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Abstract

This thesis is & study on a ‘compact’ formulation of the symmetric traveling
salesman problem STSP. Arthanari{1982) posed the STSP as a multistage
decision problem. We call this formulation as the Multistage-insertion{MI)
formulation. We study properties of this formulation in detail. We also ob-
tain the linear description of the projection of the MT polytape and prove
its equivalence to the classic subtour elimination palytope, SEEP. We discuss
the equivalence of the M1 formulation to the Cycle-shrink,(CS), formulation
proposed by Carr(1996). Both the MJ and €8 forrmlations are ‘compact
formulations’ which use fewer number of constraints. We also study structure
of sinall SEP and M polytopes. The gist of the thesis is presented below
in & chapter-wise summary.

Chapter-1 is an introductory chapter in which we present g brief introdaction
to concepts from combinatorial optimisation problems, graph theory, poly-
hedral combinatorics and linear programming which are used in the thesis,

Chapter-2 is an introduetion to the Traveling Salesman Problem{ T'SP}. We
discuss various formulations of the TSP such ss the classic Dantzig, Fulk-
erson and Johnson (DF.J), Bellmann’s dypamic programming formulation,
Miller, Tucker , Zellin{A/TZ) aud Gavish, Graves formulation, The STSP
polytope is defined and we introduce different facets of this polytope. This
chapter has a brief introduction to the graphical traveling salesman problem
and discusses the separation problem for the STSP polytope.

In chapter-3 we present the Multistage-insertion formulation of the symmet-
ric traveliug salesman problem given by Arthanari{1982). We have a {n—3)
stage decision problemn in which in stage (k ~ 3),4 < k < n,we decide on
where to insert £, We give the formnlation and state properties. There is g5
1-1 correspondence between n-tours and the integer feasible solutions to the
M problem. The vector of slack variables in the M7 problem is the edge-
tour incidence vector. We define two polytopes ¢ (v} and (n} and show 4(n)
to be at least as tight as the subtour elimination polytope SEP(n). Ufn)



is the arthogonal projection of the M7 polytope, ({n}. We briefly state the
M{ formulation for the asymmenric traveling salesman problem, AT'SP, and
give s0me properties.

In chapter-4, we obtain the linear description of 14 (r) and show Z(n) is equiv-
alent to SEP(n). The linear deseription of 24 (r) is obtained by applying the
results of Padberg and Sung{1991). We explicitly work out generators for
U{n},n = 6. The results are given in Appendix -I.

In chapter-5 we discuss another polynomial sized formulation proposed by
Carr(1996) called the Cycle-shrink (C'S). The O is equivalent to SEP{n).
We show it is equivalent to M7,

In chapter-6 we study small subtour polytopes for n < 7. 'We present somse
vriteria to characterise hamiltonian cycles. We use the results to give a nee-
essary and sufficient condition for a feasible solution to MJ to lia within
STIP(n). We apply these results to small polytopes and give cornputa-
tional results. Appendix-IT gives these results.

Chapter-7 sumnmarises all the results bresented in the thesis and addresses
problems for further research.
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Chapter 1

Introduction

This thesis focuses an the Symmetric Traveling Salesman Problem{STSF)
and the Multistage-insertion, (M), formulation. The traveling salesman
problem , TSP, i8 to find the shortest route of a traveling salesman start-
ing from & home city, visiting o given list of cities and returning to the home
city. If the distance from going from city i to city § is the same as returning
from city j to city 4, we call the problem the Symmetric Traveling Salesman
Problem, STSP. In terms of graph theory, the problem can be posed as the
shortest Hamiltonian ¢ycle problem in @ complete graph on n vertices.

In this chapter we give a brief introduction to combinatorial optimisation
problems. We also state some concepts from graph theory, poivhedral com-
binatcrics and linear algebra used in this work.

1.1 Combinatorial Optimisation Problems

Integer and combinatorial optimisation deal with problems of maximising or
minimising & function of several variables subject to inequality or equality
constraints and integer restriction on some or all variables. In a combinatorial
cptimisation problem, generally we have a finite ground set E, a weight c,
associated with each element of E and a family F of feasible subsets. We



wish to find § € F for which ¢(5} = > . is maximised. The members of
1=t
F can be represented by vectors, usually the 0-1 incidence vectors(will be

defined in section 1.2) of the sets § € F. We define a polyhedron F to be
the convex hull of the incidence vectors of the sets S, obtain a linear system
sufficient to define £ and apply linear progranuming techniques to solve the
optimisation problem.

An instance of a problem is a single occurrence of such a problem which is
specified by providing a certain input. The size of the instance is the number
of characters required to represent the instance. Each problem has associ-
ated with it a fixed encoding scheme and the input length for an instance
of a problem iz defined to be the number of symbols in the desecription of
the instance obtained from the encoding scheme. Problems which can be
answered with a ‘yes’ or ‘no’ are called decision problems. Algorithms are
general step by step procedures for solving problems, The class P is the set
of all decision problems which can be solved ‘polynomially’. That is, for each
problem F ¢ P, there must exist an algorithm and a polynomial p{l} such
that an instance of # whose encoding is of length [ can be solved by the
algorithm in at most p(l} elementary steps. We refer the reader to Garey
and Johnson({1979) for a more exhaunstive discussion of the topic. The most
important class of problems is in the class N P. These are problems for which
& 'ves’ angwer can be verified in a polynomial amount of time, provided some
extra information is given. This e¢xtra information is called a certificate and
for each instance, its length must be polynomially bounded in the length of
the corresponding input. Trivially P € NP. A problem is NP- complete
if it is in VP, and showing that it is in P would imply P = NP. More
gpecifically, & problem is N.P- complete if a polynomially bounded algorithm
for solving it could be used once as a subroutine to obtain & polynomially
bounded slgorithm for every problem in ¥ P. Karp{1972) showed many clas-
sical problems to belong to the N P-complete class. A problem is NP — hard
if there is a ¥ P-complete problem that can be polynomially reduced to it
The traveling salesman problem, TSP, was one of the first problems to be
proven N F —hard by Karp in 1972. Garey and Johnson(1979}, Papdimitriown
and Steiglitz{1982} and Shmoys and Tardos{1995) are excellent references on
Computational Complexity.



1.2° Graph Theory

In this section we give basic results from graph theory which we use in the
thesia,

A graph G is an ordered pair of (V, E), where VV iz a set of a finite, nonempty
elements called nodes or vertices and £ is a family of two-element subsets of
V called edges. An edge is dencted by e = [u, v] where u, v are elements of
V. If [u,v] = fv,u| for all u,v € V, then & is called an undirected graph else,
it is called a directed graph or a diagraph. A complete graph K, = (W, £.)
ot n nodes 18 a graph in which every pair of nodes u, » has an edge [u, v]
between them. An undirected graph K, has ﬂ“:,;]l eiges. A weighted graph
is & graph with weights associated with edges.

An edge ¢ € F meets or is incident to & node v € V' if ¢ has v as one of its
endpoint. The number of edges incident to & node v is called the degree of
node v. Two edges are said to be adjacent if they have a node in common.

A path is a sequence of edges traversing several nodes such that each edge
has one node in commen with its predecessor and successor in the sequence.
A cycle is a path where the starting node of the path s the same as the
ending node of the path, A Hamiltonian cycle is a cycle traversing each node
in & graph exactly once. An Eulerian cycle is a cyele in which each edge in a
graph is traversed exactly once. ‘The TSP is to find the shortest Hamiltonian

cycle in a graph.

Let U C V, define B{U7} = {[i,j]lli.7] € E,i,j € U}, E{lV} is the set of
edges with both end points in UV, Define {l7}) = {[u,v]€ Eluc U,v ¢ U}
For singleton sets denote §({w}) = d{(w). UV CV and E' C E{V), then
G =(V',F') is said to be a subgraph of G = (V,E). f ¥V = V' then ¢ iz a
spanning subgraph . If ' = E(V"), then G’ is the subgraph induced by V.

A connected graph is a graph such that every pair of nodes can be reached
by a path. A component of a graph is a maximal connected subgraph of the
graph. A clique i3 a complete subgraph of the graph. A connected graph
has enly one component. An acyclic graph is called a forest, A tree i3 a
connected forest. A spanning tree is a collection of edges without cycles and



connecting all nodes.
Acutisaeubset of edgese = [, v] whereu € S,v € V\§,5 ¢ V.S # ¢, 8 £ V.
A(st)-cutfor 5,8 € Visa cut with s € Sand z € V | §. Given two non-
empty sets S CV and T € V' \ S we define & cut as

{§:T} = {ln,v] € Blu € §,0 € T).

A greph can be represented by its m % n node-edge incidence matrix A =
((a;)) where a;; = 1, if edge e is incident with node i and a;; = 0 otherwise.

For every subset F' C E we associate a vector ¥ € RF called the incidence
vector of F' defined as
F { 1 fee F

e 0 otherwise

Also we define () = ¥ 'z, for any vector x € RF.

&= F
A matching in a graph is a collection M of edges such that no two edges in
M are adjacent. A b matching is a collection of edges M € F such that at
most b, edges are incident with node v.

A network G' = (N, A} is & diagraph consisting of distinet vertices s and t,
where s is called the source and ¢ is called the sink, N = V [J{s} U{t}, and
A= {e=[ij] | ,j € N &i#tj+ s} With each arc li,j] € A,
We assoclate & nonnegative integer ¢;; called the capacity of the are [4,5]. A
flow in a network G is an integer valued function f defined on .4 such that
capacity constrainta and flow conservation equations are satisfied, i.e.,

0L f <, YecA
2o f— X f. =0V ieV
eed+ i) eed— (i)
where () = {7 | [i,j] € A} and §~(2) = {4 | [5.4] € .4}

The maximum-flow problem is to maximise the How out of the source ar,
equivelently, the flow into the sink, subject to the constraints of flow out is
equal to flow in for all the other nodes.



For more details about graphs and networks we refer to standard texts as
Berge(1973), Bondy and Murthy(1985), Nemhauser and Wolsey(1988) and
Bazaara et. al (1990}, Ahuja et.al{1993).

1.3 Polyhedral Theory

Polyhedral combinatories studies combinateorial problems with the help of
polyhedra. We now discuss the main ideas of Polyhedral combinatorics: Let
F be & collection of subsets of g finite set E, let ¢ : £ — A, and suppose
we need to find
max{ > c(e)}s € F} (1.3.1)
£ 3

Complete enumeration cannot be resolved to in general for solving (1.3.1)
due to the size of F. Denote by ¥ the incidence vector of § in RIFl ie,
x* =1ife € 5 and 0 otherwise. Since (1.3.1} means maximising a lnear
function over a set of vectors, we can equally well maximise over the convex
hull of these vectors:

maz{c’ zlz € conw{x°|S € F1} (1.3.2)

This convex hull is & polytope and there exists a matrix A and vector & such
that
conv{x”|8 € F} = {2 ¢ RIF|Az < b} (1.3.3)

Henee {1.3.2) is equal to
mar{c’ z|Az < b} (1.3.4)

The original combinatorial problem is thus formulated as a linear program-
ming problem, and we can appeal to linear programming methods to study
this problem. However, in order to apply LP techniques (discussed in the sec-
tion 1.4), we should be able to find matrix A and vector b satisfying (1.3.3).
This is one of the main theoretical problems in polyhedral combinatorics.

The fact that Khachiyan's(1979} ellipsoidal method for solving LP prob-
lems in polynomial time does not require explicitly A revived interest in
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polyhedral combinatorics. We refer to Stoer and Wilzgall(1970}, Pulley-
blank{1980} Bachem end Grétschel{1982), Crotschel and Padberg(1979),
Padberg and Gritschel(1985) Grétschel and Pulleyblank(1986}, Nemhauser
and Wolsey(1988) and Schrijver {1995} for a good exposition and motivation
on polyhedral theory. In this section we summarize the necessary polyhedral
concepts and terminology.

1.3.1 Elementary Linear Algebra

In linesr programming we are given a description of the feasible set of points
P={re B*|dz = b,z > 0} and we solve a linear program using either the
gimplex method or one of the interior point methods.

Integer programming i differenit. In this we are given an implicit description
of the set § C Z7of feasible points. The main objective here is to find a
linear equality description of the set.

We work with the n-dimensional Euclidean space denoted by A*. We call
k

x € B & linear combination of vectors 1, &2,..., 2 if £ = E}\gi"‘i, where
=1

3
M., € B If in addition, Als satisfy S & = 1 then & is an affine

gz ]
combination of zis. If z is an affine combination such that A; = 0, for
§=1,...,k then z is called a convex combination of &;...., Tx.

Let 0 # § € R®. Then the set of all linear(resp. affine, convex) combi-

nation of finitely many vectors in 5 is called the linear{resp. affine, con-

vex) hull of § and is denoted by {in{5), (resp.af f(S), conuv(§)]. A set with

§ = lin{S)(resp.af f{S), conv(S)) I8 called a linear subspace(resp. affine

subspace, convex subspace). '

A set of points 2;...,%, € R" i linearly(resp. affinely) independent if
k ks k

the unique solution of 3 Mz; = Ofresp. 3 Mz = 0,3 A = 0) i8 Xy =
i=1 i=1 i=1

0,i = 1,...,k Otherwise 5§ is called linearly{resp. affinely) dependent.

Every hinearly(resp. affinely) independent set S contains at most n(resp.

6



(n+ 1)} elements.

The cardinality of the largest linearly(resp. affinely) independent subset of
5 is the rank(resp. affine rank) of & € E®. The dimension of § is the affine
rank of § minus one. A set § € ™ is full dimensional if dim(S) =n.

If {z € B*|Ax = b} # 0, the maximum rumber of affinely independent
solutions of Az = bis n + | — rank(A).

HC R isasubspace if » € 2 implies Ac € H forall A\ € Rl and if z,y € H
implies z + ¢ € H. If H C A" is a subspace, then {2 € RMzy =0 fory ¢
H} is a subspace. This subspace ig called the orthogonal subspace of H and
is denoted by H'. If p € R™ and # is a subspace, the projection of p on
H ia the vector ¢ € H such that p — g € H-. The projection of § on H is
denoted by

proja(S) = {g | g is the projection of p on H for some p € S}

Aset H C R is called a half space if there is a vector @ € 7* and a scalar

'8, € Rsuch that # = {z € A™|az <¢,}. An inequality is calied wvalid with
respect to § C A if § € {z € A*|ax < a,}. A valid nequality ar < a, is
called supporting if SN{z € A ax = as} # ¢. A valid inequality az < an
is aa.;d to be proper valid inequality if 5 is not contained in the hyperplane
{z|aTz = 8}

‘A polyhedron P C R" is the set of points that satisfy a finite number of
linear inequalities, i.e. P can be represented in the form
P = {r € R*|Az <}}. A bounded polyhedron is & polytope.

A subset F of & polyhedron P is called a face of P if
F = {2 € Plar = ap}, where az < a, is a supporting inequelity with
respect to P. A face F is proper if F £ P,

Two valid inequalities ax < a, and br < b, are equivalent if

{z €Plaz = a,} = {z € Plbz = b,}
A facet F' Is & maximal proper face | i.¢; dim(F) = dim{ P} — 1.
A polyhedron P can be expréssed as follows by Weyl's theorem

-



Theorem 1.3.1 {Weyl's theorem) Every polyhedron can be written as
P = conu(V) + cone{ 13}

where V = (2y,...,) 5 o nonempty fintte set of vectors in A* catled ver-
tices and D = {dy,...,dr), o finile set of linearly independent vectors called
" gxtreme vays ov directions.

13.2 Facet identification

- In combinatorial optimisation, polyhedra are usually given as the convex hulls
of finite sets of integral points. Finding an ineguality system which defines
such a polyhedron is & major challenge. Moreover, finding such nequality
aystems with as few inequalities as possible is a problem. Hence facet defining
inequalities gain importance . The firsl step to find a facet is to find a
valid inequality which is proper for the polyhedron . Then one determines
whether or not the valid inequality ez < g, is a facet of the polyhedron. We
have the following theorems(Grtsche) (1985))

Theorem 1.3.2 Let P C B™ be a polyhedron and assume thet A is an (m,n)
matriz, b € A™ such thataf f(P) = {x € R* | Ax = b}. Let F be a nonempty
Jace of P, then the following stetements are equivelent:

{a} F is a facet of P

(b} F iz a mazimal proper face of P

{e} dim(F) = dim{P) — 1

{d} There exisis on inequality {cTx < c,} valid with respect to P with the
Jollowing three properties

() FCl{z € P| Tz =)

{dg) There exists £ € P with ¢ 7 < ¢, i.e. the ineguality is proper.

(d3) If any other inequality d”z < d, velid with respect to P satisfies F C
{z € P|dTz = d,}, then there exists a scolar o > 0 and & vector A € B™
such that

45 =act + ATA



Condition (¢) provides & direct method to exhibit a set of & = dim(F)
vectors and prove they are affinely independent. (d} is an indirect method
of establishing a facet.

