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Synopsis

Present day technology has been characterized by development of complex
systems or equipments containing a large number of subsystems and com-
ponents. Reliability, as a human attribute, has been praised for a very long
time. For technical systems, however, the reliability concept has not been
applied for more than about 50 years. Reliability is the concern of all scien-
tists and engineers engaged in developing a system, from design, through the
manufacturing, to its ultimate use. Reliability technology has a potentially
wide range of application areas like safety or risk analysis, environmental

protection, quality, optimization, maintenance, engineering design, etc.

For a highly complex system, formal optimisation of system reliability
may not be possible. In such cases, in attempting to achieve high reliability,
a basic problem facing the system analyst and reliability engineers is that of
evaluating the relative importance of the various components comprising the
system. Measuring the relative importance of components may permit the
analyst to determine which components merit the most additional research
and development efforts to improve overall system effectiveness. A number
of different importance measures have been defined to quantify the relative
importance of components of a system and provide component ranking in
order of importance. These measures can be classified as structural impor-
tance measures and reliability importance measures. Structural importance
measures require only the knowledge of the structure function of the system.

Whereas reliability importance measures require the additional information



about component reliabilities. Structural measures of importance are more

suitable during system design and development phases.

It is an undesirable fact that the reliability of a series system is low and,
on the other hand, the parallel system has high reliability but tends to be
very expensive. In last two decades a new system, a consecutive-k-out-of-n:F
system, has caught the attention of many engineers and researchers because

of its high reliability and low cost.

The present work deals with problems of reliability analysis and compo-
nent importance measures of a consecutive-k-out-of-n:F system. In reliability
theory, a consecutive-k-out-of-n:F system has been studied since 1980. It was
first introduced by Kontoleon [37]. It consists of n linearly ordered and in-
terconnected components. The system fails if and only if it has at least &
consecutive failed components. If components be arranged on a circle we
then have a circular consecutive-k-out-of-n:F system. Such systems find ap-
plications in telecommunication systems and pipeline networks [21], design
of integrated circuits [11], vacuum systems in accelerators [35], computer
networks [32], spacecraft relay stations [20], etc. A consecutive-k-out-of-n:F
system is always more reliable than a conventional k-out-of-n:F system, in
which the system fails if and only if at least £ components fail. Since the
family of minimal cut sets of the former is a subset of the family of minimal
cut sets of the latter. However for £ = 1 both the systems reduce to a series

system and for k = n reduce to a parallel system.

In this dissertation, the entire work has been divided into five chapters.



Chapter 1 covers the preliminaries needed for understanding the work done.
A brief history of the development of reliability is traced and concepts and
notations used in the subsequent chapters are defined and described. It also
describes different measures of component importance.

Chapters 2, 3, 4 and 5 mainly present the work of the author.

Chapter 2, starts with a review of the literature on a consecutive-k-out-
of-n:F system. We then study the path sets of a consecutive-k-out-of-n:F
system and its applications.

In Section 2, we present a new and direct formula for determining the
number of path sets with known size in a consecutive-k-out-of-n:I* system.

Section 3, considers reliability function of the system with i.i.d. compo-
nents and examines other results in the literature.

In Section 4, we study the structural matriz and its applications. Seth and
Ramamurthy [61] introduced the concept of structural matrix and presented
a unified approach for determining different structural importance measures.
We give a combinatorial expression for the elements of the structural matrix

and apply this to a consecutive-k-out-of-n:F system.

Birnbaum reliability measure of importance and Vesely-Fussell reliability
measure of importance are defined using the concepts of critical vectors and
minimal cut sets.

In Chapter 3, we study these concepts and also minimal path sets of a
consecutive-k-out-of-n:F system and provide algorithms for lexicographically
generating all minimal path sets and critical vectors.

Section 2, gives the necessary and sufficient conditions for a subset of



components to be a minimal path set of the system. The problem of gen-
erating all minimal path sets of the system was considered by Chan et al.
[14]. They proposed a recursive procedure to find all minimal path sets of a
consecutive-k-out-of-n:F system. Their method starts with the generation of
all minimal path sets of a consecutive-k-out-of-2k:F system and uses them to
generate all minimal path sets of a consecutive-k-out-of-2k + 1:F system and
so on. This method recursively generates all minimal path sets of n — 2k +1
different systems resulting in a large number of repetitions.

In Section 3, using a linear ordering on the subsets of components (lexi-
cographical ordering), we present a nonrecursive algorithm for lexicographi-
cally generating and listing the collection of all minimal path sets of a linear
consecutive-k-out-of-n:F system. Our algorithm generates minimal path sets
only for the consecutive-k-out-of-n:F system. Hence unnecessary genera-
tions of the minimal path sets is avoided as in the case of Chan et al. [14]
procedure. We also study the minimal path sets of a circular consecutive-k-
out-of-n:F system and show that all minimal path sets of a circular system
can be generated using minimal path sets of a linear system.

In Section 4, we present a nonrecursive algorithm for generating all mini-
mal path sets containing a given component of the system. This algorithm is
used for evaluating the Vesely-Fussell reliability measure of component im-
portance in a consecutive-k-out-of-n:G system, in Chapter 4. A consecutive-
k-out-of-n:G system is a dual of a consecutive-k-out-of-n:F system and this
system functions if and only if at least k consecutive components function.

Section 5, gives a nonrecursive algorithm for generating all critical vectors

for a given component in a cqnsecutive-k-out-of-n:F system. This is applied



for computing the Birnbaum reliability measure of component importance,

in Chapter 4.

Chapter 4 considers the system reliability and component importance
of consecutive-k-out-of-n systems. If the components of a consecutive-k-out-
of-n:F system are indepe;ldent but not identical, the problem of computing
system reliability leads to a recurrence relationship [63]. Using the minimal
path(cut) sets of a consecutive-k-out-of-n:F(G) system and the algorithm
presented in Chapter 3, we introduce a nonrecursive algorithm for determin-
ing the system reliability with different component reliabilities, in Section 2.
This is an efficient alternative to the inclusion-ezclusion principle for evaluat-
ing system reliability in consecutive-k-out-of-n systems. It has no cancelling
terms and number of terms equals the number of minimal path(cut) sets. We
show that this algorithm can also be used for determining system reliability
of a k-out-of-n system with different component reliabilities. Furthermore,
we show that this approach is applicable for a general case when the compo-
nents of the system are not independent.

Recent related results in the literature are considered and examined.

Section 3, considers the determination of the Vesely-Fussell reliability
and structural measures of component importance in consecutive-k-out-of-n
systems. We show that in case of a consecutive-k-out-of-n:F system, these
measures can be computed easily. Using the approach presented in Chapter 3,
we present an algorithm to compute Vesely-Fussell reliability and structural
measures of component importance in a consecutive-k-out-of-n:G system.

In Section 4, we consider the problem of determining Birnbaum reliability



measure of component importance of a consecutive-k-out-of-n:F system with
different component reliabilities. We present an algorithm for this using the
approach described in Section 5 of Chapter 3. This algorithm does not require
computation of the reliability function.

In Section 5, we provide a different recursive relation for determining
the reliability function of a consecutive-k-out-of-n:F system with non iid
components. Using this we give new upper and lower bounds for reliability

function of the system in iid case.

Although the minimal path sets of a consecutive-k-out-of-n:F system can
be generated using the algorithms presented in Chapter 3, but the combina-
torial problem of determining the number of minimal path sets of the system
still remains a difficult task. On the other hand we note that the number of
terms in the nonrecursive formula for determining the reliability function of
the system with non iid components, as given in Algorithm 1 of Chapter 4,
equals the number of minimal path sets of the system. Hence in Chapter
5, we consider the enumeration of the minimal path sets of a consecutive-k-
out-of-n:F system.

Section 2 of Chapter 5, gives explicit formulae for determining the number
of minimal path sets and also the number of minimal path sets with known
size, for a linear and a circular consecutive-2-out-of-n:F systems.

In Section 3, we consider direct computation of the number of minimal
path sets in consecutive-3-out-of-n:F systems for both linear as well as cir-
cular.

In Section 4, we present a recurrence relationship for determining the



number of minimal path sets of a general consecutive-k-out-of-n:F system.
We may add that, direct computation of the number of minimal path sets

of a consecutive-k-out-of-n:F system, still remains a problem.



Chapter 1

Preliminaries

1.1 Introduction

At the time when the electronic computers appeared as a main tool in the
service of scientists and researchers, advancement in technology became fast.
Technology has been characterized by development of complex systems or
equipments containing large number of subsystems, components and parts.
The trend to ever larger and more complex systems is continuing with the
development of space vehicles, electronic computers, communication systems,
weapons system, etc. Reliability, as a human attribute, has been praised for
a very long time. For technical systems, however, the reliability concept has
not been applied for more than some 50 years. Reliability is the concern of all
scientists and engineers engaged in developing a system, from design, through
the manufacturing, to its ultimate use. Reliability is: “The ability of an item to
perform a required function, under given environmental and operational con-
ditions and for a stated period of time.” If, under the appropriate conditions,
the item achieves the required performance or continue to achieve it, then the
item may, in a qualitative sense, be termed reliable, otherwise it may be de-
scribed as unreliable. Today complex systems must be developed to not only
work, but to work reliably. The degree of acceptable reliability depends on the
consequences of failure. Reliability application started just after World War I
it was then used in connection with comparing operational safety of one, two,
and four engine airplanes. Initially, the reliability was measured as the number

of accidents per hour of flight time.



During World War II, the product probability law of series components
was derived. This theorem concerns with systems functioning only if all the
components are functioning and is valid under special assumptions. If the
system comprises a large number of components, the system reliability may
be rather low, even though the individual components have high reliabilities.
The failure of a single inexpensive component causes the failure of the entire

system.

To compensate a low system reliability, it was improved by improving the
quality of individual components. Better raw materials and better designs for
the products were demanded. A higher system reliability was obtained, but
extensive systematic analysis of the problem was probably not carried out at

that time.

For a highly complex system, formal optimisation of system reliability may
not be possible. In such cases, in attempting to achieve high reliability, a
basic problem facing the system analyst and reliability engineers is that of
evaluating the relative importance of the various components comprising the
system. Measuring the relative importance of components may permit the
analyst to deterimine which components merit the most additional research
and development efforts to improve overall system reliability at minimum cost

or effort.

Reliability technology has a potentially wide range of application areas
like safety or risk analysis, environmental protection, quality, optimization,

maintenance, engineering design etc.

It is an undesirable fact that the reliability of a series system is low and,

on the other hand, the parallel system has high reliability but tends to be very



expensive. A new system, consecutive-k-out-of-n:F, and its related systems,
have caught the attention of many engineers and researchers because of their

high reliability and low cost.

1.2 System Representation

Assessment of the reliability of a system from its basic elements is one of
the most important aspects of reliability analysis. A system is a collection of
components (subsystems, units, items, blocks, etc.) whose proper, coordinated
function leads to the proper functioning of the system. In reliability analysis, it
is therefore important to model the relationship between various components as
well as the reliability of the individual components to determine the reliability
of the system as a whole. Whether we are dealing with a single component or
a complex system, we will content ourselves to classifying a system as being in
one of two possible states, either in a functioning state or in a failed state.
We will assume binary state and apply this to each component as well as to the
system itself. The state of the system is completely determined by the state
of its components, and the dependence of the system state on the component

states is expressed through a structure function.

Structure Function
A system composed of n components will be denoted as a system or structure
of order n. The components are assumed to be numbered consecutively from 1
to n from the set N = {1,2,...,n}. The state of component ¢, 7 = 1,2,...,n

can be described by a binary variable z;, where

1 if component ¢ is functioning
x, =
0 if component i is in a failed state.

x = (71,2, .., %) is called the state vector. Furthermore we assume that by



knowing the states of all the n components, we also know whether the system
is functioning or not. Similarly the state of the system can then be described

by a binary function
¢(x) = ¢(z1,%2,...,%n), X € B"

where B = {0,1} and

1 if the system is functioning
¢(x) =

0 if the system is in a failed state.

¢(x) is called the structure function of the system.

Example 1. A system that is functioning if and only if all of its n components

are functioning is called a series system. Its structure function is given by

n
$(x) = 2139+ Tp = [] @i
i=1

A series structure of order n can be illustrated as in Figure 1.1.
a b

o— 1 2 3 b—---— n 0

Figure 1.1: series structure

Example 2. A system that is functioning if and only if at least one of its
components is functioning is called a parallel system. A parallel structure of
order n is illustrated in Figure 1.2. In this case the structure function can be

written as :

n

¢(x)=1—(1—m1)(1—x2)---(1—xn)=1—H(1—m,~).

i=1
The expression on the right hand side is often written as [I;=, z;. Since z;’s
n
are binary variables, we have [ z; = max z;.
1<i<n
n

Similarly in series system we have ¢(x) = [J =i = min ;.
<n
=1 ==

=1



2
a b
o 3 —0
| |
I |
| I
n

Figure 1.2: parallel structure

Example 3. A system that is functioning if and only if at least k of the n
components are functioning is called a k-out-of-n system. A series system is
therefore an n-out-of-n system, and a parallel system is a 1-out-of-n system.
The structure function of a k-out-of-n system is given by

n
1 if Y x>k

i=1

(b(X) = n
i=1

Definition 1. Let ¢ be a structure of order n. fts dual ¢P is another structure
of order n defined by

#P(x) =1 — ¢(1 —x) for all x

where (1 —x) = (1 —z1,1 — 2a,...,1 — n).



Example 4. The dual of a series (parallel) structure is a parallel (series)
structure. More generally, the dual of a k-out-of-n structure is (n —k + 1)-out-

of-n structure.

1.2.1 Coherent Structure

When establishing the structure of a system, it seems reasonable first to leave
out all components that do not play any direct role in the functioning of the
system. The components we are left with are called relevant. The components

that are not relevant are called irrelevant. If component 3 is irrelevant, then
#(1;,x) = ¢(0;,x) for all (.;,x)

(1;,x) represents a state vector where the state of the ith component is 1,
(0;,x) represents a state vector where the state of the ith component is 0, and
(.i,x) represents a state vector where the state of the sth component is 0 or 1.
That is

(1,’,}() = (331,.’22, N A 1N 11;,£Ei+1, A ,.’En)

and

(Oi,x) = (Z‘l,.’L'z, oo axi—l,ohxi-{-l, e '71"71)'

We assume that the system will not run worse than before if we replace a
component in a failed state with the one that is functioning. This is obviously
the same as requiring that the structure function shall be nondecreasing in

each of its arguments.

Definition 2. A system of components is said to be semi-coherent if at least
one of its components is relevant and the structure function is nondecreasing
in each argument. A system is also said to be monotone system if its structure

function is nondecreasing in each of its arguments.



Let ¢ be a semi-coherent structure of order n, we then have #(0) =0 and
#(1) = 1 where
0=(0,0,...,0) and 1=(1,1,...,1)

Definition 3. A semi-coherent system is called coherent if all its components

are relevant.

For detailed exposition on coherent structures see Barlow and Proschan [6],
Kaufmann [36], Ramamurthy [55], Hgyland and Rausand [30] and Gertsbakh
[26].

Structure Representation by Minimal Path Sets and Cut Sets
Definition 4. A state vector x is called a path vector if ¢(x) = 1. Then
Ci(x) ={i: i € N and z; = 1} is called a path set. If ¢(y) = 0 for all
y < X, then x is called a minimal path vector and the corresponding set C} (x)
is a minimal path set. In other words, a minimal path set is a minimal set of
components whose functioning causes the functioning of the system.

Similarly a state vector x is called a cut vector if ¢(x) = 0 and Cy(x) = {i :
i€ N and z; = 0} is called a cut set. If ¢(y) = 1 for all y > x, then x
is called a minimal cut vector and the corresponding set Cy(x) is a minimal
cut set. In other words, a minimal cut set is a minimal set of components
whose failure causes the failure of the system. x > y means coordinate-wise
inequality z; > v;, i = 1,2,...,n with at least one strict inequlity.

We denote by a(¢) and B(¢), respectively the collections of all minimal path

and cut sets of @.

Example 5. consider a bridge structure given in Figure 1.3. The minimal

path sets are

P1={1,4}, P2={2,5}, P3={1,3,5} and P4—_—'{2,3,4}



The minimal cut sets are

Ci={1,2}, C. = {4,5}, Cs = {1,3,5} and Cy = {2,3,4}.

a b
. 3

N7

Figure 1.3 Bridge Structure

The concepts of minimal path sets and minimal cut sets play a crucial role in

the study of reliability analysis of semi-coherent structures.

Consider a structure ¢ on N with the minimal path sets P, P,,..., P,
and the minimal cut sets Cy, Ca, ..., C,. We now state, without proofs, some
relevant results of coherent and semi-coherent structures. Proofs are given in

[55], [6] and [36].

Theorem 1. Let ¢ be a semi-coherent structure on N. A subset P of N is a
path set of ¢ if and only if PNC; #0Vj =1,2,...,c. And a subset @ of N
isacut set of pifandonlyif QN P, #0Vi=1,2,...,p.

That is P (Q) is a path (cut) set of the system if and only if it has nonempty

intersection with every minimal cut (path) set of the system.

Theorem 2. Let ¢ be a semi-coherent structure on N. We have:

¢(x):1—ﬁ(1— H:vj)=fl(1— H(l—xl)) for all x € B™.

i=1 jJEP; j=1 1€C;

That is, structure ¢ may be interpreted as parallel (series) structure of the

8



minimal path (cut) series (parallel) structures.

Definition 5. A structure function ¢, can be expressed as
p(x)= > as [[z; for xeB"
SCN  jeS
which is called the simple form of ¢(x). For S = @, we take [] z; = 1 and the
j€S
as’s are some integers.

Ramamurthy [55], showed that this representation for structure function

always exists and is unique.

Theorem 3. Minimal path (cut) sets of a coherent system completely deter-

mine its structure function and vice versa.

Theorem 4. Suppose a(¢) and (5(¢) be the collections of all minimal path

and cut sets of ¢, respectively. We then have

a(¢”) = B(¢) and B(¢”) = a(9).

Theorem 5. Any structure ¢ of order n is a linear composition of two struc-

tures of order at most n — 1, that is
¢(X) = $i¢(1i, X) + (1 - -/Ez)(ﬁ(ola X)

forallx € B" and i = 1,2,...,n. This relation is called the pivotal decompo-

sition of the structure function.

1.3 Reliability Function

In Section 2, the structural relationship between a system and its components
was established by using a deterministic model of the structure. However, the
failures of components can not usually be predicted with certainty. For study-

ing the occurrence of such failures, one looks for statistical regularity. Hence

9



it seems reasonable to interpret the state variables of the n components X;’s
and consequently the state variable of the system ¢(X) as random variables.

The following probabilities are of interest:
P(X, = 1) = Di for ¢ = 1,2,...,n.

P (¢(X) =1) = h(p) where p = (P1,P2,-- -+ Pn)-

p’s are called component reliabilities and h(p) is called system reliability or
reliability function. Since the state variables X;’s and ¢(X) are binary, we note
that p; = E(X;) and h(p) = E (¢(X)) .

Components and systems that are replaced or repaired after failure are
called repairable. We consider nonrepairable components and systems. In this
case p; and h(p) correspond to the survivor function of component ¢ and of the
system, respectively. We also assume that the components are stochastically
independent, that is X, X, ..., X, are independently distributed. Further-
more if p; = po = -+- = p, = p, that is components are i.i.d., we shall denote

the system reliability function by h(p).

Example 6. For a series structure, reliability function is h(p) = pip2 - . - Pn-
Example 7. For a parallel structure A(p) =1 — (1 — p1)(1 — p2) -+ (1 — pn).
Example 8. For a k-out-of-n structure with i.i.d. components, reliability

function is given by :

hp) = E(6(X)) = P($(X) = 1) = P (2 X > k) —3 ( ' ) po(1—p).

=k

Example 9. Using Theorem 2, structure function of a bridge structure as
illustrated in Example 5 is :

dX)=1—-(1 - X1 X3X5)(1 — XoX3X4)(1 — X X5)(1 — X1 Xy).

Using the fact that XF = X, we have

d(X) = X1 X3Xs5 + XoX3Xs + XoXs + X1 Xy — X1 Xo X3 X5 — X1 X2 Xy X —

10



X1 X3X4 X5 — X1 XoX3Xy — Xo X3 Xy X5 + 2X1 X0 X3X,4 X5

and reliability function is

h(p) = E(¢(X)) = pipsps + papsPa + P2Ps + P1Ps — P1P2PsPs — P1P2PaPs —
P1P3PsPs — P1P2P3Pa — P2P3PaPs + 2D1P2P3paps.

We see that in spite of the fact that a compact formula (Theorem
2) has been obtained for ¢(X), the computation of the system reliability

h(p) = E (¢(X)) still remains a serious task for complex systems.

The most straightforward method for computation of the system reliability
is based on the structure function. We need to find out all minimal path (or
cut) sets and represent ¢(X) in its simple form and apply the E[.]-operator.

This method for system reliability evaluation is called sum of disjoint products.

Another method used for calculating system reliability is called, inclusion-
exclusion principle. We note that h(p) = 1 — h(p) = P (O Ei) where E; is
the event that all components of the minimal cut set C; areiizri a fail state, that
| is ith minimal cut parallel structure is failed and c is the number of minimal

cut sets.

In geneﬁal, the individual events E;, ¢ = 1,2,...,c are not disjoint. Hence
‘.probability p <O E,) is determined by using the general addition theorem in
probability thec;;;' (e.g., see Dudewicz and Mishra [23] or Feller [24], p. 99)

[
Ap) =Y (-1¥"' Y P(E,NE,n-NE,).
j=1 11 <t < <iy
According to this method we have to calculate the probability of a large number
of terms that later cancel each other. A number of alternatives to the inclusion-

exclusion principle have been proposed. For example see Satyanarayana and

Prabhakar |5 dA 4]. L TS
rabhakar [59] and Aven [4] ) «"',"\ST\CAm‘)j‘;% |
4 / T 07\
4 Sk
)/;:3_5 - - -1 TN P
LR MU SEPER iy e
11 ;.:‘;' . ....:,1 D EC ng/ - '
bt [ D LR IR TR .
Y. £ p
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Theorem 6. Reliability function satisfies
h(p) = pih(1;,P) + (1 — pi) (0;, P)
where
h(1;,p) = E(¢(1;, X)) = E(¢(X1, Xo, ..., Xic1, 1, X1, - .-, Xn))
and
h(0;, p) = E (¢(0;, X)) = E (¢(X1, X2y .-+, Xio1,0, X1, ..., Xn)) -

This representation for h(p) is called the pivotal decomposition of the reliability
function.
Remark. By repeated pivotal decomposition of the st’ructure function, ¢(X)
can always be written as
o(X)= > I X/ (1-X,)"%e(Y)
McB” j=1
where 0° = 1. Therefore the reliability function may be written
n
h(p) = E (¢(X)) =D [I p¥ (1 — p;)' ¥ 6(Y).
- -1
Theorem 7. Reliability function h(p) of a monotone system is a monotone

function of p = (p1,p2,--.,0n)-

The first work on system reliability, was given by Moore and Shannon [45]. It
dealt with two-terminal relay network reliability. Research on coherent struc-
tures was initiated by Birnbaum, Esary and Saunders [9]. They introduced the
notions of minimal cut and minimal path sets and derived the representation
of structure function by using its minimal cut or path sets.

Computation of system reliability is relatively simple, if the system is of

the series-parallel type. As we have seen, there is a very simple structure
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(e.g., a bridge structure) which is not a series-parallel system. An enumeration
of all cut or path sets of an arbitrary network is a problem of outstanding
algorithmical difficulty, and its solution for a large system may take a long time.
Many algorithms for computing system reliability are based on the pivotal
decomposition formula (Theorem 6). The goal of a repeated application of
pivoting is to obtain series-parallel subsystems for which further computations
are relatively easy. However, the efficiency of the computational algorithms
will depend on the selection strategy. This topic interfaces closely with the
computational complexity of the algorithms for reliability computation. For

details see, Barlow [5], Satanarayana and Chang [58] and Agrawal and Barlow

[1].

1.4 Component Importance
During the design of a system, the choice of components and their arrangement
may render some to be more important than others in determining whether
the system is functioning or not. For example, placing a component in series
within a system causes it to have a higher importance for system reliability
than any other component in the system. It would be of a great practical
significance to the designer, the reliability analyst, as well as the repairperson
to have a quantitative measure of the importance of each component. Such a
measure would, for example, identify the components that, by being improved,
would increase the reliability of the system the most or, by means of a list,
tell the repairperson in which order to check the components that may have
caused the system failure.

The importance of components should be used during design or evaluation
of systems to determine which components or subsystems are important to

the reliability of the system. Those with high importance could prove to be
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candidates for further improvements. In an operational context, items with
high importance should be watched by the operators, since they are critical for

the continuous operation of the system.

A number of different measures of component importance have been de-
fined. We describe three methods of measuring the importance of components:
Birnbaum, Barlow-Proschan, and Vesely-Fussell measures of importance.

These measures can be classified as structural importance measures and reli-
ability importance measures. Structural measures require only the knowledge of
the structure function of the system. Whereas reliability importance measures
require the additional information about component reliabilities. Structural
measures of importance are most suitable during system design and develop-
ment phases.

The following definitions are required.

Definition 6. Let ¢(x) be a structure function of order n. If ¢(1;,x) =1
while ¢(0;,x) = 0 then the state vector (.;,x) is called a critical vector for
égmponent 1. This is equivalent to requiring that

#(1;,x) — ¢(0;,x) = 1.
In othér words, given the states of the other components (.;, x), the system is
“functioning if and only if component i is functioning. It is therefore natural
to call (1;,x) and (0;,x) as a critical path vector and critical cut vector for
component i, respectively. When (.;, x) is a critical vector for component i, we
say that component 7 is critical for the system. We note that component i is

critical for the system tells nothing about the state of component <.

Definition 7. A critical path set, P(1;,x) corresponding to the critical path

vector (1;,x) for component 7 is defined by

P(l;,x)={i}U{j;z; =1,5 #1}.
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Similarly corresponding to the critical cut vector, (0;,x) for component i, a
critical cut set, C(0;,x) is defined by
C(0;,x) = {i} U {j;2; = 0,5 # i}.

We note that the total number of critical path (cut) vectors, as well as critical

path (cut) sets, for component i is

n¢(z) = Z [¢(1i1x) - ¢(02)x)] .
(-i:%).

By binary assumption of variables z;’s, the total number of state vectors

(.i,i() = (171, vy Tie1y oy Tigly e - ,xn) is 271,

Birnbaum Measure of Importance

Birnbaum [8], introduced the concept of component importance.

When component reliabilities are not known, we use structural measure of
component importance that can be calculated using only the structure function

of the system.

Birnbaum Structural Measure
Birnbaum proposed the following measure for the structural importance of

component %

where n4(7), the number of critical vectors for component ¢. [ ¢ (i) expresses the
relative proportion of the 2"~! possible state vectors (.;, x) which are critical

vectors for component i.

Birnbaum Reliability importance Measure
Reliability measure of component importance makes use of probabilistic infor-
mation about the components of the system.

Birnbaum reliability measure of importance of component 7 is defined by
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Ig(l,p) = h(llap) - h(ohp) for z = 1, 2) R
We note that I%(i, p) does not depend on p;.
We have I%(3, p) = E (¢(L;, X) — ¢(0:, X)) = P(8(1;,X) — ¢(0;, X) = 1).

oh(p)

From Theorem 6, we can write I%(i, p) = =
Di

We note that I5(:) = Ik(5; 1/2,1/2,...,1/2).

Barlow-Proschan Measure of Importance
Barlow and Proschan [7], introduced a new measure of component importance.

For details see {7].

Barlow-Proschan Structural Measure
n

We define size of vector (.i,x) as well as size of vector (0;,x) by »_ =z; and
j=1g#

n
size of vector (1;,x) by 14+ Y ;.
J=1,5#1

Definition 8. We define by ny(4,7), the number of critical path vectors of ¢
of size of r for component i. Then the number of critical vectors for component
i, is ng(i) = Zn:n¢(i, T).

Barlow-ProséI:ulm measure of structural importance for component i, ¥(i, ¢)
is defined as the probability that failure of component i causes system failure
under the assumption that all the n! orderings (or permutations) of components

are equiprobable.

Remarks.

n
(i) We note that Y ¥(¢,¢) = 1. But this is not true for I%(3).
i=1
(ii) In fact (4, @), is the probability that component i causes system failure

under the assumption that component life distributions of Xj’s, j =

1,2,--+,n are i.i.d. random variables.
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Barlow-Proschan measure of structural importance for component ¢, can be
obtained as follows :

Theorem 8.

n

U(i, ) = %}_:1 -——(""(i’:) .
r—1 )

¥(6,6) = [ (b(1s,5) — h(0s2)) dp = [ 136, p)ap

Theorem 9.
1
0
Barlow-Proschan Reliability Importance Measure
This requires the life time distribution of each component. Let the distribu-
tion function F;(t) of the life of component ¢ be absolutely continuous. Then

Barlow-Proschan reliability importance of component 4, ¥(i, h) is defined as

the probability that component i causes system failure.

Theorem 10.
Ui, h) = /O°° [h (1, F(8)) - h (0, F(t))] dF(t)

where

(&F®) = (F®),- -, Fia(®),  Bsa(8), ., Fa(t)) and F(2) = 1 - Fy(2).

Vesely-Fussell Measure of Importance

Vesely-Fussell measure of importance takes into account the fact that a com-
ponent may contribute to system failure or system reliability without being
critical. The component contributes to system failure when a minimal cut,
containing the component, is failed. We say that a minimal cut set is failed
when all the components in the minimal cut set are failed.

