γ is more than 0.5 in most (17 out of 18) of the

cases. A theoretical explanation of this anomaly may be of interest.

5.1.5 Known Prime Bits: Distributed in a Pattern

In addition to these results, some interesting cases appear when we consider the

knowledge of the bits to be periodic in a systematic pattern, instead of being

totally random. Suppose that the bits of the primes p, q are available in the

following pattern: none of the bits is known over a stretch of U bits, only q[i] is

Chapter 5: Reconstruction of Primes given few of its Bits 84

known for Q bits, only p[i] is known for P bits and both p[i], q[i] are known for

K bits. This pattern of length U + P + Q +K repeats over the total number of

bits. In such a case, one may expect the growth of the tree to obey the following

heuristic model – grows in doubles for U bits, stays the same for Q+P length and

shrinks thereafter (approximately by halves, considering γ = 0.5) for a stretch of

K bits. If this model is followed strictly, one expects the growth of the tree by

a factor of 2U2−K = 2U−K over each period of the pattern. The total number of

occurrences of this pattern over the stretch of T bits is roughly T
U+Q+P+K

. Hence

the width of the tree at level T may be roughly estimated by

WT ≈
[
2U−K

] T
U+Q+P+K = 2

T (U−K)
U+Q+P+K . A closer look reveals a slightly different

observation. We have expected that the tree shrinks in half if both bits are known,

which is based on the conjecture that γ ≈ 1/2 on an average. But in practical

scenario, this is not the case. So, the width WT at level T , as estimated above,

comes as an underestimate in most of the cases.

Let us consider a specific example for such a band-LSB case. The pattern

followed is [U = 5, Q = 3, P = 3, K = 5]. Using the estimation formula above,

one expects the final width of the tree at level 256 to be 1, as U = K. But in this

case, the final width turns out to be 8 instead. The reason behind this is that the

average value of γ in this experiment is 0.55 instead of 0.5.

It is natural for one to notice that the fraction of bits to be known in this band-

LSB case is (P+K)/(U+Q+P+K) for the prime p and (Q+K)/(U+Q+P+K)

for the prime q. If we choose Q = P and U = K, then this fraction is 0.5. Thus,

by knowing 50% of the bits from the least significant halves of the primes, that

is, knowing just 0.25 fraction of bits in total, Algorithm 7 can factorize N = pq

in this case. One may note that the result by Herrmann and May [51] requires

the knowledge of about 70% of the bits distributed over arbitrary number of small

blocks of a single prime. Thus, in terms of total number of bits to be known

(considering both the primes), our result is clearly better.

An extension of this idea may be applied in case of MSBs. Though we can

retrieve information about the primes from random bits at the least significant

side, we could not exploit similar information from the most significant part. But

we could do better if bands of bits are known instead of isolated random bits.

A novel idea for reconstructing primes based on such knowledge is presented in

Section 5.3.

85 5.2 LSB Case: Lattice Based Technique

5.2 LSB Case: Lattice Based Technique

Consider the scenario when a long run (length u) of p[i], q[i] is not known, for

k < i ≤ k + u say, starting at the (k + 1)-th bit level. In such a case, Algorithm 7

will require large memory as the width of the tree will be at least 2u at the u-th

level. If u is large, say u ≥ 50, then it will be hard to accommodate the number

of options, which is greater than 250. We describe a lattice based method below

to handle such situation.

Now we will state and prove the main result of this section.

Theorem 5.3. Let N = pq where p, q are of same bitsize. Suppose τ lN many least

significant bits (LSBs) of p, q are unknown but the subsequent ηlN many LSBs of

both p, q are known. Then, under Assumption 1, one can recover the τ lN many

unknown LSBs of p, q in poly (log N) time, if τ < η
2
.

Proof. Let p0 correspond to the known ηlN many bits of p and q0 correspond to the

known ηlN bits of q. Let p1 correspond to the unknown τ lN many bits of p and q1

correspond to the unknown τ lN bits of q. Then we have (2τlNp0+p1)(2
τlN q0+q1) ≡

N (mod 2(τ+η)lN). Let T = 2(τ+η)lN . Hence we are interested to find the root

(p1, q1) of f(x, y) =
(
2τlNp0 + x

) (
2τlN q0 + y

)
−N over ZT .

Let us take X = 2τlN and Y = 2τlN . One may note that X, Y are the upper

bounds of p1 and q1 respectively, neglecting small constants. For a non negative

integer m, we define two sets of polynomials

gi,j(x, y) = xif j(x, y)Tm−j, where j = 0, . . . ,m, i = 0, . . . ,m− j, and
hi,j(x, y) = yif j(x, y)Tm−j , where j = 0, . . . ,m, i = 1, . . . ,m− j.

Note that gi,j(p1, q1) ≡ 0 (mod Tm) and hi,j(p1, q1) ≡ 0 (mod Tm). We call gi,j

the x-shift and hi,j the y-shift polynomials, as per their respective constructions

following the idea described in Section 2.5.

Next, we form a lattice L by taking the coefficient vectors of the shift polyno-

mials gi,j(xX, yY) and hi,j(xX, yY) as basis. One can verify that the dimension of

the lattice L is ω = (m+1)2. The matrix containing the basis vectors of L is lower

triangular and has diagonal entries of the form X i+jY jTm−j, for j = 0, . . . ,m and

i = 0, . . . ,m− j, and XjY i+jTm−j for j = 0, . . . ,m and i = 1, . . . ,m− j, coming

Chapter 5: Reconstruction of Primes given few of its Bits 86

from gi,j and hi,j respectively. Thus, one can calculate

det(L) =

[
m∏

j=0

m−j
∏

i=0

X i+jY jTm−j

][
m∏

j=0

m−j
∏

i=1

XjY i+jTm−j

]

= Xs1Y s2T s3

where s1 =
1
2
m3 +m2 + 1

2
m, s2 =

1
2
m3 +m2 + 1

2
m, and s3 =

2
3
m3 + 3

2
m2 + 5

6
m.

To utilize resultant techniques and Assumption 1, we need two polynomials

f1(x, y), f2(x, y) which share the root (p1, q1) over integers. From Theorem 2.23,

we know that one can find such f1(x, y), f2(x, y) using LLL lattice reduction algo-

rithm [77] over L when det(L) < Tmω, neglecting the small constants. Given

det(L) and ω as above, the condition becomes Xs1Y s2T s3 < Tm((m+1)2), i.e.,

Xs1Y s2 < T s0 , where s0 = m ((m+ 1)2)− s3 = 1
3
m3+ 1

2
m2+ 1

6
m. Putting the val-

ues of the bounds X = Y = 2τlN , and neglecting o(m3) terms, we get τ
2
+ τ

2
< τ+η

3

and thus get the required bound for τ . Now, one can find the root (p1, q1) from

f1, f2 under Assumption 1.

This lattice based technique complements Algorithm 7 by overcoming one of

its limitations. As we discussed before, the search tree grows two-folds each time

we do not have any information about the bits of the primes. Hence in a case

where an initial chunk of LSBs is unknown for both the primes, one can not use

Algorithm 7 for reconstruction as it would require huge storage space for the search

tree. This lattice based technique provides a feasible solution in such a case. We

present a few experimental results in Table 5.2 to illustrate the operation of this

technique.

of Unknown # of Known Time in Seconds
bits (τ lN) bits (ηlN) LLL Algorithm Resultant Root Extraction

40 90 36.66 25.67 < 1
50 110 47.31 35.20 < 1
60 135 69.23 47.14 < 1
70 155 73.15 58.04 < 1

Table 5.2: Experimental runs of the Lattice Based Technique with dimension 64.

The limitation of this technique is that it asks for double or more the number

of missing bits for both the primes. If one misses 60 LSBs for the primes say,

this method requires the next 120 or more bits of both the primes to be known to

reconstruct all 60 + 120 = 180 LSBs. In the practical scenario, the requirement

87 5.3 MSB Case: Our Method and its Analysis

of bits to be known is 135 (shown in Table 5.2), instead of 120, as we use limited

lattice dimensions in the experiments. In all the cases mentioned above, we miss

the first τ lN LSBs of the primes. If we miss the information of the bits of the

prime in a contiguous block of size τ lN somewhere in the middle, after the i-th

level say, then this method offers similar solution if we have η > 2τ + 2i/lN .

5.3 MSB Case: Our Method and its Analysis

In this section, we put forward a novel idea of reconstructing the most significant

half of the primes p, q given the knowledge of some blocks of bits. To the best of

our knowledge, this has not been studied in a disciplined manner in the existing

literature. As before, N = pq, and the primes p, q are of the same bitsize. For

this section of MSB reconstruction, let us propose the following definition to make

notations simpler.

Definition 5.4. Let us define X[i] to be the i-th most significant bit of X with

X[0] being the MSB. Also define Xi to be the partial approximation of X where

Xi shares the most significant bits 0 through i with X.

5.3.1 The Reconstruction Idea

The idea for reconstructing the most significant halves of the primes is quite simple.

We shall use the basic relation N = pq. If one of the primes, p say, is known, the

other one is easy to find by q = N/p. Now, if a few MSBs of one of the primes,

p say, is known, then we may obtain an approximation p′ of p. This allows us to

construct an approximation q′ = ⌈N/p′⌉ of the other prime q as well. Our idea is

to use the known blocks of bits of the primes in a systematic order to repeat this

approximation process until we recover half of one of the primes. A few obvious

questions may be as follows.

• How accurate are the approximations?

• How probable is the success of the reconstruction process?

• How many bits of the primes do we need to know?

Chapter 5: Reconstruction of Primes given few of its Bits 88

We answer these questions by describing the reconstruction algorithm in Sec-

tion 5.3.2 and analyzing the same in Section 5.3.3. But first, let us present an

outline of our idea.

Suppose that we have the knowledge of MSBs {0, . . . , a} of prime p. This

allows us to construct an approximation pa of p, and hence an approximation

q′ = ⌈N/pa⌉ of q. Lemma 5.5, discussed later in Section 5.3.3, tells us that q′

matches q through MSBs {0, . . . , a− t− 1}, i.e, q′ = qa−t−1, with some probability

depending on t. Now, if one knows the MSBs {a − t, . . . , 2a} of q, then a better

approximation q2a may be constructed using qa−t−1 and these known bits. Again,

q2a facilitates the construction of a new approximation p′ = ⌈N/q2a⌉, which by

Lemma 5.5, satisfies p′ = p2a−t−1 with some probability depending on t. With the

knowledge of MSBs {2a − t, . . . , 3a} of p, it is once again possible to construct

a better approximation p3a of p. This process of constructing approximations is

recursed until one reconstructs the most significant half of one of the primes. A

graphical representation of the reconstruction process is illustrated in Figure 5.4.

p0 pa

qa−t ≈ N/pa

q0 qa−t q2a

p2a−t ≈ N/q2a

p2a−t p3a

q3a−t ≈ N/p3a

q3a−t

Figure 5.4: The feedback mechanism in MSB reconstruction.

5.3.2 The Reconstruction Algorithm

Let S = {0, . . . , T} denote the set of bit indices from the most significant halves of

the primes. Let us assume that k = ⌊T/a⌋ is odd in this case. Consider U, V ⊆ S

such that U = {0, . . . , a} ∪ {2a− t, . . . , 3a} ∪ · · · ∪ {(k − 1)a− t, . . . , ka},
V = {a− t, . . . , 2a} ∪ {3a− t, . . . , 4a} ∪ · · · ∪ {ka− t, . . . , T}. Also consider that

p[i]’s are known for i ∈ U and q[j]’s are known for j ∈ V . Then, Algorithm 8

reconstructs T many contiguous most significant bits of the prime q.

The subroutine CORRECT used in Algorithm 8 (and Algorithm 10 later) takes

as input a partial approximation Y of X and a set of contiguous known bits, X[i]

for i ∈ Σ, say. It outputs a better approximation Z of X by correcting the bits

of the partial approximation Y using the knowledge of the known bits. Formally,

89 5.3 MSB Case: Our Method and its Analysis

Input: N, T and p[i], q[j] for all i ∈ U and j ∈ V
Output: Contiguous T many MSBs of q

Initialize: p0 := 2lp−1, q0 := 2lq−1;1

pa := CORRECT(p0, p[j] for j ∈ {1, . . . , a} ⊂ U);2

qa−t := ⌈Npa ⌉;3

for i from 2 to k − 1 in steps of 2 do4

qia := CORRECT(q(i−1)a−t, q[j] for j ∈ {(i− 1)a− t, . . . , ia} ⊂ V);5

pia−t−1 := ⌈ N
qia
⌉;6

p(i+1)a := CORRECT(pia−t−1, p[j] for j ∈ {ia− t, . . . , (i+ 1)a} ⊂ U);7

q(i+1)a−t−1 := ⌈ N
p(i+1)a

⌉;8

end
qT := CORRECT(qka−t−1, q[j] for j ∈ {ka− t, . . . , T} ⊂ V);9

REPORT qT ;10

Algorithm 8: The MSB reconstruction algorithm [k odd].

the subroutine works as described is Algorithm 9.

Input: Y and X[i] for i ∈ Σ
Output: Z, the correction of Y

for j from 0 to lX do1

if j ∈ Σ then Z[j] = X[j]; // Correct j-th MSB if X[j] is known2

else Z[j] = Y [j]; // Keep j-th MSB as X[j] is not known

end

REPORT Z;3

Algorithm 9: Subroutine CORRECT.

In the case where k = ⌊T/a⌋ is even, Algorithm 8 needs to be tweaked a little

to work as expected. One may consider a slightly changed version of U, V ⊆ S

such that U = {0, . . . , a} ∪ {2a − t, . . . , 3a} ∪ · · · ∪ {ka − t, . . . , T} and V =

{a− t, . . . , 2a}∪{3a− t, . . . , 4a}∪ · · · ∪ {(k− 1)a− t, . . . , ka}. As before, p[i]’s are
known for i ∈ U and q[j]’s are known for j ∈ V . Then, Algorithm 10 reconstructs

T many contiguous most significant bits of the prime p.

5.3.3 Analysis of the Reconstruction Algorithm

Algorithm 8 and Algorithm 10 follow the same basic idea of reconstruction as

discussed in Section 5.3.1, and differs only in a minor issue regarding the practical

Chapter 5: Reconstruction of Primes given few of its Bits 90

Input: N, T and p[i], q[j] for all i ∈ U and j ∈ V
Output: Contiguous T many MSBs of p
Initialize: p0 := 2lp−1, q0 := 2lq−1;1

pa := CORRECT(p0, p[j] for j ∈ {1, . . . , a} ⊂ U);2

for i from 1 to k − 3 in steps of 2 do3

qia−t−1 := ⌈ N
pia
⌉;4

q(i+1)a := CORRECT(qia−t−1, q[j] for j ∈ {ia− t, . . . , (i+ 1)a} ⊂ V);5

p(i+1)a−t−1 := ⌈ N
q(i+1)a

⌉;6

p(i+2)a := CORRECT(p(i+1)a−t−1, p[j] for7

j ∈ {(i+ 1)a− t, . . . , (i+ 2)a} ⊂ U);
end

q(k−1)a−t−1 := ⌈ N
p(k−1)a

⌉;8

qka := CORRECT(q(k−1)a−t−1, q[j] for j ∈ {(k − 1)a− t, . . . , ka} ⊂ V);9

pka−t−1 := ⌈ N
qka
⌉;10

pT := CORRECT(pka−t−1, p[j] for j ∈ {ka− t, . . . , T} ⊂ U);11

REPORT pT ;12

Algorithm 10: The MSB reconstruction algorithm [k even].

implementation. We have stated both the algorithms in Section 5.3.2 for the sake

of completeness. But in case of the analysis and the experimental results, we shall

consider only one of them, Algorithm 8 say, without loss of generality.

Algorithm 8 requires the knowledge of at most (T − ka + 1) + k(a + t + 1) ≤
k(a+ t) + (k + a) ≤ T (1 + t

a
) + (k + a) many bits of p and q to (probabilistically)

reconstruct T contiguous MSBs of one prime. The runtime of Algorithm 8 is linear

in terms of the number of known blocks, i.e, linear in terms of k = ⌊T/a⌋. If we

set the target T = lN/4, then Algorithm 8 outputs the most significant half of

one of the primes in O(k) steps with some probability of success depending on

a and t. In this context, we propose Theorem 5.6 to estimate the probability of

success of Algorithm 8. Before that, let us introduce the following technical result

(Lemma 5.5) which is necessary to prove Theorem 5.6.

Lemma 5.5. If X and X ′ are two integers with same bitsize and |X −X ′| < 2H ,

then the probability that X and X ′ share lX−H−t many MSBs for some 0 ≤ t ≤ H

is at least Pt = 1− 1
2t
.

Proof. We know that |X − X ′| < 2H , i.e, X = X ′ + Y or X ′ = X + Z where

0 ≤ Y, Z < 2H , say. Let us consider the case X = X ′ + Y first, and the other case

will follow by symmetry between X and X ′.

91 5.3 MSB Case: Our Method and its Analysis

Let us split X ′ = 2HX0 + X1. Then, clearly X = 2HX0 + (X1 + Y). The

addition of Y < 2H affects the lower part X1 directly and the carry from the sum

(X1 + Y) affects the first half X0 up to a certain level. Our goal is to find out the

probability that the carry affects less than or equal to t bits of X0 from the lower

side. Let us assume that the probability of (X1 + Y) generating a carry bit is pc.

We also know that this carry bit will propagate through the lower bits of X0 until

it hits a 0, and we can assume any bit of X0 to be 0 or 1 randomly with equal

probabilities of 1/2 each. Then, the probability of the carry bit to propagate less

than or equal to t bits of X0 from the lower side is

P [carry propagation ≤ t]

= P [no carry] +
t∑

i=1

P [carry] · P [carry propagation = i]

= P [no carry] +
t∑

i=1

P [carry] · P [first 0 occurs at i-th LSB of X0]

= (1− pc) +
t∑

i=1

pc ·
1

2i
= 1− pc

2t
.

Now, one may expect the probability of carry generated from the sum (X1+Y)

to be pc ≈ 1/2. A careful statistical modelling of the difference Y will reveal a

better estimate of pc. As we do not assume any distribution of Y here, we consider

the trivial bound pc ≤ 1. Thus the probability of X and X0, and hence X and X ′,

sharing lX −H − t many MSBs is 1− pc
2t
≥ 1− 1

2t
.

At this point, we can state and prove the main result of this section, the

following theorem.

Theorem 5.6. Let S = {0, . . . , T} and k = ⌊T/a⌋ is odd. Suppose U, V ⊆ S such

that U = {0, . . . , a} ∪ {2a− t, . . . , 3a} ∪ · · · ∪ {(k − 1)a− t, . . . , ka},
V = {a− t, . . . , 2a}∪{3a− t, . . . , 4a}∪· · ·∪{ka− t, . . . , T}, where p[i]’s are known
for i ∈ U and q[j]’s are known for j ∈ V , as discussed before. Then, Algorithm 8

reconstructs T many contiguous most significant bits of one of the primes correctly

in O(k) steps with probability at least Pa,t(T) =
(
1− 1

2t

)⌊T/a⌋
.

Proof. The success of Algorithm 8 relies on the correct construction of the ap-

proximations at various levels. The CORRECT function produces correct ap-

proximations with probability 1 given the known sets of bits U, V , as mentioned

Chapter 5: Reconstruction of Primes given few of its Bits 92

before. Hence, success probability of Algorithm 8 depends on the correctness of

{qa−t−1, p2a−t−1, q3a−t−1, . . . , p(k−1)a−t−1, qka−t−1}.
Let us first consider the case p > q. We know that in such a case, as p, q are

of the same bitsize, one must have
√

N/2 < q <
√
N < p <

√
2N . Suppose

that there exists an approximation pha of p, sharing the MSBs {0, . . . , ha} for

some 1 ≤ h ≤ k. In this case, |p − pha| < 2lp−ha. Using pha, one constructs

an approximation q′ = ⌈N/pha⌉ of q. Then we have |q − q′| ≈
∣
∣
∣
N
p
− N

pha

∣
∣
∣ =

N
ppha
|p− pha| < |p − pha| < 2lp−ha, as p, pha >

√
N . If pha <

√
N from the initial

approximation, we reassign pha = ⌈
√
N⌉ as a better approximation to p. The case

p < q produces an approximation q′ of q with |q − q′| < 2|p− pha| < 2lp−ha+1.

Then, we know for sure that |q − q′| < 2lp−ha+1. Thus, by Lemma 5.5, setting

H = lp−ha+1, we get that q and q′ share the first lp−(lp−ha+1)−t = ha−t−1

MSBs with probability at least Pt = 1− 1
2t
. In other words, the probability that q′

correctly represents qha−t−1 is at least Pt = 1− 1
2t
. The probability of correctness

is the same in case of the approximations of p by pga−t−1 for all 1 < g < k.

Now, the k approximations of p, q at different bit levels, as mentioned above,

can be considered independent. Hence, the probability of success of Algorithm 8

in constructing T many contiguous MSBs of q (or p in another case) is at least

Pa,t = P k
t =

(
1− 1

2t

)k
=
(
1− 1

2t

)⌊T/a⌋
.

Once the most significant half of any one of the primes is known using Al-

gorithm 8, one may use a lattice based method of to factorize N = pq. In this

context, let us present the following result for factoring the RSA modulus N using

Algorithm 8.

