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Notation:

. For a metric space X, dx will often denote the metric.
. A geodesic segment joining z and y in X will be denoted by [z, y].

. For a subset S C X and k£ > 0, Nx(S5, k) will denote the k-neighborhood of S in X.

A geodesic triangle with vertices x,y, z will be denoted by Azyz.

. H* = {(z1,...,2n) € R™ : x, > 0} is the usual hyperbolic n-space with metric

ds? = dz?+..+dx?

2
Th

. S™ denote the usual n-sphere with center at origin and radius 1.

For z,y,a € X, (z,y), will denote the Gromov inner product.

. For a proper geodesic metric space X, 0X will denote its Gromov boundary and X

will be its Gromov compactification.

. For a geodesic segment A in X, w) will denote a nearest point projection from X

onto \.

Let H denote a collection of uniformly e-separated closed subsets of X. Then

E(X,H) (or X for short) will denote the coned-off space or electric space.

Let X be a space strongly hyperbolic relative to H. For H € H, H" will denote
the hyperbolic cone constructed from H. G(X,H) (or X" for short) will denote the
hyperbolic metric space obtained from X by attaching hyperbolic cones H" to H.

For an ordered quadruple (X, H,G, L), PE(X, H,G, L) (or X, for short) will denote

the partially electrocuted space.

For a tree of spaces P: X — T, v a vertex in T and e an edge in T', X,, will denote

the vertex space and X, will denote the edge space.
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Chapter 0O
Introduction

Let P:Y — T be a tree of strongly relatively hyperbolic spaces such that Y is also
a strongly relatively hyperbolic space. Let X be a vertex space and i : X — Y
denote the inclusion. The main aim of this thesis is to extend 7 to a continuous
map ¢ : X — Y, where X and Y are the Gromov compactifications of X and Y
respectively. Such continuous extensions are called Cannon-Thurston maps. This is
a generalization of [Mit98b] which proves the existence of Cannon-Thurston maps for
X and Y hyperbolic. By generalizing a result of Mosher [Mos96], we will also prove
the existence of a Cannon-Thurston map for the inclusion of a strongly relatively
hyperbolic normal subgroup into a strongly relatively hyperbolic group. Let us first
briefly sketch the genesis of this problem.

Let H be an infinite quasi-convex subgroup of a word hyperbolic group G. We
choose a finite generating set of GG that contains a finite generating set of H. Let 'y,
[’ be their respective Cayley graphs with respect to these finite generating sets. Let
Ol'y and OI'¢ be hyperbolic boundaries of I'y and ' respectively. Then it is easy
to show that the inclusion ¢: I'y — I'¢ canonically extends to a continuous map
from 'y UJl'y to ' Udl'g. But if H is not quasi-convex, it is not clear whether
there is such an extension. It turns out that for a wide class of non-quasiconvex
subgroups such an extension is possible. The first example of this sort was given
by J.Cannon and W.Thurston in [CTO07] (1989). They showed that if G is the
fundamental group of a closed hyperbolic 3-manifold M fibering over a circle with
fiber a closed surface S and if H is the fundamental group of S, then there exists
a continuous extension for the embedding i: I'y — T'¢. In [Min94], Y.N.Minsky
generalized Cannon-Thurston’s result to bounded geometry surface Kleinian groups
without parabolics. Later on, Mitra, in [Mit98a, Mit98b] (1998), gave a different
proof of Cannon-Thurston’s original result and generalized it in the following two

directions:
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Theorem 0.0.1. (Mitra [Mit98a]) Let G be a hyperbolic group and let H be a
hyperbolic subgroup that is normal in G. Let i: 'y — D' denote the inclusion.

Then i extends to a continuous map i: g Uy — I'e UL,

Theorem 0.0.2. (Mitra [Mit98b]) Let (X,d) be a tree (T) of hyperbolic metric
spaces satisfying the quasi-isometrically embedded condition. Let v be a vertex of T'.
If X s hyperbolic then there exists a Cannon-Thurston map for i: X, — X, where

X, 18 the vertex space corresponding to v.

Let X be a compact surface of genus g(¥) > 1 with a finite non-empty collection
of boundary components {C1, ..., Cy, }. Subgroups of m1(3) corresponding to the fun-
damental groups of the boundary curves are called peripheral subgroups. Consider
a discrete and faithful action of 7 (X) on H3. The action is strictly type preserv-
ing if the maximal parabolic subgroups are precisely the peripheral subgroups of
m1(X). Let N be the quotient manifold obtained from H? under this action. Let
inj(N) denote half the length of the shortest closed geodesic in N. inj(N) is called
the injectivity radius away from cusps. B.H.Bowditch, in [Bow07], proved that if
inj(N) > 0 then there exists a Cannon-Thurston map for the induced embedding
i: Y — N. In [Mja], Mahan Mj. gave an alternate proof of Bowditch’s result and
generalized it to 3-manifolds where cores are incompressible away from cusps.

M.Gromov, in [Gro87|, defined the notion of relative hyperbolicity for a geodesic
metric space. Let G be a finitely generated group acting properly discontinuously
and cocompactly by isometries on a complete and locally compact hyperbolic space
X. Then due to the Svarc Milnor Lemma (refer to [BH99]), the Cayley graph of
G is quasi-isometric to X and hence G is a hyperbolic group. Now if we replace
the cocompact action of G on X by an action such that the quotient space is quasi-
isometric to a finite union of rays emerging from a fixed point, then we get Gromov’s
notion of a relatively hyperbolic group. Benson Farb, in [Far98], studied relative
hyperbolicity from a different perspective. He gave an alternate definition of relative
hyperbolicity.

A finitely generated group G is said to be strongly hyperbolic relative to H (in the

sense of Farb) if the following two conditions hold:

1. The ‘Coned-oft’ graph fg, obtained from the Cayley graph I' of G by coning
the left cosets, is hyperbolic.

2. Two quasigeodesics in fg joining the same pair of points satisfy a property
called ‘Bounded Coset Penetration’. Roughly, it means that

e if one quasigeodesic penetrates a left coset and the other does not then the



distance between the entry and exit points of the quasigeodesic penetrating
the left coset is bounded, and
e if two quasigeodesics penetrate the same left coset then the distance between

the entry points is bounded; similarly for the exit points.

If the group G satisfies only the first condition then G is said to be weakly hyperbolic
relative to H. Similarly for a geodesic metric space X and a collection of uniformly
separated subsets H of X, we have the Farb’s notion of a strongly relatively hyper-
bolic space (X, H) (a brief definition is given before the end of this section). As in
this thesis we deal mostly with strongly relatively hyperbolic spaces, relative hyper-
bolicity will mean strong relative hyperbolicity.

In [Bow97], Bowditch proved the equivalence of the two notions of relative hyperbol-
icity. He also introduced the notion of a relative hyperbolic boundary for relatively
hyperbolic metric spaces. If S is a punctured torus then its fundamental group
m(S) = F(a,b) (free group with two generators) is hyperbolic relative to the cusp
subgroup H =< aba~'b=! >. In fact, 7,(S) acts discretely on the upper half plane
H? and stabilizes a point on the boundary with stabilizer subgroup H. The relative
hyperbolic boundary for the Cayley graph of S is the Gromov boundary OH? of H?2.

In [BF92], a combination theorem for trees of hyperbolic metric spaces was
proved by Bestvina and Feighn. It states that a tree of hyperbolic metric spaces is
hyperbolic if it satisfy the ‘quasi-isometrically embedded’ condition and the ‘Hall-
ways flare’ conditions. Based on their work a combination theorem for trees of
(strongly) relatively hyperbolic spaces was proved by Mahan Mj. and Lawrence
Reeves in [MRO8]. While proving this theorem they have extended Farb’s notion
of strong relative hyperbolicity and construction of an electric space to that of a
‘partially electrocuted space’. In a partially electrocuted space, instead of coning
all of a horosphere down to a point we cone it down to a hyperbolic metric space.
It is natural to ask for the existence of a Cannon-Thurston map for the inclusion
of a relatively hyperbolic space as a vertex space into a tree of relatively hyperbolic
spaces.

In this thesis, we prove the existence of a Cannon-Thurston map for the em-
bedding of a vertex space into a tree of relatively hyperbolic spaces. This is a

generalization of Theorem 0.0.2.

Theorem 0.0.3. /[MP/[Refer to Theorem 3.2.9] Let X be a proper geodesic space and
P: X — T be a tree of relatively hyperbolic spaces satisfying the quasi-isometrically
embedded condition. Further suppose that the inclusion of edge-spaces into vertex

spaces s strictly type-preserving, and the induced tree of coned-off spaces continue
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to satisfy the quasi-isometrically embedded condition. If X 1is strongly hyperbolic
relative to the family C of maximal cone-subtrees of horosphere-like sets, then a
Cannon-Thurston map exists for the proper embedding i,,: X,, — X, where vy is a
vertex of T and (X, d,,) is the relatively hyperbolic metric space corresponding to

Vo-

Sketch of Proof: For a relatively hyperbolic space (Y, Hy), Y will denote the
coned-off space and Y" will denote the hyperbolic space obtained from Y by gluing
‘hyperbolic cones’ ( brief definitions are given before the end of this section).

A Cannon-Thurston map for i,, exists (see Lemma 3.1.4) if the following holds:

If the underlying relative geodesic A (in X,,) of an electric geodesic segment A in
)?UO lies outside a large ball in (X,,, dx,,) modulo horospheres then, for an electric
segment [ joining end points of A in X, the underlying geodesic segment 3 lies
outside a large ball in X modulo horospheres.
Let T7C(X) be the tree of coned-off spaces obtained from the tree of relatively hy-
perbolic spaces, X, by coning horospheres in each vertex and edge space to a point.
As in [Mit98b], the key step for proving the existence of a Cannon-Thurston map
is to construct a hyperbolic ladder Z5 in 7C(X) and a large-scale Lipschitz retrac-
tion TI; from 7C(X) onto Z5. This proves the quasiconvexity of Z5. Further, we
shall show that if the underlying relative geodesic A\ of ) lies outside a large ball
in (Xy,dx,,) modulo horospheres then Zj lies outside a large ball in X modulo
horospheres. Quasiconvexity of Z5 ensures that geodesics joining points on =j lie
close to it modulo horospheres.

We consider here electric geodesics in the coned-off vertex and edge-spaces )/(\U
and )/(\e In [Mit98b], it was assumed that each X,,, X, are d-hyperbolic metric spaces
and took A\ = 5\, hence it was necessary to find points in some C-neighborhood of A to
construct =y. Since there is only the usual (Gromov)-hyperbolic metric in [Mit98b],
this creates no confusion. But, in the present situation, we have two metrics dx,
and dg on X,. As electrically close (in the dg metric) does not imply close (in the
dx, metric), we cannot take a C-neighborhood in the dg metric. Instead we will
first construct an electroambient representative A of A in the space X" and take a
hyperbolic neighborhood of \ in X".

Now choose a geodesic segment with length maximal in the electric metric such that
its end points lie in the intersection of a bounded neighborhood of A and an edge
space, and then ‘flow’ the end points to the adjacent vertex space. Join the resulting
end points by geodesic segments in the corresponding vertex spaces. Repeating this
process, we obtain a ‘ladder’ Z5. Finally we construct vertical quasigeodesic rays in
=5 to show that if S\\UHMGHU H,, lies outside a large ball in X, then (Z5\U¢, c¢ Ca)



lies outside a large ball in X. The existence of a Cannon-Thurston map follows.
Our next objective is to generalize Theorem 0.0.1 for relatively hyperbolic groups.

Let K be a hyperbolic normal subgroup of a hyperbolic group G with quotient Q.

The following Theorem, due to L.Mosher [Mos96], proves that @ is hyperbolic.

Theorem 0.0.4. (Mosher [Mos96]) Let us consider the short exact sequence of
finitely generated groups

1-K—-G—-Q —1.

such that K is non-elementary word hyperbolic. If G is hyperbolic, then there exists

a quasi-isometric section s: (Q — G. Hence ) is hyperbolic.
We will generalize Theorem 0.0.4 to the following :

Theorem 0.0.5. [Pal/[Theorem 2.1.6] Suppose we have a short exact sequence of
finitely generated groups
1-K—-G5Q—1,

with K hyperbolic relative to a non-trivial proper subgroup Ky and G preserves cusp
i.e. for all g € G there exists k € K such that gK,g~' = kK k™'. Then there exists

a (R, €)-quasi-isometric section s: (Q — G for some constants R > 1 and € > 0.

Sketch of Proof: Let II be the set of all parabolic end points and II? denote the
set of all distinct pair of parabolic end points. Let a = (g, ap) € 12, then stabilizer
subgroups of «;’s are aiKlai_l for some a; € K, where ¢« = 1, 2. Due to the bounded
coset penetration property, for any two relative geodesics joining left cosets a; K,
and as K1, the diameter of the set of exit points of these relative geodesics from a; K,
is uniformly bounded. Let C' be the set of all (ay,as) € IT? for which the identity
element of K belongs to the set of exit points of relative geodesics from the left coset
a1K; to apK;. For g € G, the automorphism [, defined as I,(k) = gkg™', acts on
the relative hyperbolic boundary of K and hence acts also on II2. Fix an element
n € I1?, let ¥ be the set of all g € G for which € I,(C). Then we show that there
exist constants R > 1 and € > 0 such that for all g,¢' € &

1

R

Following the scheme of the proof of 0.0.3, we will generalize Theorem 0.0.1 to

do(p(9),p(g") — € < dalg,g') < Rdo(p(g),p(g)) + e

the following:

Theorem 0.0.6. [Pal/[Theorem 3.53.5] Consider a short exact sequence of finitely

generated groups
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- K—-G5%Q—1

with K hyperbolic relative to a proper non-trivial subgroup K. Suppose that
1. G preserves cusp,
2. G is (strongly) hyperbolic relative to Ng(K7) and,
3. G is weakly hyperbolic relative to the subgroup K.

Then there exists a Cannon-Thurston map for the embedding v: I'xy — ', where

'k and T are Cayley graphs of K and G respectively.

In chapter 1, we survey some basic facts about relatively hyperbolic spaces. Here
we give two definitions of a relatively hyperbolic space. For a geodesic space X and a
collection of uniformly separated subsets H of X, we will construct a space G(X, H)
(or X" for short) from X by attaching ‘hyperbolic cones H" (analog of horoballs)
to each H € 'H. Elements of ‘H will be referred to as horosphere-like sets. X is said
to be hyperbolic relative to H in the sense of Gromov if G(X,H) is a hyperbolic
metric space. Let (X, H) (or X for short) be the ‘Coned-off’ space obtained from
X by coning each H € 'H to a single point, then X is said to be hyperbolic relative
to ‘H in the sense of Farb if

1. £&(X,H) is hyperbolic.

2. Quasi-geodesics in (X, H) joining same pair of points satisfy ‘bounded horo-
sphere penetration’ properties. It means that
e if one quasigeodesic penetrates a horosphere-like set H € H and the other
does not then the distance between the entry and exit points of the quasi-
geodesic penetrating H is bounded, and
e if two quasigeodesics penetrate the same horosphere-like set then the distance

between the entry points is bounded; similarly for the exit points.

In Chapter 1, we shall prove that these two definitions are equivalent. Partial
electrocution and trees of relatively hyperbolic spaces are also introduced in this
chapter. In chapter 2, Theorem 0.0.5 is proven. In chapter 3, we first give a criterion
for the existence of a Cannon-Thurston map and then by constructing ‘Hyperbolic
Ladders’, ‘Retraction Maps’ and ‘Vertical Quasigeodesic Rays’ in trees of relatively
hyperbolic spaces, we proceed to prove Theorem 0.0.3. For a short exact sequence
of relatively hyperbolic groups, we make similar constructions and prove Theorem

0.0.6. Finally, in chapter 4, we give some examples and applications.



Chapter 1

Relative Hyperbolicity

1.1 Hyperbolicity and Nearest Point Projections

Definition 1.1.1. Let (X,d) be a metric space and z,y € X. A geodesic path
joining x and y is an isometric map vy : [0,d(z,y)] — X such that v(0) = x and
v(d(z,y)) = y. X is said to be a geodesic metric space if for all z,y € X there
exists a geodesic path joining x and y. A geodesic ray is a map v: [0,00) — X
such that d(v(t),y(t')) = [t = t'| for all t,t' € [0, 00).

Definition 1.1.2. Let (X, d) be a metric space.

e Geodesic Triangle: A geodesic triangle in X consists of three points x,y, z €
X (vertices) and three geodesic segments [x,yl, [y, 2], [z, x| (sides) joining them.

A geodesic triangle with vertices x,y, z will be denoted as Axyz.

e Slim Triangles:/Aea91] Let 6 > 0. Given x,y,z € X, we say that a geodesic
triangle Axyz is 6-slim if any side of the triangle Axyz is contained in the
0- neighborhood of the union of the other two sides.

e Thin Triangles:([Aea91])Let § > 0. Given a geodesic triangle Axyz, let
ANx'y'z be a Fuclidean comparison triangle with sides of the same lengths
(i.e. dp(2,y) = d(z,y),dp(y,2) = d(y, z),dg(z',2") = d(z,x)). There is

a natural identification map f : Axyz — Aa'y'z’. The maximum inscribed

circle in A'z'y'z' meets the side [x'y'] (respectively [x'2'],[y'2']) in a point c,

(respectively c,, ¢, ) such that
d(2',cy) =d(@,c.),d(y, c;) = d(y, c.),d(Z, cp) = d(2, ¢,).

There is a unique isometry ta of the triangle A'x'y'z" onto a tripod T, a tree

with one vertex w of degree 3, and vertices x”,y", 2" each of degree one such

7
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that d(w, 2") = d(z,¢,) = d(z,¢;) etc. Let fa =tao f. We say that Axyz is
o-thin if for all p,q € A, fa(p) = falq) implies d(p,q) <.

Proposition 1.1.3. (Proposition 2.1, [Aea91]) Let X be a geodesic metric space.
The following are equivalent:
1. There exists 69 > 0 such that every geodesic triangle in X 1is dg-slim.

2. There exists 6 > 0 such that every geodesic triangle in X is d1-thin.

Definition 1.1.4. A geodesic metric space is said to be 6-hyperbolic if it satisfies
one of the equivalent conditions of Proposition 1.1.3 for that 6. A geodesic metric

space s said to be hyperbolic if it is d-hyperbolic for some § > 0.
Example 1.1.5. 1. Trees are 0-hyperbolic metric spaces.

2. It is a standard fact that H" = {(xy,...,2,) € R" : x,, > 0} with metric

ds® = W is log 3-hyperbolic.

Definition 1.1.6. Gromov Inner Product: Let (X,d) be a metric space. Choose

a base point a € X. The Gromov inner product on X with respect to a is defined by

(.)a = 3 (d(x,a) + d(y, 0) — d(z,y).

Definition 1.1.7. Let § > 0. A metric space X is said to be (§)-hyperbolic if

(xa y)a > min{(x, Z)aa (y7 Z)a} -0
foralla,x,y,z € X.

Proposition 1.1.8. [BH99] Let X be a geodesic space. X is hyperbolic in the sense
of 1.1.4 if and only if there is a constant 6 > 0 such that X is (§)-hyperbolic in the
sense of 1.1.7.

The following Proposition allows us to replace length spaces by metric graphs.

Proposition 1.1.9. (Proposition 8.45, Chapter 1.8, [BH99]) There exist universal
constants S > 1 and € > 0 such that there is a (S, €)-quasi-isometry from any length

space to a metric graph all of whose edges have length one.

Let (X,d) be a geodesic metric space, we will say that two geodesic rays ¢; :
[0,00) — X and ¢3 : [0,00) — X are equivalent and write ¢; ~ ¢y if thereisa K > 0
such that for any ¢ € [0,00), d(ci(t),c2(t)) < K. It is easy to check that ~ is an
equivalence relation on the set of geodesic rays. The equivalence class of a ray ¢ will
be denoted by [c].



9 1.1 Hyperbolicity and Nearest Point Projections

Definition 1.1.10. (/Gro87],[BH99]) Geodesic boundary: Let (X,d) be a §-
hyperbolic metric space. We define the geodesic boundary of X as

0X :={[d]| ¢:]0,00] = X is a geodesic ray }.

A metric space (X, d) is said to be proper if all closed metric balls of finite radius

in X are compact.

Lemma 1.1.11. (Visibility of 0X )(Lemma 3.2, Chapter III.H, [BH99]) Let X be a
proper, 0-hyperbolic geodesic space, then for each pair of distnct points &1,& € 0X,

there exists a geodesic ¢ : R — X such that ¢(o0) = & and ¢(—o00) = &;.

Notation: A generalized ray is a geodesic ¢ : [ — X, where either I = [0, R] for
some R > 0 or else I = [0,00). In case I = [0, R], we define ¢(t) = ¢(R),t € [R, ).
Thus X := X UJX is the set {c¢(00) | ¢ a generalized ray}.

Definition 1.1.12. (The Topology on X = X UOX )(Definition 3.5, Chapter III.H,
[BH99]) Let X be a proper geodesic space that is d-hyperbolic. Fix a base point
p € X. We define convergence in X by: x, — x as n — oo if and only if there
exist generalized rays ¢, with ¢,(0) = p and c,(c0) = x, such that every subsequence
of (c,) contains a subsequence that converges (uniformly on compact subsets) to a
generalized ray ¢ with c(o0o) = x. This defines a topology on X : the closed subsets
B C X are those which satisfy the condition [x, € B, for alln > 0 and x, — x] =
r € B.

Proposition 1.1.13. (Proposition 3.7, Chapter III.H, [BH99]) Let X be a geodesic
space that is §-hyperbolic.

(1). The topology on X = X UOX described in 1.1.12 is independent of the choice
of the base point,

(2). The inclusion X — X is a homeomorphism onto its image and 0X C X is
closed,

(3). X is compact.

X will be said to be the Gromov compactification of X.

Let X be a d-hyperbolic metric space and p € X be a base point. We say that
a sequence (x,),>1 of points in X converges to infinity if lim; ;.. (2;,2;), = 0.
Note that this definition does not depend on the choice of base point. We shall say
that two sequences (z,) and (y,) converging to infinity are said to be equivalent
and write (z,) ~ (y,) if lim; (2, ), = 00. It is easy to check that ~ is an
equivalence relation on the set of sequences converging to infinity and that the
definition of equivalence does not depend on the choice of a base point p € X. The

equivalence class of a sequence (z,,) converging to infinity will be denoted by [(x,)].
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Definition 1.1.14. ([Gro87],[BH99],[Aea91]) Sequential boundary: Let (X,d)
be a d-hyperbolic metric space. We define the sequential boundary of X as

0s X == {[(z,)] | (zn) is a sequence converging to infinity in X }.

Lemma 1.1.15. (Lemma 3.13, Chapter III.H, [BH99]) If X is a proper geodesic
space that is d-hyperbolic, then there is a natural bijection 0sX — 0X.

Example 1.1.16. 1. Boundary OH" of H" is homeomorphic to S™.

2. The boundary of a locally finite regular tree with valence of each vertex at least

3 is homeomorphic to a Cantor set.

Definition 1.1.17. Let k > 0. A subset S of a geodesic space X is said to be
k-quasiconvex if any geodesic joining x,y € S lies in a k-neighborhood of S. A

subset S is quasiconvex if it s k-quasiconvex for some k.
Definition 1.1.18. Let K > 1 ande >0 . A map f : (Y,dy) — (Z,dz) is said to
be a (K, €)-quasi-isometric embedding if

iy (y1,02) — € < dp(F ). F(12) < K (y1,00) + e

for all y1,yo € Y. If f is a (K, €)-quasi-isometric embedding and every point of Z
lies in a uniformly bounded distance from f(Y'), then f is said to be a (K, €)-quasi-
isometry.

A map f:Y — Z is said to be a quasi-isometry if it is a (K, €)-quasi-isometry
for some K > 1 and € > 0.

Proposition 1.1.19. If ¢ : Y — Z is a quasi-isometry then there is a quasi-
isometry ¥ Z — Y such that, for ally € Y,z € Z, dy (¥(¢(y)),y) < Ki11.19 and
dz(p((2)), z) < Ki1.19 for some number K119 > 0 depending only on constants
of quasi-isometries.

We refer to such a map ¢ as a quasi-isometric inverse of ¢. Quasi-isometric
inverse of ¢ will be denoted by ¢~ 1.

Definition 1.1.20. A map f : X — Y between metric spaces is said to be proper,
if for all M > 0 there exists N(M) > 0 such that dy(f(z), f(y)) < M implies
dx(xz,y) < N.

Lemma 1.1.21. Let ) > 0 and supposet : X — Y is a proper and length preserving
map between two length spaces X, Y such that i(X) is Q-quasiconvex in'Y, then there
exists K11901(Q) > 1,€1121(Q) > 0 such that i is an (K121, €1.1.21)-quasi-isometric

embedding.
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Proof. Let x,y € X. Asiis length preserving, for any path ain X, Ix(a) = Iy (i(a)).
Therefore, dy (i(z),i(y)) < dx(z,y). Now, as Y is a length space, for k > 0 there
exists a path « : [0,1] — Y such that Iy () < dy(i(z),i(y)) + k.

Let 0 =ty < t; < ... <t, = 1 be a partition of [0, 1] such that Iy (a|y,_, ;) = 1
for 1 <j <n—1andly(aly,_,t,) < 1. For each j, there exists p; € X such that
dy (a(t;),i(p;)) < Q with po = 2 and p,, = y. Thus, dy(i(p;), i(pj+1)) < 2Q + 1 for
all 0 < 7 <mn —1. Since the map ¢ is proper, therefore there exists R > 0 such that
dx(pj,pj+1) < R. Hence, by triangle inequality, we have

dx(z,y) < nR < Rly(a) + R < R(dy(i(2),i(y)) + £) + R.

Taking x — 0, we have dx(z,y) < Rdy(i(z),i(y)) + R. Taking K111 = €11.21 = R,

we have the required result. O

Definition 1.1.22. Let K > 1 and ¢ > 0. A (K, €)-quasigeodesic in a metric
space X is a (K, €)-quasi-isometric embedding v : J — X, where J is an interval
(bounded or unbounded) of the real line R. A (K, K)-quasigeodesic in X will be

called as K-quastigeodesic.

Proposition 1.1.23. (Taming Quasigeodesics, Lemma 1.11, Chapter III.H, [BH99])
Let X be a geodesic space. Given any (K, €)-quasigeodesic ¢ : [a,b] — X, there ex-

ists a continuous (K123, €] 1 93)-quasigeodesic ¢’ : [a,b] — X such that the following
holds:

(i) ¢(a) = c(a), ¢(b) = c(b);

(it) €193 = 2(K +€), K123 = K;

(i) U |it.1) < K 1.03d(c' (1), (1) + k7 1 o for some constants ki o3 > 1,k7 93 >0
depending only on K, €;

(iv) the Hausdorff distance between the images of ¢ and ¢ is less than K + €.

Definition 1.1.24. Let X be a geodesic space and K > 1 and ¢ > 0. A path
a : [0,1] — X is said to be (K, €)-tamed if l(o|p)) < Kd(a(t),a(t))) + € for all
t,t" €]0,1].

Several authors take definition of a quasigeodesic to be arc length reparametriza-
tion of a tamed path. However, for both quasigeodesics and tamed paths, the fol-

lowing stability property holds:

Proposition 1.1.25. (Stability of quasigeodesics (Theorem 1.7, Chapter I1I.H,
[BH99]), Stability of tamed path (Proposition 3.3, [Aea91])): Suppose X is a o-
hyperbolic metric space and x,y € X. If o is a (K, €)-quasigeodesic or a (K, €)-tamed
path between the points x,y then there exists L1195 = L1.1.95(0, K, €) > 0 such that
if v is any geodesic joining x and y, then v C Nx(a, L11.25) and o C Nx (v, L1.1.25)-
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For a metric space Z, note that if « is a (K, €)-quasigeodesic then « followed
by a geodesic of length at most k is a (K, € + k)-quasigeodesic. Thus we have the

following corollary:

Corollary 1.1.26. Given 6,k,e > 0, K > 1 there exists L1126 > 0 such that the
following holds:

Suppose (X, d) is a 6-hyperbolic metric space and x,y, z,w € X such that d(z,z) < k
and d(y,w) < k. Ifais a (K, €)-quasigeodesic joining x,y andy be a geodesic joining
z,w then v C Nx(a, L11.06) and oo C Nx (7, L1.1.26)-

Definition 1.1.27. Let k > 0. A path « : [0,1] — X is said to be a stable k-
quasiconvex path if for all t,t' € [0,1], the Hausdorff distance between oy and

any geodesic joining a(t) and a(t') is at most k.

All quasigeodesics and tamed paths in a hyperbolic metric space are stable qua-

siconvex paths.

Definition 1.1.28. Suppose (X, d) is a metric space and S is a subset of X. A map
mg from X onto S is said to be a mearest point projection if for each v € X,
d(z,ms(z)) < d(z,y) forally € S.

Suppose (X, d) is a 0-hyperbolic metric space and A be a geodesic in X. Note that
for x € X if there exist two points a,b € A such that d(x,a) < d(z,y) and d(z,b) <
d(xz,y) for all y € X then for the geodesic triangle Azab, due to d-hyperbolicity
of X, there exist wy € [z,a],wy € [a,b],ws € [x,b] such that diameter of the set
{wy, we, w3} is at most 6. Now d(wy, a) < d(wy,ws) < 6 and d(ws, b) < d(ws, wy) <
§. Therefore d(a,b) < d(a,w;) + d(wy,ws3) + d(ws, b) < 35. Thus if 7}, 75 are two
nearest point projections from X onto A, then d(}(z), 73(x)) < 36 for all z € X.
Similarly, for a quasiconvex set S C X, nearest point projections mg are defined up

to a bounded amount of discrepancy.

Lemma 1.1.29. Let X be a geodesic metric space and X : [a,b] — X be a geodesic.

Let x € X and s € [a,b] such that my\(x) = A(s), then arc length parametrization of
paths [z, \(s)] U [A(s), A(a)], [z, A(s)] U [A(s), A(D)] are (3,0)-quasigeodesics.

Proof. Let o : [0,a] — X be the arc length parametrization of [z, A(s)] U[A(s), A(b)]
such that «(0) = z,a(a) = A(b). Let ty € [0,a] be such that a(tg) = A(s). Now
for 0 <t <t <a,if ty ¢ [t,t'] then oy is a geodesic. Now we assume ¢, € [t, 1],
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consider the triangle Aa(t)a(to)a(t’). Then

[t —t] = |t' —to] + [to —t]
= d(a(t), alt)) + d(a(t), a(t))
< d(a(t),a(t)) + d(a(t), a(te)) + d(alt), a(t))
= d(a(t), a(t)) + 2d(a(t), ma(2))
< d(a(t),a(t)) + 3d(a(t), a(t)) = 3d(a(t'), a(t)).

Obviously, d(a(t'), a(t)) < Ix(apw) = [t' — t|. Hence
1
lt =t < d(a(t),a(t) < |t =t <3t =1,

Similarly, [z, A(s)] U [A(s), A(a)] is a (3, 0)-quasigeodesic.
U

The following lemma is an easy consequence of d-hyperbolicity. For the sake of

completion we include the proof here.

Lemma 1.1.30. Given § > 0, there exist Dq1.30,C1.1.30 > 0 such that the following
holds:

1. (Lemma 8.1 of [Mit98b]) If x,y are points of a §-hyperbolic metric space (X,d),
A s a hyperbolic geodesic in X joining x,y, and my is a nearest point projection of
X onto X with d(m\(x),m\(y)) > Di1.30, then [x,m\(z)] U [ma(x), mA(y)] U [mA(y), y]
lies in a Cy1.30—mneighborhood of any geodesic joining x,y.

2. Let a: [0,a] — X be the arc length parametrization of [x, m\(x)|U[m\(x), mA(y)] U
[ma(y),y] then

(i) a is a (K| 50, €1 1 30)-tamed path for some K | 59, €l 1 59 depending only upon 6,
(ii) o is a (K% 59, € 1 30)-quasigeodesic for some K3 59, €1, 39 depending only upon

J.

Proof. 1. Let Dj130 = 65. Let a = my(x) and b = m,(y). Since X is d-hyperbolic,
triangles are d-thin, therefore there exist wy € [z, a],wy € [a,b] and w3 € [x,b] such

that the diameter of the set {w;, wy, w3} is bounded above by §. Now
d(a,wy) < d(a,wr) + d(wy, ws) < 2d(wy, ws) < 20.

Since Azby is 6-thin, Axby is d-slim. Thus there exists wy € [z, y] U [y, b] such that
d(ws,wy) < 9 and hence d(wg, wy) < 2§. If wy € [y, b], then

d(a,b) < d(a,wy) + d(ws, wy) + d(wy, b) < 25 + 26 + d(wy, we) < 60.
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This contradicts d(a,b) > Dj130 = 60. Therefore wy € [z,y] and d(a,ws) < 46.
Similarly for b, there exists ws € [z, y] such that d(b, ws) < 40. Now as the triangle
Azawy (resp. Aybws) is 0-slim, for each p € [x,a] (resp. p € [y,b]) there exists
q € [r,wy] (resp. q € [y, ws]) such that d(p,q) < § + 49 = 55. Now consider the
quadrilateral aw,wsb, then for p € [a,b], due to §-slimness of triangles Aaw,ws; and
Aawsb, there exists ¢ € [wy, ws] such that d(p, q) < max{20, + 40} = 56. Taking
C1.1.30 = 50, we have the required result.

2(i). Let 0 < s <t < aand so, ty € [0, a] such that a(sg) = mx(x) and a(ty) = mr(y).
If {s0,t0} N [s,t] is an empty set, then afyy is a geodesic.

If {so,t0} N [s,t] is a singleton set, then by Lemma 1.1.29, there exists Kj 129 >
1, €1.1.29 > 0 such that aj,y is a (K.1.29, €1.1.29)-tamed path.

