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INTRODUCTION

Ot g 5 oo < A ¢

Thig thegis consists of threce chapterse The first

s 1ts main object of

o0

chapter 'On Analytic structurcs' has
study the o=algebra gencrated by analytic sets on the unit
intervale Tn the same chapter we discuss the problem about
the nroduct of digerete spaces being digcrete and draw nany
interesting conclusionse The sccond chapter 'On Borel
gtructurcs! has Tor its main objeet of gtudy the Borel fields
on a sete IMuch light is thrown in this chapter on the exis=-
tence of certain special types of Borel structurcs. The third
chapter 'Cu Analytic and Borel structurcs' lists - with dis-
cussions wherever possible = a few problems raisced in or con-
nected with +he firast two chapterse Since each chapter has
its own swmary at the beginning, we shall not give a detailed
chapier-wisc summary horee Ingtead we shall spend some time

on seying a few words about the mathematical objects investi-

gatcd in this thesise



The 4hedory of analytic seto was started by two Russian
mathematiciang e Lusin and M. Souslin in the year 1917, the
idea Dbeing suggested to Souslin after he discovered a false
argument by He Lebeggue in proving a correct theorem. It was
developed, amcng others, by the two famous Polish mathenati-
cians Ce Kuratowski and WeSicrpivcki and brought to the atten-
tion of the modern mathenatical public by three different
nersong in turec different arcas (as far as the author is
awarc)s Firgt io De slackwell, wlic showed the importance of
these sete in  avoiding ecrtain inhorent pathologice in
Roimeporov's Toundations of the Probability Theory (of eourse
1% i5 now 'movm that more general seto can be used for that

UTpo st ) ac well as o in dynanic programming preblénse Second
is Ga We llackcey who got into those sets in problems regarding
group representations and in particular in defining topology
on measurable groupse Third iz G. Choquet who observed the
uges of tiooe soils (better to say = nicencns of these sets)
in Potential Theorye. Thoge thireoe works - all appearing between
1954=36 ~ activated the study of enalytic sets in current

.

Aogob i A ndee and neat vinclicnscionl structure is

o
L

always ol irteroet in nany wayne Juahk as for a nonempty set

a Iondliy of pub-cots cloged under the formation of arbitrary
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wnions and Tinite intergections,containing enpty set and whele-
space ig called a Eopolosy; a set with a nonvoid family of sub-
gsets closcd under the formaticn of countable unions and come
plementation is called a Borel space and this structure on the

et 1o ealled a Forel structure = rather than the customary

[

term  '"Meamurable space! which sounds as 1f some measures are
involveds This fashionable nomenclature is duc to G.W.Mackey,

who was perhaps the first to rcalize that a systematic theory

[

of Borel spaccs can (and in fact, must) be developed analogous
to the thecry of Topological spaccse Borel spaces « as one
knows = play a fundamental r8le in many arcas, either directly
or indirectlye For instance; all the probabilities of a proba-
biligt live on such spaces, all the transformations of interest
for an crgodic theorist travel in such spaces, and for a func~
tional analyst most of his concrete houscs (1ike TLP-spaces)
are built through mempsurcs on such spaces and so one Thus
though onc cun not deny the importance of Borel spaces, it is
quite surprising that the theory of thesc spaces is far less
developed when comparcd to its cousin - the theory of topologi-
cal spacess Two recasons nay be stated for this state of
affairge Pirstly, in most of the arcas what one neceds 1s the
theorics built on Borel spaces rather than the Borel spaces

themselvoge This, as the author feels, is not completely true.
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As a matier of fact in 2lmost all game theoretic and dynanmic
programming problems one necds ncasurable strategies - which
of course brings in the Borel structurcs onto the stages In
fact one doco not need to go so fare Look at the beautiful
and powerful theorem of Sierpifckie. 'Any Lebesgue measurable
convex function cn the real line ig continuous'e Secondly,

perhiaps, many persons fecel that these gpaces are Just special

i~y

cases of the more sophisticated (interesting and useful too)
and much developed theory = namely Boolean Algebras. We do

t share these feelingse We hope that chapter 2 of thigs
thesis will convince others that there arc many interesting
qucstions in 3orel spaccs some of which can not be formulated

for Boolean Algebras and gome others cven if formulated, are

not rmuch infornmative.

Finally chapter 3 sugegests mome lines along which the
Borcl space theory nceds immediate attentions ILet us hope
that in the next few years this thecry builds a house of its

OWlle



CHAPTER 1

ON ANALYTIC STRUCTURES

a O Sum. L e

Thig chepter consists of eight sectionse In section 1,
we fix some of thc notation to be used in this chapter -
cepecially for sections 2 and 3. In section 2, we show that
the o= algebra on the unit interval generated by its analytic
sets is not covntably generatedy from which we deduce that the
product of this o= algebra with itself does not pick up all
analytic subsets of the unit squares In section 3, we show =
under the continuunm ﬁYpothesis ~ that the product of discrﬁfeb
o« algebra on the unit interval with itself is the discrete
o= algebra of the squarece From this we deduce a number of
interesting consequences including the fac* that thore is a
geparable ¢ ulgiuwra on the unit inteiwval containing its
analytic sets = in fact, one containing all its projective
gets. In section 4, after introducing some notation, wew
recall the axiom of determinateness along with some of its
interesting consequencessy thus paving the way for partial

generalizations of and for partial contradictions to, our
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previous resultse In scction 5, we generalize partially, the
results of goctions 2 and 33 whereas in gection 6 we use some
of the known results in conjunction with the axiom of determi-
natencsse In this later section we also obgerve that the
results of section 2 combined with the exionm of determinate-
ness contradict some of the results of section 3s In section
7, we shall put the results of sections 2 and 6 in an abstract
getting involving only o-algebras tut not topologies. Finally
in gsection 8, we recall the historics of the pfoblemg treated

in thig chaptere

g 1. Notation.

I denotes the closed unit interval [0, 1Je By Ay Ly €
denote the Borel o-algebra; the o-algebra gonerated by analytic
setgy the o-algebra of Lebesgue measurable setgs and the
o=algebra consisting of the clags of all subsets resgpectively
on I. Tor mont of the purpoges, L could consis?t of subsets of
I moasurablc werets & fixed non-agtomic probability measure
(for that matter, even a o=finite meagsure) on Be. That this
will suffice is of importance in some considerations in
gections 4, 5 and 6. A symbol like O X L stands for the
usual product o~-algebra on the unit square generated by

rectangles cf the form XX Y3 X In . C and Y in L e



U denotes any analytic subset of I X I universal WeTeLe The
analytic subsets of T. For definitencss, We auppose that the

vertical sections of U give all analytic subscts of T

Recall that a subset of I is said to have the Baire
property if it ig open modulo gets of first category
(Kuratowski [2], paze g87)s Note that the collection of all
sets having the Balre property is a gwalaebra (ibid, page 88).
We shall denote this o=algebra by Qe Since Q is closed

under Somglin operation (4bid, page 94)s We have A C Qe

Let ¥ be any class of gubsets of I. The projecticns
to I of scts of the g-algebra on I X T over the rectangles
with sides in E arc called E - analytic sets or sets of the
first projective class By over Fo Lot (") denote the Sfirst
uncountable ordinale Having defined p, for a ¢y <CLs
we define gy as the projections on T of the sets of the
gealgebra on T X 1 over the recctangles with sides in the
previous projective classcSe The collection of all thesge
classes g—a’ a < ﬂ s is called the gencralized pro jective
class G(EF) over [e Clearly one nced not proceed after the
firest uncountable ordinale That is, if we take the projections

on I of the scts of the o-algebra on I x I over the rectan-

gleg with sides in G(F) we get again glenents of G(E) e
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For the theory of classical analytic sets - gspecially
for the Bornl igmmorphism theorem and the exigtence of univer-
sal analytic sets, to be uscd later - we refer the reader to
the classical treatises of Kuratowski ([1] ana [2]) and
Sierpinski [8]s Por a short discussion of the generalized
analytic sets see Ulam (3] and also sections 4 and 5 of this
chapters In few places in thig chapter we make use of the
Marczewski functione This is defined at those placess For a
full treatment, scc Marczewski ([1] and [2]) and for a short

account sec also chapter 2, Section 1.

UNLESS EXPLICITLY STATED TO THE 00 NTRARY (WHICH WILL BE DONE

IN SECTION 6) WD MAKE USE OF THE AXIOM OF CHOICE IN THIS

CHAPTER.
o' denotes the cardinality of the real number systeme

UNLESS EXPLICITLY STATED (WHICH WILL BE DONE IN SECTION 3)

CONTINIUM HYPOTHESTS IS NOT ASSUMEDe

For typographical convenlence we use N for the

Hebrew letter Alophe
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§ 2« g-algebra generated by analytic sets .

Let E be any o-algebra on I such that A C E C L.
In the first part of this scction we shall prove the following

theorens:
Theorenn 1¢ B  dic not countably generated,

Theoren 2: U ¢

i bw |

X

[l

Before proving these theorems we make some remarkse
There is no gencral way of showing that a o-algebra is not
countably generatede The first method available in the
literature ig a simple cardinality argument. For instance if
cardinality of E 4ie greater than ¢ then E is not coun-
tably generated, though not converselye This argument obvie
ously fails here because the cardinality of E can be ce In
fact therc are exactly 2®  distinct o~algebras between A and
L each with cardinality ce [Reason: Since (2%)¢ = 2°
(sierpinski (5], page 140), there arc at mogt 2°  such
o=algebrases Fix ¢~ nany pairwise disjoint Borel sets Boc
from I, each with Lebesgue measure zero, and uncountablee
Inside cach By, fix anon = 4 set Z €L . Bxtend 4 by
adding any number of Z,' 8o Thus we get 2° dlstinet
o=slgebras]. The sccond method is to exhibit a probability

measure on I, giving zero mass %0 gingletons and taking only
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two values zero and one, Becauge if there is a two valued
probability measurc on a countably gencrated o-algebra then it
is concentrated on an atoms Such a measurc does not exist
here because probability measurcs on I give rise to correge

ponding probability measures (restricticons) on B and B

is countably gencratede

Proof of Theorem 1: Suppose E has a countable generator

say (A, 35 n21) « Consider the Marczewski function f on
I defined by
2 Xy (%)

Ay

f(x) = %
31

with range say X Ci1. 1r By is the relativized Borel
g-algebra on X then £ is a Borel - isomorphism of (I, E)
onto (X, gx). Since the Lebeggue measure X on (I, E) is
compact (Marczewski [3]) and hence perfect (Ryll-Nardzewskl

[1])y thore is a Borcl subset B of I with

5 (Cxy A (£798) =1,

Denoting by Y the set =153 vy Ly the owalgebra E on
I restricted to ¥y by £ the map f restricted to Yj wo

observe that fy 1is a Borel isomorphism on (Y, Ey) onto
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~
L

(B, QB). If ¢ ig a Borcl subsot of I, contained in X ‘then
the nmap f"l rontricted to G being onc- one and Borel we
have in view of a famous theorem of Lusin (Kuratowski (21,
page 489) that £F (C) ds not omiy in B but is a Borel

-1

subsct of Te Thug in offect £y of every set in By 1s a
Borel subsct of ¥ and that in particular Y itself is a

Borel subsct of Te Since A(Y) =1, Y is uncountable and
hence containg non-Rorcl analytic sets (Kuratowski [R], page
460). Thus there arc sots in Ey which are not of the form
fil(G) Tor any @ in Bpe This contradicts the fact that
f1 is an igomorphism on Y onto Be This completes the

proof of Thecorem le

Proof of Theorcnn 2: If U e ¢ X L 3 then obviously there

exist a countable munber of rcctangles (En X Fn', n > 1) such
that U ips in the o=algebra on I X I generated by these
rectangless Definc R to be the o=algcbra on I generated

-

by (F, 3 n

189

1) o Since each of the rectangles By X Fy
belongs to € X E 3 we have Ue ¢ X Lie Since cach e by

we have & (C Le Since any analytic subsc?t of I is an

x - section for gome point x, and since Ug § X L. 3 we have
every x=- section of U, that ils,every analytic subset of I

in §. Consequently 4 (C L. By definition E 1o oountably
generateds Since -we have already obgerved that A CE C L
we have here a contradiction to Theorem 1, %0 coﬁplete the

proof cﬁ‘ Theoren 2.
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0f coursc & dual to Theorenm £ can algso be stated:
VELXG, where V is a subset of the squarce whose horizontal
sections give all analytic subsets of Ie It follows in parti-
cular that U (and V) £ A X A» We show in the next section
that L can not ke replaced by G in the above Theorems

without additional axionce

We concludce thig section by proving two theorens which

are sinilar to the above two theorenSe

Theorcn 3: If E is any o-algebra on I and A Ce Cos

then B is not countably gencratcde

T"heorem 4t U £ 3 X 0.

=

\

Before proving Theorem 3 we shall nake a few remarkse Observe
that there are Leobosgue neasurable scts of neasure one which
arc of the first category. Consequently from the well -known
rosults (Kumatowelsi (2], page 91 and alco section 40) it
follows that thore arc non-Lebesgue neosurable scts with the
Baire property and Lebesguc measurablie sets without the Baire
propertys In other words neither O 1s containcd in g, nor

—

L 1is containcd in Qe Thus Theoren 3 neither implies nor 1g

iriplied by Theorem le Well, if onc agsumes the axionm of deter-

ninateness, the situation is entircly different to which we
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raturn in a later section. mhgorenns 1 and 3 - whoge
staterents and proofs are ginilar - will convince thc reader
once again as to how deep (uncxpectedly $) the romark of
turatowski ({23, »ase ©87) gocn: 'The rolc nlayed by the Balre
sroperty 1n topology io analogous to thal of neagurahility

(of gets or functiong) in analysis'e T+ ig worth noting that
the prooi of Theowen %, unlike that of Theoren 1, does not

depend on neasurs theorctic considerationse

Proof of Thcoren 3: If therc is such o o=algebra § with a

countablc pencrator say (o, 302 1) +then consider the

larczewski function I defincd by

with range say X a qubget of I. Recall that f 1is a Borel
isomorphiem of (I, B) onto (%, By)e Sincc L C 0, the func-
+ion £ has the Bairc proporty! (Kuratowski [2], page 399) e
Recall that € hap Baire property 1 for any RBorel set 7,
£ (2) Las Baire property, that is,i%t differs from an open
set by a sct of the fivat catepory. In view of a fanous
sheoren of Baire (Kuratowskl [2], pasc 400) there is a get of
the first category P 1in T guch that T regtricted %o

I =P is continuocuss BY enlarging P 1f necessary, we can
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suppose that P 1s an FG and hence that I - P dis a Ga

(Borel is iumiupiy Jor our purpoge ). Denoting I=-P by Yy

E restricted to Y Dy o)

the got £(Y) C X by B and its relativized Borel algebra

£ reagtricted to Y by fl§

by By 3 Observe that £, is an igsomorphisn of (Y, QYJ onto
(B, QB). Since fl ig a onc to onc continuous map on the Ga
set Y, we have B 1o bc a Borel subset of I (Kuratowski {21,
page 487)e Obscrve that if C 1is a Dorel subsct of I and
ig contained in X +the nap ™1 rogtricted to C Ybeing one
one and Borel we have in view of a famous theorem of Souslin
(Kuratowski [2], pagc 489) that £™5(0) to be Borel. Now if
ig sufficient to obgserve that therc arc analytic non-BOJEI gets

in Ey where as cvery set in DBy is Borcl. Thig contradicts

the fact that fj ig an isonorphism and proves the Theorers

Since the proof of Theorem 4 1g similar to that of

Theorem 2 we oioni tlie proofl.

One interesting featurc of Theorem 3  is, as remarked in
the boginning, that it showsthat 'A is not countably genera-

ted! and 'U ¢ A X At without using the concept of measurces

Tn later scctiong we rccall Theoren 1 and prove
partial generalizations of ite In thosc gituations it is

not difficult to obtain anslogwes by using Theorem 3 also.
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Though the pronfs of Theorecms 1 and 3 are apparcntly different;
the reader will sec in scebtion 7, that the maln idea is egsen-
tially the same and that those are trivial conséquences of a

nuch more general and abstract versione

§ 3« Discrete Borel spacCSe

The question which we ack ourselves now is the following:

Is the product with itsclf of discrete o=algebra ‘on a set X,

St -

o,

the digerete owalsebra on X X X ? When wc say discrete, we
mean the class of all subsetss The answer is trivially tyeg!
if card (X) < N, o If card (X) > c, the answer is in the

negativee This follows from  a lemmas Since this lermma is

itself interesting we elevate it to a thecorem:

Theoren 5: Letv E be a o=-algebra on a set X.*: The diagonal
D of XX X %belongs to EXE 1f.and only if there is a
countably generated o-algebra E C E with singletons as

atonsge

Proof: Suppose DeE X B. Then there exist countable number
of rectangles ( By X Gy 5 i > 1) such that D 1s 1n the
g-algebra generated by thesc rectanglese Let E, Dbe the

c=algebra on + X generated by (Bi, C; » 12 1) « Clcarly g,
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is countably generateds Since each of the rectangles

., X C, dadin B X E ™ nd T :
By X Cy RACN N .Qo’ De gofx I, mnd hence every section

of D = namcly singletons = belong to Eo’ Thug go has
the desired properties. The reader should note that this
part of the proof resembles the proof of Theorem Ze

(There we had taken only vertical sides of the rectangles

where as here both sides are used). Arguments similar to

thegse will be onmitted in the next scctionse

To prove the converse part of the theorem, suppose

that there is‘a QO with the stated propertiese We shall

express D as a countable interscction of sets cach being
a finite union of rectangles with sideg in Eo‘ In tha{ case

D belongs to B, X 0y

L o and hence a fortiori to F X E. To

do this let (Bi 3 1 >1) be a generator for @o' For each

n>l let P, bc the partition of the space induced by

Bl}'.o,l} ] Tllat’ is,

ine)

n = { Ci0 eee 0 Gy [ C; =By or X~ Bi} .

It is not difficult to sce thaw,
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This completes the proof of the thcorens

It is interesting to observe that the converse part of the
theorenm can also be proved elcgantly by ugsing the Marczewskil
functione Since we need an argument gimilar to the above in

proving Theorem Ge We have given that proof herce

Thus the problem poged in the beginning of this section
remoing to be answered in case X hag cardinality ce 8Since
the probiom is onc depending on cardinality and not on the
particular get X in question, we can and shall take X 1o
ve I. Now we shall .solve this problem, assuning the continuum

hypothesis to be truce

Theoren 68 If CH is valid then CX § = c(1 X I)

where ¢ (I X I) is the discrete o-algebra on I X 1.

Proof: TPirst observe that if £ 15 any function defined on

a gubset of I inbo I then its graph

G :{(x, ¥v) ¢ X in domain of f

ig in € X Qs TFor this 1% quffices to verify that

G = L S

n
Nasl
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n
where, g, = kgl (A, X Byy)

Ay = [z in domain T : }-{-f‘{-l- < £(x) < 'r}'{i ]
. Kl k
By = Ly in range £ ==Ly < ﬁ]

(For ¥k=n include the right end point as well).