Corollary 5.7. Let S = {0, . . . , lN/4} and k = ⌊lN/4a⌋ is odd. Suppose U, V ⊆ S

such that U = {0, . . . , a} ∪ {2a− t, . . . , 3a} ∪ · · · ∪ {(k − 1)a− t, . . . , ka},
V = {a − t, . . . , 2a} ∪ {3a − t, . . . , 4a} ∪ · · · ∪ {ka − t, . . . , lN/4}, where p[i]’s are

known for i ∈ U and q[j]’s are known for j ∈ V , as discussed before. Then, one

can factor N in poly (log N) time with probability at least Pa,t =
(
1− 1

2t

)⌊lN/4a⌋
.

Proof. By setting T = lN/4 in Theorem 5.6 we obtain that Algorithm 8 is able

to recover contiguous lN/4 many MSBs of one of the primes p, q in O(lN/4) steps

with probability at least Pa,t =
(
1− 1

2t

)⌊lN/4a⌋
. Since one call of CORRECT costs

O(lN), thus the total time complexity is O(log2N).

93 5.3 MSB Case: Our Method and its Analysis

Once we get these lN/4 MSBs, that is the complete most significant half, of one

of the primes, one can use the existing lattice based method [24] by Coppersmith

to factor N = pq in poly (log N) time.

5.3.4 Experimental Results

We present some experimental results in Table 5.3 to support the claim in Theo-

rem 5.6. The blocksize for known bits, i.e, a, and the approximation offset t are

varied to obtain these results for lN = 1024. The target size for reconstruction is

T = 256 as the primes are 512 bits each. We have run the experiment 1000 times

for each pair of fixed parameters a, t. The first value in each cell represents the

experimental percentage of success in these cases and illustrate the practicality of

our method. The second value in each cell is the theoretical probability of success

obtained from Theorem 5.6.

a t = 1 t = 2 t = 3 t = 4 t = 5
10 0, 0 2.5, 0.07 16.8, 3.55 41.5, 19.9 64.5, 45.2
20 1.8, 0.02 18.7, 3.17 44.5, 20.1 65.7, 46.1 81.9, 68.3
40 15.5, 1.6 42.8, 17.8 66.7, 44.9 81.8, 67.9 90.8, 82.7
60 29.1, 6.3 55.6, 31.6 75.7, 58.6 86.6, 77.2 91.7, 88.1
80 41.9, 12.5 66.4, 42.2 82.9, 67.0 91.0, 82.4 95.7, 90.9
100 50.6, 25.0 74.4, 56.2 86.6, 76.6 93.7, 87.9 97.1, 93.8

a t = 6 t = 7 t = 8 t = 9 t = 10
10 82.1, 67.5 90.6, 82.2 95.0, 90.7 97.2, 95.2 -
20 90.6, 82.8 94.8, 91.0 97.5, 95.4 98.5, 97.7 99.3, 97.6
40 95.2, 91.0 97.8, 95.4 98.6, 97.7 99.3, 98.8 99.9, 99.4
60 95.3, 93.9 97.4, 96.9 98.9, 98.4 99.5, 99.2 99.9, 99.7
80 98.3, 95.4 99.1, 97.7 99.4, 98.8 99.7, 99.4 100, 99.7
100 98.8, 96.9 99.6, 98.4 99.8, 99.2 99.9, 99.6 100, 99.8

Table 5.3: Percentage of success of Algorithm 8 with 512-bit p, q, i.e., lN = 1024.

One may note that our theoretical bounds on the probability (second value

in each cell) is an underestimate compared to the experimental evidences (first

value in each cell) in all the cases. This is because we have used the bound on

the probability of carry loosely as pc ≤ 1 in Lemma 5.5, whereas a better estimate

should have been pc ≈ 1
2
. As an example, let us check the case with a = 40, t = 3.

Chapter 5: Reconstruction of Primes given few of its Bits 94

Here, the theoretical bound on the probability with pc ≤ 1 is 44.9% whereas with

pc = 0.5, the same bound comes as 67.9%. The experimental evidence of 66.7%

is quite clearly closer to the second one. But we could not correctly estimate the

value of pc and hence opted for a safe (conservative) margin.

The results in italic font are of special interest. In these cases one can factorize

N in poly (log N) time, with probability greater than 1
2
by knowing less than 70%

of the bits of both the primes combined, that is, by knowing approximately just

35% of the bits of each prime p, q. Note that the result by Herrmann and May [51]

requires about 70% of the bits of one of the primes in a similar case where the

known bits are distributed over small blocks. Their result factorizes N in time

exponential in the number of such blocks, whereas our method produces the same

result in time polynomial in the number of blocks.

5.4 Conclusion

Our work discusses the factorization of RSA modulus N by reconstructing the

primes from randomly known bits. The reconstruction method exploits the known

bits to prune wrong branches of the search tree and reduces the total search space.

We have revisited the work of Heninger and Shacham [50] in Crypto 2009 and

provided a combinatorial model for the search where certain bits of the primes

are known at random. This, combined with existing lattice based techniques,

can factorize N given the knowledge of randomly chosen prime bits in the least

significant halves of the primes. We also explain a lattice based strategy to remedy

one of the shortcomings of the reconstruction algorithm. Moreover, we study how

N can be factored given the knowledge of some blocks of bits in the most significant

halves of the primes. We propose an algorithm that recovers the most significant

halves of one or both the primes exploiting the known bits.

In this chapter, we have assumed the knowledge of certain fraction of bits of the

RSA primes. However, one may not have such an explicit information regarding

the primes, but may gain certain implicit knowledge instead. In the next chapter,

we discuss RSA factorization in the light of such an implicit knowledge about the

RSA primes. This problem is aptly termed as the ‘implicit factorization problem’.

Chapter 6

Implicit Factorization

In PKC 2009, May and Ritzenhofen [86] presented interesting problems related to

factoring large integers with some implicit hints. Consider two integers N1, N2 such

that N1 = p1q1 and N2 = p2q2 where p1, q1, p2, q2 are primes and p1, p2 share t least

significant bits (LSBs). It has been shown in [86] that when q1, q2 are primes of

bitsize α log2N , then N1, N2 can be factored simultaneously if t ≥ 2α. This bound

on t has further been improved when N1 = p1q1, N2 = p2q2, . . . , Nk = pkqk and all

the pi’s share t many LSBs. The motivation of this problem comes from oracle

based complexity of factorization problems. Prior to the work of [86], the main

assumption in this direction was that an oracle explicitly outputs certain amount

of bits of one prime. The idea of [86] deviates from this paradigm in the direction

that none of the bits of the prime will be known, but some implicit information

can be available regarding the prime. That is, an oracle, on input to N1, outputs

a different N2 as described above. One application of implicit factorization is

malicious key generation of RSA moduli, i.e. the construction of backdoored RSA

moduli. A nice motivation towards the importance of this problem is presented in

the introduction of [86].

In this chapter we first assume that p1, p2 share either t many MSBs or t many

LSBs or total t many bits considering LSBs and MSBs together. Then we consider

the same scenario for three primes p1, p2 and p3. Further, we consider the case

when the primes share certain amount of bits at the middle. Our approach in

solving the problem is different from that of [86].

All the theoretical results are supported by experiments. In all the experiments

we have performed, each of the Gröbner Basis calculation requires less than a

95

Chapter 6: Implicit Factorization 96

second and we could successfully collect the root.

6.1 Implicit Factoring of Two Large Integers

Here we present the exact conditions on p1, q1, p2, q2 under which N1, N2 can be

factored efficiently. Throughout this chapter, we will consider p1, p2 are primes of

same bitsize and q1, q2 are primes of same bitsize. Also N1 = p1q1 and N2 = p2q2

are of same bitsize. We use N to represent an integer of same bitsize as of N1, N2.

6.1.1 The General Result

We first consider the case where some amount of LSBs as well as MSBs of p1, p2

are same. Based on this, we present the following generalized theorem.

Theorem 6.1. Let N1 = p1q1 and N2 = p2q2, where p1, q1, p2, q2 are primes. Let

q1, q2 ≈ Nα. Consider that γ1 log2N many MSBs and γ2 log2N many LSBs of

p1, p2 are same. Let β = 1 − α − γ1 − γ2. Under Assumption 1, one can factor

N1, N2 in polynomial time if 1− 3
2
β − 2α ≥ 0 and

−4α2 − 2αβ − 1

4
β2 + 4α +

5

3
β − 1 < 0.

Proof. It is given that γ1 log2N many MSBs and γ2 log2N many LSBs of p1, p2 are

same. Thus, we can write p1 = N1−α−γ1P0 + Nγ2P1 + P2 and p2 = N1−α−γ1P0 +

Nγ2P ′
1 + P2. Thus, p1 − p2 = Nγ2(P1 − P ′

1). Since N1 = p1q1 and N2 = p2q2,

putting p1 =
N1

q1
and p2 =

N2

q2
, we get Nγ2(P1 − P ′

1) · q1q2 −N1q2 +N2q1 = 0. Thus

we need to solve f ′(x, y, z) = Nγ2xyz −N1x+N2y = 0 whose root corresponding

to x, y, z are q2, q1, P1 − P ′
1 respectively. Since there is no constant term in f ′, we

define a new polynomial as follows.

f(x, y, z) = f ′(x− 1, y, z) = Nγ2xyz −Nγ2yz −N1x+N1 +N2y

The root (x0, y0, z0) of f is (q2 + 1, q1, P1 − P ′
1).

Let X, Y, Z be upper bounds of q2 +1, q1, P1−P ′
1 respectively. As given in the

statement of this theorem, we can take X = Nα, Y = Nα, Z = Nβ. Following the

97 6.1 Implicit Factoring of Two Large Integers

extended strategy of Section 2.6.2, we get

S =
⋃

0≤k1≤t

{xiyjzk+k1 : xiyjzk is a monomial of fm},

M = {monomials of xiyjzkf : xiyjzk ∈ S}.

It follows from the above definitions that

xiyjzk+k1 ∈ S ⇔

k = 0, . . . ,m,

j = k, . . . ,m,

i = 0, . . . ,m+ k − j,
k1 = 0, . . . , t

xiyjzk ∈M ⇔

k = 0, . . . ,m+ 1,

j = k, . . . ,m+ 1,

i = 0, . . . ,m+ k − j + 1,

k1 = 0, . . . , t

We exploit t many extra shifts of z where t is a non-negative integer. Our aim is

to find two more polynomials f0, f1 that share the root (q2 + 1, q1, P1 − P ′
1) over

the integers. From Section 2.6.2, we know that these polynomials can be found by

lattice reduction if

Xs1Y s2Zs3 < W s, (6.1)

where s = |S|, sj =
∑

xi1yi2zi3∈M\S ij for j = 1, 2, 3, and

W = ‖f(xX, yY, zZ)‖∞ ≥ N1X.

One can quite easily check the following.

s1 =
1

2
m3 +

5

2
m2 + 4m+ 2 + 2t+

3

2
m2t+

7

2
mt,

s2 =
5

6
m3 + 4m2 +

37

6
m+ 3 + 2t+

3

2
m2t+

7

2
mt,

s3 =
1

2
m3 +

5

2
m2 + 4m+ 2 +

3

2
t2 +

7

2
t+

3

2
m2t+mt2 +

9

2
mt,

s =
1

3
m3 +

3

2
m2 +

13

6
m+ 1 + t+m2t+ 2mt

Let t = τm, where τ is a nonnegative real number. Neglecting the lower order

Chapter 6: Implicit Factorization 98

terms, from (6.1), we get the condition as

X
m3

2
+ 3

2
m2tY

5
6
m3+ 3

2
m2tZ

m3

2
+ 3

2
m2t+mt2 < W

m3

3
+m2t.

If we neglect the o(m3) terms after putting t = τm, the required condition becomes

τ 2β + (2α +
3

2
β − 1)τ + (α +

β

2
− 1

3
) < 0. (6.2)

The optimal value of τ , to minimize the left hand side of (6.2), is
1− 3

2
β−2α

2β
. Putting

this optimal value, the required condition turns into

−64α2 − 32αβ − 4β2 + 64α +
80

3
β − 16 < 0.

Since τ ≥ 0, we need 1− 3
2
β − 2α ≥ 0.

Remark 6.2. In the proof of Theorem 6.1, we have applied extra shifts over z.

In fact, we tried with extra shifts on x, y too. However, we noted that the best

theoretical as well as experimental results are achieved using extra shifts on z.

Looking at Theorem 6.1, it is clear that the efficiency of this factorization

technique depends on the total amount of bits that are equal considering the most

and least significant parts together. Let us present an example as follows.

Example 6.3. Let us consider 750-bit primes p1 and p2 as follows.

3804472805395186392319221660578496208300951856349524536490291627689678

4508873994603764416042481638726883020251099785398270595309011413652074

0662982896963184145937357387807661916268890545112759642350996744984148

6470692918256969 and

3804472805395186392319221660578496208300951856349524536490291627689216

6107608916018165804358808795724349647533346298650637180633006710173703

4446620984517063526577265988384407769443498510140109413281971152495463

7781487537874249.

Note that p1, p2 share 222 many MSBs and 220 many LSBs, i.e., 442 many bits

in total. Further, q1, q2 are 250-bit primes

1788684495317470472835032661187758515078190921640698934821176591562967

327967, and

1706817658439540390758485693495273025642629127144779879402852507986344

279931 respectively.

99 6.1 Implicit Factoring of Two Large Integers

Given N1, N2, with only the implicit information, we can factorize both of them

efficiently. We use lattice of dimension 105 (parameters m = 3, t = 2) and the

lattice reduction takes 6227.76 seconds.

In Theorem 6.1, we have considered that given the conditions, we can find f0, f1

by lattice reduction. However, in practice, one may get more polynomials. In our

experiments, we use four polynomials f0, f1, f2, f3 that come after lattice reduction.

Let J be the ideal generated by {f, f0, f1, f2, f3} and let the corresponding Gröbner

Basis be G. We studied the first three elements of G and found that one of them

is of the form ya(x − q2
q1
y − 1), where a is a small positive integer. We observed

a = 0, 1, 2, considering the experiments listed in Sections 6.1 and 6.2. Note that

x0 = q2 + 1, y0 = q1 is the root of this polynomial.

6.1.2 The MSB Case

The study when p1, p2 share some MSBs has not been considered in [86], which

we present in this section. The following result arrives from Theorem 6.1, noting

β = 1− α− γ1.

Corollary 6.4. Let N1 = p1q1 and N2 = p2q2, where p1, q1, p2, q2 are primes. Let

q1, q2 ≈ Nα and |p1 − p2| < Nβ. Under Assumption 1, one can factor N1, N2 in

polynomial time if 1− 3
2
β − 2α ≥ 0 and

−4α2 − 2αβ − 1

4
β2 + 4α +

5

3
β − 1 < 0.

Thus fixing the bitsize of N , if the bitsize of q1, q2 (i.e., α) increases, then

the equality of the MSBs of p1, p2 should increase (i.e., β should decrease) for

efficient factorization of N1, N2. We have performed detailed experiments for this

MSB case, but we skip the experimental results as the results are similar to what is

explained in Section 6.1.3 for the LSB case. We present the experimental evidences

for the LSB case in detail as we can compare the results with that of [86].

6.1.3 The LSB Case

Let us first explain the ideas presented in [86]. Let N1 = p1q1 and N2 = p2q2.

In [86, Section 3], it has been explained that if q1, q2 ≈ Nα, then for efficient

Chapter 6: Implicit Factorization 100

factorization of N1, N2, the primes p1, p2 need to share at least 2α log2N many

LSBs. Our strategy is different from the strategy of [86] and we follow the result

of Theorem 6.1.

Corollary 6.5. Let N1 = p1q1 and N2 = p2q2, where p1, q1, p2, q2 are primes. Let

q1, q2 ≈ Nα. Consider that γ log2N many LSBs of p1, p2 are same, i.e., p1 ≡ p2

(mod Nγ). Let β = 1 − α − γ. Under Assumption 1, one can factor N1, N2 in

polynomial time if 1− 3
2
β − 2α ≥ 0 and

−4α2 − 2αβ − 1

4
β2 + 4α +

5

3
β − 1 < 0.

The numerical values related to the theoretical result of [86] and Corollary 6.5

as well as the experimental results are presented in Table 6.1. By NUB we mean

“Numerical Upper Bound” for the parameters. The experimental results in each

row are based on one run where N1, N2 are 1000-bit integers. The experiments in

Table 6.1 are performed with lattice dimension 46 (parameters m = 2, t = 1) and

each lattice reduction takes around 30 seconds.

To explain the results of Table 6.1, let us concentrate on the first row. As

α = 0.23, we have q1, q2 are of bitsize 0.23 × 1000 = 230. Thus, p1, p2 are of

bitsize 1000 − 230 = 770. Now, the numerical value from Corollary 6.5 tells that

770 − 0.255 × 1000 = 515 many LSBs of p1, p2 need to be equal to have efficient

factorization of N1, N2 simultaneously. However, the the experimental result is

more encouraging which shows that only 770− 0.336× 1000 = 434 many LSBs of

p1, p2 need to be equal.

α NUB of β NUB of β Results achieved for β
following [86] following Corollary 6.5 from experiments

0.23 0.31 0.255 0.336
0.24 0.28 0.239 0.314
0.25 0.25 0.225 0.296
0.26 0.22 0.210 0.268
0.27 0.19 0.196 0.251

Table 6.1: Values of α, β for which N1, N2 can be factored efficiently.

Remark 6.6. From Table 6.1 it is clear that we get much better results in the

experiments than the theoretical bounds. This is because for the parameters we

consider here, the shortest vectors may belong to some sublattice. However, the

101 6.1 Implicit Factoring of Two Large Integers

theoretical calculation in Theorem 6.1 cannot capture that and further, identifying

such optimal sublattice seems to be difficult. This kind of scenario where experi-

mental results perform better than theoretical estimates, has earlier been observed

in [66, Section 7.1], too.

However, we like to point out that the experimental results are better than

our theoretical results for a certain parameter range, i.e., when logN qi < 0.35 for

lattice parameters m = 2, t = 1. If one looks at Figure 6.1, it can be observed

that in the remaining range, the experimental results are worse than the theoretical

results. We are yet to explain this phenomenon clearly. It may happen that in this

range, the shortest vectors do not belong to some sublattice and the experimental

results are worse due to limited lattice dimensions in practice.

In our notation, the number of MSBs in each of p1, p2 that are unshared is

β log2N . Thus β = (1− α)− 2α = 1− 3α, where α log2N is the bitsize of q1, q2.

Table 6.1 identifies that while our theoretical result is either worse or better than

that of [86] based on the values of α, the experimental results that we obtain are

always better than [86]. In the introduction of [86], it has been pointed out that

for 250-bit q1, q2 and 750-bit p1, p2, the primes p1, p2 need to share 502 many LSBs.

We have implemented the strategy of [86] and observed similar results.

On the other hand, our experimental results are better as evident from Ta-

ble 6.1, when α = 0.25. In fact, we experimented with a higher lattice dimension

as explained in Example 6.7 and our strategy requires only 438 many LSBs to be

shared in p1, p2. This result is better than [86], where 502 many LSBs have been

shared.

Example 6.7. Here we consider 750-bit primes p1 and p2

5895254139679228077142387416586490039613283191466241401307494261824605

9669084690420722716275439075281566487074700579275565739610880278518405

2727673670100332217332947627771123511694759914704886336601966226161930

4575961682668297 and

4392119049423447468690947059559090008016802774014559696547174955333794

4652342861564934625350120675407265601224878945969002652471346685040069

8503016817420142894918107629408891591088684705545955400539206624614659

4876423472933641 respectively.

Note that p1, p2 share 438 many LSBs. Further, q1, q2 are 250-bit primes

9160109778146430106669507839679796567724449698019266905896747910430591

Chapter 6: Implicit Factorization 102

04197 and

1587061752065032326280290326014711341044827082150757395718254111544994

945759 respectively.

Given N1, N2, with only the implicit information, we can factorize both of them

efficiently. We use lattice of dimension 105 (parameters m = 3, t = 2) and the

lattice reduction takes 7273.52 seconds.

We now present a detailed discussion how our strategy compares with that

of [86]. It is indeed clear from Table 6.1, that our experimental results provide

better performance than the theoretical results presented in this chapter as well as

in [86]. Moreover, we explain how the technique of [86] and our strategy perform

in terms of theoretical results.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

α →

β
→

Case(i)
Case(ii)
Case(iii)

Figure 6.1: Comparison of our experimental (case (i)) and theoretical results (case
(ii)) with that of [86] (case (iii)).

Let us first concentrate on the formula β = 1−3α, that characterizes the bound
on the primes for efficient factoring in [86]. When α = 1

3
, β becomes zero, implying

that p1, p2 need to have all the bits shared. Thus, the upper bound on the smaller

primes q1, q2 is N
1
3 , where shared LSBs in p1, p2 help in efficient factoring.

However, in our case, the bound on the primes is characterized by −4α2 −
2αβ − 1

4
β2 + 4α+ 5

3
β − 1 < 0 provided 1− 3

2
β − 2α ≥ 0. We find that β becomes

zero when α = 1
2
. Thus in our case, the upper bound on smaller primes q1, q2 is

N
1
2 , where sharing of LSBs in p1, p2 helps in efficient factoring.