Now let s, ty € [s,], then by (1), as 4 lies in a C4 1.30— neighborhood of any geodesic
[a(s), a(t)] joining «a(s) and «(t). Thus for sg,to, there exist rg, 1y, € [a(s), a(t)]
such that d(a(so),rs,) < Ci1.30 and d(a(ty),rs,) < Ci1.30. Therefore

Hags) = W) + U g to]) + Ute,0)
d(a(s), a(so)) + d(a(so), alto)) + d(a(to), a(t))

< d(afs),7sy) + Craso + d(rsy, 14y) + 2C11.30 + d(74y, (L)) + Ci1.50
S 3d<0[(8), Oé(t)) + 401.1_30.
Taking K11_1.30 = max{3, Kl_l.gg} and 6%.1_30 = max{el_l,gg, 401_1.30}, we have

o) < Kiygod(a(s), alt)) + €115

2(ii). Since « is the arc length parametrization of concatenation of three geodesics,
therefore (a5 4) = |s — t|. Hence by the above inequality, |s — ¢| < 3d(a(s), a(t)) +
4C1.130. Hence §|s —t] — 3C1130 < d(a(s), a(t)). Also, d(a(s), a(t)) < lagy) =

|s — t|. Taking K759 = 3,6 130 = 3C1.1.30, we have the required result. O

The following lemma states that in a hyperbolic metric space if the distance be-
tween the nearest point projection of two points onto a quasiconvex set is sufficiently
large then the geodesic segment joining two points come close to the quasiconvex

set.

Lemma 1.1.31. Given §,Q) > 0 there exist constants D} 51,C 15, > 0 such that
the following holds: Let X be a d-hyperbolic metric space and S be a QQ-quasiconvex
subset of X. For points x,y € X, if d(ns(z),ns(y)) > Dj .3 then there exist
p € [x,y], ¢ € S such that d(p,q) < C}4,. Further, if a : [0,a] — X is an arc
length parametrization of [z, 7s(x)] U [rs(z), ms(y)] U [7s(y),y] then a is a K| 4 -
tamed path and also a K3, 5 -quasigeodesic for some constants Ki, 4, K?,4 > 1

depending only on 9, Q.
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Proof. Let Dj130,C1130 > 0 be constants as in Lemma 1.1.30. Let D},5 =
Dy130 —2(30 + Q) and A be a geodesic segment joining mg(x) and mg(y).

First we prove that d(ms(z), m\(x)) is bounded :

Consider the triangle Axmg(z)my(x). Since triangles are d-thin, there exist w; €
[z, m5(2)],wy € [ms(x), mr(x)], w3 € [mr(x),x] such that diam{w;,wq, w3} < 0. As
S is Q-quasiconvex, there exists w) such that d(wq,w)) < Q. Thus, as 7g is a
nearest point projection, d(wy,ms(z)) < d + Q. Also d(ws,m\(z)) < 6. Therefore
d(rg(z), mx(z)) <6+ Q + d(wy,ws) +6 <30+ Q.

Now if d(ms(z), ms(y)) > D] 41, then d(ma(z), mA(y)) > Di.1.30. By Lemma 1.1.30,
for any r € [my\(z), mA(y)], we have d(r, [z,y]) < Cy1.30. Therefore there exists ¢ € S
such that d(r,q) < @ and hence Bgic,,4(q) intersects [x,y]. Thus there exists
p € [z,y] such that d(p,q) < Q + Cy1.30. Taking C, 4 = Q + C1.1.30, we have the
required result.

The proof of a to be a tamed path or a quasigeodesic is similar to the proof of (2)
in Lemma 1.1.30. U

The next Lemma states that a nearest point projection from a d-hyperbolic

metric space to a geodesic segment does not increase the distance much.

Lemma 1.1.32. (Lemma 2.2, [Mit98b] ) Let (Y,d) be a §-hyperbolic metric space
and X be a geodesic segment in Y. There exists Py 132 > 0 (depending only on J)
such that d(my\(z), m\(y)) < Prised(z,y) + Piise forallz,y €Y.

Proof. 1t suffices to prove that if d(z,y) < 1 then there exists Pj 132 > 0 such that
d(my(z), mA(y)) < Pri.32. Let Dq130 be the constant as in Lemma 1.1.30.

Let d(mx(z), mx(y)) > Di.1.30, then using Lemma 1.1.30, there exist K| ;30 > 1,€] ;39
such that 8 = [z, my(2)] U [ma(z), Ta(y)] U [ma(y), y] is a (K] 39, €] | 30)-tamed path.
Therefore

d(ma(x), ma(y)) < UB) < Ki130d(w,y) + €1130 < Ki130 + €11.30-
Let Pj 132 = maz{Dy130, Ki 30+ €1 130} then we have the required result. O

Corollary 1.1.33. Let (Y,d) be a d-hyperbolic metric space and S be a Q-
quasiconvex set. There exists P|,45 > 0 (depending on § and Q) such that
d(ms(x),7s(y)) < Pl153d(@,y) + P35 for allz,y €Y.

Proof. 1t suffices to prove that if d(x,y) < 1 then there exists Pj ;33 > 0 such that
d(ms(z), ms(y)) < P|,43. Let A be a geodesic joining mg(z) and mg(y). Then by
Lemma 1.1.32, d(my\(z),7x(y)) < Pj1.32. From the proof of Lemma 1.1.31, we have
d(ms(z), mr(z)) < 304+ Q and d(7s(y), ma(y)) < 30+ Q. Therefore d(ms(x), ms(y)) <
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(35 + Q) + P1.1_32 + (35 + Q) == 65 + 2@ + P1_1.32. Takmg Pll_l.33 = 65 + 2@ + P1_1.32,

we have the required result. O

Lemma 1.1.34. Let X be a §-hyperbolic metric space and S be a Q-quasiconvex set.
Suppose ws : X — S is a nearest point projection. Let p,q € S and X : [a,b] — X
be a (K, e€)-quasigeodesic in X joining p,q, then a = mwg(\) is a (Ki.1.34,€1.1.34)

quasigeodesic, where K1 134, €1.1.34 depends only upon Ko, €, Q.

Proof. For t,t' € |a,b], from corollary 1.1.33, there exists P = P33 > 0 such that
d(a(t),a(t)) < PdA(t),\t")+ P < KP|t—t'|+eP+ P. Let v be a geodesic in X
joining A(a) and A(b). Then by Proposition 1.1.25, there exists L = Lj 195 > 0 such
that the Hausdorff distance between A\ and ~ is at most L. Thus, for ¢, ¢ € [a,b],
there exist x € v and y € v respectively such that d(A(t),z) < L and d(A(t'),y) < L.
Also d(z,ms(z)) < Q and d(y,7s(y)) < Q. Therefore d(\(t), 7s(z)) < L + @ and
d(A(t'),ms(y)) < L+ Q. Since 7g is a nearest point projection and a = wg(\), we
have d(A(t),a(t)) < L+ Q and d(A(t'),a(t')) < L + Q. Therefore d(A(t), A(t))
d(a(t),a(t)) + 2(L + Q). Since X is a quasigeodesic, we have [t — /| — ¢
d(A(t),A\(t')) and hence %[t — /| — e — 2(L + Q) < d(a(t),a(t')). Let K113 =
max{K P, K} and €134 = max{eP + P,e+ 2(L 4+ @)}, then a is a (K134, €1.1.34)-

quasigeodesic in X.

IA A

O

Lemma 1.1.35. Suppose X is a d-hyperbolic metric space and p € X. Let i be a
stable L-quasiconvex path and X\ be a geodesic in X joining end points of p. Then
d(ma(p), mu(p)) < L1135, for some constant Ly 135 > 0 depending only upon 6, L. In

particular, this is also true for any quasigeodesic or a tamed path.

Proof. From definition of a quasiconvex path, there exists a € p and b € X such that
d(ma(p),a) < L and d(m,(p),b) < L. Now consider the geodesic triangle Apam,(p),
there exists w € [p, 7,(p)] and w’ € [a, m,(p)], with d(w, 7,(p)) = d(v’, 7,(p)), such
that d(w,w’) < 0. For w’, there exists w” € u such that d(w’,w"”) < L. Therefore
d(w, ) < 9§+ L and hence

<p7 a)m(p) = d(w, 7Tu<p)) <o+ L.

Thus
(2, TAP))rup) < Dy @)z, (p) + d(ma(p), @) < 0+ 2L.

Similarly, (p, 7,(P))ry) < 0 + L.
Therefore

d(ma(p), 7T“<p)) = (p, 7T)\(p))m(p) + (P 7Tu(p))m(p) <20+ 3L.

Taking Lq.1.35 = 20 + 3L, we have the required result. O
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The following Lemma (due to Mitra [Mit98b]) says that nearest point projections

and quasi-isometries in hyperbolic metric spaces ‘almost commute’.

Lemma 1.1.36. (Lemma 2.5, [Mit98b]) Suppose (Y1,d1) and (Ya,ds) are §-
hyperbolic metric spaces. Let p; be a geodesic in Yy joining a,b and let p € Y.
Let ¢ be a (K, e€)-quasi-isometry from Yy to Ys. Let uy be a geodesic in Y join-
ing ¢p(a) to ¢(b). Then dy,(m,,(d(p)), ¢(mu, (p))) < Piise for some constant P .36
dependent only on K, e and §.

Due to Lemmas 1.1.35 and 1.1.36, we have the following corollary:

Corollary 1.1.37. Suppose (Y1, dy) and (Ya, ds) are §-hyperbolic metric spaces. Let
1 be a stable L-quasiconvex path in Yy joining a,b and let p € Y. Let ¢ be a
(K, €)-quasi-isometry from Yy to Y. Let s be a stable L-quasiconvex path in Yo

joining ¢(a) to ¢(b). Then dy,(m,,(4(p)), ¢(7u (p))) < Piisr for some constant
Py 137 dependent only on K,e, L and .

1.2 Electric Geometry

Let (X,d) be a path metric space. For v > 0, let H be a collection of closed and
path connected subsets { H,}aca of X such that each H, is a intrinsically geodesic
space with the induced path metric, denoted by dp,. The collection H will be said
to be uniformly v-separated if d(H,, Hg) := inf{d(a,b) : « € H,,b € Hg} > v
for all distinct H,, Hg € H. We assume v to be greater than 1. The elements of
H are said to be uniformly properly embedded in X if for all M > 0 there exists
N(M) > 0 such that for all H, € H and for all z,y € H, if d(xz,y) < M then
dp, (z,y) < N.

Let Z = X | |(Ua(Ha x [0, 3])). Define a distance function as follows:

dz(r,y) = dx(zy), ifz,ycX,
dHaX[O,%](xvy)v if T,y € H,, for some a € A,

= 00, if x,y does not lie on a same set of the disjoint union.
Let £(X,H) be the quotient space of Z obtained by identifying each H, x {3} to

a point v(H,) and for all h € H,, (h,0) is identified with h. We define a metric
dex,n) on E(X,H) as follows:

d&‘(X,H)([x], [y]) = inf Z dZ<xi7 yi)v

1<i<n
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where the infimum is taken over all sequences C' = {x1,y1, T2, Y2, ..., Tn, Yn} of points
of Z such that =y € [z],y, € [y] and y; ~ ;41 for i = 1,...,n — 1. (~ is the equiv-
alence relation on 7). In short, (£(X,H), de(x 7)) will be denoted by ()?, dg). i

will denote the coned-off space obtained from H x [0, %] by coning H x % to a point.

Definition 1.2.1. (Farb [Far98]) Let H be a collection of uniformly v-separated
and intrinsically geodesic closed subsets of X. The space E(X,H) constructed above
corresponding to the pair (X, H) is said to be electric space (or coned-off space).
The sets H, € H shall be referred to as horosphere-like sets and the points v(H,)’s

as cone points.

Definition 1.2.2. e A path v in E(X,H) is said to be an electric geodesic (resp.
electric K-quasigeodesic) if it is a geodesic (resp. K-quasigeodesic) in E(X, H).

e 7y is said to be an electric K-quasigeodesic in (X, H) without backtracking if
v is an electric K-quasigeodesic in E(X,H) and v does not return to a horosphere-
like set H, after leaving it.

e For a path v C X, there is a path 7 in E(X,H) obtained from ~ as follows:
if v penetrates a horosphere-like set H with entry point x and exit point y, we
replace the portion of the path ~ lying inside H joining z,y by [x,vy] U [vy,y],
where vy is the cone point over H, [x,vg] and [vy,y] are electric geodesic segments
of length % joining x, vy and vy, y respectively. If 5 is an electric geodesic (resp. P-

quasigeodesic), 7y is called o relative geodesic (resp. relative P-quasigeodesic).

Definition 1.2.3. (Farb [Far98]) Let & > 0,v > 0. Let X be a geodesic metric
space and H be a collection of uniformly v-separated and intrinsically geodesic closed
subsets of X. X is said to be g—weakly hyperbolic relative to the collection 'H, if
the electric space E(X,H) is S-hyperbolic.

Example 1.2.4. Consider the subset X = J,.,({(z,y) € R* : 2 = a} U {(z,y) €
R*:y=ua}) of R and H = {(z,y) € R* : x = a}. Then X is weakly hyperbolic

relative to the collection H.

1.2.1 Strongly Relatively Hyperbolic Spaces

Definition 1.2.5. Relative geodesics (resp. P-quasigeodesic paths) in (X, H) are
said to satisfy bounded horosphere penetration if for any two relative geodesics
(resp. P-quasigeodesic paths without backtracking) B3, -y, joining x,y € X there ex-
ists I1 91 = I121(P) > 0 such that
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Similar Intersection Patterns 1: if precisely one of {3,v} meets a horosphere-
like set H,, then the distance (measured in the intrinsic path-metric on H,) from
the first (entry) point to the last (exit) point (of the relevant path) is at most I1.21.
Similar Intersection Patterns 2: if both {3,~v} meet some H, then the distance
(measured in the intrinsic path-metric on H,) from the entry point of B to that of

v 15 at most 1121, similarly for exit points.

Figure 1.1: Similar Intersection Patterns.

Paths which satisfy the above properties shall be said to have similar intersection

patterns with horospheres.

Definition 1.2.6. (Farb [Far98] ) Let 0 > 0. Let X be a geodesic metric space and
H be a collection of uniformly v-separated and intrinsically geodesic closed subsets
of X. Then X 1s said to be 5- hyperbolic relative to the collection H in the sense of
Farb if

1) X is g—weakly hyperbolic relative to 'H,

2) Relative P-quasigeodesic paths without backtracking satisfy the bounded horo-
sphere penetration properties.

X is said to be hyperbolic relative to a collection H in the sense of Farb if X is

g—hyperbolz’c relative to the collection 'H in the sense of Farb for some 32 0.

Warped products of metric spaces (Chen [Che99)):

Suppose (X, dx) and (Y, dy) are two metric spaces. Let v = (r,s) : [0,1] = X x Y
be a curve and f : Y — R be a continuous function. Suppose 7: 0 =1y < t; <

... < t, =1 be a partition of [0, 1]. One defines the length of v by

[(v) = lim > \/fZ(S(ti—l))dgc(T(ti—l)aT(tz‘))+d2y(3(tz‘—1>5(ti)))

1<i<n—1

Here the limit is taken with respect to the refinement ordering of partitions over
[0,1]. The distance between two points x,y € X x Y is defined to be

d(z,y) =inf{l(v) : v is a curve from z to y}.
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Proposition 1.2.7. (Proposition 3.1, [Che99]) d is a metric on X x Y.

Definition 1.2.8. (Definition 3.1, [Che99]) The warped product of (X,dx) and
(Y, dy) with respect to the warping function f is the set X X Y equipped with the
metric d. We denote it by (X x;Y,d).

Definition 1.2.9. (Hyperbolic Cones:) For any geodesic metric space (H,d), the
hyperbolic cone (analog of a horoball), denoted by H", is the warped product of
metric spaces [0,00) and H with warping function f(t) = e™*, where t € [0,0), i.e.,
H":= H X, [0,00). We denote the metric on H" by dyn.

Note that the metric dgyn is described as follows:
Let o : [0,1] — H x [0,00) = H" be a path then a = (a1, ay), where ay, ay are
coordinate functions. Suppose 7: 0 =1ty < t; < ... <t, =1 be a partition of [0, 1].
Define the length of o by

L (@) = lim > \/eizm(ti)dH(O‘l(ti)a ar(tiv1))? + loa(ti) — aa(tiva)]?,

1<i<n—1

Here the limit is taken with respect to the refinement ordering of partitions over
[0,1]. Thus the distance between two points x,y € H" is defined to be

dgn(z,y) = inf{lgr(a) : ais a curve from z to y}.

Remark 1.2.10. The metric dgn satisfies the following two properties:

1) dg((z,t), (y,t)) = e tdg(x,y), where dyy is the induced path metric on H x {t}.
Paths joining (z,t), (y,t) and lying on H x {t} are called horizontal paths.

2) dgn((x,t), (x,s)) = |t —s| for all x € H and for all t,s € [0,00), and the
corresponding paths are called vertical paths. The vertical paths are geodesics in H"
as if « = (a1, 9) : [0,1] — H" is a path in H" joining (x,t), (x,s) then for any
partition 7 : 0 =ty < t1... < t, =1, we have

S e ot o)) + loa(t) — i)

1<i<n—1

> Z (Jea(ts) — ca(tira)l)
1<i<n—1

> |t—s|.

Hence lyn(a) > |t — s|.
3) Let (z,t) € H" and a = (a1, ) : [0,1] — H" be a path such that a(0) = (z,1)
and a(1) € H x {0}, then t <lyn(a):
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as for any partition 7: 0 =ty < t;... < t, =1, we have

Z \/6’20‘2(“)611{(041(75@')7 ar(tiv1))? + ae(ts) — aa(tivn)]?

1<i<n—1

= Z (Jaa(ti) — az(tit1)])
1<i<n—1

> t.

Hence lgn(a) > t.

Proposition 1.2.11. (Proposition 4.1, [Che99]) Let (Y,dy) be a complete, locally
compact metric space and (X, dx) be a geodesic metric space. Let function f:Y —
R™ be a continuous function. Then (X x;Y,d) is a geodesic metric space. In

particular, H" is a geodesic metric space.

Consider the region [0, a] x [1,00) in H?, where [0, a| is a horocyclic arc of length
a. For t € [1,00), let z; = it,w; = a+ it € H? and a; be the length of the horocyclic

arc joining z;, w;. Now

|2 — W] + |z — wy

dy2 (2, wy) = log —
|2 — Wy — |2 — wy

| —a+2it| +a

| —a+2it| —a

log\/m+a
VT

a’ + 212 + ava? + 412

2t2

= log

= log

Therefore
edH2 (z,we) a? + 2t? + a\/m
N 212
(0™ 42061 + a0 AP
2(te=t)?

(multiplying numerator and denominator by e )
a? + ag\/a? + 4(tet)?

Q(te—t)z
o +an/a;

2(tet)?

a? + 1, since te™" < 1.

v

v

Thus

a; <V edu2(zwe) 1, (1.2)
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Lemma 1.2.12. Let H be a geodesic metric space and H" be its hyperbolic cone.
(i). The elements of the collection {H x {t} : t € [0,00)} are uniformly properly
embedded in H", i.e, for all M > 0 there exists Nio12(M) > 0 such that for all
t €[0,00),z,y € Hx{t} if dgn(x,y) < M then dyi(x,y) < Nioi2, where dyy is
the induced path metric on H x {t}.

(ii). If {zn},{yn} are two sequences in H such that dgw(zn,y,) — 0 as n — oo,
then dy(zpn, yn) — 0 as n — oo.

(i1i). Let Hy,...,H, be geodesic spaces x;,y; € H;, then Zlgignde'(xi’yi) <
o((eZ == Ty ),

Proof. (i) Let x,y € H x {t} such that dyn(x,y) < M and let a = (a1, a2) :
[0, dgn(z,y)] — H x [0,00) = H" be a geodesic in H" joining z,y, where «; :
0,dgn(x,y)] — H, as : [0,dgn(x,y)] — [0,00) are coordinate functions. Note
that image of «;, denoted by im(«ay), does not contain any non-trivial loop, as if
im(ay) contains a non-trivial loop, then there exist distinct s,s" € [0, dgn(x,y)]
such that a;(s) = a1(s') and as(s) # as(s’). Let o’ be the subsegment of o joining
(a1(s), aa(s)) and (a1(s’), aa(s’)). As im(cy) contains a non-trivial loop, o’ is not
vertical. This is a contradiction, as the vertical path is the only geodesic joining
(1 (s), az(s)) and (e (s), as(s'))-

Let a denote the length of a; in the metric space (H, dy), then the subset im(ay) x
[0,00) with the induced metric from H” is isometric to a closed region bounded
by two vertical asymptotic geodesic and a horocyclic arc of length a in the upper
half plane, i.e., im(ay) x [0,00) is isometric to the region [0,a] x [1,00) in H2. Let
a; denote the length of the path 3i(s) := (ay(s),t), where s € [0,dyr(z,y)], then
a; = e 'a. Using equation 1.2, we have dg,(x,y) < a; < v/ edun (@) — 1 < \/eM — 1,
Taking Nys19 = VeM — 1 , we have the required result.

(ii). This follows easily from the inequality dg(z,,y,) < \/ edan@nvn) 1,

(ili). Let a; = dp,(2i,y;) and p; = dpn(z;,y;) for i € {1,...,n}. Using equation 1.1
and putting ¢t = 1, for all ¢ € {1,...,n}, we have

a? 4+ 2+ a;\/a? +4

> 1 .
pi > log 5

Thus, (a? + 2 + a;\/a? +4) < 2¢ePi for all 1 <4 < n. Hence

H (a’? +2+4+aq; \/ﬁ) < 2”62195"“,

1<i<n

21 Z apnJa? +4+2" < H (a? +2 +aj\/a? +4)

1<i<n 1<i<n

Now,



23 1.2 Electric Geometry

and a; < ai\/af + 4 for all 1 < ¢ < n. Therefore

1<i<n

and hence

Z a; < 2(eXasizaPi 1),

1<i<n

O

Lemma 1.2.13. Let Hy, Hy be two geodesic spaces and ¢ : Hy, — Hs be a
(K, €)-quasi-isometry. Let H' H} be hyperbolic cones over them, then ¢ induces
a (K1.2.13, €1.0.13)-quasi-isometry " : H — HY where K113 > 1,€1913 > 0 depends

only upon K, e.

Proof. Define " : H — HI by o"(z,t) = (¢(x),t). We will show " is a quasi-
isometry. First we prove that there exists P, > 1 such that for (x,t), (y,s) € HI if
dyp((x,1), (y,5)) < 1 then dpy ((p(2), 1), (#(y), 5)) < Pr.

We assume s < t. Now dyn((x,1), (y,s)) < 1 implies that dyn((y,s),(y,t)) < 1.
Therefore dpn((z,t), (y,t)) < 2. Since horosphere-like sets are properly embedded
in its hyperbolic cone, there exists N(2) > 0 such that dp, ((z,1), (y, 1)) < N(2).
As ¢ is a (K, e€)-quasi-isometry, dp,:((¢(2),t),(p(y),t)) < KN(2) + € Now
dp(((y), 1), (p(y),s)) < 1. Thus dys((p(),1), (0(y),s)) < KN(2)+e+1 =
Py (say).

Now let « : [0,]] — H! be a geodesic in H} joining (z,t) and (y,s). We parti-
tion [0, 1] by points g, t1, ..., tn_1, t,, such that a(ty) = (z,t), a(t,) = (y, s), for each
0<i<n—2dg(a(t;),a(tit1)) =1 and dgp(a(ty-1), a(t,)) < 1. Thus, by triangle
inequality, we have dy ((¢(2),1), (p(y), s)) < Pidgn((,1), (y,5)) + Pr.

Now there exists K7 > 1,¢; > 0 such that ¢! is (K7, €;)-quasi-isometry, therefore
there exists P, > 1 such that

dyn (97 (@), 1), (97 (2(1)). 5)) < Padpgy ((0(2), 1), (9(y), 5)) + Pa-

Since ¢ is a quasi-isometry, there exists » > 0 such that for each y € Hy there
exists z € Hy such that dy,(o(z),y) < r and dg, (¢~ (p(2)),2) <7 forall z € H, ,
therefore ng(goh(:c,t), (y,t)) < r and dH{L((go_l(w(z)),t), (z,t)) <r. Thus

dyp((2,1), (y, ) < Padp ((9(2), 1), (9(y), 5)) + P + 2r

Hence there exist Ki213 > 1,61013 > 0 such that ¢ is a (K913, €1.2.13)-quasi-

isometry. 0
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For a connected graph L, Bowditch, in [Bow97], proved that the hyperbolic cone
L" is a hyperbolic metric space with Gromov boundary a singleton set. (The proof
of this fact is presented on page numbers 18,19 of [Bow97|, where the notation
cusp(L) is used for L"). In view of Lemma 1.2.13, Proposition 1.1.9 and the fact

that hyperbolicity is a quasi-isometry invariant, we have the following proposition:

Proposition 1.2.14. [Bow97] For any geodesic metric space (H,d), the hyperbolic

cone (H", dyn) is a hyperbolic metric space with Gromov boundary a singleton set.

Gromov’s definition of relative hyperbolicity [Gro87] :
Let (X,dx) be geodesic metric space and H = {H, : a € A} be a collection of

uniformly v-separated, intrinsically geodesic, closed subsets of X.
Let Z = X | |(Uaea H"). Define a distance function dz on Z as follows:

dz(z,y) = dx(z,y), if x,y € X,
= dpn(z,y), if v,y € H, for some a € A,

= o0, if x,y does not lie on a same set of the disjoint union.

Let G(X,H) be the quotient space of Z obtained by attaching the hyperbolic
cones H" to H, € H by identifying (z,0) with z, for all H, € H and z € H,.
We define a metric dg(x») on G(X,H) as follows:

dg(x0([7], [y]) = inf Y dylwi, ),

1<i<n
where the infimum is taken over all sequences C' = {x1, Y1, X2, Y2, ..., Tn, Yn } Of points
of Z such that =y € [z],y, € [y] and y; ~ ;41 fori =1, ...,n—1. (~ is the equivalence
relation on Z). dg(x 3 is a metric:
dg(x,n) is indeed a pseudometric. Let [z], [y] € G(X,H) such that dg(x ) ([z], [y]) =
0. If x (or y) lie in H"\ H, then dyn (x, H) > 0. For any € > 0 there exists a sequence
{x1, Y1, %2, Y2, ..., Tn, Yn} such that =y = z,y, =y, yi,v;01 € H; (1 <i<n-—1, H =
H) and 33, ic, dx (i, ¥i) + X 1<icn1 dur (Yis Tir1) < €. Therefore, dgn(z,y1) < €
which implies dyn (2, H) < e. Taking € — 0, we have dyn(x, H) = 0. Hence x must
equals y.
Now let z,y € X. For each k € N, there exists a sequence {x1,y1, T2, Y2, ..., Tn, Yn }
such that 1 = x,y, = v, y;, ;41 € H; and

> dx(whu)+ > dgn (Y, Tir1) <

1<i<n 1<i<n—1

| =
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Now, by (iii) of Lemma 1.2.12, we have

> dilyai) < 2 T g

1<i<n—1

< 2er —1).

Also, >, <i<n @ x(xi,y) < % Therefore, by triangle inequality, we have

dx(z,y) < Z dx (i, yi) + Z dpgn(Yir Tit1)
1<i<n 1<i<n—1
1
< E+2(e%—1)ﬁo as k — 00.

Thus, x = y and hence [z] = [y].

In short, (G(X,H), dg(x)) will be denoted by (X", dxn).

Observation 1.2.15. We have the following simple observations:
(1) The path metric induced from dgn on H is dy,
(2) Let o : [0,1] — X be a path, then Ix(a) = lxn(a).

Proof. (1) Let a be a geodesic in H joining x,y € H. As H is embedded in H", we
can write &« = (aq, ap) where ay is a constant function. For all partitions 7 : 0 =

to < ty... < t, =1, we have

Z \/6’2a2(ti)dH(Oz1(tz‘)7 ar(tiv1))? + [ao(ti) — o (ti)]?

1<i<n—1
= Y Vdu(oa(t), a1 (tisr))?
1<i<n—1

= dg(z,y).

Thus lgn(a) = dg(z,y).

(2) Note that « is a concatenation of paths of the form ayx : [a,b] — X, where
ax((a, b)) N (UgerH) = 0, and ay : [a,b] — H for some H € H. Now ax is a
concatenation of two paths aq, ay such that only one of the end points of «; may
lie on horosphere-like sets. Thus, it suffices to prove that for paths 5 : [0,1] — X,
with £([0,1)) € X \ UgenH, and v : [0,1] — H, we have Ix(8) = Ix»(8) and
Ix(7) = lxn(7)-

First we prove that [x(8) = Ix»(5):

Let 0 < so < 1, then B(sg) ¢ UpenH. As H is uniformly v-separated

and horosphere-like sets are closed in X, therefore there exists 6 > 0 such
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that B(3(s0);90) N (UgenH) = (. Thus, there exists T € (sg,1) such that
Ix(Blis) < & for all t < T. Note that for any s,s' € [so, T], dx(3(s), B(s")) =

dxn(B(s),B(s"). Let n = Blisy. Let 0 < e < &, then there exists a par-
tition {to,...,tn} of [so,t] such that Ix(n) —e < > ocicp 1 dx(n(ti),n(tiy1)) <
Ix(n). Now for all i, dx(n(t;),n(tiv1)) = dxn(n(t;),n(ti11)), therefore Ix(n) — e <
Zogz‘gn—ldXh(n(ti)an(tiH))- As Zogign—1 dxn(n(ti), n(tis1)) < lxn(n), therefore
Ix(n) —e < lxn(n). Taking e — 0, we have Ix(n) < Ixn(n).

Now for any € > 0 there exists a partition {t;, ...,/ } of [so, t] such that [xx(n) —€ <
S ocsemr doer (), 1(E1)) < Ly (). Now don (n(t),n(t1)) < dn(tl),n(t,,)
for all ¢ and dx (n(t), n(t;,1)) < Ix(n). Therefore, Ixn(n) —e < Ix(n). Taking e — 0,
we have [xn(n) < lx(n). Hence Ix(n) = lxn(n).

Now define F': [0,1] — R by F(t) = Ix(B|p,9) — Lx»(Blpo.q)-

Let [0, so] be the maximal subinterval of [0, 1] for which F'(s) = 0 for all s € [0, 5.
Now from above there exist 5o < T < 1 such that Ix(8|is,,r) = lxn(8][s,77). There-
fore F(T) = 0 and hence sy must be equal to one. Thus Ix(5) = Ix»(3).

Next we prove that Ix(v) = Ixr(7):

There exists a sequence of paths «, : [0,1] — H" such that v, — v as n — oo,
m(0) = 7(0), m(1) = ¥(1), %((0,1)) N H = 0 and im(y,) C (im(y) x [0,00)) for
all n. Thus, Ixn () — Ixn(7) as n — 0o. As 7,((0,1)) N H = (), similarly as above
we can prove that {yn(v,) = lgn(vn). Thus, Ixn(y) = lgr(y). Now the metric on
H is induced from the metric dy on X, therefore iy () = Ix (7). Also, by (1) the
metric dyn on H" induces the metric dy on H, therefore lyn(y) = (). Hence,
Ixn(7) = Ix(7) O

Definition 1.2.16. Let 0 > 0,v > 0. Let X be a geodesic metric space and H be
a collection of uniformly v-separated, intrinsically geodesic closed subsets of X. X
is said to be 6-hyperbolic relative to H in the sense of Gromow, if the quotient space
(G(X, H),dg(x 1)) is a 6-hyperbolic metric space in the sense of (1.1.7). X is said
to be hyperbolic relative to H in the sense of Gromouv if X is §-hyperbolic relative to

H in the sense of Gromov for some 6 > 0.

Note that if (X, dy) is a proper geodesic metric space then G(X,H) is a proper
path metric space. Hence G(X,H) is a geodesic space.

The following lemma proves that the vertical paths in a hyperbolic cone are
geodesics in G(X, H)

Lemma 1.2.17. Let X be a geodesic metric space and H be a collection of uniformly
v-separated (v > 0), intrinsically geodesic closed subsets of X. Let H € H and
v :[0,00) — H" be a vertical path in the hyperbolic cone H", where v(0) € H, then

v is a geodesic in X".



27 1.2 Electric Geometry

Proof. Let t € [0,00) and « : [0,1] — X" be a path in X" joining ~(¢) and ~(0),
where «(0) = y(¢),a(l) = 7(0), then there exists to € [0,!] such that a(ty) € H
and ajo) C H". Now v is a geodesic in H". Since lyn (o)) = Ixn(alo4)) and
Lan (Yl.n) = Lxn(V]jo,g), therefore Ixn(v]jo.1) < Ixn(alp) < Ixn(@). Thus for all ¢,
V][0, is & geodesic in X" O

Lemma 1.2.18. (Hyperbolic Cones are uniformly properly embedded in G(X, H)):
Let X be a 0-hyperbolic space relative to a collection H of uniformly v-separated
(v > 0), intrinsically geodesic and uniformly properly embedded closed subsets of X
in the sense of Gromov. Let H" = {H" : H € H}, then elements of H" are uniformly
properly embedded in G(X,H), i.e., for all M > 0 there exists N1515(M) > 0 such
that for all H* € H" and for all x,y € H" € H", dxn(z,y) < M implies that
dyn(z,y) < Nigas.