This measure was introduced by Vesely [66] and later applied by Fussell [25].

Vesely-Fussell measure of reliability importance of component i, I%.(i,p) is
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defined as the probability that at least one minimal cut set that contains com-
ponent : is failed, given that the system is failed.

Consider a system with ¢ minimal cut sets Cy,C,,...,C,.. According to Theo-
rem 2, the system can then be represented logically by a series structure of ¢
minimal cut parallel structures. The system is failed if and only if at least one
of the ¢ minimal cut sets is failed. We use the following notations.

D; : The event that at least one minimal cut set that contains component 7 is
failed.

m; : The number of minimal cut sets that contain component .

E; : The event that minimal cut set 7 among those containing component ¢ is
failed forv=1,2,...,nand j =1,2,...,m,.

We note that D; implies that system is failed (¢(X) = 0) and, D; = Lnj E; and

=1

P(¢(X) =0) =1 — h(p). Then

P (D@)

We also note that same component may be a member of different minimal cut
sets. Hence the events E}’s, j=1,2,...,m; are usually not disjoint. For the
same reason these events will not, in general be independent, even if all the

components are independent.

Remark. We note that 1 — h(p), the denominator of I} (i, p) is a constant
for a given p. Hence in order to get the ranking of compgnents by using
Vesely-Fussell reliability measure 17 (7, p), it is not necesssary to compute the

denominator.

Vesely-Fussell structural measure of importance of component i, I$ (1) is
also given by :

I8 L(0) = Ihp(i; 1/2,1/2,...,1/2).
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It should be noted that the ranking of components, using different measures
may lead to different rankings. It is expected, since the measures are defined
differently. When analyzing a specific system, one must choose the measure
that is relevant to the situation at hand.

To identify the component that should be improved to increase system reliabil-
ity, Birnbaum measure is normally the most appropriate. On the other hand,
to identify the component that has the largest probability of being the cause
of system failure, the Barlow-Proschan measure or Vesely-Fussell measure is
the most appropriate. These two measures may also be used to set up a re-
pairperson’s checklist. Because of simplicity, Vesely-Fussell measure is widely

used.
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Chapter 2

A Consecutive-k-out-of-n:F System

2.1 Introduction

In this chapter, we first describe a consecutive-k-out-of-n:F system then we
study the path sets of this system and its applications. We also consider the
problem of finding component structural importance in a consecutive-k-out-of-
n:F system.

A consecutive-k-out-of-n:F system consists of n linearly ordered and in-
terconnected components. The system fails if and only if it has at least k
consecutive failed components. Because of high reliability and low cost, this
system has caught the attention of many engineers and researchers in last two
decades. The reliability of a consecutive-k-out-of-n:F system was first studied
by Kontoleon [37], but the name, consecutive-k-out-of-n:F, was first coined by
Chiang and Niu [21]. Such a system finds applications in telecommunication
systems and oil pipeline networks [21], design of integrated circuits [11], vac-
uum systems in accelerators [35], computer networks [32], spacecraft relay [20],
etc.

This system is always more reliable than a conventional k-out-of-n:F system
in which the system fails if and only if at least & components fail, since the
family of minimal cut sets of the former is a subset of the family of minimal
cut sets of the latter. However for £ = 1 both the systems reduce to the usual
series system and for k£ = n reduce to the parallel system.

Since 1980 many papers have been published on the reliability of a

consecutive-k-out-of-n:F and related systems, under various assumptions.
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Since 1990, this area has expandéd very fast and connected to many other
promising areas. Thus, reéent results associated with this field appears not
only in reliability journals, but also in many other applied probability, opera-
tional research, and statistics journals. In a survey article by Chao et al [18]
on the reliability aspect of this system alone, more than hundred papers have
been cited.

The reliability analysis of a consecutive-k-out-of-n:F system is closely related
to some discrete distributions of order k£ which have been studied extensively,
recently. Relationships between the reliability of this system to discrete distri-
butions of order k& and distributions of longest success run, have been studied
by Aki [2], Aki and Hirano [3], Hirano and Aki [29], Philippou et al [51], Philip-
pou and Makri [52] and [53], Philippou and Muwafi [54], Philippou [50}, and
Johnson, Kotz and Kemp [34].

The simplest variation of a consecutive-k-out-of-n:F system is the circular
consecutive-k-out-of-n:F system in which the n components are placed on a
circle so that component number 1 and component number n become adjacent.
Such a system has been considered by Derman et al [22].

A dual of a consecutive-k-out-of-n:F system is called consecutive-k-out-of-
n:G system. This system works if and only if at least k& consecutive components
work. Kuo, Zhang and Zuo [40], studied the reliability of a consecutive-k-out-

of-n:G system.

Section 2 of this chapter provides a direct formula for determining the
number of path sets with known size in a consecutive-k-out-of-n:F system. In
view of computational efforts, some efficiency properties of this formula with
those of already known, are compared.

In Section 3, we derive an expression for determining the reliability function

of a consecutive-k-out-of-n:F system with i.i.d. components. Other related
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results in the literature are also considered and Ijeviewed.

In Section 4, we study the structural matrié; Seth and Ramamurthy [61],
introduced the concept of a structural matrix and presented a unified approach
for determining structural importance of components. Different measures of
structural importance can then be obtained by using the structural matrix. We
give a combinatorial expression for the elements of the structural matrix. Using

the results of Section 2, we apply this approach to a consecutive-k-out-of-n:F

system.

We shall use the following notations.

n: number of components in the system.

k: minimum number of consecutive failed components which cause the system
to fail.

p,q: component reliability, unreliability; if all components have the same reli-
ability p and ¢ =1 — p.

hx(p,n): systerﬁ reliability of a con|k|n:F system with component reliability p.

|4} : largest integer less than or equal to z.

n ny+ng+-+n . . . . .
, : usual binomial and multinomial coefficients.
r |7 Ny, Mo, ...y N
S(n, k) : the set of all k-tuples (n1, no, ..., n,) whose elements are nonnegative
k

integers such that ) in; = n.
i=1
Pi(n): number of path sets of a con|k|n:F system.
gr(n,7): number of path sets of a con|k|n:F system with r failed components

or equivalently (n — r) components functioning, i.e., path sets of size n — r.

We also use con|k|n:F system as an abbreviation of consecutive-k-out-of-n:F

system.
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.2.2 Path Sets With Known Size In A Conlk|n:F System
Zn this Section we give a closed formula for determining the number of path
sets with known size of a con|k|n:F system.

Chiang and Niu [21], have shown that

g2<n,r)=(”_’"“). 1)

In this section we now derive a generalized expression of (1).
Definition 1. A sequence of integers {z,} determined by the difference equa-
tion :

Tpn =Zn_1+Tpo+ - +Tpk; n>Kk, (2)
with initial conditions x; = a1, 2 = as, ... , Tx = ay, is called a Fibonacci
sequence of order k.

Seth [60], showed that the number of path sets, Px(n) of a con|k|n:F system

follows the Fibonacci sequence of order k with the following initial conditions:

a1 =2, a;=2% a3 =23 ..., ap_1 =2F, g, =2F — 1.
We define :
1 if n=-1,0
Tp =
0 if n<-=-2.

Now (2) holds true for all n > 0.
-Miles [44], derived a closed form for the Fibonacci sequence {f,} of order k,

defined as follows :

fn:fn—1+fn—2+"'+fn—k’ n>k

with initial conditions

fo=0, i=0,..., fiea=0, fro, =1
He showed that
fn = Z ( Zf:l " )
S(n—k+1,k) \ T1,MN2,...,Tk
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using the following relation

k k k
> S 1 S 1
i=1 = i=1 + i=1 +
Ny, N, ..., Nk nl—l,nz,...,nk nl,n2—1,n3,...,nk
k
S 1
-+ i=1 (3)
nlan2,"')nk—lynk_1
k
=1 — 1 .
We assume that =0 ifn; =0.
Ny, Mgy oo 51, T '—]"nj+1"",nk

Lemma 1. In a con|k|n:F system, the number of path sets Py(n) is given by:

Bn)= Y ( =1 T ) n > 0. (4)

S(n+1,k) ny,Ng, ..., Mg

Proof. The proof is an immediate consequence of the fact that Py(n) = fox.
Bollinger [10], showed that gx(n, r) satisfies following recurrence relation.

g(n,r) = ge(n—1,r)+ge(n—2,7r=1)+-- -+ ge(n—k,r—k+1), fork<r<n
(5)

We have I

" if 0<r<k-1,n>1,n>r
gk(n,'r): r (6)

0 if n=r>korn<rorr<0Qorn=0

From (5) we note that gx(n,r) does not follow a Fibonacci sequence of order
k.

We now consider a modification of (4) for computing gx(n,r) directly.
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Lemma 2. Suppose r denotes the number of failed components in a path set
of a con|k|n:F system. Then 0 <r <n - |n/k].

Proof. Suppose n = sk+t where 0 < 5,0 <t < k—1 and s, ¢ are integers. We
note that s = [n/k| and t = n — [n/k] k. Consider the following path vector:

00...01 00...01 ......... 1 00...01 00.
N e’ ——— N e’ W—-’

k—1 k—1 k—1
We know that the number of failed components r, in thls path vector is maxi-

mum and we have n = sk+t = s(k — 1) + s +t. Therefore the maximum value

ofr=s(k—1)+t=n—|n/k|

Remark 1. For k = 2, we know that [(n+1)/2] =n — [n/2].

Remark 2. It is easy to see that

k k
(i) minimum value of _n; subject to Y in; = n+1 is greater than or equal
i=1 i=1
k=1 k=1

to ng+( minimum value of an subject to Zini =n+1-kng ) and

(ii) for nonnegative integers z and k, |z/(k — 1)] > [(z + 1)/k].

Lemma 3. Suppose (ni,ng,...,ng) € S(n + 1,k). Then distinct values of
k
Z”i are |n/k|+1,|n/k|+2,...,n+1

k k
Proof. It is obvious that the maximum value of Z n; subject to Z in; =n+1
=1
occurs for the case n;=n+1 and n;, =0 for z =23,...,k.
k k

In this case, we have D n; =Y in; =n+1.

i=1 i=1 . .
We now show that the minimum value of Y n; subject to Y in; = n+ 1 is
|n/k| + 1. We prove this using induction. 1Eilppose k= 2. 1V=\71e note that the
minimum value of n; + ny subject to ny + 2ny = n + 1 occurs when n, takes
its maximum value. We have ny < [(n + 1)/2]. Hence the minimum value of

ny+ng is :
[(n+1)/2]+(n+1-2[(n+1)/2]) = [n/2] +1
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k-1

Assume that the result is true for & — 1, that is minZni subject to

k-1

=1

Yin;=n+1is [n/(k—1)] + 1.

i=1

k k
We show that min ) _ n; subject to »_in; =n+11is [n/kj + 1. Suppose

i=1
s = |n/k|. We consider two cases.

(1)

=1

Let n+1=(s+1)k.

We show that n; > s, suppose not, that is ny < s, hence ny = s — y
k—1
for some 0 < y < s. Therefore Y _in; = n+ 1 — kng = k(y + 1). By
i=1
k-1 k-1

induction hypothesis, we note that min _ n; subject to ) _ in; = k(y+1)
i=1 i=1

is Iﬂ%}%——J +1 and by part (ii) of Remark 2, it is greater than or equal
k

to y+2. And using part (i) of Remark 2, it follows that min » _ n; subject
i=1
k
to Zm, = n + 1 is greater than or equal to s + 2. Whereas if we take

m:Oforz-—l 2,...,k—1and ny = s+ 1 then in this case we have
k k

> n;=s+1 and also E in; = n + 1. Hence we have a contradiction as
i=1 i=1
k k

Z n; > s + 2 subject to Z in; = n + 1. Therefore we get n, > s. Hence
i=1 i=1
k

; sz > 5+ 1 and equality holds only in above case.

Let n =ks+tfor 0 <t < k-2 wheret=n—k|n/k].

If ny > s, resulting in a contradiction (since zk:ini >k(s+1)>n+1).
=1

Hence, np, = s —y, 0 < y < s. We have Zm, =n+1-kn =

n — k|n/k] + ky + 1. By induction hypothes1s we get

min’gm _ [n—kkniklj +kyJ t1> [n~k[n/kkj +ky+1j 1
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which is equal to

ln+1

: —[n/kJ+yJ+1=y+1.

% k-1
Hence min) n; > ng+min) n; >s—y+y+1l=s+1.

=1

=1
Equality holds if we assume
n; =0 for i # k,n—k|n/k|+1, n; =1 for i =n—k|n/k|+1 and ny = |n/k].
This completes the proof.

We now consider the following problem.
k k
Y n; = s subject to »_in; =n+1for s = [n/kf+2,|n/k] +3,...,n.

i=1 i=1
This problem has the following solution.

n+1l—s n+1l—s—(k—1)ng
LR CL ,

k-1 k—2

n+1—s—(k—1)ne— (k—2)ng_,
M2 = k-3

k
np=n+1-—s—~(k—1ng— (k—2)ng; —+--— 2n3 and n1=s—2ni.
k k =2
We note that an = s and Zini = n + 1. This completes the proof of the

lemma. Zi =t

Remark 3. From Lemma 2 and Lemma, 3, we note that the number of distinct
values of failed components (r) in a path set of a con|k|n|:F system and the
number of distinct values of zk: n; where (ny,ng,...,ng) € S(n+1,k), are the
same (n — |n/k] + 1). Usiniglthis property, we can find the number of path

sets with r failed components, as shown in Theorem 1.
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Theorem 1. Suppose

r

k
> Zi=1 M if0<r<norl<r=n<k
Ny, N2y - -, Nk
S(n+1,k)
r(n,r) =<
gi(m7) Y ni=n—-r+1
0 otherwise

where n, k and r are nonnegative integers. Then gf(n, ) satisfies (5).

Proof. Using (3) we can write

T+ Ng + -+ - + Ng

> -y ¥

n1+n2+---+nk—-1

ny, N2,y ..., N Jj=1 N, Ngy ..oy N1, Ny — 1’nj+17"'5nk
S(n+1,k) S(n+1,k)
len,'ZTL—T-i-l Zf:1ni=’n—’f'+1

Note that for a given j, 1 < j < k such that n; > 0 we have

Z nm+ng+---+ng—1 _Z ny+ng+-+ng
nl,ng,...,nj_l,nj—l,nj+1,...,nk ny,Na, ..., Nk
S(n+1,k) S(n+1-j,k)
leni=n—rii—1 Zlenizn—r
n; ifi#£7
(if we define n] = ' 7 ).
nj—1 ifi=j

k
Therefore g;(n,r) = > _gi(n — j,r — j +1). This completes the proof of the
j=1

theorem. n

Remark 4. We give a direct combinatorial argument for g;(n,r) as stated in

Theorem 1. We note that gj(n, ) can be interpreted as the number of ways of
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placing r failed components in among n — r + 1 distinct spaces between n — r
working components (including the two ends) subjéct to at most k — 1 failed
components are being placed in any space. Now suppose n; is the number of
spaces which contain ¢ — 1 failed components, 7 = 1,2,...,k. Therefore we

have
k

Y n; =total number of spaces=n — r + 1 and

—~

F

Z(z — 1)n; =total number of failed components= r.
1=1

k k
It implies that » in; =r+Y ni=r+(n—-r+1)=n+1.

i=1 i=1
With these two conditions on (ni,ng,...,nx), the multinomial coeflicient
k
>_m . .
i=1 , in fact gives the number of ways such that we have n;
N1, N2, ..., Nk
different spaces contain ¢ — 1 failed components for : = 1,2, ..., k.

Remarks. gf(n,r) also satisfies (6). For this we show that it reduces to

, when 0 < r < k. But before that we consider two special cases, that
T

are required in the sequel.

k k
(i) Suppose 1 < n =r < k— 1, then Z”i = 1 and since Zz’ni =n+1
ot t
it follows that, there exists j, 1 51 J < k such that n; = 1,n;, = 0, for
t#jand j=n+1 Wehaver=n<k—-1lorj=n+1<k. Hence
w

gi(n,r)y=1/11=1=
r

k k
(i) If r =0 < n, then Y _n; = n+1and Y in; = n+1, it follows that
=1 i=1
n=n+1n;=0, fZ)ri=2,3,...,k.
i
Hence gj(n,r) = =n+D/(n+1)=1=
NiyNg,y ..., Nk T
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In these two special cases, gi(n,r) equals gx(n,r) as stated in (6). We now
show that if 0 < r < k — 1 and 2 < n, then gf(n,r) satisfies the following
relationship

gi(n,7) =gi(n—1L,r) +gi(n - 1,7 - 1) (8)
If r = 0, using special case (ii), (8) is trivially trueasn > 2. If 2 < r =n <k,
in view of special case (i), (8) is again trivially true. Now suppose 0 < r < n,
that is, 0 < r — 1 < n — 1. Therefore we can apply the recursive relation (5)

for gi(n — 1,7 — 1). We have

gn=1r)+gin—1,r—-1)=
gn-Lr)+gn—-2,r=1)+gn—-3,r—2)+---+gi(n—k—-1,r—k).

But as r < k — 1, that is r — k < —1, it follows that gf(n— k- 1,7 — k) =0
(by definition of g}(n,r) as stated in (7) ). Hence using (5) we have

gi(n=1,7) +gi(n — 1,7 — 1) = gi(n,7).

We now use the principle of induction to show that

gz(n,r)=(n),095k—1 (9)
T

For r = 0, we have shown that gk(n r) = 1 (special case (ii) ).

Forr =1, we havgz n; =n, Z in; = n + 1. This gives

=1
m=n-—1, n2:1, n,--zOfor 1=3,4,...,k.

n
Hence gi(n,7) =n!/(n - 1) =n=
r

k . k
Forr =2, we have » m;=n—1,» in;=n+1.
i=1 i=1
k
Hence ny + 2n3 +3ng + -+ -+ (kK — 1)ng = 2 and Znizn—l.

=1
We have only two solutions for (n, ns, ..., nx) as follows. The first solution is
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m=n-—2,n=0,n3=1andn; =0 fori=4,5,...,k
and the second solution is

m=n-—3,n,=2 and n; =0 for :=3,4,...,k.

It follows that

gin,r) = -1)/(n-2)!'+(n-1)!/[(n-3)12]] = ( ;‘ ) - ( n )

T

For r = 3, equations ny + 2n3 + 3ny + - -- + (k — 1)ngy = 3 and ini =n -2
have only three feasible solutions as follows. The first solution iézl
m=n—4(n>4),no=1,ng=1andn; =0 fori =4,5,...,k
the second solution is

n=n—-5Mm>5),np=3andn;, =0fore=3,4,...,k

and the third solution is

m=n—-3,ns=1andn; =0fori=23,5,...,k.

Hence we have
gi(n,7) = (n—2)!/n—4)1+(n—2)!/[3(n—5)!]+(n—2)!/ (n—3)! = ( , ) ) (
after simplification.

Now suppose (9) is true for 3 <r < k — 1 (as induction hypothesis).
If r + 1 = n, we have shown (special case (i)) gi(n,r +1) = gi(n,n) =1
(since 4 < n f: r+ 1<k — 1) and validity of (9) is trivial.
Suppose r+1 < n,thatisz =n—(r+2) > 0. Wenotethat 4 <r+1< k-1
and n —z =r + 2 > 5. Hence using (8) repeatedly we have
gr(n,r+1) =gi(n—1L,r+1)+gi(n—1,7)
gl:(n -lr+ 1) = gl:(n —-2,r+ 1) +gl:(n - 2,7")

gn—2,r+1)=gi(n—-3,7r+1)+gg(n—3,7)
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gn—z,r+)=gin—z-1,r+1)+gi(n—x—-1,7)

But n —x —1=r+1. This gives us gj(n — 2z — 1,7+ 1) = 1 ( since 4 <

n—z—1=r+1 < k—1 and using special case (i) ) and by induction hypothesis
we get
. n—1 n—2 n—3 r+1
ge(n,r +1) = + + oot +1
T r r T
We know that

T r+1 n—1 n
+ 44 = ,n>r+1
r T T r+1
Hence (9) is true for all 0 < r < k — 1. That is gi(n,r) satisfies (6).

In the remainder of this section we consider and compare the available

results in the literature.

Remark 5. Lambiris and Papastavridis [41], using the generating function of

gr(n, ), gave an expression for gi(n,r) as follows

n-rtl | n—r n—kj
ge(n,r) = 3 (-1) ( '+1 ) ( J ) (10)
=0 j n—r

In their form{la, we note that n — r < n — kj, hence j < r/k. Therefore

0<j< min{n—r+1,{r/k]} = s

Remark 6. The above formula for gx(n,r), was also obtained by Hwang [32]
independently. In [32], it is stated that the number of terms in gi(n,r) is

n/k. Here we note that this number is s,x. In Lemma 5, it is shown that

sek = |1/k].
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Lemma 4. If r is the number of failed components in a path set of a con|k|n:F
system, then the minimum value of the system size is given by
n=r+{(r—1)/(k-1)].

Proof. Suppose r < k, hence the minimum value of the system size is n = r.

Now suppose r > k. We consider two cases as follows.

(i) Let r = s(k — 1) for some integer s > 1. We know that the following

path vector has the minimum value of the system size.

000---01000---01...... 1000---0
k-1 k-1 k—1

We note that
n=sk—-1)+s—-1=r+s—-1=r+|r/(k-1)]-1=7r+]|(r—-1)/(k=1)].

(ii) Let 7 = s(k — 1) + ¢ for some integers 0 < ¢ < k — 2 and s > 1. In this

case the minimum value of system size occurs in following path vector

000---01000---01...... 000---0100---0
k-1 k-1 k-1 t

We note that
n=sk—-1)+s+t=r+|r/(k=1)]=r+[(r-1)/(k-1)].

This completes the proof of the lemma. ]

Therefore whenever we refer to a path sets of size n — r it is assumed that

n>r+|(r—1)/(k—1)} (otherwise, we have no path set of size n — r).

Lemma 5. s, = |r/k] .

Proof. If r < k, then |r/k| = 0 and also s,y =0 (sincen —r +1 > 1).

If r > k, then it is easy to verify that (r — 1)/(k — 1) > r/k. Hence
L(r=1/(k=1)] = [r/k].

On the other hand we have n —r+1>n -7 > |(r — 1)/(k — 1)]. Therefore
n—r+1>|r/k] and hence s, = |r/k]. =
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Lemma 6. For a given nonnegative integer r, let C? denote the number of
solutions of n; + 2ny, = r, where ny, ny are nonnegative integers.
Then C? = |r/2] + L.

Proof. This can be verified easily.

We now consider some special cases of Theorem 1. For k = 2,3, g;(n,r) has a
simple form as follows.

If K = 2 we have

. n—r+1 n—r+1
g2(n,r)= Z ( ( ) .
ny, N2
{ n+2n,=n+1

nm+ny=n-—-r—+1

This is same as Chiang and Niu’s [21] formula.

If K =3 we have

n—r+1 n—r+1

ni, Nz, N3 ny,Ng, N3
ni+2n,+3ng=n+1 No+2n3 =r
nm4+n+nyg=n—-r+1 nm+ng+n3=n—r+1

(I) Suppose r < n — 7+ 1 (or equivalently r < |(n+ 1)/2]) from Lemma 6,

Lr/2] n—r+1
g;(n’r) = Z (

we have

j=0 \ n—2r+1+3,7r—24,7
(IT) And if r > |(n+1)/2] we then have

L(2n—3r)/2]+1 n—r4+1

]

g;(n,T)Z ) . .
3=0 52n—3r—2j4+2,2r—n—1+7
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B b

Hence we have

[ /2] n—r+1
3 if r < |(n+1)/2]
=0\ n—2r+14+j4,r—2j7
glnr) = |
[(2n—3r)/2|+1 n—r+1

if r> [(n+1)/2]

(11)

j=0 5H2n—3r—24+2,2r—n—1+7

\

Lemma 7. For a given nonnegative integer r, suppose C> denotes the number
of solutions of equation ny + 2ny + 3ng =r and let r = 6s+¢t, s = |r/6]

and 0 <t < 5. We then have

\ t if t#0
C? = 3s? + (t + 3)s + a;, where a; = and n;’s, r, s and ¢ are
’ 1 if t=0

nonnegative integers.

Remark 7. From Lemma 7, we can verify that for the cases where k£ > 4, (10)

is more efficient than (7) in view of computational efforts.
We now consider and compare available results in the literature.

Remarks. We note that the result of Theofem 1 of this section (formula
(7)) can be used not only to derive the reliability of a consecutive-k-out-of-n:F
system (that is given in the next section), but also for obtaining the distribution
of longest success run in n independent trials with success probability p (0 <
p<l).

Philippou and Makri [52], have given following formula:

k+1
k >
1

P(L,<k,Sp=r1)=p¢"" > >

7=0 S(n~j,k+1) My M2y vy Thet1
k+1

Zn,-:n—-r
1
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where S, and L, are random variables denoting respectively the number of
successes and the length of the longest success run in n independent trials with
success probability p.

In their formula, if we replace k£ by & — 1 and ignore p and ¢ = 1 — p, we

then obtain gg(n,r) as follow:

k
1 Zni
gk(nfr):‘ z 1

J OS(n—-],k) Ny, N, ..., Nk
k

Sni=n—r

1

Ed
!

For example using this formula for n = 5, kK = 3 and r = 3 we have:

2 2 2 2
93(5,3) = + + + =24+14242=7
0,1,1 0,2,0 1,0,1 1,1,0

and using top formula in equation (11), we have:

3 3
g5(5,3) = + =1+6="T.
0,3,0 1,1,1

Although their formula for gx(n,r) is similar to formula (7) but it contains
double summations, whereas formula (7) contains a single summation.
Remark 8. K.G.Ramamurthy [56], introduced a simple formula for A (p, n).
n—{n/kj
Using this he obtained a closed formula for L,(z) = z grx(n,7)z", the
r=0

generating function of gi(n, 7). He also proved that

[(n+1)/{k+1)] ' — ik — ik — .

7j=1 ]_1 ]

(Corollary p. 218) and

n ok (—1)i-1 n—jk+1
gk(n,r) = - (’I’L—-T+ l)z—-——k—I ' ' '
T et U Ly jyn—r—7+1,7r—jk
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(Theorem 3 p. 219), where s, = min{n —r +1, [r/k]}.

He claimed that two above formulae for Py(n) and gi(n,r) are new.
In fact we have proved that s,; = |r/k] in Lemma 5.

Remark 9. Note that the expression

n r/kl (_1)i-1 n—jk+1
gr(n,r) = —(n—r+1)2—%—1
r Sn—dk+1\ jn—r—j+1r—jk

as given by Ramamurthy [56], can be also obtained by using Lambiris and

Papastavridis [41] formula. In [41], it is proved that
Lr/kl [ n—r+1 n—kj
ge(n,r) = Y (=1) ( ' :
7=0 J n—r

Lr/k] j
B i (n-r+1)(n—kj)!
gk(n,7) = ?:; (-1) i n—7r—3+D(r - kj)!

We can write

r i jin—r =37+ Di(r — kj)!

n Lr/k] ‘ n—kj+1
e B R D M e !
r =1 n—kji+1\ jn—r—j+1,r—kj

We note that in this formula the number of trinomial coefficients is |r/k].

n lr/k ‘ n— ki)l
- ( )+(n—r+1) 3 (-1 (o k)

In the next lemma, we compare the number of trinomial coefficients of g3(n,r)

with that of the Ramamurthy formula.

Lemma 8. Suppose r is the number of failed components in a path set of
6(n+1)
11
coefficients of g%(n,r) as given in formula (11), is less than [r/3].

+0.5] then the number of trinomial

a con|3|n:F system. If r>
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n+1

M + 0.5J then r > [T} We note

Proof. It is obvious that if r > [ T

2n — 3r

that the number of trinomial coefficients in g5(n,r) is { J + 1. Hence
for a fixed n, by increasing values of r, the number of trinomial coefficients in

g3(n,r) decreases, whereas |r/k| increases. We have

2n — 3r T 11r 11 |6(n+ 1)
_—= - < 1 (22127 )
3 +1 3 n+1 5 <n+ 6[ 1 +05J
which is less than or equal to n+1—%1<§—(—7—z%—1—)> = 0. On the other hand

we know that

2n — 3r T 2n — 3r T
— = <« - — .
[ 2 j“ [3J— g tl=g3+0s

Therefore we get the result

2n+1 r
~-l-{ <o
5+ 5) s 05

1
and since nT J +1- [gJ is an integer number hence we have
2 1
[ n2+ J +1- [—gJ < 0. This completes the proof of the lemma. [

Remarks. The number of path sets with known size in a circular consecutive-

k-out-of-n:F system is given by Hwang and Yao [33].

2.3 Reliability Function of A Con|k|n:F System With
LI.D. Components

Most of the literature on con|k|n:F system is devoted to derive recursive
relationships for computing system reliability. Bollinger [10], gave a direct
combinatorial method for determining the system failure probability. In his
method the coefficients in failure probability function are obtained recursively.

Bollinger and Salvia [11], introduced a counting scheme for determining the
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reliability function. Their method requires the construction of triangular ta-
bles. Hwang [31], gave a simple formula for computing system reliability for
the case n < 2k. For the case n > 2k, he introduced a recursive formula. Chen

and Hwang [19], derived a direct formula for computing system reliability.