103 6.1 Implicit Factoring of Two Large Integers

Theoretically, our method starts performing better, i.e., β in our case is greater

than that of [86], when α ≥ 0.266. Thus for q1, q2 ≥ N0.266, our method will require

less number of LSBs of p1, p2 to be equal than that of [86]. This is also presented

in Figure 6.1. The numerical values of the theoretical results are generated using

the formulae β = 1− 3α for [86] and Corollary 6.5 for our case. The experimental

results are generated by one run in each case with lattice dimension 46 (parameters

m = 2, t = 1) for 1000 bits N1, N2. The values of α are considered in [0.1, 0.5], in

a step of 0.01. Referring to Figure 6.1, we like to reiterate that our experimental

results outperforms the theoretical results presented by us as well as in [86].

The next example considers the primes p1, p2 of 650 bits and q1, q2 of 350 bits.

This is to demonstrate how our method works experimentally for larger q1, q2.

Example 6.8. Here we consider 650-bit primes p1 and p2

3137055889901096909077531458327171120014878453383152732512530257276363

1682927852412187472737127637110371576377119667914195267603776880298856

76273831127205611509045644179511599106554189421550654601 and

2451436010930813903814310506086633020716328387757587411726661941127209

3212167405450016340904470370114412306604810975035552386405247674158894

80913091786359014934176726120292021849927924906510931081.

Note that p1, p2 share 531 many LSBs. Further, q1, q2 are 350-bit primes

1851420588886517478939713595303492404190382112791551597798571143339516

233613445774636517955322189132943773 and

2258350305148478218870025161325667637658623408855938899014758338949666

508115561055599847183651567682695481 respectively.

Given N1, N2, with only the implicit information, we can factorize both of them

efficiently. We use lattice of dimension 105 (parameters m = 3, t = 2) and the

lattice reduction takes 15016.42 seconds.

Though our result does not generalize for the case where N1, N2, . . . , Nk, we

like to compare the result of Example 6.8 with [86, Table 1, Section 6.2] when

α = 0.35 and N is of 1000 bits. This is presented in Table 6.2. One may note that

the idea of [86] requires 10 many Ni’s as the input where Ni = piqi, 1 ≤ i ≤ 10. In

such a case, 391 many LSBs need to be same for p1, . . . , p10. On the other hand, we

require higher number of LSBs, i.e., 531 to be same, but only N1, N2 are needed.

The analysis of our results related to LSBs, presented in this section, will apply

similarly for our analysis related to MSBs or LSBs and MSBs taken together as

Chapter 6: Implicit Factorization 104

Reference lpi , lqi # of Ni’s required # of shared bits
[86, Table 1, Section 6.2] 650, 350 10 391

Our Example 6.8 650, 350 2 531

Table 6.2: Comparison of experimental results when α = 0.35.

explained earlier.

6.1.4 Implicit Factorization problem when k = 3

We have already introduced the general problem for k many RSA moduli in the

introduction, where N1 = p1q1, N2 = p2q2, . . . , Nk = pkqk, where p1, p2, . . . , pk and

q1, q2, . . . , qk are primes. The primes p1, p2, . . . , pk are of the same bitsize and so are

q1, q2, . . . , qk. It is considered that certain portions of bit pattern in p1, p2, . . . , pk

are common. Under such a situation, it is studied when it is possible to factor

N1, N2, . . . , Nk efficiently. Here we consider the case for k = 3.

Theorem 6.9. Let N be of the same bitsize as the RSA moduli N1, N2, N3. Let

q1, q2, q3 ≈ Nα. Consider that γ1 log2N many MSBs and γ2 log2N many LSBs of

p1, p2, p3 are the same. Let β = 1− α − γ1 − γ2. Then, under Assumption 1, one

can factor N1, N2, N3 in polynomial time if 10α + 5β − 4 ≤ 0.

Proof. It is given that γ1 log2N many MSBs and γ2 log2N many LSBs of p1, p2, p3

are the same. Thus, we can write p1 = N1−α−γ1P0+N
γ2P1+P2, p2 = N1−α−γ1P0+

Nγ2P ′
1 + P2 and p3 = N1−α−γ1P0 + Nγ2P ′′

1 + P2. Thus, p1 − p2 = Nγ2(P1 − P ′
1).

Since N1 = p1q1 and N2 = p2q2, putting p1 =
N1

q1
and p2 =

N2

q2
, we get

N1q2 −N2q1 = Nγ2(P1 − P ′
1) · q1q2. (6.3)

Similarly, we have

N1q3 −N3q1 = Nγ2(P1 − P ′′
1) · q1q3. (6.4)

Now, multiplying Equation (6.3) by N3 and Equation (6.4) by N2 and then

subtracting, we get N1N3q2 − N1N2q3 − Nγ2(P1 − P ′
1) · q1q2N3 + Nγ2(P1 − P ′′

1) ·
q1q3N2 = 0. Thus we need to solve f ′(x, y, z, v, t) = N1N3y−N1N2z−N3N

γ2xyv+

N2N
γ2xzt = 0 whose root corresponding to x, y, z, v, t are q1, q2, q3, P1−P ′

1, P1−P ′′
1

respectively. Since there is no constant term in f ′, we define a new polynomial

105 6.1 Implicit Factoring of Two Large Integers

f(x, y, z, v, t) = f ′(x, y + 1, z, v, t) = N1N3 + N1N3y − N1N2z − N3N
γ2xyv −

N3N
γ2xv+N2N

γ2xzt. The root (x0, y0, z0, v0, t0) of f is (q1, q2−1, q3, P1−P ′
1, P1−

P ′′
1). The idea of modifying the polynomial with a constant term was introduced

in [28, Appendix A] and later used in [65] which we follow here.

Let X, Y, Z, V, T be the upper bounds of q1, q2 − 1, q3, P1 − P ′
1, P1 − P ′′

1 respec-

tively. As given in the statement of this theorem, one can take X = Nα, Y =

Nα, Z = Nα, V = Nβ, T = Nβ. Following the basic strategy of Section 2.6.2 ,

S = {xi1yi2zi3vi4ti5 : xi1yi2zi3vi4ti5 is a monomial of fm},
M = {monomials of xi1yi2zi3vi4ti5f : xi1yi2zi3vi4ti5 ∈ S}.

It follows that,

xi1yi2zi3vi4ti5 ∈ S ⇔

i3 = 0, . . . ,m,

i5 = 0, . . . , i3,

i4 = 0, . . . ,m− i3,
i2 = 0, . . . ,m− i3,
i1 = i4 + i5,

xi1yi2zi3vi4ti5 ∈M ⇔

i3 = 0, . . . ,m+ 1,

i5 = 0, . . . , i3,

i4 = 0, . . . ,m+ 1− i3,
i2 = 0, . . . ,m+ 1− i3,
i1 = i4 + i5.

From [65], we know that these polynomials can be found by lattice reduction if

Xs1Y s2Zs3V s4T s5 < W s, (6.5)

where s = |S|, sj =
∑

xi1yi2zi3vi4 ti5∈M\S ij,

for j = 1, 2, 3, 4, 5, and W = ‖f(xX, yY, zZ, vV, tT)‖∞ ≥ N1N3Y ≈ N2+α.

Thus, we have the following.

s =
m∑

i3=0

i3∑

i5=0

m−i3∑

i4=0

m−i3∑

i2=0

1,

Chapter 6: Implicit Factorization 106

s1 =
m+1∑

i3=0

i3∑

i5=0

m+1−i3∑

i4=0

m+1−i3∑

i2=0

(i4 + i5)−
m∑

i3=0

i3∑

i5=0

m−i3∑

i4=0

m−i3∑

i2=0

(i4 + i5),

sj =
m+1∑

i3=0

i3∑

i5=0

m+1−i3∑

i4=0

m+1−i3∑

i2=0

ij −
m∑

i3=0

i3∑

i5=0

m−i3∑

i4=0

m−i3∑

i2=0

ij, for j = 2, 3, 4, 5.

Simplifying, one can check that

s = s5 =
1

12
m4 +

2

3
m3 +

23

12
m2 +

7

3
m+ 1,

s1 =
5

24
m4 +

7

4
m3 +

127

24
m2 +

27

4
m+ 3,

s2 = s4 =
1

8
m4 +

13

12
m3 +

27

8
m2 +

53

12
m+ 2,

s3 =
1

6
m4 +

4

3
m3 +

23

6
m2 +

14

3
m+ 2.

Neglecting the lower order terms and putting the values of X, Y, Z, V, T as well as

the lower bound of W , from (6.5), we get the condition as

5

12
α +

5

24
β − 1

6
< 0 i.e., 10α + 5β − 4 < 0. (6.6)

That is, when this condition holds, according to [65], we get four polynomials

f0, f1, f2, f3 such that f0(x0, y0, z0, v0, t0) = f1(x0, y0, z0, v0, t0)

= f2(x0, y0, z0, v0, t0) = f3(x0, y0, z0, v0, t0) = 0. Under Assumption 1, we can

extract x0, y0, z0, v0, t0 in polynomial time.

In Theorem 6.9, we consider the Assumption 1. Let us now clarify how it

actually works. In the proof of Theorem 6.9, we consider that we will be able to

get at least four polynomials f0, f1, f2, f3 along with f , that share the integer root.

In experiments we found more than 4 polynomials (other than f) after the LLL

algorithm that share the same root. We calculate f4 = R(f, f0), f5 = R(f, f1) and

then f6 = R(f4, f5). We always find a factor

− t0
gcd(t0, v0)

v +
v0

gcd(t0, v0)
t

of f6, though we do not have a theoretical proof for that. In all the cases, we

find gcd(t0, v0) ≤ 2. After getting t0, v0, we define a new polynomial f7(y, z) =

f4(y, z, v0, t0). We always find a factor q3y − q2z + q3 of f7. From this we can find

(y0, z0) = (q2 − 1, q3). Finally, putting the values of y0, z0, v0, t0 in f , we obtain

107 6.2 Two Primes with Shared Contiguous Portion of Bits at the Middle

x0 = q1.

α γ1 γ2 β (Theory) Time β (Experimental Values)
our (in sec.) our [86] [112] [40]

0.25 0.2 0.175 0.3 1.64 0.375 0.372 0.383 0.372
0.3 0.225 0.225 0.2 1.55 0.25 0.248 0.269 0.246
0.35 0.28 0.26 0.1 1.52 0.11 0.125 0.151 0.123

Table 6.3: Theoretical and experimental values of α, β for which N1, N2, N3 can
be factored efficiently. Results using our technique are obtained with the lattice
dimension 20.

From Table 6.3 it may be noted that we get much better results in the ex-

periments than the theoretical bounds. This is because, for the parameters we

consider here, the shortest vectors may belong to some sublattice. However, the

theoretical calculation in Theorem 6.9 cannot capture that and further, identifying

such optimal sublattice seems to be difficult. This kind of scenario, where experi-

mental results perform better than theoretical estimates, has earlier been observed

in [66, Section 7.1], too.

Our experimental results show that the total number of bits to be shared in the

primes for implicit factorization is of similar order to the requirements in [40,86] for

three RSA moduli, i.e., k = 3. Following [86] (respectively [40]), the experiments

are done when the least (respectively most) significant bits of the primes are same.

However, in our case, the experiments are done considering some portion of least

significant bits as well as some portion of most significant bits are same, which is

not covered in [40,86].

6.2 Two Primes with Shared Contiguous Portion

of Bits at the Middle

Now we consider the case when p1, p2 share a contiguous portion of bits at the

middle. Theorem 6.10 can be generalized to primes having two blocks of unshared

bits at any position with a similar kind of analysis. However, only the case of

shared bits in the middle of the primes is considered here.

Theorem 6.10. Let N1 = p1q1 and N2 = p2q2, where p1, q1, p2, q2 are primes.

Let q1, q2 ≈ Nα. Consider that a contiguous portion of bits of p1, p2 are same

Chapter 6: Implicit Factorization 108

at the middle leaving the γ1 log2N many MSBs and γ2 log2N many LSBs. Then

under Assumption 1, we can factor both N1, N2 if there exist τ1, τ2 ≥ 0 for which

h (τ1, τ2, α, γ1, γ2) < 0 where γ = max{γ1, γ2} and

h (τ1, τ2, α, γ1, γ2) =

(

3τ1τ2 +
7

3
τ1 +

7

3
τ2 +

17

24

)

α

+

(

τ 21 τ2 +
3

2
τ1τ2 +

3

4
τ 21 +

2

3
τ1 +

2

3
τ2 +

1

6

)

γ1

+

(

τ1τ
2
2 +

3

2
τ1τ2 +

3

4
τ 22 +

2

3
τ1 +

2

3
τ2 +

1

6

)

γ2

−
(

τ1τ2 +
τ1
2
+
τ2
2
+

1

8

)

(1 + γ) < 0.

Proof. We can write p1 = N1−α−γ1p10 + Nγ2p11 + p12, and p2 = N1−α−γ1p20 +

Nγ2p11 + p22. So p1 − p2 = N1−α−γ1(p10 − p20) + (p12 − p22). Since p1 = N1

q1
and

p2 =
N2

q2
we have N1q2−N2q1−N1−α−γ1(p10− p20)q1q2− (p12− p22)q1q2 = 0. Thus

we need to solve f ′(x, y, z, v) = N1x − N2y − N1−α−γ1xyz − xyv = 0 whose root

corresponding to x, y, z, v are q2, q1, p10 − p20, p12 − p22 respectively. Since there is

no constant term in f ′, we define a new polynomial

f(x, y, z, v) = f ′(x− 1, y, z, v)

= N1x−N2y −N1 −N1−α−γ1xyz

+N1−α−γ1yz − xyv + yv.

The root (x0, y0, z0, v0) of f is (q2 + 1, q1, p10 − p20, p12 − p22). Let X = Nα, Y =

Nα, Z = Nγ1 , V = Nγ2 . Then we can take X, Y, Z, V as the upper bound of

x0, y0, z0, v0 respectively.

Following the extended strategy of Section 2.6.2, we have the following defini-

tions of S,M , where m, t1, t2 are non-negative integers.

S =
⋃

0≤j1≤t1,0≤j2≤t2

{xi1yi2zi3+j1vi4+j2 : xi1yi2zi3vi4 is a monomial of fm},

M = {monomials of xi1yi2zi3vi4f : xi1yi2zi3vi4 ∈ S}.

109 6.2 Two Primes with Shared Contiguous Portion of Bits at the Middle

It follows from the above definitions that

xi1yi2zi3+j1vi4+j2 ∈ S ⇔

i4 = 0, . . . ,m,

i3 = 0, . . . ,m− i4,
i2 = i3 + i4, . . . ,m,

i1 = 0, . . . ,m− i2 + i3 + i4,

j1 = 0, . . . , t1,

j2 = 0, . . . , t2

xi1yi2zi3+j1vi4+j2 ∈M ⇔

i4 = 0, . . . ,m+ 1,

i3 = 0, . . . ,m+ 1− i4,
i2 = i3 + i4, . . . ,m+ 1,

i1 = 0, . . . ,m+ 1− i2 + i3 + i4,

j1 = 0, . . . , t1,

j2 = 0, . . . , t2

From Section 2.6.2, we know that these polynomials can be found by lattice

reduction if

Xs1Y s2Zs3V s4 < W s, (6.7)

where s = |S|, sj =
∑

xi1yi2zi3vi4∈M\S ij for j = 1, . . . , 4, and

W = ‖f(xX, yY, zZ)‖∞ ≥ max{N1X,N2Y } = N1+γ.

One can easily check the following.

s1 =
3

2
t1t2m

2 + t1m
3 + t2m

3 +
1

4
m4 + o(m4),

s2 =
3

2
t1t2m

2 +
4

3
t1m

3 +
4

3
t2m

3 +
11

24
m4 + o(m4),

s3 = t21t2m+
3

2
t1t2m

2 +
3

4
t21m

2 +
2

3
t1m

3 +
2

3
t2m

3 +
1

6
m4 + o(m4),

s4 = t1t
2
2m+

3

2
t1t2m

2 +
3

4
t22m

2 +
2

3
t1m

3 +
2

3
t2m

3 +
1

6
m4 + o(m4),

s = t1t2m
2 +

1

2
t1m

3 +
1

2
t2m

3 +
1

8
m4 + o(m4).

For a given integer m, let t1 = τ1m and t2 = τ2m. Then substituting the values of

X, Y, Z, V and lower bound of W in (6.7) and neglecting the lower order terms of

sj we get the required condition.

Chapter 6: Implicit Factorization 110

When α, γ1, γ2 are available, we need to take the partial derivative of h with

respect to τ1, τ2 and equate each of them to 0 to get non-negative solutions of

τ1, τ2. Given any pair of such non-negative solutions, if h is less than zero, then

N1, N2 can be factored in polynomial time. When γ1 = γ2 = γ, one can consider

t1 to be equal to t2. In that case we get the following result.

Corollary 6.11. Let N1 = p1q1 and N2 = p2q2, where p1, q1, p2, q2 are primes. Let

q1, q2 ≈ Nα. Consider that a contiguous portion of bits of p1, p2 are same at the

middle leaving γ log2N many MSBs and as well as LSBs. Then under Assumption

1, we can factor both N1, N2 if there exists τ ≥ 0 for which

2γτ 3 +

(

3α +
7

2
γ − 1

)

τ 2 +

(
14

3
α +

5

3
γ − 1

)

τ +

(
17

24
α +

5

24
γ − 1

8

)

< 0.

In Table 6.4, we present some numerical values of α, γ1, γ2 following Theo-

rem 6.10 for which N1, N2 can be factored in polynomial time. It is clear from

α γ1 γ2
0.25 0.019 0.019
0.25 0.010 0.035
0.20 0.061 0.061
0.20 0.052 0.080
0.15 0.146 0.146
0.15 0.137 0.176
0.10 0.277 0.277
0.10 0.268 0.314

Table 6.4: Values of α, γ1, γ2 for which N1, N2 can be factored efficiently.

Table 6.4 that the requirement of bits at the middle of p1, p2 to be same is quite

high compared to the case presented in Section 6.1, where we have considered

that MSBs and/or LSBs are same. Thus, the kind of lattice based technique we

consider in this chapter works more efficiently when the bits of p1, p2 are same at

MSBs and/or LSBs compared to the case when some contiguous bits at the middle

are same. Let us present an experimental result in this direction.

Example 6.12. In this experiment, we consider 850-bit primes p1 and p2

6010063291745673411630355586520987527501854123507752031634410338922261

3252007908441224870562785926663459589770176998171796837046320523689364

1193687536324043967528101378987325022248122037708305617873964005637745

111 6.3 Exposing a Few MSBs of One Prime

9864355429485398257581885621415132927137653573

and

5984825641870931585823382220962926344220670532554403933352105675571066

6727036032597303235163473076823311343759215354840931554536631098033574

6996932026050432396316389068925325234493940473852769406714934240353469

4186411407834893900732303380146620012528421339.

Note that, p1, p2 share middle 504 many bits (leaving 177 bits from the least

significant side). Further, q1, q2 are 150-bit primes

1038476608131498405684472704928794724111541861 and

1281887704228770097092001008195142506836912053 respectively.

Given N1, N2, with only the implicit information, we can factorize both of them

efficiently. We use lattice of dimension 70 (parameters m = 1, t1 = 1, t2 = 1) and

the lattice reduction takes 175.83 seconds.

Referring to Theorems 6.1,6.10 together, one may be tempted to consider the

case that a few contiguous intervals of bits are same in p1, p2. However, in such a

scenario, the polynomials contain increased number of variables as well as mono-

mials. Thus, encouraging results cannot be obtained in this method.

6.3 Exposing a Few MSBs of One Prime

In this section we study what actually happens when a few bits of q1 or q2 gets

exposed. Without loss of generality, consider that a few MSBs of q2 are available.

In this case, q2 can be written as q20 + q21, where q20 is known and it takes care

of the higher order bits of q2. In such a case we can generalize Theorem 6.1 as

follows. We do not write the proof as it is similar to that of Theorem 6.1.

Theorem 6.13. Let N1 = p1q1 and N2 = p2q2, where p1, q1, p2, q2 are primes.

Let q1, q2 ≈ Nα. Suppose q20 is known such that |q2 − q20| ≤ N δ. Consider

that γ1 log2N many MSBs and γ2 log2N many LSBs of p1, p2 are same. Let β =

1−α− γ1− γ2. Under Assumption 1, one can factor N1, N2 in polynomial time if

−18δ2 − 12δα− 2α2 − 20δβ + 4αβ − 2β2 + 24δ + 8α +
40

3
β − 8 < 0,

provided 1− 3
2
β − α

2
− 3

2
δ ≥ 0.

Chapter 6: Implicit Factorization 112

Remark 6.14. If one puts δ = α in Theorem 6.13, then the statement of Theo-

rem 6.1 appears immediately.

Since a few MSBs of q2 are known, we have δ < α. So we get increased upper

bound on β here than the bound of β in Theorem 6.1. This has two implications:

1. Knowing few MSBs of q2 requires less number of bits to be shared in p1, p2.

2. Keeping the same number of bits to be shared, knowing few MSBs of q2 may

increase the bound on α.

Now we summarize the effect of knowing a few bits of q2 in Table 6.5. We like

to refer Example 6.8 (presented in Section 6.1.3) for the corresponding case when

none of the bits of q2 is known. Examples 6.15, 6.16 consider the cases when a few

MSBs of q2 are known.

Example lqi MSBs known in q2 lpi
Number of shared LSBs in p1, p2

Example 6.8 350 None 650 531
Example 6.15 350 30 650 524
Example 6.16 360 30 640 531

Table 6.5: Effect of knowing a few MSBs of q2.