Proof. Let z,y € H" such that dyn(x,y) < M. By definition of the metric dyn,
there exists a path « : [0,1] — X" joining x and y such that « is a concatenation
of geodesics from X and hyperbolic cones and Ixn(a) < dxn(x,y) + 1. Therefore,
Ixn(a) < M +1. Let HI', ..., H]’{,I be the hyperbolic cones penetrated by o, where
HJF\LH = H". We partition [0,] by points 0 = sy <ty < 81 <t; < ... < sy, <tn, =1
such that
(i) a(0) =z, aty,) =y, a(ty) € H", a(sy,) € H,
(i) aps, 4, is a geodesic in H',
(iii) ap, s, is @ geodesic in X,
where 0 < j < N1,0 <7 < N;—1and H} = H". Hence ZOSjSNl dHJh(a(sj),a(tj)) <
M +1 and ) oy, dx(a(ti),a(sit1)) < M + 1. Therefore, by (iii) of Lemma
1.2.12, we have
> dufals)alty) < 2 )y
0<j<N:
< 2eMHL

Thus ZogjgNl dx(a(s;), alt;)) < Zogjgzvl du,(a(s)), a(t;)) < 2¢M*1. Hence
dx(a(to),alsy,)) < Y dx(alsy),at)+ Y. dx(alt),a(sin))

1<j<Ni—1 0<i<N;—1
< 2eMHL 4 M 41,

Let Ny = 2eM+1 4 M + 1. Since elements of H are uniformly properly embedded in
X, therefore there exists N3(Ny) > 0 such that dy(a(ty), a(sy,)) < Ns. Hence
dpn((s0), altn,)) < dpn(also), alto)) + dr(afto), a(sn,)) + dgn(a(sy), altn))
< M+ 1+dy(alty), a(sy,)) + M +1
< 2M + Ny + 2.
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Taking Ni913 = 2M + N3 + 2, we have the required result. OJ

Lemma 1.2.19. (X is properly embedded in X") Let X be a geodesic space §-
hyperbolic relative to a collection H of uniformly v-separated (v > 0), intrinsically
geodesic and uniformly properly embedded closed subsets of X in the sense of Gro-
mov, then the inclusion i : X — X" is a proper map i.e. for all M > 0 there exists
Nigi19 > 0 such that for all x,y € X if dxn(x,y) < M then dx(x,y) < Ni21o.

Proof. Let dxn(z,y) < M. By definition of the metric dy», there exists a path
a:[0,]] — X" joining o and y such that « is a concatenation of geodesics from X
and hyperbolic cones and Ixn(a) < dxn(z,y) + 1. Therefore, Ixn(a) < M + 1. Let
H!. ..., H" be the hyperbolic cones penetrated by a. We partition [0,] by points
0=tg<s1 <ty <..<s,<t, <Spr1 =1[such that
(i) a(0) = =, a(snt1) = v,
(i) ays, 4, is a geodesic in HI,
(ili) ap, s, is @ geodesic in X,
where 1 <7 <n,0<17<n.
Then E1§j§n dHJh (als)), a(t;) + Xocicn dx(a(ti), alsiy1)) < M + 1.
Hence 37\, du;(a(s;), a(t;)) < 2¢M*1. Therefore, by triangle inequality, we have
dx(2,y) < Xoicjen duy(als;), (ty)) + Pocicy dx (alts), alsivr)) < 2N+ M + 1.
Taking Nio19 = 2eM*1 + M + 1, we have the required result.

]

Definition 1.2.20. (Definition 8.17, Chapter I1.8, [BH99])(Busemann Function):
Let (X, d) be a metric space and let 7 : [0,00) — X be a geodesic ray. The function
by : X — R defined by

by(xz) = im (d(z,y(t)) —t), € X

t—o0
is called the Busemann function associated to the geodesic ray .
Definition 1.2.21. [CP93] Let (X,d) be a geodesic space and k > 0. A function
f X — R s said to be k-quasiconvez if for each geodesic path ¢ : [0,1] — X

parameterized proportional to arc length, we have

Fle(®) < (1= 1) F(c(0) +tf(c(1) +k for allt € [0,1].

Lemma 1.2.22. (Proposition 3.3, Chapter 3, [CP93]): Let § > 0 and X be a
geodesic space which is §-hyperbolic. Let v : [0,00) — X be a geodesic ray, then the

Busemann function b, : X — R is 40-quasiconvex.
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Corollary 1.2.23. Let 6 > 0 and X be a geodesic space which is §-hyperbolic. Let
v :[0,00) = X be a geodesic ray, then the set b ((—o0,0]) is 40-quasiconver in X .

Lemma 1.2.24. Let § > 0. Let X be a geodesic metric space and H be a collection
of uniformly v-separated (v > 0) and intrinsically geodesic closed subsets of X.
Suppose X" is a geodesic space and X is d-hyperbolic relative to H in the sense of
Gromov. Then for any H € H, the hyperbolic cone H" is uniformly 46-quasiconvex
in X". Moreover, for each s € [0,00), (H*)" := H x [s,00) is also 45-quasiconvex
in X"

Proof. Let v : [0,00) — H" be a vertical path in H", where 7(0) € H. Then by
Lemma 1.2.17, v is a geodesic in X". First, we prove that b;l(O) =H.

Let x € H, we will prove that b,(z) = 0. Note that
dyr( () =t < dya((2,0), (3,1)) + dyn (2, £), (1)) — ¢
(x is identified with (z,0))
= e 'dy(z,v(0)) — 0 as t — oo.
Therefore b, (z) < 0. Also,
t = dXh((xa O)a ("L‘at))

dxn(z,y(t)) + dxn(7(1), (2,1))
ie. — (dyn(z,7(t)) —t) < e dy(y(0),z) for all t € [0, 00)

IN

Hence by () > 0 and so b, (x) = 0. Thus H C b."(0).
Now we prove that = € b7'(0) implies 2 € H.
Case (i): Let = (w,s) € H x [0,00) = H". Then
0=by(e) = lim(dxr((w,9),7(0) — )
T (dye (1), (1,2)) + e (0,6, 7(8) — )
lim (t — s + e "dy(w,v(0)) — t)

t—o0

—S.

VAR VA

IA

Therefore s = 0 and = = (w,0) € H.

Case (ii). Let x € X"\ int(H") and 7y (z) be a nearest point projection of x
onto H. For t € [0,00), let [x,7(t)] be a geodesic in X" joining z and ~(t). Let
xy € [x,y(t)] N H, then t < dxn(xy,7y(t)). Now,

IA

dXh (l’, xt)

dxn(,7(t)) = dxn(y(t), )
< dxn(z,9(t) — 1.

dxn(z, g (x))
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Taking ¢ — oo, we have dyn(x, 7y (z)) < by(z). But by(x) = 0. Thus z = 7y (z) €
H. Hence b.*(0) = H.

Now let ty € [0,00) and 74, (t) = ~(t + to), where t € [0,00), then similarly as
above we can prove that b} (0) = H x {to}. It is easy to check that for p € X",
by, (p) = 0 < by(p) = —to, thus b '((—o0,0]) = H". Hence by corollary 1.2.23, we
have that H”" is 45-quasiconvex.

Note that for ty € [0, 00), we have b;(l)((—oo,O]) = (H™)", thus again by corollary
1.2.23, we have that (H™)" is 45-quasiconvex. O

Let X be a geodesic space and H be a collection of v-separated (v > 0), intrinsi-
cally geodesic closed subsets of X. Let £(G(X,H), H") be the space obtained from
G(X,H) by coning off H x [0,00) for all H € H. In short, £(G(X,H), H") will be
denoted by X,

For H € H and r € [0,00), let H, = H x {r} and H, = {H, : H € H}. Let
H" = H, x [0,00) be the hyperbolic cone over H, with metric dpn, then the
space H x [r,00) with the induced metric from H" is isometric to (H}",dyn). Let
Y =G(X,H) \ Ugenint(H X [r,00)).

Define g : G(X, H) — G(Y,H,) as follows:

Let x € G(X,H). If x € Y, define g(x) = x. Now, if x € int(H x [r,00)) for some
H € H, then © = (h,t) for some h € H,t > r. Define g(x) = ((h,r),t — ).

Note that g is an isometry.

Lemma 1.2.25. There exist Ki295 > 1,€1095 > 0 depending on r such that glx :

X =Y is an (K295, €1.2.95)-quasi-isometric embedding.

Proof. Note that g(X) is r-quasiconvex in Y. Let z,y € X and dy(g(x), g(y)) < M,
then dxn(g(z),9(y)) = dyn(g(x),g(y)) < M. As X is properly embedded in X",
there exists N(M) > 0 such that dx(g(z),g(y)) < N. From definition, g(x) =
z,9(y) =y, thus dx(z,y) < N. Proof then follows from Lemma 1.1.21. O

Lemma 1.2.26. g will induce a (K7 226, €1.2.26)-quasi-isometry g : E(G(X, H), H) —
E(G(Y, H,), H,) for some K126 > 1 and €196 > 0 depending on r,v.

Proof. Let X" = G(X,H) and Y" = G(Y,H,). Define §: X» — Y" as follows:

Let 7 € 5(\’1,

i) if Z is a cone point over H" for some H € H, then define §(7) to be the cone point
over H".

ii) Let 7 lie on the interior of an edge joining some point (h,t) € H" and the cone
point v(H") over H",

a) if ¢ < r then define g(Z) to be the interior point on the edge joining (h,r) and
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cone point v(H}') over H} such that d(Z, (h, 1)) = d=(9(Z), (h,7)).

b) if ¢ > r then define g(Z) to be the interior point on the edge joining (h,t) and
cone point v(H}') over H' such that d(Z, (h,t)) = d (9(Z), (h, 1))

iii) If 7 € X", then define g(7) = ¢(7).

Let z,y € X C Y. From definition of metric d, there exists a sequence

R
{z1,Y1, ..., Tn, Yn} such that

e r =ux,y =y, and for each i, [z;,y;] is a geodesic in Y, [y;, z;11] is a geodesic (of
length at most one) in the coned-off space of H; x [r, 00) for some H; € H, and

* D icicn Iy (@i, 4i) + 2o cicn b (i iga]) < di(y) + 1.

Now, dx(z1,H1) < dy(x1,y1),dx(Hi, Hiv1) < dy (21, Yi11) and dx(yn, Hy,) <

dy (Yn, ). Therefore,

W) < D dv(mny)+ D Iy rin)) < dg(z,y) + 1
1<i<n 1<i<n—1

For the other inequality, using definition of metric d4, there exists a sequence
{z1, W1, ..., Zm, Wy, } such that
e r = 2,y = w,y, and for each i, [z;, w;] is a geodesic in X, [w;, z;11] is a geodesic
(of length at most one) in the coned-off space ;I} for some H; € 'H, and
® D icizm Ax (20 0i) + 21 cicm b ([wis 2ia]) < d(,y) + 1
Let P = Kjg95,€ = €1995. For each 2 < ¢ < m — 1, dy((z;,7), (w;, 7))
Pdx(z;,w;) + € + 2r, dy(z1, (wy,7)) < Pdx(z1,w1) + € + 7 and dy ((zp, 1), W)
Pdx(zm, wy) + €+ .
Now

IA A

dﬁ(ﬂf,y) < dY<z17 w1, T Z dY zla w27 ))

+dy ((zm, 7)), W) + ( cardinality of {Hq, ..., Hy_1})
< P Z dx(z,w;) +2r(m —1) + me+ (m —1)
1<i<m

< Pdg(v,y)+ P+ (2r+1)(m —1) + me.

h( z,y)

As 'H is v-separated, therefore m — 1 < 5 (@y) + 1. Hence

2r+1+e
d (2, y) < (f+P)d}\h(x,y)+P+2r+l+26.

Therefore
2r+1+¢€

dgi(z,y) =1 < dg(z,y) < (f P)dg(x,y) + P+ 2r + 14 2¢.

Let P, = %—FP and ¢, = P+2r+1+2¢. Now for any point p € X , there exists
p € X such that d(p,p) < 1 and d(9(p),g(p)) < r+ 1. Note that g(p) = p.



Chapter 1: Relative Hyperbolicity 32

Therefore, by triangle inequality, we have
A (0.q) — (2r +4) < d(9(0),9(p)) < Prd(p,q) + 2P + &

for all p,q € Xh, Taking Kj096 = P1 and €996 = max{2P, + €1, 2r + 4}, we have
the required result. O

Note that if @ is a K-quasigeodesic path in £(G(X,H), H) without backtrack-
ing and ay, ..., q, are (consecutive) components of a® = @ N X, then g(Q) is a
quasigeodesic in £(G(Y,H,)) with ¢|x(c;) being quasigeodesic paths in G(Y,H,.).
glx is an identity map, therefore g|x(a;) = «; for all i. Let z;,y; be end
points of «;. For each i € {1,...n — 1}, we join y; and x;;; by the path
i, (i, )] U [(i,m), v(Hi)] U [o(Hi), (@41, 7)] U [(@ig1,7), Tiga] of length 2r 4+ 1 in
G(Y,H,). Consequently, we obtain a path i without backtracking in £(G(Y,H,))
such that
o i\ UgenH" = ab,

e /i is a (K + 2r 4+ 1)-quasigeodesic path.
Hence, quasigeodesics in G(X,H) have similar intersection properties with hyper-
bolic cones if and only if quasigeodesics in G(Y, H,.) have similar intersection prop-

erties with hyperbolic cones. Thus, we have the following corollary,

Corollary 1.2.27. X" is hyperbolic relative to H" in the sense of Farb if and only
if Y" is hyperbolic relative to H" in the sense of Farb.

Next we prove that the space £(X,H) embeds quasi-isometrically into the space
E(G(X,H), H).

Lemma 1.2.28. Let X be a geodesic space and H be a collection of v-separated
(v > 0) intrinsically geodesic closed subsets of X. Then the natural inclusion X —

X" is a (K298, €1.2.08) quasi-isometry for some numbers Kq98 > 1, €190 > 0.

Proof. Let j : X — X" denote the inclusion. Then j induces a natural inclusion
J: X < XP, therefore d—(j(7), (7)) < d5(2,7) for all 7,7 € X.
Let z,y € X. By definition of the metric d, there exists a sequence
@0, P15 Q15 - Pns Gns Pusr Of points in X" such that © = o,y = pnt1, [ Pit]
(0 < i < n) are geodesics in X" with [g;, pis1] € X, and > o<i<n Axr (@i pi1) +
Z1§jgn dﬁjﬁ(pja ;) < dﬁ(t’”a?/) + 1.
Since [¢;, pit1] C X, dxn(qi, piy1) = dx(gi,pi+1) for all 0 < ¢ < n. Let e; be the
edge path of length one from p; to ¢; passing through the cone point v(H;), where
1 < 7 < n. Then, by triangle inequality,

de(z,y) < D dx(gnpin) + Y Ig(e) < dgile,y) +1+n.

0<i<n 1<j<n
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d, (z,y)

Now, n —1 < , therefore dg(z,y) < d(z,y)(1 + 1) + 2. Now j restricted

on each edge over horosphere-like sets in X is an isometry, therefore

14

(™ (0 A iy 1
d(1(T), j(¥)) < dg(@,y) < d7 (5 (), j([¥))(1 + ;) 42
for all 7,7 € X.
Also the Hausdorff' distance between 3()? ) and X" is at most 1. Taking Kj595 =

1+ %, €1.908 = we have the required result. OJ

2
1+1o
Corollary 1.2.29. With above notation, X s hyperbolic relative to 'H in the sense
of Farb if and only if X" is hyperbolic relative to H" in the sense of Farb.

Definition 1.2.30. Let X1, X5 be two geodesic spaces and Hx,, Hx, be collections
of uniformly v(> 0)-separated and intrinsically geodesic closed subsets of X1, X
respectively. A quasi-isometry ¢: X1 — Xs is said to be strictly type-preserving if
¢(Hx,) € Hx, and ¢~ (Hy,) € Hx, for all Hx, € Hx,, Hx, € Hx,, where ¢~ is
quasi-isometric inverse of ¢.

Now we prove that a strictly type-preserving quasi-isometry induces quasi-
isometries between the coned-off spaces as well as between the hyperbolic spaces

obtained by gluing hyperbolic cones.

Lemma 1.2.31. Let K > 1l,¢e > 0,v > 0,r > 0. Suppose Xi, Xy be two
geodesic spaces and Hx,, Hx, be collections of uniformly v-separated and intrin-
sically geodesic closed subsets of X1, Xy respectively. Let ¢: X1 — Xo be a (K, €)-
quasi-isometry such that for each H € Hx, there exvists F € Hx, such that the
Hausdorff distance between ¢(H) and F is at most v in Xy, and the Hausdorff dis-
tance between ¢~1(F) and H is at most r in X;.

Then ¢: X1 — Xy will induce

1) a (K751, € 9.31)-quasi-isometry ¢« X{ — X3 for some K3 > 1,¢{55 >0,
and

2) a (f?l.z.:ﬂ,31.2.31)'(115031"@'50”?6”@ 53 )/(\1 - )/(\2 for some [?1.2.31 > 1,693 > 0.

In particular, if ¢ is a strictly type-preserving quasi-isometry, then ¢ will induce

strictly type preserving quasi-isometries ¢" : Xh — X and gg: )/(\1 — )/(\2

Proof. By Lemma 1.2.26, we can assume v to be greater than 2.
1) Define ¢" : X — X! as follows:
Let z € X}, define ¢"(2) = ¢(2) if 2 € X1, and

if z = (w,t) lies inside some hyperbolic cone H", then there exists f € F for some
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F € Hx, such that dx,(¢(w), f) < r, define ¢"(w,t) = (f,t).
Note that for each (f’,t) € F" there exists (w',t) € H" such that
g (6 (uf, 1), (/1)) < 2.
Since ¢ is a quasi-isometry, therefore the Hausdorff distance between X, and ¢(X})
is uniformly bounded. Hence, the Hausdorff distance between X2 and ¢"(X7) is
uniformly bounded.
Now first we prove that there exists P > 1 such that for all a, b € X" with dxn (a,b) <
1 implies that dyx(¢"(a), ¢"(b)) < P. By definition of the metric dy», there exists
a path a : [0,1] — X» joining @ and b such that « is a concatenation of geodesics
from X; and hyperbolic cones and lyn(a) < dyn(a,b) + 1. Therefore Ixn(a) < 2.
Note that o can intersects at most one hyperbolic cone, say H". Let a € X; and
b € H". We partition [0, 1] by points 0 = tg < 51 < t; < ... < 8, < t,, = 1 such that
(i) a(0) = a, a(t,) = b,
(ii) o, ) is & geodesic in H",
(iii) ap, s, is @ geodesic in X,
where 1 <7 <n,0<:<n—1.
Note that >, ., din(a(s;), a(t;)) = D1 <jcp lim (s 1)) < 2.
Now
N dulalsy) alty)) < 2(eTros dan@Eal) 1) < 92

1<j<n—1
Also Y gcicn 1 dx,(a(ti), a(sit1)) < 2. Therefore by triangle inequality, we have
dx,(a,a(s,)) + dgn(a(sy),a(t,)) < 2e* +2+2=2e2+4 = D, say.
There exist h, € H,l € [0,00) such that a(t,) = (hn,1). As dyn(a(sy), a(t,)) < D,
we have [ < D. By triangle inequality, dgn(a(s,),h,) < 2D. Therefore,
dr(a(s,), h,) < 2€?P and hence

dx,(a, hy) < dx,(a,a(s,)) + dx, (a(sp), hn) < D +dg(a(sy,), hy) < D 4 227,
Now there exists F' € Hx, such that ¢(H) C Nbhdx,(F;r). By definition,
P"(a(t,)) = (fn,1) for some f, € F such that dx,(¢(hy,), f) < r. Thus

dx; (¢"(a), 0" (1)) dx (¢"(a), 6" (a(tn)))
xp (0(a), fn) + dxp (fn, (fni 1)
dxz(¢(a) fa) 1
dx,(d(a), p(hn)) + dx, (¢(hn), fn) + D
Kdx, (a,h,) +€e+r+ D
K(D +2¢*P) + € +r+ D, where D = ¢* + 4.

VAN VAN VAN VAN VAN |

Taking P = K (D + 2¢*”) + ¢ + 7 4 D, we have dys(¢"(a), ¢"(b)) < P. Similarly,
there exists P > 1 such that the above inequality holds if both a, b lie in hyperbolic
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cones or in Xj.

Now for any z,y € X!, by definition of metric dX{l, there exists a path A in X"
joining x,y such that

e )\ is a concatenation of geodesics of X; and hyperbolic cones,

o Ixn(A) < dxp(z,y) + 1.

We partition A by points = = pg, p1, ..., pn» = y such that for 0 <i < n —1, length of
the subsegment joining p;, p;+1 is equal to one and length of the subsegment joining
Pn-1,y is at most one. Then dxn(ps, piy1) < 1 and hence dyy (&"(ps), &"(piz1)) < P
for all 0 < ¢ < n —1. Thus, by triangle inequality, we have dx; (¢"(x), d"(y)) <
nP < Plxr(A\) + P < P(dX{L(x,y) +1)+P< PdX{L(x,y) +2P.

Let ¢ = ¢ 1, then define ¢" : X! — X! similarly as ¢". Note that by definition
of quasi-isometry, for all z € X, dx, (¥(4(2)),2) < K. Let ¥ be (Kj,€1)-quasi-
isometry, then by a calculation, it can be shown that for all = € X! we have

dxn(z, P (¢"(2))) < Kir +7+ K +¢€,. By above argument, there exists P’ > 1 such
that dy (B1(0(2), P(6"(1))) < Py (6"(2), 6" () + P'. Therefore,

dyn(z,y) < Pldyi(¢"(x), " (y)) + P'+ 2(Kyr + 7 + K + 1)

Taking K, 5, = max{P, P'}, €, = max{P, P' + 2(K,r +r + K + ¢)}, we have
the required result.
2) Now we define 8: 5(\1 — )/(\2:

Let # € X, and 7 is not a cone point, i.e., x € X;. Define gg(x) =¢(z). If risa
cone point over some H; € Hx, or lies in the interior of an edge, then define g/g(:p)
to be the cone point over ¢(H;). As the metric on X, is defined by taking infimum
on chains (refer to Definition 1.2.1), proof of this fact is similar as (1).

U

Corollary 1.2.32. With hypothesis as in above Lemma 1.2.31 , we have

1) X1 is hyperbolic relative to Hy in the sense of Gromov if and only if Xy is
hyperbolic relative to Hy in the sense of Gromov,

2) X1 is hyperbolic relative to H" in the sense of Farb if and only if X% is hyperbolic
relative to HY in the sense of Farb,

3) Xy is hyperbolic relative to Hy in the sense of Farb if and only if Xs is hyperbolic

relative to Ho in the sense of Farb.

Proof. 1) Follows from (1) of Lemma 1.2.31.
2) Only thing we require to prove is the similar intersection properties of quasi-
geodesics with hyperbolic cones. Let quasigeodesic paths in X» have similar intersec-

tion patterns with hyperbolic cones. By Lemma 1.2.31, there exists K; > 1,¢; > 0



Chapter 1: Relative Hyperbolicity 36

—_— o~

such that ¢ 1nduces (K1, €1)-quasi-isometries gbh XP — XJ and ¢" 1 X — X2
Let A ¢ [a,b] — > Xy X" be a Pi-quasigeodesic_path, there exists P, > 1 such that
th( )« [a, b] — Xé‘ is a Py-quasigeodesic in Xh

But gbh( ) may not be a continuous path we construct a quasigeodesic path & in
X X% such that outside hyperbolic cones, gbh( ) and @ lie in a bounded neighborhood
of each other in X7 :

Let Aq,...,\, be connected components of X\ (UHthH{LHh>7 then each A; is a
Pj-quasigeodesic path in X". As ¢" is a quasi-isometry (by Lemma 1.2.31), there
exists P, > 1 such that each ¢"();) is a Py-quasigeodesic in XJ.

Let tg < 81 < t1 < ... < 8, < t,, < Sp41 be a partition of [a, b] N Z such that

o for each j € {0,....,n}, X\t s;41) € Aj and

e for each i € {1,...,n}, )\\ (st Penetrates a hyperbolic cone H" with A(s; + 1),
)\(t — 1) lies in the coned-off space Hh

Then dX{l()\(si),Hih) < Pils; — (s; +1)|+ P, = 2P, and dX{L(/)\\(ti),Hih) < P|(t; —
1) —t;|+ P =2P.

Now for each H;, there exists F; € Hy such that the Hausdorff distance between
¢(H;) and F; is at most r. Let i = g/b;(}\\), then for each i, we have dx;(k(s;), FM <
2K|P; 4+ €; +r and ng(ZZ(ti), FM) <2K Py + € + 7.

Let P =2K,P; + ¢ +r. For each i, let 3; : [s;, t;] — )/(\h be a reparametrization of
a geodesic in )/(\5‘ joining i(s;) and 1i(t;), then I (ﬁz) < 2P +1.

As ¢"()\;) is a Pr-quasigeodesic in X} and ngh|X1 = ¢"|x,, for k,k+1 € [t;,s;41]NZ,
we have dy (fi(k), fi(k +1)) < Polk — (k + 1)| + Po = 2P,. Let ¢« [k, k + 1] — X3
be a linear reparametrization of a geodesic in X7 joining fi(k) and fi(k + 1). For
each j, let a; : [t;, s;41] — X denotes the concatenation of ¢;’s. Let @ : [a, b] — )/(\5‘
denotes the concatenation of paths «q, 81, a1, B2, ..., Bn, Q.

Let P = max{2P'+1,2P,} and [t] be the integer part of ¢, then for all ¢ € [a, b], we
have I (a\ i) < P. Thus for all ¢,t' € [a,b], we have

Aspiis a ﬁg—quasigeodesic, we have

1 ~ A _ ~
=t =1 = B < dz(u(t), i(t) < Boft =] + Ps.
2
Therefore d;@(ﬁ([t]), 7i(t)) < 2P,. Note that either a([t]) = i([t]) or there exists [ €
{sj,t;} with a(l) = 7i(l) such that d(a(l),a([t])) < P and d(u(l), u([t])) < P.
Thus, by triangle inequality, d— (7i([t]), @([t])) < 2P and hence
2

d(a(t), a(t)) < P+2P + 2P = R, say.
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Thus,
[t =¥ < Po{dg(@(t),a(t') + 2R} + P} = Pod(@(t), a(t') + (2RP, + P3).
Let S = ZRﬁg + ﬁ22 then S > P, 162, thus we have
1 o~
g\t —t]-8< d;@(a(t),a(t')) <Slt—t|+S.

Thus, a is a S-quasigeodesic path in )/(\5‘ such that «; lie inside g—neighborhood of
#"(\;) in X and ¢"()\;) lie inside 2P,-neighborhood of «; in X2

Note that «; constructed above may intersects hyperbolic cones other than those in-
tersected by ﬁ(ﬁ) Let ¢ = §+2P2, then o; and ¢"();) lie inside g-neighborhood of
each other. Let Hy, = {F x [g,00) : F € Hp} and Y5 = X} \ Upemmt(F X [gq,00)).
Then by Lemma 1.2.26, there exists a quasi-isometry g : X Xh Yh and hence
g(@) is a quasigeodesic in Yzh. As ¢"()\;) lie outside hyperbolic cones in X
and «; lie inside g-neighborhood of ¢"(};), therefore G(c;) does not intersect
any elements from ng. Note that for all j, there exist x;,y; € Fj such that
dxp(aj-1(s), x;) < Prand dxp(a;(t;), y;) < P'. Also note that d (75, ;) < 2¢+1.
Thus d; (Oz] 1(s5), aj(t;)) < 2P" 4+ 2qg + 1. We join «;_1(s;) 2zaund a;(t;)) by a

geodesm [aj_1(s), a;j(t;))] in 5//7‘ Let 7 be the concatenation of paths a;’s and
[aj_1(sj), @;(t;))]. Thus, from @ we obtain a path 7 in Yh such that
e 7) is a S'-quasigeodesic path in Yh for some S" > 1,
e outside hyperbolic cones in Y3, 7; and ﬁ(@(%)) (j=1,2) lie in the ¢ + P'-
neighborhood of each other in Y7, and
e horosphere-like sets intersected by 7 are those which lie in the Hausdorff distance
r + g of the images of horosphere-like sets penetrated by X under the map g o @
Now, as (X2 HE) is relatively hyperbolic in the sense of Farb, (Y;‘,Hé‘q) is
relatively hyperbolic in the sense of Farb. Suppose 71,7, are two Pj-quasigeodesic
paths in )/(\h without backtracking joining same pair of points in X;. By above
there exist S’ > 1 and two S’-quasigeodesic paths 7 771,7)2 without backtracking in
YQh such that outside hyperbolic cones in Y3, 7); and g((bh(fyj)) (j=1,2) lie in the
q + P’-neighborhood of each other in Y*. For each j = 1,2, horosphere-like sets
intersected by n; lie in a bounded Hausdorff distance from the images of hyperbolic
cones intersected by 7, under the map go 53 As (Y], HE q) is relatively hyperbolic in
the sense of Farb, 11, 1, have similar intersection properties with the sets from H% "
Since g o @ is a quasi-isometry, therefore 7;, v, have similar intersection properties
with hyperbolic cones in X7
3) Follows from Corollary 1.2.29 and (2) of this Lemma. O
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For a metric space Z, note that if « is a (P, €)-quasigeodesic then « followed by
a geodesic of length at most k is a (P, € + k)-quasigeodesic. This fact will be used

in the following lemma.

Lemma 1.2.33. Let X be hyperbolic relative to H in the sense of Farb. Let x € X,
H € H and vy be the cone point over H. Suppose N\ and s are two P-quasigeodesic
paths in E(X, H) joining x and vy. Let eny and eny be entry points to H of Ay and
Ao respectively. Then dx(eny,eny) < Iy 933, for some I1933(P) > 0 depending only
on P.

Proof. Fix some y € H and join y to vy by a geodesic [vg,y] of length 1 in £(X, H).
Let A} = A\ U [vg,y] and X, = Ay U [vy,y]. Then there exists P'(P) > 0 such that
A} and A} are two P’-quasigeodesics in (X, H) joining same pair of points x,y and
having the same entry points as A\; and \y. By similar intersection pattern 2, there
exists I1233 > 0 such that dx(enq,eny) < Iy 2.33. O

Farb’s definition implies Gromov’s definition

Here we prove that Farb’s definition of relative hyperbolicity implies Gromov’s def-
inition. This is proved by Bowditch in [Bow97], here we propose to give another
proof. To prove this we use the following criterion (due to Hamenstddt) for the

hyperbolicity of a geodesic space:

Lemma 1.2.34. ([Ham05]) Let (Y,d) be a geodesic metric space. Assume that
there is number S1234 > 0 and for every pair of points x,y € Y there is a path
c(x,y) : [0,1] — Y connecting c(z,y)(0) = x to c(xz,y)(1) = y with the following
properties:

(1) If d(z,y) <1 then the diameter of the set c(x,y)[0,1] is at most Sy.a34.

(2) Forz,y € Y and 0 < s <t <1, the Hausdorff distance between c(z,y)[s,t] and
cle(x,y)(s), clx,y)(t))[0,1] is at most Sy.2.34.

(3) For any triple (x,y,z) of points in Y, the arc c(x,y)[0,1] is contained in the
S1.2.34-neighborhood of c¢(x, 2)[0,1] U ¢(z,y)[0, 1].

Then the space (Y, d) is 01.2.34-hyperbolic for a constant 61934 > 0 depending only
on Sios4. Moreover, for all x,y € Y the Hausdorff distance between c(x,y) and a
geodesic connecting x to y is at most by o34, for some number by 34 > 0 depending

only upon 01.9.34.

Theorem 1.2.35. Given 32 0,v > 0 there exists d1.9.35 > 0 such that the following
holds: Let X be a geodesic metric space and H be a collection of uniformly v-

separated and intrinsically geodesic closed subsets of X. If X is g—hyperbolz’c relative
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to the collection 'H in the sense of Farb then X is 01935 hyperbolic relative to the

collection 'H in the sense of Gromouv.

Proof. In view of Corollary 1.2.27, we can assume v > 1. By Proposition 1.1.9, we
can assume X" to be a metric graph. Hence X" is a geodesic metric space. As X
is g—hyperbolic relative to the collection H in the sense of Farb, by Lemma 1.2.28,
there exists 51,2_28 > 0 such that X" is /5\1.2_28 -hyperbolic relative to the collection
H" in the sense of Farb. Therefore triangles in )/(\h are 5\1.2_28—thin.

To prove X" hyperbolic, we require to find a number S 534 > 0 and a path c(z, y)
joining each pair of points z, y € X" satisfying the three properties of Lemma 1.2.34.
Let z,y € X". As X" C )/(\h, we have z,y € X", Let ¢(z,y) be an electric geodesic
in Xh joining z and y. Now we construct a path c(x,y) from ¢(z,y) in X" joining
x and y:

e If 2,y lie inside a hyperbolic cone H", then c(z,y) is a geodesic in H" joining
them.

o If x lies inside a hyperbolic cone H" penetrated by ¢(z,y), then we replace the
subsegment of the geodesic ¢(x, ) joining  and its exit point from H" by a geodesic
in H".

o If ¢(x, y) penetrates a hyperbolic cone H" with p as entry point and ¢ as exit point,
we replace the subsegment of ¢(z,y) joining p and ¢ by a geodesic in H" joining p
and q.

e If y lies inside a hyperbolic cone H" penetrated by ¢(z,y), then we replace the
subsegment of the geodesic ¢(z,y) joining y and its entry point to H" by a (hyper-
bolic) geodesic in H".

e Outside hyperbolic cones, ¢(x,y) is same as ¢(x,y).

(1) c(z, y) satisfies property 1 of Lemma 1.2.34: Let 2,y € X" such that dxn(z,y) <
1. As X" is a graph of edge length one, therefore by construction of ¢(z,y) and def-

inition of the metric dyn, ¢(z,y) is a subsegment of concatenation of at most two

edges in X". Thus diameter of the set c(z,y)[0, 1] is at most two.

(2) ¢(x,y) satisfies property 2 of Lemma 1.2.34: Let s,t € [0,1], u1 = c(x,y)[s, t],
po = c(c(z,y)(s), c(z,y)(t)). Let 113 be the subsegment of ¢(x,y) joining c(x,y)(s)

and c(z,y)(t) and 1y = ¢(c(z, y)(s), c(z,y)(t)). Then fi; and jiy are electric geodesics
joining same pair of points, so they have similar intersection patterns with hyperbolic
cones. We will show that there exists a number P > 0 such that for any p € u,
there exists ¢ € psy such that dyn(p,q) < P.

