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Notations

()

Natural numbers

N u {0}

number operator

complex numbers of unit modulus

Hilbert spaces

The ideal of compact operators in a separable Hilbert space
The algebra of bounded operators on a Hilbert space
annthilation operator on {?(Ng) or (2(7Z)

involutive algebra

domain of the operator T'

Dixmier trace associated with the state w
noncommutative torus

quantum Heisenberg manifold

The universal differential graded algebra

The complex of Connes-deRham forms

The complex of square integrable forms.



Introduction

Quantization of mathematical theories is now more than half a century old idea in mathe-
matics. It goes back to Gelfand-Naimark’s seminal paper [37] in 1943. As the name suggests
noncommutative geometry is the “quantization” of differential geometry. It is the study of
noncommutative algebras as if they were algebras of functions on spaces like the commuta-
tive algebras associated to affine algebraic varieties, smooth manifolds, topological spaces.
One can trace its roots in the Gelfand-Naimark theorems (1943, [37]}. In modern terminol-
ogy their theorem says there is an antiequivalence between the category of {locally) compact
Hausdorff spaces and (proper, vanishing at infinity) continuous maps and the category of (not
necessarily) unital C*-algebras and *-homomorphisms. In other words the entire topological
information of a locally compact Hausdorff'space is encoded in the commutative C*-algebra of
continuous functions vanishing at infinity. This observation suggests an immediate extension
of the notion of topological spaces by considering a not necessarily commutative C*-algebra

as the algebra of “functions on some noncommutative space”.

This idea of extending classical notions to the domain of noncommutative algebras was
exploited by Karoubi in the early 70’s. He showed that topological K-theory can be extended
to Banach algebras. Next major breakthrough towards extending algebraic topological ideas
in the noncommutative arena were the works of Brown, Douglas and Fillmore and Kasparov.
Kasparov gave a unified approach towards extending the notion of analytical K-homology

and topological K-theory.

Strictly speaking all these developments were taking part in the realm of noncommutative
topology. Noncommutative geometry took off in the hands of Connes with the introduction
of cyclic (co)homology. It was introduced as an extension of the deRham cohomology of
differentiable manifolds to the noncommutative setting, and serves as a natural target for

the Chern character homomorphism from K-theory. At this point we should also mention
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that Boris Tsygan also independently arrived at the notion of cyclic homology. Novelty of
the various constructions of Connes lies in the explicit nature of the pairing between cyclic
cohomology and K-theory. He achieves this by lifting the notion of Dirac operators to the
noncommutative arena. The essential features of geometry of spin manifolds are extended
by the notion of spectral triples, which consists of a separable Hilbert space H, an involutive
subalgebra A4 of the algebra of bounded operators, and D, a selfadjoint operator with compact
resolvents deriving A in the sense that the commutator of D with every element of A is
densely defined and admits a bounded extension. This operator D contains almost all the
‘geometric’ information. With any closed Riemannian spin manifold M there is associated a
canonical spectral triple with A = C* (M}, the algebra of complex valued smooth functions
on M, H = L?(M, 8), the Hilbert space of square integrable sections of the irreducible spinor
bundle over M and D, the Dirac operator associated with the Levi-Civita connection. For
this spectral triple Connes has a recipe for getting back the usual differential calculus of
forms on M. In fact the prescription given in the last chapter of his book [24] works for any
spectral triple. In the general context we will call the calculus associated with a spectral
triple the Connes-de Rham calculus. Connes extended metric notions like volume measure,
connection, curvature etc. in the general noncommutative set up. Iis ideas were further
extended by Frohlich, Grandjean and Recknagel [36]. They extended the metric notions like
scalar curvature, Ricci curvature etc. On the other hand results of Baaj and Julg [4] imply
spectral triples on .4 are enough to describe the elements of K-homology of the norm closure
of A. One says a spectral triple is nontrivial or equivalently, has nontrivial Chern character
if the associated element in K-homology is non trivial. Another property of the canonical
spectral triple described above is its nontriviality. A natural question in this context is,
given a concrete C*-algebra can we construct spectral triples with nontrivial Chern character
for which the associated algebra is a dense subalgebra of the given C*-algebra? Can we
explicitly describe the associated differential calculus? This takes us to one of the objectives
of the thesis, namely construction of spectral triples with nontrivial Chern character and its

associated calculus.

In chapter 1 we recall some preliminaries. We begin with the most basic object namely
a C*-algebra. Then we briefly recall the K-theory/K-homology of C*-algebras and the
fundamental pairing between them. Then comes the notion of entire cyclic (coyhomology.
This was introduced by Connes in [21]. Our discussion follows [38],[39]. Connes has shown
us how to recover the volume form from the canonical spectral triple for a compact spin

manifold. This is done by using Dixmier trace. We introduce this concept along the lines
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of the appendix of [27]. In chapter 6 of [24], he has described ways to capture de Rham
cohomology using the canonical spectral triple. These ideas have further been extended by
Frohlich, Grandjean and Recknagel [36]. We briefly recall some of their notjons like scalar
curvature, torsion etc. In the last section we introduce the relatively new notion of compact

quantum metric spaces due to Rieffel [78].

In chapter 2 we look into the noncommutative torus (NCT), an example studied in
great depth by Connes and Rieffel. Rieffel’s study of this example mostly deals with C*-
algebraic aspects, whereas Connes dealt with this in the spirit of noncommutative geometry.
He studied one particular spectral triple. At this point one can ask: are their other spectral
triples on NCT? Are they distinguishable by their associated volume forms, scalar curvature
etc.? By a result of Bratteli, Eliott & Jorgensen ([9]) one can list down all spectral triples
satisfying a mild condition. For this class of spectral triples we show that the volume form
remains invariant ([16]). Scalar curvature as introduced by Frohlich et. al ([36]) also does
not change. For some specific cases we show that the Connes-De Rham cohomology changes,
thereby showing that these spectral triples are not unitarily equivalent to the one studied by
Connes. Another approach to study geometry in the classical case is via the heat semigroup.
One may also like to use completely positive semigroups with ‘local’ generators to investigate
these ‘noncommutative spaces’. In particular using the near zero asymptotics of the trace of
heat kernel one can introduce concepts like volume form, integrated scalar curvature etc. We
show that although the volume form for a perturbed family of Laplacians remains invariant,

the integrated scalar curvature may vary.

We introduce in [16] quantum 2d-dimensional spaces as quantization of Euclidean 2d-
dimensional space. These are examples of ‘locally compact quantum spaces’. -In this case also

one can introduce the idea of volume form and show it remains invariant under quantization.

In chapter 3 we deal with Quantum Heisenberg manifolds (QHM), introduced by Ri-
effel in {73]. He attached concrete meaning to the concept of deformation quantization
along a Poisson bracket in the C*-algebraic framework and constructed quantum Heisenberg
manifolds as example of “noncommutative manifold” obtained by strict deformation quan-
tization of Heisenberg manifolds along a given Poisson bracket. These are C*-algebras Af}ﬁ‘,
parametrized by four nonzero parameters u, v, i € R, A > 0 and ¢ € N with an ergodic
action of the Heisenberg group, and an invariant trace. Now, whenever there is a smooth C*
dynamical system (A, G, @) with an n dimensional Lie group G and an invariant trace 7, one

can adopt the following principle to construct spectral triples on a subalgebra of smooth vec-
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tors. Let H = L2(A,7) ® C¥,N =212l and X;, -+, X, be a basis of g of the Lie algebra of
G. Since G acts as a strongly continuous unitary group on L?{A,7) we can form self adjoint
operators dx, on L?(A,7). Let us define D : H = H by D = Y, dx, ®;, where y1,...7, are
self adjoint matrices in My (C) such that ~;y; + vj7: = 2d;;. We call this the Dirac operator
associated with the basis X, -+, X,,. The operator D along with A and X should be a
candidate for a spectral triple. For such a D, clearly one has [D, A®] C A® @ My(C).
Therefore, the only thing that remains to verify is whether D is selfadjoint with compact
resolvents. We carry through this programme in the context of Quantum Heisenberg Mani-
folds (QHM). In the context of QHM, we identify the Lie algebra of Heisenberg group as the

algebra of 3 x 3 strictly upper triangular matrices. Let

o o o

010 ¢ 00 0
Xi=[0 0 0, Xe=|0 0 1], Xz=]0
0 00 000 0
where @ > 1. Then we show (see [15])

1. The Dirac operator associated with the basis X, X9, X3 is a self adjoint operator with
compact resolvent, provided o > 1, and gives rise to an odd spectral triple on A, the

algebra of smooth elements in the QHM.

2. This spectral triple has dimension 3, in the sense that |D|® is Dixmier traceable and

has nonzero Dixmier trace.

3. The operator D) depends on the real parameter «, but they induce same element in
Kl (Af",aﬁr;)'

4. The Chern character in Entire cyclic cohomology associated with the different D's are

cohomologous.

5. We explicitly compute the space of Connes-deRham forms as defined in the last chapter
of [24}], and show that forms of degree higher than four vanish. There are not too many

instances where one explicitly knows these spaces.

6. Space of square integrable forms as defined in [36] are easily seen to coincide with the
Connes-de Rham forms and using this we characterize unitary and torsionless connec-

tions and show that a connection can not be simultaneously torsionless and unitary.
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7. We exhibit connections for which the associated scalar curvature is nontrivial and an
element of the smooth algebra. Some of these metric notions like scalar curvature, Ricci
curvature were introduced in [36], but we have not seen any concrete example other

than the noncommutative torus where actual computations have been done.

Another area of mathematics where the program of quantization has been successfuly
carried through is the theory of compact topological groups. It started with the search for
a selfdué,l category to be called quantum groups containing the category of locally compact
topological groups. The solution was provided by the category of Kac algebras obtained
independently by Enock and Schwartz and by Kac and Vainerman. But the example of
g-deformation of the SU(2) studied by Woronowicz showed the inadequacy of the category
of Kac algebras. He gave a satisfactory definition of compact quantum groups and studied
their representation theory. Later Podles constructed quantum spheres Sgc as homogeneous
space for SU,(2). Now in the context of Lie groups and their homogeneous spaces they
have their own geometry and quite naturally given a concrete quantum group or quantum
hamogeneous space one would like to implement programs of noncommutative geometry on
them. In chapter 4 we take up the issue of construction of spectral triples and associated
calculus in the context of SU2) and Sgc. Here to construct explicit spectral triple we begin
with computation of K-groups, and then from explicit generators we construct spectral triples
which induce generating elements in K-homology. We also compute a modified version of
the space of Connes deRham forms and the associated calculus. The space of L? forms have

also been described explicitly.

In the computations of chapter 4, the fact that SU,(2) is a compact quantumn group does
not play any role. But in the classical context of a compact Lie group G its tangent bundle
is the trivial product bundle G x g, where g is the Lie algebra of G. Let X;,---,X,, be an
orthonormal basis of the g, then the Dirac operator is given by > dx, ® v, where the -y;'s
are the Clifford gamma matrices. Note that this is a selfadjoint operator on L2 (G)®CY and
commutes with the left regular representation of G. In general a left invariant differential
operator commutes with the left regular representation of G. Now in the case of abelian G,
the C*-algebra generated by the left regular representation is nothing but C(é). Therefore
we can rephrase the left invariance condition as a commutation condition with C(G). For
C{SU,(2)), Woronowicz has explicitly described the generators for C{G). Therefore, a proper
analog of a left invariant Dirac operator would be a Dirac operator commuting with these

generators. With this formulation of left invariance in mind, in chapter 5
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1. We show the existence of equivariant Dirac operators with nontrivial Chern character,
2. characterize equivariant nontrivial Dirac operators.

3. It is shown that an equivariant nontrivial Dirac operator must have dimension at least
three and there is one with dimension three. This observation is in agreement with the

dimension of its classical counterpart namely SU(2).

4. We also show that equivariant Dirac operators are universal in the sense that given any
odd spectral triple there is an equivariant Dirac operator D inducing the same element

in odd K-homology.

In noncommutative geometry, the natural way to specify a metric is by means of a suitable
“Lipschitz seminorm”. This idea was first suggested by Connes ([22}), and developed further
in [24]. Connes pointed out ([22], [24]) that from a Lipschitz seminorm one obtains in a simple
way an ordinary metric on the state space of a C*-algebra. A natural question in this context
is when does this metric topology coincides with the weak* topology. In his search for an
answer to this question, Rieffel ([76}, {77], [78]) has identified a larger class of spaces, namely
order unit spaces on which one can answer these questions. He has introduced the concept of
Compact Quantum Metric Spaces (CQMS) as a generalization of compact metric spaces, and
used ([78]) this new concept for rigorous’'study of convergence questions of algebras much
in the spirit of Gromov-Hausdorff convergence. In chapter 6 we take up the problem of
construction of examples of compact quantum metric spaces. Here we basically discuss two

classes.

1. Let (X,d) be a compact metric space. Suppose we have a faithful representation
C(X) C B(H). Let Ay = {((a;;)) € K(I*(N)) ® C(X)| (i) ai; are selfadjoint ele-
ments in C'(X), (ii) a;; = ay; (ill) aj; 1s actually a Lipschitz function }. Suppose we

have a short exact sequence of C*-algebras
0 — K®CX) A 25 4, — 0

with EI, 2; unital and a positive linear splitting o : 24; — :(1 Let (A2, Ls) be a
compact quantum metric space with A, a dense subspace of selfadjoint elements of :4;
Then we put Lip norm L; on A; = z(Z:)) @ o{Aa), so that {Ay, L;) becomes a compact
quantum metric space. As concrete example of this phenomena we produce compact

quantum metric spaces out of C(SU?) and C(SZ,).
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2. Rieffel has constructed compact quantum metric spaces using ergodic action of compact
Lie group on a C*-algebra. Although Heisenberg group acts ergodically on QHM,
Rieffel’s result does not apply because of non-compact nature of the Heisenberg group.
Weaver had partial success in construction of CQMS out of QHM. Essentially modifying
Rieffel’s argument we produce examples of CQMS on QHM (see [12]).



Chapter 1

Preliminaries

One standard way to obtain noncommutative theories is by applying a two step algorithm
on classical theories. These steps are (i) algebraization, i.e, state the classical theory in
algebraic terms; (ii} quantization, i.e, remove certain commutativity hypothesis. In this
chapter we will see how that is carried out in the context of geometry. We begin with
quantized version of topological spaces. Then we discuss the noncommutative version of
topological K-theory. This lies at the heart of Connes’ noncommutative geometry. Entire
cyclic cohomology/homology is discussed following Getzler-Szenes ([39]), and Getzler ([38]).
Then the metric notions like Riemannian volume measure, curvature etc. are introduced.
Some of these concepts are from [36]. Recently Marc Rieffel has introduced the notion of
compact quantum metric spaces. We end with a discussion of this notion essentially following

[76),[77], and [78).

1.1 (*-algebras

In point set topology one studies various categories of topological spaces. One of the most
well studied category is that of locally compact spaces and proper continuous maps. Similarly
in noncommutative topology a subcategory of Banach algebras plays central role called C*-

algebras.

Definition 1.1.1 A C*-algebra is a Banach algebra .4 over C equipped with a conjugate

linear isometric involution * : 4 — A such that
(zy)" =y*z*, lz*z| = |z|}®

for all z,y in A.
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It is a basic fact of the theory of C*-algebras that the norm on a C*-algebra is uniquely
determined by the algebra structure. The spectral radius p(z) of an element = of A is
defined by,

plz) = sup{|}|,A € C: A € o{x)},
where o(z) = {A € C: (z — A)is not invertible} is the spectrum of z. Then the square of the

porm of any element x of a C*-algebra is the same as the spectral radius of z*z:
2
=" = p(z*z).

The above definition introduces the so called abstract C*-algebras. Concrete C*-algebras are
defined in terms of their representations in a Hilbert space H. In fact an involutive algebra
is a C*-algebra iff it admits a *-representation 7 on a Hilbert space H such that n{z) =0
implies z = 0, and the image m(A4) of A is closed in norm in the algebra of bounded operators

on H.

Example 1.1.2 Let X be a compact Hausdorff space. Denote by C(X) the collection of all

complex valued continuous functions on X, which is a C*-algebra if we define,

Wl = supsex|f(z)l, £*(z) = flz) for f € C(X).
Let i be a measure on X then C'(X) acts by multiplication operators on % = L?{X, u), and
this representation gives a *-homomorphism from C(X) to B(), which is isometric provided
that u assigns nonzero measure to each nonempty open set. Thus C(X) is a C*-algebra. If
X is only locally compact, then an analogous construction shows that the algebra Cy(X) of
continuous functions which tend to zero at infinity is a C*-algebra. Notice that Cp(X) does

not have a unit if X is not compact.

All these are examples of commutative C*-algebras. A celebrated theorem of Gelfand and
Naimark ([37]} says that these are all. To state their result more precisely we need the notion
of the Gelfand transform.

Let A be a commutative Banach algebra and A be the space of nonzero continuous algebra
homomorphisms from A to C. It is a locally compact Hausdorff space in the topology of
pointwise convergence. The homomorphism,

7 A - Cp(A)
which maps a € A to the function m{c) given by n(a)(@) = afa) is called the Gelfand

transform.
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Theorem 1.1.3 (Gelfand, Naimark) If A is a commutative C”-algebra then the Gelfand

transform is an isometric *-isomorphism from A onto Co(.A).

Ha: A= Bisa unital *-homomorphism between commutative C*-algebras then there
exists an induced proper continuous function & : B — A given by &(¢) = ¢o« for ¢ € B.
Conversely, a proper continuous map from B to 4 induces a *-homomorphism from Cp (ufl)

t0.Cy(B). In other words we have the following equivalence of categories.

Theorem 1.1.4 The category of all commutative C*-algebras and *-homomorphisms is equiv-
alent to the opposite category of locally compact Hausdorff spaces and proper maps.

This theorem says that the category of commutative C*-algebras gives a good algebraization
of the theory of locally compact Hausdorff spaces and one should quantize the situation
by considering not necessarily commutative C*-algebras as continuous function algebras of

spaces non-existent.

1.2 K-theory

Among the various cohomology/homology theories studied in algebraic topology one co-
‘homology theory namely topological K-theory admits extensions to the noncommutative

situation. In this section we recall the basic definitions following [8], [10], [84].

Definition 1.2.1 Let C* be the category of C*-algebras and Ab be the category of abelian
groups. A covariant functor F : C* — Ab is called a homology functor if it satisfies:

(i) Half exactness: Every short exact sequence of C*-algebras 0 -+ A - B - C — 0 is
carried to an exact sequence FA —+ F5 — FC.

(i) Homotopy invariance: Let A, B be C*-algebras. We say that two *-homomorphisms
a, 8 : A — B are homotopic if there exists a family of point-norm continuous *-homomorphisms
1 : A= B, for t € {0,1} such that v9 = a,v = 8. In such a situation homotopy invariance
means F(a) = F(8).

Definition 1.2.2 A homology theory on a subcategory X of the category C* is a sequence
(Hy) of homology functors from X to Ab so that for every short exact sequence 0 — A —

B — C -+ 0 there are group homomorphisms
§: Ha(C) = Hn_1(A)
connecting all the exact sequences H,(A) — H,(B) = Hyp(C) to a long exact sequence

coo = Hp(A) = Hy(B) = Hy(C) = Hp_t(A) & Ho oy (B) — -+
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Let us briefly recall the central definition of topological K-theory. If X is a compact Hausdorff
space then K°(X) is the abelian group generated by the isomorphism classes of complex

vector bundles over X subject to the relations
[E]+[F]=[E & F]

for vector bundles E and F. Now, a complex vector bundle can alternatively be described by a
continuous function p : X — M,,(C) such that p(zx) is a projection for each z € X. The ranges
of the projections then fit together to form a vector bundle over X. This gives a bijective
correspondence between the isomorphisms classes of vector bundles over X and homotopy
classes of projection valued functions. Therefore we have the alternative description of K9(X)
as abelian group generated by homotopy classes of maps from X to the space of projections
in M,,(C) as n runs over the natural numbers. Since a projection valued function from X to
M, (C) is the same thing as a projection in the C*-algebra M, (C(X)) of n x n matrices over
C(X) one extends the notion of K° to C*-algebras as follows:

Definition 1.2.3 Let A be a unital C*-algebra. Denote by Ky(A) the abelian group with
one generator, [p], for each projection p in each matrix algebra M,(A), and the following
relations:

(i) if both p and g are projections in Mp{A), for some n, and if p and g are joined by a
continuous path of projections in M, (A), then [p] = [g];

(ii) [0] = 0, for any size of square zero matrix; and

(iii) [p] + [g] = [p ® ¢ for any sizes of projection matrices p and g.

If pe My, (A) and g € M,(A) then the notation p @ g refers to the projection (}; 0) in
MainlA) ’

Because of relations (ii) and (iii) every element of Kp(.A) is in fact a formal difference
{pl — [g] of projections in some M, (A). Two such formal differences [p] — [g] and [p'] — [¢]
define the same K-theory class iff they are stably homotopic, which is to say that there exists
a third projection r such that p & ¢’ @ r can be joined by a continuous path of projections to
Pogor.

Note that Kj is a functor, i.e., if & : A = B is a unital *-homomorphism, and p is
a projection in My,(A), then a(p) defined by applying o elementwise to the matrix p is a
projection in My {B). So, a induces a homomorphism Ko(a) : Ko(A) = Ko(B).

Remark 1.2.4 Because of condition (i), Ky is a homotopy invariant functar, .
~ Tl \ W AL T
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Example 1.2.5 Let A = C. Two projections in M,{C) are connected by a path of projec-
tions iff they have the same rank. The map [p| — Rank(p) induces an isomorphism from

Ky(C) to Z.

Example 1.2.6 Similarly K((A) = Z, if A is M, (C). In fact for a unital algebra A, Ky(.A)
is canonically isomorphic with Kp(M;,(A4)).

Example 1.2.7 If A = C(X), where X is a compact Hausdorff space then Ky(A) is the
topological K-theory group K 9(X). Here the placement of subscripts and superscripts reflects
the fact that K°(X) is contravariant in X, whereas Ky(.A4) is covariant in 4.

Example 1.2.8 Kg(B(#)) is trivial because given any two projection p, g € M, (B(#)) there
is a continuous path of projections joining p& 10 with g 18 0.

For a nonunital C*-algebra A let A* = A & C be the C*-algebra with coordinatewise
addition, multiplication and the norm ||(a, A)|| := maz{||a||,|A|}. Then we have a short exact

sequence 0 — A —+ AT 5 C — 0. Kp(A) is defined as:
Ko(A) := ker{Ko(m) : Ko(A™) = Ko(C) = Z}
Definition 1.2.9 For a C""-algebra we define the suspension S A of the algebra A, by
SA={f:T— A:f(1) = 0}.
Then we define K1(A} = Ky(SA); in general K,,(A) = Ko{S™A).

Theorem 1.2.10 (i) {K,} determines a homology theory on C*.
(i) Bott Periodicity: This theory is periodic in the sense that there are netural isomor-
phisms Ki(A) & Ki12(A).

Remark 1.2.11 For a short exact sequence |
0—A-S581¢—0

Bott periodicity combined with the long exact sequence produces the six term cyclic exact

sequence
Ko(A) 2 KoB) % Ko(C)
tindex Jlexp
Ki(C) & KB & KA
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Here the vertical maps are appropriate connecting maps.

Remark 1.2.12 All these can be done in the context of Banach algebras provided in the
definition of Ko we replace projections by idempotents. However, for C*-algebras both the

theories coincide.

We have a more concrete description of Kj.

Definition 1.2.13 Let A be a unital C*-algebra. Then K} (A) denotes the abelian group
with one generator [u] for each unitary matrix in each My (A), and the following relations:
(i) if » and v lie in the same M,(.A), and if « and v can be joined by a continuous path of
unitaries in My (A), then [u] = [v];

(ii} [1} = 0; and

(iii) [u] + [v] = [u ® v), for any sizes of unitary matrices u and v;

Let us temporarily denote path connectedness through unitaries by the symbol ~. If u and

v are unitaries in A then the following relations hold in M;(A):
u@l~ldu, udv~uwdl~vudl,udu" ~161.

u 0
The first relation is implemented by the path R; (0 ) ) R} where, R; is the rotation matrix

R, = ( cos(%1) sin(%t))

—sin(5t) cos(5t)

The other relations follow easily from this.

Theorem 1.2.14 Let A be a unital C*-algebra. The group K}(A} is naturally isomorphic
to the group K1(A) = Ko(SA).

Remark 1.2.15 In the description of K} if we use invertibles instead of unitaries then this

theorem holds even for Banach algebras.

Now with this description of K| we can describe the vertical maps. we will do this in the

general context of Banach algebras. We need a simple lemima on lifting invertibles.

Lemma 1.2.16 (i) Let A be a unital Banach algebra. Then the identity component of the
group of invertible elements is the group generated by exp(z) with x € A.

(i) Let ¢ be a unital surjective homomorphism from a Banach algebre A to a Banach algebra
B. Then every element in the identily component of invertibles in B can be lifted to the

identity component of invertibles in A.
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Proof: (i) Suppose there is a path of invertibles starting at 1 and ending at u. An easy
compactness argument implies that there is a sequence of invertibles 1 = wg, u1, -+, 4, = u
such that ||1 — u; Y u;]] < 1. Taking z; = log(u; ! u;) we get u = exp(z:)exp(zs) - - exp(zr).
(ii)An application of (i) yields (ii). N}
let 0 — A —» B "5 C — 0 be a short exact sequence of Banach algebras. Let [u] €
M,(C) be an invertible matrix. Then the discussions following definition 1.2.13 implies
u®u € My, (C) can be joined with identity by a continuous path of invertibles and hence
by the above lemma admits a lift ¢ in the identity component of My, (8B). Then the vertical
map from K;(C) to Kp(A) is given by Indez([u]) = [up,v~!] — [py], where, p, = I, @ Op.
For the other vertical map,let p be an idempotent in M,(C). Then exp([p]) = [¢*"*?], where
z € M,(B) is any lift of p.

Example 1.2.17 K;(C) = 0, because every unitary matrix u is path connected to the
identity matrix through unitary matrices, as can be seen by diagonalizing u, then rotating

each eigenvalue continuously to one.

Example 1.2.18 Let A be any unital C*-algebra. We consider a unitary u € A such that
gpectrum of u is not the whole circle. Then there is a continuous branch of the function
z — log(z) defined on spectrum of u, and so by the function calculus we may define a

homotopy u; = ezp(tlogu) from the identity to u. Thus [u] =0 in K;(A).

Example 1.2.19 Each unitary in B{#) admits a logarithm by the Borel function calculus,
hence K;(B(H)) = 0.

Example 1.2.20 Using the six term cyclic sequence for the extension
0— K(H) = B(H) = Q(H) = 0, (1.2.1)
where Q(H) is the Calkin algebra along with the K-groups of K(#) and B(H) we get

K1(Q(H)) =0.

1.3 K-homology

K-homology arose from the study of elliptic operators on manifolds and in good cases it is
dual to K-theory. The initial ideas are due to Atiyah ([3]), Which were later developed by

Brown-Douglas-Fillmore, Kasparov, Connes.
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Definition 1.3.1 Let A be an involutive algebra over C. Then a Fredholm module (H, F)
over A is given by: (i) an involutive representation 7 of A in a Hilbert space #;

(ii) an operator F = F*, F2 = I; on H such that [F,7(a)] is compact for any a € A.

Such a Fredholm module will be called odd. An even Fredholm module is given by a
Fredholm module as above together with a Z/2 grading v,y = v*,7? = I € B(H) such that:
(a) y7(a) = w(a)y, Ya € A, (b) Fy = —«F.