1.4 Linear Programming

Linear programming(LP) is concerned with problems in which a linear ob-
jective function in terms of decision variables is to be optimised{minitmised
or maximised) with a set of linear eguations, inequalities and sign restric-
tions imposed on the decision variables. A standard form linear programming
_ problem is described as follows:

(Pl mim z=-ecx

st Az =0
>0
where £ is n x 1 column vector, c 18 a 1 x v row vector and Aisamxn
matrix. We can agsume without loss of generality rank(4) = m. the

objective function 10 be minimised is given by z = cz. Any LP problem can
be posed in the standard form. A basis B is an m x m nonsingular submatrix
of A. Define P = {z € A*|Az = b, x > 0} to be the feasible region of the
linear problem. When P is not void, the LP is said to be consistent. We
- gall ¥ € P to be & feasible solution. Given any basis B, a feasible solution
" #van be decomposed as 27 = (x5,z%) withzg = B 'band 2y = 0. If
%p 2 U then z i3 called & basie feasible zolution. Fach basic feasible solution
corresponds to a vertex{ or extreme point) of the polyhedron P. A feasible
solution #* is said to be an optima! solution if cz” < cx for all z € P. We
denote P* = {2* € P|z* is an optimal solution} as the optimal solution set.
We have the following fundamental theorem in linear programming.

Theorem 1.4.1 A point z € P is an extreme point of P if and only if
the columns of A corresponding to the positive components of x are linearly

ndependent.

Corollary 1.4.1 A point £ € P is an extreme point of P iff r is a basic
feasible solution corresponding to some basis B.

9



Duality
Given a linesr programming problem (P1) we can always write a dual pro-
gram D corresponding to Pl as follows

{D) maz wb
st wdA<c
w unrestricied in sign

P1 is called the primal and D the dual. We have the following:

Lemma 1.4.1 The dual of dual is the primal

PRIMAL-DUAL RELATIONSHIPS

The relationship between objective values

Consider Pl and D . Let zp and g be any feasible solutions to the primal
and dual problems respectively. Then we have

cx = b

Theorem 1.4.2 (Fundamental Theorem of Duclity) Let Pl and D) be o pasr
of primal-dual problems. Then exactly one of the following staternents is true.
1. Pl and D possess opfimaol solutions #* and w™ with cx™ = w*b

£ If ome of P1 and D haeve unbounded objective value then the other is
infeasible.

8. Both Pl gnd D are infeasible.

Another useful theorem is the theorem on Complementary Slackness which
is given below.

Theorem 1.4.8 (Complementary Slackness) If x* and w* nre optimal solu-
tions to Pl and D then
(c—w*djz® =10

10



1.5 Contents of the thesis

In the second chapter we have given an introduction to the Iraveling Sales-
man Problem, various formulations, facet defining inequalities, the graphical
traveling salesman problem and the separation problem for TSP,

Chapter three mtroduces the multistage-insertion formulation (M), of the
gymmetric traveling salesman problem. Theoretically interesting properties
of this formulation are preserted. We show the slack variables that arise
dut of the M7 formulation are precisely the edge tour incidence vectors. We
Study the relationship of this formulation and the subtour relaxation and
ighow the projection of the M formulation, 1{n), is at least as tight as the
gubtour polytope. We introduce the M[ forimulation for the asymmetric

traveling salesman problem alsa.

In chapter four we derive the linear description of L(n). We also show U(n)
I8 equivalent to the subtour polytope.

Chapter 5 discusses another polynomially sized formulation of the STSP
which was introduced by Carr(1993), called cycle-shrink{(’5). We show how
this formulation is equivalent to the M7 formulation.

Chapter 6 is a study on small polytopes. We work out the extreme points of

giall subtour and M T polytopes. We also study the structure of fractional
éxtreme poinis of these polytopes. We ‘give a method to generate cutting
planes to eliminate some of the fractional points.

Chepter 7 is a brief conclusion which shows some future directions for re-
search of topics discussed in this thesis.

APPENDICES

APPENDIX -I : We work out the linear description of U(6).

APPENDIX -1I : In this appendix we give the extreme points of small SEF
gnd M7 polytopes. We obtain cutting planes for SEP(6) and SEFP(7). We
also give the extreme points of small DF.J and Asymmetric M I polytopes.

s
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Chapter 2

The Traveling Salesman
Problem

The traveling salesman problem is typical of problems of its genre and is one
of the most challenging problems in combinatorial optimisation. Bellmore
and Nemhauser{1966) in their survey of the T'SP classify solution techriques
and give description of some of the proven methods to solve TSP, Most
suecessful approaches to solve tough combinatorial optimisation problems
were first formulated for the T'S P and T'5 F was one of the first problems Lo
be proven NF— Hard by Karp(1972). New algorithmic techniques have been
first developed for TSP to check for their effectiveness. Examples of these
are the branch and bound, Lagrangean relaxation, simulated annealing, Lin-
Kernighan type methods. The TSP has & variety of applications in vehicle
routing, X-ray crystallography etc.

Lawler et.al{1985) motivated considerable research in this area. The mare
recent developments are given in a review by Jiinger et.s1(1995}). A good
bibliographical survey is given in Jiinger et. al (1997). Burkard et. al(1998)
give & aurvey of well-solvable cases of the TSP

In this thesis we concentrate on formulations of the STSP. We also give
structure of small polytopes associated with our study. In this chapter we
give preliminaries of topics discussed in the thesis. Section-2.1 describes
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various formulations of the TSP, In section 2.2, we describe the most well
known facets of the STSP. We give a brief imtroduction to the graphical
traveling salesman problem in section 2.3 and in section 2.4 we discuss the
separation problem for the STSF,

2.1 Various Formulations of the TSP

In this section we describe some of the known formulations of the traveling
salesman problem . Dantzig, Fulkerson and Johnson {(DFJ)(1954) gave a
linear programming approach to solve the TSP. Their classical formulation,
an assignment problem on a graph ¢ = (V, &), with additional restrictions
is as follows:

min 33 Ty (2.1.1)
i

st Sy =1 3=1,...,n (2.1.2)
Z.-Tj{: 1 i=1,...,1 (2.13}

j
SaylS-1 vSCcvi2g§|<n-1  {2.1.4)

ijes
;2 0 Y i, (2.1.5)
Zy; integer Vi (2.1.6)

where V' = {1,2,...,n}. We thus have & formulation of the 7.5 F involving
n{n—1) variables and O{2") constraints. The constramgs (2.1.1) are refarred
to &8 subtour elimination constraints. They can be equivalently described as

(88N 22 VSTV, S#£¢; 54V (2.1.7)
The symmetric version of the above formulation gives rise to the subtour
elimination polytope which is given by

SUBTOUR ELIMINATION POLYTOPE SEF :
SEPF ig the polytope defined by the set of all # € R such that the following

13



" hold:

T 20 VYeck {2.1.8)
2 d{v))=2 VweeV (2.1.9)
(E(S)H<|S]1-1 ¥SCV ,S#¢ and §£V (2110}

Dynamic Programming Formulation

A dynamic progremming formulation of the TSP problem, due to Bell-
man(1961} is given below:

Consider the TSF as a multistage decision problem. Without loss in gener-
ality, fix origin of the tour as some city , say 0. Suppose ai & certain stage
of an optimal tour starting at 0, one has reached a city ¢ and there are cities
1, J2, - - o5 7% t0 be visited before returning to 0. Since the tour is optimal,
the path from i through j;, jz, . .., j& In some order and then to 0 must be of
minimum length. Define

fl& g1, o, ) = length of a path of minimum length from i to @
which passes onice and only once through each
of the remaining k unvisited cities jy, 4z, .. ., &
(2.1.11)

If we obtain f(0;41,52,...,%.), and a path which has this length then the
TSP has been solved. Let g;; be the distance between the ith and jth cities.
As a consequence, we have

fﬁ;jhjz's v :jk) = mﬁnlﬂmﬂk{&jm + f{jﬂ’h j‘l; jﬂs " ij'*l: jm-i-lr v :‘jk‘}
{2.1.12)
The above equation iz an application of Bellman's principle of optimality of
the theory of dynamic programming. The iterative procedure given above is
initiated through the use of

Fli 1) = ¢ + cio
from which we obtain f{i: §;), f{i;j2). This in turn yields f{i; 71, j2). We go
ont applying (2.1.12) recuraively and terminate when an optimal tour with

length f(0;j1,.-.,Jn) i8 obtained. The sequence of values of m which min-
jmises R. 4.5 of (2.1.12) gives the desired minimal path.

14



Many other formulations have been proposed ever since. There have been
consistent effarts in trying to reduce the number of variables used in a formu-
lation, Miller, Tucker and Zemlin{1960) proposed a mixed-integer model for
& more general TSP on V = {1,...,n} nodes. This was also known as the
Sclover-leaf * model for the T'SP. The formulation goes as follows: Denole
¢ity 1 as the home city, the salesman has to visit the other n— 1 cities exactly
once, refurning to his home city exactly ¢ fimes, including his final return.
He must visit no more than p cities different from his home city in one tour.
The problem has the following linear programming formulation :

n w=
min Z TR
i=l4=1
=2
i
Yoy =t (2.1.14)
=2
Yz=1 i=2...,n (2.1.15)
i=1
Zi‘ijﬁl =2 ..., 1 (2,1.16}
=1
W+ pr; Sp~1, 2<i#£ji<n (2.1.17}
zy =0orl Viju >0, Vi (2.1.18)
Ty fﬂtﬁgﬁf‘ 1?“!..‘_']‘ (2119}

This formulation uses O(n?) constraints and (n? — 1) variables. For ¢ = 1
and g > n—1, MTZ models the standard formulation.

Gavish and Graves{1978) propose a formulation using {?(n?) binary variables
Zij, O(n?) contirous variables z; and n® 4+ 3n constraints. The varisbles
describe the flow of a single commodity to node one from every other node.
The subtour constraint in this case are given by

Ta-rz=1 i=2..n (2.1.20)
i F#
ZgSin~lry; i=2,...n
J=1L...,n (2.1.21)



z; 20 foralli,j (2.1.22)

Multi-commodity flow formulation
We present a formulation{ Wong{1980)) for the TS P using the flow of 2(n—1)
commodities, Y* = (%), k=2,...,nand 2% = (z5),k=2,...,n as follows

minimise E Z Ciy Tig
g

st (2.1.2),(2.1.3), (2.1.4), (2.1.5)

| 1 Hi=1
_nyg-—y;): —1 ifi=k

3 0 Hiflandk
k=2 _...n
(2.1.23)
1 Hi=1
Sk )= -1 Fi=k
3 L0 fifiondk
k=2,...,1
(2.1.24)
i <y, 2k <@y foralli gk (2.1.25)
w5205 20 forallijk (2.1.26)

Constraints (2.1.23 ) and (2.1.24 } ensure that a unit of commodity ¥* travels
from node 1( source of ¥*) to node & (sink of Y'*} while one unit of commodity
Z* travels from node & to node 1.

Lengevin t. al{1990) present several single commodity , two-commodity and
multi commodity flow formulations of the TS P. They compare the optimal
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value of the linear programming relaxations of different formulations. They
also present relations between the formulations with that of the classical

DFJ formulation.

Arthanari{1982) proposed the STSP as a multistage decision problem. His
formulation uses only polynomial nmumber of constraints but additional vari-
ables 1. We call this formulation the Multistage-insertion formulation
{MI). In this thesis we study this formulation in detail and show its equiv-
alence to the classic subtour elimination formulation.

Padberg and Sung(1991} make an ansalytical comparison of the MTZ, FGG
and Cleus formulations with that of the classical DFJ formulation. They
obtain linear descriptions of the projection of the respective polytopes in the
space of z;; variables and compare the formulations. They show all these
formulations to be weaker than the DFJ formulation. We describe their
methodology and apply it to obtain the linear description of #i{n) of the MI
formulation in chapter-4. They also suggested extension of their work to the
TDTSP problem.

The TDTSP is a generalisation of the T'SP where the cost of any given
arc is dependent on its position in the tour. The T'OTSP was introduced
by Fox in 1973. Picard and Queyranne{1978) presented a fortnulation hased
on & quadratic sssignment model. Fox, Gavish and Graves(1980) give a
formulation of the TDTSP which used only O{r) constraints. Gouveia and
VoB{1995) classify various TOTSP formulations . They alse compare well
known formulations of the TSP,

Carr(1995) proposed the Cycle-shrink{C'S) formulation of the TSP. CF is
a polynomial sized linear programming relaxation of the TSP. Carr shows
the equivalence of C'S to the SEP. We discuss this formulation in Chapter-5
and show its equivalence to the M formulation.

2.2 Facets of STSP(n)

Let T, be the set of all tours in K,,.Then the polytope
STSP(n) = conv{z™ ¢ R®|T € T..}
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is called the Symmetric Traveling Salesman Polytope. The dimension of
8T8P(n) = o2

Dus to the complexity of the TSP polytope, considerable amours, of research
has been devoted to characterising new classes of facet defining inequaelities
for the TSP polytope. In this section we summarise properties and kmown
families of facet defining inequalities. For further details we refer to Padberg
and Grotschel{1985) and Jinger et. al{1995). Jiinger et. al(1997} in their
annotated bibliegraphy give good references of the work done go far. The
known families of facets of ST'SP(n} are described below

Trivial facets
T.= 1 Ve€ £ n>4
ze >0 Vee B n>bH

Subtour Elimination Constraints
Dantzig, Fulkerson and Johnson (DF.J}(1954) intreduce a class of inequali-
ties known as the subtour elimination constraints, They are given by

HES) €| 5| -1,2<|8|<n-1,8CV,

For | § |= 2, these inequalities are the trivial facets. However DF.J do not
address the question of whether these inequalities are facet defining or not.
- Gritachel and Padberg(1979b) show the subtour elimination constraints to
- ba facet defining for STSP(n}, for 2<| 8 |€n~2.

2-matching inequalities
Edmonds(1965} defines a class of inequalities called the 2-matching inequal-
ities to give a complete description of the polytope associated with the 2
matching problem. They are given by
| B' =1

2

e(H) +z(E)<| H| +
forell H CV and all £ € E satisfying
te(MH|= 1, Yec E
Biﬂe_.,- = ¢, ﬁ,-;»‘-a:e_i.*Eez:i
| £ 1> 3

18



“The set. H ts called the handle and E teeth. Chvatal{1973) generalised this
class of inequelities and defined a ciass of inequalities and called them eomb
tniequalities. Now they are referred to as Chvatal comba.

Comb inequalities

Qrétachel and Padberg{1979%,b) generalised the Chvatal combs to a larger
olass of inequalities they called comb inequalities and showed they were
facet defining for STSP(n). The comb inequalities are defined for § =
{H,T,,T,..., Ty}, The set H is called the handle and sets Ty, teeth. The
comb inequality is

- . , = s+ 1
2 E(H)+ 32BN < H |+ 307151 -1) - —
i=1 J=1
for all #,77,.... 7, €V, satisfving

I GOHY =1, j=1,...,s

lT}:‘!\H| E’—l! I::I:':I“*VS

TNT; =¢, 1<i<j<s
s >3 andodd

[

- Chain inequalities
Padberg and Hong(1980) describe a further gemeralisation of the comb in-
equalities called chain inequality. The chain inequalities are defined for
§={HT,T,...,T.} with the following conditions
[ GOHD =6 forj=1....p
IGOHL 21, j=p+1,...,s
LOT =6 1<i<j<s
g >3 andodd

inequality is given by

x{E{H}Hi‘m{Em))-iaf w(E(R:T) <|H|+]|R]| +>':[! 7| —1)—7 —24—1
=1 =1 el
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Qnly a proof of validity of the chain inequalities i3 given .

Clique tree inequalities

A pew class of inequalities which generalize the comb inequalities was in-
troduced by Grétschel and Pulleyblemk{1886). The new class of inequal-
ities are called cligue tree inegualities and were shown to be facet defin-
ing for STSP(n),n > 11. A clique tree is defined on a connected graph
8={H,..., H,T1,..., 7.} composed of cliques (the sets I; are called han-
dleg and seta T; are celled teeth)which satisfy the following properties

{1} The cliques are partitioned into two sets handles and teeth

(2) no two teeth intersect

(3) no two handles intersect

(4} each tooth contains at least one node not belonging to any handle

(5] each handle intersects an odd number of teeth

{8) if & tooth T" and a handle A have nonempty intersection,then H 7T is
an articulation set of the clique-tree

The inequality is given by
g+ 1

S (BN + S 2B < 0 H 0T 1) - 2
i=1 i= 1 =1

F=1

where £; is the number of handles intersected by tooth 7},

Bipartition and Ladder inequalities

Boyd and Cunningham (1991} introduced & now class of valid inequalities for
fi 2 7 called bipartition inequalities. Let {H,..., H,} be mutually disjoint
sets of handles and {T7,..., Ty} be mutually disjoint nonempty sets of
teeth. Assume, ¢+ m > 1, satisfying the following conditions

H; intersects 2k, + 1 teeth, where k; is a positive infeger.,, 1 €1 < r.

TAQJH) # ¢ for 1€ <
GANUH)=¢ fort+l<ij<t+m

The bipartition inequality associated with Ay, ... &, 71,..., Tiam is

¥ N 1 t4m T
2 HBH) + X oBI) + 3 L BT) <
i=t i=t j=te1
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i~

ZEHHZME(ET P —d;— 1+ 3 E(ITI d;)

=1 3—t+l

Hr=21t=1,m =2, we get an example of & bipartition ineguality called
Mie anvelope inequality.
A ladder inequality is defined on a family of & sets

S={H,H: . B70,....T..Di...,D.}

wjﬂz t,m > 0. The sets H;, B, T; and I are called handles, pendent teeth,
tegular teeth and degenerate teeth respectively. A ladder inequality associ-
ated with the family is

)i H)) + Z z(E(P)} + Z‘.:.-(E(T)) + Zz.c(E(ﬁ 1)

=l =1

+m{E(P1 (1Hi: B[ [H)

<Z‘]H ]+Z]P]+Z|T l+):2|D | —2t — 3m —4
i=1 =1
The proof that ladder inequalities are facet-defining for STSP(n),n > & is
given in Boyd, Cumningham, Queyranne and Wang(1985).