Let p € pi. If p lie in a hyperbolic cone H" penetrated by both 7i; and Jis, then
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due to similar intersection pattern 2, the distance between entry points (resp. exit
points) of p; and ps to H" is bounded by some number I > 0. Due to stability of
quasigeodesics, portions of y; and s lying in H? are at bounded distance from each
other. Thus there exists ¢ € ps such that dy(p,q) < Py for some constant P; > 0.
Now let o : [a,b] — X", ay : [a,b] — X" be subsegments of juy, s Tespectively such
that p € ay and the followings hold:
i) hyperbolic cones penetrated by oy (@ 02, are different,
ii) either ay(a) = as(a) or ag(a), as(a) lie on a same horosphere-like set, and
iii) either oy (b) = aa(b) or a;(b), as(b) lie on a same horosphere-like set.
If end points of aq, as lie on horosphere-like sets, then due to similar intersection
pattern 2, there exists I > 0 such that dx»(aq(a), as(a)) < I and dxn(aq(b), as(b)) <
I. Let a; be the corresponding subsegment of fi; in Xh joining «;(a), a;(b), where
1 = 1,2. By stability of quasigeodesics, there exists a natural number P > 0 such
that @, and @, liein a P neighborhood of each other in X" Let ¢ be a nearest point
projection from p onto @i, then dg,(p,q) < P. Let Abe a geodesic in X joining p
and ¢, then l}\h(/):) < P. Thus X intersects at most P-many hyperbolic cones.
Suppose 7,, 7, are the subsegments of @s joining ay(a), ¢ and g, az(b) respectively.
Now, by Lemma 1.1.29, 5, U X and Y U \ are (3, 0)-quasigeodesics in Xh. As qis
nearest point projection, this quasigeodesic 7 U X does not backtrack. We need to
find ¢ € ay such that dyn(p,q) is bounded. If § € @y \ Ugnepnint(H"), then let
q = @, otherwise ¢ lie on an edge path of length one over some horosphere-like set
H. Let X be defined on the interval [c,d], then there exists dy € [c,d] such that
/)\\(do) € H. Suppose as(ay) and ay(by) are the entry and exit points respectively of
as to H. Let g be a nearest point projection from /)\\(do) onto the geodesic segment
joining as(ay) and as(by).
Let A\; be the path in X" obtained from /)‘\‘[C,do} by replacing the edge paths over
the horosphere-like sets (penetrated by X) by geodesics in the respective hyperbolic
cones and )y be a geodesic in H” joining /)\\(do), q. Let A\, ; = A1 Uy, We shall prove
that Ixn()\,,) is bounded.
Suppose 1,, 1 are the subsegments of «; joining «;(a),p and p, a;(b) respectively.
Let 7,,m, be the corresponding coned-off geodesic paths in X*. Due to similar
intersection patterns of
1) A, and 7, U A,
2) mp and 7, U h)
with hyperbolic cones, if h) penetrates a hyperbolic cone S with entry and exit
points being zg and yg respectively, then dgn(xs,ys) < I; for some number I; > 0.

If g lie on an edge path of length one over some horosphere-like set H, due to similar
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ez, y)(t)

Figure 1.3: p, ¢ lie in different hyperbolic cones.

intersection patterns of 7, and 7, U A, dH(/)\\(do), as(ay)) < I, where ay(a;) is the

entry point of ap to H". Since ¢ is a nearest point projection from \(dy), we have

~

dgn(N(dp),q) < I;. Thus, Ixr(A) < 7.

Due to similar intersection patterns of a, ais with hyperbolic cones, the lengths of the
portions of oy lying inside hyperbolic cones are at most . If p lie inside a hyperbolic
cone K" with /):(co) € K being the exit point from K of X and aq(ag), aby) are the
entry, exit points respectively of a; from K" then dgn(ci(ag),a(by)) < I and
dK(ozl(ao),/)\\(co)) < I. Therefore, th(p,/):(co))) <IL+1

Now as l}\h(/)\\) < P, therefore Ixn(Apg \ Upenint(F")) < P. X can intersects at
most P-many horosphere-like sets, therefore [xn(\1) < (I; + 1) + P + PI;. Thus,
Ien(Apg) = Lxn (A1) + Ixn(Ne) < (L 4+ 1)+ P+ PL+ 1, =21 + I + P(1+ I1). Let
Py =2 + I+ P(1+1,), then dyn(p, q) < Ps.

Taking P = max{P;, P»}, we have that for each p € u; there exists ¢ € uy such that

dxn(p,q) < P.

(3) c(z,y) satisfies property 3 of Lemma 1.2.34: Let z,y,2z € X", a = c¢(z,y),8 =
C(yv 2)77 = C(Z,ZL'), a(t) = 7(1 _t)a B = 6(1 - t) and = 7(1 - t)7 where 0 <t < 1.

Case (A): If a, 3,7 penetrates a same hyperbolic cone H", then H-distance be-
tween the entry points of the pairs («,%), (5,7) and (3, @) to H is at most I for some
I > 0. Thus we get a hexagon in H" whose length of alternate sides are bounded.
H" is hyperbolic, thus there exists B} > 0 such that the subsegment of « inside H"
lies in B’-neighborhood of 5 U 7.

Now there exist sq, tg € (0, 1] such that a(sg),7(to) lie in H, then dxr(a(sg),7(to)) <
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z

Figure 1.6: Three sides of Aafy penetrate distnct horosphere-like sets.
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I. Now by property (2), the Hausdorff distance between «/jg s,) and 7|04, is at most
BY for some By > 0. Similarly, there exists s;,¢; € [0,1] such that the Hausdorff
distances between @|j,,) and (|4, is at most BY. Let By = max{B], B}, then
a C Nbhdxn (S U; By).

Case (B): a, 3,7 does not penetrate a same hyperbolic cone:
Since trlangles are 51228 thin in Xh, therefore there exists ap € [0,1] such that
dﬁ( ala 0),5) < 51,2_28 +1 and dﬁ( alag),”) < 51,2 28 + 1. As in the proof of prop-
erty (2), there exist paths Aa(a),85) and Ag( (a0),7(co) in X" Jommg alagp), ﬁ(bo) and
a(ao), v(co) respectively such that the lengths of A (a0),(bo) )\a(aom(m) in X" are at
most 51,2_28 + 2. Let
o a1 = [o,a0]> X2 = ¥|[ag,1);
3= 5|[0,b0]7ﬁ2 = 5|[b0,1},
® = 7|[0,c0],72 = 7|[c0,1]-
Note that the following pairs of quasigeodesics satisfy similar intersection patterns
with hyperbolic cones:
Pair (a): a; and 7. T U )\a(ao c0)s
Pair (b): ay and B U )\a(ao ).5(bo)
Pair (c): )\a(ao) +(co) U1 and )\ a(ao),B(bo) Y Bo.

Now we prove that if 3,y penetrate a same hyperbolic cone H", then H-distance
between the exit points # and v from H is uniformly bounded:
Note that o does not penetrate H". By Lemma 1.2.33, the H-distance between entry
points of 3, 7 to H is uniformly bounded. Hence by property (2), the Hausdorff
distance between the subsegments of 3, 7 joining z to the respective entry points is
uniformly bounded. Thus, without loss of generality, we can assume z € H.
If B(by),v(co) does not lie in H", then due to similar intersection patterns for Pair
(c), the H-distance between the exit points of 3,~ from H is uniformly bounded.
If B(bo) or y(co) lie in H”, then d(H,a) < 01905, Let 7 : [I,m] — X" be a
shortest geodesic from z to a = c(x,y), then l}\h(?) < 31_2.28 + 1. Let a, and @
be subsegments of & joining z,7(m) and joining y, 7(m) respectively. Then 7 U a,
and T U ay, are quasigeodesic paths. Due to similar intersection patterns of pairs
(B, TUQ,) and (7,7 U a,), the H-distance between the exit points of B and 7 from
H is uniformly bounded.
Therefore, by stability of quasigeodesics, portions of 3 and v lying inside H" are at
bounded distance from each other.

Thus, without loss of generality, we can assume that the hyperbolic cones pene-
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trated by «, § and « are different.

By construction of Xa(ao),v(r:o) and /)‘\a(ao)ﬁ(b())v note that the above quasigeodesics
does not backtrack. Now we have the following three situations:

(I) If /)\\a(aom(co) penetrates a horosphere-like set H that Xa(ao B(by) does not pene-
trate. Then, by Pair (c), length of the subsegment of A (qq)~(co) inside H" is at most
I, for some I; > 0.

(IT) If /)‘\a(ao),w(m) and Xa(ao)ﬁ(b()) both penetrates a same horosphere-like set H but a
does not penetrates H, then by Pair (a) and Pair (b), length of the subsegments of
Aaao)y(co) AN Aq(ag) (o) 1DSide H" is at most 1.

(111) If /):Oé(ao),’y(m)aXa(ao)ﬂ(bo) and a penetrates a same horosphere-like set H, then
we have the following two cases:

Case (i): Let a(ag) ¢ H". Now either a; intersects H" or a intersects H". Suppose
«; intersects H, then by Pair (b), length of the subsegment of Ay (q,),(60) is at most
I;. Also, due to Pair (c), H-distance between the entry points (resp. exit points) of
)\a(ao) (co) and )\ B(b) to H is at most I;. Thus, by triangle inequality, length of
the subsegment of )\a(ao )y(co) lying inside his at most 31;. Similarly, if cs intersects
H", then using Pair (a), we have that the length of the subsegment of Ay(a0)(co)
lying inside H" is at most 31;.

Case (ii): Let a(ag) € H", 4, Ya respectlvely be the entry and exit points of «
to H". Let e;, es be the exit points of )\a(ao c0)> )‘a(ao), (ko) Tespectively from H".
Then,

e from Pair (a), we have dy(x,,e;) < I,

e from Pair (b), we have dy(es, yo) < I,

e from Pair (c), we have dy (e, es) < 1.

Thus, dgn(Ta,Ya) < 3I;. Therefore dyn(a(ag),e;) < 31 + 1) = 41 for i = 1,2.
Since lengths of Xa(aom(co) and Xa(ao)ﬁ(bo) are bounded, therefore there exists Bj > 0
such that Ixn(Aaag)(co)) < B and Lxn(Aaag),s00)) < By. Applying property (2),
there exists By > 0 such that

e the Hausdorff distance between «; and 7, is at most B,, and

e the Hausdorff distance between s and 3 is at most Bs.

Thus, o C Nbhdxn (3 U~; Bs)

Taking B = max{Bj, By}, we have the required result of property (3). O

Note 1.2.36. Note that due to Lemma 1.2.34, the above paths c(x,y) are stable
b1.2.36-quasiconvex paths for some number by o35 > 0 depending only upon the hyper-

bolicity constant of X".
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Gromov’s definition implies Farb’s definition

In this subsection, we prove that Gromov’s definition of relative hyperbolicity implies
Farb’s definition. In general, G(X,H) may not be a geodesic space, but by Lemma
1.1.9, there exists a metric graph I" of edge length one such that G(X,H) is quasi-
isometric to I' via a map, say, ®. By Lemma 1.2.26, we can assume v to be large
such that for all Hy, Hy € ‘H, dp(®(H}), ®(HL)) > 1. Let ®(H) = {®(H) : H € H}.
Then (X, H) is relatively hyperbolic in the sense of Farb if and only if (T', ®(H)) is
relatively hyperbolic in the sense of Farb. Note that since I' is a connected graph,
the coned-off space Tisa geodesic space. So, throughout this subsection, we assume
that

e X is a geodesic metric space,

e v > 0 and H is a collection of uniformly v-separated, intrinsically geodesic and
uniformly properly embedded closed subsets of X, and

e G(X,H),E(X,H) are geodesic spaces.

Definition 1.2.37. (Visual Size of a horosphere-like set): Let H € H be a
horosphere-like set and let v be a path in G(X,H) not intersecting H". Let T be the
set of points p € H so that there exists some t for which a geodesic [y(t), p| joining
~(t) and p intersects H in a singleton set {p}. Then the visual size of H with respect
to v is defined to be the diameter of T' in the intrinsic metric of H. The visual size of
the horosphere-like set H is defined to be the supremum of the visual size of H with
respect to vy, where supremum is taken over all geodesics v in G(X,H) not meeting
any H € 'H.

Lemma 1.2.38. Let 6 > 0,k > 1. Suppose X is 6-hyperbolic relative to H in the
sense of Gromov. Then there exists S1238 > 0 depending on 0,k such that for a k-
quasigeodesic path v in G(X,H) lying outside a hyperbolic cone H", the H-diameter

of the set wyn(7y) is at most St .2 .3s-

Proof. Let H' = H x {t} and H" = H x [t,00). By Lemma 1.2.24, H" is
40-quasiconvex for all ¢ € [0,00). Let z,y € v and Q = 4. Using Lemma
1.1.31, there exist D' = D},4(6,Q) > 0,C" = C],4(5,Q) > 0 such that if
dyen (7 on (), T (y)) > D' then there exists p € [z,y] and ¢ € H'" such that
dxn(p,q) < C'. By stability of quasigeodesics, there exists (k) > 0 such that [z, y]
is contained in r-neighborhood of v in X"*. Thus dyx(q,y) < C' + r, therefore v
intersects C” + r-neighborhood of H"

Let t = C' + r + 1, then H lies outside C’ neighborhood of H'™. But 7 in-
tersects C” + r-neighborhood of H th, therefore + intersects H". This is a con-

tradiction as we have assumed v N H" = 0. Thus dxn (7 (z), mgn(y)) < D’
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and hence dyn(myn (), 7yn(y)) < dxn(mgn(x), Ty (x)) + dxn (7 (), Ten (y)) +
dxn(mgn(y), mgm(y)) <t+D'+t=D"+2(C"+r+1). Let 8'=D"4+2(C"+r+1),
then dyn(mgn(z), mn(y)) < S'. As hyperbolic cones are properly embedded and
horosphere like sets are properly embedded in its hyperbolic cone, there exists
S1.2.38(S") > 0 such that dy(myn(x), mHn(y))) < Sioss. This holds for all z,y € 7,
therefore the H-diameter of the set myn(7y) is at most S .2 .3s. O

Lemma 1.2.39. [Far98] (Horosphere-like sets are visually bounded): Let 6 > 0 and
X be §-hyperbolic relative to H in the sense of Gromov. Then there exists V1239 > 0,
depending on §, such that the visual size of each horosphere-like sets H € H is at

most ‘/1_2.39.

Proof. Suppose x € X and let T, be the set of all points s € H for which [z, s|NH =
{s}. Let s € T, and consider the triangle Azmyn(z)s in X", then Axmyn(z)s is
0-slim. Therefore [myn(z),s] C Ns([rgn(x),z] Uz, s]). As [rgn(x),x], [z, s] lie in
the complement of int(H"), portions of [myn(x),s] lying in H" will lie within a
d-neighborhood of H in X”. Since H" is 40-quasiconvex, the geodesic segment
[Tgn(x), s] lies in the 45-neighborhood of H". Thus the geodesic ray [myn(z), s]
lies within 40-neighborhood of H in X". Let a, = [myn(x), s], then the Hausdorff
distance between a, and 7y (a,) in X" is at most 49. But this Hausdorff distance
approaches oo as dxn(myn(x),s) — oo . Therefore, dxn(mgn(x), s) < Ry .39 for some
constant R 239 > 0, independent of x. Hence diameter of the set T, is bounded by
2Ry 2.39.

Now let v be a geodesic not intersecting H and = € <, then the visual size of H
with respect to v is at most 2diamT, + diam(wyn(y)) < 2R19.39 + S1.2.38. Taking

V130 = 2R12.39 + S1.0.38, we have the required result. O

By replacing the geodesic v by a quasigeodesic path in the above proof, we have

the following corollary:

Corollary 1.2.40. (Visual size of horosphere-like sets with respect to quasigeodesics
is bounded): Let § > 0,k > 1 and X be d-hyperbolic relative to 'H in the sense of
Gromov. Suppose H € 'H and v is a k-quasigeodesic path not intersecting H, then
there exists V12.40(, k) > 0 such that visual size of H with respect to v is at most

‘/1.2.40-

Definition 1.2.41. A collection Q of uniformly C'-quasiconvex sets in a 6-hyperbolic
metric space Z is said to be mutually B-cobounded if for all Q;, Q; € Q, mg,(Q;),
i # 7, has diameter less than B. A collection is mutually cobounded if it is

mutually B-cobounded for some B > 0.
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We have the following corollary of Lemma 1.1.31:

Corollary 1.2.42. [Far98/(Hyperbolic Cones are mutually cobounded): Let § > 0,
then there exists Bio42(d) > 0 such that the following holds: Let X be §-hyperbolic
relative to 'H in the sense of Gromowv, then the collection H is mutually Bi..4s-

cobounded.

Proof. Let Hy, Hy, € H and 2,y € H,. Suppose 7 is a geodesic in X" joining = and y.
From Lemma 1.2.24, the hyperbolic cone Hi" := H x [t, 00) is 49-quasiconvex for all
t €[0,00). Let t = 45+ 1, then as H is 45-quasiconvex and H is v (> 0)-separated,
~ cannot intersects Hﬁh. Therefore, using Lemma 1.2.38, there exists S1.2.35 > 0 such
that diameter of the set WHéh(’j/) is at most S1.235. Hence dXh(']THéh(l'),ﬂ'Héh(y)) <

S1.2.38. Therefore,

Qi (T (), Tragn ) S o (g (), 0 () + (g (), 750 (9)
+dxen (Tg,n (Y), WHéh(y))
< t+ Si23s+t =280+ Sia3s + 2.

Taking By.o40 = 80 + S1.2.38 + 2, we have the required result. O

In [Far98], Farb proved the hyperbolicity of the electrocuted space £(X,H),
where X is a pinched Hadamard manifold and H is the collection of uniformly
separated horospheres in X. Next, we prove the general versions of Farb’s theorem
ensuring the hyperbolicity of electric space. Let Z be a subset of G(X,H)(= X").
N4 (Z, R) will denote the R-neighborhood about the subset Z in the electric space
(E(X,H),dg).

Lemma 1.2.43. ([Far98], [Szc98]) Let 6 > 0 and v > 1 + 2D; 130, where
Di130(= 66) is as in Lemma 1.1.30, then there exists 51243,51243 > 0 such if
X be 0-hyperbolic relative to H in the sense of Gromov, then the following proper-
ties hold:

(1). There ezists QQ1.0.43 > 0 with the following property:

Electric geodesics electrically track hyperbolic geodesics: Let x,y € X, 3 be any elec-
tric geodesic from x to y in E(X", H"), and v be a geodesic from x to y in G(X,H),
then

B C Ng(7, Qr243) and v C N5(8, Q1.2.43).
(2). E(X" H") is &), 43-hyperbolic and E(X, H) is 61.9.43-hyperbolic.

Proof. (1). First Part: Let D = Dj1.30,C = Ci.130 > 0. Suppose [’ is a maximal
subsegment of 3 lying completely outside N (v; C). Let ' starts from p and ends
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at ¢, then d(p,v) = C and d4(q,v) = C. Let ' penetrates the hyperbolic cones
H?!. ..., H%. Since hyperbolic cones are uniformly v-separated, therefore (N —1)v <
1— (3

l57(4') and hence N < ﬁ + 1.

Let x; be the entry point and y; be the exit point for 3’ penetrating the hyperbolic
. where 1 < i < N. For each i, we join z; and y; by a geodesic [z;,y;] in

X" Let 3,

Yo = p and x4 = g. Since (3, ..., lies outside hyperbolic cones, it is also a geodesic

in X". Now for each 4,7, dxn(m(z;), 7 (y;)) < D and dxn(m,(y;), 7 (z11)) < D

otherwise, due to Lemma 1.1.30, [z;,y;] or By, z;., would intersect C-neighborhood

cone H"

(0 < j < N), be the subsegment of §’ joining y; and z;;;, where

Tj+1

of 7. Therefore we have:

I=(8) = dg(p,q)
< d}\h(pa Wv(p)) + d}\h(ﬂv(p)a WV(Q)) + d}ﬁ(”v(@)a q)
< 20 +dxn(my(p), my(q))
< 20+ Z dxn(my(y;), Ty (z41)) + Z dxn (T (2:), 74 (y:))
< 20+(}\]7_+1)D+ND N
< 20+ 2D(lﬁy<ﬁ/) +1)+D

Therefore I (8) < % (note that v > 2D). Let K = (2(53’3)” and
Ql243 = K+ 5. Then we have 8 C N (7, Q1 o.43)-

Second Part: Recall that v : [0,dxn(7,y)] — X" was a geodesic in X". Let
S0, to] be a maximal subinterval of [0, dxn(z,y)] such that v|(,.4) lie outside Q7 5 45-
neighborhood of (3 in X". Then there exists p € 0 such that d:(p,7(s0)) < Q1943
and d—:(p,7(to)) < Qig43- Then [y(s0),p] U [p,7(to)] intersects at most N =
[2Q1 5 43]-many horosphere-like sets Hy, ..., Hy, where [r] denotes the integer part of
r € R. Let {p;} = OH! , where 1 <i < N. For each 1 <i < N, we join v(to) to p;
by a geodesic ray [y(to), p;) in X™. Let [v(s0), p1), (1, p2);s - (Pn-1,28), (P, 7 (t0)]
be geodesics in X" such that

([v(s0),p1) U (Ur<isn—1(pi, pis1)) U (piv, ¥ (t0)]) \ Ur<iznint (H]')
= ([v(s0), ] U [, v(t0)]) \ Ur<iznint(H")

Since X" is é-hyperbolic, therefore ideal triangles are J-thin. Thus, for z € V] is0,to]

there exists 2" € ([Y(s0), p1)U(Ui<icn—1(ps, Pis1))U(pn, ¥(to)]) such that dxn(z, 2') <
0Q1 .43 Hence d:(2, 2') < dxn(z,2') < 0Q] 443 and so

v C Nw(5, 0Q1 243 + Q1 243)-
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Taking Q%.2.43 = 5@%.2.43 + Q%.2.437 we have

v C Ny (8, Q7 2.43)-

Taking Q1243 = max{Q] 5 3, Q1 543}, we have the required result.

(2). Let z,y, 2 € X". Suppose A:L’yz is a triangle in the electric space X*. Consider
the triangle APzyz in X", As X" is §- hyperbohc Ahzyzis 0-thin. From (1), Aajyz is
(electrically) (2Q1.5.45+0)-thin. Let & , 13 = 2Q1.2.43+0 then X is &, 43-thin. Now
from Lemma 1.2.28, the natural inclusion (X, H) — £(X", H") is a quasi-isometry.
Therefore, there exists 5\1,2_43(/5\1_2_43) > 0 such that £(X,H) is 25\1_2,43—thin. O

Next we prove that the relative geodesics satisfy bounded horosphere penetration

properties with horosphere-like sets.

Lemma 1.2.44. [Far98] Let § > 0 and v > 1+ 2D; 130, where D113 is as in
Lemma 1.1.30. Suppose X 1is d-hyperbolic relative to H in the sense of Gromou,
where H s uniformly v-separated, then the following properties hold:

Let 3 be an electric geodesic in E(X,H) (resp. in E(G(X,H),H")) and v be a
geodesic in G(X, H) joining the same pair of points in X (resp. in G(X,H)). Then
B,7 have the following similar intersection patterns with horosphere-like sets (resp.

hyperbolic cones)

1. Similar Intersection Patterns 1: if precisely one of {f,7} meets a
horosphere-like set H € H, then the distance (measured in the intrinsic path-
metric on H ) from the first (entry) point to the last (exit) point (of the relevant

path) is at most I}, ,, for some I} 5 ,, > 0.

2. Similar Intersection Patterns 2: if both {(3,~} meet some H € H then the
distance (measured in the intrinsic path-metric on H) from the entry point of

3 to that of v is at most 1%, ,,; similarly for the exit points for some 1%, 4, > 0.

Proof. 1). Let us first assume that + intersects H € ‘H and [ does not intersect H.
Let p be the first entry point and ¢ be the last exit point of v to the horosphere-
like set H. We will prove that H-distance, say dy, between p and ¢ is bounded.
Recall from Lemma 1.2.39 that the visual diameter of a horosphere-like set is at
most V] 939 for some Vj 539 > 0 and from Corollary 1.2.42 that hyperbolic cones are
mutually B 49-cobounded. From Lemma 1.2.43, there exists Q1243 > 0 such that
G C Nj@(% Q1243). Let V ="Via39, B= Bi2a,Q = Q1243

Let [a, b] be the domain of 3. For each t € [a, b] there exist a point p; € 7 such that
d(B(t),p:) < Q. Suppose 71,72 be two components of v\ int(H™) containing p, q
respectively. Let [a, so] and [tg, b] be the largest subintervals of [a, b] such that for
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each t € [a, sg) U (Lo, b, electric geodesics joining 3(t) and p; does not intersect H.
Let 61 = Bliase)s P2 = Blisoro] and Bs = Bl For s € [a,s0), suppose A be
an electric geodesic in Xh joining 1 (s) and ps. As length of Ag is at most @, it
penetrates at most (Q-many horosphere-like sets. Let A\’ be the subset of A, lying
outside horosphere-like sets and N()\,) be the union of A\’ and horosphere-like sets
penetrated by ;. Let v, , be the subsegment of v joining ps and p, then diam-
eter of the set myn(7p,p) is at most V. Also diameter of 7yn(N(As)) is at most
(V 4+ B)Q. Therefore diameter of myn(N(As)) Up.p)) is at most V + (V + B)Q.
This is true for each s € [a,s0). Since p € Nsgla,s0)Trr (N(As) U Yp.p)), we have
i (p, 7n (B(50)) <V + (V + B)Q.

Using similar argument for g5, we have dyn(myn(B(t0)),q) <V + (V + B)Q.

Now for fBa, d7(B(s0), mun(B(s0))) < @ and d7(B(to), mun(B(t0))) < Q. As [
is a geodesic in )/(\h, therefore the length of [, is at most 2Q. Let N(5;)(C X)
be defined similarly to N()As). Then the diameter of the set myn(N(fs)) is at
most 2Q(V + B). Thus dyn(mgn(6(s0)), man(B(te))) < 2Q(V + B). Therefore
dgn(p,q) < 2{V + (V + B)} +2Q(V + B) = I{(say). Since horosphere-like sets
are properly embedded in hyperbolic cones, there exists I}, ,,(I]) > 0 such that
dr(p,q) < Iipu-

The proof of the case when 3 intersects H and 7 does not intersect H is similar.

2). Let y,p be the first points of entry for the geodesics (3,7 respectively into
the horosphere-like set H. We will prove that there exists I?,,, > 0 such that
dp(p,y) < I35, Let 3 be the component of 3\ int(H") containing y and 7,
be the component of 7 \ int(H") containing p. Let Q = Q1243 > 0 be as in
Lemma 1.2.43, then and let [[,b] be a maximal subinterval in the domain [a,b]
of B’ such that for all ¢ > I, d}\h(ﬁ'(t),Hh) < ). For [, there exists an elec-
tric geodesic \; joining ('(I) and a point p; € v; such that the length of A; is
at most ) and diameter of the set mmun(N(\) U 7pyp) is at most V 4+ (V + B)Q.
And as above dgn(p, mn(8'(1))) < V + (V + B)Q. Since d(8'(1), H") = Q,
length of 3’|y is at most Q. Therefore dyn(myn(8'(1)),y) < (V + B)Q. Hence
dgn(p,y) <V 4+ (V+ B)Q + (V + B)Q = Ii(say). Since horosphere-like sets
are properly embedded in hyperbolic cones, there exists I?Z,,,(I}) > 0 such that
du(p,y) < ITsu
The same argument works for the exit points of the geodesics (3,+ from the
horosphere-like set H. O

Note 1.2.45. The above Lemma 1.2.44 s also true when geodesics are replaced by

quasigeodesic paths.
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Combining Lemma 1.2.43 and Lemma 1.2.44, we have the converse of the The-
orem 1.2.35 :

Theorem 1.2.46. [Far98, Bow97] Let 6 > 0 and v > 1+ 2Dy 130, where Dy 130 1S
as in Lemma 1.1.530, there exists 31_2.43 > 0 such that the following holds: If X is
d-hyperbolic relative to a collection H in the sense of Gromov, where H is uniformly

v-separated, then X 1is 5\1_2,43-hype7“bolic relative to H in the sense of Farb.

Thus, from Theorems 1.2.35, 1.2.46, we have the following equivalence of two

definitions of relative hyperbolicity:

Theorem 1.2.47. Let 5,/5\ >0 and v > 1+ 2D1.30, where Dy 130(= 60) is as in
Lemma 1.1.30, then there exists 1935 > 0 depending only on S and there exists
31_2.43 > 0 depending only on 9, such that the following holds:

(1) if X is §-hyperbolic relative to the collection H in the sense of Gromov then X
18 5\1_2,43-hype7“bolic relative to H in the sense of Farb,

(2) if X is g—hyperbolz’c relative to the collection H in the sense of Farb then X is

01.2.35-hyperbolic relative to the collection H in the sense of Gromow.
By Lemma 1.2.26, we have the following Theorem:

Theorem 1.2.48. Let d > 0,v > 0 then there exist 31_2,48,33_2.48 > 0 depending only
on 0, v such that the following holds:

Let X be d-hyperbolic relative to the collection H in the sense of Gromov, where H
1s uniformly v-separated, then

1) X is 25\1_2,48—hyperb0lic relative to the collection H in the sense of Farb,

2) G(X,H) is 31.2_48—hyperbolz’c relative to the collection H" in the sense of Farb.

Proof. Let Dy13 > 0 be as in Lemma 1.1.30, r = 1 + 2D;139. For H € 'H, let
H,=H x{r}, H, ={H,: H € H} and H" = H, x [0,00) be the hyperbolic cone
over H, with metric dyn. Let Y = G(X, H)\ Ugenint(H}"). Note that the collection
H, is v + r-separated and we have v+ 1 > 1+ 2D 139. Now as X is d-hyperbolic
relative to the collection H, Y is d-hyperbolic relative to the collection H,.. Thus,
from Theorem 1.2.47, there exists 3\1,2_43,3\{_2_43 > 0 such that Y is 5\1_2.43—hyperbolic
relative to H, in the sense of Farb and Y is 5\1,2_43—hyperbolic relative to Hff in the
sense of Farb. By Corollary 1.2.27, there exist /5\12-487/5\1.2.48 > 0 depending on 4, v
such that the properties (1) and (2) hold. O

Definition 1.2.49 (Electroambient Paths [Mjb]). Let 6 > 0 and X be d-hyperbolic
relative to the collection 'H in the sense of Gromov. We start with an electric quasi-

geodesic path N [0,1] — X" without backtracking with end points in X". For any
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H" € H" penetrated by X, let xg and yy be the first entry point and the last exit
point of/)\\ respectively. We join xgy and yg by a geodesic segment in H". If /)\\(O)
(resp. /):(1)) lies in some H", then we join /):(0) (resp. /):(1)) to the exit point (resp.
entry point) by a geodesic in H". This results in a path \ in G(X,H). The path A

will be called an electro-ambient path.

The following Lemma (proved in [Mjb]) proves that an electroambient path is a

quasigeodesic.

Lemma 1.2.50. (Lemmas 3.8, 3.9 of [Mjb]): Let § > 0 and X be a §-hyperbolic
relative to the collection H in the sense of Gromov. Suppose X is an electric (K,€)-
quasigeodesic path in X without backtracking and with end points x,y € X. Then
an electro-ambient path representative A ofX 15 a Kyo50-tamed quasigeodesic path
G(X,H) for some number Ky25 > 0 depending on 6, K, e, v. In particular, \ is a
Q1.2.50 quasiconvez path in G(X, H) for some Q125 > 0.

Electric Projections

Let 6 > 0 and X be a geodesic metric space with Hx a collection of uniformly
v > O-separated, intrinsically geodesic and closed subsets of X. Further, assume
that G(X, H), E(X", H%) are geodesic spaces. Let X be d-hyperbolic relative to the
collection ‘H in the sense of Gromov. Let X = £(X,Hx), X" = G(X,Hx) and
it XP s Xh = E(XM, HM%) denote the inclusion. Recall that from Lemma 1.2.48
that there exist 01245, 0] 545 > 0 such that X is 6;.2.45-hyperbolic and X" is TS
hyperbolic.

Define f : Xt — X as follows: flz) =xzifz € X, f(x) = v(H), if x € int(H")
or x lies in an edge (of length %) joining the cone point over H" to some point of
int(H") for some hyperbolic cone H" and v(H) is the cone point over H.

Recall that from Lemma 1.2.28, that the natural inclusion 5 . X < Xhisa
(K1.2.98, €1.2.28) quasi-isometry for some Kj 298 > 1,€1298 > 0. It is easy to check
that f is a (K, €f)-quasi-isometry for some Ky > 1,€e; > 0 and it is a quasi-isometric
inverse of the natural inclusion 3

Let 1 be a geodesic in X , it be an electro-ambient representative of the geodesic u

and 7, be a nearest point projection from X " onto .

Definition 1.2.51. (FElectric Projection) Let y € X and i be a geodesic in X.
Define 75 X — i as follows:

Fory € X, define wa(y) = f(i(mu(y)))-
If y is a cone point over a horosphere-like set H € Hyx, choose z € H, define

Ta(y) = f(i(mu(2)))-
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If y lie on the edge (of length %) joining the cone point over a horosphere-like set H
and z € H, define T;(y) = f(i(m,(2))).
7 will be called as Electric Projection.

The next lemma, shows that 7; is well-defined up to a bounded amount of

discrepancy with respect to the metric dy.

Lemma 1.2.52. Let § > 0. There exists a constant P50 > 0 depending only upon
0 such that the following holds:

Let X be 6-hyperbolic relative to a collection Hx in the sense of Gromov. Then for
any H € Hx and 2,7 € H, if [i be a geodesic in X then ds(7a(2), 7a(2")) < Prass.

Proof. Let D' = D1, 5,,C" = C] 5, be as in Lemma 1.1.31. If dxn(m,(2), 7, (%)) <
D', then d—; (i(mu(2)),i(mu(2"))) < D".