Since this verification is straight forward we omit the details

herea .

Secondly; if B (C I X I be such that every vertical section
is at most countable then BE C X Ce This follows by realizing

3 as a countable union of graphs (axiom of choice;).

Thirdlyy 4if B C I XTI be such that every horizontal section

is at most countable then also BE g X __C;

Fourthly', IXI=XUY, where, every horizontal section of
Y is at most countable and every vertical section of X 1s
at most countable, Thig can be donc by realizing I as the
sct of ordinals less than the first uncountable ordinal (CH)
and then taking the portions below and not below the diagonal

(see also Sierpirski [B], page 376).
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Finally; if B (C I X I then by the previous observations,
30X and BOY are in ¢ X C. Thig completes the proof

of the theorene

-

Let 2 be -ny set of cardinality @ the irat uncoun-
table cardinals An obvious modification of the avove proof

yields us

Theorem 7: The product with itself of the discrete o-algebra
on 7 ‘s the discrete c=algebra on  Z X Ze Consecquently if

A C IXT be such that card (A) ¢ N, then A€ CXC -

Proof: The first part is a straight forward imitation of

she previous proof after establishing a corregpondence $n Z

in o onc to one way onto a subset of Te For the second part
observe that there is a sct  Ag C1 of cardinality Ny such
that & C A X Aj. (Take Aj to be gimply the union of the
norizontal and vertical scetions of A)e How apply the first

part of the theorcm %o Ags in piracc of Ze

(learly, Theorem 6 is a consecquence of Theorem 7 together with

CH.

Theorem 8: Let ( o, 3 atT ) be any collection of subsets
(possibly empty also) of Z, where card (1) ¢ M « Then

there is a separable swalgebra (countably generated and
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containing singlctons) on 2 containing the given collection.

Proof: There ig no loas in taking T = 2 as we Ao

Put

By Theorem 7, A 1s in the product of discrete cealgcbras on

7« Pamiliar argunents will now conplete the proofe
AS an immediatc consequence of the above theorem we have

Theorem 9: Lot G be valide Then there is a geparable
gmalgcbra on I containing all its analytic subsctse In fact
there is one such containing all its generalized projective

sets G(F) over any fixcd class K provided card (E) £ ¢

Proof: Observe, by transfinite induction, that there arc not
more than c¢ cloauents in cach projoctive class Pos o < ) o
Consequently therc arc at nost ¢ nany cicments in G(F)e

low the result is a consequence of Theorenm 6 with the continuum

Hypothcsis.

In the terminolosy of Marczewski (Marczowski (13, page 202) we

can state this theorem in an cjuivalent and interesting way:
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Theorem 10: Let CH be valide There is a one-one transforma-
tion ¢ of I dinto I, transforming cach set analytic in I
into a set Borel in @(1)e In fact if F 1is any class of
subsets of I with card (F) Lo, then there is onc such

transforning cachi sot in  G(F) into a set Eorel in F(I)e

Proof: Fix any generator (A3 n 2 1) Tfor any separable

g=algobra on I containing G(F)e Loock at the HMarczewski

function
2 XA_(X)
i1

f"n

<.

g(z) = &

Mo prove that this @ satisfies the requirenents is a stralght

forward verificatione

Ovserve that theorem 9 also shows that the L in theorem 1
cen not be replaced by Ce Thooren 6 shows that L 1in

theoren £ can not be replaced by Ce It ic intcresting to
note that &t the cnd of Scction 6, we arrive at conclusions

exactly opposite to thesce

pu

Theorom 11: Let CH be valide Fix any geparable o-algebra

éo on I containing all the analytic cubsets of I« Tor
every non=-atomic probability measurc on B, there is at least

one set in A/ which is not measurablees
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Proof: Obvious from Theorem 1. Suffices to see as remarked
in section 2. thot Theorem 1 remains true even if L 1s the
collection of sets measurable warete a fixed nonatomnic proba-

bility mcasure on B - not necessarily the Lebesgue measurte
Mnother interesting conseguence of Theorem 8 ig the following:

Theorem 12s There oxists a separablc cwmalgobra on 2 which

supports mo continuous probability mcasuree

Proof: TFollowing Ulan [1], we shall first associate with each
finite ordinal n and countable ordinal a a subset K (n, a)
of 7 satisfying the following conditions:

i) Por fixecd a3 UK (n, a) is a co-countable

n
subset of 2, and

1i) For fixed njy [ X(n, «) : a countable ordinall

is a pairwise disjoint family.

To do thde therc is no loss in assuning 7 to be the set of
all ordinals lecss than the first uncountable ordinal g )
for cach a < (). » fix any one to onc map £, on (1, «a] into

N, the set of natural numbcrse Define

K(n, a) = E B : fB(a) = n.}.
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These sots satisfy our requirementse DY uging Thcorem 8, we
can find & goparable o=algebra éo on 7 containing all thesc
setse If there werc a continuous measure g On A, then for
cach « - since U K (n, a) ic cocountable = there is an
D such that u (K(na, @)) > 0. Since there are countably
nany n's and uncountably nany ats, there is an integer p
such that 8 =(w« * n = p) is uncountable. In other words
therc are uncountable number [ K(p, a): «€ S ] of pairwise
disjoint scts cach with positive measurcs Thus § can not

be finite (not even o=finite) to complete the proof.

£ CH isvdﬁd,tMozmmm thooren says that on I,
there is a separable ow~algebra which doeg not support a conti-
nuous probability measurcs As is easy to seej if onc wishes
such a g-algebra cen be taken to contain all analytic subsets
of I. It is intoresting to observe that there is an alterna-
tive way ol coscLving the existence of a separable o-algebra
on I, which doecs not gupport a continuous probability moasuréﬂ
(of course again under CH )e To denonstrate this take a
universal null qct N of I, that igya set of cardinelity ¢
guch that for any nonatonmic probability measure ud On B the

“py=outer measure of N dis zeros Such gets do exist under the

continuum hypothesis. (Kuratowski (2], #40 )e Let By
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be the relativized Borel o-algebra on  Ne Pix any one to one
map f of I oo%o Ne Then the o-algebra f"l(gN) on I
does not suppert any continuous probability measurces For, if
it aid then (W, By) also docs, say  He Then ),Ll(B) = u(BONW
is a}proba’bility'measure on B giving outer measure 1 to N,

contrary to the hypothesis that 1T ig a universal null scte

We conclude this section with generalizations of
Theoren 6. For any sct Z, Cyp gtandgs for the class of all

gubgets of Ze

Theorenm 13% Assume CH. Cy X Gy = Cyx Y 1ff one of the -
gets is countable or both have cardinalities £ ce More

gencrally

Gy, X eor X Cx = gxlx... ‘%

iff all X, have cardinality < ¢ or all but one Xy are

countablee

Proos: We shall prove only the first sentence of the theorem.
The gecond sentonce can be obgerved along similar 1lincse

Obgerve that if one of X and Y 45 countable then trivially
¢y X Sy = Sxxy If both X and Y arc having cardinalities

{ ¢, then also the same equality holds = but now in view of
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Theorcn 6.

To prove the converge suppose both X and Y are

uncountablce By CO

Card (X) > c 3 Card (Y) > c.

Also assume that cardinclity of onc of them is > ce More

ospecifically let card (X) > ce Pix any cardinal o satisfying,
, \ oC
c <a Card (X); o £ 2,

Choose o many distinet subscts of X say ( Sx; X€ XO)

indexed by a subset X C X (possible)e Look at

S= U { x } X s.)

XCXO

clain that § ¢ Cy X Cy o TFor otherwise we can find two
countably gencratcd o=algebras éX and A on X and Y
regpectively such that S Tbelongs to Ay X Aye Oonsequently
every x=-gcection of S8  belongs to éY’ Thus there is a coun-
tably generated owalgobra on Y containing all the « many

sets (8.3 x€ X ) which is impossibles This proves the

theoreme
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Let (X 3 a6 T) e a collection of nonempty sets and

I be their cartogion product, X X » When we have
ac? ¢
F~glgehras on Xaay,and if we say product omalgebra on X, we
mean the usual o=algebra on X generated by the coordinate
maps or equivalently the o-algebra gencrated by finite dimen-
sional measurablc cylinders (also called in probability
theory the DanicleKolmogorov oc=ficld)e Regarding these spaces
we have the following congequence of the above theoreme
Theorem 14: Assunme ’gﬂ e Cyx= X Gy iff there is a
- wel? T

Tinite subset F of T osuch that

i) o ¢ F dimplies X, 15 a singleton, and

ii) cither card (X)) £ ¢ for all o in F

or card (X ) £ W for all but one « in Fe
o - O

Proof: To prove the if part, observe that the uncountable
producty from (i), in essentially a finite product and hence,

from (ii) and the previous thcorem, our regult £followse

To prove the only if pert it suffices to exhibit a
finite set F (T satisfying (i). For, then the uncountable
. product is essentially a finite product and (ii) follows from
the previoas theorems To this end suppose there arc infinitely

many X, 9 which arc not gingletonse By the axiom of choice,
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chocse a countably infinite set S C Tt such that for all «
in S, Xa nas at least two pointse Choosc a doubleton Ya
contained in XOC for o din 8 and a singleton Ya contai=-
ned in X, for « not in Se Them clearly Y = aé{ Y, C %
T4 is trivial to see that Y equipped with the relativized
product o=algebra is isomorphic to { 0, 1.} equippced with
the product o=nlgcbras Since the latter is not a digerete
space, neither iy the formers Hence the product gtructure on
¥ is not discrctee This contradiction shows that all but a
finitc nunberg of Xa s are singlctonge. This proves the
theoren in view of the remarks made at the beginning of this

parae

One might be tempted to say that wien we are dealing
with discrete spaccs it is unreascnable to look at the usual
definition of product o-algebrase One might say that the
natural (for our guestions) o=algebra on. X is that generated
by sets of the fomm aéK Ba where Ba C: Xa' Even if one

defines X Cx to be the owalgcbra generated by such
af T

rectangles, we can prove the above theorenm (Proof is also
exactly the same)e Leaving the details of this remark to the
reader, we shall procced to generalize theorenm 6 in a diffe=

rent directione
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Let us say that a nonempty class B of subgets of X
ig an N =~ algebra if, B 1s closcd under complementation
and unions of N ~many sets (Here U is an infinite car-
dingl number). Thus o-algebras ara just Iy -algebrase If
X ani Y arc tw> sets then Cy % gY denotes the smallest

) algebra on X X ¥ gencrated oy rectangless With these

concopts we have,

Theoren 153  Card (X) & ¥ ., duplies Gy % Sy = Syxx
o
(Here « 1is an ordinal number and as usual N’a+1 ig the

smallest cardinal number greater than Na‘ A1l are infinite

cardinal numbers)a .

Prool: Thig thcorem is a dircct generalization of Theorem 7
and proof is also similaTe We ohall just clarify an issue

involveds

Pirst take the space Y = ol yhere Card (2) = Na'

We ghall show that if £ 1s any function on a subset of X
into Y thea itg graph

G = {’(x, f(x)) : x in domain f }

cisin Gy X | Gy ¢ To obgerve this, put A, %to be the set
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of all those points in Y whose zth coordinate 1s 1 and

which belongs to the range of f, and 3B, the complement of
A, in the range of fe Put

6, = [ £(a,) x 41U (£7(8) x B,].

Each Gz contains G and belongs to Gy

X Cy o Since
N T
s - o a
we have ) o many G g S
G = 1 G € Oy X Cye
zez 2 =Y Na =Y

From the above para it follows that if Card (X) < L
and if f dis any function defincd on a subset of X into X

then its graph bclongs to Cy X Cye From here onwards the
. _I_QT —
- [s 2

proof of tnis theorem is similar to that of Theorem Ge
Analogues of Theorems 13 and 14 can also be formulated
for N -algebrans Analogue of Theorem 6 ean also be atated
for N = algebras by ascuning the genersliged .contiruum hypow .
thesic in view of the above Theoren.  We ghzld leave thege

Corollaries to the inmagination of the reader.
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g8 4. An axion.

Recall that if F 1is a class of subsets of I, then the
prcjections to I of gets in the o-algebra on I X I genera-
ted by the rectanslca with sides in F are called F-analytic
setse Extending this idea, we define f-analytic sects of
IX I to be the projections to I X I of sets in the
o=algebra on I X I X I gencrated by cubes with sides in Fe
In what follows, wo take F to be a countable family, say
( A, 3 n2>1) + Clearly, when F happens to be the sequence
. of intervals with rational end points, we get the F-analytic
sets to be usual analytic sets - sometimes referred to as
standard analytic setse Lot £ be the larczewski function on
I to I defincd by

2 xAn (x)

f(x) = & ~———m——
1
The range of £ will be decnoted by R and its relativigzed
Borel o-algebra by Re Unless otherwise stated we ghall fix

hereafter a family F § so that the concepts depending on F

.
—

need not always be prefixed by Fe We shall introduce the

assunption

() : R containg a perfect set, that is, a

homeonorph of Cantor set.
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Whon this hypothesis is satisfied, we chall denote hy P
any typical nerfeet set in R and Q = +~L(P), We shall also
denote, for convenience, by o F the o=algebra generated Yy

F on TI. We also define £ from IX I to RX R by

Fy

(X’ y) = (f(x), f(Y))

-

Observe that f ig an isomorphisnm between (I X I, o0 FX o F)

ad (RX R, BX R )o

Following Ulanm (IB], paze 7 ) we shall denote by class
0, the sets in I and their complementse Having defined
clagses smaller than o < () , we definc sets of class a0
gonsist of countablc unions of sets in the previous clagses
and complements of these setse We say that F  has sets of

high Borcl class number if given o < (L. there is a set in

¢ P which does not belong to any class onaller than doe

=

If 2 1s any perfect subset of I, we dcnote by By,
Agy Ly the g-algebrag on 2 gencrated by usual Borel sets,
usual anaiytic sotsy and by scts measurable werets a fixed

non-atomic probability neasare on Boe Observe that By and

>

; arc precisely B and A (sce scction 1) restricted to

« We immediately have the following theorem which will be

el

neoded in the next section:
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Theoren 163 If gz is any o=algebra on Z ocuch that

. C:ZQZ C L, hen T, is not countably generatedes

Proof: RBither rcopeat the proof of theoren 1 or apply
theorern 1 after identifying 2 with I by any Borel

isomorphisie

Jan Mycieloki and He Steinhaus {1] have introduced &.
ot thooretic axiom = the axiom of determinateness, (&)e This
axion is formulated in game theoretic terminologye It says ‘
" $hat certain gamcs are always determineds We shall not
attempt to give a precise statenent of the axiomy for it is
not needed in its original form for our purposes and moreover
1t involves much notation toce Interesting consequences of
this axiom have been studicd by Jan Mycielski (1]

Jen Nycicloki and Se Swierczkowski [1] and by Re IMe Solovoy *

Main conscquences of this axiom are the following :

@) I: 'Bvery subset of the real line is Lebosgue
neasurable! or equivalently 'for every
finite denumerably additive neagure K
over the field of Borcl sets of .a separable

metric space X and overy Y (C X, there are

¥ ynpublished
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Borel scts B1 C: Y C: B2 such that
u(B) = ul(3) s

'Every subsct of the Cantor discontinuum
nas the property of Baire, in the sense
that, it is of the form (GlIKl) - Ko
where G 1g open and Kl’ K2 are of
the first category' or equivalently

tevery uubset of a separablce metric space

has the property of Baire'.

'Every non~denumerable subset of the Cantor

get has a poerfect subsct' or cquivalently
'Bvery non-denuncrable scparable nmetric

gpace containg a compact perfect subset'.

vor cvery fanily of nonenpty pairwise dis-
joint sots P cuch that {7l ¢ W and

]
1
t T X . p‘Io .
XCF - 7

; thicre cxists a choice
cote Tne sanmc statement renains true if

tdisjoint! is omitted end accordingly
tchoice sot! is replaced by ‘choice function'

in the conclugionNe
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Clearly the axiom (A) is inconsistent with the axiom wf
choices We remind the reader that the consistency of this
axiom with the usual axioms of gset theory (of course, without
the axion of choice) is not known, Thore are, however, many
intercsting conscquences, duc especially 10 RelleSolovoy¥ .
which point out towards the relative consistency of this
axione In (Myciclski [2]) an alternative of (ED is propesed
which has 2ll the four main conscquences stated -aboves This
latter axiom gives a mere refined version of CE)IV and also

a form of the principle of dependent choiccse

In concluding this scction, we remind the reader that
proof of the fact that 'a onc to one Borel map of a Borel
subset of the recal line into the rcal line preserves Borel
sets' needs no nore than the geparation theorem for analytic
sets which in turn can be proved vith the countable -axiom of

choices ishus i above fact is still velid under (A)« This

cbservation will be very useful for us in Section Ge

* unpublished
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5. Consequences of (E}.
q

Throughout this sgection we assurie that the hypothesis
() is satisficds Since (R, B) io isomorphic to (I, oF), we
can and shall supposc for our purpeses thuat the atoms of oF

are singletonge

Twoorem 17: A subsct X of Q dis P - analytic iff £{X)

is standard analyvic in P

Proof: Since f dis an-isomorphisn vetween (I, oF) and (RyR)
-we have f restricted to Q to be an isomorphism between

(Qy GEQ) end (P, Bp)e Consequently X C Q is in of iff
#(x) C P is Borele Hence T C QX q ds in oFX oF iff
() CPx?P is Borels Since obviously projection (F (X)) =

f(projection of % ) we have the desired rosulte

The following thcovem ig not neoded in the sequel, but has some

independent intcrcste

Theoren 18: (I, o Supports a non-abonic perfect probability
s OL !

noasurce In fact there 1 one such concentrated on Qe

Lot us Tix any nonatomic probasility measure H on oF
civing strictly positive measure o Qe Let the completion

of oF werebts this probability measurec bC denoted by L
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Theoren 19t There is no countably gencrated o-algebra on I

containing all its F analytic sets and contained in Lo

Proof: It suffices to prove the theorem in case g 1s cone
centrated on Qe But in that case it iz a direct conscquence

of Theorenmg 11 and 12

The above theoren is clearly a generalization of Theorem 1
(the gencraligzation however is trivial)e We have an exten-

gion of Theoren £ in the following theorcm:

Dheoren 20: There arc F analytic sets of I X I not belon-

ging to C X Lo

Proof: As in the previous theorem it suffices to consider the

casc where u 1s concentrated on Qe Fix U (j PX P any
standard analytic set universal werete the standard anklytic
sets of Pe Define V =T ~1 (U)e TFollowing the arguments of
tho prooi of rueovrem 17, one can show that V is an E
analytic sct of I X I contained in QX Qs Using Theorem 17,
it ig clear that V is univergal werete the T analytic sets

of I contained in Qs Now this theorem 1s a direct conge-

quence of Theorem 19, just as Theorem 2 was a consequence of

Theorenm le
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We now reccrd two theorens to used in the next sectione

bo
Thege are analogues of their classical veraionSe

Theoror ol: There are F-analytic sets not belonging to ol

Proof:  Obvious from Theorem 17 and the clasaical analogue

(Sicrpinski [4], pagc 254).
Theorem 22: oF has sets of high Borel class numbers

Proof: lletrize I by dlx,y) = |[£(x) = £(y)|. Obscrve that
with this metric I is homeomorphic to R and in fact f is a
Aonmé omorphisme lloreover cach A € E is a clopen subget of

T nowe Also, Q being homconorphic to P will be a perfect
subgcte Now our result is a congscgquence of its classical

vergion (Kuratowski [2], page 373)

Pinally it should be remarked that all the theorcms of this
section can be stated in terms of separable metric spaces
with a perfect kernel, that 1o, containing homeomorph of
Gantor scte We have not done so in order 1o keep the flavour

of the discussion of Ulam [31 (sce Scction 8 also ef this

Chapter) .
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g 6 Congequences ol (A)

Phroughout this scction we assume (&) to be valide

Theorem 23:  Therc docs not exist a sequence [ =( A, n21)

of gets in I with the following propertics:

(a) oF has uncountablc number of atomss

(b) F- analytic sets coincide with sets in of e

Proof: (a) implies that the range of-the Marczewski function
for I is uncountable and hence by (A)III contains a per-
fect sete Comsequently we can use Theorem 21 if in its

proof no ‘uncountable axiom of choice! is involvede But

since an effective way of obtaining an analytic non-Borel set
is known (Sicrpifiski [&], page £54) with only the countable

axiom of choice, we are througha

Theorenm 24:  There does not exist a sequence E = (4, n21)

of sets in I with the following propertics:

(a) oF has sets of arbitrerily high Borel class

nunber .