2.3 The Graphical Traveling Salesman Re-
laxation

Cornuéiols et al.(1985) iniroduce a new generalization of the TSP called the
Graphical Traveling Selesman, Problem{GT SFP). In the standard TSP, we
have & graph G = (V, E) where V is the set of vertices(cities) and F is the
sst. of edges between two cities, each edge [i, j] € E has a cost ¢; associated
“with it. In the TSP we find & Hamiltonian cycle with minimum weight. The
- @TSP is to find a shortest tour, starting from home city, visit a given list of
- “gities at least once and then return to the home city so that no edge s used
-more than once.
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s GTSP tour g of G is & multiset of edges such that
{1} Degree of {5 for every v € V is positive and even
{if) The subgraph of G induced by edges of 15 is connected.

Denote the set of all tours on n vertices by T7,. Denote the weighted incidence
vector of to € T by x*. The convex hull of the set of incidence vectors of
the elements of T, is the graphical traveling salesman polytope, GTSP(n)

GTSP(n) = con{x®lts € T}

Definition 2.8.1 An ineguality fz > f, defined on R™ is tight trigngular(TT )
if the following ave satisfied:

s} the coefficients f, safisfy the triangular inequality.

biFor all w € V,,, there ezists u, 1 € V, such thet fuu = fuw t+ fow

Almoat every inequality facet-defining for GTSP(n) is tight-triangular. We
refer to Naddef and Rinaldi{1888) for a detailed discussion on GTSP. We
now give a few inequalities defined in the T'T form. We give an example of
an mequality in T'T form below.

Crown Inequalities
Naddef and Rinaldi{1992) discovered a new class of valid inequalities called
Crown inequalities and showed that they are facet-defining for ST'§ P(n){(with

n> 8.

For eny integer k > 2, let (k) = (V,, E.) be the graph with the following
vertex. and edge sets, Vo = {yls € {1,...,4k]}
E, = {lw,un]li € {1,...,4k}}, where [i] stand for ((i — limoddk) + 1).
Ck} is called a crown configuration. A simple crown ineguality associated
with C{k) is the inequality fx > fy such that fy = 12k(k — 1) — 2, and for
every { € {1,...,4k}

Hvgn = dk—B+1j| for 1<l jl<2k—1

= 2k —1) for §=2k

Generalisations of clique-tree inequalities lead to Bipartition inequalities[Boyd
and Cunningham (1991} ], Hyperstar inequalities [Fleischmann{1987)] and the
binested inequalities [Naddef,{1992)]. We refer to Naddef(1990) for a com-
plete survey on these clagses of inequalities.
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§.3.1 Extension of inequalities

The very complex structure of ST5P(n) makes it very difficult to describe
all inequalities known to define facets of this polytope. Naddef and Ri-
naldi{1992) define some operations on inequalities which allow derivation of
new inequalities from those which have already been characterised. Two
quch operations ave the zere node-lifting and the edge cloning, Both these
pperations preserve the facet defining nature of inequalities.

The operation of zero node-lifting is as follows. Let fz > f, be a facet
defining inequality in 77 form on K, = (V,, E,). Add & more vertices to
V. obtaining the set V.. We zero node-lift node u to obtain the inequality
[z 2 f, where :

Of, =f. Yeek,
s =fu VMEVia\VaVieW
Hijf; =0 VjeWu\W

Let fz 2 f, be a TT inequality defined on B™ and e € E,. We say the
inequality f*z* > f defined on RE~*?, with & > | is obtained from fz > f,
by cloning the edge e{h tirmes) if

fo = fo+2he,
F taes) = fltetipe) 1<i<n~2
1<j<2h—1,§odd
= fluun) 1<i<n—2
27 <2h, 1 even
I (ttnis thna ) = 2¢, —1<i<j<2hi—1even
=g, —1<i<j<2hj~10dd

By using the above operations Naddef and Rinaldi(1988) show the PW B

+ inequelities are facet defining for STSP(n). Boyd et al.(1995) show the
lndder inequalities and their extensions obtained by zero nede-lifting to define
facets of STSP(n).
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.2.4 Separation Problem for 5TSP(n)

Given a point T in the space of a polyhedron P, the separation problem for
& class 7 of valid inequalities for P is to produce an inequality of T violated
by £ or to prove that all the inequalities of I are satisfled by z.

An exact separation algorithm for a family Z of inequalities is one that solves
the separation problem, & heuristic is one which may find a violated inequal-
fty, but that in case it cannot find any, is unable to guarantee that no viclated
inequalities exist in I.

Separation problem is known to be solvable only for two classes of facet
- defining inequalities of ST5F(n). They are the subtour elimination and the
2-metehing inequalities. The separation for these classes can be solved using
the Gomory-Hu algorithm and the Padberg -Rao algorithm respectively.

An excellent introduetion Lo the separation problem and cutting plane algo-
rithms associeted with them is given in Padberg and Gritschel(1983). In this
paper they state the facet-identification problem and bring out the relation-
ship between optimisation problems and facet identification. They also give
heuristics to separate subtour elimination constraints, 2-matching constraints
and a simple heyristic to separate comb constraints. More recent references

include Applegate et, al (1997), Naddef and Thienel{1599).

Let * be & point we want to separate from §T'SP(n). The support graph
of x* ig given by Gy = (Vi £, 2*), where E contains all edges of E, corre-
sponding {o & positive component of z*.

Separation for subtour elimination constraints

Lets start with & relaxation for the STSP involving only the degree con-
gtraints and non-negativity constraints., Let

P, = {z € R® | ¢ satisfies degree and nonnegativity constraints}

We have the following

Proposition 2.4.1 Ifz* € P, then > 20 =| W | ~1+ ¢ if and ondy if
e (W}
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¥ g =22
AW}

To check whether a subtour elimination inequality is violated by =* or not it
suffices to solve

. ) e | V1
E=min{ 3 a;|UcV,3g|U|<—

[ ed(t) 2
and check whether £ < 2 or not, Let

G=min{ ¥ 2 [{L2...,i— 1} CU,j€0,3< U|<| V| -3}
eE §{L7)

for j=2,...,] V| —2 Then £ = min;—s,_v|-2&. Imposing the condition
{2,...,j—1} € U in the 1 —j cut problem is done by replacing the capacities
zh by co for & = 2,...,4 — 1 The separation algorithm is to solve the
maximum 1 — j problem for 7 = 2,...,| V | —2. The Gomory-Hu algerithm
is based on the computalion of n — 1 max-flow problems on weighted graphs,
We refer to J'unger et al{1895) for a complete list of efficient algorithms to
find & min-cut in graphs.

MT relaxation is shown in Chapter-4 to optimize over the SEP, and hence
the separation problem for the ¢lasgs of subtour elimination inequalities can be
achieved in polynomial time wsing M F relaxation. Also Carr{1995) achieves
the same.

Separation for 2-matching inequalities

Padberg and Rao(1982) propose an algorithm which computes the minimum
weight odd cut of a labeled weighted graph in polynomial time. Grétschel
and Holland{1987) give & heuristic separation algorithm for the separation
of the 2-matching inequalities. They also pive an effective implementation of
the exact Padberg Rao algorithm.

Separation of comb inequalities and Cligue tree inequalities

There exist no exact algorithms to separate the comb and clique tree in-
equalities. Efficient facet identification procedures have been described in
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Padberg and Rinaldi(1990). They define shrinkable sets and obtain sufficient
conditions for a set to be shrinkable. They discuss certain graph reduction
techniques and give a heuristic which runs faster than the Padberg Rao al-
gorithm to separate 2- matching imequalities. They also give heuristics for
identification of comb and clique tree inequalities.

Carr{1995) describes an exact separation algorithm for the class of bipartition
inequalities when the number of handles and teeth are fixed. He defines a
backbone to be a set of & nodes of the graph that is ghared by a subset
of inequalities In 7. For a fixed backbone, the most violated inequality in
the corresponding set is found in polynomial time. Carr(1996) describes
a pohmomial time separation algorithm for a class of valid inequalities for
STSP(n) obtained by zerc node-lifting of any fixed inequality defined on
gsubsets of V' having & nodes.

2.5 Conclusions

- This chapter discussed some of the important concepts of the Traveling Sales-
man Problem. In chapter 3 through to chapter 5 we present our work on
the Multistage-insertion formulation and shew its equivalence to the subtour
elimination relaxation and the cycle-shrink formulation.
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Chapter 3

The Multistage-insertion
formulation

After Dantzlg, Fulkerson and Johnson{1954) proposed their integer program-
wing formulation for the TSP, there has been a race to provide with alternate
formulations to solve the TSP, Researchers have been providing formula-
tions using fewer constraints and implying the DFJ formulation. One such
is the Multistage-insertion formulation (M} proposed by Arthanari{1982).
We present this formulation in thiy chapter and give its properties.

Arthanari(1982) posed the Symmetric Traveling Salesrman Problem{ST'S £}
ag & multistage decision problem and gave the M7 formulation. He showed
that the slack variables that arise in this formulation are precisely the adge-
towr incidence vectors. This formulation uses O{n*) variables but only a
quadratic number of constraints. Bellman{1962), Held and Karp({1362) were
the first to consider & multi stage decision (dynamic programming ) ap-
proach to TSP, However their formulations are different from that of Artha-
nari{1982).

In this chapter we show that the formulation we have, defines the SEP(n},(where
SEP(n) denotes the subtour elimination polytope on n vertices), for all n
using a polynomial number of constraints In section-3.2 we give the M7 for-
mulation. We state some properties and give resuits on this formulation. We
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liow U{n) C SEP(n} ¥ n. In section 3.3 we characterise integer optimal
iutions of the M I problem and in gection 3.4 we give the M{ formulation
ot the asymmetric traveling salesman problem.

3.1 Notations and Definitions

Let n denote the number of cities.

Deflnition 3.1.1 ¢t = (1,41, ..., 4.1, 1) 45 a k-tour in case (i,...,ip_1) is @
permutation of (2,..., k), k < n.

mgi_fkiﬂgk‘l‘ﬂjk—ﬂij fur-ii;k <n; Iﬂi{jﬁkwl.

Definition 3.1.2 The length of o k-four is defined as C(t) given by

k-2
E{Ii) = ch:r“:raki + Cuiy ot Gyl
v=]

Let T}, denote the set of all k-tours and T, denote the set of all £-tours in
which edge(i, 7] appears that is ¢ and j are adjacent to each other in every
ktour in Tise. Then we have Ty = U T,-jk.

ik
Lat F,-f; be a mapping from T -1 to Ty such that for t € T,
t=(Linohdooohen I FSE = (L bk g teen 1) € T,
L, Fi(t) 1a the k-tour obtained from the (k~ 1)-tour ¢ by inserting & between
fand j.

We start with the 3-tour ¢t = (1,2, 3, 1).

Example 3,1.1 Teken = 5. Considert=(1,4,3,2,1) € T,.Thent belongs
- bo each one G-f Tiu, TSM: TEB&; leg..Fls,l{f:} = (1, 5,4,3, 2, 1} € Tk,

- We now state some results.
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Proposition 3.1.1 Let t,ty € Tye—1.If C(ty) < C{t) then
C(Ff(t1)) < C(F{ta))

Pl‘ﬂp'ﬂﬂitil}ﬂ 3.1.2 TIH-I = U {Fz?i;_‘-l(t”t = Tijk}

1€icisk
Proposition 8.1.3 min, 7 C(f] = minicicycn {minﬁfwﬂ(ﬂﬂl—ﬁﬁkn}

Remark 3.1.1 The symmetric traveling salesman problem is to find an op-
timal n-towr, piven o, 1 <1 < j < n, with ¢y = . Proposition (5.1.5)
pasures an optimel n-tour, if we hove a subset of (n~ 1) tours which includes
Joreach 1 <i < j <n—1,a{n-1) tour in which i and j are adjacent and
it minimises the length of the towr among off such (n — 1) fours in which i
and § are adjacend. Howewer, finding such {n— 1) tours may not be an easy
buak.

Thus we really have & (n — 3) stage decision problem, in which in stage
(k- 3},4 £ k < n, we decide on where to insert k. In the beginning we have
g >tour {1, 2,3,1}. In the first stage we decide on where to insert 4 among
the available pairs [1,2] , [2,3], and [1,3]. Depending on this decision we
have certain available pairs for the second stage insertion.

In the second stage we decide on where to msert 3 among the available pairs,
For instance, our decision in the first stage is to Introduce 4 between 1, and
‘44 Then the available pairs are

As = {(1,2], (1, 3], 12,31 LM ar 4], ey 41} = {ligs 5ul}

- Ingeneral Ay depends on the decisions made in preceding stages, 4 < k < n.
We have

Ar = Apr U{[’iﬁ—lsk = ]-lﬂr.k‘ - l\jk—li} - {{ik‘hjk—l”

for some [ix—1, Je—1] € Ai-1. A& gives the set of all [{, j] such that they are
adjacent in the (k — 1) tour, which results cut of the decisions made in the

preceding stages.
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e associated total cost of these decision made at different stages is
Gia.:.r'u.ﬂ + C.,-Ejsf. + . f:,iu:;nﬂ.

We are interested in finding optimal [ig, js], . ., lin, 4n] such that the total
%t 18 minimum. This finally produces an n—tour. The length of this tour
iy

given by (e12 + €15 + €za) + O _Ciyjone Here {€12 + c1a + cos) i8 the length of
-
the initial 3-tour which is independent of the decisions subsequently made,

3.2 Mathematical Programming formulation
of the STSF

In thig gection we describe the 0-1 integer programming formulation of the
- 8TSP given by Arthanari{1982).

‘Frl<i<j<k—1, wedefine z by

g = | L if in stage (k — 3) the decision is to insert & between i and j
W1 0 otherwise

variables.

Therefore there are 7, = (&~ 1)2(&: =2
4

-Definition 3.2.1 Given
X= I[I;g.;,xm..;, Foag 108, 0 o T8AE «ors L1y TSy o v ,.‘Z‘.‘\ﬂ_z!ﬂ_l‘nj = BT“, wfieres
B = {0,1}™. We say X is a feasible decision vector in case,

(i) Forevery k=4, ... n
2. Zge=1l (3.2.1)

1€iej<h—1

that 48 & 18 inserted befween i and § for ezactly one poir [i, 7] and
i)z =1 = Th1(X) € Tip_1 , where Tp_((X) is the (k~ 1) —tour result-
ing from the preceding decisions, that is, depending on (Zi3q, .. ., Te—3h—2,k-1);
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dinoted by X/k ~ 1. In other words, X is a feasible decision vector if
Ty = 1 == [le o] € A, d Sk <

Example 3.2.1 Forn =06, let 219y = 1,145 = 1Zase = LTy = 0 for
sllother L<i<j<k—1, 4 <k<6 then
X = {Elﬂ:$1341$234;$135, R P LI 3 - TR ;;15-156} —

(1,0,0;0,0,0,1,0,0;0,0,1,0,0,0,0,0,0,0) is & feasible decision vector as E Tige = 1
12 k—1

Jork = 4,5 and 6 and T194 = 1, requires T3(X) € Tya. This is true as
TX) = (1,2,3,1) Similarly 215 = 1 == Te(X) = (1,4,2,3,1) € Tius

d 20 = 1 == Te{X) = (1,5,4,2,3,1) € Taa. Howewver, X =

{100, 100000, 0010000000} is ot a feasible decision vector as Ty(X) = (1,4, 2,3, 1),
resulting from Z1gy = 1 & T2 a8 required for z95 = 1.

Let 3 be the set, of all feasible decision vectors. We can state the multistage
 decision process as:

" PROBLEM 0:Find X* € © such that C{X*) = miny.oC(X) where

It

CXy=3%" Z CiikTik

k=4 lgici<k—1
We shall now show , how X € % can be expressed as a set of linear equalities
and inequalities along with X € B™.
Notice that we already have
Y. Tgp=1for XeQ

lgdgsk—1

The above equation ensures that at stage k city & is ingerted between exactly
one pair of cities ¢ and j. In addition , Zy; cen not be 1 if ¢, §] & Tho1(X).

Condition (ii) of Definition 3.2.1 states that zy 5,0 = 1 = [ig, ] € A;4 € & < n.
We express this as linear inequality as follows:

For all X, we have [1,2],{1,3] and [2,3] € 15(X) as the initial tour is al-
ways (1,2,3,1). And the edges are available in all sets 4,4 < b < n
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wiess 2 = 1. Since we begin with the 3-tour and at most one of the
sk = 14 <k <niforeach [i,j;1 <4< j <3 we have the following

constraint
3 g <l
shen
Intuitively, the above inequality ensures that belween a pait of successive
clties { and j where ! <i < § £ 3, al most one city & may be inserted.

