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CHAPTER 1

Introduction, Objectives and Overview



Introduction
The work embodied in this thesis pertains to human population genetics. In particular,
the overarching goals of this thesis are to contribute to the understanding of genomic
diversity of human populations and to the development of statistical methods for making
inferences in genome diversity studies. With these two goals in mind, we have carried
out a detailed statistical analysis of genomic data on a large number of ethnic populations
of India, generated in the laboratory of the Anthropology & Human Genetics Unit, Indian
Statistical Institute, Kolkata. Additionally, wherever relevant, we have compared our
data with those collated from the published literature. During the course of this empirical
statistical study (the results of which are presented in Chapter 2), several methodological
issues arose, which resulted in (a) development of probabilistic search algorithms for
identifying motifs from DNA sequence data (Chapter 3), (b) comparisons of popular
methods for estimating time to most recent common ancestor from DNA sequence data
(Chapter 4), and, (c) development of a statistical method for estimating relative

coalescent times from a sample of DNA sequences (Chapter 5).

Chapter 1: Genomic Diversity in India, with Special Reference to Peopling

and Population Structure'
Based on results of many earlier studies, it is now acknowledged that India occupies a
centerstage in human evolution. India has served as a major corridor for the dispersal of
modern humans that started from out-of-Africa about 100,000 years before present (ybp).
The date of entry of modern humans into India, however, remains uncertain. Further, the
migration routes of modern humans into India continue to remain somewhat enigmatic,
and whether there were also returns to Africa from India/Asia remain unclear.
Contemporary ethnic India is a land of enormous genetic, cultural and linguistic

diversity. It has been shown that, with the exception of Africa, India harbors more genetic

No references in support of the statements made in this Chapter are

provided, since the references are provided in subsequent Chapters.



diversity than other comparable global regions. The contempbrary people of India are
culturally stratified as tribals and non-tribals. It is generally accepted that the tribal
people are the original inhabitants of India. There are an estimated 461 tribal
communities in India, who speak about 750 dialects which can be classified into one ot
the following three language families: Austro-Asiatic (AA), Dravidian (DR) and Tibeto-
Burman (TB). There is considerable debate about the evolutionary histories of the Indian
tribals. The proto-Australoid tribals, who speak dialects belonging to the Austric
linguistic group, are believed to be the basic element in the Indian population. Many
other anthropologists, historians and linguists have also supported the view that the
Austro-Asiatic (a subfamily of the Austric language family) speaking tribals to be the
original inhabitants of India. Some other scholars have, however, proposed that the
Dravidians are the original inhabitants; the Austro-Asiatics are later immigrants. It 1s,
however, noteworthy that the Indian Austro-Asiatic speakers are exclusively tribal, which
may be indicative of their being the oldest inhabitants of India. Some believe that the
Austro-Asiatic linguistic family evolved in southern China. If indeed this is true, then
Indian Austro-Asiatic speakers must have entered India from southern China through the
northeast. Many linguists contend that Elamo-Dravidian languages may have originated
in the Elam province of southwestern Iran, and the dispersal of the Dravidian languages
into India took place with migration of humans from this region who brought with them
the technologies of agriculture and animal-domestication. The Tibeto-Burman speaking
tribals, who primarily inhabit the north-east regions of India, are supposedly immigrants
to India from Tibet and Myanmar.

Most contemporary non-tribal populations of India belong to the Hindu religious
fold and are hierarchically arranged in four main caste classes, viz. Brahmin (priestly
class), Kshatriya (warrior class), Vysya (business class) and Sudra (menial labour classy.
In addition, there are several religious communities, who practice different religions, viz.
Islam, Christianity, Sikhism, Judaism, etc. The non-tribals predominantly speak
languages that belong to the Indo-Aryan or Dravidian families. These two linguistic

groups have been the major contributors to the development of Indian culture and society.



Indian culture and society are also known to have been affected by multiple waves of
migration that took place in historic and prehistoric times. In a recent study condﬁcted on
ranked caste populations sampled from one southern Indian State (Andhra Pradesh), it
has been found that the genomic affinity to Europeans is proportionate to caste rank, the
upper castes being most similar to Europeans, particularly East Europeans. The lower
castes were more similar to Asians. Whether this conclusion can be generalized to caste
groups resident in other geographical regions of India remains to be investigated.

As evident from the foregoing discussion, there are considerable differences of
opinion among anthropologists and linguists regarding the origins of Indian ethnic
groups. Some have argued that human evolution has been largely governed by
microevolutionary mechanisms. Therefore, it is crucial to investigate geographically and
culturally disparate, but ethnically well-defined, populations in order to understand
evolutionary mechanisms that have resulted in the peopling of India. It is also important
to statistically analyze data jointly on mitochondrial, Y-chromosomal and autosomal
markers from the same populations or sets of populations to gain a comprehensive insight
into evolutionary mechanisms. Unfortunately, the vast majority of earlier studies on
Indian populations have been conducted on ethnically ill-defined populations or have
been restricted to a single geographical area or a single set of markers — primarily either
mitochondrial or Y-chromosomal. The objective of the present study is to provide a
comprehensive view of genetic diversity and differentiation in India and to draw
inferences on the peopling of India and the origins of the ethnic populations.

We report a comprehensive study of a large number of ethnic populations of India
based on mitochondrial, Y-chromosomal and autosomal markers. Our results indicate
that the tribal and the caste populations are genetically highly differentiated. The four
linguistic groups of tribals present in India, as also the upper castes of different
geographical regions, are also highly differentiated. The Austro-Asiatic tribals seem to
be the earliest settlers in India, as evidenced by their large nucleotide diversity and high
frequencies of some ancient markers. Y-chromosomal haplogroup frequencies and their

present geographical distribution indicate that they may have entered India through the



northeast. There is significant sharing of a small number of nﬂtDNA haplotypes across
populations indicating that the number of ancestral female lineages in India was small
and also that there has been considerable female movement from one population to
another. Subsequent immigrations into India appear to have been predominantly of
males. The Tibeto-Burmans tribals, who also entered India from the northeast, share
genetic commonalities with the Austro-Asiatic tribals but can be differentiated from them
on the basis of Y-STRP haplotypes. The Dravidian tribals, who possibly entered India
from the Fertile Crescent region, were possibly widespread throughout India, before the
arrival of the Indo-European speaking nomads. After entering through the northwest
Indian corridor from Central and West Asia. the Indo-Aryans established their linguistic
supremacy over a large number of Dravidian tribals and brought many of them under the
fold of the Hindu caste system, which they had formed after adopting a settled life. Many
Dravidians, tribals and also castes, seem to have retreated to the southern regions
possibly to retain their linguistic and other cultural identities. Indo-European trbals, were
probably originally Dravidian speakers, but later adopted the Indo-European speech.
Formation of populations by fission and cultural practices that evolved with the caste
system have left their imprints on the genetic structures of contemporary populations.
Historical migrations into India have contributed to a considerable obliteration of genetic
histories of contemporary populations so that there is currently no clear congruence of
genetic and geographical or socio-cultural affinities.

In arriving at the,above conclusions, we have carried out extensive statistical
analyses of genomic data, which included parametric and non-parametric tests of
significance, analysis of molecular variance, estimation of nucleotide diversity,
phylogenetic analysis, DNA sequence alignment and analysis, and statistical estimation
and inferences from mismatch distributions. During the conduct of this empirical study,
we encountered problems in applying standard tests of independence in contingency
tables, many of which were sparse. We have, therefore, devised a bootstrap procedure

for carrying out test of independence in a sparse contingency table.



