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Chapter 0

Introduction

0.1 Background and Motivation

The notion of cohomology with local coefficients for topological spaces arose with the

work of Steenrod [Ste43, Ste99], in connection with the problem of extending sections

of a fibration. This cohomology is built on the notion of fundamental groupoid of the

space and can be described by the invariant cochain subcomplex of the cochain complex

of the universal cover under the action of the fundamental group of the space. This

later description is due to Eilenberg [Eil47]. Cohomology with local coefficients finds

applications in many other situations.

We focus on one such application of this cohomology which is due to S. Gitler [Git63],

where he has constructed Steenrod reduced power operations in cohomology with local

coefficients. The study of cohomology operations has been one of the important areas

of research in algebraic topology for a long time. They have been extensively used to

compute obstructions [Ste47], to study of homotopy type of complexes [Tho56] and to

show essentiality of maps of spheres [BS53]. Some of the basic operations are the reduced

powers of Steenrod [Ste53b,Ste53a]. These operations are defined for cohomology with

coefficients, in a fixed cyclic group of prime order p 6= 2. The main idea of Gitler’s

construction is to lift power operations in the invariant cochain subcomplex of the

universal cover and reproduce the operations in cohomology with local coefficients via

Eilenberg’s description of the cohomology with local coefficients, where the relevant

local coefficients are obtained by a fixed action of the fundamental group of the space

on a fixed cyclic group of prime order p 6= 2.

Among many important roles played by Eilenberg-MacLane complexes, a significant

one is its role in classifying cohomology. A simplicial version of this classification states

that for any abelian group A and natural number q, the qth Eilenberg-MacLane simpli-

cial set K(A, q) represents the qth cohomology group functor with coefficients in A, in

1



Chapter 0: Introduction 2

the sense that for every simplicial set X, there is a bijective correspondence [Dus75]

Hq(X;A) ∼= [X,K(A, q)].

These classification results have been generalized for cohomology with local coeffi-

cients in [Hir79], [GJ99], [BFGM03], where generalized Eilenberg-MacLane complexes

play the role of classifying spaces. A construction of a generalized Eilenberg-MacLane

complex LπX(L, q) is obtained in [BFGM03] as a homotopy colimit by using the method

of Bousfield and Kan [BK72], where πX is the fundamental groupoid of X and L is a lo-

cal coefficient system on X. The complex LπX(L, q) appears as the total space of a Kan

fibration LπX(L, q) −→ N(πX), where N(πX) denotes the nerve of the category πX.

The fibration may be interpreted as an object of the slice category S/N(πX), where S
denotes the category of simplicial sets. There is a canonical map η : X → N(πX) and

the classification theorem states that the cohomology classes in the qth cohomology with

local coefficients of a Kan complex X correspond bijectively to the vertical homotopy

classes of liftings of η. The proof of course depends on the usual closed model structure

for the category of simplicial sets.

0.2 Outline of the thesis

The aim of the thesis is to prove equivariant versions of the results mentioned in the

previous section, and are based on [MS10a, MS10b, MS11, Sen10]. The following is a

chapter-wise description of the thesis.

Chapter 1, is a review of simplicial theory [May67], [GJ99]. The primary goal of

this chapter is to set up notations and state results which will be used in subsequent

chapters.

In Chapter 2, we deal with simplicial sets equipped with an action of a discrete group

G and related objects. Let OG denote the category of canonical orbits of G [Bre67]. We

recall the notion of OG-Eilenberg-MacLane complexes [MN98], introduce the notion of

OG-twisting function and OG-twisted cartesian product. At the end of this chapter, we

introduce an equivariant analogue of the twisted cohomology [Hir79] for a G-simplicial

set.

For spaces with group actions, the analogue of cohomology with local coefficients is

the Bredon-Illman cohomology with local coefficients, as introduced in [MM96], and is

based on the notion of fundamental groupoid of a space equipped with a group action.

We recall that for G-complexes, where G is a group, an equivariant cohomology was

introduced by Bredon [Bre67]. The corresponding singular version was developed by

S. Illman [Ill75] and is generally known as Bredon cohomology. The coefficients for

such equivariant cohomology are contravariant functors from the category of canoni-
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cal orbits OG to the category of abelian groups, called abelian OG-groups. When the

local coefficient system is simple, in the equivariant sense, the cohomology as intro-

duced in [MM96] reduces to the Bredon cohomology. As in the non-equivariant case,

Bredon-Illman cohomology with local coefficients has been used in the study of extension

problem of equivariant sections of an equivariant fibration, and an equivariant version

of the Eilenberg theorem is proved in [MM96]. For some other applications of this

equivariant version of cohomology with local coefficients, see [Gin04], where Steenrod

squares were constructed in Bredon-Illman cohomology with suitable local coefficients

and [Won05], where the cohomology is used to study fixed point properties of self maps

of homogeneous spaces. In Chapter 3, we study a simplicial version of the Bredon-Illman

cohomology with local coefficients. First, we introduce the notion of the fundamental

groupoid of a simplicial set equipped with a given simplicial action of a discrete group

G and the notion of equivariant local coefficients. Based on these notions, we introduce

a simplicial version of Bredon-Illman cohomology with local coefficients [MS10a] of a

G-simplicial set. Next we prove that for a suitable OG-twisting function, induced from

given equivariant local coefficients, the simplicial version of the Bredon-Illman cohomol-

ogy with local coefficients of a G-simplicial set is isomorphic to its equivariant twisted

cohomology. Finally in this chapter, we derive a version of the Serre spectral sequence

for a G-Kan fibration, following [MS93,MP02].

In Chapter 4, we prove a classification theorem for the simplicial Bredon-Illman

cohomology with local coefficients. We refer to [MN98] for a classification theorem for

simplicial Bredon cohomology with coefficients in rational OG-vector spaces, where G is

a finite group. We generalize this classification result for the simplicial Bredon-Illman

cohomology with local coefficients. The notion of a closed model category in the sense of

Quillen [Qui67] is crucial in the proof of this classification result. Our result also retrieves

the corresponding non-equivariant classification theorem [Hir79], [GJ99], [BFGM03],

when the group G is a trivial group.

A well known result of Eilenberg describes the cohomology of a space with local

coefficients by the cohomology of an invariant subcomplex of its universal cover equipped

with the action of the fundamental group of the space [Spa81]. A simplicial version of the

Eilenberg theorem is given in [Git63]. An equivariant version of the Eilenberg theorem

for the Bredon-Illman cohomology with local coefficients of a G-space was proved in

[MM96]. In Chapter 5, we derive Eilenberg’s theorem for the simplicial Bredon-Illman

cohomology with local coefficients. This is based on the notion of universal covering

complexes of one vertex Kan complexes [Gug60]. In the equivariant context, the role of

the universal cover is played by a contravariant functor from the category of canonical

orbits to the category of one vertex Kan complexes. The main result of this chapter is

deduced from a notion of an equivariant cohomology of an OG-simplicial set equipped
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with an action of an OG-group.

An important class of cohomology operations consists of the Steenrod squares and

reduced power operations [Ste53b], [Ste53a], [Ara56]. The Steenrod squares are defined

for cohomology with Z2-coefficients whereas the Steenrod reduced powers are defined in

cohomology with coefficients in Zp, p 6= 2 a prime. A very general and useful method for

constructing these operations is given in [May70]. A categorical approach to Steenrod

operations can be found in [Eps66]. In [Git63], S. Gitler constructed reduced power

operations in cohomology with local coefficients. The main idea of Gitler’s construction

is to lift power operations in the invariant cochain subcomplex of the universal cover of

a space and reproduce the operations in cohomology with local coefficients via Eilen-

berg’s description. The relevant local coefficient system in this context is obtained by

a fixed action of the fundamental group of the space on a fixed cyclic group of prime

order p 6= 2. In Chapter 6, we construct the Steenrod reduced power operations in

simplicial Bredon-Illman cohomology with local coefficients, where the equivariant local

coefficients take values in a Zp-algebra, for a prime p > 2. Throughout, our method

is simplicial. Working in the simplicial category has additional advantage of proving

results by combinatorial arguments. Moreover one can switch over to the topological

category via geometric realization functor to get the corresponding topological results.

Throughout the thesis we shall use the word complex synonymously as simplicial set.

It may be mentioned that for a space with a group action, Steenrod squares have

been introduced in the Bredon-Illman cohomology with local coefficients by G. Ginot

in [Gin04]. Following Gitler [Git63], we first construct the power operations in the

πX-equivariant cohomology of the ‘universal OG-covering complex’ of a one vertex

G-Kan complex X, where πX is an OG-group defined by the fundamental groups of

the fixed point subcomplexes of X. This is done by applying the algebraic description

of Steenrod reduced power operations of P. May [May70]. We then use the equivariant

version of Eilenberg’s theorem (Theorem 5.3.4) to reproduce Steenrod reduced power

operations in the present context. It may be remarked that our method also applies

when p = 2, and hence yields Steenrod squares too.

In [Car76], H. Cartan introduced a notion of a ‘Cohomology theory’ to generalize

Sullivan’s theory of rational de Rham complexes on simplicial sets [Sul77] to cochain

complexes over an arbitrary ring of coefficients. A cohomology theory A over a com-

mutative ring Λ with identity, determines a contravariant functor from the category

of simplicial sets to the category of differential graded algebras which assigns to each

simplicial set X a differential graded algebra A(X), and a Λ-module Λ(A) such that the

simplicial cohomology groups of X with coefficients Λ(A) can be computed from the

cohomology groups of A(X). Cartan’s result was generalized for cohomology with local

coefficients in [Hir79]. An equivariant version of Cartan’s result was proved in [MN98],
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where cohomology of a simplicial set is replaced by Bredon cohomology of a G-simplicial

set, G being a discrete group. In Chapter 7, the final chapter of the thesis, we prove an

equivariant version of Cartan’s theorem for the simplicial Bredon-Illman cohomology

with local coefficients.
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Chapter 1

Preliminaries

1.1 Introduction

This chapter is a review of simplicial theory [May67], [GJ99]. Our primary aim in this

chapter is to set up notations and state results which will be used in subsequent chapters.

After reviewing some basic definitions, we recall some standard results in simplicial

theory. Eilenberg-MacLane complexes and generalized Eilenberg-MacLane complexes

( [Hir79], [Git63], [FG98]) play a crucial role in homotopy classification of ordinary

cohomology and cohomology with local coefficients of a simplicial set, respectively. We

state these classification results. We end this chapter by reviewing the notion of closed

model category [Qui67] and the closed model structure on the category of simplicial

sets.

1.2 Simplicial sets

Let ∆ be the category whose objects are ordered sets

[n] = {0 < 1 < · · · < n}, n ≥ 0,

and morphisms are non-decreasing maps [n]→ [m]. There are some distinguished mor-

phisms di : [n − 1] → [n], 0 ≤ i ≤ n, called cofaces and si : [n + 1] → [n], 0 ≤ i ≤ n,

called codegeneracies, defined as follows.

di(j) = j, j < i and di(j) = j + 1, j ≥ i, (n > 0, 0 ≤ i ≤ n);

si(j) = j, j ≤ i, and si(j) = j − 1, j > i, (n ≥ 0, 0 ≤ i ≤ n).

7
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These maps satisfy the standard cosimplicial relations,

djdi = didj−1; sjdi = disj−1 for i < j,

sjdj = id = sjdj+1,

sjdi = di−1sj for i > j + 1; sjsi = sisj+1 for i ≤ j.

Definition 1.2.1. A simplicial object X in a category C is a contravariant functor

X : ∆ → C. In other words, a simplicial object is a sequence {Xn}n≥0 of objects of C,
together with C-morphisms ∂i : Xn → Xn−1 and si : Xn → Xn+1, 0 ≤ i ≤ n, where

Xn = X([n]), ∂i = X(di), and si = X(si), satisfying the following simplicial identities,

∂i∂j = ∂j−1∂i, ∂isj = sj−1∂i, if i < j,

∂jsj = id = ∂j+1sj ,

∂isj = sj∂i−1, i > j + 1; sisj = sj+1si, i ≤ j.

A simplicial map f : X → Y between two simplicial objects in a category C, is a collec-

tion of C-morphisms fn : Xn → Yn, n ≥ 0, commuting with ∂i and si.

In particular, a simplicial object X in the category SETS of sets and set maps is

called a simplicial set. Throughout, S will denote the category of simplicial sets and

simplicial maps. Often we shall use the word complex (or subcomplex) synonymously

with simplicial set (or subsimplicial set). A simplicial object in the category Grp of

groups and group homomorphisms is called a simplicial group. The category of simplicial

groups is denoted by SG
For a simplicial set X, elements of Xn are called n-simplices. A simplex x ∈ Xn is

called degenerate if x = six
′ for some x′ ∈ Xn−1, 0 ≤ i ≤ n − 1. Otherwise x ∈ Xn is

called non-degenerate.

For any n-simplex x ∈ Xn, in a simplicial set X, we shall use the notation

∂(i1,i2,··· ,ir)x to denote the (n− 1)-simplex ∂i1∂i2 · · · ∂irx obtained by applying the suc-

cessive face maps ∂ir−k to x, where 0 ≤ ir−k ≤ n− k, 0 ≤ k ≤ r − 1.

Example 1.2.2. The simplicial set ∆[n], n ≥ 0, is defined as follows. The set of

q-simplices is

∆[n]q = {(a0, a1, · · · , aq); where ai ∈ Z, 0 ≤ a0 ≤ a1 ≤ · · · ≤ aq ≤ n}.

The face and degeneracy maps are defined by

∂i(a0, · · · , aq) = (a0, · · · , ai−1, ai+1, · · · , aq),
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si(a0, · · · , aq) = (a0, · · · , ai, ai, ai+1, · · · , aq).

Alternatively, ∆[n] can be viewed as the contravariant functor

∆[n] = Hom∆( , [n]),

so that ∆[n]q is the set of ∆-morphisms from [q] to [n]. The only non-degenerate n-

simplex of ∆[n] is id : [n] → [n] and is denoted by ∆n. In the earlier notation, it is

simply, ∆n = (0, 1, · · · , n).

It is well known that if X is a simplicial set, then for any n-simplex x ∈ Xn there

is a unique simplicial map x : ∆[n] → X with x(∆n) = x. Often, by an n-simplex in a

simplicial set X, we shall mean either an element x ∈ Xn or the corresponding simplicial

map x.

We have simplicial maps

δi : ∆[n− 1]→ ∆[n], σi : ∆[n+ 1]→ ∆[n], 0 ≤ i ≤ n,

defined by δi(∆n−1) = ∂i(∆n) and σi(∆n+1) = si(∆n).

Definition 1.2.3. The boundary subcomplex ∂∆[n] of ∆[n] is defined as the smallest

subcomplex of ∆[n] containing the faces ∂i∆n, i = 0, 1, · · · , n. The k-th horn Λnk of

∆[n] is the subcomplex of ∆[n] which is generated by all the faces ∂i∆n except the k-th

face ∂k∆n.

Example 1.2.4. For a topological space X, a singular n-simplex in X is a continuous

map f : ∆n → X, where ∆n is the standard Euclidean n-simplex. Let SnX, n ≥ 0, be

the set of all singular n-simplices of X. Define face and degeneracy operators by

(∂if)(t0, · · · , tn−1) = f(t0, · · · , ti−1, 0, ti, · · · , tn−1),

(sif)(t0, · · · , tn+1) = f(t0, · · · , ti−1, ti + ti+1, ti+2 · · · , tn+1),

where f is a singular n-simplex in X. Then the graded set SX = {SnX} becomes a

simplicial set.

Sometimes SX is called the total singular complex of X.

Definition 1.2.5. A simplicial set X is called a Kan complex if for every collection of

(n+1)-tuple of n-simplices (x0, · · · , xk−1, x̂k, xk+1, · · · , xn+1) satisfying the compatibil-

ity conditions ∂ixj = ∂j−1xi, i < j, i 6= k, j 6= k, there exists an (n+ 1)-simplex x such

that ∂ix = xi, i 6= k.
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The defining condition of a Kan complex is equivalent to the following statement.

Any simplicial map from the k-th horn Λn+1
k to X can be extended to ∆[n+ 1], where

n ≥ 0 and 0 ≤ k ≤ n.

Example 1.2.6. For a topological space X, the simplicial set SX of Example 1.2.4 is

a Kan complex.

Example 1.2.7. The simplicial set ∆[n] is not a Kan complex for n > 2 [GJ99].

Definition 1.2.8. Let p : E → B be a simplicial map. Then p is said to be a Kan

fibration if for every (n+ 1)-tuple (x0, · · · , xk−1, x̂k, xk+1, · · · , xn+1) of n-simplices of E

such that ∂ixj = ∂j−1xi, i < j, i 6= k, j 6= k and an (n + 1)-simplex y of B satisfying

∂iy = p(xi), i 6= k, there exists an (n + 1)-simplex x of E such that ∂ix = xi, i 6= k,

and p(x) = y.

The Kan condition on a simplicial map p : E → B is equivalent to the following fact.

For every commutative diagram of simplicial maps

Λn+1
k E

∆[n+ 1] B

-

?

i

?

p

-
p p p p p p

p p p p p�∃θ

there exists a map θ making the resulting triangles commutative, where i denotes the

inclusion of the subcomplex Λn+1
k ⊂ ∆[n+ 1]. It may be remarked that a Kan fibration

yields a Serre fibration via the geometric realization functor (cf. Section 1.3).

Definition 1.2.9. A Kan complex X is said to be minimal if ∂ix = ∂iy, i 6= k, implies

∂kx = ∂ky.

Definition 1.2.10. A Kan fibration p : E → B is said to be minimal if p(x) = p(y) and

∂ix = ∂iy, i 6= k, imply ∂kx = ∂ky. If p is minimal and B is a minimal simplicial set,

then (E, p,B) is called a minimal fibre space.

Lemma 1.2.11. [May67] Let p : E → B be a Kan fibration (respectively, minimal

fibration).

1. Each fibre of p is a Kan complex (respectively, minimal complex).

2. If E is a Kan complex (respectively, minimal complex) and p is surjective, then B

is a Kan complex (respectively, minimal complex).

3. If B is a Kan complex then E is a Kan complex.
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Next we briefly recall the definitions of homology and cohomology of a simplicial set.

For a simplicial set X, let Cn(X) denote the quotient of the free abelian group generated

by the n-simplices of X by the subgroup generated by the degenerate n-simplices. Define

d : Cn(X)→ Cn−1(X) by d =
∑n

i=0(−1)i∂i. Then {C∗(X), d} becomes a chain complex,

called the normalized chain complex of X. Given an abelian group A, the normalized

cochain complex {C∗(X;A), δ} is defined by Cn(X;A) = HomAb(Cn(X), A) with dif-

ferential δ : Cn(X;A) → Cn+1(X;A), given by δf = (−1)n+1f ◦ d, f ∈ Cn(X;A),

where Ab denote the category of abelian groups and group homomorphisms. Then the

homology and cohomology groups of X with coefficients A are defined by

Hn(X;A) := Hn(C∗(X)⊗A, d⊗ id), Hn(X;A) := Hn(C∗(X;A), δ), respectively.

1.3 Geometric realization

To every simplicial set X we can associate a topological space |X|, called the geometric

realization (also called the Milnor realization) ofX, as follows. Consider eachXn, n ≥ 0,

as a discrete topological space and form the disjoint union X =
∐
n≥0(Xn ×∆n) where

∆n denotes the standard Euclidean n-simplex. Define an equivalence relation ∼ on X

by

(∂ixn, un−1) ∼ (xn, ηiun−1), (sixn, un+1) ∼ (xn, ζiun+1),

where xn ∈ Xn, un−1 ∈ ∆n−1, un+1 ∈ ∆n+1 and ηi : ∆n−1 → ∆n, ζi : ∆n+1 → ∆n are

the maps given by

ηi(t0, · · · , tn−1) = (t0, · · · , ti−1, 0, ti, · · · , tn−1),

ζi(t0, · · · , tn+1) = (t0, · · · , ti−1, ti + ti+1, ti+2 · · · , tn+1).

Then |X| = X/ ∼ is called the geometric realization of X and |X| is a CW-complex

with one n-cell for every non-degenerate n-simplex of X.

If f : X → Y is a simplicial map, then f induces a continuous map |f | : |X| → |Y |
defined by |f |([xn, un]) = [f(xn), un], where [xn, un] denotes the equivalence class of

(xn, un) in |X|. The geometric realization of a simplicial set is a functorial construction

and it is left adjoint to the total singular complex functor X 7→ SX.
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1.4 Homotopy theory of simplicial sets

Definition 1.4.1. The cartesian product X × Y of two simplicial sets X and Y is

defined by (X × Y )n = Xn × Yn with the face and degeneracy maps given by

∂i(x, y) = (∂ix, ∂iy) and si(x, y) = (six, siy).

Definition 1.4.2. Let f, g : X → Y be simplicial maps. Then f is said to be homotopic

to g, written as f ' g, if there is a simplicial map H : X ×∆[1]→ Y such that

H ◦ (id× δ1) = f, H ◦ (id× δ0) = g,

where we identity X ×∆[0] with X and δ0, δ1 : ∆[0]→ ∆[1] are the simplicial maps as

defined in Section 1.2.

Suppose that X ′ and Y ′ are subcomplexes of X and Y respectively such that f, g

take X ′ into Y ′. If f |X′ = g|X′ (=α, say) then a homotopy H : f ' g is called a relative

homotopy if H ◦ (i × id) = α ◦ pr1, where pr1 : X ′ ×∆[1] → X ′ is the projection onto

the first factor and i : X ′ ↪→ X is the inclusion. In this case we write f ' g (rel X ′).

Intuitively, the homotopy leaves the restrictions of f to X ′ unchanged.

We also have the following combinatorial definition of homotopy [May67].

Definition 1.4.3. Let f, g : X → Y be simplicial maps. Then f is homotopic to g if

there exist functions

hni : Xn → Yn+1, 0 ≤ i ≤ n, n ≥ 0,

which satisfy the following identities,

∂0h
n
0 = fn, ∂n+1h

n
n = gn,

∂ih
n
j = hn−1

j−i ∂i, i < j, ∂j+1h
n
j+1 = ∂j+1h

n
j , ∂ih

n
j = hn−1

j ∂i−1, i > j + 1,

sih
n
j = hn+1

j+1 si, i ≤ j, sih
n
j = hn+1

j si−1, i > j.

The homotopy relation may in general fail to be an equivalence relation on the

set HomS(X,Y ). But, homotopy (relative homotopy) is an equivalence relation on

HomS(X,Y ) (HomS((X,X ′), (Y, Y ′))) if Y is a Kan complex [May67].

Thus we have the notions of homotopy equivalence, contractibility, etc., of simplicial

sets. The following theorem shows that minimality of simplicial sets is a very strong

condition.

Theorem 1.4.4. [May67] A homotopy equivalence between minimal Kan complexes is

an isomorphism.
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Let X be a simplicial set and v ∈ X0. Then v generates a subcomplex of X which

has exactly one simplex sn−1 · · · s0(v) in dimension n. We will write v unambiguously

to denote either this subcomplex or any of its simplices.

Definition 1.4.5. For a Kan complex X and v ∈ X0, define

πn(X, v) := HomS((∆[n], ∂∆[n]), (X, v))/ ' (rel ∂∆[n]), n ≥ 0.

For any simplicial set X, define πn(X, v) := πn(S|X|, v).

Observe that if X is a Kan complex, then the two definitions agree. In general

π0(X, v) is just a set. For n ≥ 1, πn(X, v) is a group and it is abelian for n > 1. One

calls π1(X, v) the fundamental group of X.

Definition 1.4.6. A simplicial set X is said to be connected if the set π0(X, v) is a

singleton.

1.5 Fundamental groupoid and local coefficient system

We recall the definitions of fundamental groupoid and local coefficient system on a

simplicial set [GJ99], [Ste99].

Definition 1.5.1. The fundamental groupoid πX of a Kan complex X is a category

having as objects all 0-simplices of X, and a morphism x → y in πX is a homotopy

class [ω] of 1-simplices ω : ∆[1]→ X (rel ∂∆[1]) such that ω ◦ δ0 = y, ω ◦ δ1 = x.

The composition of morphisms is defined as follows. If ω2 represents an arrow

from x to y and ω0 represents an arrow from y to z, then their composite [ω0] ◦ [ω2] is

represented by Ω◦δ1, where the simplicial map Ω: ∆[2]→ X corresponds to a 2-simplex,

which is determined by the compatible pair of 1-simplices (x0 = ω′0, x̂1, x2 = ω′2), where

ω′i = ωi(∆1), i = 1, 2.

For any simplicial set X the notion of fundamental groupoid is defined by πX :=

πS|X|.

Definition 1.5.2. A contravariant functor from πX to the category Ab of abelian

groups is called a local coefficient system (of abelian groups) on X.

In general, one may talk of local coefficient system of Λ-modules or Λ-algebras,

where Λ is a commutative ring with unity, by replacing Ab by Λ-mod, the category of

Λ-modules and module maps, or Λ-alg, the category of commutative Λ-algebras with

unity and algebra homomorphisms preserving the unity, respectively. Unless otherwise

stated, by a local coefficient system we shall always mean a local coefficient system of

abelian groups.
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Given a local coefficient system L on a simplicial set X, the cohomology of X with

local coefficients L is defined as follows [BFGM03], [Hir79].

For each n-simplex σ : ∆[n] → X of X, we associate a 0-simplex σ• : ∆[0] → X,

given by

σ• = σ ◦ (id× δ(1,··· ,n)),

where δ(1,··· ,n) is the composition

δ(1,··· ,n) : ∆[0]
δ1−→ ∆[1]

δ2−→ · · · δn−→ ∆[n] (cf. Section 1.2).

The j-th face of σ, denoted by σ(j), is defined by

σ(j) = σ ◦ (id× δj), 0 ≤ j ≤ n.

Remark 1.5.3. Note that σ
(j)
• = σ• for j > 0, whereas

σ
(0)
• = σ ◦ δ(0,2,··· ,n).

Let Cn(X;L) be the group of all functions f defined on n-simplices σ : ∆[n] → X

such that f(σ) ∈ L(σ•) with f(σ) = 0, if σ is degenerate. We have a morphism σ∗ = [α]

in πX from σ• to σ
(0)
• induced by σ, where α : ∆[1] → X is given by α = σ ◦ δ(2,··· ,n).

Define a homomorphism

δ : Cn(X;L)→ Cn+1(X;L), f 7→ δf,

by

(−1)n+1(δf)(σ) = L(σ∗)f(σ(0)) +

n+1∑
j=1

(−1)jf(σ(j))

for any (n+1)-simplex σ of X. Then δ◦δ = 0. Thus {C∗(X;L), δ} is a cochain complex.

Definition 1.5.4. Let X be a simplicial set and L be a local coefficient system on X.

Then the n-th cohomology of X with local coefficients L is defined by

Hn(X;L) := Hn({C∗(X;L), δ}).

The following discussion gives an alternative description of a local coefficient system

on a connected simplicial set.

Definition 1.5.5. Let π be a group. A π-module is a pair (A, φ) where A is an

abelian group and φ : π → AutGrp(A) a group homomorphism. A map of π-modules



15 1.6 Twisting function

f : (A, φ)→ (A′, φ′) is a group homomorphism f : A→ A′ such that

f(φ(x)a) = φ′(x)f(a)

for all x ∈ π and a ∈ A. The category of π-modules is denoted by π-mod. Note that a

π-module is the same as a (left) module over the group ring Zπ.

Let X be a simplicial set and v ∈ X0 be a 0-simplex. A local coefficient system L
on X determines a π1(X, v)-module (A, φ) in the following way. Let A = L(v) and for

α ∈ π1(X, v), define φ(α) = L(α)−1. Conversely, a π1(X, v)-module determines a local

coefficient system on a connected simplicial set X [GJ99].

1.6 Twisting function

Recall that a simplicial object in the category Grp of groups is called a simplicial group.

Definition 1.6.1. [Moo56] Let B be a simplicial set and Γ be a simplicial group. Then

a graded function

κ : B → Γ, κq : Bq → Γq−1, q ≥ 1,

is called a twisting function if it satisfies the following identities,

∂0(κq(b)) = (κq−1(∂0b))
−1κq−1(∂1b), b ∈ Bq,

∂i(κq(b)) = κq−1(∂i+1b), i > 0,

si(κq(b)) = κq+1(si+1b), i ≥ 0,

κq+1(s0b) = eq, eq being the identity of the group Γq.