Now consider ather (i, §]'s, for4 <j<n—1and 1 <1i<j, my can not be
1 unless {i, §] is an edge in the {k — 1)- tour resulting from earlier decisions
given by X/ k— 1. However [i, §] is created only in one of the two ways, given
below:
Either (i} zy; = 1 for some 1 <7 <dor
(i} 2i; = 1 for some i + 1 < s < j. Therefore , if
Z Lpig 1 Z Tiay = 1

15r<g—1 fleagi—1
then edge [{, 7] is present at the k** stage and hence z; can either be 0 or 1
foranv k>34 1 I

> wgh DL T =0

1<rgi—] i+1€agy-1

then the edge [4, 7) is not available for insertion from the &* stage; & > §+ 1
ond Y I = 0. Hence we have

i+1%ken
> mp < 3 Byt )
jrizsksn 1E<ri—l i+lsady -1
== D = 2 @yt Y w0
1€rie 1 {rldrmi—l 4 1<ken

The ahove inequality ensures that if city & hag been inserted between i and j
with i < §, then § must have been hwerted between some v and i with v < 4,
or j must have been inserted between some ¢ and & with ¢ < s < §.

Now Broblem- 0 can be given a 01 programming formulation as given below:
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PROBLEM 1: ﬂ
minimise > 3. CosTigk

ks L€ici<k—1

_ subject to
Z 11}1'3';; =1 4 "_: ;G “E T (322}
1 <k
b
Z‘:‘ﬂi_’ik <1 1<i=i<3 {323}
k—4
i-1 i=1 n_
~ o a = D et oy S0 4<jSe-Ll<i<
=1 a=t+1 k=g 1
(3.2.4)
Tge=00r1 1Si<j<k 4<k<n
(3.2.5)

Ramark 3.2.1 The objective function i the same as in PROBLEM 0,

Let E denote the matrix corresponding to (3.2.2), £ is a (n - 3) X 7, matrix
of the following form.

gaxz 0O - - B
0 0
E = ' 3 . .
ﬂ * " [} Ein-1 s"n"}:_l
]

where €5, is a vector cach of whose coordinales is 1.

Let A be the matrix of coellicients corresponding to {3.2.3)-(3.2.4). Relaxing
the integer constraints with 0 < 2y € 1 and adding the following constraints

i—1 il
—Y Tein— I, T S0 i=1,...,m-1 (3.2.6)
r=1 so=ft1

we get the following problem.
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PROBLEM 2:

subject to
"Eol[x]_| &
Arllog|7 =

XA =0 (3.2.7)

Note that the upper bound 1 on 2, is not explicitly stated. Also (3.2.6) are
always satisfied as x,. are non-negative. However adding these constraints
help us bring out the connection between the slack variahles of Problem-2
and the edge-tour incident vectors of n-tours given by integer X feasible to
Problem -2. Here A is the matrix corresponding to inequality constrainis
without non-negativity constraints.

Theorem 3.2.1 Any wnteger feasible sofution to PROBLEM -2 is e basic
solution and has the following property.

et the submatriz of A corresponding {o the columns of o0 — 1

k= 4,... n be denoted by Q. Then any row of Q 18 such that either

() All entries in a row are zeroes.

or (i) Exactly one of the elernents 45 +1 and the rest are zeroes in the row.
oriit} Theve s a -1 and @ +1 in the row and the rest are zeroes.

or {iv) There is a -1 in the row ond the rest are zevoes.

Moreover any such solution corresponds to a n-tour.

Proof: Consider the square matrix B obtained by taking the columns cor-
tesponding fo =550 = 114 < k < n and the columns corresponding to the
slack variables w;;. We can write B as a partitioned matrix as given below

(4
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1 Q s the submatrix of A corresponding to the columns z; ;e = 134 £ & £ n.

u inverse of B has the following form.

_ i 0
= =[]

Qi; denote the row corresponding to the pair [i, 4].
ij:12i<j<3
bhis case either no 2z, is positive for pair [f, j] or at most one of them is
il to 1 in any integer feasible solution. This implies either
is & zero vector where we have an instance of (i)
p) (i; has a single 1 and rest zeroes, where we have an instance of (ii).
et in these rows there can be no -1's.
e} 1<i<jjd<i<n—1
ng the fact that for any [4,j] at most one of the x5 can be equal to 1 in
integer feasible solution to the problem, there can be at most one +1 in
of these rows.

mever this +1 cannot occur without a -1 in the samne row since

i—1 -1 ”»
— 2 T — 2 Tt Pl T S0
r=1

i=i+1 =31

T
all 25 or Z,; = 0 then 3" iy = 1 and carmot satisfy this constraint,
k=75—1
#t least one of the x5 or 24,; = 1. But for any & at most one ;. = 1.80
ere is exactly one -1 in row €);. This leads to an instance of (i44).0On the
per hand if ; as well as x,,; are 2erces then z;; must all be zeroes . We
We an instance of (i).

inelly if one of the 2,45 or 2i4; = 1 and all x;;, = 0 we have an instance of
).

w we prove that any such solution corresponds to a tour. Consider i, ;% =
4 <k < n. Insert in the 3-tour (1,2, 3, 1), city 4 between [4, 44 and obtain
vtour. Assume introducing 5,..., & in this manner in the 4, .. &k —1 tour
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respectively we obtain a k tour. We shall show that introducing (k + 1) in
the unique k-tour obtained will result in a (k + 1)}-tour.

We need to show that [iy11, je+:1| I8 & pair available in

k

k
AL E {(L,2),01,3),12,3)} Ul G 71} - BEEAAN

r=4

€l < Jor1 £k

I [fer1, Jerq] € Ax(X), Then it must be either
(a) be [i,, 7. for some 4 < r < k or
(B) desrs Jarr] 08 |67 withd, Li £ j 4<7r <k

However (a) cannot happen as for any pair |4, j], @i = 1 for at most one r
and already i 5. =1, 4 Sr < k.

If (b} happens then the constraint corresponding to [t, r} will be viclated and
X cannot be feasible for the problem. This leads to a contradiction. Hence
$e+1, Je+1] € Ax(X). Hence any such solution corresponds to a tour.

Henee the regult g

We have the following theorem

Theorem 3.2.2 Thus there 18 g 1-1 corvespondence between n-tours and the
integer feasible solulions to PROBLEM-2,

We have proved in the previous theorem that every integer solution corre-
spends to & n tour. It remains to show every Lour corresponds to an integer
sohition 1o PROBLEM-2.

Take n = 4, we have three 4-tours and three integer feasible solutions. The
correspondence between them is shown in the table below:

Tour Integersolution
T124 E1a4 T
h=(14231) 1 0 0
b = (12341} ! 1 0
ts = (12431) 0 0 1
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Suppose the result is true for n — & — 1, that is, every (& — 1} (our corre-
sponds to an integer solution to the PROBLEM-2. In other words, for every
ti-1 € Tx-1, we have an integer solution X/k — 1 = (Ti4, ..., Te—gk—2,4- 1)
to PROBLEM-2. We now show the result is true for » = k. Let #; =
{Lil,---,h,ﬁ,im cee ,‘Skug,l}, 1< <k—-2, 1< <k —-2beaktour
with k& being inserted between some i, and i,. We need to show this tour
corresponds to an integer solution.

Daﬁne:r:,-,,,-,k = 1 and ik =0forl€ici<k-1, ‘iz,_',? ?éz"r-,ia-

We now show X = {Xffi: — 1, Zuak, B13ky o v oy Tini ey - - - ,fﬂszk—l,k} is o feasible

integer solution to PROBLEM-2. First of all we note that z;_,,; = 0 for all

4t < k-1 Weneed to show a) > &y, = 1. This is true from
I<i<igl-1

definition of X

We now consider the following cases:

case (1) 1 <4, < i, <3

Since & is inserted between ¢, and {, and z;,,, =0forall4 < { < k-1,

k-1
wehave ¥ 2,0 = 0 for 1 € i, < 4, < 3, which in turn implies that
Do
k-1 )
E:r;,;,g + Tk = 1. Hence X satisfies (3.2.2)
4

case (i) 1 €4y < dy; 4<4, <h—2
Since k is inserted between i, and i, , this implies that either 2., = 1 for

k-1
wmer, 1 St Sr—lorsy, =1forb,+1<s<i,~land ¥ 24:=0
=it 1

Hence we have

fe—1 fu—1 k=1

= 2 Ty = 2 Bist, ¥ 3 Tiia + Tiik =0

r=]1 a=i.+] I=ig+1
Henee X satisfies (3.2.5)
Hence the theorem. 1

Lemma 3.2.1 Let U denote the vector of slack variebles in PROBLEM -
2Lt (X, U7} be any integer feasible solution to PROBLEM-2. Then U is fhe
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edge-tour incidence vector of the n-tour given by (X, U7).

| 1 if edge fi,j] is present in the n-tour
Wi T\ 0 otherwise

Proof: Consider 1 < i < j < 3 then from equation {3.2.3) we have

n
wy=1- 3
k=4

w=0==% ;4 = 1, which implies that for some 4 < k < n,z5 = L
k=4
‘1 [i, 7] is not in the solution.

i)

Conversely, suppose [i, 7] is not in the solution, then we have Y}z, = 1
k=4
for some 4 < & < n which implies that u; = 0.

Nowconsider 1 €t < ;4= j<n~1

U5 = Z Triy + Z Ligj — z Tk

1€rgi-] H1l%aty-1 FHlzksn

[t, 5] is not present in the solution if

E xﬁj'i‘ Z Tiaj =0 = Z .’If;'j,:e=ﬂ

1€rgiol itl€ets—1 jHi<ksn
1<rgi1 iel<aio] jti<ken

Hence u;; = 0 if [f, §] i3 not present in the solution. Conversely, if wy = 0 we
show that [¢, 7] is not present in the solution.

ui.'f =0 == Z Erig + z Tiaj — Z Lije = ]

1€r24—1 i 1gagi—1 Ft+1<k<n

== Z Erij + Z Tipg == E Tigh

lersi-t i+lZagyi—t F+1€k<n

38



There are two cases

8}
Z Teij + Z Tisy = 0
1<rgio 1581
This implies that edge [, j] is not created upte the j stage and hence is not
svailable for insertion of k;j + 1 < & < n.Hence [i, j] i3 not in the solution,
b} Z Lrij 1 Z Tigg= 1= E 54 Which implies that edge |4, j]
1$rgi-1 i+ 1€agi—1 F+1ghen
s created before stage j, but then some k, j+1 < &k < nis inserted between
[i,7i. Hence, [{, j] is not in the solution.

Henee, u;; =0 ¢f £ [, 7] is not in the solution. O

Lemma 3.2.2 Corresponding to any fensible solution s PROBLEM-2,we
have
i Y wy=n
l2i<jsn
i<y <1, ¥l<i<j<n

Proof:(i)We shall show that this is true for any feasible solution (X, L7} to
PROBLEM -2.As {X, L7} is [easible we have

EX =e, 3 (3.2.8)
AX +1U = [ N ] (3.2.9)

Now sum the last “—‘-f"‘g—_u terms of (3.2.9) .We get

_i D> zgkt Y, ug =3 (3.2.10)

k=4 1gi<igk-1 l€i<ign

But Z Z Ty = 7t — 3 as obtained from the sum of the first {rr — 3)
ke=d 1€i<i Sk
ows of {3.2.8},
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(i) cse (a}: L £i<j <3

Wehave 0 € 2y == 0 € 3 7y AlSo 3 Ty < 1
Hence we have

1>1=3 "z 20
k=4

== 05u; <1

case(b): 1 €ic fi4<ij<n~—1

= 5 ot T o Y

1€r<io1 i+1€ai—1 JHl<ken
Hence
{'i-} Z L + Z LTisg T l, Z m.gjk =] = Ugg = ]
1€rsi-1 ill<asy—t I+ 1sksn
1€rei-1 i+l €agi-1 Jtl<ken
(5 D Tyt D, Ty =0, > Tip=0=buy;=0
1€rgi—1 itigagi—1 FHi<ken
Hence 0 € wyy < 1. |
Observe that €' = (Cia4, ..., Ci2ns - - -, Cae2)in_1)n) 19 such that ¢ = — ¢ A.

Consider any solytion (X, L'} to PROBLEM-2,Then
AX 41U = [ ';3 ]

Premultiply both sides by . Now
dU o= ¢ [ %3} —cAX

= c“{ 5 ]+C'X. (3.2.11)



€3

Bui ¢ { 0

to minimise ¢'I/ in arder to minimise ' X
Now we have PROBLEM-3 which is equivalent to PROBLEM-2.

] = ¢13 + €13 -+ 23 18 & constant, given X, Therefore it is sufficient

PROBLEM-3:

e . frr
minimise ¢ [J

. En—3
H EHH - [ %3 ] (8.2.19)
X0 > 0

X =

Remark 3.2.2 Any n—tour corresponds to an integer basie feasible solution.
But there are bosic feasible solutions which are non-integer as illustrated in
the following example.

Example 3.2.2 Lein = 5, for the basis matriz B is given s below :

( Tie Fiae T To4s Uiz Mo Uyg Uiy i Uss Uk Uas |
1 1 0 {2 g ¢ 0 o 0 0 0 0
0 0 1 1 0 0 0 0 0 0 o0 q
1 0 ) 0 1 0 0 0 0 0 o 0
0 1 1 0 { 0 0 0 0o 4 0 D
¥ D ] D 1 0 0 D 0 0 0
e | () 0 Q0 { 1 () g 0 0 i
-1 0 0 1 0 0 0 o 0 0 0 0
0 -1 0 0 0 0 i 1 0 0 o 0
0 { —1 0 0 o 0 0 1 0 { {
{ g 6 -t g ¢ ¢ o 0O i 6 0
0 0 -1 0 0 0 0 0 0 0 1 {

0 0 0 ~1 0 0 0 o 0 0 0 1 J

Y
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the inverse of F 2y

05 08 0 =05 00 =05 00 000
05 —-05 0 05 D0 05 000 0C0
-05 05 0 05 00 0500000
s 0D 0 -05 00 05 0 00 0 0
05 =05 1 03 00 05 00000
0 o 0 0o 10 O 44000406
1 O o0 H® 01 0 0000
05 —-05 ¢ 05 ¢ 0 @& 1000 0
05 05 0 05 00 -05 01 Q00
05 053 0 =05 00 D5 O 0 1 00
~05 05 0 05 00 -05 00010
B8 05 0 -05 00 03 000G Q1 |
There i3 a basic feasible solfution fo PROBLEM-3 with corresponding
Ty = & T Fms = Tus = 1f%,
g = lf?, g = Dug = liuy = l-,-ug4 = G,Ha.g, = lf?,
Wik = Uos = Uay = Uy = 1f2.
et
({n = {X|EX = gq 3, AX £ [ E,_lf ] X za} (3.2.13)
L(n) = (UL = [ Eﬂa ] - AX 20, X €{(n)} {3.2.14)

Remark 3.2.3 et
U’:[?}-—AJ{’EQ

for any integer X* € ((n). Then [/* is an extreme point of U{n).
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Proof: Let [,V € L(n) — {{/*}.We shall show that AJ + (1 = A)V for A €
: {0,1) belongs to U(n) — {17}, Wehave U £ U* £ V. AsU,V € U(n}-{U*}
" there exists X, ¥ such that

th

U:{g]wﬂxaﬂ

and
v

1l

€3
] av o

Note that X # X* # Y.

Now U'+ (1 — A}V € U(n) since U(n) is a convex set. We want to prove that
AT+ (1— NV €U(n) — {U°}

Suppese this is not true. Then AL + (1 — X))V = U* Binee X* is integer L7
s also integer. We know that

Y U Y Ug= 3 Vg =n

lepdgtn 1€p<gin 1pagsn

88 these correspond to fessible solutions to PROBLEM-2. Also notice that
for eny feasible solution (X,UV) to PROBLEM-2,0 < wu;; < 1.Therefore if
any coordinate of I7* is zero the corresponding coordinates of IV as well as V
have to be zero,as A, (1 — A} > 0, and I,V 2 0.

Thus &/ = V' = U/",which leads to & contradiction as U,V € U(n) — {U*}.
Hence the result.

U(n) is the orthogonal projection of the polytope {(n). It i3 expected that
some of the projected extreme points are no longer extremal in the projection
a3 shown in the following two examples.

Example 3.2.3 Consider the fractional basic feqsible solution given eorlier
for the S-city problem in Ezample(3.2.2). The fractional components of the
vector U for this solution can be writien ag o conver combination of exlreme
point solutions given by

{'ﬂ)ﬂ?m = 1,218 = 1,Up3 = 14 = gy = U5 = Ugs =~ land

(s = Taes = Liups = Uga = Uy = Uas = gy = 1 with egual weightage.
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Here we have an example of a slack variable vector {7 corresponding to a frac-
tional basic feasible solution to PROBLEM-3 which need not be an extreme
point of L{(n). However a question that still remains is whether the set of all
sxtreme points of $4(n) is the set of all I/s corresponding to integer feasible
solutions? The answer i3 NO as shown by the following example.

