m"t bend ‘E’ﬂ-aﬁ‘&*‘%“ p

E.M\j‘_l‘f
v o . |7

—

SOME  ASPECTE 0OF MAJORTZATION
AND

THEIR APPLICATIONS 1IN STATISTICS

SUAIR KUMAR BHANDART

oy
116#!. IHSTJT{_;

\
f{rﬁﬂ" e

Q "Na g
$ TR g
AN )7

'l':l

g

INDTAN STATISTICAL INSTITUTE
CALCUTTA

1987



SOME  ASPECTS OF MAJORIZATICN
AN
THEIR APPLICATIONS IK STATISTICS

By

SUBIR KUMAR BHANDART

Stat-Math. Divigion

INDTAN STATISTICAL INSTITUTE
CALCUTTA

1987

[Thesis submitted to the Indian Statistical Institute
in partial fulflilment of the requirements for the
award of the degree of Doctor of Philosephy. ]



Dedicated to

TUTUL
and
ANT



ACKNOWLEDGEMENT

I gratefully acknowledge my indebtedness to FProlrssor
Somesh Dasfupta under whose supervision and constant encourage-
ment this thesis was written. The results in this thesis were
developed in a wery hard time of my life. Without the sincere
cdare and suggestions of Professor DasGupta, my works would
have been a fajilure. Mere words can notl express my sense of

gratitude to him.

I gratefully remember the invaluable suggestions and
help of Prnfaasar'J*K. Ghesh. He suggested this interesting

area of research and introduced me to my supervisor.

I can never forget the help of Dr. Rahul Mukerjes, both

a8 a teacher and sz a friend.

This thesis has been written on the bagis of ten of my
papers, two of which heve been written jointly with Professor
DasGupta, one with Dr. R. Mukerjee, and twe with Dr. A. Bose.
I wish to express my deep gratitude to Professor DasGupta,
Or. Mukerjee and Dr. Arup Bose for giving me permission %o
present these Jjolnt works in this dissertation. These form

the-materials of Chapter 1 and Sectlons 2B, 43, 4C and 5C.

_~

The acknowledgement will remain incomplete unless I
mention the sincere and hearty help of my slsters in all
posslble ways. They not only took care of my physical und
mental health, but alsc assisted me In copying the umnuscrints

of my papers.



(i1}

Last but not the least, thanks are due to Atasi bBasu
(Ray Cnaudhuri) for her encouragement, suggestions and help.
41so I take this opportunity to thank Joydeep 3Shanjsa, Sum.ira
Purkayastha, Goutam Mukherjee, Dr. Arup Bose dnd others L:
the department for encouragement and disc?ssions.

T thank Shri Bidhan Chandra Chatterjee {cr his

gexcellent typing work.

S. X. Bhandari
January, 1987



4o
no
=
3
(11 e3]
[

=

e

SUMMARY OF THE THESIS vae

CHAPTER 1

CHAPTER 2 :

UNIVARIATE AND MULTIVARIATE

MAJORIZATTION ‘.
Introduction - -
Unjivariate majorization .

Multivariate majorization

References

SOME ASPECTS OF THE THECRY OF
MAJORTZATION

Introduction:

Doubly superstochastic matrices
and weak supermajorization N

Multivariate majorization and
directional majorization R

References “a e .

MAJORIZATION AND KARLIN'S CONJECTURE
FOR RANDOM REPLACEMENT SCHEMES

Introdustion - Ve e

Some positive resultis for large
values of population size

11

11

20

WA

02

ple

B7

63

74



CHAPTER 4 ;

CHAPTER 5 ;

(ii)

Pesitive results for some restricted
¢lass of Schur-convex (concave)
functions Cas

Comparison of symmetric sampling
plans and some inequalities in
random replacement achemes .

References PN
MAJORIZATION AND RANKING MULTINOMIAL
CELL PROBABILITIES ‘e
Introduction v
Selecting the most probable category

Selecting the least probable
category .

References

LORENZ-DOMINANCE AND MEASURTNG
INCOME INEQUALTTY ..
Introducticon

Applications in characterization
of the parent distribution by
inequality measures on its trun-
catlions ‘e

Some relations among inequality
measures "

References e

';;35

99

100

101

104

143

144

149

154



SUMMARY OF THE THESIS



SUMMARY OF THE THESIS
S e S TR

The works in this dissertation are primariily based un
ﬁif}erent concepts of majorization and the results thereof.
Tre Tirst part of this dissertation is a study on different
CDHEEpLs of univariate gnd multivariate majorizaticn. Ine
latter part of this diaaertatimn includes studies on some
problems in Sample Survey, and problems relating to ranking and
selection with the use of some results, old and new, in majori-

zation.

The concept of univariate majorization has been consi-
derad by econonistes in relatlion to Lorenz curve, as well as by
mathematiciana and atatisticlans, especisally in the field of
reliability. It appears that the resultg relating the different
concepts that are available in the literature are not widely
known; as a matter of fact, it appears often from some papers
ir economics that the respective authors are not familiar with
some of the relevant results published earlier in Journals of
mitthematics or statistics. In the first chapter we have a brief
review of the resul%é in wnivariate majorizaticn and brought out
a unified relstionship among different concepts of majorization
available in the literature. The extenzion of these COﬂGEpts
to the multivariate case 1s then studied. Certain concepts on

multivariate majorizatien have been presented along with some



new results. These results can be relsz<ed to pronlens i
goconomies; with that in view some sufficient condizions Tov

concave utility function have heen presented.

An important teol in the theory of majorization iz a
theorem due to Hardy, Littlewcod and Polya (1929), which says
that for P:nxn, yP in majorized by v for all yeR" if
and only if P i1s a doubly stochestic matrix. But similar
results on weak aUpirmajorizétien was an open question
[Marshall and Olkin (1979)]. Such a result has been developed
in the first part of Chapter 2. In particular, 1t has heen
proved that a nnn—negafiv& matrix P:nxn is doubly super-
stochastic 1if and only if yP is weakly supermajorized wy v,
for all y wilth all components positive. This result is based
o the following fact that a non-negative matrix Pinxn 1s
doudly superstochastic 1F and only 17 it satisfies the Zollowing

condltion.

Condition ; For 1 <k, { £ n, and any kx/{ submatrix B
of P, total sum of the entries in B 1s greater than or equal
to {k+f -n). |

The latter part of Chepter 2 is devoted to some
mathematical problems in multivariate majorization. For twe
matrices X:imxn and Y:mxn, Marshall and Olkin (1979)
defined X to be majorized by Y, if X = YP, for some X
doubly stachastic matrix P. Following Marshall and Olikir

{p.433) we define X Fo be directionally majorized by Y, il



aX is majorized &Y for z11 aeR™. They have posed tne cpen
question whether these two types of malrix majorizations are
equivalent. Here we give some sufficient conditions under
which directional majorization implies multivariste majoriza-
tion. In particulan for m = 2, it has heen proved that i€
all the column wvectors of Y: 2xn are boundary pcints in the
convex hull of the column wvectors of ¥ and this convex hull

has twodimengional positive volume, then directional m:zloriza.

tion implies multivariate majorization.

Chapter 3 is devoted to some inequalities relating to
random replacement schemes introduced by Karlin (1874). 1In
particular, a conjecture of Karlin (1974) has been studied in
this context. .The theory of majorlization plays a centra' role
in those problems. Nelther part of Karlin's conjeciure rolds
to be true, az has been observed by different authors {Hrafff
and Schaefer {1984), Schaefer (1987)]. In the first purt we
give short and elegant proofs of some of the existing resuits
_Krafft and Schaefer (1984)]. In the latter, we analyse the
proolem from a different view point and give a large class of
Selur-concave: {convex) functions for which the conjecture holds.

Seme other related inegualities have also been derived.

Tpe problem of selecting the most (or, least) Llike.y
svent in multinomial population {(using indifference zone

approach) has drawn the attention of meany researchers In recent



years [Chen and Hwang (1984), Chen (1986}, Bhandari and dose
(1287) ete.]. In those problems the technique of deriving the
least favourable configuration (L.F.C.} is usually hard amd.
cumbersome. Marshall and Qlkin {1979) have Introduced some
applications of majerizaticen to tackle such problems. We have
applied the majorization concept in these problems following
the works of Marshall and ﬁlkin. The first part of Chapter 4
deals with the problem eof selecting the cell associated with
fhe'largestﬁprab&bility. We have assuned the followlng cons-
traint:

and studied the problem of derliving the L.F.C. for different

pessible values of a and b, where
Q{k) }i U(k—"” 1 uo-: [ i Q[:.E} E= =] ‘thE

crdered values of the cell probadbilities. In particular, we
nave disproved a conjecture of Marshall and 0lkin {(1979) on the
form of LsF.C. for a = 1. Moreover, our results provide
partial angwers to all the four conjectures of Chen and Hwang
(1984) on the form of L.F.C. The latter part of Chapter &4
deals with the problem of selecting the cell associated with
the smallest'prﬂbability. In that context we have assumed thle

follnwggg constraint:

01y £ @ Oy - ¢,

aud studied the problem of deriving the L.F.C. lor different



possiole values of a and e¢. In particulsr, we have derived

certain known results threugh simpler and more elegant procis.

For the non-stochastic set-up the concept of Lorenz -
dominance coincides with that of majorization between two
vectors with positive components and the same total sum of the
components. A desirable property for ‘the measures of income
inequality is to maintain this order of Lorenz - dominauce. The
first part of Chapter 5 generalises some already existing
scattered results [of Bhattacharya (1963) and Ord et al (1383)
etc.] on characterisation of the parent distribution by inequa-
lity measures on its truncations. In particular, it has hbeen
snown that if for some measures of inequality (in income), the
unper d-truncated distributions corresponding to two income
diztributions F and G have the same inegquality measure for
every o in {0 ,1), then F and G are equal excent for
possible change in scale. Some results on Loren? - dominance
nas been used to prove this. The latter part of Chapter 5
dev@loﬁs some inequalities among different Schur - convex furc-
tions which are mostly used as guentitative measures of income

inequality.
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CHAPTER 1

UNIVARIATE AND MULTIVARIATE MAJORIZATION




CHAPTER 1 UNIVARIATE AND MULTIVARTATE MAJORIZATION

SECTION 14: INTRODUCTION

The concept of univariate majorization has been conul-
dered by economists in relation to Lorenz curve, &S5 well as by
mathnenaticians and statisticisans, especially In the field cf
relizbiliity. It appears that the relaticnship among the
different scattered results thatl are availatle in the 1 terature
isnot widely known; as amatter of fact, itoften appears from some
gapers in economics that the respective authors are not familiar
with some of the relevant results published earlier. Here we
first glve a brief review  of univariate majorization antid

bring out the relationship among different conditlons.

The problém 1s then pésed whether these condi ticns coald
be extended to the multivariate case. Certain concepts on
multivariate majorization have been presented along with some
riew results. The guestion of imposing a concave utiiity ‘unction
for multiple commeditles has been eXamined in terms of some

corceptually understandable and realistic axioms.

SEQFIUN 1B: UNIVARIATE MAJORIZATICN

Lurenz Curve and Unjvariate Fajorizalion

T order to measure inegquality of incomes or of wealth in
a #iven population of individuals Lorenz (1905) introduced a
| -gh‘h‘.'"'ﬁ“:"‘" INS Tf'r-'”'
e 1 1187

!-\a B “MAR 1390 ;;i_-’
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curve, known as the Lorenz curve, which he described as follows:
"Plot along one axls cumulated percents of the population from
poorest te richest, andaalnng the other the percent of the

total wealth held by these percents of the population.™ Let

Xqy +vey X, denote the incomes (or wealth) of n individuals

in 8 given populstion, and let Xe1y £ X(p) £ +ee £ X(p) denote
the ordered values of ‘the x;'s.  Then the Lorenz curve for this
income distribution 1s the polygon graph obtained by Jjoining

the consecutive points of the sequence (0,0}, (k/n, i§1x{i)KT),
n

bl

k=1, v, 1, by straight lines, where T = % Xy- Foliowing

b

Lorenz, the distributicn of incomes corresponding to a popula-
tion 1, i1s sald to be "more even' than the income distrisution
of another population I, 1T the Lorenz curve for i1, lies above
the Lorenz curve for Mo sucﬁ a relation is often stated oy
saying that the income distributicn of My 1is Lorenz-doninezted

by that of o

The above concept is closely related to the concent of
majorization introduced by Schur (1923). Given two veciors
X = {Xqy seo, an and y = {yq, .., ¥J) in R, x  is se.d
to be Schur-majorized by v , written as x < vy , 1f

k kK
}]‘Ix(iji"?}r{i:'? k=1, «.o, n,

-
—

4!

xo= $ v, o

!

The anove relation may also be expressed equivalently o

k k r I
X < 5L . = 1 - L ox. = L v.,
P =7 T K ’ p B B%y 7Y
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where- x[n} L oaee ﬁ_x[1] are the ordered values of x;'s.

The following basic result on Schur-majorizaetion is

due to Hardy, Littlewood and Polya (1929, 1934, 1952) :

Theorem 1.1 The following conditions are equivalent:

(a) x <y
(b} x = yP .for some dochbly stochastic matrix F

n n
(e} f ﬁ[xi) < L ﬁ(yi) for all continuous conwvex
L

functiens @
_ n b n y B "
(dj 13 xi - 12 yi ¥ and $ (xi - El.) f_ 1E i}ri - Ei} »

for all real a, where (x)' = max(x, 0).

We shall name the above four relations (a), (b}, {c¢) and {(d}
as 'the rearrsngement condition', 'the structure condition',
'the convexity condition', and 'the residusl condition',

respectively.

It may be noted that the income distribution
x = {31, . xn) is Lorenz=donminated by another incone

n Il o
distribution ¥y = (¥4, ---, y,) with § v, = % x, ir, wnd
only if, X -¢ ¥ ; howewver, for Schur-majorization the compo-

nprits of the vectors x and y need noet e non-negutive.
The area between the Lorenz curve of @ giwven income

digtrimution and the egaljitarian line (Li.2., the line

doining (0, 0} and (1, 1) is called the Lorenz area or the
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area of concentration, and is used as & ‘'measure of inequality'
(see Nygard and Sandstrom(1981})., The condition (¢) can he
interpreted from the viewpoint of economics by considerins the
total utility for incomes (X;, +.., xn) as ? u(xi), where u is

a concave functlon.

2, Stochastic Majorization -

The above four conditions (a) ~ (d) nave been extendsgd
to a stochastic set-up and the result anzlogous to Theorem 1.1
nas als& been obtalned in the literature. We shall brieflly
review tThe results.

: Consider two random variables X and ¥ with distributions
F and G, respectively, and with first moment distributions Fy

and G, respectively. When X and Y are non-negative with
rinive and non-zero means, the concept of Lorenz-domination can

bz oxtended as fnllows The Lorenz curve corresponding to F
is defined by {p, F {pJKEFHJ y O < p £ 13 the Lorenz-curve
corresponding to Y is similarly defined. We say thet X is

Lorenz—dominated by ¥, written as X —{L ¥, if, and only if
-1 - )
(PJ.”EFX 1 G1 {P}IE{;Y ’
for all p in [0, 1].

Following Hardy, Littlewood and Polya (1928), the stochas-
k
tic version of ordered partial sum E Xy in case of & random

variabkle X with distributlon 3 WDuld be

-1
F
) (pjxdF{x}.

—tTD
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S0 the rearrangement condition (a) can be expressed as fullows:

' (p) e~ (p)
(4) I o xdF(x) 1/t ydG(y), C < p ¢ 13 EpX=E,Y.

The above relation of course assumes the finiteness of the

means of X and Y. We shall write X <Y for the relation (A).

The convexity condition (C€) has the follewing straight-

forward extension:
(¢) Ep #(X) < E; B(Y)

for all continucus convex function ¢ for which the above

expeciations exist and are finite.

Similarly the stechastic version of the residual zcondition

Vd) iz the following s
(D) By (X-a)" < E5 (v-a)"
for all real a, and EF}L = E, Y.

The structure condition (b) does not have a straigntfor-
ward stochastic anslogue. Ryff (1965) has introduced doubly
stochastic upgfafor to get the stochastic extension of the
structure condition. 4 different development for the structire
conditionis glven M the paper by Rothschild and Stiglitz 197C).
The most satisfactory analegue of the structure condition may
se formulated as follows using the concept of 'dilatation’s

ihis is due to Strassen (19365).
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Condition (B) : © There exists a probability space and rundu

variables U and V assoclated with it such that the disiri swu-
tion of U i3 the same ss that of %, the distributicn oi V i

the same as that of Y, and E(V| U = u) = u almost sure-

Mext we consider the guestion whether u stochastic
analogue of Theorem 1.1 could be obtained with tne condiiions
(a) - (d) replaced by (A) - (D). The eyuivalence between Lthe
conditions (4} end (D) was vroved by Atkinson (1970) fur non-
negative random wariables with finite means; his groof can be
casily extended to the general case for random wvariables with
finite means. The equivalence between the conditions (3) and
(7) was obtained by Strassen (1965) following the general
results on dilatation theory. The equivalence between the
conditions {C) and (D) éssentially follows from Karamata's
theorem (1932], although similar result was also obtained by
Levin and Steckin (1948), Brunk (1956) end Ross (1983). In
this development 1t has been tacitly assumed that X and Y have

finite expectations.

3. Weak Majorizations

The concept of weak (Schur-) majeorization between two

r-vectors X = (x1, cany xp} and ¥y = (¥qs «eey yn) 18 intro-
) n n

dueced in the iiterature to deal witi the case when E:xi#=2 Y,

The vector ¥ 1s said to be weakly submajerized oy vy , writien

as X<, v, 1t



— e

The wector x

written as X

- p]

The following
from Marshall

Theorsm 3.1 :

- 17 -

X(3] £ & Yy, k=Tl .. om

is sa8id te be weskly supermsjorized by oy o,
<" y , if
k .
x{j_} b f:f[;i:}r K= 1, «auy 1l-
bagic results on weak majorization are cuoted

and Olkin (1979).

The following relations are equivalent:

{e} x ~y ¥

(f) x = ¥

il i n -
L&) z Blx;)

P for some doubly substochastic matrix i

< f ﬁ(yi}, for all continuous noendecressing

convex functions @

- n .
() Eo{x, -
1

Theprem 3.2:

(1} x=<"y

L) x =y

Il
() 3 #0xy)

1 N
a) < & {yi - a), for =ll resl a.
i

The following relaiiocns are equivaient:

F for some doubly supersteochastic matrix F.

n
< I ﬁ(?i) for all continuous nonincreasing
1

convex functions @.

n + n +
(1) f & = x4)° ¢ $ (a - y;)7 for all real a.
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§y

Ihe stochastic versions of the coaditions Ua) and (1) ave oiver

i

respectivaly as follows s

[¥) E{X - a) < BUY - m), For all real a .

: ;s -+ e, } . o
(aw X} <E{a-1)", for a1l resl & .

i3

(L)

Tre relation (M) and the relation (L) are uszed in the 1iiorsis

to deline convex ordering, written as X icﬁu_and concave ordering,

written as ¥ < X, respectively; see Karlin and Neviko[f (1963},

Bessler and Velnott (1966), Marshall and Proschan (1970}, arul
Stoyan (1983).

It follows from Karamsta's theorem (1332) Luat e aonditio

H {resp. Condition L) is equivalent to the followiog s

Corditien & {resp. Condition K):

LR M Kl o)

orrbiyiuons nondecreaging \ooninoress]

e abowve sxpecitations  exist ang

Morgover, in relalicon to thé structure conditlons, 11T

ainion

Follows from the results of Strassen (17955) that the o

G {Condition K) is eguivalent to the following :

{ o

Condition ¥ iCondition J) :

There exists a probability space and random wvaris

7 oand ¥V associated with 1% such that the distribubticen ol U is
the same as that of X, the distritwution of V 1ls the same as

that of ¥, and E(V/U = u} > (z) u o, almost sure.