In the context of Z/2 graded algebras (a) becomes yr(a) = (—1)%9@r(a).

The above definition is upto trivial changes, the same as Atiyah’s definition of abstract elliptic

operators ([3]).

Example 1.3.2 Let M be a smooth manifold, A = C(M), the involutive algebra of con-
tinuous functions on M. Let E* be smooth Hermitian vector bundles over M and P :
C®(M,Et) - C®(M, E™) an elliptic pseudodifferential operator of order 0. Then being of

order 0 it extends to a bounded operator
P:L*M,E") = L*(M,E™),

and the existence of a parametrix Q for P such that both QP — I and PQ — I are compact
shows that P almost intertwines the representations of C(M) by multiplication operators in
L*(M, E%),

()¢ = f¢, V¢ € L*(M,E¥), € C(M).

Indeed one has

Prt(f) — 7~ (f)P € K, the ideal of compact operators, Vf € C(M).
1 0
Taking H = L2(M,E*) & L*)(M,E™) = HY o H ,7r = 7t @ T,y = ( ), and
0 -1
0
F = (P Cj) one has [F,n(f)] € K,Vf € C(M), and F? — 1 € K, so that upto an easy

modification we get an even fredholm module over C(M).

Example 1.3.3 Let I be a discrete group. Consider the Hilbert space I2(T). Let g — Ag
be the left regular representation of I'. The algebra C}(T') is the C*-algebra generated by
{Ag:geT}h

Consider now a tree T, i.e., a one dimensional connected, simply connected, simplicial
complex, on which T' acts freely and transitively. Take 7% to be the set of vertices when

i =0 and edges when ¢ = 1. For p € T% put ¢ : T° — {p} — T to the map which sends
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a vertex ¢ to the unique 1l-simplex containing ¢ which is a subset of the path [p,g]. Let
us define HT = 1?(T%),H~ = L*(T!) and H = H* & H~. Furthermore let us define an
operator P from H* to H™ by P(&) = 0 and P(§;) = &,(4), where £;’s are the indicator

P 0
H anticommuting with the involution v whose eigenspaces are the Hilbert spaces HE. As in

0 P!
functions in respective {? spaces. Then there is the following involution F = ( ) on

the previous examples after an easy modification this defines an even Fredholm module over
C(I).

A useful method for constructing examples is by spectral triples which we now define.

Definition 1.3.4 A spectral triple (A, H, D) is a triple where

(i) M is a separable Hilbert space;

(i) A is an involutive subalgebra of B(H) closed under holomorphic function calculus;

(iii) D is selfadjoint with compact resolvents such that [D,.A] C B(H).

A spectral triple is called even, if there is an involution v,y = v*,4% = I € B(#), that

commutes with 4 and anticommutes with D. Otherwise the spectral triple is called odd.

A spectral triple gives rise to Fredholm modules in the following way:

Let (A, H, D) be a spectral triple. Suppose this is odd then define F = sign(D) on ker(D)*
and F' =1 on ker(D). Then (H, F') defines an odd Fredholm module over the norm closure
of A. One has to be little more careful while dealing with even spectral triples. In that case
take #' = H @ ker(D). Orient the extra copy of ker(D) by —v, and F switches the two
copies of ker(D). In fact results of Baaj and Julg ([4]) imply that in some sense to construct
Fredholm modules it is enough to construct spectral triples. These are basic objects of study
in noncommutative geometry. In fact they define noncommutative geometric spaces and one
often says noncommutative space defined by a spectral triple. Since one of our objectives is
construction of spectral triple with certain nontriviality condition to be made precise in the
next section, we abstain from discussing any noncommutative example. Instead, we content

ourselves with the classical example coming from a compact Riemannian spin manifold.

Example 1.3.5 Let M be a compact Riemannian spin manifold. Let A be the algebra of
complex valued smooth functions with its natural involutive algebra structure. A is faithfully
represented in the Hilbert space of square integrable sections of the associated spinor bundle.
These along with the Dirac operator forms a spectral triple often referred as the canonical

spectral triple associated with a compact Riemannian spin manifold.
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Homotopy classes of Fredholm modules constitute classes in K-homology. For the duality

between K-homology and K-theory we need the notion of Fredholm operators. A bounded

linear operator T on a separable Hilbert space H is called a Fredholm operator if T has finite

dimensional kernel and finite dimensional cokernel. Then the index of T is defined as,
Index(T) = dim ker(T') — dim coker(T)

The index of Fredholm operator is invariant under compact perturbations:

Index(T + S) = Index(T),

for any compact operator S. Fredholm operators are precisely lifts of invertible elements
of Calkin algebra in B(H). If we identify Z with Ko(KX(#)) then Index is nothing but the
vertical upward arrow associated with the short exact sequence (1.2.1). This explains the
name Indez in the six term exact sequence.

The duality between K-homology and K-theory is given in the following theorem. In the
context of example 1.3.2 this yields the index of elliptic operators with coefficients in an

auxiliary vector bundle.

Theorem 1.3.6 (Atiyah, Kasparov) Let A be a Banach *-algebra, (H,F) a Fredholm
module over A, and for ¢ € N, let (Hy, Fy) be the Fredholm module over My(A) = A® M,(C)

given by
Hey=HRC!, Fy=FQ®I, ng=mnx1.

(a) Let (H, F) be even, with Z/2 grading v, and let p be a projection in My(A). Then,
Ty (D) Fgmy (p) : wf (DVHF — n, (p)Hy
is a Fredholm operator. An additive map ¢ of Ko(A) to Z is determined by

¢([p)) = Indez(m; (p)Fymy (p))
= ([(H, F)], [p])- (1.3.1)

(b) Let (H,F) be odd and let E = (#) Let u be an invertible element in My(A). Then
Eymg(u)Ey : EgHg — EqH,
is a Fredholm operator. An additive map of K(A) to Z is determined by

¢(lpl) = Index(Eqme(u)Ey)
= ([(3, F)], [u)). (1.3.2)

Remark 1.3.7 The pairing described in the above theorem will often be described as the

index pairing.
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1.4 Entire Cyclic Cohomology

Cyclic cohomology was discovered by Connes ([20]). It was introduced as an extension of the
deRham cohomology of differentiable manifolds to the noncommutative setting, and serves as
a natural target for the Chern character from K-theory. Later on he introduced entire cyclic
cohomology ([21], [23]). There are Chern character homomorphisms from K-theory/homology
to entire cyclic homology/cohomology and one can obtain alternative expressions for the
index pairing. In this section we closely follow [39] and [38]. Let A be a Banach algebra with
identity, and A is the Banach space A/C, let C,(A) be the Z graded locally Frechet space
obtained by taking the union of the completions of the space PaA® A" with respect to

the collection of seminorms

I ZA Il =su pz" | Anlly z>0. (1.4.1)
L(n/2)’
Here, || - ||.. is the projective tensor product norm on A ® A%". The projective norm is char-

acterized as follows: the continuous dual A ® 74®n, is isomorphic to the space of continuous
multilinear maps f : A x A" — C. The completion of 4 ® A°" in this topology will
be denoted by Cy,(A). The elementary tensor ag ® ... ® a, of Cp(A) will be denoted by
(a0,-.,an),, where a; € A. Here the normalization in defining | - ||

, is as in [38], it is

slightly different from Connes. Consider the two bounded operators on C,(A).

b(ag,...,an Z “(ag, . . ,czl(114r1,...cz,l)n_1-i—(—1)"(anao,...,an_l)n_1 (1.4.2)
0
and
n
B(ay, ..., Z "(1,a,.. 181,05+ -y Q1) g4 (1.4.3)
0

Note that 8> = B? = bB + Bb = 0. The entire cyclic homology H E.(A) is defined to be
the homology of the complex (C,(A),b+ B). The operator b+ B is inhomogeneous, so that
HE,(A) is only Z/2 graded; the even subspace is denoted HEj and the odd subspace by
HE;.

The cobar complex C*(A) is the topological dual C,(.A)’, of the bar complex; this is the
same thing as the space of the continuous multilinear forms on A x A*". This space carries
two boundary operators obtained by forming adjoints of b and B acting on C, (A), denoted by
the same symbols. The cohomology of the complex (C*(A),b + B) is called the entire cyclic
cohomology of A, and is denoted HE*(A). The pairing between C*(A) and C,(A) induces a



1.4. Entire Cyclic Cohomology 19

pairing between HE*(A) and HE,(A), which is denoted by (-,-) : HE*(A) x HE,(A) — C.
Chern character defines a homomorphism from K-theory/K-homology to entire cyclic theories

and one can obtain the index pairing in terms of (-, -)

1.4.1 Chern character in Entire Cyclic Theory

Chern character defines homomorphism from K-homology, K-theory to cyclic theories. For
the description of this homomorphism on K-theory we need the following trace map. Let A
be a Banach algebra. Let A = ((ag-) ), AN = ((GS))),A(Q) = ((az(‘?)))v"'aA(l) = ((ag)))
be k X k matrices with entries from A.
Tr(A®, A0, A0) = 5 (@@ o) ... ,ail ) € Ci(A).
10,81, in

Theorem 1.4.1 (i) Let p € M, (A) be an idempotent. Define the Chern character in C,(A)
of p by the formula

Ch(p) = Tr(p)y + kg (—l)k%ﬂ(p - %,p, o ,p)%

—_

then, (b+ B)Ch.(p) = 0 and [p] — Ch.(p) defines a homomorphism from Ky(A) to HEq(A).
(ii) If g € GLN(A), then

o0
Ch*(g) = Zk!T’I‘(g_l,g, U 7g_1ag)2k+1
k=0

is a closed element of C*(A) and hence defines an element in HE(A).

Chern character on K-homology is defined by defining them on the generators, i.e., theta
summable unbounded Fredholm modules. Connes introduced the notion of these modules
in [21]. We insert the word unbounded to distinguish it from the already defined Fredholm
modules.

A theta summable unbounded Fredholm module (#, D) over an involutive Banach
algebra A with identity consists of a Hilbert space H carrying a continuous involutive repre-
sentation of A and a self adjoint operator D : H — H with the following properties:

(i) if a € A, the operator [D,a] € B(H), and ||a|| + ||[D, a]|| < N(D)|la|| 4 for some constant
N(D);

(ii) D has compact resolvents and tre=tP* < oo, Vt > 0.

It is called even if there is an involution vy, = ¥*,v% = I that commutes with A and anti-

commutes with D. Otherwise the Fredholm module is called odd.
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Note that the way one constructs a Fredholm module from a spectral triple, one can construct
a Fredholm module from an unbounded Fredholm module too.

Let (H, D) be an unbounded Fredholm module. In case it is even the Chern character is
defined as

Ch™((ag,- -, a”)n) = Str(aoe"soDZ[D, al]e—sxD2 . [D,an]e—s"Dz)dns
AN

where A™ is the n-simplex and StrA = trA|y+ — trAly- and H* are the eigenspaces of the

grading operator 7 corresponding to eigenvalues +1 respectively.

Theorem 1.4.2 Let (H, D) be an even unbounded theta summable Fredholm module. Ch*(D)
defines an entire cyclic cocycle, often referred as JLO cocycle after Jaffe, Lesniewski, Oster-
walder. Let (H,F) be the associated Fredholm module. Then for an idempotent p € My(A)
one has ([(H, F)], [p]) = (Ch*(D), Ch.(p)).

In the odd case one has to be little more careful. In that case define 7-7 = H ® C? with the

1 0 ~ 0 ¢
grading operator y = <0 ) LetT=r7®JTand D=D@® ( ) 0). Then the Chern
- ~1
character is given by
Ch™(D)((ag, a1, ,an),) = [ Str(ciF(ao)e™ P [D, #(ay)]e™*1D" - [D, 7 (an))e"D*)d"s
A

0 1
where Str is as earlier and ¢; = (1 0).
Theorem 1.4.3 (i) Ch®(D) defines an odd entire cocycle. (ii) Let (H, F) be the canonically
associated Fredholm module, then for an invertible w € GLy(A) one has ([(H,F)1,[u]) =

(Ch*(D),Che(u)).

Let (4,H,D) be a spectral triple such that tre™*?* < oo, V¢ > 0. Let A be the norm
closure of A C B(#). Define Ay = {a € A : [D,a] € B(H)}. Consider the new norm
I 1 on Ay, given by |lally := [la|| + [|[D, a]|. It is a matter of straightforward verification
that Ay is a Banach algebra with isometric involution and (#, D) is a theta summable
unbounded Fredholm module on A(jy with associated Chern character Ch*(D) € HE* (Aq)-
We say that the spectral triple (A,#,D) has nontrivial Chern character if Ch® gives a
nontrivial homomorphism from HE, (A(1)) to Z. We are going to construct spectral triples

with nontrivial Chern characters.
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1.5 Dixmier Trace

Dixmier introduced a class of tracial functionals to show existence of nonnormal traces on
the algebra of bounded operators on a separable Hilbert space. Later on by clever use of
Weyl asymptotics Connes has shown us how to use these singular traces to capture various
metric notions from geometry. Here our exposition closely follows the appendix of [25].

Let H be a separable Hilbert space and £! C K the ideal of trace class operators:
o0
L'={TeKk:) un(T) < oo}
0

where pun,(T) = inf{||TE*|| : dimE = n} is the (n + 1)'® singular value of T'. One defines
trT for T € L' as trT = 3(T&,,&,). This converges because T is an [! sum of rank one

operators and is independent of the choice of the basis. Trace norm for a compact operator
is defined by ||T||, = tr|T| = 35" un(T).

Definition 1.5.1 For each integer N > 1,T € K let
on(T) = sup{||TE||, : E is a subspace of H, dimE = N},

on(T) can also be described as the sum of N largest singular values of T. By construction
this is a norm. For A > 0, define o5(T) to be the piecewise linear function that agrees
with on(T) for N € N and equals zero at zero. Then each 0,(7) is a norm and for fixed

T, A 0,(T) is a concave function. Moreover for 77,75 > 0 and A;, A2 > 0 we have,
Ox+xp (T1 + 1) Z 03, (Th) + 02, (T2).
Definition 1.5.2 The Dixmier ideal of compact operators is defined by

T)
I+ . T = oA .
L {Tek: Tl 32 Jogn < oo}

A compact operator T is in the Dixmier ideal iff u,(T) = O(;ll-) Clearly || - ||, is a norm,
satisfying o\ (T') < ||T||,,logX for A > 0. Since A = 0(T) is bounded for T € Ll it is clear
that £1 C £1*. In fact £} C LP for any p > 1, whence the notation for the Dixmier ideal.
Consider the following Cesaro mean of the function %Z;l:

1 A 0u(T) du

= for \>a>e.
logh J, logu u rAsa=¢

T)\(T) :

Subadditivity of o, (+) descends to that of 75(-). It is asymptotically additive in the following

sense:
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Proposition 1.5.3 If T, S € LT are positive operators, then

I\(T + 8) = 7A(T) = 7A(S)| = O (logl"”) as A — oo.
log\

In the quotient C*-algebra B, = Cp([a,0))/Co(la,0)), let 7(T) € Bo be the class of
A 75 (T), for T, a positive element of £!*. Then 7 is additive and positive homogeneous,
e, T(T+8) =7(T) + 7(S), 7(cT) = c7(T) for ¢ > 0.

Proposition 1.5.4 Ezxtending the definition of T by linearity we get a positive linear map
from L1 to Boo such that for any bounded operator S in B(H): T(ST) = r(TS) VT € L!*.

Definition 1.5.5 For any state w on the C*-algebra Boo, try(T) = w(r(T)), VT € L+
defines a positive linear form on £'*, and satisfies tr,(ST) = tr,(TS) for all § € B(H).

This functional i1s called Dixmier trace.

In general this functional depends on the choice of the state w. It is easily seen that ¢ry, (T)
is independent of w iff 75(T") converges for A — oo, and the limit is then equal to tr,(T).
The following proposition relates Dixmier trace with heat kernel expansion in a generalized

sense.

Proposition 1.5.6 Let D be a self-adjoint operator such that |D|™? € L' for some p > 0.
Then for any bounded operator T' and any state w on By

1 _
W= 5tr(Te™ %) = (G + 1)tr, TID| .

In concrete situations it is often possible to show that the left hand side is even independent
of w implying the same for the right hand side. We have taken this statement from (24].
It’s proof due to Connes is available in [41]. Another crucial property of Dixmier trace is
stated in the following proposition. It is immediate from the definition. We will see several

applications of this.
Proposition 1.5.7 Let T € L' and S be a compact operator, then for any state w on By

try,(ST) = 0.

1.6 Metric Aspects Of Geometry

In the last chapter of his book Alain Connes has shown how to decipher metric informa-

tion of a compact Riemannian spin manifold from its canonical spectral triple. Later on
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these ideas have further been extended by Frohlich, Grandjean and Recknagel in [36]. They
have extended various notions of curvature in the noncommutative context. The following

proposition shows how one recovers the Riemannian metric and volume measure:

Proposition 1.6.1 Let (A, H, D) be the canonical spectral triple of a compact Riemennian
spin manifold M. Then

(i) the geodesic distance between any two points on M is given by
d(p,q) = f}ég{lf(p) - f@]: D, flll < 1},Vp,g € M. (1.6.1)

(ii) The Riemannian measure on M 1s given by,

/M f o= c(n) = tro(fID|"™), VS € A, (16.2)
where ¢(n) = o(n=In/2)=1)zn/2n1(n /2)

This proposition gives us an idea about how to define distance and volume measure in the
noncommutative context. The formula on the right hand side of (1.6.2) makes perfect sense
for a general spectral triple and defines a hyper-trace, to be more precise let (A, H,D) be
a spectral triple of dimension p, ie., [D|™? € L3 and tr,|D|7? # 0. Then the functional
a € A trya|D|7? is a hypertrace ([17]), i.e., fora € A,b € B(H)

tr,ab|D|P = tr,ba|D| ™",

Therefore the positive linear functional on A given by a — trpa|D|™P will be considered as

the state coming from volume measure.

1.6.1 Noncommutative Differential Forms

We shall now describe how to construct a differential algebra of forms out of a spectral triple
(A,H,D). It is useful to introduce a universal graded differential algebra associated with

any algebra A.

1.6.2 Universal Differential Forms

Let Q1(A) be the A-A bimodule ker(m : A ®c A — A), where m(a ®c b) = ab. The
differential 0 : A — Q1(A) is given by d(a) = 1®a—a®1. Asa bimodule Q1(A) is generated
by 6(A). Indeed if Y a;b, = m(> a, ®b,) = 0, then Sa;®b=>a(l®b—-6® 1) =
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a;8(b,). Let QP(A) = V'A®4 - ®4 N (A). Then Q°(A) = )00 (A) is an A-algebra
N ) p>

p Limes
with multiplication and .4-A-bimodule structures given by,

(W1 ®A4- - ®awp) (Wpt1 @4 QAWpig) = W1 4 ®4Wpig
(w1 @4 Qauwp) = aw; @4 B4 Wy,
(w1®A"'®Awp)'a = w1®A--~®Awpa,Vw]EQl(.A),GE.A

For a one form w = 3" a; ® b;, define,

Sw) = Y (1®ca—a;®1)®4(1®cb—b®cl)
= > 1®ca;®cb; —a; ®¢ 1®c b; — a; ®¢ b, ®c 1.

Then § is extended using Leibnitz rule w.r.t ® 4,

P
w1 @4 Qawp) = Z (—1)’+1w1 ®u - 0(wi) @A wp, (1.6.3)

=1
The graded differential algebra (Q°(A) = @,>0Q7(A), ) is characterized by the following

universal property.

Proposition 1.6.2 Let (I', A) be a graded differential algebra, T = @T'?, and let p: A — T'°
be a unital homomorphism. Then there exists a unique extension of p to a morphism of
graded differential algebras p: Q*(A) — T, such that po§ = Ao p.

Because of this proposition the differential graded algebra (Q°(A),d) is called the universal
graded differential algebra and ¢ is called the universal differential. Finally we mention that

if A has an involution *, the algebra Q°(A) is also made an involutive algebra by defining

(6(a))” = —d(a")
(aod(ar)---d(ap))” = ((ap))* - (8(a1))"ac’

1.6.3 Connes-deRham forms and associated calculi

The universal differential algebra is not very interesting from the cohomological point of
view. Interesting cohomologies are obtained from the representations of the algebra. For a
spectral triple the following representation constructs an exterior algebra of forms. The map
©: Q°(A) = B(H), given by n(apd(a1)---d(ap)) := ao[D,a1]---[D,a,], clearly extends to
a *-homomorphism since both § and [D,a] are derivations. Unfortunately 7(w) = 0 does
not imply 7(d(w)) = 0 and hence one can not define forms as 7(Q2°(A)). To overcome this

difficulty one goes through a quotienting procedure.
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Proposition 1.6.3 Let J = @p>0Jp be the two sided ideal of Q*(A) given by J, = {w €
QP(A) : m(w) = 0}, then J +6J is a graded differential two sided ideal of Q°(A).

Definition 1.6.4 The graded differential algebra of Connes-deRham forms over the al-
gebra A is defined by

Q5 (A) = Q°(A)/(J + 8J) = 1(Q°(A))/m(8]).

It is naturally graded by the degrees of Q°(.A). The space of p-forms is given by QF,(A) :=
P(A)/(Jp+6Jp—1). Since J is a differential ideal, the exterior differential § defines a differen-
tial on Q% (A), d : Q,(A) — Q”D+1(A), d[w] := [6w] with w € QP(A) and [w] the corresponding
class in Q% (A). This complex (Q}(A),d) will be called the Connes-deRham complex or
noncommutative exterior complex associated with the spectral triple. For the canonical
spectral triple of a compact Riemannian spin manifold this yields the exterior differential

algebra of forms. Whence the nomenclature of Connes-deRham complex.

Remark 1.6.5 The key ingredient to the construction just described is the representation
of Q*(A) in B(H). For any representation of 2°(A) we can similarly construct a differential
graded algebra. In chapter 5 we will consider the complex obtained from the representation
fom: Q°(A) = Q(H) where 0 : B(H) = Q(H) = B(H)/K(H) is the projection onto the
Calkin algebra.

1.6.4 Square Integrable Forms and Associated calculus

To define the space of square integrable sections we note the expression for defining Rieman-

nian measure extends to bounded operators on H.

Definition 1.6.6 The integral over the noncommutative space defined by (A, H, D) of di-
mension p is a state  on m(Q°(A)) defined by £(n) = trun|D|™?

Strictly speaking this is only a positive linear functional not necessarily of norm one. But we
will call this a state without normalization. For this integral to be a useful tool, we need an

additional property:

Assumption 1.6.7 The state § on 7(Q2°*(A)) is cyclic, i.e.,

][771772 = ][772711

for all ny, 7 € w(02°(A)).
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The state determines a positive semidefinite sesquilinear form on 2°(A) by setting

(s 72)p = ][ r(m)r(na)*, for all m1, 72 € 9°(A).

In the formulas below we drop the representation symbol . Later on while dealing with
specific computations if there is no chance of confusion we will also drop the suffix D from
(,)p. By Ki we denote the kernel of this sesquilinear form restricted to QF(A). More
precisely we set

K= ®k>0Ki, Ky ={w € Qk(.A) i (w,w) = 0}.

Obviously, Ki contains the ideal J&; in the classical case they coincide. Assumption of

cyclicity of the integral forces K to become a two sided graded *-ideal. We now define

0°(A) = B, 0F(A), QF(A) = Q5 (A) /Ky

The sesquilinear form (-, -) induces a positive definite scalar product on Q*(A), and we denote

by HF the Hilbert space completion of this space with respect to the scalar product,
P

—(.,.

He = o2 HE, HE = Qk(A)
#* is to be interpreted as the space of square integrable k-forms.

Proposition 1.6.8 The space Q°*(A) is a unital graded *-algebra. For any w € QF(A) the
left and right actions of w on QP(A) with values in QeFE)(A)

mp(w)(n) :=wn, mgw)(n) :=nw

are continuous in the norm given by (-,-). In particular the Hilbert space H® is a bimodule

over Q°(A) with continuous actions.

The algebra ﬁ'(A) may fail to be differential. This problem is settled as in the earlier case.
The unital graded differential algebra of square integrable forms ﬁb(/{) is given by the
graded quotient of Q°(A) by K + dK.

(3 (A) = BR,05(A), 06 (A) = QF(A)/(Ki + 0Ky_1)

§ will induce a differential d : ﬁkD(A) — QIBH(A). (ﬁb (A), d) is a differential graded algebra.
Using the inner product (-,-) on H* tnner products are introduced on Qk (A) as follows: let

Py, _, : Hr = HF be the orthogonal projection onto éKi_; in ﬁk, and for each element
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[w] € ﬁ’;)(A) we set wh 1= (1 — P, _,)w € #*. A positive definite scalar product is defined

on (% (A) via the representative w :

([UJ], [77]) = (w_Lv Ul)

for all [w], [n] € 5’1“)(./4) In the classical case this is just the usual inner product on the space

of square integrable k-forms.

1.6.5 Vector Bundles, Connections, Curvature etc.

Definition 1.6.9 A vector bundle £ over the noncommutative space described by (A4, #, D)

is a finitely generated projective left .4 module.
Definition 1.6.10 A Hermitian structure over a vector bundle £ is a sesquilinear map
() :EXE = A,

such that for all a,b € A, and s,t € £.

(i) (as, bt) = a(s, t)b*,

(i) (s,8) 2 0,

(ii) the A linear map g : & = &}, s — (s,-) where Ep = {9 € Hom(&, A) : $(as) = ¢(s)a*}

is an isomorphism of left A modules, i.e., g can be regarded as a metric on £.

The A bimodules (Z’B(A) carry Hermitian structures in a slightly generalized sense. Let A

be the weak closure of the algebra A acting on #HO.

Theorem 1.6.11 (Frohlich et. al. [36]) There is a canonically defined sesquilinear map

(2o 5 (A) x Q5(A) =+ A
such that for all a,a € A and all w,n € QF(A)
{z) <aw1 b"])D = a‘("‘)’n)Db*;
(i) (w,w)p >0,
(i) (wa,n)p = (w,na*)p.

We call (-,-)p a generalized Hermitian structure on ﬁk(A). It is the non-commutative ana-
logue of the Riemannian metric on the bundle of differential forms. Note that (-,-)p takes

values in A and thus property (iii) of definition 1.6.10 is not directly applicable.
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Definition 1.6.12 A connection V on a vector bundle £ over a noncommutative space is
a C linear map

V:EQhA)®E

such that V(as) = d(a) ® s +aV(s) foralla € A,s € £.

Given a vector bundle £, we define a space of £ valued differential forms by ﬁb(é‘) =
ﬁb(A) ®4 & If V is a connection &, then it extends uniquely to a C linear map, again
denoted V, V : 03,(€) — Q3! (€), such that V(ws) = d(w)s+(~1)*wV(s) for allw € (3% (4)
and all s € Q% (€).

Definition 1.6.13 The curvature of a connection V on a vector bundle £ i given by

R(V)=-V%:£ 5 Q3 (A)®@4€.

Note that the curvature extends to a left 4 linear map R(V) : Q%,(€) — §~2'D+2(8).

Definition 1.6.14 A connection on a Hermitian vector bundle (£, (-,-)) is called unitary if
d(s,t) = (Vs, t) — (s, Vt) for all s,t € £, where the right hand side of this equation is defined
by (w x s,t) = w(s,t), (s,n x t) = (s,t)n* for all w,n € Q}D(A) and all s,t € £.