Example 3.2.4 Consider the Petersen’s graph G = (V, E) where
v=1{1,2...,10}

k= {Elag]s [1:5Ja Ils Q]: [2,3], [2: ?]1 [Br 4]* [3, 10]: [4: 5]: [«‘1, EE, [5, ﬁ]: [Er?]r [?! 8];
8.9).[9, 10], |8, 10]}

Ard

Fig: 3.2.1 : Petersen graph with values given as in Example 3.2.4
Let
-1 ifliil e &
= { if [ij] € E

0  otherwise
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Consider the 10-city STSFP on the above graph. Tt is well known thal Pe-
tersen’s graph iz non-Hamiltonian f.e. there is no 10-tour available only using
the edges of the graph . Any tour uses 10 edges of the complete graph K .
-~ So, an optimal tour for this problem will have an objective value of al least
4 since it has to use an edge not in E.

However the following fractional solution to the problem hes objective fune-
tion valie -10.

Dias = Tias = Fass = Ty = Fira = Lwgs — Tyre = Tizg = Twe = Lags =
Tagis = 1/3 Taaa = Logs = Toss = Faer = Tagio = 2/3;

Uy = Upg = tag = 1t _

Vg = Ugs = Ugr = Uar T UaR = Urs = Ui = Usy = Uayg = 2/ 3;

upn = Hyy = ug = 1/3; and other wy;'s are zeroes. The values of w; are
shown along the edges in Figure 3.2.1.

Ag t;; add up to 10 and the distance associated with the edges in the Pe-
tersen’s graph s - [, we have -10 as the objective function value corresponding
10 this solution. it is not possible to write this solubtion as a convex com-
bination of &f vectors corresponding to tour solutions, which have objective
function value at least -9,

Theorem 3.2.3 U{n} € SEP{n} where SEP{n) {5 defined us in section - 2.

Proof : The proof is by induetion on ». Consider the constraints that define
Problem-2, other than the non-negativity restrictions. We introduce the
following notation to facilitate the induction proof.

Let vl be the slack variables associaied with the constraint corresponding
to the pair(t, |, when we have n cities in all. Recall that U{n) is the set of
sll 7, such that there exists X, such that (X, U} is feasible for Problem-2.
We have introduced n superseript for IF now. Let I™ be the vector of slack
variables (u;).

We have,

Z Ligh — 1 4 < k _"E» EES {3215)

Tee it k-1
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S mn+ = 1 1<i<j<3 (3.2.16)

k=d
i1 -1 o
3t — Y Tt D Tt ul =0 4<j<n-11<i<]
p==] PRI E=ij+1
(3.2.17)
i—1 n—1
= Erin = . T tul, =0 i=1,...,n—1
r=1 Fmi—1
(3.2.18)
Now consider the problem with the number of cities equal to n — 1, with

the first n — I cities. We have the corresponding equality constraints, after
itroducing ", the slack variables,

S oz =1 1<k<n—1
1 €3 = 7 < k-1
(3.2.19)
L
Pt ul =1 1<i<j<3 (3.2.20)
k=4
i-1 -1 n-1
—Zﬂ'}ﬂ'j—- E Tias T+ Z $£5k+ﬂ%_1=[} d<i€n-2;1<i<j
r=1 s=i—1 k=341
(3.2.21)
i—1 n—2 ’
“Emriﬂ”" E::I-‘m-i-u:;ll:ﬂ iﬁ11..,,?’1—2
=1 somgd ]
(3.2.22)

Compare these two sets of constraints, we notice that, given a non-negative
solution (X, £™) for the n— city problem, we have, (X/ (n—~1), I™"!} given
below is & non-negative solution te the problem with first (n — 1) cities:
Xi{n—1} = (Z123, .« s Tn-Sm-2n-1) {3.2.28)
Wil Wit ¥1<i<i<n—2 (3.2.24)

i7

Basis for Induction We firat prove that the result is true for n = 4. i.e.,
U(4) € SEP(4). We have uf; as the slack variables. From equations (3.2.15)
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» (32,18} we have the following

uy= 1=zl <i<j<3 (3.2.25)
i-1 3

Uy = Zmrié + Z Tig; 1 <1 X3 {3.2.26)
r=1 s=idl

Notice that all uf; are non-negative, Now we show that the degree constraints
are satisfied for all 4.

1=1:

T.I‘lig -+ 'ﬂ-%a + uff,i =1 —Fps T+ 1 — T34 + Troa + Lyoe = 2 (322?]

. Similarly checked for i = 2 and 3.
Cizd

Ui+ U3y + U8 = Biog + 2134 + Troa + Tass + Trze + Tzse =2 (3.2.28)

We have the following remark:

Remark 3.2.4 If degree constroints are satisfied for all v € V., then the
subtour efimination constroint (£.1.10} ts superfiuous for ol § with | § |>
[Vei2] + 1. When each node i2 of degree 2 and 2{E(S)) 2| 5 |, then every
VE S iz in o subtour and there can be no edges between 5 and V,\ 5. Hence
HE(S)) =] S | and x{E(Vo\S)) =] Vi\S |. Thus it suffices to check (£.1.10)
for either S or V, \ 5. subtour elimination constroints for S

From Remark (3.2.4) we see, it suffices to verify the subtour elimination
constraints, in cut form, for [ S| = 2,5 C V.
Let 4,4y, %5 De a permutation of (1, 2, 3},

u‘*{ﬁ{S):} = 2+ Emilinql fm‘ S = {'ig_,i-g} or 8= {'I:rg, 4} (3229]

Thus we have, u*(§{9)} > 2 as #;,,4 > 0. Hence for n = 4 we have the
result.
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Let us sssume U{n—1) © SEP{n—1) . Weshall show that i(rn) € SEP(n).
Since we are going to deal with value of cuts corresponding to subsets of V;,
hereon we assume symmetry of the notation of subscripts denoting the edges,
ie i = uy. We show that constraints

(S =z2vScVa
hold for the required nonempty proper subsets 5 of V,. l.e. Note | § | is
between 2 and | |V5|/2] + 1. Let
= S = (E(S)) (3.2.30)

rE S s
be the value of the cut corresponding to a subset %, given (X, L™) feasible
for the n — city problem, with U™ € U(n). We need to show that

>0 (3.2.31)

Without loss of generality let n € §, where § is the complement, of set S,
Define
P == {[i,j“m:jﬂ = D} (3-2;3?)

LBt-SE {fl,iz,.,.,i-m} ﬂﬁd S: {j],jﬂ,,..,jg,ﬂ}

Now consider U/"~! derived from U™ and X wsing equation {3.2.23) and
(3.2.24). We have by the feasibility of U1, U™! € U(n — 1. And by
induction hypothesis I/°~! € SEP{n ~ 1). Therefore we have,

m 14
Fl=3 Supl > 2 (3.2.33)
=1 a=]
We nead to show that
m i i
™ = 21 Dot U, > 2 (3.2.34)
= g==1] r—1
Take any point 4, € 5. We have
i
Zu:.ﬂ'n = z T‘E‘_’F‘a .l Z u::;.?l {3235)
ae=] ['iv'dn:'ﬁp [ir_ﬂ:nlgp
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if [iy, 5] € P then z;,4,, > 0 and

L. a-l o
Yige = Winda Lipgan
i 1a noo_ ta—1
otherwise U7, = U

Henge

i
Zuﬁj, = E 1-r_'.1. E Tipjan + Z uii‘.‘i‘a

=z lip jalEP [xr.:.l.]CF droda @ F

1...11. - z mtp:qn + Z xi,—_j‘.‘;}

i dq]EF [irda]EF

L
Z infe + Ui = Z 1‘3! E ':r"'"-r'” +

=1 'I-mjllEP [‘I-r,j't EP

Z Hw. + Z Tiign T Z Lipdanr

"-"r\]l 'EP [‘r)iq]EF [!—rﬂl]EP

Therefore,

Zu:;j ++ E: Iifiqn

[iedy EP

H[

1

=5“_l+z 57 Ziign 22

r=1 [i-r'(ilqnlE P

Henge 6 > 2 ¥ n.

We ean check that the degree constraints are satisfied, as follows:

{3.2.36)
(3.2.37}

(3.2.38)

(3.2.39)

(3.2.40)

(3.2.41)

(3.2.42)

If 8 is & singleton set, say S = {i}.1 # n, then v™(J(8)) = w*{d(i))is still
greater than equal to 2, as the preceding arguinents go through for m = 1,
the cardinality of 5. However, notice that for no i the strict inequality can

hold. as it will contradict the fact Z e = M
Igigf<in
Hence the theorem.
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23.3 Characterisation of integer optimal solu-
tions

lem=rng andl = {n-1)1/2. Let Abea{x] vector. gbealxl
vector of ones. Let {X°, ") be an optimal solution to PROBLEM -3. It has
‘been shown that if PROBLEM-3 has an integer optimal solution then we have
found an optimal tour of the STSP with distances ¢;. The following result
characterises integer optimal sohations to PROBLEM-3,

Theorem 3.3.1 PROBLEM - 3 has an integer optimal solution off the prob-
lem P{U*) has o feasible solution where

P
Th= U"
eh= 1
A0 (3.3.1)

where (X™ U™ is on ophimal solution to PROBLEM -3,and T {s the edge-tour
mcidence malriz,

" Proof :(If part) Suppose A is a feasible solution to P{L™), then since U'* is
optimal for PROBLEM -3 ¢ U* is a minimum.

Cage (1): A is an integer vector, TA ='U* = I/* ig the edge-tour incidence
vector corresponding to some tour t* or U* is an imteger vector.So U/* is
optimal for PROBLEM-3.Also no other feasible solution to P(I/*) exists.
Case(ti): A is a non-integer vector. Let & be the number of nonzero A;. We
have £ > -2, Let J = {j|A; > 0} and Ty be the submatrix corresponding to
the column indices in J and Ay is similarly defined. We have, Ty Ay = /%,
Therefore,

U =cTudy =Y (ct)) (3.3.2)

jed
where t; is the 7% column of 7',

CLAIM : c't; = ¢/ for all j € J,
Proof of the claim: e U* < ¢'t; for all j as I* is optimal for PROBLEM-3.If
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for some § € J,¢ U < £t, then from (3.3.2) there should exist a j € J such
that ¢ 7* > ¢'t; which contradicts the optimality of U*. Hence the claim.

" Therefote for gvery j € J, the corresponding tour ; is optimal for PROB-
LEM - 3, with objeciive function value e s,

[only if part] Suppose PROBLEM-3 has no integer optimal solution then we
. ghail show that P(L*} has no fessible solution.

- For every tour t with integer solution(X, U7} for PROBLEM-3, ¢ I/ » ¢ U”,
Now consider the system with
F={lw, w)T'w+ ew, > 0,0 w + w, < 0} (3.3.3)
-where T i3 the edge-tour incidence matrix as defined earlier.
CLAIM: F' # ¢ In fact w = ¢ and w, = —min, 14 €l = —¢'{f, where
Ur = {u|(X,U) is an integer solution to PRDBLEM-B}.

We require 7" w + ew, = 0 and [/*w + w, < (. Notice that columnns of T are
[l vectors from 4y, as they are edge-tour incidence vectors. Therefore we

require
(@) U +w. 20V €l (3.3.4)
cu >y = oty
By definition of w, the inequalities are met. We algo require
&) U etw, < 0 (3.3.5)
fele< —w, = min, g el =cU

This is from our supposition of non existence of integer optimal solutions to
PROBLEM-3. Therefore F £ . Hence the claim.

F# ¢ implies the alternate system
TA=1t
eh=1
fx 2 {]

has no solution from Farkas' lemma. The result follows. o
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Remark 3.3.1 The above theorem stmply states ; Let (X", U~) be an oplimal
whution for the PROBLEM-5. P({I*) is feasible implies that U* is a tour
or can be written as a conves combinalion of tewrs, which in furn implies
P € STSP{n). Hence en integer oplimal solution exists. Conversely, if
{X*,U*) is integer than P(U*) has a solution which is equal to A; = 1 for
T=U"

As defined in section-3.1 let 7., denote the et of all n-tours. Let 7, denote
the et of all n-tours in which edge [i, §] oceurs. Let F{I/*} denote the set of
wtours that are covered by 0% 1e.

F*) = {t¥ edge [i,5) in t, U5 > 0} (4.3.6)
= T~ U':'I_g'_lg!}it_‘jz-ﬂ T in (3.3.7)

We have the following theorem

Theorem 3.3.2 Lel E{(U") be the set of edges with U, > 0. Then
fG(U*) = (N, E(L*)) is non-Hamiltonian.

(bIF(L*") is empty.

{c)The problern P{U*)-ext:

FrLTL & Xe+ Xa,
suh Tat+IX, =0
e+ X;.,, =1
AZ0, X 20X, 210 (3.3.8)

has o wnigue soludion (A%, X5, X2, A" = 0, X = U* and X — 1 unth the

Lo
ohjective function value (n+ 1),

Proof: {a) == (b)
G(£*) is non Hamiltonian == every tour in 7, has at least one edge (i, 7]
with L', = 0. Therefore

FUY=Th— ) Tya=0. (3.3.9)

fid U h=0

52



38 required.

(b} = {c)
FII*) = ¢.We shall show that #{{*}-ext has the property that every feasible

solution (A, Xa, Xoo ), bhus A = 0.
Suppose not. Let there exdst a (A, X, Xa,) feasible for P{U/*)-ext with A # 0.
Say A > 0. Let ¢ be the corresponding tour with T; as edge-tour incidence
vector. Notice that at least for ane edge (i, j] in 7}, U = 0. Gtherwise this
would contradict nullity of F(£™). Therefore there exists an edge (i, §] in
haly=0
Now consider row r corresponding to [3, j].

(TA)r+Xe, = U5 =10 (3.3.10)
But (TA),>0as T isalor L matrix, x>0 gnd N> 0with T =1
Therefore LHS = 0 but the RHS = 0. Thus we get 4 contradiction, Hence
olr supposition is false. (¢} == (a)
Wehave X, = U7, A = 0 and X, = 1. Suppose there is a Hamiltonian

dreuit in G{E™) then let that tour be #; with T; as the edge-tour incidence
vector. Let A be the corresponding variable in P(L/*) -ext.

" Now consider \ given by

w0 GO
#7771 @ otherwise

where § = miny ) wm {USG} > 0and X, = U™ - 80 & X,, = 1—6. Now
(4, Xa, Xa,) 8o given above is feasible for P{U*Y-ext,

Now the objective function corresponding to feasible golution is
eX,+ X, = €U -0, +1-4¢
= n-—nf+l-p
(n+ 1} — &)
< wn+las #>0 (3.3.11}

contradicting the fact that the optimal objective funetion value is (n+ 1) for
Plt)-ext. Hence (¢) = (a}). O



Remark 3.3.2 Theorem 3.3.2 gives equivalent conditions for the graph G(L™)
io ke non-Homillonian. We wse this theorem to find a necessary and suffi-
dient condition fer any fensible solution to PROBLEM-3 to lie in STSP{n).

This condition is given in chapier-6.

3.4 M formulation for ATSF

Inthis section we give the M I formulation for the asymmetric traveling sales-
man problem, ATS P, and give some properties. The study on symmetric
traveling salesrnan polytopes can be extended to the asymmetric case.

The agymmetric traveling salesman problem is to find an optimal n-tour,
given ¢, 1 < i # § < n, with &; # ¢;:.Here we have & (n — 2} stage decision
problem, in which starting with a 2-tour (1, 2, 1), we decide inserting city %
Bt stage (b~ 23,3 < k < n. Analogous to the symmetric traveling salesman
problem we have A4,, which depends on the decisions made in preceding stage
k-2), 3<k<n.

[ 1 if in stage (k — 2) the decision I8 to insert k between i and j
Lifh = IEE?—"jgk“l
0 otherwise

We can define X similarlv as before:

Deflnition 8.4.1 Given X = (%193,...,%n-2p_10) € R a § or I vector,
¥l

ghere t = > (k—1)F,. We say X is o feesible decision vector in cose
k=3

Tigye = | then [ix, fi] € Ay, 3<k < n.

The 0-1 integer programming formulation is given below.
PROBLEM ASMI:

Minitmise i Z CiskTish

k=3 1<izj<k-1
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mubject to

3. Tge=1 I<k<n

1€igj<hk—1
n
a1l l<ifj=s2
k=4
i-l n
- 3 @t Y, T SO0
r=1,r#d k=j-1
-1 5
- X et 2 Tk S0
Fz=7 a7t ki 41
3<ji<n-Llgi<]
te—1
_E;Ei'm {_‘: 0
r=1
r—1
< 0

_“Zxﬂn
a=1
t=1,....,.n—1
Tijx =0orl l€i<j<k3<cksn

In matrix form we have

min E'.X
subject to
A o1l x° -2
ek
' 0

X U=

{3.4.1)
(3.4.2)

(3.4.3)

(3.4.4)

(3.4.5)

(3.4.5)

(3.4.7)

(3.4.8)

where £4% is the matrix corresponding to equality constraints and A% cor-

responds to inequality constrainta, We have the lollowing theorem:

Theorem 3.4.1 There is a 1-1 correspondence between n-tours and the in-

feger feasible solutions fo ASMI.
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¢M(n) = {XIESX = en.q, X 20} (3.4.9)
U (n) = (|0 = [ %2 ] ~ A%X > 0,X € ¢Y%(n)} {3.4.10)

Remark 3.4.1 Most of the results true for the STSP can be verified for the
ATSP.

s & computational exercise we computed extreme points of small ASM/
and DFJ polvtopes. The results are presented in Appendix-II.