Chapter 3: Identification of Polymorphic Motifs Using Probabilistic Search
Algorithms

Single nucleotide polymorphisms (SNPs) that occur in the human genome at roughly 1
per 2 kb spacing on the average are often phylogenetically associated. Various
evolutionary mechanisms, including natural selection, maintain the association c;f specific
variant nucleotides at one or more sites, which may not be contiguous. The search for
associated nucleotides at a set of polymorphic positions is of interest in studies of
common diseases and in evolutionary genetics. We define a set of nucleotides that occurs
at a high frequency at muitiple polymorphic DNA sites, not necessarily contiguous, in a
group of individuals as a “motif”’. We note that our definition of a motif differs from the
conventional definition, as for example that is used for finding regulatory sequences in
promoter regions of genes, in two ways: (a) the sites included in our motif definition are
polymorphic and (b) the sites may not be contiguous. In conventional problems, search is
made for evolutionary conserved motifs at a contiguous set of nucleotide positions. In
case-control studies of common diseases, it is of interest to find such motifs and to test
whether there are differences in motif frequencies between cases and controls. Motifs
that are found in significantly higher frequencies among cases are associated with the
disease under study. If variants in multiple genes are indeed involved in the disease, the
sites in such a motif may not be contiguous. Similarly, the discovery of such motifs is
important in evolutionary genetics. Indeed such motifs have been used to define
subhaplogroups of specific clades (haplogroups) of the human mitochondrial (mt) DNA.
It is theoretically possible to discover polymorphic motifs in a set of N aligned
DNA sequences, each of length L nucleotides, by examining frequencies in all possible k
x k tables, k=2,3,...,L. However, this is computationally infeasible. The purpose of this
chapter is to propose a set of probabilistic search algorithms that may be used for motif
finding under different scenarios, and to evaluate their efficiencies using both synthetic

and real data sets.



Consider a data matrix ((a;)) yx, » Where a; denotes tﬁc nucleotide (A,T,G or C)
at the j-th polymorphic site (j=1,2,...,L) for the i-th individual (i=1,2,...,N). The data
matrix is generated from aligned DNA sequences of a specific genomic segment of N
individuals, from which all monomorphic sites have been removed. Let V={1,2,....L}
denote the set of all L. polymorphic sites in the data. We propose a stochastic search
method, similar in spirit to Metropolis—Hastings version of simulated annealing. Our
objective function, E(S), to be maximized is the “frequency of a string (S) of nucleotides
at p out of L sites”. Instead of maximizing E(S), we shall consider minimizing a
monotonically decreasing function, H(S), of E(S). The algorithm is iterative. We start

with a string S, of length p; that is, a set of p distinct nucleotide sites drawn randomly
from the L polymorphic sites. In each iterative step an element (a nucleotide at a specific
site) of the string S, is updated. Hence, after p such steps we get a completely updated
string. The procedure of updating S, to S, is called a sweep. Thus, a sweep comprises p
iterative steps. Let S, denote the updated string after t sweeps.

We shall use the following notations:

oD (2) (M
I LetS, =(x,",x,”,....x,"”").

2. Let Sf” denote a string in the (t+1)-th sweep, whose first1 (0< 1 < p-1) sites
have already been modified.

3. LetS f” (y) denote a string in the (t+1)-th iteration, whose first i 0<i1<p-1)
sites have already been modified and the (i+1)-th site is replaced by site y.

4. LetH{” denote the minimum value that has been found for H(S) in the course
of all the necessary evaluations of H(S) till the completion of the i-th iterative
step in the (t+1)-th sweep.

5. LetM;"” denote the string corresponding to H'" .

We initially set Hy” =0 and M " as a “null” string. The updating procedure for the i-th
clement in the (t+1)-th sweep uses the idea underlying the Metropolis-Hastings algorithm

which can be described as follows:



We first calculate 3, = c. In(t+1); where c is a constant > 0. One site (x) is selected at
random from the set V\S ™"; that is, from the set V={1,2,...,L} from which the sites

included in the set S ™" have been removed. We then probabilistically update x to x *”

1+1
according the following rule:
x  with probability min(A,1)
(i)
1+1 = {

x with probability 1- min(A,1)

1

where, A = exp[-B, {H(S “ ™" (x)) - HS “P(x ")}

Obviously, the transition probability from one string to another depends only on
the outcome of the previous transition (Markov Property). As is easily understood from
the above updation rule, at any step of the iteration, although a string that yields a smaller
value of H(S) is accepted with a high probability, to avoid being trapped at a local
minimum, the current string with higher value of H(S) may also be retained with a small

probability (that crucially depends on the control parameter c).

After each iteration we compare H(S!"™" (x)) with H'™" . If, H(S! ™ (x)) <H'™"
then, H(S ™" (x)) is the new value for H'™"" and M!" is the updated string S!"™"(x).
Otherwise, we do not change H"™"" and M!” . In each iteration, therefore we compare the

value of the objective function with the smallest value it has attained thus far. This
introduces the concept of elitism, which is popular in evolutionary computation, in our
algorithm and is done to avoid being trapped at a local minimum.
The possible stopping rules for terminating sweeps in our algorithm can be:
(1) stop if an upper bound, usually a large preset number dependent on
availiability of computing resources, on the total number of sweeps
» (including new initials, if any) is reached, and
(11) check if the minimum value of H(S) attained thus far during the algorithm
has remained unchanged for a certain (preset) number of sweeps. If so,

terminate.



The above algorithm pertains to the situation when the motif iength is known. However,
in reality, the motif length may not be known. We have proposed a modification of this
basic algorithm when the motif length is unknown. We have also devised a statistical test
procedure that enables determination of the “best” motif length. We have extensively |
tested the efficiencies of the proposed algorithms using both synthetic and real data sets,

and have determined that the algorithms perform very well even under difficult scenarios.

Chapter 4: Estimating TMRCA from a Sample of DNA Sequences: A

Comparison of Two Popular Statistical Methods

The assumption that underlies the statistical reconstruction of the evolutionary history of
a set of contemporary populations is that new populations evolve over time by binary
fission from ancestral populations. Looking backwards in time, therefore, a set of
contemporary populations will coalesce pairwise at different points of time, until finally
there 1s a coalescent event to the most recent common ancestor (MRCA) of all the
populations. Such reconstruction can be done by using DNA sequence data generated
from samples of individuals drawn from each of the contemporary populations under
consideration. The two major features and parameters to be estimated from such data are
(a) the topology of the coalescence events, and (b) the times of coalescence to common
ancestors of the populations, including the time to MRCA (TMRCA). Both these and
parameters are known to be affected by demographic scenarios that prevailed during the
process of evolution.

Although there are several methods available for estimating TMRCA from a
sample of DNA sequences, two methods are widely used primarily because of conceptual
simplicity and ease of interpretation.

Under the infinite sites model, all information in two DNA sequences is captured
by the total number of segregating sites (S»). Since E(S2IT») = 6T,, one approach of
estimating T», which for a sample of two sequences is the TMRCA, is based on S,/6. This
and similar approaches are not capable of utilizing prior historical demographic

information.



Using Bayes’ Theorem, it was noted that if S, = k theﬁ the distribution of T, is’
Gamma with parameters 1+k and 148. In particular,
E (T2IS,=k) = (1+k)/(1+6)
Var (T2IS;=k) = (1+k)/(1+8 )?
Researchers considered the problem of estimating the TMRCA of n (>2)
sequences by extending the analytical results that hold for n=2 and calculated the number

of differences between each pair of sequences whose common ancestor is the root of the

~

tree and then averaged these pairwise differences. It was also observed that this value, k,
of k varied little over plausible reconstructed trees. Thus, k was substituted by k in the
previous equations for E (T2IS;=k) and Var (T2IS>=k). In a different study, TMRCA was
estimated for multiple sequences by substituting the largest value of k among all pairs in
the previous equations. This is not a proper approach, because it has been shown that the
maximum number of differences between a pair of sequences chosen from this set of n
sampled sequences goes to infinity as n goes to infinity. This is true even when T, is
bounded.