As remarked earlier in general one does not have QIB(A) = QK (A). Without further hypoth-

esis 5}3(.,4) need not be finitely generated projective. So to proceed further we require:

Assumption 1.6.15 The spectral triple (A,H, D) is such that (i) Ky = 0, this implies
ﬁ%(.A) = A and ﬁb(A) = (1(A). Thus QID(A) carries a generalized Hermitian structure.
(i) Q5(A) is a vector bundle, i.e., it is finitely generated and projective. It is called the
cotangent bundle.

(ili} The generalized metric (-, -) on ﬁlD(A) defines an isomorphism of left 4 modules between
Q}J(A) and the space of A anti-linear maps from ﬁb(A) to A, i.e., to each A anti-linear map
¢: QL (A) - A satisfying ¢(aw) = ¢(w)a* for all w € Q5 (A) and all @ € A, their is a unique
15 € b (A) with ¢(w) = (1, w)p.

Under these assumptions one can obtain noncommutative generalizations like torsion and
Riemannian curvature. The last assumption in 1.6.15 will provide a substitute for the proce-
dure of contracting indices leading to Ricci and scalar curvature. For the rest of the section

we assume the spectral triple (A, H, D) satisfies assumption 1.6.15.
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Definition 1.6.16 Let V be a connection on the cotangent bundle flb(.A) The torsion of

the connection V is the A-linear map.

s Ol

T(V):=d—-moV:Qh(A) = Q5(A)
where m : (~21D(.A) ®4 fl})(A) — ﬁ%(A) denotes the product of 1-forms in Q‘D(A)

Since we assume that ﬁb(/l) is a vector bundle, we can define Riemannian curvature of
a connection. To proceed further, we make use of part (ii) of assumption 1.6.15, which

implies that there exists a finite set of generators {E;} of f)b(.A) and an associated dual

basis {e;} C O1,(A)",
OL(A)" = {4: QLH(A) = A dlaw) = ad(w) for all a € A,w € QL (A)}

such that each w € ﬁ})(.A) can be written as w = >, &;(w)E;. By part (iii) of assumption
1.6.15, we get unique l-form e, € S~YID(.A) such that &;(w) = (w,e;)p for all w € ﬁb(A)
By proposition 1.6.8 every such e; determines a bounded operator my/(e;) : H! o H2.
The adjoint of this operator with respect to the scalar product (-,-) on H* is denoted by
e:f : H? — H!. Similarly for any l-form w € ﬁ})(.A), right multiplication on H° with w
defines a bounded operator mp(w) : H® — H!, and we denote by wl, : H! — HO, the adjoint

of this operator.

Definition 1.6.17 Let V be a connection on the cotangent bundle QID(A) over a noncom-

mutative space defined by (A, H, D) satisfying assumptions 1.6.15.

(i) The Riemannian curvature is the left A-linear map
R(V) = -V2: QL(A) — Q3 (A) ®.4 Q5 (A).

(i) Choosing a set of generators E, of ﬁ}j(A) and dual generators ¢, of ﬁ})(A)* we can write
R(V)=3_; ;€ ® R;; ® E,. The Ricci tensor Ric(V) is given by

Ric(V) = > Ric, ® E, € H' ® Qh(A)

J
where RiCj = Zi CI((]. - PJKk_l)Rij)-
(iii) The scalar curvature r(V) of the connection V is defined as
r(V) =Y (Bl (Ric;) € H°.
J

Both Ric(V) and (V) do not depend on the choice of the generators.
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1.7 Compact Quantum Metric Spaces

In noncommutative geometry, the natural way to specify a metric is by means of a suitable
“Lipschitz seminorm”. This idea was first suggested by Connes ([22]), and developed further
in [24]. Connes pointed out ([22],[24]) that from a Lipschitz seminorm one obtains in a simple
way an ordinary metric on the state space of a C*-algebra. A natural question in this context
is when does this metric topology coincides with the weak* topology. In his search for an
answer to this question Rieffel ([76],(77],(78]) has identified a larger class of spaces, namely
order unit spaces on which one can answer these questions. He has introduced the concept of
Compact Quantum Metric Spaces (CQMS) as a generalization of compact metric spaces, and
used ([78]) this new concept for rigorous study of convergence questions of algebras much in
the spirit of Gromov-Hausdorff convergence. This section is devoted to the basic definitions
of CQMS.

In the last section we have seen how the canonical spectral triple captures information
about the metric. It is natural to ask that for a compact metric space which class of functions
and what special structures on them encodes metric information. Answer to this question
is well known. For a compact metric space (X, p), let Lip(X) be the class of real valued

Lipschitz functions, i.e.,

Lip(X)={f e C(X): supx¢yM < oo, f(z) €R, Vz € X}
p(z,y)
and L, be the Lipschitz seminorm given by
L,(f) =sup M, for f € Lip(X).
TH#Y p(x,y)

Then one can recover p from L, by

ple,y) = sup{|f(z) — f(y)| : L,(f) < 1}.

Therefore, one can safely say that the metric information is hidden in the pair (Lip(X), L,).

To single out special features of this pair we need:

Definition 1.7.1 An order unit space is a real partially ordered vector space A with a
distinguished element e, the order unit satisfying

(i)( Order Unit property ) For each a € A there is an r € R such that a < re.

(ii)( The Archimidean property YIfac Aandifa < refor all r € R with r > 0, then
a<0.
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It is easily seen that real valued Lipschitz functions on a compact metric space with its
order structure inherited from the algebra of continuous functions is an order unit space.
Motivating example of the above concept is the real subspace of selfadjoint elements in a
C*-algebra with the order structure inherited from the C*-algebra. In an order unit space

(A, e) the order structure determines a norm given by
la]| = inf{r e R: —re < a < re}.

By a state of an order unit space (A,e) we mean a p € A’, the dual of (A, ] - ||) such that
ple) = 1 = |lu|’. Here || -||" stands for the dual norm on A’. States are automatically

positive.

Definition 1.7.2 Let (A,e) be an order unit space. By a Lip norm on A we mean a
seminorm I, on A such that

(i) For a € A, we have L(a) = 0 iff a € Re;

(ii) The topology on S(A) coming from the metric pz (i, v) = sup{|p(a) — v(a)| : L(a) <1}
is the w* topology.

For a compact metric space the essential feature of the pair (Lip(X), L,) is that Lip(X) is
an order unit space and L, is a Lip norm. Lip(X) has lot of extra properties for example the
norm coming from the order structure is a C*-norm, etc. Dropping all those extra properties
a Compact Quantum Metric Spaces (CQMS), is defined as:

Definition 1.7.3 (Rieffel) A compact quantum metric space is a pair (A4, L) consisting of

an order unit space A and a Lip norm L defined on it.

The following theorem of Rieffel gives a simple criterion for verifying the Lip norm con-

dition.

Theorem 1.7.4 (Theorem 4.5 of [78]) Let L be a seminorm on the order unit space A
such that L(a) = 0 iff a € Re. Then py, gives S(A) the w*-topology if and only if

(i) (A, L) has finite radius, i.e, 3 some constant C such that pr,(p,v) < C for all p,v € S(A).
(ii) By = {a|L(a) < 1, and [|a|| < 1} is totally bounded in A for || - ||.

Rieffel himself has constructed several examples of compact quantum metric spaces. He
has developed general methodology for construction of examples whenever there is an ergodic
action of a compact Lie group. Adapting some of his ideas in the last chapter we will see some
examples coming from ergodic action of Heisenberg group. We will also construct examples

from some C*-algebra extensions.



Chapter 2

The Noncommutative Torus and

the Quantum Plane

Geometry modelled on the irrational rotation algebras, commonly called noncommutative
torus has received much attention in noncommutative geometry. Connes himself has studied
this model in great depth ([19], [24]). An excellent survey on this by Rieffel is [74]. One
very natural question in this regard is about the possibility of listing ‘all’ spectral triples
under some natural constraints. Are they distinguishable by their associated volume forms,
scalar curvature etc.? By a result of Bratteli, Eliott Jorgensen one can list down all spectral
triples satisfying a mild condition. For this class of spectral triples we ([16]) show volume
form remains invariant. Scalar curvature as introduced by Frohlich et. al ([36]) also does
not change. For some specific cases we show that Connes-DeRham cohomology changes,
thereby showing that these spectral triples are not unitarily equivalent to the one studied
by Connes. Another approach to study geometry in the classical case is via heat semigroup.
One may also like to use the notions of quantum stochastic processes to investigate these
‘noncommutative spaces’. In particular using the near zero asymptotics of the trace of heat
kernel one can introduce concepts like volume form, integrated scalar curvature etc. We
show although the volume form for a perturbed family of Laplacians remains invariant the
integrated scalar curvature may vary.

We introduce ([16]) quantum 2d-dimensional spaces as quantization of Euclidean 2d-
dimensional space. These are examples of ‘locally compact quantum spaces’. In this case also

one can introduce the idea of volume form and show it remains invariant under quantization.

32
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2.1 Noncommutative torus as C*-algebra

There are various approaches to define irrational rotation algebras Ag. We define this as the

universal C*-algebra generated by two unitaries U and V satisfying the relation:
Uv = eyy (2.1.1)

This means (i) Ay is a C*-algebra generated by two unitaries U, V satisfying 2.1.1, and (ii)
if B is another C*-algebra generated by two unitaries U and V satisfying 2.1.1 then, there is
a *-homomorphism from Ay onto B which carries U to U ,and V to V. If one can show that
such a C*-algebra exists then it is unique. Existence is proved as follows. Let us denote by
Agin the *-algebra generated by two unitaries U, V satisfying (2.1.1). On L?(T) consider the
unitary operators U = M, the multiplication by the unimodular function z on T, and V the

operator of rotation by 6, i.e.,
Uf(2) = 2f(2), V(z) = f(ze"™.

A simple calculation shows U, V satisfies (2.1.1). Let I be the set of irreducible representations
of Agi" on some separable Hilbert space. Now consider the operators U = Orerm(U), V=
Orerm(V). Let Ay = C*(U,V). In order to see that Ay is indeed the desired universal
algebra, let B = C*(U, V) be any other satisfying (2.1.1). To verify that the map ¢ : Ag — B
taking UtoU , and V to V is well defined, it suffices to show that,

lp(U, V,U*, V)|l < |Ip(T, V, T, V"))
for every polynomial p. Let a = p(U,V,U*,V*), by the GNS, there is an irreducible repre-
sentation m of B such that [[7(a)|| = |la||. Consider the pair U’ = n(U),V' = n(V), then,

(U',V') is an irreducible pair satisfying (2.1.1). Hence by construction, we see that

Ip(T,V,0% V|| > |p(U', V', U™, V™)

>
> [p(U,V,U", V).

Therefore, ¢ is well defined and contractive on the *-algebra generated by U and V into B.
So, it extends by continuity to a homomorphism of Ay onto B.

The algebra Ay for irrational values of € is called the irrational rotation algebra. Hence-
forth we will consider this casg only.

We apply this universal property to obtain certain special automorphism of 44. For any

two complex numbers A, u of unit modulus the unitary pair (AU, uV'), satisfies (2.1.1). Thus
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there is an endomorphism a) ,, of Ag such that,

a,\,ﬂ(ﬁ) = /\ﬁ,a,\,u(f/) =uV.
Let 0 = a5 s - Since o(U) = U,o(V) = V, we have o = id. Thus ay,, is an automor-
phism. Moreover for each fixed a € Ay, the map from T? to Ay given by f(A, u) = ayu(a) is
norm continuous. To verify this note that it is true for all noncommutative polynomials in
(7,17, U * V*. These are dense and endomorphisms are contractive. Therefore, (Ag, T?, @) is
a C*-dynamical system.

Define two maps of Ay into itself by the formula

1 1
®;(a) z/ ay e2mit(a)dt, ®o(a) =/ Qe2rit 1 (a)dL.
0 0

These integrals make sense as Riemann sums because the integrand is norm continuous.

Some of the nice properties of these maps are captured in the following theorem.

Theorem 2.1.1 ®, is positive contractive and faithful, and maps Ay onto C*(U). Moreover,

O(f(U)ag(U)) = f({U)21(a)g(V)
for all f,g € C(T). For any finite linear combination of UV for k,l € Z,

(I)l(z ak[(’jki}l) = Z akoﬁk.
k,l k

In addition, for every a € Ay,

1

®(a) = 1 Zﬁjaﬁ—j. (2.1.2)

m
n—o0 2n

Proof: straightforward, see [30].

The corresponding results for ®, also hold. Combining them we obtain,

Corollary 2.1.2 The map 7 = &1P9 = $o®; is a faithful unital scalar valued trace on As.
For a finite linear combination of UV k.1 € Z explicitly given by (3} aklﬁk\N/l) = agg-

Proof: Faithfulness follows from that of ®;’s and other properties are proved by verifying

thetn on monomials U*V!. O

In fact for any other trace o using (2.1.2) it is easy to see that o(a) = o(®;(a)) for i = 1,2.

Hence o(a) = o(7(a)) = 7(a), i.e., 7 is the unique trace.
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Theorem 2.1.3 Ay is simple. Thus if U and V are unitary elements satisfying (2.1.1), then
C*(U, V) is canonically isomorphic with Ag.

Proof: Suppose that T is a nonzero ideal of Ay. Then there is a positive, nonzero elementX €
. Since U/ XU ¢ 7, the limit formula for ®; shows that ®,(Z) C Z. Similarly one can
show that ®3(Z) C Z. Hence 7(X) € Z. But since 7 is faithful X must be a scalar multiple
of identity. Therefore 7 = Ay.

If U,V are unitaries satisfying (2.1.1), then there is a *-homomorphism of 4y onto
C*(U,V) taking U to U and V to V. Since Ay is simple, this homomorphism must be

an isomorphism. O

From now on we will drop the tilde, and use the symbols U,V for the generators of Ajy.
Because of simplicity this does not cause any ambiguity. For irrational values of 8, Ay can
also be described as the crossed product of C(T) by Z, for the automorphism induced by

rotation by angle §. Now an application of Pimsner-Voiculescu exact sequence yield
Ko(Ag) = Z% = Ky (Ay).

The isomorphism question was decided by Rieffel ([71]) as follows. The trace 7 induces a
homomorphism 7 : K¢(Ap) = Z simply by defining 7([p]) = (7 ® tr)([p]). Then we have,

Theorem 2.1.4 (Rieffel) 7(Ky(Ag)) = Z + Z8.

Corollary 2.1.5 Ay is isomorphic with Ay iff n = 46 mod Z.

2.1.1 The Smooth Algebra

We have already seen for each a € Ay, z € T? = a,(a) is a continuous map from T? to A,.
Let
AP ={a € Ay: 2z a,(a) is C*}.

Then by general results on C*-dynamical system ([63]) it follows that AS° is a dense subal-
gebra of Ay closed under holomorphic function calculus. Hence by Karoubi density theorem,
K.(A$°) = K,(Ag). We wish to construct spectral triples on this algebra, and for that a more
concrgte description will be helpful. Let % = L?( Ay, 7) (see [60] for a discussion on noncom-
mutative LP-spaces). Then it is easy to see that the family {U ™V} nez CODStitutes a com-
plete orthonormal basis of H. Hence we have an unitary isomorphism between H and 12(72).

Using this identification we can expand every a € Ay C L?(Ap,7) as a = Zm,nEZ A, U™V,
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Such an expansion will often be referred as the Fourier expansion of a. Let 6;,d, be the

derivations coming from the T? action, i.e.,

Qe2nit (@) — @

51(0') = }1_13% ¢ ’
. Qapemit(a) —a
ba) = lim =

A simple calculation shows on monomials of the form U™V™, these derivations are given
by 61 (U™V™) = mU™V™, and 6(U™V") = nU™V™. Let di,ds be the induced selfadjoint

operators on ‘H, which act on the monomials as the corresponding é;’s with respective domains

Dom(d;) = {Z Aman UV Z(l + mz)lamn|200},
Dom(dy) = {Z amn U™V Z(l + n2)|amn'200}'

Clearly a € A if and only if a € Dom(d¥6),Vk,l > 0, and this yields the alternative
description:
Ag° = {Z amnU™V™ 2 sup [mPnla,,| < 0o, Vk,1 € N}.
mn

The following result of Bratteli, Eliott and Jorgensen ([9]) describes the space of deriva-

tions of AZ°.

Theorem 2.1.6 For almost all 6 (Lebesgue) the derivations of A3° to itself are of the form
¢101 + 202 + [r, -] for some ci,c2 € C and r € AP.

We will denote the derivation a + [r,a] for some r € A by §,. The bounded operator
induced on L?(AS, ) will be denoted by d,.

2.2 Noncommutative Laplacian and Weyl Asymptotics for A

For classical compact Riemannian manifold (M, g) of dimension d with metric g, one has
the natural heat semigroup 7; as the expectation semigroup of the Brownian motion on the
manifold ([80]) so that the Laplace-Beltrami operator A is the generator of 7;. It is known
([80]) that T; is an integral operator on L?(M,dvol) with a smooth integral kernel T;(z, ),
which admits an asymptotic expansion as ¢ — 0+:

= T (g, y)t=4/2, (2.2.1)
J=0

and that
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vol(M) = /MTO(:E,z)dvol(:v)
= lim tdﬂ/ Ti(z, z)dvol(z)

t—0+ M
= lim tY%(trT;),
t—0+

where we have taken the trace in L2(M, dvol). Similarly the scalar curvature s at z € M is

given as s(z) = %T(l)(:n, z). This gives the integrated scalar curvature

s = /M (z)dvol(z /T (z, z)dvol(z)
_ 2 lim ¢4/2- 1/[7}(:3 z) — t~4270(z, z)|dvol (z)

= 6t11r51+td/2 HtrT; — ¢~ 2vol(M))
_.)

In the noncommutative case one possibility is to define volume V and integrated scalar

curvature s by analogy from their classical counterparts as :

V(Ag) = V—t5m+td/2trﬂ, (2.2.2)
s(Ag) = E.é 51011+td/2 YtrT, — =42V (2.2.3)

where the heat semigroup 7; in the classical case is replaced by some noncommutative gen-
eralization of heat semigroup. A good candidate would be completely positive semigroups.
The question about which of these semigroups have ‘local’ generators £ remains open, though
Sauvageot studied these in [81]. Following these studies, we know that £ is characterized by:
(i) D € Dom(L) C A C B(H), dense in A such that D itself is a *-algebra,

(ii) a *-representation 7 in some Hilbert space h and an associated 7 derivation & such that
0(z) € B(H,h) and é(zy) = 6(z)y + m(z)d(y),

(ii) a second order cocycle relation : L(z*y) — L(z)*y — z*L(y) = §(z)*s(y), for z,y € D.
In analogy with the heat semigroup in the case of classical diffusion, we shall call £ the non-
commutative Laplacian or Lindbladian. Hudson and Robinson ([43]) studied the above
question for A4y in the case where the representation 7 is the identity representation in X
itse‘lf. We claim that if we choose 7(2) =2®Iinh=HRC? 2 HOH, and & = 6, & 52,
then Lo = —-%((512 +652), D = Ap™ satisfies all the properties (i) - ( iii). In analogy, one can
have the perturbed triple (m,d', £) where §' = & @ 6, with 6] = &1 +[r1,-] and & = 6y +[ry, ]
and £ = —1(6:"2 + 6,%), D = Ap*. Thus we have two triples (m, 80, Lo) and (m,d', L) both
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satisfying (i)-(iii). Then the question arises: can we associate the same geometric features
with these two Laplacians or are there geometrically discernible changes as we go from the
Laplacian Ly to the perturbed one £ 7 This will be addressed in this section. Before we
proceed further we need to study the operators Lo and £ in L?(7) more carefully. The next
theorem summarizes their properties for d = 2 and we have denoted by B, the Schatten

ideals in B(#) with the respective norms.

Theorem 2.2.1 (i) Ly is a negative selfadjoint operator in L%(7) with compact resolvent.
In fact Lo(U™V™) = —L(m? + n?)U™V™;m,n € Z so that (Lo — z2) e Bp(L*(7)) forp > 1
and z € p(Ly).

(i) If 1,72 € AP and are selfadjoint, then L = Lo+ B + A, where,

1
B = _E(dfl + dgz + d<51(r1) + d62(r2)) and A = —dy dy — dp,dy,

so that A is compact relative to Ly and L is selfadjoint on D(Ly) with compact resolvent.
Ifri,m70 € Ay, then —L = —Ly — B — A as quadratic form on D((—ﬁo)%) and

(=L +n2) " = (Lo +n2) 2T + Zn) (Lo +n2) 7 (2.2.4)
where Zn = (—Lo + n2)_%(B + A)(—Ly + nQ)_%, is compact for each n with
1 1
B = —-Z-(d,?l +d2,), A= 5(didr; + drydy + dady, + dr,dy).

This defines L as a selfadjoint operator in L?(T) with compact resolvent. Furthermore, in
both cases of (ii), the difference of resolvents (L — z)™' — (Lo — 2z)™! is a trace class operator

for z € p(L) N p(Lo).

Proof: The proof of (i) is obvious and hence is omitted. For (ii) It is easy to verify that

L=Ly+B+Aon AP and that A(—Ly + nQ)_1 is compact for every n = 1,2, .... Therefore
(L~ Lo)(~Lo+n2) " = (L = Lo)(=Lo +1)"H(Lo + 1)(—Lo +72) " =0

in operator norm as n — oco. By the Kato-Rellich theorem ([68]), £ is selfadjoint and since
(-L+ nz)—1 = (—Ly+ nz)_l[l + (Lo — L)(—Lo + 712)_1]—1 for sufficiently large n, one also
concludes that £ has compact resolvent. Furthermore for z € p(£) N p(Ly), we have

(L—2)" = (Lo—2)" = (Lo —2) 7 1+ (L — Lo)(Lo — 2) ™Y1 (Lo = L) (Lo — 2)~1

Since (£ — Lo)(—Lo + n?) 7 i bounded, (—Lo+n2)"2 € B3(L?(7)) and (-Lo+2)"' €
Bs/o(L?(7)), it follows that (£ — n?)"" = (Lo —n2)"! is trace class for n = 1,2,... by the
Holder inequality.
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When 71,73 € Ay, we cannot write the expression for £ as above on A, since ry,7y
may not be in the domain of the derivations d;,ds. For this reason, we need to define —(
as the sum of quadratic forms and standard results as in [68] can be applied here. From
the structure of B and A it is clear that Z, is compact for each n and hence an identical
reasoning as above would yield that ||Z,]| — 0 as n — oo and therefore (I + Z,)”! € B for
sufficiently large n and the right hand side of (2.2.4) defines the operator —£ associated with
the quadratic form with D((—[,)%) = D((—Eo)%). Clearly

(—L+n%) 7" = (=L +n?)~}
= —(=Lo+n*) (I +2Zy) " Zy(~Lo+n?%)7?
= —(—Lo+n?)"2(]+ Zn) N=Lo +n2)"2(B + A)(=Ly +n?)7!

for sufficiently large n and since
(—Lo+n%)"2 €Bs, (—Lo+n2) TA(~Lo+n2)"F € By,

it is clear that (£ —n2)~' — (Lo —n?) ™" is trace class. O

The next theorem studies the effect of the perturbation from Ly to £ on the volume and the

integrated sectional curvature for A,.

Theorem 2.2.2 (i) The volume V of Ag(d = 2) as defined in (2.2.2) is invariant under the
perturbation from Ly to L.
(i) The integrated scalar curvature for r € Ag°, in general is not invariant under the above

perturbation.

Proof: We need to compute tr(et* — et£0). Note that if r1,79 € Ag°, then

t
et[, _ etﬁo — _/ e(t—s)[,([: _ Lo)escods
0

which on two iterations yields:

et[. _ etﬁo

t t ty
= - / elt=9)%o(L — £)esbods + / dtjelt=1)% (£ — £4) / dtgelr2)lo (£ — £)et2bo
0 0 0

t t 12

- / dt1et1E (L — L) / dtgeli=t)o (£ _ 1) / dtzelt2=t)o(£ _ [)etsLo
0 0 0

= Il(t) + Ig(t) + I3(t). (2.2.5)

For estimating the trace norms of these terms, we note that the Bp-norm of (£ — Ly)e®0 is

estimated as
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1€ = Lo)e* ]l I(B + A)e*™ |, < | Blllle*“ [, + c1(lldie® ]l + lidze*|lp)
¢"(lle*®llp + lldae* )

c'(s_p—1 + s_p—l_%) <cs7?

-1
2

IN A

for constants ¢, cy,c,c” since we are interested only for the region 0 < s <t < 1. Using
Holder inequality for Schatten norms and the fact that

1 =) < (o — )M L+ (£ — Lo)(Lo —n?) T <

for sufficiently large n. We get for the third term in (2.2.5)

13 (£)]]y t t
1 2

< o flatn [ aualle - Loy, [ ol - Lopem (L - Loy,
0

(p1,p2,ps)/ t; 2dt; — 0
0

IN

as t — 0 where pl_l +p2_1 —i-pg1 = 1. A very similar estimate shows that
L)l < /Ot dslle®= )0, [1(£ — Lo)e*|lp, < ot
( with p > 2 and pl_1 +py' =1) and
[112()]l1 57/; dty [t~ /Ot1 dta|| (L = Lo)el 20, | (L — Lo)e™ 0|y, < ¢,

(with pl—l —i—p;1 -+-p§1 = 1, in particular the choice p; = ps = p3 = 3 will do) a constant

independent of t. From this it follows that lim;_,o; ¢ tr(e'“ —e*“9) = 0 and thus the invariance

of volume under perturbation.

In the case when 1,79 € Ay only, then £ — Lo = B + dy By + d2Bs + B} d; + Bidy where
B, By, By, By, Bj are bounded. Therefore a term like elt=5)Log, Biesbo = [es£°Bi‘dle(t‘s)£°]*
admits similar estimates as above and the same result follows.
(ii) From the expression (2.2.3) for the integrated scalar curvature s, we see that for d = 2

s(L) - s(Lo) = % Jim ir{et€ — 60 (2.2.6)

if it exists, and conclude that the contribution to (2.2.6) from the term I3(¢) vanishes as we
have seen in (i).We claim that though ||I2(t)||; < constant, trly(t) — 0 as t — 0+. In fact

since the integrals in I5(t) converges in trace norm

t1
tTIz / dt1/ dtstr (ﬁ [,) (t1— tz)ﬁo(ﬁ Lo ) (t— t1+tz)£0)
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and by a change of variable we have that |trIy(t)] < tfot (L — Lo)es“o(L — Lo)elt=5%0|1ds
for r € AP, the perturbation (£ — Lo) is of the form by + bidy + bady with b; € B(H) for

1=0,1,2 and the Hilbert-Schmidt norm estimates are as follows:
1 _1 _3
1L = Lo)e*“ |2 < |lbolllle*“®llz + V2([lba || + b2l | (= Lo) Ze*“0llz < e(s72 +s75).

Therefore, ,
I (2) Sct/ (s + 5 3)((t—s)F +(t—s)F)
0

and this clearly converges to zero as t — 0+. This leaves only I;(t) contribution so that
6(s(L) — s(Lg)) = — lim t tr((L£ — Lo)et~0).
t—0+

As before we note that (£ — L) contains two kinds of terms:

1

B
2

1
(@2 +d2,), and A = —5(drydy + didr, + dryda + dady,).

We show that the term tr(Ae!“°) = 0 for all ¢ > 0. It suffices to show that tr(d,dje*“°) =0

for r € Ag° and for this we note that

tr(d.diet™®) = Y <U™V",dpdi e (UVT) >

— Z me—t/2(m2+n2)T(V—nU—mdr(Umvn))

m,n
= Zme“t/Q(m2+"2)T(V_"U_mrUmV" —ry=0
m,n

identically. This leaves only the contribution due to B. Thus

1
$(£) = s(Lo) = 75 lim ¢ tr((d?, + d2,)e'™), (2.2.7)

if it exists. However since {ttr((d,,? + dy,%)e*“0)} is bounded as ¢ — 0O+, we can and will
interpret the above limit as a special kind of Banach limit as in Connes [24], p.563.
1.
s(L) —s(Ly) = ﬁLzmt-l_,wttﬁr((drl2 + d,,%)etc0)
1

i .
= —tro((de, 2 +dr,2)Lo .