Example 6.15. In this experiment, we consider 650-bit primes p1 and p2

2775767775790591046985561869233542957775274354805022086049845364080279

5440244280573885472845851243011213318288730705557808640463498077884662

12373756028939921330525120578684995831943366630235878261 and

3801183388452299712401650983522590415108473350487714213507812938100060

4705988087731376063723045978466857969967252244163227348367433438951447

21500290301718857429556533325996125827735316520359080821.

Note that, p1, p2 share 524 many LSBs. Further, q1, q2 are 350-bit primes

2209314625764053417894986194593494065883964634454958947790531142197386

120832336613378820991430378869014127 and

2204557440995913372286125950717602197195022637415287838524947867913051

465973479416134708098578709098671857 respectively.

Given N1, N2, with the implicit information and 30 MSBs of q2, we can factorize

both of them efficiently. We use lattice of dimension 105 and the lattice reduction

takes 12889.92 seconds.

113 6.3 Exposing a Few MSBs of One Prime

In our experiments for Examples 6.15, 6.16, we use four polynomials f0, f1, f2, f3

that are available after lattice reduction. Let J be the ideal generated by

{f, f0, f1, f2, f3} and let the corresponding Gröbner Basis be G. We studied the

first three elements of G and found that one of them is of the form y − q1
P1−P ′

1
z.

Note that y0 = q1, z0 = P1 − P ′
1 is the root of this polynomial.

Example 6.16. In this experiment, we consider 640-bit primes p1 and p2

2670046755820111597125983499598458226482802916962725172846821109006065

0996111051814093451331628000557452579503698243975066836110558623837620

26236414416814754812160919136728523814508982308428241

and

4213654354378478098923678873165024061763485330880715693603141201754570

6833482787889436013438027059065208431251021416732001179886518042599444

22004067683253229586251375139983258948708099714177489.

Note that, p1, p2 share 531 many LSBs. Further, q1, q2 are 360-bit primes

2286199623814759322661521537688479233374714361474052906990385379626075

664185395324016017013427591508941472939 and

1280130913887850481545063885171390143545984280360797978692995205434971

745123201014643124723774455018327835627 respectively.

Given N1, N2, with the implicit information and 30 MSBs of q2, we can factorize

both of them efficiently. We use lattice of dimension 105 and the lattice reduction

takes 11107.04 seconds.

In a similar direction, we can extend Theorem 6.10 below, where we consider

a few MSBs of q2 are known.

Theorem 6.17. Let N1 = p1q1 and N2 = p2q2, where p1, q1, p2, q2 are primes. Let

q1, q2 ≈ Nα. Suppose q20 is known such that |q2 − q20| ≤ N δ. Consider that a

contiguous portion of bits of p1, p2 are same at the middle leaving the γ1 log2N

many MSBs and γ2 log2N many LSBs. Then under Assumption 1, we can factor

both N1, N2 if there exist τ1, τ2 ≥ 0 for which h (τ1, τ2, α, γ1, γ2) < 0 where γ =

Chapter 6: Implicit Factorization 114

max{γ1, γ2} and

h (τ1, τ2, α, δ, γ1, γ2) =

(
3

2
τ1τ2 + τ1 + τ2 +

1

4

)

δ

+

(
3

2
τ1τ2 +

4

3
τ1 +

4

3
τ2 +

11

24

)

α

+

(

τ 21 τ2 +
3

2
τ1τ2 +

3

4
τ 21 +

2

3
τ1 +

2

3
τ2 +

1

6

)

γ1

+

(

τ1τ
2
2 +

3

2
τ1τ2 +

3

4
τ 22 +

2

3
τ1 +

2

3
τ2 +

1

6

)

γ2

−
(

τ1τ2 +
τ1
2
+
τ2
2
+

1

8

)

(1 + γ) < 0.

Our idea does not work well when one considers that pi, qi are of same bitsize.

The bound presented in Theorem 6.1 does not provide encouraging results as qi’s

increase towards the value of pi’s. Considering some MSBs of q2 are available, one

can improve it a little bit as explained in Theorem 6.13. Even if we consider that

some information regarding both q1, q2 are available, that does not help much. This

is because under such scenario, the structure of the polynomial f in Theorem 6.1

changes and more monomials arrive. This prevents achieving a good bound.

6.4 Conclusion

In this chapter we have studied poly (log N) time factorization strategy when two

integers N1, N2 (of same size) are given where N1 = p1q1, N2 = p2q2 and p1, p2

share certain amount of LSBs and/or MSBs taken together. We also study the

same problem with three integers N1, N2, N3. Further, we study the case with two

integers N1, N2 when p1, p2 share some bits at the middle.

Our results extend the idea presented in [86]. For the LSB case, we obtain

better results than [86] under certain conditions. We also consider an instance of

the implicit factorization problem which has not been solved earlier.

However, the techniques presented here cannot immediately be extended to

the generalized problem in [86] where N1, N2, . . . , Nk are considered. In the next

chapter we will solve this problem. Chapter 7 concentrates on the approximate

common divisor problem first, that paves the path to the generalization of implicit

factorization.

Chapter 7

Approximate Integer Common

Divisor Problem

Given any two large integers a, b (without loss of generality, take a > b), one can

calculate gcd(a, b) efficiently in O(log2 a) time using the well known Euclidean Al-

gorithm [126, Page 169]. Howgrave-Graham [61] has shown that it is also possible

to calculate the GCD efficiently when some approximations of a, b are available.

This problem is referred to as the approximate common divisor problem in the lit-

erature. As an one important application of this problem, Howgrave-Graham [61]

had shown that Okamoto’s cryptosystem [98] is not secure. Using the idea of [61],

Coron and May [29] proved deterministic polynomial time equivalence of comput-

ing the RSA secret key and factoring the RSA modulus. In this chapter, we first

present two applications of approximate common divisor problem.

Application 1: For the first application, considerN = pq, where p, q are large primes

and p > q. In a recent paper [50] presented at Crypto 2009, it has been asked how

one can use q−1 mod p towards factorization of N as q−1 mod p is stored as a part

of the secret key in PKCS #1 [99]. Using lattice based technique, we show that

factoring N is deterministic polynomial time equivalent to finding q−1 mod p.

Application 2: Next, we consider the problem of finding smooth integers in a small

interval [12, 13]. Finding smooth numbers is important for application in the

well known factorization algorithms such as quadratic sieve [100] and number field

sieve [76]. We study the results of [12,13] and show that slightly improved outcome

could be achieved using a different strategy following the idea of [61].

115

Chapter 7: Approximate Integer Common Divisor Problem 116

Later in this chapter (Section 7.3 onwards), we focus on a couple of general

extensions of the approximate common divisor problem, and relate it to implicit

factorization, another well known problem along similar lines.

7.1 Finding q−1 mod p ≡ Factorization of N

In this section, we prove the computational equivalence of finding q−1 mod p and

factoring N = pq. In this direction, we present the following result.

Theorem 7.1. Assume N = pq, where p, q are primes and p ≈ Nγ. Suppose an

approximation p0 of p is known such that |p − p0| < Nβ. Given q−1 mod p, one

can factor N deterministically in poly (log N) time when β − 2γ2 < 0.

Proof. Let q1 = q−1 mod p. So we can write qq1 = 1 + k1p for some positive

integer k1. Multiplying both sides by p, we get q1N = p + k1p
2. That is, we have

q1N − p = k1p
2. Let x0 = p − p0. Thus, we have q1N − p0 − x0 = k1p

2. Also we

have N2 = p2q2. Our goal is to recover x0 from q1N − p0 and N2.

Note that p2 is the GCD of q1N−p0−x0 and N2. In this case q1N−p0 and N2

is known, i.e., one term N2 is exactly known and the other term q1N − p0 − x0 is

approximately known. This is exactly the Partially Approximate Common Divisor

Problem (PACDP) [61] and we follow a similar technique to solve this as explained

below. This will provide the error term −x0, which added to the approximation

q1N − p0, gives the exact term q1N − p0 − x0.
Take X = Nβ as an upper bound of x0. Then we consider the shift polynomials

gi(x) = (q1N − p0 + x)iN2(m−i) for 0 ≤ i ≤ m, (7.1)

g′i(x) = xi(q1N − p0 + x)m for 1 ≤ i ≤ t,

for fixed non-negative integers m, t. Clearly, gi(−x0) ≡ g′i(−x0) ≡ 0 (mod p2m).

We construct the lattice L spanned by the coefficient vectors of the polynomials

gi(xX), g′i(xX). One can check that the dimension of the lattice L is ω = m+ t+1

and the determinant of L is

det(L) = X
(m+t)(m+t+1)

2 N2
m(m+1)

2 = X
(m+t)(m+t+1)

2 Nm(m+1). (7.2)

Using Lattice reduction on L by LLL algorithm [77], one can find a nonzero vector

117 7.1 Finding q−1 mod p ≡ Factorization of N

b whose norm ||b|| satisfies ||b|| ≤ 2
ω−1
4 (det(L))

1
ω . The vector b is the coefficient

vector of the polynomial h(xX) with ||h(xX)|| = ||b||, where h(x) is the integer

linear combination of the polynomials gij(x). Hence h(−x0) ≡ 0 (mod p2m). To

apply Lemma 2.20 and Lemma 2.22 for finding the integer root of h(x), we need

2
ω−1
4 (det(L))

1
ω <

p2m√
ω
. (7.3)

Note that ω is the dimension of the lattice which we may consider as small

constant with respect to the size of p and the elements of L. Thus, neglecting 2
ω−1
4

and
√
ω, we can rewrite (7.3) as det(L) < p2mω. Substituting the expression of

det(L) from Equation (7.2) and using X = Nβ, p ≈ Nγ we get

(m+ t)(m+ t+ 1)

2
β +m(m+ 1) < 2m(m+ t+ 1)γ. (7.4)

Let t = τm. Then neglecting the terms of o(m2) we can rewrite (7.4) as

τ 2β

2
+ (β − 2γ)τ +

β

2
− 2γ + 1 < 0. (7.5)

Now, the optimal value of τ to minimize the left hand side of (7.5) is 2γ−β
β

. Putting

this optimal value in (7.5), we get β − 2γ2 < 0.

Our strategy uses LLL algorithm [77] to find h(x) and then calculates the

integer root of h(x). Both these steps are deterministic polynomial time in logN .

Thus the result.

Corollary 7.2. Factoring N is deterministic polynomial time equivalent to finding

q−1 mod p, where N = pq and p > q.

Proof. When no approximation of p is given, then β in the Theorem 7.1 is equal

to γ. Putting β = γ in the condition β− 2γ2 < 0, we get γ > 1
2
. This requirement

forces the condition that p > q. Also, it is trivial to note that if the factorization

of N is known then one can efficiently compute q−1 mod p. Thus the proof.

Corollary 7.3. Factoring N is deterministic polynomial time equivalent to finding

q−1 mod p, where N = pq and p, q are of same bit size.

Proof. The proof of the case p > q is already taken care in Corollary 7.2. Now

consider q > p. When p, q are of same bit size and p < q, then p < q < 2p, i.e.,

Chapter 7: Approximate Integer Common Divisor Problem 118

√
N
2
< p <

√
N and

√
N < q <

√
2N .

Now if we take p0 =
√
N then |p−p0| <

(

1− 1√
2

)√
N < N

1
2

2
= N

1
2
− log 2

logN . Also

p > N
1
2
− log 2

2 logN . So in this case we can take β = 1
2
− log 2

logN
and γ > 1

2
− log 2

2 logN
. Thus,

β − 2γ2 <
1

2
− log 2

logN
− 2

(
1

2
− log 2

2 logN

)2

= − log2 2

2 log2N
< 0.

Hence in this situation one can factor N following Theorem 7.1.

The only case that we do not cover is when p is significantly smaller than q. It

requires further study to understand how this situation can be tackled.

Now let us describe the experimental results. Note that our result in Theo-

rem 7.1 holds when the lattice dimension approaches infinity. Since in practice we

use finite lattice dimension, we may not reach the bound presented in Theorem 7.1.

For experiments, we consider that small amount of Most Significant Bits (MSBs)

of p is known. In Table 7.1, we provide some practical results. In the first three

experiments, we take N as 1000-bit integer with p, q of the same bit size and p > q.

Then in the next three experiments, we swapped p, q, i.e., q becomes larger than

p. Given q−1 mod p, we could successfully recover p in all the cases.

p ? q # MSBs of p known Lattice Parameters (m, t) Lattice Dim. Time (in sec.)
p > q 46 (5, 5) 11 1.41
p > q 24 (10, 10) 21 66.33
p > q 20 (11, 11) 23 119.72

q > p 47 (5, 5) 11 1.42
q > p 24 (10, 10) 21 66.56
q > p 20 (11, 11) 23 120.00

Table 7.1: Experimental results following Theorem 7.1. The lattice parameters
are (m, t).

7.2 Finding Smooth Integers in a Short Interval

Following [12,13], let us first define two notions of smoothness.

Definition 7.4. An integer N is called B smooth if N has no prime divisor greater

than B. An integer N is called strongly B smooth if N is B smooth and pm can

not divide N for any m for which pm > B.

119 7.2 Finding Smooth Integers in a Short Interval

Let us denote the n-th prime by pn, e.g., p1 = 2, p2 = 3 and so on. Suppose

we want to find a strongly B smooth integer N in the interval [U, V]. Now let us

present our main result of this section.

Theorem 7.5. Let S =
∏n

i=1 p
ai
i where ai = ⌊ logBlog pi

⌋ and p1, . . . , pn are all distinct

primes not exceeding B. Let I = [U, V]. One can find all strongly B smooth

integers N ∈ I for which gcd(N,S) > d in poly(log S) time when |I| < 2d
log d
log S and

V < 2d.

Proof. We will try to findN such that gcd(N,S) > d. Let us take take a0 = ⌊U+V
2
⌋.

We consider a0 as an approximation of N . Thus we will try to find the GCD of

S,N , by knowing S exactly and some approximation of N , which is a0 (but N is

not known). Here we follow the idea of solving the Partially Approximate Common

Divisor Problem (PACDP) as explained in [61].

Let x0 = N − a0. We want to calculate x0 from a0, S. Assume X = dβ is

an upper bound of x0. Let S = dδ. Using the same approach as in the proof of

Theorem 7.10, we get the condition as

(m+ t)(m+ t+ 1)

2
β +

m(m+ 1)

2
δ < m(m+ t+ 1). (7.6)

Let t = τm. Then neglecting the terms of o(m2) we can rewrite (7.6) as

β

2
τ 2 + (β − 1)τ +

β

2
+
δ

2
− 1 < 0. (7.7)

Now, the optimal value of τ to minimize the left hand side of (7.7) is 1−β
β
. Putting

this optimal value in (7.7), we get β < 1
δ
. Now δ = logS

log d
. So x0 should be less than

d
log d
log S .

Thus, we get x0 and hence N in poly(log S) time. As, V < 2d, we have N < 2d

(since U ≤ N ≤ V). When gcd(N,S) > d, then gcd(N,S) = N as N < 2d. Hence

N divides S, i.e., N is strongly B smooth.

Our strategy exploits the solution of Partially Approximate Common Divisor

Problem (PACDP) presented in [61]. That, all such strongly B smooth numbers

will be available, follows from [61, Algorithm 12, Page 53] as in that case all the

common divisors are reported.

Asymptotically, our result is 8 times better than that of [12, Theorem 3.1],

Chapter 7: Approximate Integer Common Divisor Problem 120

as that bound was |I| < 1
4
d

log d
log S . In Table 7.2, we present a few experimental

results, where we find improved outcomes (in terms of execution time) using our

strategy than that of [12]. We have implemented the ideas of [12] for experimental

comparison. In the table, LD denotes Lattice Dimension, and the time denotes

the Lattice reduction time. One should also note that the method of [12] requires

the implementation of CRT on several primes, which is not included in the time

mentioned in Table 7.2. Our strategy, using the idea of [61], does not require such

computation.

B log2 d log2(V − U) LD (Our), Time (sec.) LD ([12]), Time (sec.)
1000 450 130 36, 15.51 32, 21.33
1000 496 156 29, 3.77 26, 8.06
1000 496 161 45, 36.88 41, 64.71

Table 7.2: Comparison of our experimental results with that of [12]. We have
implemented the ideas of [12] for the comparison. LD denotes lattice dimension.

Note that finding smooth integers in an interval was also discussed in [84]

considering a similar idea of lattice construction. However, we arrive at the solution

following the PACDP.

7.3 Extension of Approximate Common Divisor

Problem

Let us now describe the generalized version of PACDP [61]. We name this version

the Extended Partially Approximate Common Divisor Problem (EPACDP).

Problem Statement 1. EPACDP.

Let a, a1, a2, . . . , ak be large integers (of same bitsize) and g = gcd(a1, a2, . . . , ak),

for k ≥ 2. Consider that ã2, . . . , ãk are the approximations of a2, . . . , ak respec-

tively, and ã2, . . . , ãk are of same bitsize too. Suppose that a2 = ã2 + x̃2, . . . , ak =

ãk + x̃k. The goal is to find x̃2, . . . , x̃k from the knowledge of a1, ã2, . . . , ãk.

The integer a is referred to in EPACDP as the representative element of the

same bit size as a1, a2, . . . , ak. This ‘a’ will be used frequently throughout this

chapter, mainly in calculating the time complexities. Similarly, we also consider

N to be the representative integer of the same bitsize as N1, N2, . . . , Nk.

121 7.3 Extension of Approximate Common Divisor Problem

One may observe that another generalization of PACDP is possible. Consider

the case with two integers a1, a2 where neither is available exactly, but approxi-

mations of both a1, a2 are given. In such a case, the problem of finding gcd(a1, a2)

is referred to as the General Approximate Common Divisor Problem (GACDP),

as introduced in [61]. One can extend this notion for more than two integers, as

follows. We call this generalization the Extended General Approximate Common

Divisor Problem (EGACDP).

Problem Statement 2. EGACDP.

Let a, a1, a2, . . . , ak be large integers of same bitsize and g = gcd(a1, a2, . . . , ak), for

k ≥ 2. Consider that ã1, . . . , ãk are the approximations of a1, . . . , ak respectively,

and ã1, . . . , ãk are of same bitsize too. Suppose that a1 = ã1 + x̃1, a2 = ã2 +

x̃2, . . . , ak = ãk + x̃k. The goal is to find x̃1, x̃2, . . . , x̃k from the knowledge of

ã1, ã2, . . . , ãk.

Now, our motivation is to link the two well known problems along similar lines;

the approximate integer common divisor problem, and the implicit factorization

problem. We have already discussed the former. Let us define the later problem

before starting our discussion about the interconnection of the two.

Problem Statement 3. Implicit Factorization Problem.

Consider N1 = p1q1, N2 = p2q2, . . . , Nk = pkqk, where p1, p2, . . . , pk and

q1, q2, . . . , qk are primes. Also consider that p1, p2, . . . , pk are of same bitsize and

so are q1, q2, . . . , qk (this is followed throughout this chapter unless otherwise men-

tioned). Given that certain portions of bit pattern in p1, p2, . . . , pk are common,

the goal is to find under what condition it is possible to factor N1, N2, . . . , Nk effi-

ciently.

The results on implicit factorization, published in [86], were based on the

assumption that some amount of least significant bits (LSBs) are same in

p1, p2, . . . , pk. In Chapter 6, we considered different cases, namely (i) some por-

tions of LSBs are same and/or some portions of MSBs are same in p1, p2, . . . , pk,

and (ii) some portion of bits at the middle are same in p1, p2, . . . , pk. However, our

techniques can be applied only for k = 2, 3. Recently, the idea published in [40]

considered the case when some portions of MSBs are same in p1, p2, . . . , pk for

general k.

We concentrate on the implicit factorization problem considering that the

primes p1, p2, . . . , pk share (i) some amount of MSBs, or (ii) some amount of LSBs,

Chapter 7: Approximate Integer Common Divisor Problem 122

or (iii) some amount of MSBs and LSBs together. Because of this fact, the work

of [86] (the LSB case) as well as that of [40] (the work for MSB case) are consid-

ered in the same framework. Further, the proposed technique takes care of the

new case where the primes share some portion of MSBs and LSBs together. This

work is of the same quality (in general) and slightly improved (in certain cases) in

comparison to that of [40,86]. We generalize the ideas of [61] for the lattice based

technique that we exploit here, and our strategy is different from that of [40, 86]

and our ideas in Chapter 6.

Let us first describe the central idea of the link between EPACDP and implicit

factorization on a small scale, and later we shall proceed to generalize the same.

Consider the case with k = 2, where the primes p1, p2 share certain amount of

MSBs. One can write p1−p2 = x0, where the bitsize of x0 is smaller than that of p1

or p2. In terms of x0, one may write N2 = p2q2 = (p1 − x0)q2. Therefore, we have

gcd(N1, N2 + x0q2) = gcd(p1q1, p1q2) = p1. Since N2 is a known approximation

of the unknown quantity N2 + x0q2, we can use the technique of [61] to solve

the approximate common divisor problem efficiently with a = N1 (known) and

b = N2 + x0q2 (unknown), and get gcd(a, b) = p1 under certain conditions. It is

very interesting that solving an approximate common divisor problem in this case

gives the factorization of N1. Additionally, when p1 > |x0q2|, then either ⌊N2

p1
⌋ or

⌈N2

p1
⌉ will provide q2, thereby factorizing N2 as well. In Section 7.4.1, we explain

this idea in detail.