Using Theorem 1 and Lemma 2, we get the following direct formula for

computing system reliability of a con|k|n:F system for i.i.d. case.

n—|n/k| n—|n/k|
he(pn) = D ge(n,r)d o™ =p" > (a/p)" X ( R
r=0 r=0 Ny, Mg,y ..., Nk
S(n+1,k)
Y oni=n-r+1
(12)
Chen and Hwang [19], gave the following direct formula
n—k
- +ng ot s
he(pn) =1-¢" g7 3 | T ) (pfg) e (13)
r=0 S(r,k) N1, N2, ..., Ng

One of the advantages of (12) over (13) is that in (12), the second sum has no
power of (p/q).

We note that if n — {n/k| < n — k (or equivalently n > k?) then number of
terms for computing system reliability using formula (12) is less than (13). We
also note that for some values of n (n < k?), formula (12) is more efficient, in

view of computational efforts. Here we give an example.

Example 1. Table 1 gives the number of multinomial coefficients, that are

computed in (12) and (13), for some values of £ and n.
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Table 1

k 2 3 4 5

n 3(4(6|7 |8 |9 (1011|1213 |14 |15 |13 |14 |15 |16
formula (12) |3 (38 |10}12| 15|16 |34 |39 47|54 |63 |70 |82 |98 |114
formula (13) |2 (4| 7|11 |16 {23 |31 |33 |42 |69 |91 | 117 60|83 113|150

From Table 1, we see that for k =2andn >4, k=3 andn > 7, k =4 and

n > 12 and k = 5 and n > 14, formula (12) requires fewer computations.

We now consider other results in the literature.
Remarks. Philippou et al [51], introduced the geometric distribution of
order k (Gi(z,p)) as follows:

n+ng+--+n
PX=g)= ¥ 1+ ne k
S(z—k,k) ny,No,...,NMg

k
) Pla/p) =™, 2> k
and then showed that Ny is distributed as G (z, p), where Ny is a random vari-
able denoting the number of trials until the occurrence of the k-th consecutive
success in independent trials with success probability p.

We note that, in P(N; = z), if we replace p by ¢ = 1 — p we get the result:

l—hk(p, ) Nk < n Z Z

a=k S(z—k,k)

ny+nNg+ -+ ng
N1, N2, ..., N

) qz(p/q)n1+-~-+nk

which matches with formula (13), given by Chen and Hwang [19].

Philippou and Makri [52], also showed that N¥) is distributed as follows:
k-1 ny+--+ng+2z k.
PNV =z)=3% ¥ ( ) p(a/p) 2™
i=0 S(n—i—kz,k) N,y N, T

for z = 0,...,|n/k|. Where N¥) is a random variable denoting the number
of success runs of length k in n independent trials with success probability p.

They denoted the distribution on N{¥) by Bi(n, p) as the binomial distribution
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of order k. Here we also note that, in P(N{¥) = z), if we replace pby ¢ =1—p
we then have:

k-1
he(p,n) = P(NP =0)=3 37

n+ng+---+ng
i=0 S{(n—i,k)

Ny, Ng, ..., Ng

) qn(p/q)n1++"k

Therefore in view of the above formulae, we note that formula (12) presents

another expression for 1 — P(N; < n) and P(NF) = 0).

Remark 10. Lambiris and Papastavridis [41], using their formula for de-
termining gx(n,r) (as stated in formula (10)), gave the following formula for
determinig reliability function
& n—ik e n [ n—ik—k e
hi(p,n) =Y ( ) (=)' (pd")" — ¢*> ( ' ) (=1 (pg")".

i=0 ) i=0 )

This formula consists of two single sums.

Remark 11. K.G. Ramamurthy [56], introduced a simpler formula for deter-

mining hx(p, n) as follows.

Ln+1)/(k+1)] n— ik _
- . J n—jk+1 .
he(p,n) =1~ > (-p) 1(1—17)”’°( - ){—Jj p+1—p}-
i=1 =

(For details see Corollary 3, p. 217 in [56]).

Remark 12. M. Muselli [46], showed that
L(n+1)/(k+1)) o . n—jk n — jk
Prila<h-)= Y  (~1pp*(1—pp-! Tlra-p ("
3=0 j—1 J
(Corollary 1, p.127) where L, is the length of the longest success run in n

Bernoulli trials.

Remarks. We note that if we replace p by 1 — p in Muselli formula we then

get hx(p,n) as given by Ramamurthy formula.
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Remark 13. Using a simple combinatorial argument, E.A. Pekéz and S.M.

Ross [48], derived a formula for the failure probability of a con|k|n:F system

as follows
(n+1)/(k+1)] 1 e mk 1 n—mk
1-h(pn)= Y,  (-)™*! + = (¢*p)™.
m=1 m P\ m-1

Remark. We note that all formulae given by Ramamurthy [56], Muselli [46]

and Pek6z and Ross [48], using different approaches are equivalent.

2.4 Combinatorial Approach for Structural Matrix

A number of structural importance measures like Birnbaum importance [8],
Barlow-Proschan importance [7] and Butler cut importance ranking [12] have
been considered in the literature using varying approaches. A structural im-
portance measure requires only the knowledge of the structure function of the
system. These measures are more suitable during system design and develop-
ment phases when the component reliabilities are generally not known. On
the other hand reliability importance measures require additional information
about component reliabilities apart from the structure function.

A unified approach for determining structural importance was introduced
by Seth and Ramamurthy [61]. This approach uses the concept of structural
matrix which needs to be determined from the simple form of the structure
function. Different measures of structural importance of components can then
be obtained usiMg the structural matrix. In this section, we first give a com-
binatorial expression for the elements of a structural matrix in terms of the
number of path sets. This approach provides a new look for better under-
standing of the structural importance problem. We then apply this approach

to a con|k|n:F system. The concepts of path set, cut set, structure function,
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semi-coherent structure and coherent structure will be used in this section, as

defined in Chapter 1.

A structure function ¢, can be expressed as
¢(x)= > as [[z; for xe B
SCN  jes
This expression is called the simple form of ¢(x) (see Ramamurthy [55]).
N={1,2,...,n} is the set of components of the system and B = {0,1}.

For § = {), we take [[;cs 7; = 1 and the as’s are some integers. The structural
matrix M(¢) = (m(¢));; is a square matrix of order n with elements given by
m(¢)ij = Z as

S€A;;

where

forall¢,5 € N.

Different measures of importance of component have been proposed in the
literature using different approaches like critical path vectors, minimal path
(cut) sets, etc. The concept of structural matrix was introduced by Seth and
Ramamurthy [61], to develop a unified approach for calculating the structural
importance of components. They showed that M (¢)u gives the vector of Birn-
baum structural importance of components where y € R" is a column vector
with u; = (1/2) 7" (j = 1,2, ...,n), similarly M(#)u gives the vector of Birn-
baum measure of reliability importance of components where y; = p’~'. They
also showed that M (¢)u gives the vector of Barlow-Proschan structural im-
portance if we take u; = 1/4, (j =1,2,...,n). Furthermore they have proved
that Butler’s cut importance ranking of components (due to Butler [12]) is

“equivalent to the lezicographic ordering of the rows of the structural matrix of

the dual of a structure ¢.
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The determination of M (@) as per their methods requires the availability of
¢(x) in its simple form. However, a problem arises if we know only the path
sets or cut sets of the system and ¢(x) is not known in the required form.

We consider a different route for calculating the structural matrix. We
basically develop a combinatorial approach using path sets instead of the simple

form of a structure for determining M (¢).

Combinatorial Approach

For any S C N, we associate a binary vector e’ € {0,1}" where e = 1
ifi € Sand ef = 0ifi g S. Let p; denote the number of path sets of ¢
that contain component ¢ and are of cardinality j. Further let g;; represent the
number of path sets of ¢ that do not contain component ¢ but are of cardinality
j. Obviously, we have

pij =y, ¢(e°) and g;= Y (e°)
Se€A;j SeA;j

where

A;j {S:SCN,i€Sand|S|=j}and

Aj; = {S:SCN,i¢S and |S|=j}fori,j€N.

Also we have p(j) = pi; + ¢ij, where p(j) is the number of path sets of ¢ which

are of size j.

Lemma 9. Let ¢ be a structure function defined on N. For any S C N, we

have

as = Y (=1)*Tlg(e”).

TCS

Proof. We have ¢(x) = > as [[z; for x € B". This gives us for any
SCN  jeS

SCN
d’(es) = ZGT

TCS
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and the required result follows from the well known Mobius Inversion Theorem

(see Ramamurthy [55], p.31).

Lemma 10. For a semi-coherent structure ¢, the element m(¢);; of the struc-

tural matrix M(¢) is given by

m(¢)ij=17ij+§:(~1)j—r{(7,t B T)Piﬂr(r,b B 1)%«}.
r=1 j - r j — r — 1

Proof. For T C N,1 < 4,5 < n, define h;;(T) = |{S : S € Ai;, S 2 T}, we

then have

hy(T) = 0 if T[>
or |T|=j and ¢¢T
= 1 if |T|=j and €T
= () for €T, and |T|=r<j (1<7<))
(’;:::11) for i¢T and |T|=r <j(0<r<y).
This gives us

m(¢)z‘j = ZGS

S€A;;

> Y (=D TIg(e)

SEAU TCS

= > hi(T) g(e")(=1y

TCN

= > ()T h(Meen) + Y0 (=177 hiy(T)g(e")

i€TCN igTCN
j—1
\ . n—r n—r—1
= “p;; 2: ~1)i— ) )
Pyt 27D [(j—r)’”” (a‘—r—l)q"]

Remark 14. m(¢);; = 0 for j < rg and ¢ = 1,2,...,n where 7y is the smallest

integer for which p(rg) > 0.
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Remark 15. If the cut sets of the system are known we can use the same

approach to get M(¢P) where ¢ is a dual structure of ¢ given by ¢”(x) =

1—¢(1 —x) for x € B™.

Example 2. Consider the system of components given in Figure 1.

0
() = |
0
1

2
2
3
3

1

Qo

oQ

4

)

1
1
1
1

Figure 1.
The minimal path sets of this system are : {1,3},{2,3} and {4}. Also we have

() =

[an B T

3
3
2
2

p(1) =1, p(2) =5, p(3) =4, p(4) = 1. This gives us

3

¢
¢
¢
m(¢)ia

)il
)i
)

13

3

(
(
(

3

for i = 1,2,3,4. Hence we obtgin

= Pia

= pi2 —3pi1 — qa

—_ = =

= pi3 +3pi1 + 2¢i1 — 2Pi2 — G2
= piu—p(1) +p(2) — p(3).

M(¢)

01
01
0 2
10

46

-2
-2
-3
-2

Pt e ek et

0
0
0
0




We now consider the structural matrix of a con|k|n:F system.
Using Lemma 10, we note that for determining m(¢);; we need to compute

pir and ¢, for r = 1,2, ..., 7. We also note that:

Pr(T) = Pir + @ir = ge(n,n — 1)

where p,(7) is the number of path sets of a con|k|n:F system which are of size
r (or equivalently the path sets containing n — r failed components).
Using Lambiris and Papastavridis’ formula [41], (formula (10)) and in view of

Lemma 5, we then have

Sy r+1 n —mk
p(r) = > (=)™ , 0<r<norr=0,n<k

m=0 m T

(14)
Using formula (6), we also have
n
if n-k+1<r<n,n>1r>0
Pu(r) = T (15)
0 if r=0,n>korr<O0orr>norn=0

Therefore for determining m(¢);; we need only to compute p;,.

Lemma 11. Let p;. denote the number of path sets of a con|k|n:F system
that contain component i, which are of size r. If 1 <7 < n, we then have

r—1

Pir = D Pi1(O)pn—i(r — 1 — )

t=o
where p,(r) is ;g,iven by formulae (14) and (15).
Proof. Consider two subsystems a con|k|i — 1:F system and a con|k|n — @:F
system of the original system, where a con|k|: — 1:F system is made of first
i— 1 components of original system and a con|k|n — i:F system is made of last

n — i components of original system. Suppose P is a path set of a conlk|n:F
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system that contains component 4, and of size 7. We note that P is of the form
P=PU{i}UP,

where P, is a path set of a con|k|i — 1:F system and P, is a path set of a
con|k|n — i:F system such that |P; U Py| = r — 1. This completes the proof of

the lemma. ]

Remark 16.
(i) For special cases 1 = 1 and i = n we note that p;, = p,_1(r — 1).

(ii) In view of Lemma 2, if r denotes the size of a path set of a con|k|n:F

system, then [%J <r<n.

Remark 17. Seth [60], showed that if M (@) represents the structural matrix
of a con|k|n:F system, then m(¢);; = m(d)nt1-ij for i = 1,2,...,n and all

i=1,2...,n

In view of Remark 17 and part (ii) of Remark 16, We note that it is not

necessary to compute all the n? elements of structural matrix of a con|k|n:F

system.
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Chapter 3

Generation of Minimal Path Sets and Critical
Vectors in a Consecutive-k-out-of-n:F System

3.1 Introduction

In this chapter we study the concepts of minimal path sets, critical vectors and
also minimal cut sets of a consecutive-k-out-of-n:F (con|k|n:F) system. These
concepts play a crucial role in the study of measures of component importance
and system reliability of a con|k|n:F system. The problem of generating all
minimal path sets of the system was considered by Chan et al. [14]. They
proposed a recursive procedure to find all minimal path sets of a con|k|n:F
system. Their method starts with the generation of all minimal path sets
of a con|k|2k:F system and uses them to generate all minimal path sets of
a con|k|2k + 1.F system and so on. This method recursively generates all
minimal path sets of n — 2k + 1 different systems resulting in a large number
of repetitions.

Section 2 gives necessary and sufficient conditions for a subset of compo-
nents to be a minimal path set of the system.

In Section 3 using a linear ordering on the subsets of components (lezico-
graphical ordering) we present a nonrecursive algorithm for lexicographically
generating and listing the collection of all minimal path sets of a linear conk|n:F
system. Our algorithm generates minimal path sets only for the con|k|n:F sys-
tem. Hence unnecessary generations of the minimal path sets is avoided as in
the case of Chan et*al. [14] procedure. We also study the minimal path sets of

a circular con|k|n:F system and show that all minimal path sets of a circular
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system can be generated using the minimal path sets of a linear system.

In Section 4 we present a nonrecursive algorithm for generating all minimal
path sets containing a given component of the system. This algorithm is used
for evaluating the Vesely-Fussell reliability measure of component importance
in a con|k|n:G system, in Chapter 4.

Section 5 gives a nonrecursive algorithm for generating all critical vectors
for a given component in a con|k|n:F system. This is applied for computing

the Birnbaum reliability measure of component importance, in Chapter 4.

3.2 Characterization of Minimal Path Sets

Recall that a con|k|n:F system fails if and only if it has at least k& consecutive
failed components. Hence a minimal cut set of a con|k|n:F system is of the
form {i,s+1,...,i+k—1},i=1,2,...,n— k + 1. However there is no such
simple representation for a minimal path set of a con|k|n:F system.

We shall denote by ax(n), the collection of all minimal path sets of a con|k|n:F
system.

It is easy to verify that a con|k|n:F system is coherent for n > k. We extend the
definition of a con|k|n:F system for the cases where n = 0,1,...,k—1. In these
cases we adapt the convention that a con|k|n:F system is always in an operating
state irrespective of the states of the components. With this convention, we
note that for n = 0,1,...,k — 1 a con|k|n:F system is noncoherent, it has no
cut sets and ax(n) = {0} that is, the empty set is the only minimal path set.

The following results are required in the sequel.

Theorem 1. For m > k > 2 and S C {1,2,...,m}, we have S € a,(m) if

and only if
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@Sn{ji+1,...,.5+k—1}>1 for1<j<m-k+1
i) |((Su{o,m+1Hn{j—-1,5,7+1,...,5+k—1} <2 for1<j<m—k+2

Proof. Suppose S = {ai,as,...,a,} be a subset of {1,2,...,m} such that
a; < ag < --- < a,. We note that a; € {1,2,...,m},i=1,2,...,r. It is easy
to verify that part (i) and part (ii) are equivalent to :

M) a;—ai—1 <k, fori=1,2,...,r+1.

(1) @iy — a1 > k+1,fori=1,2,...,r where a,1;1 =m+1 and ao = 0.
From Theorem 1, in Chapter 1, we note that, S is a path set of the system if
and only if it has nonempty intersection with each minimal cut set. Therefore
part (I) means S is a path set of a con|k|m:F system. And part (II) means

S —{a;} is not a path set. That is, S is a minimal path set of the system. m

Remark 1. Chan et al. [14], have given the following necessary and sufficient
conditions for a state vector, (zi,Z2,...,Z,), to be a minimal path vector of
the system.

i+ T+ Tk 21, 1=1,2,...,n—k+1,

and

Ti-1 ( Z lesz) = 0, 1= 1,2, -

1< <j2<i+k—1

where 20 =0, zp41 =1, and z,.;, =0 for 1 =2,3,..., k- 1.

We see that these conditions are difficult to apply and less tractable than the

conditions of Theorem 1.

Corollary. For n > k and S € ax(n) we have

()] i€eS<e=Sn{L2,... k}/{i})=0 fori=1,2,...,k.

()] ieS<e>SNn({n—k+1Ln—k+2,...,n—2n—1}/{i})=0.
fori=n—k+1l,n—-k+2,...,n

[Gi5)] {j,7+1,...,5+k=-2}nS=0<={j—-1,j+k—-1}CS
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for2<j<n-k+1
()] {4,741} C S <= {j—k+1,j—k+2,...,5—2,7—1,j42,j+3,..., j+k}NS = 0.

fork<j<n-k
Theorem 2. For n > k + 1 we have
{(§:8€ain),neS}={S:S=TU{n—kn}, T €ox(n-Fk-1)}.
Further for n > k£ we have
{S:S€ox(n),igs, i=n—k+2,n—k+1,...,n}={S:S=TU{n-k+1}}

where T € ax(n — k).

The proof is easy and omitted.

The next theorem provides a recursive algorithm for computing the minimal
path sets of a con|k|n + 1:F system using the minimal path sets of a con|k|n:F

system.

Theorem 3. Suppose n > k and R = {z1,%2,...,%,} are given, where

1<z <29+ <21 <z, <nand R € ag(n). We then have

(i) fz, € {n—k+2,n—k+3,...,n—1,n}, then R is also a minimal path

set for a con|k|n + 1:F system.

(i) fz, =n—k+1land z,_, =n—k~—j, for some j € {0,1,...,k — 1},
we then have j + 1 more minimal path sets for a con|k|n + 1:F system as
follows
Ri=RuU{n+1-1},i=0,1,2,...,5. (forr =1 we assume z,_; = 0)
We note that z, € {n —k+1,n—k+2,...,n—1,n} and also
o €{n—2k+1,n—-2k+2,...,n—k}.

Proof. Using Theorem 1, the proof is easy and omitted.
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3.3 Lexicographical Ordering of Minimal Path Sets

In this Section, we propose a nonrecursive algorithm for generating minimal
path sets of a linear con|k|n:F system. This is done by the defining a linear
order on the subsets of components. To start with we write down the first
element of the ordered collection of the minimal path sets of a con|k|n:F system
and then generate its immediate successor and so on. In the remainder of this
Section, we study the minimal path sets of a circular con|k|n:F system. We
show that all minimal path sets of a circular system can be generated using all

minimal path sets of a linear system.

Definition 1. Let S be any subset of V and £ € N. The translate of S
through £, denoted by S + (£) is defined as:

S+ ={j:j=i+8icS}

We use lex ordering of the subsets of N, a concept used by Butler [12], for
the purpose of importance ranking for components of coherent systems.

For any subset S of N, we associate a binary vector x5 € {0,1}" as follows:

1 ifjes

S
!xj

0 otherwise

We now make use of the binary vector associated with each subset of N to

order them using lex ordering.

Definition 2. Let S and T be two subsets of N. We say S is lexicographically
less than 7" if and only if the binary vector x° is lexicographically less than the

vector x” and we denote this by writing S < T.

For example, if N = {1,2,...,10}, S = {1,3,5,8} and T = {1,3,5,7}, we
have x¥ = (1,0,1,0,1,0,0,1,0,0) , xT = (1,0,1,0,1,0,1,0,0,0). We observe
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that x5 is lexicographically less than x”, hence we say S is lex less than T'.

The following lemma is required in the sequel.

Lemma 1. For any two subsets S and T of N, we have S < T if and only if
there exists r € T'/S such that {1,2,...,r—1}NS ={1,2,...,r—1}NT. We
define {1,2,...,r—1}=0ifr = 1.

Proof. Let x° and x” be the binary vectors associated with S and T respec-
tively. Suppose S < T and recall that by definition S < T if and only if x° is
lexicographically less than x”. Let r be the smallest j for which =7 # zT. We
note that 7 = 0 and zI = 1. If r = 1, the result is trivial. If 7 > 1 then it is
easy to see that

{1,2,...,r=1}nS={1,2,...,r—1}NnT and r € T/S.

Now suppose that there exists r € T/S such that {1,2,...,r — 1} NS =
{1,2,...,7=1}NT.

If r = 1 then obviously x5 is lex less than x7, since r € T/S, and hence S < T..
Ifr > 1 we then have 7 = 1,27 = 0 and z7 =z for j <.

It follows that x° is lexicographically less than x” and hence S < T.

Remarks. Whenever we talk of the first element or last element or immediate
%

predecessor or immediate successor, it is always with respect to the lex order-
ing. Also whenever we talk of a con|k|n:F system it always refers to a linear

con|k|n:F system. A circular con|k|n:F system will be specifically mentioned.

3.3.1 Algorithm For a Linear System
The following theorem introduces the first and the last elements of a(n).

Theorem 4. Let n > k and the subsets A and B of N be as defined by
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A={k,2k,3k,...,k|n/k|} and

((1,k+1,k+2,2k+2,2k+3,....n—t—k—1,n—t—kn—t}

if0<t<k-1
B =
{LE+1,k+2,2k+2,2k+3,....,n—t—k—-1n—t—kn—tn—t+1}

| if t=k

where t = n — (k + 1) |n/(k+ 1) and |z| denotes the integer part of = (the
largest integer less than or equal to z).

Then, A is the first element of ax(n) and B is the last element of ax(n).

Proof. Using Theorem 1, we can verify that A, B € ax(n). Suppose S € ax(n)
is a subset of N such that S < A. By Lemma 1, there exists an r € A/S such
that {1,2,...,r—1}NS = {1,2,...,7r—1}NA. We have r > k and r is a positive
integer multiple of k, since r € A. We note that r —1,r —2,7r—3,...,r—k+1
do not belong to A. Hence r,r — 1,7 — 2,...,7 — k + 1 do not belong to S. It
follows that S is not a path set of a con|k|n:F system and this contradicts the
assumption that S € ag(n).

Suppose now that T' € ax(n) is a subset of N such that 7' > B. By Lemma 1,
there exists an r € T/ B such that {1,2,...,r—1}NB ={1,2,...,r—1}NT. We
have r\g B therefore we can write r = (k+1)s+z for some nonnegative integer s
andz € {2,3,...,k}. Wehave {1,7} CT. If s = 0 theninthiscase,2 <r <k,
hence T is not minimal. If s #0, we haver € T,r—x € T,r —x+1 € T since
r—-z€Bandr—xz+1€ B. Hence {r—z,r—z+ 1,7} CT. Thatis T is

not minimal, since z < k. This completes the proof of the theorem. [ ]

Definition 3. Let n > k and S € ax(n) be given. Define My a subset of
N U {0} by:
Mg={j: jeSU{0},j<n—kand{j—1,7+1}N(SuU{0}) =0}

Lemma 2. Let n > k and S € ox(n) be given. Then Mg = 0 if and only if
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S = B where Mg is as defined earlier and B is the last element of ax(n).

Proof. Suppose S = B = {1,k + 1,k + 2,2k + 2,2k + 3, ...}. We note that
ifz € Bthenz=s(k+1)+1orz=(s+1)(k+ 1) for some nonnegative
integer s. If £ = 1, we note that 1 & Ms. If z = (s + 1)(k + 1) such that
t<n—kthenz+ 1€ S, hence z ¢ Ms. Now suppose z = s(k+ 1) + 1 for
some integer s > 0, then we note that x — 1 € S, hence z € Mg. Therefore
there is no element of S that belongs to Mg and also we have 0 ¢ Mg, since
1€ S. Hence, we get the result Mg = 0.

Conversely suppose Mg is empty set. We show that S is the last element of
ox(n). Suppose not, we then have S < B, that is S is lex less than B. By
Lemma 3, there exists r € B/S such that {1,2,...,r—-1}NS={1,2,...,r—
1} N B. We note that r > 1. Because if r = 1, we then have 1 ¢ S and hence
0 € Mg. This contradicts the assumption that Mg = (. Therefore r > 1. We
note that r = jk+j or r = jk+ j+ 1 for some positive integer j. If r = jk+ 7,
" we have

Bn{L,2,...,r—1}={1,2,...,5k+j—-1}NnS.

which is equal to
{LE+1,k+2,2k+2,2k+3,...,i = Dk+(-1),( - 1)k +j}.

We get the result that jk+3j—1,7k+j—2,...,5k+j— (k—1) do not belong
to S. On the other hand we know r = jk + j does not belong to S. Hence S is
not a path set, since SN{jk+j,jk+j—1,jk+7—2,...,jk+j—(k—-1)} =0
resulting in a contradiction.

Ifr=3jk+j+1 we have

Bn{1,2,...,7r—1} ={L,k+1,k+2,2k+2,2k+3,...,(j - Dk+j,jk+j} =
{1,2,...,5k+7}nS.

It implies that jk+j € S, jk+j7—1¢ S and also we have r = jk+j+1 & S.
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We also note that jk+j <n—k,sincer =jk+j+1€ Band jk+j€B.
Hence jk + j € Mg and this contradicts the hypothesis that Ms = (. This

completes the proof of the lemma. ]

Definition 4. Let n > k and S € ax(n) are given.
For each ¢ € Mg define the collection Gy by

Be={T: T=({L2....00NS)U(H+(¢), HeE ax(n—0),k ¢ H}

where H + (¢) and Mg are as defined in Definitions 1 and 3, respectively. In
addition to k € H, choice of H depends on the following conditions given
below. We define

§1 =

{max{s[seS, s</f} if{s|s€ S, s<{}#0

0 otherwise

s;=min{s € S, s > £+ 1}.
(condition 1.) 1 € H if £—s; =k for £# 0. For £ = 0, we also assume 1 € H.

(condition 2.) 1 € Hif £+i < sy, forallfand £+i— s > k+ 1for £ #0.
i=2,3... k-2

(condition 3.) k—1e€e Hif {+k -1 < so.

For a given £, we take 3, = ) if these conditions do not hold.

Theorem 5. Let n > k and S € ax(n) be given and Mg, [, are as defined

earlier. We then have

{T: Teog(n)and T > S} = |J Be

LeMg

Furthermore p,q € Mg, p > ¢, P € 3, and Q € 3, implies that Q > P.
Proof. We note that if S = B, then {T : T € ax(n) and T > S} = 0. On the
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other hand, from Lemma 2, we have Mg = ), therefore U B¢ = 0 and hence

{eMg

theorem is trivially true. Now suppose S < B. Let T' € ax(n) and T > S. By

Lemma 1, there exists an r € T/S such that

{,2,...,r=1}nS={1,2,...,r=1}NnT.

We consider three following cases for r.

case 1.

case 2.

case 3.

If1<r<k-1, we note that r ¢ S. Take ¢ = 0, H = T and note
that H € ox(n) and k£ ¢ H. We note that 1 ¢ S, since if 1 € S then
k+1 € S therefore {1,k+1} C T, since T > S. It implies that r > k +2
resulting in a contradiction. Therefore 1 ¢ S and hence £ = 0 € Mg. If
r=1¢€ T, obviously 1 € H, since £ = 0. Now suppose r > 1 we then
haver € T = {1,2,...,r =1} NT=0={1,2,...,r—=1}NS =0

It implies that s, € {r + 1,7+ 2,...,k}, since r ¢ S. We have

{47 =71 < s9, hence r € H, that is 3, is not empty and H is the correct

selection. Therefore T' € .

We also note that r # k, because if r = k then k € T, k € S It implies

that
{1,2,...,k=1}NT={1,2,....k—1}nS = 0.

This contradicts the fact that S is a path set.

Now suppose r > k, we have
{1,2,...,r=1}nS={1,2,...,r = 1}NT, r € T/S. Let
Ss={r:z<r,zes {z—1,z+1}n(SuU{0}) =0}

We take { = max{z: = € S,}.

We note that S, is a subset of Ms. We now show that S, # (). Suppose
S = {z1,%2,...,2,,} and T = {y1,%2,---,%r,}- We have r > k and
r € T/S. Therefore there exists an integer j, 2 < j such that y; = r. We
show that z;_y € S,. We know that z; = y; fori =1,2,...,5 — 1. It is
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enough to show that z;_, +1¢ S and z;_, — 1 ¢ SU {0}.

We know that z;_; +1 = y;_1 +1 < y; = r < z;. Therefore z;_; <
zj—1+1 < z;. Hence z;_1+1 ¢ S. We now show that z;_; —1 ¢ SU{0}.
Suppose j = 2. If z; = 1 we then have zo = k£ + 1 and therefore
{1,k +1} C T, since T > S. It implies that j > 3 and this contradicts
the fact that j = 2. Hence we have z; > 1 or ; — 1 # 0. On the other
hand we have r < x5 hence z; < r < z3. Therefore z; + 1 < z, that is
z+1¢8S.

Now suppose j > 3. We have z;_y > k41, hence z,_; — 1 # 0.