= (2.2.8)

The notation £y stands for the operator that agrees with Ly on ker([lo)l and identity on
ker(Lp). In the following we show that in general the right hand side of (2.2.8) is strictly

positive. For example set 1 = (U + U~!) and 72 = 0, then i, € A, and
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6(s(£)1— 5(Lo))
= iLimt_l_,wtz emt/AmI ) < ymyn 2 (UmVT) >
= 27 Limp1 Lt 3 e AL (1 - AN 4 (1= AN 4 (2~ AT - A7)

m,n - 2 N 2
271 Limy-1 Lt <2 z e 4 1) <8 Z sin? (nfn)e™" t/2>
m=1 n=1

Next note that for 0 < ¢ < 2,

0 V2/1
‘/EZ“'"%W()")C‘"%/Z > Vi Z sin?(nn)e "t/
n=1 nel
[V2/1)
> e V2 - Vi) Z [\/2/t] L sinx(n6 — [n6)

n=1
= e YV2 - Vi) E(sin’rX,),
where for each 0 < ¢t < 2, X, is a [0,1]-valued random variable with Probability(X; =
=[2/t]  for k=1,2,..., [\/%] and E is the associated expectation. Since 8 is
irrational, it is known ([42]) that as ¢ — 0+, the random variable X; converges weakly to
one with uniform distribution on [0,1] and therefore,

; (V2/4) i
hmlnf\/_z sin?(rn)e™™ Y% > lim Vi Z sin?(nfn)e ™ /2
n=1

t—0+ t—0+
1
> \/ie_l/ sin’rzdz
0
= (\/56)—1.

We also have by Connes (page 563, [24]) limy_04 VY oo, e~ M2 = ‘/Tg Now by the general
properties of the limiting procedure as expounded in [24],

S(0) — s(£o) > 2T

Remark 2.2.3 From the expression for s(Ly), we see that for d = 2, s(Lg) = lim;_,o (treto—
,,%) Since the expression for tret“%and the volume V are exactly the same as in the case of
classical two-torus with its heat semigroup, the integrated scalar curvature for £y is the same

as in the classical case, which is clearly zero. Therefore s(£) is strictly positive for the case

considered here.
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2.3 Spectral Triple on AY, its perturbation and Associated

Calculus

Following Connes ([24]) we consider the even spectral triple (A = Ag°, H = L¥(1)®L*(1), Do, T)

0 dy + 1ds . .
= 1y1di(a) + iveda(a
i — id, 0 ) v1d1(a) + ived2(a)

in H. Here 71,72 are the 2 x 2 clifford matrices. The selfadjoint grading operator is given by

I 0 .
I'= < ) . One easily verifies that o' =Ta,T* =T = 1, TDy = —Dyl. Note also

0 ~I

where Dy , the unperturbed Dirac operator, (

Ly O
0 ) and kerDg = ker Lo®C? is two dimen-

Dy has compact resolvent since D3 = —2 ( 0 -
0

0 d
sional. The perturbed spectral triple is taken to be (A, H, D,T") where D = Do+ ( p Or )

for some r € A, It is not difficult to see that Do and D are both essentially selfadjoint on
A C L2(r) and that the perturbed triple is also an even one. Here, as in Connes ([24]), by
the volume form v(a) on A we mean the linear functional v(a) = %trw(a]f)l’zP) where tr,
is the Dixmier trace and we have used the notation that for a selfadjoint operator T' with
compact resolvent, 7' = T| N = TP, where P is the projection on N (T)*. Next we prove

that the volume form is invariant under the above perturbation. For this we need a lemma.

Lemma 2.3.1 Let T be a selfadjoint operator with compact resolvent such that T-1 is
Dizmier traceable. Then for a € A and every z € p(T), try(aT™1P) = try(a(T — z)7h.
Proof: Note that (T — 2) L= (T - z)_lPEB~z"1P'L and P+ is finite dimensional. Therefore
tro(a(T — 2)7H) = tro(PaP(T — z)-lP). On the other hand

tro(PaPT™1P — PaP(T — 2)"'P) = —ztro(PaPT (T = 2)” ' P) =0,

The last equality follows from proposition 1.5.7, since 71 is Dixmier traceable and (T — z)_1

is compact. a

Theorem 2.3.2 If we set vo(a) = %trw(a|1§0]‘2) and v(a) = %trw(alf)l_Q) fora € A, then
vo{a) = v(a).

Ly 0
Proof: Note that D? = ~2 ! , where
0 Lo

Ly = Lg+dpde + (dide + drdy) + i(daodps — drds),
Ly = Lo+dedr + (dldr +dy-di) + i(dodrs — drds),
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and by theorem 2.2.1, both £; and £; have compact resolvents with P;, P, projections on

N(L1)* and M (L2)* respectively. Therefore by the previous lemma for Imz # 0

v(@) = try(a(=L1) P+ tro(a(-Ls) P)
= try(a(-L—2) " +a(-Ly—2)7Y
= trola(—Lo —2) " +a(~Lo — 2) ") + tru(a(—L1 — 2)"t —a(=Ly — 2)7Y)
+try(a(~Ly — 2) 7 —a(~Ly — 2)7H)

= U (a)

since (—L; — 2)™! — (=L — 2) 7! is trace class for i = 1,2. m

We say that two spectral triples (A1, %1, D1) and (A2, Ha, Do) are unitarily equivalent if
there is a unitary operator U : H; — Hj such that Dy = UD{U* and mo(.) = Um ()U¥,
where 7, j = 1,2 are the representation of A; in 7{; respectively. Now, we want to prove that
in general the perturbed spectral triple is not unitarily equivalent to the unperturbed one.
Let 2'(A$°) be the universal space of 1-forms and 7 be the representation of Q! = QL (AP)
in H given by

n(a) =a, w(3(a))=[D,al,

where & is the universal derivation.

Note that [D, a] = i[6](a)y1 +d5(a)yz], where r; = Rer, 7o = Im r 01 = 0140y,, 05 = d2+6p,.

Theorem 2.3.3 (i) Let r = U™, then Qb (AP) = n(Q!) = AL & AP.
(ii) Q2(AP) = 0 for r = U™,

Proof: (i) Clearly m(Q') C APy + ALYz The other inclusion follows from the facts that
85(U*) = 0,6, (U*) is invertible, and that 6,(V?) is invertible for sufficiently large 1.

(i) Let Ji = kerm|q1, Jo = kerw|g2. Then J, + 6J; is an ideal, implying that 7(8J;) is a
nonzero submodule of 7(9Q*) C AP & AL. Since Ag° is simple there are two possibilities,
namely either 7(6J;) = Ag°, or n(6J;) = AP & AS. To rule out the first possibility we take
a closer look at Ji and m(6J1). Ji = {3, a:i0(bs)| 3; aibi(bs) = 0,5, a;84(h;) = 0}. Using

the fact that 41, &) are derivations we get
D 61(an) (k) = = aid; (6(b:)) (2.3.1)
> 5(@i)di (b)) = = aidh(8](bi)). (23.2)

1
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For Zi aié(bi) € Ji

ﬂ(Z 6(ai)6 (b))

il

D (81 (ai)m + 63(ai) 1) (81 (b1 + Ga(bi)v2)

i

= S8 ()8 (b) + () (5)) + S (61 ai) 35 (be) — By(ai)d (69))ma,
i
where v12 = Y172 = —7271. Taking z = U16(U) + US(U71) € Q! it is easy to verify that
z € J; and 7(dz) = —2. This proves AP @0 C w(d.J;). We show that the inclusion is proper
by showing the nontriviality of the coefficient of 1. Using (2.3.1), (2.3.2) we get coefficient
of y12 to be 3 a;[6},85)(b;) = Y —ima;[r1, b;]. As before we can find ng such that for [ >
ng, 05(V!) is invertible. If we now choose a; = I,by = V™, a4y = —8, (V)8 (VH L, by =
Va3 = (—a181(b1) — a8 (b2))U~1, b3 = U, then the vanishing of the coefficient of 12 will
imply that [r1, V"] = 8,(V"0)8h (V1) [ry, V! for all I > np and we note that while the left
hand side is nonzero and independent of 1, the right hand side converges to 0 as [ — o
leading to a contradiction. Therefore AP @ AP = m(6J1) C m(0?) C AP @ A, Hence

UBAF) = Fiy =0 o

Thus we have the following:

Theorem 2.3.4 The spectral triples (A, H, Do) and (AP, H, D) are not unitariy equiva-

lent forr =U™.

The proof is clear since 0%, (AF) = A3 # 0 = Q}(A°).

Classically there is a correspondence between connection form and covariant differenti-
ation. This correspondence comes from the duality between the module of derivations and
the module of sections in the cotangent bundle. Unfortunately there is no such duality in
the non-commutative context. Here for defining the connection form we visualize it more as
the connection form arising from covariant differentiation. We need to do so because if we
take the existing definition ([36]) then the curvature form becomes trivial.

Let b be the vector space of all derivations d : A — Ag°. This space is same as
{101 4 c282 + [r,.] : 7 € AS} for almost all 6 (Lebesgue) ([9]). For the rest of this section
we will be using those ¢'s only. Let &, be the element of § given by dmn(a) = [U™V",q].
We turn b into an inner product space by requiring that {61,82,6mn} to be orthonormal,
for example as in [46]. Let £ be any normed Aj°-module. For § € h, let ¢s : E®h — £,
be the contraction with respect to 6. Topologize £ ® h with the weak topology inherited
from c5,8 € §. Then a connection is a complex-linear map V : £ — £ ® b such that
esV(éa) = csV(€)a + £6(a), Vi €D.
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Theorem 2.3.5 Suppose that V1,V are maps from € to £ satisfying
Vi§a) = Vi(§)a + £di(a), i=1,2.
Then the map V given by
V) =Vi®8i+V2®8 — > U™V @ bn
is well-defined and is a connection.

Proof: Let 6 € b, such that § = 101 + 202 + Y cmnmn, where {cmn} € S(Z2%) C 1,(Z?).
Therefore the sum in the right hand side of the definition of V converges in the topology

referred above. The rest is straightforward. )

It is clear from the definition of V in the above theorem that V; = cs; V for (j =1,2). We
also set V, = ¢5, V for r € A.

Definition 2.3.6 Let R: h @ h — L(E) be the map given by R(6,4') = ¢V — [esV, e V).

We call R the curvature 2-form associated with the connection V.

Theorem 2.3.7 We have
R((Sl, 52) = R(51 + (57-1,(52 + (5,-2).
Proof: [61 + 6r,, 02 + 6r,] = [61(r2), -] — [02(71), ] + [[r1,72], ] So we have

R(61 + 0ry, 82 + 6r,y) (€)

—£01(r2) + &da(r1) — &[r1, 2] = (Vi + Ve )(Val = €ra) + (Vo + V) (Vi€ — émy)
= =V, Vo§ + Vi(€ra) + (Va€)r1 — Erary — Va(éry)

—(Vi&)ra + &rire — £01(ra) + €d2(r1) — &[r1, 7]

~[V1, Va]€ = R(d1,68)(€) (since [d1,82] = 0).

il

i}

O

Remark 2.3.8 In section 2, we have seen that the integrated scalar curvature under the
perturbed Lindbladian is different from zero, whereas in section 3, the curvature 2-form has

been shown to be invariant under the same perturbation.



2.4. Non-commutative 2d-dimensional space 47

2.4 Non-commutative 2d-dimensional space

In this section we shall discuss the geometry of the simplest kind of noncompact manifolds,
namely the Euclidean 2d-dimensional space and its noncommutative counterpart. Let d be
a positive integer and let A, = Cp(R??), the (nonunital) C*-algebra of all complex-valued
continuous functions on R?¢ which vanish at infinity. Then 9;(j = 1,2,...,2d), the partial
derivative in the j-th direction, can be viewed as a densely defined derivation on A, with the
domain A = C(R??), the set of smooth complex valued functions on R?? having compact
support. We consider the Hilbert space L?(R?%) and naturally imbed A in it as a dense
subspace. Then 10; is a densely defined symmetric linear map on L?(R?%) with domain AL,
and we denote its self-adjoint extension by the same symbol. Also, let F be the Fourier

transform on L?(R?¢) given by
fo = (FDH) = @07 [ e f (o)

and M, be the operator of multiplication by the function ¢. We set E = F~IM,F, thus
i0; = ]\//I\;] A= M—Z 2? is the self-adjoint negative operator, called the 2d-dimensional
Laplacian. Clearly, the restriction of A on A is the differential operator zﬁila} Let
h = L2(R%) and U,, Vs be two strongly continuous groups of unitaries in h, given by the

following:
Uef)(@®) = f(t+a), (Vaf)(t) =e"Pf(t), a,B,teR?, feCORY).

Here £.3 is the usual Euclidean inner product of R%. It is clear that

UdUy = Ua+a’7
VeVe = Vap,
UVg = €*PV3U,. (2.4.1)

For convenience, we define a unitary operator Wy for z = (o, 8) € R*® by
W, = Uy Ve 25,

so that the Weyl relation (2.4.1) is now replaced by W, W, = Wxﬂ,e%”(z'y), where p(z,y) is
the symplectic form p(z,y) = z1.y2 — 22.y1, for z = (z1,22),y = (y1,¥2)- This is exactly the
Segal form of the Weyl relation ([34]). For f such that f € L'(R??), we set

b(f) = - f(z)Wedz € B(h).
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Let A% be the *-algebra generated by {b(f)|f € C2°(R?*?)} and let A be the C*-algebra gen-
erated by A% with the norm inherited from B(h). It is easy to verify using the commutation

relation (2.4.1) that b(f)b(g) = b(f ® g) and b(f)" = b(fY), where
0= [ o=t eact; fia) = f-o)

We define a linear functional 7 on A® by setting 7((b(f)) = f(0) (= (2m)~¢ [ f(z)dz), and
easily verify ([34], page 36) that it is a well-defined faithful trace on A%. It is natural to
consider H = L2(A®, 1) and represent A in B(#) by left multiplication. From the definition
of 7, it is clear that the map C®(R??) 3 f — b(f) € A® C H extends to a unitary
isomorphism from L?(R??) onto A and in the sequel we shall often identify the two.

There is a canonical 2d-paramater group of automorphism of A given by 0o (b(f)) = b(fa),
where fo(z) = e@*f(z), f € CPRY), a € R4, Clearly, for any fixed b(f) € A%,
a — o (b(f)) is smooth, and on differentiating this map at a = 0, we get the canonical
derivations 65,7 = 1,2,...,2d as §;(b(f)) = b(9;(f)) for f € C°(R??). We shall not nota-
tionally distinguish between the derivation d; on A* and its extension to #, and continue to
denote by id; both the derivation on *-algebra A*® and the associated self-adjoint operator
on H.

Let us now go back to the classical case. As a Riemannian manifold, R?? does not posses
too many interesting features; it is a flat manifold and thus there is no nontrivial curvature
form. Instead, we shall be interested in obtaining the volume form from the operator-theoretic
data associated with the 2d-dimensional Laplacian A. Let 7; = ¢32 be the contractive Co-
semigroup generated by A, called the heat semigroup on R24. Unlike compact manifolds, A
has only absolutely continuous spectrum. But for any f € C®(R*!) and € > 0, Mf(—A+e)_d

has discrete spectrum. Furthermore, we have the following :

Theorem 2.4.1 M;T; is trace-class and tr(M;Ty) = t=4 [ f(z)dz. Thus, in particular,
= [ f(z)dz = t%r(M;Ty).

Proof: We have tr(M;T;) = tT(fof_lMe_%E,Jz), and fof_lMe—éEzf is an integral
~ t

operator with the kernel ki(z,y) = f(z —y)e 2 2%} It is continuous in both arguments and

[ki(z, 7)|dz < 0o, we obtain by using a result in [40], (p. 114, ch.3) that M[7T; is trace class

and tr(MfTy) = [ ki(z,z)dz = (2m)%=4f(0) = t~%(f). 0

As in section 4, we get an alternative expression for the volume form v in terms of the Dixmier

trace.
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Theorem 2.4.2 For € > 0, M;(—A + €)% is of Dizmier trace class and its Dizmier trace

is equal to v (f).

For convenience, we shall give the proof only in the case d = 1. We need following two

lemmas.

Lemma 2.4.3 If f,g € LP(R?) for some p with 2 < p < oo, then M,»J\f\fg is a compact
operator in L%(R?).

Proof: It is a consequence of the Holder and Hausdorff-Young inequalities. We refer to [69]

for a proof. O

Lemma 2.4.4 Let S be a square in R? and f be a smooth function with Supp(f) C int(S).
Let Ag denote the Laplacian on S with the periodic boundary condition. Then tr,(M;(—As+

o) =7 [ f(z)dz.

Proof: This follows from [55] by identifying S with the two-dimensional torus in the natural

manner. 0

Proof of the theorem: Note that for g € D(A) C L%(R?), we have fg € D(As) and (AsMy —
M;A)(g) = (AM; — M;A)(g9) = Bg, where B = —May + 2 2521 My, (sy © 9;. From this
follows the identity

Mi(—A+e) = (~As+€)7 My = (-As+e) 'B(-A+¢7h (2.4.2)

Now, from Lemma 2.4.3, it follows that B(—A + ¢)~! is compact, and since (—Ag +¢)7!
is of Dixmier trace class (by Lemma 2.4.4), we have that the right hand side of (2.4.2) is of
Dixmier trace class with Dixmier trace zero. The theorem follows from the general fact that

try(zy) = try(yz), if y is of Dixmier trace class and z is bounded. O

Similar computation can be done for the non-commutative case. The Lindbladian £y gener-

ated by the canonical derivation §; on A is given by
1
Lo(a(f)) = za(AS), f € CE(R™). (2.4.3)

Since in L2(R2%), %A has a natural selfadjoint extension (which we continue to express by the
same symbol), Lo also has an extension as a negative selfadjoint operator in H = L%(R%),
and we define the heat semigroup for this case as T; = etfo, By analogy we can define the

volume form on A® by setting v(a(f)) = lim;_,04 t%tr(a(f)7z). Then we have
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Theorem 2.4.5 v(a(f)) = [ fdz.

Proof: The kernel K; of the integral operator a(f)7; in H is given as K,(z,y) = flz -
y)e“tlmz/Qei”(x’y)/z. As before we note that K is continuous in R?¢ and K,(z, ) = ki(z,z) =

F(0)e~t1#I*/2_ Using [40] we get the required result. a

Remark 2.4.6 (i) Note that in the theorem 2.4.2, tr,(M;(—A + €)~%) = n%(f) which
is independent of € > 0. This could also have been arrived at directly as in section 4 for

the algebra Ay once we have observed in the proof of the theorem that tr,M (A —¢)™! =
tTwa(AS — 6)_1.



Chapter 3

The Quantum Heisenberg Manifold

1 y =z
Let G={|0 1 z|:z,y2¢€R} bethe Heisenberg group. For a positive integer c, let H

0 0 1
be the subgroup of G obtained when z,y, cz are integers. The Heisenberg manifold M, is the

quotient G/H,.. Nonzero Poisson brackets on M, invariant under left translation by G are
parametrized by two real parameters p,v with p? 4+ 12 # 0 ([73]). For each positive integer
¢ and real numbers u, v, Rieffel constructed a C*-algebra AZFL as an example of deformation
quantization along a Poisson bracket ([73]). These algebras have further been studied in [1],
2], and [83]. It was also remarked in [73] that it should be possible to construct example of
non-commutative geometry as expounded in [24] in these algebras also. It is known ([73])
that Heisenberg group acts ergodically on Aﬁf, and Aﬁ:‘, accommodates a unique invariant
tracial state 7. Using the group action we construct a family of spectral triples. It is shown
that they induce same element in K-homology. We also show that the associated Kasparov
module is non-trivial. This has been achieved by constructing explicitly the pairing with a
unitary. We also compute the space of forms as described in [24],[36]. Then we characterize
torsionless and unitary connections. As an immediate corollary it follows that a torsionless
unitary connection can not exist. For a family of unitary connections we compute Ricci

curvature and scalar curvature as introduced in [36]. This family has non-trivial curvature.

3.1 Generalities on Deformation Quantization

Rieffel introduced the notion of deformation quantization to give analytical meaning to formal
deformation quantization. This section is devoted to a discussion of that and a description

of quantum Heisenberg manifold and its basic properties.

51
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Let M be a compact C*°-manifold, and let C*°(M) be the associative algebra of C'*®
complex valued functions on M, with pointwise multiplication and involution by complex
conjugation. By a Poisson bracket on M is meant a Lie algebra structure {-,-} on the linear
space C°°(M), such that for every f € C°(M) the linear map g — {f,g} from C*®(M) to
itself is a derivation. We also require {-,-} to be real in the sense that {f*,¢*} = {f,g}". Let
TM be the tangent bundle of M. Then to give a Poisson structure is same as to give a skew

2-vector field A on M, i.e., a cross section of AT M, such that if we set
{f,9} = (A, df A dg),
then {-,-} satisfies the Jacobi identity.

Definition 3.1.1 (Rieffel) Let A and A be as above. By a strict deformation quantization
of A = C®(M), in the direction of A, we will mean an open interval J of real numbers
containing zero, together with, for each & € J, an associative product %5, an involution **,
and a C*-norm || - ||,, (for x; and **) on A, which for & = 0 are the original pointwise product,
complex conjugation involution, and supremum norm, such that

(i) for every f € A, the function A+ ||f], is continuous;

(ii) for every f,g € A, [[(f *n g — g *r f)/h — {f, g}||n converges to zero as h goes to zero.

It is condition (ii) which formalizes the idea that the deformation is “in the direction of A”.
Since this condition is essentially an infinitesimal condition at zero, one does not expect strict
deformation quantization for a given A to be unique, and indeed as it has been observed by

Rieffel himself it is not so.

Definition 3.1.2 Let G be a Lie group, and let « be an action of G as a group of diffeomor-
phisms of M which preserve the Poisson structure. Consequently o induces an action on A.
We will say that a strict deformation quantization of A, as defined above, is invariant under
the action « if

(i) for every h € J, and z € G, the operator o, on A is an isometric *-automorphism for
*n,"* and || - |5;

(i) for every f € A and h € J, the map z > az(f) is a C*® function on G, for the norm
I lin;

(iii) there is an isometric action «, of the Lie algebra g of G on A, which for each i € J is
by x-derivations of A for *; and **, such that for X € g and f€eEA,

d
ax(f) = —l=0%eap(ex)(f)
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with respect to || - ||

3.1.1 Quantum Heisenberg Manifold, as Deformation of Heisenberg Man-

ifolds
The Heisenberg group is the group of 3 x 3 upper triangular matrices with 1’s on the diagonal.
1 vy =2
If we identify G with R® by identifying | 0 1 z | with (z,y, 2), then G is R® with product
0 0 1

given by,
(@,9,2)(¢",y,2') = (@ + 2"y + o/, 2 + 2’ + y2').

For any positive integer ¢, let D, denote the discrete subgroup of G consisting of those (z,y,2)
for which z,y and cz are integers. The corresponding Heisenberg manifold is M, = G /D,
on which G acts on the left. Clearly G invariant Poisson structures on M, correspond to
the Poisson structures A on G which are invariant under left translation by G and right
translation by D.. By the G invariance of A, it will be determined by its value at the identity
of G, and so is given by an element, say A again, of A%g, where g is the Lie algebra of
G. Then right translation invariance under D, will be equivalent to invariance of A under
the restriction to D, of the adjoint representation of G on A%g, induced from the adjoinf;

representation on g. Let X,Y, Z be the basis of g given by,
000 0 1 0 0 0 1
X=1001},Y=({00O0|, Z={0 0 0],
0 00 0 0 0 0 00
so that [Y, X] = Z. Then any G-invariant A € A%g is of the form

A=puXANZ+vYANZ+pXANY,

for 4, v,p € R. Let z and y denote elements (1,0,0) and (0, 1,0) of D,, then simple calcula-

tions show that

From this and the fact that Z is central, it is easily seen that A is D, invariant iff p =10, so

that
A=(pX+vY)AZ.
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Quantum Heisenberg manifolds are strict deformation quantization of Heisenberg manifolds
in the direction of A. We will throughout assume u,v # 0.

For z € R, we will denote e?™*% by e(z).

Definition 3.1.3 For any positive integer ¢, let S° denote the space of infinitely differen-
tiable functions ® : R x T x Z — C that satisfy the following two conditions:

a) ®(z + k,y,p) = e(ckpy)®(z,y,p) for all k € Z, and
b) for every polynomial P on Z and every partial differential operator X = zm 6y" on Rx T,
the function P(p)(X®)(z, y,p) is bounded on K x Z for any compact subset K of R x T.
For each A, u,v € R, uv # 0, let A3° denote the space S¢ equipped with product and involu-
tion defined respectively by

(@x ) (z,y,p) = ) _ ®(z — Alg — p)p,y — g — p)v, @) ¥ (z — hgu,y — Agr,p — q), (3.1.1)
q

®*(z,y,p) = (z,y, —p). (3.1.2)
Let 7 be the representation of A on L%(R x T x Z) given by

(m(®)€)(z,y,p) = Y _ B(z — (g — 2p)pt,y — (g ~ 2p), )€ (2, y,p — ). (3.1.3)
q

Then 7 gives a faithful representation of the involutive algebra AP°, hence a norm on it. Via
the partial Fourier transform in the last variable, { A%} is a strict deformation quantization

of the Heisenberg manifold C*°(M,) in the direction of the Poisson structure given by,
A=—-7"YuX +0vY)AZ

The norm closure of 7(A$°), to be-denoted by AS% is called the Quantum Heisenberg Man-
ifold. Let Ny denote the weak closure of m(A).

We will identify Ap° with m(A%°) without any mention. Since we are going to work with
fixed parameters c, u, v, h we will drop them altogether and denote .AZ’}, simply by Ap, the
subscript merely distinguishes the Heisenberg algebra from a general algebra.

Action of the Heisenberg group: Heisenberg group acts ergodically on these algebras.
If we identify the Heisenberg group with R?, then for & € S¢, (r,s,t) € R3, the action is
given by,

(Lrs.)®) (@, y,p) = e(p(t + cs(z — 1)))g(z — 7,y — 5,p) (3.1.4)
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In fact this action is implemented by the unitary operator U ;1) on L?(R x T x Z), explicitly
given by,

Utr,s.y6)(x,y,p) = e(p(t + es(z + hpp — r))(z =y — 5,p).
The Trace: 7: A° — C, given by 7( fo flr z,y,0)dzdy extends to a faithful normal

tracial state on Nj. 7 is invariant under the Heisenberg group action. So, the group action

can be lifted to L2(A$). We will denote the action at the Hilbert space level by the same
symbol.

Theorem 3.1.4 (Weaver) Let H = L*(R x T x Z) and Vy, Wy, X, be the operators defined
by

(Vfg)(m’yvp) = f(x’y)f(xayap)a
(Wié)(z,y,p) = e(—ck(p*hv + py))é(z + k,y,p),
(X:&)(z,y,p) = &(z —2hrp,y—2hrv,p+r).

Let T € B(H). Then T € Ny iff T commutes with the operators Vi, Wi, X, for all f in
L®(R x T), and k,r € Z.