Next we generalize the PACDP given in [61]. Let a1, a2, . . . , ak are integers

with gcd(a1, a2, . . . , ak) = g. Suppose ã2, . . . , ãk are given as approximations to

a2, . . . , ak, respectively. The goal of the generalized version of PACDP is to find g

from the knowledge of a1, ã2, . . . , ãk. An immediate application of this generaliza-

tion towards the implicit factorization problem is as follows.

We can write p1 = p1 + y1, . . . , pk = p1 + yk where y1 = 0. Hence p1 =

gcd(N1, N2 − y2q2, . . . , Nk − ykqk) can be derived by solving the general PACDP

with a1 = N1, a2 = N2 − y2q2, . . . , ak = Nk − ykqk, where N2, . . . , Nk act as the

approximations of a2, . . . , ak respectively. As a consequence, we factor N1, and

also obtain y2q2, . . . , ykqk under certain conditions.

In the case of implicit factorization problem, we will always get N1 exactly,

and the other terms N2 − y2q2, . . . , Nk − ykqk can be approximated by N2, . . . , Nk

respectively. Thus implicit factorization relates directly to EPACDP (and not to

EGACDP) for any k ≥ 2.

123 7.4 The General Solution for EPACDP

7.4 The General Solution for EPACDP

Towards solving the Extended Partially Approximate Common Divisor Problem

(EPACDP), consider the polynomials

h2(x2, . . . , xk) = ã2 + x2,
...

hk(x2, . . . , xk) = ãk + xk, (7.8)

where x2, . . . , xk are the variables. Clearly, g (as in Problem Statement 1) divides

hi(x̃2, . . . , x̃k) for 2 ≤ i ≤ k. Now let us define the shift polynomials

Hj2, . . . , jk
︸ ︷︷ ︸
(k−1) many

(x2, . . . , xk) = hj22 · · ·hjkk am−j2−···−jk
1 (7.9)

for non-negative integers j2, . . . , jk, such that j2 + · · ·+ jk ≤ m, where the integer

m ≥ 0 is fixed. Further, we define another set of shift polynomials

H ′
0, . . . , in, . . . , 0
︸ ︷︷ ︸

(k−1) many

,j2, . . . , jk
︸ ︷︷ ︸
(k−1) many

(x2, . . . , xk) = xinn h
j2
2 · · ·hjkk (7.10)

with the following:

1. 1 ≤ in ≤ t, for 2 ≤ n ≤ k and a positive integer t, and

2. j2 + · · ·+ jk = m when 0 ≤ j2, . . . , jn−1 < in, with 0 ≤ jn, . . . , jk ≤ m.

Note that gm divides Hj2,...,jk(x̃2, . . . , x̃k), and H
′
0,...,in,...,0,j2,...,jk

(x̃2, . . . , x̃k). Let

X2, . . . , Xk be the upper bounds of x̃2, . . . , x̃k respectively. Now define a lattice L

using the coefficient vectors of

Hj2,...,jk(x2X2, . . . , xkXk), and

H ′
0,...,in,...,0,j2,...,jk

(x2X2, . . . , xkXk).

Let the dimension of L be ω. Under Assumption 1 of Chapter 2, one gets x̃2, . . . , x̃k

using lattice reduction over L if

2
ω(ω−1)

4(ω+2−k) det(L)
1

ω+2−k <
gm√
ω
.

Chapter 7: Approximate Integer Common Divisor Problem 124

The result follows from Theorem 2.23 and putting i = k − 1 in Lemma 2.20.

Neglecting the small constants and considering k ≪ ω (in fact, we will show that

ω is exponential in k in our construction), we get the condition as det(L)
1
ω < gm,

i.e., det(L) < gmω. This is written formally in Theorem 7.8 later.

Before proceeding to the next discussion, we denote that
(
n
r

)
is considered in

its usual meaning when n ≥ r ≥ 0, and in all other cases we will consider the value

of
(
n
r

)
as 0.

Lemma 7.6. Let ω be the dimension of the lattice L described as before. Then

ω =
m∑

r=0

(
k + r − 2

r

)

+
k∑

n=2

t∑

in=1

n−2∑

r=0

(−1)r
(
n− 2

r

)(
k +m− rin − 2

m− rin

)

.

Proof. Let j2 + · · ·+ jk = r where j2, . . . , jk are non-negative integers. The num-

ber of such solutions is
(
k+r−2

r

)
. Hence the number of shift polynomials in Equa-

tion (7.9) is

ω1 =
m∑

r=0

(
k + r − 2

r

)

.

For fixed n, in, the number of shift polynomials in Equation (7.10) is the number

of solutions of

j2 + · · ·+ jk = m

for 0 ≤ j2, . . . , jn−1 < in, and 0 ≤ jn, . . . , jk ≤ m. The number of all such solutions

is the coefficient of xm in

(
1 + x+ · · ·+ xin−1

)n−2
(1 + x+ · · ·+ xm)k−n+1

=

(
1− xin
1− x

)n−2(
1− xm+1

1− x

)k−n+1

=
(
1− xin

)n−2 (
1− xm+1

)k−n+1
(1− x)−k+1 .

We denote the coefficient by c(n, in), for fixed n, in, which can be written as

c(n, in) =
n−2∑

r=0

(−1)r
(
n− 2

r

)(
k +m− rin − 2

m− rin

)

.

125 7.4 The General Solution for EPACDP

Hence the number of shift polynomials in Equation (7.10) is

ω2 =
k∑

n=2

t∑

in=1

c(n, in).

Finally, ω = ω1 + ω2 provides the result.

After dealing with the dimension of lattice L, let us evaluate its determinant, as

follows.

Lemma 7.7. The determinant of L is det(L) = P1P2 where

P1 =
∏

Xj2
2 X

j3
3 · · ·Xjk

k a
m−j2−···−jk
1

for non-negative integers j2, . . . , jk such that j2 + · · ·+ jk ≤ m, and

P2 =
∏

X in
n X

j2
2 X

j3
3 · · ·Xjk

k

with the following:

1. 1 ≤ in ≤ t, for 2 ≤ n ≤ k and a positive integer t, and

2. j2 + j3 + · · ·+ jk = m, when 0 ≤ j2, . . . , jn−1 < in, and 0 ≤ jn, . . . , jk ≤ m.

Proof. The matrix (corresponding to the lattice L) containing the basis vectors is

triangular and has the following two kinds of diagonal entries:

Xj2
2 X

j3
3 · · ·Xjk

k a
m−j2−···−jk
1 , (7.11)

for non-negative integers j2, . . . , jk such that j2 + · · · + jk ≤ m where the integer

m ≥ 0 fixed and

X in
n X

j2
2 X

j3
3 · · ·Xjk

k , (7.12)

with the following:

1. 1 ≤ in ≤ t, for 2 ≤ n ≤ k and a positive integer t, and

2. j2 + j3 + · · ·+ jk = m, when 0 ≤ j2, . . . , jn−1 < in, and 0 ≤ jn, . . . , jk ≤ m.

Clearly P1 is the product of the elements from Equation (7.11) and P2 is the

product of the elements from Equation (7.12). Hence, we have det(L) = P1P2.

Chapter 7: Approximate Integer Common Divisor Problem 126

Runtime. The running time of our algorithm is dominated by the runtime of the

LLL algorithm, which is polynomial in the dimension of the lattice and in the

bitsize of the entries. Since the lattice dimension in our case is exponential in k,

the running time of our strategy is poly{log a, exp(k)}. Thus, for small fixed k our

algorithm is polynomial in log a.

Now, we can present the main result of this section, as follows.

Theorem 7.8. Under Assumption 1, the EPACDP (Problem Statement 1) can

be solved in poly{log a, exp(k)} time when det(L) < gmω, where det(L) is as in

Lemma 7.7 and ω is as in Lemma 7.6.

One may also consider the same upper bound on the errors x̃2, . . . , x̃k. In that

case we get the following result.

Corollary 7.9. Considering the same upper bound X on the errors x̃2, . . . , x̃k, we

have det(L) = P1P2 where

P1 = Xη1aη21 and P2 = Xη3

and the exponents are

η1 =

m∑

r=0

r ·
(
k + r − 2

r

)

,

η2 =

m∑

r=0

(m− r) ·
(
k + r − 2

r

)

, and

η3 =
k∑

n=2

t∑

in=1

(in +m)
n−2∑

r=0

(−1)r
(
n− 2

r

)(
k +m− rin − 2

m− rin

)

.

Proof. Let X2 = X3 = · · · = Xk = X. Then from Equation (7.11), we have

Xj2
2 X

j3
3 · · ·Xjk

k a
m−j2−···−jk
1 = Xj2+···+jkam−j2−···−jk

1

for non-negative integers j2, . . . , jk such that j2+ · · ·+jk ≤ m. Let j2+ · · ·+jk = r

where 0 ≤ r ≤ m. The total number of such representations is
(
k+r−2

r

)
. Hence

P1 =
m∏

r=0

(Xram−r
1)(

k+r−2
r) = Xη1aη21

where η1, η2 are as mentioned in the statement.

127 7.4 The General Solution for EPACDP

For calculating P2, we have the following constraints:

1. 1 ≤ in ≤ t, for 2 ≤ n ≤ k and a positive integer t, and

2. j2 + j3 + · · ·+ jk = m, when 0 ≤ j2, . . . , jn−1 < in, and 0 ≤ jn, . . . , jk ≤ m.

Thus we have the expression for P2 as

P2 =
k∏

n=2

t∏

in=1

X in
n X

j2
2 X

j3
3 · · ·Xjk

k

=
k∏

n=2

t∏

in=1

X inc(n,in)Xmc(n,in) = Xη3

where η3 is as mentioned in the statement.

As the results in this section are quite involved, we present below a few cases

for better understanding and comparison with existing results.

7.4.1 Analysis for k = 2

We write the proof of this special case in detail as this is in line with the proof

of [29, Theorem 3] where the strategy to solve the Partially Approximate Common

Divisor Problem (PACDP) [61] has been exploited.

As described in [24], after applying the LLL algorithm, if the output polynomi-

als are of more than one variable, then to collect the roots from these polynomials

one needs Assumption 1. However, in this case, Assumption 1 is not required since

there is only one variable in the polynomial that we will consider.

Theorem 7.10. Let N1 = p1q1 and N2 = p2q2, where p1, p2, q1, q2 are primes. Let

q1, q2 ≈ Nα and |p1− p2| < Nβ. Then one can factor N1 and N2 deterministically

in poly(log N) time when

β < 1− 3α + α2.

Proof. Let x0 = p1 − p2. We have N1 = p1q1 and N2 = p2q2 = (p1 − x0)q2. Our

goal is to recover x0q2 from N1 and N2. Since |x0| < Nβ and q2 = Nα, we can take

Chapter 7: Approximate Integer Common Divisor Problem 128

X = Nα+β as an upper bound of x0q2. Now we consider the shift polynomials

gi(x) = (N2 + x)iNm−i
1 for 0 ≤ i ≤ m,

g′i(x) = xi(N2 + x)m for 1 ≤ i ≤ t, (7.13)

where m, t are fixed non-negative integers. Clearly,

gi(x0q2) ≡ g′i(x0q2) ≡ 0 mod (pm1).

We construct the lattice L spanned by the coefficient vectors of the polynomials

gi(xX), g′i(xX) in Equation (7.13). One can check that the dimension of the lattice

L is ω = m+ t+ 1 and the determinant of L is

det(L) = X
(m+t)(m+t+1)

2 N
m(m+1)

2
1

≈ X
(m+t)(m+t+1)

2 N
m(m+1)

2 . (7.14)

Here, P1 = X
m(m+1)

2 N
m(m+1)

2
1 and P2 = Xmt+

t(t+1)
2 (the general expressions of P1, P2

are presented in Lemma 7.7). Using Lattice reduction on L by the LLL algo-

rithm [77], one can find a nonzero vector b whose norm ||b|| satisfies

||b|| ≤ 2
ω−1
4 (det(L))

1
ω .

The vector b is the coefficient vector of the polynomial h(xX) with ||h(xX)|| = ||b||,
where h(x) is the integer linear combination of the polynomials gi(x), g

′
i(x). Hence

h(x0q2) ≡ 0 mod (pm1). To apply Theorem 2.23 and Lemma 2.20 for finding the

integer root of h(x), we need

2
ω−1
4 (det(L))

1
ω <

pm1√
ω
. (7.15)

Neglecting small constant terms, we can rewrite (7.15) as det(L) < pmω
1 . Substitut-

ing the expression of det(L) from Equation (7.14) and using X = Nα+β, p1 ≈ N1−α

we get

(m+ t)(m+ t+ 1)

2
(α + β) < m

(

(1− α)(m+ t+ 1)− m+ 1

2

)

. (7.16)

129 7.4 The General Solution for EPACDP

Now let t = τm. Neglecting the o(m2) terms of (7.16), we have

ψ(α, β, τ) = −(α + β)
τ 2

2
− (2α + β − 1)τ −

(
3α

2
+
β

2
− 1

2

)

> 0. (7.17)

The optimal value of τ , to maximize β for a fixed α is

τ =
1− β − 2α

α + β
.

Putting the optimal value of τ in (7.17), we get

α2 − 3α− β + 1 > 0. (7.18)

Once x0q2, integer root of h(x), is known, we get p1 from gcd(N1, N2 + x0q2).

As long as |x0q2| < p1, we get q2 by calculating the floor or ceiling of N2

p1
. As

|x0q2| ≤ Nα+β and p1 ≈ N1−α, to satisfy |x0q2| ≤ p1 we need 2α+ β ≤ 1, which is

true from (7.18).

Our strategy uses the LLL [77] algorithm to find h(x) and then calculates the

integer root of h(x). Both these steps are deterministic polynomial time in logN .

Thus the result.

The relation presented in (7.16) provides the bound when the lattice parameters

m, t are specified. The asymptotic relation, independent of the lattice parameters,

has been presented in (7.18). This is the theoretical bound and may not be reached

in practice as we work with low lattice dimensions. Now let us compare our results

with that of Chapter 6.

1. In Corollary 6.4 of Chapter 6, it has been explained that factorization of

N1, N2 will be successful when

Ψ(α, β) = 4α2 + 2αβ +
1

4
β2 − 4α− 5

3
β + 1 > 0,

provided that 1− 3
2
β−2α ≥ 0. In our case, the upper bound of β is α2−3α+1.

Putting this upper bound of β in Ψ we get α ≤ 0.33⇒ Ψ(α, β) < 0. Hence

our upper bound on β will be greater than that of Chapter 6 when α ≤ 0.33.

2. The result presented in Chapter 6 is a poly(log N) time heuristic (based

on Assumption 1), whereas our algorithm in this chapter is deterministic

Chapter 7: Approximate Integer Common Divisor Problem 130

poly(log N) time.

3. The result of Chapter 6 could not be extended for k > 3, but our result can

be extended for general k.

4. We get similar quality of experimental results as in Chapter 6 for k = 2 and

both the experimental results (i.e., our and that of Chapter 6 for k = 2)

almost coincide with our theoretical results. Our experimental results are

same as our theoretical results following (7.16) for specific lattice dimensions,

whereas the experimental results of Chapter 6 for k = 2 are better than their

theoretical results, as explained in Remark 6.6 of Chapter 6.

We also compare our result with that of [40, 86].

• The strategy of [86] considers equality in some LSBs of p1, p2. One may note

that our theoretical results for the MSB case is same as that of the LSB case

(see Section 7.5.1 later). The strategy of [86] works when

β ≤ 1− 3α.

In our case, β < 1 − 3α + α2. It is immediate that our upper bound is

better than that of [86]. Given α, the amount of required bit sharing is

(1− α − β) log2N . Thus, for k = 2, we need smaller number of bit sharing

in LSBs for implicit factorization than the number of bit sharing in LSBs

achieved in [86].

• For k = 2, the strategy of [40] works in MSB case when

β ≤ 1− 3α− 3

log2N
.

It is clear that our theoretical result is better than [40] for the MSB case.

Later in Section 7.5, we compare our results with that of [40,86] for all k ≥ 2.

One may refer to Figure 7.1 for the comparison of the theoretical results. The

curve for the theoretical result given in [40] (MSB case) will be parallel and slightly

below that of the curve for [86] (LSB case) and that is why we have not drawn it

separately.

131 7.4 The General Solution for EPACDP

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.2

0.4

0.6

0.8

α →

U
pp

er
 b

ou
nd

 o
f β

 →

case(i)
case(ii)
case(iii)

Figure 7.1: Comparison of theoretical results. Case (i): our result that works for
both MSBs and LSBs. Case (ii): result of [86] for LSBs and that of [40] for MSBs.
Case (iii): result of Chapter 6 for both MSBs and LSBs.

7.4.2 Analysis for k = 3

We now explain the case for k = 3 in detail.

Theorem 7.11. Let N1 = p1q1, N2 = p2q2 and N3 = p3q3, where p1, p2, p3, and

q1, q2, q3 are primes. Let N,N1, N2, N3 be of same bitsize and q1, q2, q3 ≈ Nα,

|p1− p2| < Nβ, |p1− p3| < Nβ. Then, under Assumption 1, one can factor N1, N2

and N3 in poly(log N) time when

β < (1− α) 3
2 − α,

provided that 2α + β ≤ 1.

Proof. Let x0 = p2 − p1 and y0 = p3 − p1. We have N1 = p1q1, N2 = p2q2 =

(x0 + p1)q2, N3 = (y0 + p1)q3. Our goal is to recover x0q2, y0q3 from N1, N2 and

N3. Let X = Nα+β. Clearly X is an upper bound of x0q2, y0q3. Also we have

p1 ≈ N1−α. When k = 3 then

P1 = X
m3

3
+o(m3)N

m3

6
+o(m3)

1 .

Let t = τm. To have a manageable formula for P2, we need to assume t ≤ m+ 1.

Chapter 7: Approximate Integer Common Divisor Problem 132

Then

P2 = Xm3τ2+m3τ+m3τ3

3
+o(m3), and

ω =
m2

2
+m2τ +

m2τ 2

2
+ o(m2).

Neglecting the o(m3) terms, the required condition det(L) < pmω
1 implies

(
1

3
+ τ 2 + τ +

τ 3

3

)

(α + β) +
1

6
< (1− α)

(
1

2
+ τ +

τ 2

2

)

which simplifies to the following

−τ
3

3
(α + β)− τ 2

(
3α

2
+ β − 1

2

)

− τ(2α + β − 1)− 5α

6
− β

β
+

1

3
> 0. (7.19)

To maximize β for a fixed α, the optimal value of τ is 1−2α−β
α+β

. Putting this optimal

value of τ in (7.19), we get the required condition as −α3+2α2−2αβ−β2−3α+1 >

0, i.e.,

β <
√
1− 3α + 3α2 − α3 − α.

As τ ≥ 0, we also need the constraint 2α + β ≤ 1. Then under Assumption 1 (as

the polynomials are of two variables), we can collect the roots successfully.

In Theorem 6.9 of Chapter 6, it has been explained that factorization of

N1, N2, N3 will be successful when β < 0.8 − 2α. In our case, the upper bound

of β is
√
1− 3α + 3α2 − α3 − α. Now, 0.8− 2α <

√
1− 3α + 3α2 − α3 − α when

α < 0.55. Hence, our upper bound on β will be greater than that of Theorem 6.9.

7.5 Sublattice and Generalized Bound

In this section, we study a sublattice L′ of the lattice L explained in the previous

section. This helps in two ways as follows.

• The dimension of the sublattice L′ is less than that of L and this helps in

actual experiments.

• The theoretical analysis helps us to get a generalized bound for β.

133 7.5 Sublattice and Generalized Bound

Let us define the following notation:

C(α, k) =
k2(1− 2α) + k(5α− 2)− 2α + 1−

√

k2(1− α2) + 2k(α2 − 1) + 1

k2 − 3k + 2
.

We will use this notation in the following theorem as well as in later part of this

chapter. Now we present the main result describing the bound on β.

Theorem 7.12. Consider EPACDP with g ≈ a1−α and x̃2 ≈ · · · ≈ x̃k ≈ aα+β.

Then, under Assumption 1, one can solve EPACDP in poly{log a, exp(k)} time

when

β <

{

C(α, k), for k > 2

1− 3α + α2, for k = 2

with the constraint 2α + β ≤ 1.

Proof. We start by explaining the shift polynomials. First we consider the follow-

ing ones which are same as given in Equation (7.9) in the previous section.

Hj2,...,jk(x2, . . . , xk) = hj22 · · ·hjkk am−j2−···−jk
1 , (7.20)

for non-negative integers j2, . . . , jk such that j2 + · · ·+ jk ≤ m, where the integer

m ≥ 0 fixed. Further, we define another set of shift polynomials

H ′
i2,0,...,0,j2,...,jk

(x2, . . . , xk) = xi22 h
j2
2 · · ·hjkk , (7.21)

with the following:

1. 1 ≤ i2 ≤ t, for a positive integer t, and

2. j2 + · · ·+ jk = m, for non-negative integers j2, . . . , jk.

Note that this set of shift polynomials is a sub-collection of the polynomials pre-

sented in Equation (7.10).

Next, we define L′ using the coefficient vectors of

Hj2,...,jk(x2X2, . . . , xkXk), and

H ′
0,...,in,...,0,j2,...,jk

(x2X2, . . . , xkXk).