If zj_y ~1 = z;_5 we then have z; = z;_; + k. On the other hand
7 < z; hence we can write: 7 —y; s =T~ %Zj 0 =T —Tj; +1 =
r—z;+k+1<k+1 and this contradicts the second part of Theorem
1. Therefore ;1 — 1 > z;_, that is z;_; — 1 € S and hence S, # 0.
Therefore, £ = max{z : = € S,} is well defined. It is trivial to show that
2<tl<r—-1 Lt K={ieT,i>¢+1}and H=K — (¥).

We show that k ¢ H and [, # 0. We also show that H € ax(n — ¢), for
all 4,2 < ¢ <r—1. It is obvious that £ € Mg since £ € S, C Ms.

Since T' € ax(n) and £ € T, we have
A HN{jji+1,...,j+k=1}>1 for1<j<n—€—k+1
(i) (HU{0,n—£+1)N{j-1,5,...,/ +k—1}[ <2

for1<j<n—-l—k+2
It follows that H satisfies the conditions of Theorem 1 for m = n — ¢,

and hence H € ax(n — ¢).

Now we show that k ¢ H and also H satisfies at least one of the conditions of

Definition 4. We consider following cases for ¢.

(a) Suppose L =r—t, 1<t <k—1. We have
b=r—teT,reT=l+k=r—t+k¢T=>kgHandr=t+£cT
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(b)

(c)

It implies that t € H. We also have

0+1¢T 0+2¢T,...,6+t—1¢T which implies that

0+1¢8S6+2¢S,...,0+t-1¢S,0+t=r¢gS.

By definition of s; we then have £+t = r < sg, that is, first part of

condition 2, for t € H is satisfied. On the other hand we have
b—-1=r—t—-1¢T,r—t—-2¢T,....r—k¢gT.

Hencer —t—1¢&€ S, r—t—2¢S,...,7r—k ¢ S. By definition of s; we

then have s; < r—k—1, therefore {+t—s; > b+t —r+k+1=k+1,

that is second part of condition 2, for ¢ € H is also satisfied. We note

that for the special case t = 1, we have {r — 2,7 —3,...,7r =k} NT =0,

therefore r — k — 1 € T and hence s; = r — kK — 1. It implies that

l—sy=r1—-1-(r—k—-1)=kthatis1l € H.

Therefore 8, # 0 and H is the correct selection and so T’ € ;.

Now we show that £ £ r — k.

We note that £ # r — k, because if { = r — k € T, we then have r € T/S,
hence

r—k+1¢T,r—k+2¢T,...,7r—1¢T which implies that
r—k+1¢Sr—k+2¢8,...,r—1¢8.

We also have r € S. It implies that & consecutive components do not

belong to S and this contradicts the fact that S € ox(n).

Now suppose £ < r — k. We note that £ € Sand £ < r, £ € T and
r € T/S. If k < r — £ then there exists ¢t € T such that £ <t < r. Let
t* € T be the first element after £. We can write

S={x1,Tay ., L, t* . Tjo1, Ty, T, )

T ={y, Y2 s 5t o Yim1s Ty oy Yne )
From definition ¢, we have £ + 1 < t* and hence t* — 1 & S. Once again
from definition ¢, we have t* +1 € S and hence t* + k+1 € S. Therefore
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we can write
{t " +1, " +k+1, t*+k+2, t*+2k+2, t*+2k+3, . . ., t*+sk+s, t*+sk+s+1} C S

where s is the largest integer such that t* +sk+s+1 <.

We note that z;_; = y;_1 < y; = r and also 7 < z;. Therefore z;_; =
t*+sk+s+1and hencez; =t*+sk+s+k+1=t*+(s+1)(k+1).
Now we have

T—Yj2=T—Tj_2 < Tj—Tj_g =t"+(s+1)(k+1)—(t*+sk+s) =k+1.
This means |T' N {y;-2,yj-1,7}| = 3, and this contradicts the second part
of Theorem 1, since T € ay(n).

From above argument, we get the result r —k < £ <71 — 1.

Therefore if r > k then H = K — (¢), where K = {i € T, i > £+ 1}
and £ = max{z|x € S,}, is the correct selection and we have T € §,. This

completes the proof of necessary condition of the theorem.

Conversely, now suppose £ € Mg, T € (§,. We then have
T=({1,2,...,4}NS)U (H + (£)) where H € ay(n —¥¢), k ¢ H and also H

satisfies the conditions of Definition 4. We have

TeBi=0#0=>tec Hforsomel<t<k-—1.

Ift=1, we have 1 € H and hence 1+ ¢ € T. On the other hand since ¢ € Mg
it follows that £ +1 € S. Therefore we have £+ 1 € T//S and by definition of
T we have TN {1,2,...,£} =SnN{1,2,...,£}. Hence using Lemma 1, we get
the result 7 > S.

Now suppose 1 <t <k —1.

Wehavet+/¢ € T and {1,2,...,t = 1,t+1,...,k} N H = 0. From Definition
4, we have £ +1 < sy, since t € H.

Hence {¢+1,¢+2,...,¢+¢t}NS = (. That is, ¢+t ¢ S and therefore ¢+t € T/S.
On the other hand {¢+1,¢+2,...,£+t—1}NT = (. By definition of T we get
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the result {1,2,...,4+t—1}NT ={1,2,...,f+¢t—1}NS. Hence by Lemma 1,
it implies that T > S. It can be seen that T satisfies the conditions of Theorem
1, and hence T € ax(n). It completes the proof of sufficient condition of the

theorem.

Finally, let p,q € Mg, p > q, P € 3, and @ € ;. We show that @ > P. The
definition of Mg implies that p > q + 2. We have

P=({1,2,...,p}NS) U (H, + (p))

where H, € ay(n —p) and k ¢ H, and H, satisfies the conditions of Definition

4, for £ = p. Similarly we also have

Q:({1a27""Q}ﬂS)U(Hq+(Q))

where H, € ax(n—q), k ¢ H, and H, satisfies the conditions of Definition 4 for
{=g. We have @ € (3, hence 3, # 0 that is, s € H,, for some 1 < s <k — 1.
Ifs=1then ¢g+1 € H,+(¢) and hence g+1 € @. On the other hand, we have
g€ Mg and hence ¢ + 1 € S and from the expression for P we get ¢+ 1 & P.
Therefore we have ¢ +1 € Q/P and from the expressions for P and @ we have
{1,2,...,¢}NnP=1{1,2,...,¢} N Q. From Lemma 1, it implies that @ > P.
Now suppose, 1 < s < k — 1. From Definition 4, we note that s + g < s, since
s € H,. Hence using the definition of sy, we have {1+¢,2+gq,...,s+¢}NS = 0.
On the other hand, we have p > ¢+2, p € Mg = p € S. Therefore p > s+q-+1.
We note that {1,2,...,s—1} N H, = 0 and using the expression for ) we have
{g+1,9+2,...,9+s—1}NQ = 0. Now in view of the expressions of P and
Q we can write {1,2,...,¢} NP ={1,2,...,¢}NnQ = {1,2,...,¢} NS. On
the other hand, we have s+ ¢ € S and using the expression for P we also have
8+q¢ P hence s+q € Q/P.

{1+¢,2+¢q,...,5+q}NS =0, p>s+q¢g+1. It implies that
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{1+¢,24+4q,...,s+q}NP=40.
Therefore we have {1,2,...,¢+s~-1}NP ={1,2,...,g+s -1} NQ and
s+¢q € @/P. By Lemma 1, it implies that @ = P. This completes the proof

of the theorem. ]

Remark 2. For the case k = 2, we always have 1 € H, where H € as(n — ¢)
for all £ € Mg. Since

leMsg=>0+1¢S,0e€eS{-1¢S5=£¢+2¢€ S5, {-2¢€S. Therefore
si=4—2. Hence { — s, =¢—{+2=2=k. It implies that 1 € H. Therefore

we don’t need to put any further condition for 1 € H.

Now using Theorem 5, we can obtain the immediate successor of S in ay(n)

with respect to lex ordering.

Theorem 6. Let n > k and S € ax(n) be given. Further let Mg be as stated
in Definition 3. Suppose Mg # 0 and let ¢ = max{¢| £ € Mg, and B3, # 0}.
Suppose L = {t +4*,t +¢* + k,t +¢* + 2k,...,t +7* + j*k} where
*=max{i: 1<i<k-1, i€ H, He€cowon-—t)and k & H} and also H
satisfies the conditions of Definition 4, and j* is the largest integer such that
t+i*+ 5%k < n.

Let J = ({1,2,...,t} N S)UL, then J is the immediate successor of S in ay(n).
Proof. We note that Mg # 0 that is S # B (S < B) where B is the last
element of ax(n). Using Theorem 5, we have {£: ¢ € Mg and 3, # 0} # 0,
therefore ¢ is well defined.

Now from Theorem 5, we have {T : T € ax(n), T > S} = |J B¢ where Ms
and (3, are defined in Definitions 3 and 4 respectively. If Jf 62-455' then there
exists £ € Mg such that T' € B,. From definition of G, as given in Definition

4, we have
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T=({1,2,...,£}NS)U(H + (¢)) where H € oy (n—¥£),k ¢ H and H satisfies
the conditions of Definition 4. It is obvious that in order to get the immediate
successor of S, first we have to select maximum value of ¢ € Mg (by definition
of T € B and noting that T > S). Hence we should take ¢t = max{¢: ¢ €
Mg, B¢ # 0}. Therefore the immediate successor of S belongs to 3;. Secondly
we have to find first element of 3;. It is just immediate successor of S. Let
H =L — (t). In view of conditions of Theorem 1, it is easy to see that H €
ag(n —t), and by definition of L we have k ¢ H and {1,2,...,k—1}NH # 0.
Hence we have J = ({1,2,...,t} NS) U (FI+ (t)) where H € ax(n —t) and
k ¢ H and also H satisfies the conditions of Definition 4. Therefore J € (.
We need to show that H is the first element of ax(n — t). We have
H={i"k+1,2k+14*,3k+i*...,i* + 5%k}

Using similar argument as given in the proof of Theorem 4, it can be shown
that H is the first element of ax(n —t). Hence J = ({1,2,...,t} N S)UL is the

immediate successor of S in aj(n). This completes the proof of the theorem. m

Remark 3. We are now in a position to state the algorithm to generate the

minimal path sets of a con|k|n:F system. It is based on the results of Theorems

5 and 6.

ALGORITHM 1.

Input. Positive integers n, k. (n > k)

Output. The collection of minimal path sets of a con|k|n:F system arranged
in ascending lex ordering.

'Step 0. Put Py) = Aand r = 1. Go to step 1. (A is defined in Theorem 4)
Step 1. Compute the subset M defined by

M= {j:je(Pnu{0}),j<n—k, i-15+1}n(Pyu{0}) =0}
If M =0 put s =r and go to step 3.
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Otherwise let t = max{j : j € M, B; # 0} and go to step 2.

Step 2. Put Py = ({1,2,...,t} N Pyy) U L. (L is defined in Theorem 6)
Replace r + 1 by r and go to step 1.

Step 3. Pu), Pa),..., P are the minimal path sets of a con|k|n:F system

arranged in ascending lex ordering.

Example 1. We shall use the above algorithm to obtain the minimal path

sets of a con|k|n:F system for the case where n = 10 and k = 4.

R

T P(,»)

{4,8}
{47}
{4,6,10}
{4,6,9}
{4,5,9}
{3,7}
{3,6,10}
{3,6,9}
{3,6,8}
{3,5,9}
{3,5,8}
{2,6,10}
{2,6,9}
{2,6,8)}
{2,6,7}
{2,5,9}
{2,5,8}
{2,5,7}
{1,5,9}
{1,5,8}
{1,5,7}
{1,5,6,10} -

© 00 =3 O O = W N =

[T S e S S o T Sy Sy WG VOV Gy S
O O 00~ O U W =IO
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—
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3.3.2 Algorithm For a Circular System

In this subsection, we consider minimal path sets of a circular con|k|n:F system.
We show that all minimal path sets in a circular system can be generated using
all minimal path sets in a linear system. We present a nonrecursive algorithm
for generating all minimal path sets of a circular system on the basis of the
algorithm given in the previous subsection. We assume that the minimal path
sets of a linear system are arranged in lex ordering.

In a circular con|k|n:F system components are arranged on a circle and the
minimal cut sets are as given below

C,=11,2,...,k}

C,={2,3,...,k+1}

Coks1={n—-k+1,n-k+2,...,n}
Cn_k+2={n—k—|—2,...,n,1}
Coprz={n—k+3,...,n1,2}

Cn=1{n,1,2,...,k—1}

Lemma 3. Let R = {a;,as,...,a,} be a minimal path set of a circular
con|k|n:F system such that a; < a3 < --+ < a,. We then have a; +n —a, < k
anda;+n—a,_1 > k+1.

Proof. We note that R has nonempty intersection with every minimal cut set
of a circular con|k|n:F system. On the other hand we have
Rn{a,+1,a,+2,...,m,1,2,...,ay — 1} = (. Therefore we have

Har + 1,0, +2%...,n,1,2,...;a; — 1} < k—1, thatisn —a, + a; < k.

We also note that

Har—1+1,a,-1+2,...,0r,8,+1,...,m,1,2,...,a:}| > k+1 otherwise we can
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delete a, from R and still be path set, that is R is not a minimal path set and

resulting in a contradiction. Therefore we have n —a,_; +a; > k + 1. [ |

Next lemma gives the necessary and sufficient conditions for a subset of com-

ponents to be a minimal path set of a circular con|k|n:F system.

Lemma 4. Let R = {ai1,a,...,a,} be a subset of N = {1,2,...,n} such
that a; < a3 < --- < a,. Then R is a minimal path set of a circular con|k|n:F
system if and only if we have

(i) a; —ai—; < kfori=1,2,...,r where ag = a, — n. And

(ii) @iy1 —ai—y 2 k+1fori=1,2,...,r where a,41 = a; +n.

Proof. The proof of part (i) for ¢ = 2,3,...,r and the proof of part (ii) for
i=1,2,...,r —1 are same as that of Theorem 1, and in view of Lemma 3, the
proof of part (i) for i = 1 and the proof of part (ii) for ¢ = 1,2,...,7 — 1 are
same as that of Theorem 1, and in view of Lemma 3, the proof of part (i) for

-1 =1 and the proof of part (ii) for ¢ = r are trivial. u

Let Pc and Pj, be a minimal path sets of a circular con|k|n:F system and
of a linear con|k|n:F system, respectively. We note that difference between Pg
and Py, is
i) |CinPe|<2 fori=1,2,...,n.

(i) |CinP=1 fori=1n—-k+1.
(i) |CiNP|<2 fori=23,...,n—k

The next lemma, gives the necessary and sufficient conditions for a minimal

path set of a linear system to be a minimal path set of a circular system.

Lemma 5. Sugpose P = {a1,a9,.. .0}, 721,01 < a2 < - < a,isa
minimal path set of a linear con|k|n:F system. Then P is a minimal path set

of a circular con|k|n:F if and only if n—ar+a; <k
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E Proof. Suppose n — a, + a; < k, then it is easy to show that P satisfies the

]

conditions of Lemma 4, and hence P is a minimal path set of a circular system.
In view of Lemma, 3,’ converse part is obvious. This completes the proof of the

lemma. n

We note that if P be a minimal path set of size one in a linear system, that
isr =1, then P is a minimal path set of a circular system only if n = £. In
this case the minimal path sets of a linear and a circular con|k|n:F systems are

same and given by {1}, {2}, {3},...,{k}. So we assume that n > k.

We know that every minimal path set of a circular con|k|n:F system is a path
set of a linear con|k|n:F system. Therefore using the minimal path sets of a
linear system we can generate all minimal path sets of a circular system.
Let P be a minimal path set of a linear system that satisfies the condition of
Lemma 5, then P is also a minimal path set of a circular system. We now
consider the problem of generation of minimal path sets of a circular system
using minimal path sets of a linear system that do not satisfy the condition of
Lemma 5.

Suppose P = {aj,az,...,0,},1 < a; < a3 < --- < a, < n, is a minimal

path set of a linear system which is of size r.

If P satisfies the condition of Lemma 5, then P is also a minimal path set of a

circular system. Otherwise, we add one component namely iy,
i1 € {1,2,...,a; — 1} and or one component namely i,

is € {a, + 1,0, +2,...,n} to P, such that
n—a +a—1<k—1 (1)

where @, and @, are the last element and the first element in the new set after
adding new components and arranging the components in increasing order. We

note that the new #et obtained is a path set of a circular system as it satisfies

68



condition (i) of Lemma 4.

While we add new components to P, in order to get a minimal path set for a
circular system we must ensure that the second condition of Lemma 4 holds.
It may be noted that this condition should be considered only for ¢ = 2 and

t=r—1, as P is a minimal path set of a linear system.

Remark 4. As P is a minimal path set of a linear system, we need to add at

most two component to P.

We now consider all four possible and disjoint cases of P, when it does not

satisfy the condition of Lemma 5.

Case1: Whenr>2, a=k+1anda,_; =n—k.

In this case we can not modify P to get a minimal path set of a circular system.
Because if aa =k +1thenay —4; <k+1-1=k,as4 € {1,2,...,a; — 1}
- and this contradicts the second condition of Lemma 4. Hence we can not add
71 to P.

Furthemore if a,_; = n — k then i3 ~a,_; < n—(n—k) = k, since iy €
{ar +1,...,n} resulting in a contradiction. Hence we can not add i, to P.
Therefore in this case we can not obtain any minimal path set for the circular
system using P. It is easy to show that a; = k+1 and a,_; = n— k if and only
if immediate predecessor minimal path set of P, namely P = {a;,a,,...,ar}
satisfies the following conditions n = (r — 1)k +1, a;,, —a,_, =k + 1, for
1=2,3,...,r—1land a, = k + 2.

Therefore if P satisfies these conditions then we don’t need to generate P, its

immediate successor minimal path set.

Case 2 : Whenay >k+1and aq,_y =n— k.
In this case we neéd to add only 4; € {1,2,...,a; — 1} to P and get
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P, = {i1,a1,ay,...,a,}. We choose i;-such that
as— 1% > k+1and n—a,+14 < k. It should be noted that we may get more

than one minimal path set of a circular system using P.

Case 3: Whenay=k+1anda,_; <n-—k.

In this case we need to add only iy € {a, + 1,a, +2,...,n} to P and get
P, = {ai1,as,...,a,i2}. The choice of i, depends on the following conditions
ig—ar—1 2 k+1and n — 1y +a; < k. As in case 2, choice of i, may not be

unique.

Case 4 : Whena; >k+1anda,_; <n-—k.

Consider the following conditions
G-ty 2k+1l,n—a.+i1>k is—a12k+landn—is+a; >k (%)

We note that under conditions (x), we can not add i; or i, to P alone. We
need to add 4; and iy to P if we also have n — iy + i3 < k. We get P, =
{i1,a1,...,0a,,92} as a minimal path set of a circular system. We also note
that if the conditions of (*) do not hold then we can add only ¢; or i, to P but
not both. In other words, if we have a; — i, > k+ 1, n —a, +i; < k we then
can add only 4; to P and if we have i —a,_1 > k+1, n—iy+a; < k we then

can add only i, to P.

Example 2. Consider a con|3|14:F system. We note that P, = {3,4,7,8,11,12},
P, ={3,6,8,11,13}, P = {2,4,7,9,12} and P, = {3,6,9,12} are minimal
path sets.of a linear con|3|14:F system that satisfy the conditions described in
case 1 to case 4, respectively.

We see that using P; we can not obtain any minimal path set for a circular

con|3|14:F system.

Using P, we have the following minimal path sets for a circular system
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3,8,8,11,13} and {2,3,6,8, 11,13},
B we have the follewing minimal path sets for e ciccular system
47,8,12,13) and §2,4,7,5,12, 14}.
consider Py and euppose i; = 2 and 43 = 13, These values of §; and
fy the conditions of (¥}, (stated in case 4) and also we have i~z +4; < k.
wo need to add €, and iy to Py and get {2,3,6,9,12, 13} as a minimal
get of 8 circular ayatem. We note that, 1 = 1 or iy = 14, can he added

Py elope, as they don’t setisfy the conditions of ().

fow atate A nonrecursive algorithm to generate all minimal path sots of &
ber con|k|m P aystem. [t ia based on the Algorithm 1, for generating the

8! path sets of a linesr con|k|n:F system, stated in previous subsestion,

GORITHM 2.
ut. Fositive integers ., k(1 > k).
put. All minimal path sets of & circular son|kraF system.

0. Generate P, the firat minimel path set of & linear conkireF system
then go to step 1.

1, Pat P={a,, @z, ...a ). fn—a,+a;=1< k~1then P s also n
mat path set of & civcular system and then go to stop 2.

=k+]and d.. =n— kgotostep 2. Ia > &+ 1, then

Dofor &y =1, min{k+a.-—n+1,a9 =k =1}
Put P ={i}upF

Do for fg = max{a,— +h+ 1, n+a - kln

-] < 0 — &, then

S ktl gy <~k g th+l <tk —kand s +h-n < ag—k—1
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then

Dofor i7=k+a,—n+1l,a0— k-1
Do for i; = max{n+i4, —k,a,_1 +k+1},n+a; —k—1
Put P, = {i;}UPU {ir}

Step 2. If all minimal path sets of a linear system are generated then stop.

Otherwise generate next minimal path set, namely P and go to step 1.

Remark 5. Although the minimal path sets of a linear system are generated

lexicographically, but this is not the case for a circular system.

3.4 Minimal Path Sets Containing a Given Component

In order to compute Vesely-Fussell reliability measure of component importance
in a con|k|n:G system, we need to obtain all minimal cut sets of the system,
that contain a given component. We know that a con|k|n:G system is a dual
of a con|k|n:F system. Hence in view of Theorem 4 of Chapter 1, we note that
the collection of all minimal path sets of a con|k|n:F system and the collection
of all minimal cut sets of a con|k|n:G system are the same.

This section gives an algorithm to generate all minimal path sets of a con|k|n:F

system which contain component ¢ and arranged in lex ordering.

Let P, be a minimal path sets of a con|k|n;:F subsystem that consists of first
ny = % — 1 components of the original system and P, be a minimal path set
of a con|k|ns:F subsystem that consists of last ny = n — ¢ components of the
original system.

We consider two cases for generating P where P} is a minimal path set of a

con|k|n:F system t%lat contains component ¢.
(a) Suppose n < 2k.
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(al) Leti < n—k < k. Then we note that P; is of the form P} = {i}UP,,
such that PN {i + 1,4+ 2,...,k} = 0. We know that in this case
Pyisgiven by {i + k}, {i+k -1}, {i+k—2},....{k+1}.

(a2) Let n— k < ¢ < k. In this case we note that the only minimal path
set is Pt = {i}.

(a3) Let n — k < k < i. In this case P, the minimal path set that

contains i is given by P! = {n — k,i},{n —k —1,3},...,{i — k,t}.
(b) Suppose n > 2k.

(bl) Let ¢« < k < n — k. In this case, similar to case (al) we have
Pi = {i} U P, where P,N{i+1,i+2,...,k} =0.

(b2) Let i = k < n — k. In this case we also have P} = {i} U P,.

(b3) Let k <4 < n—k. In this case P! is of the form P! = P,U{i}UP,.
Suppose P, = {ay,as,...,a,} we note that if a, + k > ¢ then we
should have P, N {i + 1,i+2,...,a, + k} = 0.

(b4) Let k <i=mn—k+ 1. In this case we have P = P, U {i}.

(b5) Let k <n—k<n—k+1<i. In this case we have P! = P, U {1}
where PPN{n—k+1,n—k+2,...,i—1} =0.

Algorithm developed for lexicographically generating of the minimal path
sets of a con|k|n:F system, first generates all minimal path sets starting with
component k, and then generates all minimal path sets starting with compo-
nent £k — 1 and so on. Therefore we see that, in all cases, except case (b5),
P: can be generated using Algorithm 1. In other words, using lex ordering
defined on the minimal path sets of the system we can generate only those
minimal path sets that contain component ¢ and no more. This is not true for

the recursive algorithm presented by Chan et al. [14].
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We note that in case (b5), P; has empty intersection with last i + k —n —1
components of a con|k|n;:F subsystem. Here we examine case (b5) in details.
Suppose P, = {a;,as,...,a,} is the first minimal path set of a con|k|n;:F sub-
system, where n; =i —landk <n—-k<n—-k+1<i Ifa >n—k%k
then we should replace a, by n — k, because in case (b5), we should have
PNn{n—k+1,n—k+2,...,i—1} = 0. Suppose P, = {b1,bs,...,b;} denotes
the immediate successor of P; in a con|k|n;:F subsystem. We should replace
b, by n — k if by > n — k. We consider P, = {a;,as,...,a,}, r > 2 and confine
our attention to the next minimal path set after P, in a con|k|n;:F subsystem,
such that it has empty intersection with {n—k+1,n—k+2,...,i—1} and we

call it as an acceptable minimal path set. Next lemma is useful in the sequel.

Lemma 6. Suppose n; =i—1, k<n—k<n—-k+1<iand

.P = {a1,a9,...,a,}, 7 > 2 is a minimal path set of a con|k|n;:F subsystem
such that PN {n—k+1,n—k+2,...,i—1} =0 (that is P is an acceptable
minimal path set) and suppose P is its immediate successor minimal path set.
Then P is not an acceptable minimal path set if and only if

n—k—-a_1<kand a, =t —k>a,_o+k+1 (2)

Proof. We know that if (2) holds then the next minimal path set is

P ={ay,ay,...,a,-2,a,_1,i — k — 1,i — 1} which is obviously not acceptable.
We also note that if we replace i — 1 by n — k then

pP= {ay,as,...,a,—1,i —k —1,n — k} is not a minimal path set, since we also

have n — k —a,_1 <k.

Conversely, suppose (2) does not hold, we then show that P is an acceptable

minimal path set. We note that a, > a,_» + k + 1. Suppose a, > a,_o +k+1
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and n — k —a,_; > k + 1 we then have

P {a1,a2,...,0r-2,0r_1,0, — 1} if a,—1>1—k%
{ai,a9,...,8r2,0,_1,i—k—1,n—k} if a,=i—k

which is an acceptable minimal path set.

Now suppose a, = a,_o+k-+1. In this case we note that P can be generated by
reducing a,_; or a,_s and or a,_3 and so on but not by reducing a,. Suppose
P is generated by reducing a,_, we then have

Gr1—1>a, 9=>01—-1+k>a, 2+k=>a,_1—1+k>a,_s+k+1=naq,

and

B {a1,a2,...,ap—2,0,1 — 1,0,y — 1+ k} if a1 —1+k<n-—k
{ai,a2,...,0,_2,a,_1 — 1,n — k} if a1 —1+k>n—%k

which is an acceptable minimal path set. Other cases can be dealt similarly

and this completes the proof of the lemma. ]

From Lemma 6, we note that if P satisfies the conditions of (2), we then should

not generate P, since P is not acceptable.

On the other hand if P satisfies (2) then consider P given by

P= {a1,02,...,6,-2,8p 1,0, 2+ k+1,ar_1 + k+1}.

We note that P is a minimal path set of a con|k|n,:F subsystem which is lex
greater than P. We also note that P is not acceptable, since a,_1+k+1 > n—k.
It may be noted that if we replace a,_; +k+1 by n—k then P is not a minimal
path set.

Now in view of Lemma 6, we note that immediate successor of Pis acceptable.

Using above arguments and Lemma 6, we can generate all minimal path
sets of a con|k|n;:F subsystem such that they have empty intersection with

{n-k+1,n—k+2,...,i—1}
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We aleo mote that for the cases {a1),(bl) and (b2} we have Fi = [il U B
wich that B ri{i+1,0~2,...,k} = 0 (this condition for case {b2] is trivial),
Therefore we can reduacs these three cases to a single case with

1< min{r - &, k}.

Similarly all three cases (a3),(bd) and (b5) can be reduced to a single case with
i> max{n —k, &}.

We now state an algorithm to generate all minimal path sets containing

somponetit § of & con|kinF svetem, arranged in ascending lex ordering,

ALGORITHM 3.

input. n, kandi{a > kand 1 <1< n).

Qutput. All minimal path seta containing component § and arranged n lox
wimisag.

Btep 0. If ¢ < min{n = k, k), go to case 1. If i > max{n — k. k}, g0 to case 2.
Brei<n—k goto case 3. And If n =k < § < k, then go to case 4,

Case 1. enerate 5, the first minimal path set of p conlk|ny = n — O0F
@hsmtem and put P = {@1,60,.... 2},

Step 1.1. i P, in the [aat minimal path set of & con|&|n:F subsyatem, or if
% = k then stop. Otherwise put P! = {i} U P and then go to siep 1.2,

Step 1.2. Generate next minimal path set of a conjk|ny:F subsvatem as

B = {i,02.....4-} and then go to step L.1.

Dase 2. Cenerate B, the first minimal path set of & conlklm = i = LF
kabevatem and put Py = {a1,92,....a-}. Replace o, by n — K, o > n =&,
Brel then all minimal path sets containing component §, whick are of size
Bare given by {m,. 4}, {ar = 1,4},... . {i— &} Ifr =1 and n < 2k then atop.
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Ifr=1and n > 2k put P, = {i — k} and then go to step 2.1. If r > 1 put
Pi = P, U {i} and then go to step 2.2.

Step 2.1. If P; is the last minimal path set of a con|k|n;:F subsystem then
stop, otherwise generate the next minimal path set of a con|k|n;:F subsystem
as P, = {a;,ay,...,a,}. Replace n —k by a, if a, > n—k. Put P: = P, U {i}
and then go to step 2.2.

Step 2.2. f n—k—a,.1 <kanda,=i—k > a,_o+ k+ 1 (we assume
that ap = 0) then put a, = a,_2 +k+1 and a,+; = a,_; + k+ 1. Then go to

step 2.1.