3.5 Conclusions

“In this chapter we have studied properties of M/ and have shown that
Uin) © SEP{n) without explicitly giving a linear description of U{n). We
have briefly described the M7 formulation for the ATSP. We helieve the
sgymmetric formulation would also give interesting results.

A natural consequence of this werk would be to derive the linear deseription
of U{n) and study how it compares with the SEP(n). In the next chapter
we work out the linear description of 24{n) and prove it to be equivalent to
SEP(n).
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Chapter 4

Equivalence of SEP and M/

Padberg and Sung(1991}) give an snalytical comparison of different formu-
lations of the Asymmetric Traveling Salesman Problem. They obtain linear
descriptions of projected sets and compare with that of the DF.J formulation,
fn this chapter we apply the techniques described by them to obtain a linear
description of U{n) and show the linear description obtained is equivalent to
the SEF.

In section-4.1 we state the results we apply from Padberg and Sung{1991) to
work out the linear description of Z{n). In section 4.2 we obtain the linear
description of H(n).

4.1 Affine Transformations of Polyhedra

In this section we give results from Padberg and Sung(1991). There are
different ways of formulating a combinatorial optimisation problem. Let
4 and B be two formulations of a given problem that are stated in the
same space of variables and let P4 and Py be the respective polyhedra.
we goy formulation A is ‘better’ than formulation B f Pa © P, Different
formulations of a given problem can be stated in terms of different sets of
variables. Suppose, &7 is a formulation that models the same problem as A
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., but, in a higher dimensional space. Let Qg be the polyhedra defined by
G. Suppose we have an affine transformation T which maps integer{mixed-
integer) points of Qe onto integer{mixed-integer) points of P4. Formulation

' G is better than formulation A if T(Qg) C Pa, where T(Qg) is the image of

' Ze under the transformation T.

41.1 Properties of polyhedral cones

Aset © C B is called & cone if ©?,v% € € implies o' + dv® € € for all
scalers Ay, Ap > 0. A halfline{or ray) (v) is the set of points {de € R*|¥ A =
- 0}. A halfline (v} is called an extreme ray of €' if for any v',2? € C v =
M4 (1 — A)? with 0 < 4 < 1 implies that ¥*,v* are positive multiples of
v. A set of generators of ' is a set of halflines that spans . We can write
€ B3
C'={xe R Az > 0}

Define the lineality space L of €' to be the set of all vectors x such that » €
. and —z € C and is given hy

L={rcR)Az =10}
Define
L' = {yeRzy=0,Vz €L}
¢ = NIt

The following Lemma and theorem state a criterion for z € € to define an
extreme ray of

Lemma 4.1.1 Let C = {x € R Az > 0} be such that rank(4) = n and let
M denote the index set of all rows of A. (z) is an extreme roy of C if and
enlyif £ € C,z # 0 and there emisis I © M such thet (i)] I |= n~ 1, %)
gt =0 for alli € I and (i) the rows @ with 1 € I are linearly independent,

Theorem 4.1.1 Lei C = {zr € F™Az 2 0}, F = {z € " Az = 0} and
dim F =d. A helftine (x) is an extreme ray of C if end only if (i} x € C°
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“tmd (i) there exist eractly n — d — 1 lnearly independent rows a* of A such
that a'z = 0.

A solution of minimal suppoert 5 a nonzero solution with least number of
nonzero components to the solution satisfying the requirement (i) of theorem
411 We have the following remark:

Remark 4.1.1 A full generalor system for the conical part of ¢ cone U with
gim F = d can be oblained by determining for each system of n—d—1 linearly
independent rows of A a nonzern solution of minimal support o Ar > 0 that
ot in B provided it exists,

Ty find a full generator system for & we can work with smaller dimensional
eones. We have the following proposition which gives the ‘intersection prop-
erty’ of cones
Proposition 4.1.1 Let

Cy = {z' € RFlAsiz' 2 0}, C2 = {2’ € R7|4," > 0}

and Oy be the intersection cone of cones O and O, embedded naturally in

9, e,
Cs = {(z",2%) € RP*A,z" 2 0, Azz® 2 0}

Let B denote the generators of Ciji = 1,=2,3. Then
Rs = {{u,0) € B"u € R} HO,v) € RP¥w e Ro} -

4.1.2 Affine transformations of polyhedra

We consider affine transformations of full rank that map K™ nto R™ where
m < n. Given the linear description of a polyhedron £ C B® we are
interested in finding & linear description of the image of Z under a given
sfine transformation. Restrict the ‘feasible’ points in the image of Z to be
in some set ) C A™. Leat

r=f+1Lz {(4.1.1)
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be the affine transformation from A™ into A™,ie, f€ A™and Lisan mxn
matrix having full row rank. Partition L into I, and Ly such that L is an
m x m matrix of rank m that corresponds to the first m columns of L. Let

Ze={zc R"|Az =b, Dz < d} {4.1.2)
W = {z € Q|3 € Z such that ¢ = f + Lz} (4.1.3)

where A is a p x n matrix, D is a ¢ x n matrix, f € A™,Q C A™ is an
ahitrary set, L = (L1, L3) is an m x n matrix having full row rank and A
snd D are partitioned as A = (A, A;) and D = (D), Dy} according to the
partition of L. Define

¢ = {(u,v) € RP*u{dy - ALLT Lo} + v{Dy — D1 LT L) = 0,0 > 0}
(4.1.4)

W, = {z € Q|(uA + vD) LT ' < ub+ud + (A + vD LT f

Y (u,v) € C}
{4.1.5)

Theorem 4.1.2 W =W,

Corollary 4.1.1 Let

Z={ze R*Az=b,Dz<d,z =0}

where A is a p X n matrix and D is a ¢ X n matrix and let W be defined as
above, then W = W, where W, and C are as given below:

W, = {z € Q|{uA, +vD, —w)Li'z < ub+vd + (uA, +vD; - w)L'f
¥ (u,v,w) € C}

(4.1.6)
€ = {{w,v,w) € B |ufdy — A\ LT Ee) + w(D2 — D17 o) +
wLi'Ly = 0,0 2 0w > 0}

{4.1.7)

We can replace the requirement “for all {u,v) € C” by the requirement
“for all {u,v) in a generator system of C”. This way we get a finite set of
inequalities for W. '
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Psdberg and Sung compare three compact formulations, the MTZ, FGG
and Claus formulations of the asymmetric traveling salesman problem with
the DFJ formulation. Let Pu, Pr and Fr denote the projections of the
MTZ, FGG and Claus formulations respectively. We summarise results

below:

Result 4.1.1 (i) Pg. is a proper subset of Puy, where Pgy i3 the sublour
piytope redefined fo satisfy a modified sublour constraint.

(ti) The subtour polytope is o proper subset of Py

(ii$) Po 1 equivalent to the subtour polytope.

4.2 Linear Description of {/(n)

In this section we obtain the linear description of Z(n) by applying the
results discussed in the previous sections. Since the system of equations
which defines 1{n} is not a transformation of full rank, we define a polytope
0 {n)in R"‘;, m = 1'3:%“—”":*1, work out its linear description and then obtain
the linear description of L4(n) with the help of some more inequalities, Define

((n)={X € R™"|EX = [¢nq], AX < ’ Eﬂs } X >0} (4.2.8)
0

Un)={U|U = [ T l —AX >0, X el (n)} (4.2.9)

where E and A are the matrices of coefficients corresponding to equality con-
straints (3.2.2) and inequality constraints (3.2.3)-(3.2.4) respectively. Also
every integer point of ¢'(n) corresponds to a tour of the STSP(n). We say

’

U {n) is the linear transformation of ¢'(n).
The affine transformation which maps points in K™ to B is given by

U=f+LX (4.2.10)
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£3
{i
ad L= —A.

Partition L into [ Ly Iy ] stch that Ly is a m % m matrix of full rank m'
corresponding to the first m’ cohimns of L. We can write ¢4 {n) as

Um)={U e RV A X e{(n), such that U= [+ LX} (4.2.11)

snd A and F as A — [ﬁl A 1 aned £ ~ [ F DS 2N ] according to the
pattitioning of L.

Let p = (n — 3). The cone in consideration is given by

C={(v,w,2) € RF*™*™ | u(E — ELy Ly)

Ay = A L7 oY + 2L E, = 0w, z = ()
(4.2.12)

and the projected polytope is
We={Uet(n) | (B +wh 2L < [ 7 ] fu [ o J

A{uE +wA, — 2}V (v,w, 2} generators of €}
(4.2.13)

We have the following theorem which is a direct application of theorem 4.1.2,

Theorem 4.2.1

Hence to find the linear description of i (n) it suffices to find the description
of W,. The matrix £ = (Fy — By L{"'[s) is a p x {7, — m } matrix of rank
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(p— 1} with first row having 1l entries as +1. Also Ay — 4, L7 Ly = 0. Now
we have

(:’ — {(U, w) :} = HEP"-I—TH ‘T*m'i..ll-ug _|_ z;‘ig 2 ﬂ,wj z E G}
(4.2.14)
The vector (0, £*,0) where £° is a unit vector with 1 in the {* place generates

the space w > 0. By intersection property of the cones we cau work with the
smaller cone

¢ = {fv,z) € R**™)(B [ '”: } > 0} (4.2.15)

whera
v = (o, ._,?Jp) & z2={n2, 29, ..., Zn-2n-1) {4.2.16)
8 - [“g ‘fﬂ} (4.2.17)

The matrix B is of rank (p+wm ~ 1),
W, ean be simplified as follows:
LHS: (VB +wd, —~ )L
RHS: 5T w+ 22+ 218 + 2 — 214
(4.2.18}
for all generators of C.

To get a full generator system of £ and the linear description of W, it suffices
to find a generator system for €. We find extreme rays of ' by finding
solutions to all homogeneous equation systems corresponding to {p + m')
variables and {p + m' ~ 2) linearly independent rows of B. We have given
the solutions below: Define

v o= 0 (4.2.19)

Vpp] = —MNr, gm0 2 (4.2.20)
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where

be = {brpits-- 1 bprm)
Tnel — Tres; 1 S8 n—4 (4.2.21)

Trn—3 = Tp-d

“mbstituting the generators thus obtained, we get the linear description of
‘W, which is not minimal.

Lt § C Vn—l . Define

z; = 1; [§,§] € B(S) (4.2.22)
We can prove
F
St zmatzatzm=|5] -1 (4.2.23)
I=:2
Hence we get
S ou; i S| -1 (4.2.24)
[t.7]e&

which are precisely the subtour elimination constraints.

So far we have only considered the case when 2 <| 5 [<(n~-1),5 C Vo_..
We have not considered sets which inclade n. The subsets which include n
also satisfy the subtour eliminaticn eonstraints. Once we heve w;;’s deter-

mined for 1 <% < § < n ~ 1 we can see that u,, = 2 — Z ty; from
j=ilgign—1

the fact that degree constraints are satisfied.

Let § = {i11i2i - 1£k}$ & 5% = {jhj?;: e :jf}l£ = 1 because we need to
consider sets of cardinality less than or equal to {(rn—1), Now let §* = SU{n}.
We need to prove u(8{S)) > 2; ¥ .5,2<| 8 |[£n—1

Now by definition

P, :
w88 = -3 w4+ Y uim
=1

r=la=1
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k1 l k l
DD Uige D 2= D Ui, = Do U]
r=1s=1 s=1 r=1 p=1,p#s
3 l
= 2A-3 > U

s=1p=1pss

il

(4.2.25)

l

But Z i ujpj,::Z.u(E(Sc))

s=1p=1,p#s
and u(E(S°)) <l -1, by previous result. Hence
u(8(S)) = 20 —u(B(S%)
> 20-2(1-1)
> 2

Hence u(6(S)) > 2V S'. Thus we have shown that subtour elimination
constraints are gll satisfied for all strict subsets of V,,. The generators (0, £*, 0)
give rise to non negativity constraints.

Hence U(n) = SEP(n) Vn. a

We have explicitly worked out the generators for n = 6. We present these
results in Appendix-I.

4.3 Conclusions

In the previous chapter we showed U(n) is at least as tight as SEP(n).
In this chapter, we obtained the linear description of U(n) and showed its
equivalence to SEP(n).

We now have a quadratic constraint formulation of the ST'S P which is equiv-
alent to the exponential constraint formulation SEP. The advantage of this
formulation is that we can start with this formulation as well and add all the
facet defining inequalities to this constraint set. This would result in fewer
inequalities to obtain a complete description of STSP(n) for large n. We
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have computed extreme points of small SEP and M I polytopes. We present
these results in Chapter-6.

In the next chapter, we compare another compact formulation of the ST'SP,
called Cycle-shrink, which uses only polynomial number of constraints. We
compare this formulation with the M.
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Chapter 5

Equivalence of MT and CS
Formulations

In this chapter we cormpare two ‘compact’ formulations, the Multistage insertion{ A [ Jand
the Cycle-shrink (€5}, of the STSP. Formulations are ‘compact’ in the sense
that the number of constraints and variables is a polynomiel function of the
number of cities, n, in the problem. The Multistage insertion formulation
snd its properties were discussed in Chapters 3 and 4. Carr(1995,96) pro-
posed & new formulation called the Cycle-shrink(C'S} of the ST'5 P which was
polynomially sized. He showed the equivalence of SEF to the Cycle-shrink
formulation. In chapter 4 we showed the equivalence of the M T formulation
t0 SEP. The equivalence of M and €8 follow from the above statements.
In this chapter we directly show the equivalence of €S to M T without using
the regult that CS iz equivalent to SEP. In section-b.1 we state the OS5
formuiation, in section-5.2 we show the equivalence of the 'S formulation to

MI

5.1 The Cycle-Shrink Relaxation (C'5)

Cycle-shrink is a polynomial sized linear programming relaxation developed
by Carr{1595,96) that implies the validity of all the subtour elimination con-
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straints. The importance of Cycle-shrink lies in the way it is used to separate
naturally defined classes of TSP inequalities.

To formulate cycle-shrink, additional variables are used as follows. We have
Kn = (Va, E,) as the complete graph on n vertices. First, rename the edge
variables in the usual formulation of the T'SP as z0 for each e € E,. Arbi-
trarily label the vertices in V,, with the integers from 1 through n. Any such
labeling imposes a total ordering on the vertices, which is used in the cycle-
shrink formulation. Construct the family of graphs G; = (V;,E;) fori € V
such that G; is the subgraph of the complete graph K, which is induced by
the set V; of all those vertices whose labels are greater than 1. Then on each
graph Gi, create additional variables z for each e € E;.

Consider an incidence vector z° of a Hamiltonian cycle H°(z%) in K,,. Let
H'(z%) be the Hamiltonian cycle on G, formed by removing vertex 1 from
H°(z°) and linking the neighbors of 1 in H°(z°) with an edge. Let H*(z°)
be the Hamiltonian cycle on G; formed by removing vertex i from H*~(z°)
and linking the neighbors of ¢ in H*~'(z%) with an edge. The values that we
want the additional variables of cycle-shrink to have, given the values of z°,
can be determined by considering the family of Hamiltonian cycles 4.

Then the values that we want the additional variables of cycle-shrink to have
in order to represent the Hamiltonian cycle H? are as follows.

(z0]e € E,) is the incidence vector of H°.
(zile € Ei) is the incidence vector of H® for all i € {1,...,n — 3}.

A complete feasible solution  for cycle-shrink can thus be represented by
z:= (2% 2%,...,2"%) (6.1.1)

where for each 4 € {0,1,...,n — 3}, z* is a vector having a component for
each edge in G;.

Carr(1995,96) defines cycle-shrink relaxation to be the following linear pro-
gram:

PROBLEM CS: minimise Y, cex? (6.1.2)
ecEy,
subjectto 29> 0 e € E, (5.1.3)
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Yeespnete =2 ¥ie{0,...,n—3}VvjieW
(5.1.4)

zh > bt vie {0,...,n—3}; Ve e B,
{5.1.5)

Bycle-shrink is a valid relaxation of the TSP. Call the part of a feasible
gycle-shrink solution given by z* as the k-th level of this feasible solution.

5.1.1 Theorems About Cycle-Shrink

Theorem 5.1.1 [f &° is feasible for cycle-shrink, then x° sotisfies all the
mbtour elimination constraints

Theorem 5.1.2 The projection of the cycle-shrink polytope onto the space
of original variables is ezactly the sublour polytope.

The Cycle-shrink formulation has 7ny1 + (n + 3){n — 2}/2 constraints, not
counting non negativity restrictions while the number of variables ia 7,41 {all

no negative).

Carr{199%5,96) shows that the Cycle-shrink is a compact description of the
SEP.

Remark 5.1.1 We now have two formuletions, the MI and C'S of the
STSP which hove polynomial numnber of constraints and both the formu-
lntions are compact descriptions of the SEP. Therefore it would be very in-
teresting to compare these two formulations and check for their equivalence.
We do this in the next section.
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5.2 Equivalence of Multistage-insertion and
Cycle-shrink Formulations

In this section we show the equivalence of the Multistage-insertion and the
Cyele-shrink polytopes. We redefine the variables used in the Multistage-
fnsertion formulation to compare with the Cycle-shrink formulation.

Remerk 5.2.1 In the MT formulntion we begin with a 3-towr on {1,2,3,1)
and butld up the n tour by insertion of a node af each stage, in the C8 we
start with a n tour and then shrink fo o S-touwr (n — 2,n — 1,n}.