Lemma 3.1.5 Let S5, ., be the space of all functions ¥ : R x T X Z — C satisfying
the following three conditions (i) v is measurable, (ii) ¥, = supeg yet [¥(2,y,p)| is an
I} sequence, and (iii) P(z + k,y,p) = e(ckyp)(z,y,p) for all k € Z}. Then for ¢ € S5, o 15
7(¢) defined by (3.1.3) gives a bounded operator on L?(R x T x Z).

Proof: Let ¢ : Z — R, be defined by ¢(n) = sup,cg ver [#(z,y,n)|. Then

|(m(9)E)(z,y,p)| < (% |é(z,y,.)))(P),

where x denotes convolution on Z and [£(z,y,.)| is the function p — [{(z,y,p)|. By Young’s

inequality “(Tr((tb)é)(zay))”lz < “(%* |§($aya')|”lz < “‘5“11”6(:”)3/7)“12 As an immediate
consequence one has, ||7(¢)[| < l|¢llco,c0,1, Where [|llco,c0,1 = lI#ll1; o

Remark 3.1.6 i) Product and involution defined by (3.1.1), and ( 3.1.2) turns S¢

0,00,1 100

an involutive algebra.

ii) ¢ > ||#lloo,00,1 is @ *-algebra norm. In the last chapter we will provide a proof.

Lemma 3.1.7 «( C N;.

ooool)

Proof: Follows from Weaver’s characterization of Ny, |
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Proposition 3.1.8 L2(A%, 1) is unitarily equivalent with L*(Tx T x Z) = L2([0,1] x [0, 1] x
Z).
Proof: For ¢ € S5, 1, T'¢: Rx T x Z — C given by

_ 6(—C.’17yp)¢(l', y»P) for y < ]-’
Fél@y.p) = {¢(x,y,p) for y = 1.

satisfies ['¢(z + k,y,p) = T'ép(z,y,p). Also note that
(" x ) = / /Zl¢x—ﬁwy hav, — Idzdy—/ /Zldwy, )Pdzdy,

and therefore 7(¢*x ¢) = ||[T'¢||*, i.e, T': L2(AL,7) = L%(T? x Z) is an isometry. To see that
I' is a unitary observe that

(i) Np C L?(A, 7), since T is normal;

(ii) ¢m i defined by

5 e(czyp)e(mz + ny)dxp, for 0 <y <1,
ok dxpe(maz) fory =1,

is an element of S5, . ; C Ni;

(i) {T'bm,nk}py p pez 15 an orthonormal basis in L2(T? x Z). o
Remark 3.1.9 ¢ — ¢|jp 1]xT«z gives an unitary isomorphism.

Corollary 3.1.10 Let My, be the multiplication operator on H = L*(T? x Z). If we consider
n as a subalgebra of B(H) by the left reqular representation then [My,, AL] C B(H).

Proof: Note that for ¢ € A, (My,¢)(z,y,p) = ypd(z,y,p) gives an element in S6o,00,10 and

hence a bounded operator. Now for 9 € AR,

(Myp, 19 (2, y,p)
= > (yp—(y—hgv)(p— 0))p(z — hlq — P,y — g — P)1,q) X $(z — hgp,y — hqu,p — q)

= Y aly— g —pv)d(z ~ kg — p)u,y — hlg — p)v,q) X Pz — hgp,y — hav,p — q)
q
= (Myp(¢) *z,b)(x,y,p).

This completes the proof. i
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3.2 A class of spectral triples

Let (A4,G,a) be a C* dynamical system with G an n dimensional Lie group, and + a G-
invariant trace on A. Let A be the space of smooth vectors, h = L3(A4,7) ® CV where
N = 2\7/2 Fix any basis X1, X,... X, of L(G) the Lie algebra of G. Since G acts as a
strongly continuous unitary group on H = L?(A,7) we can form selfadjoint operators d X,
on H. Let us define D:h - h by D =3, dx, ® v, where vy,..., are selfadjoint matrices
in My(C) such that v;y; + v;% = 26;;. The operator D along with A® and § should be a
candidate for a spectral triple. For such a D, clearly one has [D, A®] C A® @ M, ~(C).

Proposition 8.2.1 For the quantum Heisenberg manifold, if we identify the Lie algebra of
Heisenberg group with the Lie algebra of upper triangular matrices, then D as described above

is a selfadjoint operator with compact resolvent with the following choice of X]s:

01 0 g 0 0 0 0 co
Xi=100 0|, X2={0 0 1],X35=]0 0 0 ,
0 0 0 0 0 0 0 0 0

where o € R is greater than one.

Proof: Domain of the operator D consists of all those square integrable functions f defined on
[0,1]x[0, 1]xZ that satisfy (3) f(z,0,p) = f(z,1,p), (i) f(1,4,p) = e(cpy) F(0,y, p), (ii)pf, o,
and %5 are square integrable. On such a domain D is defined by D(f ® u) = ?=1 id; (f) ®

oj{u), where

idl(f) = —i%, 5
3d2(f) = —27TCp."L'f($, y:p) - igjy_r!
ids(f) = —27rpcozf(m,y,p),

and o;'s are the Pauli spin matrices.
Let 77 : L*([0,1] x [0,1] x Z) — L2([0,1] x [0,1] x Z) be the unitary given by

9(—C-’Eyp)f($=y:1?), for ¥y < 1?

n(F)(@,y,p) = { P oy

Then domain of the operator D' = (nx I;)D(n @ I) ! is given by all those square integrable
functions f that satisfy the periodic boundary conditions, namely (%) gﬁ, %[,p f are square
integrable, (ii) f(0,y,p) = f(1,y,p), and (iii) f(z,0,p) = f(z,1,p). On this domain I is
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prescribed by D'(f @ u) = E?=1 idi(f) ® oj(u) where,

d
dil (f)(mayap) = —27ricypf($:y1p) - a_i:(:r!yap)!
d’g(f)(w,y,p) = _Z_ch(mnyip):

d%(f)(m‘ly!p) = 27T7:pcaf($ay1p):-

Note that, on Dom(D'), D' = T + § where Dom(T) = Dom(D'} C Dom(S) and T, S given
respectively by

o) 5,
T= _ib_;; o — za—y ® o3 ~ 2reaMy ® 03,5 = 2meMy, @ o1,

These are selfadjoint operators on their respective domains. Also observe that T has compact
resolvents. Our conclusion follows from the Rellich lemma since § is relatively bounded with

respect to T with relative bound less than é < 1. )

Theorem 3.2.2 Let H = L 2 1eC?, AR° with its diagonal action becomes a subalgebra
of B(H). (Af°,H,D) is an odd spectral triple of dimension 3.

Proof: The fact that (A7°,H,D) is a spectral triple follows from the previous proposition
and the remark preceding that. We only have to show |D|™3 € £I7, the ideal of Dixmier
traceable operators. For that observe:

(i) since T is the dirac operator on T3, ,un(T‘l|kerT;) = O(1/n'/3), p, stands for the nth
singular value.

(ii) S is relatively bounded with relative bound less than L <1, hence ||S(T +4)7}|| < 1
and ||(1+ S(T +4)™) 7| < 2.

(ili) pn(AB) < pn(A)B), for bounded operators A4, B.

Applying (i), (ii), (iii) to (D' +4)~' = (T +4)" Y1 + S(T + ai)_l)_1 we get the desired con-

clusion for D' and hence for D). a

Corollary 3.2.3 LetT,S,D,D' be as in the proof of proposition 3.2.1. Let us denote by Do
the operator (n ® L) 'T(n®I). Then (AR, H, Do) is an odd spectral triple of dimension 3.

Proof: We only have to show [Dg, A?°] C B(H). Let B = (3 ® L) 'S(n ® I,). Then since
n ® Iz commutes with S, we have B = §. By corollary 3.1.10, {B, Ap°] C B(H). Now the
previous theorem along with D = Dy + B completes the proof. 0

Remark 3.2.4 Similarly taking D; = Dy +tB one can show that (Ag°, M, D;) forms an odd
spectral triple of dimension 3, for ¢ € [0, 1].
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Remark 3.2.5 D, and Dy constructed above depends on c.

Proposition 3.2.6 If {1, hu, fv} is rationally independent, then the positive linear func-
tional on Ax ® Ma(C) given by  : a — troa|lD| ™% coincides with %(trw|D|“3)'r ® tr, where
tr, is a Dizmier trace.

X: 0
Proof : Observe that D? = ( , where

0 X,
1.2 i

— 2 2
Xo=—(di+d; + (d3—%) T i

1.2 1
Xlx—(d%+dg+(d3+—) —4—0'5),

200 )

It is easily seen that:

(i) compactness of resolvents of D? implies that for X1, Xo,

(ii) eigenvalues of X, X, have similar asymptotic behavior.

Therefore X, 3’/2, 2_3/2 € £{:>) and tn,,aXl_e'/2 = trwaX2_3/2 for any a € B(L%(Ap)).
Consider the unitary group on % = L?([0,1] x T x Z) ® C? given by

Uz@y®ep®z)=e(pt)(cQy@ep ® 2).
Then U} D = DU, and

1 ‘
][ A = tr, U, AUF|D|™® = tr( [ ULAU; dt)|DI~%) = f (A,
0

(i Y _ (o (¥r2)o
Bl (1!’21 tbzz) = A= ((1!’21)0 (%2)0)

is the completely positive map explicitly given for 1 € 5¢ by (¥)o(z,y,p) = dpo¥(z, ¥, D).
1 0
Since (0 0) commutes with |D|%, we get

where

][A = rw(au) X1_3/ +t1‘w(022)0X2 3/2
= t?‘w( an) (azz)U)Xl_ 3/2 .

Consider the homomorphism @ : C(T?) — A given by ®(f)(z,y,p) = dpof(z,y). Now by
Riesz representation theorem for [o(® ® I2) : C(T?) — C, we get a measure A on T2 such

that r,2() X173 = [ ()y(z, y,0)d) implying

fA = —/ a11) + (azg)o)d)\. (3.2.1)

In the next lemma we show X is proportional to the Lebesgue measure. That will prove that
£ is proportional with 7 @ ¢r and the proportionality constant is obtained by evaluating both

sides on I. 0
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Lemma 3.2.7 If {1,Au, hv} is rationally independent then A as obtained in the previous

proposition is proportional to the Lebesgue measure.
Proof: It is known ([41], {17] ) that for a spectral triple (A, H, D) with [D|™? e £{1:) for
some p, a — tr,a|D|™? is a trace on the algebra. This along with (3.2.1) gives

[ @ v 0@y = f (6% )21, 0)dM(z,y), Vo € 5°. (3.22)

Taking ¢(z,y,p) = e(c[zlyp) f(z — [z])g(y)é1, where g : T = C, f : [0,1] — C are smooth
functions with supp(f} C [€,1 — €] for some € > 0 and ¢ = ¢*, we get from (3.2.2)

f |6z + Bty + hor, D[PdA(z, y) = / o+ huy + h, DPAz,y),  (3.2.3)

where v : T? — T? is given by v(z,y) = (z — 2hu,y — 2hv). The hypothesis of linear
independence of (1, /4y, Av) over the rationals implies that v-orbits are dense. This along

with (3.2.3) proves the lemma. W

Remark 3.2.8 In the rest of the chapter -f will denote 37 ® tr.

3.3 Space of Connes deRham Forms

In this section we will compute the space ‘of Connes deRham forms associated with the
spectral triple. Our computations are for the specific case of quantum Heisenberg manifolds,
but similar calculations can be carried through whenever one has a spectral triple coming from
Lie group action on a simple C*-algebra. We begin with a rather simple but useful lemma

which is essentially the sweep out algorithm of linear algebra for solving linear equations.

Lemma 3.3.1 Let A be a dense subalgebra of o unital C*algebra A closed under holomorphic

function calculus, then A is simple provided A is so.

Proof: Let J C A be an ideal. Then J = A, since A is simple. There exists z € J such that
lz — I|l| < 1. Then z~! € A, hence in A because A is closed under holomorphic function

calculus, Therefore 1 = zz~1 € J. O

Assumption 3.3.2 Henceforth we will assume {1, iy, Aiv} is rationally independent. In that

case Ay is simple ([73]), hence so is AR.

Let us introduce some notations before we proceed further. Let ¢ € S¢, then [D,¢] =
2 0i(¢) ® 0; where 0;(¢) = id;(¢) (see proof of proposition 3.2.1 for d; ) but looked upon as
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derivation on AY°. Also note that {8y, d3) = [d2, 3] = 0, [61, d2] = J3. In the sequel we will need
a special class of elements of A° whose symbols are given by ¢mn(2,y,p) = e(mz + ny)dy.
n times
N — .
Lemma 3.3.3 Let A be a unital simple algebra, M C Ad...® A a subA-A bimodule.
Suppose there exists algebra elements a;;,1 <1 < n,1 < j < i such that (i) ay # 0, (ii)
b; = (a;1,...,2i,0,...,0) € M. Then M is isomorphic to A® ... ® A as an A-A bimodule.
e —t
n tires
Proof: By induction on n,
Forn=1, 0 # M is an ideal in A, hence M = A. Let 7 : M — A be n{ay,...,an) = tn.
Then by hypothesis, #{}) is a nontrivial ideal in .4 and hence equals A. So, we have a split
short exact sequence

0— ker(m) > M - A—0.

Therefore M = ker(n) & Imn = ker(n) ® A = A®... 2 A In the last equality we have
et

n times

used induction hypothesis for ker{r). o

Now we will compute the Connes-deRham complex introduced in definition 1.6.4 associ-
ated with the spectral triple (A3°,H, D) constructed in theorem 3.2.2. We follow the no-
tations of definition 1.6.4, i.e., = stands for the representation of 2°(A3°) in B(#) and

Jn = ker mgn a0y

Proposition 3.3.4 (i)

|

OLH(AR) {Z a; ® oila; € A°, os are spin matrices }

= AP @Ay & AP°.
(i) T(QF(AP)) = AL @ M(C) = AL & AL ® AP & AL,

Proof: QL(AL) = n(Q'(AR)) C R.H.S.

Let ¢mn(z,y,p) = Spoe(mz + ny) and ¢ € 5S¢ be such that ¢(z,y,p) = dnd(z,y,p). Then
applying the previous lemma, to [D, ¢o1], [D, #10), [D, ¢] € w($2L(A)) we get the result (i).
For (ii) use (i) along with Q*(A) = Q1(A4AR) Qup - Bax QHAL). O

i

k times

Proposition 3.3.5 (i) w(6J;) = AF.
(ii) Q5L (AF) = AP © AF @ AP
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Proof: (i) Let w = 7 a;d(b;) € J1. Then w(w) = ¥ a:8;(b;)o; = 0 gives Y- aidi(b;) = 0,V5.
w(dw) = Z EJ (ai)o;) 25’“ )Ok)
= Z(Z 8i(ai)d; (b)) ® I+ Y (> (8;(a:)8k (b:) — Sk (a:)d; (b:))ojon),

i j<k
(3.3.1)
Z[éj,ék](aibi) = Za-ak (a:)bi SmceZai ;) =0,V
= Z[aj,akl (a:)bs +Z(ak (a:)8 8;(ai)8x ().
(3.3.2)
Also note,
2[53‘,5::](%6:') = Z[5ja5k](az‘)bi+Zaf[51,5k](b)

= > 16, 6] (a:)bi. (3.3.3)

i
Comparing right hand side of (3.3.2), (3.3.3) we see that the second term on the right hand
side of (3.3.1) vanishes, thus proving 7 (6J;) C A°. For equality, in view of lemma 3.3.3 it is
enough to note, w = 2¢p28(d01) — Po16(Po2) € J1, w(6w) = 2oz ® I # 0.
(i)Suppose ¢ € S° satisfies ¢(z,y,p) = S1,¢(z, y,p). Let w1 = 6(h10)8(¢bor ), wa = 8(¢b10)3(¢),
w3 = 0{¢01)0(¢). Now lemma 3.3.3 together with (i) implies the result. 0

Lemma 3.3.6 7(6J2) = {) a; ® 0jla; € AP} = AP © AL @& AL

Proof: Let w = 3 a;8{b;)d(c;) € Ja,
0=n(w) = Y a(} (bo)(Y delei)on)
i i

= ai0;(6:)8j(ci) + ) ai(d(b:)0k(ci) — B¢ (b5)63(ci) 0.
i<k

Comparing the coefficients of the various spin matrices we get,
Ea, b)di(e;) = 0, (3.3.4)
D ailB;(5)0(cs) ~ dk(b)Si()) = O,Vi # k. (3.3.5)

From (3.3.5),

D 61(ai(82(b:)ds (cs) — 03 (bi)d2(cs))
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= > 1) (B2(be)ds(cs) — 3 (bi)da(ci) + Y @idi (G2(8:)d3(es) — 83 (bs)d2(ca)).
Therefore,
3 61(a:) (B2(b:)8s(c) — d3(bi)da(cs)) = — D aib1(B2(bi)dales) — 3(bi)dz(ci)). (3.3.6)

Similarly we get two more equalities. Let A be the coefficient of I3 in 7(dw). Then

V=14
= 3 61(as)(Ga(bi)83(cs) — da(bi)dales)) + ) _ Ba(ai)(Ba(bi)dr(es) — 61 (bi)dalei)
+ 263 (@:)(01(b;)da(es) — 52( b:)d1(ci))
—(D " ai61(62(bi)da(c:) — Sa(bi)da(cs)) + 20152 d3(bi)o1(ci) — 61(bi)d3(ci))
+ ) aiby (81(5:)d2(ci) — 82(bi)é1(c:)
= (3 wl(6y, 8] (bi)8a (i) + oy [51,53](@ )+ D ail(83, 81)(5:)02(e) + B3 (8:) {62, 1] (cs)
.;.Za1 [62, 83](b:) 61 (c:) + 01 (b;)[d3, 02](x)))
= 0

Here second equality follows from (3.3.6) and the last equality follows from (3.3.5) since ;s

form a lie algebra. This shows,

3
7(6J2) C {D ajo5la; € AP} = AX @ AY @ AP (3.3.7)
j=1

Let ¢ € S¢ be such that ¢(z,y,p) = d1p¢(z, y,p). Then,
wi = 2¢026(d01)d(do1) — d018(do2)d(do1) € Ja,
(

wy = 2¢2008(¢10)0(¢10) — $108(d20)d(d10) € Jos
w3 = $020(po1)d(¢) — Pn1d{o2)d(¢) € J2,

satisfy,
m(dw1) = 240402,
m(dwz) = 2¢4001,
7(dw3) = 2¢0301(P)o1 + 2d03d2(P)o2 + 2¢0383(P)os.
Therefore by Lemma 3.3.3 we get equality in (3.3.7). a

Corollary 3.3.7 Q3 (AR) = AP,
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Proof: Tmmediate from the previous lemma and proposition 3.5(ii). 0O

Lemma 3.3.8 (i) Q4 (AP) = 0.
(i) Q5(AP) =0, for all k > 4.

Proof: (i) It suffices to show 7(8J3) = AP & AP & AP & A7,
For that note,

wi = 2¢026(¢o1)d{do1)d(d01) ¢015(¢02)5(¢01)5(¢01) € Js,
wg = 2¢026(do1)d(¢01)d(do1) — Bo10(do2)d(Po1)d(do1) € s,
w3 = 2¢026(c01)0(01)5(9) — Po18(Po2)d(P01)d () € Js,
wyg = 2¢026(g01)8(10)0($) — Po1d(¢o2)d(¢10)8(¢) € J,

satisfy,

m(dwi1) = 2¢05 ® Iy,

m(dws) = 20201,

m(dws) = 2¢04d2(¢) ® I2 + 2d04d1 (o201 + 2¢04d3(P)oz03,
m(dws) = 241301(P) 1z + 2¢1382(P)o102 + 2¢1303(¢)o103.

Now an application of lemma 3.3.3 completes the proof.

(ii) The same argument as in (i) does the job with the following choice,

wgmwi§(¢01)...5(¢011,i=1,---4. ]
(k—4)vt1;mes

3.4 'Torsionless and Unitary Connections

Recall that for computation of connection, curvature one requires space of square integrable
forms, which in this case coincides with the space of Connes-deRham forms. We also char-
acterize unitary and torsionless connections and prove that a connection cannot be simulta-

neously torsionless and unitary. We follow notations of sections 1.6.4, 1.6.5.

Proposition 8.4.1 (i) QF(A) = AP ® Mp(C) = AP @ AP © AP & AP,
(i) HF = L2(AP, ) @ CL.
(i) Hp (AF) = Q% (AP).

Proof:(i) Faithfulness of A = f A, defined on 7(Q°*(AP)) = AL ® M2(C) gives J;, = K.
hence (*(AR) = QF(AP) /ker(r) = T(QHAP)) = AL ® M,(C).
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(ii) Follows from (i) and proposition 3.2.6.
(iii) This follows from (i} and the definitions. C

Remark 3.4.2 Since ﬁ}) (A$°) is free with 3 generators, we can and will identify ﬁb (AR )® Az
ﬁ})(A?) with A$° ® M3(C) and a connection V is specified by its value on the generators.

Proposition 3.4.3 A connection is torsionless iff its values on the generators o1,04,03 are

given by
0O a b O d e O p-1 g¢
Vieyy)=|a O ¢ |,V(or)=|d O f [, Viz)=]rp wi r |,
b ¢ O e f O q T O

where all the matriz eniries are from Ap° with resirictions on them as indicated above and

O denotes an unrestricted entry.
Proof: Observe that

503" aibj(bi)oy) = —\/—-_(Z 81(a;)}d2(b;) — 62(a;)61(bi))os

i,j
+Z ;) — d3(ai)dz(bi))oy
+Z (93(a:)d1(b;) — d1(ai)da(b:))o2),
™mo V(Zaiéj(b,;)oj) = zé(a,ﬁj bi)) ® o;) +Zai i(bi)m o V(o;)
i.j
= m(Zék ai0;(bi))ox @ 0;) —i—Za, iym o V(oj).
Lk nJ

Torsion of V vanishes if and only if {(§ — m o V}(3_ a:d;(b;)o;) = 0, or equivalently ,

D (65(aa)dk(bi) — Bk(ai)ds (b)) = D (F(aidr(bi)) — ilasb; (b))} + 20151 (m o V(o1)),,

% i

whenever j # k and n satisfies oj040, = +/—1. This happens if and only if

Zaz[aja‘sk] b) +Za:é-l (mOV(Jl))

whenever j # k and n satisfies ojor0, = v—1.
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Using the Lie algebra relations between the d;’s we get equivalence of the above system

of equations with
0 = Za,dg(b +Za,5, )(mo V(ay))s
0 = Zamz movm))

0 = Za;fﬁ Jm o V(o))

Taking b; = ¢do1,a; = 1 we get §1(B;) = 83(b;) = 0,82(8;) = b;. Substituting these in the
above relations we get (mo V(o3)}; =0 for 7 = 1,2,3. Similarly taking b; = ¢19,a; = 1 we
get (o V(o1)); = 0 for j = 1,2, 3. Substituting these values in the above equations we get,

Za,as moV(aa))l—Zazas )(m o V(03)) 2_2(1;53 )(1+ (m o V(as))s =0.

Note that J = {37 a;d3(b;}|n € N,ay,...,a:,01,...,b; € AP} is a nontrivial ideal in AL and
hence it equals A3°. Therefore (mo V{o3)); = —1 and (mo V{o3)); = (mo V(as)), = 0.

Now the result follows from the anticommutation relation between the spin matrices. i

Proposition 3.4.4 A connection V on ﬁb(.A?) is unitary iff its values on the generators

01,032,003 are given by

XY Z Y U V Z P Q
V(O’l) = Y U P ,V(O’2) = U R § ,V(O’a) = vV S F y
zZ vV @ P S F Q@ F G

where all the matriz entries are selfadjoint elements of AL.
Proof: Taking s = a;04,t = bjo; in the defining condition of a unitary connection we get
8(8ija:bj) = ail((V(oi),05) — {, 04, V(0;)))b] + 8;5(8(ai)b] — a:(8(b;))"),  (3.4.1)

implying that(V(o;), o) = {0i, V(0;)), which means the j-th row of V(o;) is the star of the
i-th column of V(o;). This completes the proof. O

Corollary 3.4.5 A connection V can not simultaneously be torsionless and unitary.

Proof: If possible let V be one such. Comparing the forms of V(o;),j = 1,2, 3 in propositions
3.4.3 and 3.4.4 we get that V' = ¢ = P and also V — P> = —1. This leads to a contradiction.
a
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3.5 Connections with non trivial scalar curvature

In this section we exhibit connections for which the associated scalar curvature is nontrivial.
In fact it turns out that the scalar curvature is an element in the smooth algebra A2°. Let
{-,-)p be the map introduced in theorem 1.6.11 associated with the spectral triple (AP, H, D).
In the following proposition we identify ﬁk(./-lg") with A5° @ My (C).

Proposition 3.5.1 (w,n), = (7 ® tr){wn*)

Proof: Let
3 3
w=w0®12+zwi®ai, 77=770®I2+Z7?i®0'i-
i=l i=1
Then J(I @ tr)(wn’) = T gwint and (2, 5% wint) = S r(emed) = (2, (w,m)p) for al
z € Ap. This completes the proof since Ay, is dense in H° O

Now we will exhibit connections with nontrivial curvature. We will follow notations of section
1.6.5. Since ﬁb(.ﬁl}’f) is a free bimodule with three generators, the curvature R(V) of a
connection V, R(V) = —V?: QL(AP) — 0%(AP) ® Az (1L (A) is given by a 3 x 3 matrix
(Ri;)) with entries in ﬁ%(/l?f) Let Ps, : H2 — H' be the projection onto closure of
m(6K1) C Q%5(AP), and Ryt = (I — Psk,)(Rij). Let e1,e5,€5 be the canonical basis of
ﬁb(Ag") If we write Ric; = ), mL(e,-)T(B,,-j‘L) € H!, then Ricci curvature of V is given by
Ric(V) =" Ric; ® e; € H' ® 40 Q5 (AP),
J

where 1 denotes Hilbert space adjoint. Finally the scalar curvature 7(V} of V is given by

r(V) = ZmR(e (Ric;) € H® = L2(AD).

Proposition 3.5.2 Let f,g: T — R be smooth maps. We visualize them as elements of §¢
in the following way, f(z,y,p) = dopf(z), 9(z,y,p) = Sopg(y). Let V be the connection given
by V(or) = f'd(g)ar + 9'8(f}o2, V(o) = ¢'8(f)o1,V(a3) = 0, then r(V) is —2f"%¢2.

Proof: Tt is clear that the derivative functions f', ¢’ also can be visualized as elements of S¢

exactly in the same way as f and g. By direct computation one gets,
V*(a1) = —Ryo1 — Rizoy, V%(03) = —Rg101, V2(03) = 0,
where

Rll = f”gaa, R12 = /_(ff2 L ”f’)ag,, R21 - /“—_l(gnff +f’2g’2)0'3,
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and the other R;;’s are zero.
Then
Ricl — —f"gaz ( "f + frz 12)01, RZCQ (g”f f.rz 12)

implying the desired conclusion r(V) = —2f72g", w!
Remark 3.5.3 1. All the above notions of Ricei curvature, scalar curvature was intro-

duced in [36]. This is one infinite dimensional example where one can have connections

with nontrivial scalar curvature. (see also [16])

2. Note that our choice of the spectral triple depends on a parameter . However, for the
connections we have considered the scalar curvature does not depend on the parameter

.

3. Note that the scalar curvature is a negative element of the smooth algebra.

3.6 Nontriviality of the chern character associated with the

spectral triples

The spectral triple we constructed depends on a real parameter . In this section we show
that the Kasparov module associated with the spectral triple are homotopic ([24], [8]). We
also argue that they give non-trivial elements in K'(A;) by explicitly computing pairing with

some unitary in the algebra representing elements of K;(Ay).