A popular a]ternativé to the above procedures of estimating TMRCA,, is to
use median-joining network analysis. In this analysis, a genealogy of n individuals is
considered as an ultrametric tree, in which the lengths of links are scaled to time and each
interior node corresponds to a coalescent event. If there are k (< 2n-2) links of lengths ty,
t2, ... .l on a time scale, and if the clade defined by the i"™ link carries n; individuals (i= .
1,2,...k) then the coalescent time t can be expressed as

t=(nit; + Nty + ... +nel)/n. _

If p denotes the mutation rate, expressed as the expected number of (scored)
mutations in a sequence segment per time unit, one may associate to the i link a Poisson
distributed random variable X; with parameter p;=tjit. The random variable
X=(n X +n2X+...+n X )/n, has the expected value 4

EX)={(nt; + naty + ... +nity)/nju=tu
and variance

V(X):{ (n]2t|+ngzt3+. . .+nk2tk)/n2 }l.l,



assuming independence of X,,Xs,...,Xy.

The purpose of the work presented in this Chapter is to evaluate the
performance of these two methods for estimating the coalescent times from DNA
sequence data. The data set consisted of nucleotide sequences from homologous
segments of DNA sampled from different individuals. The data generated are similar to
haploid nucleotide sequences, such as of the mtDNA HVS | (http://www.hvrbase.org)

We have used a forward propagating algorithm to génerate simulated DNA
sequence data. In this algorithm a nucleotide sequence of a specified length and base
composition is created by a multinomial random number generator with cell probabilities
equal to the probabilities of the four bases. A completely homogeneous founding
population of a given size is then formed by making the appropriate number of copies of
the randomly generated nucleotide sequence. The founding population then evolves in
accordance with the Wright-Fisher model, i.e. a new generation is formed by sampling
from the previous generation with replacement. The numerical size of the succeeding
generations is controlled after the founding population is created. In this study we have
considered two demographic scenarios: (a) constancy of population size over generations.
and (b) exponential growth in size, allowing for variability in the growth parameter over
generations. That is, when the size of a new generation is determined, we randomly
selected the appropriate number of sequences from the gene pool of the previous
generation with replacement. Then, using the assumed value of the mutation rate, we
calculated the expected number of mutations per generation, and determined the number
of new mutations to be introduced in each generation. If the expected number of
mutations per generation is denoted as y, then we randomly chose and mutated [y] or
[y]+1 sites, where [y] denotes the largest integer < y. Choice between [y] or [y]+1 was
made randomly by generating a random number « from the uniform [0,1] distribution,
where [y] was chosen if u was less than y—[y]. Suppose there are N, individuals in
generation ¢, each with data on a sequence of L nucleotide sites. To introduce a new
mutations in generation t, a site was chosen with probability 1/(N, x L) and mutated. If x

1s one such observation, then the mutation is introduced at the nucleotide position

10



((xi/L)=[x; /L)L of the [x,/L]-th individual. While introduéing the mutation, we did
not consider any prior information on mutational histories of the site or the individual,
thus allowing for parallel, recurrent and back mutations to occur. This process is thus
repeated for a stipulated number of generations. The population thus generated was
treated as the present population and a random sample of size n was drawn without
replacement. This sample of n sequences then was used to estimate the TMRCA of the
population. The estimated TMRCA was compared to the ac;ual number of generations
used in the simulation.

Since estimates of TMRCA can be affected by various parameters, we have
investigated the effects of variation in four crucial parameters. These are:

(1) The number of bases (L) of the nucleotide sequence; we have used two

different values of L — 200 and 400.

(2) Variability in population size over generation, which was introduced through a

parameter .. We have used an exponential growth model. In this model, if N,

denotes the population size in generation t, then N, = Ne® . In order that NM is

an integer, we have chosen either [N¢”] or ([N,¢®]+1). Choice between [Ne*] or

[Nee*]+1 was made randomly by generating a random number « from the uniform

(0,1] distribution; N, =[N,e”] was chosen if u was < (Ne®) - [Ne*]: otherwise

N1 = [Ne®]+1 was chosen. We have used three different values of o — 0, 0.001,

0.005. : ,

(3) The number of generations (g); three different values of g: 250, 500 and 1000

were used.

(4) Mutation rate (lL); two values were used: 10'5/site/generation and

SXIO'S/Site/generation.
Simulated data were generated using different combinations of the parameter values
stated above. For each simulated data set, estimation of TMRCA was carried out using
two different methods. TMRCA was estimated from a sample of n=100 sequences.

We have found that the standard deviations (SDs) of the TMRCA estimates were

very large, irrespective of the parameter values used in the simulation. Generally, both

11




methods underestimated the true TMRCA, except for short ‘se.quence lengths (L=200,

l 500) and a short evolutionary time (g=250, 500) with a low mutation rate (L = 107). Both
| L methods were rather insensitive to the population growth parameter (o), and there was no
consistent trend with respect to o of the either the mean values of the TMRCA estimates

or the SDs, although the SDs in many cases decreased with increase in o. The frequency

upper tail for both methods. Our results indicate that in practice considerable caution

distributions of the TMRCA estimates were all highly positively skewed with a very long
needs to be exercised in interpreting coalescence times estimated by either of these two

methods, which are quite popular.

Chapter 5: A Statistical Method to Estimate Relative Times of
Divergence of Populations from a Common Ancestor

Reconstruction of evolutionary histories of populations is often done from data on DNA

sequences from samples of individuals drawn from these populations using phylogenetic
methods. The two problems in phylogenetic analysis are (a) estimation of topology, and
(b) estimation of branch lengths. It is known from theoretical studies and extensive
simulations that correct estimation of topology is easier than estimation of branch lengths
with low error. In Chapter 4, we have provided statistical evidence that even the estimate
of the time to the most recent common ancestor (TMRCA) can be poor. Additionally,

past demographic histories, such as whether the population size has remained constant or

whether the population has passed through a bottleneck, affect the phylogenetic

{ relationships among DNA sequences, particularly branch lengths. Even to estimate

} TMRCA, prior knowledge, or minimally some assumptions, of a population parameter
} B=4Nu (u=mutation rate/site/generation) is required, which is often unknown.

The purpose of this Chapter is to propose a statistical method to efficiently

estimate relative branch lengths, which is often sufficient for evolutionary inferences.

This method too does not require prior knowledge or make any assumptions on 9.




For a sample of n haploid DNA sequences, let &, denbte the number of
mismatches between the i-th and j-th sequences (1 <i<j < n); that is, k, denotes the
number of nucleotide positions at which the i-th and j-th sequences differ. Under the
infinite sites model, these k,y differences arose after the two sequences diverged from a
common ancestor. If ¢, denotes the time since divergence of these two sequences, i and j,
from their common ancestor, and if ¢ denotes the mutation rate per site per generation,
then

E(k;)=2ut,;.
[t can easily be shown that for n sequences,

Ek)=2uBrt,

where B is a matrix of zeros and 1s, and k and ¢ have obvious definitions. If t' = 2u ¢,
then an ordinary least squares estimator of £ is

£ =(@®B)'Bk,
where B’= transpose of B. The problem with this estimator is that estimates of individual
components of & may be <0, when in fact times of divergence can not be negative. To
ensure that estimates of individual components of & are > 0, optimization has to be done

on a restricted domain £ > 0.
We have used a quadratic programming (QP) approach to carry out optimization

on the restricted domain ¢ > 0. The error sums of squares under the model k =Bt™ +¢ is:

! (k-Bt")(k-Bt")
Kk-2kBt +¢ (BBt

o
™
1l

We need to minimize ¢ & with respect to ¢ > 0. Now, minimizing & ¢ is equivalent to

minimizing

13



f()=-2k Bt +¢ (BB)¢t,
where B B is positive semi-definite.