Chapter 7: Approximate Integer Common Divisor Problem 134

Let X2 = X3 = · · · = Xk = X be the common upper bound on each co-ordinate

of the root (x̃2, . . . , x̃k). The shift polynomials from Equation (7.20) contribute

P ′
1 =

m∏

r=0

(Xram−r
1)(

k+r−2
r) = Xη4aη51

with η4 =
∑m

r=0 r
(
k+r−2

r

)
, η5 =

∑m
r=0(m − r)

(
k+r−2

r

)
, to the determinant of L′.

(Note that this P ′
1 is same as P1 in Corollary 7.9). The shift polynomials from

Equation (7.21) contribute

P ′
2 =

t∏

i2=1

(X i2Xm)(
k+m−2

m) = Xη6

with η6 =
∑t

i2=1(i2+m)
(
k+m−2

m

)
, to the determinant of L′. The dimension of L′ is

ω′ =
m∑

r=0

(
k + r − 2

r

)

+ t

(
m+ k − 2

m

)

.

Now, we have
(
k+r−2

r

)
= rk−2

(k−2)!
+ o(rk−2). Using Lemma 4.1 and neglecting lower

order terms, we obtain

P ′
1 ≈ X

∑m
r=0 r

rk−2

(k−2)!a
∑m

r=0(m−r) rk−2

(k−2)!

1 ≈ X
1

(k−2)!
mk

k a
1

(k−2)!
mk

k−1
− 1

(k−2)!
mk

k

1 ,

P ′
2 ≈ X

∑t
i2=1(i2+m)mk−2

(k−2)! ≈ X
1

(k−2)!
(t

2mk−2

2
+tmk−1), and

ω′ ≈
m∑

r=0

rk−2

(k − 2)!
+ t

mk−2

(k − 2)!
≈ mk−1

(k − 1)(k − 2)!
+ t

mk−2

(k − 2)!

Following Theorem 2.23, the required condition is

det(L′) = P ′
1P

′
2 < gmω′

,

where g is the common divisor. Let X = aα+β. Then putting the values of g,X

in det(L′) = P ′
1P

′
2 < gmω′

, we get,

(
mk

k
+
mk−2t2

2
+mk−1t

)

(α + β)+
mk

k − 1
− mk

k

< (1− α)
(

mk−1t+
mk

k − 1

)

. (7.22)

135 7.5 Sublattice and Generalized Bound

Now putting t = τm, (τ ≥ 0 is a real number) in (7.22), we get the condition as

(
1

k
+
τ 2

2
+ τ

)

(α + β) +
1

(k − 1)k
< (1− α)

(

τ +
1

k − 1

)

. (7.23)

To maximize β for a fixed α, the optimal value of τ is

τ =
1− 2α− β
α + β

.

Putting this optimal value in (7.23), we get the condition as

4α2k2+4αβk2 + β2k2 − 8α2k − 10αβk − 3β2k − 4αk2

− 2βk2 + 2α2 + 4αβ + 2β2 + 6αk + 4βk + k2 − 2α− 2β − k > 0.

From which we get the required condition as β < C(α, k) when k > 2, and

β < 1−3α+α2 when k = 2. Since τ ≥ 0, we also need the constraint 1−2α−β ≥ 0.

Then, under Assumption 1 (as the polynomials are of more than one variable), we

can collect the roots successfully.

7.5.1 Implicit Factorization problem with shared MSBs

and LSBs together

So far we continued our discussion for the MSB case for better understanding.

Now we show that the same technique works as well when MSBs and LSBs are

shared together. This also takes care of the case when only LSBs are shared. As

before, consider N1 = p1q1, N2 = p2q2, . . . , Nk = pkqk, where p1, p2, . . . , pk and

q1, q2, . . . , qk are primes. It is also considered that p1, p2, . . . , pk are of same bitsize

and so are q1, q2, . . . , qk. We also assume that some amount of LSBs as well as

some amount of MSBs of p1, p2, . . . , pk are same.

Theorem 7.13. Let q1, q2, . . . , qk ≈ Nα. Consider that γ1 log2N many MSBs and

γ2 log2N many LSBs of p1, p2, . . . , pk are same. Define β = 1−α−γ1−γ2. Then,
under Assumption 1, one can factor N1, N2, . . . , Nk in poly{log N, exp(k)} if

β <

{

C(α, k), for k > 2,

1− 3α + α2, for k = 2,

with the constraint 2α + β ≤ 1.

Chapter 7: Approximate Integer Common Divisor Problem 136

Proof. It is given that γ1 log2N many MSBs and γ2 log2N many LSBs of

p1, p2, . . . , pk are same. We consider γ1 log2N and γ2 log2N as integers, so it is

clear that Nγ1 , Nγ2 are integers too. Thus, we can write the following equations.

p2 = p1 +Nγ2x̃2,

p3 = p1 +Nγ2x̃3,
...

pk = p1 +Nγ2x̃k.

Using the above relations, we have1

Niq1 −N1qi = Nγ2x̃iqiq1 for 1 < i ≤ k. (7.24)

Suppose, µNγ2 ≡ 1 mod N1. Now, multiplying Equation (7.24) by µ, we get

µNiq1 − x̃iqiq1 ≡ 0 (mod N1). Let bi ≡ µNi (mod N1) for 1 < i ≤ k. (Note that,

for any i, bi is of O(N1), i.e., O(N).) Thus we have,

biq1 − x̃iqiq1 ≡ 0 (mod N1) ⇒ bi − x̃iqi ≡ 0 (mod p1) for 1 < i ≤ k.

Our first aim is to find x̃iqi from the knowledge of N1 and b2, . . . , bk. Then,

using x̃iqi, we want to find the factorization of Ni for 1 ≤ i ≤ k. Here we have

x̃i ≈ N1−α−γ1−γ2 for 1 ≤ i ≤ k. Then, following the similar technique as in the

proof of Theorem 7.12, the desired result is achieved.

We extend the results related to MSBs (as in Theorem 7.12 and earlier) in

the case of LSBs as well as in the case of MSBs and LSBs taken together (as in

Theorem 7.5.1). As this method works for the case where MSBs and LSBs are

considered together, it also works for the case where only the LSBs are shared. In

such a case, we can consider that just a single bit from the MSB side (the first

MSB, which is surely 1 for all the primes) is shared.

1One may note that similar equations as in Equation (7.24) have been used in [40] to construct
the lattice only for the case of most significant bits. However, here we use these for the case
when the equal bits are spread out between most and least significant bits.

137 7.5 Sublattice and Generalized Bound

7.5.2 Comparison with the work of [40, 86,107]

Let us now compare our result with that of [86] for the general case. The strategy

of [86] considers equality in some LSBs of p1, p2, . . . , pk and we consider the same

here following the result in Section 7.5.1. The strategy of [86] works when

β ≤ 1− α− k

k − 1
α = 1− 2k − 1

k − 1
α.

As β > 0, one may note α < k−1
2k−1

, i.e, α < 1
2
.

We have already discussed in Section 7.4.1 that for the case k = 2 our result is

better than that of [86]. The results of Theorem 7.12 for k = 2 and Theorem 7.10

are same, since L and L′ are same for k = 2. However, L and L′ become different

for k > 2. For k > 2, C(α, k) > 1 − 2k−1
k−1

α. Thus, for any k, k ≥ 2, we need

smaller amount of bit sharing in LSBs for implicit factorization than the number

of bit sharing in LSBs achieved in [86]. Our upper bound on β is

k − 1−
√
k2 + 2α2k − α2k2 − 2k + 1

k2 − 3k + 2

more than the upper bound on β in [86]. Thus, the gap between our bound and that

of [86] reduces as k increases. To summarize, we have the following observations.

1. Our theoretical result is better than that of [86] from the point that it requires

less LSBs to be equal than the number of LSBs in case of [86].

2. Both our result as well as that of [86, Theorem 7] are of time complexity

poly{log N, exp(k)}. However, the lattice dimension in the formulation of [86]

is much smaller (exactly k) than the lattice dimension following our approach

(exponential in k). Experimentally our results provide superior outcome for

k = 3 and similar kind of outcome for k = 4, though we need more time

than that of [86]. Experiments for large k is not possible with our strategy

in this section. To overcome this, we present a technique (in Section 7.6)

that provides results for larger values of k.

3. The strategy of [86] could be extended for balanced RSA moduli, which we

could not achieve in our case.

Let us now present some numerical values (both theoretical as well as experi-

mental) for comparison with [86] in Table 7.3. In the * marked rows, experimental

Chapter 7: Approximate Integer Common Divisor Problem 138

k Bitsize of pi, qi No. of shared LSBs [86] in pi No. of shared LSBs (our) in pi
(1− α) log2 N,α log2 N Theory Expt. LD Time Theory Expt. LD Time

3 750, 250 375 378 3 < 10 352 367 56 41.92
* 3 700, 300 450 452 3 < 1 416 431 56 59.58
* 3 650, 350 525 527 3 < 1 478 499 56 74.54
3 600, 400 600 - - - 539 562 56 106.87

* 4 750, 250 334 336 4 < 1 320 334 65 32.87
* 4 700, 300 400 402 4 < 1 380 400 65 38.17
* 4 650, 350 467 469 4 < 1 439 471 65 39.18
* 4 600, 400 534 535 4 < 1 497 528 65 65.15

Table 7.3: For 1000 bit N , theoretical and experimental data of the number of
shared LSBs in [86] and shared LSBs in our case. (Time in seconds)

data is not available from [86], and we perform the experiments following the

method of [86]. In the # marked row, the method of [86] does not work as all the

bits of the primes p1, p2, p3 need to be same.

k Bitsize of pi, qi No. of shared MSBs [40] in pi No. of shared MSBs (our) in pi
(1− α) log2 N,α log2 N Theory Expt. LD Time Theory Expt. LD Time

2 874, 150 303 302 2 < 1 278 289 16 1.38
2 824, 200 403 402 2 < 1 361 372 16 1.51
2 774, 250 503 502 2 < 1 439 453 16 1.78
2 724, 300 603 602 2 < 1 513 527 16 2.14

3 874, 150 231 230 3 < 1 217 230 56 29.24
3 824, 200 306 304 3 < 1 286 304 56 36.28
3 774, 250 381 380 3 < 1 352 375 56 51.04
3 724, 300 456 455 3 < 1 417 441 56 70.55
3 674, 350 531 530 3 < 1 480 505 56 87.18
3 624, 400 606 604 3 < 1 540 569 56 117.14

Table 7.4: For 1024-bit N , theoretical and experimental data of the number of
shared MSBs in [40] and shared MSBs in our case. (Time in seconds)

Faugére et al [40] (independently at the same time of our work) presented

a different lattice based approach for the problem of implicit factorization with

shared MSBs of p1, p2, . . . , pk. The strategy of [40] works when

β ≤ 1− α− k

k − 1
α− 1

log2N
− k

2(k − 1) log2N

(

2 +
log2 k

k
+ log2(πe)

)

= 1− 2k − 1

k − 1
α− 1

log2N
− k

2(k − 1) log2N

(

2 +
log2 k

k
+ log2(πe)

)

.

Similar to our comparison with that of [86] for LSB case, it can be noted that

our method requires less number of MSBs to be shared compared to [40] and the

gap between our bound and that of [40] reduces as k increases. The numerical

data, both theoretical and experimental, are presented in Table 7.4 for a clear

139 7.6 Improved Results for Larger k

comparison of our work with that of [40].

Very recently, M. Ritzenhofen [107] presented a distinct lattice based ap-

proach for the problem of implicit factorization with shared MSBs and LSBs of

p1, p2, . . . , pk. The strategy of [107, Theorem 6.1.7] works when β ≤ 1−α− k
k−1

α.

Similar to our comparison with that of [86] for LSB case, it can be noted that our

method requires less number of bits to be shared compared to [107].

We have explained our results for the MSB case as well as LSB case and

compared with state of the art literature. The experimental results in both the

cases are of similar quality using our techniques. Similar results are achieved

in our case if one considers sharing of MSBs and LSBs together in the primes

p1, p2, . . . , pk. Thus, we do not repeat these results.

7.6 Improved Results for Larger k

In [128, Section 5.2], the authors studied the EPACDP for analyzing the security

of their scheme. Initially this strategy has been analyzed in [73,74]. Based on the

idea presented in [128], we get Theorem 7.14. The result in Theorem 7.14 below

is not exactly presented in a similar form in [128].

In case of EPACDP, one can write

a1 = gq1,

ã2 = gq2 − x̃2,
...

ãk = gqk − x̃k.

Let us construct the matrix

M =

2ρ ã2 ã3 . . . ãk

0 −a1 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . −a1

Chapter 7: Approximate Integer Common Divisor Problem 140

where 2ρ ≈ x̃2. One can note that (q1, q2, . . . , qk)·M = (2ρq1,−q1x̃2, . . . , q1x̃k) = b,

say. It can be checked that

||b|| <
√
k · a2α+β. (7.25)

Moreover, | det(M)| = 2ρak−1
1 ≈ aα+β+k−1. According to Minkowski’s theorem

(see [106] for details), we know that there is a vector v in the lattice L correspond-

ing to M such that

||v|| <
√
k · aα+β+k−1

k , (7.26)

Now we consider the following assumption.

Assumption 2. The vector b is one of the shortest vectors, and the next shortest

vector is significantly larger than ||b||.

Under this assumption, and from (7.25) and (7.26), we get b from L if

a2α+β < a
α+β+k−1

k ⇔ β <
k − 1 + α− 2αk

k − 1
.

The running time is determined by the time to calculate a shortest vector in L

which is polynomial in log a but exponential in k. Thus, we get the following.

Theorem 7.14. Consider EPACDP with g ≈ a1−α and x̃2 ≈ x̃k ≈ aα+β. Then,

under Assumption 2, one can solve EPACDP in poly{log a, exp(k)} time when,

β < 1− 2k − 1

k − 1
α. (7.27)

So, the bound in (7.27) works for the case when MSBs are shared. Further,

using the idea of Section 7.5.1, the bound in (7.27) can as well be used for the

LSB case or in the case where we consider the MSBs and LSBs together. From

the analysis presented in Section 7.5.2, it is clear that this bound is worse than the

bound presented in Theorem 7.12. However, this result helps us to provide much

better experimental performance for larger values of k, that could not be achieved

by the method in Section 7.5.

7.6.1 Comparison with the work of [40, 86]

Theorem 7.14 states that the time complexity is poly{log a, exp(k)}. However,

under the assumption that “the shortest vector of the lattice L can be found

141 7.6 Improved Results for Larger k

by the LLL algorithm”, the complexity becomes poly{log a, k}. This happens in

practice as observed in [86] too.

In Table 7.5, we present a comparison of our experimental results with those

in [86, Table 1, Section 6.2]. One may note that both our results and the re-

sults of [86] are of similar quality. We have implemented the method of [86] for

comparison, and the data is presented in Table 7.5.

α k Theoretical bound Results of [86] Our results
(same for both) Experiments Time in seconds Experiments Time in seconds

0.25 3 375 377 < 1 376 < 1
0.35 10 389 391 < 1 390 < 1
0.40 100 405 408 50.36 407 28.21
0.44 50 449 452 7.09 451 4.04
0.48 100 485 492 68.88 488 36.36

Table 7.5: For 1000 bit N , theoretical and experimental data of the number of
shared LSBs in [86] and shared LSBs in our case.

As we have already discussed, in the approach of [40], the number of shared

MSBs should be greater than or equal to k
k−1

α log2N + 6 for k ≥ 3. In our case,

putting the upper bound of β, number of shared bits should be greater than

(

1− α−
(

1− 2k − 1

k − 1
α

))

log2N =
k

k − 1
α log2N.

We have implemented the method of [40] for comparison with our strategy. Note

that the data presented in Table 7.6 match with those in [40, Tables 4, 5].

Advantages of our approach over [40] are as follows.

1. Our theoretical result in this section is slightly better than that of [40] in

terms of number of shared MSBs.

2. In this section, the matrix corresponding to the lattice is a square one, but it

is rectangular in the method of [40]. Hence, the calculation of determinant

for the lattices is easier in our method.

3. In the presence of k many RSA moduli, we have to reduce a k × k matrix,

whereas the size of the matrix in [40] is k × 1
2
k(k + 1). Hence in practical

circumstances, the matrix reduction step in case of [40] takes more time than

ours. Further, from the experimental results presented in Table 7.6, it is clear

that our strategy requires much less time than the method of [40].

Chapter 7: Approximate Integer Common Divisor Problem 142

k Bitsize of pi, qi No. of shared MSBs [40] in pi No. of shared MSBs (our) in pi
Theory Expt. LD Time (sec) Theory Expt. LD Time (sec)

10 874, 150 171 170 10 < 1 166 170 10 < 1
10 824, 200 227 225 10 < 1 220 225 10 < 1
10 774, 250 282 280 10 < 1 274 280 10 < 1
10 724, 300 338 334 10 < 1 328 332 10 < 1
10 674, 350 393 390 10 < 1 382 388 10 < 1
10 624, 400 449 446 10 < 1 435 444 10 < 1

40 874, 150 158 157 40 12.74 154 157 40 < 1
40 824, 200 209 206 40 17.42 205 206 40 < 1
40 774, 250 261 258 40 21.64 256 258 40 1.13
40 724, 300 312 309 40 24.17 307 308 40 1.26
40 674, 350 363 361 40 29.87 358 360 40 1.48
40 624, 400 414 412 40 34.69 409 410 40 1.75

100 874, 150 155 154 100 299.64 152 153 100 5.63
100 824, 200 206 205 100 525.67 202 204 100 9.36
100 774, 250 257 257 100 781.42 253 255 100 14.11
100 724, 300 307 307 100 1053.66 303 305 100 18.61
100 674, 350 358 357 100 1415.02 353 355 100 24.16
100 624, 400 408 408 100 2967.75 404 406 100 29.95

Table 7.6: For 1024-bit N , theoretical (bound for [40] and in our case) and ex-
perimental data of the number of shared MSBs in [40] and shared MSBs in our
case.

In this section, we have presented our results for the MSB case as well as LSB

case and compared with [40,86]. The experimental results in both the cases are of

similar quality using our techniques. Similar results are achieved in our case if one

considers sharing of MSBs and LSBs together, and thus we do not repeat these

results.

7.6.2 Comparing the Methods with respect to EPACDP

So far we have discussed the methods towards applying them in implicit factor-

ization. Now, let us compare the method presented in this section with that of

Section 7.5 for EPACDP itself.

Let g ≈ a1−α and x̃i ≈ aβ for i = 2 to k. Following similar kind of calculations

as in the proof of Theorem 7.12, we get

β <

{

C(α, k) + α for k > 2,

1− 2α + α2 for k = 2,
(7.28)

143 7.7 EGACDP

The approach in this section provides the bound as

β < 1−
(

k

k − 1

)

α.

When α ≥ k−1
k
, we can not get the common divisor by the proposed method in this

section. However, we get results in such situations using the results of Section 7.5.

In Table 7.7, we present few such experimental outcomes for the method discussed

in Section 7.5.

k α = (k − 1)/k Bound of β LD Time
Equation (7.28) Experimental

3 2/3 0.1835 0.135 25 10.72
4 3/4 0.1464 0.09 28 28.75

Table 7.7: EPACDP: Experimental results for 1000-bit a.

To conclude this section, let us point out a few issues:

• Considered theoretically, the idea of Section 7.5 is always better than that

of this section.

• The method of this section works better than the idea of Section 7.5 is case

of practical experiments for larger values of k.

• There are some situations with small values of k, where the idea of Section 7.5

works better than the strategy presented in this section.

7.7 EGACDP

So far we have concentrated on EPACDP, i.e., we have considered that the first

element is exactly known. However, the more general problem is when the first

element is also approximated by some known term. This is what we refer to

as Extended General Approximate Common Divisor Problem (EGACDP, as in

Problem Statement 2) and we study this problem in the current section. Towards

solving EPACDP, we presented two different techniques, one in Section 7.4 and

another in Section 7.6. We will try similar methods in this section as Method I

and Method II respectively.

Chapter 7: Approximate Integer Common Divisor Problem 144

In case of EGACDP, we have

ã1 = gq1 − x̃1,
ã2 = gq2 − x̃2,

...

ãk = gqk − x̃k,

where ã1, . . . , ãk are known. The goal is to find g from the knowledge of the

approximates ã1, . . . , ãk.

7.7.1 Method I

Towards solving the EGACDP in a manner similar to Section 7.4, consider the

polynomials

h1(x1, x2, . . . , xk) = ã1 + x1,
...

hk(x1, x2, . . . , xk) = ãk + xk, (7.29)

where x1, x2, . . . , xk are the variables. Clearly, g (of Problem Statement 2) divides

hi(x̃1, x̃2, . . . , x̃k) for 1 ≤ i ≤ k. Now let us define the shift polynomials

hs1,...,sk(x1, x2, . . . , xk) = hs11 · · ·hskk , (7.30)

for u ≤ s1 + · · ·+ sk ≤ m, where u,m are fixed non-negative integers.

Let X1, . . . , Xk be the upper bounds of x̃1, . . . , x̃k respectively. Now we de-

fine a lattice L using the coefficient vectors of hs1,...,sk(x1X1, . . . , xkXk). Let the

dimension of L be ω. One gets x̃1, . . . , x̃k (under Assumption 1 and following The-

orem 2.23 and Lemma 2.20) using lattice reduction over L, if det(L)
1
ω < gm, i.e.,

when det(L) < gmω (neglecting the lower order terms).

Since the lattice dimension ω =
∑m

s=u

(
k+s−1

s

)
is exponential in k, the running

time of this strategy will be poly{log a, exp(k)}. Thus for small fixed k, this

algorithm is polynomial in log a. Formally, we get the following result.