Let us assume dxn(m,(2),m,(2")) > D’ then, by Lemma 1.1.31, [z,7,(z)] U
[7.(2), (2] U [m,(2'), 2] is a quasi-geodesic in X". Thus for 7,(z) there exists
p. on the geodesic [z,2] in X" such that dxn(m,(2),p.) < C’. Since hyperbolic
cones are 40-quasiconvex, there exists p € H" such that dxn(m,(2),p) < C" + 44.
Similarly there exists ¢ € H" such that dxn(7m.(z'),q) < C' + 45. Therefore
d(i(mu(2)),i(mu(2")) < 2(C" +49) + 1. Taking Py = max{D’,2(C" + 49) + 1},
we have de(i(m.(2)),i(m.(2"))) < P Since f is a quasi-isometry, there ex-
ists Prasa(P)) > 0 such that dg(Fa(2), 7a(2) = dg(f(i(m,(2)), f(i(mu()) <
Py 50. O

Further, if z,y € X and dg(x,y) < 1 then similarly we can prove that there
exists a constant R > 0 (depending only upon ¢) such that d¢(7s(z), 7a(y)) < R.

Thus we have the following lemma:

Lemma 1.2.53. Let 6 > 0. There exists a constant P53 > 0 depending only upon
0 such that the following holds:

Let X be 0-hyperbolic relative to a collection Hx in the sense of Gromov and [
be an electric geodesic segment in X. Then for all z,y € X, de(Ta(x), maly)) <
Py as3dg(z,y) + Prass.

Note 1.2.54. Electric projection may not be a nearest point projection from an
electric space onto an electric geodesic but analogous to Lemma 1.1.32, the above

lemma says that electric projections does not increase the distance much.

As a consequence of Lemma 1.1.36, we have the following Lemma which says that
electric projections and strictly type-preserving quasi-isometries ‘almost commute’

in electric spaces.
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Lemma 1.2.55. Let 6 > 0 and v > 0. Suppose X1, Xy are two geodesic spaces such
that for each i = 1,2, X; is d-hyperbolic relative to the collection Hx, of uniformly
v-separated sets in the sense of Gromov. Let ¢: X1 — X5 be a stm’ctly type pre-
serving (K, €)-quasi- zsometry, <;5 be the induced quasi-isometry from X1 to XQ, 1 be
a quaszgeodeszc n X1 joining a,b and jiy be a quasigeodesic in Xg joining gb( ) to

g/g( b). Ifp € X, then d)?Q(WﬁQ(gg(p)),gb(wﬁl (p))) < Piass, for some constant P55
depending only on J, K, €, v.

Proof. Let ¢ € X1, 1 and s be electroambient representatives of ji; and jip respec-
tively. There exists P| 4, > 0 (by Corollary 1.1.37) such that

A (T, (9()), ¢(m, (@) < Py a7

Therefore dXh(m(cﬁ(Q)), (1, (9)) < dixp (s (0(0)), DMy (0))) < Py 7

Now the map f: X/ Xh )/(\2 is a quasi-isometry, therefore there exists

P{f1.37<]i1/.1.37) > 0 such that d; (T2, (6(q)), &(75, () < P1I{1.37/'\

If p € X, there exists p’ € X, such that dg, (p,p) < 1. As ¢ is a quasi-isometry,
dgz(gg(p), gz?(p’)) < S for some Sy > 0. From Lemma 1.2.53, there exists P; 253(51) >
0 such that dg (s, (), 7 (1)) < Prass and dg (T, (¢(p), Ta, (¢(P))) < Prass.
Since ¢ is a quasi-isometry there exists Ky > 0 such that d¢ (¢(7z, (p)), ¢(75, (p'))) <
KQ. Therefore d)’f2 (%ﬁQ ((b(p)), (b(%ﬁl (p))) S P1_2.53 —+ P{{1_37 + KQ. Takmg P1_2.55 =
Py 953+ P 5, + K5 we have the required result. O

1.2.2 Relatively Hyperbolic Groups

Let us consider two isometries a, b of H? such that it generate a free group, F(a, b),
which acts properly discontinuously by isometries on H? and the quotient space
H?/F(a,b) is homeomorphic to a once punctured torus S. Further, H?/F(a,b) is
quasi-isometric to the ray [0,00). Let K = m(S), then K = F(a,b). Let ' be the
Cayley graph of K with respect to the generating set {a, b}. Let p € OH? be the end
point of a lift of this ray to H? and K, be the stabilizer subgroup of p. For k € K,
let Hyp, denote the closed set in ['x corresponding to the left coset kK of K7 in K.
Then T'k is strongly hyperbolic relative to the collection Hy, = {Hyg, : k € K}.
Motivated by this example we give the definition of a relatively hyperbolic group.

The groups and its subgroups in the following definitions are assumed to be infinite.

Definition 1.2.56. (Gromov [Gro87])

(1) Let § > 0. A finitely generated group G is said to be §-hyperbolic relative to the
finitely generated subgroups Hy, ..., H, in the sense of Gromov (A) if it acts freely
and properly discontinuously by isometries on a proper d-hyperbolic metric space X
such that the following holds:
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(i) The quotient space X /G is quasi-isometric to union of n-copies of [0,00) joined
to 0.

(i1) Fori € {1,2,...,n}, there exists a lift r; : [0,00) — X of the ith copy of [0, 00)
such that H; is the stabilizer subgroup of r;(c0) € 0X. The subgroups H;’s are said
to be Parabolic or Cusp subgroups and the end points r;(c0) in 0X are said to be
parabolic end points.

(2) G is said to be hyperbolic relative to finitely generated subgroups Hy, ..., H, in the
sense of Gromov (A) if G is 0-hyperbolic relative to the finitely generated subgroups
Hy,...,H, in the sense of Gromov (A) for some 6 > 0.

Thus for a group G strongly hyperbolic relative to a subgroup H (in the sense
of Gromov (A)) there is a natural bijective correspondence between parabolic end
points and parabolic subgroups of GG. In fact, a parabolic end point corresponds to
a subgroup of the form aHa! for some a € G.

In reference to Definition 1.2.16, we have another definition of a strongly relatively

hyperbolic group.

Definition 1.2.57. Let § > 0. Let G be a finitely generated group and H be a finitely
generated subgroup of G such that the generating set of G contains the generating
set of H. G is said to be §- hyperbolic relative to H in the sense of Gromov (B) if
the Cayley Graph T'c is d-hyperbolic relative to the collection Hy = {K,n : a € G}
in the sense of Gromov (refer to Definition 1.2.16), where K,y is the closed set in
Lc obtained by left translating the Cayley graph 'y by a in T'q.

G is said to be hyperbolic relative to H in the sense of Gromov (B) if G is §-hyperbolic
relative to H in the sense of Gromov (B) for some § > 0.

Note that as the generating set of G contains the generating set of H, K,y is an
intrinsically geodesic closed subset of I'g and as I' is locally finite and symmetric

about each point, the elements of Hy are uniformly properly embedded.

Definition 1.2.58. (Farb [Far98]) Let 5> 0. Suppose G is a finitely generated
group and H 1is a finitely generated subgroup of G. Let I'q be a Cayley graph
of G. For each left coset gH of H in G, let Kyg be the corresponding closed
set in I'q. We say that G is weakly g—hyperbolz’c relative to the subgroup H if
[g is weakly g—hyperbolic relative to the collection of closed sets Hy = {Kyn :
gH is a left coset of H in G} (refer to definition 1.2.3).

The process of attaching a cone point to the closed set K,z above will also be

called as coning the left coset gH to a point.
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Lemma 1.2.59. (Corollary 3.2, [Far98]) Let G be a finitely generated group. Sup-
pose I'1, Ty are two Cayley graphs of G with respect to finite generating sets Sy, So
of G respectively. Let H be a subgroup of G. Then T, is quasi-isometric to fQ. In
particular, the property of a group G being hyperbolic relative to a subgroup H is
independent of the choice of generating sets for both G and H.

Recall that geodesics in the coned-off space E(I'¢, H) = fG were called as electric
geodesics. For a path v C I'g, there is an induced path 7 in fg; obtained by replacing
the portion of v inside a left coset by edge path of length 1 passing through the
cone point corresponding to that left coset. If 74 is an electric geodesic (resp. P-
quasigeodesic), v was called a relative geodesic (resp. relative P-quasigeodesic). If
~ passes through some cone point v(gH ), we say that 5 penetrates the coset gH.
Recall that 7 is said to be an electric (K, €)-quasigeodesic in (the electric space) Te
without backtracking if 7 is an electric K-quasigeodesic in 1'/‘5 and 7 does not return
to any left coset after leaving it.

The pair (G, H) is said to satisfy bounded coset penetration property if elec-
tric quasigeodesics without backtracking starting and ending at same points
in I'¢ have similar intersection patterns with elements from Hy = {Ku
gH is a left coset of H in G}.

Next we recall Farb’s definition of relatively hyperbolic group (in the strong

sense) from [Far98]:

Definition 1.2.60. (Farb [Far98]) Letd > 0. G is said to be 6-hyperbolic relative to
H in the sense of Farb if G is weakly g—hyperbolz’c relative to H and the pair (G, H)

satisfies bounded coset penetration property.

More generally, we can define a group hyperbolic relative to a finite set of sub-
groups. Let GG be a finitely generated group and let {Hl, v m} be a finite set of
finitely generated subgroups of G. We form a new graph TG = Fg(H 1y ey Hp) from
the Cayley graph ' of G as follows: for each left coset gH; (1 < i <m) of H; in G,
add a vertex v(gH;) to ', and add an edge of length of length 1 from each element
gh; of gH; to the vertex v(gH;). We call this graph fG the coned-off Cayley graph
of G with respect to {Hy, ..., H,, }.

Definition 1.2.61. [Far98] Let 5>0. A finitely generated group G is said to be
g—hyperbolic relative to a finite set of finitely generated subgroups {Hy, ..., H,,} in the

sense of Farb if the following conditions are satisfied:

1. The coned-off graph fg I8 g—hyperbolic.
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2. Any two geodesics in fg with same end points satisfy bounded coset penetration

properties with respect to each left coset gH;.

G is said to be hyperbolic relative to a finite set of finitely generated subgroups
{Hi,...,H,} in the sense of Farb if G is g—hyperbolic relative to a finite set of
finitely generated subgroups {Hy, ..., Hy,} in the sense of Farb for some 5> 0.

In [Bow97] (Theorem 7.10 of [Bow97]), Bowditch showed the equivalence of fol-
lowing two definitions:
Definition C1 : We say that a group G is hyperbolic relative to a set G of infi-
nite groups, if G admits a properly discontinuous isometric action on a path-metric
space, X, with the following properties:
(1) X is proper and hyperbolic,
(2) every point of the boundary of X is either a conical limit point or a bounded
parabolic point,
(3) the elements of G are precisely the maximal parabolic subgroups of G, and
(4) every element of G is finitely generated.
Definition C2 : We say that G is hyperbolic relative to G, if G admits an action on
a connected graph, K, with the following properties:
(1) K is hyperbolic, and each edge of K is contained in only finitely many circuits
of length n for any given integer, n,
(2) there are finitely many G-orbits of edges, and each edge stabilizer is finite,
(3) the elements of G are precisely the infinite vertex stabilizers of K, and
(4) every element of G is finitely generated.
In [Dah03], (Annexe A of [Dah03]), Dahamani showed that definitions C'1, C2 and
Farb’s definition 1.2.60 of relatively hyperbolic groups are equivalent. Farb (Propo-
sition 4.6, Proposition 4.10 of [Far98]), Szczepanski (Theorem 1 of [Szc98]), and
Bumagin (Theorem 1.6 of [BumO05]) showed that if a group G is hyperbolic rela-
tive to {Hy, ..., Hy,} in the sense of Gromov (A) then G is hyperbolic relative to
{Hy, ..., H,} in the sense of Farb. Conversely, Groves and Manning (Theorem 3.25
of [GMO08]) showed that if G is hyperbolic relative to {H, ..., H,,} in the sense of
Farb then G is hyperbolic relative to { Hy, ..., H,, } in the sense of Gromov (A). Thus,

we have the following theorem:

Theorem 1.2.62. ([Bow97], [Szc98], [GMOS], [Bum05]) G is strongly hyperbolic
relative to {Hy, ..., H,,} in the sense of Farb if and only if G is hyperbolic relative
to {Hy, ..., Hy} in the sense of Gromov (A).

The following theorem is the group theoretic version of Theorem 1.2.35 and
Theorem 1.2.48.
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Theorem 1.2.63. Let G be a finitely generated group and H be a finitely generated
subgroup of G such that the generating set of G' contains the generating set of H. G
is hyperbolic relative to H in the sense of Farb if and only if G is hyperbolic relative
to H in the sense of Gromov (B).

Note 1.2.64. Thus we have the following equivalence:
G is (strongly) hyperbolic relative to H in the sense of Farb < G is hyperbolic
relative to H in the sense of Gromov (A) < G is hyperbolic relative to H in the

sense of Gromov (B).

Definition 1.2.65. (Bowditch [Bow97]) Relative Hyperbolic Boundary: Let
G be a group hyperbolic relative to H, then by Definition 1.2.57, G acts properly
discontinuously on the hyperbolic space Tk obtained from T'¢ by gluing hyperbolic

cones. The relative hyperbolic boundary of G is the Gromov boundary, OT%, of Tk,
We denote the relative hyperbolic boundary of the pair (G, H) by oI'(G, H).

Bowditch in [Bow97] showed that if G acts properly discontinuously by isometries
on a proper hyperbolic space X and the action of G on 0X is geometrically finite
(i.e. every point of X is either a conical limit point or a bounded parabolic point)
and minimal (i.e. if the limit set AG = 0X) then 0X is homeomorphic to OI'(G, H).

1.2.3 Partial Electrocution

The notion of Partial Electrocution was introduced in [MRO08]. This is a modification
of Farb’s [Far98] construction of an electric space described earlier. In a partially
electrocuted space, instead of coning all of a horosphere down to a point we cone

only it to a hyperbolic metric space.

Definition 1.2.66. [MR08] Let 6 > 0,v > 0 and (X, H, G, L) be an ordered quadru-
ple such that the following holds:

1. X is a geodesic metric space and H = {H,, : o € A} is a collection of uniformly
v-separated, intrinsically geodesic and uniformly properly embedded closed sub-

sets of X. X is d-hyperbolic relative to 'H in the sense of Gromov.

2. L ={L, : a € A} is a collection of 6-hyperbolic geodesic metric spaces and
G is a collection of (uniformly) Lipschitz onto maps g, : Hy, — L, i.e. there
exists a number Pags > 0 such that dr,(9a(x), 9a(y)) < Pioesdn, (z,y) for
all x,y € H, and for all index .. Note that the indexing set for Hy, Lo, go 1S

comimon.
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The partially electrocuted space or partially coned off space PE(X, H,G, L)
corresponding to (X, H,G, L) is the quotient space obtained from X as follows:
PE(X, H,G, L) = X U (Ua(Hy x [0,1])) U (UaLa)/ U {(x,0) ~ 2, (x,1) ~ go(x) :
x € Hy}. (The metric on H, % [0,1] is the product metric.)

PE(X,H,G, L) is equipped with the quotient metric and the metric is denoted by

dper. In short, PE(X, H, G, L) will be denoted by X,

dyer is a metric: dp is indeed a pseudometric (Refer to [BH99]). Now, let z,y €
Xper such that dpe(x,y) = 0. If z (or y) lie outside sets in { H, x {0}, Hy x{1} : H, €
H}, then there exists 7 > 0 such that dpe(z, Hy X {0}) > n and dpei(x, Ho X {1}) > 71
for all H, € H. (Note that H, x {1} is identified with L, in X,). Therefore, =
must equals y. As dp, x[0,1)(Ha % {0}, Hy x {1}) = 1, therefore if x € H, x {j} then
y & Hy x {j+ 1}, where j € {0,1}(mod 2).
Now, let =,y € H, x {1}, then for 0 < ¢ < 1 there is a sequence of points
D05 G0y P15 G1s -y Pn, @n 0 Hy X {1} such that py = z,q¢, = vy; [pi, @] is a geodesic
in Hy x [0,1]; [9a(qi)s ga(pit1)] is a geodesic in L, and

Z dHax[0,1]<pi7Qi) + Z dro(9a(di); Ga(pit1)) < €

0<i<n 0<i<n-—1

As H, x [0,1] is equipped with product metric, therefore dpy,xp1(pi, %) =
dHax{l}(pia%‘)- Also, dr,, (ga<pi>7ga<%‘>> < P1.2.66dHa><{1}<pi7Qi)- Therefore,

dr,(9a(7),90(1) < Y di(9alpi), 9a(6) + D dr.(9a(4): ga(pis1))

0<i<n 0<i<n—1
< Piogge+e —0ase—0.

Hence go(2) = ga(y). Now go(z) = z and g,(y) = y in X,¢. Thus, x = y. Similarly,
if v,y € Hy, x {0} then x = y.

In Farb’s construction L, is just a point. Here, in our context partial electrocution
will occur in case of tree of coned-off spaces where L, will turned around to be a
tree.

In a hyperbolic metric space geodesics diverge exponentially, the following lemma

‘quasi-fies’ this statement:

Lemma 1.2.67. (Proposition 4.10, [Mit98b]) Given 0, Ag > 0, there exists 01267 >
1, Byagr > 0 such that if [x,y], [y, 2], [z, w] are geodesics in a §-hyperbolic metric
space (Z,dz) with (x,2), < Ao, (y,w), < Ay and dz(y,z) > Bi267, then any path
joining x,w and lying outside a D-neighborhood of |y, z| has length greater than or

equal to oy ¢-dz(y, 2), where D = min{dz(z, [y, 2]) — 1,dz(w, [y, 2]) — 1}.
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Corollary 1.2.68. Given 6 > 0, there exists 01968 > 1, B1ags > 0 such that the
following holds:

Let (Z,dyz) be a §-hyperbolic metric space, x,y € Z and X be a geodesic segment in Z
such that dz(my\(z), mx(y)) > Bi.aes then for any path joining x to y and lying outside
a D-neighborhood of [x,y] has length greater than or equal to oy gsdz(ma(x), mr(y)),
where D = min{dz(z, m\(z)) — 1,dz(y, m\(y)) — 1}.

Proof. Consider the triangle Axmy(x)m\(y). Since Z is 6-hyperbolic, triangles are §-
thin. Therefore, there exist wy € [z, mx ()], wa € [mr(x), TA(y)], w3 € [x, mA(y)] such
that diam{wy, we, w3} < §. Since ) is a nearest point projection, dz(wy, m\(z)) < 0.
Thus, (2, ™\(Y))r\ (@) = dz(wr, ma(x)) < 6. Similarly, (y, mA(2))r, ) < 6. By Lemma
1.2.67, we have the required result. O

Corollary 1.2.69. Given 0,Q > 0 there exist B1agg > 0,01.969 > 1 such that the
following holds:
Let (Z,dz) be a d-hyperbolic metric space and S be a Q-quasiconver set. Suppose
x,y € Z and dz(ws(x), ms(y)) > Biago. Let B be any path in Z joining x to y such
that 3 lie outside D-neighborhood of S, where D = min{dz(z, ms(x)),dz(y, ms(y))},
then

12(8) > 01ag  dz(ms(x), ms(y))

Proof. Let A be a geodesic segment joining mg(z) and mg(y). It is proved in
the first part of the proof of Lemma 1.1.31 that dz(ms(z),m\(z)) < 3§ + @
and dz(ms(y), ma(y)) < 30 + Q. Let Biasgy = max{Biags — 2(30 + @),4(30 +
Q)}. Since dz(ms(x), 7s(y)) > Biaee, we have dz(my(x),m\(y)) > Bioes and

dz(ma(x), mA(y)) > idz(ms(z),ms(y)). Since B lie outside D-neighborhood of S,
it lie outside (D — @)-neighborhood of A. Therefore by Corollary 1.2.68, we have

12(B) > 015 dz(ma(@), m(y)).

Then,
1 o
I2(8) > 5052.(% (s (x), ms(y)).

01.2.68, Wwe have the required result. OJ

Taking 01269 = T
2D-Q-1

Partially Electrocuted Space is Hyperbolic

Throughout this subsection, we assume that
e X is a geodesic metric space,
e v > 0 and H is a collection of uniformly v-separated, intrinsically geodesic and

uniformly properly embedded closed subsets of X, and



61 1.2 Electric Geometry

e G(X,H),E(X,H) are geodesic spaces.

Recall from Lemma 1.2.24 that the hyperbolic cones H" are 46-quasiconvex.

Lemma 1.2.70. Let 6 > 0 and X be d-hyperbolic relative to the collection 'H in the
sense of Gromov. If X be a geodesic in G(X,H), then the followings hold:

1). Let N()\) denote the union of A and hyperbolic cones penetrated by A then N(\)
is a Q1.9.70-quasiconvez set in G(X, H) for some Q1270 > 0 depending on 0.

2). Let Nx(\) = N(A\) N X, then Nx()) is a Q1 5 7o-quasiconvez set in X for some
Q1270 > 0.

Proof. 1). Let x,y € N()\) and [z,y] be a geodesic in G(X,H) = X" joining =
and y. We assume z,y lie on different hyperbolic cones H?, H} respectively. Fix
p € N(A)NH! and ¢ € N(A\)NH}. Let i be an electric geodesic in X joining x and
y. Let x; be the exit point of i from H" and y; be the entry point of i respectively
to H. We join p to z; by an edge path e, of length 1 and join ¢ to y; by an edge path
e, of length 1. Let fi; be the concatenation of e,, subsegment of i joining x1,y;
and e,; then [y is a (1,2)-quasigeodesic path without backtracking. By Lemma
1.2.50, there exists (Q1.2.50 > 0 such that any electroambient path representative pi;
of iy and A lie in Q.2 50-neighborhood of each other. Let p be an electroambient
path representative u of ji, then the subsegment of p joining x1,y; lie in the Q1250
neighborhood of A and hence p lie in (1 5 50-neighborhood of N()\). Also, by Lemma
1.2.50, geodesic [z,y] in X" lie in the Q.9 50-neighborhood of p, therefore [x,y] lie
in 20 2.50-neighborhood of N(A).

If 2,y lie in same hyperbolic cone H”, then as hyperbolic cones are 45-quasiconvex,
[z, y] lie in 46-neighborhood of N(\). Taking Q1270 = max{2Q1.2.50,4d}, we have
the required result.

2). Let Q = Q1.2.70. For 0,Q > 0, there exists Bjagg > 0,01.269 > 1 such that the
Lemma 1.2.69 holds.

Let a,b € Nx(A) and « : [0,dx(a,b)] — X be a geodesic in X joining a and b.
Let [s,t] be a maximal subinterval of [0,dx(a,b)] such that «lj, lie outside a D-
neighborhood of Nx()) in X" (D will be chosen later).

Let B = 1+ Bjage. We partition [s,t] by points s = py < p1 < ... < pp_1 <
pn = t such that dyn(myoy(a(ps)), Tvoy(a(piy1))) = B for 1 <4 < n — 2 and
dxn(mnoy ((Pr—1)), Tvoy (a(pr))) < B. Let di = dxn(a(ps)), mvoy(a(pi))). Now
Let 0 = 01969. Assume d; < d;; 1, then by

consider the subsegment o/, ;.. -
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corollary 1.2.69, we have

IN

Ixn (O‘ [Pi,pz'ﬂ])

= lX(a|[pi,Pi+1}) (1'3)
= dx(a(p), a(pit1))-

o den (mv o (a(pi), vy (a(Pise)))

Now D < d;, therefore

IN

oP= 9 g (mvey (i), Ty (e(pisa)) dx (a(pi), a(pit1))

forl1 <i<n-2.

Therefore by triangle inequality,

dxn (T (a(s)), Ty (@(Pna1))) < spo=rdx (e(s), a(pni))-

Now dxn(mney(a@(pi)), Tvpy (@(piti))) = B for 1 <i <n—2and

dxn(mnoy (@(pr-1)), vy ((pn))) < B. Since X is properly embedded in X", there
exists By > 0 such that dx(mnoy(a(ps)), Ty (a(piyr))) < By forall 1 < <n — 1.
For1<i:<n-2,

IA

dx (mnoy (@(pi), Ty (a(pir)) By
< Bidxn (7TN()\) (Oz(p@-)), TN(N) (Oé(le))).

By triangle inequality,

IN

dx (mney (a(s)), Ty (a(t))) Bidxn (e (a(s)), vy (a(pa-1))) + B

Bi( gy )dx(0(s), alper)) + By

1
Now dxn(a(s), mypy(a(s))) < D ,dxn(a(t), tnoy(a(t))) < D. Since X is prop-
erly embedded in X", there exists Di(D) > 0 such that dx(a(s), Ty (a(s))) <
Dy dx(a(t), mvoy(a(?))) < Di
Therefore, dx(a(s), a(t)) < 2D1 + dx(mypy(a(s)), Ty (a(t))).
Thus,

IN

IN

(2D1 + Bl)O'D_Q_l
dx(a(s), a(t)) < P

We choose D such that ”~9~! — B; > 1. Thus lx(a|s) < (2D1 + By)oP~@71
Let W = (2D + By)oP~97!. Taking Q},, = D1 + %, we have the required
result. ]

Remark 1.2.71. With the notation as Lemma 1.2.70, by equation (%), we have that
if a:[0,1] — X is a path in X such that « lie outside a D-neighborhood of N(X) in
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X" then there exist o > 1, By > 0 (where o, By depend only upon the hyperbolicity
constant & of X" and the quasiconvex constant Q = Q1970 of N(\)) such that

dx(mn((0)), Ty (a(l))) < (W)ZX(OZ) + By.

Corollary 1.2.72. Letd > 0 and X be d-hyperbolic relative to the collection H in the
sense of Gromov. For a k-quasigeodesic path p in X", there exists Q1.2.72(0,k) > 0
such that

(i) N(u) is a Q.9.72-quasiconvez set in X",

(ii) Nx(p) :== N(u) N X is a Q] 5 7o-quasiconver set in X.

Corollary 1.2.73. Let (X, H.G.L) be quadruple as in Definition 1.2.66, then H, €
H, L, € L are quasi-isometrically embedded in X and X, respectively.

Proof. By Proposition 1.1.9, we can assume X, to be a connected graph of edge
length one. As (X,H) and (X, £) are strongly relatively hyperbolic space, by
Lemma 1.2.70, H,, L, are quasiconvex in X, X, respectively. H, is properly em-
bedded in X by hypothesis, therefore H, is quasi-isometrically embedded in X. To
see L, is properly embedded in X, let z,y € L, such that dx ,(z,y) < M and
Ap be a geodesic in X, joining z,y. Now Ix ,()\,) = l)?;l()\p), therefore )\, is a
(1, M)-tamed path in )/(p\el. Let A; : [0,1] = X, ¢ <@ < N, be N components
of A\, \ L, and /):Z be the coned-off path in )/(p\el obtained from J;, then each /):, is a

(1, M)-tamed path without backtracking in X,.;. By similar intersection pattern 2,
for all 4, d_(X;(0),\;(1)) < I for some I > 0. Thus,

dra(ey) < 30 d O M)+ S di, (1), A (0)) < NI+ M,
1<i<N 1<i<N-1
As X, is a graph, N < M. Therefore, d; (x,y) < MI+ M. Thus, L, is properly

embedded in X, and hence quasi-isometrically embedded in X ;. ]

Remark 1.2.74. Note that in the proof of the Lemma 1.2.70, if the geodesic av in X
15 replaced by a K-quasigeodesic for some K > 1, then also there exists Q1074 > 0
such that « lies in the QQq.2.74-neighborhood of Nx(\). (Without loss of general-
ity, by Lemma 1.1.23, we can assume that o is a K-tamed path. At equation 1.3,
incorporate Lx (ap, p..11) < Kdx(a(p:), a(piv1)) + K, rest of the argument is similar)

Let j : X — X, denote the inclusion. We define a map 3 X = )?p\el as follows:
If z € X, then define j(z) = j(x).

If z is a cone point over some horosphere-like set H,, then define i(z) as the cone

~

point over the hyperbolic space L.
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Let h € Hy and e : [0, 3] — X be the edge of length 5 joining h € H, € H and the
cone point v(H,) over H, and let ¢ : [0, 3
g(h) € L, and the cone point v(L,). If z = e(t), where t € (0,3] , then define

J@) = (0.

] = Xpe be the edge of length 3 joining

Let xz,y € X, then there exists a sequence of points in © = pg, qo, s P, @n = Y
in X such that for each i, [p;, ¢;] is a geodesic in X and [g;, pi11] is a geodesic in the
coned-off space H; for some H; € ‘H; and

Z dx (pi, q;) + Z dg(qi, piv1) < dg(z,y) + 1.

1<i<n 0<i<n—1
Now ¢;,pir1 € H; and recall that H; x {1} identified with L;. Let e; be the edge
path of length one joining (p;, 1), (¢;, 1) and passing through the cone point v(L;)

over L;. Then for each i, o = [gs, (¢;,1)] U €; U [(pit1,1), pis1] is a path in X, of
length 3. Therefore,

dper(w,y) <> dx(pigi) +3n

1<i<n

< (dg(z,y)+1)+3

(d)?(j“,y) )

3
Similar to the proof of Lemma 1.2.28, we have dg(z,y) < dg— (z,y)(1 + ;) + 2.
Thus, we have the following lemma:

Lemma 1.2.75. There exist K1 975 > 1,€1.975 > 0 depending on v such that}\ 1S a

(K1.9.75, €1.2.75) -quasi-isometry.

Thus, if X is a hyperbolic metric space then so is )/(p\el. Also, note that if
dy (x,y) < D for any z,y € H, € H then d;_(ga(x),9a(y)) < PiogsD. Hence,
quasigeodesic paths in )?p\el satisfy similar intersection pattern with horosphere-
like sets in L if quasigeodesic paths in X satisfy similar intersection pattern with
horosphere-like sets in H. Thus, if X is hyperbolic relative to H in the sense of Farb,
then X, is hyperbolic relative to £ in the sense of Farb. Therefore, by Theorem
1.2.35, there exists 6,(d,v, Piags) > 0 such that the space X, = G(X,u, £) is a

p
0,-hyperbolic metric space.

Let i = (M) then i\ Uy, cr(Ha % [0,1]) = A\ Uy cre Ha- Let
o N (/)\\) be the union of A’ and the hyperbolic cones from H” intersected by /)\\, where

A =X\ Upen Ha-
e N(fi) be the union of i\ U, ., La and the hyperbolic cones L} intersected by fi.
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e Nx(A) := NN X and Ny (7)) := N(B) N Xper

By Lemma 1.2.50 and Corollary 1.2.72, N (A ) is Q1.2.7o-quasiconvex in X" and NX()\)
is Q1 5 7o-quasiconvex in X. Since X, is d,-hyperbolic relative to £, therefore there
exist Qp(dp), Qp(0,) > 0 such that N(f) is Qp-quasiconvex in X!, and Nx (i) is

Qzl,-quasiconvex in X,e

Lemma 1.2.76. Let K > 1. Let z,w € NX( ) and Bpe be a K-tamed path in X,
joining z,w. Then the following holds:

1) There ezists Qo726 > 0 such that By C thprel(NX(X);Ql_Qm) and N\ C
Nbhdx,,,(Bpet; Q1.2.76) - ~

2) Let H € 'H be a horosphere-like set that [3,.; intersects but X\ does not, then the
H-distance between the first entry point and last exit point of Bpe to H is at most

L2076 for some I 976 > 0 depending on the hyperbolicity constant § of X" and K.

Proof. 1) Let p = }\(/):) as above. From Remark 1.2.74 it follows that there ex-
ists Q@ = Qi274 > 0 such that 3, C Nbhdx,,(Nx,,, (11); Q). Now the Haus-
dorff distance between Nyx () and N X, (1) in Xpe is at most one. Therefore,
Bpet © Nbhdx,(Nx(N); Q + 1),

Second part: Let [, be defined on the interval [[,m]. Let | = 55 < s1 < ... <
[Siflvsi]) =1
and lXpel(ﬁpelhsn Ls]) < 1. For each i, there exists ¢ € Nx, () such that
dx,., (Bper(8i), ;) < Q. Now there exist ¢; € 1 such that d— (ql,qz) < 1. Let

i; be the subsegment of i joining ¢; and ¢;41. If ¢;, g1 does not lie on the same

s, = m be a partition of [I,m] such that for all i < n, Ix,,(Bpe

horosphere-like set, then due to similar intersection patterns of [p;, p;|Ui;U[Dis1, pisi]
and Bperls,s,.,) With the sets in £, there exists Q" > 0 such that 1\ Ug,en(Ha X
0,1]) © Nbhdx,,, (Bpetlis,_1,0; Q) Now i \ Upen(Ha x [0,1]) = A, thus for
x € A\ there exist ¢ and 2’ € Bpetlisi_1,si] C Bpe such that dx ,(z,2") < Q'. Taking
Q1076 = max{Q + 1,Q’}, we have the required result.