Therefore, f(t*) is convex, and hence any local minimum is a global minimum of
f(). It is interesting to note that if the ordinary least squares estimate is in the feasible
region (i.e., £2 0), then that estimate is the same as the one obtained by minimizing f(.).
Our problem, therefore, is to minimize f (¢), subjéct tot >0, which we have carried out
using quadratic programming. To obtain estimates of relative times of divergence, which

are independent of u and hence do not require prior knowledge of i, we have proposed

. L . . . .
the natural estimator — where i=2,3,...j-1 and j=34,...,n. This cancels the
!

j
multiplicative constant 2y from both the numerator and the denominator. Under
neutrality and constant population size, the expected value of ¢; is known. Consider a
population that has evolved at constant growth rate (e.g., an exponentially growing

population with a growth rate of o per generation). Looking backward in time, the

effective population size ¢ generations ago (NV,) decreases as ¢ increases. As the
probability of occurrence of a coalescent event in generation ¢ is 1/N, , the decrease in N,
with respect to  subsequently increases the probability of a coalescent event in each
generation. This phenomenon, therefore, reduces the expected value of 7;, which becomes
smaller in magnitude as we move backward in time. E(%) is, therefore, affected to a

greater degree than E(z,). Consequently, E(t/1,) is much smaller for an exponentially

(with parameter o) growing (0>0) population than a population whose size has remained
constant over time. As is evident, the scenario gets reversed when o is <0, i.e., when we

consider a population which has exponentially decreased (0:<0) in size over time.

A similar pattern is also expected when we consider a population that has passed
through a recent bottleneck. The behaviour of coalescence-time, considered as a random
variable, in a population that has passed through a bottleneck is similar to a population
with a constant effective size until the time of bottleneck. As we look backwards in time,

duc to the sudden increase in population size prior to the bottleneck, the expected time for




the coalescent events occurring before the bottleneck increasés. Thus E(t; | bottleneck)

>> E(1; | constant population size). This results in a sudden increase in ratios, such as

E(15/1,). These systematic trends, caused by various demographic histories of a

population, will be reflected in the estimates of the different ratios of coalescent times.
We have carried out extensive coalescent simulations to assess the performance of

this estimator under different demographic history scenarios, and has shown that the

estimator behaves as per expectations. We have also proposed appropriate statistical tests

that permit demographic-history inferences of populations.
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CHAPTER 2

Genomic Diversity in India, with Special Reference to Peopling

and Population Structure
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Introduction

India occupies a centerstagé in human evolution. Several researchers (Nei and Ota 1991;
L:ahr and Foley 1994; Cavalli-Sforza et al. 1994; Stringer 2000) have proposed that
modern humans took two separate dispersal routes from Africa: a ‘northern’ route
through North and East Africa through the Middle East towards Central Asia and western
Eurasia and then into India, and a ‘southern’ coastal route through Ethiopia, Saudi
Arabia, Iraq, Iran, Pakistan, along the Indian coastlines, and then further across East Asia
to Southeast and South Asia. There is now some evidence that the peopling of the
Andaman Islands and Australia took place from India (Endicott et al., 2002; Redd et al.
2002). Thus, India has served as a major corridor for the dispersal of modern humans
that started from out-of-Africa about 100,000 years before present (ybp). The date of
entry of modern humans into India remains uncertain. However, modern human remains
dating back to the late Pleistocene (55000-25000 years before present, ybp) have been
found (Kennedy et al. 1987) and by the middle paleolithic period (50,000 — 20,000 ybp),
humans appear to have spread to many parts of India (Misra 1992). Kivisild et al. (1999a)
have shown that the mtDNA types found in Indian populations belong to the African
m(DNA haplogroup L3a, of which 60% belong to the Asian-specific haplogroup M.
Further, they have also found that haplogroup U, which was considered to be western
Eurasian, is actually the second most frequent haplogroup in India. This haplogroup
comprises several subtypes, of which some are found in much higher frequencies in India
than in western Eurasia. The coalescence time of the western Eurasian and the Indian U2
subtypes was estimated to be 53,000 ybp. Another haplogroup, U7, found at high
frequencies in India and rarely in western Eurasia, has an estimated coalescence time of
32,000 ybp. Thus, it appears, especially because haplogroup U is also present in Ethiopia
(Passarino et al. 1998), that diverse north or northeast African gene pool yielded separate
origins for western Eurasian and southern Asian populations over 50,000 ybp (Disotell
1999). Genetic support for the southern exit route has also been provided by Quintana-
Murci et al (1999). They showed that a specific subclade, M1, of haplogroup M 1s
present in eastern Africa. However, although the four specific transitions characterizing
this clade have not been found in the many tribal populations of India examined by

Roychoudhury et al. (2001), all these four transitions individually and in various pairwise
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combinations were found, indicating that the evidence provided By Quintana-Murci et al.
(1999) may be somewhat tentative. More recently, Maca-Meyer et al. (2001) have
contended that a posterior return from Asia to Africa of these mtDNA lineages is a more
plausible explanation since the genetic diversity of M is much greater in India than in
Ethiopia and also because the ancestral motifs of the African M1 are found in M*, M3
and M4 Indian subclusters (Kivisild et al. 1999b). A recent study (Wells et al. 2001) has
shown that Central Asia is a land of high genetic diversity and has served as a source of a
wave of migration into India, and that the ‘diagnostic Indo-Iranian marker’ — the M17
polymorphism on the Y chromosome — has a much higher frequency in a Indo-European
speaking population of India than in two Dravidian-speaking populations. Thus, the
migration routes of modern humans into India continue to remain somewhat enigmatic,
and whether there were also returns to Africa from India/Asia (Roychoudhury et al. 2001;
Maca-Meyer 2001; Cruciani et al. 2002) remains unclear.

Contemporary ethnic India is a land of enormous genetic, cultural and linguistic
diversity. It has been shown that, with the exception of Africa, India harbors more genetic
diversity than other comparable global regions (Majumder 1998). The enormous diversity
in social and cultural beliefs and practices has been well documented and emphasized
(Karve 1961; Beteille 1998). The contemporary people of India are culturally stratified as
(ribals and non-tribals. It is generally accepted that the tribal people are the original
inhabitants of India (Thapar 1966; Ray 1973). The tribals constitute 8.08% of the total
population of India (1991 Census of India). There are an estimated 461 tribal
communities in India (Singh 1992), who speak about 750 dialects (Kosambi 1991) which
can be classified into one of the following three language families: Austro-Asiatic (AA),
Dravidian (DR) and Tibeto-Burman (TB). There is considerable debate about the
evolutionary histories of the Indian tribals. The proto-Australoid tribals, who speak
dialects belonging to the Austric linguistic group, are believed to be the basic element in
the Indian population (Thapar 1966, p. 26). Many other anthropologists, historians and
linguists (Risley 1915; Rapson 1955; Pattanayak 1998) have also supported the view that
(he Austro-Asiatic (a subfamily of the Austric language family) speaking tribals to be the
original inhabitants of India. Some other scholars (Buxton 1925: Sarkar 1958) have,