Example 1.6.2. Let X be a connected simplicial set. Fix a vertex v ∈ X0 and for any

x ∈ X0, let ωx ∈ X1 such that ∂1ωx = v and ∂0ωx = x. We choose ωv = s0v. Consider

the group π1(X, v) as a simplicial group, where π1(X, v)n = π1(X, v) and all the face

and degeneracy maps are the identity. Then the functions

{κ(X)n}n≥0 : X → π1(X, v),

given by

κ(X)n(y) = [ω∂(0,2,··· ,n)y]
−1 ◦ [∂(2,··· ,n)y] ◦ [ω∂(1,··· ,n)y], y ∈ Xn,

is a twisting function. Here the composition is the composition of morphisms in the

fundamental groupoid πX.

We briefly recall the definition of twisted cohomology of a simplicial set and its

relation with cohomology with local coefficients [Hir79].
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Let π be a group and (A, φ) be a π-module. Given a twisting function κ : X → π,

define the group of twisted n-cochains by

Cnφ (X;κ) := {f : Xn → A| f(x) = 0 if x is degenerate, x ∈ Xn}.

The coboundary δ : Cnφ (X;κ)→ Cn+1
φ (X;κ) is given by

(−1)n+1δf(x) = κ(x)−1f(∂0x) +

n+1∑
i=1

(−1)if(∂ix), f ∈ Cnφ (X;κ), x ∈ Xn+1.

Then δ ◦ δ = 0. Thus {C∗φ(X;κ), δ} is a cochain complex. The twisted cohomology of

X is then defined by

Hn
φ (X;κ) := Hn({C∗φ(X;κ), δ}).

For a local coefficient system L on a simplicial set X, let (A, φ) be the π1(X, v)-

module as discussed at the end of Section 1.5. Then

H∗(X;L) ∼= H∗φ(X;κ(X)),

where κ(X) is the twisting function as described in Example 1.6.2.

Next we recall the definition of twisted cartesian product and related facts from

[May67] which will be used later in the thesis.

Definition 1.6.3. Let B,F be simplicial sets, Γ be a simplicial group which operates

on F from the left, and κ : B → Γ be a twisting function. A twisted cartesian product

(TCP), with fibre F , base B and group Γ is a simplicial set, denoted by E(κ) = F ×κB
which satisfies

(F ×κ B)n = Fn ×Bn

and has face and degeneracy operators

∂0(f, b) = (κ(b)∂0f, ∂0b),

∂i(f, b) = (∂if, ∂ib), i > 0,

si(f, b) = (sif, sib), i ≥ 0.

If F = Γ with Γ acting on itself by left multiplication, then E(κ) is called a principal

twisted cartesian product (PTPC).

If B,F are Kan complexes then E(κ) is also a Kan complex and the canonical

projection p : E(κ)→ B, p(f, b) = b, is a Kan fibration.

Remark 1.6.4. The construction of twisted cartesian products is natural in the fol-

lowing sense. Let B′, F ′ be simplicial sets, Γ′ a simplicial group which operates on F ′
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from the left, and κ′ : B′ → Γ′ be a twisting function. Let ι : B → B′, ζ : F → F ′ and

θ : Γ→ Γ′ be simplicial maps such that

θn ◦ κn+1 = κ′n+1 ◦ ιn+1 and ζn(γf) = θn(γ)ζn(f), γ ∈ Γn, f ∈ Fn, n ≥ 0.

Then the map

E(κ)→ E(κ′), (f, b) 7→ (ζ(f), ι(b)), f ∈ F, b ∈ B

is a simplicial map, covering ι.

Definition 1.6.5. A principal twisted cartesian product (PTPC) E(κ) = Γ ×κ B is

said to be of type (W ), if B0 has one element b0 and if ∂0 : eq × B → E(κ)q−1 is an

isomorphism of sets for all q ≥ 1, where eq denote the identity of the group Γq.

In a subsequent chapter, we will need the following lemma [May67].

Lemma 1.6.6. 1. If Γ ×κ B is a PTPC of type (W ) and Γ is a minimal complex,

then (E(κ), p, B) is a minimal fibre space.

2. Any two PTPC’s of type (W ) with group complex Γ are naturally isomorphic.

Principal twisted cartesian products have an alternative description in terms of

principal fibrations.

Definition 1.6.7. Let Γ be a simplicial group which operates on the right of a simplicial

set E. Then Γ is said to operate principally if xf = x for any x ∈ Eq, f ∈ Γq, implies

f = eq, the identity of the group Γq. If Γ operates principally on the right of E, then

define a quotient complex B by identifying x and xf for all x ∈ Eq and f ∈ Γq. The

quotient map p : E → B is called a principal fibration with base B and structure group

Γ.

On a PTPC E(κ) = Γ×κ B, the simplicial group Γ operates on the right by

(f, b)f1 = (ff1, b)f, f1 ∈ Γ, b ∈ B.

Clearly it is a principal action and B can be identified with the quotient complex of

E(κ). Thus p : E(κ)→ B is a principal fibration. Conversely, we have the following.

Proposition 1.6.8. [May67] A principal fibration with base B and structure group Γ

is a PTPC with group Γ and base B, for some suitable twisting function.
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1.7 Eilenberg-MacLane complexes

Definition 1.7.1. Given a group π and a non-negative integer n, a Kan complex X is

called an Eilenberg-MacLane complex of type (π, n) if πn(X, v) = π and πi(X, v) = 0

for i 6= n (cf. Definition 1.4.5). Such a complex is called a K(π, n)-complex if it is

minimal.

Observe that π has to be abelian if n > 1. It is well known that any two K(π, n)

complexes are isomorphic and K(π, n)n = π. A standard fact about Eilenberg-MacLane

complexes is the following.

Proposition 1.7.2. [May67] If π, π′ are abelian groups and f : π → π′ is a group

homomorphism, then there exists a unique simplicial map φ : K(π, n) → K(π′, n) such

that

f = φn : K(π, n)n → K(π′, n)n.

Note that the simplicial group πq = π, q ≥ 0, with all face and degeneracy maps the

identity, is a K(π, 0)-complex.

Definition 1.7.3. For a group π, the group complex Wπ, known as the W -construction

of π, is defined by setting

Wπ0 = ∗, Wπq = π × · · · × π (q-factors), q > 0,

with face and degeneracy maps as

• ∂0([γ1, · · · , γq]) = [γ2, · · · , γq];

• ∂q([γ1, · · · , γq]) = [γ1, · · · , γq−1];

• ∂i([γ1, · · · , γq]) = [γ1, · · · , γi−1, γiγi+1, γi+2, · · · , γq] 1 ≤ i ≤ q − 1,

where γ1, · · · , γq ∈ π.

Note that Wπ is a K(π, 1)-complex and is the classifying space of the group π.

For an abelian group A and a non-negative integer n, we shall use the following

canonical model of K(A,n), for which the q-simplices are described as follows. Consider

the simplicial abelian group C(A,n) with q-simplices

C(A,n)q = Cn(∆[q];A),

the group of normalized n-cochains of the simplicial q-simplex ∆[q]. For µ ∈ C(A,n)q,

α ∈ ∆[q − 1]n and β ∈ ∆[q + 1]n the face and degeneracy maps of C(A,n) are defined

as

∂iµ(α) = µ(δi(α)), sjµ(β) = µ(σj(β)).
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Here δi : ∆[q − 1]→ ∆[q] and σj : ∆[q + 1]→ ∆[q] are the simplicial maps as defined in

Section 1.2.

We have a simplicial group homomorphism

δn : C(A,n)→ C(A,n+ 1)

such that δnc ∈ C(A,n + 1)q = Cn+1(∆[q];A) is the usual simplicial coboundary of

c ∈ C(A,n)q = Cn(∆[q];A). Then

K(A,n)q = Ker δn = Zn(∆[q];A)

the group of normalized n-cocycles.

The Eilenberg-MacLane complexes classify simplicial cohomology in the following

sense.

Theorem 1.7.4. [May67] For a simplicial set X and an abelian group A, there is

natural bijection

Hn(X;A)↔ [X,K(A,n)].

Here [X,K(π, n)] denote the homotopy class of simplicial maps from X to K(A,n).

An analogue of the above theorem ( [Hir79], [BFGM03], [Git63]) holds for local coef-

ficients cohomology of simplicial sets, as defined in Section 1.5. The classifying complex

in this context is the so called generalized Eilenberg-MacLane complex. The notion

of a generalized Eilenberg-MacLane complex appears in [Git63], [Hir79], [BFGM03].

Roughly speaking, a generalized Eilenberg-MacLane complex is a one vertex mini-

mal Kan complex having exactly two non-vanishing homotopy groups, one of them

being the fundamental group. It appears as the total complex of a Kan fibration.

Gitler [Git63] used it in the construction of cohomology operations in cohomology with

local coefficients. It also plays a crucial role in classifying cohomology with local coef-

ficients [Hir79], [BFGM03]. It may be remarked that a product of Eilenberg-MacLane

complexes is also sometimes referred to as a generalized Eilenberg-MacLane complex.

We now describe a model for a generalized Eilenberg-MacLane complex.

Let n be a positive integer and (A, φ) be a π-module. Then π acts on the minimal

one vertex Kan complex K(A,n) in the following way,

γµ = φ(γ) ◦ µ where µ ∈ K(A,n)q = Zn(∆[q];A), γ ∈ π.

A generalized Eilenberg-MacLane complex can be constructed as follows. Let (A, φ)

be a π-module. Let Wπ denotes the W construction of the group π. We have a twisting
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function

κ(π) : Wπ → π, κ(π)q([γ1, · · · , γq]) = γ1,

where γ1, · · · γq ∈ π and π is considered as a simplicial group with each component π

and all the face and the degeneracy maps being identities. For n > 1, let

Lπ(A,n) = K(A,n)×κ(π) Wπ,

where the right hand side is the twisted cartesian product (cf. Definition 1.6.3). Then

it is a one vertex minimal Kan complex whose fundamental group is π, n-th homotopy

group is A and all other homotopy groups are trivial. Moreover the action of the

fundamental group π on the n-th homotopy group A is given by φ [Thu97]. We have

a canonical map p : Lπ(A,n) → Wπ, p(c, x) = x for c ∈ X,x ∈ Wπ, which is a Kan

fibration.

Remark 1.7.5. Suppose (A, φ) is a π-module and (A′, φ′) is a π′-module. Moreover,

suppose that α : π → π′ is a group homomorphism. View A′ as a π-module via α. Then

any π-module homomorphism f : A→ A′ induces a map

f∗ : K(A,n)×κ(π) Wπ → K(A′, n)×κ(π′) Wπ′

in the obvious way.

Generalized Eilenberg-MacLane complexes classify cohomology with local coeffi-

cients of simplicial sets [Git63], [Hir79], [BFGM03]. To state the result, we need to

recall some standard facts about closed model category [Qui67].

1.8 Closed model categories

In [Qui67], Quillen introduced the notion of a closed model category in order to lay

the foundations of what is known as ‘categorical homotopy theory’ or ‘axiomatic ho-

motopy theory’ or ’homotopical algebra’. Broadly speaking, a closed model category

is an ordinary category with three distinguished classes of morphisms which satisfy a

few simple axioms that are deliberately reminiscent of properties of topological spaces.

These axioms give a reasonably general context in which it is possible to set up the

basic machinery of homotopy theory.

Definition 1.8.1. Let C be a category and F be a distinguished class of morphisms in
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C. Suppose we have a commutative solid arrow diagram in C.

A X

B Y

-

?

i

?

p

-
p p p p p

p p�

We say that i has the left lifting property (LLP) with respect to the class of mor-

phisms F if the dotted arrow exists making the resulting triangles commutative for any

p ∈ F .

We say that p has the right lifting property (RLP) with respect to the class of

morphisms F if the dotted arrow exists making the resulting triangles commutative for

any i ∈ F .

Definition 1.8.2. A category C with three distinguished classes of morphisms, called

cofibrations, fibrations and weak equivalences (which are often denoted by ↪→, �,
∼−→,

respectively) is called a closed model category if the following axioms are satisfied.

1. Finite limits and colimits exist in C.

2. If f, g are morphisms in C such that f ◦ g defined, then any two of f, g, and f ◦ g
are weak equivalences imply the third is also so.

3. All three class of morphisms are closed under retracts.

4. (a) Every cofibration has the LLP with respect to every trivial fibration (i.e,

fibration which is also a weak equivalence).

(b) Every fibration has the RLP with respect to every trivial cofibration (i.e,

cofibration which is also a weak equivalence).

5. Any morphism f in C admits following factorizations.

(a) f = qi where i is a cofibration and q is a trivial fibration.

(b) f = pj where p is a fibration and j is a trivial cofibration.

In a closed model category initial and terminal objects exist. To justify this, let

D be the empty category (i.e, category with no object) and F : D → C be the unique

functor. Then, by the first axiom, colimF and limF exist. Hence, by the definitions of

colimit and limit, it follows that φ = colimF is the initial object and ? = limF is the

terminal object.

Definition 1.8.3. An object X of a closed model category C is said to be a fibrant

object if the unique map X → ? is a fibration and X is called a cofibrant object if the

unique map φ→ X is a cofibration.
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Example 1.8.4. The category S of simplicial sets has a closed model structure as

described below. A simplicial map f : X → Y is

• a weak equivalence if |f | : |X| → |Y | is a weak homotopy equivalence of topological

spaces.

• a fibration iff it is Kan fibration.

• a cofibration if it is dimensionwise injective.

With this closed model structure on S, every object of S is cofibrant, and fibrant objects

of S are precisely the Kan complexes.

Example 1.8.5. The category Top of topological spaces and continuous maps has a

closed model structure as described below. A map f : X → Y is

• a weak equivalence if it is a weak homotopy equivalence.

• a fibration if it has homotopy lifting property with respect to all CW-complexes

(called Serre fibration).

• a cofibration if it has LLP with respect to the acyclic fibrations.

Example 1.8.6. Let C be a closed model category and C be an object of C. Recall

that the slice category C ↓ C is the category whose objects are pairs (X,u), where X is

an object of C and u : X → C is a morphism in C. A morphism in C ↓ C from (X,u) to

(Y, v) is a morphism f : X → Y in C, such that u = v ◦ f . Then the slice category C ↓ C
has a natural closed model structure, in which a morphism f : (X,u) → (Y, v) is is a

fibration, a cofibration, a weak equivalence if the same is true for the map f : X → Y

in the closed model category C (cf. page 330, [GJ99]).

Let C be a closed model category. Suppose that X is a cofibrant object and Y

is a fibrant object of C. Then it is possible to define ‘homotopy’ relation on the set

HomC(X,Y ) and it is an equivalence relation. For C ∈ C, we use the notation [X,Y ]C

to denote the set of homotopy classes of maps in the slice category C ↓ C.

We are now in a position to state the homotopy classification of cohomology with

local coefficients of simplicial sets.

Let X be a one vertex Kan complex with fundamental group π. Then there is

a unique simplicial map θ : X → Wπ inducing the identity map on the fundamental

groups [Thu97]. Let L be a local coefficient system on X determined by a π-module

(A, φ). Then (X, θ) is fibrant and Lπ(A,n) is cofibrant in the closed model category

S ↓Wπ.
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Theorem 1.8.7. [Hir79,Git63,BFGM03,Thu97] With the above notations, there is a

natural bijection

Hn(X;L)↔ [X,Lπ(A,n)]Wπ.
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Chapter 2

G-simplicial sets and equivariant

twisted cohomology

2.1 Introduction

In this chapter we deal with simplicial sets equipped with an action of a discrete group

G and related objects. Let OG denote the category of canonical orbits of G [Bre67].

We recall the notion of OG-Eilenberg-MacLane complexes from [MN98] and introduce

the notion of OG-twisting function and OG-twisted cartesian product. At the end of

the chapter, we introduce an equivariant analogue of the twisted cohomology for a

G-simplicial set.

2.2 G-simplicial sets

Let G be a discrete group.

Definition 2.2.1. A G-simplicial set is a simplicial object in the category of G-sets.

More precisely, a G-simplicial set is a simplicial set {Xn; ∂i, si, 0 ≤ i ≤ n}n≥0 such

that each Xn is a G-set and the face maps ∂i : Xn −→ Xn−1 and the degeneracy maps

si : Xn → Xn+1 commute with the G-action.

A G-simplicial map between G-simplicial sets is a simplicial map which commutes

with the G-action.

We shall denote the category of G-simplicial sets and G-simplicial maps by GS.
Let X be a G-simplicial set. For a subgroup H of G, the fixed point simplicial set

XH is a simplicial set with XH
n = {x ∈ Xn|ax = a, ∀a ∈ H} as its n-simplices and

the face and degeneracy maps of XH are the restrictions of the face maps ∂i and the

degeracy maps si of X to XH .

25
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Definition 2.2.2. A G-simplicial set X is called G-connected if the fixed point

simplicial set XH is connected for each subgroup H of G.

Let G operate trivially on ∆[n]. Then for a G-simplicial set X, the product simplicial

set X ×∆[n] , n ≥ 0, is considered as a G-simplicial set with the diagonal action of G.

Definition 2.2.3. Let X,Y be G-simplicial sets and f, g : X → Y be G-simplicial

maps. Then f and g are said to be G-homotopic if there exists a G-simplicial map

H : X ×∆[1]→ Y such that

H ◦ (id× δ1) = f, H ◦ (id× δ0) = g,

where X ×∆[0] is identified with X. The map H is called a G-homotopy from f to g

and we write H : f 'G g.
Suppose i : X ′ ⊆ X is an inclusion of a subcomplex and f, g agree on X ′. We say

that f is G-homotopic to g relative to X ′ if there exists a G-homotopy H : f 'G g such

that H ◦ (i × id) = α ◦ pr1, where α = f |X′ = g|X′ and pr1 : X ′ × ∆[1] → X ′ is the

projection onto the first factor. In this case, we write H : f 'G g(rel X ′).

Definition 2.2.4. A G-simplicial set is a G-Kan complex if the fixed point simplicial

set XH is a Kan complex for every subgroup H of G.

Example 2.2.5. Let X be a G-simplicial set. Then the geometric realization |X| of X

has a natural G-action, given by a[x, u] = [ax, u], where a ∈ G, x ∈ Xn and u ∈ ∆n.

This induces a simplicial G-action on S|X|. Note that (S|X|)H = S|X|H , H being a

subgroup of G. Hence, for a G-simplicial set X, S|X| is a G-Kan complex.

For a G-simplicial map f : X → Y , let fH : XH → Y H denote the simplicial map

f |XH , where H ⊆ G is a subgroup.

Remark 2.2.6. Recall ( [AG94], [FG98]) that the category GS has a closed model

structure [Qui67], where a G-simplicial map f : X → Y is called a fibration or a weak

equivalence if the simplicial map fH : XH → Y H is so for each subgroup H of G.

Therefore the fibrant objects of GS are the G-Kan complexes, and the cofibrant objects

are the G-simplicial sets. The cofibrations are defined by the left lifting property.

From this it follows that a G-homotopy on the set of G-simplicial maps X → Y is

an equivalence relation, for every G-simplicial set X and G-Kan complex Y . More

generally, a relative G-homotopy is an equivalence relation if the target is a G-Kan

complex.

Definition 2.2.7. A G-simplicial map f : X → Y between G-simplicial sets X and Y

is called a G-Kan fibration if the simplicial map fH : XH → Y H is a Kan fibration for

each subgroup H of G.
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We consider G/H ×∆[n] as a simplicial set with (G/H ×∆[n])q = G/H ×∆[n]q as

its q-simplices, and the face and degeneracy maps as id×∂i and id× si, where ∂i and si

are the face and degeneracy maps of ∆[n] (cf. Example 1.2.2). Note that the group G

acts on G/H by left translation. With this G-action on the first factor and the trivial

action on the second factor, G/H ×∆[n] is a G-simplicial set.

Definition 2.2.8. Let X be a G-simplicial set. A G-simplicial map σ : G/H×∆[n]→ X

is called an equivariant n-simplex of type H in X.

Remark 2.2.9. We remark that for a G-simplicial set X, the set of equivariant

n-simplices of type H in X is in a bijective correspondence with the n-simplices

of XH . For an equivariant n-simplex σ of type H, the corresponding n-simplex is

σ′ = σ(eH,∆n). The simplicial map ∆[n]→ XH , ∆n 7→ σ′, will be denoted by σ.

We shall call σ degenerate or non-degenerate according as the n-simplex σ′ ∈ XH
n

is degenerate or non-degenerate.

2.3 OG-simplicial sets

Recall that, for a discrete group G, the category of canonical orbits, denoted by OG,

is a category whose objects are left cosets G/H, as H runs over the all subgroups of

G. Note that the group G acts on the set G/H by left translation. A morphism from

G/H to G/K is a G-map. Recall that such a morphism determines and is determined

by a subconjugacy relation a−1Ha ⊆ K, and is given by â(eH) = aK. We denote this

morphism by â [Bre67].

Definition 2.3.1. A contravariant functor from OG to S is called an OG-simplicial set.

A map between OG-simplicial sets is a natural transformation of functors.

We shall denote the category of OG-simplicial sets by OGS. The notion of OG-groups

or abelian OG-groups has the obvious meaning replacing S by Grp or Ab. Similarly, a

contravariant functor from OG to the category of chain complexes and chain maps is

called an OG-chain complex. An OG-chain complex of abelian groups can be viewed

as a sequence {Cn}n≥0 of abelian OG-groups with natural transformations ∂n : Cn →
Cn−1, n ≥ 1, such that ∂n ◦ ∂n+1(G/H) is the zero map for each object G/H of OG.

Definition 2.3.2. An OG-simplicial set T is called an OG-Kan complex if T (G/H)

is a Kan complex for each subgroup H of G. Similarly, a morphism f : T → S of

OG-simplicial sets is called an OG-Kan fibration if the simplicial map

f(G/H) : T (G/H)→ S(G/H)

is a Kan fibration for each subgroup H of G.
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Example 2.3.3. If X is a G-simplicial set, then we have an OG-simplicial set ΦX

defined by

ΦX(G/H) := XH ,

for each object G/H of OG, and ΦX(â)x = ax for x ∈ XK , where â : G/H → G/K is

a morphism in OG.

Note that, if X is a G-Kan complex then ΦX is an OG-Kan complex.

Observe that we have a functor Φ: GS → OGS with ΦX as defined above, and for

a G-simplicial map f : X → Y , the natural transformation Φ(f) : ΦX → ΦY is defined

by Φ(f)(G/H) = fH : XH → Y H , for each object G/H of OG.

Example 2.3.4. Let π be an OG-group. We define an OG-simplicial set Wπ as follows.

For a subgroup H of G, let

Wπ(G/H) = W (π(G/H)),

the W -construction of the group π(G/H), as described in Definition 1.7.3. For a mor-

phism â : G/H → G/K in OG, let Wπ(â) : Wπ(G/K)→Wπ(G/H) be defined by

Wπ(â)([γ1, · · · , γq]) = [π(â)γ1, · · · , π(â)γq],

where γ1, · · · , γq ∈ π(G/K). Then Wπ is an OG-simplicial set.

Example 2.3.5. For a G-simplicial set X, with a G-fixed 0-simplex v, we have an

OG-group πX defined as follows. For any subgroup H of G,

πX(G/H) := π1(XH , v),

and for a morphism â : G/H → G/K, a−1Ha ⊆ K, πX(â) is the homomorphism in

the fundamental groups induced by the simplicial map a : XK → XH .

Definition 2.3.6. The cartesian product of two OG-simplicial sets T and S, denoted

by T × S, is defined by

(T × S)(G/H) = T (G/H)× S(G/H),

for each object G/H of OG and (T × S)(â) = (T (â), S(â)) for a morphism â in OG.

Example 2.3.7. We may consider the simplicial set ∆[n], n ≥ 0, as an OG-simplicial

set by taking ∆[n](G/H) = ∆[n] for each object G/H of OG and ∆[n](â) = id for a

morphism â in OG. Therefore, for T ∈ OGS, we have the OG-simplicial set T×∆[n], n ≥
0.
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The above construction of ‘constant’ OG-simplicial set works with any simplicial set

instead of ∆[n].

The homotopy of maps between OG-simplicial sets is defined as follows.

Definition 2.3.8. Let T, S ∈ OGS and f, g : T → S be two maps of OG-simplicial sets.

Then f is homotopic to g if there exists a map H : T ×∆[1]→ S of OG-simplicial sets

such that for every object G/H of OG, H(G/H) is a homotopy f(G/H) ' g(G/H) of

simplicial maps. We use the notation H : f ' g to denote such homotopies.

Recall that OGS has a closed model structure [Qui67], where a map f : T → S in

OGS is called a fibration or a weak equivalence if the simplicial map f(G/H) is so, for

each object G/H of OG [DK83]. The cofibrations are defined by the left lifting property.

Then the abstract notion of homotopy becomes the same as the notion of homotopy, as

introduced above.

Definition 2.3.9. An OG-group π is said to act on an OG-simplicial set (OG-group or

abelian OG-group) T if we have a natural transformation φ : π × T → T such that

φ(G/H) : π(G/H)× T (G/H)→ T (G/H)

is an action of the group π(G/H) on T (G/H) for each subgroup H of G.

If π acts on an abelian OG-group T , then we call T a π-module, and denote it by

(T, φ).

Next we recall the notion of an OG-Eilenberg-MacLane complex from [MN98]. It

may be relevant to remark that an equivariant analogue of an Eilenberg-MacLane space

can be constructed from this, using generalized bar construction [Elm83].

Definition 2.3.10. Given an abelian OG-group M0 and an integer n ≥ 0, an OG-Kan

complex T is called an OG-Eilenberg-MacLane complex of type (M0, n) if T (G/H) is a

K(M0(G/H), n)-complex for each object G/H of OG, and for a morphism â : G/H →
G/K in OG, T (â) : T (G/K) → T (G/H) is the unique simplicial map induced by

the linear map M0(â) : M0(G/K) → M0(G/H) such that T (â)n : K(M0(G/K), n)n →
K(M0(G/H), n)n is M0(â) (cf. Proposition 1.7.2).

Using the uniqueness of K(π, n)s, the following result was proved in [MN98].

Proposition 2.3.11. Any two OG-Eilenberg-MacLane complexes of the same type are

naturally isomorphic.

We denote an OG-Eilenberg-MacLane complex of type (M0, n) by K(M0, n). Using

the canonical model of an ordinary Eilenberg-MacLane complex, as described in Chapter
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1, we have a canonical model of K(M0, n) given by

K(M0, n)(G/H)q = Zn(∆[q];M0(G/H)),

for each object G/H of OG with K(M0, n)(â) being induced by a coefficients change

homomorphism, for a morphism â in OG.

Remark 2.3.12. In [MN98], A. Mukherjee and A. Naolekar defined the Bredon

cohomology H∗G(T ;M0) of an OG-simplicial set T with coefficients an abelian OG-group

M0. It has been proved in [MN98] that the Bredon cohomology Hn
G(T ;M0) of T is rep-

resented by the set of homotopy classes of maps from T to the OG-Eilenberg-MacLane

complex K(M0, n).

2.4 OG-twisting function and OG-TCP

In the presence of an action of a discrete group G, the notion of a twisting function has

the following natural generalization to an OG-twisting function.

Definition 2.4.1. Let T be an OG-simplicial set and Γ be a simplicial OG-group.

A natural transformation of functors κ : T → Γ is called an OG-twisting function if

κ(G/H) : T (G/H)→ Γ(G/H) is an ordinary twisting function for each subgroup H of

G.

Example 2.4.2. Let π be an OG-group. Consider π as a simplicial OG-group {πn}n≥0,

where πn = π for all n ≥ 0 and all the face and degeneracy maps are the identity natural

transformations. Define a natural transformation

κ(π) : Wπ → π by κ(π)q(G/H)([γ1, · · · , γq]) = γ1, H subgroup of G,

where Wπ is the OG-simplicial set as introduced in Example 2.3.4 and [γ1, · · · , γq] ∈
Wπ(G/H)q, γi ∈ π(G/H), 1 ≤ i ≤ q. Then κ(π) is an OG-twisting function.