2) From above, for each i, there exists p; € Nx (X) such that dx_ ., (Bpe(si), pi) < Q+1.
Then dx,,, (pi; piv1) < 2(Q+1)+1. Now Ny (X) is properly embedded and quasicon-
vex in X, hence it is quasi—isometrically embedded in X,;. Thus, for each ¢, there
exists a path \; C NX()\) joining p;, pi41 such that Ix ,(A\;) < Q] for some Q/ > 0.
Let A\, be the concatenation of paths \; and Q; = Q21 + @, then )\, C NX()\) with
end points z,w and A\, C Nbhdx,,(Bper; Q1)-

Let A\, be defined on the interval [0,1], then for each s € [0,1] there exists
ps € Bpe such that dx (N.(s),ps) < Q1. Let [so,%9] be a maximal subinter-
val of [0, 1] such that A | C Nbhdx,,,(H;Q1). Due to maximality of [s, o],
there exist ps,, P, € Bpe such that geodesics [Ao(S0), Psols [Ma(to), Pry] In Xper does
not penetrate H but dx ,(A(s0), ) < @ and dx,,,(Aa(to), H) < Q1. Hence

[s0,t0]
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df;l(Aa(So),Aa(to)) < 2@Q; + 1. Suppose X, is the subsegment of A, joining
Aa(50), Aa(to), then the coned-off path X intersects at most 2¢);+1-many horosphere-
like sets. Let N([Aa(S0),Ps,]) be the union of
e subsegments of [A,(so), ps,] lying outside horosphere-like sets and are in X and
e horosphere-like sets in X penetrated by [\, (So), Pso]-
Note that N([Aa(s0),ps,]) C X and similarly N([A. (o), ps,]) is defined. As lengths of
subsegments of [A,(s0), ps,] lying outside horosphere-like sets are uniformly bounded
in X" hence they are all uniform quasigeodesics in X".
Let my : X — H be a nearest point projection. Now horosphere-like sets are mu-
tually co-bounded and visually bounded. Therefore there exists I ,,, > 0 such
that the diameter of the set mgy (N ([Aa(S0),Pso]) U AL U N([Aa(to), pto])) is at most
I} 5 76 (proof of this fact is same as the proof of property 1 of Lemma 1.2.44). Thus
A (71 (Pso) 71 (Pro))) < o760
Note that dx,.,(Pso, Tu(ps,)) < 2Q1 and dx,., (P, Tu(py,)) < 20Q;. Hence
dx,.,(Dso Pto) < 2Q1 + Ily7 +2Q1 = 4Q1 + I, 7. Let 8, be the subsegment
of By joining ps, and py,, then as B, is a K-tamed path, we have Ix ,(3,,) <
41K + 1] 57+ K. Let @; be the coned-off path in X obtained from 3,1 by replac-
ing all the subpaths joining the first entry point and last exit point to horosphere-
like sets in ‘H by edge pat}is\of length one. Then as length of 3, is at most
AWK + I 5 76K + K, hence 3, is a (1,4Q, K + I} 5 74K 4 K)-tamed path. Suppose
xm,ypm are the entry and exit points respectively of 3, to H then x g, yy respectively
are also the entry and exit points of @; to H. By applying Lemma 1.2.33, there
exists Iy 233 > 0 such that dg(zy, 7y (ps,)) < l1233 and dg(yg, 7u(py,)) < I1.2.33-
Hence dp(vp,yu) < Doz + Liore + Loz = 2la33 + I{ o7 Taking Tiozs =
211 933 + I} 5 75, we have the required result.

U

Theorem 1.2.77. [MR08, MP] Let 6 > 0 and suppose X is d-hyperbolic relative
to H in the sense of Gromov. For (X, H,G,L) an ordered quadruple as in Defini-
tion 1.2.66 above, (PE(X, H,G, L), dpe) is a 8V% .-hyperbolic metric space for some
6P >0 depending on 0, Py o6, V.

Proof. To prove hyperbolicity of (X, dper), it suffices to prove that for all K > 1
there exists W = W(K) such that for all a,b € X, K-quasigeodesics bigons in
Xper are W-thin, i.e, they lie in W-neighborhood of each other in X,.;. We assume
a,b € X as Hausdorff distance (in the metric d,;) between X and X, is at most
one. Let (3, (2 be two K-quasigeodesics in X, joining a,b and ) be a geodesic
in X joining a,b. In view of Lemma 1.1.23, we can assume [3;, 35 to be K-tamed

quasigeodesic path.
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Now f; (resp. (32) and ) track each other outside a (1.2.76-neighborhood of
horosphere-like sets in X, hence 3; and ([, track each other outside Qi.2.76-
neighborhood of horosphere-like sets in X,;.

Let (71, 35 be the portions of (3, B respectively, lying inside () 2.7¢-neighborhood of
a horosphere-like set L in X,,. Note that the Hausdorff distance between L and
Nbhdx,,,(L; Q1.2.76) is at most Q1.0.76. As L is hyperbolic, Nbhdx,,(L; Q1.2.76) is also
a hyperbolic space. Since the end points of ], 35 are at a bounded distance from
each other in X, therefore by stability of quasigeodesics, (31, 35 lie at a bounded
distance from each other in Nbhdx,,(L; Q1.2.76). Thus there exists W = W(K) > 0
such that the Hausdorff distance between (8, and 3, in X, is at most W. Hence
X

pel 1S @ hyperbolic metric space. O

Lemma 1.2.78. [MROS][MP]

Let 6 > 0 and suppose X is §-hyperbolic relative to H in the sense of Gromov. Let
(X, H,G, L) be an ordered quadruple as in Definition 1.2.66 above.

Let Bper = [a,b] — Xpe and X le,d] — X (resp. A : [c,d] — X") denote respec-
tively a (K, €,)-quasigeodesic path in (Xpe, dper) and a geodesic in ()?,d)?) (resp.
(G(X,H),dxnr)) joining p,q € X. Then there exists Q1073 > 0 depending on
8, v, Ky, €, such that for v € \b = 2\ Unen int(HL) (resp. € M\ Upen Ha)
there exists y € By = Bper \ Up e (Ha % [0,1]) such that dx(x,y) < Q1a7s.

Proof. Without loss of generality, by Lemma 1.1.23, we can assume (3, to be
(K, €,)-tamed quasigeodesic path. Recall that N (/):) is (Q1.2.72-quasiconvex in X"

Let @ = Qr2.72.
First we prove that there exists R, > 0 such that each component of Bp’jel lie in the

R,-neighborhood of Ny (/):a) in X:

Let 3., be a maximal subsegment of 3,. such that 3 ., does not intersect the sets
of the form H x [0, 1] penetrated by A, where H € H and H x [0, 1] as in Definition
(1.2.66) of partial electrocution, then the end points of 3, lie on Ny (X) Let /3! be
a path in X obtained from 3, by first removing each portions of 3, lying inside
the sets of the form H x [0, 1] and then joining the first entry point and last exit
point to H by a geodesic in H. Let 5/ be a maximal subsegment of (3, lying outside
R-neighborhood of N(/):) in X" (R will be chosen later). Suppose p”,q" are the end
points of 3, then dXh(p”,N(X)) = R and dxn (q”,N(X)) = R. As X is properly
embedded in X" therefore there exists R; > 0 such that dx(p” Ty (P) < R
and dX(q”,WN(;)(C]'/)) < R;. By Lemma 1.2.76, there exists I = I; 57 > 0 such
that the length of the subsegment of 37 lying on a horosphere-like set in X is at
most I. Thus, there exist 2”,y"” € (/ lying outside horosphere-like sets such that

dx(p”,2") < T and dx(q",y") < I. Let 3, be the subsegment of 3/, joining 2" and
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2

y".
lXpez (ﬁzl)/el) < Kdepez (x//’ y”) + €
< Kpdx,, (0", ") +2K,1 +
< Kp{2R, +dx,, (WN(X) "), WN(X)(C]”))} +2Kp1 + ¢
< Kp{2R: + dX(WN(X) ®"), 7TN(X)(QH))} + 20 + ¢
< K {2R, + Biem B9V (3") + By} 4+ 2K,I +¢,, by Remark 1.2.71.

"
Xpel (ﬁpel)
v

then P < : +
1. Let Ix(B!\ UgerH) be the sum of the lengths of the connected components of

Let P be the number of horosphere-like sets penetrated by

i
pel’
BY lying outside horosphere-like sets. Then from above, we have

Ix,. (Bhy) < K {2Ry + Biem "9 V(Ix(8) \ UperH) + PI)} + 2K,1 + ¢,

p

l 1
< K2R+ Bue 0 (1 (1) + 1 Xt

pel

+1))}2K,1 + ¢,.

Thus,

1
lXpez(ﬁgel){l - er_(R_Q_l)(Bl + =)} <2K,R + Ble_(R_Q_l)KpI + 2K, + €p.
v
We choose R sufficiently large such that 1 — Kye~#=9=D(B; + 1)) > 1 then for
that R, we have, Ix ,(8) < 2(2K,R; + BiemB=Q-VE [+ 2K, I +¢,) =W (say).
Thus, Ix (8 \ UgenH) < W and P <% + 1. Thus Ix(8!) <W + (£ + 1)1
Let L = W + (2£ + 1)I. Now consider the path 3, in X obtained from S, by

replacing the subsegment of [, lying on sets of the form H x [0, 1] by geodesics

1
29

in H joining the first entry point and last exit point to H. Let R, = R + é, then

-~

Ba C Nbhdx(Nx(N); R,).

Let [I,m] be the domain of 3, and | = sy < s1 < ... < s, = m be a partition of
[1,m] such that for all i < n, Ix(Balfs;_1,6)) = 1 and Ix (Balis,_1.sn]) < 1. As Nx(N) is
quasiconvex and properly embedded in X, similar as the proof of second part in (1)
of Lemma 1.2.76, by projecting /3,(s;) to Nx (X), we obtain a path A, C Nx (X) such
that A\, \ UgenH = A\’ and )\, C Nbhdx(Ba; R,) for some R! > 0. Now if H is a
horosphere-like set that 3, intersects but A\, does not, then the H-distance between
the entry and exit points of 8, to H is at most . Taking Q1275 = max{R,, R, + é},

we have the required result.

As X and A track each other outside horosphere-like sets, therefore the Lemma is

also true for the geodesic \ in X". O



69 1.3 Trees of Spaces: Hyperbolic and Relatively Hyperbolic

1.3 Trees of Spaces: Hyperbolic and Relatively
Hyperbolic

Let S be a manifold and ¢ : S — S be an orientation preserving homeomorphism.
Let M be a manifold fibering over the unit circle S' with fiber S, i.e.

S x [0, 1]
-~ {(@,0),(¢(x),1) : 2w € S}

Suppose S and M are universal covers of S and M respectively. Then M is home-
omorphic to S x R. Now R can be treated as a tree with vertex set as Z and the
interval [i,i 4+ 1] as an edge between i and i + 1. For each i € Z, let S; = S x {i}
(called a vertex space). Let e(i) be the mid point of the interval [i,i + 1] and let
ge(i) = 5 x {e(i)} (called a edge space). Then M can be viewed as a tree of spaces
with vertex spaces gi, edge spaces ge(i). Edge spaces §e(i) are identified to the vertex
spaces §, by a lift gz;e(i) of the map ¢ to the universal cover.

Now, let S be a closed hyperbolic surface of genus greater than equal to 2, then
S = H2. ¢ induces an automorphism ¢, of the fundamental group m;(S) of S and
¢, induces a quasi-isometry on the Cayley graph of m;(S). Now 7 (.S) acts properly
discontinuously and cocompactly on H?, therefore H?(= S ) is quasi-isometric to the
Cayley graph of m1(S). Hence there exists a (K, €)-quasi-isometry d:5 — S in
duced by ¢ for some K > 1 and € > 0. Thus M can be regarded as a tree of spaces

with edge spaces identified to vertex spaces by a quasi-isometry.

Definition 1.3.1. (Bestvina-Feighn [BF92]) Let K > 1,¢ > 0. P: X — T is said
to be a tree of geodesic metric spaces satisfying the (K, €)-q(uasi) i(sometrically)
embedded condition if the geodesic metric space (X,dx) admits a map P : X — T
onto a simplicial tree T', such that there exist € and K > 0 satisfying the following:
1) Forall s € T, X, =P '(s) C X with the induced path metric dx, is a geodesic
metric space Xs. Further, the inclusions iy : Xy — X are uniformly proper, i.e. for
all M > 0 there exists N > 0 such that for alls € T and z,y € X, dx(is(x),is(y)) <
M implies dx (x,y) < N.

2) For a vertex v in T, X, = P~!(v) will be called as vertex space for v. Let e be
an edge of T with initial and final vertices vi and vy respectively. Let X, be the
pre-image under P of the mid-point of e, X, will be called as edge space for e. There
exist continuous maps fe: X.x[0,1] — X, such that fe|x.x0a) i an isometry onto
the pre-image of the interior of e equipped with the path metric. Further, f. is fiber-
preserving, i.e. projection to the second co-ordinate in X.x[0,1] corresponds via f,

to projection to the tree P: X — T.
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3) Let vy, vy be end points of e. felx.xqoy and fe|x.xqy are (K, €)-quasi-isometric

embeddings into X,, and X,, respectively. fe|x.xqo1 and fe|x. gy will occasionally

be referred to as fe,, and f..,, respectively.

Let 6 > 0. A tree of spaces as in Definition 1.3.1 above is said to be a tree of
d-hyperbolic metric spaces, if X,, X, are all §-hyperbolic for all vertices v and edges
eof T.

o Define ¢y e: fen (Xe) = fen(Xe) as follows:
Ifpe foo (Xe) C X, , choose z € X, such that p = f., (z) and define ¢, .(p) =
fe,v($)'

Note that in the above definition, x is chosen from a set of bounded diameter.

Since fe, |x, and f.,|x. are quasi-isometric embeddings into their respective
vertex spaces ¢, ’s are uniform quasi-isometries for all vertices.

Now, let S be a hyperbolic once punctured surface with finite volume. m;(S)
acts properly discontinuously on H? and S = H2. Let N denote S minus cusps
and B be the collection of horodisks in H? such that each element B of B projects
down to the cusp under the quotient map ¢ : H*> — H?/m(S) , then N is equal
to H? minus horodisks in B. m;(S) acts properly discontinuously and cocompactly
on N , therefore N is quasi-isometric to the Cayley graph of m(S). Let ¢ : § — S
be an orientation preserving homeomorphism fixing the puncture. Then qﬁ; .S — S
preserves corresponding horodisks. Therefore gg induces a (K, €) quasi-isometry d

N — N. Let N = N/m(S) and N, = {(x,O),é;;z(ac[g):ll)}:a:eN}' Then J% can be treated as

a tree of spaces with vertex spaces and edge spaces homeomorphic to N.

Definition 1.3.2. Let 6 > 0,v > 1,[? > 1,€>0 and X be a geodesic space. A tree
P: X — T of geodesic metric spaces is said to be a tree of d-relatively hyperbolic
metric spaces if in addition to above three conditions of Definition 1.3.1, we have
the following conditions:

4) for each vertex space X, (resp. edge space X.) there exists a collection H, (resp.
H.) of uniformly v-separated, intrinsically geodesic and uniformly properly embedded
closed subsets of X, (resp. X.) such that X, (resp. X.) is d-hyperbolic relative to
the collection H, (resp. He) in the sense of Gromov,

5) the maps fe,, above (i = 1,2) are strictly type-preserving, i.e. f;q}i(Havi),
i = 1,2 (for any Hy,, € Hy,) is either empty or some Hg. € H.. Also, for all
Hg. € H,, there exists v and Hy,, such that f..,(Hge) C Hayp, and

6) the induced maps (see below) of the coned-off edge spaces into the coned-off vertex
spaces j/’e; 1 E(Xe, He) — E(Xo,, Hy,) (1 =1,2) are uniform (K, ¢)-quasi-isometric

embeddings. This is called the qi-preserving electrocution condition
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We shall denote (X, H,) = 5(7, and £(X,, H,) = )/(\e

Given the tree of relatively hyperbolic spaces with vertex spaces X, and edge
spaces X, there exists a naturally associated tree of spaces whose vertex spaces
are £(X,, H,) and edge spaces are £(X,, H.) obtained by simply coning off the re-
spective horosphere-like sets. Condition (5) of the above definition ensures that we
have natural inclusion maps of edge spaces £(X,, H.) into adjacent vertex spaces
E(Xy, Hy). The resulting tree of coned-off spaces P : 7C(X) — T will be called
the induced tree of coned-off spaces. The resulting space will be denoted by 7C(X)
when thought of as tree of spaces.

Let v > 1. Note that by condition (4) of the above Definition 1.3.2, as each vertex
space X, (resp. edge space X.) is d-hyperbolic relative to the collection H, (resp.
H.) of v-separated sets, therefore by Theorem 1.2.48, there exists /5\1.2_48 such that
each coned-off space (X, H,) (resp. E(Xe, He)) is 31,2_48—hyperbolic. By Lemma
1.3.4 (proven below), the spaces £(X,,H,) are uniformly properly embedded in
TC(X). Thus P: 7C(X) — T is a tree of 3\1.2_48-hyperbolic metric spaces.

The cone locus of 7C(X), (the induced tree of coned-off spaces), is the graph
(in fact a forest) whose vertex set V consists of the cone-points in the vertex set
and whose edge-set £ consists of the cone-points in the edge set. The incidence
relations are dictated by the incidence relations in 7". To see that the cone locus is
a forest, note that a single edge space cannot have more than one horosphere-like
set mapping to a common horosphere-like set in a vertex-set. Hence there are no
induced loops in the cone locus, i.e. it is a forest.

Note that connected components of the cone-locus can be naturally identified

with sub-trees of T. Each such connected component of the cone-locus will be
called a maximal cone-subtree. The collection of maximal cone-subtrees will be
denoted by 7 and elements of 7 will be denoted as T,,. Further, each maximal cone-
subtree T, naturally gives rise to a tree T}, of horosphere- like subsets ©,, (depending
on which cone-points arise as vertices and edges of T,) as follows:
Let z, € V(T,), then z, is a cone point over a unique horosphere-like set H,, for
some vertex space X, and similarly for an edge e = [wy, ws] € E(T,) there exists a
unique horosphere-like set H,. in some edge space X, such that fe. ., (Hae X {0}) =
Heow, and fep,(Hae X {1}) = Hay,. Define

Ou = (Us,ev() Haw) U(UeGE(Ta)fe<Hae x (0,1)))-

O, will be referred to as a maximal cone-subtree of horosphere-like spaces.
Jo = Plo, : ©, — T, will denote the induced tree of horosphere-like sets. G will

denote the collection of these maps. The collection of ©,’s will be denoted as C.
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Lemma 1.3.3. There exists ¢ > 0 such that C is uniformly (-separated.

Proof. Let ©,,03 be two distinct elements of C. Let x € ©, and y € ©g. If z and
y lie in different vertex spaces, then dy(z,y) > 1.
First, let there exist two distinct edges e;, €5 incident on a vertex v such that P(x) €
e1,P(y) € ey. Since X, is properly embedded in X, there exists a non-negative
function €(n) — 0 as n — oo such that the following holds: if dx(z,y) < &, then
there exist z, € O, N X,, y, € O N X, such that dx, (z,,y,) < €(n).
But horosphere-like sets in X, are uniformly v-separated, where v > 1, therefore
there exists ¢; > 0 such that dx(©,,03) > (;.
Now, let P(z) and P(y) lie on a same edge e (resp. vertex v) of 7. Similarly as
above, since X, (resp. X,) is properly embedded in X and horosphere-like sets in
X, (resp. X,) are uniformly v-separated, therefore there exists (s > 0 such that
dx(0a,05) > Go.
Let ¢ = min{1, (1,2}, then C is uniformly (-separated.

O

Consider the partially electrocuted space PE(X,C,G,7). Recall that it was
denoted by X,;.
We define I, : PE(X,C,G,T) — TC(X) as follows:
Let x € PE(X,C,G,T).
i) If z € X, define [(x) = x.
ii) Let z € ©, x (0, 1], then x = (0,,t) for some 6, € O, and t € (0, 1],
a) if 0, € Hy,y for some vertex w and Ey,, : [0, %] — )/(; is the edge of length %
joining 6, and the cone point v(Hy,y,) over Hy,, define Iy(x) = EHW(%).
b) if Oy € fo(Hae x {s}) for some edge e,s € (0,1); and Ef (g .xgsp) : [0,3] —
ﬁ()/(\e x {s}) is the edge of length % joining 6, and the cone point v(f.(Hae X {s}))
over fo(Hoe x {s}), define I (x) = Ef (o x{s}) (%)
Note that I, is a bijection. Define dre(x)(x,y) := prel([Ije}(:c), II;}@))-
As dx,,, is a metric, therefore dre(x)(7,y) is a metric.

Lemma 1.3.4. Let 6 > 0 andv > 1. Let P : X — T be a tree of d-relatively
hyperbolic metric spaces such that the collections H.,, H. are uniformly v-separated
for each vertex v and each edge e. The induced mapsfi\v: )?v — TC(X) are uniformly
proper embeddings, that is, for all M >0, v €T and x,y € )?U, there exists N > 0
such that dTC(X)(/i\U((x),/i\v(y)) < M implies dg (v,y) < N.

Proof. Since the natural inclusion i,: (X,, H,) — (X,C) takes a horosphere-like set
H,, to a horosphere-like set ©, and the image of no two horosphere-like sets in X, lie

in the same horosphere-like set ©,, i, will induce an embedding ?v: )?v — TC(X).
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Let z,y € X, such that drex) (in((x),7u(y)) < M, then there exists a path X in
TC(X) joining 7,(z) and 7,(y) such that

e )\ concatenation of geodesics in X and geodesics in the sets of the form © x [0, 1],
and

o lrex)y <M+1.

Since horosphere-like sets are uniformly v-separated, \ can intersects only finitely,
say k, many horosphere-like sets of X, where k depends only upon M,v. Also
\ intersects only finitely many, say n, vertex spaces of 7C(X), where n depends
only upon M. For T" C T, let V(T") denote the set of vertices of T in T". Let
V(IP’(/):)) = {v1,...,u,} and e; be the edge between v; and v;;.

Let A’ be the portion of P\ lying outside horosphere-like sets in X. Then
A= AU U....U\;, where )\ starts at =, \; ends at y and \;’s are paths
in X between horosphere-like sets ©; and ©,,; with length of \; at most M. As ,’s
are uniformly proper embeddings, without loss of generality, we can assume each \;
to be of the form A\;; U.... U A, where each );; is either a geodesic in some vertex
space or of the form [p, ¢, .(p)].

Let 3, be the union of those A;;’s which lie in the vertex space X,,, and such that
the end points of (3, lie in the edge space fe, ,4,(Xe, ;). Then the length of g, in
TC(X) is bounded above by a constant N; depending only upon M, k, n. Recall that
Guvn_1.en, Was the (K, e)-quasi-isometry from fo, | .. (Xe, ,) to fe, 1o (Xe, 1)
Suppose z,, and y,, are the end points of (,,, then x,,, y, are also the end points of two
paths A, Ay respectively such that A, and Ay, are of the form [p, 1jnl_hen_l(p)]
for some p € fe, ,v,(Xe, ). Since fenfhvn()?enfl) is quasiconvex in )?Un, with-
out loss of generality, we can take (3, in the edge space fe, ,,.(Xe, ,). Since

length of (3, is bounded, therefore there exists a constant N, > 0 such that
d)?vn_ ( ;nl—lyen—l (.Tn)7 ;nl—lyen—l <yn)) S N2

1
Proceeding in this way, in going down from v,, to v, we get a number N > 0 such

that dg (z,y) < N. O

Thus a tree of relatively hyperbolic spaces P : X — T induces a tree of coned-off
spaces P : TC(X) — T satisfying the quasi-isometrically embedded condition.

The following corollary is a consequence of Theorem 1.2.77 and Lemma 1.2.78:

Corollary 1.3.5. Let 0 > 0 and v > 1 and X be a geodesic space. Let P : X — T
be a tree of d-relatively hyperbolic metric spaces such that the collections H,, H. are
uniformly v-separated for each vertex v and each edge e. If X is 0-hyperbolic relative
to the collection C in the sense of Gromov, then the followings hold:

1) There exists AP . > 0 such that TC(X) is a AP .-hyperbolic metric space.
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2) Let B, : [a,b] — TC(X) and X : [e,d] — X (resp. A : [c,d] — X") denote re-
spectively a (K, €,)-quasigeodesic path in (TC(X),dre(x)) and a geodesic in (X, dg)
(resp. (X" dxn) ) joining p,q. Then there exists Q135 > 0 such that for x € ANX
(resp. © € \" N X)) there exists y € 3, N X such that dx(z,y) < Q135



Chapter 2

Relatively Hyperbolic Extensions
of Groups

Let us consider the short exact sequence of finitely generated groups
1 K—-G—-Q—1

such that K is non-elementary word hyperbolic. In [Mos96], Mosher proved that if
G is hyperbolic, then @ is hyperbolic. To prove @ hyperbolic, Mosher (in [Mos96])

constructed a quasi-isometric section from @) to G, that is, a map s: () — G satis-
fying

Ldala.) — ¢ < do(s(a), 5(4) < hdala.4) + <,
for all ¢, ¢' € Q, where di and dg are word metrics and k£ > 1, € > 0 are constants.
In [Mit98a], existence of Cannon-Thurston map for the embedding i: I'x — T'¢ was
proved, where 'k, I'¢ are the Cayley graphs of K, G respectively. Here in this
chapter, we will generalize these results to the case where the kernel is strongly
hyperbolic relative to a cusp subgroup. This is motivated by the following example:
Let S be a once-punctured torus then its fundamental group m;(S) = F(a,b) is
strongly hyperbolic relative to the peripheral subgroup H =< aba='b~! >. Let M
be a 3-manifold fibering over the circle with fiber S such that the fundamental group
m (M) is strongly hyperbolic relative to the subgroup H € Z. Then we have a short

exact sequence of pairs of finitely generated groups:

1 — (m(S),H) — (m(M), HPZ) — (Z,7) — 1.

75
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2.1 Quasi-isometric Section

Definition 2.1.1. Let 1 - K — G — ) — 1 be a short exact sequence of finitely
generated groups with K strongly hyperbolic relative to K. We say that G pre-
serves cusps if for all g € G there exists a, € K such that gK1g™ = a,Ka,™".

Definition 2.1.2. (Mosher [Mos96]) Quasi-isometric section : Let 1 — K —
G — @ — 1 be a short exact sequence of finitely generated groups. A map s: Q — G
is said to be a (R, €)-quasi-isometric section if
1
R

forall q,q' € Q, where dg and dg are word metrics and R > 1, € > 0 are constants.

do(q,q") — € < da(s(q),s(d)) < Rdg(q,q) +e,

Let K be a group strongly hyperbolic relative to a cusp subgroup K;. For each
parabolic end point a € OT'(K, K ), there is a subgroup of the form aK;a~'. Now,

!is uniformly bounded by

Hausdorfl distance between the two sets aK; and aKja~
the length of the word a. Hence « corresponds to a left coset aK; of K; in K.

Letl » K 5G25 ( — 1 be a short exact sequence of finitely generated groups
with K strongly hyperbolic relative to a subgroup Kj;.

We use the following notation:

e Let II be the set of all parabolic end points for the relatively hyperbolic group
K with cusp subgroup K;.

o Let IT1? = {(ay, as) : a; and ay are distinct elements in IT}.

e Fora € K, let i,: K — K denote the inner automorphism i, (k) = aka™! and
L,: K — K denote the left translation induced by a.

e For g € G, let I,: K — K be the automorphism I,(k) = gkg™* and L,: G —
G be the left translation.

Lemma 2.1.3. For g € G, I, will induce a quasi-isometry fg : fK — fK

Proof. Since G preserves cusps, there exists a, € K such that for all @ € K we have

gaK.g~! = gag_lagKlag_l.

Define

~

I,(k) = 1,(k), for ke K

I,(v(aK,)) = wv(gag~ta,Ky), for cone points v(ak;) over the left cosets ak;.

g
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To prove fg quasi-isometry it suffices to show that if ) is an electric geodesic
between v(K;) and v(aK;) and A does not penetrate any other left cosets then
length of I,()) is bounded by some constant. First note that

d(gK197", gaK1g™") < 2l(g) + d(Ky, aK)).

Therefore

O

Also note that since a left translation preserves distance between two left cosets, Ly

will induce an isometry in the coned-off space.

Lemma 2.1.4. Let G be a finitely generated group hyperbolic relative to a subgroup
H. For k € G, the left translation Ly and the inner automorphism 1 induce same

map on the relative hyperbolic boundary.

Proof. Let X = I'q and X" be the hyperbolic space obtained by gluing hyperbolic
cones. Let o € X", then there exists a sequence {a,,} C X" such that a,, — a. Now
if a, € T'g for some n, then dx(Ly(ay), ix(a,)) = dx(kay, ka, k™) = da(1, k7). Ifa,
lies in some hyperbolic cone, then a,, = (ky, t,,) for some k,, € I'¢ and ¢,, € [0, 00) and
dxn(Li(kny tn), ik (kny tn)) = dxn((kkn, tn), (kko k™1 t,)) < e mdx(kkn, kk,k™') <
dx(1,k7'). Therefore Hausdorff distance between two sequences {Lj(a,)} and
{ix(a,)} is bounded and hence Ly(a) = ix(). O

G preserves cusps, so for each g € G there exists a, € K such that a;lg €
Ng(K7). If b € K, then di(a,K1, gbg ta,K1) < dg(Ky,bKy) + 2lK(a;Ig). Since
I,(bK1) = g(bK1)g~" = gbg~'agK a," and Hausdorff distance between gbg~'a, K,
and gbg~'a,Kya;" is bounded, I, will induce a map I,: IT — II and I is a bijection.
Therefore, I, will induce a bijective map I 3: 1?2 — II2. For convenience of notation
we will use 1, for I, and I, 92 . Similarly, for a € K, 1, and L, will induce bijective
maps (with same notation) from II to IT and II? to II°.

Recall that for a relatively hyperbolic group (G, H), G and H are assumed to be

infinite.

Lemma 2.1.5. [Far98] Let G be a finitely generated group hyperbolic relative to a
subgroup H. Then gHg ' N H is finite for all g € G\ H.

Proof. Let g € G\ H. If gHg~'N H is infinite then there exists an infinite sequence
{h,} C H such that g7'h,g € H and length of h,, is strictly increasing. Let \ be a
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relative geodesic joining 1 (the identity element) and g, then h, A is a relative geodesic
joining h,, and h,g. This contradicts the bounded coset penetration property 2, as

h,g € gH and length of h,, is strictly increasing. O

For a relatively hyperbolic group (G, H), if gHg~' = H for some g € G, then
gHg ' N H is infinite. Therefore by above Lemma 2.1.5, g must belong to H. Thus
No(H)=H.

Theorem 2.1.6. Suppose we have a short exact sequence of finitely generated groups
1— K KN G4 Q—1,

such that K 1is strongly hyperbolic relative to a non-trivial proper subgroup K, and
G preserves cusps, then there exists a (R, €)-quasi-isometric section s: QQ — G for
some R>1,¢e¢>0.

Proof. First note that if aK 07! = o’ K a’~! for some a,a’ € K then, due to Lemma
2.1.5, aK; = d K.
Let a = (a1, ay) € I1%, then the stabilizer subgroups of a;’s are aiKla;1 for some
a; € K, where + = 1,2. Let B, be the set of all exit points from a; K7 of relative
geodesics which starts from a; K; and end at some point of as K. Then, due to the
bounded coset penetration property 2, B, is a bounded set with diameter at most
D for some D > 0.

Let C = {a € II?: ex € B,}, where e is the identity element in K. We fix an
element 1 = (ny,12) € I>. Let ¥ = {g € G : n € [,(C)}. £ will be proved to be a

set containing the image of a quasi-isometric section.

Step 1 For any g € G, Uyexl4a(C) = 1%

Let a = (ay,as) € II2. Now q; corresponds to a left coset a;K;, where i = 1,2.
Let X\ be a relative geodesic in ' with starting at some point of a; K; and ending
at some point of asK; and let z, be its exit point from a; K5, then z, € B,. Now
there exists k € K such that Li(z,) = ex. Since Ly is an isometry, Lg(A\) will be a
relative geodesic joining points from ka; K7 and kas K7 with ex being the exit point
of Lg(\) from ka; K;. There exists [3; € I such that 3; corresponds to the left coset
ka;Ky, i = 1,2. Then 8 = (01, 32) € 11? and ex € B. Therefore Ly(a) = 3 € C.
Since Ly and ij are same on the relative hyperbolic boundary (from Lemma 2.1.4),
we have iy(a) € C and thus Uk (i,(C)) = M2, Consequently, for any g € G,
Uaek Lga(C) = Uaer1gia(C) = Ig(Uaek (ia(C))) = Ig(HQ) = 1%,
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Step 2 p(¥) = Q:
Let ¢ € @, then there exists g € G such that p(g) = ¢. Now Ugex Iy, (C) = II? for
any g € G. Therefore for n € II? there exists a € K such that n € I,,(C). Hence
ga € ¥ and p(ga) = p(g) = q.
Now we prove that there exist constants R > 1,¢ > 0 such that for all g, ¢’ € ¥
1

7da(p(9),p(g)) — e < dclg. ') < Rda(p(9), p(g') + €.

We can choose a finite symmetric generating set S of G such that p(S) is also
a generating set for (). Obviously, dg(p(g9),p(¢")) < da(g.¢’) for all g, € G. To
prove dg(g,9") < Rdg(p(g),p(g’)) + € for all g, ¢' € X, it suffices to prove that there
exists R > 1 such that if dg(p(g),p(¢’)) < 1 for some g, ¢’ € X, then di(g, ') < R.

Let dg(p(9),p(¢’)) <1 for some g,¢’ € 3. Then g~'¢’ = ka for some k € K and
a is either the identity in G or a generator of G.
Since g,¢' € X, I,(C) N1y (C) # 0. Hence I1,,(C)NC = I,~1,(C)NC # . Now
Ita = ix(1,), therefore i, (1,(C)) N C # (.

For each a € TI2, we choose an element a, € B,. Define a map F': 11> — ' by
F(a) = aq.

Since L; is an isometry, for k € K, ka, € By, and hence

di (g, kae) = d(F(ka), kF(a)) < D, (2.1)

where ka denotes the image of o under the map Lj: I1? — II2.