(b) P-analybic sets coincide with sets in oI »
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Procf: =~ Obgerve that if (a) is to bo satisfied then the range

of the Marczewski function for T should be uncountable and

hence in view of Theorcn 23, (b) can not be satisficde

Though the above two theorems arc apparently different, that

they are equivalent is shown by the folliowing:

Theorem 25: TFor auy scquence I = (An’ n>1l) of sets in

I the following arc equivalcnte

(a) oF has uncountable number of atoms.

(b) oF has sets of arbitrarily high Borel class

numbers

Proof: Since b) =>a) 1is obvious wc show the other implicaw
$ione Observe that in view of (&) III the range of the
Yarczewski function contains a perfect sete Consequently
theorem 17 can be uscd if we have not uged the uncountable
axicm of choicc in its proofe But since an effective way of
exhibiting Borel sets of any class is known with only the
countable axiom of choice (Kuratowski (2] page 373) we are

throughe

e conclude this scetion with e theorem which is

contradictory to Theoren 6 .



{363

eparable G Cec.

.
S

T : 7 NN
J ¢ gox go’ for any

Theoren 26:
Proocf of theoren 26 coan be desismed following the linesg of

»

Theorem 2+ PFor a further treatment regarding the question of

g X Gy sece Chapter 3.

whcthor U belongs %o

Hon-oxistence of certaln structurecs.

§ 7.
This gection conceptually simplifie®d and also unifies

the proofs of the theorems in gection &, and puts them on a

nuch more general setting.
be any separable (countably generated and

Let (X, ___%)
containing sifgictons) Borel space, where to avoid triviali-
Sets in B are to be

ties we assume X 10 be uncountable.
. Throughout B is fixed.

called as Borel subgets of X
on X containing B the

For any o-algebra @

Theorem 27:
following are equivalent:
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i) Any oncw-onc rcal & ~ ncasurable function

on X coinecides with a B-measurable function

on an uncountable Borel subscet of Xe

ii) Any soparable o=algebra 8§ on X with
B C S C £ coincides with B on an
uncountablce Borel subgset of Xy that is,
on gone uncountable Beorel get the regtrice

tiong of B and 3 coincides

Proof: Given (i) we chn prove (ii) by looking at the
Harczewski function associatcd wwith any countable generator
for §e Conversely given (ii),we can prove (i) by looking at

the scparable o=nlgebra induccd by the given function and Be

A o-glgebra % on X containing B and satisfying

any one of the above two cgquivalent conditions ig gaid to be

a B~ Souglin o-algebra on X (with due respect to the work

done by Souslin)e . A o=algebra 2 on X 1s sald to bo...

B« nixing ir Z ib Q» and any uncount~hle Borcl gubgect of X

containg an elerment of é - g.

From the above definitiong ..ond Theoren 27 we have the

following theoren which can be easily proved by contradiction:
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Theorem £B8: Let Z be any B-uixing o-algebra and x con-

taining 2 be any B-Souglin o=algebra for ¥. Then there
is no scparablc o=algebra on X, containing Z and contained
in 2 Congequently no separable o-algebra containing Z can

be a B-Souslin o=algebrae

Romark 1: If X = I3 B ditec usual Borel o-algebra; Z =4
(cee § 1 for definition of A)s T is the collection
Lobesgue meagurable gets or gsets with the Baire propertys

then it is trivial to verify that the conditions of the above
theoren are satisfieds Consequently Theorems 1 and W follow
from the above theorems We beclieve that this theorem says
something more in the following sense: Fix any analytic non-
Borel sct A in Ie TLet A/ be the o=algedbra on I gene-
rated by B and all the Borel ipomorphs of A. Then 4 is
also B~ mixing and hence Pheoorems 1 and 3 are still true
even if A 1s replaced by fA e However we do not know
whether A, is properly contained in Ae We do not know also
whether any two analytic non~Borel subgets of I are Borel

isomorphiz. (Thesc problems arc again discussed in Chapter 3).

The following theorem is a direct consequence of Theorom 20.
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Theoren £9: Assune the hypothesis of Theorem 8. Let U be
any subset of X X X such that the vertical sections of U

generate Ze Then U g CX Zoe

Olearly Theorems 2 and 4 are cpecinl cases of Theorem 29, in

view of the recmark 1 abovee

Assumc the set up of renark 1. If ¢ is a B.=-Souslin
owalgebra then therc is no geparable c=-algebra contalining Ae
In fact there is no such containing A in that casce Thus
in particular if one assumes the axiom of determlnateness, then
there is no separable o-algcbra containing A, on TIe However
we do not know whother conversely the non=-cxistence of a sepa=
rable o-algebra containing A implics that ¢ dis a *

B ~ Souslin o= algobrae

There arc certain routine problems based on the defini-

tions introduced above, which we shall discuss in Chapter Je
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g Be Historical Commentss

A part of the contents of Section 2 will be appearing
in Fundamenta lathematicae where as parte of Section 3 have
already appeared in the lMay 1969 issue of the Bulletin of the
American Mathematical Societys The contents of Bections 4«6
have been submitted to Fundamente lMathematicacs The fact
that Ulam's constpruction can be used to prove fheorem 10
was suggested to us by Prof. Ashok Maitras The difference
botween choice set and choice function was clarified to us by
Prof. Je Mycielski Qho glso supplied to us the remark made at
the ond of Section 4e The contents of Section 7 have been
observed by the author after writing a preliminary version of

this chapters

The fact that our Theorem 2 angwers a question of Ulenm
(Ulam [3], page 10, lines 0= 23) was suggested to us by a
referce of the PFundamenta HMathomaticacs prof. Je Mycielskl
has informed to us that Dre Mansficld of the University of
Menchester has also proved = unpublished = a result weaker
than our Theoren 2, using the axiom of the existence of Ulam
0 -1 measurablc cardinals and some difficult and unpublished

results of Re Me Solovoye Recently Dre Ilansfield has given
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an alternative proof of our Theorem le Quite recently

Dre Ashok llaltra has remarked that yet another pfoof our
Theorem 1 can be given by using the fdea of the proof Theoren
3¢ Wheream we hare uscd Bair's sheorem in the proof of
Theorem 3, Dr. Ashok IMaitra uses in his proof of our Theoren 1,

the famous theorem of Lusin = tevery Lebesgue measurable funce

tion is continuous on a set of positive measure!,

Profe Mycielski has informed us that Theorem 6 has also
been obtained by Ulam and Erdos as ecarly as 1944 f =~ unpube
lished = and alsc morce recently by Dre Cs Ferens of Wroclaw
and Dre RoyeOsDavies of London = again unpublishede
The proof in all the cases is same. The generalizations of
Theorens 6 and 7, with which the third section is concluded,
were observed by the author after writing a preliminary

version of this chaptoere.

Our Theorem § answers a question of Ulam [2]e Quite
recently Mre 1l Ila Sastry has drawn cur attention to an
entirely different treatment of the same problem by
P« Rothberger [1]s Rothberger uses the notion of almost
equivalence of sets introduced by Hausdo?ff: Ae~~B iff

AAD B is finitoe
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Our definition of generalized anaiytic sets in
Sectiong % -mA 4 ig taken from Ulam ([3], page 9)e Our
Fheoren 18 is motivated by a question of Ulam ){3], page 10
lines 1 =~ 3) and so is our Theorem 19 ([3], page 10, lines
4 -~ 11)e We conclude this section with the following paragraph

which 4@ taken from Ulam ({3] pase 10 and 11).

* The motivaiion for investigating the Berel operations
and beyend it, the projective operations when one starts with
_a general sequence of sets. A, - instead of the usual one
which is the sequenceé of rational intervels or binary inter=-
vals - }Jies in th> following possibilitye There might exist
a scquence of sets such that the number of its atoms is non-
countable {ilecs, otill non=-trivial) and yet such that the
projective class over this sequence is 'simpler' than the
felagsical! projective classe For example a sequence such
that onc cmld define a completely n~dditive measure function
for all sets of this projective class ~ this is impossible,
according to a result of Godel, for the familiar projective
sotg: iece, 1t is free from contradictions in cerxtain systems
of axioms to assume that therc exist projective sets which

arc non-neasurable in the seonge of Lebesgue. Even more
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generally one can cxtend thigs result to ghow that no complew-
tely additive measurc ig possible for all projective sets

[by a measure we understand a sct function with the proper-
ticg: l.m(B) = 1, m{p) = 0 wherc T is whole space, (p) is a

o0 o0
set composed of single pointe 2. n ( I Ai) = PN m(Ai)
1=l i=1

if AjeA; = g fTor i £ J].

Paradoxical’ly cnough, it is conceivable that a measurc
function 1like the above could cxist, if one starts with a
sufficiently 'wild' sequence of sets A, 1in a class of pro-
joctivé sets 'over! this scquences Possibly all such sets
could have the Baire property, that is each set of the class

would be of first category - or complement of such 2 ''
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CIHAPTER 2

0N_BORZL STRUCTURES

§ 0« Swmary.
Thin chapter consints of cight sociionse. The firet

section cxplaing sone of the necesgary prelininaries include-

ing the notation. In scction 2 we show that every countably

generated Borel atructure hags a minimol generators The

ion exhiibits ftwo scparable Borel structurcs on the

<t

third sec
unit interval whose dntersccticn is not separnblece In the
fourtiy scction, the existence of an atomless Borel structure

on cvery uncountable set has been obgserved, In the fifth
section we show that the sym@otrio structure on a product space
is generated by the symmetric rectanglcs. In section gix the
problen treated ig that of defining a Iorcl structure for a
colleetion of moasurablo‘maps from one Borel gpace to the

other in ~uioh o oy that the evaluation map is J
neagurables In particular we ghow that such a structure
exicts 1ff the collection is of bounded Borel class, in the
geparable casce Aftcr defining'Bounded Borel class' in a
suitable way we show that the came theorem is true even in

the nonesecparable cases In gection scven gtart ig nmade

k]

-

towards the study of the lattice of Borel structures on any

il
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sete We show in varticular that the lattice of all Ferel

structures on I  is not couplementede We also show "in this

N

scetion that minjaal wenk complenents in the genge of De Basu
arc reslly complenmcnte, though not conversclye. Finally in
section & we collect some comments and historics of the prob-

lems treated in this chiaptcre

As the reader procecds, he may perhaps e led to think
that we are ralsing more probioﬁs then actually solving. It
is indeed the casce There are two reasons for thise Firstly
nogt of ‘the problbms troated in this chapter have never been
treated in the literaturc, even briefly (except those of
séction 6). Secondly, the Marczewski function - which is a
useful, neat and perhaps notb vet Tully exploited tool for
handling scparable o = algebras - has no analogue for fhe
non-separavle casce It is true that even for non=separable
¢~ algebras a sinilar function can be defincd (as was done by
M, 4o Stonc) but it docs not seem to te as ugeful as in the

separablc casCe
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g le Notauions

Our terminology for most prrt is that of Mackey ({11,

. N PR
scotions L and 2)e Let X bo any non=enpty set and B a
g-algebra of gubsoto of  Xe B is caolled a Borsl structure

for X and (X, B) a Borel gpace. As usual, if there is

it

no fear of confunicn we shall refer to X ditself as a Borel

spacc. A fenily G C ig said to be a generater for

fiod
1d

if the smallest Borel structurce on X containing G coincides

with B A generator ¢ for B is mininal if no proper

subfamily of it is again a gencrator for DRe ig called

Hiod

countably gerncrated if there is a countable generator for DBe

% ig ealled geparable if it is countably generated and con-

tains singlctonse An aton of B is o met A in B which
is not empty such that no non-empty proper gubset of A 1is
in Be An doonorphisn between two Borel~spaces is a one to
one bimeasurable map of one onto the ofhers As in Mackey the

relativized conceptn can also be definede IF (X B) is a

Borzl space and Y C: X, then the rolativized Borel structure
on Y is denoted by EY'

w
p denotes the wnilateral countable product of the two

2]
point gcpace { O, 1 } « The Borel structure C on = is

the product of discrcte Borel structurcs on thc component
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spacess LT (Gp, n > 1) ig a generator for a scparable

Borel space ther the larczewskl function defined as

f£(x) :.{ Xe (x) 3 =n2>1 }
n
W

is a Borel isomorphigm between X and the range of f in 2 .
(I, B) always denotcs the closed unit interval with its usuval

Borel structurcs

For any Borel space (X, B) denote the product of it

R to be szmmetfic

if (x, y) ¢ A dinmplies (y, x) € Ae Clearly a rectangle is

o
with itself by (X%, gz). Call a set A€ B
symnetric iff both sides arc equale The symetric sets forn a

Borel structure on x?, to be referred to as the gjmmetric

eructurg.

0all a separable Borel gpace to be analytic (co-analytic)
if it is igonorpliic to an analytic (respectively comanalytic)

gubgset of I

Some more terminology needed for gections 6 and 7 is

given in those gectlionga

Whenover nceded, we shall make usc of the axiom of

choice without cxplicit mentilcne
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§ <« Minimal gonerators.

The nmain theorenm of this section is the following:

Theorem 1: Any countably gencerated Borel space has a mininmal

generatore

Before proving the theorem lct us observe that any
argunent involting Zorn's Lemma fails heree If is true that
the collection of gencrators for any Borel gpace do form a
partially ordered set under set inclusions But however linearly
ordered -sub~collections need not possess lower bounds.. For
Sxample take X = I, B = its Borel o-ficlda Let ( In’ n 2 1)
be intervals with rational end points in I. Clearly
(In; no2 k) ig a generator for g, whatever be B . However
the intergection of these decreasing scquence of gencrators

is coptys

Proof of Thegwen 1t Let (X, B) be any countably

generatod Borel spacce Since the result is obvicus if X is

finite, we congider the case where X  dg fnfinite.

We ostart with observing that the Borel structure

Ha

on
m - k3
R has a ninimal genoratore Take

by = xe 2 | 2™ coordinate of x =1 }
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Clearly (A3 1 21) i1on gonerator for and the removal

<

5
A

Fae

3

cure 10O

w
2 which can
th

of any A ragtlho in a Borel struss

not distinguish points differing oxnly in the k coordinate .

(O
Define a, for n2 Ll %o be that point of =2 which
th

has only the n coordinate zero end a, to be the point

ol

which hag zero in no coordinate places Observe that if 2 1is
Ct) S . . -

any subsget of 2 containing” (a, s n 2 0 ) then Gg has

a minimal generators Enough to take (B, 3 n21l ) where

B, = An Q2 and A, are as &eacribed above.

1]

Now take any separable space (X, B)s Then the
Marczewski function estnﬁlishes an igomorphism between (X, g)
and a subset Z of 2& e 3By suitably altering the map on
o countable gubget of X, we can assume that Z contains

{ ay 3120 ) » Since the property of possessiﬁg a minimal

penerator is an isoumorphic invariast (X, B) has a minimal.

meneratore

Pinelly if (X, B) is wny countably generated space
then it is in an obviour way structure igomorphic to a sep\a(-w‘
rablc space (Look at the space }—{ of atomg of B and the"
natural quotient structure ‘:é). Honce €t has & ninimal genes

rator. Tlhis proves the theorone
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Remark 1: We wioh to point out three facts regarding minimal
gerneratorce
Pirstly, if (X, B) is any separable Borel space and G

is any generator then G contains a countable sub-family

.

which is also a generators But however G need not contain

a minimal generators For ingtance take (1, E) with

¢ m{to, a) 3 o<a_gl.}

Secondly, if (X, B) is any Borel space and G is any
generator for B and Y C X, then Gy 1s a generator for
Qy. But however if G 1s a mininal gencrator for g, then
Gy need not be a minimal generator for By+ For instance,
take

X =§<O, l, 2, 3, [ ¥ W }

Hid

= Cclags of all subsets of X

.—;{{n}]n};l }

&= {l’ 2’ 3, 4, ﬂ‘a}

[} 1ep]

<
H

‘nirdly, if [(Xa’ Ba); e T] is a collection of
separable Borel spaces then their product (X, B) is separable
iff all but countable number of X& congist of a single

point. But however if each B, has a minimal generator
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(though not separable) then B also hase To sce this fix any
mininal generators in the coordinate spaccs and ook at the
one dimensgional cylinder subsets of X whose base lies in the

fixed minimal generator on the correcponding coordinate spaces

F

nark =: We raisc two guestions regarding minimal generators.
Pirstly if (X, B) is a separable Borel space, and Y C X,
then (Y, By) is also a separable Borel spaces We do not know
if thie statement is true when the torm !sovarable Borelﬁgpage}‘
1s replaced by 'Borel space with a minimal generstor's I
this werc true then any Borel gpace would have a minimal . srofiow
‘Tators To justity this statement, obgerve that the -pro@uct™
oc-algebra on {O, 1} T where T, is any arbitrary non-empty
80tyhas a minimal generafor and that any sepérated Borel space
ls igomorphic to a subspace of gome such'prodﬁcgiépace-
(Separated Borel space means, given any two diétinct points of
the space, there is a set in the Borel structure containing
exactly one of the two given points)e Wo leave the details

for the readers

Sccondly, wo do not know of any Borel structure without
a ninimal generator . We have two possible candidates for
this purposes The first candidate is the Borel structure . 4

on I genecrated by its analytie setse Prom Theoorem 1 or &
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of chapter 1, 4 1s not countably gencrateds The sccond is a
Berel structvrze 7or I obtained ac follows: Pix a non-Borel
set 1 (C I, and look at the o=algebra QM on I congisting
of all the usual Borel subsets of I which oithor are disjoint
with M or contain M. The next theorem points out two situa-
tions where EM has a ninimal generatore But in the general

case we do not have any answcre

c

Thooren 2: If either M° is co=analytic or M~ does not

. i ‘o
contain a perfect get, then ED has a minimal generators

Proof: PFirst supposc that M° is a co=analytic sete We
denote 1ts constituents (werete any fixed sieve) by
[ Ay L &a< ()] (See Kuratowski [2, pe 499). Let us

define,

Since M is not Borecl observe that there are uncountable
maber of A s which are nonemptye By deleting the A, 8
wiich are empty, we may suppose without loss of generality
that LAu y L<a< () ] are disjoint non~0mpty'Bore1,séts
whose wauion is M?, Let ga be a minimal generator for ﬁhé
relativized Borel owalgebra on A.Oc such that the union of

clements of G -equals Ao By a slight modification of +the
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agrunients of theovem 1 or otlherwise it ia net difficult to

.

sce that such & generator always oxisto. Lot G = 8] Qa‘

L

Since any Borcl set contained in M® i contained in a coun-

table unicr of fthone A 5 (uratowaski L2, e BOL]) it ig

L

A o o c
tagy to sco bualt any Rerel gubset of I contained in M

belongs to the o=nlzebra gencrated by G. Hence G generates
5% To show the nininality, let, if possible, a set A from

G be omittnd go that Gy =G = {A} generates B s Let

A G« Clearly G restricted to A, docs not generate
M Y o e
St .
B" restrieted to A
= o
0
c

How cuppoge U does not contain a perfect sete Then

the only Borel subsets of I dig sjoint with M are the coun-
. - C N e s i

tavie subscts of M. Congcquently, in this case, B cone~

sists of 211 countabie subset or co-countable subsets

of T. <Containing Me Hence the singletons of S form a

- it 4 . .. .
generator for B e Clearly this is minimale The procf 1is

thus fterminatode.