Example 2.4.3. Let X be a G-connected G-simplicial set and v be a G-fixed 0-simplex

of X. Let πX : OG → Grp be the OG-group as introduced in Example 2.3.5. We

regard πX as an OG-group complex by πX(G/H)n = πX(G/H) for each object G/H

of OG and πX(â) = id for a morphism â in OG. We choose a 0-simplex x on each

G-orbit of X0 and for each such 0-simplex x, we choose a 1-simplex ωx ∈ XGx
1 such that

∂0ωx = x, ∂1ωx = v. Here Gx is the isotropy subgroup at x ∈ X0, corresponding to the

G-action on the set X0. We choose ωv = s0v. For any other 0-simplex y on the orbit

of x we define ωy = aωx if y = ax. Then it is well-defined, for, if y = a1x = a2x we

have a−1
2 a1 ∈ Gx and then a−1

2 a1ωx = ωx, which yields a1ωx = a2ωx. Also note that if
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y = ax, then Gy = aGxa
−1. Therefore ωy ∈ X

Gy
1 . For a 0-simplex x ∈ XH , we shall

use the notation ξH(x) to denote the homotopy class [ωx] of ωx : ∆[1]→ XH . Here for

any q-simplex σ of a simplicial set Y , σ : ∆[q] → Y denotes the unique simplicial map

satisfying σ(∆q) = σ. Define

{κ(G/H)n} : XH → π1(XH , v)

to be the twisting function κ(XH) as described in Example 1.6.2, that is,

κ(G/H)n(y) = ξH(∂(0,2,··· ,n)y)−1 ◦ [∂(2,··· ,n)y] ◦ ξH(∂(1,··· ,n)y),

where y ∈ XH
n .

Let ΦX be the OG-simplicial set as defined in Example 2.3.3. We now check that

κ : ΦX → πX, G/H 7→ κ(G/H), H ⊆ G a subgroup,

is indeed an OG-twisting function. Suppose H and K are subgroups of G such that

a−1Ha ⊆ K. Let z ∈ XK
n . Then y = az ∈ XH

n . Observe that if x1, x2 ∈ XK
1 are

1-simplices such that x1 ' x2, as simplicial maps into XK , then y1 ' y2 as simplicial

maps into XH , where yi = axi, i = 1, 2. Thus

κ(G/H)n ◦ ΦX(â)(z)

=κ(G/H)n(y)

=ξH(∂(0,2,··· ,n)y)−1 ◦ [∂(2,··· ,n)y] ◦ ξH(∂(1,··· ,n)y)

=ξH(a∂(0,2,··· ,n)z)
−1 ◦ [a∂(2,··· ,n)z] ◦ ξH(a∂(1,··· ,n)z)

=aξK(∂(0,2,··· ,n)z)
−1 ◦ a[∂(2,··· ,n)z] ◦ aξK(∂(1,··· ,n)z)

=πX(â) ◦ κ(G/K)n(z).

Thus κ : ΦX → πX is an OG-twisting function.

Having defined an OG-twisting function, we now define an OG-twisted cartesian

product. Using the naturality of twisted cartesian product, as observed in Remark

1.6.4, we have the following definition.

Definition 2.4.4. Let B,F be OG-Kan complexes and Γ be an OG-group complex.

Suppose that Γ operates on B and κ : B → Γ is an OG-twisting function. Then the

OG-Kan complex F ×κ B, defined by

(F ×κ B)(G/H) = F (G/H)×κ(G/H) B(G/H),

for each object G/H of OG, and (F ×κ B)(â) = (F (â), B(â)) for a morphism â of the
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category OG, is called the OG-twisted cartesian product (OG-TCP) with fibre F , base

B, group Γ and twisting κ.

Note that the second factor projection gives an OG-Kan fibration p : (F ×κB)→ B.

We view (F ×κ B, p) as an object in the slice category OGS ↓ B (cf. Example 1.8.6).

Example 2.4.5. Let M0 be a π-module with module structure given by φ. For each

subgroup H of G, define an action of π(G/H) on K(M0(G/H), n)

ψ(G/H) : π(G/H)×K(M0(G/H), n)→ K(M0(G/H), n)

as follows. For γ ∈ π(G/H), let ψ(G/H)(γ, -) be the unique simplicial automorphism

of K(M0(G/H), n) such that

ψ(G/H)(γ, -)n : K(M0(G/H), n)n → K(M0(G/H), n)n,

is the automorphism φ(G/H)(γ, -) : M0(G/H) → M0(G/H) (cf. Proposition 1.7.2).

This defines an action of the OG-group π on the OG-Kan complex K(M0, n). Therefore

we can form the OG-Kan fibration p : K(M0, n) ×κ(π) Wπ → Wπ, where κ(π) is the

OG-twisting function as described in Example 2.4.2. If we use the canonical model of

K(M0, n), the total complex of the resulting OG-Kan fibration is denoted by Lφ(M0, n).

2.5 Equivariant twisted cohomology

We end this chapter by introducing the equivariant version of twisted cohomology

as defined in Section 1.5. Let T be an OG-simplicial set and M0 be an abelian

OG-group equipped with an action φ : π × M0 → M0 of an OG-group π. We regard

π as an OG-group complex by setting πn = π, n ≥ 0, with all face and degeneracy maps

being identity natural transformations. Let κ : T → π be a given OG-twisting function.

We define equivariant twisted cohomology of T with coefficients M0 and twisting κ as

follows.

Let CG denote the category of contravariant functors from OG to the category Ab.
We have a chain complex in the abelian category CG, defined by

Cn(T ) : OG → Ab, G/H 7→ Cn(T (G/H);Z),

where Cn(T (G/H);Z) denotes the free abelian group generated by the non-degenerate

n-simplices of T (G/H). For a morphism â : G/H → G/K, a−1Ha ⊆ K in OG, Cn(T )(â)

is given by the map a# : Cn(T (G/K);Z) → Cn(T (G/H);Z) induced by the simplicial

map T (â) : T (G/K)→ T (G/H). The boundary map ∂n : Cn(T )→ Cn−1(T ) is the nat-

ural transformation defined by ∂n(G/H) : Cn(T (G/H);Z) → Cn−1(T (G/H);Z), where
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∂n(G/H) is the ordinary boundary map of the simplicial set T (G/H). Dualizing this

chain complex in the abelian category CG, we get the cochain complex

{C∗G(T ;M0) = HomCG(C∗(T ),M0), δ∗},

which defines the ordinary Bredon cohomology of T with coefficients M0.

Remark 2.5.1. In particular, for a G-simplicial set X, the cohomology groups of

the cochain complex C∗G(ΦX;M0) define the Bredon cohomology groups of X with

coefficients M0, and is denoted by H∗G(X;M0) [Bre67].

To define the twisted cohomology of T , we modify the coboundary maps as follows.

δnκ : CnG(T ;M0) −→ Cn+1
G (T ;M0), f 7→ δnκf,

where

δnκf(G/H) : Cn+1(T (G/H);Z)→M0(G/H)

is given by

(−1)n+1δnκf(G/H)(x) = (κ(G/H)n+1(x))−1f(G/H)(∂0x) +
n+1∑
i=1

(−1)if(G/H)(∂ix),

for x ∈ T (G/H)n+1. Note that the first term of the expression in the right-hand side

is obtained by the given action φ of π on M0. We denote the resulting cochain complex

by C∗G(T ;κ, φ).

Definition 2.5.2. Let T be an OG-simplicial set, π be an OG-group, (M0, φ) be a

π-module and κ : T → π be an OG-twisting function. Then the n-th equivariant twisted

cohomology of T is defined by

Hn
G(T ;κ, φ) := Hn(C∗G(T ;κ, φ)).

Definition 2.5.3. Let X be a G-simplicial set, π be an OG-group, (M0, φ) be a

π-module and κ : ΦX → π be an OG-twisting function. We set C∗(X) = C∗(ΦX) and

let C∗G(X;κ, φ) denote the cochain complex C∗G(ΦX;κ, φ). Then the n-th equivariant

twisted cohomology of X is defined by

Hn
G(X;κ, φ) := Hn(C∗G(X;κ, φ)).

Let Y be a G-simplicial set, π′ be an OG-group, κ′ : ΦY → π′ be an OG-twisting

function and (N0, φ
′) be a π′-module. Let F : X → Y , ν : N0 →M0, l : π → π′ be maps
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in the appropriate categories such that

ν(G/H)[(l(G/H)γ)n0] = γ[ν(G/H)(n0)]; κ′ ◦ ΦF = l ◦ κ,

where H is a subgroup of G, n0 ∈ N0(G/H), γ ∈ π(G/H). Then we have an induced

map in the cochain complexes of equivariant twisted cohomology

(F, ν, l)∗ : C∗G(Y ;κ′, φ′)→ C∗G(X;κ, φ),

defined by

(F, ν, l)∗(f)(G/H) = ν(G/H) ◦ f(G/H) ◦ (ΦF )(G/H), f ∈ C∗G(Y ;κ′, φ′).

In particular, a G-simplicial map F : X → Y induces a cochain map

(F, id, id)∗ : C∗G(Y ;κ′, φ)→ C∗G(X;κ′ΦF, φ).

Often, we shall denote this cochain map simply by F ∗.



Chapter 3

Simplicial Bredon-Illman

cohomology with local coefficients

3.1 Introduction

In this chapter we introduce the fundamental groupoid of a simplicial set equipped with a

given simplicial action of a discrete groupG and the notion of equivariant local coefficient

system. Based on these notions, we introduce simplicial version of the Bredon-Illman

cohomology with local coefficients [MM96] of a G-simplicial set. Next we prove that

for a suitable OG-twisting function, induced from a given equivariant local coefficient

system, the simplicial version of the Bredon-Illman cohomology with local coefficients

of a G-simplicial set is isomorphic to its equivariant twisted cohomology. Finally, in this

chapter we derive a version of the Serre spectral sequence for a G-Kan fibration.

3.2 Fundamental groupoid

Let X be a G-simplicial set. Recall that an equivariant n-simplex of type H in X,

H being a subgroup of G, is a G-simplicial map σ : G/H × ∆[n] → X. Each such σ

corresponds to an n-simplex σ′ ∈ XH , and σ : ∆[n] → XH is the simplicial map given

by σ(∆n) = σ′ = σ(eH,∆n). Suppose xH and yK are equivariant 0-simplices of type H

and K respectively, and â : G/H → G/K is a morphism in OG, given by a subconjugacy

relation a−1Ha ⊆ K, a ∈ G, such that â(eH) = aK. Moreover, suppose that we have

an equivariant 1-simplex ϑ : G/H ×∆[1]→ X of type H such that

ϑ ◦ (id× δ1) = xH , ϑ ◦ (id× δ0) = yK ◦ (â× id).

35
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Then, in particular, ϑ′ is a 1-simplex in XH such that ∂1ϑ
′ = x′H and ∂0ϑ

′ = ay′K .

Observe that the 0-simplex ay′K in XH corresponds to the composition

G/H ×∆[0]
â×id−−−→ G/K ×∆[0]

yK−−→ X

and ϑ is a G-homotopy xH 'G yK ◦ (â× id).

Definition 3.2.1. Let X be a G-Kan complex. The fundamental groupoid ΠX of X

is a category with objects equivariant 0-simplices

xH : G/H ×∆[0]→ X

of type H, as H varies over all subgroups of G. Given two objects xH and yK in ΠX, a

morphism from xH → yK is defined as follows. Consider the set of all pairs (â, ϑ) where

â : G/H → G/K is a morphism in OG given by a subconjugacy relation a−1Ha ⊆ K,

a ∈ G, such that â(eH) = aK and ϑ : G/H × ∆[1] → X is an equivariant 1-simplex

such that

ϑ ◦ (id× δ1) = xH , ϑ ◦ (id× δ0) = yK ◦ (â× id).

The set of morphisms in ΠX from xH to yK is a quotient of the set of pairs mentioned

above by an equivalence relation ‘ ∼ ’, where (â1, ϑ1) ∼ (â2, ϑ2) if, and only if, a1 = a2 =

a (say) and there exists a G-homotopy H : G/H × ∆[1] × ∆[1] → X of G-homotopies

such that H : ϑ1 'G ϑ2 (rel G/H × ∂∆[1]). Since X is a G-Kan complex, by Remark

2.2.6, ∼ is an equivalence relation. We denote the equivalence class of (â, ϑ) by [â, ϑ].

The set of equivalence classes is the set of morphisms in ΠX from xH to yK .

The composition of morphisms in ΠX is defined as follows. Given two morphisms

xH yK zL-
[â1,ϑ1]

-
[â2,ϑ2]

their composition [â2, ϑ2] ◦ [â1, ϑ1] is [â1a2, ψ] : xH → zL, where the first factor â1a2 is

the composition

G/H G/K G/L-â1 -â2

and ψ : G/H × ∆[1] → X is an equivariant 1-simplex of type H as described below.

Let Ω be a 2-simplex in the Kan complex XH , determined by the compatible pair of

1-simplices (x0 = a1ϑ
′
2, x̂1, x2 = ϑ′1) so that ∂0Ω = a1ϑ

′
2 and ∂2Ω = ϑ′1. Then ψ is given

by ψ(eH,∆1) = ∂1Ω.

For a version of the fundamental groupoid of a G-space, we refer to [MM96] and

[Lüc89].

The following lemma shows that the composition is well-defined.
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Lemma 3.2.2. The equivalence class of (â1a2, ψ) does not depend on the choice of the

representatives of [â1, ϑ1] and [â2, ϑ2].

Proof. Suppose that [ai, ϑi] = [ai, λi], i = 1, 2. Then there exist G-homotopies

Θi : ϑi 'G λi (rel G/H × ∂∆[1]) for i = 1, 2. Let y be a 2-simplex in XH determined by

the compatible pair of 1-simplices (x0 = a1λ
′
2, x̂1, x2 = λ′1) as described above, where

∂0y = a1λ
′
2 and ∂2y = λ′1. Let ξ : G/H ×∆[1]→ X be the equivariant 1-simplex deter-

mined by ξ(eH,∆1) = ∂1y. We need to show that (â1a2, ψ) ∼ (â1a2, ξ). Observe that

Θi : ϑi ' λi (rel ∂∆[1]), for i = 1, 2. Now consider the right lifting problem

(∆[2]× ∂∆[1]) ∪ (Λ2
1 ×∆[1]) XH

∆[2]×∆[1] ∗

-
(y,Ω,Θ1,Θ2)

? ?
-

where in the above diagram, the right vertical arrow is a fibration and the left vertical

arrow is an anodyne extension [GJ99]. Therefore, the above right lifting problem has a

solution F : ∆[2]×∆[1]→ XH and the composition of F with

δ1 × id : ∆[1]×∆[1]→ ∆[2]×∆[1]

is a homotopy ψ ' ξ (rel ∂∆[1]). Let F : G/H ×∆[2]×∆[1] → X be the G-simplicial

map determined by F (eH, s, t) = F (s, t). Then the composition

G/H ×∆[1]×∆[1]
id×δ1×id−−−−−−→ G/H ×∆[2]×∆[1]

F−→ X

is a G-homotopy ψ 'G ξ (rel G/H × ∂∆[1]). Consequently,

[â1a2, ψ] = [â1a2, ξ].

Recall that if X is a G-simplicial set then S|X| is a G-Kan complex (cf. Example

2.2.5) and the canonical map X → S|X| is a weak equivalence of G-simplicial sets.

Definition 3.2.3. For a G-simplicial set X, we define the fundamental groupoid ΠX

of X by ΠX := ΠS|X|.

Note that if X,Y are G-simplicial sets and F : X → Y is a G-simplicial map then

there exists an obvious induced functor Π(F ) : ΠX → ΠY which assigns to each object

xH of ΠX, the object F ◦ xH of ΠY and to a morphism [â, ϑ] in ΠX, the morphism

[â, F ◦ ϑ] in ΠY .
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Remark 3.2.4. If G is a trivial group, then ΠX reduces to the fundamental groupoid

πX of the simplicial set X. Again, for a fixed H, the objects xH together with the

morphisms xH → yH with identity in the first factor, constitute a subcategory of ΠX

which is precisely the fundamental groupoid πXH of XH . Moreover, a morphism [â, ϑ]

from xH to yK , corresponds to the morphism [ϑ] in the fundamental groupoid πXH of

XH , from x′H to ay′K , where ϑ is as in Remark 2.2.9.

Suppose Υ is a morphism in πXH from x to y given by a homotopy class [ω], where

ω : ∆[1] → XH is a 1-simplex in XH such that ∂1ω = x and ∂0ω = y. Let xH and yH

be the objects in ΠX, defined by

xH(eH,∆0) = x, and yH(eH,∆0) = y.

Then we have a morphism [id, ω] : xH → yH in ΠX, where ω(eH,∆1) = ω(∆1). We

shall denote this morphism in ΠX corresponding to a morphism Υ in πXH by bΥ.

3.3 Equivariant local coefficient system

Definition 3.3.1. An equivariant local coefficient system (of abelian groups) on a G-

simplicial set X is a contravariant functor from ΠX to the category Ab of abelian

groups.

More generally, for a commutative ring Λ with unity, an equivariant local coefficient

system of Λ-algebras has the obvious meaning replacing Ab by the category Λ-alg of

commutative Λ-algebras with unity and algebra homomorphisms preserving the unity.

Example 3.3.2. Let X be a G-simplicial set and n > 1. For any object xH in ΠX,

define M(xH) = πn(XH , xH(eH,∆0)) and, for any morphism [â, ϑ] : xH → yK , define

M([â, ϑ]) = ([ϑ])∗ ◦ πn(a),

where a : XK → XH is the left translation by a, and ([ϑ])∗ is the isomorphism in the

n-th homotopy group of XH induced by a morphism [ϑ] from x′H to ay′K . Then M is

an equivariant local coefficient system on X.

The following discussion gives a generic example of an equivariant local coefficient

system on a G-connected G-simplicial set X having a G-fixed 0-simplex.

Suppose that v is a G-fixed 0-simplex of X and M is an equivariant local coefficient

system of Λ-algebras on X. For any subgroup H of G, let vH be the object of type H

in ΠX defined by

vH : G/H ×∆[0]→ X,
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(eH,∆0) 7−→ v.

Then for any morphism â : G/H → G/K in OG, given by a subconjugacy relation

a−1Ha ⊆ K, we have a morphism [â, k] : vH → vK in ΠX, where k : G/H ×∆[1] → X

is given by k(eH,∆1) = s0v.

Define an OG-Λ-algebra, M0 : OG → Λ-alg by

M0(G/H) = M(vH),

for each object G/H of OG and M0(â) = M([â, k]) for a morphism â in OG. Then

the OG-Λ-algebra M0 comes equipped with a natural action of the OG-group πX (cf.

Example 2.3.5) as described below.

Let γ = [ϑ] ∈ πX(G/H) = π1(XH , v). Then the morphism [id, ϑ] : vH → vH ,

where ϑ(eH,∆1) = ϑ(∆1), is an equivalence in the category ΠX. This yields a group

homomorphism

b : π1(XH , v)→ AutΠX(vH), γ = [ϑ] 7→ b(γ) = [id, ϑ].

We remark that the composition in the fundamental group π1(XH , v) coincides with

the morphism composition in ΠX, contrary to the usual notion of composition in the

fundamental group. The composition of the map b with the group homomorphism

AutΠX(vH) → AutΛ-alg(M(vH)) which sends u ∈ AutΠX(vH) to [M(u)]−1 defines the

action of π1(XH , v) on M0(G/H). We now check that this action is natural with respect

to morphisms in OG, that is, for a subconjugacy relation a−1Ha ⊆ K,

M0(â)(γz) = π(â)(γ)(M0(â)z),

where γ ∈ π1(XK , v) and z ∈M0(G/K). The above equality follows from the definition

of M0 and the following commutative diagram in ΠX.

vH vH

vK vK
?

[â,k]

�
b(aγ)

?
[â,k]

�
b(γ)

Conversely, suppose that an OG-Λ-algebra M0 is equipped with an action of the

OG-group πX, where X is a G-connected G-simplicial set and v ∈ XG is a fixed

0-simplex. We define an equivariant local coefficient system M on X as follows.

For every object xH of type H, define M(xH) = M0(G/H). To define M on

morphisms, we choose a 0-simplex, say x, from each G-orbit of X0 and an 1-simplex ωx

to fix a morphism [ωx] from v to x in πXGx . Here Gx is the isotropy subgroup at x.
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For any other point y in the orbit of x, we fix the 1-simplex ωy = aωx, where y = ax.

Note that, if y = a1x = a2x then a−1
2 a1 ∈ Gx and hence a1ωx = a2ωx. Thus ωy is

well-defined. Also ωy ∈ XGy , since Gy = aGxa
−1. Therefore, [ωy] is a morphism from

v to y in πXGy . Observe that if x ∈ XH , where H is a subgroup G, then [ωx] is also a

morphism in πXH from v to x, as H ⊆ Gx.

Suppose xH
[â,ϑ]−−−→ yK is a morphism in ΠX. Then by Remark 3.2.4, we have a

morphism [ϑ] from x′H to ay′K in πXH . Define M([â, ϑ]) as the following composition

M0(G/K)
M0(â)−−−−→M0(G/H)

γ−1

−−→M0(G/H),

where γ ∈ π1(XH , v) is

γ := [ωay′K ]−1 ◦ [ϑ] ◦ [ωx′H ],

a composition of morphisms in πXH and the second arrow denotes the inverse of the

given action of γ on M0(G/H). Then M is an equivariant local coefficient system of

Λ-algebras on X. Thus we have the following proposition.

Proposition 3.3.3. Let X be a G-simplicial set with a G-fixed 0-simplex and M be

an equivariant local coefficient system of Λ-algebras on X. Then M determines an

OG-Λ-algebra M0, equipped with an action of the OG-group πX. Conversely, if X is a

G-connected G-simplicial set with XG 6= ∅, then an action of the OG-group πX on an

OG-Λ-algebra M0 determines an equivariant local coefficient system of Λ-algebras on X.

Let F : X → Y be a G-simplicial map between G-simplicial sets X,Y and N is an

equivariant local coefficient system on Y . Then the functor N ◦Π(F ) is an equivariant

local coefficient system on X, which we shall denote by F ∗N . This is sometimes called

the pull-back of the equivariant local coefficient system N via F .

3.4 Simplicial Bredon-Illman cohomology with local coef-

ficients

In this section, we derive simplicial version of Bredon-Illman cohomology with local

coefficients [MM96] and prove that this cohomology may be described in terms of the

equivariant twisted cohomology, as introduced in Section 2.4.

Let X be a G-simplicial set and M an equivariant local coefficient system on X. For

each equivariant n-simplex σ : G/H ×∆[n]→ X, we associate an equivariant 0-simplex

σH : G/H ×∆[0]→ X, given by

σH = σ ◦ (id× δ(1,2,··· ,n)),
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where δ(1,2,··· ,n) is the composition

δ(1,2,··· ,n) : ∆[0]
δ1−→ ∆[1]

δ2−→ · · · δn−→ ∆[n],

the maps δi, i = 1, · · · , n being defined in Section 1.2. The j-th face of σ is an equiv-

ariant (n− 1)-simplex of type H, denoted by σ(j), and is defined by

σ(j) = σ ◦ (id× δj), 0 ≤ j ≤ n.

Remark 3.4.1. Note that σ
(j)
H = σH for j > 0, whereas

σ
(0)
H = σ ◦ (id× δ(0,2,··· ,n)).

Let CnG(X;M) be the group of all functions f defined on equivariant n-simplices

σ : G/H × ∆[n] → X such that f(σ) ∈ M(σH), with f(σ) = 0, if σ is degenerate.

We have a morphism σ∗ = [id, α] in ΠX from σH to σ
(0)
H induced by σ, where the

equivariant 1-simplex α : G/H ×∆[1]→ X is given by α = σ ◦ (id× δ(2,··· ,n)). Define a

homomorphism

δ : CnG(X;M)→ Cn+1
G (X;M),

by f 7→ δf,

where, for any equivariant (n+ 1)-simplex σ of type H,

(−1)n+1(δf)(σ) = M(σ∗)f(σ(0)) +

n+1∑
j=1

(−1)jf(σ(j)).

Proposition 3.4.2. The map δ ◦ δ : CnG(X;M)→ Cn+2
G (X;M) is the zero map.

Proof. Let f ∈ CnG(X;M) and σ : G/H×∆[n+2]→ X be an equivariant (n+2)-simplex

of type H in X. Then,

(−1)n+1(−1)n+2δ(δf)(σ)

=(−1)n+1[M(σ∗)(δf)(σ(0)) +

n+2∑
j=1

(−1)j(δf)(σ(j))]

=[M(σ∗){M(σ
(0)
∗ )f((σ(0))(0)) +

n+1∑
j=1

(−1)jf((σ(0))(j))}

+

n+2∑
j=1

(−1)j{M(σ
(j)
∗ )f((σ(j))(0)) +

n+1∑
k=1

(−1)kf((σ(j))(k))}].

Note that (σ(j))(k) = (σ(k))(j−1) if k < j and (σ(j))(k) = (σ(k+1))(j) if k ≥ j.
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Also σ
(0)
∗ ◦ σ∗ = σ

(1)
∗ and σ

(j)
∗ = σ∗ for j > 1. Then the first term of the above

expression M(σ∗)M(σ
(0)
∗ )f((σ(0))(0)) cancels with the first term of the summation∑n+2

j=1 (−1)jM(σ
(j)
∗ )f((σ(j))(0)). The remaining (n + 1)-terms of this sum cancels with

M(σ∗){
∑n+1

j=1 (−1)jf((σ(0))(j))}. The double summation adds up to 0.

Thus {C∗G(X;M), δ} is a cochain complex. We are interested in a subcomplex of

this cochain complex as defined below.

Let σ : G/H ×∆[n]→ X and τ : G/K ×∆[n]→ X be two equivariant n-simplices.

Suppose there exists a G-map â : G/H → G/K, a−1Ha ⊆ K, such that τ ◦ (â× id) = σ.

Then σ and τ are said to be compatible under â. Observe that if σ and τ are compatible,

then σ is degenerate if, and only if, τ is degenerate. Moreover, notice that in this case,

we have a morphism [â, k] : σH → τK in ΠX, where k = σH ◦ (id×σ0), σ0 : ∆[1]→ ∆[0]

being the map as defined in Section 2, Chapter 1. Let us denote this induced morphism

by a∗.

Definition 3.4.3. We define SnG(X;M) to be the subgroup of CnG(X;M) consisting of

all functions f such that if σ and τ are equivariant n-simplices in X which are compatible

under â then f(σ) = M(a∗)(f(τ)).

Proposition 3.4.4. If f ∈ SnG(X;M), then δf ∈ Sn+1
G (X;M).

Proof. Suppose σ, τ are equivariant (n + 1)-simplices of type H and K respectively,

compatible under â : G/H → G/K, a−1Ha ⊆ K. Then the faces σ(j) and τ (j) are

also compatible under â for all j, 0 ≤ j ≤ n + 1. Moreover, the induced mor-

phism a∗ : σ
(j)
H → τ

(j)
K is the same as the induced morphism a∗ : σH → τK for j ≥ 1

(cf. Remark 3.4.1) and the compositions

σH
σ∗−→ σ

(0)
H

a∗−→ τ
(0)
K and σH

a∗−→ τK
τ∗−→ τ

(0)
K

are the same. Thus

M(a∗)(δf(τ))

=(−1)n+1[M(a∗)M(τ∗)f(τ (0)) +
n+1∑
j=1

(−1)jM(a∗)f(τ (j))]

=(−1)n+1[M(σ∗)M(a∗)f(τ (0)) +
n+1∑
j=1

(−1)jM(a∗)f(τ (j))]

=(−1)n+1[M(σ∗)f(σ(0)) +
n+1∑
j=1

(−1)jf(σ(j))]

=δf(σ).
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Thus we have a cochain complex S∗G(X;M) = {SnG(X;M), δ} which defines the

simplicial Bredon-Illman cohomology.

Definition 3.4.5. Let X be a G-simplicial set with an equivariant local coefficient

system M on it. Then the n-th Bredon-Illman cohomology of X with local coefficients

M is defined by

Hn
G(X;M) := Hn(S∗G(X;M)).

Suppose that X,Y are G-simplicial sets and M,N are equivariant local coefficient

systems on X and Y respectively. A map from (X,M) to (Y,N) is a pair (F, λ),

where F : X → Y is a G-simplicial map and λ : F ∗N → M is a natural trans-

formation of functors. A map (F, λ) : (X,M) → (Y,N) naturally induces a map

(F, λ)# : S∗G(Y ;N) → S∗G(X;M) as follows. For f ∈ SnG(Y ;N) and an equivariant

n-simplex σ in X of type H, define

(F, λ)#(f)(σ) = λ(σH)f(F ◦ σ).

Proposition 3.4.6. If f ∈ SnG(Y ;N), then (F, λ)#f ∈ SnG(X;M). Further, (F, λ)#

commutes with the differential δ.