- 19 -

Following the proof given in Atkinson's paper 1970} it
can be shown that the condition = and the condi€ion L are

respectively equivalent to the following conditicons & and I:

£y =

Condition E: I xdF(x) ¢ £ yaGly), O <P gl

F~ (p) G™ (p)

= (p) G™ {p)

Condition I : I x@F(x) > 7 ydG(y), O <P g 1.

- —
4. 'Convex Qrdering

Certain results relating the convex ordering seem <o be

important and gseful. Karlin and Noviketf {1363) huve Iolro-

duced the cut eriterion which may be described as follows:

RERY

Suppose X and ¥ have {inite first moments witah EZX < &%
Theg there exists a finite ;I(;?iﬂt £ such that Fix) < Gix) for
¥ ¢t and F(x) » G{x}) for x > & . It turns ocut that the cut
criterion is a sufficient condition for convex ordering: see

Stoyan (1983) .

In this context Marshall and Proschan {(1970) have intro-

duced the concept of gtar-shaped function; & function M is

said to be star-shaped if M{cX) <c.nN{X),0<c<ec<1, X >0,
4 sufficient condition for two distribution functions ¥ and © teo
cut one ancother at most once is that the function n{x} L]

-

3" F{X) is star-shaped; such a relation is written as F <, G.

t is easy to see that EX < EY and F <4 G together imply



X <, Y3 see Stoyan (1983).

Stochastic majorization and espeeially convex ordoring
have been used extensively in the theory of statisticeal relia-
bility.. In that context, a nennegative random variable & or
its distribution F) is said to be NBUE (new better than used in
expectation) if EXe < EX for all 7T » 0, where Xoq is
defined by

P >x] 2 PX>x+T|X > ].

It has been proved that if F is NBJE with mean n, =hew

F <. Exp(m‘q}, whe re Exp[m'1} stands for the exponential dis-
trivution with mean mj; see Stoyan (1983}. A weaker r=suit is
given in Chendra and Singpurwalla (1987) . The above resull

shows thal trie Lorenz curves of all WAJE distribuctions with

. - ;e
medn o are enclosed within the Lorenz curve of Exp(m™ ).

Suppose, in parcticular, that #£q and X, are distributed as
lognormal distribution with perameters (W, %) and (e, , 9.},
regpectively. Then 1t can be shown easily that Hy < B, and

s, 5'02 together imply Xﬁ 25 XE; see Stoyan (1983).

SECTION 1C: MULTIVARIATE MAJORIZATION

1. Intreduction

The ordering of univariate populations does not have a
straightforward extension to the case when the ordering is based

on observations on multiple characteristics in the (experimental)
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units. The primary difficulty in extending tne Lursess curve,
in particular, is due to the fact that there is o i
natural way for definins an ordinal scale {nours Lo rioe . L

deserite the units to start with, althouwsn =stlen s oo

ar gxtension nas been pade by [Bzuend (1968) . DL aeens Lhzl

any  such corcept of ordering ‘

should denerd on Lhe ohjooai ez

and poasible uses of suck A study; besides, the shysisn. catbure

k]

6 the nroblem as manifested In concrete siTuslions sony ol
for acme speci Mo types of arderiay oo She basis of relovanl

.
suxd lary information.  Any abstract formuilaticon of the ooncept
ol orcering would be primarily & matnematical exercisze, ..though
sucn 4 formulaticon often may give insicat in®o varigus rodia-

ticnshivs underlying it.

One such exercise is presented in the paper oy Sen L1376)
in relation to the problem of ordering communities of indiwvi-
duals on the basis oi consumption dats on multiple comrodities.
One of Sen's obJectives was to compare the communities with
respect to total social welfare as well as welifare standard.

To wriefly describe Sen's work let us consider A wmatrix

L.

X = ':.K‘NJZ nxm, where 153 denotes the amount of cowmeodity

is
Seln ono operson -0 On o the oasis of certals axicms, wer 53s
sucgested a criterion of the Term RX Q' far CODpEArine scoial
standasds, where O is fhe wrice wvector o e commodities =nd

Lae o oventor of ranks correspondine o the meney Incones of

the individusls. Although some 0f his axioms 2ve far Irom



natural, 1t turns out that the above criterion is approximately
proportional to e (1-8) for large n, where G is the Giri-index

and e atands for the average money income.

To illustrate his axiomatic development, Sen has congl-
dered the prablem of comparing the welfare standards of The
fifteen states in India based on rural zonsumption dat:
(106162 ﬂata), Tae values of e (1-G) &re computed for each
state oased on the price vectors of all the fifteen states.
For any given state, the set of all states, which have Llower
standard +han the given state in respect to their respective
price wectors, are obtained. This Ieads to a tree-divyram or
nierarchy of states with respect to the welfare standsrd.
Altheugh this method gives a nice comparative picture of the
different states, the basis of this method is questionzile.

It may be noted that the critefiun of welfare standard, «s
civer by e (1-G), is strongly related to inflationary wvrices;
morecver, the pattern of consumption generally dependsz i
srices of different commodities. The methnod suggested by 3Sen

may even lead to inconsistent description.

It is not clear whether a single-variable messure of

aeoinl welfare is realistic. Tt seems that rote empirioc

ssuiies in o2 brosder perspective are neerded o omeks a0 e L LTIC
fQFmd;utiuw el owne soeisl welfare funchicn ia w Fiwsnl s Llon.

It may be plausiole to assume that a measure of welfalc nTddle

dard iz invariant under identical repefitions of the sei of
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individuzls {along with their social behaviour) in a community;
however, popular consumptimn of a certain commodity may sifect
the relative weight given to that commodity in determinii. the

welfares standard.

One of the approaches for introducing partial ordering
among pepulations based on multiple characteristics is <o
consider & real-valued function of these characteristics and
then Iinvoke partlal ordering for univariate measurements. Such
a function may be & utility function or total income based on
consunption of differeﬁt commodities and the asscciated price

- wector.

rartial ordering way be introduced with respect oo each
of ihe characteristics separately. Consider twe nxm  retrices
A and Y. Following Marshall and Slkin (1979), X is said to be

columm - majorized by Y, wriitten as ¥ H(CDIY, wher

c .
xi o S, i= 1, ..., m

i
tively. The above relation is equivalent to the following :

where Xf and Y$ stand for the ith column of X and Y, respec=

There exist doubly stochastic matrices Di{i =1, .., m} cuch
that Kg = Di YE, i=1, ove, m« It may be noted that =ic:
partial o¢rdering is a weak relation, and ignores the usscciabion
ameng the columns of the matrices that may play a sign Micant

~zle i conerete zitustions.

Farshnall and Olkin (1973) have censidered bhe o wing

citension of majorization to the multivariate crse. o 5 s
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X1 nxm is said to be majorized by another matrix VY :axm,
written as X <Y, if there sxists a doubly stochastic nwiirix
D:nxn such that X = DY . It can be seen that this pariizl

ordering invokes & strong relation, through one sucn metrix I

Tt can be seen that the convexity condition (¢) and the
structure condition (b} can easily be extended to the mulziva-
riate case if we treat each x; in (b) and (¢} as an r-vecior.
However, the rearrangement condition {a) and the residual condi-
tion (d) do not have any unigue or natural exXtension Lo The

mueltivariate case.

2. Colum-maiorization

We now define a convexity condition (or column-m. ori-
zation and show that it is equivalert to the structure condition.
Par g row wvactor ZH = (7 ‘ Z.) deling
[l L. s s bl I\ /E’ LR ,..-m L ,_HIZ—.‘

g(2Y) = g (2))+ ...+ g (2),

where g,'s are convex functions. For 2 matrix X: nxm with

rows glven by Kﬁ( v ey Xﬁ , define
. 1 <R
P = T oe(e]).
lﬂ

Let § be the set of all such functions § .

Theorem 2.1: For any twe nxm matrices X and ¥, & -« Oy

if, and only if, 43[3{} £ 1)(‘1’} for all *J in @
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_ _ col
Suppose X — Y. Then there

Erogf:

this structure $(X) < ¢{¥) holds trivially.

Suppose now §(X) <

as constant functions (j #

I I
L g (X)) T g (Y, .)

k), ¢{I} < ¢{T} implies

P

for all convex functhions gy This, in tur,
The azove result can ae interpreted from
maks the result covressend to the usual no

X = (X

To

we proceed as follows. Consider @ materix

w! . .
wnere i3
Let the welfare functicrn

WE = T U,
i=1

individual i.

where K? the ith row wvector of X, corresgords
individual., The function U 1s defined #s €
R gt .

U (x i} = 331 U.:](xi;l) 1

211 such functions W.

exist douoly

Elt matrices D; such that X{ =D, ¥7, 1 =1, ..., m.

implice X

Tiorns

are increasing and concave nunoetions.

Ther wea gl

! -

1.

[

!

Toas
oy

dencote the anount of the Jth commodily ol
he delinegd

i.

TtoLlows -

Let

ke

1 oLass 0o
thesran, s shandard sroo? ol wnlch is omitted.
¢
Theorem 2.7 Ve o two nEm oaetrices A (IRTS B
oo ll functionag Wooin S 1, ared only i, theo
o n + v ] ivs
. sueh that hj > ¥

Aaubly stochastic netrices o

${Y) for all ¢ in %. Taking g

Ry

REE

e

l.-ll

sconomic viowpodnl.

e



- 25 -

where the inequality is defined commonentwise.

In relaticn to the partiol orderives defisead e g -
tion with regpect Lo eacy of the comncdicien sennrableiy, oo
mey cefine anpropriate inequality measures “or L, Let,

< _ Iy . e i e gl e ey e el o
1) = h{$1{xq}, any #miﬁm)}, where h  is ‘roreussias and
¢i*s are Schur-concave. Ther it can be seen ezsily thal

col o
X = Y dmplies I:X) > I{Y). In particular, one such
inequelity measure for X > O can be given as follows:

L B IKij - Xyl |
I = =% 1 3RS :
0 2{n-1) T

: J

=] B

1J

In the above weneral deflinition of I(X) one may take {.'s as

univariate inequality measures wnlch are Schupr-concave,

3. Matrix majorization

some iwporlant resylts relating matrix majorization and
discussion on certain assumptions will be #iven in this Sube-
geclion. First we give a useful necessary condition Tor aobrix

maijcrization.

Theorem 3.1 1 For two nxm maEtrices X and ¥, X —« Y implies

wr L a - . . st .
¥PY L X7 ¥ is nositive semidefinite.

Proof: T'e result follows from the fact that for any doubly
stochastic matrix D: nxn the matrix I - D'D 1s posltive

senidefinite.
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1%

follows :

x*"‘-(z'f* 2.5 2.5 2.5) ¥ = (n a1 1Y
441 1/ s o4 v 1/

le 1 Consider two 4 X2 matrices X and ¥ given as

col
Note that X = - ¥, but X K Y, which can be seen by invo-

king Theorem 3.1.

The eguivalence between the structure condition and the
convexrity condition for matrix majorization has been proved by
Karlin and Rinott (1983} following the general result on

dilations (see Meyer (1966)); the result is stated below.

Theorem 3.7 For any two nxm matrices X and ¥ the follow-

ing conditions are equivalent.

{1} X =DY for some doubly stochastic matrix D.

I 7 n R
{ii) Eﬂ‘f(xi) < 31 f(Yi), for every convex and
i= i="

continuous function f on R™.

Note : Suppose X and Y denote two consumption matrizes of
n individuals on m commodities. Suppose W 1s a welfare
function such that X ~<c01 Y dimplies W(X) > W(Y}. This
neans that the total welfare would be increased if the amount
ofPeach comnmodity for any individual is replaced by a weighted
average of the quantities of that comwmodity as distributed
over n individuals. However, it is not clear averaging
separately for each commodity should lead to more welfare. For

gxample, if the amount of farm equipment is redistributed after
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ﬁverag.ing without any change in the farm land there would be
« imappropriate use of the equipment which may not result into
- more walfare.

On the otherhand, the matrix majorization requires the
saume type of averaging for every commodity; this requirement
18 not only restrictive; but presupposes a definite relaticnship
among the commoditles.

Neither the column majorization nor the matrix majorisa-
tion seems to be satisfactory. However, the following aspect

of matrix majorization appears to be convincing.

Definition : Amatrix X: nxm is said tc be weakly superma-
W
jorized by a matrix Y: nxm, written as ¥ < Y, if X > DY

for some doubly stochastic matrix D.
L
Theorem 3.3 1 For two nxm oatrices X and Y, X < Y if,
and only if
L oRw w
W), ey U <7 WD, ., R
for all inereasiﬂg concave functions U on R'.

The proof of the above theorem depends on the following
result which can be easlly cbtained from the development in

Karlin and Rinott {1983).

Thegrem 3.4 : For two nxm matrices X and Y, the following

are equivalent :
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(1) x <"y
1 o a2 T o

for all increasing concave functions U on R™.

Proof of Theorem 3.3 : The condition in Theorem 3.3 implies

iy Il
that L U-(x'fj > I U{?’;‘). Hence, by virtue of Theorem 3.4,
1 1

W
X <« Y.
W
Now, suppose X < ¥, Then X > DY for some doubly

Ii
stochastic matrix D. Now U(J{E} > {}:.’.1 dih: YI;), where [ = (di:}J

n R

Let

& - (U{Xﬁt} PR I U{Ki))

b o= (U(YD, ..., U(Y) .

Since the above result shows that a > bl for seme doubly
stochastic D, it follows from Marshall and Olkin (1979) that

W
a = b.
Note : Theorem 3.3 seems to be useful from the viewpocint of
eponomlics. However, it is conceptually difficult to understand
a concave utllity function on R"., We shall next pose some

easily understandable axjoms for U to satisfy and show that these

axioms imply that U 1s concave.



4. Concavity of Utility Function

First we shall consider the case m = 2. We postulate

the following axioms,

Axiom 1 : U is strictly increasing.
Axiom 2: U 15 concave in the positive direction, i.e., for

X >y and 0 <A <1
UAX + (1 =A)y) > A U(x) + {(1-A)U(y).
Axiom 3 U is continuously twice differentiable.
—————
Axiom & : Given xJ* > x*¥, X5y aX¥, > 0, define ;_\._x,r and
axq " by
Ux , x5) = UGS + axf, Xp - AXop)
U(:-]** ] R‘-EJ - U(Kq** * 311** s 2{2 - &Kg}.

Then amf > axf*

Theorem 4.1 : Under the axioms 1-4, I is a concave function

on HE.
.Breef: Let
# 2
fil U(K1 ,)E?)
(&ni) UlJ = - 5 i) J = 1 1 2.
ﬂxi aKJ

t is sufficient to show that the matrix LUi;‘] is negative
5 wd

gemidefinite for all Xy, Xp

Axiom 2 implies that for fixed x > vy ,
bae 2) HOM 2U{(h x + (1-7) v)
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& & concave function of X in [0, 1]- This, in turn, implies

hat H" (A) < 0. It can be easily seen that

3 () = I I ( ¥ Jazmw}
4. HM (&) = I X, =y M x.-y,) ———

LML T YN T | |
iJ aw‘i éw'_’] w o= Ax+il =%}y

Given w > 0 and a > 0 there exist x , y with % > y

gnd O £ A < 1 such that

(hods) w o= Ax o+ (1 -A)y,
aﬁd
2
a° U w
(4.5) LI ay ay ) < 0.
i3 awi awj '

To see this, rote that there exists € > ¢ such that
X = w+éea>»0, ¥ = w-£tga >0, and use the fact that
H" (A} < 0. It follows from the above development that (4.5)
also holds for a < 0.
wWe want to show that (4.5) holds for all a . Suppose
U1?> 0 for x = W . Since U is concawve in each argunment
{by'axiﬁm 2}, Uy <0 ,U&Q < 0., Hence (4.5} holds when a, 8q < O
Now suppose that Ujo, €0 for x = w . It follows

from Sxiom 4 that

U
2 (- ﬁgJ <0
tﬂ}H 1
where
U - aU(x.l ¥ xzj




Thus

Reversing the role of x, and x, we get

From the above two relations we get

2
Upq Upo > Usas

the proof of the theorem is complete.

Next we consider the case m > 2. We define a new
characteristic (or a commodity)} by a mixture of the m given
characteristics (or commodities) in fixed proporticns. We
modify axioms 1-4 so that they hold for any such two new charac-—
teristics. Under these modifled axioms the uwtility function U

m
is concave on H .

To gee the above claim, take any twe fixed points x and
y in Hm, and consider the plane P passing through x and ¥y
and the origin 0O It is now sufficient to prove that U is
goncave on the plane P . Consider the convex cone which 1s the
intersection of the plane P and the positive orthant, and let
Q'l and QE be the unit wvectors corresponding to the two eXtrerne
rays of this cone. All points om P can be considered as linear

combinations of Q4 and Q,, i.e., for pef

P = Dy G"I +p2 Q.?_.
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Thus any such point p in P can be represented by {p1 'y Py ).
It is now sufficient to show that the modified axiomg V-4 imply
axioms 1-4 in terms of {p, , s }- Tnis fact trivially follows
for axioms 1, 2, and 4. To see axiom 2, take any two points u
cand v.on P. Let Q, and QE have coordinates (iq, ..., i}, and

{34y ++re 3y), respectively, and let
U= Uy Q1 + U, GE'

Suppose now (uq , u, J 2 (vy , vy, }v Then u < v. Thus U is

concave on the line Jeining u and w.

2. Ueasures of ineguality

he following inequality measures preserve the partial

oréer of matrix majorization :

. n L]
(&) n(xX) = © x

= R R
X D S diag (rq, ‘e, rm),

™ = .
3 /131 Xy 50

and A4 1s a posltive semldefinite matrix.

{ ) n{x)

h{ gy (Xag), -ooy X 50D,

o . m : ) . . s
woere a4 € R, a, 2 0 for all i, h is an increasing NuncTion,
¢.'3 are univarisate inequaliity measures which preserwve ohs

]
4.

partiol order of majorizaticon, and £ i3 the matrix wiin rows
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g‘ defined in {(2).

All the above measures satisfy the condition of impar-
$iality (i.e., invarient with respect te permutations ol e
rows of X}, and scale invarisnce (with respect to each varinsie

v gaparately) .

6. Unequal Populstions

Consider two populations denoted by X = (3{_.' y ey y_r)
and Y={y1, ey y‘anhere r<n and x.'s and y . 's
mre all column vectors in RF. The following result due to

Karlin and Rinott {1983) deals with the comparison between X and

¥
" Theorem 6.1 : The following are equivalent.
r o n _ _
(1) E f{x,} <« £ f(y.,) for every continuous convex
i=1 17 = 4= 1

non-negative (and coordinatewise increasing) functions
f on RP,
(ii1) There exists 2 doubly stochastic matrix M:!nxn such
that
X = (resp. <) [YM]P , where ['fm_]r
denotes the pxr matrix formed from the first r columns

cf the pxn matrix YW.

The abowe has been obtained from a menera! result

af Fischer and Holbrook (19830} .



‘Multivariate Stochastic Majorization

A4 random vector X (1 xk) is said to be Schur-ms;orized
By another 1xk random wvector Y, written as X Y, &7

E h(x) < E h{y)

bl
o+

for all convex functions h for wWnich the above expectations

are defined.

It has been shown by Strassen {(1365) that it 2« < ¥
then there exiats a probabdlility space with 1 xk randor vectors
Usand V defined on it such that the distributicons of U and V
are respectively the same as theose of X and Y, and E{V|U) = U

B
- . o -" ) 3 K = 3R] o b
Ir order To ensure X Ky --e, J{.H} —~ VEy e )
o#e needs much more stronger condition tharn Ay <Y for
L
i =1, ..., k. However, when Ki'ﬂ ares independent anc ¥ 's
are =lso independent, then Xi - ¥, for 1=, ..., x is

equivalent to X —< Y. This result follows from the theotem

below.

jal

Theorem 7.1 : Let X4y ++ovuy X, be a set of n independent
random varia-i}.les, and Y4y, «s.., Y, be another set of n
independent random variables. Suppose X; < Y; for i = T,eeane
Then

E h{Xq, «+0y Kn} < EN¥y, «»ey X))

for every real-valued function h, separately convex in each

argument.
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Proof : Consider a function h as described above. For any

fixed t, the function h(X,, ..., X,

in Kﬂ. veey xn_1. We shall prove the theorem by inducticn on n.