We conclude this scction with a generalization of
Theorem 1e To start with we nake a fow definit ionse Let X
e a non—empty 8ot and k  be an infinite cardinal numbere A
kealgebra on X is o non-void colloction of subgets of X

closed under complenentaiicn and unions of k-many sctse A



aiioct kealpebra over 0 ooualo
; ; {

o o
1

o e f-rcneratod if

e oor cqual to A - where,

araingd numbere  The geoneralizatio

The rrobloeu

[,

Tmocnerated k=alochra hago o mininal

W

ingtead o 2 o1 that proofa

of minimal generatorg does nako

wolean algebrac.

=4

n oL separabie gstructurcg.

.:L

Lo Ghe Teolloving ovservation:

Thore arce fwn countably gencrated owalgebras on

Ao K -~
gectinmn 1a not m0e

) Given sny sceparable Borel gtructurc

5 oa countably goncerated structure whone inters

one ie not countably gencrated.

Hive
2
v“]

N

0
o)
}_)
I‘"‘l
f'_\
e}
ot
s
o
f]

npwrﬁ;q‘n

aight Torward imitaticn of that or

Sense even
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(¢) There exiast two courtably genecrated substruc-
turcs of thc Borrl structure on thoe real line whose inter-

)

: L PN -
stcetion 1v not countably mencrotcde

(a): Though (a) can be deduced from (c) o simple inde-

pondent proofl ir o follows: TLiet R

pe

be the usual Borel

structure on TIe Fix @ non-Borcl set M in I and let B

be the structure generated by M and B .+ The intersection
o s .- BM - o5 & o . .

o thepo two is the B of PBemark 2 of é 2 which is not

countably goneraicde However these two structurcs themselves

arc countably gencrateds. In fact thig structure is not even

atomice

(b): The sance prool wo above workse

(c): Ziet 1 oo the collection of all those Borel sets

which are invari-nt undor franslation by 1 and I be the

collection of «ll thope Borel setc wiich are invariant under
translation by 1 where 1 dio any fixed irrationad nunbere
It is well Jmowm that tie additive subgreup of the real linc
generated by % 1, 4 } is dense in the real line and M o N

1s preeisely thogoe Borel setbs wlich are invariant under tran=-

=3

slaotion by eclements ol tals groups. Jfioence U is not

1=
)
=t

countably generatede Thig last centence follows from a
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theorem of Mackey [1, 7.2], which says that such a structure
which congists of Borel sets invariant under a cerbtain sube

grou

]

~ lu counvavly gonerated iff the group is closeds. This

completes the proofa

1t 2y dnterosting to obgerve that in 11 the above

o

examples we have one or both o=algebras under congideration to
m:ndn~separable ~ in the gense that they do not contain all
singletongs of the gpacce The guestion in which we are now
interested is the poaasibility of finding two separable
o=algebras whonse intereoction is note A simple example
(botter, a plethnra of examples) can be given depending on
rather deep facto about analytic setse This we do in section
o In tThis scction we answer this question by simple and
elenentary methods making usc of an intercsting lerma of
Halmos which appears in Aumann [1, Loeman 7el]s The idea of
our prool is esaentislly same as that of Halmos's and also
sinmilor UL th. oloted constructions treated in section 40 of
Kuratowski [8]e Ou® proof is simple and does not use the

is erroneous and

'y

continuwa hypothenis whereas Aumann's Hroo

uges the continuum hypothegine The fact that Aumann's proof

[

is erronecus is Justified later in this scctions
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emma 13 Thore is a one to onemap £ on I onto I such
bhat
pog|
i) f = f“‘/
i1) If A, A~ are uncountaeble Borel subsets of I,

Then £(A) ig non-Borels

oroof:  Let -Clc be the first uncountable ordinal correspon-
ting to the cardinal c. Let A 3 1<a<({), boen
cnuneration - a convenient welle-ordering - of the uncountable
Borel subsets of I whose complements in I are also uncoun<
tablecs Since overy uncourdtable Borel subset of I has cardi-
nality ¢, we can asgoclate with each ordinal « < Qc three
distinct points Xy Yy 2 in I gatisfying the following

o
two conditiong:

) ] . ¢

1) ;\a, y(x 6 .A.(x J ZUG A.(x

i) x 2 U { Z }.
L) Ky Vyr %y F < o “g> Jpr g

;his can be donc by transfinite inductions ILet £ Ybe the'map
hich interchanges x o with Zy and kceps every other polnt
xeds Obviously £ is omc one on I onto I and satisfies
[=f1, Observe firgt that no Ay is left invariant by fe

oW consider any Aa, Since any Aoc containg uncountable
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number and since each

of Ar 9

Y.y Mnalrerced by

namely £y we

is uncountables In view of +the

Z 1is also invariant under f.

. . c .
itgelf wore uncountable, 2 is
if f(Aa) were Borel, then 7

invariant by

Ty which is imposs

A, han at lcast onc point,

T

conclude that 7 = f(Aa) n A,
-1

fact that £ = f, this set

Since the complenment Aa

uncountable. Consequently

AB left

already observed above.

should be some

ible ag

This completes tho proof of the Termne

llow observe that if B

[and B, = £(3) wherc f

tions of the Lemma, then both

Bp B, is

Bo the countablce -

as

we have the following

(a)

Theorem 5:

.
=
13

B

the ugual Borel structurc on

is any map satisfying the condi-

and Bo are scparable where

cocountable structure. Thus

There are two geparable Borel structures on

I whose intcrgeetion is not separablo.

(v)

Given any scparable Borcl structure to I

such that cvery uncountable sét in this structure has cardina-

lity

C 3 WC

can find another such structure, whose intersection

with the ~iven one is the countable - codountable structure.

Proof:

(a) has already been obgscrved sbve » (b) follows

on similar lincs noting that Lemma 1, gocs through cven for

this casce



[59]

One can now ask whether the £ of Lemma 1 can ke
chogen so0 as to satisfy the further condition (1ii1i) for every
Borel B, £(B) 1is in 4, the atructure on I generated by
its snalytic setoe But unfortunntely this can not be dones
Because if this can be done,we can find two separable gubg~
tructurcs of A whosc interscction is the countable~cocour-

table once The noxt theorem chows that this is impogsibles

Theoorem 6. (a) Let L be the Lebesgue meagurable scts of Te
I (B, n21) arc separable gubstructures of L ‘thenn B,

can not be the ccuntable«bocountablo gtructurce

(b) The above statement is valid even if L 18
taken to be the collection of gsets measurable werete a fixed

nonatomic probability measure on (I, B)e

(c) The pame statement as in (a) is true evem if
L is replaced by Q, the subsets of I having the Balre
propertye

(4) Tomma 1 is false under the Axiom of determi-

nateness (and of course, without the axiom of choice)

Proof: (n) Let £, be the Marczewski function associa~

ted wer.te any generator for B, + Since £, is Lebesgue

¢

measurable, 1t coincides on a aoct of measure 1L with a Borel



Tuncticne. Taking the interscetion of these sets we have

=
2
]
oQ
o
[&]
Q
<t
o3
D
L]

neasure one = and honce uncountable - on
coincides with the Borel o-algebrae Thus
0 2, Trestricted to 7 coineidegs with the Dorel algebra

restrictecd to Ze. Since Z is uncountable, 0 @n can not

be the countable cocountable structure on I.

(b) ean be proved in a similar way.

}J.

(¢) 1ig also proved in the samce way except the
following chanc: Instead of using the fact that any Lebesgue
function is ncarly a Borcl funcition, we make ugc of the fact
that any function with Baire property is nearly a continuous
function.

(d) TUnder the axiom of determinateness, observe
that L 1o the collection all subsets of I. If the Lemma 1

were true, then theorenm 5(a) would be true which is inconsige

tent with 6(a). (With two ceclecbras6(a) needs Just the finite
Axionm of choice).

Prom the above thoorem we can obgerve an interege

ting property of the function £ of Lemma 1.
Theorem 7: Let £ be as given by Lemna 1 and B, = " T)e

() TFor every non-atomic probabi

om B there 1o at least one set in B whi-

rable.
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(b) There arc sets in B, whick do not have

Baire propertye

Proof: In fact 7{a) and (b) arc rostatenents of 6(b) and

Thus herc is another separable oealgebra B . which con-

=0
tains examples of pathological setse Onc such o-algebra is
already given in Theocrem 9 of Chapter le One intercsting
feature of this I, 1s that it is Borel isomorphic to B and

in fact £ dis an isomorphicm !

At this placce we would like to raise two guestionses
Pirst, we do not know the truth or falcity of the following
gtatement: 'Bvery uncountablc set X of cardinality £ c
adnite two sepérablo gstructurcs whoge intersecticn is not'e
On one extreme 17 we assume CH, then this is true in view of
theorem 5(b)s On the other extreme if we assurie that there is
an uncounti.bic sget such that its power set is the only sepa-
rable structurc on it, then the above statement is trivially

false.

Second, we do not know if there exist two geparable
structures on I whoge inbtersection is not separable, but

contains a separable substructure.
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We conclude this gsection with a comment on Aumann'sg
proof of Lermma L. In order to clewrly scc where the gap in

the argument of Aumann liepn we ghall first prove a lemmal

Lemma 2@ Agsume O, [ 1 ] be an ecnumeration

A%

R

7~
L
—

la,

of the uncountable Borcl subscts of I whose complements arc
also uncountablec, vhere () is the first uncountable ordinal
We can associate two pointse Xa; y, ©of I with each ordinal
a < ﬁfl in such a way that the following four conditions are
satisfied:

i) XO(,E: Ay v €A

ii) Tor each «, exactly onc of the two points Ky s¥,
-
lics in [0, 3) and the other in [F, 1).
(-

iii) Tor ecach « X 9 U X R
’ e Yo ﬂ 8¢ o g 87 YB}

iv) [0, 1) = U X . yU}.

o
a« < )

o 1 . 1.
Proof: Well-order [0, %) and [ %5, 1) say (an; 1<n< )
- SN . . . o~
and (bﬂ 31 < mn < L. )Yrespectivelys We shall in a careful
way gselect the points inductively so as to satisfy the condl-

'

tions (1), (ii), (Lii) and then show that (iv) is aiso satic-

-

fied.
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‘T Ay leaves uncountable number of pointg of “, 1)

! . f - - - . fal 1- de
amd conftara. A owhibable nunbor ol pointa of O, =) thon

15 y A H
define X to oo the first peint in our well owrdering of
Pa L _ . . . .
L0, ?\ which ig in A1 and y,  to be the first point in our
’ NN L

R A 1l . . . C e

well ordering of [=, 1) which is in ASe TIf cither A, does

not leave uncountablc number of

peints

of [%, 1) or it docs not

contain uncountablec number of points of [0, %) then observe

"Ghﬂt IQ.]

In this case define

X

, . i - Coal .
ordering of [%, 1) whith is in

point in our well-erdering of [0,

If we have defined

*gr Vg

we definc Xa’ v as followg:

o
nunoer of points of
points of [0, %),
point in o
t0 be the

C TF Py } .
A(X' If either AOC

ft

points of [é, ) or it does

points of [0, %) we define X,

in our well-ordering of [%, 1) which is

the first unused point

st contain uncountable nunber of points

&f A

then define Xa

. . 1 . \
wcll-ordering of [0, p) which is

in our well-ordering of [0,

Of [ﬁ’ l)‘

to be the first point in our well~-

Al and Y1 to be the firgst

%) which is in Ai.

Then

for all B < a < ().

leaves uncountable

o

[m’ 1) and contains uncountable number of

to be the first unuscd

in Aa and Ve

irst unuscd point in our well-ordering of [%, 1) in
does not leave uncountable number of

not contain uncountable number of

to be the first unused point

in Aa and Y to be

1y . c
g) in Aao
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Since a1l she A s are uncountable with uncountable comples

ments and oince ot cach shage the nunber of points already

5

selected arc just countable, such a choice ia always possible.

Since the verification of (i),{ii),(ii1) is obvious, we
shall verify (iv)e Weo gshall chow that overy aﬂ is gcome
X, Oor Yy« A similar proof holds for the set of b S
alsos If thie sct of ununcd Gy B ie non-copty let @y be

-
%, the sct -

ta

the first anons theme Since ay <
1 .

[ 8y &) - { A5 M < k‘} = Z 1 uncountable Borel subset of

I with uncountable complemont and is honce some Aa‘ It is

obvious that ay should be clwgen from Z. Thug the set of

unused ay 8 is enpty completing the nroof of the Lemmas

Aunann's proof of Lemma 1 gocs as follows: Lot
an,l < < ﬁfl ] be the Borel gets as mentiored above.
(Noﬁzthatlzi 15 agssumed by Aumann). TPor cach o choose
Wo points x , ¥ satisfying the conditions (i), (iii) of
lemma 2+ This can be donc by transfinite induction - in a
simpler way than in TLemma 2« £ is dofined to be interchane
ging X, with Vo and keeping the other points fixed. That
this is insufficicnt for £ 4o have the properticg stated
in Lemna 1 can be cbscrved by using a choice made available

by Lerma 2¢  In this case it ig casy to goe that

~

20,8 =[5 1).

[}
[~



g 4. Atomlegg Stiucturecs.

A Dozl ourueture 1o ateorlegs 10 it has no atoms or

A

'equivalenbly 1T every noncmpty oot from the structure has two
disjoint ncnempty subsets from the structurc. It ig intercge’
ting to note thot this is equivalent to saying that every non-
empty set from tae gtructurc contains I digjoint nonenpty
-sets from the structurcs. The usual and simple example of an
atorlless Borel structure is on II. One can ask whether there

is one such on I ditsclf. The following theorem settles this

question.

Theorem 8: On any uncountable set X, there is an atomless

e et et et

gtructure.

Proof: Denoting by Ni the first uncountable cardinal number,

i-I
equip X 1 with the product of discrete (in fﬁct any nice)

I]
Borel structures on XK. Fix pe e Lot X, C x L pe the
set of all those points which Bave p  im all but finite
number of coordinates. Then by well-known theoren
(SLerninski [ 5 ] pe 592 Thecom 1 ) it Tollows thot X and
X, have the same cardinalitye vSinco the relativized struce-
turc on X, 1s atomless, the st~ucturc when car‘iod over

to ¥ by any onec to one nap will serve as a regqulired struc-

turc «
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The above thoorenm soyo, for instance, that the real
line R 'ing an olbomlese structurce  low ni cC can w¢ choose it
ve? Can we chosge it to be translation invariant? Reecall

that a structure Z on R ig tranglation invariant if

26 72 %y e R =D 4+ € 7.

Can we choose such a structurc contained in L - the Lebesgue

neasurable subsets? The Tollowing thenren conpiders theeo

- D

problenms:

Theorem 9:  (a) There

=
%

a translation invariant atomless

gtructure on  Re

2
2

(b) There is an atomless structure on I contained

7

—
=
e

(c) Therc is an atomlegs substructure of 0 on I.

Proof: (a) 1o X denotes the real line in the proof of
theorem 8, then X and £, are vector spaces over rationals

and have the same dimension. Conseguentiv there exists a one
1o oone additive map on X onto X ¢ Since the relativized
Jtruc ture on XO is tranglation invariant, the structure on

L brought by any such map is also translation invariante



.

(v) Tet T be decomposed as Xy ac Iy

-

weountable, pairwce disjoint scte of Lobesguc measurc zeTOs
b quick way of doing this is %0 fix any one tc onc Lebesgue
measure pregerving bimecasurable map on I conto I X I and
lm& at inverse imagcs ol vertical linece Fix an atomless
Barel ctructure B on X . Tho structurc generated by

(3 weI) is contained in and is otill atomliess.
=(I’

et

(c) Samc as above, but now the X s arc taken to

F

be of the first categorye A quick way of getting the decompo-
sition is to obgerve that the irrationals in I  end those in
IX I are homeomorphic where by irraticnals in I X I we

reant those poinis with both co-ordinaics irrational.

onc night wonder whether a separable structure can

contrnin an atorlcss structurc. It can indeed happen:

Theoren 10: Assumc CH.

(a) Therc is a scparable owalgebra ocn I contain-
ing an atomless substructurce

(v) There is a subset of I whose relativized

Borel structure contains an atomiess gubstructurc.

Proof: (a) Taking X = I in the proof of theorem 8 and

starting with the usual Borel structure on X we get an
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atomless structure cn I and the atomless structurc on I
obtained this way has cardinality ce Now applying thcoren 6
of chapter 1 we gct a scparable structure containing this

atoenless gstructurce

(b) Tes

HC

and D be the atomless ond separable
gtructures on I obtained aboves Fix any genecrator for D and
lock at the corresponding Marczewski function g with range
say Re Then the relativizged Borel algebra on R which is
£(D) contains thc atomless sub-structure f(Q)e This comple-

tes the proofls

We do not know if the wbove theoorem - or at lcast one
of (a) and (b) .of that thooren -~ could be proved without
invoking .QE: Ve also do not know if the usual Borel struce-
ture B on I contains an atomless substructurcs We feel
it does not. In fact we suspect that A - the structure gene-

rated by wmalytic subgets of I - docer nct contain any atome

legas substructurce
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Se A theorem of Blackwell -llackey.