Case 3. Generate P;, the first minimal path set of a con|k|n;:F subsystem
and put P; = {aj,as,...,a,}. Then go to step 3.1.

Step 3.1. Generate P,, the first minimal path set of a con|k|ng:F subsystem
and put P, = {by,bs,...,bs} and go to step 3.2.

Step 3.2. Put P! = P, U {i} U P,.

Step 3.3. If P, is the last minimal path set of a con|k|ny:F subsystem or if
by = a, + k then go to step 3‘.4, otherwise generate next minimal path set of a
con|k|ny:F subsystem as P, and then go to step 3.2.

Step 3.4. If P, is the last minimal path set of a con|k|n;:F subsystem then
stop. Otherwise generate next minimal path set of a con|k|n;:F subsystem as

P, and then go to step 3.1.

Case 4. Put P = {i} and stop.

3.5 Critical Vectors For a Given Component

In this Section we study critical vectors for a given component in a con|k|n:F
system. It is needed to evaluate the Birnbaum reliability measure of component

importance in a con|k|n:F system.
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From Chapter 1, recall that a vector (.;,x) is a critical vector for component %
if and only if
¢(li7 X) - ¢(Oz’x) =1.

This section gives a nonrecursive algorithm for generating all critical vectors
of component i in a con|k|n:F system, which are arranged in ascending lex
ordering. In order to compute Birnbaum reliability measure of component

importance, this arrangement is required, as shown in the subsequent Chapter.

The next theorem, given by F.C Meng [43], introduces a useful method for

generating all critical vectors for component i, for a general coherent system.

Theorem 7. If (.;,x) is a critical vector for component 7, then there exists a

minimal path set P and a minimal cut set () such that

PNQ@={i}and z, = L i seP-1{i)
0 if se@—{i}
Proof. For the sake of completeness, we present the proof given by Meng [43].
Let ¢(1;,x) = 1 and ¢(0;,x) = 0. Let ¢(1;,14,05) = 1 and ¢(0;,14,05) =0
We then have
#(1;,141,042,08) = 1 for some minimal path set A1 U {:}, and
#(0;,14,1p2,0p5) = 0 for some minimal cut set B1 U {3}, where A1 C A and

B1C B. Let P = A1U {i} and @ = B1 U {:}, then the proof follows. ]

Remark 6. In Theorem 7, we note that, it is not necessary that PUQ = N.
Let P be a minimal path set and @ be a minimal cut set such that PNQ = {i}.

Then (., .~N—{Pug}, X) is a critical vector for component i where

1 if seP—-{i
Ts = he e} and N =1{1,2,...,n}.

0 if se@-{i}
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Hence using all minimal path sets and minimal cut sets which have intersection
{i}, we can generate all critical vectors for component i.

We note that the states of components that belong to N — (P UQ), do not
play any role in determining Birnbaum reliability measure of importance for
component i. Therefore we call x = (., .N—{rPug}, 1P-{i}, Og—i)) as a minimal

critical vector for component 1.

In view of the above argument, we can now generate minimal critical vectors
for component %, in a con|k|n:F system, which are arranged in lex ordering as

follows. We consider three cases for i.

(i) Let ¢ < k.

Suppose P' be a minimal path set of a con|k|n:F system that con-
tains component i. In this case, we note that P! is of the form
Pt = {i,az,a3,...,a,}, where r > 2 is the cardinality of P'. From
Theorem 1, we note that £ +1 < ay < k + 4. All minimal cut sets con-
taining component ¢ and satisfying Theorem 7, are as follows:

Qi ={ax—k,aa—k+1,...,a2 — 1}
Q:={az—k—-1l,aa—k,...,a0 — 2}

Qaz—k:{lvza---ak}'

Remark 7. In n < 2k, we may have n — k < ¢ < k. In this case, we have

Pi = {3}, that is, 7 = 1. We note that in this case the corresponding minimal

cut sets are as follows.
h={n-k+1ln-k+2,...,n}
Q={n-kn—-k+1,...,n—-1}

Qn—k+1 = {1727 R k}
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@imiing @1 = &3 = A<+ 1 a8 in Theorem 1, we note that this special case

@8 be obtalned from case [i).

@} letk+1<i<a—~k
In this case we hasve P = {0, 85, .. Bt & thpgais oo Bp Fy fOr BOIE
ineget vy, 1 < rp < v, All minimal cut sets containing component. 4 that
gatisfy Thearem T, ate given below.
1 = {1 = Kol —k + 1,00 By — 1}
2= {ﬂﬁ;+1 =k =1, Ry L 2}

@ = {finget + Litgo1 = 20 81 + R} where @ = G — @y — K

i) Let k+ 1 € n—k < & In this cass we note that P is of the form
{81, 85,. . Ge—i, i}, Tha corresponding minimal cut sets containing
totnponent ¢ that satisfr Theorem 7, are given as follows.
Qi={n-k+tn—k+2.._ a}

Ga={rn—kn—-k+1.. ,n=1}

Qi = {1 + Lt + 2, B F Ry whete x =0 + 1 — & — @y

Remark 8. We note that case (ili), can be obtained from case (1i), if we

amome thAt Gn 4 = fegr = R+ 1. Similarly case (i), can aleo be obtained from

pasn [if), if we assume that iy,.; = ag = 0, a8 In Theorem 1. Therefore cise

[f) and case (iii) are special cases of case (i},

W now can state an algorithm to generate all mintmal critical vectors for com-
pnent &, in & con|k|nF system which are arranged in ascending lex ordering,
B g based on the Algorithm 3, Theorem T and Remark 6.

RLGORITHM 4.
fiput. Integers n and k (n 2 &) and i (14 < n).
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Output. All minimal critical vectors for component i, in a con|k|n:F system
which are arranged in ascending lex ordering.

Step 1. Generate P, the first minimal path set that contains component 1
and put P' = P},

Step 2. Put P* = {a,as,...,Gro-1,0,Grg11, - - ., 8} and

Q1= {aro41 —k,Grgp1 —k+1,... 07041 — 1}

Q2 = {ar0+1 — k-1, Qro+1 — k..., Qrg+1 — 2}

Qj ={trg-1+ 1,ar0-1+2,...,a7,_1 + k} where j = Arg+1 — Qro—1 — k.

(ap =0, and a;41 =n +1)

Put X, = (i, .n—(Piuge)s Lpi—(i}> Oge_i})y t = 1,2, ..., J.

Step 3. If P! is the last minimal path sets that contains component ¢, then
stop. Otherwise generate P*, the next minimal path set containing component

v and go to step 2.
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Phapter 4

Eln-Recurive Algorithms for System
eliability and Component Importance
i Consecutive-A-cut-of-n Systems

b1 Introduction

B this chapter, the evaluation of reliability funrtion and Vesely-Fussell mea-
Bere of component importanca and Birnbeum reliabliity meagure of component
fuportance in both a con| Al F aystem aod & con|f|:G system are considered,

In Section 2 using the minimal cut {path) seta of & con|k|n:G{F) systorn and
i results of Chepter 3, wa provide & noprecwisive algorichm for determining
tha system reliahility with diferent component relinbilities, This is an eficient
Meernative to the inclusion-exclusion principle for evalusting aystem reliatility
fncon|k|r:F () systerns. It has no canrelling cevims and number of terms equals
ibe sumber of minimal cut (path) seta. We show that this algorithm can be
fmply used for determining the system relirbility of & k-put-of-n systerm with
diferent component reliabilities, Wa also show that this appreach is applicable
Jot & general case when the components of the system are not independent,

Section 3 considers the aveluation of the Vesely-Fugsell reliability and struc-
furel measutes of component Importance in consecutive-k-out-of-r Bystems,
We show that in case of a consecutive-k-ont-of-m:F system, these memaurcs
tan be computed easily, Usitg the Algorithm 3 of Chapter 3 we present an
glgorithm to compute Vesely-Fuesel] reliability and atructural measures of com-
fotent importance in 8 consecutive-F-out-cf-r G syatem.

In Section 4 we consider the prohlem of determining Birnhaum reliability
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* measure of component importance in a consecutive-f-ott-of-nF system with
- different component reliabilities. We present an algorithm for this using Al-
gorithm 4 of Chapter 3. This algorithm does not require computation of the
reliability function.

In Sectiom 5 we provide a simple and different recursive relationship for

determining the reliability function of & consecutive-t-out-of-n:F system.

Wi use the following notationy i the sequel.

fi: number of cornponents in & system.

k: minimum number of consecutive working(failed) components which causs a
con|kjr GF) syetem works(fails), k < n.

ty, g veliability and unreliability of component 4,5, = 1 — ;.

X {F1. Ty, ..., Ty state vector of components.

PP ... Pa) relinbility vector of components,

7Fl ) strueture function of & con|k|m:G(F) system.

B Up, r): reliability function of a con|k|m:G(F] syatem.

& {1, 2,...,n} index set of components.

I ), Iow P00 reliability and structural Vesely-Fussell measure of im-
portence for component § in & conkimG(F) system.

Cls), P(é): collection of all minimal cut sets and minimal path sets that con-
tain component 2,

Cox)={i: z =0}, Cyix) = {i: = = 1}.

|A|: cardinality of set A,

E: complement of event E.

We misume that each component and the system are either functioning or

failed.
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42 Non-Recursive Algorithm for System Reliability in
Beneral Case

Wost of the literature on systetn relisbility of a con|k|n:F system concentrates
o0 Lid. components, for details see Bollinger [10], Bollinger and Salvia [11],
{hen and Hwang [19], Chiang and Niu [21), Derman, Liberman and Boss [22],
Hwang [32], Lambiris and Papastavridis [41], Pekdz and Itoss [48] and Rama-
muethy [38]. In the case where the compaonents of the system are independent
hut not idencical it is expressed wsing recurrence relationships, sse Shantikumar
B3], Chan et @& [14] and Hwang [31]. Pekéz and Ross 48] and Godbola (27]
bave given approximating expressions for eomputing system reliability and Ra-
mamurthy [57] given explicit formualae for determining the reliability function

of the syutem anly in special cases where k < n < 6k« 4.

In thia Section we give an algorithim for direct computation of the reliability
function of n conik|n:G system that can be used for a con|k|n:F system with

non Lid, components.

We know that a von|kinG systern {9 a dual of a con|kjm:F system. Hence
from Theorern 4 of Chapter 1, it folluws that the eollection of all minimal cut
(path] sets in a con|kwG(F) syetem and the eollection of all minimal path
{rut) sets in u con|kjmF{G) system are the same. Kuo ef of. (40] studied the
relationship between these two systems and applied the svailable reanlts on one

type of avstems to the other.

Buppose O < 7 <+« - ~ Onjyy e all minimal cut sets of & con|k|n:0 sysrem
arranged in lex ordering, where n(k} is the number of minimal cut sets of the

fvetem. Yve note that

nkl
Ko(pon) = Pr{d®(X) = 1} =1 Pr{¢6(X) =0} =1 - Pr { U E}
L=
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where FE, is the event that all components of C, are failed. We give a formula
n(k)
for determining Pr { U Ez} that contains only n(k) terms. We have

| z=1
Pr { U Ez} = Pr{E\}+ Pr{E; N E\} +- -+ Pr{Enp) N Engy-1 N ... N By }.
=1

Now for a given z, 2 < z < n(k), we introduce a formula for calculating
Pr{E,NE,_1N...N E,} which contains only one term. We note that E, is

the event that at least one component of C, is working.

Let C; = {az1,002,-- 1825, }y Gz < Qg2 < -+ < Qzpy, 1 <z < n(k) be a

minimal cut set with cardinality r;.

Definition 1. For 1 < z < n(k) we define

Cr = {agr+s|ag,+5—az,-1 <k, 1<r<r; 1<s<k-1and sis an integer}.
Note that a,, € {1,2,...,n},r =1,2,...,r;

Theorem 1. C} satisfies the following conditions:

(i) Cx C N Cy

(ii) C U oF

(111)0*00 #Qforj=1,2,...,0—1.

(iv) If C2* be a subset of N and satisfies (i) and (iii) then C; C C3*.
(v) If C2* satisfies (i) and (iii) and |C2*| = |C}| then C* = C.
Proof.

(i) In view of Theorem 1 of Chapter 3 and definition of C}, we note that
if az, +s € Cy; forsome 1 < s < k—1, then a;, + 5 < agr41, that is
azr + s & Cy. We also note that if a,,, + s € C; then
g, + 8 S k4 0z, 1 <k+n—k=n. Hence (i) is trivially true.
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¥ = tig, & and § 6,3 = k. We now show that for y € €7, there exiscs
s minimal cut et that containe component y and is laxicographically lesa
than ;. We define the following set

) Gyl - {as} i Gappz =z b=l ra<r orr=ry
g U {y} - '[‘j'-n,ri ‘[I::,rﬂ} if Opriz —H 2 k7T < Ty

We note that Q, = Oy, sitice y > g, ., Consider the following cases.

(&) Suppose tpeae =¥ = &+ L and r < 15 We have
U= Bprez ™ Ger — Bzp3 2 k=1, Opry) = ¥ < dpep) — Bpp = K,
Garpl = Opro) = K+ 1, ¥ —Ggso1 £ k. Hence y < o, .y Therefore
in view of Theoremm 1 of Chapter 3, €, is & minimal out so¢ of &
con| ka3 syetem.

{b) Suppose r = rr. We have § = ng,, <+ 5. We showed that ¢y € n in
pare (i}, We also hawve
Y= Gyge-1 > Bap, ™ Cpme—r = &+ 1 and therefors from Theorem 1

of Chapter 3, {; iz a minimal oyt set.

(c) Suppose @, .4z~ # < & and r < #,. e have

Y= Orpel SR B = Oppa = B — B2 2kt ) B~y Sk

Brods — U ® Brpgd = el = K=k L AP < rg — 1)

Agnin by Theorem 1 of Chapter 3, C, is 8 minimaf cut aet. Hence

We have y &£ C, therefore we get result O © ICFi(i‘}.

=1

Suppose 1 = j £ 31 is given and let O = {o5,00, .- 0y, } e know
that € = ; becanse we assumed that all minimal eut seta are arranged
in lax ordering, Using Lemma 1 of Chapter 3, there exists £, 1 S £ < vy
puch that a;y > aqs Bnd 8;; = 2z, (= 1,2,.. . & = 1. We show that
aie €03 We have:
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Gig > gy =+ Mg = Oz¢ + 5 for some 8 2 1. On the other hand we
know that ayr — Ge -1 = gy — @ < K, winee ) §s & minimal cut set,
Therefore . ¢+ &~ fpg.1 S K => &5 & ~ 1, that is g;; € 7 and hence
Grer#£d vi<i<z—1,

| Suppose C** € A and satisfies (i) and (idi).

We now show that C3 C C3*. Suppose not that is thore exists i & 7 such
that y €O Wehave pe Ol = Jrand s, 1 SrSr, 1S s k-1
such that ¢ = g, +8 and y=ngp.q % & We consider O, as defined in the
proof of part (ii). We showed that O, < Cp and C_ i8 & minimal cut set.
We note that O3 MO = @ (since O satisfies {i)). But this contralicrs
the assumption that CF* astisfles {ili). Therefore we have y € 02 and
benoe O C O3 = G} < [C3].

Suppose 7 satisfles (1), (ifl) and |C3*| = Gl In the proof of pare (iv},
we showed that O € C3*, Therefore COF = €5*. Thia completes the proof
of the thearem. |

sow can provide 8 forrmuls for the probability expression Pr{Ey ) £, N

E.} which rontains only one term.
1. We have
PriE.nEpi .. .k} = Pr{ENE]}

E? is the event that all components of O are working.
« We show that two events; E.nE, 1. . .NE; sod E;r E} are equivalent,
obvious that By ™ Ef € E:NEpyr. N E), becase €2 NG, # 0,
3£ §<z— 1 Nowsuppose the event £, By M...M £ has ocoureed,

that the event B, M1 E? has alao oconvved. Suppose not, that is, there



exists y € C7 such that component y is failed. We have

yeC;=>3rands, 1 <r<r,, 1< s<k—1such that y = a;, + s and
Yy — azr—1 < k. Once again we consider C, as defined before. We showed that
C, < C; and C, is a minimal cut set. We note that all components of C, are
failed, because of the fact that the event E, has occurred and component y is
failed. But this contradicts the assumption that the event E,_1NE,_.N...NE;
has occurred. That is at least one component from each C,_1,Cy_a,...,C} is
working. Therefore we get E, N E,_;N...N E; C E, N EX and hence these
two events are equivalent. We then can write Pr{E, N E,_1N...NE} =

Pr{E, N E*}. This completes the proof of the lemma.

Remark 1. We note that C; C N — C, hence C: N C, = 0, that is F, and
E? are independent events. Therefore Pr{E, N E}} = Pr{E,}Pr{E}}. Now

using Theorem 1 and Lemma 1, we have

1-hl(p,n) = Pr{¢(X) =0} = Pr {n(k)Ez}

n(k) ~ _ n(k)
=Pr{E:}+ > Pr{E,NE,_1N...NE}=Pr{E}+ > Pr{E,NE}}
r=2 r=2

which is equal to

n(k) n(k)
Pr{E} + 3 Pr{E}Pr{E}} = [[ as+ > [] & ] »:
z=2 i€Cy z=21i€Cy i€Cy

Remark 2. Using inclusion-exclusion method, we know that for determining
n(k)

Pr { U Ex} we need to compute 2™*) — 1 probability expressions but as per
z=1

Remark 1 we need to compute only n(k) probability expressions.

Now using Algorithm 1 of Chapter 3 and the results of Theorem 1 and Re-
mark 1, we state an algorithm to compute the reliability function of a con|k|n:G

system.
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ALGORITHM 1

Input. Positive integers n, k(n > k) and real numbers p1,pz,...,pn, 0 <p; <
1, ¢g=1-pi

Output. Reliability function of a con|k|n:G system with components reliabil-
ity vector p = (p1, P2, - - -, Pn)-

Step 0. Put z = 1 and R = 0. Go to step 1.

Step 1. Generate C,. If z = 1 put C = ) and P = 1, otherwise generate Cj
and put P = [[ p: (C} is defined in Definition 1). Go to step 2.

Step 2. Put ’;_zc; R+ [[ @+ P. If z = n(k) (that is C; is the last minimal
cut set of system) go tol:tc:p 3, otherwise put x = z + 1 and then go to step 1.
Step 3. 1 — R gives the reliability of a con|k|n:G system. Stop.

Remark 3. We know that a con|k|n:F system is a dual of a con|k|n:G system.
Hence using Algorithm 1, we can obtain a nonrecursive formula for determining

the reliability function of a con|k|n:F system as given by :

hi (p,n) =1 - h¢(1-p,n).
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Example 1. Consider a con|3|7:G system. Lex ordered collection of all mini-

mal cut sets of this system is as follows :

z| C; C;
1{3 6

213 5 6
313 4 7|5 6
412 5 3
512 4 713 5
6|12 4 6(3 5 7
7|11 4 7|2 3
8(1 4 6|2 3 7
911 4 5|2 3 6 7

We have
1- hg (P, 7) = g6 + q3q5D6 + 439497D5P6 + G295P3 + §294G7P3D5 + 929496P3PsP7 +
419497P2P3 + q19496P2P3P7 + 919495P2P3P6P7-

We now consider a general case when the components of a con|k|n:G system
are not independent. We note that in this case Lemma 1 still holds. Therefore
we can write a direct formula for determining the unreliability of a con|k|n:G
system with non-independent components as follows :

nik

1 - hS¢(p,n) = Pr{¢(X) =0} = Pr{ _)Ex} =

n(k) n(k)
Pr{E:}+ Y Pr{E,NE,..N...NnE} = Pr{E,} + Y _Pr{E.NE}}
=2 r=2
which is equal to
n(k)
Pr{X,zO,zeCl}—i-ZPr{Xz:O,zeCm, X]:1,]€C’;} (1)
=2
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For the special case of statistical dependency when the components lifetimes
of a con|k|n:F system are ezchangeable, Shantikumar [64], presented a formula
for determining system reliability. The general case of reliability function of a
con|k|n:F system was first studied by Kossow and Preuss [38]. Based on con-
cepts given by Satyanarayana and Prabhakar [59], they presented an expression
for determining the reliability of a con|k|n:F system using the concept of the
k-subgraph. Sfakianakis and Papastavridis [62] introduced a different formula
for the reliability of a linear and a circular con|k|n:F systems. They have shown
that the number of terms in the reliahility formula grows exponentially with n.
Their formula is expressed by a summation over some subsets of components

that will be generated recursively whereas formula (1) is a direct formula.

System Reliability of a k-out-of-n:F System

Here we show that the approach given in Algorithm 1, leads to a simple and
explicit formula for determining the reliability function of a k-out-of-n:F sys-
tem with different component reliabilities. Algorithm 1 can be applied using
minimal cut sets as well as the minimal path sets of a k-out-of-n:F system. The
number of terms in the reliability function equals to the number of minimal
cut (path) sets of the system.

We know that a k-out-of-n:F system fails if and only if any k components

of the system are failed. Hence the number of minimal cut sets of the sys-
n
tem is n, = and the number of minimal path sets of the system is
n . » . -«
ng = . It is easy to see that the number of minimal cut sets is less

k-1
than the number of minimal path sets if and only if n < 2k — 1. Therefore we

use minimal cut sets of the system if n < 2k — 1, and we use minimal path sets
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the system if 7 > 2k = 1. We asmume that the collection of all minimal cut

Y sets of the system is arranged in ascending lex ordering,

e C) = O < - < 0y, be the minimal cut sets of a k-ont-of-n:F system
angad in lex ordering.

Com={taiefugs s Cadehs Crl < Cog < ro € €y 1 € 2 < 1y, be & minimal
t set of the system. We note that all minimal cut sets of the systetn are of

K.

Tamma 2, Suppose €7 = {1 e +1, 001 +2, ... 0} = Oy Then € satisfles
heorem 1.

roof. It can he proved on the same lines as Theorem 1.

Therefore using Lemma 1 and Remark 1, we cen obtein direct formuls for

determining reliability function of & k-out-of-nF system.

Remark 4. When n > 2k — I, we use minimal path sets of the system.
ppeae Py = {dn3, @29, «2fanekel}s } S & 5 Ay, be & minimal path set of 2
-out-of-n:F aystern. [n this case P} = {ag, 800+ Liagy +2,... 8} — F; and

, satsfies Theorem 1.
s note that when z = 1, C and P! are empty sety.

Example 2. Consider & 2-out-of-6:F system. In this syatem we have n, = 15
minimal cut sete and n; = 6 minimal path sets. Therefore we use minimal
ath sets to compute refiability funection. Lex ordered minimal path sets of

i aystem are as follows
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T P, P
112 3 4 5 6]-
21 3 4 5 62
31 2 4 5 613
411 2 3 5 6|4
511 2 3 4 6|5
61 2 3 4 5|6

Reliability function is given by
Ry(6,p) = pop3psPsPe + DP1P3PaPsPeda + P1P2PsPsPeqs + DP1P2P3PsPeds +
P1P2P3P4P6q5 + P1P2P3P4P5G6-

Remarks. Recently a new approach has been developed that can be used
for efficient calculation of the reliability function of a consecutive-k-out-of-n:F
system consisting of independent but not identical or evén Markov dependent
components (see e.g., Chao and Fu [16] and [17], Koutras [39] and Chao et al
[18]).

These papers have efficiently described a wide class of reliability structures
by finite Markov Chain. This approach provides an efficient tool not only for
the system’s reliability evaluation but also for the study of properties of the
structure such as its asymptotic behaviour, generating function, development of
reliability bounds, component importance and optimal arrangement problems,
etc. Such systems can be described using imbedded finite Markov Chain and
were introduced by Koutras [39]. They are called Markov Chain Imbeddable
Systems (MIS). In an MIS, a proper Markov chain with relatively small state
space is available, and system’s relibility is expressed in terms of a product of
transition probability matrices. The MIS class is wide enough to accommodate
many well-known systems. For a formal definition of MIS we refer to Koutras

[39).
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He has imbedded a consecutive-k-out-of-n:F system, in a finite Markov Chain
as follows: Let {Y;,7 = 0,1,...,n} be a finite Markov chain with the state
space S = {0,1,...,k} where k is an absorbing state and Y; = r if the number
of failed components that follow the last working component in the system
1,2,...,3is exactly r (0 <7 < k) and Y; = k if the system 1,2,...,7 contains
at least k consecutive failed components. It is easy to see that the transition

probability matrix of this Markov Chain is given by:

-p,- g 0 ... 00 -
pi 0 ¢ ... 00
M,=|:
pi 0 0 ... 0 g
|00 0 ... 0 1_ (k+1)x(k+1)

where M; = (p,5(i)) and p,s(i) = Pr{Y; =s|Yi., =r}, r,s=0,1,..., k. Using
MIS approach the reliability function of a consecutive-k-out-of-n:F system is
given by:
hE (p,n) = m (ﬁMz> Ur (2)

where my = (1,0,0,...,0),1 X (k—!—zz)lvector, U=(1,1,...,1,0),1 x (k+1)
vector and M, is transition matrix.
For illustration purpose, we compute the reliability function of a consecutive-
3-out-4:F system, as given in the next example.
Example 3. Suppose k = 3 and n = 4. As per the formula (2) for determining
of hf (p,4) we have:

4
hi(p,n) = m (HMz) Ur = mo(My x M) x (M3 x My)Ur
i=1

P2 M3 @1q2 0

. " p2 pg O q192
In view of definition of M; we have M; x My =

mp2 pigz O G
0 0 0 1
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r1104 p3gs q3qs O

ps p3qs O q3q4

and M3 x My = . Hence we get the result:

Paps p3qs O a3
0 0 0 1

[;oz pigz ¢ig2 O Ps  DP3gs q3qs O 1
0 0 1
hf(p,‘l) _ (1’0’0,0) D2 P1q2 192 D4 D3qa qd3q4
pip2 pi1g2 O 0 P3ps p3qs O q3 1
|0 0 0 1 | 0 0 0 1 0

which is equal to

p4(p2 + P1G2 + 192p3) + P3ga(p2 + 192 + q192) + P293qs = P3 + P2G3 + P1P4G23.

(after simplifications)

Using the approach given in Algorithm 1, lex ordering of minimal path sets

of a consecutive-3-out-of-4:F system is as follows:

p, | P
3 0
2| 3

1 42 3

and therefore hf (p,4) = ps + p2gs + P1P1G2qs.

It seems the approach given in Algorithm 1 is easy to apply but not for large
values of n as the number of minimal path sets of a consecutive-k-out-of-n:F
system grows exponentially with n. For example using the combinatorial ap-
proach given in Chapter 5, it can be shown that for a linear consecutive-2-out-
of-n:F system the number of minimal path sets of the system is the rounded
value of the expression p"(1 + p)2/(2p + 3) where p = 1.324178 is the unique
real root of the cubic equation 22 — £ — 1 = 0. For a circular consecutive-2-

out-of-n:F system, it is shown in Chapter 5 that the number of minimal path
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sets of this system is the integer part of p" + 0.5 for n > 10.
However it can be seen that for a given k, computational efforts of formula (2)

grows linearly with n.

We now illustrate the application of Algorithm 1 for calculating of the reliability
of a k-out-of-n:F system with non iid components. It can be simply shown
that, for a k-out-of-n:F system, this approach leads to an explicit formula for

determining the reliability function of the system with non iid components as

follows:
Ri(n,P) = DkPk+1-- pn+Z > qu,Hp, for n>2k-1
r=1 1< <ty
=k —
1Ze 0
where i1,%2,...,i, €{k—r+1,...,n}.
And for n < 2k — 1 we have
n k-2 n
Ry(n,p)=1- [] ¢s-> > Hst II «
Jj=k—1 r=1 i1<<ty s=1
j=k-r—1
JF Uty
where 4,%2,...,5, € {k—1,...,n}.

Using these formulae, the Birnbaum reliability importance of component i,

Ip(i,p) = ?_Ii%(g_,_@ can be computed easily.

4.3 Vesely Fussell Importance Measure

In this section we consider the evaluation of Vesely-Fussell measure of compo-
nent importance in con|k[n:G(F) systems. Using Algorithm 3 of Chapter 3,
we present a nonrecursive algorithm for determining Vesely-Fussell reliability
and structural measures of component importance in a con|k|n:G system. We
then show that in case of a con|k|n:F system these measures can be computed

easily.
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‘Vesely-Fussell Importance Measure in a con|k|n:G System
Vesely [66] and Fussell [25] proposed a measure for relinbility and structural

importance of component 1 respectively, as follows -
Fopli,p) = Pr{3C; € C[) a.t. € C Co(X)i(X) = 0}

&nd
Bpl) = Foals 1/2,1/2,. -, 1/2).

Here we present a method for computing Vesely-Fuseel] measure of component

importance in a con|kimQ system.

Buppose O} = Cf ... < C} ) are all the minimal cut sets of » eonlk G

systemn that contain component { and arranged in lex ordering, where ny(i} 8

the mumnber of minimal cut sets containing component ¢ We note that

g (8]
§ E}

J &
S Pr{goT) = 0} T Pr{peX) = 1)

where El is the event that all components of C7% are failesd. In the previous
szction we proposed a formula for determining Pri{g®(X) = 0} = 1 ~#{{p, n).
‘For the purpose of ranking components using Vesely-Fussell veliability measure,
It ls encugh to compute Pr mlili?E; 3

=

(€]
We now give a formula for computing Pr { | E_i} cetaining only ne(d) terms,

=]

We have

ngli} LI L —

p.r{ U E‘} =Pri{Bi}+ LPAENE N nEnE}
£=1 pe=d

For & given x, 2 £ £ < mfs), we introduce an expression fur determining

PriEr Ei_ ... £} which contains only one term.