Let Bp(ex) be the closed D-neighborhood of ex. Now F'(C) is contained in the
union of B,’s containing the identity ex. Therefore F/(C') is contained in Bp(ek).
Since G preserves cusps, there exists s € K such that F'(I,(C)) is contained in the
union of B,’s containing s and hence F([,(C)) C Bp(s), where Bp(s) is a closed
D-neighborhood of s. From (2.1), Hausdorff distance between two sets F(kI,(C))
and kF(1,(C)) is bounded by D. For a set A C 'k, let Np(A) denotes the closed
D-neighborhood of A. Thus

F(k1(C)) € Np(kF(1.(C))) = kNp(F(1.(C))) € kBap(s).
Now K acts properly discontinuously on I'g, therefore
BD(eK) N ]{ZBQD(S> # (Z)

for finitely many &’s in K. This implies F(C) N F(k1,(C)) # 0 for finitely many £’s
in K. And hence C' N Ly(1,(C)) = CNkI,(C) # 0 for finitely many k’s in K. Ly
equals 75 on the relative hyperbolic boundary, so C'N (I3,(C)) # @ for finitely many
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k’sin K. Thus ¢~'¢’ = ka for finitely many &’s. Since number of generators of G is
finite, there exists a constant R > 1 such that dg(g,¢") < R.

Now we define s: () — G as follows:

Let ¢ € @ and let there exist g,¢" € ¥ such that p(g) = p(¢’) = ¢. Then by
the above inequality dg(g, g’) < R. We choose one element g € p~'(q) N'Y for each
q € Q and define s(q) = g. Then s defines a single valued map satisfying :

1
70(¢,4) — e < da(s(a),5(¢)) < Rdo(a,¢) +e.
for some constants R > 1, ¢ > 0 and for all ¢,¢' € Q. O

Note that, due to bounded coset penetration properties, there exists S; > 0
such that for a group G hyperbolic relative to {Hi,...H,,}, the diameter of the
intersection of any two left cosets gH; and ¢'H; is bounded above by S;. Taking II
to be the set of all parabolic end points corresponding to the subgroups Hy, ..., H,,

and mimicking the proof given in Theorem 2.1.6, we have the following corollary:

Corollary 2.1.7. Suppose we have a short exact sequence of finitely generated
groups

1- K5G35 Q—1,
such that K is strongly hyperbolic relative to { Ky, ..., K,,} and for each g € G there
exists ay,...,am € K such that gK1g~" = a;K1a;" for all i = 1,...,m, then there

exists a (R, €)-quasi-isometric section s: QQ — G for some R > 1, € > 0.

Corollary 2.1.8. Suppose we have a short exact sequence of finitely generated
groups

1—>K—Z>G£>Q—>1

Let Ki be a finitely generated subgroup of K such that K is strongly hyperbolic

relative to the subgroup K and let Q1 = Ng(K1)/K;. If G preserves cusps, then

Q1 = Q and there is a quasi-isometric section s: Q — Ng (K1) satisfying
~dola.d) — ¢ < doiren(s(0),5(d) < Rigla.d) +¢

where q¢,¢' € Q and R > 1, ¢ > 0 are constants. Further, if G is weakly hyperbolic

relative to K1, then @ is hyperbolic.

Proof. Let q € @, then there exists g € G such that p(g) = ¢. Since G preserves
cusps, gK1g7' = aKja™! for some a € K. Therefore a~'g € Ng(K;) and q =

pla~'g) € Q, and thus Q; = Q.
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Let IT5 = {(o4, az) € II? : oy corresponds to the subgroup K} and C' = {a €
IT%, : ex € B.}, where B, is defined as in above theorem. We fix an element
n e Ilf, and set ¥ = {g € Ng(K1) : n € I,(C)}. We choose a finite generating set
S of G such that it contains a finite generating set of Ki, K, Ng(K;) and p(S) is
also a generating set of ). As in the proof of Theorem 2.1.6, by replacing G' with
Ng(K7), we get a quasi-isometric section s: ) — Ng(K7) satisfying :

1

RdQ(Q> ¢') — € < dngk)(s(q),5(¢) < Rdglq,q') + e

for some constants R > 1, ¢ > 0 and for all ¢,¢' € Q.
Since do(q,q) < da(s(q),s(q')) < dngxn(5(q),s(¢')), we can take the quasi-
isometric section s: Q — Ng(K7) such that
1 / / /
gde(a: ) — ¢ < da(s(q), s(¢) < Rdg(q,¢) +
Now, let £(G, K1) denotes the electrocuted space obtained from I'g by coning
left cosets of K in G. Since G is weakly hyperbolic with respect to K7, £(G, K;) is
hyperbolic. We will prove that () is hyperbolic.
Let i : I'¢ — £(G, K;) denote the inclusion. The quasi-isometric section s: @ —
iy y))- Now for all
q,¢ €Tg,dga(5(q),5(¢)) < da(s(q),s(q")) < Rdg(q, q')+e, where dge is the metric
on £(G, Ky). For ¢,q € Q, let @ be a geodesic in £(G, K;) joining s(q) and s(q’).
Let @ penetrates left cosets g1 K1, ..., g, K1 of Ki in Ng(Ky). Let x; be the entry
point and y; be the exit point to ¢g;K; of a. Since z;,y; lie on the same left coset,
p(xi) = p(yi). Let a = Uo<icn[¥s, Tiy1], where yo = 5(q), 2ni1 = s(¢') and [y;, 2i41]
is a geodesic in I'y, (k) joining y;, r;41. Note that o may not be a connected path,

Ng(K;) will induce a map g5 : I'g — I'ng (). Let 5= g5 0 (

but p(«) is a connected path in I'g joining g, ¢’. Therefore dg(q,q") < lo(p(a)) <

> o0<i<n lyiwin) < dge(s(q), s(¢))-

Therefore dg(q,q") < dg(5(q),s(q’)). Hence 5 is a quasi-isometric section from
Q to (G, K7). Therefore 5(Q) is quasiconvex in £(G, K7). Since £(G, K7) is hy-
perbolic, @) is hyperbolic. O
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Chapter 3

Cannon-Thurston Maps

3.1 Preliminaries on Cannon-Thurston Maps

For a proper hyperbolic metric space X, the Gromov compactification will be de-
noted by X.

Definition 3.1.1. Let X andY be proper hyperbolic metric spaces andi:Y — X be
an embedding. A Cannon-Thurston map i fromY to X is a continuous extension

of i to the Gromov compactifications X and Y .

An embedding i : Z — W is said to be a proper embedding if for all P > 0 there
exists Q > 0 such that for z,y € Z, dw(i(z),i(y)) < P implies that dz(z,y) < Q.
The following lemma, given in [Mit98b], gives a necessary and sufficient condition

for the existence of Cannon-Thurston maps.

Lemma 3.1.2. [Mit98b] Let X and Y be proper hyperbolic metric spaces and i :
Y — X be a proper embedding. A Cannon-Thurston map i from'Y to X exists for
the proper embedding i:' Y — X if and only if there exists a non-negative function
m(n) with m(n) — oo as n — oo such that the following holds:

Given yy € Y, for all geodesic segments X in'Y lying outside an n-ball around yo € Y
any geodesic segment in X joining the end points of i(\) lies outside the m(n)-ball
around i(yo) € X.

Note that the above statement is also true if geodesics are replaced by stable
quasiconvex paths.

Let § > 0. Let X (resp. Y) be §-hyperbolic relative to the collections Hy (resp.
Hy ) of uniformly v (> 1)-separated subsets of X (resp. Y') in the sense of Gromov.
Let i: Y — X be a strictly type-preserving proper embedding, i.e. for Hy € Hy

83
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there exists Hy € Hy such that i(Hy) C Hx and images of distinct horospheres-
like sets in Y lie in distinct horosphere-like sets in X. As X is uniformly properly
embedded in G(X,Hx), the proper embedding i: Y — X will induce a proper
embedding i,: G(Y, Hy) — G(X, Hx).

Definition 3.1.3. A Cannon-Thurston map is said to ezist for the pair (Y, X) of
relatively hyperbolic metric spaces and a strictly type-preserving inclusiont:Y — X
if @ Cannon-Thurston map exists for the induced map ip: G(Y,Hy) — G(X, Hx)

between the respective hyperbolic cones.

We now give a criterion for the existence of Cannon-Thurston maps for relatively
hyperbolic spaces. Let Yh = G(Y,Hy),Y = E(Y,Hy), X" = G(X,Hx), X =
5(X HX) and Xh = Q(Xh HX) Recall from Theorem 1.2.48 that there exist
o 2.48, 51 948 > 0 such that X is oy, 2.48-hyperbolic and X" is 51 5.45-hyperbolic. Let
BR(Z) c X" denotes the R-neighborhood of Z in (X" dxn).

Lemma 3.1.4. Let 6 > 0 and X,Y be proper geodesic spaces. Let X and Y be J-
hyperbolic relative to the collections Hx and Hy respectively in the sense of Gromow.
Let i: Y — X be a strictly type-preserving proper embedding. A Cannon-Thurston
map for i:Y — X exists if and only if there ezists a non-negative function m(n)
with m(n) — 0o as n — oo such that the following holds:

Suppose yo € Y, and X in Y is an electric geodesic segment starting and ending
outside horospheres. If A\ = X \ Uken, K lies outside an B, (yo) = {y ey :
dy(y yo) < n}, then for any electric geodesic ﬁ joining the end points of z( ) in X

= ﬁ \ UHeHX H lies outside By,n)(i(y0)) = {z € X :dx(z,i(y0)) <m(n)}.

Proof. Let A be the electroambient representative of X. Since A° lies outside the
ball B,(yo), there exists n;(n) > 0 such that a geodesic A" in Y joining end points
of A lies outside the ball B! (yo) in Y". By Lemma 3.1.2, we note that a Cannon-
Thurston map exists for the pair (X", Y") if and only if there exists a non-negative
function mq(ny) with my(n;) — oo as n; — oo such that the following holds:

If a geodesic A" C Y lies outside B! (yo) C Y", then any geodesic " C X" joining
the end-points of i(\") lies outside le(m)(i(go)) c X"

Let 3 be an electroambient representative of 3, then [ is a stable quasiconvex path.
Since (" lies outside By’}n(m)(i(yo)), there exists my > 0 such that ( lie outside
B! (i(y0)). X is properly embedded in X", therefore there exists m(ms) > 0 such
that ° lie outside B,,(i(y)). O



85 3.2 Cannon-Thurston Maps for Trees of Relatively Hyperbolic Spaces

3.2 Cannon-Thurston Maps for Trees of Rela-
tively Hyperbolic Spaces

Throughout this section, we will assume that trees of relatively hyperbolic spaces
are as in Definition 1.3.1 and horosphere-like sets are uniformly v-separated, where
v > 1. In view of Lemma 1.1.9, all metric spaces in this section are assumed to be

connected graphs of edge length one.

3.2.1 Construction of Hyperbolic Ladder

Let P: X — T be a tree of d-relatively hyperbolic metric spaces. Given a geodesic
segment ) C )?vo with end points lying outside horospheres-like sets, we now con-
struct a quasiconvex set =5 C X containing .
The (K, e€)-quasi-isometric embedding f.,: X, — X, will induce a map
21;3 X" — XM in the following way:
Let © € X!. If x € X,, then define f}' (z) = fe.(x). If z lies in the hyperbolic
cone H" of the edge space X, then = = (z,,t) for some x, € H,,t € [0,00). Define
B@at) = Galad
Recall from Definition 1.3.2 that f., : X, — X, are (K,€)-quasi-isometric embed-
dings.

Lemma 3.2.1. For fehv defined above, there exist Cs391 > 0, K}y, > 1,eh,, >0
depending on 9, K €, I?,? such that ffv(Xf) 18 a C3.91-quasiconvex set and fe}fv 5 a

(K%, 1, €ty 1) -quasi-isometric embedding.

Proof. Since f/.e\v : X, — X, is a quasi-isometric embedding, therefore fe\v()f(\e) will
be a quasiconvex subset of 5(:, (as 5(:, is a hyperbolic space). Let x,y € f.,(X.),
v be a geodesic in X" joining x and y and \ be a geodesic in )?v joining x and
y. Suppose Pr, : )A(v — f;()/(i) is a nearest point projection, then by Lemma
1.1.34, Pr,()) is a quasigeodesic in ﬁj,()/(:) joining z and y. Thus A and Pr,(\)

-~

are quasigeodesics in X, joining same pair of points . Note that Pr,(\) may not
be a continuous path, but in view of Lemma 1.1.23, we can assume Prv(/):) to be
a continuous quasigeodesic path. Also, we can modify Prv(/):) to a quasigeodesic
path such that it does not backtrack, so we assume PTU()\\) does not backtrack.
Since fe\v is a quasi-isometric embedding, we can assume Pr,(\) C fe\v()/(;) Due to
similar intersection patterns, electroambient representatives A, Pr,(\) of N, Pr, (/)\\),
respectively, lie in a bounded neighborhood of each other. Also, the Hausdorff
distance between A and v is bounded. As Pr,(\) C f!,(X]), therefore fI' (X]) is

C3.9.1-quasiconvex for some C397 > 0.
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Next we prove that the map fehv is proper, i.e., for M > 0 there exists N(M) > 0
such that for z,y € X! if dxn (f2,(2), f2,(y)) < M then dyn(z,y) < N.

Let v be a geodesic in X' joining fI',(x) and f! (y), then its length is at most
M. Let A be a geodesic in )/(\3 joining fI',(x) and f! (y), then due to similar
intersection patterns of v and X with hyperbolic cones there exists Ni(M) > 0
such that the length of an electroambient representative A\ of \ is at most Ni. Let
Pry(A\) be an electroambient representative of Prv(/):) in X" then due to similar
intersection patterns of A and PTU(X) with hyperbolic cones, length of Pr,(\) is at
most Ny for some Ny > 0. Now as f., : X, — X, is a quasi-isometric embedding
and fI'|gn - HY — f!(H]) is a quasi-isometry (by Lemma 1.2.13), there exists
N(Nz) > 0 such that dxn(z,y) < N.

Now we show that fe}fv is a quasi-isometric embedding;:

By the first part of the proof of Lemma 1.2.31, there exists R > 1, > 0 such that
dxn(fl,(x), f2,(y)) < Rdxn(x,y) + ¢ for all z,y € X!'. Now to prove the other

e,v y Jew

inequality let z,y € X" and a be a geodesic in X joining fehv(:p) and fehv(y) We
partition a by points ag, ai, ..., a, such that dxn(a;—1,a;) =1 (0 <i <n—1) and
dxn(an-1,a,) < 1 with ag = fI' (z) and a, = fI',(y). Since fI' (XF) is C521-
quasiconvex, there exists b; € ffv(XZj) such that dxn(a;,b;) < C321. Now for each 4,
we have dxn(b;_1,0;) < 2C55.1+ 1. There exists ¢; € X" such that b; = effv(ci), then
as the map fehv is proper, there exists R'(C32.1) > 0 such that dxn(ci_1,¢) < R
Therefore, by triangle inequality, we have dxn(x,y) < R'dxn(fI,(x), fi,(y)) + R’
Taking K321 = max{R, R'}, €321 = max{ R/, ¢}, we have the required result. O

Let e denote the directed edge from v_ to v.
e Define ¢} : fI' (XI) — fI,(X]) as follows:
If pe fi, (X} c X}, choose x € X! such that p = fI', (x) and define ¢! (p) =

)

Note that gbfie are all uniform quasi-isometries. Let C4 139 be as in Lemma 1.1.30
and ffv(Xf) be Cs51-quasiconvex. By Lemma 1.2.50, there exists Q125 > 0
such that electroambient path representatives of electric geodesics are stable (1250~
quasiconvex path, we assume them to be stable ()2 50-quasiconvex path for some
Q1250 > 0. Let C'= Cr.130 + Cs2.1 + Q1.2.50-

For Z C X! let No(Z) denote the C-neighborhood of Z in X!, where C is as

v

above.
Hyperbolic Ladder =5
Recall that P: 7C(X) — T is the usual projection to the base tree.

For convenience of exposition, T shall be assumed to be rooted, i.e. equipped

with a base vertex vy. Let v # vy be a vertex of T'. Let v_ be the penultimate vertex
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on the geodesic edge path from vy to v. Let e denote the directed edge from v_ to
.

Recall that we have defined ¢, ¢: fen (Xe) = fen(Xe) in the following way:
Ifpe foo (Xe) C X, _, choose z € X, such that p = f., (z) and define ¢, .(p) =
fe,v($)'

Since f.,_ and f., are quasi-isometric embeddings into their respective vertex spaces

¢v,e’s are uniform quasi-isometries for all vertices. We shall denote (X, H,) = )/(\U
and &(X,, H,) =

Step 1

Let fi C X, be a geodesic segment in ()/(\U, ds ) with starting and ending points lying
outside horoballs and p be the corresponding electroambient path representative in
X" (cf Lemma 1.2.50). Then P(7i) = v. For the collection of edges €’ incident on v,
but not lying on the geodesic (in T) from vy to v, consider the subcollection of edges
{e} for which N&(p) N feo(X.) # 0 and for each such e, choose pe,q. € N&(p) N
few(Xe) such that dxn(pe, qc) is maximal. Let {e;}ics, be the further subcollection
of {e} for which dg (pe,,ge;) > D110 where Dy 13 is as in Lemma 1.1.30. Let v;
be the terminal vertex of the edge e;. Let i, ., be a geodesic in )?v joining p., and
ge,;- Define

[I]

1
= i1t U Do e, (hv,e;)

ZEI’U

where CTDU&, (Hy.e,;) is an electric geodesic in X,, joining Gu.e; (De;) and @y e, (ge,)-

Step 2
Step 1 above constructs El(/)\\) in particular. We proceed inductively on m € N.
Suppose that Z™(X) has been constructed such that the vertices in P(E™(\)) ¢ T
are the vertices of a subtree. Let {w;}; = ]P’(Em(X)) \P(Em_l(X))
Assume further that P~!(wy) N Em(/)\\) is a path of the form 4, (/)\\wk) , where /)‘\wk is
a geodesic in ()?wk, d;(wk) and note that P~1(wy) = )?wk-
Define

~m+1< U U Hl Wk )

where El(ka) is defined in step 1 above.
Define

Observe that the vertices comprising P(=5) in 7" are the vertices of a subtree, say,
T:.
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Figure 3.1: Hyperbolic Ladder for an edge e with vertices w and v.

Roughly speaking, what we have done is that at each stage we take a geodesic
/):v look at all edge spaces which hit )A(U near /)\\U, ‘break’ /):v into maximal subpieces
coarsely contained in the images of these edge spaces and then ‘flow’ them (via the
[0, 1] direction in X, x [0,1]) into adjacent vertex spaces. The maximal subpieces

are the j1’s.

3.2.2 Retraction Map

In order to prove =5 is quasiconvex in 7C(X), we will construct a retraction map
ﬁX from 7C(X) to =5 which is coarsely Lipschitz. For convenience of exposition,

we shall define ﬁX only on the union of vertex spaces of 7C(X).

For a tree T', let V(T') denote the vertex set of T

Definition 3.2.2. (Retraction Map) Let 75 : X, — A, be an electric projection
from X, onto A, (See Definition 1.2.51).
Define 11 : UUeV(Tl) Xy, — Z5 by

I5(2) = i,(75, (x)) fora € X,

T)\ V(T1))), choose x; € P *(V(T1)) such that dx(x,z;) =
) and define ﬁ’x(a:) = x1, dx is the metric on X. Next define
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The following is the main theorem of this subsection.

Theorem 3.2.3. There exists P353 > 0 such that

dTC(X)(ﬁX(x)a ﬁ;(?/)) < Psasdrex)(w,y) + Psas for v,y € TC(X).
In particular, if TC(X) is hyperbolic, then Z5 is uniformly (independent of /)\\) qua-

siconve.

Recall that /)\\U = )?v N Z5 and A, is the electroambient representative of /)\\U. The
following lemma says that points in the corresponding edge space and which are at
bounded distance from \,’s are also at a bounded distance from ‘maximal subpieces’.
Recall that ffv(XZj) are uniformly C3 5 ;-quasiconvex and C' = C.1.30+C5.2.1+Q1.2.50.

Lemma 3.2.4. ([Mit98b]) Let fiy C X, be an electric geodesic with end points a
and b lying outside a horosphere-like set. Let py be the corresponding electroambient
representative in X', Let p,q € No(pu) N fE(X]) be such that dxn(p, q) is mazimal.
Let [y be a geodesic in )/(\'U joining p and q and o be its electro-ambient represen-
tative. If r € Ngo(p1) N ffv(XZ}) then dxn(r, pz) < Pso4 for some constant P34
depending only on C, D11.39,9.

Proof. Let [a,b] and [p, q] be geodesics in X" joining a, b and p, ¢ respectively. Then
1, la,b] lie in an Q1.9 50-neighborhood of each other and [p, q], u2 lie in an Q1.9.50-
neighborhood of each other. Let m; be a nearest point projection from X" onto [a, b].
If 7 (r) € [mi(p),m(q)] C [a,b], then there exists C' > 0 such that dxn(r, p) <
c+C.

Let mi(r) ¢ [m1(p), m1(¢)] and we assume that 71(r) € [a, 71 (p)] C [a,71(q)]. Then

we have

dxp (m(r), m(q))

IN

dXﬁ <T7 Q) + 2C
dxn(p,q) +2C, as dxn(p,q) is maximal. (3.1)

IN

Now

dxy(mi(r),m(q)) = dxp(m(r), m(p)) + dx(mi(p), m(q))
> dxg(ﬂl(r)a m(p)) + dxg (p.q) —2C (3.2)
Thus from equations 3.1 and 3.2, we have dxn(m(r),m1(p)) < 4C. This implies

dxn(r,p) < 6C and therefore dyn(r, p2) < 6C.
Taking Ps54 = max{C + C’,6C'}, we have the required result. O

The following lemma says that the images of the edge space onto \,’s and ‘max-

imal subpieces’ under nearest point projections are at bounded Hausdorff distance.
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Lemma 3.2.5. ([Mit98b]) Let [y and fia be as in Lemma 3.2.4. If s € feo(Xe),
then dxn (7, (8), Ty (5)) < Psoy5 for some constant P3,5 > 0 depending only on
0,C, Dy1.30. Moreover, if s € fe,v()?e), there exists Pyo5(P5o5) > 0 such that
dg, (T, (5), Wi () < Pszs.

Proof. Recall that [a,b] is a geodesic joining end points of p1 and [p, q] is a geodesic
joining end points of . Let 7, m be nearest point projections from X" onto
[a, 0], [p, q] respectively. Let Dy130 be as in Lemma 1.1.30. If dy» (m1(s), mi7ma(s)) <
D130, then dyn(mi(s), m2(s)) < Diaso + C.

Let dxn(mi(s), mm2(s)) > Di.1.30, then by Lemma 1.1.30, [s, m(s)]U[m1(s), mma(s)]U
[m17a(s), m2(s)] is a quasigeodesic. Since fI',(X!) is C32.1- quasiconvex, there exists
r e fI(X!) such that dyn(r,mi(s)) < Criso 4+ Cs21. This implies dxn(r, p1) <
Cr130 + C321 + Q125 = C and therefore 1 € Ne(uq) N ffv(XZ}) By using
Lemma 3.2.4, there exists ' € [p, gq] such that d(r,r") < Psa4 + Q1250 and hence
dxn (r',m(s)) < Crago+ Cso1+ Paoa+ Qraso = Psoa+C.

Since , is a nearest point projection, (s,7”),s) < 20. Therefore

(87 ﬂ-l(S))ﬂ'Q(S) S (87 TI)FQ(S) + dX{} (T/7 7T1(S)) S 25 + C + P3.2.4-
Since m; is a nearest point projection, (s,m1m2(s))x,(s) < 26. Thus
(S77r2(8>>7r1(s) < <S77rl7r2<5))7r1(s) + de}(Wle(S), 7T2(S)) <20+ Ci30 + Ca21.

Now dip (m1(s), m2(s)) = (8, T1(8))mo(s) + (8, T2(8))my(s), therefore dyp(mi(s), m2(s)) <
20+ C + P34+ 20+ Ch130 + Cs01 = K(say). Thus from Lemma 1.1.35, we have
Ay (s (), Ty (5)) < K 2Ly,

Taking P}, s = max{D; 130+ C, K + 2L, }, we have the required result. O

Suppose z,y € TC(X) and drex)(z,y) < 1. Since 7,’s are uniformly proper
embedding from X, to TC(X), there exists a constant M > 0 such that dg (7,y) <
M.

Let P = max{P1.1.327 P1136, Pros2, Prass, Prass, P24, Psas, M}

Proof of theorem 3.2.3

It suffices to prove that if dr¢(x)(z,y) < 1 then dTC(X)(ﬁX(x)a ﬁx(y)) < P3os.

Let drexy(z,y) < 1.

Case 1: Let z,y € P~!(v) for some v € T;. Using Lemma 1.2.53, there exists a
constant Ko(P) > 0 such that

~

dree ([, (). 5, (9) < d, (7, (2). 75, () < Ko,

v v
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Case 2: Let € P! (w) and y € P~'(v) for some v,w € T} such that v # w.
Now v and w are adjacent in T} and x € f.(X,) since drecx)(z,y) < 1. Without
loss of generality we can assume that w = v_. Let e be the edge between v and w.
Recall that Z5 NP~ !(v) = o, NP Hw) = Ny Ay = @U,e(ﬁwﬁ), where [l
is the geodesic in )?w joining pe,qe € Xy, pe,qe lie in a C-neighborhood of A,
dg. (Pe;s @e) > D130 and 6v,e(ﬁw,e) is the geodesic in )?v joining ¢, . (pe) and ¢, . (pe)-
For simplicity, we denote ji,, . by i, and the quasi-isometry ¢, . by ¢,.

Step 1: From lemma 3.2.5,
drec ([, (2). 105, (x)) < d, (75, (2). 7, (1)) < P.

Step 2: j/’;v( AU) and few( w) are uniformly quasiconvex in X, and X, respec-
tively. Let Pr,, : Xy — few( w) be a nearest point projection, then from Corollary
1.1.33, we have Pr,, is coarsely Lipschitz. Therefore, by Lemma 1.1.34, Pr,,(fi,) is
a quasigeodesic in fe wl( w) Let 1, = Pry(fiy). Using Lemma 1.1.35, we have

dg (Ta, (), 7, () < K’ for some constant K’ > 0. (3.3)

By using Lemma 1.2.55, there exists a constant R > 0 such that

~

dg, (0u(Fa, (), 75, (00(2))) < R. (3.4)

A~ A~ ~ ~

dre(x) (g, (), 115, (0u(2))) drex) (W, (€), 5, (0u()))
) )

< dreo) (R, (2), 7, (7)) + doeo) (Fay, (), 60(Fay, ()
+drex) (¢o(Ta, (2)), T, (Du()))
< K'+1+R.

Step 3: drex)(z,y) = 1 = drex)(, g/gv(x)) Then d)?v(ggv(x),y) < 2M. Thus using
lemma 1.2.53, we have

dre) (I, (60(2)),1T5, () < dg, (75, (9u(x)), 75, () < 2PM + P.

Thus from above three steps, there exists a constant K;(P) > 0 such that
dregx) (T (2), T (y)) < K.

Case 3: Let P([z,y]) be not contained in 7;. Then P(x) and P(y) belong to the
closure of the same component of 7'\ 77. Then P(ﬁ%(x)) = ﬂI\”(ﬁ'X( )) = v for some
v € V(T1) by the second part of Definition 3.2.2. Let z; = II{(z) and y1 = H’X(y)
Now x1,y1 € fI,(X]) for some edge e with initial vertex v.

If dxn(ma, (1), mr, (¥1)) < Di.1.30 then

dreex)(5(2), I5(y) < dg, (7s,(2), 75, (4) < Do + 2.
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Let us assume dxn (7, (71), T, (¥1)) > Di.1.30, then by Lemma 1.1.30 [21, my, (21)] U
[Tx, (21), T, (Y1) U [ma, (y1), ¥1] is a quasi-geodesic lying in a C} 1 go-neighborhood of
(21, Y1)

Since ffv(XZj) is C391-quasiconvex in X" there exist o, v, € ffv(Xg) such that
dxn(ma, (21),72) < Craizo + Cz21 < C and dxn(ma, (1), y2) < Crizo + Cs21 < C
and thus z, 5, € No(A,) N f2,(X]). Now there exist 2, 4y € No(Ay) N fen(Xe) such
that d@(xg,xg) <1 and d@(yg,yé) < 1. Therefore dg (73,y5) < d@(xé,yé) < 2.
Let D; > P1.2_53D1.1_30 + P1.2_53. If D, < d)?v(%xv(l’é),%xv (yé)), then by Lemma
1.2.53 dg (w3, y5) > Di1.30. This implies that the edge P([z,y]) of T" would be in T,
(because we would be able to to continue the construction of the ladder Z5 beyond

the vertex v) which is a contradiction. Therefore dg (75 (25), 75, (45)) < D1

dreox)(T5(2), 5 (y))

IN

VAN
Q, QU
>
e
S
&

< )+d)?g(372,y2)+d)?g(yza7l\v(y2))+2
< dxn(ma, (v1), 22) + dxn(mr, (Y1), Y2)
+dg (25, 5) +2+2

IN

20 +dg (25,75, (25)) + dg, (¥s, T3, (2))
+dg, (75, (75), 75, (v5)) +4
< 4C + Dy + 4 = Ky(say).

Taking Pso3 =max{ Ky, K1, Ko, D1.1.30 + 2}, we have the required result. O

3.2.3 Vertical Quasigeodesic Rays

Let 6 > 0. Let P : X — T be a tree of d-relatively hyperbolic metric spaces
with (X,dx) is d-hyperbolic relative to the collection C maximal cone subtree of
v (> 1)-separated horosphere-like spaces. Then the tree of coned-off spaces 7C(X)
is hyperbolic. Let XUO be an electric geodesic segment from a to b in )?UO with a and b
lying outside horosphere-like sets and \,, denotes its electroambient path represen-
tative in X . Recall that we have constructed a set EXUO = UUEV(Tl)/Z.\U(XU)’ called
as hyperbolic ladder, in 7C(X) satisfying the following properties:

(i) Z5,, 1s a quasiconvex set in 7C(X) containing Xvo.

(ii) P(EXUO) = V(Ty) and for v € V(T}), X, N S X, where A, is a geodesic in
Xy.
(iii) Let v,w € V(T1) be adjacent vertices with e being the edge between them and

w = v_.. There exists a geodesic i, with its end point lying in X, and its elec-
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troambient representative p,, lies in a bounded neighborhood of the electroambient
representative \,, of M- Ay s a geodesic in X, joining the end points of ng,e(ﬂw)-
Let

e )¢ be the union of geodesic subsegments of the electroambient path representative
A lying inside the hyperbolic cones penetrated by A,.

e X' =\, \ A%, (Note that A C \,).

* =y, = Usevery) iw(AY). (Then =y C S

If z € Zy, , then there exists v € Ty such that z € M. Let S = [vn, vp_1]U...U[v1, )
be the geodesic edge path in 77 joining v and vy.

We will construct a map r,: S — = A satisfying

o dg(w,w") < dx(ry(w),ry(w) < Rza3ds(w,w’) for all w,w’ € S.

o r.(v;) € X,,.

r, will be called a Rj323-vertical quasigeodesic ray.

Recall that ¢ue: feu (Xe) — feu(Xe), o0 o f2, (XP) — fE(X]) are quasi-
isometries, for the sake of simplicity of notation, here we will denote ¢, . by ¢,

and ¢!, by ¢l..

Construction of r,:

e For v, € S, define r,(v,) ==
Let v = Vp,w = Vp_1, € = [V, V_1], ¥y, = ;1_1: Jeiwi(Xe;) = fe;w 1 (Xe,) and
b= (gl ) (XE) = L (XE) for all i = 1,...,n. Then 1,9} are quasi-
isometries.

Since x lies outside horosphere-like sets and ), preserves horosphere-like sets (by
the strictly type-preserving condition), 1, (z) will lie outside horosphere-like sets.

Let [a,b] be the maximal connected component of A\° on which z lies. Then there
exist two horosphere-like sets H; and Hy such that a € H; (or is a initial point of
Ay) and b € Hy (or is a terminal point of A,). Since 1), preserves horosphere-like
sets, 1y, ([a, b)) \ {¥(a),¥(b)} will lie outside horosphere-like sets.

As [a,b] lies outside horosphere-like sets, ¥"([a,b]) = ,([a,b]) C X, and
¥y ([a, b)) is a quasigeodesic in X". Let W"([a, b]) be a hyperbolic geodesic in X" join-
ing 1, (a) and 1, (b). Then v, ([a, b]) will lie in a bounded neighborhood of ¥”([a, b])
and therefore there exists B; > 0 such that dx (v, (x), ¥*([a,b])) < R;. By Lemma
1.2.44, there exists an upper bound on how much ¥”([a,b]) can penetrate hyper-
bolic cones, that is, for all = € U"([a,b]) there exists 2/ € U"([a,b]) lying outside
hyperbolic cones such that dx(z,2’) < I. Hence there exists y; € ¥”([a,b]) such
that dx(¢(z),y1) < I + Ry and y; lies outside horosphere-like sets.

Again, U([a, b]) lies at a uniformly bounded distance < Ry from pu, (the elec-
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troambient path representative of i, in the construction of EXUO)' Let ¢,d € p,
such that dx(a,c) < Ry and dx(b,d) < Ry. Then ¥"([a,b]) and the quasigeodesic
segment [c,d| C u, have similar intersection patterns (Lemma 1.2.44 ) with hyper-
bolic cones. Therefore [c,d] can penetrate only a bounded distance < I into any
hyperbolic cone. Hence there exists y, € i, and yo lies outside horosphere-like sets
such that dx(y1,y2) < Ry + 1.

Since end points of u, lie at a bounded neighborhood of A, there exists R3 > 0
such that p, will lie at a R3 neighborhood of \,. Therefore there exists y3 € A,
such that dx(y2,y3) < R3. Now y3 may lie inside a hyperbolic cone. Since pu, and
T, (fv) lies in a bounded neighborhood of each other, by Lemma 1.2.44 they have
similar intersection patterns with hyperbolic cones. Therefore there exists I > 0
and y € A, such that y lies outside horosphere-like sets and dx(ys,y) < I.

Hence dx(x,y) <1+ Ry + Ry + R3 + 3] = R32.3(say).

e Recall that w = v,,_1. Define r,(v,_1) = y.