In this gertion we ghnll pive a Tew applications of a
theorem of Blackwell,vhich ia alas duc independently to
Hackeys We shall sec how thig theoorem will be instructive in
answering in the arrirmative the question as to whether the
gymmotric © structu e on a product space is generated by the
symnetric rectanglese The theorem we are referring to is the

following:

Theorem 131 (Zlackwoll-Mackey): Let (X, B) be any analytic

space:

(a) If ¢ (C B is a countably generated

o-algebra then sny cet in 3 which is a union of (C-atoms

belengs to  Co

Pamne
o)

N
i~
)
@)

D C B are two countably generated

o-algebras with the game atoms then ( = D.

This theorem ip o (ircet consequence of the first prineiple of
separation for analytic sets (see Blackwell (1, scction 4]

and Mackey [1, secction 4]).

A simple application of the above theorem is given I the

following (comparc with Aumann [1, pe 628, lines 3, 4]).



]
~3
<

[ N

Lheoren 10: (o) T (X, 3) is ~n anal vtic opace, Eo is a
proper ean...o o ol B then (X, 3) con not be isomorphic

t0 (X, B

,(b) There exict co-analytic spaces Tor which

tihe above conclusion it TalsCe

Proof: (a) 71£ (X, B,) were isoncrphic to (X, B)
then it also will be an aalytic spaces. But then B is a
proper sub o-alrcbra of B, containing the same atoms as B,

viz., singletonse Since B is separable this is a contra-
2 P

diction in view of theorem 12.(b).

(b) Before exhibiting an example 4o the effec
we remind the reader the tern co-analytic spacc means a sepa=
rable Berel gpace (X, B) isomorphic 0 a co-analytic subset

the real lince

Ao oiven by Kond® [1] fix o subcet U contained in theé
irrationals such tnat any uncountable analytic subset of I isg
a one to onc continuous inmage of Ue Tix any onc to one con-

tinuous map £ on U onto I By B, we denote the

=1
o-algebra £7 (B)  where B 1o the usual Borel structure on
Io Obviously (U, B ) and (I, B) arc Borcl isomorphic and

in fact f dtwgel’ is an isomorphisme Let B . be the
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rclativised Borcl algebra on U. Observe that (U, B and

(U, gl) arc not Borel igomerphic - the former is non-Borel

[N

where as the lattor is isomorphic to a Borel subset of I

e« 1o et our example et X be

=1

Also obscrve that B, 5

-~ ~

the disjoint union of as many copies of U as there are

integerse A o=licld on X 1is obtained ag follows: For

He]

i

even integers ~quip Voowith By and for odd intcgers equip
: 21

U with B, Astructure D on X i1s obtained as follows:
For even integers and the intcéer 1 equip U with By and
for odd integers excluding 1 equip U with Boe Then

D C74 . Since (X, D) and (X, Q) both consist of infinitely
nany copies of U of whick in each case infinitely many
copies of U are equipped with B, and another infinitely
many with B, it is cansy to sce that (X, §) and (X, D) are
isomorphice Obviously (X, Q) 1g dgomorphic to a co=analytic
subset of thc real lince Thus (X, Q) is a coeanalytic space
and € is an iswvmorphic enlargement of De In fact one nced
not take Kond8's sob (which Kondd called Lobesgue set), the set
exhibited by Ae HMaitra [1] will alse serve the purposee IT
one does not ingist on gettirg a co=analytic space, many

examples can be consvtructed very casilyes

As another application of theorem 11, we shall prove the

Tollowing theorenm:



| amn
~i
av]
[N

Theorom 13: (a) Lot (4, %) »¢ an analytic spuce and f

a real measurable Tmetion o X dnduveinz the o-algebra DB

Then Bp consicte of ¢11 thoge clements of which are

Hev)

wnilong of f-abomge

£
—

(»)  The cenclusion of (a) need not be truc

(X, B) is a co-mmalytic gpacce

Procfs (#) is a svecinl cane o7 theorem 114

(b) Bither KondB's co-analytic set or the
Co-analytic set oxhibited by Ae Maitra roforred above will do

the jobe

3efere proceeding Turther, we gholl First sive a gimple

and clegant procf of theoren 5(a) using theorem 11le Take any
uncountable Borel set B and non-Borel analytic set A of

the real linec with their relsativiged Borel structures EB and

QA respectivelye. Iict £, g be any one to one maps of I

>

onto B mnd A reopectivelye Lot Be = fl (QB) and B

'él (QA). Then 3

g=
p and Bg are two sevarable structures on

I wher a5 their intersection is not. This i obvious from

3

theoren 1le In facst their interscction can not contain any

separable structurcs
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Tueorcm 14: For any Borcl space (X, B) the symmetric struc-

-

ture on  X° is generated by the symactric rectanglcse

proof makes use of thecrem 1l. If X =1 and g its Borel
structure then observe that the structurc generated by the
symmetric rectangicg ic countably generated and hence contains
all symmetric sets from theorem 11(a)e Since the other
inequality is always truc, the assertion is true in this case.

It ¥ C 1 and

oo

igs its relativized Borel- structure, then

. 2. ; s '
the gymmetric structure on X7 1s the regtriction of the

[l

- b

syrmetric structure on 1 and the gtructure on Xz gonera=-
ted by the symmetric rectangles is the regtriction of the
corresponding structure on I7. CJonsequently in view of the
Marczewski function, the result is true for separable Borel
gpacese Again, in vicw of the structurc isomorphism the
result is true for any countably generated Borel spacce If
(X, g) is any Borel space, obgcrve that the gymetric struc?
ture on XB always contairs the structure generated by thie
gymme tric roctanglese Converscly, let A be any symmetric

. < ) . - .
set in B. To show that A is available in the structure

generated by symaetric rectangles; toke any countably genera-

v

o
ted B C B such that A ig in g; and then apply the

conclusion drawm previously.
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An alternative proof iy by transfinitec induction. TLet
[
go be the rectaigles in Q“ and in genoeral ga (o < ( ). )

. . e . . , ; . Clsganes
congists or countable unions o cots in the previcus/and the
complenments of sets obvtained in that waye Then one knows that
[s]

‘o 4 . . . . 3
3 = U C e« ObLegerve that any symetric set in c is a

= o o

a < f)
symmetric reatansle and hence is in the structure gencrated vy
the symmetric rectansglese By transfinite induction one can
show that a symmet>ic get in any o tiese classcs Qa is in
the structurce gencrated by the gymmetric rectangles, comple-

ting the prooTe.

Another interesting application of Blackwell=Mackey
theorem is in tho characterization of tranclation invariant
subalgebras or the real line by D. Basu and d. K. Ghosh [1].
Take any 8 > Oe Identify two points Xy YER iff xey =ns
for some integer ne. Thig cguivalence relation gives in a
natural v, o cwoobucture B | [6] of the usual Borel
structure B on Re This is countebly generated and transla-
tion invariant (cegetei)s In fact all countably  generated

such structures are either trivial or can be obtained in the

above Tashione

Theorem 15 (Basu and Ghosh): My cCagebel Bo C B is either
ome of the two trivial ones, viz,s 7,R ! and B or is of the
. =

form B/ [8] for some 8 > 0.
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Proof: Since 3, iIs countably generatedy let Gy be the
atom contrinine N,  Suppoae EO i not triviale Then by
tranglation Ainvarlance of 2, it follewe that G 1s a

proper nontrivial gubgroup of R. By tueorenm 11(a), goz glG

where D5 1o defined apain as above by an cquivalence rela=
tions ow from ¢ +theoren of iackey (Mackey (1, 7«21) G is

closed and hence ig of tle fTorm [ndln € integers ] , for

gome 3 > 0. This proves the theorema
)

As remarkoed by De Basu and Je Ke Ghosh a complete
characterization of the translation invariant sub o-algebras
of B 1is otill rot knowme The above theorem characterizes
only thoso which arc countably generatcds It 1s ecasy to
construct non-countably gencrated translation invariant struc-

tures not covered by the above theoroens.

B 6¢ Dorl . o.ogwarcs for Function spaces.

et e . et o

The probleom w2 treat in this snction is rather different
from the kind of probleme wo were discusgsing earlier in this
chaptor. The problem is this: Suppose (X, B) and (Y, g) are
two separable Dorel spaces and F is a collection of measu-

rable ovo Jrom ¥ to Y. There is then a natural map

g. 7 x> 7 defincd by F(Tyx) = £(x)e Let us say that F
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~

is admissible 17 there is a Beorel sihructure g on F guch
that the map ¢ from the product space ¥ X X into Y is
rieasurable; where ol courge, the product space is equipped
with the product c=alachra E X Be In that casc ﬁe refer
to T as an adolgsible structurce for e What are the admig-

gible sets and how nice can *he admissible structure be chosen?

This is partially answered by the following theorems:

Theoreom

-
(o))
3
et
)
(@}

following conditions on a family F are

equivalent:

-
Pe

i) P is of bounded Borel classSe

11) P4

4]

adnissible.
iii) There is a separable admissible structure for Fe
iv) The power sct of F is an admissible structure

for Iy

2

35

™

This theorcm, in cssence, is not nows This was fir
proved, i. a diliferent form, by Aumann [1]s He has proved, to
be more preeilse, that (i) and (ii) are equivalent and imply
(iii)« Fis proof is however quite complicatede We shall give
an elegant and ncat treatment of the problems. dJust as the
universal analytic scts played an important role in the previ-
oug chapter, we shall employ the universal functions as the

key tool to prove this theorems Before starting on the proof
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we have to develon a swmall anount of notatione

Tn view of the Marcrzowski funcitlon, we can and shell
toke X to bo a aubget of I and B to be ite relativized
Borel algobhra.  Similor ig the canse with (7, g). Without
explicit nention, we shall give the relative topologies to

X and Y. Je ghall oosume the propertics  of the Borel
classification of functionse We shall say that a collection
F of measurable maps on X to Y is ol bounded Borel class

if there is an ordinal o« < () ouch that every £ in P 1

S

of class < oe A good gource of reference is again Kuratowskil

[2, page 373]. We shall denote by C, (X, ¥) the set of

o

Borel functions of class less than or cqual to «y for
0 ¢ a < {J)e In case no confusion ariscs, we shall not hesi
tate to write, ¢, for G, (Xy Y)o If X =Y =1 and

« < { ) 3 then we can define o Borel function Ua(x, y) on

IX I such that
(I,‘ I) C (“g ') xXE I} °

This fact folliowg Trom the corresponding - and in fact
stronger - result for Balre clagseification of functilons
flatanson [1] pe 137) and the connection between the Borel
and Baire classifications on the unit interval (Kuratowski

(2] pe 393). Without distinguishing between additive and



multiplicative clasces of setoy we shall have an occasion in
this section Ho woo the Borel classification of sets in sSepa-

rable metric spoctg

We aro now in a position to prove theorcm 16

Proof of (i) => (4i): Since obviously subsets of admissible

sets are admigsible, and since any collcction of functions of

vounded Borel claas is a submet of some o _(%,Y), it suffices
jet

t0 show that Ca(X,Y) is adnigsible for ecach a < § Le

Tn case X =Y = I, let us choose a function Ua(x,y)
on I XTI as mentioned aboves Choose a subsct 2 of I

(sxion of choicel) such that the map
Me ™ . .
T: X => U(x(} s *)

ig one to onec on 7 onto Ca(I’ I)e Having thus identified
0, (I, I) with 2 via T, the relativiged o-algebra on 2 can
be brought to Oa(I, I) in an obvious way. Observe that T

ig now an isomorphism between C.oa and Z. Morcover,

Ua( Xy V)

If

CP (Tx, 7) Tor x6 2 ,y€l.
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Since U is jointly measurable on I X I, § 1is measurable

on ¢ X X ag desirede

In case X O I, Y =14 observe that any clement of

<

ca(x, I) can be regarded as the restriction to X of an

clement of C_ 5 (I, I) = in viecw of the extension theorenm
for functions (sce Kuratowski [1] pe 434, 435)s Thus C_(X,I)
can be identified with a subset of C_ 5 (I,I)e Observe that
thig identification nceds the axiom of choice, because an
clement of C_ (X, I) may be the restriction to X of more
than one element of € ,(I,I)e Since C ,(I,I) is admissible

by the above paray it is not difficult to sece that Ca(X,I)

is aloo admisalblce

In cagse X C T, Y C Iy obgserve that Ca(X,Y) is a
subset of Ca(X,I) ~ because any clement of Ca(X,Y) can be
thought of as an clement of Ca(X,I) whose range is contained
in Y. Sirce Ca(X,I) is afdmigsible by the above para, we

hove oa(x, Y) also to be admissiblces

Thur our asscertion is proveds Observe that in each of
the above paras, the structurcs we have obtained for C, is

separable = a Tact that is nccded laters



Proof of (i1} =>» (i): PFirst we show tuat if (), B
a geparavie meimic gpace witl its Borel o-algebra and

( iﬁll, B.) is aay measurable space ond il Z C £ﬁ213x.£il§
ig any gset in the productAG—algobra Eﬁ X go then therce is

an ordinal a < { ) ocuch thot overy voertical section of 2 is
a Borcl cot of class less than a in i:lo. Since any set in
the product o-algebra is avallable in the o-algebra generated
by a countable number of rectangles, a moment's reflection
will show that therc is no loss in taking 21 to be countably
generateds If M,y o arc available in the same atom of 91
then it is clear that the x- scetion and the y-scction of Z
are same (Reason: When B and B arz countably generated

then so is gl:K B and the atoms of El X arc precigely

=0

lites

0O

sets of the form A X B where A and B are atoms of By

and B, Tespectivelye lorcover overy set in B, X B, is
union of atoms)e Since we are interested in only the vertical
gections ol 4, whe above considerations show that therc is no
logs in taking By %0 bo separables Again by using the fani-
liar teclmiques involving the lMorczewskli function we can
suppoge that ﬁil ig 1 separable metric space and B is its

Borel algebra. But in this casc our agsertion is a wellw-

known easy theorome (for instance gec ruratowski (2], pa347).
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Wexht supnose that F  ig an admissible collection of
maps from X to Ye Tet I, be intervals with rational end

points in T By the remark made ahove, there is an an< )

in Ye (Remembor that Y and Y are subsets or I)e Take
a < ﬁjl which in strictly greater thom Sup o, e Since the
-—1

-1 a
f-section of @ (B) is nothing is £ (B) it is not Aiffi-

cult to seo that F is contained in C_,5 (X,Y)e

Thus (i) and (ii) arc equivalente If F has a separa-
vle admissible structure, then apriori, T i1s admissible and
nence (iii) => (ii)s Conversely if T is admissible, %hen
as shown above T is of bounded Borel class and hence as
remarked in the oroor of (i) => (ii) there is a separable
admigsible structurc for T, thus proving (ii) => (111).

Since any gtructure larger than an admigosible structure is

again adminzible, obvicusly (iii) => (iv)e To the conversc,
if the power gset of F ip alnissible, then F is admissible
and hence hags a senarable adnisgible structures This comple=~

tely proveg the thecoren.

A corment is in ordere One might be wondering thet in
identifying an arbitrary separable Borel space with a sub-

space of I, via the Marczewski functiony we have fixed a
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generator and thot conmequently our theorem depends on the
generators But actually it is not soe We chall now show that
if under some identification a collecticn P of maps from

X to ¥ 15 of bounded Borcl class, then it romains so under
any other identification. The proof of this statonent depends
on the coumposition laws for Borel functions (sce Kuratowski
(2] pe 376) and nrococds as Follows: Suppose (X, g) (v, g)

are the two spaces to start vithe Let & and

52

o be two

countable geonerators fTor D and gi, §2 for Ce Let Xl’
Xo be the subsehs of I with which X is iddentified via

the liarczowski functions &1 980 agsoclated with 21 and Qg,
regpectivelys Sinilarly Y., Yz be the gubgets of I, with
which Y dig identified via the Marczewski functions hl’ h2
aggociated with 1 and gg » Let i be the map on X2 to

]
=4
hen

] defined by

i(x) = gy o8 (%)
and j be the map on Yy to Yo defined by

. -1
i) = ey ().

let 1 be of class g from X, %o X, and J be of class
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YY fronm Y, to Y,e Supposc £ ds a function from X to Y
which under the identification of (X, ¥Y) with (XI’ Yl) is
of class < oe Tlon undew the identification of (X,Y) with
(Xo) Yg) it is of class £ YV + ¢ + Pe Thus if a collection

¢ of funciiocns ig of boundod Borel class under gonc identi-
fication, °% recmains so under any other identificatione It

ig however truc tihat Cm (X, Y) depends on the particular

identificatione

Two remarks chould be made at this point regarding

=

Aunann's proof of this theorems First, note that we have made
uge of the awionm of choice in the above proof. Aumann also
nakeos use of it, though he docs not cxplicitly state it (see
especially the dirmcussion following Lemra 41 of Aumann b,
Sccond, wc have nade use of the elready cxisting Borel clagsi~-
fication of fuactionse Aumann defincs Banach classes of func-
tiong = which is again donc after fixing a generators There
ig no difference hetween Functions of Bounded Borel class and
functions of Bounded Borel class and functions of Bounded
Banach classe In fact, it straight away follows from the
definition of Aumenn, that if we start with certain types of
gencratorg, then cven the class o' a function will be sgane
gocording to Aunagn's Banach classification and the Borel

clagsifications Howover w2 shall not enter into the
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detailr “ecause, they arc straight forward and necd recalling
Aunann's definitionse IMorcover this will not be nceded any=-

where in our futurce diccugoions

One can aclt whether consistent structures can be given
to €, (X%, ¥) Tfor 0 <« < ()e That is a structure ¢, on

¢ such that

i) g, 1o separable,

ii) <3 < g dioplics Cg €&y J
iii) 0 < 8 < o dimplies gaicﬁ = Cg .

The answer ig in the affirmative and follows from the next

theorenes By ¢, we denote the collection of all measurable
U c
a< ) ©

Theorem 17: Tnere is a gstructure C on C gsatisfying the
P S e O} o0

functions from X to ¥, that is,

following conditionse
i) P (. G, is admissible iff (., | P is an admig-
8iblé structure for F.
ii) The structures (. ’Ca are consistent in

the ahove sensce

Norcover, if we asoume CH, then C_ can be chosen to be

separablce.
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Proof: Put

) . . * *

Pix any separable adnissible structure -ga for Ca’ Co, 1is
s 4. , o % , , *

the digjoint union of [Ca sy 1< a <()3e Define £ on G,

to be the structurc generated by [gz y 1 £a< () Jo We
shall now show that this satisfies our requirementse First
observe that any Cy is the disjoint union of the countablel
nunber of Cg for g £ o and the structure €y Oon G,
generated by (g’g, B.{ «) is admissiblee In other words

Coo | C, is an adnissible structure for C&. Since if F is
admisgidle, then P is contained in some C&, it follows
that (/P is an admissible structure for F. OFf cource
obviously, if C,|F is an admissible structure for F, then
I is admissibloe Thus (i) is provede Since, as already
obgerved above gwlca ig generated by the countable number
of separablc structures QE for B £ a 3 1% is clear that
gmlca is a scparable gtructures Since this is obgserved above

to be admiggible (ii) is aloo provede

It now remains to prove the last statement of the
theoreme Observe that if a structure (., on €, satisfies

the two conditions of the theorem then any separable structure



contailning C.. will also gabtisfy those conditionse Thus it
sulrices to exhibit o geparable structurc coutaining the ¢
exhibited above »n (... For This it suffices to verify that
Co Bas cardinality < ¢ (din view of the separabality of

Borcl spaces unicr comsideration) and then apply tlieorem 6

of chapter 1.