-t t) is separately convex

By the induction hypothesis

(7.1) B h(Xy, veey Xy qp t) 2 ER(Yy, oo, ¥ ).

n=1*
Integrating both sides of (7.1) with respect to ciFn{t},where
F, is the c.d.f, of Xn‘ we get

(7.2) B h(Xq, ey X, g0 X)) € EB(¥y, -ony Y 4y 2.,
n=1"

where < 1s distributed as F» independently of Y., ..., ¥

Since E h(Yq, ..., ¥ t) is convex in t, by defini-

n-1"*
tion
(7.3) E h(Y,, ..., Yo zn) < Eh(Yy, <., Yo g Y0
ow we get the desired result from (7.2} and (7.3)}.
A closely-

related but different result is given in Ross (1983). It is
interesting to note that under the assumptions of the above
théorem

for any Ci‘s. and

}{1 . an xrl —< Y1 LI Yn -
However, the above theorem does not yield max(xij < max{YiJ.
- In fact, the following weaker result holds for the comparison

between max(xij and max{Yi}.
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Theorem 7.2 : let (Xg5 e-0y X} and (Y, ..oy ¥ ) be two
gets of non=-negative independent random variables such that
Xi - Yi, i=1, ..., n. Then there exists a non-negative

random variable Z with E(max Yi) = E(Z)} such that

_ st :
max(l.{i) & Z, Z < max{‘fij .
Proof : It follows from Theorem 7.1 that
(7.4} E h{max(X;}}) < E himax(Y,})

for all convex and non-decreasing h.

From the equivalence of conditions G and F on weak
atochastic majorization given earlier, (7.4) implies the desired

result.
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CHAPTER 2

SOME ASFECTS OF THE THEQORY OF MAJORIZATION




SECTION 24 : INTRODUCTION

A5 can be seen in the book by Marshsll and Tlkin {1373),
curing the last few decades a lot of researchers have shown
their interest in the develepment of the Lheory of mzjorization
and sifferent generalisations of it. Tn ithis chapter we have

deve.oped some relevant results in that direction.

An important teol in the theory of majeorization is a
theoram due to Hardy, Littlewood and Polya (1929) whicn says
that for x, vy € Hn, X < v if eand only if x = yF, for some
doubly stochastic matrix P. But similar results on weax
supermajorization was unkﬂﬁﬁnﬁ Such a result has been developed
in Section B. Section C is devoted to some problems in mu_ti-
varliate majorization which may be important for the concenl nf
dilatiocn in Rm, m > 2 and also for the theory of measuring
inequality for multivariate distributions. The result:s in
woth the sections have originated from some open problems cited

“q Frranalt oand 0lkin (1979).



SECTION 2B : DOUBLY SUPER-STOCHASTIC MATRICES AND WEAK
SUPER=MAJORI ZATTON

1. Intrcduction

Recall the definition of majorization (<), weak
subma jorization ( _{w) and weak supermajorization (") e
have the following two theorems on majorization and weak sub-

majorization. Let H+# = {(x1, ...,xt}: X502 0 for acl i}.

-

Theorem .74 & necegsary and sufficien: condition thot
t

..+

x ~ ¥ on K~ 1s that there exists a doubly stochastic matrix

Pweucn bhat x = yP.

Tneorem 1.2: A necesgsary and sufficient condition that

X~ ., ¥ on R;t is that there exists & doubly substochastic

matrix B oguch that x = yP.

" Theorem 1.1 has been proved by Hardy, Littlewood znd
olya (1929) and Theorem 1.2 can be proved by the results of

Von Neumann (1953}, as can be seen in Marshall and 0lkin (1973).

But a gimilar results in this lines for weak supermajo-
rization was not there In the literature. In this section we
have made an attempt for the seme. The results in particular

solves some open Questions in Marshall and Olkin (1979).

Marshall and Olkin (1373) called a txt matrix P doubly

superstochastic (d.s.s.) if there exists a doubly stochastic



- Ll -

matrix (d.s.) D such that P > D, where > signifies elementwise
"ineguality. They stated two necessary conditions {to he
menticned as €2 and €3) in Proposition 2.D.3 (page 31) for
a matrix P to be 4.8.8., 2nd posed the open question whether
zny of these conditicns is sufficient for a matrix F Lo he
fieg.s. A more interesting unsettled question stated in Warshall
and 0ikin (page 31) is whether ybP —{w y for all ye R;t implies

tnat P ois d.s.5.

In this section we have resclved both the problems stated
zhove. We have introduced a condition {C1) whigch i=s showr tao be
equivalent to either €2 or C3, and proved that a non-negative

matrix P (> 0) is d.s.8. 1ff it satisfles C1. Moreover, we

t

have shown that yP <"y for all yeR,

iff P is d.s.s.

2. FPreliminaries

(i} For a matrix A4 = {aij] we define

(2.1} {4) = ? g aij

anad

(7.2) (8}, = T % max{ais, 0)

]
(i1} Zonsider a 2x 2 submatrix

i _
i35 i

L2 5
d . d



pfa +txt Ad.s. D= [d4,.] such that &.. > 0, and 2 > 0.
ij 1 sk

By S-Transform of [ with respect fo this suomz brix we nein

another doubly stochastic matrix which hss all the slemen bz Lhe

same an thnose in D except [or the elenenbs in tne Aabowve

submatrix which are transformed to

C2.0)

where & > 0.

Given a txt matrix P we say that & S-transfornation

of a dos. matrix D is invariant with respect to i 7 QQ—P}+
remains unchanged when D 1s replaced hy its d-transfoor. Yoo
sjmpiicity, we shall use the same neotation lor a d.s. aeorlii or

ary of ils invariant S-transiorm.

Liti)  Consider the class & of all Lxt des.e weorie oo
2
17 is easy to see that % is compsct in R° . NoiZe th:. or
any 4 Txt matrix F, the function ﬂD-?)+ i continucus in the

elements of D. Hence thepg exists 2 does. matrix I suck that

L7.5) (D-F), = inf (3-P)_.
Se P

Sugn o matrix D will be called & minimizer with respect to P .
(iv) By a permutational transform of a txt matrix P we

mear, the matrix P with some of its rows interchanged and/or

some of its colunms interchanced; i.e., P 1is transformed teo
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f,P%u,, where @R, and T, are permuiaticn matrices. hoin
[N
thet o permutstional transformoticn of & mairix P gesos ()

or (F) o unchanged.

Suppose D ds 4 minimizer with respect to Bo Thos
Ty Dty is s minimizer witn respect to Ty P .. Note thut the
deuble super-stochastic property of a matrix is invariant under
vermutsational transformation. for simplicity, we shall use the
same notaticon for a matrix and any of its permutational trans-
form whenever any condition imposed on that matrix is alsc

satisfied by any of its permutational transform.

3. The Basic Lemma and the Main Results

The following lemma is the key to all the results in
this paper. Its proof will be given later.

Basic Lemma. et P be a txt matrix with all non-necative

2lementa such that inf (SqP}+ > 0. There exists 2 minimizer
Se

e & with respect to P such that D and 4 = D.F, after

beine subjected To a sultable permutationzl transfermalicn, can

ke partiiioned as

- _,
Dyg | Do Dw—l P Aqq | M [ A5
Dgq | Dy | Dazj T L‘ﬂ‘“j’l Az, | Azz| T

I m n I m n
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where pf > O, and
(1) A44q > O and all other elements of A4 are non-positive,
(iii} each row of Aﬁﬁ contains at ieast one negative eliewent,

and eacn column of A13 contains at least one negative

element,

Liv) D

3o =0, D3z =0

Note. If any of g, r,m,n is zereo, the corresponding row

and/or column of both D and A will be absent in the abnove

partitions.

Theorem 3.7: A txt matrix P > 0 1is d.s.s. 1ff it satisfies

the following condition C1

Condition Cl. For 1<k, f<%t, and any kxjf suomatrix B of P,

(B} > k+f~t.

Froof. First note that P 1is d.s.s. iff any of its porauta-
tional transform is d.s.s. Moreover, P satisfies the cundition

21 LES any of its permutational transform satisfies 7.
If inf (8-F) =0, we are done. Next we apoly the
S e

basic lemm= to F. Suppose inf (S-F), » & and F satisfies
5e&D

trne condition 1. Partition P as in the basic lemnma. Then
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—— .
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o
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-]
Tain oo bradichs the condition C% . Hence ¥ s daegen.
Juppese new Podls des.s. Thwn there exXists & ..
N

malrix 0 suen that F > Do Consider a kxf summatrix :1 o f

P, arnc without loss of generalily sunpose

Then
(P1) 2 (D) = k - (D)
= k- [(t=-£) - (D))

= k+f-t+(D)zk+[-t.

Tneoren 3.2 A nonenegative nmairix 2 hxt is d.s5.4.
t
.

itf yP <"y for all yeR

Proof. Zuppose P iz d.z.z.  Then thero exists & d.s. matrix

U suen that ¥ > Do Hence for any ¥ Eﬁ;t

ye > yD.

Thus
yP ¥y D

dince ¥y 8 .¢ ¥ we have yP -(wy .
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Suppese yP -{_"'Ty for all }rsﬁf « We shall show that
P satisfies the condition C1, and hence, by virtus of Theorem

3.7, P is dus.s. It can be easily seen that if P —<wy , for

t

all YER,

, then the matrix P 1is non-negative.

Consider a kxf submatrix P, of P. Without any loss

of generality, suppose

P1 k

F =
Ps | -k
4

Let &, = {1k,o} : Txt, where T is the Txk wvector with

all elements equal to 1. Since 6P <V ﬁk s We have

ii‘l X(q) 2 mAX o, L + k=t),
where &, P = “kp‘l TePo)d B (%, oo, X)),
But
- i=]

Hence

(P} > max {0, k+f « t) » k + [ - €.

Marshall and Qlkin have shown (2.D.4, page 31) thst if
o> dg deses. then P osatisfies the following cordi ciorn

condition €2, For 1 <k, { <t, and txt matrix P

(the sun of elements in any k columns of P) - k>
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{the sum of elementas in the intersection of the k

columns and any f rows of P) - f .

It is easily seen that the above condition is equiwvalent to the
conditicen C1. In this connection, Marshall and 0lkin {(1375)
nave introduced the folleowing condition whick 1s alsc egquivalent

tc the condition C1s

Condition C3. For a txt matrix P and for 1 <k, [ < %

(the sum of elements in any [ rows of P} -f >
{the sum of elements in the intersection of the [

rows and any k columns} - k.

4+ Proof of the Basic Lemma

Let D be a minimizer with respect to P. Then (D-P) >0.
8y sultable permutational transformation of A = D-F it is
possible to get a left-hand upper corner block of this mairix

such that

(a) each row of this block has at least one positive

eiement,

b} each column of this block has at least one positive
element, and
L) all elements of the matrix cutside this block are

roh-=positive.

We shall show that all elements of this block are positive,

or can be made to be pomitive by applying suitable invariant



S-trznaformaticons on . Such a block will be called the
"positive block™ A4« It is clear thet pf > 0.

1f the above block has only one row and/or only one
column (i.e., p =1 andfor [ = 1) the block is trivially
the positive block. Otherwise, consider an element x of
this block which is not positive. Then there exists a 2x2
submatrix of this block which can be expressed, after suitable

rearrangements of its row and colunns, as feollows:

I:'f-l--ﬁl} B = [Ll :] ; u o> o, T
.}E J

Moxt we use 2 Sstransformsvion on L such thal the above

suomatrix 3 of A4 1s changed Lo

. . _ -G v+ 5
N "‘-L - 2;‘ E = ]
5 X+ 5 W
i

whiile all other elegents of A  are unchanged.

If x ¢« 0, then 5 > O c¢an be sultably chosen zo thuat
X+5<{, and
!:\.!4"-3} I‘:Bﬁ)‘# < (B)_'_‘
Tnis contradicts the assumption that D is a minimizer. Ihus
X » 0. Similarly v > 0.

If = =0 =v,48 pgan be so chosen that both wu-6  and
W= are positive, and

(Bg), = (3), -
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Thus this é-transformation is invariant, and the resulting
d.s. matrix D Iis also a minimizer. In this way all non-positive
glements of thils block can be changed to positive elements. We

shall denote such a block by Aqqs

It is possible to partition A and correspondingly U,
(by suitable permutational transformations, if necezsary) as in
the basic lemma, so that (i), (ii) and (iii} hold. If r =0

there is nothing else to prove.

Next we shall shew that D33 ={ when r > C, n > 0.
Suppose there is an element dij of D lying in the black DEE
which iz not zero. Then thers exist an element &g in Aﬁq
ik and asj ape
< 0. Now consider the

and an element asj in A13 such that both =a
negative. Note that B ” 0 and aij
2¥ 2 submatrix :

sk asj

k91

Tt iz possible to find a S-transformation on I  such that the

above submatrix of A = DsP 1s changed to

- & a + &

+ & a,. = &
o [

while the other elements of A remain unchanged. It is possible

Fo choose & > 00 so that a,

ik * & <« 0, asj + 4 ¢ O and

o - & » . Henge
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(Bg), < (B),

which contradicte that D is5 & minimizer. Hence Diﬁ = 0.

Suppose r > 0, m » 0, and “here exists an oclement ﬂij

sf D lying in the bleock I:J~i which 1s noi zerc. Thnen lhare

2
exigts a8 2X2 submairix of A given by

, arird Hsh > [

L Sedn Aqq- There exists 8 Swtransform=vion o L such That

such tosl a,. <« O is i A a_ . =0 is ir Y
i ﬂi,-’{ N, in 3.1 ¥ ﬂsJ ] L% 3in 1.4‘

™

the alowve sobmeatrix of A =D-F is chasnged to

while the other elements of 4 repain unchanged, and ai}‘+& <O,

g - & > 0. Then

sk
(4.4) . (8,), = (B), .

Such a d~transformation is invariant and 1t keeps the structure
of Ay {satisfving (iii)) unchanged, while changing a4 to a
rositive element. In this way, all the elements in ﬁ12 lying
in the Jjth c¢olumn can be changed to positive elements by
suitable inwvariant S-transformations. Thern tnis entire.column

can be anvexed Lo the block



Lherehy extendinge the pogitive block A11 by ONE more CoLumn.

ale nrocess 1s continued until the remaining elesments of Dﬁ?

e zero. This process leads to the following structure of A

columns
Az | Az 433

4lthough the new Ay would satlsfy (i1ii), the new As, may not
be 0. If there ls any row in (new) Anq Which contains at least
o NeEalive element, then that entire row of A would be annexed

T [Aaj ﬁ32 Aij}. We then would get the following structure

i A
Aq1 Ao Ay
Ao oy 453
annexed rows (v | (2
A -ﬁ ﬁ* P i
31 32 34
_ _
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Toeeriew figg would still satisfy {(iii}. Proceedins as o ove,
“EooiEp be sacwn that the elements of D correspondine e one
slock (2}, as indicated in (4.8), are all zero. However, oo
vlepaents of D ecorresponding o the bloek (1}, given in (A.6),

may riot be all zerso.

At this stage, we repeat the above entire process until
Dﬁz = 0. This can be accompllished since the above process
reduces the number of columns in 332 while possltly increasing
its number of rows subsequently. But at some stage, there may
not be any columns left in A32 80 that no new rows may be
anne¥ed. The final partitions of A and D would then satisfy

all the conditions (i}, {ii), (11i) and (iv) in the basic lemma.

5. Remarks

Consider the matrix

1 1 1
P = 1 1 1
1 T =

Althourh P satisfies Condition C1, P is not non-negative.

We gratefully acknowledge the follewing comments of
Dr. Rabul Mukerjee. He pointed cut that our hasic lemms ond
consequently Theorem 3.1 could easily be generalized to !his

cdage when P and D > O are rectangular mxn matrices with
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apecified row-sums and columm-sums of D.  1In tnat case, the

-y

aroiition €1 needs fto be modified accordingly, and our roots
vl oo threugh except for trivisl changes. Furtheraoos, ne
aentioned tnat the above preulem could be seen s a nroolem in

tﬁgnspmrtmtion theory, apparently unsolved.

After searching the existing literature we hawve found
that the abewve oreplem (for rectangular matrices) was solved
kv Mirsky (1968) when the elements of P and D are ail
integers. This result has alsc been nmentioned in the book by
Mirsky (1971, p 205). Mirsky has proved this result using
combinatorial arguments and with the help of four other najor
thecrems. His complete proof would be exceedingly long,

whereas our proofl for the real matrices is not only short but

also simple.

Miraky {1971) has also pointed out in an exercise in
kis book {(p.211) that his result for integral matrices could
hs extended to resl matrices. However, as ncted by Mirsky
(1971, p.213), a slightly more general result was cbtained oy
Fellerer (1261, 1964) from measure-theoretic viewpoini. Although
anr it result could alsoe be obiainod Trom the seneral result
of Kellerer, our croof is much more direct and simple.

Thecrem 3.1 again appears in a paper by Cruse {(137%)

where the author hasg also mentioned the genersliszation to

rectangular matrices. Our proof of Theorem 3.1 is entirely
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different from the proof given in Cruse (1973). Moreover,
our Basic Lemma provides a new characterisation of matrices
which are not d.s.s. Although Theorem 3.2 follows from
Theorern 3.1, the statement of this theorem along with & proof

Is not avalilable in the existing liferature.

mjeje]slslepelelofoln]s]




SECTION 2C : MULTIVARTATE MAJGRIZATION AND DIRECTIONAL
MAJORIZATION

1. Introduction

The definition of majerization x { y is motivated Lo make
precise formulation of the 1des that the components of x are "less
spread out!" than the compenents of y. This basic idea makes
sense wnetner the compenents of X and ¥ are pcoints on the real
line or points in a4 more peneral linesr spbce. 4An cbvious
generallisation to & 3anach space may come from the concewt of
dilaticon of measures. Aut that may not ke the only gensraiisd-
tion ewven when we consider =RV, Fallowing Farshall and Olkin
(1979) here we consider two generalisations of majorization in

the context of vectors in R" in the following two definitions.

Definition 1.1: For two matrices X'®X1) ang Y(mx‘“), A is

said To be majorized by Y, written as X <Y, if X = YP, for

some nXxn doubly stoechastic matrix P.

Definition 1.2: X is maid to be directiornelly wajorizad bw

v - P - P {u
Y, written as £, Y, if aX £ a¥ for all a e d.
Wote Lhet an mxn melrix is an errwey of o wvecoTors Of

o

1l . s a o - . . .
R Lefizition 1.1 comes from the concept of dilslior. Alse note

that ¥ — Y lmplies X g ¥
"
Marahall and Olkin oo.433) posed the open wucslion whether

Ly Y fpplies X 4 Y. A sore general preblem stated in
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Marshall and 0lkin is whether AX - AY for all A+t kEn
(for fixed k) implies X ¢ ¥ . In this section we give sufii-
cient conditions under which directional majorization lmglie:

aultivariate majorization.

2. Main Rezults

Theorem 2.7 : Fer a fixed Y, X(E}cn)*{ 4 Y{E}{n} implies

A=< Y ftor all K{EJ{U}, it all the columt wvectors of ¥V (in Hz}

Are boundary points in the convex hull of the colunn vectors of

¥, and this convex . hull has Z-dimensionz] positive voiume.
2

Theorem 2.2: Suppege every column vecter of Y:i:mxn iz oan

srtreme noint in the cenvexX hull generated by the columns of

Y, which has r-dimengienal positive volume, and at least (n-r+ 2)
of thesze column vectors are céplanner. Then X < 45 Y implies

X = Y for all X. Moreover, AX < AY for all A4: kxm implies

A <Y,

3. Proof ¢f the Mailn Regults

Definition 3.1: A function f:R" —»R is said to be direc-

tional convex function, i1f it 1s of the form f{x) = gl{a.x),

for fixed «eR" and £! R —» R conveX.