Thus we have 1 < dx(ry(vp), 7:(vn-1)) < R32.s3.
Using the above argument repeatedly, inductively replacing x with r,(v;) in each

step, we get the following. Since r,(v) € X, we have dg(v, w) < dx(rz(v), r(w)).

Lemma 3.2.6. There exists Rz o3 > 0 such that the following holds:

For all z € \b C Ei’\vo, there exists a Rso.3-vertical quasigeodesic ray r,: S — ES’\UO
such that rp(v) = x and dg(v,w) < dx(r,(v),r.(w)) < Rsa3ds(v,w), where S is
the geodesic edge path in T joining v and vy and w € S.

The following is the concluding Lemma of this subsection.

Lemma 3.2.7. Let R353 > 0 be as above:

Fiz a reference point p lying outside the horosphere-like sets in X,,. B,(p) denotes
the n-ball around p in (X, dx, ). Let A lies outside By(p) (and hence entry and
exit points of A to a horosphere-like set lie outside B,(p)). Then for any x € \o(C
Egvo C EX%)’ x lies outside an n/(Rs32.3+ 1)-ball about p in X.

Proof. Since r4(vg) € X, ry(vo) lies outside B,(p). Let m be the first non-

~

negative integer such that v € IP’(E’”(XUO)) \ P(2™Y(\,,)). Then dr, (vg,v) = m,
and dx(x,p) > m (since r.(v) =z € \2).

From Lemma 3.2.6, m < dx(r.(v),7.(v9)) < R3.23m.

Since 7, (v) lies outside B, (p), dx(r(vo),p) > n.

n < dx(rz(vo),p) < dx(r2(vo), 72(v)) + dx (rz(v), p) < mR323 + dx(rz(v), p).
Therefore, dx (r,(v),p) > n —mRs323 and dx(r.(v),p) > m.

Hence dx(z,p) = dx(rz(v),p) > 7755 O
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3.2.4 Proof of Main theorem

Let P : X — T be a tree of relatively hyperbolic metric spaces with (X, dy) is
strongly hyperbolic relative to the collection C maximal cone subtree of horosphere-
like spaces.

Let

) /):vo = electric geodesic in )?vo joining a,b € X,, with )\go lying outside an n-
ball B, (p) around p in X, , for a fixed reference point p € X,, lying outside the
horosphere-like sets.

e )\,, = electroambient path representative of XUO in X constructed from /)\\UO.

e /i be a geodesic in the electric space X joining a, b.

e /1 be an electroambient representative of /.

e (3, =quasi-geodesic in the space 7C(X) joining a, b.

° [, = ﬁEX (Bp), where Il=. is a nearest point projection map from 7C (X) to the

UO _‘AUO
Juasli-convex set ._r)\*vo

Recall that by Corollary 1.3.5, 7C(X) is hyperbolic. By Lemma 1.1.34, 3 is
a K7134-quasigeodesic for some Kj 134 > 1 in the space 7C(X) joining a,b and
lying on EXUO' We will construct a tamed quasigeodesic path v, from 3, in 7C(X)
joining a,b such that v, N X lie in a Cy-neighborhood of Exy, - Let [[,m] be the
domain of 8, and P = {I,m} U (Z N (I,m)). For two successive points t;, ;11 € P,
we have dreex) (B)(t:), By(tis1)) < 2K11z0. Let Gy(t:) € Xu,, By(ti1) € Xuiar) then
dr(ug, uir1) < 2K7134. Recall that for w € P(EXUO)’ Xu N EXUO = A\w, Where ), is
a geodesic in X,,. By construction of EXUO’ there exists a vertex v in the geodesic
[z, u;1) such that Ay, = 3, NX,, and the geodesic joining B, (t:), B, (tiy1) in TC(X)
intersects )?v. Now for each 7 there exists a; € )\Zi such that drcx)(8,(t:), a;) < 1.
By Lemma 3.2.6, there exist z,,y, € A’ such that dx(a;,r,) < 2K, 134R326 and
dx(aiz1,Yy) < 2K7.134R326. Therefore, by triangle inequality,

drecx) (T, o) < dx (T, ai) + drex) (i, aiv1) + dx (@iv1, Yo)
< 2K 134R396 + (2K11340 +2) + 2K, 134 R326 = K say.

Now )/(; is uniformly properly embedded in 7C(X), therefore there exists P =
P(K;) > 0 such that dg (2,,y,) < P. Let /)\\; be the subsegment of A, joining
T, Yu; [8y(ti), ai] be a geodesic in 7C(X) and [a;, z,]x, [bi, yu]x be geodesics in X.
Let 3; = [B,(t:), ai] U [az, o] x UN, U [yo, bilx U [b;, B4(ti11)], then the length of 3; in
TC(X) is at most 2 + 4K 134R306 + P. Let 7, = U;3;, then v, is a tamed quasi-
geodesic path in 7C(X). Let Cy = 2K;134R326 then for z € v, N X there exists
we N C E/\go such that dx(z,w) < Cs.
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Now a, b are end points of /)\\UO, therefore a, b € EXUO and end points of v, are a, b.
By Lemma 1.3.5, there exists C; > 0 such that if z € u® = 1N X, then there exists
y € 75 =7, N X such that dx(z,y) < Ci. For y € 75, there exists y1 € Ey, such
that dx(y,y1) < Cb.

It follows from lemma 3.2.7 that dx(y;,p) > ﬁ
S0, Tl = dx(y1,y) +dx(y,z) + dx(z,p) < Co + Cy + dx(x,p),
Le. dx(z,p) > 7 — C1 — Gy (=M(n), say).
Thus we have the following proposition :

Proposition 3.2.8. Letd > 0,v > 1 and X be a proper geodesic space. LetP: X —
T be a tree of d-relatively hyperbolic metric spaces such that the collections H,, He
are uniformly v-separated for each vertex v and each edge e. Let X be 6-hyperbolic
relative to the collection C in the sense of Gromov. For a vertex vy of T, let /):vo be
an electric geodesic in )/(; joining a,b € X,, with )\20 lying outside an n-ball around
p in Xy, for a fived reference point p € X, lying outside the horosphere-like sets.
Let 1 be a geodesic in X joining a,b and pi® = N X. Then for every point x on u°,

x lies outside an M(n)-ball around p in X, such that M(n) — oo as n — 0o.

It is now easy to assemble the pieces to deduce the existence of Cannon-Thurston

maps.

Theorem 3.2.9. Let 6 > 0,v > 1 and X be a proper geodesic space. LetP: X — T
be a tree of d-relatively hyperbolic metric spaces such that the collections H,, H. are
uniformly v-separated for each vertex v and each edge e. If X is §-hyperbolic relative
to the collection C in the sense of Gromov, then a Cannon-Thurston map ezists for

the proper embedding i,,: X,, — X.

Proof. A Cannon-Thurston map exists if it satisfies the condition of Lemma 3.1.4.
So for a fixed reference point p € X,, with p lying outside horosphere-like sets, we
assume that XUO is an electric geodesic in )?UO such that A} = /)\\UO NX C X, lies
outside an n-ball B, (p) around p in X,,. Since i,, is a proper embedding, )\go lies
outside a f(n)-ball around p in X such that f(n) — oo as n — oo. From the
Proposition 3.2.8, if 1 is a geodesic in X joining the end points of \,,, then u® lies
outside an M (f(n))-ball around p in X such that M(f(n)) — oo as n — oo. From

Lemma 3.1.4, a Cannon-Thurston map for 7: X,, — X exists. O
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3.3 Cannon-Thurston Maps for Relatively Hy-

perbolic Extensions of Groups

Here, we will work with the following short exact sequence of finitely generated

groups :

1-K—-G2Q—1

Let K; be a finitely generated non-trivial proper subgroup of K such that K is
strongly hyperbolic relative to the subgroup K; and G preserves cusps. Since all
groups are finitely generated, we can choose a finite generating set S of GG such that
S contains finite generating set of K, K1, Ng(K7) and p(S) is also a finite generating
set of . There exists a (R, €)-quasi-isometric section s: ) — G such that

1

R
From Corollary 2.1.8 and using a left translation Lj by an element k£ € K, we
can assume that s(Q)) contains the identity element ey of K and s(Q) C Ng(K7).
Further, we assume that G is strongly hyperbolic relative to the subgroup Ng(K7)

dg(q,q') — e < da(s(q), s(¢) < Rdg(q,q) +e.

and G is weakly hyperbolic relative to the subgroup K;. We have assumed that
generating set of G' contains the generating set of K, K, thus the Cayley graphs of
'k, 'k, are connected subgraphs of I'. For a € G, let L, denotes the left translation
by a. L, acts by isometry on I'g. Let H,x, = L,(Tx,), Hr, = {Hux, : a € G}
and £(G,K,) = E(I'¢, Hk,). Similarly we have Hyn,(x,) and Hy,x,)- As G is
weakly hyperbolic to K7, £(G, K;) is a hyperbolic metric space. Since G is strongly
hyperbolic relative to Ng(K7) (Here the definition of a relatively hyperbolic group
will taken in the sense of Gromov (B), 1.2.57), (I'q, Hng(k,)) is a strongly relatively
hyperbolic space.

Let A be a subset of G such that the identity element e € A and for two distinct
elements g, ¢' € A we demand gNg(K1) # ¢'Na(K1). Let (Qq,dg,) = (Q,dg) and
Q={Q,:g9€ A}

For each g € A, define Fy, : Hyn, (k) — Qg by F4(gb) = p(gb) for all b € Ng(K7).
As dg(p(a),p(a’)) < dngx,)(a,a’) for all a,a’ € Ng(K,), therefore

do,(Fy(z), Fy(2') < du, e, (2, 2") for all z,2" € Hyngxy)-

Let F = {F, : g € A}. Since I'g is quasi-isometrically embedded in £(G, K;) (from
Corollary 2.1.8), I'g is hyperbolic and hence @), is hyperbolic for all ¢ € A. Then,
according to Definition 1.2.66, PE(I'q, Hy,ky), F, Q) is a partially electrocuted
space. Let T? = PE(Tg, Hng (ks F, Q), then from Theorem 1.2.77 is a hyperbolic

metric space.
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Since (K, K;) and (G,G;) are relatively hyperbolic groups, due to Theorem
1.2.63, (I'x, Hk,) and (I'¢, Hg, ) are relatively hyperbolic metric spaces both in the
sense of Gromov (B) (Defn. 1.2.57) and Farb (Defn. 1.2.6). Let \* = /):\HKI denote
the portions of \ that do not penetrate horosphere-like sets in Hg,. The following
Lemma gives a sufficient condition for the existence of a Cannon-Thurston map for

the inclusion i: (I'x, Hk,) — (', He, ). For proof refer to Lemma 3.1.4.

Lemma 3.3.1. A Cannon-Thurston map for i: (T'x,Hk,) — (g, Hg,) exists if
there exists a non-negative function M(N) with M(N) — oo as N — oo such that
the following holds:

Given yo € U'x and an electric quasigeodesic segment X in fK if \b = h) \ Hg,
lies outside an N-ball around yo € 'k, then for any geodesic i in fg joining end
points of \, 1i¥ = 1i\ He, lies outside an M(N)-ball around i(yo) in T

3.3.1 Construction of Quasiconvex Sets and Retraction Map

Recall that for g € G, Ly;: G — G denotes the left translation by g and I,: K — K
denotes the automorphism I, (k) = gkg~'. Let ¢, = I,-1 then ¢,(a) = g 'ag. Since
L, is an isometry, L, preserves distance between left cosets of G in G. Hence L,
induces an isometry Eg: 'y . I'ey !, The embedding i: 'y — I'¢ will induce an
embedding i: T'x — cm’fl.

Let A be an electric geodesic segment in r x with end points a and b in I'x. Let
/):g be an electric geodesic in Ty joining ¢4(a) and ¢,(b).

Define

Recall from definition 1.2.16 that T'% = G(T'x,Hg,) is the hyperbolic metric
space obtained from I'x by hyperbolic cone construction. For g € G, let ?T\Xg Tr —
Xg be the electric projection. (Refer to Definition 1.2.51).

From Lemma 1.2.53, there exists P; 253 > 0 such that

dg (75, (K), %Xg(kl)) < Prasadp, (b, K') + Pross

for all k, k" € fK, where P 553 depends only on the hyperbolic constant of fK

For each g € G, ¢4: 'k — I'k is a quasi-isometry and it induces a quasi-isometry
g/gg: fK — fK. Thus from Lemma 1.2.55, there exists a constant P; 555 > 0 such that
if 2 € T'x and \ is a geodesic in I joining a and b then dp,. (ag(%\;(x)), 73, (89(3:))) <

P1.2.55-
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Figure 3.2: Quasiconvex set Z5.

Analogous to the Definition 3.2.2, we define the Retraction Map in a group

theoretic setting.

Definition 3.3.2. (Retraction Map) Define ﬁxz T’(’fl — Z5 as follows:
Let x € T Thmf exists Et\um'que g € 5/(\@) such that z\g(/z\(k:)) = x for some
unique k € K, define Il5(x) = Ly (i(75 (k))). Il5 will be called a Retraction Map.

The following theorem says that the Retraction Map ﬁX is coarsely Lipschitz.

Theorem 3.3.3. There exists a constant P333 > 0 such that for the short exact

sequence of pair of finitely generated groups

1— (K, Ky) - (G, Na(Ky) 5 (Q,Q) — 1

with G preserving cusps; K, G strongly hyperbolic relative to the subgroups Ky, Ng(K1)
respectively, and G weakly hyperbolic relative to the collection Ky, the following in-

equality holds:
dper(I5(2), T (2")) < Pasadpe(x, ') + Psss

for all x,x' € F’éd, where (F’éel, dper) is the coned-off space corresponding to the pair
(G,i(Ky)). In particular, if T’(’fl is hyperbolic then =5 is uniformly (independent of

) quasiconvex.

Proof. Since cone points in F’gl lie within a unit distance from the points of
g, it suffices to prove the theorem for points lying in I'g. Also, it suffices to
prove that there exists P333 > 0 such that for z,y € I'g if dpe(z,y) < 1 then
dpel(ﬁx(x),ﬁx(y)) < Ps333. The embedding i: 'y — I'¢ induces an embedding

P Tx — 2! so we identify = with its image i(x).
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Case i: Let x and y lie in the same left coset gK of K in G.

Then using Lemma 1.2.53, there exists a constant Pj 553 > 0 such that
dpel(H;@), H;(y)) < de(?;g(:E)ﬁxg(y)) < P1.2.53de (% y) + Pios3 = 2P 253

Case ii: Let z and y lie in different left cosets. Therefore dp.;(x,y) = 1 and hence
do(p(z),p(y)) = 1. Recall that s: @ — I'¢ is a quasi-isometric section. Therefore
there exists k; > 0 such that dg(s(p(z)), s(p(y))) < k.

Now there exists go € s(Q) and g € G with length of g is bounded above by the
constant k; such that x € Ly (I'x) and y € L, ,(I'x). Therefore x = L, (z1),y =
Lyog(y1) for some 1,y € I'. By definition, ﬁx(az) = Egofgo(xl) and ﬁx(y) =
zgo%go (1.

Now for all k € K, d(Ly,(k), Lyog04(k)) = d(k, kg) < ky. Therefore

~

dpet(Lgo (Rs,, (1)), Longy (R, (1)) < k.

Also we have,

dpet(Lgog (s, (09(21)))s LoogTs, (1)) = pelwg(}(x)) 75, (09(2)))
< dp, (6y(75(2)), s, (6y(2)))
< P1.2.55

Since x; € 'k, <$g(:c1) = ¢4(z1). Thus

dpel<$g<x1)v Y1) dpel(%(ﬂfl), Y1)
dpel('rgu y)
dper(29, ) + dper(z, y)

ky + 1.

IAIN

IA

Now [y is properly embedded in T'% " therefore there exists a constant M (k1) >0
such that dp (ggg(xl) yl) < M;. Since Egog is an isometry, we have

dpet(Long(Fs,(B9(21), Laog (5, (1)) = (s, (By(1)), 5, (31).
From Lemma 1.2.53, there exists a constant P; 553 > 0 such that

dper(Ts, , (Pg(21)), 75, (11)) < dp, (75, g(¢g(~”€1))ﬁxg09(y1))
Py ossMy + Py oss.

N
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Thus, finally we have

~

dpei( L, (7T)\g0 (1)), Lgog (T

dpar(Tl5(2), TI5 () (1))

( >\l]0g
< dpa(L go( (55 ) goggbg(ﬂ')\qo(xl)))
dper (L gogﬁbg(ﬂ)\ (1)), Lgog(AAqog(gbg(xl)))) +

dpel(Lgog(W)\ (ng(xl))) gog( Xgog(?/l)))
< ki + Pross + PraossMy + Prass.

Taking P3.3_3 = max{2P1_2,53, k’l*|>P1_2.55+P1_2.53M1+P1.2_53}, we have the required
result. O

3.3.2 Proof of Theorem

Since i: I'y — I'g is an embedding we identify & € K with its image i(k). Let

° Ji, = Zg(Xg), where g € s(Q).

°
=
=
Q
—
Iy
3
=

- _ b
=A== UQES(Q) Hg-

o Y =Ipand X =T¢.

Lemma 3.3.4. There exists A > 0 such that if \* lies outside By(p) for a fized
reference point p € 'y, then for all x € ug C Ex C I3, © lies outside a (— ball

about p in U, where f(N) — o0 as N — oo.

Proof. Let z € ,uz for some g € s(Q). Let v be a geodesic path in I'g joining
the identity element eg of I'g and p(z) € I'g. Order the vertices on v so that we
have a finite sequence eg = qo, q1, .., ¢ = p(x) = p(g) such that dg(gi, ¢iy1) = 1
and dg(eq,p(x)) = n. Since s is a quasi-isometric section, this gives a sequence
s(¢;) = g¢; such that dg(gi,9i41) < R+ € = Ry (say). Observe that g, = g and
go = eg. Let Bgr,(eg) be a closed ball around e of radius Ry, then Bg,(eq) is
finite. Now for each g € G, the automorphism ¢, is a quasi-isometry. Thus there
exists K > 1 and € > 0 such that for all g € Bg, (eq), ¢, is a (K, €) quasi-isometry
and K, e are independent of elements of G. Let s; = gi_+119i, then s; € Bg,(eq),
where ¢ =0, ...,n — 1. Hence ¢;, is a (K, €) quasi-isometry.

Since S(Q) C NG(KI) so we have s; € NG(Kl) for all i. ¢, will induce a (K,

quasi-isometry (bs from T K to r K, Where K € depends only K and e.
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Now z € ugn and L, preserves distance between left cosets for all ¢ € G, hence
there exists 21 € A} such that © = Ly, (21).

Let [p,qly, C )\zn be the connected portion of )\Zn on which x; lies. Note
that [p,ql,, is a geodesic in Y". Since ¢,, , is a strictly type preserving quasi-
isometry, it induces a quasi-isometry gb’;n_ L Y" — Y" and as )\Zn lies outside
horosphere-like sets, @5, ,([p,dlg,)(= &L ([p,dls.)) is a quasigeodesic in Y ly-

ing at a uniformly bounded distance < C; from ), , in Y", where )\, , is an

such that
dxn (s, (1), 22) < dyn(ps,_,(71),22) < Cy. But x9 may lie inside a hyperbolic

electroambient representative of Xgn_l. Thus there exist zo € Ay, |
cone penetrated by /)\\gnfl. Due to bounded coset (horosphere) penetration properties
there exists y € A} | such that dxn(x2,y) < I for some I > 0.

Thus dxn(¢s, ,(71),y) < Oy + 1. Since X = I'g is properly embedded in X",
there exists M > 0 depending only upon C1, I such that dg(¢s, ,(x1),y) < M.

Hence da(Ly, (6o, 1(21)s Loy 1(4)) = dal6s,_,(21),y) < M and Ly, ,(y) €
Hap -

Let z = L,, ,(y), then

dg(:L‘, Z) dg(:L‘, Lgn—l (gbsnﬂ (1‘1))) + dG(Lgnfl (¢8n71 (xl))a Lgn71 (y))
de(z, x8p-1) + M

< Ry + M = A(say).

IAIA

Thus, we have shown that for x € ,uzn there exists z € ,uzn_l such that dg(z, 2) < A.
Proceeding in this way, for each y € ugi there exists 3’ € ”gi-1 such that dg(y,y) <
A.

Hence there exists 2’ € A’ such that dg(z,2") < An.

Since 'k is properly embedded in I'g there exists f(N) such that A’ lies outside
f(N)-ball about p in I'g and f(N) — oo as N — oo.

Therefore dg(2',p) > f(N), thus

da(x,p) > f(N) = da(z,2') = f(N) - An.

Also we know that dg(x,p) > n, therefore dg(z,p) > ’;(—ivl), i.e., x lies outside
J;(—ﬂ—ball about p in I'g. 0

Theorem 3.3.5. Consider a short exact sequence of finitely generated groups
1-K5a2 Q—1
with K hyperbolic relative to a proper non-trivial subgroup K. Suppose that

1. G preserves cusp,
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2. G is (strongly) hyperbolic relative to Ng(K7) and,
3. G is weakly hyperbolic relative to the subgroup K.

Then there exists a Cannon-Thurston map for the embedding i: I'x — T'q, where

'k and T'g are Cayley graphs of K and G respectively.

Proof. It suffices to prove the condition of Lemma 3.3.1.
So for a fixed reference point p € 'k, we assume that \ is an electric geodesic
segment in ['x such that A(C Tg) lies outside an N-ball By(p) around p. Let By

be a quasigeodesic in the partially electrocuted space F’(’fl joining the end points

of \. Let ﬁgx be a nearest point projection from F’(’fl onto the quasiconvex set

=5 which satisfies the Lipschitz’s condition. Let 3, = ﬁgx (Bper), then B, is a

. . . pel . - /
quasigeodesic in I';;" lying on Z5. So

el lies in a P-neighborhood of (3, in Fgel.

Let C = {Cyng(xy) - 9 € G}. As in proof of Proposition 3.2.8, there exists a tamed
quasigeodesic path v, obtained from 3, in 'y ! joining a, b such that v, NT'¢ lie
in a R;-neighborhood of =y in ' for some Ry > 0.
Let i be an electric geodesic in fg, there exists Ry > 0 such that if z € u® = 1\ UC,
then there exists y € %I;el = Yper N ' such that de(z,y) < Ry. For y € %.Ifel there
exists y1 € =y, such that dg(y,y1) < Ri.

f(N)

Since y; € Eyo, by Lemma 3.3.4, dg(y1,p) > A

Therefore, dg(z,p) > J;(—fl) — Ry — Ry (= M(N), say) and M(N) — oo as

N — oo. By Lemma 3.3.1, a Cannon-Thurston map for i: I'y — ' exists. O



Chapter 3: Cannon-Thurston Maps 104




Chapter 4
Examples and Applications

We first recall a combination theorem for trees of hyperbolic spaces (due to Bestvina
and Feighn [BF92]), which ensures its hyperbolicity. Using this, in [Mos97], Mosher
extended a closed hyperbolic surface group by a free group generated by some suf-
ficiently large powers of hyperbolic automorphisms, i.e. pseudo-Anosov mapping
classes. In [MROS§], the combination theorem was generalized for trees of relatively
hyperbolic spaces. Analogously, in [MRO8], Mosher’s result was generalized to punc-

tured surface groups.

4.1 Examples

4.1.1 A Combination Theorem
Let X be a tree of hyperbolic metric spaces.

Definition 4.1.1. (Bestvina and Feighn [BF92])
A disk A [-m — 1,m+ 1] x I — X is a hallway of length 2m if it satisfies :

1. ATY UXe:e€e&(T)={-m,..m} x I.

2. (a) A\ maps i x I to a geodesic in X, for some edge e;
(b) image of (i — 1,1+ 1) x I under A lies in fe|x,x,1)(Xe % (0,1)) such that
dx (At s), A, s)) =2t =] forallt,t’ € (i—1,i+3),s€ I, and
(¢) if AixI) C X, with e = [v_,vy], then A((i — 3) x I) C X,_ and
Al +3) < 1) C X,,.

Definition 4.1.2. (Bestvina and Feighn [BF92])

1. A hallway is p -thin if dx, (A +1,8), A((i+1) — 1,1)) < p for all i,t, where
X, is the vertex space for which A(((i +1) — 1) x I),A((i +3) x I) C X,

105
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2. A hallway is A -hyperbolic if
M(AH{O0} x 1)) <mazx(l(A({—m} x 1), l(A{m} x I))

3. A hallway is essential if the edge path in T resulting from projecting X onto

T does not back track (and is therefore a geodesic segment in the tree T').

4. The girth of the hallway A is length of A({0} x I).

Definition 4.1.3. [MR08] An essential hallway of length 2m is cone-bounded if

A(i x 0I) lies in the cone-locus for i ={—m,....m}.

Definition 4.1.4. (Bestvina and Feighn [BF92]) The tree of spaces , X, is said to
satisfy the hallways flare condition if there are numbers A > 1 and m > 1 such that
for all p there is a constant H(p) such that any p — thin essential hallway of length
2m and girth at least H is A—hyperbolic.

The main theorem of Bestvina and Feighn which ensures the hyperbolicity of

trees of hyperbolic spaces is as follows:

Theorem 4.1.5. (Bestvina and Feighn [BF92]) Let X be a tree of hyperbolic metric
spaces satisfying the quasi-isometrically embedded condition and the hallways flare
condition. Then X 1is hyperbolic.

Using the theorem of Bestvina and Feighn, in [MROS§], a combination theorem
for trees of strongly relatively hyperbolic spaces was proved, where the following

new condition was introduced :

Definition 4.1.6. Cone-bounded hallways strictly flare condition /[MR0S/:
The tree of spaces, X, is said to satisfy the Cone-bounded hallways strictly flare
condition if there are numbers A > 1 and m > 1 such that any cone-bounded hallway

of length 2m is X-hyperbolic.

Theorem 4.1.7. (Mj-Reeves) [MR08]
Combination Theorem for trees of strongly relatively hyperbolic
spaces:

Let P : X — T be a tree of strongly relatively hyperbolic spaces satisfying

1. the gi-embedded condition (refer to Definition 1.5.1)
2. the strictly type-preserving condition

3. the qi-preserving electrocution condition
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4. the induced tree of coned-off spaces satisfies the hallways flare condition

5. the cone-bounded hallways strictly flare condition

Then X is strongly hyperbolic relative to the family C of maximal cone-subtrees

of horosphere-like spaces.

4.1.2 Examples

Let S be a hyperbolic surface of finite volume with finitely punctures and MCG(5)
be the mapping class group of S. Let ®,...,®,, € MCG(S) be m orientation
preserving pseudo-Anosov homeomorphisms of .S preserving punctures with different
sets of stable and unstable singular foliations. By taking a suitable power, we can
assume that each homeomorphism ®; fixes punctures. For each puncture p € S,
there exists an open region N(p) around p such that N(p) is homeomorphic to
interior of D? \ (0,0). Let N be the compact surface with boundary obtained from
S by deleting N(p) from S for each puncture p, then int(N) admits a hyperbolic
structure. Each ®; induces a homeomorphism (with same notation) from N to N
fixing the boundary components.

Construct a complex M as follows: Let Ny, ..., NV,, be m homeomorphic copies of
N via homeomorphisms f; : N; — N, where i = 1,...,m. Let M be the quotient
space obtained from (|J;“, N; x [0,1]) U N by identifying (z;,0) ~ fi(x;), (z;,1) ~
O;(fi(x;)), for x; € Ny i =1,...,m.

For a puncture p € 5, let K, = m(N(p)). Then m(5) is hyperbolic relative to the
finite collection of subgroups {K,, : p is a puncture of S}. K(p)’s are often called
peripheral subgroups. Let N' = {N(p) : p is a puncture} and E(N,N) be the
electric space (or coned-off space) obtained from N by coning each N(p) to a single
point. Let o be a geodesic in (N, N) and o = a\ Unen) N (p) then components
of a’ are geodesics in N. Let ® € MCG(S) be such that ® is an orientation
preserving pseudo-Anosov homeomorphism fixing the punctures. We say ® stretch
a by a factor of k if the length of each component of ®(a) is greater than k-times
the length of that component of a’. The following lemma plays a crucial role in
proving the relative hyperbolicity of the fundamental group m (M) (viz. Theorem
4.1.9). This is essentially the generalization of Mosher’s ‘three out of four stretch’
([Mo0s97]) lemma.

Lemma 4.1.8. [MR08] For any k > 1, there exists positive integers ry,...,
such that for any geodesic « in E(N,N), at least 2m — 1 elements of the set
{O7, 7™, ..., P DT} stretch o by a factor of k.
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As an application of the Combination Theorem 4.1.7, we have:

Theorem 4.1.9. [MR08] Let S be a hyperbolic surface of finite volume with finitely
many punctures. Let ®q,...,®,, € MCG(S) be m orientation preserving pseudo-
Anosov homeomorphisms of S with different sets of stable and unstable folia-
tions. Then there are positive integers ny,...,n, such that the homeomorphisms
O ..., ' generate a free group F' and the group m (M) is given by the short exact

sequence:
1—>7T1(S)47T1<M) &FH 1

and w1 (M) is (strongly) hyperbolic relative to the finite collection of parabolic sub-
groups {N¢(K,) : p is a puncture of S}.

4.2 Applications

1) Let S be a hyperbolic surface of finite volume with finitely many punctures and
let ®q,...,®,, be m orientation preserving pseudo-Anosov homeomorphisms of S
fixing punctures. Recall from the above example 4.1.2 that N is a compact surface
with boundary obtained from S by deleting a disc around a puncture. Let M be
the complex as constructed in the above example 4.1.2. Let g,]\Nf and M be the
universal covers of S, N and M respectively. Then N is obtained from S by deleting
horoballs corresponding to the punctures.

From above we have a short exact sequence of relatively hyperbolic groups
1o m(N) S mM) S F -1,

where F' is a free group generated by @7, ..., ®" for some large n. Let I'y, 'y, I'p
be the Cayley Graphs of m(N), m (M), F' respectively. Since F'is free, I'p is a tree.
I'ys can be treated as a tree of spaces with vertex and edge spaces homeomorphic to
'y and the tree as I'r . Each ®; (1 <1 < m) induces an automorphism ®; of the
fundamental group of N. Hence each ®} induces a (K, ¢;)-quasi-isometry from I'y
to I'y. Thus edge spaces in the tree of spaces are quasi-isometrically embedded in
the vertex spaces. Since ®; fixes punctures of N, m (M) preserves punctures of N.
Now N , M are quasi-isometric to the Cayley graphs 'y, ['); respectively. Therefore

M can be treated as a tree of spaces with vertex and edge spaces homeomorphic to

N.

By Theorem 3.3.5, a Cannon-Thurston map exists for the inclusion i : N — M ie.
the inclusion ¢ can be extended continuously to a map i arelﬁ — 8relM , where
&el]v , &Qlﬂ are the relative hyperbolic boundaries of relatively hyperbolic groups
m1(N), m1 (M) respectively. Now O, N is homeomorphic to the unit circle S*.
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Let H = m(N), then H acts on the relative hyperbolic boundary 6TEIM. Let AH
be the limit set of H in 0, M. As H is a normal subgroup of w1 (M), AH = 0, M
and therefore %(&el(]\f )) = AH = 8T61ZT/[/ . Since 9,¢(N) is homeomorphic to S!, we

have an example of space filling curve.

2) [Bow07, Mja] Let S be a punctured hyperbolic surface with finite volume.
Let p : m(S) — PSLy(C) be a discrete and faithful representation such that the
3-manifold N* = H3/p(m;(S)) has injectivity radius bounded below by some €y > 0
and maximal parabolic subgroups of 7;(N") are precisely the parabolic subgroups
of m(S). (Injectivity radius is the half of the length of the shortest closed geodesic
in N). Let N denote N" minus cusps, S denote S" minus cusps and S be the
universal cover of S. Fix a base surface in N and identify it with S. In [Mja] it is
shown that the universal cover N of N is quasi-isometric to a tree T' of relatively
hyperbolic metric spaces where each vertex and edge spaces are copies of S. And
T is a semi-finite interval or a bi-infinite interval in R according as N is one or two
ended.

Let i": S* — N" be a proper homotopy equivalence then i* induces a proper ho-
motopy equivalence i : S — N. Let i be a lift of i to their universal covers. Then
by Theorem 3.2.9, 7 S — N extends continuously to the relative hyperbolic bound-
ary i: 0raS — O,uN. Let A denotes the limit set of m1(9) in &Glﬁ(: S?), then
Z(@relg ) = A. Now &elg is homeomorphic to S! and continuous image of a com-
pact locally connected space is locally connected ([HY61]). Therefore A is locally

connected.

4.2.1 Problems

1. Let us consider the short exact sequence of hyperbolic groups
1-K5G— Q—1

with K non-elementary. It was shown by Mitra in [Mit98a] that a Cannon-
Thurston 7 map exists for 4. In [Mit97], Mitra gave an explicit description of
the Cannon-Thurston map 4. It was proved (in [Mit97]) that the end points
(in 0K) of a “leaf” of an “ending lamination” are precisely the points which
are identified to a single point in G under i. In reference to Theorem 3.3.5,

analogously, for the short exact sequence of relatively hyperbolic groups
1= (K, K1) 5 (G, No(K1) £ (Q.Q) — 1,

give an explicit description of the Cannon-Thurston map .



Chapter 4: Examples and Applications 110

2. In [Bow02]|, Bowditch constructed a “Stack” of hyperbolic spaces which
roughly consists of a path metric space decomposed into “sheets” of uniformly
hyperbolic spaces. We assume that the stack is hyperbolic. For a closed hyper-
bolic surface S, a hyperbolic surface stack consists of a proper hyperbolic stack
of hyperbolic planes isometric to H?, together with a sheet preserving isometric
action of m;(.S), such that the induced action on each sheet is properly dis-
continuous and cocompact. The main theorem of [Bow02] states that if there
are two stacks arising from a surface and having the same ending lamination
then there is an equivariant sheet-preserving quasi-isometry between them. In
view of relative hyperbolicity, the whole theory should have generalizations for

non-compact hyperbolic surfaces.
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