however, proposed that the Dravidians are the original inhabitants: the Austro-Asiatics
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are later immigrants. The Austro-Asiatic family is a fragmented fanguage group. It is
most widely spoken in Vietnam and Cambodia. Within India, only a small number of
ethnic groups speak Austro-Asiatic languages. It is, however, noteworthy that the Indian
Austro-Asiatic speakers are exclusively tribal, which may be indicative of their being the
oldest inhabitants of India (Pattanayak 1998; Gadgil et al. 1998). Some believe that the
Austro-Asiatic linguistic family evolved in southern China (Diamond 1997). If indeed
this is true, then Indian Austro-Asiatic speakers must have entered India from southern
China through the northeast. Many linguists (Renfrew 1987; Ruhlen 1991) contend that
Elamo-Dravidian languages may have originated in the Elam province of southwestern
[ran, and the dispersal of the Dravidian languages into India took place with migration of
humans from this region who brought with them the technologies of agriculture and
animal-domestication. The Tibeto-Burman speaking tribals, who primarily inhabit the
north-east regions of India, are supposedly immigrants to India from Tibet and Myanmar
(Guha 1935).

Most contemporary non-tribal populations of India belong to the Hindu religious
fold and are hierarchically arranged in four main caste classes, viz. Brahmin (priestly
class), Kshatriya (warrior class), Vysya (business class) and Sudra (menial labour class).
In addition, there are several religious communities, who practice different reiigions. viz.
[stam, Christianity, Sikhism, Judaism, etc. The non-tribals predominantly speak
languages that belong to the Indo-Aryan or Dravidian families. These two linguistic
groups have been the major contributors to the development of Indian culture and society
(Meenakshi 1995). Indian culture and society are also known to have been affected by
multiple waves of migration that took place in historic and prehistoric times (Ratnagar
1995; Thapar 1995). In a recent study conducted on ranked caste populations sampled
from one southern Indian State (Andhra Pradesh), Bamshad et al. (2001) have found that
the genomic affinity to Europeans is proportionate to caste rank, the upper castes being
most similar to Europeans, particularly East Europeans. The lower castes were more
similar to Asians. Whether this conclusion can be generalized to caste groups resident in
other geographical regions of India remains to be investigated.

As cvident from the foregoing discussion, there are considerable differences of

opinion among anthropologists and linguists regarding the origins of Indian ethnic
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groups. Lahr and Foley (1998) have argued that human evolutioﬁ has been largely
governed by microevolutionary mechanisms. Therefore, it is crucial to investigate
geographically and culturally disparate, but ethnically well-defined, populations in order
to understand evolutionary mechanisms that have resulted in the peopling of India. It is
also important to statistically analyze data jointly on mitochondrial, Y-chromosomal and
autosomal markers from the same populations or sets of populations to gain a
comprehensive insight into evolutionary mechanisms. Unfortunately, the vast majority of
carlier studies on Indian populations have been conducted on ethnically ill-defined
populations or have been restricted to a single geographical area or a single set of
markers — primarily either mitochondrial or Y-chromosomal. The objective of the
present study is to provide a comprehensive view of genetic diversity and differentiation
in India and to draw inferences on the peopling of India and the origins of the ethnic

populations.

Materials and Methods
Populations
We have studied a total of 44 populations. The populations were chosen so that they
represented ethnic groups of all geographical regions, socio-cultural and linguistic
categories. A list of populations is provided in Table 2.1, with brief notes on their socio-
cultural backgrounds. The geographical locations of sampling of these populations are
indicated in Figure 2.1. It is worth pointing out that (a) population groups of northern
India are Indo-European speakers, while those of southern India are Dravidian speakers,
(b) the Austro-Asiatic speakers are all tribals and are primarily confined to the central,
eastern and northeastern regions, (c) the Tibeto-Burman speakers are confined to the
northeastern region, (d) the number of Indo-European speaking tribal groups is very few.
Thus, there is an extent of confounding of geography, culture and language in the
distribution of ethnic groups of India. This confounding will be reflected in the nature of
our statistical analyses and inferences.

Blood samples were drawn from individuals. unrelated to the first cousin level,
with informed consent. DNA was isolated from these individuals using Miller et al.’s

(1988) protocol. Because of paucity of DNA, some of the populations had to be excluded
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Table 2.1

Names of Study Populations. Sample Sizes. Geographical, Linguistic, and Ethnological Information

POPULATION SAMPLE GEOGRAPHICAL LINGUISTIC SOCIAL OCCUPATION
NAME [CODE] SIZE DISTRIBUTION AFFILIATION | CATEGORY
mt Y Auto-
RSP | HVS1 somal
Seq.
1. Agharia . 24 10 |9 24 Eastern India Indo-European Middle Caste Agriculture'
[AGH]
2. Ambalakarer 30 10 [ 18 150 Southern India - Dravidian Middle Caste | Agricultural labor
[AMB] Tamilnadu
3. Bagdi 31 10 | 11 31 Eastern India Indo-European Lower Caste Agricultural labor
[BAG]
4. Chakma 10 10 14 10 North-eastern India - Tibeto-Burman Tribe Agriculture
[CHK] Primarily Tripura
'5. Chamar 25 10 18 25 Northern India Indo-European Lower Caste Menial and agricultural labor
[CHA]
6. Gaud 13 10 |4 15 Eastern India Indo-European Middle Caste | Agriculture
{GAU]
7. Gond 51 10 Central India - Primarily Dravidian - Gondi Tribe Agriculture, food gathering and
[GND] Madhya Pradesh dialect humting
8. Halba 47 20 |20 |48 Central India - Primarily Indo-European Tribe Agriculture, food gathering and
[HAL] Madhya Pradesh Primarily Marathi humting
9. Ho 54 10 |20 | 54 Eastern India ~ Primarily | Austro-Asiatic Tribe Agriculture, food gathering and
[HOJ Bihar humting ’
10. Irula 30 14 18 50 Southern India - Primarily | Dravidian Tribe Shifting cultivation
(ILA] Tamilnadu, including
Nilgiri Hills
11 Iyengar 30 10 120 |51 Southern India - Dravidian Upper Caste Traditionally priests, now various
[1YN] Tamilnadu occupations
12. Tyer 30 10 120 |50 Southern India - Dravidian Upper Caste Traditionally priests, now various
[IYR] Tamilnadu occupations
13. Jamatiya 55 10 |16 |55 North-castern India - Tibeto-Burman Tribe Agriculture
[JAM] Primarily Tripura

... CONTINUED
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TABLE 2.1 ... CONTINUED