Proof. Let σ : G/H×∆[n]→ X and τ : G/K×∆[n]→ X be two equivariant n-simplices

in X, compatible under â : G/H → G/K, a−1Ha ⊆ K. Then

M(σH
a∗−→ τK)(F, λ)#(f)(τ)

=M(σH
a∗−→ τK)λ(τK)f(F ◦ τ)

=λ(σH) ◦ F ∗N(a∗)f(F ◦ τ).

The last equality follows from the fact that λ : F ∗N → M is a natural transformation.

Since f ∈ SnG(Y ;N) and the equivariant n-simplices F ◦ σ and F ◦ τ are compatible

under â, we have F ∗N(a∗)f(F ◦ τ) = λ(σH). Hence

M(a∗)(F, λ)#(f)(τ) = λ(σH)f(F ◦ σ) = (F, λ)#(f)(σ).

Next, we prove that (F, λ)# commutes with δ. Let σ be an equivariant (n+ 1)-simplex

of type H in X. Then

(F, λ)#(δf)(σ)

=λ(σH)(δf)(F ◦ σ)

=(−1)n+1[λ(σH){N((F ◦ σ)∗)f(F ◦ σ(0)) +
n+1∑
j=1

(−1)jf(F ◦ σ(j))}].
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On the other hand,

δ((F, λ)#f)(σ)

=(−1)n+1[M(σ∗)((F, λ)#f)(σ(0)) +
n+1∑
j=1

(−1)j((F, λ)#f)(σ(j))]

=(−1)n+1[M(σ∗)λ(σ
(0)
H )f(F ◦ σ(0)) +

n+1∑
j=1

λ(σ
(j)
H )f(F ◦ σ(j))].

Since N((F ◦ σ)∗) = F ∗N(σ∗) and λ : F ∗N → M is a natural transformation, we have

λ(σH)N((F ◦ σ)∗) = M(σ∗)λ(σ
(0)
H ). Also recall that σ

(j)
H = σH , for j > 1. Hence

(F, λ)#δ = δ(F, λ)#.

Thus (F, λ)# is a well-defined cochain map and hence it induces a map

(F, λ)∗ : H∗G(Y ;N)→ H∗G(X;M)

in cohomology.

If M is an equivariant local coefficient system of Λ-algebras on a G-simplicial set

X, then we define cup product in the simplicial Bredon-Illman cohomology with local

coefficients H∗G(X;M) = ⊕n≥0H
n
G(X;M) as follows.

Let σ : G/H ×∆[n + m] → X be an equivariant (n + m)-simplex of type H in X.

Then define equivariant simplices

σcn = σ ◦ (idG/H × δ(n+1,··· ,n+m)), bmσ = σ ◦ (idG/H × δ(0,··· ,n)).

Here the simplicial maps

δ(n+1,··· ,n+m) : ∆[n]→ ∆[n+m] and δ(0,··· ,n) : ∆[m]→ ∆[n+m]

are defined as the compositions

δ(n+1,n+2,··· ,m+n) : ∆[n]
δn+1−−−→ ∆[n+ 1]

δn+2−−−→ ∆[n+ 2] · · · δm+n−−−→ ∆[m+ n],

and

δ(0,1,··· ,n) : ∆[m]
δ0−→ ∆[m+ 1]

δ1−→ ∆[m+ 2] · · · δn−→ ∆[m+ n].

(cf. Section 1.2 for the definitions of the maps δi, i = 0, · · ·n+m.)
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Let f ∈ CnG(X;M) and g ∈ CmG (X;M). Then the cup product f ∪g ∈ Cn+m
G (X;M)

is the cochain whose value on an equivariant (n+m)-simplex σ is given by the formula

(f ∪ g)(σ) = (−1)mnf(σcn){M(σ
n̂+1

)g(bmσ)},

where σ
n̂+1

= [id, σ ◦ (idG/H × δ(1,··· ,n,n+2,··· ,n+m))] is a morphism in ΠX from (σcn)H

to (bmσ)H .

Proposition 3.4.7. If f ∈ SnG(X;M) and g ∈ SmG (X;M), then f ∪ g ∈ Sn+m
G (X;M)

and

δ(f ∪ g) = δ(f) ∪ g + (−1)deg(f)f ∪ δ(g).

Proof. We first prove that f ∪ g ∈ Sm+n
G (X;M). Let σ and τ be equivariant

(n + m)-simplices of type H and K respectively. Suppose σ and τ are compatible

under â, a−1Ha ⊆ K. Then the equivariant n-simplices (respectively, m-simplices) σcn
and τcn (respectively, bmσ and bmτ) are also compatible under â. Therefore

M(σH
a∗−→ τK)(f ∪ g)(τ)

=M(σH
a∗−→ τK){(−1)mnf(τcn){M(τ

n̂+1
)g(bmτ)}}

=(−1)mn{M(σH
a∗−→ τK)f(τcn)}{M(σH

a∗−→ τK)M(τ
n̂+1

)g(bmτ)}.

Observe that σH = (σcn)H and τK = (τcn)K . Also following equality holds in ΠX,

((bmσ)H
a∗−→ (bmτ)K) ◦ (σH

σ
n̂+1−−−→ (bmσ)H) = (τK

τ
n̂+1−−−→ (bmτ)K) ◦ (σH

a∗−→ τK).

Combining these and using the facts that f ∈ SnG(X;M) and g ∈ SmG (X;M), we get

M(σH
a∗−→ τK)(f ∪ g)(τ) = (f ∪ g)(σ), that is, f ∪ g ∈ Sn+m

G (X;M).

Next, we prove the coboundary formula for the cup product f ∪ g. Let σ be an

equivariant (n+m+ 1)-simplex of type H. Then,

δ(f ∪ g)(σ)

=(−1)n+m+1{M(σ∗)(f ∪ g)(σ(0)) +
n+m+1∑
j=1

(−1)j(f ∪ g)(σ(j))}

=(−1)mn+n+m+1[M(σ∗){f(σ(0)cn)M(σ
(0)

n̂+1
)g(bm(σ(0)))}

+
n+m+1∑
j=1

(−1)jf(σ(j)cn)M(σ
(j)

n̂+1
)g(bm(σ(j)))].
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On the other hand,

(δf ∪ g)(σ) + (−1)n(f ∪ δg)(σ)

=(−1)(n+1)m(δf)(σcn+1M(σ
n̂+2

)g(bmσ))

+ (−1)n(−1)n(m+1)f(σcn)M(σ
n̂+1

)(δg)(bm+1σ)

=(−1)mn+n+m+1[{M((σcn+1)∗)f(σc(0)
n+1) +

n+1∑
j=1

(−1)jf(σc(j)n+1)}{M(σ
n̂+2

)g(bmσ)}

+ (−1)nf(σcn)M(σ
n̂+1

){M((bm+1σ)∗)g((bm+1σ)(0)) +
m+1∑
j=1

(−1)jg((bm+1σ)(j))}].

Note that,

σcn = σc(n+1)
n+1 , (bm+1σ)(0) = bmσ and (bm+1σ)∗ ◦ σn̂+1

= σ
n̂+2

.

Therefore, the last term of the first summation of the above expression cancels with the

next term. Also

σ(0)cn = σc(0)
n+1 and σ∗ = (σcn+1)∗, σn̂+2

= (σ(0))
n̂+1
◦ σ∗.

Hence the first term of δ(f ∪ g)(σ) agrees with the first term of (δf ∪ g)(σ) + (−1)n(f ∪
δg)(σ). Similar argument shows that other terms also agree. Hence f∪g ∈ Sn+m

G (X;M).

Definition 3.4.8. Let M be an equivariant local coefficient system of Λ-algebras on

X. Let f ∈ SnG(X;M), g ∈ SmG (X;M) and σ be an equivariant (m+n)-simplex of type

H in X. Then the cup product f ∪ g ∈ Sn+m
G (X;M) is the cochain whose value on σ

is given by the formula

(f ∪ g)(σ) = (−1)mnf(σcn){M(σ
n̂+1

)g(bmσ)},

where σ
n̂+1

= [id, σ ◦ (idG/H × δ(1,··· ,n,n+2,··· ,n+m))] is a morphism in ΠX from (σcn)H

to (bmσ)H .

The coboundary formula for the cup product shows that we have an induced cup

product in cohomology. The cup product in cohomology is associative and graded com-

mutative. Hence H∗G(X;M) is an associative graded algebra, where M is an equivariant

local coefficient system of Λ-algebras.

Next we relate the simplicial Bredon-Illman cohomology with local coefficients of

a G-simplicial set X to the equivariant twisted cohomology of X. Suppose X is a G-

connected G-simplicial set with a G-fixed 0-simplex v. Let M be an equivariant local
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coefficient system of abelian groups on X and M0 be the associated abelian OG-group

equipped with an action φ of the OG-group πX as described in Section 3.3. Let κ be

the OG-twisting function on ΦX as introduced in Example 2.4.3.

Theorem 3.4.9. With the above hypothesis

Hn
G(X;M) ∼= Hn

G(X;κ, φ)

for all n.

Proof. Define a cochain map

Ψ∗ : S∗G(X;M)→ C∗G(X;κ, φ)

as follows. Let f ∈ SnG(X;M) and y ∈ XH
n be non-degenerate. Let σ be the unique

equivariant n-simplex of type H such that σ(eH,∆n) = y. Then

Ψn(f)(G/H) : Cn(XH)→M0(G/H)

is given by

Ψn(f)(G/H)(y) = M(bξH(∂(1,··· ,n)y))f(σ),

where ∂(1,··· ,n)y is the simplex ∂1 · · · ∂ny, as introduced in Section 1.2 (cf. Example 2.4.3

and Remark 3.2.4 for other notations).

To check that Ψn(f) ∈ CnG(X;κ, φ), suppose a−1Ha ⊆ K. Note that if z ∈ XK
n and

y = az, then y ∈ XH . Moreover, if σ is as above and τ denotes the unique equivariant

n-simplex of type K such that τ(eK,∆n) = z, then the equivariant n-simplices σ and τ

are compatible under â. As f ∈ SnG(X;M), we must have f(σ) = M(σH
a∗−→ τK)f(τ).

Therefore, by the definition of Ψn, we have

Ψn(f)(G/H)(y)

=M(vH
bξH(∂(1,··· ,n)y)
−−−−−−−−−→ σH)f(σ)

=M(vH
bξH(∂(1,··· ,n)y)
−−−−−−−−−→ σH)M(σH

a∗−→ τK)f(τ).

On the other hand,

M0(â)Ψn(f)(G/K)(z) = M0(â)M(vK
bξK(∂(1,··· ,n)z))−−−−−−−−−−→ τK)f(τ).

Recall that M0(â) = M(vH
[â,k]−−→ vK), where k : G/H × ∆[1] → X is given by
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k(eH,∆1) = s0v. Then note that

a∗ ◦ bξH(∂(1,··· ,n)y) = bξK(∂(1,··· ,n)z) ◦ [â, k],

as composition of morphisms in ΠX. Thus Ψn(f) ∈ CnG(X;κ, φ).

To check that Ψ∗ is a cochain map, let f ∈ SnG(X;M), y ∈ XH
n+1 and let σ be the

equivariant (n + 1)-simplex of type H such that σ(eH,∆n+1) = y. Observe that the

i-th face σ(i) is such that σ(i)(eH,∆n) = ∂iy. Thus by the definition of the twisted

coboundary we have

(−1)n+1δκ(Ψn(f))(G/H)(y)

=κ(G/H)(y)−1Ψn(f)(G/H)(∂0y) +

n+1∑
i=1

(−1)iΨn(f)(G/H)(∂iy)

=κ(G/H)(y)−1M(bξH(∂(1,··· ,n)∂0y))f(σ(0)) +
n+1∑
i=1

(−1)iM(bξH(∂(1,··· ,n)∂iy))f(σ(i))

=κ(G/H)(y)−1M(bξH(∂(1,··· ,n)∂0y))f(σ(0)) +
n+1∑
i=1

(−1)iM(bξH(∂(1,··· ,n+1)y))f(σ(i)).

Note that ∂(1,··· ,n+1)y = ∂(1,··· ,n)∂iy for i > 0.

On the other hand,

Ψn+1((−1)n+1δf)(G/H)(y)

=M(vH
bξH(∂(1,··· ,n+1)y)
−−−−−−−−−−−→ σH)((−1)n+1δf)(y)

=M(vH
bξH(∂(1,··· ,n+1)y)
−−−−−−−−−−−→ σH){M(σ∗)f(σ(0)) +

n+1∑
i=1

(−1)if(σ(i))}.

Therefore, we need to compare the first two terms on the left hand side of the above

two expressions. By the definition of the action of πX on M0 and by Example 2.4.3, we

have

κ(G/H)(y)−1M(vH
bξH(∂(1,··· ,n)∂0y)
−−−−−−−−−−−→ σ

(0)
H )

=M(bξ−1
H (∂(0,2,··· ,n+1)y) ◦ b[∂(2,··· ,n+1)y] ◦ ξH(∂(1,··· ,n+1)y))M(bξH(∂(1,··· ,n)∂0y)

=M(bξH(∂(1,··· ,n)∂0y) ◦ bξ−1
H (∂(0,2,··· ,n+1)y) ◦ b[∂(2,··· ,n+1)y] ◦ bξH(∂(1,··· ,n+1)y))

=M(b[∂(2,··· ,n+1)y] ◦ bξH(∂(1,··· ,n+1)y))

=M(bξH(∂(1,··· ,n+1)y))M(σ∗).

Observe that ∂(0,2,··· ,n+1)y = ∂(1,2,··· ,n)∂0y. Hence Ψ∗ is a cochain map.
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Next we define a map

Γ∗ : C∗G(X;κ, φ)→ S∗G(X;M)

as follows. Let f ∈ CnG(X;κ, φ) and σ : G/H × ∆[n] → X be a non-degenerate

equivariant n-simplex of type H. Let y = σ(eH,∆n). Define

Γn(f)(σ) := M(σH
bξ−1
H (∂(1,··· ,n)y)
−−−−−−−−−−→ vH)f(G/H)(y).

To show that Γn(f) ∈ SnG(X;M), suppose a−1Ha ⊆ K, and σ, τ are non-degenerate

equivariant n-simplices in X of type H and K respectively, such that σ and τ are

compatible under â : G/H → G/K. Let z = τ(eK,∆n). Then y = az. Note that

M(σH
a∗−→ τK)Γn(f)(τ)

=M(σH
a∗−→ τK)M(τK

bξ−1
K (∂(1,··· ,n)z)−−−−−−−−−−→ vK)f(G/K)(z)

=M(bξ−1
K (∂(1,··· ,n)z) ◦ a∗)f(G/K)(z)

and

Γn(f)(σ) = M(σH
bξH(∂(1,··· ,n)y)
−−−−−−−−−→ vH)f(G/H)(y).

But by the naturality of f we have f(G/H)(y) = M0(â)f(G/K)(z). Moreover,

bξK(∂(1,··· ,n)z) ◦ [â, k] = a∗ ◦ bξH(∂(1,··· ,n)y).

Hence Γn(f)(σ) = M(a∗)Γ
n(f)(τ). Thus Γn(f) ∈ SnG(X;M).

It remains to show that Ψ∗ and Γ∗ are inverses to each other. Take f ∈ SnG(X;M)

and let σ be an equivariant n-simplex of type H. Then,

ΓnΨn(f)(σ)

=Γn(Ψn(f))(σ)

=M(σH
bξ−1
H (∂(1,··· ,n)y)
−−−−−−−−−−→ vH)Ψn(f)(G/H)(y)

=M(σH
bξ−1
H (∂(1,··· ,n)y)
−−−−−−−−−−→ vH)M(vH

bξH(∂(1,··· ,n)y)
−−−−−−−−−→ σH)f(σ)

=f(σ).

Thus we have ΓnΨn = id. Similarly, ΨnΓn = id. This completes the proof of the

theorem.
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3.5 The equivariant Serre spectral sequence

The aim of this last section is to derive a version of the Serre spectral sequence for a

G-Kan fibration. To do this, we give an alternative description of the simplicial Bredon-

Illman cohomology with local coefficients of aG-simplicial set in terms of the cohomology

of small categories, following [MS93], [MP02].

We briefly recall the definition of the cohomology of a small category, in the sense

of Quillen [Qui67]. Suppose that C is a small category. The nerve of C is the simplicial

set N(C) = {Nn(C)}n≥0 whose 0-simplices are the objects of C and whose n-simplices

(n > 0) are n-tuples (u1, · · · , un) of composable maps C0
u1−→ C1

u2−→ · · · un−→ Cn in C.
The face and degeneracy maps are given as follows.

∂0(u1, · · · , un) = (u2, · · · , un), ∂n(u1, · · · , un) = (u1, · · · , un−1),

∂i(u1, · · · , un) = (u1, · · · , ui−1, ui+1 ◦ ui, ui+2, · · · , un), 0 < i < n,

s0(u1, · · · , un) = (id, u1, · · · , un), si(u1, · · · , un) = (u1, · · · , ui, id, ui+1, · · · , un), i > 0.

Let M : C → Ab be a contravariant functor. Let Cn(C;M) be the set of all functions on

Nn(C) which sends an n-simplex (u1, · · · , un) to an element of M(C0). The differentials

in the associated cochain complex C•(C;M) = {Cn(C;M)}n≥0 are obtained from the

face maps of N(C) by taking alternating sums. Then the cohomology of the category C
with coefficients M is defined by

Hn(C;M) := Hn(C•(C;M)).

Let G be a discrete group and X be a G-Kan complex. Then we have a category

∆G(X) described as follows. Its objects are G-simplicial maps σ : G/H × ∆[n] → X,

where H is a subgroup of G and n ≥ 0. A morphism from σ : G/H × ∆[n] → X to

τ : G/K ×∆[m]→ X is a pair (â, α), where â : G/H → G/K, a−1Ha ⊆ K, is a G-map

and α : ∆[n]→ ∆[m] is a simplicial map such that τ ◦ (â×α) = σ. There is a canonical

functor vX : ∆G(X)→ ΠX which sends σ : G/H×∆[n]→ X to σH = σ◦(id×δ(1,2,··· ,n)).

For a morphism (â, α) in ∆G(X), vX(â, α) : σH → τK is the morphism [â, ϑ] in ΠX where

ϑ : G/H×∆[1]→ X is an equivariant 1-simplex of type H obtained as follows. Suppose

that

τ ◦ (id× δ
(1,··· ,α̂(0)··· ,m)

)(eK,∆1) = ω ∈ XK
1 .

Let Ω be a 2-simplex in XK determined by the compatible pair of 1-simplices (x̂0, x1 =

s1∂1ω, x2 = ω). Then ϑ is given by ϑ(eH,∆1) = a∂0Ω.

If X is any G-simplicial set, then we define ∆G(X) = ∆G(S|X|).
For a small category C, let Ab(C) be the category of all contravariant functors from
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C to Ab. The set of morphisms between two objects of Ab(C) is the set of all natural

transformations of functors.

Definition 3.5.1. A functor M ∈ Ab(∆G(X)) is said to be G-local if

M = v∗XM
′ = M ′ ◦ vX

for some M ′ ∈ Ab(ΠX). For a G-local coefficient system M , the equivariant cohomology

of X with coefficients M is defined to be

h∗G(X;M) := H∗(∆G(X);M),

where the right-hand side denotes the cohomology of the category ∆G(X).

Theorem 3.5.2. Let X be a G-simplicial set and M be an equivariant local coefficient

system on X. Then there is an isomorphism

H∗G(X;M) ∼= h∗G(X;M).

(On the right we identify M with v∗X(M)).

Proof. Let X̃ be the bisimplicial set whose (p, q)-simplices are triples (u, α, σ) ∈ X̃p,q,

where
u = ([n0]

u1−→ [n1]→ · · · up−→ [np]) ∈ Np(∆),

α = (G/H0
α1−→ G/H1 → · · ·

αq−→ G/Hq) ∈ Nq(OG),

σ : G/Hq ×∆[np]→ X is a G-simplicial map.

The face and degeneracy maps of X̃ are induced from those of N(∆) and N(OG). Then

diagonal(X̃) ∼= N(∆G(X)).

To every (u, α, σ) ∈ X̃p,q, associate a G-simplicial map

σ = σ ◦ (αq ◦ · · · ◦ α1 × up ◦ · · · ◦ u1) : G/H0 ×∆[n0]→ X.

Let Cp,q(X;M) denote the set of all functions on X̃p,q which sends an element

(u, α, σ) of X̃p,q to an element of M(vX(σ)). This yields a bicomplex C•,•(X;M) with

obvious differentials dh and dv induced from the face maps of X̃. Denote the total

complex of C••(X;M) by TotC••(X;M). Let diagC••(X;M) be the cochain complex

whose p-th group is Cp,p(X;M) and differential is dhdv. Then by a result of Dold and

Puppe ( [DP61]), we have

Hn(TotC••(X;M)) ∼= Hn(diagC••(X;M)).
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Now Cp,p(X;M) can be interpreted as the set of all functions on N(∆G(X)) which sends

a p-simplex (τ0 → τ1 → · · · → τp) to an element of M(vX(τ0)), and the differential on

Cp,p(X;M) is just the differential induced from the face maps of Np(∆G(X)). Hence,

Hn(diagC••(X;M)) ∼= Hn(∆G(X); v∗XM) = hnG(X;M).

Recall that the spectral sequence associated with the p-filtration of the bicomplex

C••(X;M) converges to the cohomology of the total complex, since it is a first quadrant

spectral sequence.

We now compute the E1-term of the spectral sequence associated with the p-filtration

of the bicomplex C••(X,M).

Suppose X
(−)
n : OopG → SETS ⊂ Cat is the functor which sends G/H to XH

n . Let

Cn =

∫
OG

X(−)
n

be the category obtained by the Grothendieck construction on the functor X
(−)
n . We

can identify Cn with the category whose objects are equivariant n-simplices of X, and

a morphism from σ : G/H ×∆[n]→ X to τ : G/K ×∆[n]→ X is a G-maps â : G/H →
G/K such that τ ◦ (â× 1) = σ.

Define a functor

Mn : Copn → Ab

which takes an object σ : G/H × ∆[n] → X of Cn to M(vX(σ)). If â : G/H → G/K

is a morphism from σ to τ , then [â, k] is a morphism in ΠX from vX(σ) to vX(τ) and

we define Mn(â) = M([â, k]). Here k : G/H × ∆[1] → X is given by k(eH,∆1) =

s0(vX(σ)(eH,∆0)).

Fix a u = ([n0]
u1−→ · · · up−→ [np]) ∈ Np(∆). Let us denote the composition up ◦ · · · ◦u1

by u again. Corresponding to this u, there is a functor F : Cnp → Cn0 which takes an

object σ : G/H×∆[np]→ X of Cnp to σ ◦ (id×u) : G/H×∆[n0]→ X and a morphism

â : G/H → G/K between σ : G/H × ∆[n] → X and τ : G/K × ∆[n] → X to â. We

define a functor Mu on Cnp to be

Mu = Mn0 ◦ F.

Then for all p ≥ 0,

Cp,q(X;M) ∼=
∏

u∈Np(∆)

Cq(Cnp ;Mu),

the correspondence being given as follows. Let f be an element of Cp,q(X,M). Then f
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induces an element

(fu) ∈
∏

u∈Np(∆)

Cq(Cnp ;Mu),

where fu ∈ Cq(Cnp ;Mu) is as defined below. To a simplex

v = σ0
â1×1−−−→ · · · âq×1−−−→ σq, σi : G/Hi ×∆[np]→ X,

of the nerve of Cnp , we associate an element (u, α, σ) ∈ X̃p,q, where u is given by the

choice of the index, σ = σq and α = (G/H0
â1−→ G/H1 → · · · âq−→ G/Hq). Then

fu(v) = f(u, α, σ).

Conversely, let (fu) ∈
∏
u∈Np(∆)C

q(Cnp ;Mu). Then we get f ∈ Cp,q(X;M) as

follows. A (p, q)-simplex (u, α, σ) of X̃, given by

u = ([n0]
u1−→ [n1]→ · · · up−→ [np]) ∈ Np(∆),

α = (G/H0
α̂1−→ G/H1 → · · ·

α̂q−→ G/Hq) ∈ Nq(OG),

σ : G/Hq ×∆[np]→ X is a G-simplicial map,

corresponds to a q-simplex v = τ0
α̂1×1−−−→ τ1 → · · ·

α̂q×1−−−→ τq of the nerve of Cnp , where

τq = σ and τi = τi+1(α̂i+1 × 1). Set f(u, α, σ) = fu(v).

Let us denote the differential on C•(Cnp ;Mu) by du. Then Cp,•(X;M) is isomorphic

to the cochain complex

(
∏

u∈Np(∆)

C•(Cnp ;Mu),
∏

u∈Np(∆)

du).

It follows that

Hq(Cp,•(X;M)) ∼=
∏

u∈Np(∆)

Hq(Cnp ;Mu).

We now compute Hq(Cnp ;Mu). Let e0 denote the 0-simplex (0) ∈ ∆[n0]. Then

u(e0) ∈ ∆[np]0. Define a G-simplicial map σ̊ : G/H ×∆[0] → X by σ(eH, u(e0)) = σ̊.

Then Mu is naturally isomorphic to the functor which takes σ to M (̊σ) and hence to

Mnp . Thus,

H∗(Cnp ;Mu) ∼= H∗(Cnp ;Mnp).

Now, for any n ≥ 0, Sn(X) is a G-set, the G action being induced by the action on X.

Recall that for the G-set S = G/H, the “global section” or the “inverse limit” functor,

Γ: Ab
(∫

OG

(S)(−)

)
→ Ab
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is an exact functor ( [MS93]). Also, any G-set S can be written as a union of orbits,

say S =
⋃
H G/H, where the union is over conjugacy classes of isotropy subgroups, one

representative chosen from each class. If D =
∫
OG

S(−) and we let∫
OG

(G/H)(−) = DH ,

then D is the union of the categories DH . Also, if M ∈ Ab(D) and we denote M |DH =

MH , then MH is a contravariant functor on DH . It is clear from the definition of

cohomology of categories that

Hq(D;M) =
⊕
H

Hq(DH ;MH).

Also Γ(M) =
⊕

H Γ(MH). Combining these facts, we get for all n ≥ 0,

Hq(Cn;Mn) =

{
Γ(Mn) if q = 0,

0 if q > 0.

Now recall that Γ(Mn) consists of all functions φ which take an object σ of Cn to

an element of Mn(σ) = M(vX(σ)) so that if â : G/H → G/K is a morphism between

σ : G/H×∆[n]→ X and τ : G/K×∆[n]→ X i.e. if τ ◦(â×1) = σ, then Mn(â)(φ(τ)) =

φ(σ). Hence

Γ(Mn) = SnG(X;M).

Thus for each u = ([n0]→ · · · → [np]) in Np(∆) we get a copy of S
np
G (X;M) which we

denote by S
n(u)
G (X;M), and we have

Ep,q1 = Hq(Cp,•(X;M)) =

{ ∏
u∈Np(∆) S

n(u)
G (X;M) if q = 0,

0 if q > 0;

where S
n(u)
G (X;M) is a copy of S

np
G (X;M) for every u = ([n0]→ · · · → [np]). Thus,

Hp(Tot C••(X;M)) ∼= Hp(
∏
u∈N(∆) S

n(u)
G (X;M))

∼= Hp(∆op;S•G(X;M)),

where S•G(X;M) is the cosimplicial group which takes [n] to SnG(X;M) with obvious

face and degeneracy maps induced from those of ∆. Then we know that ( [MS93]),

Hp(∆op;S•G(X;M)) ∼= Hp(S•G(X;M)).
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Hence,

Hp(Tot C••(X;M)) ∼= Hp
G(X;M).

We are now in a position to derive the required spectral sequence. Let X,Y be

G-simplicial sets and f : Y → X be a G-Kan fibration. Let M be a G-local coefficient

system on Y . For q ≥ 0, we have a contravariant functor

hqG(f,M) : ∆G(X)→ Ab,

defined as follows. For an object σ : G/H×∆[n]→ X of ∆G(X), let σ∗(Y ) be the total

complex of the pull-back of the G-Kan fibration f : Y → X via σ. Then σ∗(Y ) is a

G-simplicial set and define

hqG(f,M)(σ) := hqG(σ∗(Y ); σ̃∗M),

where σ̃ : σ∗(Y )→ Y is the canonical map and σ̃∗M is the equivariant local coefficient

system on σ∗(Y ) obtained by the pull-back of M via σ̃ . We claim that hqG(f,M)

factors through vX yielding a G-local coefficient system on X. To prove this, we use

the following result ( [MS93], the proof of Theorem 2.3).