Lemma 3.6.1 Let A be a selfadjoint operator with a bounded inverse and B a symmetric
operator with Dom(A) G Dom(B) on some Hilbert space H . Also suppose that [Buf| <
ol Aul|,Yu € Dom(A). Then |A{""B|A]"""P) € B(H) and {||A/PBIA|"07?)|| <.

Proof: Clearly ||Bu|| < al||A|ull,Vu € D(A) implying || B|A]™|| < a. For u,v € D(A)

1A Byl = sup |{|A]7' Bu,v)]
veD(A),Jul<1
= sup  f(u, BA|™ o) < alful.
veD(A) o<1

Therefore |A|™'B € B(H), [||A|™'B|| < a. Let #, be the Hilbert space completion of ND(A™)
with respect to ||ull, = [||A[Pul|. Let By : H; — Ho, Bo : Ho — H_; be the maps given by
Bi(u) = B(u) for u € ND(A"). Then By, }B1]| < a. By Calderon-Zygmund interpolation
theorem ([68]) we get maps By : Hp = H_(;_p) for 0 < p < 1 with || By]| < a. OnND(4%), B,
agrees with |A|PB| 4|~ proving the lemma. 0
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Lemma 3.6.2 Let A, B be as above with a < 1. Let Ay = A+ tB,t € [0,1]. Then the

assignment t — tan~!(4,;) gives a norm continuous function.

Proof: Let us denote |A|_1/2B]A|_1/2 by C. Then by the previous lemma [|C|| < a. We also
have [[|A](A — A) 7Y < 1 for A € iR,

(4 =X + 4] C| A2
= A]M2((A - NIATT +10) AP
= |AM?(1+tC(A - N)TAD(A - 2|44

Ay = A

Now note |[tC(A — A} "HA||| < e < 1 for 0 <t < 1. Therefore
(Ar— A) 71 = ATV 4)(A - N7+ e0(A — N)ThA) A2,

So, if we denote by Ry(A) = (4; — A) ™ and F()A) = |A](A — A}"! then the above equality

becomes,

RN = [ATYHAIR(N (1 + tC|AIF(N) 472
Ro(A) +A[T2F(N) Y (—tCF ()" |42 (3.6.1)

n=1

Let A € R, ¢, s € [0,1],u,v € D(A). Observe,

(M)
[ f (—tCF(iX)"| A/ u ~ fj (=sCF(EN)"| A7y
n=1 n=1
< in vt — s THYCE )| F M) Al )
< iuﬂ“ s**)|a™a|| F(i0)| 4] 2ul
g
< {(t-s)| in + 1™ F(30)] 4] 2
< l(t—s)lz o )2||F(w\)|Ar”2un
(i)

f IFGNIA 2] dr < f (A% + 237) Mo, |Alu)dX
0

- 2 %
= 3] ol
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1 ,a-1/2 T2
o427 Ay = D)
(iit) Using (3.6.1}, (i) ,(ii) we get

/ 7 H(R(iA) — Ra(iX))u, 0)ld
< /0 mr(t—s)r( PG P A o

a ‘ iz 2 /2 poo . 122 1/2
< U= 9 [ IFGAIAI2ul’ay) ([ 1Al )
(1- a) 0 0

< t—-s ufHjv

< I )I(l— )22” [ili]l.
This shows that limg,, || [°(R:(¢)) — Rs(X))dA|| = 0. Similarly one can also show that
limgt || fy° (Re(—iA) — Rs(—iA))dA|| = 0. Now the result follows once we observe that
tan™ 1At fO Rg ’LA) +R:( ))d}\ O

Lemma 3.6.3 Let A, B be as above except now we do not require A to be invertible. Instead
we assume A to have discrete specirum. Then there exists k > 0 such that t = tan™!(A4; + &)

18 norm continuous.

Proof: Without loss of generality we can assume 0 is an eigenvalue of A. Otherwise we are
done by the previous lemma. Choose 2 < n € N such that b = a2y < 1. Choose x > 0 such
that ‘

(i) smallest positive eigenvalue of A is greater than x;

(ii) if B is the biggest negative eigenvalue then § < nk.

Let A=A+ K, Zt = A+ tB. Then by choice of

(i) A is an invertible selfadjoint operator;

(i) |BA!| < allA(A+8) 7Y <azty < 1.

That is B is relatively bounded with respect to A with relative bound b < 1. Now an
application of the previous result to the pair E, B does the job. [

Combining these two we get

Proposition 3.6.4 Let A, B be operators on the Hilbert space H such that

(i) A is selfadjoint with compact resolvent;

(ii) B is symmetric with Dom(A) C Dom(B), and relatively bounded with respect to A with
relative bound less than 1.

Then there exists a continuous function f : R — R satisfying limy 1o, f(x) = +1 such that

t — f(A+tB) is norm continuous.
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Proof: If A is invertible then by lemma 3.6.2, f(z) = 2tan™!(z) serves the purpose. In the

— 7
other case by lemma 3.6.3, f(z) = 2tan~!(z + x) does the job. |

— 7

Let the Hilbert space H and the operators Dg, B, D be as in corollary 3.2.3.

Corollary 3.6.5 The Kasparov module associated with (AR, M, D) is operatorially homo-
topic with (A°, H, Dg)

Proof: Let Dy = Dy + tB for t € [0,1]. Then D = D) and as in remark 3.2.4, (AR, H, Dy)
are spectral triples. Let f be the function obtained from the previous proposition for the
pair Dy, B. Then ((Ax, H, f(Dt)))te[o,u gives the desired homotopy. 0

As remarked earlier, the operator Dy depends on a real parameter « > 1. Now we will make
that explicit and denote Dy by Déa).

Proposition 3.6.6 The Kasparov modules associated with ( g",?{,D(()a)) are operatorially

homotopic for a > 1.

Proof: By proposition 3.1.8, H = L}(T x T x Z) @ C2. Let B be the operator —2wcM, ® o3.
Here p denotes the Z variable in the L? space. Then B is selfadjoint with D(D({]Q)) C D(B).
Also B is relatively bounded with respect to Déa) with relative bound less than é < 1. Let
D{® = D{* 1+ 4B for t € [0,1]. Then D{*® = D{**"). Let f be the function obtained from
proposition 3.6.4 for the pair D((,a), B. Then from the norm continuity of ¢ — f (D((,“H) ) we
see the Kasparov modules ((A?,H,Déa+t)))te[0,1] are homotopic. Since ¢ s arbitrary this

completes the proof. O

Remark 3.6.7 Proposition 3.6.6 and corollary 3.6.5 together imply the Kasparov module
associated with the spectral triple (A$°, #, D) is independent of c.

In the next proposition we show (AR, #, D) has non trivial chern character.

Proposition 3.6.8 The Kasparov module associated with (Ag°,H, D) gives a nontrivial el-
ement in K'(Ap).

Proof: By corollary 3.6.5, (A, H, D) and (A3, #, Dy) give rise to same element (A, H, Dy)]
in KY(Ap). Let ¢ € A be the unitary whose symbol in 5¢ is given by H(z,y,p) = Sope®™.
This gives an element [¢] € K;(A4p). It suffices to show ([¢], (AR, H, Dg)]) # 0 where the
pairing (-,-) : K;(Ap) x K'(Ap) = Z is the one coming from the Kasparov product. ¢ acts
on L?(Ap) ® C? = L2([0,1] x T x Z) @ C? as a composition of two commuting unitaries
U, = Meyy @I and U; = Me(pun) ® I. Then note Uz commutes with Dy. Let E be the
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projection E = I(Dy > 0). U. also commutes with E. Now by theorem 1.3.6, EU,UzE
is a Fredholm operator and ([¢], (AL, H, Do)]) = Index(BUURE) = Index(EULE), last
equality holds because Us; commutes with E. Now Index(EUE) # 0 because this is the

index pairing of the Dirac operator on T3 with the unitary Us. |

3.7 Invariance of Chern character in entire cyclic cohomology

Now we will show that Chern character associated with the spectral triples considered above
is same. We begin with a general proposition of invariance of Chern character under relatively
bounded perturbations, which is an adaptation of the arguments given in proposition 2.4 in
(39].

Let A be a Banach algebra, and (%, Dg) be an odd unbounded theta summable Fredholm
module in the sense of section 1.4.1. Suppose we are given another self adjoint operator
A such that e » [A,7(a)] defines a bounded derivation and A is relatively bounded with

respect to Dy with relative bound j strictly less than one. Then we have:
Lemma 3.7.1 (H,D; = Dy+tA) for 0 <t < 1 define odd theta summable fredholm modules.

Proof: Clearly D, defines a self adjoint operator and a + [D;,n(a)] defines a bounded
derivation. It only remains to show that Tr exp(—sD?) is finite for all s > 0. For that note

for bounded operators By, B,, with B compact, we have

pn(B1Ba2) < pn(B1)| B2, (3.7.1)

h

where (¢,(-) stands for the n*h largest singular value. Letting pn; = n'® smallest singular

value of Dy, 3.7.1 along with the resolvent identity

(Dy—i)"! = (Do—i)" (1 +tA(Dp—4)™ 1) (3.7.2)
gives
—1\2
(uao+1) (ﬁT) < phi+1 (3.7.3)
Now we are done by the finiteness of 3 exp(—sui,o) = Trexp{—sD3) O

Remark 3.7.2 From the proof of the previous lemma it also follows that Trexp(—D?) is

uniformly bounded.
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Let H be the Z/2 graded Hilbert space given by H=Ht®H ", where Ht = H =N~ Let 7

0 1Dy ~
, ; similarly define A and
—?.Dg 0

—_ —_— e~ 0 1
Dy, then Dy = Dy + tA. Let ¢; be the odd operator given by ¢; = (1 0). Then ¢ graded

: B(ﬁ)®(n+l)

be the representation given by 7T = 7w @ 7. Let '5:) = (

commutes with Dy’s and 7(A). Consider the multilinear maps {-,---,-), , -+C

given by
Y —_ —_—2
(Ag, - :ATI)t n = Str(clee-*So'Dc Ale_slpt . Ane—sn'Dt )d"s,
s An

where A, denotes the n-simplex and the integration is with respect to the Lebesgue measure
on that simplex. Str stands for super trace, explicitly given by Str(A) = TrA|y+ — TrAly4-.
The Chern character of the theta summable Fredholm modules (H, D;} is given by the entire

cyclic cocycles on A given by the formula
Chn(Dt)(aﬂa T aﬂ) = (G'U: [5;7 01], T [ﬁ: a’ﬂ])t,n'

Note that in the right hand side a; actually stands for 7(a;). Our objective is to prove the

following theorem.

Theorem 3.7.83 The chern character Ch*{D;) associated with the Fredholm modules (H, D)

are cohomologous for 0 <t < 1.
For ease of reference let us recall some results (lemma 2.1,2.2 from [39}).

Lemma 3.7.4 (i) If the operators A;,G;,7 = 0,---,n are bounded and at most (k + 1) of

the A;’s are nonzero, then for 0 <e < (2e)"1,

]_'\(1/2)’9"’1

~2
o E T T O 411G

[{40D + Go,++, AnDt + Gy | < (266)-(k+1)/2r

(i) In each of the following cases we assume that the operators A; are such that each term
is well defined. For an operator A, |A| =0 if A is even, |A| =1 if A is odd.
(a) (Ao, An)yp = (—1) Aol HAs—1[X| 4[4+ Anl) (Ajy ey Any Aoy Aja)y i
(b) (Ao, Andyn =0 (*1)(iAoI+---+|Aj—nI)(IAjI+"-+IAnI)(1,Aj,...,AR,AO, e Ay
()05 (=DMl il Ao, (D, Al Andy = 0;
() (Ao, [De Al Anden = (Ao, Aj1 A, Ajrrye - Andy s

— (Ao Ajo1, Aj A, Andy gy

(8) %(‘AO'I e :An)t,n + ES (AO: " ':Ajs ['5;35;]1Aj+1: cee sAn>t,n+1 = 0.

t,n.+1;
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Proof of the Theorem: Let A4p, Ay, -, A,,, G be bounded operators. Then,
(a) observe that

l(AOa‘ T )AJ"’GE’A.H'I" v ’A”>t,n+1,

e ]
[{Ag, -, Ai;, GA(Dy + 1) (D +1), Airy oy Andy |

< z(zee)-lle-gf—lueunsuxaf||F((Q%Z?)/—Q)m—u—e)ﬁz

Therefore,
e  m— L . — — ~ — —
Ch (Dt: A)((GO’ v san)) = Z (_1)J<a'0: [Dta a’l]‘l B [Dtv aj]: Aa [Dt: aj+1]1 Ty [Dt: an}>t5n+1
0

defines an entire cochain.
(b) Note that

< Y
<A0,"'-,AAj,“',An>t,n:(AO,"',(Dﬁ-*_"")(,Dt"_?') AAJ‘?”"An)t,n

Left hand side is well defined by (i) of lemma 3.7.4 implying that the right hand side is well
defined too. Therefore,

1

o (Do, 8) (a0, an)) = 3 (00, Dy 1], -+, [B, ajl, -, [Br, anl),,
o .

defines an entire cochain.

(c) Again as in (b) it is easily seen that expressions like (Ag,- -+, Ay, AD;, Ajir, e ’A"-)t,n+1’

and (Ap,---, 4;, DA, Ajfg,- ’Aﬂ)t.n+1 make perfect sense. So, that we can talk about

(Ao, -+, A4, [De, Al Ajiq, - »An); ny1> Which is nothing but (Ao, - -, 4;, [D;, Dy), A1, - s An -

Now we are in a position to apply (ii)(c) of lemma 3.7.4 to the following choice

ag for j =0,
4 (Dr,a5]  for j <k,
TTYA forj =k +1,

[ﬁ,aj-l] forj > k+2

This gives,
X1+Xo+ X3 =0, (3.7.4)
where

Xl = ('_]-)k“a:aﬂ]:[‘B;aal]?"'a[ﬁ:ak]aas[ﬁ:akﬁ-l]a"'}[Dhan])t,n+11
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i — —32
X2 = 2 (_1)3-':-’6 1(”0! [Dtval]a T [Dt ,O)j] [Dt: ak [Dh an}>t,n+1
j<k
+Z k+J aU: Dt:al] {DtaakLA [Dt ,GJ [Dtﬂa‘n])tn+ls
ik
XB = (0‘03 [Dta al]a Ty [Dt: ak]! [Dt! A]v [Dh ak+1]3 T [Dt’ aﬂ])t.n-i—l'

We now sum (3.7.4) over 0 < k < n. By lemma 3.7.4(ji)(b) we see after reordering terms

that

ZX}. = BCh (Dt, ))((ao, :an))- (375)

Similarly, using lemma 3.7.4(ii)(d},

Z-X2 - bCh' (Dt; ))((001"':0'?1)) +a*(ﬁ=£)((a’0""!aﬂ))' (376)

Here b, B are the boundary operators in entire cyclic theory (see 1.4.2, 1.4.3). Combining
(3.7.4), (3.7.5), and (3.7.6) along with the expression for X3 we get,

dCh*(D

dCR(Ds) (0. ay)

dit — e —
= at(Dts /—\)((GO, e :a‘ﬂ)) “ Z (GQ, [Dt)al]? Tt [Dtuak]y [Dta A]a [Dtia‘k-l'l]! T, [Dtian])t,n.i..]_
k

— (B+b)Ch (Di,A) (a0, an)).
d

Let the Hilbert space # and the operators Dy, B, D be as in corollary 3.2.3. Al defined as
{a € Apl{Dy,a],[B,a] € B(#H)} becomes a Banach algebra with the norm ||al|,, = max{||e| +
(Do, a]ll, la|l + I[B,a]l|}- Let Dg = Do, A = B, then with these choice A}, H, Dy, A satisfy
all the hypothesis required for applying theorem 3.7.3 by which we get,

Corollary 3.7.5 The Chern character associated with the spectral triples (A°,H, D), and
(AR°, H, Dy) are cohomologous.

Remark 3.7.6 The spectral triple (A3°, H, D) depends on a real number « > 1. An argu-
ment very similar to proposition 3.6.6 will show that Chern character associated with this

whole family of spectral triples is independent of a.



Chapter 4

Quantum SU(2) and Sphere

Study of quantum groups originated in the early eighties in the work of Fadeev, Sklyanin
& Takhtajan in the context of quantum inverse scattering theory. It picked up momentum
during the mid eighties, and connections were established with various other areas in math-
ematics. They were first studied in the topological setting by Woronowicz, who treated the
g-deformation of the SU(2) group in [85] and then went on to characterize the family of
compact quantum groups and studied their representation theory. Later Podles ([67]) con-
structed quantuin spheres Sgc as homogeneous space for SU,(2). In the context of Lie groups
and their homogeneous spaces they have their own geometry. Now, the natural question is
can one do geometry in the context of SU,(2) and SZ. Here to construct explicit spectral
triple we begin with computation of K-groups, and then from explicit generators we con-
struct spectral triples which induce generating elements in K-homology. We also compute a
modified version of the space of Connes deRham forms and an associated calculi. The space

of L? forms also have been described explicitly.

4.1 Quantum SU(2) as a C*-algebra

The quantized version of the theory of topological groups was initiated by Woronowicz. His
first example was quantum SU(2) group. In this section we briefly recall the definition of a
compact quantum and describe the C*-algebra associated with SU(2).

We will throughout assume ¢ is a real parameter lying between zero and one.

Definition 4.1.1 (Woronowicz) Let A be a separable unital C*-algebra, and A : 4 —
A ® A be a unital *-homomorphism. We call G = (4, A) a compact quantum group if the

following two conditions are satisfied:
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(i) (id ® A)A = (A ®@id)A,
(ii) Linear spans of both {(e @ I)A(b) : a,b € A} and {(F ® a)A(b) : a,b € A} are dense in
A® A

A is called the comultiplication map associated with G. The underlying C*-algebra is often
denoted C(G).

A linear functional on the C*-algebra C'(G) plays the role of a measure on G. Using the
comultiplication A, one can define a convolution product between two linear functionals py
and pg:

p1*p2(a} = (p1 ® p2)Ala), Va € C(G).

It is easy to check that if G is a group, this notion reduce to the usual convolution product
of two measures.

A bounded linear functional X is said to be right invariant if for any continuous functional
pon C(G), we have A% p = p(I)A. Similarly, X is left invariant if p« XA = p(I)A for all p. As

before one can easily check that these coincides with the usual notions if G is a group.

Theorem 4.1.2 (Woronowicz) Let G = (A, A) be a compact quantum group. Then, there

exists o unique state h on A, called the Haar state such that
hxp=pxh=p(h
for any continuous linear functional p on A.

In our case the C*-algebra of continuous functions on the quantum SU(2), to be denoted
by C (8U,(2)), is the universal C*-algebra generated by two elements o and g satisfying the

following relations:

a'a+ 8 =1, aad® +¢*8p* =1,
af — gBa =0, af* — gf*a =0,
BB = BB
The comultiplication map A, is a unital *-homomorphism from C(SU,(2)) to C(SU,(2)) ®
C(SU,(2)), given by:

Ala) = a®a-—g¢8"®5,
A(B) = BRa+a*®B.
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The C*-algebra C(SU,(2)) can be described more concretely as follows. Let {e;}:»0 and
{ei}icz be the canonical orthonormal bases for Ly(Np) and Lo(Z) respectively. We denote
by the same symbol N the operator e; — keg, k > 0, on Ly(Np) and ex — key, k € Z, on
L2(Z). Similarly, denote by the same symbol ¢ the operator ey =+ ex_1, & > 1, g — 0 on
L,(Np) and the operator e; — ex—1, k € Z on Ly(Z). Now take H to be the Hilbert space
Lo(Ng) ® Ly(Z), and define = to be the following representation of C(SU4(2)) on H:

wa) = ty/T-@N ©1, =(f) =" ®¢

Then 7 is a faithful representation of C(SU,(2)), so that one can identify C(SU,(2)) with
the C*-subalgebra of B(#) generated by () and «(3). Image of = contains K @ C(T) as

an ideal with C(T) as the quotient algebra, that is we have a useful short exact sequence

0— K®C(T) - 4 -2 C(T) — 0. (4.1.1)

The homomorphism o is explicitly given by o(a) = £,06(8) = 0. The Haar state h on
C(SU,(2)) is given by,
o0

hiav (1—¢%) > % (e: ® eq, ae; ® ep).
i=0

Remark 4.1.3 This representation admits a nice interpretation. Let M be a compact topo-
logical manifold and E, a Hermitian vector bundle on M. Let I'(M, E) be the space of
continuous sections. Then I'(M, E) is a finitely generated projective C(M) module. Define

an inner product on I'(M, E) as

(s1,52) = / (51(m), 52(m)) (),

where v is a smooth measure on M and (:,-),, is the inner product on the fibre on m. Let Hp
be the Hilbert space completion of I'(M, E). Then we have a natural representation of C(M)
in B(HEg). The same program can be carried out in the noncommutative context also. Let A
be a C*-algebra and E a Hilbert C*-A- module with its .4 valued inner product (-,-) 4. Let
T be a state on A. Consider the inner product on E given by (ej,ez) = 7({e1,e2) 4). If we
denote by H g the Hilbert space completion of E, then we get a natural representation of A in
B(#HEg). Now in the context of C(SUZ) let p = |eg)(eo|® T € C(SUZ). Then it is easy to verify
that Hg = 12(Np) ® I2(Z), for E = C(SUZ)p with its natural left Hilbert C(SU2)-module
structure. Moreover, the associated representation is nothing but the concrete representation
of C (SU(?) described above.
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4.2 Generators of K-homology

One way to have some idea about spectral triple is to compute the generators of K-homology.
We will write A for the C*-algebra C(SU,(2)) and Ay for the *-subalgebra of C(SU4(2))
generated by the two elements o and 8. Restriction of 7 to Ay gives a representation of Af

on H, which we denote by the same symbol 7. The short exact sequence
0— K®C(T) == 4 -5 C(T) — 0 (4.2.1)

gives rise to the following six-term exact sequence

KT 2 KU S KK e o)
T 1
K K®COT) <~ K'(4) &  K{o(m)

It is known that Ky(A} = Z = K;{A). Since these are free abelian groups, It follows from
the results of Rosenberg-Schochet ([79]) that K%(A) = Z = K!(A). Therefore the six term

sequence above becomes

Z a—0> Z —
t ' l
KN KeCT) < z <& KYC(T)

Lemma 4.2.1 i! and ¢° are isomorphisms while i° and ! are zero morphisms.

Proof: We know that KK ® C(T)) & K'(C(T)) & Z. Therefore by the exactness of the
diagram above it is enough to show that i! is onto. For that observe H# = Ly(Ng) ® Lo(Z)
and F =1® S, where, S denotes the operator

er  ifk>0,

S:ekl—){ i
—ep ifk <0,

is an odd Fredholm module on .4 and hence on i(KX ® C(T)) C .A. Moreover this Fredholm
module is a generator of K(X ® C(T)) implying surjectivity of . Wi

Remark 4.2.2 Proof of the above lemma also shows that (#, F') is a generating Fredholm
module for K1{A).
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4.3 Spectral triples

In this section we construct spectral triples with nontrivial Chern character. For p € (0, 00),
let Dy, be the operator N? @ S +1® N on ‘H = L(Np) ® Lo(Z) with S as defined above.

Proposition 4.3.1 Let u,(T) denote the nth largest singular value of an opeartor T. Then

_j_1 I
1Dy 7B) ~ =

Proof: Check that the action of |D,| on H is given by e; ® ¢; — (i? + |j|)e; ® ¢;. If we denote
by A, the number of elements in {(1,7) : 4,7 € Ng,7? + j < r}, then a simple calculation tells
us that T+TT — £ 1 7+ as 7 — oo. It follows from this that the nth eigenvalue of |D,| is of the

order of n1+1/i’ , which gives us the required result. O
Notation: In all our discussion involving Ay, a; will stand for o for ¢ nonnegative and
!l for i negative.
Lemma 4.3.2 Define a functional ¢ on Ay by
¢(a) := lim $1+1/P ¢r (aexp(—th)).
t—0

Then ¢(ay; 87 5*F) = i00500x0. In particular, ¢ does not depend on p.
Proof: Observe that exp(—th)er ® es = exp(—t(r” + |5{)*)er ® g, and

= q¥%e, ® e, ife=0, =%
€ Ce,_; ® €545k otherwise.

;B e, @ e, {

Hence we have
) o0 2rk — (P PATREEY S =
tr (aiﬁjﬁ*k exp(—-th)) — {Er=0 Esezq exp(—t(rf + [s)?) ifi=0, j=k
0 otherwise.

Therefore it follows that ¢(a;878**) = 0 for ¢ # 0. Now note that

S St exp(—tr? + s =230 3 ¢ expl—tr? + [s)?) + 3 exp(—tr),

r=0 seZ r=0 s=1 r=0

and
o<

D exp(—t(rP +1s])?) <

s=1
= exp(—-y°)d
f,-p xp( 2y) Y

o0

exp(—t(r? + z)?) dx

S

§_|Hﬁl
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Hence for i = 0 and j = k # 0, ¢{aif?B8*) = lime 0 t!+V/Ptr ;3 8" exp(—tD2)) = 0.
Finally, from the previous lemma, it follows that ¢(I) = tr,,(|D,|~'1~/?) = 1. O

Proposition 4.3.3 For each p € (0,1], Sp := (Af, H, Dy) defines an odd spectral triple.

Proof: Self-adjointness of Dy is trivial, and it follows from proposition 4.3.1 that D, has
compact resolvent. Let Hy = span{e; ® ¢; : i € Ng,j € Z}. Then Hy is dense in H and
is invariant under the actions of D, and the elements of A;. In view of this and the self-
adjointness of Dy, it is enough to show that [Dy, o and [Dj, 8] are bounded. Straightforward

calculation now gives
[Dp,o] = of(N-I)F -NP)® ),
Dy, 8] = ¢"N?®[S,8]+8. (4.3.2)

Therefore Sy is a spectral triple. |

Remark 4.3.4 The circle group T has an action on A4 given by ¢, : a — za, 3 -+ 3, where
z € T. Dy is equivariant with respect to this action. Equivariance follows from the fact that
D, commutes with the generator of the action N ® I. The consequence of equivariance under

the full SU,(2) action will be treated in the next chapter.
Theorem 4.3.5 The spectral triple (Af,?‘-[,Dp) has nontrivial Chern character.

Proof: For this one only has to note that the operator F' constructed in the proof of 4.2.1
is nothing but sign{D,). We give an explicit description of the pairing with K;(A). Let
E= # = I(N > 0) and u = I;3(8*B)(B — 1} + 1. u gives an element [u] € K;(A). By
theorem 1.3.6 FuFE is a Fredholm operator and ([u}, [(A, H, D)) = Indez(EuE). It is easily
seen that the last quantity is —1. Since K {A4) = Z, this shows [u] generates K;({.A) and
describes the pairing with K (A) completely. O

For ease of future reference we note down the following corollary which follows from the proof

of this theorem.

Corollary 4.3.6 Let u = I'j3(8*B)(8 — 1) + 1. Then [u] generates K1(.A).

4.4 Modified Connes-de Rham complex

In this section we will compute the complex (Q3(Ay)},d) introduced in remark 1.6.5. Before

we enter the computations, few words about why we compute these rather than the usual
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Q3,(Ay). First, since for a compact operator K one has Tr, (X |Dp|~1~1/P} = 0, the results
in proposition 5 page 550 [24] regarding the Yang-Mills functional holds in our present case.
Second, in the context of the canonical spectral triple associated with a compact Riemannian

spin manifold this prescription also gives back the exterior complex.