By



ﬁ@pﬁﬁ C‘q {ﬂm 1?%2' - ’a.i.ri}i‘ﬂ'{ml = ﬂi',ﬂ Lo & ’a;,r'; and lat H"‘iiru = i
Bt some integer vp, 1 S rp < 1, since 1 & CL We define &1 as follows,

Definition 2.

b ll={ol, +alak to—ob, Sk 1Sreri, vén 1gagk-1},
ghere v &nd & are integers. For the case 1 = vy — 1, we further assume that
fiflergariandal, +o—aho<kandal =l  +a)<k
e oy, + 5 & E:s

M =rtandal, +5—al s <handal, | +3%a-%thn
Wiliry =rland afp  +~5—ab o S kand al,  +8 > n— k then
By + & & tf"“

We also assume that aly = O and of ., =n+1.

Theorem 2, ! satisfles the following conditions
f:'; CN-C8

meacle

3!
W SN £y =1,2,...,5- 1.

) i ! . ) X

M) I ¢, be & submes of N and satisfles (1) and {111} then ¢ € O
YiIf :‘ﬁ; satisflen (I} and ([} and lé;; = |1 then C; = (1,

Prooi.
(I] It can be proved cn the same lines as part (i) of Theorem 1.

(If We consider two cases,
{a) Let vy < ri.
Suppose ¥ € i"; we then show that thers exists a minimal eat set cons
tadning ¢ and ¢ which ia lexicographically less than O, We have
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Ingl <r <l v #ml s k-Laty =, +sand

y—a},_; <k We define

- CE U ) - {88} M oaf -2kt landr <l ore =0

{?;' Ld '[ﬂ]‘ = {ﬂigri ﬂ:e,,r+1} if nF:z,rnl(E ) <k, re< I"i

We note that ¢ = €% since y > ol . Using Thearem 1 of Chaprer 3 aned
Theorem 4 of Chapter 1, it i easy to verlfy that C% is a minimal et set
of & con kG aystem. We nlao note that y € CL. We show that 1 € C2,
Congider the following two cases for C.

(case 1) ifal , ,~y2k+landr<riorr=rl:

In this case it is obvicus chat & € O, since ¢ € O and r # y, therefore
8y, % o) =1 Hence i g C}.

(case 2) if @b, o~y Sk reri.

In this rase we note that v+ 1 # rp. Because if r = rp — L thenal | | -
B -1 — &8 £ k. By the first assumption of Deflnition 2, we have y =
ﬂf,!m,,,.ﬁws g t’f‘} and this contradicts the fact that y fi‘; Henee v 2 7y —1
therefore e | # af,, = 4. We have § € Cf and henve €4 C | €7,

(b) Let 7g = o', =

Suppose y € ﬂ; Wehavey =0, +sforsomel € r <7, 1 <5< k-1
and y —al .. <k We consider O} as defined in ease {n). We know thae
Ch =< C% v & L and O 35 & minimal cut set. We now show that i & O,
We have

r# ty, thevefore ol # b =4 . Suppose al ., —y < kand v < ol
. We show that r 4 vy — 1. Buppose not, that is r = vy — L we then have
=n+land n+i—y €k Therefore,

Brpr = Sepgp = ﬂfr,rg—l
p=a., . +s2n-k+1>n-k Bythe third condition of Definition

P
2, we get & & fj‘; resulting in & contradiction. Henea v # rp — 1 and

ﬂi",.ﬁ # ol ., = § therefore i € T}, Thia rampletes the proof of pasc (11},
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(M) Suppose for §,1 £ J S~ L and O} = {a},, o', .. .,g;r;_} is & minimal
cut et that contains ¢ and £ ~ %, By Lemma 1 of Chapter 3, we have
31 fgriat o, >al and e, =af,, £=12 .. f~1 Here
also we consider two cases:
cage {i) Lot rg < rl,

We note that § # ry. Because if £ = ry then o}, = al, > ahy =gl =
£ e, = ﬂ-}rg_l. Hence { & C‘j and this contradicts our hypothesis
that i g {}‘;. Therefore £ &£ rp. We have

dle>at,=>Jszlad al,=al,+oandal,—al, ,=a, -,
E=ag k-1

If £ % rg — 1 then in view of the first condition of Definition 2, we have
@i, € C% and therefore &1 MO # @,

Now suppose £ = ry ~ 1, We show that af,, = e} =i It is enough to
show that pf, « {. Supposs a}, = { wa then have

Ryg =y 28— @hey = ahyoy — 0y y 2 K+ 1 and this contradicts
second condition of Theorem 1 of Chapler 3. Therefore o), = )., <
and hence af , = .

Ifof  .4—al, > kthen obviously o}, € l’f'; New vonsider che case where
o i -
Grppet = Og S K. (3}

In thiz caae In view of the first conditivn of Definition 2, we note that
aky & OL. We now show thataf € €%, Wenote that al ., > al ).
Suppose not, ie., 8t .4 <8k, then

B+l a0 — Bramt S Bnpg1 = O ol = O pppr — O S K

{by inequality (3)) and resulting in & contradiction. Therefore

ad > ah A 2latal =0l te

O the other hand we have

i [ T | R I | ! P o
ah b — B = 0~k ek T M, S 6 Hence ' S k-1

il



(IV)

It follows that a*

! o1 € Ci and therefore CENC! # 0. (We also note that

o+ 1< 7).

case (ii) Now suppose rg = rt.

In this case, we have a} ,; = a} ; = i. In other words £ # ro.
We have
C:<Ci=301<t<ristajy>al,, di,=al,,t=12,...,(-1

and 35, 1<s<k-1st.a},=al,+s,a;,—a,, <k

i
rt
»J

If{<ro—1thena},=a,,+s€ C:.
Suppose £ = 7y — 1. We show that a}, < n — k.

Using second condition of Theorem 1 of Chapter 3, we have n + 1 ~

@} ,o-1 = k + 1. Therefore a%, ; < n —k and by second condition of
Definition 2 we get ai, _;, =ai, ; +s¢€ Ci Hence CNC:#0. This

completes the proof of part (III).

Suppose é’; #Ci and é’; satisfies (I) and (IIT). We show that Cic C;
Suppose not, that is there exists y € C’; such that y & é’; By definition
of C¢ as stated in Definition 2 we have

3, 1<r<rl, r#r, 1<s<k-lsty=a,, +sandy—a,, ; <k
We consider C% as defined in proof of part (II).

We showed that C. < C® and C; is a minimal cut set that contains 1
aqd y. Now we note that y & é’; and é’; satisﬁes. (I). Therefore we have
é’; NC; = 0 and this contradicts the fact that é; satisfies (I1T).

Hence y € é’; and then C¢ C é’; Therefore we get |C%] < |é’;| This
completes the proof of part (IV).

Suppose é’; satisfies (I), (III) and (IV). In the proof of part (IV) we
showed that Ci C é’; and |Ci| < [é’;[ é’; satisfies (IV) therefore
ICi| = Ié;[ Hence we have ¢! = é’; and this completes the proof

of the theorem.
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We now derive » formula for determining Pr{E. n Ei_, n...n &} which

fontaing only one term,

Lemma 3. PriErr B n...r £} = PriEyr BiY, where El is the event

that all components of £ are working,

Proof. We note that ExnEL ¢ ELNEL_ ., .ES beeausa (NG £ 0, § =
L2... %=1 Washow that Bsn EX_ N...n £ C ELn B Suppose not,
then there exists y € C"‘; girh that component y is falled. By the definition of
(2 (see Definition 2} we can find r and 3, where

I€rsrt, rédr, l<s€k-1st y=a), +oandy—al, ; £k We
consider () as defined in the proof of part [II) of Theorem 2, We showed that
O < CF and C° is a minimal cut set that containg  and y. We mssumed that
E! has ocouryed and component  ia failed, therefore all components of £l are
falled. But this vontradicts the assumption that the event S ,NEL ,n...nE
hes ocenered, hence at loast one component from each of €3, Oy, O da
working, Thus FLn EL_ n...n El € EfnE!, that is both these two events
are equivalent. This completes the proof of the lemma. "

Remark B. We note that €% € ¥ — ¥ therefore €2 &Y = 8 and hence the

twn avents Ef and EY, are independent. So using Lemma 3, we can write

PH{ENE N, .NEY = Pe{EinE}) = Pr{ESLPriftl e J[ o+ [T o

JECE e

tig (i)
We now can write a closed formula for determining Fr { lJ .E'i} 8 followa
=1

ngix rg (it
Pr { | E;} = Pr{Ef}+ Y Pe{EiNEL_, NN E}
| =i

=l

102



rh is equal to
el L. o »
Pr{Ei} + 3 Pr{Ein i} = Pr{Ei} + S Pr{E}. Prifl)
T sk
. Ali)
=Tley + X Il w I »:
1&C] Fud jéﬂi‘ J'E-ff:“jl
Buow using Algorithm 3 of Chapter 3, we atate an algorithm to compute Vesely-

fusel] reliability measure of component importance in a con|k|n:G aystem.

ALGORITHM 2.

Input. FPuoeitive integers n & (n 2 k), reliability vector p = {py, oy, .. Pl
wdl<i<n

Detput, Vesely-Fussell relinbility meesure of importance for component ¢ in
§0n kinaG system.

Btep 0. Put z = L and R, =0 and go to step 1,

Btep 1. Generate O4. If v = I put €% = P and P = 1; otherwise compute €

and put P = T gy, (€% 15 obtained as in Deflnition 2). Go to step 2.
Jedry
Btep 2. Put R, = Ri+ ] gy P. If €% ia the Inst minimal cut set that contains
JECY
the component 1, that is r = n (i), go to step 3; otherwise piit r = v+ 1 and

then go to step 1.
Btep 3. R,/Pr{4%(X) = 0} gives the Vesely-Fussell reliability measure of

bnportance for component § In & con|kmG system. Stap.

We note that Pr{¢®(X) = 0} = 1 — A¥(p,») can be determined by using
Algorithm 1. It may be noted that for the purpase of ranking of components

it 18 not necessary to compute Pr{¢%(X) = 0},

Exsmple 4. Consider component 4 in Example 1. Minimal cut sets containing

component 4 arranged in lex ordering are:
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z| ¢} &
113 4 7

202 4 7|3
3|12 4 6|7
411 4 7|2 3
§11 4 6|2 T
611 4 5|6 T

Therefore using Remark 5, we have

19,04, p) = ARG + BREPy - GG@Py - RTPiP + QWP + Ll Py
A Pri{s®(X) =0}

Remark 4. Using Rernerk 1 and Remark 5, we can compute Vesely-Fuaasll

siructural importsnce of component § in & conjkn:(Q system as follows

L L]
(L +37(1 ;gjlﬂémﬂy

TftE) = Ml /211, 1/2) = 2 :
(/2180 4 (1 2)ICe G
u=T

£z and (f“; are 88 given In Definition 1 and Definitlon 2, reapectively.

Vesely-Fussell Importance Measure in a conjk|n:F System
We now consider the problem of evaluation of the Vegely-Fussell measure of
romponent importance in & conlk|n:F system. We know that s minimal cut
st of & con|kn:F eystem isof the form Dy = {zz+1,...,z+ k- 1l}, 2 =
L2...,n— &+ 1. Hence we have

{0, D05 ..., D} if 1<i<k

iy = ¢ {0 i, Dicirar-o - I} if k<iga—k+1
{Dickst, Dicisnien o Dpepn} i =k 4+l <ign
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where I}i) denotes the colleetion of all minimal cut sets that contein compo-

nent 1 in a con|k|n:F system.
Veaely-Fussell reliability importance of component i in & con|k|n:F aystem
my(f]
Prs | A}
gl

TorliP) = By = 0]

where A, is the event that all components of the minimal cut set D are failed

is given by :

and my (i} is the number of all minimal cut sets of a conlk[nF system, that

soatain component .

s ()
Lermama 4. I, p) x Pr U Al

r &
Tlas foi=1
fe1
Ek—1 .
H@HEF“ qu if 1<i<k
j=1

myleh i i o+k-1 ‘
Poldaly=2 [ o+ X P ][ & if k<ign—k+1
Stk =tk =z

i n=k+1 a1

H 4+ E Pz-1 H gy f n—k+l<izn-1
Jwi—k+1 rEL—k+l FET]
[I g i i=n
L J=ri—ktl

Proof. Using the relation

{ wiag (i) g [d}
‘t Pw{[__j AL}-—Pr{A*H Zﬁr{,ﬂ*mﬁxm LAy A}
a=]:
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ind the structure of D3] the proof follows.

Remark 7. From Lemma 4, we note that
Hp(lp) < Hp(2p) < - < I plk.p).
Bimilarly it can be verified that

Ifpinpl < ffg(n~1,p) < - < Fpln —k+1,p).

Lemma 5. Vesely-Fuseell struetural importance of component £, in 8 conik|mF
syatem is given by : FE2() = Jpld; 1/2,...,1/2) and we have

[ (1/2)" £ i=1

(L2 + (- 11/ =gtk o 1<igh

Felti 172, 12 e § (/2% + (k= 1)(1/2 Y = S8 0 k<ign—k+1
(1/2)* +[n-—e f]*“mﬂ-,!a;i U n-f+leign=-1
. {1/2)* if i=n

Froof, The proof follows from Lemma 4.
Remark 8. From Lemina &, we have
IR < I3y < - < IFRRY = IR+ V) = = I{ifln — b+ 1)

L < Rdn-1) < < Kf(n - k+1)

e =rgn-i+1,i=1,2,. ..n

Remnarks, Although using different stouetural importance measures, different

importance patterns for eomponents {ordering) cen be established, but it does
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oot seam to be case for the reliability importance messures, ss the compo-
vent refigbilities may vary. However under certain assumptlions o component
reliabilities, partial ordering of components can be obtained. Regarding the
Vesely-Fussell reliability importance pattern of & consecutive-g-out-obnF svs-
tem, we have obtained the following results as given in Lemma 6. First we

psume that o, = ppois1, i=1,2,...,m= {{n+1)/2.. In view of this and by

Phyid]
using notations given in Lemma 4, it is easy to show that two events | A%
Fi=]
_ mg (n=i+1] & A
gad || A" are equivalent,
gl

- In other words, if i = Paeiet then I (4, p) = Ifp{n—i+1,p). i = 1,2,.

This means Vessly-Fusssf] reliability impottance patterns among components
1,2,...,mm includes analogous patterns for the remaining componentd. (It can
be easily shown that this property also holds for the Birnbaum relinhility im-
portance measare if 1y = pooiet, 2= 1,2, 0 = {0+ 1)/2), which s
ronsidered in the next section).

Mow using this and in view of Lemma 4, we have obtained the following results
that are glven in the next Lemma.

Lamma 8. [{:(i, p), the Vesely-Fussell importances for the components of a

eonsecutivek-out-of-r: I system eatisfy the following patterns:

(8) Hm <pe < <Pk Pag1 = P4z = = Pak =P, Iy = Proidl
yv=1,2,....m={n+1)/2] and p < g then
fellp) < p(2 p) < - < Iplkp) < -0 < FEp{2k, ),
(e, pl =2k +1,pl= - = H(n~2k+1,p)
and [fp{n -2k +1,p) > Hpln - %k +2,p) >~ > y(m,p).
IEelivpl = fHeln-i+Lpli=12,.. . m

(b) Hpp € pg < < gy Prgt = Prgn = = Pag =P, Pi = D=1
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t=12...,m=[n+1)/2] and p > p then
Ip(lp} < Hopl2,p) < - < Ifp(kp),s
Hpk,p) > Hplk+1,p) > - > K p(2k,p),
Fop(2k,p) = Ip(2k + 1,p] = <o+ = Ifp(n — 2k + 1, p),
pln—2k+1,p) < fipin—2k+2,p) < - < Hipln—k+1,p)
and [fzin—k+1,p)» Hpln—=k+2,p) > > Fipln, ph
Heli,p)=Hpln=-i+1plLi=12..m

(e Hp =py=- =pp =0 ppei < Prea < < Py i = Pr—ih1,
i=12..m=|(r+1)/2] and p < Py then "
pllip) < IFR(2,p) < - < IPp(k. B},
Helhp) > ik + L, p) >+ > Hp(m = 1,p) > Hplm, p)
and Jipls, p) = Hpln—i+ Lphi=12....m

[} Epy=pa= - =P =D Pett <Prgz <0 < Pouy B = Pl
i=12..,m=[(n+1)/2] and p > py, then
Felliph < Hp(op) < < Hoplkop) < Hplk +1,p),
p(2k,p) > Hip(26+1,p) > > Ifp(m = 1,p) > Hp(m,p)
and fpli,p) = Ifpin —€+1,pj,§%1,2§....m

e fpme<pm<- <ppandpy=ppopi=L1L23%.. = {{n+1}/2/, then
rllip) < Ifp(2 p) < oo < Hiplk, p),

CIplk,p) > ek +1,p) > > Ifp(m = 1,p) > fp(m, p)

and f{f;[i,p] Elﬁpcﬂ-“ i+1,plhi=1,2... m.

roof. Using Lemma 4 it can be simply shown that for i = &, &+ 1,...,.n —k

we have:
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=k oy
e+ 1p) - Iali,p) (‘H 'I.a)? Pl (J 1] @;‘)'
=i+1 ={—k-+1

Hence using this and in view of Remark 7, the above mentioned cases

can be easily argusd,

We note that, Remark 8 gives a complete ordering of structural Yesely-Fusaell
mportance mepsure M a consecntive-k-out-of-mF systerm. [t also holds for

eeliability Vesely-Fuseell importance measure in iid case (g = p,i=1,2,....n}

4,4 Birnbaum Importance Measure in a conikin:F System
This Section vonsiders Birnbautn messure of component importance in a
eon|k|+e:F system. Birnbaum [8], defined rellahility and structaral importance

of component ¢ respectively as follows :
Ig(i. p) = Pr{d{1i. X} > ¢{, X]} = Pr{[., X] £ B{i]}
and

) = o x] ‘ﬁ{{;i}l = ¢} _ Inli, 1/2,1/2,.. . 1/2}

where ¢[x] is structure function of the system and B(1) is the collection of
gll eritical vectors for component £ Recall that (., %} is & eritical vector for
totponent & iF and only iF @{1,x) = 1 and &(D;, x) = 0.

Using the approach presented in Section 2 and Algorithm 4 of Chapter 3, we
provide & nonrecursive formula for determining Birnbaum reliability measure
of importance for component ¢, in & conjk|mF system. In this formula compu-
tation of relisbility function is not required. Furthermote we uae only minimal
eritical vertors for component #, and this reduces number of computational

SLEps.
Let (., X) be a critical vector for component §, In view of Theorem T of Chapter
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&w\& note that (., x) is of the following form :

i X) = (o gt qips Ogi e e v i)

whera P' and ) are s minimal path set and a minimal cut set of the system
sich that PN Q¥ = [1}. Therefore we can wrlte

Iali,p) m'f’?"{ | W;}
[ wIEB)

components of (' = {4} ave failed,

In order to generate all eritical vectors for component f, in & conjk|m:F system
it 18 enough to congider the case b+ 1 €4 £ i - &, since other cases for i can
be obtained as special cases of this case (see Remark 8 of Chapter 3). Now

RIppose
P om {183 i By m1y b By 1“;.:‘1} WHETE dy o, = i

15 & mindmal path set of & conle|reF syatem that containeg component £ In view
of Thearern 7 of Chapter 3, the minimal cut sets corresponding to P! are aa
follows

&, = {tergpr—k— 8+ L8 —k—8+2 00 Qe —a} ora=1,2,...,n,

WHETE iy = By g4l — Qupe-1 — K. We note that 1 € s £ & atid these minimal
cot sets are arranged in lex ordering. We also assume that all minimal path seta
are arranged in lex opdering. Suppose WE {s the event that il components of
Pt~ {i} are working and F! | ia the event that all components of & , = {i} are
failed, We know that for all 8 = 1,2,. ..,y these two svents nee independent,

sinee P 1 @L, = {i}. Next lemma is required in the sequel,
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; Lemna 7.

{W” (L:Jl )} = PriW}pr {};Ia F:*} i} Lgﬁg{l}mj (gpm @E#E‘s’ﬂ%)

WhHre 7 = G et = & <+ 1 and we assume that p, = 1 if m = 4,1, that is if

e ],

. Proof. It is enough to show thar
e ]
Pf{U F;-.,} =3 m JI @
st = gl i)

We know that
FT{UF;.:}EPT{ J“"'EPP{F;:: ;amiﬁﬁgawiﬂ HF;.I}"
a=l

In view of the fact that &%, ,'s are arranged in lex ordering and n, < &, it is eagy
to verify that the two events Fi " F) A FE, o0 NFL and FE N[ Xy = 1}

are equivalent. Henes we can write
Pr{Fy NF e NFf, e nFL Y = Pr {F;J M {Xm = 1}) = Pr{Fl }Pr{Xn =1}
Ueing the assumption pm = 1, when s = 1, we then have

Pr{f_}ﬁ;,} < I @

2=l = ) (i)

where 1 = g py.1 — 8 1, This completes the proof of the lemma, |

Again congider P} = {22 1,840+ s 8108 Bargdin o Bari

We note that M= tgyp; — 8+ 1, for s =1,2,. ., g rpet = g ot = &. Henee
we have Bg 1 + &+ 1 £ M € a5 py41, therefore § < m = a;,¢,41. Recall that
{‘3’;, the set cotresponding to P in Deflnition 2. As f < m < ag g4y and the
definition of C%, implies that m ¢ €. Using this and Lemma 7, we give a
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direct formula for determining Birnbaum rellability measure of importance for

oI ponent 1, in a con|k|n:F system as follows.

Theorem 3. Birnbaum reliability measure of importance for component €, in

& cont|&|n:F system i3 given by

sl N f
Iplt, pl E H F;) Ei?m H G
B=l NgjeEpi-ii} a=l fEEQLAUdl—{ﬂj
l where ny(i} I8 the number of minimal path sets of the system that contain
tompunent 2.
: "_A':i'}' ] g .
' Proof. We note that Ig(f{,p} = Pr{ | (W;ﬁ (u F;:.a)) } Using the

. Twl 1=l
- gimilar argument given in Lemme 3, it can be shown that two events

My ) .

snd Win |l 5 J) M W} are eguivalent. Where W is the event that all
‘ =1 H X . - " .

camponents of & are failed. The proof of the theorem follows from Lemma 6.

Remark 8. For using Theoram 3 in the special cases 1 € &, {that ismy = 1)
and i = & < i (that Is rg = rl) we assume that g = a,p = 0 and

Basgtt = dpeisy = 1+ 1, vespeatively.

In fact on the basis of Algorithm 4 of Chapter 3, Theorem 3 introduces an
. algarithm for determining Birnbaum reliability measure of component impot-

tancd in & eonlk|rcF system.

Remark 10. Griffith and Govindarajula [28], first considered the problem of
calcalating Birnbaum's messure of component importance in a conik|n " sys-

tem. For the case where all componnents of the system are L.i.d., they intro-
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]

- duced an approach for computing Bienbaum retinbility measure of component

'impﬂrtam:a in & con|k i F using Markov chaln techniques.

Remarks. Chadjiconstantinidis and Koutras [13] have given both exast and
| recurgive formmilae for the evaluation of the Bimbaum importanes of relinbility
Btructiires helonging to the wide class of Markov Chain Imbeddable Systems
IMIS). The general results obtained are used for studying the Birnbaum impor-
tence and the other two importance messures for o consecutive-f-out-of-ruF

gystent, Some more results on importance ordering are also given,

On the basia of Birnbaum importance messure In iid case, Chang, Cui
-and Hwang [13] have given wome partial orderings for the componenta of a

- potsecttive-k-out-ofon F system.

- Using the Fibonacci sequence of order &, Lin, Kuo and Hwang [42], have glven
" closed formula for determining the Birnbaum structural importance of com-
ponents in a consecutive-g-out-of-rF system. For some values of n and &,
and on the basia of Birnbaum structural importance measure, ordéring of the

components in & congecutive-k-out-of-ruF system are also given in [42],

Chedjieonstantinidis and Koutras {13}, showed that Birnbaum reliabilicy
importance of component § in & consecutive-k-out-of-mF system is given by:
Ig(i,p) = %{ﬁ'ﬂ;ﬂl: o P = De(Bicgy o Pa R = ] = Ba(paa)}
where h;(p, m] ia the relisbility of & conapcutive-k-out-ob-rmF system which s
eomputed by the Markov Chain approach formuls (2}, given in Sectlon 4.2,
Here we see that, in order te evaluate the Dimbaum relisbility importance
measure of 8 component, we need to apply formula {2} for each component

saparately,
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We now congider Theorem 3. It provides a closed formula for Birnbaum reli-
ability measure of importance for cotmponent i, in a conescutive-k-out-of-n:F
gystem. This Theorem requires the aveilability of critical vectors for component
£, which can be obtained using Algorithm 4 of Chapter 3. In this algorithm we
need to generate all minimal path sets contrining a given component. There-
fore Theorem 3 may be uzed bue not for large values of 1 a8 the minimal path
et containing & given component sre needed.
Howeever we can compute Birnbaum relisbility importance measure of compoe-
bente in & consecutive-k-out-of-niF system using Algorithm 1 of Section 4.2.

Copsider Example 1, where the reliability function of & consecutive-3-out-
T'F system is glven by

AF (P, 7) = paPs + Pabse + PaP4Prisds + PaPeda + PrP4Prases + Pripupegadnir ~
PiPPTE20s + PPaPedadagr + Pipcpsdagagegy.  Therefore we get the result:

- . BhgiT,p
Ig(l,p) = "_%iﬁ,_!?l = P 1oty + PaDefads T + Dalsedsdeds

)] : _._.‘5&3{'?'5@) . \ o . .
B(2,p) = W = Paga + PaPrifags + PaPagagegy — PP = PINESOT

3 = 1 ha Praefa G Oy
Fhral T, ,
Is{d,p) = mal;ja P) = Py + Pags + PPl — PaPs — PaPaPrds — PaPaPatsgr

P By — ﬂl_miﬁﬁgm'? = tr Bl Tedadr

_ Gha (T, pi
Ia{d p)= ___%53%;3_11 mrgeds + Paprgsgs + Falegagsdy + Pipvgaqa + Pipaqedagr

TP PedeTadedr

. dha (7, p}

. BiglT,

oha(1.p)

In(7,p) = =5

=M PP dedads
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Blrnbaum Reliability Importance Measure in a k-out-of-n:F System
Using approach given in Algorithm 1 of Section 4.2 and in view of explicit

formula for reliability function of & k-out-of-n:F syatem, Bimbaum reliability

itaportance for component £ of this system when 1 > 2k — 1, 1s glven by

3! i " n
Bip=a+Td ¥ Ml - % o I F
r=l | b Zoesne am) b € ein o

kT s=1j)=k-r
h J#EL ke R FETE L

where the first inner sum in over all 4,..., 4. such that 31,... i g {k-r+
L....n} ¢ € {if,..., i} and the second inner sum is over all 3y,... i, such
that iy, e {k—-r+1,... ,nh e {i,.. .. 4] and

T

I # Hicfkk+1,.. ..n}
= 4 S

0 gtherwise

4.5 Recursive Algorithm for System Reliability

In this sectlon we examine the probles of evaluating the reliability function
of & con|k|mF system from a different angle. Shantikumar [83] introduced a
eecursive algorithm for computing the eeliability of & con|k|m:F system. In
his method fif {p, n) is obtained by conditioning on subsystems of the criginal
syatem. Anather approsch wes given by Seth [B0]. He used dual strueture to
abtaln the reliability function of the origingl system. We give here & different
spproach using minimal cut sets of the system. We note that a minimal cut
set of & con|kirF ayatem i8 of the form

D.={rz+1,... e+k-1} 2=13 .. 6-k+1
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- L#t A; denote the event that all components of minimal cut set 22, are failed.

Hence
R . LR £ ] 7
Wi (p,m) =1*—h£(mﬁ-}mﬁ{ U Aa}
L Tl
which is equal to
fi—k=1

P‘?‘{a‘iﬂ - E PF{Ag ﬁj@-_a MAear... M ,‘il]r

=
We have;
PriA.n A N Aan..ndi}=

foa+k—1
[T gpe if 2<x<hk+1 lor n < 2k)
=z

J

.r+k-1 E=k=1 '
IT ij;hi(lmPr{ U A;}) H k+3<z<n-k+1 [or n>3k

i J=r J=l

We note that Pr{ H A } F(p,& —2). Hence

Y

H%Fﬂ%—l f 2<s<k+1

WA Ag N AL} = =
a-ﬁl‘?jpi—l {1— R (p,x - 2*}:] if k=2<zsn—k+1

| =z

If we assume that Bl (p,2) =0, for z = —1,0,1,.,., k= 1 we then have

Prli~t

Pr{.‘i&ﬂﬁmﬁ I"%fi}“‘“ H i ¥n— 1[:1—hp[13|$“51)

for # = L,2,...,n—k+ |, Therefore we have

A gl I+k-1

Mioa =3 I apea(1-Ape-2) ¥axk (4]
gl J=x
where pg = 1.
k1 : n kel -
Suppose a; = ] gy we then have Af(p,n) = 3. aupet (1 - i (0.2 = 2)).
L] =1 ’ )
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We note thet oy = kqﬁk-. We now state an algerithm using the above
g

*
focmula to compute the rellability function of & con|k|n:F ayatem.

ALGORITHM 3.

Input. Integers rt, & {n = &) and components vellabilities g pa, .. o5 P
PEm=<l, g=1—-pi=12,. . ..%

Dutput. Relinbility function of & conjk|n:F system.