Mote that directional sonwvex functions are convex

Tnetnions.



Lemma 3.1 : For X(mxn) = {xf, can, xﬂc), Y{mxn} =

{ch s v, yn'z ), X ~ 4 Y 1if, and enly if,
ol n
E F(x°) < & Fv°)
121 1T Ty
For all functions F which are sums of finitely many direc-
tiuna% convex functions.
Proof : First note that for x = (xq,“,,xn), y = {y.E,...,y“},

¥4y ift

n _ 11
f g(xy) < % glyy)

Tor all convex functions g: R —>» R {see Marsnall and Clkin

(1979}, ©.108 or, Hardy, Littlewood znd Polya (1934)].
o Mow for XimxXn, Yimxn,
g g ¥
aX < ay, for all aeR"

L=
m(axc R ﬁ;} m{--'(a-c ac) for all aeR"
" 1 P +s xl’l }r‘] prEry ?I'J. L] a .

Lo

n n
131 glax,”) ¢ 131 glay"), for all ceR™ and all convex
- L
functions g: R —>R.
= ¢ n ¢ |
vz 21 F{x;"} ¢ 21 F(j,ri }, for all directional convex
i= A= '

functions F.
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mn n
c=a» T F{xic) < E F{yic}, for all F which are sums of
i=1 1=1
finitely many directional conwvex

functions.

Definition 3.2: For a,beR, 2 line L in HE {having eguation

{(x) =0 for xaﬂz} for a point ZEeR® with 7z £ L, define
: P

.- o
CL’&’ib’z . R ] R by

CL,a,‘n,z‘("J = a.d(L,x), 1if [{(x}.f(2Z) >0
= b.d(L,x), if A(x}.£(2)}) <O,

where for A« HE, p e RE

d{a,p) = inf{nq_pn : qag} .

Clearly CL . . w 18 a directional convex function for a » O,
- p8, D, 2 -

> 0.

—_

Lemma J.2: Fer m = 2, X, Y implies that the coclumn vectors

af ¥ are in the convex hull of the colump vectors of Y.

Proof Let C dengie the convex hull of the column wvestors

of Y. B3Suppose that for scome i, the ith column vector x;: af

X is not in C. As € 18 closed, there exists a line L which

separates x;: from C and doeg not contain x;:. Now consider

the directional convex function & =~ C Note that

L, 1,0,%
n n
> €y =p ¢ B E(xS
5 t(.vj ) s E(xj )y

aince E(x{J) > 0, This contradicts Lemma 3.1. Hence xf’isin Ca
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Proof of Theorem 2,1 : First note that X: {mxn)=Y: (mxn) {ff

n c n il
(3.%) P ttxj } £ I E(‘Yi s
1=1 ‘ 1=1

——

for #1717 convex functions B @ A" —a R {see Fischer and Holorook

1
[

(1977}, p.564 or Blackwell (1953)]. Herce i

-+

i sufficient to

in

shiow Tne abowve inequality for cur case m=2.

2

[
et the rolygon C = R™ dencte lhe convex huli of the

colunn vectors of Y which are sssumed to ke distinct. Suppuose

C . :
¥ 's are the n vertjices of C, i.e., y;:'ﬂ are the extreme

points. We name these vertices by A4, AE’ sy An in consecutive

order. By Lemma 3.2, all x{z‘s are in C. Consider o cornvex

fuanction & on C. Define €, = (Ai), a = (ay, ...,ﬁn},and

(3.2) F, = sup { f: 1 convex on C, f{ﬁi) = a; for ail i} )

Tv: view of Lemmas 3.1 and %3.2 it is suffiecient +to show that F&

is the sum of finitely many directional cenvex functions, since

{3.%) 3 Lx;:J £ Fa(xgj)s g (Yfz) = Fa(yfz) For At 1.

We car assume oq = a4, = §, since ¢iherwise we con muke

a1y =0, = 0 by adding a suitable aifine functicr to § . e

>
can farther moroe assume that ﬂi > 0 for al?l i » 2, since this
g e nehdiewed by oadding the affirne function O . Tfor
: Ly Gy,
i
s b lle larpge 5>0, where L ig the line jJoining the distinct

noints A¢ and AE and 1> 2, Wote that CL,a.b,Z ‘lﬁ affine
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Consider cL,t,G,Aﬁ for t > & and nete that tnl
Punction is affine on C. For t =0

(3.4} CL,t,D,EE(ﬁi) £ ay, for all i,

Now as we increase t, et some peint (say at t=1t_ } at least
one equality in {3.4) will be attained preserving the other

inequalities. Let Ai." Aiil veay A5 (r «n-~-2) bte the
r

vertices at which the egquality in {(3.4) is attained. If r=n-2,

define ch - CL:tG-D-A} and we are done.

If T<n -2, consider the following poscibvle configura-

tion :
Let 8, = a; = CL:tngr-ﬁ'j{ii)' Then
[:3.5) Bi 2 o, 51 - ﬂz - ﬁ11 - = Eir, = [,

Consider now the pelygon A“IREAj. Ay e Ai Note that
1 -2 T

O ﬁqﬂ?ﬂi “ae Ai 13 the unicn of disjeint polygons. oecause
- r



of {3.5) we can apply the above operaticn on each of thesc
nolygons, taking the twe initial vertices so that BiTs are

zero on them.

Ultimately adding these CL a.b.7 functions obivined st
LI e
each stage frowm each of those polygons we el ¢ function wWhich

is F this follows from the fact that for each point in the

at
pnolygon ﬂ1ﬁ2 v An' there exists a sub-polygon with wertioe:

in ﬂ1,A?, ++xy A on which the derived function is affine.

This consgtruction shows that F,, as derived above, is
the sum of finitely many directional convex functicns. This

proves Theorem 2.1 when all the colunn wvectors of Y e

extreme points.

+ Mow suppose the wvertices of © are VasVo, vony Vo,
aivprrnstl in consecutive DFd@T; and 0§ is 3 column wvecsor of Y
w5l un Lies on the segment V1¥2 closent to ¥4. Theo we shall
Follow tae apove initial pperation with 4y =V, and A, = B.
Gy malzing 0, = az = 3, we can ensure that « at all column
vectors lying on ?ﬂ?zl is > 0. The above proofl can now be

followed stage by stege.

When the column vectors of Y are not distinet, the
apove operation l1s used only on distinct column vectors of Y

the desired result then follows from (3.3).

Lemma 3.3 : Let the converx hull of the column vectors of

Y : mxn have r-dimensional positive wvolume, r<m. Then the
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provlem of equivalence of X <gq ¥ end X< ¥ reduces “u the

sorresponding problem in r-dimension.

- Proef: For some nonsgingular A @ mXm and suitanie Iy, 7, :rxn,

Wa have

¥y
Ay + (b, ..., B} = (D 7.

Following the line of proof of Lemma 3.2, we can show thel
K-(’d Y implies that every c¢olumn vector of X iz Iin the

convex hiill of the column vecstors of Y.  Thus
A
AlX+ (b oo )] = (5 ),

far some Xq. it can be shown now that K.4 a k4 ﬂﬁﬂhx1,{ a Y1

and X LY cum Xg <Yy

Proof of Theorem 2.2t In view of Lemma 3.2 we may assume,

without any less of generallity, that r=om.

Hence our assumption entails that at least (n-m+ 2) of
the Y. 's are co-plenner, i.e., they belong to a 2-dimensional
affine space of R®. Let these vectors be reyresentéd by the
points ﬁq,Az, .y An—m+2 and their convex hull be a polvgon

denoted by 444 A o s Written in consgcutive order.

2 m 3. n-'m+
The convex hull of 44,A, and the (m-2} column vectors
of Y outside the above plane has (m-1)-dimensional positive

volume 3 let this convex hull be contained in a hyperplane H.
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Note that H dees not contain the polygon Aqd, ...

An—m+2' Since 4, and AE are in H, the other A,'s

(i = 3,4, -2s, n~m+ 2) are on one side of H.

Following Definition 3.2, define

cH,t,c,ﬁL}{x) = td(H , x), 1T L(x)L{az} > ©

= 0 , 1if a((x);([ﬁ-ﬁ} <0

where t > 0 and f{x) =0 is the equation of H.

To complete the vroof we follow the operations employed

in the proof of Theorem 2.1 with 2 hyperplane H taking the

roie of the line defining the C-function. WNote that initially

(m=2) points lying

a; to be zerc at Ay,4, and
£ .

we CArn nake
outside the plane by adding a sultable affine function to

addddadddanan
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CHAPTER 3

MAJORIZATION AND KARLIN'S CONJECTURE FOH
RANDOM REPLACEMENT SCHEMES




SECTION 3A :+ INTRODUCTION

4 random replacement sampling plan R(pq, Dass--+0 F _;
fgoa achens for dravwing & sample of =n units frow a posuls=tion
g %N (dietinet) urite such that the ith unit is drawn at ransom

from the remaining and the probabilities of replacing the Ith

unit (sameled) inte the population is Py

Karlin {(1374) conjectured that for all N > n and for

11 § satisfying the following condition K

,if, and only if, Py < pf for all i, where p = {p1, .nay pﬂ_1)

and p' = {pf sin ey pﬁ~1).

Condition K: A function E R —> K is said to satisfy

Condition K, if E is permutationally symmetric and
E(a,a,x3,...,xn) + E{b,b,xﬁ,...,xn}g;E E{a,b,xB,...,xn)

for ail a,b,xj, X

Jefinition 1.1 Let (xq, . xn) be & sample of n chzervations

Irom a adpulation of size N, and F be a symmetric function of

Loy, e, xq}i Define

L"’F('kirkg-! ey RN} = F(:{ﬂ]r L -xn)
where Ki.is the number of times the ith unit appears in the sample.

Hete that MF is well-defined.



Definition 1.2: Given a funcition uF, as defined in

Lefinition 1.%, define

4 R .
ﬁF(k1, . RN) -~ 5T i uF(ki1, kiz,..., k. J,

where the summation is taken over all permutations i = (i;,..«,iy;
of (1, 2,..., N}.
Note that mF ls also the average of M ,over all distinguishable
permutations.

The following theorem has been proved by Karlin {1974).

A simpler and different proof can be feound In Marshall and Olkin

(1973},

Theorem 1.7 : If F satisfies Condition K, then ﬁF is

Sohur-convex.

Theoren 1.1 shows that the class of Schur-convex
functions are effectively more general than the class of func-

tiens that satisfy conditlon K.

Karlin's proof of Theorem 1.1 is very long and compli-
cated, whereas Marshall and Olkin give a very short prcof

using some results of majorization.

Theorem 1.7 18 the key result used by Karlin and otner
authors to derive inegualities related to the conjecturs o
Karlin, wWe zhall use Theorem 1.1 apd different consequences

of i1 in the following sections.
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Neither part of Karlin's conjecture is true; the
relevant results are reported in the following sections.

In section B of this chapter, we give short and o legant
vroof's of some of the existing results. In section O, we
arizlyse the problem from a different wview point and give =
1a5gﬁ class of Schur-concave [conveX) funciions foar whisi the
-:;GPJEH: Lure hoids.  In section [, we develop a new concepl
name Ly "admilasibility with respect to Schur-concavity™ in the
sontext ol syvmmelric sampling plens and develop certain new
cnegualities. We beliewve that our results, particularly those
in sections® dand D, will stimulate some new resedarch work on

inequalities for symmetric sampling plans.

1819180081 9(918191 9191




SECTION 3B: SOME POSITIVE RESULTS FOR LARGE VALUES OF
POPULATION SIZE

1. Introduction

Recall the inequality (x) in Section A. Karlin (1374}
has shown that (%) nolds if » ={0, 0, ..., G}, or if p' =

(%, 1,+.4, 1) and
8/ (8=1) 17" < n/(a-3) (1.1)

Krafft and Scheaefer (1984) have shown that p < p' implies ()

ifn<7, or if n2> 8 and N is sufficlently large, Schaefer

\1987) has shown that for n > 8, a sufficlent condition is
K > N (n) = min[Ns n(8-1)%" > (n-3)n2" (1.2)

for p < p' to imply (*). Furthermore, Schaefer (1287) has
given an example with n = N 2 13 for which p € p' does not

imply (#). Tt is easy to see that p < p' does rnow necessari Ly

lollow from (#}., [See Krafft and Schaefer Liaeh) .

Ta this section, we have shown that p < p' implies (#)

if

N > n{n-1}/3 = qunJ, say (1.3)
Cleariy (1.3) implies (1.1) and Karlin's result follows from
our result. Moreover, this implies the result of Krafft and
Schaefer (1984) for n > B and provides an indication of how
large ¥ should be. With referernce to Schaefer {1987}, note

that



=
I

min (N: (1= D77 >4 - 2] (1.4)

N = CE{nJ, if CEEnJ is an integer

[Ch(n)] + 1, if Cs(n) is not an integer

1
-1
where Ch(n) = [1 - (1 ~ BT {(1.5)

The values of Cy(n) and C,(n) are tabulated below.

% e 10 15 25 50 00
Cqin) 1846 30 70 2CQ 816.7 3500
Cgin} 1524 25.7 £35.2 138,72 T2 4 32507
percent
eXCess 3.1 16.7 0.8 fra 3 3.1 1.9

of <, ()

over
bz(ﬂj

Although the above shows that our result is slightly weaker
than that of Schaefer's (1987) the proof of our result

ruch simpler.

2. Preof of the Results

Cheorem 2.1 For all p' = (1, &4, v-., & ) 2nd

Bo= W, Say ey ﬁn-TJ wiih ﬂi = 0 or 1, wnd foroail f

satiastying Condition K,
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EH{E'}{E} > ER{E)(EJ provided

N > n{n-1}/3.

Froof : Let &, y.vey 6, Dbe the only 0's in 6."s.  Then

1 t
: q R <)
ER{E’J(;} = a, & 5l n-a., o xi.,l’ Tt Kin ’
N {8=-1) © eoo{Nat}
2.1)
X (E) = - ! - £ ]
RQE) ¢1*1 &=y n-o, . kxiq" 'xin

M{N=1) (N2} ~ ee ol Nat=1)

(2.2}
where L' and £ are the summations over the following sets Ot
and C, respectively:

c' "{Cxi1,---. Xin) el xii # x, for L >3, Je¢ J'} ,

J

- . . Al _ N P
C —{{xi1,..., x ) ea”: 2y ;Exij for -+ 4, Jed},

where

I ;{[11 e, cx;t}, J = {1, Cpprees 0p ), and @ is

the set of population values.

The frequency distribution in & givea n-tuple (x. ,...,X. )
' Tl

may oe denoted hy {ey £ = (€1, ~oey B3 Fpy oees fs), whe e

2
rracTly 2, aumiber of KJ*E accur wWwith frequency ', in the n-tuple.

aark o2, .2 fs. Let

TLE;fJBEE;fﬁixl, L | X.’;. )!
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diere oo i ig lbe sum cver @'l selections of Lhe n=tuple ol
5.

e siructurs

» < ]
q Eines f1 times 12 times

{IX1’“"x1""'xmq""’xm.’ xe1+1,...,xo PR

5 e 3 <
£

X e ay X
R * ¥ S F .. &
E,al EE "C,'.al Lc-_‘ }

w

fq times

For a given set of A e disgtincet x's, coasider oo
 n-tuple of the apove structure. Let the number cf nossiule
arrangements of the elements of thisz n-tuple compatiziz with

i~

Croane O oo C'ey £} and C(e, £, resuvectively.

It !s clear that Cle, £f) > ¢ implies Ctie, £} » . et
‘”H LYt e subset of These n-tunles wnich hawve a st ilston
i taslic Vipst co-crdinate; define C'Ez 0T SH » conslider an
wahﬂ|H ir O covresponding Lo bhe freguency distriootion (23 f)
witin fH = 1. bkach suchk elenent of C would then genevate {n«-eﬂ)
olerepenibs i C“E by intercoanging the first coordinstie with any
ol Eme other coordinates which are not singletons. On the
ather hand, each element in C%l obtained in this way would be
repeated &g times in this process, since any of the ey single-

tons can occupy the first position.
(n-es}C{e;f} <e Cly (e ; £,

Also note that CY le; £) = Cley £}
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ey £ 2 {HXEE}CZLEE £) L)
We o mAay wri te

ER(pT)(E} = Latie, f)T (e, £}, (2h)

-
[

W

B

ER{'F}}EE} = La(e, f) T(e, ) ’

where the summation is over all frequency distributions (e, f).

How note that

N-1,"1 N-2y 2 1 N=t-1 t H-n+1 ;
) (r=r) Sy 2T (2.6)
Hence, 1f e £ n-3
o A | Ti=iL ¢
atle,f N-1,"1 cNatwl Tt Ctie,f ¢
3 a' ; = {—q——‘ ) LR ("‘ﬁ:‘{ ) . C E,f krzt?}

H-n+tl n
N e
8

> > 1.

Now ar argument, similar to thit given in the procf of Theorem
3.1 {(pp. 1081-1082) of Karlin (13974) may ve invoked to complete

the proof of the theorem.

Note: The conditien N > n(n-1)/3 1implies that

(N-t1) > (n-t)(n-t-1)}/3

for t > t', and N-t! > 0, n-t > 0.

Theorem 2,21 For p = qu, Caay pna1) and p' = (p‘q,...,pn_g

with © < p; £ p'

[ ii 1, 1 = 1,¢ss, nal, and feor all & satisiving
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Concition K,

E < { 2. B
R[“E'J[EJ _EH[:Eq}{\gjs i J
-
provided N > n(n-1}/3.
“rgof : It is sufficient to show (2.8} for p < p', where

Py <Py and p; =p' for all i # t. Now

ER{EJ(§) = Epy(8y) .0 pn-1(5n-1}ER{a1,...,an_.1J(§;"

EH(E‘Jig) = Ep!1(51} ...pﬁ_1(ﬁni1)ER(51'”.’ﬁn_ﬂ}(g)’

where 6, = 0 or 1, P (1} = Py Pi(0) = 1 - Pys pY (1) =
Phs PO = 1 - pt , and the above summations are over all

B4y wury B 4

Thus {(2.3) will follow, if
ER(u}{EJ < ER[Lq}(EJ=

&

Whef‘e i = 'LI&.-], owoay 6 t+1’ Py n_1J’

4oqr 0, 6

E4]r tres an_qj.

and ot 1:_:51, reay B 1, &

t-1"
Next, note that

Bprn 8 = Priay Briay %40 vovn X0y, oot Ky q)

ER{&'}(-'E)'EH(.&'}[EH{A*} §(K1,...,}(nj!x1, ey J‘:,L_,l_;_



Since tpe distributlion of X4, <., Xp 4 is the same under

Bl and R{e'), it i{s sufficient to prove
Bp(ay (& (3{1““-}{11)'}{1-'"th-1J£ER(a-J{§EX1f""xn”}{‘l T Sy

for all values of X4, ..., Xi g+ After drawing X,,..., Kt—1’
the population size N 1is reduced to N-t' (with t' < t-1), and
the remaining sample size beccmes n-(t-1). The result (2.8)

now Ffollowz from Theorem 2.1 and the note after that theorem.



SECTION 3C:  POSITIVE RESULTS FOR_SOME RESTRICTED CLASS
OF SCHUR-CONVEX (CONCAVE) FUNCTIONS

1. Introduction

Az we have pointed cut in the last section, Karlin's
conjecture does not held for all values of population size
N and sample size n. However, 1t may hold for ail wvalucs of

& and n, for some restricted c¢lass of functions.