Theorem 7.15. Under Assumption 1, the EGACDP can be solved in time

poly{log a, exp(k)} when det(L) < gmω.

145 7.7 EGACDP

Since in this case the matrix corresponding to the lattice L is not square, finding

det(L) may not be easy for general k. Further, for large k, dimension of L will be

very large.

7.7.2 Method II

Here we follow the idea of Section 7.6. We have

ã1 = gq1 − x̃1,
ã2 = gq2 − x̃2,

...

ãk = gqk − x̃k,

where ã1, . . . , ãk are known and ãi ≈ a for 1 ≤ i ≤ k. Suppose, x̃i ≈ aβ for

1 ≤ i ≤ k and g ≈ a1−α. Then qi ≈ aα for i ∈ [1, k]. Let us construct

M =

2ρ ã2 ã3 . . . ãk

0 −ã1 0 . . . 0
...

...
...

. . .
...

0 0 0 . . . −ã1

where 2ρ ≈ 2x̃1. One can note that (q1, q2, . . . , qk) · M = (2ρq1, x̃1q2 −
q1x̃2, . . . , x̃1qk − q1x̃k) = b, say. It can be checked that

||b|| < 2
√
kaα+β. (7.31)

Moreover, | det(M)| = 2ρ(ã1)
k−1 ≈ 2aβ+k−1. Following Minkowski’s theorem, there

is a vector v in the lattice L corresponding to M such that

||v|| <
√
k2

1
ka

β+k−1
k . (7.32)

Under Assumption 2 (Section 7.6), and from (7.31) and (7.32), one can obtain b

from L if

aα+β < a
β+k−1

k ⇔ β < 1− k

k − 1
α,

Chapter 7: Approximate Integer Common Divisor Problem 146

neglecting the terms 2 and 2
1
k . With the knowledge of b, one can find q1, from

which g is obtained if |x̃1| ≤ q1. So we need

1− k

k − 1
α ≤ α ⇒ α ≥ k − 1

2k − 1
.

The running time is determined by the time to calculate a shortest vector in L

which is polynomial in log a but exponential in k. Thus, we get the following

result.

Theorem 7.16. Consider EGACDP with g ≈ a1−α and x̃1 ≈ x̃2 ≈ · · · ≈ x̃k ≈ aβ.

Then, under Assumption 2, one can solve EGACDP in poly{log a, exp(k)} time

when

β < 1− k

k − 1
α, (7.33)

provided that α ≥ k−1
2k−1

.

7.7.3 Experimental Results

In this section we present a few experimental results for both the methods, as

shown in Table 7.8. When k = 3 and 1−α = 0.25, we have 1− k
k−1

α < 0. In such

a situation one can not get results using Method II, but Method I will succeed.

For example, Method I succeeds given 250-bit g for k = 3, 4, whereas Method II

does not provide results in such cases.

Results using Method I.

k g error LD Time (in sec.)
3 250-bit 36-bit 31 11.72
3 500-bit 245-bit 31 2.85
4 250-bit 82-bit 65 210.91
4 500-bit 320-bit 65 63.04

Results using Method II.

k g error LD Time (in sec.)
3 500-bit 249-bit 3 < 1
4 500-bit 331-bit 4 < 1
10 500-bit 441-bit 10 < 1
50 500-bit 487-bit 50 4.62
100 500-bit 490-bit 100 40.17

Table 7.8: EGACDP: Experimental results for 1000-bit a.

For large values of k, we can not perform experiments corresponding to Method

I due to high lattice dimensions. Theorem 7.16 states that the time complexity

is poly{log a, exp(k)}. However, under the assumption that “the shortest vector

of the lattice L can be found by the LLL algorithm”, the complexity becomes

147 7.8 Conclusion

poly{log a, k}. Thus, Method II will work successfully and we can easily obtain

the experimental results using LLL up to k ≤ 100.

7.8 Conclusion

In this chapter we first present two applications of partially approximate common

divisor problem (PACDP) of [61]. Next we present a generalization of the partially

approximate common divisor problem (PACDP) [61] which we term as Extended

Partially Approximate Common Divisor Problem (EPACDP). We also study the

extension of GACDP (General Approximate Common Divisor Problem) [61].

EPACDP immediately relates to the implicit factorization problem introduced

in [86] and already elaborated in Chapter 6. We consider the case when some

MSBs and/or LSBs of the primes p1, p2, . . . , pk are equal (but unknown). This

covers the case when the LSBs are equal in [86] and MSBs are equal in [40]. Our

strategy provides new and improved theoretical as well as experimental results.

This chapter marks the end of our technical results. In the next chapter,

we conclude the thesis by summarizing our results and mentioning related open

problems to introduce areas of further research in similar directions.

Chapter 8

Conclusion

In this chapter, we conclude the thesis. We have studied weaknesses of RSA cryp-

tosystem, and results related to integer factorization, throughout Chapters 3 to 7.

We exploited the vulnerabilities of RSA arising due to weak encryption/decryption

keys, information about the bits of RSA primes, and implicit knowledge about the

same. Most of our results are based on lattice basis reduction techniques applied

to finding solutions to integer and modular polynomials.

We revisit the chapters one-by-one to summarize the thesis. We mention the

existing results and prior work (if any) in the direction. Most importantly, we

present the crux of the chapters, that is our contributions, improvements and ex-

tensions to existing methods. Finally, we also discuss the future scope for research

and potential open problems in respective field of study.

8.1 Summary of Technical Results

Chapter 1 provided the introduction to the thesis, while Chapter 2 covered some

mathematical topics the reader should know before reading the thesis comfortably.

The main technical results of the thesis are discussed in Chapters 3 to 7, and the

highlights of these chapters are as follows.

149

Chapter 8: Conclusion 150

Chapter 3: Class of Weak Encryption Exponents

Blömer and May [9] have shown that N can be factored in polynomial time if

the public exponent e satisfies ex + y ≡ 0 (mod φ(N)), with x ≤ 1
3
N

1
4 and |y| =

O(N− 3
4 ex). Some extensions considering the difference p−q have also been studied.

The number of such weak keys has been estimated as N
3
4
−ǫ. In a similar direction,

more weak keys are presented by Nitaj [96]. Nitaj proved that if e satisfies eX −
(p− u)(q − v)Y = 1 with 1 ≤ Y < X < 2−

1
4N

1
4 , |u| < N

1
4 , v =

[

− qu
p−u

]

, and if all

the prime factors of p− u or q− v are less than 1050, then N can be factored from

the knowledge of N, e. The number of such weak exponents is estimated as N
1
2
−ǫ.

We concentrate on the cases when e (= Nα) satisfies eX − ZY = 1, given

|N −Z| = N τ . Using the idea of Boneh and Durfee [14,15], we show that the LLL

algorithm can be efficiently applied to get Z when |Y | = Nγ and

γ < 4ατ

1

4τ
+

1

12α
−
√
(

1

4τ
+

1

12α

)2

+
1

2ατ

(
1

12
+

τ

24α
− α

8τ

)

 .

This idea substantially extends the class of weak keys presented in [96] when Z =

ψ(p, q, u, v) = (p− u)(q − v). Further, we consider Z = ψ(p, q, u, v) = N − pu− v
to provide a new class of weak keys in RSA. This idea does not require any kind

of factorization as in [96]. A very conservative estimate for the number of such

weak exponents is N0.75−ǫ, where ǫ > 0 is arbitrarily small for suitably large N .

Chapter 4: More than one Decryption Exponent

From the results of Howgrave-Graham et al [62] and Hinek et al [55] we know

that in the presence of n many decryption exponents, one can factor N when the

decryption exponents di < N δ, for 1 ≤ i ≤ n, where

δ <

min

{
(2n+1)·2n−(2n+1)(n

n
2
)

(2n−2)·2n+(4n+2)(n
n
2
)
, 0.5

}

if n is even

min

{
(2n+1)·2n−4n·(n−1

n−1
2
)

(2n−2)·2n+8n·(n−1
n−1
2
)
, 0.5

}

if n is odd

We improved this bound by showing that if n many decryption exponents

(d1, . . . , dn) are used with the same N , then RSA is insecure when di < N
3n−1
4n+4 , for

151 8.1 Summary of Technical Results

all 1 ≤ i ≤ n and n ≥ 2. Though, the time complexity of our technique as well as

the technique of [62] are polynomial in the bitsize of N , both are exponential in

the number of exponents n.

Chapter 5: Prime Reconstruction given a few Bits

One major class of RSA attacks exploit partial knowledge of the RSA secret keys

or the primes. Rivest and Shamir [109] pioneered these attacks using Integer

Programming and factored RSA modulus given two-third of the LSBs of a factor.

Later, a seminal paper [24] by Coppersmith proved that factorization of the RSA

modulus can be achieved given half of the MSBs of a factor. In Crypto 2009,

Heninger and Shacham [50] proposed a method to reconstruct the RSA private

keys given a certain fraction of the bits, distributed at random.

In this chapter, we revisit the work of [50] and provide a combinatorial model

for the search where some random bits of the primes are known. This shows how

one can factorize N given the knowledge of random bits in the least significant

halves of the primes. We also explain a lattice based strategy in this direction

to rectify a shortcoming of the reconstruction algorithm presented in [50]. More

importantly, we study howN can be factored given the knowledge of some blocks of

bits in the most significant halves of the primes. We present improved theoretical

result and experimental evidences in this direction.

Chapter 6: Implicit Factorization

In PKC 2009, May and Ritzenhofen [86] explained the problem of implicit fac-

torization. Consider N1 = p1q1, N2 = p2q2, . . . , Nk = pkqk, where p1, p2, . . . , pk

and q1, q2, . . . , qk are primes. Further assume that p1, p2, . . . , pk are of same

bitsize and so are q1, q2, . . . , qk. Given that certain portions of bit pattern in

p1, p2, . . . , pk are common, the question is under what conditions it is possible to

factor N1, N2, . . . , Nk efficiently. In [86], the result was based under the assumption

that some amount of LSBs are same in p1, p2, . . . , pk.

We explore the same problem with a different lattice-based strategy for k = 2, 3.

In a general framework, our method works when implicit information is available

related to Least Significant as well as Most Significant Bits. Given q1, q2, q3 ≈ Nα,

we show that one can factor N1, N2, N3 simultaneously in poly(log N) time when

Chapter 8: Conclusion 152

p1, p2, p3 share certain amount of MSBs and/or LSBs. We also study the case when

p1, p2 share some contiguous bits in the middle. Our strategy presents new and

encouraging results in this direction. Moreover, some of the observations in [86]

get improved when we apply our ideas for the LSB case.

Chapter 7: Approximate Integer Common Divisor

In CaLC 2001, Howgrave-Graham [61] proposed two methods to find the Greatest

Common Divisor (GCD) of two large integers in the following two cases.

• One of the integers is known exactly and the other is known approximately.

• Both the integers are known approximately.

In this chapter, we first present two applications of the technique of [61], as follows.

Application 1: Consider N = pq, where p, q are large primes and p > q. We

show that factoring N is deterministic polynomial time equivalent to finding

q−1 mod p.

Application 2: Consider the problem of finding smooth integers in a short inter-

val as studied by Boneh [12] in STOC 2000. We find improved result using

the idea of [61], which is different from the method proposed in [12].

Next, we analyze how to calculate the GCD of k (≥ 2) many large integers given

their approximations, which in turn relates to the implicit factorization problem.

Introduced by May and Ritzenhofen [86] in PKC 2009, this was studied under the

assumption that some Least Significant Bits (LSBs) of certain primes are same.

Our strategy can be applied to the implicit factorization problem in a general

framework considering the equality of (i) Most Significant Bits (MSBs), or (ii)

Least Significant Bits (LSBs), or (iii) both the MSBs and LSBs together. We

present new and improved theoretical as well as experimental results in comparison

with existing works.

8.2 Overview of Root Finding Techniques

Throughout the thesis, a common approach for analysis (in most of the cases) was

to solve integer integer or modular polynomials using lattice based techniques. We

153 8.2 Overview of Root Finding Techniques

have thoroughly discussed the lattice based root finding methods that are present

in the current literature. Our discussion covered the earlier techniques of finding

small roots of modular polynomials by Coppersmith [23], as well as the general

result by Jochemsz and May [65]. We have presented Coron’s [28] method to find

roots of bivariate integer polynomials, and have also discussed the general version

of the same proposed by Jochemsz and May [65].

Case I: Modular Polynomial fN
Monomials of fN Bound Ref.

1, x, y, xy X · Y < N
2
3 Sec. 5.2

Case II: Integer Polynomial f
Monomials of f Bound Ref.

1, x1, . . . , xn+1, X
1

n+1(
1

n+2
+ τ

n)
1 · (X2 · · ·Xn+1)

(1
n(

1
n+2

+ τ
n+1)) Sec. 4.1

x2xn+2, . . . , xn+1xn+2 X

(

1
2(n+2)

+ τ
n+1

+ τ2

2n

)

n+2 < W (1
n+1(

1
n+2

+ τ
n))

1, x, y, yz, xyz X(1
2
+ 3

2
τ) · Y (5

6
+ 3

2
τ) · Z(1

2
+ 3

2
τ+τ2) < W (1

3
+τ) Sec. 6.1.1

1, y, z, xyv, xv, xzt X
5
24 · Y 1

8 · Z 1
6 · V 1

8 · T 1
12 < W

1
12 Sec. 6.1.4

1, x, y, yz, yv, xyz, xyv X(1
4
+τ1+τ2+

3
2
τ1τ2) · Y (11

24
+ 4

3
(τ1+τ2)+

3
2
τ1τ2) Sec. 6.2

·Z(1
6
+ 2

3
(τ1+τ2)+

3
4
τ21+

3
2
τ1τ2+τ21 τ2)

·V (1
6
+ 2

3
(τ1+τ2)+

3
4
τ22+

3
2
τ1τ2+τ1τ22)

< W (1
8
+ 1

2
(τ1+τ2)+τ1τ2)

Table 8.1: Bounds for finding roots of a polynomial.

Now, the general root finding methods by Jochemsz and May [65] have been the

most effective ones in case of the polynomials we have encountered. In Table 8.1,

we give an overview of the results obtained by using the general root finding

techniques of [65] to the specific polynomials in our case. The idea of this tabular

Chapter 8: Conclusion 154

representation is motivated by similar tables presented in [64, Page 44], and the

results we present here extend the array of results provided in [64]. The reader

may refer back to the respective sections to obtain the relevant details.

8.3 Open Problems

In this section, we propose a few open problems related to our work. These may

lead to new interesting research topics in the related field.

8.3.1 Weak Encryption Keys

One may note that Blömer and May [9] and our work in Chapter 3 present a

different classes of weak encryption exponents of cardinality N0.75−ǫ. For fixed

N , there are O(N) many encryption exponents e which are less than N . Hence

most of the encryption exponents are not weak based on the current knowledge

in this field. It is unknown whether there is a class of weak encryption exponents

of cardinality substantially greater than N0.75−ǫ. So, we have the following open

problem.

Problem 8.1. Is there any new class of weak encryption exponents of cardinality

substantially greater than N0.75−ǫ ?

8.3.2 More than one Decryption Key

Since the time complexity of the work of Howgrave-Graham and Seifert [62] as

well as our approach in Chapter 4 are exponential in n, we can not get better

experimental results for large n. Hence we have the following question.

Problem 8.2. Is there any algorithm with runtime polynomial in (log2N, n) which

can improve the bound achieved by our method?

Furthermore, consider the same situation for CRT-RSA. Suppose that e1, . . . , ek

are k encryption exponents and (dp1 , dq1), . . . , (dpk , dqk) are the corresponding de-

cryption exponents for the same CRT-RSA modulus N . We know when e is of

order N , then one can factor N in polynomial time [66] if dp, dq < N0.073. So, we

can pose the following problem in the same direction.

155 8.3 Open Problems

Problem 8.3. Is there any polynomial time algorithm to factor N with encryption

exponents of order N if dpi > N0.073 and dqi > N0.073 for 1 ≤ i ≤ k?

8.3.3 Reconstruction of Primes

The terms {p, q, d, dp, dq, q−1 (mod p)} are stored as a part of the secret key in

PKCS #1 [99] to expedite the decryption in CRT-RSA. Now, one may note

from Chapter 5 that Heninger and Shacham [50] used random known bits of

{p, q, d, dp, dq}, and our work uses bits of {p, q} to factorize N . None of the meth-

ods could utilize the knowledge of q−1 mod p to factor N . In Chapter 7, we have

proved that knowing q−1 mod p completely is equivalent to factoring N . But, we

do not have any results if one knows some random bits of q−1 mod p. In the pre-

sentation of the paper [50] at Crypto 2009, this problem was also asked. In this

line, let us present the following two open questions.

Problem 8.4. Can one use some known random bits of q−1 mod p to factor N?

Problem 8.5. Does the knowledge of random bits of q−1 mod p reduce the required

number of bits to be known for other private keys in case of factoring N?

In Chapter 5, we studied the case when random bits are known from the lower

half of p and q. However consider the situation when random bits are known from

the upper half of p and q. Hence, we have the following question.

Problem 8.6. Can one factor N when random bits are known from the upper half

of p and q?

8.3.4 Implicit Factorization

In PKC 2009, May and Ritzenhofen [86] introduced the problem of implicit factor-

ization. They presents some results when few LSBs of the secret primes are same.

They also extend their results for balanced RSA moduli. That is for the case

N1 = p1q1, N2 = p2q2, . . . , Nk = pkqk, with pi and qi are of same bitsize and few

LSBs of p1, . . . , pk are same. In Chapter 6 and Chapter 7 we analyze the situation

when p1, . . . , pk share their MSBs. However, we can not extend our ideas for the

balanced case. Hence, we leave the following open question.

Problem 8.7. Can one factor k balanced RSA moduli N1, . . . , Nk in polynomial

time when p1, . . . , pk share their MSBs?

Chapter 8: Conclusion 156

Final Words

This thesis discusses a variety of cryptanalytic results on RSA and its variants,

mainly by the use of lattice based root finding techniques. Analysis of certain

versions of factorization problem has also been studied. Efficient algorithms to

find small roots of modular and bivariate integer polynomials have been exploited

a lot during the last decade in connection with RSA cryptanalysis as well as integer

factorization, and this proves to be a potent line of research for years to come.

Bibliography

[1] Advanced Encryption Standard. National Institute of Standards and Tech-

nology, 2001. Available at http://csrc.nist.gov/CryptoToolkit/aes/

rijndael/.

[2] D. Aggarwal and U. M. Maurer. Breaking RSA generically is equivalent to

factoring. In Proceedings of Eurocrypt’09, volume 5479 of Lecture Notes in

Computer Science, pages 36–53, 2009.

[3] M. Agrawal, N. Kayal, and N. Saxena. Primes is in P. Annals of Mathemat-

ics, 2:781–793, 2002.

[4] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-

case equivalence. Electronic Colloquium on Computational Complexity

(ECCC), 3(65), 1996.

[5] M. Ajtai and C. Dwork. A public-key cryptosystem with worst-case/average-

case equivalence. In Proceedings of STOC’97, pages 284–293, 1997.

[6] A. O. L. Atkin and F. Morain. Elliptic curves and primality proving. Math-

ematics of Computation, 61:29–68, 1993.

[7] A. Bauer and A. Joux. Toward a rigorous variation of Coppersmith’s al-

gorithm on three variables. In Proceedings of Eurocrypt’07, volume 4515 of

Lecture Notes in Computer Science, pages 361–378, 2007.

[8] J. Blömer and A. May. New partial key exposure attacks on RSA. In

Proceedings of Crypto’03, volume 2729 of Lecture Notes in Computer Science,

pages 27–43, 2003.

157

BIBLIOGRAPHY 158

[9] J. Blömer and A. May. A generalized Wiener attack on RSA. In Proceedings

of PKC’04, volume 2947 of Lecture Notes in Computer Science, pages 1–13,

2004.

[10] J. Blömer and A. May. A tool kit for finding small roots of bivariate poly-

nomials over the integers. In Proceedings of Eurocrypt’05, volume 3494 of

Lecture Notes in Computer Science, pages 251–267, 2005.

[11] D. Boneh. Twenty years of attacks on the RSA cryptosystem. Notices of the

AMS, 46:203–213, 1999.

[12] D. Boneh. Finding smooth integers in short intervals using CRT decoding.

In Proceedings of STOC’00, pages 265–272, 2000.

[13] D. Boneh. Finding smooth integers in short intervals using CRT decoding.

Journal of Computer and System Sciences, 64(4):768–784, 2002.

[14] D. Boneh and G. Durfee. Cryptanalysis of RSA with private key less than

N0.292. In Proceedings of Eurocrypt’99, volume 1592 of Lecture Notes in

Computer Science, pages 1–11, 1999.

[15] D. Boneh and G. Durfee. Cryptanalysis of RSA with private key d less than

N0.292. IEEE Transactions on Information Theory, 46:1339–1349, 2000.

[16] D. Boneh, G. Durfee, and Y. Frankel. An attack on RSA given a small

fraction of the private key bits. In Proceedings of Asiacrypt’98, volume 1514

of Lecture Notes in Computer Science, pages 25–34, 1998.

[17] D. Boneh, G. Durfee, and N. Howgrave-Graham. Factoring n = prq for large

r. In Proceedings of Crypto’99, volume 1666 of Lecture Notes in Computer

Science, pages 326–337, 1999.