4.4.1 Thecasep=1

We will write D for D throughout this subsection.

First, we need the following lemma which will be very useful for the computations.
Lemma 4.4.1 Assume a,b€ Ay andc € K(H). Ifa(J®@S)+b=¢, thena=b=0.

Proof: For a functional p on £{L(Ng)}, and T € L(#H), denote by T, the operator (p®id)T.

Now observe that for any e € Ay and any functional p,
apl = fay. (4.4.3)

Write P = %(I + 8). It is easy to see that the given condition implies that (b, — a,) +

2a,P = c;, which in turn implies that

(by—ap)e; = cpe; Vi<, {(4.4.4)
(bp +ap)ei ' = cpe; Vi>0. {4.4.5)

Now from (4.4.3) and (4.4.4), it follows that for any ¢,7 € Z and j <0,

1(0p = apeill = 118y — @)t e

= ||£jdi(bp —ap)ej|

= |[(6s — ap)e;ll
= [lcpesll-
Since ¢ is compact, lim;_,_q [lcoe;]| = 0. Hence (b, — ap)e; = 0 for all i. In other words,

{bp — a,) = 0. Since this is true for any p, we get a = b. Using this equality, together with

equations (4.4.3) and (4.4.5), a similar reasoning yields a = 0. O

Recall that the modified Connes-deRham complex introduced in remark 1.6.5 requires a
homomorphism of the universal differential algebra constructed out of the spectral triple.
There it was denoted as a composition 8 o 7. In the rest of the chapter we will denote the
corresponding homomorphism in the context of Ay by 4. The kernel 'l,b'gn( Ajp) will be denoted
by Jp.
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Lemma 4.4.2 Let Tg denote the ideal in Ay generated by B and B*. Then for n > 1, we
have

PO (A) = (I ® 5)"As + (I ® 5)™'Z;. (4.4.6)

Proof : Let us first prove the equality for n = 1. Let Z; = ¢V +k(N+k), Bjy = Ef;j_k“ lei—1){eil,

and -
o = | 2izolealeia] 521,
"o

ifj=0.
It follows from (4.3.2) that
[D,0ilB**] = —i(I®S)aifB** + (j — k)euBIB** + 2Z; ® Cj)as 571 g**
-2(Z; ® Bjk)aiﬁjﬁ*k_l. (4.4.7)

Since the last two terms in equation (4.4.7) is compact, it follows from remark 1.6.5 that
d{e; 878y = —i(I ® SYa; B9 5** + ( ~ k)i 87 8**. Thus for any a € Ay,

da=(I®8)b+e, where b € 4y, ce€ 3. (4.4.8)

Note that for any o' € Ay, ¥(a')(I ® §) = (I ® §)¢p(a’) in Q(H). Hence 1(a’(§a)) is again
of the form (I ® S)b + ¢, where b € Af, ¢ € Iy, ie. is a member of (] ® S)A; + Ig.
Thus %(Q2'(Af)) € (I ® S)As + Is. For the reverse inclusion, observe that (I ® §) =
(1-¢*)" ((da)a* + ¢*(da)), B = dB and B* = —dB*.

The inductive step follows easily from (4.4.8). O

Lemma 4.4.3 Jy = {0}, and for n > 1, we have
P(0Jn) = T @S)" M As + (I ® §)"2Zy. (4.4.9)

Proof: By lemma 4.4.1, ¢ : Ay — Q(¥) is faithful. Hence it follows that Jy = {0}.

We will prove here (4.4.9) by induction. From lemma 4.4.2, we have (§.J;) C P2 (Af)) =
Af + (I ® S)Is. Let us show that I, (I ® §)8 and (I ® §)3* are all members of {8 J1).

Choose w € Q'(Ay) such that ¢(w) = (I ® S). Let wp = kogw — d(ag), k = +1.
Then it follows from (4.3.2) that ¢(wi) = kop(I ® S) — kay(I ® §) = 0, so that wy € Ji.
Y(owe) = ¢Y(k(dap)w) = K2ay = o € $(dJ1), i.e. both v and o* are in (d.J;). It follows
from this that I € ¥(§J1).

Next we show that (I®5)8 € %(d.1). Take w = 3(a(é8)— () +gB(8)). Then p(w) =
0 and ¢(dw) = (I®S)ap. So (I®8)af € (6J,). Similarly taking w = 3(a ( 58} —6(c*B) +
g B(8a*)), it follows that (J®S)a*8 € ¥(0J1). These two together imply (/®S5)8 € (0J;).
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A similar argument shows that (/®S5)8" is also in (8.J;). Thus A+ (IQS)Ig = (dJ1).
For the inductive step, notice that ¢{d.J,) C ("1 (Af)) = (I@S)" 1A+ (I®S)"2Z5.
We will show that the following are all elements of ¥(dJ,):

(I®S)**tla, (I®S5)"2af, (I®S)*2ap*,

I® S)n+la*, (I® S)n+2a*ﬁ, (I® .S')"+za*ﬁ*.
From the right A ;-module structure of 1(8J,), it will then follow that (/® S)**!, (J®S)**+23
and (I ® S)"*23* are in ¥(éJ,,), giving us the other inclusion.

Choose w € J,_1 such that ¥(dw) = (I ® §)*. Take wy = kw(day), k = +1. Then
wg € Jn and $(Swi) = (I ® §)" ey, Similarly choosing w such that ¥(dw) = (I ® §)**18
and wy as before, we get wy € J, and ¥(dwe) = ¢ F(I ® S)"t2a3. Finally, take w such that
Y(dw) = (I @ S)**'5* and wy as before to show that (I ® §)"2048* € ¥(6J,). O

Proposition 4.4.4

Ar®dIs ifn=1,
4 = { .
{0} if n > 2.
Proof: Proof follows from lemmas 4.4.2 and 4.4.3. a

44.2 Thecasel<p<]1

Let us first introduce a few notations. Let X,, denote the operator (N +7)? — (N + 5)?, Z,

stand for ¢V+7(N + r)? and let B,, and C, be as in the earlier subsection. We have, then,’
[Dp,0iB] = (I® 8)(Xoi ® Nei’B* + (j ~ k)euBIB™* +2(2; ® Cj)eup? 1
—2(Z; ® Bjr)aip18* 1.
= (I®8)(Xoi ® N8 + (5 — k)i 5** + compact (4.4.10)
and hence,

[Dps (Xrysy - Xrpsy @ D8] = (I® S)(Xrysy - - - Xrpsw Xoi ® D5 **
+ (- k) Xrsy - Krps, ® Ny 8** + compact (4.4.11)

We will work with the algebra A 7 generated by {X,; ® I) : 7, s € Z} and the elements of
Ay. Note that A is nothing but the span of {(Xqs, . Xos, ® Doy f76*%}. Now first of all
observe that in the proof of lemma 4.4.1, the only property of .4 r that has been used is that

a(l®8) =(I®¢a (4.4.12)
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for all a € Ay, so that one has equation (4.4.3). Since (4.4.12) is satisfied by elements of
.Zf also, it follows that lemma 4.4.1 remains valid even when Ay is replaced by the bigger

algebra A -

Lemma 4.4.5 Let fﬁ denote the ideal in ﬁf generated by B and 8*. Then forn > 1, we

have

B(Q*(Af) = I @ S)"A; + (I © §)"1 ;. (4.4.13)

Lemma 4.4.6 Let J, be the kernel of 1 restricted to Q"(.Zf). Then Jo = {0}, and for

n > 1, we have

W(dJn) = (I® Sy A + (I ® S)™*T,. (4.4.14)
Proof: Arguments used for proving lemma 4.4.3 goes through. g
Proposition 4.4.7
- AroIs ifn=1,
Ay =g TE
{0} ifn>2.
Proof: Lemma, 4.4.5, and 4.4.6 yields this as in proposition 4.4.4, a

4.5 [L?-complex of Frohlich et. al.

In this section we will compute the complex of square integrable forms for spectral triple
corresponding to p = 1. For that we begin with similar computations for the spectral triple
(Clz,27'), Ho = L2(Z),D = N) associated with the algebra C[z,z7!}. Here we consider the
embedding = : C[z,271] — B(#) that maps z to £.

Lemma 4.5.1 (1) ﬁ%(C[z,z“l]) =0, forn > 2,
(ii) 0% (Clz,271]) = Clz, 271].

Proof: (i) Let w = 3 ang,... 0, 2™082™ - - - §2™ € Q%(C[z, 2z~ 1)), where the sum is a finite one

and ¢ is the universal differential. Then it is easily verified that

koo ¥ k.
(w1 Lr..?)g) e f (Z: Ty-- nkann,---,nkzzo nJ) (Z ny--- nkano,---,nkzzn " )dz,

where dz is the Lebesgue measure on the circle. Therefore,

Ke(Clz,271) = {w € Q¥Clz,27"): (w,w)p =0}
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= {Z Qg oy 2 002 <+ 827 Z Ny Nglng,n, = 0,Vr}.

no++n,=r

Consequently we have,

LT LI o g 3 L LT T P Ki(Ciz, z71]), (4.5.15)
6276z -6z —rz"dz---6z € Ki(Clz,2z71)), (4.5.16)
276z 82 — %erﬂdz---dzv € Ki_1(Clz,27Y)). (4.5.17)

r

From (4.5.17) we get 6270z---6z € 8Kx—1(C[z,27!]). Combining this with (4.5.15) and
(4.5.16) we get,

2M82™ .- 82™ € K (Clz, 27Y)) + 6K 1(C[z, 271)) for large ng.
Since Ki(Cl[z, 27!]) + 0Ke_1(C[z, 271]) is a bimodule we have
2™062™ . 52" € Ki(Clz, 27 1)) + 0Ke_1(Tlz, 27Y]))  Yng, -+, .

This proves (i).
(ii) It suffices to note that

2M082™ — ny2™tMl6, € K (Clz, 27Y).
The induced d : 99,(C[z, 2~!]) = C[z, 27} is given by d(z") = nz". 0

Now we are in a position to compute the complex of square integrable forms for Ay for the

spectral triple associated with p = 1.

Theorem 4.5.2 (i)ﬁ’})(.Af) =0 forn > 2.
(1) ﬁ%(}lf) = Clz,271] for n = 0,1 here equality is as an Ay bimodule.

Proof: Note that the homomorphism ¢ in (4.2.1} induces a surjective homomorphism denoted

by the same symbol from A; to C[z, z7!]. We have the following short exact sequence
0-—Ig— Ay L C[z,z"l] — 0.

Let oy : Q%(Af) — Q(Clz,27']) be the induced surjective map. One easily verifies that

(w,w)p = (ok(w), ok (w))p. Therefore,
Ki(Af) = {w € Q¥Ay) : (w,w)p =0} = o H{Ki(Clz, 271])).

We have the following commutative diagram
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Ko=1Ig — Ag — Clz,271] —  7(Clz,271))

! 4 |
Ki(4y) — QY4 = Q'Clz,27")) —  Q4(Clz27Y)
| ! }

Ka(dy) — Q¥(Ap) 5 QClzzY) —  Q5(Clz,z7Y)

Kn(df) — QYA = (Cl2]) — 3(Clz 2.
This along with the previous lemma proves the theorem. We will only illustrate (i).
Let wn € Q"(Ay), then by the previous lemma on(wn) = wiyp + dwop—; where wy, €
Ka(Clz,271]),won—1 € Kn-1(Clz,27%)). Let w], = o7 (win) wh,i = 05 (won—1), then

On(wn — wy , — 0wh ;) = 0 implying wy € Kn + 8Ks—y. O

4.6 The Case of Quantum Sphere

In this section we will do similar computations for quantum spheres. At times we will
be sketchy because some of the arguments are very similar to the earlier one. Quantum
sphere was introduced by Podles in [67]. This is the universal C*-algebra denoted by C(Sgc),

generated by two elements A and B subject to the following relations:

A*=A, B*B=A-A%>+.l,
BA=g¢’AB, BB*=¢'A—q¢'+cl.

Here the deformation parameters ¢, ¢ satisfy |g| < 1,¢ > 0. For later purpose we also note
down two irreducible representations such that the representation given by the direct sum of
these two is faithful. Let H, = I?(Ng), H_ = H . Define my(A4), 7+ (B) : Hi — Hx by

1 1 1/2

T4 (AN en) = Arq*"e, where Ay = 2 +(c+ Z)

7+(B)(en) = e+ (n)%e,-y where ci{n) = Asg™™ — (Aiq2")2 +¢,ande_; = 0.
Since m = w,. @ w_ is a faithful representation the next theorem is immediate.

Theorem 4.6.1 (Sheu) (i)C(S5.) = C*(T) &, C*(T) = {(z,y) : z,y € C*T),0(z) =
o(y)} where C*(T) is the Toeplitz algebra and o : C*(T) — C(T) is the symbol homomor-
phism.
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(1) We have a short ezact sequence
0 — K 45 C(S2) % CH(T) — 0 (4.6.18)

Proof: (i) An explicit isomorphism is given by z — (7 (z), 7_(z)).
(ii) Define a((x,y)) = = then kera = K. 0

Corollary 4.6.2 (i) Ko(C(S; c)) K%C(SZ)=Z&Z.

(ii) K1(C(S%)) = K} (C(S%)) =

Proof: The six term exact sequence associated with (4.6.18) along with the KK-equivalence
of K, C*(T) with € proves the result a

Proposition 4.6.3 Let Ay, be the *-subalgebra of C(Sgc) generated by A and B. Then

0 N 1 0
(Afin, H=H  0H_,D = (N 0 ) JY = (0 _1)) is an even spectral triple.

Proof: We only have to show that [D,a] is bounded for @ € Ay;,. For that it is enough to
note thag,

(1) Nm1{A), m+(A}N are bounded.

(ii) n(cx(n)/? — \/c) is bounded as n becomes large.

(iii) [V, €] = . a

Remark 4.6.4 This spectral triple has nontrivial Chern character. This can be seen as
follows: let Py = i{lep}(eo]) € C( 5’2 .), then applying proposition 4, (page 296) of [24] we get
the index pairing ([Po], ((Asin, H, D, 7)]} = —1, implying nontriviality of the spectral triple.

Now we will briefly indicate the computations of the complex (23(A ), d) introduced in
1.6.5.

Proposition 4.6.5 (i) Q}(Af,) =0 forn > 2.
(i5) QL Afin) = Clz, 271, here also equality is as an Ajfin bimodule.

Proof: Let m be the associated representation of Q2*( Ay, ) in B(’H).. Then straightforward
verification gives (i) [D, A] is compact, (ii) [D,B] = { ® « + compact, and (iii} [D, B*] =

—£* @ k + compact, where k = L o) Therefore, modulo compacts

Q¥ (Apin)) = Chn(T) @k,
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(% (Apn)) = Cra(D) @k,
where C7, (%) is the *-algebra generated by T. Now for (i) note that

wp = BéB*§B-.-6B+B*éB§B--- 4B
S—_—— S’
n—2 times n—2 times
satisfies (a) #w{wy,) is compact and (b)7(dw,) = 2I is invertible, hence (i) follows.
For (ii) observe that if a € Ay, and w(a) is compact then Na and aN both compact. Hence,
Q4 (Afin) = m(Q(Afin)) = Clz, z7!] because modulo compacts Clz, z7!] is C*(%). O



Chapter 5

Equivariant Spectral Triples on
C(5Uq(2))

In the classical context of a compact Lie group G, a left invariant differential operator is
one that commutes with the left regular representation of G. Now in the case of abelian G,
the C*-algebra generated by the left regular representation is nothing but C(@) Therefore
we can rephrase the left invariance condition as a commutation condition with O(@) For
C(SU,(2)}, Woronowicz has explicitly described the generators for C(G). Therefore, a proper
analog of a left invariant Dirac operator v;rould be a Dirac operator commuting with these
generators. In this chapter we will prove that there exists Dirac operators with nontrivial
Chern character commuting with the generators of the dual group. We also show that they
are universal in the sense that given any odd spectral triple there is an equivariant one

inducing the same element in odd K-homology.

5.1 The regular representation

We will denote by H the GNS space associated with the Haar state h defined in the beginning
of the last chapter.

The representation theory of SU,(2) is strikingly similar to its classical counterpart. In
particular, for each n € {0, %,1, ...}, there is a unique irreducible unitary representation
™) of dimension 2n + 1. Denote by tg-?') the ijth entry of t(®). These are all elements of
Ay and they form an orthogonal basis for . Denote by e,(;;-") the normalized tE;)’s, so that
{e,(:;-‘) in=0, %, 1,...,4,J=—-n,~n+1,...,n} is an orthonormal basis.

.
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Remark 5.1.1 One has to be a little careful here, because, unlike in the classical case, the

choice of matrix entries does affect the orthogonality relations. Therefore one has to specify

#™)1g are the same as in Klimyk &

the matrix entries he/she is working with. In our case, t;;

Schmuedgen (page 74, [564]).

We will use the symbol v to denote the number 1/2 throughout this chapter, just to make
some expressions occupy less space. Using formulas for Clebsch-Gordon coeflicients, and the
orthogonality relations (page 80-81 and equation (57), page 115 in [54]), one can write down

the actions of «, 8 and 3* on #H explicitly as follows:

o e( Mo ay(n i, j)egnt;) ,ta-(n,i,j)e S"U';) e (5.1.1)
Brell) o byn i, T, +b(n5,5)elh 0, (5.1.2)
B 5;) o bE(n,i,5)el T, + 0E (0,1, ), (5.1.3)
where
22542 2n—2i+2

Lo Anti)+2(ni)+2 (1 — 4 (L —g )\

at(n,i,j) = (q (n+)+2(n ) 0 — ) (1 = gy ) ; (5.1.4)
o (1 _ q2n+2j)(1 _ q2n+2i) v

a_(n,i,j) = ( =1 = g7 ) , (5.1.5)
o B Ant (1 _ q2n—2j+2)(1 _ q2n+2i+2) v

by(n,i,j) = ( {(n+j) 0= (=g ) , (5.1.6)

_ 42n+2j _ 2n 27

- 2(n+z}(1 aq )(1 )

b_(n,i,5) ( - q4n)(1—q4n+2) ) , (5.1.7)

1— 2n+21+2)(1 _ q2n—2i+2) v
g (1=
-}-(n,z,.?) ( (1 _ q4n+2)(1 _ q4n+4) ) y (518)
_ 2n —27 2n+2z
Yin i ) = 2(n+3)(1 ) - )
bX(n,i,7) ( = 4n)(1"q4n+2) ) (5.1.9)

5.2 Equivariant spectral triples

In this section, we will formulate the notion of equivariance, and investigate the behavior of
D, where D is the Dirac operator of an equivariant spectral triple.

Let Ag and A; be the following operators on H:

A e P,

A ) 0 ifj=n
1 S (q—2n+q2n+2_q—2j_q2j+2)ve£;?-—)l_1 if i < n.
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The operators Ay and A; generate the C*-algebra of continuous functions on the dual of
SU,(2) and thus are the ‘generators’ of the regular representation of SU,(2) (For more details,
see [66]; Ag and A, are the operators a and n there). We say that an operator T on H is
equivariant if it commutes with Ag, A; and AJ]. It is clear that any equivariant self-adjoint
operator with discrete spectrum must be of the form

D: el v din,i)el, (5.2.1)
where d(n,)’s are real. Assume then that D is such an operator. Let us first write down the

commutators of D with ¢ and 3.

D,alel? = ap(ni3)dn +vi—v) —d(n,i))es7),

a_(n,i,5)(d(n — v,i - v) — d(n,1))el, %), (5.2.2)
ID,Blel} = bi(ni,)(dln+v,i+v) - din,i)elst),

b_(n,i,4)(d(n — 1,5 + ) — d(n,i))elT, . (5.2.3)

We are now in a position to prove the following.

Proposition 5.2.1 Let D be an operator of the form e(J) — d(n,ie (J). Then (D, a) 1s

bounded for all a € Ay if and only if d(n,1)’s satisfy the following two conditions:
din+v,i +v) —d(n,i) = O(1), (5.2.4)
din+v,i—v)—d(ni)=0n+i+1). (5.2.5)

Proof: Assume that [D,a} is bounded for all @ € A;. Then, in particular, [D, o] and [D, §]

are bounded, so that there is a positive constant C such that
Do)l <C, |I[D,B <C.
It follows from equations (5.2.2) and (5.2.3) that
lat+(n,i,5)(d{n + v,i — v} — d(n,i))]* + |a_(n, i, ){d(n = v,i = v) = d(n,1))]? < C?, (5.2.6)

by (n,4,5) (d(n + v,i 4+ v) —d(n, i) |? + [b_(n,i,)d(n — v,i + ) — d(n, i) < C* (5.2.7)

for all nn, 7 and j. From the second inequality above, we get

|b4-(n, 4, 5)(d(n + 1,i + ) —d(n,i)) SC Vn,i,j.
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Now q2n+2j _ q4n+‘2 Y- q2n+2i+2 v
b4 (r0, 4, 5)] = ( 1= gin+2 ) ( 1 — gintt ) :
Hence ) 1-— q‘Z ] 1-—- q2n+2i+2 1
I-g¢ Sm@mﬁm?xlb+(na%3)|: gt ST_#

Hence |d(n + v,i + v) — d(n, )| < ﬁg‘ for all n, ¢, i. e. we have (5.2.4). We also have from
equation (5.2.6), |a4(n,4, j)}(d(n +v,i — v) — d(n,4))| < C. But

o q2n+2j - q4n+2 v q2n+21', _ q4n+2 v
G-+(Tl,?,,j) =4q 1 — q4n+2 :

1-— q4'n+4
Hence gIt2i _ gint2 ¥
max lat(n5,9)i =g (_Tq‘m:ﬁ_)
Therefore

q2n+2i _ q4n+2 v - ‘
q( 1 — gintd ) |d{n + v,i —v) —d(n,i)] < C Vn,i.
Consequently, qn+i|d(n +uvi— V) - d(ﬂ,, 3)| < q_lc(l—}.‘rz)va I e

ld(n + v,i ~ v) — d(n, )] = O(g™™7"). (5.2.8)

Let us next write the difference d(n + v,i — v) — d(n, i) as follows:

n+i—1
Z (@n+v—ryi—-v—-rv)—dn+v—(r+Lyi—v—(r+1)))
r=0

n+i—1

— (dn—rv,i—rv)—d(n—(r+ Dy,i— (r+ 1))

+d(:+u~—(n+i)u,i—u—-(n+i)u)—d(n—(n+i)u,z'—(n+i)u).

Using this expression together with (5.2.8) for the case n 44 = 0 and (5.2.4), we get {5.2.5).

Next assume that the d(n,i)’s satisfy the conditions (5.2.4) and (5.2.5). We will show
that (D, a] and [D, 8] are bounded, which in turn will ensure that [D, a] is bounded for all
a € Aj. Tt follows from (5.2.4) and (5.2.5) that there is a positive constant C > 0 such that

'd(n +v,i+ V) - d(nyﬁ)l < Cs qn+ild(n + Uvi - V) - d(n,z)| <C.
It follows from the above two inequalities that

las (1,6, (@l + 2,6 - v) — d(m, )] < C(1 = g)V2,
la—(n,i, ) (dln — vyi — ) — d(mi)] < Cq~'(1 = g?)~/2.

IA
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We now conclude from (5.2.2) that [D,a] is bounded. Proof of boundedness of D, ] is

similar. O

Next, we exploit the condition that D must have compact resolvent. It is straightforward
to see that a necessary and sufficient condition for an operator D of the form el(-;-l) — d(n, i)eﬁ?)
to have compact resolvent is that if we write the d(n,:)’s in a single sequence, it should not
have any limit point other than oo or —oc. As we shall see below, in presence of (5.2.4) and
(5.2.5), we can say much more about the d(n,4)’s. In particular, we can extract information

about the sign of D also.

Proposition 5.2.2 Let D be an operator of the form eg.") — d(n,z‘)eg?) such that d(n,1)’s

satisfy conditions (5.2.4) end (5.2.5) and D has compact resolvent. Then

1. For each k € N, there exists an ry € N, rg 2 k such that d(n,n—k)

are of the same sign for all n > 1y ( )
5.2.9

2. There exists anr € N such that for allk > r and for alln, d(n,n—k)

are of the same sign.

Proof: In the following diagram, each dot stands for a d(n, 1), the dot at the ith row and jth

column representing d(tgi, 32;’) (here i and j range from 0 onwards).

» & 5 @& & 9 .l ¢ & & 9 & & & = 0
® @ & @& & & & » & & 8 & * " * P
e & & & ] . o @° @ @ b e @ & o @
* & & & & & & & ¢ o P S " w00
® & & & & & & & & & & & ° 9 8 0
E 2 o ¢ ¢ o e s o s 0 0 0 0 @
* & & & & & ¢ & & 5 ¢ & & 0

C ® @ & o & @ @ ¢ ¢ o +»

® & & & & & & & ¢ & & P P S s
® & & & & 8 @ & & - 8 % ° ° 9

There are two restrictions imposed on these numbers, given by equations (5.2.4) and
(5.2.5). Equation (5.2.4) says that: (i) the difference of two consecutive numbers along any
row is bounded by a fixed constant, and (5.2.5) says that: (ii) the difference of two consecutive
numbers along the jth column is O(j + 1). Suppose C is a big enough constant which works
for both (i) and (ii).

Now suppose a and b are two elements in the same row. Connect them with a path as in

the diagram. If a and b are of opposite sign, then because of restriction (i) above, there has to
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be some dot between @ and b for which the corresponding d(n, 1) lies in [—C, C]. Therefore, if
the signs of the d{n,:)’s change infinitely often along a row, one can produce infinitely many
d(n,i)’s in the interval [~C, C]. But this will prevent D from having a compact resolvent.

This proves part 1.
For part 2, employ a similar argument, this time connecting two dots, say ¢ and d, by a

path as shown in the diagram, and observing that the difference between any two consecutive

numbers along the path is bounded by C. O
Let m and n be two nonnegative integers. Let

F(m,n) = {d(%ﬂ%) :OSiSm,OSan},

S(im,n,r) = {d(%,%):j)n}, 0<r<m,

j+i 3—1 X .
: > .
{d( ) ) z>m,3_0}

In the following diagram, for example, A is F(2,4), B is T(2), and C, D and E are 5(2,4,0),
S$(2,4,1) and 5(2,4, 2) respectively.

T(m)

A ¢ & & 5 9 9 & @ ? * o & & & 0 0 C
* & @& & & 4 & & 2 0 0 & 2 00 D
* @& & & & & & & ° & & 2 & s 0 @» E
B 4 & & & & ¢ ¢ & © & & B 0 S 0
® & & & & & 0 & 0 0 & ¢ 4 & 8
® & & & & & & & & & 0 4 0 "
* & & & & & » ¢ > " 8 ">
® & & & & & & 5 & 9 & 0 " s 00

What the last proposition says is the following. There exist big enough integers m and n
such that in each of the sets T'(m), S(m,n,0),...,5(m,n,m), all elements are of the same

sign, i. e. each of the sets T(m), S(m,n,0),...,S5(m,n,m)} is contained in either Ry or —R,.

Remark 5.2.3 One can extend the argument in the proof of the last proposition a little
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further and prove that if D is as in the previous proposition, then

given any nonnegative real N, there exist positive infegers m and n such

that each of the sets T(m), S(m,n,0),...,5(m,n,m) is contained in ei- (5.2.10)

ther {t€R:z2>N}or {z€R:z < —N}.
Theorem 5.2.4 An operator Db on Ly(h) gives rise to an egquivariant spectral triple if and
only if it is of the form e,(?) — dfn, i)eg,-l), where d(n, 1) ’s are real and satisfy conditions {5.2.4),
(5.2.5) and (5.2.10).