Theorem 3.5.3. Let f : Y → X be a weak equivalence in GS. Then for any G-local

coefficient system M on X, f induces an isomorphism

h∗G(X;M) ∼= h∗G(Y ; f∗M).

Recall that a G-simplicial map f : Y → X is a weak equivalence in GS if, and only

if, fH : Y H → XH is a weak equivalence in S for each subgroup H of G. Therefore,

the claim will follow from the above result, provided we prove that for a simplicial map

u : ∆[m]→ ∆[n], the map (σ(id× u))∗(Y )
ũ−→ σ∗(Y ) covering (id× u) : G/K ×∆[m]→

G/K ×∆[n], is a weak equivalence in GS. To justify this, observe that the middle and

the left vertical arrows of the following pull-back diagram are G-Kan fibrations. This is

because in a closed model category, the class of fibrations is closed under pull-back.

(σ(id× u))∗(Y ) σ∗(Y ) Y

G/K ×∆[m] G/K ×∆[n] X

-ũ

?

f2

-σ̃

?

f1

?

f

-id×u -σ

Moreover, for each subgroup H of G, the simplicial map (id×u)H is a weak equivalence
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in S. Therefore, it follows from the homotopy long exact sequences of the fibrations

fH1 , f
H
2 that ũH is a weak equivalence in S for each subgroup H of G. Hence ũ is a

weak equivalence in GS.

Theorem 3.5.4. Let X,Y be G-simplicial sets. For any G-Kan fibration f : Y → X

and a G-local coefficient system M on Y , there is a natural spectral sequence with E2-

term Ep,q2 = Hp
G(X;hpG(f,M)) converging to Hp+q

G (Y ;M).

Proof. The proof is parallel to the proof of Theorem 3.2, [MS93]. We only mention

the essential steps. A G-Kan fibration f : Y → X induces a functor ∆G(f) : ∆G(Y )→
∆G(X) and we have a Grothendieck spectral sequence [Seg74]

Hp(∆G(X);hq(∆G(f)/−;M))⇒ Hp+q(∆G(Y );M).

It is enough to show that the two contravariant functors hq(∆G(Y )/−;M) and hqG(f,M)

from ∆G(X) to Ab are naturally isomorphic. For an object σ of ∆G(X), let ∆G(f)/σ

be the comma category. This is defined as follows. Objects of ∆G(f)/σ are pairs (τ, u)

where τ ∈ Ob(∆G(Y )) and u : ∆G(f)(τ) → σ is a map in ∆G(X). Morphisms from

(τ, u) to (τ ′, u′) are maps α : τ → τ ′ such that u′ ◦ (∆G(f)α) = u. A direct computation

shows that there is a canonical equivalence of the categories

∆G(f)/σ ∼= ∆G(σ∗(Y )),

which is natural in σ. Hence we have natural isomorphism of functors

hq(∆G(σ∗(Y ); σ̃∗M)) ∼= hq(∆G(f)/σ;M).

The result now follows from Theorem 3.5.2.



Chapter 4

Classification of simplicial

Bredon-Illman cohomology with

local coefficients

4.1 Introduction

The aim of this chapter is to prove a classification theorem for simplicial Bredon-Illman

cohomology with local coefficients of a G-simplicial set, as introduced in the previous

chapter. We first prove a classification theorem for equivariant twisted cohomology of a

G-simplicial set, generalizing the corresponding non-equivariant result [Hir79]. We then

use Theorem 3.4.9 to deduce the desired result.

4.2 Generalized OG-Eilenberg-MacLane complexes

For a group π and a non-negative integer n, let Lπ(A,n) denote the general-

ized Eilenberg-MacLane complex determined by a π-module (A, φ), as described in

Section 1.7. Our aim is to derive an equivariant version of Theorem 1.8.7. The role of

the classifying complex in the equivariant context is played by an OG-Kan complex as

described below.

Let π be an OG-group and M0 be an abelian OG-group equipped with an action

φ : π ×M0 →M0 of π. For an integer n ≥ 0, we have a simplicial abelian G-group (i.e,

a simplicial object in the category of abelian OG-groups) C(M0, n), where

C(M0, n)(G/H)q = Cn(∆[q];M0(G/H)), q ≥ 0,

for every object G/H of OG. For a morphism â : G/H → G/K in OG, the map

57
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C(M0, n)(â) is the coefficients change homomorphism, induced by the homomorphism

M0(â) : M0(G/K)→M0(G/H). Define natural transformations

δn : C(M0, n)→ C(M0, n+ 1), n ≥ 0,

where δn(G/H)q : Cn(∆[q];M0(G/H))→ Cn+1(∆[q];M0(G/H)) is the ordinary simpli-

cial coboundary of the simplicial set ∆[q], H ⊆ G being a subgroup and q ≥ 0. Then

it follows that δn+1 ◦ δn = 0. Note that the π-action on M0 induces an π-action on

C(M0, n) in the following way. For a subgroup H of G,

γµ = φ(G/H)(γ, -) ◦ µ, µ ∈ Cn(∆[q];M0(G/H)), γ ∈ π(G/H).

Let Wπ denote the OG-Kan complex, as described in Example 2.3.4. Recall

that (cf. Example 2.4.2) we have an OG-twisting function κ(π) : Wπ → π, given

by κ(π)(G/H)([γ1, γ2, · · · , γq]) = γ1. We denote the OG-twisted cartesian product

C(M0, n) ×κ(π) Wπ by χφ(M0, n). Then χφ(M0, n) is an OG-Kan complex and for

any subgroup H of G,

χφ(M0, n)(G/H) = Cn(∆[−];M0(G/H))×κ(π)(G/H) Wπ(G/H).

Let K(M0, n) denote an OG-Eilenberg-MacLane complex of type (M0, n). Then the

canonical model of K(M0, n) is given by

K(M0, n) = Ker(δn : C(M0, n)→ C(M0, n+ 1)).

For the canonical model of K(M0, n), let Lφ(M0, n) = K(M0, n)×κ(π) Wπ be the OG-

Kan complex as introduced in Example 2.4.5. Note that for any subgroup H of G,

Lφ(M0, n)(G/H) is the generalized Eilenberg-MacLane complex

Lπ(G/H)(M0(G/H), n) = Zn(∆[−];M0(G/H))×κ(π)(G/H) Wπ(G/H).

Since any two models of K(M0, n) are naturally isomorphic, K(M0, n) ×κ(π) Wπ is

isomorphic to Lφ(M0, n) for any model of K(M0, n).

Definition 4.2.1. The OG-Kan complex Lφ(M0, n) is called the generalized OG-

Eilenberg-MacLane complex determined by the π-module (M0, φ).

We have the natural projections onto the second factor

χφ(M0, n)
p−→Wπ, Lφ(M0, n)

p−→Wπ

and we view these OG-Kan complexes as objects in the slice category OGS ↓Wπ.
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We shall need the following lemma.

Lemma 4.2.2. For a subgroup H of G and an integer q ≥ 0, consider the G-simplicial

set G/H × ∆[q]. Let π be an OG-group and (M0, φ) be a π-module. Suppose that

κ : Φ(G/H×∆[q])→ π is an OG-twisting function. Then there is a cochain isomorphism

E∗H : C∗G(G/H ×∆[q];κ, φ)→ C∗(∆[q];M0(G/H))

which is natural with respect to the morphisms in OG.

Proof. Let f ∈ CnG(G/H × ∆[q];κ, φ) and α ∈ ∆[q]n be non-degenerate. Suppose

α = (α0, · · · , αn), where 0 ≤ α0 < α1 < · · · < αn ≤ q. Recall that (cf. Section 2.5)

f : Cn(G/H ×∆[q])→M0 is a natural transformation. Define

EnH : CnG(G/H ×∆[q];κ, φ)→ Cn(∆[q];M0(G/H)),

by

EnH(f)(α) = κ(G/H)(eH, (0, α0))−1f(G/H)(eH, α).

Observe that (eH, (0, α0)) and (eH, α) are respectively a 1-simplex and an n-simplex in

(G/H ×∆[q])H , and the right-hand side of the above equality is given by the action of

π(G/H) on M0(G/H).

To check that E∗H is a cochain map, let f ∈ Cn−1
G (G/H × ∆[q];κ, φ) and

α = (α0, · · · , αn) ∈ ∆[q]n. Then

EnH(δκf)(α)

=κ(G/H)(eH, (0, α0))−1(δκf)(G/H)(eH, α)

=(−1)nκ(G/H)(eH, (0, α0))−1{κ(G/H)(eH, α)−1f(G/H)(∂0(eH, α))

+
n∑
i=1

(−1)if(G/H)(∂i(eH, α))}.

On the other hand,

δ(En−1
H f)(α)

=(−1)n[

n∑
i=0

En−1
H (f)(∂iα)]

=(−1)n[κ(G/H)(eH, (0, α1))−1f(G/H)(eH, ∂0α)

+

n∑
i=1

(−1)iκ(G/H)(eH, (0, α0))−1f(G/H)(eH, ∂iα)].

Note that ∂i(eH, α) = (eH, ∂iα). Therefore, E∗H will be a cochain map provided we
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show that

κ(G/H)(eH, α)κ(G/H)(eH, (0, α0)) = κ(G/H)(eH, (0, α1)).

We may assume that α0 6= 0. For, if α0 = 0, then by the property of a twisting function

κ(G/H)(eH, (0, α0)) = κ(G/H)(s0(eH, (0))) = eH ,

eH being the identity of the group π(G/H). Moreover,

κ(G/H)(eH, (0, α1))

=κ(G/H)(∂(2,··· ,n)(eH, α))

=∂(1,··· ,n−1)κ(G/H)(eH, α)

=κ(G/H)(eH, α).

The last equality holds because all the face maps of the group complex π(G/H) are

identity. So suppose α0 6= 0. Now observe that α = ∂0β, where β = (0, α0, · · · , αn) is

an (n+ 1)-simplex of ∆[q]. So κ(G/H)(eH, α) = κ(G/H)(∂0(eH, β)). Furthermore,

κ(G/H)(eH, (0, α0)) = κ(G/H)(∂(2,··· ,n+1)(eH, β)) = κ(G/H)(eH, β).

Therefore,

κ(G/H)(eH, α)κ(G/H)(eH, (0, α0))

=κ(G/H)(∂0(eH, β))κ(G/H)(eH, β)

=κ(G/H)(eH, ∂1β).

Now note that ∂1β = (0, α1, α2, · · · , αn). As a consequence,

κ(G/H)(eH, (0, α1)) = κ(G/H)(∂(2,··· ,n)(eH, ∂1β)) = κ(G/H)(eH, ∂1β).

The inverse

(E∗H)−1 : C∗(∆[q];M0(G/H))→ C∗G(G/H ×∆[q];κ, φ)

is defined as follows. Suppose c ∈ Cn(∆[q];M0(G/H)). Then

f = (E∗H)−1(c) : Cn(G/H ×∆[q])→M0

is given by

f(G/K)((â, α)) = M0(â)(κ(G/H)(eH, (0, α0))c(α)),
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for any object G/K in OG and for any n-simplex (â, α) in (G/H ×∆[q])K , where

α = (α0, · · · , αn) with 0 ≤ α0 < α1 < · · · < αn ≤ q.

Observe that

â ∈ (G/H)K = HomG(G/K,G/H) = MorOG(G/K,G/H).

To prove the last part, suppose â : G/H → G/K, a−1Ha ⊆ K, is a morphism in OG.

Let κ′ : Φ(G/K × ∆[q]) → π be an OG-twisting function. Let κ = Φ(â × id)κ′ be the

twisting function induced by the G-simplicial map (â× id) : G/H×∆[q]→ G/K×∆[q].

Let

(â× id)∗ : C∗G(G/K ×∆[q];κ′, φ)→ C∗G(G/H ×∆[q];κ, φ)

be the cochain map induced by (â× id) (cf. Section 2.5) and let

M0(â)∗ : C∗(∆[q];M0(G/K))→ C∗(∆[q];M0(G/H))

be the map induced by the coefficient homomorphism M0(â) : M0(G/K)→M0(G/H).

We need to verify the commutativity of the following diagram.

C∗G(G/H ×∆[q];κ, φ) C∗(∆[q];M0(G/H))

C∗G(G/K ×∆[q];κ′, φ) C∗(∆[q];M0(G/K))

-
E∗H

-
E∗K

6

(â×id)∗

6

M0(â)∗

Let f ∈ C∗G(G/K×∆[q];κ′, φ) and α = (α0, · · · , αn) be a non-degenerate n-simplex

of ∆[q]. Then

M0(â)n ◦ EnK(f)(α) = M0(â)(κ′(G/K)(eK, (0, α0))−1f(G/K)(eK, α)).

On the other hand,

EnH ◦ (â× id)n(f)(α)

=κ(G/H)(eH, (0, α0))−1((â× id)n(f))(G/H)(eH, α)

=κ(G/H)(eH, (0, α0))−1f(G/H)(â× id)(eK, α)

=κ′(G/H)(aK, (0, α0))−1M0(â)f(G/K)(eK, α)

=M0(â)(κ′(G/K)(eK, (0, α0))−1f(G/K)(eK, α)),
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by naturality of f and the definition of the twisting function κ′. Hence the above

equality holds.

Suppose X is a G-simplicial set. As before, let M0 be an abelian OG-group with

a given action φ of an OG-group π. Let κ : ΦX → π be a given OG-twisting function.

Recall that the OG-twisting function κ(π) : Wπ → π of Example 2.4.2 is given by

κ(π)(G/H)([γ1, · · · , γq]) = γ1, where γ1, · · · , γq ∈ π(G/H). We have a natural map of

OG-simplicial sets

θ(κ) : ΦX →Wπ,

defined as follows.

θ(κ)(G/H)q : XH
q →Wπ(G/H)q, H ⊆ G a subgroup,

x 7→ [κ(G/H)q(x), κ(G/H)q−1(∂0x), · · · , κ(G/H)1(∂q−1
0 x)].

Note that κ(π) ◦ θ(κ) = κ. Let (ΦX, χφ(M0, n))Wπ denote the set of all liftings of the

map θ(κ) with respect to p : χφ(M0, n) → Wπ. Clearly, (ΦX, χφ(M0, n))Wπ has an

abelian group structure induced fibrewise from that of the cochain group. Note that we

have a map

C(M0, n)×κ(π) Wπ
δn×κ(π)id−−−−−−→ C(M0, n+ 1)×κ(π) Wπ,

and the following commutative diagram.

C(M0, n)×κ(π) Wπ C(M0, n+ 1)×κ(π) Wπ

ΦX Wπ

?

p

-
δ×κ(π)id

�
���

���
�����

p

-
θ(κ)

��
�
��

�
��

�
��*

f

Therefore, if f ∈ (ΦX, χφ(M0, n))Wπ, then (δn×κ(π) id)◦f ∈ (ΦX, χφ(M0, n+1))Wπ.

We write

f(G/H)(x) = (c, s), where x ∈ XH
q , c ∈ Cn(∆[q];M0(G/H)) and s = θ(κ)(G/H)q(x).

Then (δn ×κ(π) id)f(G/H)(x) = (δnc, s). But δn+1 ◦ δn = 0. Thus

{(ΦX, χφ(M0, ∗))Wπ, δ ×κ(π) id} = {(ΦX, χφ(M0, n))Wπ, δ
n ×κ(π) id}n≥0

is a cochain complex.

Theorem 4.2.3. Let X be a G-simplicial set, π be an OG-group, (M0, φ) be a π-module
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and κ : ΦX → π be an OG-twisting function. Then there is a cochain isomorphism

Ψ∗ : {(ΦX, χφ(M0, ∗))Wπ, (δ ×κ(π) id)} ∼= {C∗G(X;κ, φ), δκ}.

Proof. Suppose f ∈ (ΦX, χφ(M0, n))Wπ. Then Ψnf : CnX → M0 is a natural trans-

formation defined as follows. Let G/H be any object in OG and x ∈ XH
n . Suppose

f(G/H)(x) = (c, s), c ∈ Cn(∆[n];M0(G/H)), s ∈Wπ(G/H)n.

Then Ψnf(G/H)(x) = c(∆n). The naturality of Ψnf follows from that of f . The

assignment f 7→ Ψnf defines the homomorphism Ψn.

To check that Ψ∗ is a cochain map, we compute Ψn+1(δn ×κ(π) id)f. As before, for

x ∈ XH
n+1, if f(G/H)(x) = (c, s), c ∈ Cn(∆[n+ 1];M0(G/H)), s = θ(κ)(G/H)n+1(x) ∈

Wπ(G/H)n+1, then (δn ×κ(π) id)f(G/H)(x) = (δnc, s). Therefore,

Ψn+1(δ ×κ(π) id)f(G/H)(x)

=δc(∆n+1)

=(−1)n+1
n+1∑
i=0

(−1)ic(∂i∆n+1).

On the other hand,

δκ(Ψnf)(G/H)(x)

=(−1)n+1[κ(G/H)n+1(x)−1Ψnf(G/H)(∂0x) +

n+1∑
i=1

(−1)iΨnf(G/H)(∂ix)].

Since f(G/H) is simplicial, we have

f(G/H)(∂0x) = ∂0f(G/H)(x) = (κ(π)(G/H)(s)∂0c, ∂0s),

by the definition of the face map ∂0 in χφ(M0, n)(G/H). Therefore,

Ψnf(G/H)(∂0x) = κ(π)(G/H)(s)∂0c(∆n).
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Now observe that the following diagram is commutative.

χφ(M0, n)

Φ(G/H ×∆[q]) ΦX Wπ

π

?

p

-
Φ(σ) �

�
�
�
��3f

Q
Q
Q
Q
Q
QQs

κ

-
θ(κ)

?

κ(π)

Recall that s = θ(κ)(G/H)n+1(x) and, as a consequence,

κ(π)(G/H)(s) = κ(G/H)n+1(x).

Thus

κ(G/H)n+1(x)−1Ψnf(G/H)(∂0x) = ∂0c(∆n) = c(δ0(∆n)) = c(∂0∆n+1).

Similarly, for i > 0,

Ψnf(G/H)(∂ix) = ∂ic(∆n) = c(δi(∆n)) = c(∂i∆n+1).

Therefore, we have

δκ(Ψnf) = Ψn+1(δn ×κ(π) id)f.

Hence Ψ is a chain map.

Conversely, we define a homomorphism

Γn : CnG(X;κ, φ)→ (ΦX, χφ(M0, n))Wπ

in the following way. Let

f ∈ CnG(X;κ, φ) = HomCG(Cn(X),M0).

To define Γnf : ΦX → χφ(M0, n), note that for any subgroup H of G and x ∈ XH
q ,

Γn(f)(G/H)(x) ∈ Cn(∆[q];M0(G/H))× (Wπ(G/H))q

with θ(κ)(G/H)(x) as the second component, as Γn(f) has to be a lift of θ(κ). To

determine the first component of Γn(f)(G/H)(x), note that the G-simplicial map
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σ : G/H ×∆[q]→ X, σ(eH,∆q) = x induces a cochain map

σ∗ : C∗G(X;κ, φ)→ C∗G(G/H ×∆[q];κΦσ, φ).

Using the isomorphism E∗H of Lemma 4.2.2, we define

Γn(f)(G/H)(x) = (EnHσ
∗(f), θ(κ)(G/H)(x)).

Suppose â : G/H → G/K, a−1Ha ⊆ K is any morphism inOG. Let y ∈ XK
q and x = ay.

Suppose τ : G/K × ∆[q] → X is the G-simplicial map with τ(eK,∆q) = y. Then the

G-simplicial map σ = τ ◦ (â× id) corresponds to x. Clearly, (â× id)∗ ◦ τ∗ = σ∗, where

(â× id)∗ : C∗G(G/K ×∆[q];κΦy, φ)→ C∗G(G/H ×∆[q];κΦx, φ)

is induced by â× id. This observation along with the naturality of E∗H imply that Γn(f)

is a natural transformation. It remains to prove that Γ∗ is the inverse of Ψ∗.

Let f ∈ CnG(X;κ, φ). Then ΨnΓn(f) = f. For, if H ⊆ G is a subgroup, x ∈ XH
n and

σ be the equivariant n-simplex of type H with σ(eH,∆n) = x, then

ΨnΓn(f)(G/H)(x)

=EnH(σ∗f)(∆n)

={κΦσ(G/H)(eH, (0, 0))}−1(σ∗f)(eH,∆n)

={κΦσ(G/H)(s0(eH, (0)))}−1f(G/H)(x)

=eHf(G/H)(x) = f(G/H)(x).

The last two equalities follow from the properties of the twisting function κΦσ. It

follows that ΨnΓn = id.

Next we prove that ΓnΨn(f) = f for f : ΦX → χφ(M0, n), a lift of θ(κ). Let H be

a subgroup of G and x ∈ XH
q . Let σ : G/H ×∆[q] → X be the G-simplicial map such

that σ(eH,∆q) = x. Then, by the definition of Γ∗, we have

ΓnΨn(f)(G/H)(x) = (EnHσ
∗(Ψnf), θ(κ)(G/H)(x)).

On the other hand, since f : ΦX → χφ(M0, n) is a lift of θ(κ), f(G/H)(x) = (c, s),

where s = θ(κ)(G/H)(x) for some cochain c ∈ Cn(∆[q];M0(G/H)). We show that

c = EnHσ
∗(Ψnf). Let α = (α0, · · · , αn) ∈ ∆[q]n be a non-degenerate n-simplex. Then

α = ∂(i1,i2,··· ,iq−n)∆q,
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where 0 ≤ i1 < i2 < · · · < iq−n ≤ q and

{α0, · · ·αn, i1, · · · , iq−n} = {0, 1, 2, · · · , q}.

Then

EnH(σ∗(Ψnf))(α)

=κ(G/H)1Φσ(G/H)(eH, (0, α0))−1σ∗(Ψnf)(G/H)(eH, α)

=κ(G/H)1Φσ(G/H)(eH, (0, α0))−1Ψnf(G/H)(σ(eH, α))

=κ(G/H)1Φσ(G/H)(eH, (0, α0))−1Ψnf(G/H)(∂(i1,i2,··· ,iq−n)σ(eH,∆q))

=κ(G/H)1Φσ(G/H)(eH, (0, α0))−1(Ψnf(G/H)(∂(i1,i2,··· ,iq−n)x).

Suppose α0 = 0. Then the properties of a twisting function imply that

κΦσ(G/H)(eH, (0, α0)) = eH .

Moreover, as f(G/H) is simplicial, we have

f(G/H)∂(i1,··· ,iq−n)(x)

=∂(i1,··· ,iq−n)f(G/H)(x)

=∂(i1··· ,iq−n)(c, s)

=(∂(i1··· ,iq−n)c, ∂(i1,··· ,iq−n)s).

Note that since α0 = 0, i1 is greater than zero. Therefore, by the definition of Ψ∗,

EnH(σ∗(Ψnf))(α)

=Ψnf(G/H)(∂(i1,i2,··· ,iq−n)x)

=∂(i1,i2,··· ,iq−n)c(∆n)

=c(δ(i1,i2,··· ,iq−n)∆n)

=c(α).

On the other hand, if α0 6= 0 then we must have i0 = 0 and therefore,

f(G/H)(∂(i1,··· ,iq−n)x)

=∂(i1,··· ,iq−n)f(G/H)(x)

=∂(0,i2,··· ,iq−n)(c, s)

=∂0(∂(i2,··· ,iq−n)c, ∂(i2,··· ,iq−n)s)

=(κ(π)(G/H)(∂(i2,··· ,iq−n)s)∂(0,i2,··· ,iq−n)c, ∂(0,i2,··· ,iq−n)s),
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by the definition of the face map ∂0 in a twisted cartesian product (cf. Definition 1.6.3).

Thus, using the definition of Ψ∗, we get

Ψn(f)(G/H)(∂(i1,i2,··· ,iq−n)x) = κ(π)(G/H)(∂(i2,··· ,iq−n)s)∂(0,i2,··· ,iq−n)c(∆n).

Now observe that

κ(π)(G/H)(∂(i2,··· ,iq−n)s)

=κ(π)(G/H)(∂(i2,··· ,iq−n)θ(κ)(G/H)(Φσ)(G/H)(eH,∆q))

=κ(π)(G/H)θ(κ)(G/H)Φσ(G/H)(eH, ∂(i2,··· ,iq−n)∆q)

=κ(G/H)n+1Φσ(G/H)(eH, (0, α0, · · · , αn))

=κ(G/H)1Φσ(G/H)(eH, (0, α0)).

The last equality holds because Φσ(G/H) is a simplicial map,

(0, α0) = ∂(2,··· ,n+1)(0, α0, · · · , αn)

and all the face maps of the group complex π(G/H) are identity maps.

Therefore,

EnH(σ∗(Ψnf))(α) = ∂(0,i2,··· ,iq−n)c(∆n) = c(α).

Let (ΦX, Lφ(M0, n))Wπ be the set of liftings of the map θ(κ) : ΦX → Wπ with

respect to the map p : Lφ(M0, n)→Wπ.

Corollary 4.2.4. For every n,

Γn : CnG(X;κ, φ)→ (ΦX, χφ(M0, n))Wπ

restricted to cocycles induces an isomorphism

ZnG(X;κ, φ) ∼= (ΦX, Lφ(M0, n))Wπ.

Proof. The n-cocycles of the cochain complex {(ΦX, χφ(M0, ∗))Wπ, (δ ×κ(π) id)} are

precisely (ΦX, Lφ(M0, n))Wπ. Hence the corollary follows from the fact that a cochain

isomorphism restricts to an isomorphism of cocycles.

4.3 Classification

We are now ready to prove the desired classification theorem for the simplicial Bredon-

Illman cohomology with local coefficients.
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Composing the OG-twisting function κ(π) : Wπ → π (cf. Example 2.4.2) with the

canonical projection p : Lφ(M0, n)→Wπ, we have the OG-twisting function

κ(π)p : Lφ(M0, n)→ π.

From Section 2.5, we have the twisted cochain complex C∗G(Lφ(M0, n);κ(π)p, φ). We

define a cochain

U0 ∈ CnG(Lφ(M0, n);κ(π)p, φ) = HomCG(Cn(Lφ(M0, n)),M0)

as follows. For an object G/H in OG,

U0(G/H) : Cn(Lφ(M0, n))(G/H)→M0(G/H)

is given by U0(G/H)(c, s) = c(∆n), where

(c, s) ∈ Lφ(M0, n)(G/H)n = Zn(∆[n];M0(G/H))×κ(π)(G/H) Wπ(G/H).

Then U0 as defined above satisfies the required naturality condition and hence is a

cochain.

Definition 4.3.1. We call the cochain U0 ∈ CnG(Lφ(M0, n);κ(π)p, φ) the fundamental

cochain.

We have the following proposition.

Proposition 4.3.2. The fundamental cochain U0 ∈ CnG(Lφ(M0, n);κ(π)p, φ) is a cocy-

cle.

Proof. Let (c, s) ∈ Lφ(M0, n)(G/H)n+1 = Zn(∆[n + 1];M0(G/H)) × Wπ(G/H)n+1,

where s = [γ1, · · · , γn+1] ∈Wπ(G/H)n+1, γ1 · · · , γn+1 ∈ π(G/H). Then,

(δpκ(π)U0)(G/H)(c, s)

=(−1)n+1[(pκ(π))(G/H)(c, s)−1U0(G/H)(∂0(c, s)) +

n+1∑
i=1

(−1)iU0(G/H)(∂i(c, s))]

=(−1)n+1[γ−1
1 U0(G/H)(κ(π)(G/H)(s)∂0c, ∂0s)) +

n+1∑
i=1

(−1)iU0(G/H)(∂ic, ∂is)]

=(−1)n+1[γ−1
1 γ1∂0c(∆n+1) +

n+1∑
i=1

(−1)i∂ic(∆n+1)]

=δc(∆n+1)

=0 (∵ c ∈ Zn(∆[n+ 1];M0(G/H))).
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Thus U0 ∈ CnG(Lφ(M0, n);κ(π)p, φ) is a cocycle.

Remark 4.3.3. Suppose f ∈ (ΦX, Lφ(M0, n))Wπ. Then, for any object G/H in OG,

f(G/H) : XH → Zn(∆[−];M0(G/H))×κ(π)(G/H) (Wπ(G/H))

induces a cochain map f(G/H)∗ from the cochain complex

C∗(Zn(∆[−];M0(G/H))×κ(π)(G/H) Wπ(G/H); M0(G/H))

to the cochain complex C∗(XH ;M0(G/H)) and hence

f(G/H)∗[U0(G/H)] ∈ Cn(XH ;M0(G/H)) = HomAb(Cn(XH),M0(G/H)).