Having seftled the problem of admissibility of subsets

-y

0 Oy Through theorcm 16, it remains to discuss the quesg-

-

tion as to how nice can an adnissible structure be chogsene

We already know one regult in this direction - that is the
adnissible structures can be clhiosen to be separablec. We

also know tlat structures can be so chosen that they are con-

sistent in a certain sonsces The aspect that we now discuss

ls regarding mininel itye

Let T oo an odmissible collections Aumann defines
P to be matucral il 1t is adanissible and any admissible struc-
ture on P contains s In otherwords an admissible struc-

is the interscection of all admissible

4

ture is natural if it
structures on Fs He has given an example of a.family P
without a natural admissible structures We shall explain
the same example in a different - but essentially-equivalont
- terminology. Take any two separablc o-algebras B, and
By on I whose dintersection is the countable-cocountable
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structurce Let 3, be the structure on I generated by Eo

and B+ Both o7 our spaces (X, B) and (¥, &) are (I, Bo)e

.,
ot

”~

Our P congists of indicators of singletons in I, Thus P
and I can be idertified by the map indicator of a point
going to the pointe Obgerve that with such an ldentification
B, and El caw be thought of as structures on F. The eva-
luation map ¢ : ¥ X I -> I will take only two values: O and
1. Consequently, a gtructure 'g on F is admissible iff
él(l) is meagurable in F X I. In other words iff the set

[ (Xe %)+ X, is indicator of x ] is in EX

iles]

: o e Since
B, and B, (thought of as structures on J) are scparable it
is easy to see that they are admissible structuress But howe-
ver their interscction B, n By which is the countable-co-
countable structurc can not be admissibles Thus there is no

natural admisgible gtructure for this TFe However P is

adnissiblce

Let (I, B) be as usual the unit interval with the

Borel o-field.
Theoren 18: CQ(I, I} has o naturdl structure if o = O

Proof: Obscrve that C (I, I) consists preciscly of the
continuous functions on I into I. It is complete separa-

vle metric space, when equipped with the usual supremn
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o~ N Tl T ATl u "1 s By - 1 g
metrice Its Dorti geglzebra ig an admisc

ble structure, In

22
e

fact the nap ¢: 3. X I => I 1is continuous in either argument,
having fired the othor argument, end honce will be measurable
it C, is given its topological Borel structurce As one

knows the Borel gtructure on Cq, 1o alvo gonerated by the
evaluation maps (namely, fix & point x€ I and look at the

nap f going to f(xo)) and ig coﬁSOquently contained in

every other admissible structure.

In passing we note that if 7 F, and if P, has a
< [

hatural stmuchurc sny P, then P, also hase In fact

ZG

Io o Fl s 15 natural structurc for Fie To observe thig note
firgt that T, Dbeine admigsible for oy Eo ﬁ_“l is admnig=
sible for Fye Ilow take any other admissible structure Z

*
for ¥, e Then the gtructure 7 on Fs generated by Z and

[

Fn restricted to (75 - Fl) will be admissible and hence
* * .
7 ) Fs » OCongeguently z o P D Tono ¥ e But trivially,

Lo¥ =2 and hence 3% D) Foon F, s Thus any admissible

HIes
70

‘structure on ¥, contains F, n Fie

v

(93

This remark leads s o beliove that, many subsets, even
in the casz of the unit interval have no natural structure in
the sense of Aumann. This lcads ug {0 define naturality of a

structure in o different waye A ceparable admissible -
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structure P for an admissible family F  is natural if no
proper suhstructure of F ig again admissibles The differ-
ence between cur definition and Aumann's definition is
obvious. Our derlinition of naturalncgs is weaker than that
of Aumanm, 1t is clecar that if the set Z that occurs in the
proof of theorem 16 1is a Blackwell spacc then the structure
we have on Ca (I, I) will be naturale Rceall that a space

(X, B) is a Blackwell space if it is a separable Borel space

and go is separatille Borel structure for X contained in B

g T

implies By, = 3» For further details regarding these spaces
gee As Maitra [1]. Thus the existence of natural structures
(always in our senge, hereafter) seems to be connected with
Blackwell selectionse But however, we feel that the exisﬁencc
or non~existence of natural structures should better be
treated directly rather than through seleéction theorems =~ asg
one knows that in general nice selections are difficult to

obtaine.

Leaving the discussion of our problem for the separable
case at this point we shall now passon to the countably genc-
rated cases So let (X, E) and (Y, 8) be countably gene-
rated Borel epaccges In this case either we can straight away

regard these as scparable pseudometPic spaces with their Borel
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algebras or we can look at the spaccs or atoms and apply
theorem 16 Since amy measurablc function £ from X %o Y

ia constant on atons of X and thus can be thought of as a

)

map I on X into Y, the gpaces of -atoas, we can’

[ {

define T %0 be of class of o if is of class a (of
course wa.r.be some fixed goneratorq). In this case theorem

16 takes the following shape:

Theorem 19t Let B e a collection of measurable maps

from (X, B) %o (¥, ¢) where both thesc Borel spaces are
countably generateds Then the following are eguivalent:

i) P ig of boundcd Borel classe

11i) P has a countably generated admissible gstructure.

iv) For T, its power set is an afnissible structurcs

But for sone Fussy details regarding the guotient strucrures
o 7 : q
T and Y 4 ... svoof of this theorcnn is stralghtforward by

uging theorem 1Ge For a detailed procfi one can sec Aumann {11,

The problem of this section in case (X, B) and (Y, g)
are not countably grnerated is worth investigating andvthis
is what we shall do now for the rest of this sectione We
shall give a complete golution of the probiens. To do this

finitionce roaftor we acsume that (Y, G)



is separable till Further notices

A colloction oo functions F  frouw (X, B) to (¥, C) is

ol

said to be of bounded 3orel class if there is a countably

gencrated cub o=alpcbra B C B such that

in ¥ implies L 1is @0 ~ nmeasurable

)

It

i) f
ii) P is of bounded Borel class werets (X, B,

and (Y, C)e
Tith this definition we have the following theorem:

Theoren 20: For a collection F, the following are equivalent

i) P is of bounded Borel clasce

ii) P is admissidles
iii) P har = countably gonerated admigsihle structure,
iv) Tor 77, its power set is an admissible structure.

proof: () = (42):  Suppose P iz of bounded Borel classe

ness of F. Tow we can treat F as a collection of moasurable

be fixed satisfying the definition for bounded-

v

maps from X to Ye IHence by applying theorem 19, there is
a gtructure F on F set the map Q : PX X «> ¥ is measu-
rable. Now even if we increasc the stfucture on X Ifrom Eb
t0 B - that is even if we increase the o=-field in the domain

of Q y ¢ s%ill remains nmoasurable. Thus F 1is an admissible
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]
ey

Lt

gtricturo .

#e Tirst ecxalbit countably generated o=alocbra 34 C B such
that every clement of Fois B, meagsurable., Let ( G n 2 1

be a generator for s By using the Tamiliar tochmiguc that
any measurable set in a product space is in the ow-algebra
generated by countable number of reetangles, we can find a
countably generated o-alpebra B C B oucu that ¢ (&) is
in I, X B, for all ne In other words @ is F_X B
5

neagurables 8Since for any GC G, @L(G)e Py X B, and since
;%G) is nothing but the f=gection of @l(G) it follows that

-1
for any f¢ F, £ (G) € B

[ar

ot In other words any clement of F

is go measuratles Thus F  can be treated as a collection

of functions from the countably gencrated space (X, B,) into

(Y, 2)o P is still admigsible, since F is still an adnis-

siblc structurees Thus from theoren 19 is of bounded Borel

il

tlass relative %o EO In view of our definition of bounded

Borel classes (i) is satisfiede

et
jwl

(iii) Ovwviouciy implies (ii). Conversely if is

I

fas]

nissible with an admissible structurce ¥  %Rhen Q: FX X=> Y

s 2X 3 casurablce By an argument analogous to that of the

above para we can find a countably cenerated siructure
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o 5
E, - ig

Yo
0
5
ot
o
ot
>
Hr=d

o X B neagurable. This

=l
N
o

the requircs countably gencrated adnigsible structure To F

<t

proving (iii)e

Since structures larger than admissible atructurces are

. .

sti1l admissibie (iii) => (iv)e Conversely (iv) a priori

P

implies (ii) and hence irplies (iii) from what has been proved

1

above. This proves the theorem completelye

A thooren similar to the above theorem can be stated and
proved for the case where (Y, €) is countably generated and not
necessarily separable - Just ag theorem 19 was formlated

sorresponding to theorem 16

We shall now pass to the general case. Let (X, B) and
(Y, ) ‘be any Borcl spacese Let {. ¢ a countably generated

substructure of C and P a collection of measurable maps
from (X, 2 %o (V, 3)s Ve say that T is bounded for ¢, if
the collection P regarded as functions from (X, B) %o

(1, ¢, is of bounded Borel class. Recall that this means
the existence of a countably gencrated substructure go C B
(of course dopending on () such that cach f in F is
(Qy gQ) reasurable and the collection F is‘of bounded
forel class between the two countably generated spaccSe We

now have the following tlionrotu



Theorenm 21: Let (X, B),(¥, C) be any two Borel spaces and T

8 collectvion of measurable maps from X to Ye Let €  have
a generator of cardinality I where N is any infinite -car-

dinale. The followins conditiong on F  are cquivaloent.

i) T is bounded for any countably generated
stbstructure of Co
1i) P is vounded for any finitely generated
substructure of Ce
iii) For ¥, its power set is an admissible structure.
iv) P ic admissible.

v) Ther

(¢}

is an N =generated adnissible structure

on Fe

Proof: The scquence of the proof in (1) => (11) => (iii) =>

(iv) => (v) => (i)
The implication (1) => (ii) ic *triviales

(11) => (iii) 15 proved as follows: Lot I denote the power
set of Fo Take any set A 6 Ce It suffices to show that

;KC) ia in g X g where as usual Q is the map Q(f,x):f(x).
Look at the gtructurc on Y pgiven by go =[¢, A, Ac, Y1
Since this 1s finitely generated, and F  is bounded for o

row applying theoren £0 (In fact, to be more precise, the
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analogue of theoren 20 about which we have remarked, but not
explicitly formmwlated) F has an adnissible structure { or.

in other words the power set of F  is adnissiblee Conge=-

(11ii) a priori implice (iv).

(iv) => (v) ¢an bo proved as follows: Since T is admissible,
let F Dbe any adnissibloe struciurc. Fix a gonerator

( G «e T for ¢ where cardinality of T < N o With each
¢, Pix a countably generated subalgebra F, C E such that

-1

q (Ga) is in E_ X Be The structure generated oy

( P 3 «eT) will now be adnissible for F and is N «génera=

.

ted gince I dis infinitce

Proof that (v) => (i) is as follows: Take ay admigsible
structure P Tor F (whetuer - generated or not) and any
countably generatcd C g C €. Since I is still an adnis=-
sivle structurce when F  is regarded as a collection of
functions from (X, B) to (¥, C,) we have to apply theorem 20

(or its analogue agc mentioned above = Lo be morc precige)

t0 terminate the proof of this theorcie

Though the naturality cf structures can be defined even

in the non-separcblc casej the unkappy state of affairs =
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exigting in thoe separable cagse have refrained us from doing
50 = for wo hrve o just be content with the formulation and

without even an upgsilon ingight into the problenme

8 7 Lattice of Forel siructurcg.

For any non-enpty set X, we denote by LX
the collection of oll o=algebras on Xe To avoid trivialie
ties we make the planke® asgsumption that X has more than

two pointse For ¢, o' in LX we define
o £ o iff  C ot

With this definition Ly 1s a latticee For o, ¢' one can

take

o V o' = snmallest structure on X

generated by o and o'

Q

Kﬁ
Q
il

gset theoretic intersection of

o and o'

Ig fact Ly ig a complete lattices Therc is a null element
in this latticc, vize. { 3y x} and o wnit element, vize, Oy
the class of all subgets of Xe These will be denoted, as

is customary in latiice thoory by O and 1 respectivelya
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Juct as its cousin - %lc lattice of topologics, this lattice

b not dintrivutives TFor instance one can take

s
i

X =Llay, v, ¢]

o=Ld, (a, b)Y ,(c), X]
o'=[g, (®) (a,c) , Xx]
o'={d, (a) , (v, c), %]

to verify,

o" AoV e') £ (o'mp o)V (' p o)

However there is one main differonce betweon thoge two
lattices -~ that is Ly and the lattice of topologiese. The
former,as we show later,is not complemented where as the
latter is known to be complementeds Beforc procecding to
the deeper investigation of the lattice LX’ we shall recall

a few definitions from lattice theorys

Levw L Lo any abstract lattice with O and 1. ILet

as b€ Le SaFg that an element a' in L is a complement of a

rclative to oo4if

aVoa' =b g, a Aa' =0

Jay that a' 15 a weak comploment of a relative o b if
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a VvV a' = h,

If b =1, 'complicenment relative to b'  will be sinply written
as complenents Sindlar renark applics "or woak complenenta.
Observe that any complement is also o weak compleoment, though
not conversely (an exanmple to fhis effect will be provided
later)s Also note that ncithor complencnts nor weak comple-
nents neced be uniguce As a matior of fact, in the oxanple
given above to aghow that Ly ig not distributive, we find
that both o' and o' arc conplcnents to oce A weak complce
nent ¢f a relative to b ia said to be ninimal if no clement
suollcer than it 1n again a woﬁk complenents A nonempty subset

A contained in L d1g an idenl if

vy 0 C A dnply aV b 6 Ae

L C Ay b<a inply b £ Ae

An ideal A is gadd to be proper 1T it is properly contained
in L. A proper idenl is naxinal if the only proper ideal
containing it is itselfe A maxinal ideal A 1s said to be
principal or fixed if there is an elcment a, in I (of

that

h

course, dependins on  A)  sucl

-



A maxinal idcal which is not Tixed is callced freece Dual
concepts to ideals can lso be defined but they are not neccgw

sary for our purposcoe

Our prograriic now ig to thoroughly discuss the conple~-

nentation in LK and then go on to naxinal idealss

Theo

i

v 298 LX is complemented iff X 1is countablese In

case X i1s countable, the complement of any clement other

than 0 and 1 is never uniquae

We shall conclude the assertion nyde by the theorenm after

observing scveral Lommage
Lommg 1: If X ig countable, then LX is complemented.

Proof: L. s Lye It is casy to see that o ig countably

generatede In fact it has atong- (An’ n Z 1) 3 cither
finitely many or infinitely many such that a subset of X
belongs to ¢ if and only if it ig the union of sone atonsge
Let A, %be any choice set for (An, n2l) - that is a

sct which has onec and only onc clement in comnon with each Aye
Let o' be the o-glgebra on X generated by AO and all

. . . ¢ O
singletons, if any, in Aje - We ghow that o' i g



RS Taol:

complenent of e Lot 2 bo any noncmpty set in o A a'e
Since 7 € o it contaodins sone Ai and oo hos nonenpty inter-~
scetion with A« Since Z ¢ o' and has noncupty intersecs

-
s

tion with the aton Ag, we have D D) A, oo that 7 intor-
sccta cvery atonm of oe  How the fact teat Z0 o tells usg
that 7 = e Thus o A o' = 0s X Dbeing countable, in order
to show that oV ot = 1, it suffices to verify that every

2

singleton beclonis to o V o'e Again by definition of o* 1%
suffices to verify that overy singleton in  Ag belongs to
o V o'e DBut thic i obvicus becausc any singleton in A, is
the intersection of Ay (vbelonging to ') with some Ay

(velonging to o)

o -
h 1

[
b
b

Lomnn

i countable and o € LX ig neither 0 nor

1 tnen o has ab least two complementss

Proof: By Lomaa 1, o has at lcast one complenent.

1f o ie neithe= 0O nor 1, them ¢ has an aton with at
least two points and thus there exip at least two different
choice sets that occur in the proof of Terma le Since o £ 0,
two different choice sets give ripe to two different comple-

nents by the procedure outlined in the proof of Lemma le

Temria 33 Let o < of Dbe in LX'

If o' is o nininal weak

.

complenent of o relative to  o%, then o' 1s also a



e converge need not

Proof: Ve have to show, to nrove the nowsitive part of the

lemma, that o Ao! = 0. Lot A

be any nonenpty propor sube
set of X dn o po0'se We oghioll produce a weak complement of

¢ relative to o* goaller than o', thus contradicting the
o . o . c
minimality of o'e Tc do thin chocse =8 4, Y& A e Lot o'

congist of all tlicse clements of o' which do not separate

X and y, that is
B 7T) 'g X, y‘} or
3 0 {x,y} .

Obviously o'' in a o-glgebra on X and hence belongs to
L

ot = EBG ot

I
<
()

e Sincc A g o'y o' < o'es We phall now show that

1o showing that o' is also a weak complemente
Since we airecady know that o V o' = o* it suffices to show
that ¢ V o' ) o'e Lot Z € o'e If 7 containsg néither

¥ nor y then by definition Z € o' Also if Z contains
both = and y oven then 2 € o' So let %6 2, ¥y £ Ze
Stnce both 2 and A% belong to o'y 2 0 A° £ o' and since
mreover 1t contains neither x nor ¥y it belongs to o't

¥ a gimilar argunent (20 A) U A% belongs to o'« Since
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Le o, 1t follows thot

Z onoA= [{(20A)TATD A
. . X , " o o AC -
selongs to o' W ooe Thus both Z2 01 A end Z il AT belong

t0 o V o' and hence 7Ze o V o' Obgerve that if Z€ o' is
such that ye Z, x g 7z then by the above argument Z7€ oV o
and hence 2 £ o V o' Thws any 2 € o' also belongs 60

o V o' as desircde
To oboerve that the converge nced not be true take

X =  nit sqguare .
o* = Borol algebra on X,

o = Structure generated ty the vertical lines,
leCe, senerated by the nrojection function
to thic Xe coordinate.

o' = gtructure generated by the horizontal lines,
thet ig generated by the projection to the

Ye coordinatce

G = o' V (Porel algobra on the X-axis ),

Then one can eagily verify that o' and o' arc both comple-

i

nents of o relative to o*, ¢! > o't and consequently o%

mininal weak complement of o relative to o%.

fa
=
o}
O
ot
o2
(@]
o

Sometimes we use Wece for weik complemente
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Lerma 4t Let o < o* € Iy vhore o* is countably generated.

~olative to o* contains a countably

-~

Then any wece 0T o

generated wece Similar gtaterent ig true for complementse

Proof: Let o' bc a wece Of O relative to o* o Take any

A

and G} for o and o' respoctively. Then
G* = Gy UG ig a gonerator for o V o' ana hence for o*.