Hecall the inegquality (#) in Secticrn &. In this
sdction we nave considered some large subclasses of Schur-
convex functions which satisfy (#), for all possibls valuss
of population and sample size and for alli p < p'e As the
ellective sample size & 13 Schur-concave, intuitively it is
clear that if we multiply a general Schur-convex (concave)

Zunction by some suiteble function of P , then the function

may satiafy («).

Z, Main Resgults

Unless otherwise mentioned, P will denote the effective

N
sample size 1.e., P (ky, ky,«er, ky) = 131 min {1, ki } -
-

The following notations will be used:

N? N!
E—— g P‘I =
(n-k)! k! ( )k (N-k) !

Trne main tneorems in thls section are stated below; ithe preoofs

nf these theorems are given in Section 4.
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Theorem 2.1 For p < E‘,ﬂ Schur-concave, non-negative,

§N*1}

| (N-1)°
Sl Ty S B
P

D

Theorem 2.2: For p < p', @ Schur-convex, non-negetive,

,1
) o 1

]

1
{211—1 {e-1}) A1 (M) [ P

z EH(E}[ 2],

provided N > 2Zn

Theorem 2.3: For p £ p', @ Schur-convex, non-negative,

1

E : [ — - ]

1

[ 2]
“R(p) (222 =)y
Theorem 2.4 : Let p < p'. Then
(i} “R{: )[ M { )] { ER{ JL {N 1)9 l:i};l]'
BYC 20

where g 7 A =R ig increasing and non-negative.
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1
(11) Epront e
R(g") (21 (e-1))7 ] (Wp _4
> & L : Eiﬂ)i*
= R(E) . T

{277 J(ex1}) P-1 SN

arovided N > 2n, wnere g ; R —» R is decreasing and non-nega-

Tiwve .

:
2n-2y P =1 :
(2777577 (W) _y

{1i1) EH(E’}[ g{p)]

1

— gip)]l
2n-2)9—1

2 EH{E)[

(2 (M) p _y

where g ¢+ B —»R 18 decreasing and non-negative.

Remark + Instead of functions of P , it may be interesting
to coneider some other Schur-cunvax {concave) functions as
multipliers to make & general Schur-convex (concave, function
zatisfy Karlin's cconjecture. However we have not considered

thege,

3. Some Resulls on Sampling Plans Dominating Cthers

Let @ =-{Y1,Y2, ..a,YN } be the population, wisre

Yi's are distinct.

et K =‘{£= k= (k, ""RN}’ k,'s non-negative integers,



el =

ki =1 } and
=1 '
{ _ ( y e v " n n}
'I: LE.E— X..l,-;;.,}[n E{ 1"*',:["3} = Q
we car represent a gamoling scheme in two ways. o
one, sample points belong to K and inn the other sample soints

b
nelone to L

4 sampling plan cver K is called symmetric if under it

Crob.(k) = Prob.{k), for 211 parmutation matrix =
M x N

Definition 3.1: For & symmetric sampling plan S over L,

we define corresponding sampling plan K(S) over k ={k1,...,kw)e§
an |
Prﬂbo(l{_} = Prob. { E L] (x.-' ,‘-‘.-,]{n} H ki is the number
of times the ith unit cccurs in.ﬁ}

We shall uge the notation 141, to dencte the cardinality of
the set A.

For T I_ = {1, 2, ..., n_1} ,
we define B, = { x = (%, Xgy »ery X ]
o (x) = 1T + 1, xy% x; for E-:‘llei::mcliaI}. {3.1)

HI = H{SB }, where 8 is the equal distribution on B..

I B
Let R and R® be symmetric sampling plans. The sampling
nlan R* is said to be an elementary dominant of R if for some
X,y € K such that x « v,

" R* (y) > R(y), R" (x} < R(x),
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R*(x) + R™(y) = R(x) + R(¥y)

H*(z) = R{m) if 2 is net a permutation of x or v.

Marshall and Qlkin (1979) (p. 333) defines the dominance aof

symmetric sampling plans as the following :

Definition 3.72: R¥* is said to dominate R if tnere exists a

Ry =vey R. o= R* or symmeiric sampling

finile seguence A = R r

Gl‘

plans auch that Rj iz an elementary dominant of Rj_1* Jg= 1,00,

Intuitively R dominates & if R™ attaches more proba-

bility to sample points with respect to majorization.

Lemma 3.1: Suppose I, J < I, are such that 1Il = IJI = k and

I = {iﬂl,lli' it-‘l' it, it+1!i|s’ ik}
J = {11..H, Leqr ig¥Ts Lypqreres ik}
Ligeq # 141, 1y € 1y for all j],

then RI dominates RJ.

Proof : P{x} =11l +1 = k+1, for all x ¢ B .

For Q45 Bay ey By fixed,

bet, H?,ﬂ1,-.., e - { X = AWKgadgy oy xnj € dp 3 oX, =

i

2y xim = ap, for all p

1, 2, veu, k } . Then BI iz ziven
by the disjeint union

u A
E.}' e oay ak+1 E:g I’ E""'l:l R al{+1
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- £ {a.) % (a,)x ... x{ak)xiak 14
BI 3_1'32’.14-, &k+1 EQ1 2 ’

1 . L
¥ EIT(a1+aE+ RS ak+1}x...x E:T{u1+a?+ ceer Bl )

{11-1} times

1 . LS

X (8p7 . ak+1jx...x r {dz* et ak+1‘j
Fr —
e
(ig—i,l-.’l) times

x *® m oA ¥ & ks R R ® F F R R B & ¥ 9w a4 4 & §g 9w ¢ # F B & ¥ gy g I A &8s 8 g -
X o arenaas e s s e L st e s e .
x""i""‘(& *i.a.t @ JX¢ix—""'1_(a t...F @ J

k-t+9 t- y k+1 " k=t S te le+ 4

.\. _ " e
— :
(iﬁ_q—it_2—1} times

S (B, +.ust 2, L)%, uX —1 _(a, +...4+a )

wt+2 t k+1 ' k-t+2 “t 77" e+

:
(it'it;1‘1] times

e 1 ({a tiv.+ A Ix...x *...1_ (a + + & )

k=-t+1 t+1 7 k+1+ M VI E t+1 "t W+

e . A
=

Liﬁ+1_it_1} times



- BA ~

X T (ak+1) X vee X } (ak+1)

" -y
a4

(n-ik—1) times
Ir the abowve expressicn ai's are to be conaldooed
4g indeterginates. Then in the simplified exXpression sampie
points wil! come a&s terms with corresponding probatiiities as

cgefficients.
%; has the same expression witn

1

ket 2 (ap + ovv * 8, 4], (it"itm1} times and

7 (a s
Jo= bt t+1 e

tage)s (- 1g-2) tloes.

So B is obtained from By, by replacing

one A §:
- a +
k-t+2 - L

Bge1 F oo ¥ al{+1j’

+ s.e T A

k+1J'

1
b e [P
¥ on e (at+1

This will imply that EI dominates BU’ by observing the

following ¢

In the expression of By, in the place of

1 _
. A ’ A - I o
LNE ﬁ:%:? VB q Foees dk+1}’ it we put .4 Lor, Bypn
DIy «eay O, ak+1), then that will dominate the scrhneme

ootalined by putting Ay in tne szame place. This dominance
is oovious by ocbserwving transfer from higher to the lower

coordinates.



Thus R; dominates Rye This completes the proof of

Lemma 3.1.
Lemma 3.2: Suppose I S I, £ I, then R, dominates HIU{T} .

Proof: Writing B; and BIU{1 }, in the same way @z in tne
proa’ of Lemma 3.1 and using similar arpument, we can arove

Lenrm 302,

Theorem 3.7 Suppose I, J =1, are
SU'E"t’] ti’\at 1 = {i«], i?a ] 1 }
2 K )

0
b

{j‘]i j}?,’ AR | :I'{}
3 < 3p < aen <3

dominates HJ.

Froopt: By repeated applications of Lemma 3.7, we hawe i

doinates

F{J1, witn J, = {j‘{_kﬂ, ey gl ,j’{}.
So= 4 J dr e S it}
R BRI P AT C ALY ¢

, _ . . )
o 11/ df e g aa mmey .
5 A=k A=-k+" £ I\
i
by Lems 90X 5. gomingies DLT s oy lemme 3.1 AL haericcis
w .} 1 ? [ ;-'J

ol { -



- OF -

Hy proceeding in This way we get _‘%{J y ot w ceay B
L 5 Tr
R., sucn that Ry dominates K- s k=3, L., =i
y k Y+

This oreves Theorem 3.71.

4. Proof of the Main Results

_ & - | ) . . » g T
Toecrem 4.1 :  For & function @, EH(E}\m) < hHEE,Jkﬁj, NeralE ]

T 2p' if and only if

—

P E_ . L for all pair { a4, o' of b orn
hﬂkﬂjkmj E‘EH‘_&TJKQ} L l—’ \ﬁnib} L L
a = (By, S5y weny By g Uy B gy cee, 8 i
1 ;
L o= Lb{], 5,;_” '”‘ﬁ't.—V 1, {}LH" s g
whers S ' arg O or 1.,

i
The wroof of the gbowe theorem 1z essy and can b found
inoKratlt and Schaefer (12384), Tne proof of the followling

“heorenm can be found in Marshall and Qlkin (1979).

; | . * d
[hegren 4.2 : The symmetric sampling plan R dominates B 1f

and only if ER(E) < Eﬁ*(&}, for ail Schur-convex § on K .

Froof of Theorem 2.7 :

In view of Theorem 4.1 it is sufficient to show for

the vpairs

E = (51' 62, iowony &t-u.], O.. ‘St_!_gl, v g '51_,1*1}
),

El=‘151' 52, LA lﬁt—‘l, 1, é't+1, . aa '5_“__1

where 8.'s are G or 1, for all i.
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Let 1 = { it s, =0, T ¢ i < L1, t+1 £ 1 < n-ﬁ}
= { Ty wvey uk} U {ak+1, vee, ﬂA} { say)
'ﬂrith CL1 ": ) ‘f- U.,k (':' -t { C[k+1 { e { U.'{ I:'II.‘J]J

Note that R(p) gives egual probabilities to all elements of
¢ and R\p'J gives equal weights to all elements of the set

CUD, where C and L[ are disjeint and

- U'{EJzJDIU{t}}

= U { BJ : t g J, J f?I} y where BJ i defined
in (3.1).

Let us define E,. and B, as expectations under Lhe
el

G
ecua’l prooshbilidty distributions on the elements of C  and D
reanettlvely.,
depve it ois sufficient fo show that Coo Scnlr—oon s
Ao =reea D v %
car P e P
o = S N= N . :
i 6] £ g g (e.2)
- ..' ~ .r."-]
‘-.DJ ‘-.rp.}
Wooonave,
(8-1)P o (a1)P
Bri £} = b PB-t EL | £]/1D1 W, 3)
b H B.in O J E].
(o) J Lo o)
B [(N'”p £l = = (AN 1 & 3e
TR 5. in b du{t} au{t}lTy
{a) J (o}
Il
P 1)
70 {t} Ju{e}’ 1 N-2(By) .5
X (™) = To(sy | (-3
J p{BJ) B;
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where P{A) denotes the effective sample size of the =lements

¢ 4, wnich are necessarily equai, and O < 4 £ D{E.J}.

L

By Tnecrem 3.1, we have that 23, doslnatles o, ft} . Again
> A
L
for £ rone-negative and Schur-concave and gs @ (BTLI. {'t}’} =

=]

P{B,} + 1 using Theorem 4.2, we have

. Ne1I{ B[ B, )+ ' .
(N-TJﬁ N t: ){ [:J';' ),E (Nr-'l)'ﬂ f] > G {ip.&u}
by, (ot 2 = (4 2
T N -
Ju{ £} () N- P(B;) ()
1! L1 o /€l +Dl _lCUDI
icl 1Ct ICl
a, A, - @, - Ty = O Gy = Fhp
no{H-1) © vo e (Nak+1) (N-k} +(N=-k-1) ‘
a ﬁ.:-\l (s 4 -D‘.-. T =L, ' u . = L
N OTN-1) 20 k) T n) T B (k1) B
1 - X o~ i
(-1, . 1
cee (=L e 1) A A - A
¥ LIPS g = L n -
(Nek=2) 5727 ey AT RS gl f
[Using (i.1) ]
Jeroo ..._N.-... & ﬂ + 1 « zn_1
N=1 — 121
| o
or, Bl 2 < (N-1)iDI, (4.7)

hzain we hawve,




[Provided N-{ =1 > n-1, i.e, provided ¥ 2 2n]

or, (DI < (e=1}1Cl, provided ¥ > 2n (4.8)

Combining (4.4, (4.5), (4.6} and {4.7),

N=-0(B.) P{B. ) +1 PR
£ 1Byl —— J {N-*}--—EE——f—-EEJ[EEEll— £}
ECL T E] 2 }
{p) (K=1).1Dt
p
(i?:%i-aj [by (4.3)].

‘Hence (4.2} is proved. Thus the procf of Theorem 2.1 is compliete.

Proof of ThEOPEm e

From the first part of the proof of theorem 2.1, it is

suffizient to show

1 . 1

B0 1> E.[ _ - — ]
DY, on-t -C 1 1. ’
(2" (e-1)” (N}p_j (2" (e=1)) T o,y
L.9)
rrovided N > Zn.
A S SR
. J;{t} rn-1- . .
fe have ——— {N-ﬂ(BJ}}.{E 3 L4107

1B,
L

Analopous to (4.6), we get
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- . ! 2]
‘- < t r
e I 01
JULE) (2 e-1)) T ) oy
1 1 ‘
iy E — - EB [ [ £1
2T e 1) (N- P (3 + 1) T ey P G,
|;-"a|‘i_,/]q;|

Woting that we can get similar equztions to (4.3 and
(4.0), for this case and using {4.8), (4.10), A.17), it is

easy to see that we can prove (4.9), provided N > 2n,
Thus proof of Thecoreim 2.2 is completed.

_ | DI
Noting 1CI > \D in equation (4.7}, 1t 1s easy to prove
- f”:T

2

Theorem 2.3 in a way analogous to the proof of Theorem 2.2,

From Theorems 2.1, 2.2, and 2.3, proeof of Theorem 2.4 is
immediate, noting that increasing functioms of P are Schure

concave and decreasing functions of P are Schur-convex.

e Ay e e AuRuiadydadadndafadedadsles

-----------------



SECTION 3D: COMPARISON OF SYMMETRIC SAMPLING PLANS AND
SOME INEQUALITIES TN RANDOM REPLACEMENT
SCHEMES

e Introduction

Though the inequality {(#) in Sectlion A does not held
for all Schur-convex function, it has been found in Section C
that (#) holds for all functions of the form £ = F.G, where F
is any non-negatlive Schur-convex function and G is a suitable
fixed function. It is quite natural to ask for the best G
whicn serves this purpose. To meet this obJjective, we have
developed a new concept in this section, namely "admissibility
with respect to Schur-cencavity", and,as & consequence, we have

derived certain new inequelities for random replacement schemes.

2, Main Results

wWwe shall define ordering of positive functions with
regpect to Schur-concavity and then using that we shall consider
admissibility of such functions with respect to Schur-concavity

fur comparing two different sampling vlans.

Definition 2.1: Let §£,, &, be two positive functicns. Define

£, to be greater tnan or, equal to §, with respect to Schur-

concavity, written as §, < 3&2, if §2f§1 is Schur-concave.

let Rq, RE Ee twe different sampling plans. Let
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"
Ip ={ #: >0, H is 2 function of P and Ep (M(P).5)<
)

£ (L {RP). &), for a1l noen-negative Schur-concave function E} .
2

Zefinition 2.2 ilo is called O-adrissible with respect To

m

By, Ry if m e T, and there does not exists e T, such
that & TR m T
that b o and Lo M,

In the following theorem we obtained a #© -admissibie

function for Ry = R(1, 1, ..., 1), Ry = R(0, 1, ..., 1).

Thecorem 2,1:. ‘A P-admissible function #, for comparing

R(1, 1, «.s, 1) and R(0, 1, ..., 1) is givern by

uDEp+1J _ o _1
u (@) N-p (Fy =1
where: o = i }nﬂj Hence a form of W s glven b
e e ._N’r] = D;,T‘I - H J.Ui | [y a 15 El ¥
1 L
Il - ' -
( 0 ) (Fﬁ,n 1)
Kemark 2.1 : Froof of Theorem 2.7 will be given in the next

sunsection. In a way similar to this proaof, P.admissible
‘unctions for comparing other replacement schemes can be derived.

~hose and Theorem 2.1 give eXamples of series of inequalities

which cannot be improved.

Remark 2.2 : Instead of functions of £ it may be interesting

to consider functions of some other Schur-concave function ¢ as
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multiplier to make & general Schur-cencave function satisiy
Karlin's conjecture. Then an analogous concept, & -admissial

+1ty of such functions, could algo be defined.

T following inequality will be derived in the next
subsection wusing the methods in the procof ol Theorem 2.7,

L
Theorem £.2: For all nen-negative Schur-cconcawve funciion

§ and alip <0’

; n="1,_ _ 1
(1 - T}ER{E](E} < Bppnyit) <

- ER{E)(%) .
1.8y
S

3. Proof of the Main Results

We use results of Section C for the fellowing proof

in particular, we use Theorem C.3.1 and C.40.2.

Procf of Theorem 2.1

let C= U B.
1eg 9

[
il

.U. BJ

L

Wil, +ve, 1) gives equal weightas to all elements of C UD.
L0, Y, ..., 1) gives eogual weights tc all elements of .

CO D is empty. Let us define E, and By as expectations under

the equal prcbability digtributicons on the 2lements of T and D

respectively. Hence
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Ep(1,..., 1)) S Eqrg,n, ..., 1)(8)
i* and only if ED{§3 < ECQE} (3.1)
Eo{E) = 2 IEJIEEIEEJI!DI L3 2)
BJinD .

En(E) = £ 18y, qV1Eg L (B)/1CH (3.3}
- B, in D () TU AT

1Dl )

TET (FN'H - 13 (3.4)

1By fe1) N - 2(B)
su{i} 77, (3.5)
IQII ;)(3}) :

where ﬂ(EU} = affective sample size of the elements of B-.
We have Eg (R{P).E) = R1{ ﬂ{BJ)J.EB (£) Y,
J J

Again from theorem C.3.1 and C.4.2,

E _
RS

EBJ(ﬁ)

> 1, for all positive Schur-conrncave

~

Function £ . Also note that this ratio can be rade arnd trariiy
ciose Lo 1, by taking & suitable igcreasing Punchion of H
This alone with (A.1), ..., (3.6}, shows that a P -adnissinle

Dachion iw o ejwvern by M., and proves Theorem 2.1.
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Eroof of Theorem 2.2

By induction and conditioning suitably [by an analosous
argument, as ¢an be seen in the proef of Theorem H.EiP}, it

can be seen that it is sufficient to prove the Thecrem for

B o= (0, 8y veey 8 _4)

D=, Biy veay O J, for 4. = 0 or 1, % i =

¥

Then 11 is eaay to see that

lH{E}]ER{EJ (§) < tR(p'H ‘EF{{E1.}I:EJ1
where [li(p)l is the number of points in the scheme Rip) -
This proves the left-hand inequality by noting that
IR(p) | N N-p1t+1
IRy~ N

Recall (3.7). Let I = {i: 8 = C}} .

let ¢ = U qju{ﬂ}, D = U B
124 I<J
1£J 107

R(p) gives equal weights to all elements of C. R{p') gives

equal weights to all elements of CUD. C€CND is empty.

Eﬂyﬁ}= z I%U“FE%U“ﬁHﬂm

EJII']D

Eaprpisi= ¢ (1B H%&U{}UE (gy/{1cr+unny.

U B
1V By y ﬂ
EJ inD J
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The proof of Theorem 2.2 follows by noting that

Byt ¢ 'Byofaft Ol N 1
1B | 100+ 131 7 W= RP{B.} , 1 .n=1
N 1 1
= . =]
Noan+l 1+n__ ’ (‘ﬂ-1
=1 - N
Remari 3.1 Theorem 2.7 says that for large walues of Lne

——

copulation size (W), all replacement schemes give almosl sane
viines of the expectations of non-nezative Schur-concave

sunctions. This also gives bounds for small values of M.