Therefore, for any x ∈ XH
n ,

f(G/H)∗U0(G/H)(x) = U0(G/H)(f(G/H)(x)) = U0(G/H)(c, s) = c(∆n).

Thus Ψn(f)(G/H)(x) = f(G/H)∗U0(G/H)(x). Hence, for f ∈ (ΦX, Lφ(M0, n))Wπ,

the map Ψnf can be described as the pull-back of the cochain U0 by f , that is,

Ψnf = f∗(V0).

Definition 4.3.4. Suppose f, g ∈ (ΦX, Lφ(M0, n))Wπ. Then f and g are said to be

vertically homotopic if there is a homotopy H : f ' g of maps of the OG-simplicial sets

(cf. Definition 2.3.8) such that p ◦ H = θ(κ) ◦ pr1, where pr1 : ΦX ×∆[1]→ ΦX is the

projection onto the first factor.

Proposition 4.3.5. Under the isomorphism

ZnG(X;κ, φ)
Γn−−→ (ΦX, Lφ(M0, n))Wπ,

f0, f1 ∈ Znφ (X;κ) are cohomologous if and only if Γnf0, Γnf1 are vertically homotopic.

Proof. Suppose f0, f1 ∈ ZnG(X;κ, φ) are cohomologous. Then

f0 = f1 + δκh

for some h ∈ Cn−1
G (X;κ, φ). Let κ1 denote the OG-twisting function obtained by com-

posing κ with the projection ΦX × ∆[1] → ΦX. To show that Γf0,Γf1 are vertically

homotopic, it suffices to find Y ∈ ZnG(X × ∆[1];κ1, φ) such that i∗0(Y) = f0 and

i∗1(Y) = f1, where i0, i1 : X → X ×∆[1] are two obvious inclusions. This is because, in
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that case, the image of Y under the isomorphism

Γ: ZnG(X ×∆[1];κ1, φ)→ (Φ(X ×∆[1]), Lφ(M0, n))Wπ

will serve as a vertical homotopy between Γf0 and Γf1.

Let Y0 = pr∗1f0 ∈ ZnG(X ×∆[1];κ1, φ), where

pr∗1 : C∗G(X;κ, φ)→ C∗G(X ×∆[1];κ1, φ)

is the cochain map induced by the projection X ×∆[1]→ X. Clearly,

i∗0(Y0) = i∗1(Y0) = f0,

where i∗0, i
∗
1 : C∗G(X × ∆[1];κ1, φ) → C∗G(X;κ, φ) are the maps induced by i0 and i1

respectively. Regard h ∈ Cn−1
G (X;κ, φ) as a cochain defined on i1(X) and we may

extend it to a cochain

β ∈ Cn−1
G (X ×∆[1];κ1, φ)

as follows. Define β(G/H) : XH
n−1 ×∆[1]n−1 → M0(G/H) by sending (x, (1, · · · , 1)) to

h(G/H)(x), and to 0, otherwise. Clearly β ∈ Cn−1
G (X ×∆[1];κ1, φ) satisfies

i∗0(β) = 0, i∗1(β) = h.

Set Y = Y0 − δβ. Observe that

i∗0(Y) = i∗0(Y0 − (δκ1β)) = f0 − δκ(i∗0β) = f0,

and similarly,

i∗1(Y) = f0 − δκ(i∗1β) = f0 − δκh = f1.

Conversely, suppose Γnf0 and Γnf1 are vertically homotopic. Then they are homo-

topic in the sense of Definition 2.3.8 and so Γnf0(G/H) and Γnf1(G/H) are simplicially

homotopic for any subgroup H of G. As a consequence,

Γnf0(G/H)∗ = Γnf1(G/H)∗.

Therefore, by Remark 4.3.3, f0 = f1.

Recall [DK83] that the category OGS of OG-simplicial sets is a closed model category

in the sense of Quillen [Qui67]. Moreover, recall that if C is an object of a closed model

category C, then the slice category C ↓ C, the category of objects over C, has a closed

model structure induced from that of C (cf. Example 1.8.6). In particular, the category
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OGS ↓ Wπ of objects over Wπ ∈ OGS is a closed model category. Consequently,

the vertical homotopy of liftings of θ(κ) to Lφ(M0, n), viewed as abstract homotopy of

morphisms of OGS ↓Wπ, is an equivalence relation.

From Corollary 4.2.4 and Proposition 4.3.5, we obtain the following result.

Theorem 4.3.6. Suppose X is a G-simplicial set, π is an OG-group and κ : ΦX → π

is an OG-twisting function. Let M0 be an abelian OG-group and π operates on M0.

Suppose that this action is given by φ : π ×M0 →M0. Then

Hn
G(X;κ, φ) ∼= [ΦX, Lφ(M0, n)]Wπ,

where the expression on the right hand side denotes the vertical homotopy classes of

liftings of the map θ(κ).

Remark 4.3.7. Let T ∈ OGS, π be an OG-group. Given a π-module (M0, φ) and an

OG-twisting function κ : T → π, let Hn
G(T ;κ, φ) be the equivariant twisted cohomology

of T (cf. Definition 2.5.2). As before, we have a natural map θ(κ) : T →Wπ,

θ(κ)(G/H)q : T (G/H)q −→Wπ(G/H)q, H ⊆ G a subgroup,

x 7→ [κ(G/H)q(x), κ(G/H)q−1(∂0x), · · · , κ(G/H)1(∂q−1
0 x)].

Observe that the proof of Theorem 4.3.6 can be carried through by replacing ΦX by T .

Therefore, we have

Hn
G(T ;κ, φ) ∼= [T, Lφ(M0, n)]Wπ.

Suppose X is a G-connected G-simplicial set with a G-fixed 0-simplex v and assume

that M is a given equivariant local coefficient system on X. Let M0 be the associated

abelian OG-group equipped with an action φ of the OG-group π = πX. Let κ be the OG-

twisting function as given in Example 2.4.3. Then, from Theorem 4.3.6 and Theorem

4.2.3, we obtain the following result.

Theorem 4.3.8. Under the above hypothesis, we have

Hn
G(X;M) ∼= [ΦX, Lφ(M0, n)]Wπ for all n.
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Chapter 5

The Eilenberg theorem

5.1 Introduction

A well-known result of Eilenberg describes the cohomology of a space with local coef-

ficients by the cohomology of an invariant subcomplex of its universal cover equipped

with the action of the fundamental group of the space [Spa81], [Whi78]. A simplicial

version of the Eilenberg theorem is given in [Git63]. An equivariant version of the Eilen-

berg theorem for the Bredon-Illman cohomology with local coefficients of a G-space was

proved in [MM96]. The aim of this chapter is to derive Eilenberg’s theorem for the

simplicial Bredon-Illman cohomology with local coefficients, as introduced in Chapter

3. This is based on the notion of the universal covering complexes of one vertex Kan

complexes [Gug60]. In the equivariant context, the role of the universal cover is played

by a contravariant functor from the category of canonical orbits to the category of one

vertex Kan complexes. We begin by introducing a notion of an equivariant cohomology

of an OG-simplicial set, equipped with an action of an OG-group. This will be used to

deduce the main result of this chapter.

5.2 Equivariant cohomology of OG-simplicial sets

Let Λ be a commutative ring with unity.

Definition 5.2.1. An OG-group ρ is said to act on an OG-chain complex {Cn}n≥0 of

Λ-modules if ρ acts on Cn, for each n ≥ 0, such that the differentials ∂n : Cn → Cn−1

satisfy

∂n(G/H)(γx) = γ∂n(G/H)(x), x ∈ Cn(G/H), γ ∈ ρ(G/H), n ≥ 1,

for each subgroup H of G.

73
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Let AΛ denote the category with objects the triples (T,M0, ρ), where T is an OG-

simplicial set, M0 an OG-Λ-algebra and ρ is an OG-group which operates on both T and

M0. A morphism from (T,M0, ρ) to (T ′,M ′0, ρ
′) is a triple (f0, f1, f2), where f0 : T → T ′,

f1 : M ′0 →M0 and f2 : ρ→ ρ′ are maps in the appropriate categories such that

f0(G/H)(αx) = f2(G/H)(α)f0(G/H)(x),

f1(G/H)[f2(G/H)(α)m′0] = αf1(G/H)(m′0),

for each subgroup H of G, x ∈ T (G/H), α ∈ ρ(G/H),m′0 ∈M ′0(G/H).

The ρ-equivariant cohomology of T with coefficients M0 is defined as follows. We

have an OG-chain complex {C∗(T ), ∂∗}, defined by

Cn(T ) : OG → Λ-mod, G/H 7→ Cn(T (G/H); Λ),

where Cn(T (G/H); Λ) is the free Λ-module generated by the non-degenerate n-simplices

of T (G/H). For any morphism â : G/H → G/K in OG,

Cn(T )(â) = a# : Cn(T (G/K); Λ)→ Cn(T (G/H); Λ)

is induced by the simplicial map T (â) from T (G/K) to T (G/H). The boundary

∂n : Cn(T )→ Cn−1(T ) is the natural transformation

∂n(G/H) : Cn(T (G/H); Λ)→ Cn−1(T (G/H); Λ), H ⊆ G,

where ∂n(G/H) is the ordinary boundary map of the simplicial set T (G/H). The action

of ρ on T induces an action of ρ on the OG-chain complex {C∗(T ), ∂∗}. We form the

cochain complex

{C∗ρ(T ;M0) = Homρ(C∗(T ),M0), δ∗}

where Homρ(Cn(T ),M0) consists of all natural transformations Cn(T )
f−→M0 respect-

ing the action of ρ and the coboundary is given by δnf = (−1)n+1f ◦ ∂n+1.

Definition 5.2.2. Given an object (T,M0, ρ) ∈ AΛ, the n-th ρ-equivariant cohomology

of T with coefficients M0 is defined as

Hn
ρ (X;M0) := Hn(C∗ρ(T ;M0)).

Remark 5.2.3. Observe that a morphism (f0, f1, f2) : (T,M0, ρ)→ (T ′,M ′0, ρ
′) induces

a cochain map C∗(f0, f1, f2) : C∗ρ′(T
′;M ′0)→ C∗ρ(T ;M0) as follows. For f ∈ C∗ρ′(T ′;M ′0),
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define a natural transformation C∗(f0, f1, f2)(f) : C∗(T )→M0, by

C∗(f0, f1, f2)(f)(G/H)(x) = f1(G/H) ◦ f(G/H) ◦ f0(G/H)(x),

for each subgroup H of G and x ∈ T (G/H). Then C∗(f0, f1, f2)(f) ∈ C∗ρ(T ;M0) and

C∗(f0, f1, f2) is indeed a cochain map.

The cochain complex C∗ρ(T ;M0) is equipped with a cup product defined as follows.

We have a natural transformation

ξ : C∗(T × T )→ C∗(T )⊗ C∗(T ),

where

ξ(G/H) : C∗(T (G/H)× T (G/H))→ C∗(T (G/H))⊗ C∗(T (G/H))

is the Alexander-Whitney map for the simplicial set T (G/H), H ⊆ G being a subgroup.

The map ξ(G/H) is given by [May67],

ξ(G/H)(x, y) =
∑
i+j=n

∂(i+1,··· ,n)x⊗ ∂(0,1,··· ,n−j)y, x, y ∈ T (G/H)n.

We have a ρ-action on C∗(T ) induced by the ρ-action on T and hence, the diagonal

actions of ρ on T×T and C∗(T )⊗C∗(T ). Since the Alexander-Whitney map of simplicial

sets is a natural map, ξ is equivariant with the induced actions of ρ on C∗(T × T ) and

C∗(T )⊗ C∗(T ). Then the cup product is defined as the composition

C∗ρ(T ;M0)⊗C∗ρ(T ;M0)
α−→ Homρ(C∗(T )⊗C∗(T ),M0)

ξ∗

−→ C∗ρ(T×T ;M0)
D∗−−→ C∗ρ(T ;M0).

Here α : C∗ρ(T ;M0)⊗ C∗ρ(T ;M0)→ Homρ(C∗(T × T ),M0) is defined by

α(f ⊗ g)(G/H)(x⊗ y) = (−1)deg(x)deg(y)f(G/H)(x)g(G/H)(y),

where f, g ∈ C∗ρ(T ;M0); x, y ∈ C∗(T )(G/H) and D : T → T × T is the diagonal map.

Remark 5.2.4. The cochain complex C∗ρ(T ;M0), equipped with the above cup product,

is an associative differential graded Λ-algebra and the induced product in the cohomol-

ogy is associative and graded commutative.

5.3 The equivariant Eilenberg theorem

Let X be a one vertex Kan complex. For any x ∈ X1, we denote by [x] the element of

π = π1(X, v) represented by the 1-simplex x, where v is the unique vertex of X. Recall
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that ( [Git63], [Gug60]) the universal covering complex X̃ of X is defined as follows.

X̃n = π ×Xn, n ≥ 0,

with the face maps

∂i(γ, x) = (γ, ∂ix), 0 < i ≤ n, x ∈ Xn, γ ∈ π,

and ∂0(γ, x) = ([∂(2,3,··· ,n)x]γ, ∂0x),

where ∂(2,3,··· ,n)x = ∂2∂3 · · · ∂nx. The degeneracy maps are

si(γ, x) = (γ, six) 0 ≤ i ≤ n.

Then the projection onto the second factor p : X̃ → X has the usual properties of a

universal cover. Any map f : X → Y of such complexes induces a map f̃ : X̃ → Ỹ

by f̃(γ, x) = (f∗(γ), f(x)), where f∗ : π1(X) → π1(Y ) is the homomorphism of the

fundamental groups induced by f .

Remark 5.3.1. We note that given any two 0-simplices x1 = (γ1, v) and x2 = (γ2, v)

in X̃, there is a unique homotopy class of 1-simplices ω such that ∂1ω = x1, ∂0ω = x2,

as X̃ is simply connected. We may represent this class by ω = (γ1, ω2ω
−1
1 ), where ωi

represents γi, i = 1, 2.

For a one vertex Kan complex X, the fundamental group π1(X, v) operates on X̃

freely by

(Υ, (γ, x)) 7→ (γΥ−1, x), Υ ∈ π1(X, v).

This action is natural with respect to maps of complexes. The following simplicial

version of the Eilenberg theorem holds.

Theorem 5.3.2. [Git63] Let X be a one vertex Kan complex with fundamental group

π and let p : X̃ → X be the universal covering complex. Let L denote the local coefficient

system on X determined by a π-module (A, φ). Then the projection p induces a natural

isomorphism

p∗ : H∗(X;L)→ H∗e (X̃;A).

To prove an equivariant version of the above result, we define a contravariant functor

from the category of canonical orbits to the category of one vertex Kan complexes as

follows.

Let X be a one vertex G-Kan complex. We denote the G-fixed vertex by v. Let M

be an equivariant local coefficient system of Λ-algebras on X. Let M0 be the associated
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OG-Λ-algebra, equipped with an action of the OG-group πX, as described in Proposition

3.3.3. For any subgroup H of G, let

pH : X̃H → XH

be the universal cover of XH . The left translation a : XK → XH , corresponding to a

G-map â : G/H → G/K, a−1Ha ⊆ K, induces a simplicial map

ã : X̃K → X̃H ,

such that pH ◦ ã = a ◦ pK .

Definition 5.3.3. Let X be a one vertex G-Kan complex. Then define an OG-Kan

complex X̃ by,

X̃(G/H) = X̃H ,

for each subgroup H of G, and X̃(â) = ã for a morphism â in OG. We call X̃ the

universal OG-covering complex of X.

The notion of the universal OG-covering complex is the simplicial analogue of the

OG-covering space as introduced in [MM96]. A more general version, called ‘universal

covering functor’, was introduced by W. Luck [Lüc89].

For any subgroup H, let ṽH ∈ X̃H denote the zero simplex (eH , v), where eH

is the identity element of πX(G/H) = π1(XH , v). Note that the map ã, induced by

a : XK → XH , maps ṽK to ṽH . The natural actions of πX(G/H) = π1(XH , v) on

X̃(G/H) = X̃H as H varies over subgroups of G, define an action of the OG-group πX

on X̃. Thus (X̃,M0, πX) is an object of AΛ.

Theorem 5.3.4. Let X be a one vertex G-Kan complex and M be an equivariant

local coefficient system of Λ-algebras on X. Then, with the notations as above, there

exists an isomorphism of graded algebras

H∗G(X;M) ∼= H∗πX(X̃;M0),

where the right-hand side denotes the πX-equivariant cohomology of X̃ as introduced in

the last section.

Proof. Recall that for any two 0-simplices x, y ∈ X̃H of the universal cover of the

H-fixed point complex XH , there is a unique homotopy class of 1-simplices ω with

∂1ω = x and ∂0ω = y. Let us denote this class by ξ̃H(x, y). In particular, if x = ṽH ,

then we shall write ξ̃(ṽH , y) simply by ξ̃H(y). Upon projecting ξ̃H(x, y) via pH we

get an element ξ̂H(x, y) ∈ π1(XH , v). By Remark 3.2.4, ξ̂H(x, y) corresponds to an
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automorphism bξ̂H(x, y) of vH in ΠX. To simplify notation, we will denote ξ̂H(x, y) by

ξ̂H(y) when x = ṽH .

Define a map

µ : SnG(X;M)→ HomπX(Cn(X̃),M0)

as follows. Let f ∈ SnG(X;M) and y be a non-degenerate n-simplex in X̃H . Let σ be

the equivariant n-simplex of type H in X such that σ′ = pH ◦ y, where y : ∆[n]→ X̃H

is the simplicial map with y(∆n) = y. Then µ(f) ∈ HomπX(Cn(X̃),M0) is given by

µ(f)(G/H)(y) = M(bξ̂H(∂(1,2,··· ,n)y))f(σ), where H ⊆ G a subgroup.

Recall that f(σ) ∈M(σH) and σH in this case coincides with vH .

We check that µ(f)(G/H) is equivariant with respect to the respective actions of

πX(G/H) on Cn(X̃)(G/H) and on M0(G/H). Let γ ∈ πX(G/H), y ∈ X̃H
n and σ be

the equivariant n-simplex determined by y as above. Then

µ(f)(G/H)(γy) = M(bξ̂H(∂(1,2,··· ,n)γy))f(τ),

where τ ′ = pH ◦γy. By the definition of the action of πX(G/H) on Cn(X̃H ;Z), we have

pH ◦ γy = pH ◦ y, hence τ ′ = σ′. It follows that

µ(f)(G/H)(γy) = M(bξ̂H(∂(1,2,··· ,n)γy))f(σ).

Now write ξ̃H(∂(1,2,··· ,n)γy) as a composition

ξ̃H(γṽH , ∂(1,2,··· ,n)γy) ◦ ξ̃H(γṽH)

of morphisms in the fundamental groupoid of X̃H . Observe that by Remark 5.3.1,

ξ̂H(γṽH) = γ−1 and ξ̂H(γṽH , ∂(1,2,··· ,n)γy) = ξ̂H(∂(1,2,··· ,n)y). Therefore,

M(bξ̂H(∂(1,2,··· ,n)γy)) = M(bγ)−1 ◦M(bξ̂H(∂(1,2,··· ,n)y)).

Thus

µ(f)(G/H)(γy) = M(bγ)−1µ(f)(G/H)(y).

It follows from the definition of the action of πX(G/H) on M0(G/H) that µ(f)(G/H)

is equivariant.

To check that µ(f) : Cn(X̃)→M0 is a natural transformation, we have to show that

M0(â) ◦ µ(f)(G/K) = µ(f)(G/H) ◦ ã#
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whenever a−1Ha ⊆ K. Recall that (cf. Section 3.3) by definition of M0, M0(â) =

M(vH
[â,k]−−→ vK), where k : G/H ×∆[1]→ X is given by k(eH,∆1) = s0v. Let y ∈ X̃K

n

and a−1Ha ⊆ K. Let τ be an equivariant n-simplex of type K in X such that τ ′ = pK◦y.

Then,

M0(â) ◦ µ(f)(G/K)(y)

=M(vH
[â,k]−−→ vK) ◦M(bξ̂K(∂(1,2,··· ,n)y))f(τ)

=M(vH
[â,k]−−→ vK) ◦M([idG/K , ω])f(τ)

=M([idG/H , ω] ◦ [â, k])f(τ),

where as in Remark 3.2.4, ω is the equivariant 1-simplex of type K in X such that ω′

represents ξ̂K(∂(1,2,··· ,n)y). On the other hand,

µ(f)(G/H) ◦ ã#(y)

=µ(f)(G/H)(ãy)

=M(bξ̂H(∂(1,2,··· ,n)g̃y))f(σ),

(5.3.1)

where σ′ = pH ◦ ãy = pH ◦ ã◦y = a◦pK ◦y = a◦τ ′. In particular, σ and τ are compatible

n-simplices. Thus

µ(f)(G/H) ◦ ã#(y) = M(bξ̂H(∂(1,2,··· ,n)ãy)) ◦M(a∗)f(τ).

Note that v is the only vertex in X which is G-fixed and hence a∗ is a morphism from

vH to vK , and is given by [â, k], where k = vH ◦ (idG/H × σ0), σ0 : ∆[1] → ∆[0] being

the simplicial map as defined in Section 1.2 . Now observe that ξ̂H(∂(1,2,··· ,n)ãy) =

ξ̂H(ã∂(1,2,··· ,n)y) can be represented by aω′. As a consequence, we may write

bξ̂H(∂(1,2,··· ,n)ãy) = [idG/H , ω ◦ (â× id∆[1])].

Therefore,

µ(f)(G/H) ◦ ã#(y)

=M([idG/H , ω ◦ (â× id∆[1])]) ◦M([â, k])f(τ)

=M([â, k] ◦ [idG/H , ω ◦ (â× id∆[1])])f(τ).

From the definition of composition of morphisms in ΠX, we have

[idG/K , ω] ◦ [â, k] = [â, k] ◦ [idG/H , ω ◦ (â× id∆[1])].
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Thus µ(f) is natural.

Next we check that µ is a cochain map. Let f ∈ SnG(X;M), y ∈ X̃H
n+1. Let σ denote

the equivariant (n+ 1)-simplex of type H corresponding to y as described before. Then

µ(δf)(G/H)(y)

=M(bξ̂H(∂(1,2,··· ,n+1)y))(δf)(σ)

=(−1)n+1M(bξ̂H(∂(1,2,··· ,n+1)y)){M(σ∗)f(σ(0)) +
n+1∑
j=1

(−1)jf(σ(j))}.

On the other hand,

δµ(f)(G/H)(y)

=(−1)n+1[

n+1∑
i=0

(−1)iµ(f)(G/H)(∂iy)]

=(−1)n+1[
n+1∑
i=0

(−1)iM(bξ̂H(∂(1,2,··· ,n)∂iy))f(σ(i))]

=(−1)n+1[M(bξ̂H(∂(0,2,··· ,n+1)y))f(σ(0)) +
n+1∑
i=1

(−1)iM(bξ̂H(∂(1,2,··· ,n+1)y))f(σ(i))].

Note that, since X̃H is simply connected, the morphism ξ̂H(∂(0,2,··· ,n+1)y) in πXH can

be factored as

ξ̂H(∂(1,2,··· ,n+1)y, ∂(0,2,··· ,n+1)y) ◦ ξ̂H(∂(1,2,··· ,n+1)y)

and bξ̂H(∂(1,2,··· ,n+1)y, ∂(0,2,··· ,n+1)y) is precisely the morphism σ∗. Therefore,

bξ̂H(∂(0,2,··· ,n+1)y) = σ∗ ◦ bξ̂H(∂(1,2,··· ,n+1)y).

Hence µ(δf) = δµ(f).

To show that µ is a cochain isomorphism define a map

ψ : HomπX(Cn(X̃),M0)→ CnG(X;M)

as follows. Let f ∈ HomπX(Cn(X̃),M0) and σ be a non-degenerate equivariant

n-simplex of type H in X. Choose an n-simplex y in X̃H such that pH(y) = σ(eH,∆n).

Then ψ(f) is given by

ψ(f)(σ) = M(bξ̂H(∂(1,2,··· ,n)y))−1f(G/H)(y).

Suppose z is another n-simplex in X̃H such that pH(z) = σ(eH,∆n). Since π1(XH , v)
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acts transitively on each fibre of pH : X̃H → XH , there exists an element γ ∈ π1(XH , v)

such that γy = z and hence γ∂(1,2,··· ,n)y = ∂(1,2,··· ,n)z. Thus

M(bξ̂H(∂(1,2,··· ,n)z))
−1f(G/H)(z)

=M(bξ̂H(∂(1,2,··· ,n)γy))−1f(G/H)(γy)

=M(bξ̂H(∂(1,2,··· ,n)y))−1M(bγ)−1f(G/H)(y)

=M(bξ̂H(∂(1,2,··· ,n)y))−1f(G/H)(y).

The last equality follows from the fact that

M(bξ̂H(∂(1,2,··· ,n)γy)) = M(bγ)−1 ◦M(bξ̂H(∂(1,2,··· ,n)y)),

which we have observed in the first part of the proof while showing that µ takes any

cocycle in SnG(X;M) into HomπX(Cn(X̃),M0). Thus the map ψ is well defined.

We claim that ψ(f) ∈ SnG(X;M) for any f ∈ HomπX(Cn(X̃),M0). Let a−1Ha ⊆ K.

Let σ : G/H×∆[n]→ X and τ : G/K×∆[n]→ X be equivariant n-simplices such that

τ ◦ (â× id) = σ, so that they are compatible. We need to show that

ψ(f)(σ) = M(a∗)ψ(f)(τ).

Let y ∈ X̃K be such that pK(y) = τ(eK,∆n). Then the n-simplex ãy ∈ X̃H
n is such that

pH(ãy) = apK(y) = aτ(eK,∆n) = τ(aK,∆n) = σ(eH,∆n).

By our choice, we have

ψ(f)(τ) = M(bξ̂K(∂(1,2,··· ,n)y))−1f(G/K)(y)

and

ψ(f)(σ) = M(bξ̂H(∂(1,2,··· ,n)ãy))−1f(G/H)(ãy).

Since f : Cn(X̃)→M0 is natural, we have

f(G/H)(ãy) = M0(â)f(G/K)(y).

In the first part of the proof we have observed that

a∗ ◦ bξ̂H(∂(1,2,··· ,n)ãy) = bξ̂K(∂(1,2,··· ,n)y) ◦ a∗.
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Moreover, recall that M0(â) = M(a∗). Therefore

M(a∗)ψ(f)(τ)

=M(a∗)M(bξ̂K(∂(1,2,··· ,n)y))−1f(G/K)(y)

=M(bξ̂K(∂(1,2,··· ,n)y)−1 ◦ a∗)f(G/K)(y)

=M(a∗ ◦ bξ̂H(∂(1,2,··· ,n)ãy))f(G/K)(y)

=M(bξ̂H(∂(1,2,··· ,n)ãy))−1M(a∗)f(G/K)(y)

=M(bξ̂H(∂(1,2,··· ,n)ãy))−1M0(â)f(G/K)(y)

=ψ(f)(σ).

We now check that ψ is the inverse of µ. For f ∈ SnG(X;M), we have

ψµ(f)(σ)

=ψ(µf)(σ)

=M(bξ̂K(∂(1,2,··· ,n)y)−1µ(f)(G/H)(y)

=M(bξ̂K(∂(1,2,··· ,n)y)−1M(bξ̂K(∂(1,2,··· ,n)y)f(σ)

=f(σ).

(5.3.2)

Thus ψµ = id. Similarly µψ = id. Thus µ is indeed a cochain isomorphism.

To complete the proof, we need to check that µ(f∪g) = µ(f)∪µ(g) for f ∈ SnG(X;M)

and g ∈ SmG (X;M). Let y ∈ X̃H
m+n and σ be the equivariant n-simplex of type H in X

such that σ′ = pH ◦ y. Then we have,

µ(f ∪ g)(G/H)(y)

=M(bξ̂H(∂(1,2,···m+n)y))(f ∪ g)(σ)

=M(bξ̂H(∂(1,2,···m+n)y))(−1)mn[f(σcn){M(σ
n̂+1

)g(bmσ)}] (cf. Definition 3.4.8)

=(−1)mn{M(bξ̂H(∂(1,2,···m+n)y))f(σcn)}{M(bξ̂H(∂(1,2,···m+n)y))M(σ
n̂+1

)g(bmσ)}.

On the other hand,

(µf ∪ µg)(y)

=(−1)mn(µf)(∂(n+1,··· ,n+m)y){(µg)(∂(0,1,··· ,n)y)}

=(−1)mn{M(bξ̂H(∂(1,··· ,n)∂(n+1,··· ,n+m)y))f(σcn)}{M(bξ̂H(∂(1,··· ,m)∂(0,··· ,n)y))g(bmσ)}.