Congequently G* containg a countable sybgenerator (Zn* n > 1)

ol

ot o' Dbe the gtructure generated by all those 2, s whiich
arc not in Gy« Obviously ‘o't is countably generateds ‘Since

any %, which ic not in G, shoculd belong to Qi it follows

n

that o' ( o'e ioreover, o V o' contains all the Zp S

and hencc contains o*e Thus o!' d1s als0 a WeCe

Lerma 8@ Let o < o* € Ly whore o* is countably genorated.
Then any minimal wece 0f < relgtive to o* - if any - is

countably generateds
Proof: Obvious from mingaality and Lerma de

1 Let oy 0o 0 Ly and I an atom of ooe
oy V ooy | W= oy | o

whers o|N  is the restriction of o to N
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Proof: Obviously oy |7 C oy V oo |We Sinece oy U op is

a gonerator for o V o, 3 inorder to show that oy V op)N
it sufTices to veriry that interscction of any

plepment in oy Yoo, wWith i in ci§i. Again gince it

ig obviocus that the intersection of any elenont in- oy with
i, it suffices to verify that o]l (C UllN.

Since ¥ 1is an atom of Jo, oo |8 =L #,0]1 and hence is con=

i

Lerma 7: Let X TDe uncountablec and o* ¢ LK be separables

et T, be the countable=cocountable structure on X

(o

Tnen oy has no complement ralative to o*e

Prooi: Let Gé ke, if possible, a complemente By Lomma 4,
there is no loos in assuning that dé is countably generated.

Let A be an abom of Gé- By Lenma Gg

Since o v Gé = o* ig soparable the left gide i

,.

5 a separable

bé

structure to A where as the right side is the countable=
cocountable structure on A. Since A is uncountable (
Reason: A belongs to cé and hence can not be in o, except

when A =¢ or X) this is a contradiction.



{1057

Lemng 8: With the same hypothcsis as in Lemma 7, Let

e LX‘ Tl

oV e, = ( 2| Ze A 1is countable for some

A in o)

Proof: The right sidc of the above cquality is a o=algebra

containing both o and o, and any structure containing ed

and o, should contain all such sctse

Lertza 9 With the same hypothesis as in Lemma 7, o has no

~complement in DLy

Proof: Let if possible o be a conplemente Put

cff =ocl no*

We arrive at a contradiction to the conclusgion of Lemna 7, if

we can show that c'(')' is a complement of o, relative too*,.

Obviously o, n o) is { g, X}. In fact

{%X\] C o, N oY CG‘OQO‘}‘):{QS, XS.

It remains to show Ty v o‘g = o¥, Since both %o and 0'6‘

are contained in o* wo show that



r~ .
o Lo T ool
Let 2. ¢ w¥e Bino ol Vo, =1, we have in view of Lerma 8,

sets Z,, Ay in ¢! and o rogpoctivelyv such that
1 AL Q i i o

2 = :r] FAN VA:’L. Sinece 7 £ 0‘*’ Zle o¥ o Consequ@n-tly Z_] e o«éi .
Again by Lemma 8 (or even directly) zZe o, v o) o This cone

pletes the proof of the Loemmae

Lemma 10: If x C Y anad LY is not complemented, so ig

LY'

Proof: Let o be any structurc on X which has no conmple~

ment in Ly- It oy is the structure on Y generated by o,

then oy can not have a complement in LY, for if it has,

8aY Gi then it ic not difficult to see that ci X dis a

complement to o in LX'
Lemng 11: For any uncountable X, Ly 1s not complementede

o

Proof: Let X oe any get with candinality Ni, the first

unccuntable cardinele In view of Lemma 10, our asscrtion

will be proved if, we can show that LX is not complemented,
Since we cun find separable o=aplgebras on X, the hypotheses
of Lemma 7 is not vacuous and comsequently an application of

Lemma 9 completes the proaf.
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The proof of the main theoroem ip thus completed in view of

o

Lemnas 1, 2 1le  The reader nmight Lave noticed that we
have nowhoere nceded Lerian BSe  But because 1t is dnteresting

in its own right we have stated it separately - though it is
included in Leana 4 I0 view of our theorem and Lemma 3 (
which is aloo not uscd in the proof of the theorem) it follows
that even ninimal weak complenernts necd not existe This
answers o queoticn raiscd by De Basu (Seec, De Basu []J)s
Though our theorem theoretically emswers the complementation
question in L.y stdll many interesting problems remaine To
nention one, what arc those countably gencrated substructurcs
of B on I which have complements relative to Be Trivially
amy B, (U B which has only countable number of atoms hag a
relative complencente We do not have any satisfactory anpwer
to the above quostions We exhibit in the theorem below, a
class of such structures. To do this we feel it convenient

to work with 2% rather than I. We donote by B the Borel
structure on O"s Since we do not bring in I now, theore is

no foar of confusiocile

o . . w o
Theorem 23: ©Lct o he a continuous function on 2 into a

; -1 N4
polisl space such that for a1l ve Ronge of &, 8 (v) is

L)

honmecworphic 6o o"s Lot gp C B Dbc the cubalgerra inducod
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by ge Then 3B has o nininal weak complcment relative 1o

£
B.
e shall break tue proof into severar steps. The first is a

Lemma of Purvese

- . 4 N L F
Lemma 12: There existv homeomorphisms sz £ l(V) onto 2V

. . w w
guch that the conbined map o 2 to 2 b
x5

0
N

L WK1

e
~—r

- ?V(x) it xe g (v)

is a Borel nmapas

For a proof see Purves [1]. Purves takes his function to be
I ] X a” AW .
defined on a Borcl gcubect of 2 and denmands that g be

bineasurablee. His uroof carries over to this case ae well.

- . . s . - w y
Torma 13: Let 0O Do any fixed point of 2% and R = s*H(0).
AW

Then R 1o a sorcel subset of @ and is in fact a gelection
for the partition inducecd by ge Here o is the map given

in Lemnma la We tacitly agsume that the Qv s stated in

K

"

Lerma I are already Tixed (Recall that » selection for a

~

partition of a space is a subset of the space which hag one
and only onec point in common with each clement of the parti-

tion) .
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Proof: Since o is o Dorel mav, R 1le a Borel gete Since

- . ) . -1 w
cach Ty G4 omconorphion betwoen  F (v) and 2 and

.
L, on g “(v) it is obvious that

gince @ coincides with ?
R is a sclectione

) . ) W .
Tomma 14: Let » bhe the map on z onto R gilven by

-~

= 7 0 gt e)

o]
—
e
g
t

Then T 1is a Borel mapes lMoreover the gtructure B induced

by r on oW equals ég“

Proof: In view of Lemma 13, g restricted to R is one to

hne and hence by Souslin's theoren if B is a Borel subset
of R then g(B) is Borele0bsorve that if B 1s a Borel gub=-

gset of R, then

B = g Hel®).

g0 that 1 is o Borel functione T+ is not difficult to see
that © iz ontos To show Er = Eg obsorve that bhoth have
same atons and are countably generated and apply the Blackwell ~

Mackey theorem of Section Os

Lomma 15:  TLet T be the map on 2 to RX o%  given by



theorem the prool is

If

is on
T(x) = (osf)

then if

[110]

£ 8Sincc v, 5 arc Borel functlons
it ig clear Lunat T 1s Borcle

complete if T 1

{ o f-’w p inee O 1o ¢
{a,p) &€ RX 273 wsince s ) is a
W ,

xe 27 ouch that Q. (x) = By

ao that T is If

a(x) £ zly) then the first coordinates

fron Lemnas 14 and

Tn vicw of Souglin's

one to one and ontoe
homcomorphism, there
consecquently

and

T(y) aiffer.otherwise the sccond cocrdinates diffory conso-
quently T(x) # 2(y) oo that T 1s onc to onca

- ) . . WL
TLerma 163 Let 3y Bo be the omalpgebras on R X 2 induced
S el panil i} :
by the coordinate nmaps and B itg Porcl algebras Then

Morecver

to

Prooi:

Bl ackwell=iinckey theoren

36 19
—

o ninimed wedk

l]es)
L]

-

conplement for El relative

The first sontence is again a congeguence of the

and the sccond senteonce is obviouse
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Lorms 17 If T ig an isomorphism on (X,g) onto (Y,C)

P

md Go L 2 ic o mindioal weak couplenont of Gy then
pasagy i) = o

- . . 3
~l(g,) is so for T (Ql).
Droof is otraight forward and ig hence omitted.

The nroof ol our theoren is complete in view of the

above Lemna conbined with Lomnas 14, 15, 16.

#

Leaving aside the problen of complenentation, we now
ombark upon the problem of characterizing the Maxinal ideals
in  Dye Even in this area we have only sone fragmentary
resultse Let us say that a structure o on X is an Ullras

structure if

c# 0y and o' >0 implies o' = Cy »

With cach o € LX we can associate the ideal

Ay = [ o'e Iy | o' < o 1o

Lemnma 183 Ad is a naxinal ideal 1ff o 15 an Ultra

structure. In that case AU ig a fixed maxinal ideal.

Proof is streight forward, by contradiction.
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Thug the problen of characteriging Iixe d naxinal ddeals
reduces to that of charncterizing the vltra gtructures on X

One kind of such structures are given by tie foll lowinge.

A :) {XLV} or

A [ ; X,y} £ g 1

Then  o(x,y) € Dy and is an ultra structurc.

Proof: It is obvious that o (x,y) 1o a o-algebra and hence
belongs HC Ly Tet o' > oe. Then there is a Z € o' which
contains only x but not y . Since ix,yl ¢ olx,y) C o!
it is easy to sece that {x} and { } both belong to o“

Thug o' -~ombtaing both o and { x} and hence it coincides

with Jy as desircds Since o(x,y) # Oy the lemia is

Another kind of ultra structureg arc obtained as follows.

Lomma 203 Let xe X and Eg be a maxinal family of subsets

of X = ftx} with countable intersection propertys Define

Bither A o AC containg
olx, ) = [ 4 C x ZU{X} for some 2

in ¥
i Fe

LI |
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Then o 1 an wltroe gtructurce

Proof: As nunt, we leave it for the readcr to verily that

s is a Borel gructure for e Lot G; > o« 1f we show
that {:x } ¢ o' then we arc d0NCe Bacause, ‘n that casc

gx C o', so that by the naxinaiity of Ex it follows that
every subsct cf X ~{.x} belongs to o'e Since {ixi.e 6;
this shows that o' = Oy Since o (x, B) # Oy the lemma

will be provede

Tt now renaing to show that {-x.} ¢ o's Toke a set
Y ¢ o' - 6« By properly choosing Y or its complement wo can -
guppose without losg of generality that X€ Y. ZLet YO ; Y-{x};
if ¥, 0 £ then Y¢ ¢, contrary to our choice so that
Vo 0B CoﬁSCqucntly there is a set Z4€ 4 such that
2, 0¥, =@ Lot I = 7, U{x} « zeo implica Shat if

velongs to o' alsOs Wow the proof is complete gince
{X}:Zﬂ?-

Yowever in Dany known CascS, both the above Lemmas glve
us the game kind of ultra structurcse To make thig sentence
precise recall that a cardinal o is (0 - 1) nmeasurable if
on the class of all subsets of a sct of cardinality o We
ean £ind a meagurc taking only two values 0 and 1 such

that every singleton hags measure Oe Otherwise o 1s non
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non (0= 1) meamursblce Reogarding these cardinals we shall
Tirgt obgoive o o lleknown gilmple Iommas

i

Lomma 21: Let card (X) = ge « 1is neasurable 1fT there is g
~ally I of subascts of X with countable intergec-
tion property osuch that the whole interseccition of clements of

F ig voide

o

roor: If ¢ is measurable take a O= 1 neasure u  as

HJ

avallable on gy« Let

Y

=

={z | u(2) =11

This satisfies all the requircnmentse Conversely if there is

such an F define p on Cy by

w (z) = 1 4if ze

s}

0 if z¢

1i+=d

Since F ig a naxinal fanily, for cach 72 C x either 2
or z° belongs to P and thus g d1s defined on Cx » This
P e |

4 satisfiocs the requirements to show that « 1s measurable.

We shall now show that Lemmas 19 and BO  give us the sane

(@]
H
3
[64}
@]
=
<
}_—J
ot
iy
n
623

structures in many caseSe
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Lorma 20: Bvery of{x, y) of Lemna 19 is a o{x, Ew? of

Leomma 20 for some suitably chosen J The converse 18 truc

'3

1ff the cardinal of X 1s non-(0,1) necasurablcs

prooTs The first gentence of thie looma io obvious by

conpidering
o= [z Cx- {x} | ve 3 ]

Suppose cardinal of X 18 non=neasurables Take any o{x, 23?
Since obvicusly cardinal of Xm{:c} ig aleo nonwnmeasurable |
by Lerma R1 the intorscetion of elements of K, ig non voids
By the maxinality of . thig interscction is not only a sin-
gleton but also Lolongs to E,. & Lot this - y¥e Thon clearlyt

ol(xy EQ = o{x,¥)»

-

Tf on the other hond X is neasurable, then by Lemma 21, we
san fix o fnaily of X-{x} say I, vith countable intersecs
tion property but The whole intorscction being volds It is
not aifficult to sec that thin o=, QEQ can not be ol(x,y)

for any Yy Whatsoovores
We chall now collect the lenmnas together and state as

Theorenm 24 With the sane notation ags before, every A, 1is




Proof: Fir.t two statenents of this thooren are just a combined

restatement of Lemas 19, 20  in view of Lermas 18 and 22. Only
the last sentence of the theoren needs a procfe In view of
iemma 18, it suffices to show that in the countable case covery
uitra structure on X is given by Loma 12« Let o*  be any
ultra structure. Jince o* # gxz;thorc is at lecast one atom of
o*  say A, which ig not a singleton. Again in view of the

of o* this A ghould be the only atom which is not

ultrancos o

s

a gingleton and morcover this should conglst of exactly two
points - say X, ¥ s PFinally by ultrancse o* = o(x,y). This

~

completes tie proof of the theoreile.

We do not rmow whether the above theorem characterizes all
the fixed meximal ideals of Iy in ¢care X is uncountables
Even in case X = I we could not settle the questions This
quegtion ig equivalent to asking whether there” are ultra~struc-
tures or I e¢omtaining the countable-cocountable structure

ag the following leorma shows:
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Temma 223 Let X be ony qote Then all the Tixed naximal

ideals in L. which do not contain the countable~couountable

gstructure are charactorized by the above theorene

Proof: Let by be o Tized naxinal ideal not covercd by the

above theorome Hote that Oq ig =s;m ultra structurcs If a

3
s

singleton say Xq docg not belong to SN then define

%Z e o,

ML
06 2

v

x = L2 '{Xo}

o X

bi) is a Tamily with countable interscction property and

. = olx, F_)e 8Since o, ig an wltra structure it is obvious

X
0
that Ex in a maximel family with countable intersection
70
property and congsequently As ia covered by the previous
o)
theorems This contradiction shows that o, does contain all

singletons. Thus o ig an ultra structure on ¥ containing

o

all singletonse. This proves the lomioe

The converse of the above lenma 1o obviouse That is if
ﬂmﬂ?ismimﬁmaSMQﬂmm say 0O, containing all singletons
then in view of Lermma 18 4 Ay is a Tixed maximal ideal not

covercd by Thooren 24e

Since on a countable set there is no ultra structure
containing ail singletons the 1ast sentence of Theorernl 24 can

alao be deduced Frorl Lerma 29e
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It ig easy to see that there do exisd free naximal

2
ideals in Lys Wor oxample take X to be a countable infi-

nite sote With cach x¢£ X, look at o7 = [ ¢, (x) 5 (x) ¢, %

- } X hid . a3 2 v\.
Then the collection (o773 xe X Y can be extended to a maxis
mal ideal.s This noxinal ideal een not be fixeds For if it is

fixed say A, then o should ‘contain all singletons) Of

¢!

PR 2 - R S o PR S S R R T T e
B e N e -.nn-.t"; 3 [P L Y LS R ety oo L

Lo

maxinal idealoe

As the reader might have noticed, we have only nade a
start of the sbudy of the lattice Tiye gtil1l there is much =
much more - to be studiede The author is at present sftill
working on these and related problenms and hopes to consider

thene el a3ewhore.
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§ 8« Higtorienl Oomnents

Parts o. tue contents of Secvicns 1 to 5 will be appear-
ing in velume T1 of the Colloguium Mathematicum o The contents

0f section 6 were communicated to the same journale

Profs Ds Bacu has raised (oral) the question whether the
Borel algcbra on the unit intcrval has a minimal gonerators
‘(He believed no mininal generator exists!) Theorem 1 was
Obgerved in answering this questions That the problem of
ninimal genorators ig meaningful for arbitrary Boolean algebras
was suggested to us by Profe Achok Maitrae The exanple cof two
countably gencrated substructures of the Borel structure on
the real line with Intersection not countably gencrated was
obgerved by Profe dJ ¢ Ke Ghoghis The problem about symmetric
Borel structurcs answered in Theorem 14 was raised (oral) by
e Ko Vigwanathie The contents of Seétion 7 have beon inspired
by a papcs of I. Sasu (see [1])s Our attention to this paper

wag drawn by Profe Je Ke Ghoshs



CIAPTER 5

07 AALYTIC AD SORBL STRICTURES

- i a————

% 1 - . w
§ Oe¢ Swmary.

bl
i~

Is the purpose of thig chapter to collect together
the problems that were gcattered throushout the previous two
chapterss This chapter has soven secticng. The first three
seCtions deal with the problems that are ralgsed in or hawe
conncction with the topic of chapter ls The last three
gections deal with thoge of chapter Pe Section 4 gtands mide
way beiween boths We shall number the problems’ serially and
the nunber appears in brackctse Whercever ponsible we shall
include gome diccusgsion abcutl the problem involvede There
arc no new results in this chapter cxcept perhaps cne or two
in the Tirst scctione Sometimes dn what foll ows, we ghall -
il necessery = invoke the axiom of choice without explicit
nentions. Phrages like 'one does not Imow' 'It is not known!

do of courge nean that 'the pregent author does not know's

8 1+ Baire proporty and Lebesgue aeasurability.