14. Jat Sikh 48 15 Northern India - Punjab Indo-European Middle Caste | Various occupations. including
{JSK] agriculture.
15. Kamar 54 10 19 57 Central India - Primarily Dravidian Tribe Agriculuure. food gathering and
{(KMR] Madhya Pradesh humting
16. Khatris 48 15 Northern India - Punjab Indo-European Middle Caste | Various occupations. including
|KHT] agriculture.
17. Konkan 31 10 Western India - Indo-European Upper Caste Traditionally priests, now various
Brahmins Mabharashtra occupations .
[KBR]
18. Kota 30 25 |15 |45 Southern India - Nilgiri Dravidian Tribe Artisans, Musici-ans and Agricul-
[KOT) Hills turists
19. Kurumba 30 10 |18 54 Southern India - Nilgiri Dravidian Tribe Hunting and food gathering
[KUR] Hills
20. Lodha 32 14 117 |32 Eastern India - West Austro-Asiatic Tribe Hunting, food gathering and
[LOD] Bengal agricultural labor
21. Mahishya 33 10 {9 34 Eastern India Indo-European Middle Caste | Agriculture
[MAH]
22. Manipuri 11 9 North-eastern India - Tibeto-Burman Upper caste Agriculture and various occupations.
(Meitet) Manipur
[MNP]
23. Maratha 41 10 Western India - Indo-European Middle Caste | Various occupations, including
[MRT} Maharashtra agriculture
24. Mizo 29 i4 120 |29 North-eastern India - Tibeto-Burman Tribe Agriculture, basket making
[MZO] Mizoram
25. Mog 25 10 | 6 25 North-eastern India - Tibeto-Burman Tribe Agriculture
[MOG] Primarily Tripura
26. Munda 7 6 49 Eastern India Austro-Asiatic Tribe Hunting, food gathering and agriculture
{MUN]
27. Muria 30 12 18 28 Central India - Primarily Dravidian - Gondi | Tribe Agriculture, food gathering and hunting
[MUR] Madhya Pradesh dialect
28. Muslim 28 10 19 Throughout India Indo-European Islamic Various occupations, including
IMUS]) Religious agriculture
Group
29. Naba-Baudh 40 10 Western India - Indo-European Lower caste Various occupations, including
[NBH] Mabharashtra (recently agriculture
adopted
Buddhism)

... CONTINUED
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TABLE 2.1 ... CONTINUED

! 30. Pallan 30 10 15 50 Southern India - Dravidian Lower Caste | Agriculture

[PLN] Tamilnadu

31. Punjab 43 12 Northern India - Punjab Indo-European Upper Casle Traditionally priests, now various
Brahmhins occupations
{PBR]

32. Rajput 51 10 |35 |52 Northern and Western Indo-European Middle Caste | Various occupations, including
[RAJ] India agriculture

33. Riang 51 12 117 |50 North-eastern India - Tibeto-Burman Tribe Agriculture
[RIA] Primarily Tripura

34. Santal 20 14 15 24 Eastern India Austro-Asiatic Tribe Agriculture, hunting and food gathering
[SAN]

35. Saryupari 26 19 Central India - Madhya Indo-European Upper Caste Traditionally priests, now various
Brahmins Pradesh occupations
[SBR]

36. Scheduled 48 15 Northern India - Punjab Indo-European Lower Caste Various occupations, including
caste — agriculture
Punjab
[SCH]

37. Tant 16 10 |6 16 Eastern India Indo-European Lower Caste Weaving and agricultural labor
[TAN]

38. Tipperah 51 20 |17 |50 North-eastern India - Tibeto-Burman Tribe Agriculture
(Tripuri) Primarily Tripura
[TRI]

39. Toda S0 10 |8 50 Southern India - Primarily | Dravidian Tribe Hunting and food gathering
[TOD] Tamilnadu, including

Nilgiri Hills

40. Toto 30 20 |12 |30 West Bengal- particularly | Tibeto-Burman Tribe Agriculture
[TTO]} Jalpaiguri district

41, Uttar 27 10 117 327 Northern India - Utar Indo-European Upper Casle Traditionally priests, now various
Pradesh Pradesh occupations
Brahmins
[UBR]

42 Vanniyar 30 10 |14 |50 Southern India - Dravidian Middle Caste | Traders, Agriculture
{VAN] Tamilnadu

43 Vellala 43 10 |16 |43 Southern India - Dravidian Middle Caste | Agriculture
{VLR] Tamilnadu

44 West Bengal 22 10 113 123 Eastern India - West Indo-European Upper Caste Traditionally priests, now various
Brahmins Bengal occupations
(WBR]
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Irom Y-chromosomal or autosomal DNA analyses. Since many of our statistical analyses
necessitated pooling of populations, this limitation did not turn out to be serious. Sample sizes
are given in Table 2.1. Because of failure of experiments, there are slight variations in sample

sizes across loci, which are indicated in appropriate tables.

Loci and Protocols
Each DNA sample was screened for 10 mtDNA restriction site polymorphisms (RSPs) and 1
Insertion/Deletion polymorphism (IDP). The RSPs screened were Haelll np 663, Hpal np 3592,
Alul np 5176, Alul np 7025, Ddel np 10394, Alul np 10397, HinfI np 12308, HincII np 13259,
Alul np 13262, Haelll np 16517; and the IDP screened was the COII/tRNA “* intergenic 9-bp
~deletion. These sites were chosen such that individuals could be classified into those
Iﬁﬁrplogroups which, from past studies, are considered to be the most relevant for Indian
populations. mtDNA RSP analyses were performed using standard primers and protocols
(Torroni et al. 1993, 1996). Sequencing of the Hyperveriable Segment-1 (HVS1) of
mitochondrial DNA (mtDNA) was carried out by cycle sequencing method in ABI-3100
automated DNA sequencer and the ABI prism dideoxyterminator system. The HVS1 region (np
16024 - np 16380) was amplified using standard primers in both directions (Vigilant et al 1991).
DNA samples were typed for 18 Y-chromosomal markers; 12 of which were binary
polymorphic markers while 6 were short tandem repeat markers. The 12 binary markers are
YAP, 9217, SRY 4064, sY81, SRY+465, TAT, M9, M13, M17, M20, SRY 10831 and p12f2.
Primer sequences and amplification protocols for the first 1 | DNA markers are described by
Thomas et al. (1999). The primer sequences for p12f2 (Casanova et al.1985), were 122D and
122G and the amplification protocol was as described by Rosser et al. (2000) to amplify a 88-bp
product. As an internal control, a product of size 148-bp encompassing the M172 polymorphism
was co-amplified using the primers M172-F 5'- TCCCCCAAACCCATTTTGATGCAT - 3'
and M172-R 5'- GGATCCATCTTCACTCAATGTTG - 3'. PCR amplification was carried out
in 10 mM Tris-HCI (pH 8.3), 50 mM KCI, 2.5 mM MgCl7 , 0.2 mM of each dNTP, 0.2 u M of

cach p12f2-primer, 0.3 u M of each M172-primer, and 0.2 U of AmpliTaq Gold (Perkin Elmer,
USA). Cycling conditions were as follows: initial denaturation for 5 min; 30 cycles of

denaturation at 949C for 30s, annealing at 58°C for 45s and cxtension at 72°C for 45s. The final

cycle ended with an additional extension of 10 min at 72°C. The six short tandem repeat markers
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were DYS19, DYS388, DYS390, DYS391, DYS392, DYS393; all o»f which were amplified
using markers and protocols as described by Thomas et al. (1999). Restriction digested products
and the amplified DNA were electrophoresed on an ABI-3100 automated DNA sequencer and
genotyped by Genescan version 3.1 and Genotyper version 2.1. In this study we have used the
haplogroup definitions as given in Rosser et al. (2000).

Each DNA sample was analysed for polymorphisms at 25 autosomal loci; of which 8
were insertion/deletion polymorphisms (IDPs) and remaining 17 were RFLPs. The names and
GDB accession numbers or ALFRED UID of the RSP loci are: ESR1 (GDB:185229); NAT
(GDB:187676); CYP1A (GDB: 9956062)-Mspl; PSCR (GDB:182305); T2 (GDB:196856); LPL
(GDB:285016); ALB (GDB:178648); ALAD-Mspl (GDB:155925); ALAD-Rsal (GDB:155924),
HB yp - Hinc I (GDB: 56084); HB 3'y8 - Hincll; HB 5 B - HinfT, HoxB4-Mspl (UID:
$10001670); DRD2 (UID: SI000191L) - TaqIB, TagID, TaqlA; ADH2-Rsal (UID: SI000002C).
The names of the IDPs are given in Table 2.13. Primers and protocols used for screening of the
IDPs were as given in Majumder et al. (1999a) and Tishkoff et al. (1996), and those for RSPs
were as given in Jorde et al. (1995), Majumder et al. (1999b) and K. Kidd (personal
communication).