Let «f;% denote the value of the edge [i, J] at tha k™ stage 1 < ¢ < § < &
4 € k < n We start with the 3-city tour with udy = ufy = ul; = 1. The
decision vector is

U = (g, uls, uh, - ufy ™, un Tt ) {5.2.1}

Note that I and z defined by Cycle-shrink have the same dimension. In
chapter-2 we have defined wfy' = 4 + Zyn. To be consistent with the
potation of Cycle-shrink we redefine the relation as

Tijh = H:Fj-‘"I - 1%-_3;-4 Sk<n (5.2.2)

From equation (3.2.11) we have, }:{ eyt is equivalent to minimising
i fsn

n .

VY Cizign We can therefore reformulate PROBLEM - C'§ in terms

bmd 1267 k-1

oyl <li<n—3as
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PROBLEM CSMI:

iy 3
minimmse Y eyul

1<i<isn
subject to
z u:;._'s = k- '2; 4 E k i 7! {523}
1< h—1
uyt oz 01<i<f<3 (524}
L izt .
Sul+ Y W+ = Z1<i<f4gi<n (5.235)
r=1 a=irl
Now
ol S o SN s -
Sl Y w7l = Y
et a=it1 [i,kl€dti) (B,
where

E, = {li,kl|1<i<k<j}

Let &, = (V},E;) be defined for another ordering on vertices, as the graph
induced by set ¥, of all vertices whose labels are lesser than i. On each
gaph @ additional variables are created. H%(z?) is the Hamiltonian cycle on
K. Let H™(z%) be the Hamiltonian cycle formed by removing vertex n from
H'%2"% and linking neighbours of n in H*{z" with an edge. [teratively, H*(z")
is the Hamiltonian cycle on & formed by removing edge ¢ from (2%} and
linking neighbours of ¢ in F1(x") with an edge.

With this ordering we see that (5.2.5) is equivalent to constraint (5.1.3).
The non negativity constraints r;, = 0 give rise to
itz ult 1€ici<k4<k<n (5.2.6)

We can see that congtraint (5.2.6) is equivalent to {5.1.4). Hence we have the
Cyele-shrink formulation equivalent to the Multistage-insertion formulation.
O
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5.3 Conclusions

We have presented two compact descriptions of the STS P and proved their
squivalence. Both of them lmply walidity of the subtour elimination con-
giraints, Based on €S a polynomial time separation algorithm is described
for & class of valid inequalities for STSP{n). Alternatively one may use MJ
to also separate over classes of inequalities in pelynomial time. These algo-
tthms can give useful hints to develop efficient heuristic algorithms to solve
the I'S$F. We address these problems for future research.

72



Chapter 6

On Small Polytopes

!
:

The study of polytopes in Combinatorial Optimisation is a very challeng-
ing problem. Over the years researchers have been trying to find complete
descriptions for CO polytopes.

The symunetric traveling salesman polytope, STSP(n), is one of the most
interesting and complex combinaterial optimisation polytope. Finding com-
plete description of STSP(n} for moderately sized n itself has been a ma-
jor challenge. Norman{1985), in an abstract announced that, for n < 7,
§TSP{n) is completely determined by degree, non negativity, subtour elimn-
{nation and comb constraints. However, Boyd and Cunningham{1991} show
that this is not true for n = 7. They give the example of a point which satisfies
comb inequalities but does not lie in ST SP(7). They introduce the biparti-
tion inequalities for STSP{n) and give a complete description of STSP(7)
using non negativity, degree, subtour elimination, comb and envelope in-
equalities which are 3437 in number. Christof, Jinger and Reinelt{1991) give
& complete description of STSP(8). They characterise STSP(8) in terms
of 184187 inequalities belonging to 24 classes, three of which are unknown.
Christof and Reinelt{1996) completely describe STSP(9) with 42104442(192
classes} and give a possibly incomplete set of 51043900866 inequalities in
15379 classes for STSP(10). Statistics of facet structure of STSP(n) for
n < 10 are given in Table 6.1.1
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| No. of tours | No. of different facets | No. of facet classes

3 1 -0 0

{ 3 3 i

B 12 20 2

B 60 10 4

T 360 3437 6

{8 2520 194187 24
9 20160 42,104,442 192 {

10 181,440 = 51,043,900 366 15,379

Table 6.1.1 : Facet structure of ST'SP{n)

Enler and Verge(1995) obtain complete descriptions of small assymetric trav-
ding salesman polytopes. They use a refined version of Chernikova’s algo-
rithm to determine a complete and irredundant description of small assym-
metric polytopes. The motivation for their work is the belief that study of
amall polytopes would lead to better deseription of the general asymmetric
treveling salesman problem and better cutting plane methods. Boyd and
Cunhingham(1991) suggest considering explicitly computing the facets of
§T5P{n). The above mentioned papers motivated us to study small poly-
topes of SEP and M7, by explicitly computing their extreme points and
studying the structure of the extreme points.

In this chapter we present results on the structure of extreme points of
§EP(n},n € 7 and MI(n),n < 6 . We also give a necessary and sufficient
condition for an extreme point of the M{ pelytope to lie within STSP(n)
by characterising Hamiltonian cycles. This is done in Section 6.1, In Section
6.2 we give a method to obtain cutting planes to eliminate fractional extreme
points. The computational results are presented in Section 6.3.

8.1 Characterising Hamiltonian Cycles

In thig section we give certain characterisations of Hamiltonian cycles. We
use these to give a necessary and sufficient condition for a feasible solution
to the MI problem to lie in STSP(n).
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fiven a Hamiltonian graph, we give a necessary and sufficient condition for a
qub-graph of the graph, which satisfies certain conditions to be Hamiltonian

in the following thecrem.

Theorem 6.1.1 Let &' = (V' E )L,V = {w,...,uy}. Consider the graph

£={V.E) where '
V=V Uty o ta}

E=F s vals o fono, ]l U {fo, v}

[oov o]
n

Then G is Hamiltontan iff & is Hamiltonian.

" Proof ; Suppose G is Hamiltonian. Then we show that &' is also Hamiltonian,
Let # in G be a Hamiltonian cycle. H should cover all nodes in V' and
{tictr---+Vn}. The only way H can cover all the nodes in V — V' is by the

path (4,1, ..., s). Also [u,v,,,] is the only edge connecting v, ,, to V',

Construct a path (wy,...,w_) of nodes in V" as part of H such that w =
1y & wy = v for such v such that [vs,v] € E. The path (w,, ..., w,. ) with
,ty] i a Hamiltonian eycle in G'. Hence G is Hamiltonian.

- Now suppose & is Hamiltonian == there exists a Hamiltonian cycle H =
(W, .., Wy, w )} of nodesin V', Let w; = v, [wyn,w] & [un, wip,] are edges
inH'. Include the path (v ,,,. .., u.)along with the edges [u,, v, 1] & [tn, 1]
to H'. This gives a Hamiltonian cycle in (. Hence & is Hamiltonian. O

Let H, be the set of all Hamiltonian cycles of K,, the complete graph with
nvertices, Let z° be the average of all £ for H € H,,. As there are (n - 2)!
Hamiltomian cycles with an edge comimon to all of them and the sum over
all H of any coordinate of 2 = {n — 2}!, we have

a 2 - I 2
17 = T = e—
(n— 1} H:L%“ m—1"

where p is a vector of ones. We have the following Lemma:
Lemma 6.1.1 || z° — 27 ||== “ ¥ H eH,
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' We know the slack variables [/ of the M [ problem are the edge-tour incidence
vectors. Now consider a [ optimal to the MT problem but not integer. If
[fe STSP{n) then

Jed
la° -l = N3 ae™ —a|f (6.1.2)
2 Hi n(n - 3}
_— . — R { fif =4 ‘ .
I EZJAJJ: [Epvas (6.1.3)

Bowgver if (lz% - Ul < we cannot conclude that U € STSP(n) as
flustrated in the following example.

Example 6.1.1 Congider the graph G = (V, E), where V' = {1,2,...,12}

Consider the solution IV given by

{ 2/3 [ui] = [1,2],[2,3],[3,4],5,6].06,7],[1,5],[2,7],[4,8],[7,8],[8,9],[1,9),[4,%]
=14 13 [i,i] = [3,10],[3,12],[6,10],[6,12],[8,10],[9,12)
1 i) = [10,11] & [11,12]

ssgiven in Figure 6.1.1. From Thecrem 6.1.1 we have G is not Hamiltonian as

it is got by adding vertices 11 and 12 and edges [3,12], [6, 12], [9,12],[10,11], & i11,12]
tothe Petersen’s graph which is known to be non Hamiltonian, n =12 & 3w, = 12,1
i optimal for M. We have,

2 u.
z° = T ﬂ'L—n_—-f—] =3.13

lz° — U|| = 2.0730 < 3.13

Hence we have the example of a point for which ||2° — U|] < but
Ve STSP(n).
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Figure : 8.1.1 : Support graph for the ezample described in Exemple 6.1.1

Arthanari{1981} proposed the d™ norin to check whether a point lies in
STSP{n) or not. Given a feasible U for the M problem and & H € #,

define
{Pa{{fr? H) - mﬂ-i‘ligﬂ n:{ﬂ'.z—l | {"Lﬂ-g - :Iij) | {6-1.4]

We have the following
Theorem 6.1.2 U € STSP(n) iff miny oy d=(U, H) < 1.

Proof: If ming 9, d°°(U, H) < 1 then for some H* we have
d2UHY =¢e< 1 (6.1.5)
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= ¥ esuch that 2" = 1,u, > 0 otherwise
>, H*) =1

‘Therefore edge set of H* is a subset of Lthe edges with u, > 0 .Hence,by
Theorem 3.3.2 G is Hamiltonian. Also Ve such that ¢, = 1, 25" = 1 otherwize

U HY) = 1,
Let # be #{e | u. = 1}. The set of remaining {n — r) edges have 0 < u, < 1.

f G is Hamiltonian we have I € conv{z" | H € H,}. Therefore there exists
g HS € H, such that
U= e 0en<1, 30 =1
=1

We shall show that there exists H with d™=(U, If} < 1. Consider
d¥(U ) = moze | w. —

0]
= maz. | > Mzl — ¥ |
2

= UL, | ZAI(J;:H“} - :E-'f) |
i

Let H = H%) for some I,,1 €1, < s.
Define

& = g7 - g (6.1.6)
We have
de = 0 ¥ e (6.1.7)
4=, HY = maz. ! Z Mt | (6.1.8)
{3dl #0
Also ! !
(zFY — ¥y 0= dl 41 (6.1.9)
Therefore

d(U H)=maz. | D, M~ Y. Ml<]

2di=1 izdh=—1

Therefore min d*(U, H) < 1 Hence G'is Hamiltonian iff ming gy d%(U, H) <
1. ' ' O
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Remark 6.1.1 {7 is infeger, then we have U = H* for some Homiltonian
cyele H*. Hence, d=(U, H*) = 0 —» ming, g 4L H) = 0 < L

We apply the sbove norm to find out whether a given set of extreme points
t the MI problem le in STSP{n) or not. The computational results for
smell polytopes are given in Section-6.3.

6.2 Neighbourhoods of extreme points

Let P be a polytope defined by the set of inequalities Dz < 4, where D
Bapxg, p= g matrix and € A% P i3 either the SEP{n),n < 7 or
MI(r],n < 6 polytope in our study. P has both integer and fractionsl
extreme points. Let = = {z, 5}, where ¢ corresponds to the slack variables.
We have C'z = d as the defining system of equations now. Let z* = (2%, 5*)
be 5 fractional extreme point of . Let B be the basis, which consists of
linearly independent columns of ¢, which corresponds to z*, i.e,

wh = B 'd

where N iz the sct of basie variables. Let R be the set of non-basic variables.
We define a neighbourhood, N(z", R}, of z* with respect to R, to consist of
the extreme points obtained from z* by the insertion of a non-hasic variable
belonging to A, and followerd by the removal of a basic variable in & by the
minimum ratio method, as in case of the simplex algorithm. I[n case of the
SEP polytope the set R has cardinality ﬁ%ﬁl, which is polynomial. Let
Np(z*) = {y*|y" I8 & neighbour of £*} be the st of neighbours of z*. Due to
the high degeneracy of the TSP polytope, Ng(z®, B} may not be the same
83 Ng{z*). Let Iy, (2*) © Np(z*) be the set of integer elements of Ng{z*).
Since integer extremne points of SEP and MU are tours, v, (2"} consists of
tours if P is SEP or M. Let Ty, be the tour-defining variable incidence
matrix. The defining variable being z;; in case of SEFP and z;; in ease of
M. Consider the systein of inequalities defined below

f > 0fchRe (6.2.1)



Ifa feasible solution f exists to the above system of inequalities, then the
(mequelity fz < A 18 a cufting plane which cuts off the fractional point 2*
‘and has the integer neighbours of * lying on it{ ensure feasible f is such that
-l integer extreme points satisfy fz < A} Add fz < A Lo the defining set of
‘nequalities of P and compute optinal solutions. We illustrate this method
for SEP(6), SEP(7) and M I{6) in the next section. We have not worked out
neighbours of extreme points for SEP{n); n > 7. We are currently working
on whether we can give an iterative method to give sharper cutting planes to
cut off fractional points. Since the size of the neighbourhoods of SEP would
~ be polynomial we hope some efficient local search method can be developed.

6.2.1 Neighbourhood graphs

The neighbourhood graph ['(n)} is defined to have vertex set formed by all
tows of K. A tour T is adjacent to a tour T if they belong to the same
peighbourhood N(z*, R} for some z* and R. Clearly, T} is adjacent to Ty if
and only if T, is adjacent to T1. Let dist{T),T5) be the distance from T to
Ty, which is defined to be the length of the shortest path from 73 to Ty. The
diameter of the I'{n) is the least positive integer & such that the distance from
a vertex to another vertex in I'{n) does not exceed d. The above quantities
can be computed given the cxtreme points and neighbouwrhoods. We are
cwrently working on small locally searchable neighbourhoods of TSP, We
refer the reader to Gutin{1997) for work on small neighbourhoods of TSF.

6.3 Computational Results

We give here computational resmilts on small polytopes. The complete stric-
ture of small SEP and M1 has been given. This gives a better understanding

of the polytopes.
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§3.1 New Inequalities for MJ

We introduce some new inequalities for the M formulation. Consider 1 <
1<j<k—25<k<n Wehave the following

Tiik-1 T Tijhe <1 1< < 3 <hk-—2 (513,1]

If #i6-1 = 1, then we have pairs [,k — 1] and (4, & — 1] formed, so that, the
other pairs L,k — 1],1 <{ < k—2,{ # 4,7 are not available for insertion of
k. Hence we hawe the inequality
k—2
Tgpo1+ T+ 9. Tik-1e S B<k<nlSi<i<k-2 (632
=114,

We refer to these inequalities as l{ -inequalities, as they eliminate fractional
extreme points of M 7. We illustrate how U p-inequalities eliminates fractional
axtreme points of MI(5) and MI{6} in this section. Arthanari{1997) gives
more inequalities for the M7 problem. We refer to his paper for details.

6.3.2 b city polvtopes

In this section we compare the SEP(5) and MI(5) polytopes. It is well
known that SEP(5) = STSP(5). From the equivalence of SEP and M/,
it naturally follows that M1 = STSP. We verified that M I(5) completely
describes STSP(5). The data matrices and extreme points are given in
Appendix-I1. We summarise results in Table : 6.3.1.

We computed miny 4y d*(U, H) for the fractional extreme points of M I(5),
we see ming 4y d=(U/, H) < 1 lor all U, hence all the extreme points
lie within STSP(n). Hence STSP(5) is completely described using either
SEP(E) or MI(5).

\ Formulation | # constraints | # Extreme points | # Fractional Extreme points
| SEP 15 13 0
i MI R 18 6

Table 6.3.1 : Extreme points of the 3-city polytopes
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Notice that even though MI{5) completely describes STSF(5), it has some
factional extreme points. Even though these fractional points le within
$TSP(n), eliminating them to get only integer optimal solutions for MI(5)
belps to understand the structure of MJ. To achieve this, we worked out
neighbours of a fractional extrerne point. The results are presented in the
Appendix. Applying the Neighbourhood method discussed in Section-6.2,

we obtain the following inequalities.

Z124 + Tios + Baes S 1 (6.3.3)
T1aa + Lias + Foas = 1 (6.3.4)
Taae T Toug + Tras = 1 (6.3.5)

We see that these are equivalent to I ;-inequalities. These inequalities are
sufficient to climinate the fractional extreme points of MI{5} and get only
integer extreme points. These integer optimal solutions correspond to the

tours.

6.3.3 © city polytopes

In this section we study six-city polytopes.

SEP(6) and its structure

The data matrix and the number of extreme points are given in Appendix.
Number of extreme points: There are 120 extreme points of the polytope. Of
this 60 points are integer which correspond to tours of STSP({6) while other
B0 are fractional. We label the tours as T3, . .., Ty and the fractional points
as NIP, ..., NIF;y.

Structure of any noninteger extreme point of SEP(6)

Let P = {i1,42,%3,44,%5,15} be a permutation of {1,...,6}. Total number
of circular permutations possible s equal to &?H.The non-integer extreme
point, corresponding to P, has the following support matrix.