Hemark 3.2 : An interesting (but seemingly hard) prodlem

is to construct an N-admissible function, where n refers to
some moment of the sample mean. Using this, it seems that

the bounds given by Theorem 2.2 can be wade more stringent.

AL R N R N R L B

ooo3IIa00TId
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MAJORIZATION AND RANKING MULTINOMIAL
CELL PROBABILITIES




SECTION 44 : INTRODUCTION

The problem of selecting the most (or, least} likely
event in a multinomial populatiorn has drawn the atiention of
many researchers in recent years [e.g., Chen and Hwang (1984),
Chen (1986}, Bhandari and Bose (1987) etc.]. Using the
indifference zone approach, an obvious procedure is tc select
the cell corresponding to the highest (or, lowest) observed
frequency, with ties bvroken by randomisation. It can be seen that
the abowve rule is the uniformly best procedure in the class of

rules invariant under the permutation group.

Suprose we nave a sanmple of size N fror a muliinomial
nopulation with k  cells. The probacility wector iz denoled

by & = L@1, o

5, +ev, 8, where @ is essumed to satisfy some
constraints.,  DJenote the crowaikiliity of correct selecticn

(°C3) oy §(8}. The least favoursble configuration {L.F.(} is
defined to be the configuration 6%({N) =such that igf E{g) =
§{e*(N)). The derivation of L.F.C. is essential for calculating
the sample size needed to make the PCS greater than or egual to

3 given value. Throughout this chapter
9(1) £8(a) £ o0 £ 8y
wili denote the ordered values of the prowmaciiities of ollferant
nrells.
isually the problem of deriving L.F.C. is bhsro un:

cumbersome . Marshall and Clkip (1979) nave introduced sos



gpplicoations of majerization o tacklic swelh prouleds. .- fove
w
applicd the mzjorizaztion concept iu these oroblems followine
e wordE of ¥arsnali and Olkin (1979) . in particular, we
have usend the following theorer due tc Kemperman {(see Narshall
arel Uledin (1973}, p.132 for a proof).

Thneorem 1.7 : Suppese that m ¢ X; £ M, 1= 1, +:s3 . Then

taere exists a unique @ € [m, M) and a unigue integer iefo,1,..,n

such that

; X {M, ..., M, @, m,..., m}and r'i.l' xy = (n=f{ -1)m+o+ [M.
S e i=1
L n-£ -1
Section 4B deals with the problem of selecting the cell
associated with the largest probabvility. WwWe hawve assumed the
Foilowing constraint ¢
S(ky 27 Fle-1) T O
uns studied the problem of derjving the L.F.C. for different
vossible values of a and b. In particular, we have disproved
g conjecture of Marshall and Glkin (1972) or the form of the
Le#eC. For a = 1, Moreowver, our results provide partial

ungwers bte all the four conjectures of Chen and Hwang (1384)

o the form of L.F.C.

Section 4C deals with the provlem of selecting the cell
assoclated with the smallest probabiiity. 1In that coerntext, we

nave assumed the following constraint:

B(1y 28y - °



and studied the problem of deriving the L.F.C. for different
possible valuea of a and ¢. In particular, we have derived

certain known resulis through simpler and meore elegant proofs.

L LI 22



SECTION 4B: SELECTIRG THE MOST PROBABLE CATEGORY

1. Introduction

In this section we consider the problem of selecting the
most likely event in muitinomial populetion end study the proce-
dure which selects the cell corresponding to the highest observed

frequency with ties broken by randomisation.

Recall ‘that ©(x) @d 8, 4y denote the nighest (unigve)
and the next highest of the Gi‘s respectively. Kester anc
Morse (1953) showed that under the following constraint :
. _ - i s
g(k} > ag{k_1}, a > 1 (given) : }

tne L.F.C. is independent of N and is given by

N a 1 1
8" = (mgT o &FET e FFRET (1.2)

Comnsider new the analogous " location'' problem where the

conatraint is of the form:

Marshall and Olkin (1979, page 399) conjectured thaet in this

situation the L.F.C. would be the following:

1+(k-1}b, 1= ,  1-b
k k k-

Q* = ( (1 --‘il)

However, the conjecture is not true in general as shown oy
examples of Chen and Hwang (1984). We show that, when N is
sufficiently large, the L.F.C. iz given by
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e*(N) = ({(1+b}/2, (1-bB}/2, ©...0). v1.5)

Thus nere we hawve an interesting situation where the L.F.Z.

depends upon N.

Chen and Hwang (1384} deals with the problem of choosing
the t best cells and state four conjectures on the existence
and nature of the L.F.C. We show that all of these (the first

one, only for large N &nd the second one, for small b) are valid

for t = 1, (See subsection &4).
We alao deal with the general constraint of the foliowing

form

Ok) 2 (k)" P L1.6)

and study the various possible cases. The results ol XKesten
and Morse (1959} (the case @ » 1, b = ) of course follow rrom

-
our results.

2. Preliminaries

In 2 random sample of size N from a k-cell multinomial
population, let xiN' i=0¢,1, ..., k=1 denote the number of
observations in the ith cell. For simplicity, we drop the
suffix ¥§. In the subsequent calculaticns, we assume w.l.g.

Note that
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£{84, «+vy ) =P(X > Xy ¥ a f0)

I o ,
+ = E- p i = ;{L- }'l K g i j
+ 1§ P(X. =X, =X

3440 0 T Y

30

X, > X ¥ a e, jz} + ianns
- P(X =X, = =X )
K o 1 T k-1

The following result is due to Marshall and Olkin {31372}(p. 398).

Theorem 2.3 : Given ©,, § is 2 Schur-concave function of

(92, vany ak).

Remark 2.% : ‘Theorems 4.17.1 and 2.1 together imply that the

search for the L.F.C. %(N) can be confined to probability

vectors of the form

{ad+ b, 6,00s,0, B, D,...,, 0) where Ol <5 (2.1}
i

q

far the case b =0, a > 1, Kesten and Morse (1959) show that
Elad, &, ..., &, 4, 0, ..., O) increases with & and nence
achieves its minimum at & = 1/{a+ k-=1) yielding the L.F.U.

(1.2).

For a+bk>1, &>7, b<0 we show that the above monotoniclty

nelds, yielding the L.F.C. as
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a+b(i=-1) 1-b 1=b

. * g I.:‘?;E
atk=1 ' a+kel' ’ atk=l ' :

(

However, when a = 1, b » O, the above monotonicity does not
hold for large N. Indeed, just the opposite happens, as shown

ir Theorem 3.1.

3. The Main Results

In the following theorem, we study the cases a - 7,
o< ik, @ + bk o» 1 and a = 1, b > O (for large N}). ine case
a g1, b»0 is discussed in Remark 3.3.

»

Theorem 3.1 : {i) When a > 1, b < (¢, a+bk > 1, the L.F.0. is

given by (2.2},

(ii} For & =1, b » 0 and for sufficiently large
N (depending on b and k) the L.F.C. is given

by (1.5).

Repark 3.1 : (2} The condition a+bk > 1 in (1) 1s essential

tc ensure that the cell having the 1argest

probabllity 1s unique.

{b) The result of Kesten and Morse (1958) follows

from (i) when b= O.

Proof of {i): Consider any arbitrary probability vector of

O, vvxy 0O) where 5 < 9.,

- . ¥ o A
the form (@, 61, seey D g+l = "1

g’ 5q+1’
x »zas;+b ¥ 1=, ..., (g+1). Cbserve tnat to prove (i} it

in sutficient to prove that the derivative of E in the direc-
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tion (=a, -1, ..., =1, a*+q, ..., 0) is negative st all polinty
R LS

g
(adrb, 8,...,95, 5Q+,l, Oyeaa,0) where O < brpy S Sp witroz S
i
iege, ..af’imz — + {a+q) - of < PA.1)
0a i=1 6'5 6‘5 +7

L

we define the following guantities, whose relevence is seil

gvident. NQ, r"é,l, sevy N denote non-negative integers. The

g+
counting of "egualities'' below slways includes NO, unless

albtherwise stated

NI _
a{l) = g+l Ny <Ny =7, oeey (at)
% N, .
i=g 1
N_ a+1 N,
LOL, 6, 8) = aWe ® x 5,7 a1, say.
q+1 q+2

n={L:EN=N-—1 and g of the f‘L"SlH},Q‘UQ .
s i=0 i 0 R

{ g+1 g+
@, ={L: T N, =N and s of the Nrssm},u -y oo.__.
08 {=0 i o [ g=1 9%

f g+ /
A, = L:Leg} A, = U {L-s: Leg }
1 1 11 2 =2 5

a+1 _ __
A= 'f {L&ifﬁmiﬂ}s:LaQ&, ND>Ni+1}, 1= 1,c..,{q+1}
it 5=

q+‘1
Ay = Lo, /(Ny#1)(s¥1) s Leg,, N o=N;+15 , 1=1,...,(a+1)
iz sx‘l i 5
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Agq = {Lu/(No+1) t Le uj}
qQ+2
Ay = U {m;(NDHJ : Le ns}
g
g+ q+1 g+1
A, = U u Hf[ai-‘l)}* v U Lo, /{N.+1)(s+1) :
a3 g Me o {u1 g 1 i
QQ(E""I) ) ]
LEQE,NE=TH+1I
3
A - U A ..
o 3=1 ay
. g+2 q+2
Let V = £ I L/s = L L+ & % Lis = I,+1, ({(say}
g=1 LEQ Le 04 s=2 LeqQ
- 5
Note that V can also be written as
¥
g+ q+1 Q+2
/= % T Lfs+ I ELlfs+ T I L/s for any 1 o= 1,...,{gq+1).
a=1 Le g 3=1 Le g 5=7 LEg
8 8 5
ND>N1+1 N‘G-‘iNf‘l NG- Ni
=K+ Kzi + KSi {say),
2. 3 ?— - = ;’-’5 + 2 gi‘- + z
da . a a a o)
xcsu xaﬂu1 xEAGE xaauj
g+2 g+
- L+ Z TL + I Z Ng M/a{s+1)
LEE1 g=? L& Q! g=1 HEQD{SHJ
= Jy Iy (asy).
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28 _ dx
For ‘I«:iqqﬂ,a—; b 3-3;
x.sﬁil UAiE
g+l q+1
= I L L/s+ & % L/(8+1}
s=] Leg =1 L E
NO:»HiH NO*NiH

at g+l _ q+2
Note that V - == _F L Lfs{(=+1) + & ¢ L/s = 0O
aaq.y.‘] s=1 Leg g=g LEQS

Thus to prove (3.1), it suffices to show that
a(v-ﬁ-) + % {?-—EE-)‘{D.
The following relations are impediately observed.

Ty = Jg, K“li-L"li' 1=1,..., {g+1}.

g+1 q+1 )
= g 4] H = ] 1 = [y i vy A

I3 % f E{Lﬁifas(sﬂ:l : N N;+1 and (s+‘t)md s=N_ in L}ij

i=1 g=1

% /5(s+1) (q+1)
Ky = fpn. = B z L/ s{s+1 1=1, ..., (g+1).
2i 21 s=1 Leg ' i ¥
5
NgnNi+1

-:;+1¥ g+

=2 L&D
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q+2 _ i+t
all, =J,) =-a T 2 (s-1)Lfs =-a % K
- g=2 Leg i=1 1
Thus alVv - Qij + % {v - .géq
oa i=1 ﬂlﬁi
v - _ 4
a 12wJ2-J5) + iiquEi t Kgy = in)
i+ q
£ F Kz, +va(l, -Jd,) + T (K,, = L.,) = aJ
j=1 34 2 2 gmq 21 21 3
q+2 _ q g+l
<-(a=1) £ £ (s=-1)L/s+ E 2 & (1-aaija)Lfs(s+1J.
- s=2 LeQ - i=1 s=llen,
NG=H1+1
Note that & > 1 and at the point (a8 + b, &,...,6, 6Q+1,U,..,D},

q
1~ad/o = b/a ¢ 0. This proves (i).

Proof of (ii): In this case, the expression {3.1) is written

as {note that a=1)

o , 9, . 2E I
Vet B - @ty - b

q+1
q+1 _
T Uomiprdz) v B (Koy + Ky - Lpg) = (@42) (Ky(gq) +
Kﬁ(q+1} = LE(q+1))
g+
= 121{K21"L21)"Jﬁf‘(Q+2)(Kz(q+1}+ B3(q+1) = La(ge)’
g+1 gq+1

T e LEans(haim}uB{s”J"(2+q}{K2(q+‘l)+K

N, =N, +1

3(q+t) = La(gr)
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g a#+l o
> L T z {1uﬁifd}Lfa(s+1)
i=1 5=1 Le @ 8

NO=N1+1

q+1 q+2
- (@+2)[ 2 £ L/s(e¥)+ B © L/s] =D, -(q+2)D;, {say).
s=’ L!:‘.Eils s=2 LEQE '

NN q+) N =N g

Thus to arfive at the configuration (1.5), it suffices to show

that for sufficiently large N,
n

-
o

q+

(A0

n
2 2
D‘1(‘5q+1).€mq+1 * {q+2)£ DE{éq+1}daq+1 ¥ ﬂ1<:H25

i
iy

This follows from the fpllowing basic lemms, proving the

theorem completely.

Lepma 3.3: As N —=,

n n
2 2 oy .
ir.I; D1Q6Q+1)dﬁq+1f :'; D2(5q+‘|)d5q+1 —pm amniformly in
1 1
. 1-b
Proof: Assume Ny = 0. For A, > O, the proof is similar.

Throughout the proof, ¢ shall denote a constant independent of

M and N. Note that 1 =~ 6ifa-b/r:t ¥ 1=, ..., q.
Thus D;(6,,4) = L} q;1 T L/s(s+)
9+ ¢ g=tLen
8
Nouﬁ,l-#'i
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q+1 ‘
PL}{G -m[‘-,]m, K.1 mNQ-”If)RLG +){.1 = END- e {1:2}{j=h - \JN“--"]H

X EZP(stﬂj, J=2,..0, )]s, Ny, oen,y, Nq+’i”

g+1
P‘( E ]{

T

[

5" 25~ 1)) LS.

[where E, denotes summation over all N_, N/(q+2) < N, < (8+1)/2

and, for fixed NQ; 32 depotes summation over ail M.'s sech
i+1
that £ N, = N=(2N_=1).
j=2 °
s[NQ,Hz,...,NqH) = 1/8({s+1) if exactly (s-1) of the NJ'SEQL.-EJ..- b, and
NJEN ¥ 3
=0 if Ny > N, for some 3 ]
. g+
> B/ B PR = Np, Ky o= NES1/XRX) = 2Xe-T)P(E Xy o=
oo
- ] Lr< 1_e J
{g+2) -2
N = {2Nr=1))f(r, 6t i ) {say)

wiere (%) indicates that the summation is over all r's such
that Nr i1s an integer and € 1Is a fixed small pre-assigned

number.  From the relations u;+q6+5q+1 =1, a = b+ §, we nave

5= (1ebq=D)/(a¥1), & = (1+abeb 1)/ (a1}, 1-(a+6) =
((q-—ﬂ(’l—b)+25q”}f~;q+1}
Note that for g > 1, 1-{a+8) is bounded away from zero. Thus

using Stirling's approximation for gq>1,
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g+

F{J{O = Nr, X, = Nra1f}{ﬂ+}{1 = ZNr-1) P | Ee xj = N={2Nr-1))

c{1+gb-& Jr*\)mr‘:1 b—ﬁqﬂlmriiqﬂ)ﬁ v) + 26, )“‘“'21‘)

2

81200 20 (22 (1) =20y gy

(+ab=6, )T (1=b=6, 1) T ((a=1) (1-p)+26, '~

Writing £4(6_,4,, T} =

1
7 /N fN'[ﬁ r}_1/n
1 H c 1 q+‘lr
T L crck-t
(q+2) = =2

(3.3)
We ghall snow later that in a small neighbourhood of a point of

maximum of £,(58 r}, fir, N) is bounded away from

q+1? LSq+"|’

zero uniformly in r . { 3.4)

From this it follows that (note thet the summation in (%) is a

Efiemgnn sum} for 9> 1,

Lim | N ,

H—}Gié D‘I(ﬁq—r’l)daqflj 2 TE:?T max f1E5Q+1: r) (3.5)

where the max is over all (r,&) such that 1 r < 1 £,
(q+2) 2ri3g

0 < t‘:q_!_,] < f. Tt 1s easy to see that (3.5) holds also for gq=1.

Let us now study the behaviour of DE‘

q+1 _ q+2
D,= & I L/s{s#1) + 2 E Lfs
- g=1 I..lttr.\S =z L-e:l:l5
Nn'”q+1*1 Nb'Nq+1
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e = DE(A] + J’.}E(B) (say}.

Clearly DE{B} < c{qJDEEA) (Compare each term and use :Sqﬂ < 8).

! |
Hence ;‘ D2{5q+1)d6q_|_1 < c{q} é DEEA)(éqHJd‘SqH

(14D, 407 (@l1=b=5,4)) " ((ar1) 5, )T

Define fzf,éqﬂ, T} =

rzr{1_2r}1—21‘
Froceeding as 1n D,,
| 1/N 1/N 1/2 ! 171
T (£ D,(8,,4)d6, 4] / < Un —0[ 7 s L drdé 4] M
Nexmo - 3 q N-s>e (Q+1)71/(q+2)} o r["l-Er}‘ua

max fz{*@qﬂ , T)

1 ; T ' .
< 5D max fzkﬁqﬂ,r’) where thne maximum
is over all (r,8) such that S £ I« l, 0« a < N,
e (av2) = =27 = "art =
Thus it suffices to show that ¥ 1 < (1=-b)/(q+2),
max f1{6q+1,r} >Pq > Py > max fE{{SqM,r) (3.6}
1 1 N 1] 1
— < - £ ——, TV &
@2y — =2 {qr2) = =2
O_éqﬂ_-iﬂ 05%”511

First assume that gq> 1. Suppose T < {1-b)/(g+2).

1-1:-:5:1;_3 g
« HNote that x>1 and x decreases &s

Let X =
(q+1)r5q_'_1
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ﬁ=‘4+"1 increases. It is easily checked that

giéq+1.r) = fq(5q+1.r3ff2(5q+1fr) = A (x), where

_ _ LT
A (x) = x( 1 )

3log A_(x) .

T ™ r 1 3 2
— - =% (1-2r) —eem—er(-1/x%)

D X X q_’]+_§.

=£__..l..ir;2>0, since r > ! .
x+(g~1)x (q+2)

Shus g;{:ﬁq“,r) is a strictly decreasing function of &, V5T7)

Alse note that g((1-b)/(g+2), r) = 1 ¥ r 0. )
Henoe Y g{:ﬁqﬂ, r) o> () > 1 F A o< (i-b}/iq+2) {509
0< %HEG

“nmme L) is a decreasing function of 4.

w1l would follow if we cgould show that fiis ry attains

g+t

naximum At some I € = - & and 6 < (1-b)/{g+2) (5.10)
s -2 g+

"hiz ls bevause Iy attains its maximum at 6 = {(1=p)/(g+2)

g+
and For gome r. Hence (3.6) immedistely follows from (3.8},

VALY mnd (3.10). .{Tna‘b f2 attains its maximum at 5q~+’l =

(1=-b}/{a+2) car be shown by showing that

2
g leogf dlog f _ _
5 2 <0 and 2{1 b r} > 0}

\ q+2
q+1 Q 15'lc.‘|+"|'

a5
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Thus it remains to show (3.10) (and of course {3.4)).

oroof of (3.10) : Suppose we prove the following
o lﬁg hif '-1_
(=2, 1) <0 5,01
dr q
d log fq 1=b
3T (Q+2, rT] = 0, and maximum of <, on the iine
5.1 ® (1=b)/{q+2) occurs at r, Lha12)
9 Loz £y 1y
3 5., ku+2: r} is sirictly decreasing in r {3.13)
v B
A log t:l{}ﬁqﬂ, r) _ _
>0 at 5__, = (1-0)/(a+2), r = 1/(q+2) {3.14)}
3 6 =~ q+
o+
a 3 log Iy 4_y ,
it r, solves 3 5q;1 el r) =0 then r, < ry {3.18)

{3,111} and {3.12} show that maximum of f1[%$g, r) is attained
at ry. (3,13), (3.14) and (3.15) show that

dlog £4 44 | _
FYX {Ergn ry) <0, i.e., for sufficlently small 8,
q+1 i

1 1 o |
fﬁlﬁ?% - B, er > fqﬂé;%, P1) which gives (3.1C).
We thus have o wverify (3.11) - (3.15).