Proof: By virtue of (5.2.1), and propositions 5.2.1, 5.2.2, it only remains to prove that if the
d(n,1)’s obey condition (5.2.10}, then D has compact resolvent. But this is clear, because
(5.2.10) implies that for any real number N > 0, the interval [-N, N contains only a finite
number of the d(n,7)’s. |

It is clear then that up to a compact perturbation, D will have nontrivial sign if and only

if the following condition holds:

1. there exist positive integers m and n such that in each of the setsy

T(m), S(m,n,0),...,5(m,n,m), all elements are of the same sign,

and ’ (5.2.11)

2. there are two sets in this collection whose elements are of opposite

sign. )

A natural question to ask now is whether there does indeed exist any D with nontrivial

sign satisfying (5.2.4) and (5.2.5). It is easy to see that the operator D determined by the
family d(n, 1), where

2n+1 ifn #4,
dmi:{ (5.2.12)

—(2n+1) ifn=1,
satisfy all the requirements in propositions 5.2.1 and 5.2.2. In fact, one can easily see that
D3 € £1*, where £!T stands for the ideal of Dixmier traceable operators. Thus we have

the following.
Theorem 5.2.5 SU,(2) admits an egquivariant odd 3-summable spectral triple.

The classical SU(2) has (both topological as well as metric) dimension 3. For SU,(2),
however, the topological dimension turns out to be 1, as can be seen from the following short

exact sequence
0 —KeC(T) — A— C(T) — 0,
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where K denotes the algebra of compact operators. The next theorem tell us that as far as
metric dimension is concerned, it behaves more like its classical counterpart; in fact along

with the previous theorem, it says that the metric dimension of SU,(2} is 3.

Theorem 5.2.6 Let (A, H,D) be an equivariant odd spectral triple. Then D can not be
p-summable for p < 3.

Proof: Conditions (5.2.4) and (5.2.5) impose the following growth restriction on the d(n, i)’s:
max |[d(n, )| = O(n). (5.2.13)

The conclusion of the theorem follows easily from this. O

The next proposition says that the derivative of any nonconstant function is nonzero.

Proposition 5.2.7 Let D be given by (5.2.12). Then for a € Ay, [D,a] = 0 if and only if

a is a scalar.

Proof: Take a = E(i,j,k)EF c,-jka,;ﬁjﬁ*k, where F is a finite subset of Z x N x N and all the
Cijk's are nonzero. We will show that [D,a] # 0.

Let m = max{|i{{+j+k : (1,7, k) € F}. Let (r, s, t) be a point of F such that |ri+s+t = m.
Write p = ~21-(s —t—r),p = 2(t —s—r). Then it is easy to see that

(™), 1D, a)el))

= (eé’;:l-mﬂ), [Da Crstarﬁsﬂ*t]eé’a)>

[ . . . t+s3 . . .

i—-1 +1—-113-1 i—1 i—1 t—1

= “‘f“H"i(”*‘ 2272 ) 11 b*(”Jr_z""“HT’t__z”)
i=1 i={+1

i—1 . T - . -

X H af n+ ——,p + sign(r) : , ¢+ sign(r) il
. 2 2 2
1=35+i+1

x (d(n +m/2,p) —d(n, 0)):

where af stands for a,. or af depending on the sign of 7. The right hand side above is clearly

nonzero because of our choice of D. O

The above proposition says, in particular, that the Dirac operator given by (5.2.12) is
really a Dirac operator for the full tangent bundle rather than that of some lower dimensional
subbundle.
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5.3 Nontriviality of the Chern character

In this section we will examine the D given by the family (5.2.12) in more detail and see
that the nontriviality in sign does indeed result in nontriviality at the Fredholm level. For
this, we will compute the pairing between sign D and a generator of Ki(.A). Let u denote
the element I; ;1 {8*B)(8 —I)+ 1 of A In corollary 4.3.6 we proved that this is a generator
of K1(A). We will choose an invertible element « in Ay that is close enough to u so that -y

and u are the same in K;(.A). We then compute the pairing between sign D and this .
Theorem 5.8.1 The Chern character of the spectral triple (Ag, H, D) is nontrivial.

Before we begin the proof, let us observe from equations (5.1.2) and (5.1.3) that the
action of 838" on H is given by

1
B8 () = 3 keln,ini)eg e, (5.3.1)
e=—1
where
k (n ; ) _ —( 4n+2i+2j+21 _ q2n+2j+2 1 — q2n—2i+2 1— q2n—2j+‘2 1— q2n+2i+2 v
1) = q 1 — gin+2 1 — gintd 1 — ginti 1 — gint6 ’
(5.3.2)
ko(n ; J) _ q2(n+j) (1 . q2n—23)(1 - q2n+21) N q2(n+i) (1 _ q2n+23+2)(1 - q2n—2:+2)
A (1-¢*™)(1— q4.n+‘2) (1= ¢ +2)(1 — gty
(6.3.3)
koi(nyij) = _( mt2irzj-2 (L = @) (1 - ) (1 - g H)(1 - qz”‘z‘))”
S ? 1= (- — g™l - g )
(5.3.4)

Proof of theorem 5.3.1 : Choose r € N such that ¢* < 1 < ¢¥~2. Define v, =
(8*8)" (8 — I) + I. By our choice of r, we have

v —ull < H(B"B) ~ Iy (BB - 18 — 1|l
2r

< 2¢77 < L.

Hence 7, and u are the same in K;(A). Therefore it is enough for our purpose if we can show
that the pairing between sign D and ~, is nontrivial. Denote by Py the projection onto the
space spanned by {eg'_) kg™ 7} Then sign D = I — 2F,. Therefore we now want to compute
the index of the operator Pyy,FPy thought of as an operator on FPy'H.

It follows from (5.3.1) that

r t—1

BEY @) = 3 (Hkq(n+Zes,i,j))e§;*2’ffs). (5.3.5)

eee{—1,0,1} t=1 s=1
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Since A is normal, we have

'Yre,(;_?) _ E (H ke, (n + Z €5,y 7 ) (b+(n + Z €ss z',J')ef;TJ,jZ_;f’M
1

e€{~10,1} i=1

.
b_(n+ Z €s, 15 j)egij,jz_lfw))
1

- ¥ (H ke, n+Zes,a j ) frdied Lo, (5.3.6)

étE{ 1,0 1} t=1
Consequently,

ey = (Hka(mzes,m))(mn+zes,m T et

ee{-1,0,1} t=1
n_i_zes,n j)e 5114:153“,;;,—»))

r

— Z (H ke, H+Z€3’n .7 ) (H+Ele,) te (n)

ee{-1,0,1} t=1

When we cut this off by Fy, we get

Po")fre?(:;) = Z (H ke, H+E€s:n J )b+(n n -7)651"-{32—;/

Sea=0 t=1

+ Z (Hkq n+263y ,.7)) n+1 n’J)e'i(’::lir:i‘)—V
=1 t=1
Z (Hkﬂ n+Zes, ,J) ) (1;‘)'
Yoe=0 t=1

A closer look at the quantities k. and by tells us that if we do the calculations modulo
compact operators, which we can because we want to compute the index, we find that there
is no contribution from the second term, while in the case of the first and the third term,
contribution comes from only the coefficient where the product []i_; ke, (n+ei+.. . +€-1,n, )
consists solely of kg’s, i. e. when each ¢, = 0. A further examination of the terms kg and b,
then yield the following:

Poy Poely = ko(nn, ) by(n,n, f)etrmd_, + (1 ko(n,n,5)7)ell)

2rn+2rj(1 . q2n—2j)rqn+j(1 _ qzn—2j+2)1/2 E::-t’uj}—v

= --q
27 Tl+21 ?‘ 2n—2 i" 11
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and

2rn+2rj(1 2n—2j—2)r n+j(1

—-q q q
2 2rj 2n-2j
(1= - ) o

2n— 23)1/2 {n—v)
€n— v+

Pyt Poel) = —g

From these, one can easily show that the index of Py, Py is —1. Since Py is the eigenspace
corresponding to the eigenvalue —~1 of sign D, the value of the K-homology—K-theory pairing
([u], [(A,#, D)]} coming from Kasparov product of K; and K, is —index Py~, P,, which is

NONZzZero. o

Remark 5.3.2 Strictly speaking, it is not essential to introduce the element u as a generator
for Ki(A). It is enough if one computes the pairing between sign D and a suitable 4, and
show that it is nontrivial. But the introduction of u makes the choice of 7y,’s and hence the

proof above more transparent.

It follows from proposition 5.2.2 that for the purposes of computing the index pairing,
sign of any equivariant I must be of the form I — 2P where P = > ter Pry F being a finite
subset of N ( the actual P would be a compact perturbation of this). Conversely, given a P
of this form, it is easy to produce a D satisfying the conditions in proposition 5.2.2 for which

signD =TI —~ 2P. One could, for example, take the D given by d(n,)’s, where

d(n,i) = {

We are now in a position to prove the following.

~(2n+1) ifn—-ieF,

2n+1 otherwise.

Proposition 5.3.3 Given any m € Z, there exists an equivariant spectral triple D acting
on H such that (v, [(A,H,D)]) = m, where (,-,-) : K1(A) x K'(A) = Z denotes the map

corning from the Kasparov product.

Proof: It is enough to prove the statement for m positive. Let D be an equivariant Dirac
operator whose sign is / —2P where P = 3, . Py, F being a subset of size 7 of N. In order
to compute the pairing (v, [(A, #, D)]}, we must first have a look at Py, P;.

We get from equation (5.3.6) '

Yr€ S‘)m = Z (Hkqn-i-Zes,n k,j)

ee{- 101} t=1

(ot Y kT 00 S - h ) )
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r

> (Hk& n+Zes,n—k J ) e el

ae{-1,01} t=1

and consequently,
t—1

n+ity
Pk+l7r951n—)k,j = > (H ke(n+ > en—k, 3))b+(n+l n—k,je i::y’}_u
Tea=t t=1 s=1

(ﬁ n+Zes,n kj) (n+l+1,n—k:j)6,(:j}::$—u
=1 .

Te=I+ s=1

- Z (Hk& n+253,n— ,J) EIM;:)J'*“S egzn)k,j‘

Te=l t=1
Now because of the nature of the quantities k. and by, we see that for index calculations,
none of the terms contribute anything for { # 0, while for [ = 0, the first, third and the fourth
term survive, with coefficient in the first term being ko(n,n — k,7)"b+(n,n — &, 7) and that
in the third being (1 — ky(n,n — k,7)7). It follows from here that

index Pk’y,-Pk = —1,

and Py ;v Py is compact for [ # 0. Therefore the pairing between sign D and +, produces

. (]

An immediate corollary of the above proposition and theorem 1.17 in [79] is the following

universality property of equivariant spectral triples.

Corollary 5.3.4 Given any odd spectral triple (A, K, D}, there is an equivariant triple (A, H, D')

inducing the same element in K1(A).
Finally, we have the following characterization theorem for equivariant Dirac operators.

Theorem 5.3.5 (A, %, D) is an equivariant odd spectral triple with nontrivial Chern char-
acter if and only if D is given by (5.2.1) and the d(n,i)’s obey conditions (5.2.4), (5.2.5),
(5.2.10) and (5.2.11).

Proof: If D is of the form e{ ™ d(n,i)e;; (n) , where d(n,i)’'s are real and satisfy condi-
tions (5.2.4), (5.2.5), {5.2.10) and (5.2.11), then proposition 5.2.1 says [D, a] is bounded and
nontriviality of Chern character follows from arguments of proposition 5.3.3. Conversely, if
D) is equivariant, then by propositions 5.2.1, 5.2.2 and remark 5.2.3, we have (5.2.4), (5.2.5)
and (5.2.10). Since D has nontrivial Chern character, it has nontrivial sign so that we have
(5.2.11). a



Chapter 6

Compact Quantum Metric Spaces

This chapter is devoted to construction of compact quantum metric spaces (CQMS). Rieffel
has produced [76] examples coming from ergodic actions of compact Lie groups. Noncommu-
tative torus falls in that class. Since quantum Heisenberg manifolds (QHM) in many aspécts
behave like the noncommutative torus it is natural to expect canonical CQMS structure on
QHM. But the group acting ergodically on QHM is the noncompact Heisenberg group, hence
Rieffel’s theory does not apply. Here we will modify his arguments to obtain CQMS on QHM.
Other algebras treated here are the C(SU,(2)) and the Podles’ sphere. To construct CQMS
structure on them we adopt a different 'strategy. We show that from certain C*-algebra
extensions one can produce CQMS and then obtain CQMS structures on C(SU,(2)) and

Podles’ sphere as immediate corollary.

6.1 Metrics on QHM

In this section we follow notations of chapter 3. Recall that for ¢ € S, 9l 00,00,1 Was defined
as Zn Supa:ElR,yeT |¢($1 Y, n)]

Proposition 6.1.1 |- ||, o, i a *algebra norm on S°.

Proof: It is easy to see that the involution is an antilinear isometry in || - lloo,00,1-
Let &, ¥ € 5¢ and &'(p) = sup,cp yer |2(2,3,0)], ¥'(p) = supyer yer [¥(z,,p)| for p € Z

(@ * ) (z,y,p)|
< D 1%(z - Alg = P,y ~ hlg — p)v, @) X [¥(z ~ hgp,y — hgu,p — g)|

q
< Y ¥ (p—q).
q



Therefore,

> suprerger|(@+ V)(z,u,p)| < D) (¥ (p-q)
! 1Bl oo ]

H

oo,oo,l'l 00,00,1"

This proves that || - || o, is an algebra norm. m]

Proposition 6.1.2 The topology given by || - ||y 00,1 5 stronger than the topology given by

the C*-norm coming from Aj.

Proof: Tt suffices to show for ¢ € S |[¢] < [[flloo 00,1 Let ¢ 1 Z — Ry be given by
¢'(n) = sup,er yer [9(z, y,n)|. Then for £ € L*(R x T x Z) we have,

[(¢€)}(z, v, p)| < (&' x |€(=,, - )) (D),

where x denotes convolution on Z and |£(z,y,.}| is the function p — |¢(z, v, p)|. By Young’s
inequality

(96 (@, y, i, < 116 * (&2, 9, i < N8Nl 16, vy )i
Therefore, [Ig1] < ¢llooo,t> since [Blloosor = 6. 0

General Scheme of Construction
Let (A, G, o) be a C* dynamical system with G an n dimensional Lie group acting ergodically.
Let A® = {a € Alg — ay(a) is smooth }. Then for any X € Lie(G), the Lie algebra of
G induces a derivation dx : A% — A®, Let Xi,...,X, be a basis of Lie(G). L{a) =
Vit 1lldx; (a)ll,;, should be a good candidate for a Lip norm defined in section 1.7. Here || - ||,
stands for an algebra norm on A not necessarily the norm coming from the algebra. This is
essentially Rieffel’s construction; the only modification is he considers the case where || - ||
is the algebra norm. Here the problem of construction of Lip norms reduces to construction
of the norm { - ||,, such that L so defined becomes a Lip norm.
Illustration in the context of quantum Heisenberg manifolds
Let
: 010 0 0 Q 0 01
Xi=[0o0 o0, Xo=|0 0 1], Xs=|0 0 0
0 0 0 0 00 0 00
be the canonical basis of the Lie algebra of the Heisenberg group. Then the associated

derivations are given by

51(¢)(m,y,p) = _'g_g(xa y:p)1
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J
da(d)(z,y,p) = 27ri0pw¢(w,y,p)—5§(w,y,p),
83(¢)(z, y,p) 2mipd(z, y, p).

Taking || - [iz 85 || - [l 00,10 We get a seminorm L : §¢ 4 — Ry explicitly given by
L(¢) = Vildi(#)llso,00,1-
Notation: Henceforth A will stand for S<; ,

Proposition 6.1.3 For all u,v € 5(A)
pi(,v) = sup{l(a) = v(a)| : L{a) <1} <6.

Proof: Let ¢ € 5¢ be such that L(¢) < 1. Then L(L(q,4(¢)) < 1. Therefore, L(fol Loy {$)dt) <
L. ie, L(¢D) < 1 where ¢©(z,y,p) = d06(z,y,p). Recall,

! (0) (0}
fo /T Lirs0y(6®)drds) = (¢

Let f3(p) = |2npd(z,y,p)|, then from L(¢} < 1 it follows that > f3(p) £ 1. Now,
() i = 6N < 1 — 6P .01 € Lo 528 < 3, flp) < 1, and

(i1) ”‘;b(o) "' L(r.s,l))‘?b{o)”w,m’l <2
Using these two we get,

|1(@) — (¢ + (@) — u(r (8 )]

1 1
< -89+ fo [0 (89) = (L0 () ldrds
< 3.

u(¢) = ()|

A

This completes the proof. O

Proposition 6.1.4 L as defined above is a Lip norm.

Proof: Since the action is ergodic and || - || o0,00,1 18 @ norm it follows that L(¢) = 0 if and
only if ¢ is a constant multiple of identity. The previous proposition gives finite radius
of (A, L). Therefore, by theorem 1.7.4, it suffices to show that every sequence {¢n}n>1 in
B, = {¢|L(#) <1, and ||¢|| < 1} admits a subsequence convergent in the norm coming from
the C*-algebra.

Let

O¢n
fl,n(p) = sumeR,yETl-(;%"(may:p)la



6.1. Metrics on QHM 105

. dén
fZ,n(p) = sumeR,yEﬂzﬂchmqbn(w:y:p) - Eg(msytp)‘a
f3,n (P) = SumeR,yETIQWiqun (x,y, P) |-

L(¢n) <1 is equivalent with Zp finlp) <1fori=1,2,3.

Othy, '
SUsz|52,ye’]I‘|—a%,“(ms ¥, p)| < dmcfan(p) + fon(p) <1+ 4me

Now by Arzela-Ascoli theorem there exists ¢ : R x T x Z — C such that for each p € Z,
SUP|zi<2,yeT|Pn(z, ¥, p) — #(z.y,p)| = 0. Clearly ¢ satisfies the periodicity condition.

Claim:

zsqu,y|¢($ay,P)] < 00,

2
Proof of Claim: Suppose not. Then for any N € N, there exists py,...,pr > N such that

> supzyld{z, y,pi)| > 2. So, one can take n sufficiently large so that
> supzylénlz, v, p)| = Y supzyld(e,v,pi)| — 1/2 > 3/2
lp|ZN i

On the other hand note that,

Y supsyltn(z,up)l = 3. fz,;(p)

[p|=N (=N

%Zf:i,n(p) = 'z%r' (6.1.1)
P

[A

This leads to a contradiction.
Note that ¢ defines a bounded operator by lemma 3.1.5. Therefore in view of propo-
sition 6.1.2 it is enough to show that ¢, converges to ¢ in || - |loo,ec,1 NOorm. For N € N

let
¢(z,y,p) for |p| < N,

m'l 3} =
Pbi<n (@ 3:7) {0 for |p| > N.

Let ¢ > 0 be given. Choose NV such that (i) [|¢ — ¢iy<nll ., < € and (ii) % < €. Then
by (6.1.1) one has ||¢n — ¢ pj<nlly, o ; S €& V. Now choose an integer m such that for

m < 7, [|dn jpj<n — ¢|P|SN[Ico,oo,l < €. Therefore Vn 2 m, [[¢n — ¢lloo00,1 < 3e- [

Theorem 6.1.5 {(A,I), L)} is a compact guantum metric space.

Progf: Follows from the previous two propositions. O
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6.2 Extensions to CQMS

In this section we describe the general principle of construction of CQMS from certain
C*-algebra extensions. Let A be a unital C*-algebra. Fix a faithful representation A4 C
B(H). Suppose we have a dense order unit space Lip(A) C As,, where A,, denotes
the real partially ordered subset of selfadjoint elements in 4. Let L be a Lip norm on
Lip(A) such that ({Lip(A),I),L) is a CQMS. Let v be a state on A, then define A, to
be the collection of ((ay;)) € K(I*(N)) ® A such that (i) a;; € Lip(A), (i) ayy = ajs, (iii)
suPi>1,5>1(2 +j)k(L(aij) + {v(ai;)|) < oo Vk. Clearly A, := A, & RI, where I is the identity
on B(I>(N) ® H) is an order unit space. Define Ly : A, — Ry by Li(I) =0,

Li((aij)) = supiz1,51( + )" (Lais) + [v(ag)).
Lemma 6.2.1 Let d = diameter of ((Lip(A),I),L). Then for a “Lipschitz function” a €
Lip{A) one has |a]l < (L(e) + wv(a))(1 + d).
Proof: Let ;1 be an arbitrary state on A. Then using sup{|u(a) — v(a)| : L{a) € 1} < d we
get,

|u(a) — v(a}| + v{a)|
L(a)d + [v(a)|
(L{a) + [v(a))(1 + d).

|u(a)l

IA A A

Lemma 6.2.2 There ezists a constant C > 0 such that for ((a;;)) € A,

[{(@i;))]l < CLa((as;))-

Proof: Let {ei}i21 be the canonical orthonormal basis for I?(N). Let Yo Aiei®u; and 3 pie; ®
v; be two generic elements in [2(N) ® H. Here u;,v; € H are unit vectors. Then clearly
I3 M @ wi|® = 32 |Mf% ) > piei ® wl|? = 3 |uil®. Now observe that

I(Z)\iei®Uia((aij))2ﬁjej®vj>| < Z]Ai“#j“(ufia'ijvj)l
< Y lisgl(E(ais) + [v(ai)])(L + d)
< 0+ X nflyi 200D

Lo((@)1 + )Y /S PSS il
n=1

This proves the lemma with O = (1+d) 32, =2 O

IA
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Lemma 6.2.3 Let By = {a € A,|Li(e) < 1,||aff £1}. Then By is totally bounded in norm
for k> 2.

Proof: Let € > 0 be given. Choose NN such that (-,lv) 2 < e For G = ((gi;)) € Ay let
Py (G) € K(I?(N)) ® A be the element given by

Py(G)., = {gij for i,5 < N,
K 0 otherwise.

Now observe that

Li(G = Pn(G)) = supisyorson(i+ 5)F(L{gi;) + [¥(gi)])
N*2sup;s norjsn (i + )2 (L{gi;) + [v(gi)])
= Nk_zLQ(G — Pn(@)).

v

Note that for G € By, Ly (G — Pn(G)) < 1, therefore

CLa(G — Pn(G))

|G — Pn(G)]] <
< ON~®-2L(G - Py(G)) < Ce.

Here the constant C is the one obtained in the previous lemma. Note C does not depend on

N. By theorem 1.7.4 there exists N x N maitrices ((a :(;))) € My(A), for r = 1,...,1 such

that for any N x N matrix ({a;;)) € By, there exists r satisfying ||({a:;)) — ((asg)))ﬂ < €. Now
for G € By, get ((ag))) such that ||Pn(G) — ((a {T)))H < ¢. Then,

IG = (&) <116 - By (G)]| + € < (1+ C)e.
This completes the proof. o

Theorem 6.2.4 ((A,,I), L) is a compact quantum metric space for k > 2.

Proof: In view of theorem 1.7.4 and the previous lemma we only have to show that (A,, L)
has finite radius. Let p,u2 € S(Au), e € A, with Lg(a) < 1. By lemma 6.2.2 ] < C,
because Ly(a) < Li(a). Hence |u1(a) — ua(a)| < 2C, that is diam(A,, L) < 2C. a

Proposition 6.2.5 Let
0—)A0—E-+A1—1r)A2—‘r0
be a short ezact sequence of C*-algebras, with Ay, Ay unital and a positive linear splitting

o: Az = Ay Let ¢: A} — Ay @ Ay, 0 Ap @ Ay — Al be the bounded linear maps given by

$u) = (1, p2)s p1 = pliag), 2 = poo
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Y(p1, p2) = i, pla) = po(n(a)) + (e — o o 7(a))

Then pq, ps are inverse to each other.

Proof: Let ¢(u) = (p1, p2), ¥ (p1, 2) = ¢t Then

p'la) = pa(r(a)) +pi(a—oonla))
= ploom(a)) + pla — o on(a))
= pla).

Therefore o ¢ = Id Al - Similarly one can show that the other composition is also identity.
O

Let A, Lip(A), L be as above. Suppose we have a short exact sequence of C*-algebras
0— KA A Lo Ay — 0

with ZI,.Z; unital and a positive unital linear splitting o : .Z; — :4‘_{ . Let (Ag,Ls) be
a compact quantum metric space with 4A; a dense subspace of selfadjoint elements of .:4;
Define A; = i(4,) ® o(Az). Then we have

Theorem 6.2.6 In the above set up Ly : Ay — R, given by
Li(a) = La(x((a)) + Li(a — 0 o 7(a))
1§ a Lip norm for k > 2.

Proof: We break the proof in several steps.

Step (i) Li(a) = 0 iff a € RId,,: If part is obvious for the only if part note L;(a) = 0 gives
m(a) = Ady, for some A € R and Lo(a — Alds,) = 0. Hence a = Alda,.

Step (ii) (A1, L1} has finite radius: Let g, A € S(A1) and (u1, u2) = d(p), (A1, Az) = ¢(}),
where ¢ is as in proposition 6.2.5. Then from the norm estimate of ¢ obtained in proposition
6.2.5 we get ||l | As]l £ (1 + [le]]), for i = 1,2 and positivity of o implies ||ua]| = [|A2]| = 1.
Let z € A; with L{z) < 1, then

lug(7(2)) + m(z — o o m(2)) = Xa(m(z)) — Mz — 0 0 7(2))|
< lp2(w(2)) = Ae(n(z))] + |z — o o m(2)) — Az — 0 0 w(z))|
< diam(Ag, Ly) + 2(1 + Jlo|)C

lu(z) — Alz)]

where C is the constant obtained in lemma 6.2.2. This proves (A, L;) has finite radius.
Step (iii) In view of theorem 1.7.4 it suffices to show that B; = {a € A; : ||a| < 1,L;(a) <
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1} is totally bounded. Since (A,,Lx) and (Ag, Ly) are compact quantum metric spaces it
follows that if we have a sequence a, € B, then there exists a subsequence a,, such that
both m{an, ) and a,, — o o w(an,) converges in norm. Hence a,, converges in norm implying

the totally boundedness. 0

6.3 Examples

Example 6.3.1 Let Q be a strongly pseudoconvex domain in C". Let H?(8Q2) be the closure
in L2(8Q) of boundary values of holomorphic functions that can be continuously extended
to Q. For f € C(AN) let Ty be the associated Toeplitz operator, that is the compression of
the multiplication operator My on L2(8Q) on H?(8%). Let T(892) be the associated Toeplitz
extension, that is the C*-algebra generated by the operators T along with the compacts.

Then we have a short exact sequence of C*-algebras
0 — KC(H2(99)) - T(89Q) - C(80) — 0

Since this sequence admits a positive unital splitting by the previous theorem we get CQMS

structure on T(612).

Example 6.3.2 In the context of quantum SU(2) it is easy to see that the associated short

exact sequence
0— K®C(T) — C(SU,(2)) = C(T) — 0 (6.3.1)

admits a positive gplitting taking z™ € C(T) to £*®1, for all n > 0. Hence we get a compact

quantum metric space structure on C{SU,(2)).
Example 6.3.3 The short exact sequence
0— K -5 C(82) -2 C*(%) — 0 (6.3.2)

is also split exact. Here a positive splitting is given by £ € C*(T) — (£, £). Now to apply the
previous theorem note that by the earlier example on Toeplitz extensions we already have a

Lip norm on a dense subspace of C*(%).
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