Note that,

∂(1,2,···m+n)y = ∂(1,··· ,n)∂(n+1,··· ,n+m)y; ∂(1,··· ,m)∂(0,··· ,n)y = ∂
(0,··· ,n̂+1,··· ,n+m)

y.
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Since X̃H is simply-connected, the following composition holds in πX̃H ,

ξ̃H(∂
(0,··· ,n̂+1,··· ,n+m)

y) = ξ̃H(∂(1,2,··· ,n+m)y, ∂(0,··· ,n̂+1,··· ,n+m)
y) ◦ ξ̃H(∂(1,2,··· ,n+m)).

Upon projecting via pH , we get the following composition of morphisms in ΠX,

bξ̂H(∂
(0,··· ,n̂+1,··· ,n+m)

y) = bξ̂H(∂(1,2,··· ,n+m)y, ∂(0,··· ,n̂+1,··· ,n+m)
y) ◦ bξ̂H(∂(1,2,··· ,n+m)y).

Observe that σ
n̂+1

= bξ̂H(∂(1,2,··· ,n+m)y, ∂(0,··· ,n̂+1,··· ,n+m)
y). Hence

M(bξ̂H(∂(1,··· ,m)∂(0,··· ,n)y))

=M(bξ̂H(∂
(0,··· ,n̂+1,··· ,n+m)

y))

=M(σ
n̂+1
◦ bξ̂H(∂(1,2,··· ,n+m)y))

=M(bξ̂H(∂(1,2,··· ,n+m)y))M(σ
n̂+1

).

Therefore µ(f ∪ g) = µ(f) ∪ µ(g).



Chapter 5: The Eilenberg theorem 84



Chapter 6

Steenrod reduced power

operations

6.1 Introduction

An important class of cohomology operations is that of the Steenrod squares and re-

duced power operations [Ste53b], [Ste53a], [Ara56]. Steenrod squares are defined for

cohomology with Z2 coefficients whereas Steenrod reduced powers are defined in coho-

mology with coefficients in Zp, p 6= 2 a prime. A very general and useful method of

constructing these operations is given in [May70]. A categorical approach to Steenrod

operations can be found in [Eps66]. In [Git63], S. Gitler constructed reduced power

operations in cohomology with local coefficients. The main idea of Gitler’s construc-

tion is to lift the power operations in the invariant cochain subcomplex of the universal

cover of a space and reproduce the operations in cohomology with local coefficients via

Eilenberg’s description. The relevant local coefficient system in this context is obtained

by a fixed action of the fundamental group of the space on a fixed cyclic group of prime

order p 6= 2.

The aim of this chapter is to construct Steenrod reduced power operations in the

simplicial Bredon-Illman cohomology with local coefficients, where the equivariant local

coefficient system takes values in a Zp-algebra, for a prime p > 2. Throughout, our

method is simplicial. It may be mentioned that for a space with a group action, the

Steenrod squares have been introduced in the Bredon-Illman cohomology with local

coefficients by G. Ginot in [Gin04]. Following Gitler [Git63], we first construct the power

operations in the πX-equivariant cohomology of the ‘universal OG-covering complex’ of

a one vertex G-Kan complex X. This is done by applying the algebraic description of

the Steenrod reduced power operations of P. May [May70]. We then use the equivariant

version of Eilenberg’s theorem, Theorem 5.3.4, to reproduce the Steenrod reduced power

85
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operations in the present context. It may be remarked that our method also applies

when p = 2, and hence yields Steenrod squares too.

6.2 Algebraic approach to Steenrod operations

In this section we briefly recall the relevant part of the general algebraic approach to

the Steenrod operations by P. May [May70], necessary for our purpose.

Let Λ be a commutative ring. By a Λ-complex K, we will mean a Z-graded cochain

complex of Λ-modules with differential of degree 1. A morphism of Λ-complexes is a

degree zero map commuting with the differential. If π is a group, we let Λπ denote its

group ring over Λ.

Let p be an odd prime and Σp denote the symmetric group on p-letters. For the rest

of this chapter, unless otherwise stated, Λ will be the commutative ring Zp and π will

be the cyclic subgroup of Σp, generated by the permutation α = (p, 1, 2, · · · , p − 1). If

not mentioned explicitly, all tensor products are over the ring Λ.

Let V,W be the free resolutions of Λ over ΛΣp,Λπ respectively. We shall use the

following canonical model of W. Let Wi be the Λπ-free module on one generator ei, i ≥ 0.

LetN = 1+α+· · ·+αp−1 and T = α−1 in Λπ.Define the differential d, the augmentation

ε : W0 → Λ and the coproduct ψ on W , respectively by the formulas

d(e2i+1) = Te2i, d(e2i) = Ne2i−1, ε(α
je0) = 1;

ψ(e2i+1) =
∑
j+k=i

e2j ⊗ e2k+1 +
∑
j+k=i

e2j+1 ⊗ αe2k,

ψ(e2i) =
∑
j+k=i

e2j ⊗ e2k +
∑

j+k=(i−1)

∑
0≤r<s<p

αre2j+1 ⊗ αse2k.

Thus W is a differential Λπ-coalgebra and a Λπ-free resolution of Λ.

We denote the p-fold tensor product K ⊗ · · · ⊗ K by Kp. Then Kp becomes a

Λπ-complex by the following π operation,

τ(u1 ⊗ · · · ⊗ up) = γ(τ)u1 ⊗ · · ·ui−1 ⊗ ui+1 ⊗ ui ⊗ ui+2 · · · ⊗ up,

where γ(τ) = (−1)deg(ui)deg(ui+1) if τ is the interchange of i-th and (i+ 1)-th factor. We

consider W as a non-positively graded Λπ-complex. The inclusion of π in Σp induces a

morphism j : W → V of Λπ-complexes.

We have the following algebraic category C(p) on which the Steenrod operations are

defined. The objects of this category are pairs (K, θ), where K is a Λ-complex, equipped

with a homotopy associative multiplication K ⊗ K → K, and θ : W ⊗ Kp → K is a

morphism of Λπ-complexes satisfying the following two conditions.
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1. The restriction of θ to e0 ⊗Kp is Λ-homotopic to the iterated product Kp → K,

associative in one fixed order.

2. The morphism θ is Λπ-homotopic to a composite W ⊗ Kp j⊗1−−→ V ⊗ Kp ∅−→ K,

where ∅ is a morphism of ΛΣp-complexes.

A morphism f : (K, θ) → (K ′, θ′) is a morphism of Λ-complexes f : K → K ′ such that

the following diagram is Λπ-homotopy commutative.

W ⊗Kp K

W ⊗ (K ′)p K ′
?

id⊗fp

-θ

?

f

-θ
′

The tensor product of two objects (K, θ) and (K ′, θ′) is the pair (K ⊗K ′, θ̃), where

θ̃ is the composition

W ⊗ (K ⊗K ′)p ψ⊗Ũ−−−→W ⊗W ⊗Kp ⊗K ′p id⊗t̃⊗id−−−−−→W ⊗Kp ⊗W ⊗K ′p θ⊗θ′−−−→ K ⊗K ′.

Here ψ : W → W ⊗W is the coproduct, Ũ : (K ⊗ K ′)p → Kp ⊗ K ′p is the shuffling

isomorphism and t̃(x⊗ y) = (−1)deg(x)deg(y)y ⊗ x.

Definition 6.2.1. An object (K, θ) ∈ C(p) is said to be a Cartan object if the product

K ⊗K → K is a morphism from (K ⊗K, θ̃) to (K, θ).

For an object (K, θ) of C(p), there are maps Di : H
q(K)→ Hpq−i(K), i ≥ 0, defined

as follows. For x ∈ Hq(K), ei⊗xp is a well-defined element of Hpq−i(W⊗ΛπK
p) [May70]

and define Di(x) = θ∗(ei ⊗ xp), where θ∗ : Hpq−i(W ⊗Λπ K
p) → Hpq−i(K) is induced

by θ. We make the convention that Di = 0 for i < 0. Then the Steenrod reduced power

operations

Ps : Hq(K)→ Hq+2s(p−1)(K), βPs : Hq(K)→ Hq+2s(p−1)+1(K),

are defined by the following formulas

Ps(x) = (−1)r(m!)qD(q−2s)(p−1)(x), βPs(x) = (−1)r(m!)qD(q−2s)(p−1)−1(x),

where m = (p− 1)/2 and r = s+m(q + q2)/2.

Proposition 6.2.2. The power operations satisfies the following properties.

1. Ps and βPs are natural homomorphisms.
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2. Ps(x) = 0 if 2s > q, βPs = 0 if 2s ≥ q, and Ps(x) = xp if 2s = q.

3. If (K, θ) is a Cartan object then Ps and βPs satisfy the Cartan formulas

Ps(xy) =
∑
i+j=s

P i(x)Pj(y),

βPs+1(xy) =
∑
i+j=s

[βP i+1(x)Pj(y) + (−1)deg(x)P i(x)βPj+1(y)].

Remark 6.2.3. In general βPs is single notation. But if (K, θ) is reduced mod p

( [May70]) then the Bockstein homomorphism

β : Hn(K)→ Hn+1(K),

can be defined and βPs is the composition of Ps with the Bockstein homomorphism β.

Next we recall the definition of ‘Adem object’ in C(p) [May70]. We need the following

notations for the definition.

Consider Σp2 as permutations on the p2 symbols {(i, j)|1 ≤ i, j ≤ p}. Embed

π =< α > (⊆ Σp) in Σp2 by letting α(i, j) = (i, j + 1). Let αi ∈ Σp2 , 1 ≤ i ≤ p,

be defined by αi(i, j) = (i, j + 1) and αi(k, j) = (k, j) for k 6= i. Let

β = α1 · · ·αp, ν =< β >, σ = πν, τ =< α1, · · · , αp, α > .

Note that β and αi are of order p and the following relations hold.

ααi = αi+1α; αiαj = αjαi; αβ = βα.

Let W1 = W and W2 = W regarded as Λπ-free and Λν-free resolutions of Λ,

respectively. Let ν, π operate trivially on W1,W2 respectively. Then W1 ⊗ W2 is a

Λσ-free resolution of Λ with the diagonal action of σ on W1 ⊗W2.

For any ν-module M , let τ operate on Mp by letting α operate by cyclic permutation,

and by letting αi operate on the i-th factor as does β. Let αi operate trivially on W1.

Then τ operates on W1 and hence τ operates diagonally on W1 ⊗Mp. In particular,

W1 ⊗W p
2 is then a Λτ -free resolution of Λ.

Let (K, θ) ∈ C(p). We let Σp2 operate on Kp2 by permutations, where we consider

Kp2 as ⊗pi=1(⊗pj=1Ki,j), Ki,j = K. We let ν operate on W2 ⊗Kp by letting β act as

a cyclic permutation on Kp. By the previous paragraph, this fixes an action of τ on

W1 ⊗ (W2 ⊗Kp)p.

Let Y be any ΛΣp2-free resolution of Λ with Y0 = ΛΣp2 and let w : W1 ⊗W p
2 → Y

be any morphism of Λτ -complexes. Observe that w exists since Y is acyclic and any
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two choices of w are Λτ -equivariantly homotopic.

With these notations, we have the following definition.

Definition 6.2.4. Let (K, θ) ∈ C(p). We say that (K, θ) is an Adem object if there

exists a morphism of the ΛΣp2-complexes η : Y ⊗ Kp2 → K, such that the following

diagram is Λτ -equivariant homotopy commutative.

(W1 ⊗W p
2 )⊗Kp2

Y ⊗Kp2 K

W1 ⊗ (W2 ⊗Kp)p W1 ⊗Kp K

-w⊗id -η

6
id×Ũ

-id⊗θp -θ

6
id

Here Ũ is the shuffle map and Σp2 acts trivially on K.

The following relations among the operations Ps and βPs are valid on all cohomology

classes of Adem objects in C(p), p > 2 a prime, [May70]

• If a < pb then βePaPb =
∑

i(−1)a+i(a− pi, (p− 1)b− a+ i− 1)βePa+b−iP i.

• If a ≤ pb then βePaβPb = (1−e)
∑

i(−1)a+i(a−pi, (p−1)b−a+ i−1)βPa+b−iP i

−
∑

i(−1)a+i(a− pi− 1, (p− 1)b− a+ i)βePa+b−iβP i,

where e = 0, 1 and β0Ps = Ps and β1Ps = βPs.

6.3 Steenrod reduced power operations in simplicial

Bredon-Illman cohomology with local coefficients

We apply the general method of the previous section to construct the Steenrod re-

duced power operations in the equivariant cohomology of OG-simplicial sets, as defined

in Section 6.3.4. In particular, for a one vertex G-Kan complex X, we have the re-

duced power operations defined for the πX-equivariant cohomology of the universal

OG-covering complex X̃ of X (cf. Definition 5.3.3). We then apply Theorem 5.3.4 to

deduce the Steenrod reduced power operations in the simplicial Bredon-Illman coho-

mology with local coefficients.

Definition 6.3.1. Let ρ be an OG-group and T, T ′ be OG-simplicial sets. Assume that

ρ acts on both T and T ′. A map f : T → T ′ is called ρ-equivariant if

f(G/H)(ax) = af(G/H)(x), a ∈ ρ(G/H), x ∈ T (G/H),

for each subgroup H of G.
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Definition 6.3.2. Let E,E′ be OG-chain complexes. Two natural transformations

v = {vn}, w = {wn} : E → E′ are said to be homotopic if there exist natural transfor-

mations

Hn : vn → wn+1, n ≥ 0,

such that {Hn(G/H)}n≥0 is a chain homotopy of the chain maps v(G/H), w(G/H) for

each subgroup H of G. Symbolically, we write H : v ' w.

If an OG-group ρ acts on E,E′ and v, w are ρ-equivariant, then v, w are said to be

ρ-equivariantly homotopic if there exists a homotopy H : v ' w which satisfies

Hn(G/H)(ax) = aHn(G/H)(x) for a ∈ ρ(G/H), x ∈ E(G/H)n,

for each subgroup H of G.

Definition 6.3.3. Let E, E′ be two OG-chain complexes. Then their tensor product is

the OG-chain complex E ⊗ E′, defined by

(E ⊗ E′)(G/H) = E(G/H)⊗ E′(G/H),

for each object G/H of OG and (E ⊗ E′)(â) = E(â)⊗ E′(â) for a morphism â in OG.

Note that a chain complex W can be considered as an OG-chain complex in the

obvious way, that is, W (G/H) = W for an object G/H of OG and W (â) = id for a

morphism â in OG. So the tensor product of W with an OG-chain complex is defined.

Let (T,M0, ρ) be an object of AΛ (cf. Section 5.2). Recall that the cochain

complex C∗ρ(T ;M0), equipped with the cup product, is an associative differential graded

Λ-algebra (cf. Remark 5.2.4). We now construct a morphism of Λπ-complexes

θ : W ⊗ C∗ρ(T ;M0)p → C∗ρ(T ;M0),

so that (C∗ρ(T ;M0), θ) becomes an object of the category C(p).

For a simplicial set L, let C∗(L) denote the normalized chain complex of L with

coefficients Λ. We recall the following lemma from [May70].

Lemma 6.3.4. Let π be a subgroup of Σp (π not necessarily cyclic of order p) and W

be a Λπ-free resolution of Λ such that W0 = Λπ with generator e0. For simplicial sets

L1, · · · , Lp, there exists a chain map

Φ: W ⊗ C∗(L1 × · · · × Lp)→W ⊗ C∗(L1)⊗ · · · ⊗ C∗(Lp),

which is natural in the Li and satisfies the following properties.
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1. For σ ∈ π, the following diagram is commutative.

W ⊗ C∗(L1 × · · · × Lp) W ⊗ C∗(L1)⊗ · · · ⊗ C∗(Lp)

W ⊗ C∗(Lσ(1) × · · · × Lσ(p)) W ⊗ C∗(Lσ(1))⊗ · · · ⊗ C∗(Lσ(p))

-Φ

?

σ

?

σ

-Φ

2. Φ is the identity homomorphism on W ⊗ C0(L1 × · · · × Lp).

3. Φ(e0 ⊗ (x1, · · · , xp)) = e0 ⊗ ξ(x1, · · · , xp), where xi ∈ Lj for 1 ≤ i ≤ p and

ξ : C∗(L1 × · · · × Lp)→ C∗(L1)⊗ · · · ⊗ C∗(Lp)

is the Alexander-Whitney map.

4. Φ(W ⊗ Cj(L1 × · · · × Lp)) ⊆
∑

k≤pjW ⊗ [C∗(L1)⊗ · · · ⊗ C∗(Lp)]k.

5. Any two such Φ are naturally equivariantly homotopic.

In the special case L1 = · · · = Lp = L, we obtain a natural morphism of chain

complexes of Λπ-modules

Φ: W ⊗ C∗(Lp)→W ⊗ C∗(L)p,

which satisfies the last four conditions of Lemma 6.3.4.

Let T ∈ OGS. Applying the above special case of Lemma 6.3.4 to each simplicial set

T (G/H), we obtain chain maps ΦH : W ⊗C∗(T (G/H)p)→W ⊗C∗(T (G/H))p which is

π-equivariant. Since ΦH is natural with respect to maps of simplicial sets, we see that

ΦH ◦ (idW ⊗C∗(T (â)p)) = (idW ⊗C∗(T (â))p) ◦ΦK , where a−1Ha ⊆ K. Thus we have

a morphism Φ of OG-chain complexes

Φ: W ⊗ C∗(T p)→W ⊗ C∗(T )p, defined by Φ(G/H) = ΦH , G/H ∈ OG.

Now suppose that an OG-group ρ operates on T . The diagonal action of ρ on T p

induces a ρ-action on C∗(T
p). Also, we have an induced ρ-action on C∗(T ). We let ρ

operate diagonally on C∗(T )p and trivially on W . The naturality of ΦH with respect

to maps from T (G/H) into itself shows that ΦH is ρ(G/H)-equivariant. Thus the map

Φ is (π × ρ)-equivariant. Hence we obtain the following corollary.
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Corollary 6.3.5. Let T ∈ OGS and suppose an OG-group ρ operates on T . For a

subgroup π of Σp (π not necessarily cyclic of order p), let W be a Λπ-free resolution of

Λ such that W0 = Λπ with generator e0. Then there is a natural transformation

Φ: W ⊗ C∗(T p)→W ⊗ C∗(T )p

such that

1. Φ is (π × ρ)-equivariant.

2. Φ is the identity homomorphism on W ⊗ C0(T p).

3. Φ(G/H)(e0 ⊗ (x1, · · · , xp)) = e0 ⊗ ξ(G/H)(x1, · · · , xp), where xi ∈ T (G/H) for

1 ≤ i ≤ p and ξ(G/H) : C∗(T (G/H)p)→ C∗(T (G/H))p is the Alexander-Whitney

map of the simplicial set T (G/H).

4. Φ(G/H)(W ⊗ Cj(T (G/H)p)) ⊆
∑

k≤pjW ⊗ (C∗(T (G/H))p)k.

5. The map Φ is natural with respect to the equivariant maps of OG-simplicial sets

and any two such Φ are naturally equivariantly homotopic.

Next we construct the map θ : W ⊗ C∗ρ(T ;M0)p → C∗ρ(T ;M0).

For an object (T,M0, ρ) ∈ AΛ, let D : T → T p be the diagonal map

D(G/H)(x) = (x, · · · , x), x ∈ T (G/H),

which induces a map D∗ : C∗(T )→ C∗(T
p). Define ∆: W ⊗C∗(T )→ C∗(T )p to be the

composite

∆: W ⊗ C∗(T )
id⊗D∗−−−−→W ⊗ C∗(T p)

Φ−→W ⊗ C∗(T )p → C∗(T )p,

where the last map is the augmentation. Observe that the map ∆ is (π×ρ)-equivariant.

Moreover, we have a natural map

α : [C∗ρ(T ;M0)]p → Homρ(C∗(T )p,M0)

defined by

α(f1 ⊗ · · · ⊗ fp)(G/H)(x1 ⊗ · · · ⊗ xp) = (−1)af1(G/H)(x1) · · · fp(G/H)(xp),

where fi ∈ C∗ρ(T ;M0), xi ∈ C∗(T )(G/H), i = 1, · · · , p and a =
∏p
k=1 deg(xk). Hence

dualising ∆, we get a natural morphism of Λπ-complexes,

θ : W ⊗ C∗ρ(T ;M0)p → C∗ρ(T ;M0),
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given by

θ(w ⊗ f)(G/H)(x) = (−1)deg(w)deg(x)α(f)(G/H)(∆(G/H)(w ⊗ x)),

where w ∈W, f ∈ C∗ρ(T ;M0)p, x ∈ C∗(T (G/H)).

Remark 6.3.6. Note that θ(e0 ⊗ f) = D∗ξ∗α(f) for any f ∈ C∗ρ(T ;M0)p. As before

let V denote a ΛΣp-free resolution of Λ and j : W → V be the map induced by the

inclusion π ↪→ Σp. We apply Corollary 6.3.5 for the (sub)group Σp to get Φ̃ : V ⊗
C∗(T

p)→W ⊗C∗(T )p. Then Φ̃ ◦ (j⊗ id) satisfies the first four conditions of Corollary

6.3.5 for the subgroup π and hence must be equivariantly homotopic to Φ. Therefore,

θ̃ : V ⊗C∗ρ(T ;M0)p → C∗ρ(T ;M0) can be defined such that θ̃◦(j⊗id) is Λπ-equivariantly

homotopic to θ. Therefore (C∗ρ(T ;M0), θ) is an object of the category C(p). Thus we

obtain a contravariant functor Γ: AΛ → C(p) by letting Γ(T,M0, ρ) = (C∗ρ(T ;M0), θ)

and Γ(f0, f1, f2) = C∗(f0, f1, f2) on morphisms (cf. Remark 5.2.3).

The next lemma is the key to show that (C∗ρ(T ;M0), θ) is a Cartan object of C(p). Let

φ = (ε⊗id)Φ where Φ is obtained from Lemma 6.3.4 and ε : W → Λ is the augmentation.

Lemma 6.3.7. Let Li, Si i = 1, · · · , p be simplicial sets. Let u : (
∏p
i=1 Li×

∏p
i=1 Si)→∏p

i=1(Li×Si) and U : (⊗pi=1C∗(Li))⊗ (⊗pi=1C∗(Si))→ ⊗
p
i=1[C∗(Li)⊗C∗(Si)] be shuffle

maps. Let t denote the flip map, that is t(x⊗ y) = y⊗x. Then there exists a homotopy

H : W ⊗ C∗(
p∏
i=1

Li ×
p∏
i=1

Si)→
p⊗
i=1

[C∗(Li)⊗ C∗(Si)]

of the chain maps ξpφ(id ⊗ u) and U(φ⊗ φ)(id⊗ t⊗ id)(ψ ⊗ id⊗ id)(id× ξ), so that

the following diagram is homotopy commutative.

W ⊗ C∗(
p∏
i=1

Li ×
p∏
i=1

Si) W ⊗ C∗(
p∏
i=1

(Li × Si))
p⊗
i=1

[C∗(Li × Si)]

W ⊗ C∗(
p∏
i=1

Li)⊗ C∗(
p∏
i=1

Si)

p⊗
i=1

[C∗(Li)⊗ C∗(Si)]

-id×u

?

id⊗ξ

-φ

?

ξp

-
U(φ⊗φ)(id⊗t⊗id)(ψ⊗id⊗id)

Moreover, the homotopy H is natural in the Li, Si and the following diagram com-
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mutes for σ ∈ π.

W ⊗ C∗(
p∏
i=1

Li ×
p∏
i=1

Si)

p⊗
i=1

[C∗(Li)⊗ C∗(Si)]

W ⊗ C∗(
p∏
i=1

Lσ(i) ×
p∏
i=1

Sσ(i))

p⊗
i=1

[C∗(Lσ(i))⊗ C∗(Sσ(i))]

-H

?

σ⊗σ

?

σ

-
H

Proof. The proof is similar to the proof of Lemma 7.1 of [May70]. Let Aj = Cj(
∏p
i=1 Li×∏p

i=1 Si) and Bj = [⊗pi=1C∗(Li)⊗C∗(Si)]j . We construct H on Wi⊗Aj by induction on

i and for fixed i by induction on j. Note that the two maps agree on W ⊗ A0. So H is

the zero map on W ⊗A0. To define H on W0⊗Aj , j ≥ 0, it suffices to define on e0⊗Aj ,
since H can then be uniquely extended to all of W0 ⊗ Aj using the commutativity of

the second diagram. The functor e0 ⊗ Aj is represented by the model ∆[j]p × ∆[j]p

and W ⊗Bj is acyclic on this model. Therefore, by acyclic model argument, H can be

defined on e0⊗Aj , provided H is known on e0⊗Aj−1. But H has already been defined

on W0 ⊗A0. Hence by induction on j, we can define H on e0 ⊗Aj , j ≥ 0. To define H
on Wi ⊗Aj , assume that it has already been defined on Wi′ ⊗Aj , i′ < i, j ≥ 0 and on

Wi ⊗ Aj′ , j′ < j. Choose a Λπ-basis {wk} for Wi. As before, it suffices to define H on

w ⊗ Aj , w ∈ {wk}. We can repeat the acyclic model argument replacing e0 by w, and

hence we are through by induction.

In the special case L1 = · · · = Lp = L, S1 = · · · = Sp = S, we obtain the following

corollary.

Corollary 6.3.8. For simplicial sets L, S the two chain maps ξpφ(id ⊗ u) and

U(φ⊗ φ)(id⊗ t⊗ id)(ψ ⊗ id⊗ id)(id× ξ) from W ⊗ C∗(Lp × Sp) to [C∗(L) ⊗ C∗(S)]p

are Λπ-equivariantly homotopic and the homotopy is natural in L and S.

Suppose (T,M0, ρ) and (T ′,M ′0, ρ
′) are objects of AΛ. With the product actions of

ρ× ρ′ on T × T ′ and M0 ⊗M ′0, we have an object (T × T ′,M0 ⊗M ′0, ρ× ρ′) ∈ AΛ. The

following lemma relates Γ(T × T ′,M0 ⊗M ′0, ρ × ρ′) = (C∗ρ×ρ′(T × T ′;M0 ⊗M ′0), θ) to

Γ(T,M0, ρ)⊗ Γ(T ′,M ′0, ρ
′) = (C∗ρ(T ;M0)⊗ C∗ρ′(T ′;M ′0), θ̃).

Let

α̃ : C∗ρ(T ;M0)⊗ C∗ρ′(T ′;M ′0)→ Homρ×ρ′(C∗(T )⊗ C∗(T ′),M0 ⊗M ′0)
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be defined by

α̃(f ⊗ g)(G/H)(x⊗ y) = (−1)deg(x)deg(y)f(G/H)(x)⊗ g(G/H)(y), H ⊆ G,

where f ∈ C∗ρ(T ;M0), g ∈ C∗ρ′(T ′;M ′0), x ∈ C∗(T )(G/H), y ∈ C∗(T ′)(G/H).

Lemma 6.3.9. With the notations as above, the following diagram is Λπ-homotopy

commutative.

W ⊗ C∗ρ×ρ′(T × T ′;M0 ⊗M ′0)p C∗ρ×ρ′(T × T ′;M0 ⊗M ′0)

W ⊗ [C∗ρ(T ;M0)⊗ C∗ρ′(T ′;M ′0)]p C∗ρ(T ;M0)⊗ C∗ρ′(T ′;M ′0)

-θ

6

id⊗(ξ∗α̃)p

-θ̃

6

ξ∗α̃

Proof. Let D, D′, D̃ be the diagonals for T, T ′, T × T ′ respectively. Let

u : T p × T ′p → (T × T ′)p and U : C∗(T )p ⊗ C∗(T ′)p → [C∗(T )⊗ C∗(T ′)]p

be the shuffle maps. Let t be the switch map.

By the definitions of θ and θ̃, it suffices to prove that the following diagram of

OG-chain complexes is Λ(π × ρ× ρ′)-equivariant homotopy commutative.

(1) · · ·

W ⊗ C∗(T × T ′) C∗(T × T ′)p

W ⊗ C∗(T )⊗ C∗(T ′) [C∗(T )⊗ C∗(T ′)]p

-
∆

?

id×ξ

?

ξp

-ζ

Here

∆ = (ε⊗ id)Φ(id⊗ D̃), ζ = U(∆⊗∆)(id⊗ t⊗ id)(ψ ⊗ id⊗ id).