3 log T, | )
—_— = 1@g[1-b—ﬁq+1} + lag{ﬂ+qb—6m+1} - 2 log{{g-1){1-b) +

ar
25q+1} - [2 rogr+2-2{log\1-2r) + 1)} {(%.16)
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alog 1 2 _
3T L (;:g, r) = - log o 5 + 1og(1+h(q+1)) which rives
1/2
L ,
r, = ——— Wher : rebebe-ce
1T Ty M %o T ey
From {3.16),
3*log 1, 2 &4 . e
5 = - {f + 7757 <0 proving (3.11) and (3.12).
ar
ol ty  or _ x o, 2(1u2r)
3 5,41 1“b“5q+1 1+qb—GQ+1 (q‘1J{1'b)*'26q+1
(3.17)
3 log f
Yence 1 1_b,1"}
& 5q+1 g+ 2
. _=rig+2) rig+2) , 201-2r)(g+2) (3.18)
(1=b){g+1)  (a+1)(1+b (a+1))  ala+1}(1-b)
(3.13) immediately follows from this.
{3.14) can be verified eesily from (3.18).
al?sme {1-b r) = gq+2 ¢ -r T + Eﬁﬂ—arj) .
A 6Q+1 q+2 ' g+l “1=b  1+b{g+1) q{1=b)
Thus r - L ' < r, proving (3.15).
it + 1x2)
2 2 ©

Mow suppﬂae‘ that g=1.

(3.11) = (3.15) still hold.

However (3.9)

Note thet the relations

does not hold
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(since (3.7) is no longer true). Instead we have

r) = (————) =1 if r and '5;;+-: AT Pea e

HWay respectively from /3 and {(1-b) /3.

From (3.16), ¥ 5Q+1,r <ry, f; is an increasing function of r.

(=)
(3.6) foliows from the abowve observations.

Froof of (3.4)1 Suppose first that g = 1. By the strong

- law of large numbers, it is sufficient to show that 2 maximi-
zing point of f, is contained in the region (for some fixed

0 o¢ 8 < 1/2).

{{5q+1’r) : Exj < (P“B)N! J = 2, a4, [:Ei"'"‘_) and XJ'E 45 1n (3-2]}

1 & {1=2rI N
. - ¢ ,
"{ [.ﬁ‘q.+1 Tl 8(1-2r)N < (r=B)N, 2 _ £ KP“E}N}
(g-98+5 (g-1)6+5 .,
‘ - & r-g o
} {(6Q+1,r}. {q-135+5q+1 = T:ﬁ;x}E51n¢e l5q+1 < 8)
) r-p
S PP NSO }
{ q+1? (g+1) 648, 1-2p
¢ 5
= {“‘,-.H:-.I‘} : < r‘«-B} = A {5ay),

{q+1) 6+{5‘DL+1 -

Zuffices te show that

.Elcg f,

: o
-~ >0 ¥ {6 ,9,r) & 4",
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Eig log 14
I - 5 « 0, it suffices to zshow that
ar?
o log I & . . .
R s - is positive.
3t at T = Ve B 3

q+1

Tne above expression 1s positive at g =C (follows from 5.16).
By continuity it is positive if B is sufficiently sma.!. This
proves (3.4) and hence the lemma for oo»>1. For g=1, (3.4)

is trivially satisfied. Thus the lemma is proved.

Remark 3.2: An approximate value of N in Theorem 3.1(1i)}

can be obtained by a more detailed analysis of the behaviour

af f, and r?. Howewver, the cetails wili be quite messy.

Heparik %.3(a) : The cage a > 1, b>0. Assume % is ldarce.

lr ikis case (as in the firsl stew of (ii))

q+1 g+1 ,
= L § £ (1 = a8, /a)L/s{s+1)
i=t s=1l LEES

NOfNiFl
- {fa=1) £ L (s=1) + {a +q + 1)¢ ;E -~ V)
s=2 Leg  ° g+
= Ty =Ty + Tj‘ (say) LAl 19)

Wi bsve exXpressions f1 (corresponding to T1 and TE} ans [



A

Lcorresponding to T3} similar te £, and ..

A& mimilsr argument shows thet

mgix £

1 .
e 1, i A o .
max f

e

Senge forojarge N, I's is negligible Wwara b Loama )

™ ‘-':1t \{.?Q}

we snow Unat (for certain wvalues of 2) T, dominsies 7,. We are
interezten ir Lhe hehsviour of T1ET? only 2t toe point of maximu

w2 I
DR I R

. - . . . . 1 1
Piopte That f1 does nol attain its maximum &t r =

Prus at ites maximam,

alag L

= [, which giwves
ar '

(= - 2% ab — = (3.21)

At the point (a8 + b, &, ..., &, éQ+1 0, «ueu, 0), the leading
terms of T, and TE are regpectively,

q
2 g

5 = L
=1

fI ]
L€Q1 ,NG=H1+1

1L oa {

. A Al Ia"'] {;‘i i g - p . i -
RIPEEE o = & T L {(note thet a=sz&,+b ¥ o1=1,.0.,4)
21 = . . i

anwi

[qn1)ﬁ+-ﬁqij o

U/ Ty 2 T oo 5 ala-1)

U ELp T
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Uzing eguatiar (3.21),

/2 b
m ‘II,‘T < max (a’f&,} AN  — ’

1/ Ty, £ e

where the Uirst max 1s over all maximizing points of f..

Udbserve that (mfﬁ)1f2 is a decreasing function ol a . (Hacs. .

@ = ad+ b).

ab1 L {&+b(k*1j)(1-h} ]-1},2 . T3 is peeaiive.
- {a+k-1)2 '

Thias TWL;TEL <

Henee for Jarge N, the L.F.C. will be given by [(2.2) it

o Al Qeg) g2,
o (a+k-1}

W

Hemurk J.3(0): The case a<l, b>0. As in Remesrk 3.1(a},

e condition s+ bl s iz esgential. TIn this case T? is

detative in equetion (3.19). By (3.20), Tz is negligiple w.r.t.
X4 &and TE' Thus Ty - TE + T§ > 0 for large N. Thus the
L.F.C. (for large N} is given by (a6+ b, &, O, +.., 0) i.e.,

a*bh 1-b
a+t ' a+i

:lﬂ, LI B D)-

4. DISCUSSIONS

Chen and Hwang (1984) consider the problem of choosing
the t best cells (% > 1} and state four conjectures on the
nature of the L.F.C. In this section we provide partiai

answers to all the four conjectures for t=1. For t=1, the
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conjectures essentially takes the following forms witr Lhe

constraint given by (1.3).

Lonjecture I3 For any N, the L.F.C. 8%{N) is »3ven oy L 2.1)

with =0 and some 1 < <r-1.
v

Conjecture IT: For any sample size N > N{b) ans any b,

inere exists a kD such that the slippage configuration (given

by (1.4)) is not & least favourable configuration if k 2 kg

Lonjdecture TII : For any N, any k, there exists a ﬁﬂ such

tnat the slippage configuration is a least favourable confi-

guration if Q< &<« 50-

Conjecture IV : For each k>3 and any &, there exists an

N, such that the slippage configuration is not a least favour-

able configuration if the s.ample slze MN>N_.

Conjecture I (for large N) and Conjecture IV follow

directly from Theorem 3.1.

Look at the configuration {1.4) and assume thet Kk -»= .
Among the probabilities of different configurations, it is easy
to see the dominating terms are the probabilities of the confi-
Furations
(N, Oy .., O}
(N=1, 1, ..., O)

.a -ee (1,01, ..., 1, 0...0) and any permutation of these,

keeping the first cell fixed. As k-»e , the other terms —>0.



N T -

M- a _5n-“| (k-“l

Thus 1T - PCS ~ i N-

Jn!

= (N-1)a 6™ (=1} 1/ (k=l) ¢

1 -1 1-Hh
Using a = ”iiE——lEq b = w——, in thils case
k k
1-PCS = (N=1) (1=} b = 2, . sav )
- - -] 1 s ay, L.

Using‘narmal approximation, it 1s easy to see that for the

configuration (1.5},

1-PCS r~ P(N(C,1) < - N-‘if?? b('!—-bz)_qu} = a,, siy,

This a?_ > Ay ir

"

exo (=N (b%/(1-b%) + log(1-b))) » (2nn)?/2
(N-1)b2(1=0)~ 1/ 2 p2y=1/2
. . 2req_ i '
cet gib) = bS/(1-b") + log{i-b).
I't cun be checked that z(0) =0 and g'(0) < 0. Thus
g{b) < 0 for some b. Thus a, » a, for all large N. This
shows that for large k, the "slippage configuration (1.4)

is not the LFC (for large N). Thus Conjecture IT of Chen and

fiwang is settled in the affirmative, for smell b.

From the proof of Theorem 3.1 (1i), it can be seen

that at the peoint {a, &, ..., 6Q+.1J with b =0 (i.e., a=58),

d§
ad

o
ta,0) = -8 _ 2 AR (g2
5

aa i=1 q+
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q+1 _ |
= 551 Li:a :1-5Q+1fﬂ)Lfs{s+1J - {Q+2)K3(q+1}

NO.NQ-FT + 1

q+1
- (2+q) E £ L/s(s+1) <0
s=] L& g,

N =N

(a] q+“|+1

Thus, using continuity, there exists a b, such that

inf £{a,0) < 0 for all b ¢ 0, This shows that for small
a

.

b, {".4) is tne L.F.C. This settles Conjecture 111 of Chen

and Hwang.

PRI



SECTION 4C SELECTING THE LEAST PROBABLE CATEGORY

1. Introduction

ln this section we consider the problem of seiecting the
leagt likely event in a multinomial population and use fhe
procedure which selects the cell corresponding to the hicshest

sbserved frequency with ties broken by randomisetion.

Hecall that 9{1) and 9{2) dencte the lowest and next
towest cell probabllities, respectively. In this secticn we

nerive Lthe L.F.C. with the preference zone given oy

& . < om g, - C Ll
(1) £ 292 L)
corodirferent values of a4, © > 0. The particular czase with
=1 and ¢ » O was considered by Alam and Tacomnson {1972)

ard thiey found the L.W.C. Lo be the so called sliponave confi-

suration given by

o = (a-c{ku1} 14c T+

ii.,m .J(."E
atk=-1 T a+k1"? a+ -1 ) (1.2)

Alam and Thompson's proof is long and cumbersome, whereszs cur

nroof for this particular case is comparatively short and simple.

Actually for a < 1, c > 0, the L.F.C. @%(N)} depsads on
., Tae limiting wvalue of the L.F.C. is derived for ihis ir
Urearem 3.17. It is found that the L.F.C is not bhe =0 ooase

contisuration for cerizin combinations of & ang o.
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Wofrom A s=oelt o

. Preliminaries
worangon samgls of alze
i =1} Aeoobe

]
o bannion, iel Kiiﬂi‘zxi}’ o=, 0, ey,
Tor caloulatior of The PO we oo

L S S I

et

i

frequency of tne ith cell.
toand toe

wa¥ag. thmlb @, and 8., are iae

nrobani cibties (i.e., Q.-l

Lowe g
Mo te

ceay Qk) = P{KU <X, ¥Vafo)
KoK <X ¥a g3, ar0)

S8,

1 _
- 8 p{x =
2 J=0 ©

= .. = xl{—"l)'

I'he: folleowing result is due to Marshall and Clkin (19749)

(Froposition C.2.b, page 400).

For fixed Gl,l, £ is & Sohur-conoave fonction

Theorem 2.1 :

ey B

together loply

Theorem A.1.1 and Theorem 2.1

Hemark 2.1 :

trat <hs search for L.F.C. &*(N} car be confined to probability

wutors of the form (a6 - ¢, &, ..., &, M} where ad-c£6gH
q (2.1)

v

)

i, The Main Results

Tneorem 3.1 : Assume that a-c(k=1) > 0.
th

a>1, ¢>0, a-ck <1, then for every i,

Ir

(1)}
L.F.C. is given by (1.2},
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o a-{k-1}c ac _ L
Lii) If a <V, ¢ » O and < ther, as =5 =,
a+le1 - -3

the L.F.C. is given by (1.2}.

L o a=(k=1)c a: e v o
(iti} TIf a <1, ¢ » 0 and O 2 Tz then, as  --=
the L.F.C, is given by
SN |
(o] 1 Cia tK=A) LS.

S = G gy B0

T Taii-a)

Gemarg d.7(a) : The condition a=cik-1} > 0 is #azura,.  Che

conddtion a=ck < Y in (i) is necessary to ensure that oo
cooethowith the lowest provability is unique.
wh) laz resylt of alam and Thompson (1372} is Theorsm 3.0 (i)

with a=1.

Froof of theorem 3.7 : Congider any arbitrary proocapility

vevtor of the form (a, 594 Py 5':‘.!-*'1} where 5 & ‘E'q+1 and
oogadiec ¥ =1, ..., g L 3.2)

The derivative of ¢ along the direction (a, 1,..., 1, -(a+q))}

ias given by
d
aa;g— + L —a—ﬁn - (Eﬁ'[’f) v—g—L— (313)
i 1+ 1=1 'a’ﬁi aﬁq-r-’i
= a{é—g— - V) o+ % {.g-i- - V) - iai—q){%—a - W Ry
o0 j=1 99y g+
where V  is defined later.

We now define the following gquantitiszs, whose relevance is
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seli-evident. NO, Nﬂ, seey M shall dencte non-negatioeo

g+
ingepgers.
3L Ny ax1 W q+1 |
L{z,0,6) = o« M 4.” =1, say, (Here = Ny = N-T)
TTn,! i=1 i=o 1
i=0 1

Let M{N} = Second lowest in {Ni, i=0,1, ..., q+1} , lgnoring
ties

= M, say.
'5(N) = # N.'s which are equal to M (excluding the lowest and

ignoring ties) = s, say.

tN) = # N,'s equal to N, (including N} = t, say-

k=]

la _

A a o= U . t N = MaT
T sw { (s+1)(N_+1)  ~© }

i L{I‘ r
“a2 "{ ﬁe+1"N0 < m-q}, Ao = Bgq U Ayp

k=1 ¢ Lﬁi
A = 1 PN = W+, N B ¥ j g1
1 s=1{rENi+1)(s+1J it T2 AL

L
[

k=1 Lai
i . tN =N .
=1 { (I\}i+‘1J5 ) i? N =

2l
W
=
O
+
o
H-
'_li.
SR

ka1 | Lﬁi
Ay = U - tN_ <N., N.>N_ ¥ J#
i3 -t=1{t{1~¢i+1) o 2 ¥ JF4

3
A, = U 4

g=1 13"
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k-1
¥y = 2 L Li(s+t) + L (3.9)
s=1 N =M N,g ¥=1

Note that Vo ocan also be written as (for every i)

V=L IL/Mst1) + I & L/t {5.6)
5 NQ=N1 t ND{Ni
NN, ¥ J # i NosNy ¥ ] ¥ 1
AL dx ax 34
== = z = I = + I
da 3a Ja Ja
XE Aﬂ: XE ﬁm XE Aaz
= L I Lf{s¥1} + EIL
8 Notlﬂ-ﬁ N < M-
= B, + B,, say. L 3.7
Ak O X dx Ax 3
i m 1 em——— = - + B : + & ———
3 -y ST -] R-E)
: ,xEJ-tj i }'.'L:‘-Li.1 b ”‘*‘i‘ig i xaﬁiﬁ i

r £ L/{s+1) + £ 2 Lfs + L T L/t

a ND=Ni+1 s N_=N, T < Ni,l‘ﬂgi[\lj V i#i
NN, ¥ 3 #1 NN, ¥ 3 # 1
= C‘l-i + GEi + Cﬁi’ 58y . {3.8)

Thus using equations (3.5) and (3.7),

o
6-% -V==-% I L/f(s+1) = B © Ls/{s+1)
s N =M s N =M-1
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Using equations (3.6) and (3.8),

ﬂ; -y = K E L/s(a+1) + L E L/(a+1)
3 i 3 Nc'Ni 8 Nosmi+1
NJ_::NQHJ NjiNOHj#i

Similarly Egi;f - V=K, + KE’ saY .
q+

Thus the expression 1n (3.4) is

q
a(ly + I,) ¢+ 131(J1i + JEiJ - {a+q) (K, + Kz}.

q q+ ' |
al, + 151 Joy = - & Z I £ Li(s+1}

i=1 s NoﬂNi-1
Njibﬁ =M ¥ J#1

£ DL /(s+1)
& i=ND—1

s N
lemnu,j#i

Consider two typical terms of the summation when 1= q+t.
\ _ )
Note that L is obtained from L by interchanging the role oo

N, and Ny (1.e., o and 6,). Thus at any point satisfying (z.1)

! c
L - aLl = {ﬁfﬁi - E)L = —EL-

Th L. + % J < % E % Lf(s+l) - 25 . K
i'hus a : , = == - = PR
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: g
Further note that I, = - ( B dag * K1). Thus

i=1
I E J (1=-a} L:E J it
al, + & . = (=@ X - ak,
1 1=1 11 i=1 11 1
= (1-a)ads, - ak, (3.10)
Thus the expresslon (3.4} is
a[‘3'1:1+*1

E = = %qL1 + (1-a)ad,y = ( + a+q)K, - (2a+q)X, (3.1}

Note that L4, K4, Ky 2 0. Thus if a3 > 1, ¢ > 0 then {3.11)<Q.

Tnis proves (1) of theorem 3.1.

Mote that

a+l
Jpg = BP{X, = Ky o= N /X o+ Xy o= AN )P *152 X, o= Ne2M )ox
L Gt i
SR m Ny, 3=, een, (a4 1)) (NG, Moy -eny N g)/ES _];:'2 Ky H2N

whgre thne first summation is over ali NG, M < N/{g+2) and, for

o
Mixed RO, the second summation is over all Nj*s auch that

1 i

:{'f
E‘ N- = N"EI\ILD, N-

=2 N 3 i NU ¥ .j- E{WG, sz.-.,,, Nq+1) o= ']!’3(51.’])

it exactly (s-1) of the Nj‘s=Ng_ Thus
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g+
T, = z* P(X_ = X, = Nr/X_+ X, = ZNp)P{ £ X, =N-2Nr).
11 0 L o 1 =2 3
o<r<l/(q+2) J

fl\il‘, a‘! N}i EﬂY-
where (#) indicetes that the summation is over all r's such

that MNr is an integer.

From the relations o + Q& + & = 1

q+1 s O = ab - o, we have

5= (a+rc)/a, 5, .4 = (a=-(g+a)a-ac}/a, (g=1)6+56

q+ q+1=

{a - (M+a)a-~c)/a

Ni f(l", (I, H) E)NP(Q+G)NI‘(&-("‘:+a}cr...-:;}N(‘l—2r‘}
a

Thus  Jq, = & =

r {Ne) I {Nr)1({{1-2r}N}! a

= I, + I, (say) where E, denotes summation over r>e

{¢ fixed) and I, denotes the remaining part.

Note that EE is negligible (as compared to I;} as N ~—>w.