The wet-laboratory experiments were not performed by me, but by others under the
supervision of Professor Partha P. Majumder. | was responsibie for data-cleanup, data-

management and statistical analyses. However, | have provided details of the laboratory

protocols for completeness.

Statistical Methods
Allele frequencies at each locus were estimated for each population by the maximum likelihood
method. Chi-squared tests of significance between the observed genotype frequencies and those
expected under Hardy-Weinberg equilibrium were performed. Maximum likelihood estimates of
haplotype frequencies at linked autosomal loci were obtained via the EM algorithm using the
HAPLOFREQ package (Majumdar and Majumder 2000). Observed heterozygosities were
estimated. Alignment of DNA sequences was done using CLUSTAL-w. The extent of genetic
differentiation, F g7 was estimated (Neli 1973: Hudson et al. 1992).

Tests of significance in non-sparse cross-classified tables were carried out by standard

contingency chi-squared tests. For sparse tables, conventional statistical tests could not be used.
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We have, therefore, used the following bootstrap test procedure. In a k X/ frequency table, Let

k [N
n, denote the frequency in the (i,j)-th cell (i=1,2,....,k; j=1,2,...,]). Let n ; =Zn,.,. , N = Zn,/
i=l

j=t

and n = 2 Z n, . We computed, for a pair of rows (or columns, depending on the hypothesis

i
i=l k=1

to be tested), the Bhattacharya’s distance (Bhgttacharya, 1946) , d,.,., based on the observed

proportions of the various haplotypes in these two populations. Then, we computed a statistic D

n_+n e e
= Y ———=xd . To test the significance of D, we generated bootstrapped samples. For the s-

Nt n

th row (or, column), this was done by drawing a sample of size n  from a k-nomial distribution
with cell probabilities p, =n, /n . When bootstrapped samples were so generated for all the

rows, we had a bootstrapped k x[ table. A large number (10,000) of such bootstrapped tables
were generated. For each table, the D-statistic was calculated. The D-values were then sorted in
ascending order and cut-off point corresponding to upper 5% tail were calculated. If the D-value
corresponding to the observed table was above this cut-off point, then the null hypothesis was
rejected at the 5% level of significance.

Stepwise logistic regression and linear discriminant analyses was carried out using SPSS.
A non-parametric test, Kruskal-Wallis test, was performed to test equality of frequency
distributions at Y-STRP loci, using SPSS. AMOVA analysis of mtDNA haplotypes was
performed using ARLEQUIN (Schneider et al. 2000). DNA sequences were aligned using
ClustalW. The Cambridge sequence was used as reference during alignment. Descriptive
statistics, nucleotide diversities and mismatch statistics were calculated using the DnaSP (version
3) package (Rozas and Rozas 1999). Expansion times were estimated using the methodology
proposed by Slatkin and Hudson (1991) assuming a mutation rate of 20.5% per site per million
years which is appropriate for the HVS1 region (Bonatto and Salzano 1997). 95% confidence
interval of an estimated expansion time was calculated using 2 x s.d. of the sampling variance of
nucleotide diversity. Calculation of Fu's (1997) F ¢ statistic and its test of significance using
coalescent simulation were performed using ARLEQUIN (Schneider et al. 2000). For
phylogenetic analyses using mtDNA sequence data, DNA distances were calculated using the

maximum likelihood method assuming a 30:1 transition:transversion ratio, which has been
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suggested as appropriate for the HVS| regipn (Lundstrom et al. 1992). For phylogenetic analysis
using {requencies of autosomal markers, mtDNA haplotypes and Y-chromosomal data, genetic
distances were calculated using Nei's (1987) D , distance. The neighbor-joining method (Saitou
and Nei 1987) was used for phylogenetic reconstruction. All phylogenetic calculations were
performed using the DISPAN package or the DNADIST (Jukes-Cantor) and NEIGHBOR
modules of the PHYLIP-ver. 3.5¢ package,

The age (A) of a Y-haplogroup were estimated as: A=g X s ?/u, where g = gen‘eration

time (assumed to be 30 years); s * = variance of STR repeat number among haplotypes
belonging to the haplogroup, averaged over all 6 STR loci; and 4 = mutation rate per generation
at an STR locus (taken to be 0.18%, as previously estimated (Quintana-Murci et al. 2001) for the
6 STR loci under consideration). The 95% confidence interval of estimated A was calculated

from the previously estimated (Quintana-Murci et al. 2001) 95% CI of u =(0.31% - 0.098%).

An analysis of population structure using a Markov Chain Monte Carlo method as

developed by Pritchard et al. (2000) was carried out using the program STRUCTURE.

Electronic Database Information
ALFRED, http://alfred.med.yale.edu
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CLUSTAL-W, http://www2.ebi.ac.uk/clustalw/
DISPAN, http://oat.bio.indiana.edu:7580/
DnaSP, www.ub.es/dnasp/

Ethnologue, http://www.ethnologue.com/

HVST database, www . eva.mpe.de : -

NETWORK 3.0, hup://www.fluxus-engineering.com/sharenet.htm

PHY LIP http://evolution.genetics.washington.edu/phylip.html
STRUCTURE, http://pritch.bsd.uchicago.edu/software.html

Results

Mitochondrial DNA Polymorphisms

RSP haplotype frequencies: All populations are monomorphic at the Hpa I np 3592 locus. The

Dde 1np 10394, Alu I np 10397 and Hae Il np 16517 loci are polymorphic in all populations.

27



Several populations are monomorphic at the Hae 111 np 663, Alu 1 np 5176, Alu I np 7025, Hinfl
np 12308, Hincll np 13259 and Alu I np 13262 loci. For the 9-bp COIl/ tRNAY® intergenic
length mutation, no variation was observed in 40 out of the 44 populations. This length mutation
was observed only among Riang (2 deletions among 51 individuals), Halba (1 deletion among 47
individuals), Gond (2 deletions among 51 individuals) and Nava Baudh (one insertion among 40
individuals). Although in samples drawn from a different geographical location, several
individuals of the Irula tribe were found to poseess the 9-bp deletion (Watkins et al. 1999), we
have not detected any in this population. The 9-bp deletion has also been reported to have arisen
independently in India (Watkins et al. 1999). There is considerable variability (0.0054-0.4101) in
average heterozygosities across the polymorphic loci. The Alu I np 10397 locus exhibited the
highest heterozygosity of 0.4101, and the 9-base pair deletion locus showed the minimum
heterozygosity (0.0054).