Step 0. Pt A, = By =By =~ =M1 =0,8, = f_[-q?,-,m = 1 and
§y=0. =

Step 1. Do Forz = Lton— Ak + 1. Put Ay = ape [I;—R*_gj , B =
Semt # Bo U 3 = n=Fk~+1 gotostep 2. Otharwise put o, = Zgeqs. I
p2 k41 put Kooy = S

Step 3. 1 — Su-sq b8 the reliability funetion of & eonlk|n:F system, Stop.

Remarks, For iid case recursive relation (4) reduces to the following equation

a& follown;
n‘—#g--l atb k=1

Wpa=s L [I geahilee—12)

=1 J==
where oy = 1 and Af{p,z) = 1 far z = —1,0,...,k — 1. Hence if py = p,
i=1,2,...,n we then have:

N ad.ie 2
RE(pon) =gt + 3 pataflpaz—2).

=2
For k < n < 2k it implies that B (p,n) =¢* + (n — klpg* = g {1 + [n — K)p).
And for > 2k we have: "
_ __ n—k+1 _
RE(pon) = ot + kpet + pg* ¥ Ry (p .z — 2). Therefore

r=k1

n—k-1
Riipn) =1—Rifpn) =1—g¢* —kpe* = pr* 3 hi(msz), n>2b (3)
=k
Papastavridis and Koutras [47), have given the lower and upper bounds for
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sallability function of 8 consscutive-k-out-of-n:F system with i.1.d. components
ad followa:

i = EL o q.hjn—kﬁl < ﬁf‘{ii‘sﬁ-} < ] = Q"E g ql-+!]n—h+‘1 = ¥,
Using ! and » and in view of equation (8}, we now give some new bounds for

kE{p, r), when n > 2k. We have:
Aa—k—1

A (o) €1 - gt —kpg* = pgt 3 (L= gf P =

1—g*(l+ &kp} — p{1 — g% {]_ - Ffi, q#}sﬁ.—ik) ~ 1.
On the other hand we have: -
Mpn)zl-g" —kpgt—pg* T (L—g*+g*H M=
B G
We note that £ =1 — g*{1+ kp} — (1 — mg®) (1 - {1 = p@ntjﬂ—ii:)i
© We also note that if ¢ ~+ 1 then hf {p, n} — 0. In this case we alsa have { = 0,
#— 1, L — Dand LY — 0. Therefore it seems u is not aharp for large values
of g. The following numerical reanlis, given in Table 1, show that the bounds
L and &7 make good spproximations for A (p, »).
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(Table 1.)

£ g f t L i n k 4 [ % L i

2 0. |.9135 0219 197 0195 | 10 2 0.3 | 0781 .3007 0177 1917

2 02 6025 462 7244 7202 10 4 05| 6365 80D 7520 7357

3 0.3 |.8033 8584 8442 S457| 10 4 0.7 |.1463 5028 .M20 374

4 0.3 |.5447 D610 5580 9880 | 10 5 0.7|.3315 7331 3798 6708
W 2 01 | B267 8422 8385 8306 (10 4 08|00 S49T 1185 1858
b 5 01 9008 000 0959 0999 |10 5 080024 6688 3446 3446
W 2 D2 | 4604 5380 5033 5277110 5 09 0047 6941 1143 1143
$ 3 02 |.B664 8000 L8874 8884 [ 20 4 0.5|.3338 .5820 .5056 5508
Mo2 01 .7AT2 7604 Te44 76TL| 20 5 05| .8017 7773 7472 7689
W 2 015|.5169 5712 5621 5682 |20 9 07| 6100 8640 8269 827D
R 2005|8546 8000 8894 8807 |20 10 O7|.7296 0106 8870 8870
B o2 016111 6421 6348 6421 (20 o 08[.774 7214 5726 5808
¥ 12 08 | 2585 .7688 .B87T8 7016 |20 10 08 2866 .7ETE 6779 6779
14 08 | 4655 8605 K155 8164 (20 O 0.9|.0028 6224 1900 .2256
016 0.8 |.5638 8932 4503 8503 | 20 10 0.9|.0089 6768 3026 3026
¥ 14 09 |.0121 6TAT 4088 4197 | 30 10 07| 5478 B363 8061 .Bldd
¥ 15 09 |.0250 7169 4853 4853 [ 30 14 0.7 | BOOR  HG60 9607 9EQT
hd
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Chapter 5

Number of Minimal Path Sets in a Consecutive-
k-out-of-n:F System

5.1 Introduction

Although the minimal path sets of a consecntive-k-out-of-m:F system can be
generated using the algorithma presented in chapter 3, but the combinatorial
problem of determining the number of minimal path seta of the svetem still
remains a diffienlt task, On the other band we note that number of terms
in the nonrecurgive formula for determining the velinbility of the system as
given in Algorithm 1 of chapter 4, equals the number of minimal path sets of
the syatem. In this chapter we consider this aspect of the system and study
the problem of determining the number of mindmal path sets of & con|k|n:F
gystem. In Section 2 we present explicit formulae for determining the number
of minimal path sets of n linear and a circular con|2inF aystems, We show that
the recurrence relationships for the number of minimal path sets of & linear and
& circular con|2|n:F systems are the same but with different initial conditions.
We also give closed form formulae for computing the number of minimal path
sets of known size in both & linear and & circular con| 2w systema.

Section 3 considers the problem of determining the number of minimal path
wets of & oon|3|n:F system. We give the relationship between number of minimal
path sets of & linear con|3|A:F system and that of & clreular con|3|m:F system.
In these two systems, rectirrence ralationships for the anniber of minimal path
geta are mlso the same hut with different initial conditions, A closed form for-

mula for determining the number of minlmal path sets of a linear con'3|n'F
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-gystern is also given which is more complicated than that of a con|2[n:F system,
This leads us to introduce & recursive relationship for determining the number
of minimal path sets of a general con|k|n:F system, which is considered in Sec-
tion 4. We shall use the following natations.
ai(n) ¢ collection of slf minimal path sets of a con|k|n:F system,

(k) : number of minimal path sets of a con|kirF system.

B 1) number of minimal path sets of size v in & linear {eircular) con|2 | F
gystem.

Filn) (Feln)) : minimum {m@iimum} size of & minimal path set in a con|klm F
system.
pi(k) - number of minimal path seta of & con|k|n:F system that contain com-
ponent §.

|4

: cardinality of set A,

5.2 Consecutive-Z-out-of-n:F Systermns

In this Section we consider the problem of determining the number of minimal

Minimal Path Sets of a Linear con|2(|n:F system
Suppose pr(2} denotes the number of minimal path sets of & linear con|2jmF

gvster. The following lemma is required in the sequel.

Lemma 1. pi{2) = pi_(2) + 75 4(2) forn 3.
Praof. Let p5(2) = |af{n)| where of (a) is the collection of minimal path sets

of & linear eonl2|n:F system. We note that
pyin) ={P: Peal(n)andne PYU{F: Feal{n)andng P}
and the ¢ollections on the right hiand side are digjoint. Ifn € P thenn—1 ¢ P
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andn—2c P Andifn& Pthenn—1€ P We have
eg{0) = af(1) = {8}, a7 (2) = {{1h.{2}}, oF(3) = {{1,3}.{2}} and

ap(4) = {{1,3}, {2, 3}, {2.4}}

It 1% emay to verify that for n > 3 wa have

{P: Peaf(n)andne P}={P: P=TuU{n-2n}eud T € af(n- 3}

and for n = 2 we have

{P: Peofin)sndngPy={P: P=TuU{n-1}and T € of{n—2)}
Therefore we have
pE2 = |ak(n) = {P: Peeabinjandn € PY+{{P: Peojinlandn g P} =

|{P: P=Tu{n-2,a}, T € af{n=3)}|+|{P: P =TuU{n~1} T € afin-2]}
That is, 75(2) = |k (n = 3)| + [af(n =2 = pb_g(2) +pE_q(2) ;1 2 3. Ths
completes the proof of the lemma. "
Suppose |z denotes the largest integer less than or equal to . We agsume

Tl .
Lha.t( )xﬂfﬂrm{rawrzu,
T

/2] -3 i
Theorem 1. pEi{Zi= 3 3
f=ins] f=n-2-2 | j

Proof. Let g(r) denote the generating funetion of $2{2}; the number of min-
imal path sets of a linear con|2|mF system. Note that pf(2) = pf(2) =
1,75(2) = 2. We have
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gla) = pf12) ~ ph{Djz + ph (2% + pE(Ma® + -+ Phf2" 4 - -
rig(z) = pE (2T + pL(R)z 4o b 5 (2] 2™ +

Tglz) = PE2)25 + - o (2 4
Using Lemma 1, we get (1 —&* — 2¥)g(z) =1+ r + 5" This implies that,

l-l—r-l—r l+z+7°
B e TS Py

glz) =

For sufficiently small # such that |2*(1 + 2)| < 1, we have

Hz) = {1 42+

E:rﬂ'{lulwx:l] (1+ &+ 2% {EIS&‘E( ]

§=l} faelh  feml

For & given 4, the maximmm walue of power of £ is 3 + 2. Hence for getting
coeficient of =*, the minimamm value of § 9 the nearest integer greater than or
aqual to {n — 2]/3. That in |n/3]| < 4. Similarly, the minimum value of power

of @ is 26 Hence ¢ < [n/2). It is easy to vee that coefficient of 2™ in g(z) is

. Riv ] A i
2= 3 3 B ) ]

=ln/3) d=n-B-2 )

Minimal Path Sets with Known Size in & Linear con|2[n:F System
Here wa firet give s vecursive relation for the number of minimal path sets
with known size of & linear conj2|m:F ayatetn and then we derive & closed form

mrpression for it. The next lemma i8 required in the sequel,
Lemma 2. Suppose #¥(n) and 7F(r) denote the maximum and minimum size

of & minkmat path set i1 8 linear con|k|n:F system respectively, Ye then have

Feln) = { E{ﬂTJ ! ﬁ_} > ] and  FE{n) = |rjkl.

2[5 +1 w =]
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Proof. From Theorem 1 of Chapter 3, we note that Ry = {k, 2k, 3k, ..., k|n/k|}
is a minimal path set of size [n/k]. Now suppose A C N and A is a path
set of a con|k|n:F system. We note that C; = {sk + 1,sk + 2,..., (s + 1)k},

for s = 0,1,...,|n/k] — 1, are [n/k| disjoint minimal cut sets. In view of
Theorem 1 of Chapter 3, we have [ANC,| > 1 Vs. Hence

n/k|-1 n/k]~1
U AnC)usiN- | CIn4
s=0

s=0

4] =

which is greater than or equal to

n/k]-1 ln/k]—1
U AnC)|= > 1ANC| > [n/k] = |Ri|.
s=0 s=0

Hence R, is a minimal path set with minimum size.

We now consider two cases case (i) and case (ii) for 75 (n).

n+1 n+1
i) L = =t.
(i) Let P lJc " lj We note that

Ry, ={1,k+1,k+2,2k+2,2k+3,...,pk+p,pk+p+1} is a minimal
path set as it satisfies the conditions of Theorem 1 of Chapter 3, where
P :[#J and we have |Ry| = 2p + 1. Suppose

C:={1,2,...,k}

Co={k+1,k+2,...,2k+1}

Cs = {2k+2,2kj|-3,...,3k+2}

Ct:{(t“1)(k+1)7-'-,(t“‘1)(k+1)+k:n}
and Let P be a minimal path set of a linear con|k|n:F system. We note

that [PNC)| =1 and |[PNC;| < 2for 2 < j < t. We also note that
t
P =J(PnNCj) hence

J=1

: = n+1
|P|=Z|Pmcj|g1+2(t-1)=2t—1=2[k+lj—,1

=1
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which is egual to

{ } l=Hnflk+1)]+1}-1=2|nf(k+1)]+1=2p+1 = Ry

Fi! +1
Hence in this case Hz is 8 minimal path set with maximum size,

(i) If ;:I i s !: + iJ = t then using Theorem 1 of Chapter 3, we note that

Ry={1,6+1,k+22b+22k+3... (p— i1k +p 0k +p}

is & minimal path set and |R3| = Ip = 2%1?1;'{5: + 1]|. ¥e have

l’j';:{(f—'l]{ﬁ:-l-l}_n..,{t—1}[-‘:+1}+k:n—5}

We define Oy = {[R—a+1Ln-s+2,...,0}

Suppose & C N i8 & minimsl path ast, We note that [P Ey)| = 1,
1By <2, for j=2,8,....1f and

PG| <limnee Sy S {n—k+1n~k+2,....,n}and |[Prin-
k+1ln—k+2,...,a8} =1. We alao note that P = i[:]?{PF‘lﬁj}. Henee

ELal
Therefore in this ease Fy 1= & minimal pm;h set with maximum size. This

completes the proof of the lemma. ]

Lemma 3. Let pt denote the numher of minimal path sets of size r in a linear
con|2|nF system, We haver po® = pl_3 Lyl 3 n»3, i srg Fiinl.

We assime that

¢ fa<o
0 if n=01 aad 0
prt =g 1 f n=0,1 and r =10
a Hfn=2 and retd
2 Ha=%2 andr=1
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Proof, If n = 3 we have, pl* =

l ifr=1o0or r=2
0 otherwise

; 3 ifr=29
and if nt = 4 we have, pit = < e
0 otherwise

Hence the lemma iy trivially true for n = 3 and 4. Now consider the case when
n = 6. Let PT denote the collection of all minimal path sets of size r in & linear
con|2|rF system. We note that

Pr={5: 8P and neStu{f: SceP] and n ¢ 5}
and the collections on the right hand side are disjoint. We have
{5 : SeP’ and ne S} =Py =p2" (sincen~1¢g 5n=2¢5)
S : SeP, and n €8} =Py =53 (since n — 1 £ 5)
It follows that g5F = |P7| = [PL23] 4+ |PLoh = gb™ + ol 55

Thir completes the proof of the lemma. n
ﬂwr+1  :

Theorem 2. s{'f = for FEmY S r S F(n) and n 2 2,
n— dr

Proof, Let g(r,y) denote the generating function of pi¥, the number of min-
imal path sets of size r in & linear con{2|n:F system. We have

_ oo Fiin) B
plapl =3 3 ="V
=0 p=pL i)
= 1-+z+ 22% + 23y + %) + 3ty + (17 + 30+ 2Pl + )+
= 1 [n}

=l+z+2%y+ Y 2 Y ¢t
el rmf‘g-"tn]

Uaing Lemma 3, we have
| N 1L b :
glmy) =1+z+2y+ 2" 37 v+ o0

=l fzi‘L[n}

P I 22 7 i) 1 r=1.d 3 9?: n-3 it =i =2k
=1+2+ 28 +2%Y 2™ ¥ ¢ e A 3
n=31 PPk () =l reetf (n)
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=1+ 22"y + 2y lglz, v} - 1} + 2" {gla, y)}

1+x+ 2%y
L — xby — riy®’

It implies that glx,y) =

For auficiently small  and y such that |22y(l + 2y)] < 1, we have

glz, yb = (1+z+2?y) {Eimjﬁﬂ + :ry]‘} (1+z+riy) {Ex“";r‘E[ry [ )} :
J

il d=0 J=0

For finding coeficient of 2™ as in tha proof of Thearem 1, we note that
|n/3] 4% |n/2]. We have

Pl in) , neti ¢ ' |
2 er‘; E y E IJJ \ e yﬁ.afhmi . 3
= (nf =) ji=n-2i=1 ] iRl

Let = |n/2] — ¥ then

!‘L[n I‘HIHE"‘— LRE] nmglmli'i—g,{_m iy i
5 y"ﬂﬁ“‘ml &L“zr%-“m“’{ 3 y’( /2] E)+

f'm?;"-l:“] I=i =i — 3 A8 HH =1} i
T IR 2| -t
L - 2nf3] 42 -2
For a given 7. suppase © = [n/2] + k' for some & = 0.1,... }(n) — (/2]

Then the coefficlent of yl»2—* ig

n—{nf2 — &' -1 Y nf2 -k -1 N n— /2 -¥
22| =n+ 2k +1 2|n/2) — 4 28 202 —n+ 2%

n—v—1 .nwal .ﬂ—T
Ir—n-=1 F-—n 2r =1

Firat and second binomial coefficients corvespond t6 § = 2{n/2] —n+ ¥ 41 (if
B % na=-|nr/2) — (/3] + 1}, Wenote that [ > 0, the third binomial coefficient
corresponds to d = 2|n/2] =n+ & (if & > n— 2{n/2]}). We also note that
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1< 2|0/2) = n+Fpin) - [n/2) = |n/2) — n+75{n) < n/2) - |n/3).

Tharefore we have

oL ft—7 Bn—r—1 .ﬂmr-—-l' o]
o= = + =
dr — 1 2 =14 ] , r=n in—3r |
Tlis eompletes the proof of the theorem. N

Remark 1.

(1) If ri is odd then the minimeal path set with minimom size {r = #{n) =

|n/2]) is unigue since in this case we have pTt = 1,

(i) Ifn/3 = |n/3] then the minimal path set with maximum size (r = 75 [n))
is unigue because we have (n-+13/3 > {(n<+ 1]/3] =n/3. From Lemma
2, wa have Fl{xn.} = 2|n/3] = 2n/3. It implies that

~FE(n) +1 - En;'.'i—l—l)_l

Ptk =
2n — 375 (n) f 2n - I

(iii] We now introduee another formula for p2{2}, the nmumber of minimal path

sets of o linear con|2|n:F ayatem as follows,

L #j(n #in] |
P2l = %, = )

— rupfing | 27— 3r

Minimal Path Sets of & Clrcular con|2|n:F System

Here, we eatablish & relationship between the number of minimal path sets of
& linear con|2|n:F svetem with that of & cireular con|2|mF system, Uslng this,
we derive a closed form formmla for (2], the number of minimal path sets
of & circubar con|2[n:F system, and pt®, the number of minimal path sets of &

circular com |2 F aystern of size ». We further show that the same recursive
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wl system as well as in a circular con|2|mF

relation holds in s linear con|2

gvstem bat with different initial values.

Lemma 4. p©(2) = 2pL_,(2) +pL_,(2) ; n > 8,
Proof. Suppose P is & minimal path set of & circular con2|n:F system. We

have the following three caes,

(i} Let 1 € Py and 2 € Py,
We thon have n € Prand 3¢ P, Hencen—1 € Fp and 4 € B, In this
case P is 4 minimal path set for a cireular con|2in F aystem if and only
if Pe M {8,6,...,n— 2] is & minimal path set for a linear con|2in - 6:F
subsystemn with the component set {5,8,...,n — 2}, Hence we have
ool = pb_ (2], I r = B we know that the only minirmal path set in
this case is Bo = {1,2, 4,5} and also we note that p5 {2} =pf {2} =1,

{ii} Let 1 € Py and 2 & Pr.
We then hove 3 € Po. Similarly Fo iz 8 minimal path set for a eircular
con!2|n:F syatem if and enly if Pp ™1 {4,5, ..,n} {5 & minimal path set
for a linear con|2|n — 3:F aubsystem with the component set {4,5,...,n}.
Hence we have pSi2) = pk_s(2).

(i) Let 1 € Poand 2 € Fp.
We then have n € Fp and Fr 1s & minimal path eet for & circular con|2inF
system if and only if P {3,4,...,n — 1} is & minimal path st for a
linear con|2it - 3:F subsystem with the component set {3,4,. ., n— L},
Henee we have p5(2) = pt (2},

From these cases, we get the result p(2) = p&_,(2) + 2pk_4{2) for n > 6.

Remark 2, We know that pl(2) = pk_,(2) +p%_ 4(2) ; n 2 3 with pg(2) =
pi(2) =1 and pf(2) = 2. We define
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PE(2) = 1, ply(2) = 0, phy(2) = 1, pl,(2) = &, pkyi2) = O and ply(2) = 1.
Therefore the relation pE{2) = pf o(2) + p&_q(2) holds true for all n > =3
Hence using Lemma 4, we have p{(2] = 2p%4(2) + p*{2) = 3, F¥(2) = D,
o) = 2, pZ(2] = 3, pL'(2) = 2, and pf(2) = 3. Therefore Lemma 4 holds

true for all n = 0.

Lemma 5 g5(2) = p& (2} +p% 402} i n> 3
Proof. From Lemma 4 and Remark 2, we have pS(2) = 2p8 12+ pt_o(2) for
a2 0and pH(2) = p& {2} +pk ,(2) for i > —3. Hence for n > 3 we ca write

e l2) = 2pp_y(2) + ph_g(2)) + (pn_g(2) -+ ph_q(2)) =
(20 _o(2) + pf_a(20) ~ (20% _o(2) + f_o(2)).

If we again use Lemma 4, we get the result pS(2) = p5_,{2} = p5_,(2).
16 other words, the same recursive relation bolds in & cireular con| 2| F avscem
na well as in a linear con|3|m:F aystem but with different initial conditions,

pE(2} = pl(2) = 1, pP(2) = 2 and pf(2) = 3, p7(2) = 0, (2] = 2.

Hemark 3. Using Lemma 4 and Remark 1{ parct (ili) ] we can derive & cloged
form formula for p%(2).

We now nse Lemma 3, to derive & simpler formuls for p5(2) directly.

Let g4z} dencte the generating function of pf'(2), the number of minimal
path seta of a circnfar con|2|w:F aystem. By using lemma 5 we have

PE2) +p0(2e + (pF{2) - £fiD)) =* g
Hﬂ(.ﬁ]# - .\‘1@3;32_3;3 miqﬂ::&_xa*

For obtaining partial fraction expansion of g.(z), let

3—a? a 5 e

= +
I = 22~ pd 1w;ﬁr+1m€rm 1-dz
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where p 19 the veal root and ¢ and & {conjugate of ) are the complex roots of
the eubie #* —x — 1 =0, We note that 1/p, 1/ and 1/2 are the roots of the

equation 1 ~ z* — v = . It is easy to verify that

poo =1, pota=0, Rio)=—p2 Plo)=12E, p—off = L2
We then have
a= 3 —1/g7 _ 3" — 1 _ 3t =1 p{3pt -1 Spﬂm;}m
T {l=afel(1-fp) " Ap—cle=8)" |p=oPf  2p+3  2p+3
Al+gl-p 1

2p+3 o
pe 3-let _ 37-1 _ (p-d)3i-1)

(1—pfel{l—dle) le—plle—8)  2y=LI{zlp—aF
And

3—1/5 -1 (p-o){3e? 1)
(1-p/e)(1-cfa)  (F-olle—a)  2/-1{a)ig-af’

It follows that

=

ﬂf[z:l g - (o — 5]{3‘3’}“ 1) p {0~ 5}(3'&] = 1) A0
LI ) p — u|3 ?ﬂ![ﬂ“p—ﬂrli‘

_ 2+p ,ap“

It is essy to verify that (see for example Spickerman [B5])
pC{2) = g™ + 3hp — hpog, where By = ric coanf + egsinad) .

Suppose o = ricosd +

Theorem 3. p5(2), the number of minimal path sets of & circular con/2lwF
system for ell v 2 10 is given by pt = | " 4 0.5| where p is the unique rea
root of the cubic equation 2* —x - 1 =0,

Proof. From Lemma 5, we have pS(2) = pC,{2) + pE 5(2), » 2 3 with
PE(2) = 8 p012) = 0, 2612} = 2.

Using this we get p%(2) = 17, pf(2) = 22 and p$(2} = 28, Applying Cardan's
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formmla to the cubic equation 2% — ¢ — 1 = 0, we have approximately g =
1.224717958. It can he verified that the theorem is toivially true for n =
10,11,12. Now suppose r > 13, We have already shown that pf{2) = o +
3hy = hg-g. Therefare it {s enough to show that |3, — fy_q| < 0.6 for » > 13,

We have

Rk~ Pz < Blha| + |Pag_z] < B/ + & + R = B = (3 4+

' 3
i) =T+ =\ (235) + ot —a = o
We note that H1{p) i an increasing funetion for p > 3/4,
Hence we have H;(p] < H;(1.326) = 0.630127, since we know that p < 1.325,
We alsc note that pe# = 1, hence pré = 1orr = 1/,/7 If n 2 13, we then

have
3 .1 3 1
Vo B Rl T Bl =l

e e N

J 1
SR AR At pt )
Lot Hylp) = \fﬁ'{lﬂﬂ-p:ﬁ - T ip-*!— 13
funcrion for g > 0. Henee we have 3r™ + r™? € Hy{p) < H;(1.324) = 0.696,
since g > 1.324. Therefore we have for all a > 13
|3fs — Ry—zi = Hy(p)Halp) < (0.66)(0.698) < 0.5. This completes the proof of
the theqrem. o

Ldinee pf = p=1=0.

. We note that Hy{p) is & decreasing

We now consider the number of minimal path sets with known size (o &
gireular con’2|n:F system. Suppose 75 (n) and 75(n) denvte the maximum
and the minimum sise of a minimal path set in a eirendar con|2|n:F system,

respectively,
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Lemma 6.

ii] ¥ = #n i} 75 = b
DEAUESAL i 7ln) {f‘i‘[nh—lw wf2]+1 if n is 0dd

Proof,
(1) We conaider twe cases as follows.

{al) n+ 1 = 35 for some integer 8 > 1.

&) = n/2] if n iz even

In view of Lemma 2, we note that

Ay ={13,4.8780,...,3s~1),3(2—1}+1} is a minimal path set with
raaximnm size in B linear con|2|n:F system and | By | = 2{#-1)+1 = 251,
Frem Lemma & of Chapter 3, we note that R is also & minimal path set
of a circular con|2|mF syetern. We show that size of Ry in & circular
con|2[n:F system is also maxdmurn. Let

¢y = {1,2}

£ = {3,4, 3}

5 = {6, 7.8}

Cy={3(s=1),3(s = 1)+ 1,3(s = 1)+ 2= n}

and suppose Po be a minimal path set of a elrcular con|2lwF system.
We note that Py ™ (% is nonempty and we also note that |Pz NG| £ 2
for i = 1,2,...,5 We show that there exists i*, 1 < i < 5 such that
|Po M €| = 1. Suppose |Fe MOy =2 Wi, We then have

{1,2} CPe= 3¢ Po= {4,5}C Pos

§gFPcm - =23a=11gFo=ds~1)+l=n-1€Fpandne F.
“Henee we have {1, 2. n—1,n} C Fp that {3, P is not & minimal path set,

resulting in & contradiction, Therefore there exists *, 1 £ i* < g such
that |jbf} MCp| =1 It 1mpl1e& that
|Pc;_1U (PO E|Pgﬁﬂ|{1a—ﬂ{a—1] Za~1=IR.

L] ; z fe==1
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(bl)

That is & i3 # minimal path set with the maximnm size in a cirenlar

con|2|m:F system.

n4+l=3+¢, 521, 1<¢< 2and!and 7 are integers,

In view of Lemma 2, Bz = {1,3,.4.6, 7.9, ..., 3(s =1}, s — 1) + 1, 32} is
8 minlmal path set with maximum size in & lnear coni2|a:F system snd
| Hy| = 2s.

From Lemma 5 of Chapter 3, Ry is also & minimal path set of a cireular
con |2in|:F aystern. We have Oy = {3{a—13,3(e— 1) +1,3(s =11+ 2} =
fn—t—2n~t—-1n-t} Wedefine Copy = {r -1+ 1,n} Let
Po be s minimal path set of & circular eon|2|a:F system. We note that
By <28 fori=12...,8+L

Ift=1and 2 € Po we then have |B- 0| = |Fen {1,2} = 1. Hence
we have

w1

= EIP{:’:"‘IG,I L1+ 2[a=1)+1=2s =M
1

v+

U [Fi“ n F-;:I
i=1

|.Pf_f} | ==

Therefore F; in a minitmal path set with the maximum sige in 8 circular

oon 2|n F systam,

HU(FG Nl = E |Fe NGyl < 25 = |fy]

i=l i=1

If r & P wa then have |Fe! =

and the result s immediate,

Mow suppose ¢ = 2. We show that there exiat i* and 7* such that

1< el 1S <4l "¢ and |[FonCe| =|FenCpli=L
We note that {1,2, n=1,n} ¢ Fethatia |PenCy| = 1or |[Par gl == 1,
Without loss of generality we assume that |Po M Q| = 1. We have

FenGl=2fori=112,.. .8

{1&}&&;%3&"1%@{&,5} CP=»BEgPo - =la-11=
n—4gFc=n-3n-2}CcPran-1EgFr=ne
Therefore we have {1,2,n} C Fo resulting in a contradiction. Hence
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{ii}

(a2)

(b2}

there exists i°, 1 < i* < 3 such that  Fp 1 C7| = 1.We then have
. [REd 2 &
~§U Pon O =145 |PenC =14 3 [Peny +1

sl i

which is less than or equal to 24 2{a = 1) = 2& = |Hz|, This completes
the proof of part (1)

We consider two cases ag fnllowa.