Let φ = (ε⊗ id)Φ. Observe that D̃ = u(D ×D′) and

(id⊗D ⊗ id⊗D′)(id⊗ t⊗ id)(ψ ⊗ id⊗ id) = (id⊗ t⊗ id)(ψ ⊗ id⊗ id)(id⊗D ⊗D′).

Observe that the following diagram commutes by the naturality of ξ.
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(2) · · ·

W ⊗ C∗(T × T ′) W ⊗ C∗(T p × T ′p)

W ⊗ C∗(T )⊗ C∗(T ′) W ⊗ C∗(T p)⊗ C∗(T ′p)

-
id⊗(D×D′)

?

id⊗ξ

?

id⊗ξ

-id⊗D⊗D′

Let F denote the following diagram of OG-chain complexes of Λ-modules.

(3) · · ·

W ⊗ C∗(T p × T ′p) W ⊗ C∗([T × T ′]p) C∗(T × T ′)p

W ⊗ C∗(T p)⊗ C∗(T ′p) [C∗(T )⊗ C∗(T ′)]p

-
id⊗u

?

id⊗ξ

-
φ

?

ξp

-
U(φ⊗φ)(id⊗t⊗id)(ψ⊗id⊗id)

Then F(G/H) is Λπ-equivariant homotopy commutative, by Corollary 6.3.8. The nat-

urality of this homotopy with respect to maps from T (G/H) into itself implies that the

homotopy is equivariant for the ρ(G/H)-action on T (G/H). Similarly, the homotopy is

ρ′(G/H)-equivariant. These natural equivariant homotopies of chain complexes com-

bine together to form Λ(π×ρ×ρ′)-equivariant homotopy, which makes the diagram (3)

Λ(π × ρ× ρ′)-equivariant homotopy commutative.

Now observe that the diagram (1) is the juxtaposition of the diagrams (2) and (3).

Hence the diagram (1) is Λ(π × ρ× ρ′)-equivariant homotopy commutative.

Proposition 6.3.10. For an object (T,M0, ρ) of AΛ, Γ(T,M0, ρ) = (C∗ρ(T ;M0), θ) is

a Cartan object of C(p).

Proof. Recall that (C∗ρ(T ;M0), θ) is called a Cartan object if the cup product is a

morphism of C(p). Now observe that

(T,M0, ρ)
(D,id,id)−−−−−→ (T × T,M0, ρ)

(id,m,D)−−−−−→ (T × T,M0 ⊗M0, ρ× ρ)

are morphisms in AΛ, where m : M0 ⊗M0 → M0 is the multiplication, D denotes the

diagonal map, and we let ρ to operate diagonally on T × T .

Applying Lemma 6.3.9 with (T,M0, ρ) = (T ′,M ′0, ρ
′), and composing with the mor-

phism C∗(id,m,D), we see that the composite ξ∗α

C∗ρ(T ;M0)⊗ C∗ρ(T ;M0)
α−→ Homρ(C∗(T )⊗ C∗(T ),M0)

ξ∗

−→ C∗ρ(T × T ;M0)

is a morphism in C(p). Also note that C∗(D, id, id) : C∗ρ(T × T ;M0) → C∗ρ(T ;M0) is a
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morphism in C(p). Hence the cup product is a morphism in C(p).

Next we show that C∗ρ(T ;M0) is an ‘Adem object’ in C(p).

Proposition 6.3.11. For (T,M0, ρ) ∈ AΛ, Γ(T,M0, ρ) = (C∗ρ(T ;M0), θ) is an Adem

object in C(p).

Proof. With the notations of Definition 6.2.4, we first construct the map

η : Y ⊗ C∗ρ(T ;M0)p
2 → C∗ρ(T ;M0).

The procedure is similar to the construction of θ. We remark that the proof of Lemma

6.3.4 works for any subgroup π of Σr, r being any positive integer. Thus we have a

chain map

Φ: Y ⊗ C∗(L1 × · · · × Lr)→ Y ⊗ C∗(L1)⊗ · · · ⊗ C∗(Lr),

satisfying the properties of Lemma 6.3.4. As before, we specialize to L1 = · · · =

Lr = L and take π = Σr. The naturality of Φ with respect to maps of a simplicial

set into itself allows us to pass to an OG-simplicial set T , equipped with an action

of an OG-group ρ, so that we get Λ(Σr × ρ)-equivariant map of OG-chain complexes

Φ: Y ⊗ C∗(T
r) → Y ⊗ C∗(T )r. As a consequence, we obtain a map of OG-chain

complexes ∆: Y ⊗ C(T )→ C(T )p
2

which is (Σp2 × ρ)-equivariant. Next, following the

construction of the map θ, we obtain η.

Note that, dualizing the diagram in Definition 6.2.4, it suffices to prove that the

following diagram is Λ(τ × ρ)-homotopy commutative.

W1 ⊗W p
2 ⊗ C∗(T ) Y ⊗ C∗(T ) C∗(T )p

2

W p
2 ⊗W1 ⊗ C∗(T ) W p

2 ⊗ C∗(T )p [W2 ⊗ C∗(T )]p

-w⊗id

?

t⊗id

-
∆

-
id⊗∆

-
U

6
∆p

Here the notations are as in Lemma 6.3.9. Define the maps of OG-chain complexes

χ,Ω: W1 ⊗W p
2 ⊗ C∗(T p

2
)→ C∗(T )p

2
by

χ = φ(w ⊗ id
C∗(T

p2 )
) and Ω = φpU(idW1⊗W p

2
⊗ φ)(t⊗ id

C∗(T
p2 )

).

Let D : C∗(T ) → C∗(T
p2) be induced by the diagonal. Following [May67], we observe

that,

∆(w ⊗ id) = χ(id⊗ id⊗D),

and

∆pU(id⊗∆)(t⊗ id) = Ω(id⊗ id⊗D).
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Therefore it suffices to show that the maps of OG-chain complexes χ,Ω are Λ(τ × ρ)-

equivariantly homotopic. Here τ operates by permutation of factors and the OG-group

ρ operates diagonally on T p
2

and on C∗(T )p
2
. We replace C∗(T

p2) by C∗(
∏p
i,j=1 Li,j)

and C∗(T )p
2

by
⊗p

i,j=1C∗(Li,j) in the definitions of the maps χ and Ω, where Li,js

are simplicial sets. Then the chain maps, corresponding to χ and Ω can be shown

to be τ -equivariantly homotopic, and the homotopy is natural with respect to maps

of simplicial sets. In the special case Li,j = L, 1 ≤ i, j ≤ p, the naturality of this

homotopy for maps of a simplicial set into itself implies that the chain maps χ(G/H)

and Ω(G/H) are Λ(τ × ρ(G/H))-equivariantly homotopic, H ⊆ G being a subgroup.

Again the naturality of homotopy shows that the maps of OG-chain complexes χ,Ω are

Λ(τ × ρ)-equivariantly homotopic.

Thus we have the following theorem.

Theorem 6.3.12. Let (T,M0, ρ) ∈ AΛ, Λ = Zp, p > 2 a prime. Then there exist

functions

Ps : Hq
ρ(T ;M0)→ Hq+2s(p−1)

ρ (T ;M0),

βPs : Hq
ρ(T ;M0)→ Hq+2s(p−1)+1

ρ (T ;M0),

which satisfy the following properties.

1. Ps and βPs are natural homomorphisms.

2. Ps = βPs = 0 if s < 0. Also Ps(x) = 0 if 2s > q, βPs = 0 if 2s ≥ q.

3. Ps(x) = xp if 2s = q.

4. (Cartan formula) For x, y ∈ Hq
ρ(T ;M0),

Ps(x ∪ y) =
∑
i+j=s

P i(x) ∪ Pj(y),

βPs+1(x ∪ y) =
∑
i+j=s

[βP i+1(x) ∪ Pj(y) + (−1)deg(x)P i(x) ∪ βPj+1(y)].

5. (Adem relation) If a < pb then

βePaPb =
∑
i

(−1)a+i(a− pi, (p− 1)b− a+ i− 1)βePa+b−iP i.

If a ≤ pb then

βePaβPb = (1− e)
∑
i

(−1)a+i(a− pi, (p− 1)b− a+ i− 1)βPa+b−iP i
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−
∑
i

(−1)a+i(a− pi− 1, (p− 1)b− a+ i)βePa+b−iβP i,

where e = 0, 1 and β0Ps = Ps and β1Ps = βPs.

Proof. We only need to prove that Ps = βPs = 0 for s < 0. By definition of the power

operations, it suffices to show that Di(x) = 0 for i > pq − q, deg(x) = q (cf. Section

6.2). Recall that ∆ = (ε⊗ id)Φ(id×D) and

Φ(ei ⊗D(x)) ∈
∑
j<pq

Wpq−j ⊗ [C∗(T )]pj ⊆ Ker(ε⊗ id) for i > pq − q.

Hence ∆(ei ⊗ x) = 0 for x ∈ Cpq−i(T ).

Let X be a one vertex G-Kan complex and M be an equivariant local coefficient sys-

tem of Λ-algebras on X, where Λ = Zp, p > 2 a prime. We define the Steenrod reduced

power operations in the simplicial Bredon-Illman cohomology with local coefficients by

Ps = µ∗−1Psµ∗ and βPs = µ∗−1(βPs)µ∗,

where the symbols Ps and βPs on the right side of the above equalities denote the

power operations as constructed in the category AΛ and µ∗ : H∗G(X;M) ∼= H∗πX(X̃;M0)

is the isomorphism as obtained in Theorem 5.3.4. Thus we have the following theorem.

Theorem 6.3.13. Let X be a one vertex G-Kan complex and M be an equivariant local

coefficient system of Λ-algebras on X, Λ = Zp, p > 2 a prime. Then there exist natural

homomorphisms

Ps : Hq
G(X;M)→ H

q+2s(p−1)
G (X;M),

βPs : Hq
G(X;M)→ H

q+2s(p−1)+1
G (X;M),

which satisfy the properties (1)− (5) of Theorem 6.3.12.

If G is a trivial group, then Ps can be naturally identified with the reduced power

operations in cohomology with local coefficients [Git63].

Proof. Since the isomorphism µ∗ of the Eilenberg theorem, Theorem 5.3.4, is natural

and respects the cup product, the first part follows from Theorem 6.3.12.

For the second part, we just remark that when G is trivial, the map

∆: W ⊗ C∗(T )→ C∗(T )p

reduces to the (π × ρ)-equivariant chain mapping φ′ : W ⊗ C∗(X) → C∗(X)p, as con-

structed by Gitler in Section 4.2 of [Git63].
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Chapter 7

Equivariant twisted Cartan

cohomology theory

7.1 Introduction

In this final chapter of the thesis, we prove an equivariant version of a result of Cartan

( [Car76], [McC82]) for the simplicial Bredon-Illman cohomology with local coefficients.

In Section 7.2, we recall the statement of Cartan’s theorem. In Section 7.3 we introduce

the notion of an equivariant twisted Cartan cohomology theory and prove the main

result.

7.2 Cartan cohomology theory

To generalize Sullivan’s theory of rational de Rham complexes of simplicial sets [Sul77]

to cochain complexes over arbitrary ring of coefficients, Cartan [Car76] introduced the

notion of a ‘Cohomology theory’. Let Λ be a commutative ring with identity.

Definition 7.2.1. A differential graded algebra over Λ is a graded Λ-modules A∗ =

⊕n≥0A
n with an associative Λ-linear multiplication An ⊗Λ A

m → An+m and a degree 1

Λ-linear map δ : A∗ → A∗ such that

δ2 = 0; δ(xy) = (δx)y + (−1)deg(x)x(δy).

Let DGA/Λ be the category whose objects are differential graded algebras over Λ,

and morphisms are degree zero maps commuting with the differentials.

Definition 7.2.2. A simplicial differential graded algebra over Λ is a simplicial object

101
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in the category DGA/Λ, so that for each p ≥ 0 we have a differential graded algebra

(A∗p, δ) : A0
p
δ−→ A1

p
δ−→ A2

p → · · ·

together with face and degeneracy maps ∂i : A
∗
p+1 → A∗p and si : A

∗
p → A∗p+1 which

are homomorphisms of differential graded algebras satisfying the usual simplicial and

differential identities.

A map of simplicial differential graded algebras over Λ is a natural transformation

of functors. The category of simplicial differential graded algebras over Λ is denoted by

SDGA/Λ.

With these definitions, Cartan’s result can be described as follows.

Definition 7.2.3. A cohomology theory in the sense of Cartan over a commutative

ring Λ is a simplicial differential graded algebra A over Λ which satisfies the following

conditions.

1. For each p ≥ 0, the cochain complex (A∗p, δ) is exact and Z0A = Ker(A0
∗
δ−→ A1

∗) is

a simplicially trivial algebra over Λ (A simplicial object is said to be simplicially

trivial if all the face and degeneracy maps are isomorphisms).

2. The homotopy groups πi(A
n
∗ ) of the simplicial set An∗ = {Anp}p≥0 are trivial for all

i, n ≥ 0.

Example 7.2.4. Let Λ = R, the field of real numbers and Ω∗p = Ω∗(∆p), the differential

graded algebra of smooth differential forms on the standard Euclidean p-simplex ∆p.

Then Ω∗ is a is a cohomology theory in the sense of Cartan with (Z0Ω)0 = R.

A cohomology theory A determines a contravariant functor from the category of

simplicial sets to DGA/Λ which assigns to each simplicial set X the differential graded

algebra A(X) = {Hom(X,An∗ )}n≥0, where Hom(X,An∗ ) is the Λ-module of simplicial

maps X → An∗ and the differential on A(X) is induced from that of A. Then Cartan’s

theorem can be stated as follows.

Theorem 7.2.5. ( [Car76]) Let A be a cohomology theory. Then there is a natural

isomorphism of graded Λ-modules

H∗(A(X)) ∼= H∗(X; Λ(A)),

for every simplicial set X, where Λ(A) is the Λ-module (Z0A)0.

In [Hir79], Hirashima generalized Cartan’s result for cohomology with local coeffi-

cients. Moreover, for a discrete group G, Cartan’s theorem was generalized in [MN98]
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for G-simplicial sets, where in the equivariant setting, the ordinary cohomology of sim-

plicial sets is replaced by the Bredon cohomology of G-simplicial sets (cf. Remark 2.5.1).

Thus Cartan’s theorem as generalized in [MN98] may be described as follows.

Definition 7.2.6. Let G be a discrete group. Then a G-cohomology theory over Λ is a

contravariant functor A : OG → SDGA/Λ such that A(G/H) is a cohomology theory

over Λ for each subgroup H of G.

For a G-cohomology theory A, let An ∈ OGS be defined by An(G/H)q = A(G/H)nq ,

for an object G/H of OG and An(â)q = A(â)|A(G/H)nq
for a morphism â in OG. Note

that, A determines an OG-Λ-module λA, defined by

λA(G/H) = Λ(A(G/H)),

for each object G/H of OG and λA(â) = A(â)|Z0(A(G/K))0 for a morphism â : G/H →
G/K in OG. Moreover, A determines a differential graded algebra of Λ-modules AG(X)

for any G-simplicial set X, where

AG(X) :=
⊕
n≥0

HomOGS(ΦX,An).

The differential and the algebra structures on AG(X) are induced from those of the

G-cohomology theory A.

Theorem 7.2.7. [MN98] Let A be a G-cohomology theory. Then for a G-simplicial

set X, there is a natural isomorphism of graded Λ-modules

H∗G(X;λA) ∼= H∗(AG(X)),

where H∗G(X;λA) is the Bredon cohomology of the G-simplicial set X with coefficients

λA (cf. Remark 2.5.1).

7.3 Equivariant twisted Cartan cohomology theory

In this section, we formulate an equivariant twisted version of Cartan Cohomology

theory [Car76] and prove that the simplicial Bredon-Illman cohomology with local coef-

ficients of a G-simplicial set can be computed by the cohomology of a differential graded

algebra determined by a given cohomology theory.

Let G be a discrete group. Let OG-Λ-mod denote the category of contravariant

functors from OG to the category Λ-mod of Λ-modules and module maps. An object of

OG-Λ-mod is called an OG-Λ-module and a simplicial object in the category OG-Λ-mod
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is called a simplicial OG-Λ-module. The category of simplicial objects in the category

Λ-mod is denoted by SΛ-mod.

We formulate the following equivariant generalization of Cartan Cohomology theory

suitable for our purpose.

Definition 7.3.1. An equivariant twisted Cartan cohomology theory over Λ is a se-

quenceA = {Ai}i≥0 of simplicial OG-Λ-modules Ai, together with simplicial differentials

δi : Ai → Ai+1 such that the following axioms are satisfied.

1. For each subgroup H ⊆ G, A(G/H) = (A∗(G/H)∗, δ
∗(G/H)) is a simplicial

differential graded algebra over Λ.

2. For each p ≥ 0,

A0
p

δ0p−→ A1
p

δ1p−→ A2
p → · · ·

is an exact sequence in the abelian category of OG-Λ-modules.

3. The OG-group πn ◦Ai is the zero OG-group, for all n, i ≥ 0.

4. The simplicial OG-Λ-module Z0A = ker(A0 δ0−→ A1) is simplicially trivial.

5. For each subgroup H ⊆ G and an integer i ≥ 0 there is a group homomorphism

ψiH : AutΛ-mod((Z0A)0(G/H))→ AutSΛ-mod(Ai(G/H))

satisfying

• δi ◦ ψiH(α) = ψi+1
H (α) ◦ δi, α ∈ Aut((Z0A)0(G/H)), i ≥ 0.

• If α ∈ AutΛ-mod((Z0A)0(G/H)) and β ∈ AutΛ-mod((Z0A)0(G/K)) be such

that

α ◦ (Z0A)0(â) = (Z0A)0(â) ◦ β, where a−1Ha ⊆ K,

then the following diagram commutes.

Ai(G/H) Ai(G/H)

Ai(G/K) Ai(G/K)

-
ψiH(α)

-
ψiK(β)

6
Ai(â)

6
Ai(â)

Example 7.3.2. Let M0 be an OG-Λ-module. Define

An = C(M0, n), n ≥ 0,
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with differentials δn as described in Section 4.2. Then A = {An}n≥0 is an equivariant

twisted Cartan cohomology theory with (Z0A)0 = M0.

Given an equivariant twisted Cartan Cohomology theory A, we have simplicial

OG-Λ-modules ZnA, n ≥ 0, defined by

ZnA(G/H) = {Ker(δn(G/H) : An(G/H)→ An+1(G/H))},

for each object G/H of OG and ZnA(â) = An(â)|ZnA(G/H) for a morphism â in OG.

Lemma 7.3.3. Let A : A0 δ−→ A1 δ−→ · · · be an equivariant twisted Cartan cohomology

theory. Then each An is contractible as an object of OGS.

Proof. For an integer n ≥ 0 and a subgroup H of G, we have a short exact sequence

0→ ZnA(G/H) ↪→ An(G/H)
δ−→ Zn+1A(G/H)→ 0

of simplicial abelian groups. Therefore An(G/H) → Zn+1A(G/H) is a principal fi-

bration with fibre ZnA(G/H) in the category of simplicial sets, and hence a principal

twisted cartesian product (PTCP) of type (W) with group complex ZnA(G/H) (cf.

Proposition 1.6.8). This PTCP of type (W) is naturally isomorphic to the universal

PTCP of type (W), W (ZnA(G/H)) → W (ZnA(G/H)). But W (ZnA(G/H)) is con-

tractible. The functions

hHq−i : W (ZnA(G/H))q →W (ZnA(G/H))q+1, 0 ≤ i ≤ q, q ≥ 0,

hHq−i(xq, · · · , x0) = (0Hq+1, · · · , 0Hi+1, ∂
q−i
0 xq · · · ∂0xi+1 · xi, xi−1, · · ·x0),

where xj ∈ ZnA(G/H)j , 0 ≤ j ≤ q and 0Hq+1−r is the zero element of the abelian

group ZnA(G/H)q+1−r, 0 ≤ r ≤ q− i, define a contraction of W (ZnA(G/H)) which is

natural with respect to morphisms in OG. Hence An(G/H) is also contractible and the

contraction is natural. Consequently, An is contractible as an object of OGS.

Consider an equivariant twisted Cartan cohomology theory A = {Ai}i≥0. Let M0

denote the OG-Λ-module (Z0A)0. Given a G-simplicial set X, an OG-group π, an

OG-twisting function κ : ΦX → π and a π-module structure φ on M0, we shall con-

struct a differential graded algebra over Λ whose cohomology will compute the equiv-

ariant twisted cohomology of (X,φ, κ).

Observe that a π-module structure φ on the OG-Λ-module M0 determines and is

determined by the group homomorphisms φH : π(G/H) → AutΛ-mod(M0(G/H)) for

each subgroup H of G, such that

φH(π(â)γ) ◦M0(â) = M0(â) ◦ φK(γ),
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for a morphism â : G/H → G/K in OG. Then (An, ψnφ) is a π-module, where (ψnφ)H =

ψnH ◦ φH : π(G/H) → AutSΛ-mod(An(G/H)). To justify this, we take α = φH(π(â)γ)

and β = φK(γ) in the second condition of the fifth axiom in Definition 7.3.1 and hence

we obtain the relation

ψnH ◦ φH(π(â)γ) ◦An(â) = An(â) ◦ ψnK ◦ φK(γ), where a−1Ha ⊆ K.

Therefore, in view of the observation at the beginning of this paragraph, (An, ψnφ) is a

π-module.

Given an OG-group π, consider the OG-twisting function κ(π) : Wπ → π, as intro-

duced in Example 2.4.2. We form the OG-Kan fibration p : An ×κ(π) Wπ → Wπ by

taking the OG-twisted cartesian product as described in Section 2.4.

The given OG-twisting function κ : ΦX → π determines a map of the OG-simplicial

sets θ(κ) : ΦX →Wπ, defined by

θ(κ)(G/H)q(x) = [κ(G/H)(x), κ(G/H)(∂0x), · · · , κ(G/H)(∂q−1
0 x)], x ∈ XH

q .

We define a differential graded algebra Aφ(X;κ) as follows.

Definition 7.3.4. Let

Anφ(X;κ) = {f : ΦX → An ×κ(π) Wπ| p ◦ f = θ(κ)}.

This set has a Λ-module structure by fibrewise addition, scalar multiplication and the

zero section. We define a differential δ
n

: Anφ(X;κ)→ An+1
φ (X;κ) by

(δ
n
f)(G/H)(x) = (δn(G/H)c, b),

where f ∈ Anφ(X;κ), x ∈ XH , f(G/H)(x) = (c, b). Then Aφ(X;κ) = {A∗φ(X;κ), δ} is a

cochain complex of Λ-modules. Furthermore, Aφ(X;κ) admits a graded algebra struc-

ture induced from the differential graded algebra A. The zero element of this algebra is

given by the trivial lift 0, defined by

0(G/H)q(x) = (0Hq , θ(κ)(G/H)q(x)),

where x ∈ XH
q and 0Hq is the zero of the abelian group A(G/H)q.

As before we use the notation [ΦX, ZnA×κ(π) Wπ]Wπ to denote the set of vertical

homotopy classes of liftings of θ(κ).

Proposition 7.3.5. With the above notations, we have

Hn(Aφ(X;κ)) = [ΦX, ZnA×κ(π) Wπ]Wπ.
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Proof. From the definition of δ, it follows that Ker(δ
n
) = (ΦX, ZnA×κ(π)Wπ)Wπ. We

now show that

Im(δ
n−1

) = {f ∈ (ΦX, ZnA×κ(π) Wπ)Wπ|f ∼v 0}.

Let F : f ∼v 0. Consider the following left lifting problem in the closed model category

OGS ↓Wπ (cf. Example 1.8.6).

ΦX An−1 ×κ(π) Wπ

ΦX ×∆[1] ZnA×κ(π) Wπ

-
(0,θ(κ)x)

?

i1

?

δ
n−1

-
F

p p p p p p p p
p p p p p p p p

p3
F̃

We identify ΦX with ΦX ×∆[0]. The canonical inclusions δ0, δ1 : ∆[0] → ∆[1] induce

natural inclusions i0, i1 : ΦX → ΦX ×∆[1] where we identify X ×∆[0] with X. Note

that i1 is a trivial cofibration and δ
n−1

is a fibration in OGS ↓ Wπ. Hence the above

left lifting problem has a solution F̃ . Then F̃ i0 ∈ An−1
φ (X;κ) such that δ

n−1
(F̃ i0) = f .

Therefore f ∈ Im(δ
n−1

).

On the other hand, suppose that f = δ
n−1

h, where f ∈ Anφ(X;κ) and h ∈
An−1
φ (X;κ). Then clearly f ∈ (ΦX, ZnA ×κ(π) Wπ)Wπ. Composing h with first

factor projection map, we get a map h′ : ΦX → An−1 of OGS. But by Lemma 7.3.3

An−1 is contractible. Let H : ΦX × ∆[1] → An−1 be a contracting homotopy for the

OG-simplicial set An−1. Then define

H̃ : ΦX ×∆[1]→ An−1
φ (X;κ)

by H̃(x, t) = (H(x, t), θ(κ)x). Clearly H̃ : h ∼v 0 in OGS ↓Wπ. Hence δ
n−1◦H̃ : f ∼v 0.

This proves the proposition for n > 0.

For n = 0, we note that H0(Aφ(X;κ)) = (ΦX, Z0A×κ(π)Wπ)Wπ and two elements

in the right hand side are homotopic if and only of they are equal.

Observe that the fourth axiom of Definition 7.3.1 implies that Z0A is an OG-

Eilenberg-MacLane complex of type (M0, 0) and hence by induction ZnA is an OG-

Eilenberg-MacLane complex of type (M0, n). To justify this, consider the fibration

An(G/H)→ Zn+1A(G/H)

with fiber ZnA(G/H), H ≤ G. As noted in Lemma 7.3.3, this is a PTCP with fi-

bre ZnA(G/H). Therefore, if ZnA(G/H) is minimal then the above fibration is a
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minimal fibre space by Lemma 1.6.6 and so Zn+1A(G/H) is a minimal complex. But

Z0A(G/H), being simplicially trivial, is minimal. Hence by induction on n, it follows

that ZnA(G/H) is minimal for all n.

Now applying the homotopy long exact sequence to the above fibration, we get the

following long exact sequence.

→ πi(Z
nA(G/H))→ πi(A

n(G/H))→ πi(Z
n+1A(G/H))→ πi−1(ZnA(G/H))→ .

In view of the third axiom of Definition 7.3.1, we see that if ZnA is an OG-Eilenberg-

MacLane complex of type (M0, n), then Zn+1A is an OG-Eilenberg-MacLane complex of

type (M0, n+ 1). But we have already observed that Z0A is an OG-Eilenberg-MacLane

complex of type (M0, 0). Therefore by induction on n, it follows that ZnA is an OG-

Eilenberg-MacLane complex of type (M0, n) and hence it is isomorphic to the canonical

model of K(M0, n) by Proposition 2.3.11.

As a result (ZnA×κ(π)Wπ, p) is isomorphic to (Lφ(M0, n), p) as objects in the slice

category OGS ↓Wπ. So we have,

Hn(Aφ(X;κ)) = [ΦX, ZnA×κ(π) Wπ]Wπ

∼= [ΦX, Lφ(M0, n)]Wπ.

It follows from Theorem 4.3.6 that

Hn(Aφ(X;κ)) ∼= Hn
G(X;φ, κ).

Thus we have proved the following theorem.

Theorem 7.3.6. Suppose A is an equivariant twisted Cartan cohomology theory. Then

for every G-simplicial set X together with an OG-group π, an OG-twisting function

κ : ΦX → π and an action φ of π on the abelian OG-group (Z0A)0 there is a natural

isomorphism of graded Λ-modules

H∗G(X;κ, φ) ∼= H∗(Aφ(X;κ)),

where Aφ(X;κ) is the differential graded algebra as defined in Definition 7.3.4.

Combining Theorem 3.4.9 with Theorem 7.3.6 we have the following result.

Theorem 7.3.7. Suppose A is an equivariant twisted Cartan cohomology theory. Given

any G-connected G-simplicial set X with a G-fixed 0-simplex and an action φ of πX on

(Z0A)0, let M be the equivariant local coefficient system of Λ-modules determined by the
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πX-module (Z0A)0 on X. Then there is a natural isomorphism of graded Λ-modules

H∗G(X;M) ∼= H∗(Aφ(X;κ)),

where Aφ(X;κ) is the differential graded algebra as defined in Definition 7.3.4.
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