1 [15] = [£1, 44, (32, %3], [#5, %]

1!2 g1!.]] = [{'l:ﬁE]![ﬁSJiJ]:[idsiﬁ]:[‘iﬂJ i'l]v [IZI'ZJ iﬁé1[i3:i5]
Ty =
0 otherwise
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iE i

Fig :6.5.1; Structure of a non-integer extreme point of SEP(6)

Substituting ¢, = k, for all &k = 1,...,6 in the permutation P, we see that
we get the non-integer point NIFg,. Similarly the structure of all the non-
integer extreme points can be obtained for all permutations P, § = 1,60,
Elimination of non-integer points

Using the Neighbourhood method, we computed neighbours of all fractional
extreme points of SEP(6). Each fractionel extreme point has 9-integer neigh-
bours. The cutting planes are found out. Interestingly, the cufting planes
obtained thus are equivalent to the comb-inequalities. The neighbours of the
fractional point in Fig:6.3.1 is worked out and they are described in Fig:6.3.2.

W g i1 da i1 iy LT Y i1 i3 LT
iqDO' -. PERT : ht-) id ': P}; g ’ : bea id }i: }iu iw&a
b1 [ e ig ig iy 13 14 ig " in L7

e Ty Ty Tia Ty T
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g :6.9.8: Neighbours of the non-integer point given tn Fig:p.9.1

The tours T3,,...,T;, are obtained by a non-basic edge entering the basis
whereas tours Ti,, Ty & T, are obtained by allowing the non-basic slack
variables to enter the basis.

The computational results are given in the Appendix.

6.3.4 MI(6) and its structure

The data matrix and the extreme poinfs are given in the appendix. We
have 666 extreme points of MI(6). We computed min,, g (U, H) for
all these extreme points. On adding I r-inequalities we get 80-fractional
points which lie cutside STSP{n). To these fractional points we apply the
Neighbourhood-meihod and find owt cutting planes. The results are given
in the Appendix. The results are summarised below,

No. of constraints | No. of Extreme Points | Points outside ST.SP(6)
13 666 72
13 + 9,
inequalities 300 60
1349+
45 Inequalities
by Neighbourhood-method - 702 None

Remark 6.3.1 The number of extreme points tncrease on addition of the 45
inequalities. However, the new exfreme points that are ereated are such that
their corresponding If € STSP{n). Hence, an increase in number of extreme
points of MI does not tmply that new points outside STSP(n) are created.
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35 SEP(7)

[EP(7} is defined by a set of 63 inequalities. There are 4140 extreme points
'which 360 are integer which correspond to tours of STSP(7) and 3780
metionel. The fractional extreme points can be classified into two classes
Mend F72. The structure of extreme points belonging to the above classes
given below. Any extrere point can be classified into one of these classes.

in i

Fig: 6.3.9. Support graph of an cxfreme point in FT1, The edges with weight
1 are depicted. The other edges have weight (.5

Structure of fractional extreme points in £7]

Let Pro = {11, %, 4s, %4, b5, %, i} be a permutation of {1, ..., 7}. The fractional
gxtreme point corresponding to P, has the following support matrix. ()
denotes weight on edgeli, j]).
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lfrz [11'.]] = [t:l!3‘9]?{3.3:-'54]![!:4?3:5]![%!il]* [?:2,‘?:3],[’1-3,'!:5]
E-,,J = 1 [1,‘]] E[?&,ial,[ih iﬁl,[‘él,iﬂr],{ia,iﬂ (ﬁ.gﬁ}
| 0 otherwise

Note this extreme point has the vertex ¢; introduced between vertices 4, and
& of the fractional point of SEP(6) described in Fig: 6.3.1. Every such
fractional point of SE(6) gives rise to 3 fractional points of SEP{T). The
six vertices can be chosen in 7o, ways | hence the iotal number of fractional
points belonging to F71 = 7o, x 60 x 3 = 1260.

Structure of fractional extremne points in F72
The fractional pointg in F'72 have the following support matrix.

1 i3] =[82, ta),lé5, 4a], (4, 17

{ ]-.f‘l2 [1;.” - [ilriﬂ]ﬂlz‘%'iﬁ]iilv'i’ﬂ]:[ihi-ﬂ-]! [il:i?]v[i'-'i:iﬂ]:[iﬁri?hi":&:iﬁ]
L =
0 otherwise

i7 1 f4

T i;g

g El

Fig 6.3.4 : Support graph of extreme point in the class 72, the edges [, 4],
[ly,%2] and [is,1s) have weights I, whercas the remaining edyes in the figure

have weight 0.5

The points 41,42, tq form a triangle. These can be chosen in 7y, ways, the
other vertices can be arranged in 4‘2-'» ways. Hence | F'72 |= 2520

The neighbours of the extreme point described above are calculated by the

&6



geighbourhood method and the cutting plane is found. They are given in
the Appendix. We depict this Is Figure 6.3.5.

jia, f-ﬁ] T' [i-fh EEFJ
IE:S, E4I .J, [31 . '34‘]

sfmzk T Slack T sfﬂck T alﬂ.ck
[E2:1‘3] 'I-' [2'1:?’2] ‘J' [31112] l‘ [1'1:14]

Frg o 6.5.5 :The Neighbours of an extreme potnt in F'72. The point in the
cesttre s the extreme poinf. The integer neighbours are given above and
below the point |, whereas, the fractional neighbours are adjacent to if. Here
denotes the edge entering the basis and | denotes the edge leaving the hasis.

The cutting plane generated by the neighbourhood-method for the point is
I’I'-'L'iz + m‘igiﬁ + x'i]_ia. + $i1i7’ + $'I']_i.qh + xi‘_i? + mi&'iﬂ + :E'I'-g'is E 5

This inequality has all the integer-neighbours lying on it and cuts off the
fractional neighbours.

Remark 6.3.2 The abaveinequaiity corresponds to the comb ineguality given

8Y




WH = {h, b, Ty = {00, %),Te = {h, i} & Ty = {i,4)

Equation 6.3.7 cuts off the point defined by the following support matrix.

1 ) =lia, i, [4s, 6], (24, 4]

{ 1."'?-' [1:.]] = [f’h 'ﬁa]v[iﬂsiﬁ]![ili "-"Iﬁ]*[i'l!n]: Iilai’r]:[i-h '?;5];['?:313:’?]:['531 '35]
Ty =
j { otheruise

Remark 6.3.3 Ineguolity 6.2.7 culs off the fractional point descrited in
6.3.6 also. Eoch cutting plane obtained thus cuts off 3 fractivral points.
Hence the total number of cutting planes infroduced by the above method

= 1260.

Remark 6.3.4 The cutiing planes introduced above are effective in cutting
off the fractional points of M I, but some of the eristing fractional points have
become extremne points. Perhaps this 15 because we have fractional points as
neighbours., The comb inequalities are not sufficient for a cornplete descrip-
tion of SEP{7). The example Boyd and Cunningham(1921) give to introduce
envelope inequolities is a convex combination of an extreme point from K72
and a tour. We are working on whether an effective locel search method can
be developed to give sharper cuts.

6.4 Conclusions

We have presented results on small polytopes. As mentioned earlier, we
believe this would help to develop better heuristics to solve TSP, We are
working on whether the neighbourhood method could be used to develop &
branch and bound algorithm to solve TSP,

B8



Chapter 7
Conclusions |

This thesis concentrates on the M formulation for the symmetric traveling
saleaman problem though it briefly introduces the M7 formulation for the
ssymmetric traveling sslesman problemn. As an extension of this work we
would like to work out similar results for the asymmetric case and study how
it compares with the DFJ formulation.

The Multistage-insertion formulation {MI) was shown to be a polynomial
sized formulation which implies validity of the subtour elimination constraints.
We also showed the equivalence of this formulation to the Cycle-shrink (C5)

formudation.

Carr(1996) used the Cycle-shrink to separate over classes of inequalities and
developed a polynomial separation technique. We are working on how the
Multistage-insertion could be used for separation. We are working on how
the M7 can be used to separate over more general classes of inequalities,
The question whether all comb inequalities can be separated in polynomial
time remains open, We address these questions in our future research.

Kipp Martin{1991) uses separation algorithms to generate mixed-integer re-
formulations. We are working on whether we can have a mixed-integer re-
formulation for the subtour elimination polytope and how it compares with
U(n}, This paper suggests several open questions: Does there exist a poly-
nomial size LP formulation for any problem that can be solved in polynomial
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time? For example, a polynomial size description of the matching polytope
i5 unknown. Can the M7 be helpful in expressing the matching polytope
with & polynomisal size linear program?

We also plan to extend our work on small polytopes and see whether we can
obtain complete descriptions of 5757 using M formuiation.
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APPENDIX-I

In this Appendix, we illusirate the method of finding a linear desciption for

H(n) for n
X

3 LABGy - -
3

10 & p

= f.

I

(128, %139, T238, - - -

s = 15, m

The matrix
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and

- -
Uy th U3 Zyz 23 A3 g ¢ B A5 Fs sy s
1 10 1 0 O O O O -1 -1 0 0
1 1 ¢ 0 1 0 0 ¢ @ -1 0 -1 0
11+ ¢ o 1 ¢ 0O O O -1 -1 0
B=31 1 0 0 0 0 1 6 0 -1 0 ¢ -1
1 1 ¢ ¢ 0o O ¢ 1 O O -1 0 -1
1+ ¢ 0 ¢4 ¢ O 0 1 0 0 -1 -1
1 ¢ 1 1 0 0O -2 -1 0 O O D D
101 0 1 0 -1 0 -1 D 0O 0 O
101 0 0 1 0 -1-10 0 0 0]

- Generators of

(i) (0,£,0) give rise to non negativity constraint,
(ﬁj Define v, =0.

Let Pi = {a;]ey = 1} Let Iy = {22,213, 2 }; Fo = {14, 220, 204 JEF2 =
{#15, 228, 215, Zan}

The LHS for the linear inequalities is given by ST ug. We now list
[id] = 256

the varions options available for vy & vy given distribution of elements of P,

snd the RHS of the inequalities. '
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We see for the above choice of generators we get all the subtour elimination
constramts for sets S C V3. Since the variables wu;; satisfy degree constraints
we can conclude SEP constraints are satisfled for $ C Vg 2 <5 |<5
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APPENDIX-II

Pinding extreme points of a polytope and facet enumeration problems are
very challenging problems. The double-description method is & most com-
monly used algorithm to compute extreme points. Euler and Verge(1995)
sz a refined version of Chenikova’s (1965) algorithm to compute extreme
points of the five city asymmetric symmetric traveling salesman problem. In
this dissertation we used the algorithm given in Arthanari{1981) to compute
the extreme points of the polytope.

We now give the algorithmn we have used to compute extretne points of
the polytopes. Using this algorithm we determine all the extreme points
of SEP{5), SEFP{6}, SEP(T), MI{5) & MI(6). Programs in Fortran were
written to find the extreme points of a system of linear equations unsing the
algorithm and computing neighbours of extreme points and cutting planes
using the neighbourhood method discussed in Section 6.4.

Algorithm to find all extreme points of a system of linear equations
We consider the problem of finding all the extreme points of

paLs

V 0
W 0

Vol

Let C = {W\ D = 0,W = 0}. Consider the matrix (I',I'). The algo-
rithm produces a series of transformations of this matrix that generates the
required extreme points of the cone of nonnegative solutions of the given
system of equations.Let ¢ denote the matrix that is transformed at any
stage of the computation and & the resulting matrix. @ is partitioned info
(U L'%Q = (U, L) Initielly U' = 5" and L' = I,
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Algorithm -1

Step 0 If all rows of the matrix U are zeroes then the matrix L gives the ex-
ireme vectors of the cone of nonnegative solutions of the system of equations.
(therwise go to Step L.

Step 1: If & row of I has neither zeroes nor any sign change then W=10is
the only solution to the system. Otherwise go to Step 2.

Step 2: Consider row r for processing. Let R = {7 \ gy = 0}. Let v be the
mumber of elements of R. The first » columns of the new matrix ¢ are qy for
i € R, where gy denctes the j* column of @. Go to Step 2.

Step 2 - If @ hes only two columns and gng.2 < 0, adjoin the column
| g2 | 91+ | grt | Ga to the matrix Q. Go to Step 4. Othersiwe go to Step 3.

Let 5= {(8,2)\ Grsre < 0,8 < £}

Step 8 Let F{s,8) = {i\i € L g = ¢ = 0}, for an (s,2} € 5, where L also
denotes the set of indices of the rows in L namely {m+1,...,m+n+ 1}.

1. If I{s,t) = ¢ then g. and q, 4o not contribute a column to matrix Q. Go
to Step 4.

2. If I{s,t) # ¢, check for a u not equal to s or ¢ such that ¢, = 0 for all
i € I(s,1). If such a 4 exists, then qa, gy do not contribute & column to the
matrix . Go to Step 4. Otherwise, choose o =| gve |22 =| ¢ |. Adjoin
the column cqa + c2qe to the matrix Q.

Step 4: When all pairs in S have been examined and the additional columns(if
any) have been added, we say Row r has been processed. Now if § = ¢,
stop; W = 0 is the only solution to the system. Otherwise, let @ = @ go to
Step 0.
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} is given in Table:Al. The ex-

Table: A2,

The constraint matrix for SEP(b

Table:A2: Extreme points of SEP(S)
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treme points of this polytope are given in

5-city polytopes

SEP(5):

We note that all the extreme points are integer extreme points which corre-



gpoud to the tours of the STEP(5).

MI{6): The constraint matrix is given in Table :A3, There are 8 rows in the
eobgheaint matrix. The sxtreme points of MF(3) are given in Tubla : A4,
The neighbonra were caledlated for the extremse point 13 nsing neighbouchood
method. They are given in Table : A5, The cutting planes obtained for this
poloc by neighbourhood method is given in Table:AG. Birnilarly we can work
out inequalities for the other fractional polnts slao, We see they are same as
Iy inequelities.

dasd  T1z4 D24 Tugs To5s “ 51:7"!3& T146 Lok  Lag b[::ﬁ!-:
1 1 1 £ 0 a ¥ [ 0 1
i LH 1 1 L 1 1 1 1 1
1 0 ] 1 a 4] a a 0 1
i 1 o 0 1 D 0 4] D 1
0 0 1 0 (} 1 0 1) o .1
-1 -1 { b 4] D 1 0 ] {1
-1 0 -1 f { 0 i 1 y 0
0 1 -1 0 & 0 & 0 1|0

Table : A3: Constralnt mateix for MI(5)
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[ - 104 | F13¢ | Tasd | Pign | Tias | Tass | Fies | Hap [ Laas
Fuoint 0 ToAR AR T 0 05|06 0 0
Nelghbourl | 0 | 0 1 1] 0] 0 Do | o
Neighbour2 | O ] 1 ! 1 0 H 0 i
Neighbowrd | O ¥ 1 0 0 { 0 1 0
Nelghbourd ' 11 O 1 G ;0 0 0 0 1l
Nedghbours | () 1 0 d 0 0 1 ( o
Neighbouri | 0 ' 1 0 0 D L 0 0 Q
Nelghbour? | 0.6 | 0 | 05| O ¢ (06|05 O 0

Thble : A5 : Keighbours of extreme point 13 of MI{5)

|Eﬂ5f1_ Bt Fia | Tese | Taes | Fumg | Toue | :;‘Lq.ﬁ Tgs ’_Lt“m
| G o Lo & T LT oo

Tuble : Af : Cutting plane for the extreme point 13 of AT {5

f-clty Polytopes

§EF{6): The constraint matrix for SEP6) ia given in Table:A7. There
&re 31 rows. There are 120 extrems points for this polytope. There are 80
infeger extreme points which correspond to the 60 tours and 60 fractional
extreme points. The integer extreme points are given in Table: Afs and the
bractional extreme points are glven in Tahle: ASD.
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Table: A8b:Extreme points of SEP({6) : Non-integer points

For the fractional extreme point described in Section-6.4, we comnpute neigh-
bours by the neighbourhood method, Table: AD gives all the neighbours.
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Table: A9 : Neighbours of non-integer poing

We see all the neighbours are integer or tours. We compute cutting planes
using the peighbourhood-method. There are two solutions. They are given
in Table: AlQ,

Table : AlQ : The cutting plane for removing Extreme poink

Tabie A1l gives the veighbourhood structure of SEP{6). N; is the neigh-
bourhood set of fractional poing . We see that | NV; |= 9, Vi, and each tour
appeara as neighbour for eactly 9 non-integer points,

T-city polytopes
SEP(T): The conatraint matrix for SEP(7} is given in Table : Al2. The
neighbours for an extrerme point in 72 described in section 6.4 are computed.

They are given in Table A13. The cutting plane computed is given in Table:
Ald,
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Table : All: Neighbourhood sets of non-integer points
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Table : A13:

Table : Al4 : Cutting plane for the extreme point in F72

Extreme points of DFJ and ASMT polytopes
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| 0 | Formulation [ Inequalities | Extreme points | Remarks
3 DFJ 1 2 All tours
ASMI 3 2 All tours ]
4 "DFJ 30 12 6 tours T
6 fractjonal
ASMI 8 14 6 tours
8 fractional
2 written as convex
L combination of tours
5] DFJ 55 384 24 tours
360 fractional
ASMI 23 | 1150 24 tours
Table A20 : Summary of extreme points for small ASMT and DFJ
polytopes
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