Hy Stirling's formula,

f(r’u’N)[rqzr{1'2r)-(1_zr)}N[(Eﬂ}r[ﬁ+c)rta—ﬂ+aja“cf-4HEN

B, =~ L
1 — ™ 1
ona® Nr(1-2r) /2
-z, f{r, a, N)J}!z. fﬂl(a; , T}, say
2naM Nr(1-2r)
= £ t{r,c:,m)ffia , ), say f5.012)

Tn an exactly similar way it follows that



LT

f{r,a,ﬁ}ff(a,r}(1~2r}é

“p =Ey and 52 is neglisai e

, 172
saatne (122r) Y Pr((4ot) 646

)
4+ L3.135)
Weqnmw find the peoint at which £ Bftains its maximpum. Hirst
fix a,
dlogt 2 a(a ‘
_r}r_1 - 1cg(';l: - 2)° + log —= (&re) (3.14)

{a-{a+1}a-c)2

Zasy calculations give

dzlcgf1
—5— <0
or

&logfﬁ dlogtf,
——— O at r = 1/{g+2)y»———— » 0 at r around zero.
ar dr

Thus for fixed o, maximum of fy w.r.t. r is attained at

2 |
r.{= r_(a}) where (;L-- 2} a6 - (3.15)
] r 2
@ ((Q—1)5+5Q+1)

Tt easily follows that

a~{1+a)a-c

= hla 2AY .
-or, (a), ¥

1ogf1(m,r0) = 10g

Using (3.15) it can be easily checked that
b{a) = log{c{a)-A) where
1/2
cla) = 2[ag{m+c}] - (a+‘i)0‘. and A = ¢=A&,
Tnus c¢'" {a) < 0.

purther c¢'{e) = 0 implies
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[a;’(a+c}]1;2 + {(cn+c]fu11}2 = a”{‘? + 3—13’2_

vecal . that a <1 and ¢ » 0. Thus the sclution for o is
riven by
c/a = (1-a}/a, i.e. o = ac/(1-a)} (3.16)
172
Hence a = (aﬁfﬁﬁ} / {3.17)

; . a=(g+1}c.
Note that the range of possible values of a is [0, el L AP A L }f}.
a+q+
ac a={q+1)ec

When 1~& a+q + 1

» the maxima of f, is attained at (,aa,rﬂ)

where r_ solves (3.15) with a=a.

ac a-{gq+l1)ec
5 STAAT
T-a2 = a+q+i
{a—ﬂQf1)C
g+

W e

y the maximum of £y 1s attained at

a-(arl)e

,roj where r_ aolves!{§i15} with q = P

3y sirong isw ol large numbers, in the foliowing regicn H,

flr,a, N} and T(r,a,N) —}22-

&
(g=1) 6+'5q+1

Ro= {(5,7) N(1-2r) 2 Nr} (5.18)

- {(a,rJ : {—}, -2) > a-(1ra)a-c }

T+
note that from (3.14) —ﬁ?;;—— ils a decreasing function oi r
and at
1 a-(1-a)t~=c 0 logfy

a0
™ o B ar d+o
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Hemece the point of maximam of fy {for eacn fixed ) flexn i i,

From L3.12) and (3.13) we have, for larze M,

1-2r G : 4 LN
c . . c .
- L . Y F E - + (1"31) tLr‘,u,!‘-,,if“ LCT..,I‘}
e = R S e, ! 1
~ T m{r,a)t(r,e,N}£(x,r) (3.19)
r,—tArLr tE
. a-{k=1)c ac
Suppose now that A < s
_(1=2r_} & _
Note that m(r (a},a) = = % 2 - + (V-z)
o | r. {q-1}5+5q+1
= - -—-—-—-——31/2 s (1-2) <0 ¥a < 2% (3.20)
(as) '€ -8

Herice for sufficiently small & » 0, in the region rﬂ(a} -

£ <r < rﬂ{a} + €, m 1is uniformly (over a} negative.

Koting thet XK., K, 2 0, it follows therefore that {3.4) < 0.

2

his proves (ii).

we now oroceed to prove the last part of the theorem. &Ho we

4 g aume
a-(k-1)c ac
. } -
atkal = 1-a
HE- C ; ng 3 +] =
We now compare S {--Elﬂ + (1—3}J11Jda, 5 .J%T_Kzt@}dﬁ e
0 M 7
2
/o ¥y(a)da . (3.21)
n

1
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. ) . ac . . . : g o Fe e
Note that ¥ fl1 < HE < Toa the first integral is negative for

large N (use equation (3.79) and (3.20))-

. a=(k=1)¢c . i .
¥ f%% <y o<y, < T , the first integral is by .-+ same

redgsoning, positive.

o 17 we could show that in this case the first integra:
doming les the other two then 1t would oe proved that | 3.Y)

is the L.F.C. We proceed to show this now. We tackle on’y

R

i, e
2 2 8441
. ., e o
"y (ayda. = ﬁzia}dﬁ can we tackled along
1. 1 n
1 1
o , 8¢ |
similer lines (note that a > 1, » 75/ Analogous to L, and

Jigs Ky g B ti{r,d,ﬂjfg(a,r) where
'>£

£,(a,r) = r72(1-2r) " "2 (aa) ¥ (2= (q+a) a-gc) “(a(are) ' T

4.

ard t,(r,a,N) = — _ N
1 ¥y H.
2ha Nr{1—2r)1;2

_ T 1=21
Thus f£,/f, = {E::-} [({a=1)8 + 6, ,4)/a6]

- xr[(Qf1)+1fx]1“2r

” where x = 5f§q+1'

= eg{x), say.
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Hote that x is an incereasing funetion of 2 and increases

e 1. gty = 1.

7 1s @ strictly decreasing function of x for X 27,

fqia,r) _
Hence — » t{a) for some strictly decreasing t
fz(ﬁ'prj
(- kﬂ‘l | o] ;
where t{a) > 1 ¥ (k1) 3.22}
atk -1
Note that max fy is attained in the interior {foilows
a={k=1)e
0 40 g
- T a+k-l
e<rel/(a+2)
frum the study of f£4 glven before).
aence in this case, by (3.22)
. a=(k=1)c
max £y > max f2 ¥ ﬂ1 « ﬂz < -
: a+k+1i
e <r<1/{a+2) E<r<1/(g+2}
J1 L0 g ﬂ? ﬂ1 L8 < ﬂE
T2
Inat f K.{a)doe is negligible w.r.t. the first integral of
f
"

(3.21) follows now from the following lemma, proving the theorem

comu letely.

b 1 o+ N /N .
Lemma : lim [f z ﬂ,t(r,a,ﬂ)m{r,a)u (r,a)] = y(r*,a*)
N->w» a e<rgl/iq+2)

whnere r*, a* is the maximizer of u(r,a) in the region {(a,b) x

(¢,1/{a+2)}, t{r,a,N) is bounded away from © in a region



- 150 -

containing (r*, ¢¥) and m is positive and continucus.

We omit the proof of this lemma, since this is an extension
of the well known result of convergence of Lp norms {(8s p =-> =)

=y
to the L rnorm.
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CHAFTER 5

LORENZ - DOMINANCE AND MEASURING

INCOME INEQUALITY




SECTION 54 : INTRODUCTION

It has already been defined in the introduction that a
nen-negative random variable X iz said to be Lorenz - dominated

by ancther non-negatiwve random variable Y, written as X‘i’L T

if
M,
E (%) LEERE P
—_—f a3 Fix » J xdGix
E(X) o = E(Y) '

for 2?1 0 ¢ p <1, where F and G are the distribution

functions of X and Y, respectively, and Mp g is the pth
¥

fractile of F.

In the non~gstochastic set-up the above definition is

equivalent to x* —{y, where x®w(xq, ..., xJ, ys{yf‘ cees V)

n n
and I x = I ¥y«
1=1 1 1=1 1

Different measures of inequality have bean sugpgested in
the literature [see Nygard and Sandstrom (1981), Ord et ail
(1983), Marshall and Olkin {(1979), Sen (1973), Bhandari (1336)]

wnicn preserve the partial order of Lorenz - deminance.

Section B generalises some already existing sbatterad
reselts on characterisation of the parent distribution by
inequality measures on its truncations. Section T dewelocs
some inegualities among different Schur-convex functions which

are mostly used as quantitative measures of lncome ineduality.



SECTION 5B : APPLICATIONS IN CHARACTERISATION OF THE PARENT
DISTRIBUTION BY INEBQUALITY MEASURES ON ITS
TRUNCATTONS

Introduction

Tt is shown in this section that if for scme mrasures
of inequality (in income}, the upper d-truncated distributjons
corresponding to two income distributions F and G have the
s ame inequalitﬁ measure for every a4 in {(0,1), then F and G are
equal except for possible change In scale. The specific inegua-
iity measures considered in this paper are Ginl-index, coeffi-
cignt of variation, measures derived from Mellin transform,
and Dalten's measure. We use the concept of Lorenz - dominance

o prove this.

Bhattacharya (1963} and Schelling (1934) [see Piesch
(1975} ] have proved independently that a necessary and
sulfficient condition for an arbitrafy lower truncation to
leave tre Lorenz curve unchanged, 1s that the continuous
density function has the Pareto form with index greater than 1.
crd et al {1983) have shown that if the Gini-index or H-index
(nmzed on Mellin's transform) ig invariant for all upper
Lrincations, then the parent distributien is Paretoc. “This

cenmoralizes the result of Schelling {1934) and Bhattacharya (1963).

Our results thus generalize the results of Ord et al (1383),

« well as those of Bhattacharyva {(1963)and Schelling (1934).



2. The Main Result

et P obe tne distribution functicon of a non-nerad e
random variable X, and Fm be the distribution Ifunction oi £,
given X » Z. {(F}, where Z, vF) 1s the upper J-quantilie

(0« x ¢«1) of F. Let o (F) » 0 be the mean of the distribu-
tion F. We shall assume throughout that the inequality measure
I{F) for any distribution ¥ is scale~invariant. For the
following theorem we have considered I{(F) tc be any one of the
following : Coefficient of variation, Gini-index, measures
derived from Mellin  transform, and Dalten's measure. |see
Nygard and Sandstrom (1981), Ord et al (1983), Marshall and
Gilkin (1979).] Nate that the sbove inequality indices are
apecial ceses of the fellowing general functional form, or

related to this form by one-to-one correspondence ;

=]

(2.1) IF) = ¢ splx) drlxi/TIw(P) ],
o

where SF(K) is either 7 t dF(t), or a suitably chosen strictly
prs

conweX function S of x, and T 1s some sultaple function.

Theorem 2.1: If for any two distribution functicns 7 and

G oon {0, =)
(2.2) I(F) = I(G)
for all €C<¢ax1, then G is a gcale-transform of F. Conversely,

if 3 is a scale-~transform of F, then I[Fﬁ) =I{Gﬁ} for all Decaci
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Proof: Suppose, for distributions F and G with 4(F) > ¢

and  4ili} » 0, we have I{Fm} = I{Ga) for sll U o« wo¢ b, but
v Is rot a scale-transform of G.  Witaout apy loas ol denera-
I vy, we may assume that M(F) = w(G) = 1, since ({¥.} o now

affected by & scale transformation of F.

Let
2 (F)

L2 3) Lpta) = 5t dF(r)/u(F).
o}

nince M is not a scale-transforn of G by our assumption, the
Lorenz curves corresponding to F and G will be different.
Note that the set of all peints ae [0, 1] for which Lp(a) =
LG{a] is closed. Since LF(u} is continuous in @, we can get
G,y &nd &5, O £ Gy < &y € 1 such, that
(2.4} Lp(a) =¢ L, (x) for all ue (o, a,),

LF(ai} = LG{&i} for i =1, 2.
Witheout loss of generality let us assume
{25} LFLDL) < LG{G.}, for all ae {u,l . ﬂg)

since  Lple) - LG{u} has tne same sign in (%, ,a?).

Note that (2.4) implies

(7uB) u(F, ) = M{Gy ), for 1 =1,2.
i i

Thus, we must hawe
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o

(2.7) :(
Z.

Cl.i ﬂ‘.i

The relation (2.7) implies

) Splx) dF{x} = , I{G}

SG{K} dai(x), i=1, 2.

z, (F) Zy A0)
1 1
(2.8 I 3 dF(x) = 7 . Sa(x} dG(x).
(2.8) 2 (o) plx) dF(x) 2o o{x) dG{x
2 2

Case I: Suppose now

o

(2.9) Spix) =

x

Then assuming F and G to be continuous,

;I ot dRit).

(2.5) contradicts

(2.8); note that the Lorenz curves corresponding to F and G

cannct both become straight ilines in

Case II: Suppose 3p(X) is a

Let X and ¥ derote random

functions F and G, rescectively.

distrivution of X, given 2Z, (F)
&

(@4, 05},
strictly convex functicm Sof X.

variables with distribution
Now note that the conditicnal

< X <« Za (F), Lorenz-dominates
- - 4

the condiftienal distribution of ¥, given ZaziG)iﬁﬂEZuq(G).

Tnis follows from {(2.4) and (2.5)3; as a matter of fact, (2.4}

implies that the above cﬁnditiﬂnal distributions have the same

mean. Now, it foilows that (see
Ea1(F} Zq,
{(2.10) £ 8(x) dF(x) >
a ¥ 2o

2

Chapter 1) :

{a3)
s{x) dG(x),

2
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whiech contradicts {2.8) with S = 8, = 5.

Remark 2.1: It follows from the above proof that an

analogous result holds elso for lower truncations.

Remark 2.2:  Consider the following density on (0, c):

(2.11) £(x) = BLB 1w,
1+B

Note that all the indices considered above for this density
are invariant with respect to lower truncations. Hence, any
continuous distribution for which the above inequality indices

are invariant wlth respect to lower fruncation nas the density

of form (2.11).

Remark 2.3: It iz an interesting problem tc find a necessary

and sufficient condition for Cyr 0 <& < to correspond

to  I(FJ, 0 <a <1 for some given ineguality measure I.

NETSESEIREIIEY,



SECTION 5C: SOME RELATIONS AMONG INEQUALITY MEASURES

1. Intreduction

This section develops a number of inequalities among
different Schur-convex functlons which are mostly used as
quantitatiwve measures of income inequality. In moat cases the
inequalities obtained can not be made more stringent. The
results are expected tc bhe helpful in exploring possible inter-

relationships among the measures.

With non-negative observations Xyy Xgy weey Xy having
positive aritnmatic mean X, the following inequality measures
vcf. Bhandari (1986}, Karshall and Olkin (1979), Ord at., al.
(1983), Sen (1373) among others) have been considered in this
paper. Note that these measures are all nufmalized i.e., They

gre equal to zero when XKyy Xpy «va, X, are ali equal.

(i) Gini's coefficient:

i< =1 J

(ii) Coefficient of variation:

n ' 1/2
e A S AR M CE L

{i11) Measzure derived from Mellin transformation :

I . LY
)= £ (x /%) /m -1(h s 1),

H}\. = HR(XT, oy X iﬁq

n



(iv} Theil's entropy measure :

7]
) =[ 2 ﬂxifiﬁ log(xifi}Jjni

=

T = T{x.t, cery X,

For the sake of simplicity in presentation, we have
taken a form of H, in (iii) above, which is a strictly increas-

ing function of the conventional form {Ord et. al. (1383)).

g.. Some 1ammaa

The distributions under consideration are non-degenerate .

' n > 'y 2
Lemma 2.7 (n=1)} 22 (x. -x:) 2 ( 28 I1x,=-x.1}
fcgal 1 0 T icog=t 1

Cp 5
E%inz-‘!) LE I[xi-x.} ]
i< 3=1 J
Proof: Without loss of generalily, let Xy & Xg & - £ X

. t
Let T = 'n-1,.0'.i = Xi+1 - Xi.{1 <1 x t), a = |\'3-1r iy a’t) *

Then it zan be sesen that

n ) iyl
EL (x; = ijE = a'Mg, EZE Ix -x, = f'a, {2.1)
1< 3=1 - i j=1 J .

wnere L = (Ly, voey A"y Ap = £{n-1)(1 ¢ 1 ¢ %) and

pitxtl | {(mij” is a symmetric matrix with m,, =

i{n=-3){1 <1 < J <t). One may check that M 1is positive

definite (p.d.} and ]!i'I"'1 nags entries % along the principal

just below and abowe the principal diagonal and

, |
diagonsal, “n

0 elsewhere.,
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Since M 1s p.d., by (2.1) and Cauchy-Schwarz inequality
(Rao (1973, p.60)),

In 2 v L2 1. 21 '
( EZ Ix; - x,1) = (fa) < (£ M Da Mz)
igj=l - J

T - 2
= (LML) 13511(xi-xj} .

' — N
After considerable algebra, f M 1&_- % (n2-1) and the right-
hand inequality follows. Also noting that

Ii.(j > (n—’l}mid (1 <4, Jx b,

the left-hand inequality follows immediately frow (2.1) and -

the fact thet a > Q.

Remark: The right-hand inequality in Lemma 2.1 attains

equality iff a) =a, = ... =20

are equispaced which means

g leeey 1f X, X5 v, X

X; = Xq o+ {i—?}(xn—x1)f(n—1) (i=1, 2, vea, 0}

The left-hand inequality attains equality iff x; = Xy = vo0 =

< X

X
=" I

lemma 2.2: Let S = {(x.1. ceey X)X, 2 0{1<ign), X > o}.
Then
n
1« {E
i=1

- n - -
(2, /)72 (x /) < o™,
1 . i
i=1
provided (xq, cuay xn) E Sand 1T ¢ A < &,

Proof: The right-hand inequality follows trivially as



(xifi)“' < nu“a(xifi}h (1 < 1<n). To prove the left-hand
inequality, let £(§) = 2%_ (x,/%)". Observe that for

(x,], . xn) ES, f'(1) = Eli:.] [xig’ X) log (xif X)> 0 (by Jensen's
inequality) end f'™(§) > 0 for £ » 1. Hence f£(§) is non-

decreasing in & for § > 1, so that f£{u)} > f{A), completing

the proof.

Remark: The right-hand irnegquality in Lemma 2.2 attains
equality iff among X;, «:., X exactly one is positive while
the rest equal 0. The left-hand inequallty attains equality

iff Xqs ween Xy are all egual.

3. Main results

The above lemmas will be applied in this sectiorn to
derive inequalities among the measures considered in Section 1.
The notation is as before and Xqs resy X 8re nen-negative

observations with X> 0.

Theorem 3.1:  (n=1)"Zn""c < ¢ < ((nZ1)/3) 2 ¢

Theorem 3.2: For 1 <A <#, H, <H, ¢n’ (B, + 1)1,

Since H2.= CE, the following corollary holds @

Garnliarrui.1: (i) For x » 2, nz“h(HK+¢) -1 < cz < Hhi

2

(1) For 1 < A < 2, Hy, < C° ¢ n* M(H+ 1) -1,
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Theorems 3,1 and 3.2 are immediate consequences of
Lemmas 2.1 and 2.2, 1In particular, the proof of Theorem 3.1

utirizes the fact that

Il ] - _ n 2
z Uti- K)g = n 1 T {xi- ®.) -
1= icy=1 J

The case of equality in these theorems may be obtained from
the remarks following the respective lemmas. As for Theil's

measure, one haa the following result.

Theorem 3.3: T < ¢ (H,+1) = e (c2+1).

Proof : Note that max yﬂ1 log y = e~ and hence
y>»0
¥y log v £ al FE for ¥y » 0. Therefore, defining y, 1-xifi

(1 <1 ¢n),

_ - n I 2 '
T/{Hy+1) = (2 ¥y, log y, )/ B y)<ce™ ',
2 . 131 i j i“1 1

completing the proof.

Remark : In Theorem 3.3, equality holds iff every non-zero X3
equals Xe which is, however, impossible since e 1s irra-
tignal. However, it may be checked that Tf(H2~r1) can be made
arbitrarily close to e’ for sufficiently large n provided

X9y weey X, 8T suitably chosern.
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