[18] D. Boneh and R. Venkatesan. Breaking RSA may not be equivalent to

factoring. In Proceedings of Eurocrypt’98, volume 1403 of Lecture Notes in

Computer Science, pages 59–71, 1998.

[19] D. R. L. Brown. Breaking RSA may be as difficult as factoring. Cryptology

ePrint Archive, Report 2005/380, 2005. Available at http://eprint.iacr.

org/.

159 BIBLIOGRAPHY

[20] Y.-G. Chen and Y.-C. Zhu. On the prime power factorization of n!. Journal

of Number Theory, 82:1–11, 2000.

[21] H. Cohen. A Course in Computational Algebraic Number Theory. Springer-

Verlag New York, Inc., New York, NY, USA, 1993.

[22] D. Coppersmith. Finding a small root of a bivariate integer equation; fac-

toring with high bits known. In Proceedings of Eurocrypt’96, volume 1070 of

Lecture Notes in Computer Science, pages 178–189, 1996.

[23] D. Coppersmith. Finding a small root of a univariate modular equation.

In Proceedings of Eurocrypt’96, volume 1070 of Lecture Notes in Computer

Science, pages 155–165, 1996.

[24] D. Coppersmith. Small solutions to polynomial equations, and low exponent

RSA vulnerabilities. Journal of Cryptology, 10(4):233–260, 1997.

[25] D. Coppersmith. Finding small solutions to small degree polynomials. In

Proceedings of CaLC’01, volume 2146 of Lecture Notes in Computer Science,

pages 20–31, 2001.

[26] D. Coppersmith, M. K. Franklin, J. Patarin, and M. K. Reiter. Low-exponent

RSA with related messages. In Proceedings of Eurocrypt’96, volume 1070 of

Lecture Notes in Computer Science, pages 1–9, 1996.

[27] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson. Introduction to

Algorithms. McGraw-Hill Higher Education, 2001.

[28] J.-S. Coron. Finding small roots of bivariate integer polynomial equations

revisited. In Proceedings of Eurocrypt’04, volume 3027 of Lecture Notes in

Computer Science, pages 492–505, 2004.

[29] J.-S. Coron and A. May. Deterministic polynomial-time equivalence of com-

puting the RSA secret key and factoring. Journal of Cryptology, 20(1):39–50,

2007.

[30] D. A. Cox, J. Little, and D. O’Shea. Ideals, Varieties, and Algorithms:

An Introduction to Computational Algebraic Geometry and Commutative

Algebra. Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2007.

BIBLIOGRAPHY 160

[31] B. de Weger. Cryptanalysis of RSA with small prime difference. Applicable

Algebra in Engineering, Communication and Computing, 13(1):17–28, 2002.

[32] Data Encryption Standard. National Institute of Standards and Tech-

nology, 1999. Available at http://csrc.nist.gov/publications/fips/

fips46-3/fips46-3.pdf.

[33] W. Diffie and M. E. Hellman. New directions in cryptography. IEEE

Transactions on Information Theory, IT-22(6):644–654, 1976. Available at

http://citeseer.ist.psu.edu/diffie76new.html.

[34] P. Ekdahl and T. Johansson. A new version of the stream cipher SNOW. In

Proceedings of SAC’02, volume 2595 of Lecture Notes in Computer Science,

pages 47–61. Springer, 2003.

[35] T. El Gamal. A public key cryptosystem and a signature scheme based

on discrete logarithms. In Proceedings of Crypto’84, volume 196 of Lecture

Notes in Computer Science, pages 10–18, 1985.

[36] T. El Gamal. A public key cryptosystem and a signature scheme based on

discrete logarithms. IEEE Transactions on Information Theory, 31(4):469–

472, 1985.

[37] P. Erdös and C. Pomerance. On the largest prime factors of n and n + 1.

Aequationes Math, 17:311–321, 1978.

[38] M. Ernst, E. Jochemsz, A. May, and B. de Weger. Partial key exposure

attacks on RSA up to full size exponents. In Proceedings of Eurocrypt’05,

volume 3494 of Lecture Notes in Computer Science, pages 371–386, 2005.

[39] eStream Project. Available at http://www.ecrypt.eu.org/stream/.

[40] J.-C. Faugère, R. Marinier, and G. Renault. Implicit factoring with shared

most significant and middle bits. In Proceedings of PKC’10, volume 6056 of

Lecture Notes in Computer Science, pages 70–87, 2010.

[41] K. Ford and G. Tenenbaum. The distribution of integers with at least two

divisors in a short interval. The Quarterly Journal of Mathematics, 58:187–

201, 2007.

161 BIBLIOGRAPHY

[42] M. K. Franklin and M. K. Reiter. A linear protocol failure for RSA with

exponent three. Crypto’95 Rump Session, 1995.

[43] Free Software Foundation, Inc. GMP: The GNU Multiple Precision Arith-

metic Library. Available at http://gmplib.org/.

[44] S. Goldwasser and J. Kilian. Primality testing using elliptic curves. Journal

of the ACM, 46(4):450–472, 1999.

[45] S. Goldwasser and S. Micali. Probabilistic encryption. Journal of Computer

and System Sciences, 28:450–472, 1984.

[46] J. A. Halderman, S. D. Schoen, N. Heninger, W. Clarkson, W. Paul, J. A.

Calandrino, A. J. Feldman, J. Appelbaum, and E. W. Felten. Lest we re-

member: cold-boot attacks on encryption keys. Commun. ACM, 52(5):91–

98, 2009.

[47] G. H. Hardy and E. M. Wright. An Introduction to the Theory of Numbers.

Oxford University Press, USA, 1960.

[48] J. H̊astad. On using RSA with low exponent in a public key network. In

Proceedings of Crypto’85, volume 218 of Lecture Notes in Computer Science,

pages 403–408, 1986.

[49] J. H̊astad. Solving simultaneous modular equations of low degree. SIAM

Journal on Computing, 17(2):336–341, 1988.

[50] N. Heninger and H. Shacham. Reconstructing RSA private keys from random

key bits. In Proceedings of Crypto’09, volume 5677 of Lecture Notes in

Computer Science, pages 1–17, 2009.

[51] M. Herrmann and A. May. Solving linear equations modulo divisors: On

factoring given any bits. In Proceedings of Asiacrypt’08, volume 5350 of

Lecture Notes in Computer Science, pages 406–424, 2008.

[52] M. J. Hinek. Another look at small RSA exponents. In Proceedings of CT-

RSA’06, volume 3860 of Lecture Notes in Computer Science, pages 82–98,

2006.

[53] M. J. Hinek. On the security of some variants of RSA. PhD thesis, University

of Waterloo, Canada, 2007. Available at http://uwspace.uwaterloo.ca/

handle/10012/2988.

BIBLIOGRAPHY 162

[54] M. J. Hinek. Cryptanalysis of RSA and Its Variants. Chapman & Hall/CRC,

2009.

[55] M. J. Hinek and C. C. Y. Lam. Common modulus attacks on small private

exponent RSA and some fast variants (in practice). Journal of Mathematical

Cryptology, 4(1):58–93, 2010.

[56] M. J. Hinek and D. R. Stinson. An inequality about factors of multivariate

polynomials. Technical report, Centre of Applied Cryptographic Research

(CACR), University of Waterloo, 2006. Available at http://www.cacr.

math.uwaterloo.ca/techreports/2006/cacr2006-15.pdf.

[57] K. Hoffman and R. Kunze. Linear Algebra. Prentice-Hall, 1971.

[58] J. Hoffstein, J. Pipher, and J. H. Silverman. NTRU: A ring-based public key

cryptosystem. In Proceedings of ANTS’98, volume 1423 of Lecture Notes in

Computer Science, pages 267–288, 1998.

[59] N. Howgrave-Graham. Finding small roots of univariate modular equations

revisited. In Proceedings of IMA International Conference on Cryptography

and Coding, volume 1355 of Lecture Notes in Computer Science, pages 131–

142, 1997.

[60] N. Howgrave-Graham. Computational Mathematics Inspired by RSA. PhD

thesis, University of Bath, 1998. Available at http://www.nickhg.com/

cgi-bin/index.html.

[61] N. Howgrave-Graham. Approximate integer common divisors. In Proceedings

of CaLC’01, volume 2146 of Lecture Notes in Computer Science, pages 51–

66, 2001.

[62] N. Howgrave-Graham and J.-P. Seifert. Extending Wiener’s attack in the

presence of many decrypting exponents. In Proceedings of CQRE’99, volume

1740 of Lecture Notes in Computer Science, pages 153–166, 1999.

[63] K. Ireland and M. Rosen. A Classical Introduction to Modern Number The-

ory. Springer, 1990.

[64] E. Jochemsz. Cryptanalysis of RSA variants using small roots of polynomials.

PhD thesis, Technische Universiteit Eindhoven, Netherlands, 2007. Available

at http://www.win.tue.nl/~bdeweger/studenten.html.

163 BIBLIOGRAPHY

[65] E. Jochemsz and A. May. A strategy for finding roots of multivariate poly-

nomials with new applications in attacking RSA variants. In Proceedings

of Asiacrypt’06, volume 4284 of Lecture Notes in Computer Science, pages

267–282, 2006.

[66] E. Jochemsz and A. May. A polynomial time attack on RSA with private

CRT-exponents smaller than N0.073. In Proceedings of Crypto’07, volume

4622 of Lecture Notes in Computer Science, pages 395–411, 2007.

[67] A. Joux, D. Naccache, and E. Thomé. When e-th roots become easier than

factoring. In Proceedings of Asiacrypt’07, volume 4833 of Lecture Notes in

Computer Science, pages 13–28, 2007.

[68] A. Joux and J. Stern. Lattice reduction: A toolbox for the cryptanalyst.

Journal of Cryptology, 11(3):161–185, 1998.

[69] T. Kleinjung, K. Aoki, J. Franke, A. K. Lenstra, E. Thomé, J. W. Bos,

P. Gaudry, A. Kruppa, P. L. Montgomery, D. A. Osvik, H. J. J. te Riele,

A. Timofeev, and P. Zimmermann. Factorization of a 768-bit RSA modulus.

In Proceedings of Crypto’10, volume 6223 of Lecture Notes in Computer

Science, pages 333–350, 2010.

[70] D. E. Knuth. The Art of Computer Programming: Seminumerical Algo-

rithms, volume 2. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 3 edition, 1997.

[71] N. Koblitz. Elliptic curve cryptosystems. Mathematics of Computation,

48:203–209, 1987.

[72] P. C. Kocher. Timing attacks on implementations of Diffie-Hellman, RSA,

DSS, and other systems. In Proceedings of Crypto’96, volume 1109 of Lecture

Notes in Computer Science, pages 104–113, 1996.

[73] J. C. Lagarias. The computational complexity of simultaneous Diophantine

approximation problems. In Proceedings of FOCS’82, pages 32–39, 1982.

[74] J. C. Lagarias. The computational complexity of simultaneous Diophantine

approximation problems. SIAM Journal on Computing, 14(1):196–209, 1985.

[75] A. K. Lenstra. Integer factoring. In Encyclopedia of Cryptography and Se-

curity, pages 290–297. Springer, 2005.

BIBLIOGRAPHY 164

[76] A. K. Lenstra and H. W. Lenstra, Jr., editors. The Development of the

Number Field Sieve, volume 1554 of Lecture Notes in Mathematics. Springer-

Verlag, Berlin, 1993.

[77] A. K. Lenstra, H. W. Lenstra, Jr., and L. Lovász. Factoring polynomials

with rational coefficients. Mathematische Annalen, 261:515–534, 1982.

[78] A. K. Lenstra, H. W. Lenstra, Jr., M. S. Manasse, and J. M. Pollard. The

factorization of the ninth Fermat number. Mathematics of Computation,

61(203):319–349, 1993.

[79] H. W. Lenstra, Jr. Factoring integers with elliptic curves. Annals of Math-

ematics, 126:649–673, 1987.

[80] F. Luca and P. Stănică. On the prime power factorization of n!. Journal of

Number Theory, 102/2:298–305, 2003.

[81] S. Maitra and S. Sarkar. A new class of weak encryption exponents in RSA.

In Proceedings of Indocrypt’08, volume 5365 of Lecture Notes in Computer

Science, pages 337–349, 2008.

[82] S. Maitra, S. Sarkar, and S. Sen Gupta. Factoring RSA modulus using prime

reconstruction from random known bits. In Proceedings of Africacrypt’10,

volume 6055 of Lecture Notes in Computer Science, pages 82–99, 2010.

[83] A. May. New RSA Vulnerabilities Using Lattice Reduction Methods. PhD

thesis, University of Paderborn, Germany, 2003. Available at http://www.

cs.uni-paderborn.de/uploads/tx_sibibtex/bp.pdf.

[84] A. May. Using LLL-reduction for solving RSA and factorization problems.

Technical report, LLL+25 Conference in honour of the 25th birthday of

the LLL algorithm, Technische Universität Darmstadt, 2007. Available at

http://www.informatik.tu-darmstadt.de/KP/alex.html.

[85] A. May and M. Ritzenhofen. Solving systems of modular equations in one

variable: How many RSA-encrypted messages does Eve need to know? In

Proceedings of PKC’08, volume 4939 of Lecture Notes in Computer Science,

pages 37–46, 2008.

165 BIBLIOGRAPHY

[86] A. May and M. Ritzenhofen. Implicit factoring: On polynomial time factor-

ing given only an implicit hint. In Proceedings of PKC’09, volume 5443 of

Lecture Notes in Computer Science, pages 1–14, 2009.

[87] A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Ap-

plied Cryptography. CRC Press, 2001. Available at http://www.cacr.math.

uwaterloo.ca/hac/.

[88] R. C. Merkle and M. E. Hellman. Hiding information and signatures in

trapdoor knapsacks. IEEE Transactions on Information Theory, 24:525–

530, 1978.

[89] D. Micciancio and S. Goldwasser. Complexity of Lattice Problems: A Cryp-

tographic Perspective. Springer International Series in Engineering and Com-

puter Science, 2002.

[90] G. L. Miller. Riemann’s hypothesis and tests for primality. Journal of

Computer and System Sciences, 13(3):300–317, December 1976. (Invited

publication).

[91] V. S. Miller. Use of elliptic curves in cryptography. In Proceedings of

Crypto’85, volume 218 of Lecture Notes in Computer Science, pages 417–

426, 1986.

[92] H. Minkowski. Geometrie der Zahlen. Teubner Verlag, 1896.

[93] P. Q. Nguyen and D. Stehlé. Floating-point LLL revisited. In Proceedings

of Eurocrypt’05, volume 3494 of Lecture Notes in Computer Science, pages

215–233, 2005.

[94] P. Q. Nguyen and J. Stern. The two faces of lattices in cryptology. In

Proceedings of CaLC’01, volume 2146 of Lecture Notes in Computer Science,

pages 146–180, 2001.

[95] P. Q. Nguyen and B. Vallée. The LLL Algorithm: Survey and Applications,

chapter 2, pages 19–69. Information Security and Cryptography. Springer,

2009.

[96] A. Nitaj. Another generalization of Wiener’s attack on RSA. In Proceedings

of Africacrypt’08, volume 5023 of Lecture Notes in Computer Science, pages

174–190, 2008.

BIBLIOGRAPHY 166

[97] A. Nitaj. Cryptanalysis of RSA using the ratio of the primes. In Proceedings

of Africacrypt’09, volume 5580 of Lecture Notes in Computer Science, pages

98–115, 2009.

[98] T. Okamoto. Fast publickey cryptosystem using congruent polynomial equa-

tions. Electronic letters, 22(11):581–582, 1986.

[99] Public-Key Cryptography Standards (PKCS) #1 v2.1: RSA Cryptography

Standard. RSA Security Inc., 2002. Available at http://www.rsa.com/

rsalabs/node.asp?id=2125.

[100] C. Pomerance. The quadratic sieve factoring algorithm. In Proceedings of

Eurocrypt’84, volume 209 of Lecture Notes in Computer Science, pages 169–

182, 1985.

[101] C. Pomerance and H. W. Lenstra, Jr. Primality testing with Gaussian

periods. Technical report, Dartmouth College, 2005. Available at http:

//www.math.dartmouth.edu/~carlp/.

[102] G. Qiao and K.-Y. Lam. RSA signature algorithm for microcontroller im-

plementation. In Proceedings of CARDIS’98, volume 1820 of Lecture Notes

in Computer Science, pages 353–356, 1998.

[103] J. J. Quisquater and C. Couvreur. Fast decipherment algorithm for RSA

public-key cryptosystem. Electronic Letters, 18(21):905–907, 1982.

[104] M. O. Rabin. Digitalized signatures and public-key functions as intractable

as factorization. Technical report, Massachusetts Institute of Technology,

Cambridge, MA, USA, 1979.

[105] M. O. Rabin. Probabilistic algorithms for testing primality. Journal of

Number Theory, 12:128–138, 1980.

[106] O. Regev. Lattices in computer science (lecture notes). Tel Aviv Uni-

versity, 2004. Available at http://www.cs.tau.ac.il/~odedr/teaching/

lattices_fall_2004/index.html.

[107] M. Ritzenhofen. On Efficiently Calculating Small Solutions of Systems of

Polynomial Equations. PhD thesis, Ruhr-University of Bochum, Germany,

2010. Available at http://www.cits.rub.de/personen/maike.html.

167 BIBLIOGRAPHY

[108] R. L. Rivest. The RC4 encryption algorithm. RSA Data Security, Inc., 1992.

[109] R. L. Rivest and A. Shamir. Efficient factoring based on partial information.

In Proceedings of Eurocrypt’85, volume 219 of Lecture Notes in Computer

Science, pages 31–34, 1986.

[110] R. L. Rivest, A. Shamir, and L. M. Adleman. A method for obtaining

digital signatures and public-key cryptosystems. Communications of the

Association for Computing Machinery, 21(2):120–126, 1978.

[111] G. G. Rose and P. Hawkes. Turing: A fast stream cipher. In Proceedings of

FSE’03, volume 2887 of Lecture Notes in Computer Science, pages 290–306,

2003.

[112] S. Sarkar and S. Maitra. Approximate integer common divisor problem

relates to implicit factorization. To appear in IEEE Transactions on Infor-

mation Theory (accepted on 12th December, 2010).

[113] S. Sarkar and S. Maitra. Further results on implicit factoring in polynomial

time. Advances in Mathematics of Communications, 3(2):205–217, 2009.

[114] S. Sarkar and S. Maitra. Cryptanalysis of RSA with more than one decryp-

tion exponent. Information Processing Letters, 110(8-9):336–340, 2010.

[115] S. Sarkar and S. Maitra. Cryptanalysis of RSA with two decryption expo-

nents. Information Processing Letters, 110(5):178–181, 2010.

[116] S. Sarkar and S. Maitra. Some applications of lattice based root finding tech-

niques. Advances in Mathematics of Communications, 4(4):519–531, 2010.

[117] A. Shamir. A polynomial time algorithm for breaking the basic Merkle-

Hellman cryptosystem. In Proceedings of Crypto’82, pages 279–288, 1982.

[118] A. Shamir. A polynomial time algorithm for breaking the basic Merkle-

Hellman cryptosystem. In Proceedings of FOCS’82, pages 145–152, 1982.

[119] P. W. Shor. Algorithms for quantum computation: Discrete logarithms and

factoring. In Proceedings of FOCS’94, pages 124–134, 1994.

[120] P. W. Shor. Polynomial-time algorithms for prime factorization and dis-

crete logarithms on a quantum computer. SIAM Journal on Computing,

26(5):1484–1509, 1997.

BIBLIOGRAPHY 168

[121] C. L. Siegel. Lectures on the Geometry of Numbers. Springer-Verlag, 1989.

[122] S. Singh. The Code Book: The Science of Secrecy from Ancient Egypt to

Quantum Cryptography. Anchor, 2000.

[123] R. Solovay and V. Strassen. A fast Monte-Carlo test for primality. SIAM

Journal on Computing, 6(1):84–85, 1977.

[124] W. Stein. Sage Mathematics Software. Free Software Foundation, Inc., 2009.

Available at http://www.sagemath.org. (Open source project initiated by

W. Stein and contributed by many).

[125] R. Steinfeld, S. Contini, H. Wang, and J. Pieprzyk. Converse results to the

Wiener attack on RSA. In Proceedings of PKC’05, volume 3386 of Lecture

Notes in Computer Science, pages 184–198, 2005.

[126] D. R. Stinson. Cryptography: Theory and Practice. Chapman & Hall/CRC,

third edition, 2005.

[127] T. Takagi. Fast RSA-type cryptosystem modulo pkq. In Proceedings of

Crypto’98, volume 1462 of Lecture Notes in Computer Science, pages 318–

326, 1998.

[128] M. van Dijk, C. Gentry, S. Halevi, and V. Vaikuntanathan. Fully homomor-

phic encryption over the integers. In Proceedings of Eurocrypt’10, volume

6110 of Lecture Notes in Computer Science, pages 24–43, 2010.

[129] P. S. Wang and L. P. Rothschild. Factoring multivariate polynomials over

the integers. SIGSAM Bulletin, pages 21–29, 1973.

[130] M. J. Wiener. Cryptanalysis of short RSA secret exponents. IEEE Trans-

actions on Information Theory, 36(3):553–558, 1990.

[131] S. Y. Yan. Cryptanalytic Attacks on RSA. Springer-Verlag New York, Inc.,

Secaucus, NJ, USA, 2007.

[132] P. Zimmerman. Integer factoring records. Available at http://www.loria.

fr/~zimmerma/records/factor.html.