It is always of intercet - and nany times useful = o
kncw as to what propertics of Lebesgue meagurable gets and

functions have their counterparts in cots and functions with

(1000
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Lol

the Laire propertye To claborate this point further, let L
dencte the collcevion of the Lebeggue measurable gets on the

real line R and O  the collcction »7 scts with the Balre

!

propertye At the  oubset boti are trangliation invariant none
countably genergted owalpebrans on R closed under the Souslin
operation (See Kuratowski [2])e The countcrparts of sots of

neasure zero in L are those of th

(@)

Tirsgt category in Qe Thig
analogy goeg furthere  Every Lebesguc measurable function
(LelMoef) is Borcl measurable outside a null set (A11 funetions;
unless othicrwise ptated to the contrary, take their values in
the real line cquipped with tiie usual topology and Borel field).
Similarly any function with the Baire property (BePef) is Borel
outside a cct of the firat caﬁogory; In fact morc precise
versions are availablc = every BeP.f ig continuous outside a
et of the first catopgory and any Ll f is of Baire class 1
outside a nuil gete This difference, however, can be explained
from the Tact that cvery set in L is a Ga modulo a null sgaet
whereas every get in O 1o an open sot modulo a set of the
vbegorye  Theerens 1, 3, and 2, 4 of chapter 1 point

nut that these analogicr zo still decperes Scetion 40 of
Kuratowski [2] shows that coven in the oceurrence of the
pathiologics ere 1s a similarity. We saall point ocut two

more similaritien later “n thisg scetion - which thoush not
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svrprising, are bolieved to be Nowe AT would e intercsting

P S R SR 4 de Ll e 4
Lo dino o eyt G AanaALOfLtD o te oo the used L;hOy can

vo put to (PL )e

It 12 a

w

o o N e

iking = but unfortunatcly not oo woll knovn

-~

theorcn of Sicrpifighki[l] that there oxists a null set A, w0

auch thal tho cun

o

is not in Le This can be formuiated dm Q0 as Tollows:
Theoren 13 There cxicts a sot A of the first category in
0 ouch that A+ A dio nct in Qo

Though the proof of this fheorenm is just similar to that of

»em of Sicrpificki, we give it in detall

\+
N
b
Q
\
£
7y
O
<
.
e
pes
<
=
ot
D
it
o
<t
©
O

here since it is sinplce and clegant (gince morcover whe prool

of Sierpificki's sheoren is less well kriowri)e We phall firgt

obgerve tre ginmple Tactae

Tomma 18 Let 72 = X4 Y where X is a nonenpty open aset

8]
a
<t
O

and ¥ in of the first categorye Then the difference

7  contains an iutervale.

- - 3 e

Pracft 1 logsn in ascuming that X = (a, b), a fini

e intervral.



Take 3 such that C© < 3 < == « Wo oxnibit a point x in

7 suclt tial x4 d 8 4, which will complete the prool of the

P A I] -

thooreme For thig 1t suflices tr oboerve thot YU (Y= 93) is

of the first category and hiencc there exiots abt least one x
Deny, . el

in (2, a +—p=) not in Y U{Y~ 8)e

Leomma 2:  There cxists a Hamel bacls in Q. Therc o¢xists a

Hamel basis not in Oe  Any Homel bagis in Q0 ds of the firgt

Progf: To prove the first sontence 1% 1o not difficult to
obgoerve that a Hamel basis lives in the Cantor scte For the
third sentence,observe that if a Hamel basis H in @ is
et of the firot category then by Lemna 1, the difference sot
of il comboing sn interval and hence any realsnunber 1s a
rational linear combination of two elements from He For the
asceond scntonec of thoorem chooge DY transfinite induction
(Kuratowski (2] o Lévy' ) a Hamel basis H which has non
empty intorscction with every homeomorph of the Cantor sed on
Re If H dis in Q then it ghould be of the first category
and conscquently i°  contains a homeomorph of the Cantor sci,

which can not happen by tho congtruction of He

* Soc Proce IV Berlie Symps VOle 1T Do PRICES

tan extoneisn of the Debepgue measurc ol 1
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Proof of Dy Lemia 2 chocse o Homel vasig W of
the first cawegir,e Let

o= U » H

n

jaxi
t
e
e
§
}J
+
}.J
o
-3
v
I,_}

Observe that,

By using arguncnts gimilar to thoge of Lemma 2 one can show
that if I, 1s in Q then it sheould he of the Tirgt category
i

Since R dig not of the first category it follows that one H

n
isnct in O « Let p be the smallest integer such that Hp
is not in Qs By the choice of H, it follows that p > le

o Z

ow clearly Hpﬂ1 ig of the first category such that

Hp—l +* prl ig not in 9‘

- el 3 » - : b *
Just as fron Sierpingkitg theorem it has been observed
by L Ae Rubel [1] that therc exist pathological Lallefs, onc

can obgerve the cxistence of pathological LelPel@s

I -

<r

9]

|
.

a well lmown fact that any additive 100 € ow
into itself is continuous, 1f 1t ig cithior Lellef
But strangely cnough one knows a otrenger and o ¥ vesvls

[ BN T . . = : 2 . H R
Tor Laellef = agoin due to Sierpinsgki | =



s

1 3 Ay IR r . Nt - A~ M 2 3 .

i continucugs  SUU NOWOVEY 00 gimilar rosult 1s availavle
- e

for BelPel (P2).

By accwndinsg G 1t 1o pogeible to exhiblt an unicountabic
cubsct of R osuch that 211 ito contlnucus inages in R arc
null sots (Sierpingki [3])e DZut onc docs not ko whether
there is an uncountable subset of R such that ail ites cone

tinuous images in R arc of the first category (P3) s

An interesting theoren due to He Cartan and Ge Choquet

(which appears in PeLévy:ibid) says that R can bo written

ng the dircct swil of a countable number of Lebesgue full gub-
groups of R, That isycach hag full Lebeggue outer rneasure.

A sinilar statement is truc with the Balre propertie Let us
sav that a subset A of R is Baire full 1f any subget of
Ac which has Baire property is of the first categorys. Then
~ne ecan state tiat tho real line ig the tisuct sun of a coun-

tablce mymber of Dailrce full sub=groups of Re The gubegroups

oxhibited by Cartean and Choquet will serve the purposce

i
4

Lovy defincs a Hamel function as followg: Take two

Hamel basis Hy = (W, 3 a e D) and Hy = (W 5 « €7 )

indoxed by the samc sct T e Tefine a function on ¥ to !
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o , - Lo v. o i
11 X 2 rl ’fi \v'l - '_L
then £(x) = Ty W) wioe I,

Any function otinined dn this way is callced a Hanel functicne
Then an intercgting theorenm preved by Lévy says that the graph

2

of any Hmmel function - as a subset of R = is either null or

fulle We do not know whether a sinilar statement helda in

~

termg of the Baire property (P4)e One feels 1t should be

o

truc - that is the graph of any Hamel functicn ghould be

cither of the first category in the plane or it should be Dudl

in fthe sensec degeribed proviouslye

Thoush P2, P3, P4 arc included in P11 , they
mentioned scparatcly vecause they are intercsting and rather

“more concroctely poscds Well, of courge, there arc many morce

8 2. Consistoney problems (P5)

We have preved in chapter 1 that the product of discrote
o=algebras on I is the discrete o-algebra on I X I - by
agsuning CH begides the axionm of choice. Let us, for case

<2 ———

of rcfercence dencte by Dy, D' and DY the following stato-
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Dt There 10 a U (. I X I guch that
c

10T ANy SC)})(,LI"HWO.LO

D'h Sp X Cr # Cpx v

Let ZF, be the dermelo= Fracnkel theory without the
axiom of choice and ZF be ZF, + Axiom of chcicee Then
negation of D i1 a theorem of ZF + CH e But however we .do.
not know whethoer ZFO + D and ZF + D oarc consistent.

A shbatoment 1ike ZFO + D is crnocistent is uged in the usual

3

sonse that ir ZF docn not Lead to a contradiction then nor
docn ZF_ 4+ De In 77 the two gtatemerte D and D' arc
cquivalents We do nob lmow whether they arc cquivalent in
ZF, « Of course it is Always truc that D => D'e But the
gtatenont D' =>D can be proved with the axiom of choices
To be more elear 1ot us recall the proof of D' => De To

seo this ouat cne doos is that one shows that the class § of

A1l U e gy X Cp for which therc is a soparable G C o
wvith U in QDX g_o forns a o-algcbra. It is cagy to see

that § 1o closcd under complencntation but 1o ghow that §

ig closed under countable uniong onc ncedg the axion of
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choice. One can not show this with just the form (4) IV of

1 P . b TP S, g Y ; ] - PR, o
the countable axisn of choice ag assuled by the axiom of

doterninatoensnns  Because (A) IV only agourcs that 17 we have

a countablc number of gots with cardinality ol their unilen
pnalicr tuan ¢, then there in a choice functione Thus
théugh D' is a theorem of ZF .+ (1) (in vicw of secticn 6
of chiapber 1) wo do not know whether D dis o theovem in

ZFO + Cﬂ); Fhough there are nony roouits pointing out towards
the congistency »f 4T, + (&) (remarked to us by

Je IIycicleki) i% is not known whether it is congistonte

Obgerve that for D' 4o be conosictent with ZFO it ig not

necessary dhat (A) boe congistent with ZF.. In fact looking
j9

more clogely to goctions 2 and & of cunpter 1, one can sec
that if ()IV and (VI are comsistent with 4P then D' 1
consictent with ZT7. » Recall that (&) IV states that overy
got of rcal nunbere fa Lebegoue nmeasulablce Thelrgst of this
goection io Jevouod o discuss abeout thie congistency of D

with ZTe

As cogerved in chapter 1, the problem aboul discrete

gpaces is onc about cardinalifties and congequently consistency

of D with ZP dig gamne ag that of D' with 2Z2Fe Since we

(,

know that D' is true for a sct R of cardinglity > ¢, it

¢ that D' 4. a theorem when one otarts with
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a suitable nmodel for the »eal nunber gystom - moro apecifical
vith thons m2Ad ~ yheore R has o very large numntor of elenen
(of courcge, the word 'larse! here in for n peraon outaide the

ricdel)e For ingtance the Scott~ Solovoy meodel (Sce Dana
Scott [1]) is onc guch. Thic nmodel wao used by Scott and
Solovoy to show fThat the negation of (CH  io consistent with
ZFe

We feel thal for gsome suitably choscn Scothe Solovoy
model onc ean ghow that - D is consistont with 7Fe It shéuld

be mentioned that Prof. Jan lMyciclgki, in a letter, cxpresced

that he also arrived independently at these idease

What mokes us worried is that though we know D' to be g
theoren in ZF o+ (&) we know nothing about the status of D

in ZF 4 (g).

I denotes the Borel algebra of I, then we do not

i

know the Shiabtus of the proposition 'C1t is a B = Souslin
o-algebra's TFor definition of B « Souslin owalgebra gece

gection 7 of chapter le

g Se An isomorphism probler.

We know that any two uncountable Borcl sets situated <n

any two Polish spaccs are Borel isomorphic. Thue roughls
I & Sl

speaking there ic only one uncountable stan ord sov-l so

.
TG



. -y

- T - P L O TR T - v by e : v by e EN Eal
all the othere Loing igomorphic o ite T the game true Ior
-

non-dorel analytic geta, Is there cpsentially one non-Borel

analytic set? Hore precisely, given any twe analytic non-.
Borel subsits of Polish spaccs arc they igomorphic? (P6G)s
Tt would Lo very intoresting if the answer turns out to be in
the negatives Then the analytic scts can be classified into
various isomorphism»classes. Thero are two intercsting special
cages of the above nroblem which arc worth mentioninge. Are
any two Universal analytic subsets of the planc igomorphic?
(P7). The next one Traised by Dre Ashok laitra is the follow-
ing: Take any Universal analytic set U in the planc. Are
U and UQD igonmorphic where D is the diagonal in the plane?
(r8).

Onc way of looking at P6 mnay be as follows: Take two
analytic non-Borcl gets A and B on the Real 1ince After
fixing sicwes, which when giftced give A and B, onc can talk

about thc ~ongiitucnts for A and B (Scc Kuratowski [2]) which
are Borel sotne By using the isomorphism propertics for Borel

gets one can attenpt to show that, under cortain conditions on

[
[on

the constituents, A, B arc isomorpPhiCe

Inother way of looking at the problem = which is not

1likely te succecd, but ney give insight into the problen = is

-~

to try Tor Sinves V

6l ot S ) Ay R A N ot N ey
- 2xeks! .. which whon gifted oive A and

Dy
£
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3 guch that e Following condition is satisfied: There is an
arder proescrsing asp @ Q w>r Q@ wiere Qi the positive
rationals in (0, 1) such that V.. = W¢<w>. Such a method har

been uped by Kond® (1] in a gpoccific gituatione

Yot anotuacr way of loskiug at P6 nmay be as followpd: Fix
an analytic non=Borel get A on the real line Re Took at dll
those subsets of R which aréd isomorphic to Ae Donote this
clans of scts by Ino {A)e Perhaps o study of the properiies
of the class Iso (A) may eventually lead to & cliugforithe
solution %9 our problem. As a matter of faet this iftsclf
geenis to be an independent interesting probleome For insgtance

it 4o trivial to see that Tso (A) is translation invariant,

rn

Since eany ioomorph of A 1s again analytic nouwBorel 1t ig
trivial to goe that Iso (A) is antiecomplemented in the
sense that complement of no get in Ico (A) can again be in

5
ISO (}L) ]

It is however worth noting thai the problem P66 formula-
sed for coonalytic soto can is not 5o interesting as.above. One
knowgi%gerc courd cxict an uncountable coammalytic sct without
containing a homecomorph of the @antor set. Take any such sot
say ¥ and take any other non-Borcl ccoanalytic set ¥ containing

a perfect gote Then X and Y can not be igomorphice

A



Unfortunately, from this fact one can not conclude that the

: , e - coo s - s
two analytic suts X7 and Y are non-icomorphice. OFf course

PG can be modified carefully for comsnalytic sctge Tor instance
onc can ack whether two coanalytic (non=Rorcl) sctao both of

: [T S [ | e R ey oy e by
which contain perifceet sets are isomcorphic,

of the real

i

The collection of non-cnpty Borel subget
line can be deconposcd into countable numboer of digomorphisnm
classede low nice 1t would be 1f tho collection of analytic

non-Borcl sets con also be deconmposcd in an elegant way into

§ 4. DBlackwell gpaccs and Scuslin spacos.

3

15 &a Blaclkwell

.

Rocall that o senarable Borel space (X,

i

.
’

gpace if every ocparabke sub=c-alpcbra contalned in B equals 3B

-

BEvery mnalytic space is a Blackwell space. Blackwell [1]

has raised the irtercotineg question (B 9) as to whether

j-te
&}

cvery guch gproc igomorphic to an analytic spacee. HNothing

much 1g knowm about this nroblem to this daye Maltra [l] has
observed that there exist coanalytic spaces that are not
Blackwell spacege Again onc does not know whether any coana-

e

lytic space 1ls a Blackwell spaces. The interoest in coanalytic

cpaccs in this corncetion 1g duc to the Taol

-
®



the anelyticad hcirarchy of scts the coanalytic sota are casy
to handlc when one ig interoested iu Tinding out whether g

pact can be o Zlackwell spacees

We zeel that (P9) is connceted with the Toundations of
set theory. TFor instance, ar remarled in scetion 3 of chap=
ter 2 suppose there oxists arf uncountable get Z  such that
the only seyarablce o=algebra on 2 ic the class of all sub-

sets of Z. Then Z with its power set is a Blackwell. spaccs

w2

ince in thig cage cardinglity of 7 < ¢, it can not be an
analytic gspacce We do not know whether the ecxistence of such

N

a sct 2 i~ concigtont with ZP, or ZF , (P10). OF courae

if onc accepts O then gsuch a gset can not oxiats As a
matter of fact cven 1f one accepts the hypothesis that

R . . N
v ls an uncountable cardinal ==> 25 > ¢

then such a t  Z can not exiate

]
()

Suppose (Ry 3) (Y, C)arc two Blackwell apocose We do

{H®:

not know whcther (X X Y, B X (@) can be a non=Blackwell space

(P 11)e Wec do not know whother (X U Y, 3 U ¢) is a Blackwell

=

2%

C
spact (P 1R)e Here X U Y denotes the disjoint unions We do
a
not know the answer to P 12 even if beth the spaces are the

samcs IT (X.,1) 1s an uncountable Blackwell spaco, we do hot



know whetnor X containg o sct 72 cuch that (Z, I ) is iso-

P

=~

s . i . - 4 rs i > -
aorphic o tho it dnterval (PO15),  The dinterent in the

[N

ig bocause of the
reason: Perhans Dter gtudying the theory of Blarckwell spaces
in detadl one can comparc their propertics with the « rich and
abundant - propcertics of the analybic spaces so that any clues

to the tousgh problem P ¢ can be obbaincd.

Leoving thoe digecussion on Blackwell spacces we shall
nenticn o croblem about Souglin gpacese Fix any scparable

Borel space (X, B)e Recall that o o-alecbra on X cone

o

taining B 1o said to be B+~ Souslin ir any S neacsurable

renl functicn on X is

jies}

neasuravie when regtricted to

gomce uncountable met

f..l-

n If

Hiws]

A

is Sougiin we do not

ficn

e
]

rd

S X B = Souglin (P 14).

wnow whetl.or» § X §

!
6]
Hizd

2

 to exhibit a Borel

7

Cne of the interesting problens i
structure without a minimal gencrator (P 15)e We do not
know whethor thero gt two separable cenlecbras on 1 vhoao
intergeetion 1o itscell not geparavic . contnlng -

~

sub-o=algcbra (P 16). IT

the laast cond

following cheapter £ onc can give wlonty

o



[138]

do not know how to prove ttat the usual Dorel stFfucturce on I

ot

CH  wo do no’

Moo

[

hao no atomlegs cubgtructure (P 17)e Witho
know whether a gseparable cwealsebra can contaln an atomnlegs

substructure (P 18)e If CT igs agsuncd we have answored

—————

-

Lol chapbor .

e
=
[
5
o
;5
O
I
\

this question in the affirmative
An interecting prcoblem raiscd by Je Ke Ghosh and De Basu is
to characterize 11 thoe tranclation inveriant sub~c-algebrag

of the Borel c-=schbfa or the real line (P 19). Observe that

)

o}

their theercm characterizes such structurcs which are countably

genorated (Section B of Chapter 2). In fact we fool tuat =h

their theoren chiaracteriszes all thode countably gonerated

translation invariont struétures contained in L or Q. We

do not know how to prove it (P 20)e In this connection we

Aluo do not Xnow the conditions under which a translaticn
nvariant cxicngion of a countably generated translation

invariont o-algcebra on R by adding onc set wlll again bo

countobly gencroved (P £1)e

8 6e laturdd giructurese

for the terminology to ve usced in this and next sections,

& h

the reader is referred to Chapter 2.
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Suppoge F  do an Adnisgeibic colicction oL mCeasurab.e

naps from one sovarable svaco (x, o) to another scparable

apace (7, Cre L problowm ol Aunann is to Tind conditions

N s . RV | ey S s g ~ . oy U . LT A
under whish a naturd stoucture for Foodls avallablc (P 22).
Lo S s o < - . PO Ve by TAm S e .

Tven if ¥ = T = ¥ e gubpect tihat the Daire clasnca C

o

for g > 1 have no natural stracturc. It would be intercse

ting to find ocut conditions under whicn F has a natural

structurc in our scnse (P £3). Thic ooy be icult tut

nerhaps a study of this mipht roveal ©oac properuleos about

v

Nl ackwoll spacos,an menticned in poction 6 of chapber Ta

g 7. The Lattl %

“ut for the foew observations nade in secction 7 of

chapter R the gtudy of L scena to bhe completely blank.

X

o~

Thug the whole topic itself iz wvide open. We shall however
be content with formulating two concrete probicnge What are

those sub-algebras of the usual Neprel structure on I which are
complemented relative to the Borel gtructure? (P 24). The
same quection can be asked for mininal weak complements of

De Dacu. Lext problem is to characterize all tho maxinal
deals in Ly o (P 25)s The partisl golutions oi these probe-

[n]

lems we have given in chapter 2 arc far from compiclies
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