#t = 23 for some integer s 2> 1,

Let By = {2,4,6,...,23}, From Lemma 2, we know that Ry is a min-
imal path set with the minimum size in & linear con|2ln:l system and
by Lemma § of Chapter 3, By is also & minimal path set of a circo-
lar con[2{rF syatem. We have |Ryl = 2 = |n/2|. We ghow that sive
of Hz is minimum. Suppose F {8 8 minimal path set of s cireular
con|2liE syetem. We note that &) = {2 - L, W}, = 1,2, ..., nfl],
are |n /2! disjoint minimal cut sets. We also note that |[Poen G 2 1

i3]
U‘ {(PenGy)| 2 nf2| = |y .

fim |

fori = 1,2,...,|n/2|. Hence |Ps| =

Therefore the result is immediate,

=28+ 1 for some integer » > 1

Let By =4{1,24,68 ... 2¢}. We know that Ry is 8 minimal path set
with the minimum size in & linear con|2jn:F system and is alse a minital
path get of & circular con|2|n:F system. We now show that size of Ry i
minimum in a circular system. We have |[Ry| = s +1 = [n/2] + 1 and
[Feniy) 21fori=12,.. . ,2 Hence

2

=S |PenCy 2 .

imi

1Pol = |UJ(Pen € U {Pen (n}}]
6]

U{Pmr;}

Las]

Ifn & Py then {Pel > a+ 1 = || and the required result follows.
Ifn & Pr we show that there exists i*, 1 < {* < # such that [PoN(y| = 2.
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Buppoge Por Oy =1fri=12,. . & We then have

NEPr = e PP lePo=dgPoss =

a~-1lg Fom 8 g Po= 28+1=n € Po and this gives arise
to & contradiction. Therefore, there exists i, 1 £ ¢ < g such that
| Pz N | = 2. Henee

=] jm'l,
This completes the proof of the lemma. [}

Lemma 7. pi% = 20705 + 508" inz2 6, fF(n} < r < ().
In view of Lemme 4, the proof of this lemima 15 easy and omitted.

Lemma 8. 7% =l % +p3° i n 28, #(n) £ S F(n).
Proof. Using Lernma 4 and Lemma 7, the proof follows.

Therefore the recurrence relation for the number of minimal path sets of given

gize 7 in both & linear and & circular con|2|n:F aystem is the same.

MNow using Theorem 2 and Lemma 7 we give a closed form formula for pf;~.

We have

e L L 3= (r-2+1 [ B (i}l
A = i (ﬂnumuaﬁ;m "1 atn-8) -3t - 4

[ n—r [ n—-r—1 n n—r—1
= 2] - =
In - dr M - 3r r—nl oan.ar _

5.3 Consecutive-3-out-of-n:F Systemn

In thiz section, we confine our attentlon to the mintmal path sets of & con!3|a:F

system. We ghow that ph{3), the number of minimal path sets of a lineat
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con|3|n:F system satiefies the recursive relation pf(3) = pl_,(3) + pf_o{3) +
ph L (3) = pk .(3), n > 6 We also show that the same relation holds for
pS(3}, the mumber of minimal path sets of a circular con|3|n:F system, but

with different initial values. Wo give & ditect formula for determining g (3).

Lemma 9. Let of(n} denote the collection of all minimal path sets of & linear

conldnF ayetem, We then have for v = 4
[S:5eakinjandn€ 8} ={§:5=TU{n-%n}and T & af(n ~4)}.

Proof. It is easy to verify that

abi4) = {{1,4}, 12}, {31}, o (5) = {{1,4}, (2,5}, {2, 4}, {3}} and also
af(6) = {{1,4},{2,5}.{2. 4}, {3.6}, {3, 5}, {3.4}}. We assame that ai{l) =
af(1] = af(2) = {#). Then the lemma is trivially true for n = 4,5 and 6.
Now consider the case whers > 7. Let § £ al(n) and n € 5. We note that
{n=1,7-2}N5 =@ Hence n—3 € 5. It is oasy tosee that T = 5 —[n—23,n}
ig & minimal path aet of & linear con|3jn—4:F syatem, and hence T € af(n—4),
Conversely let T € af(n - 4) and § = T U {n — 3,n}. In view of Thearam 1
of Chapter 3, § is & minimal path set of & linear con|3|n:F systam. Therefore

& € ael(n). This completes the proof of the lemma. n
Lemma 10. For n = 3, uwe have
{§:9€ofinandn-2€8}={5:8§=TU{n-2}and T € af(n—2)}.
Tamma 11. For n > 3, we have

{§:5¢of(r)andn—~1¢€ 5§}

={§:8=Tu{n-1}where T € o(n— 2} and n - 2 & T}.

Lemrna 10 and Lemma 11 can be easily verified.
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Lemma 12. In & linear con|3|m:F system we have

M1 {5:5¢€afn),1e8}|=|{5:85 ¢ afin),ne S} |=ph_,(3) for
n > d,

(i) |{5:8cafinlandl € 5, ne S5} |=pk s(d) forn > &

(i) : {S: 8 € of(n) and 1 & S,n & 5} |= p5(3) ~ 2pk_,(3) + p_y(3) for
n > B

Proof. Using Lemme 8, the proof of this Lemma follows,

Theorem 4. pE(3) = pk_5(3h+ pb_y(3) + g 4(3) - pb_o(2) for n 2 & with
PE(3) = pF(3) = p5(3) = 1, p#(3) = ph(3) = 3 and p¥(3) = 4.

Proof. We know that
af(n) ={5:5¢alin)andne 5} U{S: Seajin adn=1¢€ Sl
{§:8cof(n)andn—2 ¢ 5}

and the enllections on the right hand side are digjeint. From Lemma &, we
have | {8 : 5 e of(nland n € §} | = | abin - 4] |= pt_,(3). Using Lemma
10, we have | {§: S cefin)and n -2 € 8} | = | af{n ~ 3} = pt_4(3). And

in view of Lemma 11 and Lemma 9, we have
|{5: 5 € af(n) and n=1 & S} |=| a[n=2) | = | ad{n=6) |= pb_,(3)—pL_(3).
Therefore we get the result ph{3) = |af(n}| = pL_,(3) + pb_(3) + pL (3} -

pL_.(3}. This comphetes the proof of the theorem, n

Minimal Path Sets of a Clrcular con|3|m:F System

Let of {n) denote the collection of all minimal path sets of & cireular con|3mF
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system and pS{3) =| af(n) | Hers we show that
pe ) = pl o (8) + 5l (30 + P03} —pf (3. n= 5

with p<, (3) = &, p§ (3) = 6, pF(3) = 0,55 (3) = 2,5(3) = 3 and pF(3) = 6.

Wa assume that of (m} = {#} for 0 £ m < k. The next Lemmaa are required

in the sequel.

Lemma 13. For n > & we hawve
{8:5cafimendle 528} ={8 5= {1,%5nr-2}LT}

where T i a minimal path set of a linear con|3|n — B:F aubsysten that conalats
of the component {#,7,8,...,n — 3} of the original system,

Procf. For n = 8,9 and 10 the lemma is trivially true. Now comsider n > 11.
Let 8 € of (v} and {1,2} € 5. We note that {3,d.n~1,n} N5 = 0 and
{G,n—2} € 5. Using Theorern L of Chapter 3, it can be shown that T =
S ={1,2,5,#n~ 2} is & minimal path set of a linear con|djn — 8:F subsystem
with the component set {8,7,...,n~ 3}

Conversely if T is 8 minimal path set of this subsystem then obviously

8= {1,2,5n—2}UT is & minimal path set of & circular con|d|r:F system

(se¢ Lemma 4 of Chapter 3). This completes the proof of the lemme. |

Lemma 14. For nn > 8 we have
{8:8calin)and2e53es)={5:5={236n-1}UT}

whete T i » minimal path set of a linear conld|n — B:F subsyster with the

component set §7,8,. ., n~2}

The proof of this lemma is similar to that of Lemma 13 and hence omitted.

Remark 4. Using Lemma 13 and Lemma 14 we have far n > &

{$:Seafnyand1e82e 8} =[{S: Seafinland 2€ 8,3 ¢ §}| = p} o[
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Lemma I8. For n > 4 we have

{5 (8 € afin) and {1,3) C .S'} = {8:5={13}uT} where T is & mini-
mal path set of a linear con|din — 3F subeystem with the component set
[4.5,....,n},suchthat 4 € Tand n & T,

Proof. For n = 4,5, the lemma is trivially true. Let 5§ € af(n) and
le S 3 € 5 Wenote that 4 & Sim 2 §  In view of Theorem 1 of
Chapter 3, T = & — {1,3} I8 & minimal path set of & linear con3n - 3F
subavstent. Conversaly, H T 18 a minimal path set of this linear subsyatem auch
that 4 ¢ T,n & T, then § = {1,3} UT =atisfiea the conditions of Lemmea 4 of
Chapter 3. Therafore 5 € o5 {n). This completes the proof of the lemma. =

Remark 8. Lemma 15 and part (iii) of Lemma 12 imply chat
[{5: 8 € aftn) and {1,3} € T}| = pk_o(3) ~ bk 4 (3] + ph (3] n 2 10,

Lemma 1B, For n = 4 we have
(8. 5cafin)and]l e52¢ 53¢ 8} =[5:5={14}uT}

where T' is 2 minimal path set of a linear con{3|n — 4:F subsystem with the

component szt {5,6,.. ., n}.
Lerame 17. For n 2> 3 we have
{8:5eaf(n)andl €5,2¢ 538 ={5:5={3,a}uT)

where T is & minimal path set of a linear eon|3[n — 4:F subsvster with the

cormponent set {4,3,...,n~1}.
Lemma 16 and Leroms 17 can be ensily verified,

Remark 6. Using Lemma 16 and Lemme 17 we have for n = 4
|{-‘5‘ Seafiniandle 5,24 5,3 ¢ S}| =
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{9:5enf(n)and 1¢ 82835} =pl_(3)

Letnma 18. For 7 > 3 we have
[8: 5calln)andl g8, 2e53¢88) = {5:8={2uT}

where T is & minimal path aet of & linear con/d|n — LI:F syscem with the com-
ponent set {3,4, - n, i+ 1}, such that TR {3,n + 1} = Q.

Proof. Lat Scaf(n)and 1 € 8, 26 5, 3¢ 5. Using Theorem L of Chapter
3, T'=5—{2} iz o minitnsl path seth of 2 linear con|d|n = LF gvstem with
the component set {3,4,- -, n + 1}, such that {3, n+ 1} nT = 0. Conversely
T is & minimal path set of & linear con|3/r — LF system with the component
et {3, 4, - mn-+1}, such that {3, n+1}NT =@, then § = {2} UT satisfies
the conditions of Lemma 4 of Chapter 3. This completes the proof, |

Remeark 7. Using Lemma 18 and part (i) of Lemma 12, we then have
_|{-S' rSenf(n)adl §5,2e53¢ S}| = gl (3) — 2pk (3} + pt o(3) for
n>a

Theorem 5. For n > 6§ we hava
PEI3) = ph_ (3) + pb_o(3) + 2p%_y(3) = IpE_y(3) = Zpl_o(3) + Zpk_o(3)+

Piogl(3) + pin(d) with p2(3) = Lpfy(3) = p4(3) = 0,p%(3) = | and
Php{3) = 0.

Proof. We note that, Lemima 13 to Lemma 18, cover all poseible and dis-
joine cases of & minitmal path set in a circular con|3vF systerm. [n view of
this and using Remarks 4 to 7, we then have pS{3} = 3pk . (3) + pk 4(3) —

25 (3) + ph_ 1 (3) + 208 _4(3) + Py (3) = 2ph_y(3) + pho(3) = P, (3) +
Fﬁ—a’{aj + 2%—4(3] - 2?’#&5{3} - 2??#-?{3]' + 2?5—3(3] + FTI:.—H':E.} + P%mum)a L

Theorem 6. p5(31 = pi_o{3) + pe-y(3) = Prog(8) = pll6l3),n = & with
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P2 (8) =0, pF (3] = 8, pT(3) =0, p§(2) = 2,p5(3) = 3 and p{{3) = 6.
Proof. The proof follows using Theorem 4 and Theorem 5.

From Theorem 6, we note that the recurrence telations for p&(3) and pk(3) are

the same but with different initial values.

We now consicer direct computation of p2(3)}, the number of minimal path seta

of a linear con|dinF system. In Theorem 4, we showed that forn > 8

PR(3} = pf_5(3) + Prog(3) + P a(3) = PF-e(3)
with pf(3) = pf(3) = pi(3) = 1, p(3) = pi(3) = 3 and pf(3) = 4.

Let gr.{x) denote the generation function of pf{3), that is gz (z) = 3 pt(3)z*.
=i

In view of Theorem 4, we then bave g, (2)(1~2% - 2% - 2* +1%) = 1 42+ — 1,

b+ 2+ 2t - P
L =3 = 2% gt 35

Hence we get the result go(r) =

For obtaining partial fraction expansion of gz{z), we need to find the roots of
the equation 1 — 22 — 23 — 2! 4 #® = . We know that, this equation has two
positive real roots and four complex roots. We also note that if = be a oot of

. ~ 1. 1
this equation then = is slso another root. Hepce we dencte z, and = a8 the
; |}

1 1
real roots and T3, —, 23 and < 84 the complax roots,
Ty 5

We have 1 -2 — 2% — 24 2% = (22 )0~ -L}l::r:mm;][:rmlﬂz_mzﬂg}{:};-——l—].

£y I e
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It irnplies that

| 1 1
{-;3;+r3_:|+|:.ﬂ?g ; $2+$]’+‘I1}| l

) - 1 1 1. i, 1
3 {'-“«‘1-%3:1“!'-113*Iﬁj{l‘«a*ﬁﬂﬂ'{h*mt]fﬁﬂ’m]

1 r 8 1., 1 1 1
(El"i“g:'i"m':wm E?*l" E‘I']_"f" Ig+ :|][=I5'+;E)—-[AI1+;1+$3+£:I.—-1
1 | 1 . .
From the firat equation, we get I, ~+- - ‘+"»Iﬂ + — = — (I3 + jl Using this
T3 3

and the second and third equatlons, we get

3+ (x wlwle{.:r +¥Lﬁ - (:u +w-!l}ﬁw =]
g o+ T+ o - =

&Ly
g
1 1, 1 1 i 4
(g + =}ty + —}Ey+=—) = =<1= P+ —)(T3+—]} =
-l e Sl ) (rat et ) = oy
It imyplias that
3+~——1—1— {,;rsl-t-ﬂ} = =], Therefore
I1+-—-
31
1.3 1, -
+ = —dm+ —)-1=0 (1)
1 ]
Similarly we can obtain
Ly ., 1
(g :I:g;] *l[:ﬂ':g'l-m?] L=0 {2}
1
(mw«w “4(;’&3*-‘“)—1“{) {3)
Ly

Tat g =1 = % where x 18 & Toot of equation 1 — r* — ¥ — 3% + 2* = 0. From
equations {1),(2) and (3) we have #* — 45 =1 = 0. Wa note that the cubic
aquation s° — 48 — 1 = [ has three real roots.
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Uelng Cardan forramla we have & ~ 2.1143(]'?542, gy o —1. 86080583 and 8 =

. - 1 ‘ .
—0.25410168. We note that & = x5, + —, sy =2y + e and 83 = T3+ i.
Ty Py L3

- 1 . . .
For ¢ = gy, 2, and = can then be obtained from the quadratic egiation
1

s+ 1088 — 4
22— g2 +1 =0, as follows : #, = 1—‘9,: ~ 0.713639174 and 1y =

7
+ /8] -4
1 ‘11—-—;1'(“:: e 1,401268388.

Ty
For # = g3 we have 22 ~ 832 + 1 = (1. This equation has two complex roots, 23

. 1 ‘
and 3y = - on the unlt circle as follows :
3

53"&' '—

g4
Jiat ’“«;— == 0,93040292 + s 0.36653887

where 1 = —1 and T, = :ci = Ty (conjugate of 53).
iz}

Ly

Suppose T3 = cia(fy) = cusfy + i sinby, where 8y = Arctg (I{mg) e
1687, 49",

impli o e E = eial whete N ELN,
It implies that z, = £y = cia(f), where & = Arelg(=—= | + =

—Arcty {Rmf_m{.ma}) + i = 2 —dy = 201°, 31",

Similarly for # = s3, we have 7% — 537 + 1 = 0 which implies that z, =~

~{J, 1270560844 + ¢ 20. Eﬂlﬁgﬁﬂﬂﬁ and zy E;En = f5. Juppose Ty = cis(fs],
8
whers 85 = Aretp Rl “5])) o B7 208 And mp = cig(fs) with fs =
S - O o= 2827 71
1 + T4+t =2 Uiz
Recall th (3 It is known
, gulz E,f’ S Tyl Y
that
Eray ] R ...
(3] = T P +-1“2“+1 Foet T
. =z N . _
where g = Ve ! yi=1,2,...,6 We also hote that oy = & and py = Fy.
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Now suppose gy = og + i by, g5 = s + 4 by, eng = ““f“:i:‘[‘ + mﬂif and

- [
%&*W'*W-
L &

- om & . T S
We have gp3 = Py + E:;T and enp = ) + é?'—“‘:‘_“f Therefore

Eng = {83+ i by)[cis(—n — 1)8] + (ag — i by)[cis(n+ 1)) = gz coa(n 4+ 1)8 +
by Bin (e =+ 18],
Stmilarly en s = 2[ag cosire + 1)8 ~+ by sinln + 1]8g),

Theorem T. For i > 0 we have g,z + - T+1§ % 1 and
A 1
()= | som +EM+05J | ot +ena+ 03

where || i8 the largest integer lesa than or squal to x and |x] is absolure valus
of x.

E’[rﬁ) . _ ““U[H}ﬁ,:l
l,.r“rt' } and py = I‘”{i‘g}i

Proof. Using values of ry and z; we can compute gy = ———

and then show that

|&1;=9;3 + WI = |2ascoa(n + E18; + bysin(n + 116, + pCES 1
is less than or equal to 2{|as| + i)} + 5‘1 <03940014 <1
) 4
hara PR L 2 T I y
where gy = gy + 4 Iy and gy = 22 Bimilarly we have
V'(za) ~
Eni + - ﬁ‘; | = |2[ag confn + )85 + by sinfn + 118] + =Ll i |

<iag |+ |8 )+ g—* <073+ 0014 < 1,
=3
Therefore we get the result

pf:{a}ul NP NI - WA ] [P . WO N +ﬂﬁJ

mtnﬂ man«H :[g_"ﬂ‘!"l ] '.$1"+1 ;Zg,“‘” Eﬁnﬂ
That ia
21 % :
PJ'I.{E:I [:I; ,1_+1 -ilnﬂna'a;muaﬁ = iii'lnﬁi *ﬁn,ﬂ*ﬂuﬁj-

143



This completes the proof of the theorem. -

Hemark 8. Using the approach described and Theorem 6 we can obtain an
axpression for pS(3), the number of minimal path scta of & circular eon|3|nF
gystern, This approach becomes cumbersome for & > 4 and leads us to intro-
duce a general recursive relationship for determining the number of minlmal

path sets of & con k|a:F system, which s considered in the next section,

5.4 Consecutive-k-out-of-r:F System

Inn this Section we give a rernsive relationship for determining the oumber of
minimal path sets of a linear con|k|s:F system. For some specisl cases we give
cloged form formulae. We may add that direct computation of the aumber of

minimal path sets of & con|k|[n:F system still remaing a difficult task,

Let ayin) denote the collection of all minimal path sets of a conlk|nF
Bystem and suppose P & ox(n} is & minimal path set of the system. In view
of Thearam 1 of Chapler 3, we note that PN {1,2,... k} = 1. Therefore we
can partition mein) into & digjoint subeollections, that 8 ax(n} = Cjai[n},.
where nf(n) 1s the collection of all minimat path sets of & uﬂnﬁriﬁ:f;"m;!ystﬂm
that contain component §, i=12,..,,k
Suppose pn (k) = |ax(n)l and pl (k) = |al(n)|. We then have p, (k) = zpﬁ[ir}

i=1
The following lermmas are required in the saquel.

L =1
Lemma 19. pi (k) =pt~ (k) for alli = 1,2,. .., lﬁ-ﬁmj
Proof. Caonsider another eon k|n:F system in which the components are num-

bered in the reverse order. Hence the proof follows. ™
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Component 1 = § 4 1 ia called the mirrer émage of component i,

Remark 9. We note that for 1 < n < &, 8 con|k|n:F system is always working,
irrespective of the states of the componenta. In this case oy{n) = {P}. Hence

we sgsurne that pu(k) = 1 for n = 1,2,...,k = 1. We alan assume that
miky=1

Lemma 20. For 1 < § € &, we have
{5: Seoin)t={5: §={i}uT}

whete T is & minimal path set of & con|kir — i:F subsyetem that consists of last
n— { components of the original system such that TN {i+ 1,542, . k) =0
We gssume thet {f+1,i+2,... &k} =0ifi =&

Proof. The proof follows from the argument given in Section 4 of Chapter 4,

Theorem 8. For 1 < ¢ < k, we have

. k=i h
P;Ek} = Pn—i{&'] - Zﬁimiﬂi} = Z _IJ':H.;(H'
LT =k —i+1
- L
wae sasumne that 3 pf_ (k) =0ifi= k.
=l
Proof. Note that p,_i{k) = |ox{n =1{)| = ‘U af{n=1)| =3 |af(n = 1|
=] Fi=
Henee we have = '
T : Temin—1d, TN{l2... k=i} =1}
x _ o
= ¥ Jafln =il = pacelk) - X l0k(n - 4.
pmbei41 |
On the other hand in view of Lemmes 20, we have \
HT: Teaxin—1, Tr{l2... k-i}=0} = 3. p-_ (k) Therefare
ek —i+l
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we gt the result
k=1 E

#lk) = pnilk) — 3 |agin — i} = po_ilk Ep?s Sk = 2 PRkl
el F=k—t+1
This completes the proof of the theorem. |

Rematrk 10. We note that in view of Theorem 8 to get ph{k) for

f=1,2,...,k we first compute pf (k) = p,_s(k). Using this, compiite
pﬁ_,l{k = Pn..i.1() and using this compute

P*‘l{i:} Proker(h) — 2L _p o1 {k) = Prepys (k) = Page(k) and then eompute

piik} and so on, We note that the last term ia pf (k) where 7 = [{k + 1)/2].

Exampls 1.

(a) If k& = 2, we have p2(2) = po.o(2) and ph{2) = p2_ {3} = pa-1)-2{2) =
Pr-3(2). We get pa(2} = pp(2) + BA(2) = pa—2(2) + Pn-s(2}, 88 given in
Section 2.

(b If & = 3, we have pl{3] = po_s(3), pL(3) = pd._,(3) = my_4(3) and
Fa(3) = pacs(3) — 2h_2(3) = pn-a(3) = pr-s[3). Hence we ger
Pa(3) = pl{3) + 2(3) + g2 (8) = puoal(2) + Pu-al3) + Pa-u(3} = poos(3).
As given in Section 3.

{e) 1T k = 4, we have F;'-if ) = poea(#), pL{4) = pu-ald), PLI4Y = po_sid) -

Pn-a(4] ﬂi‘id Pal4) = Pu—s{d) = Pao 104} + pn-s(4). Using these we have
Pald) = Eiﬁ" (4}
=1

= Pa-3{4) + Po-ald) + 2n-s{d) + paasld) = Paogld) = Pr-1nfd).

For k = 3,6 and 7 we have the following recursiva relations.

Prul®) = Pnes(8) e} Pras (5] + 20y -5 (6) +Pr 15} — 2P -0 (3) — P10 (5] —
Pﬁ-—m(ﬁ] + Pn—m(ﬁjh
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PnlB) = Pu—q{B) +Prws(0)+ pos{8) 4 30y (6] + 210 s (B) 4+ Pos{B) = 2pn-. 1 (6] —
2n-12{6) = 3n..14(8) — 2py_15(8} + Pa—10{B} + Pn-n{6].

PalT) = B g (T Baes{ T} + Pas( 7]+ Pz (1) + 3p—a(T) + 20 —o(T) + Pr1a(T) =
Ipa-13(T) ~4pn-13(T) = 3I0n-14(T) = 3Pn—1a(T) = 2P 177 |+ 320 (T) + Bpr s (T) +
Pr=2d(T) — Po-os(T).

LUsing Theorem 8, similar expreasions for p, (k) with & > 8, can be obtained.

Remark 11. In view of Theorem 8 and Remeark 10, g4 (k) is of the form
&
N e T Puon, e (k) where &y, es(2)'s and ny(r)'s are integers such that

ﬁ“fe: mil) < mld) < o < myld)}) = i and o, > 0. We note that this
expresgion holds true if n > A, For example we have pf(R} = po_a(k} if
B2k phlE) = pa—sr(k)] ifn > k<1, pf"YE) = pooggi{R) — Pooanlk) if
n 2 2k and pA(k) = prog1 [k} + Pap-aik) ~ Po-m-g(k) if 0 2 26+ 2. We get
foe =k, fiy = k+1, fiy_) = 2k and iy = 2k + 2. Using Remark 10, it is ensy to
verify that fiy < A < gy < ﬁz <+ o flp where P (R + 1)/2]. Therefore

the recureive relation po(k) = 3 pl (k) holds true if n 2 .

iaml

k1
Lemma 21. & =
2
Proof. [f & = 2¢ + 1, for some integer s, 0 < # < |k/2], we then have
Fe |(k+1)/2] = 5+ 1. Onthe other hand we have 7, = &, fl; = £+ 1,
fig_y = 2k, fig = 2k + 2, oy = 3k, Ry = 3k 43, .. Aiopa—1y = 88, Ry = skt

and fig—y = (5 -+ 1}k. Note that iy, =y = Ay = s+ 1)k = [k + 1)k/2 =

&

If k = 28, we have fig_gy_1y = 5k, i, = ak+ 5. In this case F = [(£+1]/2] = 1.
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kE+1

Hence fip = f, = sk+ o= s{k+ 11 = &{k+1)/2= ( ) This eompletes

the preof of the lemma, N
Remark 12. We have pu(k) =1 for 0 € n € k— 1 and pp(k) = k. We note

‘ _ ) ‘ k1
that we first need to find g (k] for k < n < ( N ) We then ran 1se the
|2

da=b

LI E+1
recurrence equation pe(k) = ¥ ph (k) to find gy (k) for n = ( ]5 where
2

gl (k) can be obtatned using Theorem &.

Ini the remainder of this section we consider some special cases,

Lemma 22. If k < n < 2k then pa (k) = 2k — n+ {ﬂ”k}{*;ﬂk-i—i}l

Proof. Suppose n = & 4+t for some integer ¢, 0 < ¢ < k. In view of Lemma 2,
we have fo{n) > 1 and Fi(r} £ 2, If ¢ < & then minimal path sets of size 1 are
given by {k}, {k -1}, . .{t+1}. If¢> 0, then minimal path seta of size 2
are glven by .

{l,k+1}

[2.k+2}, {2,k +1}

ftk+th L k+r-1), ... {tk+1}
Therefore the number of minimel path sets of siza 1 equals to & — ¢ and the

nuimber of minimel path sets of size 2 equals to 1+ 2+ & = H{E 4+ 1)/2.
Henre ppl(hl =k —t+ t[ﬁ ;- 1J=. where ¢ = n — k. This completen the procf of
the lemma. "

Theorem 9, H 2k < » < 3k + 1 then p, (&) is given by
(3k =~ nr](3k—n+1) N e = 28] [ﬂﬁx(k' +11-2{(n= Ek}sz_l_]]

2 8
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{n — 2k)* [(n — 2602 — 1)
. 12 5

Proof. If 2k + 1 < n < 3k + 1, then in view of Lemma 2, we have F(n) > 2

and Fyin) < 4

Using a simple enumeration process, It can be shown that the nembe of minimal

path sets of size 2 ix

(3 — n){3k —n+1)

1ok @b Jop oot Gk o gy o 5

The number of minimeal path seta of size 3 is given by
E[a E—t+ 1+ -t+k—t-1+-+n-2k-t+1]]=
$=1

8 [3kik + 1) — 2(s* ~ 1]
i

where 3 = n — 2k,
And Anally the number of minimal path sets of size 4 is given by

i§1+2?+3’+u-+{;—3 A= de

J=3 EFRE

33 —1}

Now wsing {4), (5) and {8} the proof followa.

(4]

(8

Remark 13. If 3k € n < 4k =+ 1, we note that Feln) = 3 and Feln) < 8. It

can be verified that in this case, the number of minimal path sete of size 3, iz

given by

T, i) kot ks +2)
PRI ng - B

_ {4k ~ n)(4k - n+ 1){4k - n+2)

= , where 8 = fi = 3k,
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Conjectures

I view of the argumend given in this chapter we make folldwing conjectures.

Using Lamia 22, we pote that if & < n < 2& then the number of minimal path
2k —n
1
Using formula (4), &s given in the proof of Theorem 9, we note that if

spts of size 1 is 2k = n = |

2% €< 7 < 3k + 1 then the number of minimal path seta of size 2 is

(3 —n){3k - n—1) (Bk-n+l)

2 2
And in view of Remark 13, we note that f 3% £ 7 < 4% + 1 then the number

of minimal path sets of size 3 i3

(df ~aj(dk ~n + )4k =n+2) [ d—n+2
6 - 3
Now let pl+" (k) denote the number of minimal path sets with minimum size

feln) = [n/k], in & con|k|mF system. We then have

Conjecture 1, piMig) = [ (Fe(n) + 19k = a1 = F{n) = 1 )

Fil(nt)
Mote that the number of minimal path sets with minimum size and the

n:F aystem are the same,

mumber of path sets with minimum size In & con|k
Therafore we ean use the results of Section 2 of Chapter 2, to compute pl+™ (&),

but the expression as given in Conjecture 1, is simpler.

Conjecture 2. We heve shown in Section 2 and Section 3 that the recurrence
relations for p°0k) and pl(k), for the cases &k = 2 and & = 3 are the same but
with differant initial conditions. Hence we conjecture that this property may

alzo hold for & general con|kimF system, that i for & = 4.
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We may add that direct computation for determining g, (k), the number of

rninimial path sets of & con|kin:F syster still remains & difficult task.
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