Table 2.2 presents the observed haplotype frequencies in the populations. Thirty two
distinct haplotypes were observed among the 1490 individuals examined from the 44
populations. However, in none of the populations were all the 32 haplotypes observed. The
maximum number of haplotypes (13) was observed among Rajput and Tipperah while the Kota
and Toda harbored only two haplotypes each. The frequency distributions of the haplotypes
among the populations are significantly different at the 5% level. However, one haplotype,
00111101010 accounted for 46.4% of all mtDNA molecules. This modal haplotype in the pooled
data set is also the modal haplotype in 34 of the 44 study populations. It can, therefore be
inferred that, this is the most ancient haplotype in Indian populations. The 10 populations, in
which this haplotype is not the most frequent, primarily comprised ethnic groups of either the
northern region (Uttar Pradesh Brahmins, Punjab Brahmins, Rajput, Muslim) or the northeastern
region (Chakma, Jamatiya, Mog, Toto). This is consistent with known historical immigrations
into these (north and northeastern) regions (Thapar 1966). In spite of the extensive haplotype
sharing among all socio-culturally, geographically, and linguistically distinct ethnic populations,
some haplotypes (00000001010, 00010000100, 00010001010, 00011001000, 00011001010,
0011000101 1) were found exclusively among northeastern Tibeto-Burman speaking tribal
populations. This is consistent with the hypothesis of recent entry of these people and/or
admixture with populations, possibly of southern China and adjoining regions, predominantly

resident outside of India (Guha 1935; Su et al. 2000). We also analyzed these data after
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Table 2.2
Estimated Percentage Frequencies of Haplotypes Based on 11 mtDNA Loci*

SL.| HAPLOTYPE | AGH | AMB | BAG CHA | CHK | GAU | GND | HAL | HO ILA T IYN | IYR | JAM | JSK | KBR | KHT [ KMR [ KOT | KUR | LOD | MAH | MNP | MOG | MRT
NO.

00000001010 4.00
00010000100
00010001000
00010001010 4.00
00011001000 | - 10.00
00011001010 4.00
00011101000 4.00 5.45 8.00
00011101010 4.00 48.00
00100001000 3.33 2.08 6.25
00100001010 196 | 2.13 2.08 417
00100011000 2.08
00110000110 417 2.08 2.44
00110001000 | 4.17 | 3.33 [ 3.23 15.38 213 | 3.70 3.33 | 6.67 8.33 | 3.23 | 833 | 9.26 9.09 9.76
00110001010 1935 | 4.00 |5000]| 7.69 | 15.69|17.02|14.81]23.33[33.33]13.33|36.36 | 18.75] 6.45 | 12.50 | 7.41 3.33 | 13.33 24.24 | 36.36 | 20.00 | 14.63
00110001011
00110011000 | 12.50 | 6.67 | 6.45 8.00 7.69 | 392 | 426 | 1.85 [20.00 | 10.00 | 10.00 6.25 | 3.23 | 1042 | 7.41 12.12{ 9.09 2.44
00110011003
00110011010 | 8.33 6.45 | 24.00 7.69 | 9.80 | 213 | 556 | 3.33 13.33 ] 1.82 | 1042 | 3.23 | 10.42 6.67 | 18.75| 6.06 4.88
00111001000 3.33
00111001010 3.23 10.00 2.13 417 3.03 2.44
00111011010 15.38 2.08
00111100110 3.33 3.33 9.68 9.09
00111101000 | 4.17 {33.33] 12.80 10.00] 769 | 392 | 6.38 {2037 3.33 18.18 | 4.17 4.17 | 16.67 34.38 | 3.03 4.00 | 9.76
00111101001 1.96
00111101010 | 70.83 |56.67| 48.39 | 56.00 |20.00 [ 30.77 [ 60.78 [ 61.70 | 53.70 | 46.67 | 50.00 | 46.67 | 34.55 3542 | 70.97 | 41.67 | 59.26 | 96.67 | 76.67 | 46.88 | 42.42 | 36.36 | B.00 | 53.66
00111101011 196 | 2.13
00111111010 7.69 3.23
10010001000
10110001000 3.33 6.06
10110001010 3.64 3.33
10110011000 3.03
10111101000
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Table 2.2 ... continued
SL.NO.] HAPLOTYPE MUN T MUR T MUS [ MZO | NBH T PBR | PLN | RAJ | RIA | SAN | SBR | SCH | TAN | TOD | TRI [ TTO | UBR | VAN | VLR | WBR | TOTAL
1 00000001010 0.07
2 00010000100 1.96 3.92 0.20
3 00010001000 3.70 0.07
4 00010001010 3.33 0.13
5 00011001000 0.07
6 00011001010 0.07
7 00011101000 714 | 3.45 392 | 53.33 181
8 00011101010 5.88 | 7.84 392 |26.67 | 3.70 2.08
9 00100001000 2.08 6.25 3.70 0.67
10 00100001010 2.08 3.70 0.47
1 00100011000 6.07
12 00110000110 2.08 1.96 2.08 1.96 3.70 0.60
13 00110001000 3.57 250 | 10.42 980 | 392 | 5.00 | 3.85 | 4.17 196 16.67 9.09 | 3.76
14 00110001010 2857 | 13.33110.71 | 17.24 [ 15.0029.17 [ 20.00 {2549 | 11.76 | 15.00 | 11.54 | 4.17 6.25 | 72.00 | 21.57 37.04 | 20.0014186{13.64| 18.72
15 00110001011 3.92 0.13
16 00110011000 3.33 3.57 3.45 250 | 4.17 3.33 | 3.92 10.001 7.69 | 10.42| 6.25 1.96 7.41 2.33 4 63
17 00110011003 2.50 0.07
18 00110011010 3.33 | 28.57 1250 | 1667 | 3.33 | 11.76 1154 | 18.75 | 6.25 3.92 18.52 | 10.00 455 | 6.85
19 00111001000 3.57 2.08 1.96 3.85 0.34
20 00111001010 6.90 2.08 588 3.85 13.64 1.14
21 00111011010 417 1.96 417 0.54
22 00111100110 3.45 3.92 1.96 1.96 0.74
23 00117101000 12857 | 333 | 357 11034 | 7.50 | 2.08 | 10.00] 1.96 | 7.84 |10.00] 7.69 | 2.08 | 6.25 9.80 | 3.33 1333|1628 | 4.55 | 7.85
24 00111101001 0.07
25 00711101010 14086 1 76.67 | 25.00 | 48.28 | 57.50 | 22.92 | 56.67 | 19.61 | 47.06 | 60.00 | 50.00 | 47.92 | 75.00 | 28.00 [ 35.29 | 10.00 | 14.81 | 40.00 | 39.53 | 54.55 | 46.44
26 00111101011 0.13
27 00111111010 6.67 1.96 0.34
28 10010001000 3.92 0.13
29 70110001000 14.29 | 6.90 588 | 9.80 7.84 3.70 1.48
30 10110001010 0.20
31 10110011000 0.07
32 10111101000 3.33 0.07

* Order of loci: Haelll np 663, Hpal np 3592, Alul np 5176, Alul np 7025, Ddel np 10394, Alul np 10397, Hinfl np 12308, Hinclt np 13259, Alul np 13262, Haelll np 16517, 9-bp deletion. (1=

presence of restriction site/deletion, 0= absence of restriction site/deletion)




grouping populations by language, geographical region or social rank. The Austro-Asiatic
speaking tribal populations harbored the minimum number (6) of haplotypes, while the
Dravidian, Tibeto-Burman and Indo-European speaking populations harbored, respectively 15,
22, and 22 distinct haplotypes. The frequency of the modal haplotype (00111101010) is
significantly (p<0.0001) lower among the Tibeto-Burman (32%) speaking groups, while those
among the Austro-Asiatic, Dravidian or Indo-European speaking groups are not significantly
(p>0.05) different. This modal haplotype is also modal across tribal and caste groups of all ranks,
though not among the Muslim. However, the difference in frequencies of the modal haplotype
between tribals are castes is statistically significant (p<.00005). This indicates that the frequency
of the major ancestral female lineage have been altered by subsequent admixture and/or drift.
The modal haplotype among the Muslim is, interestingly, on the U haplogroup background
(described in detail later), which is also quite frequent among the caste, but not among tribal,
groups. The modal haplotype is the same across all geographical regions, although the
frequencies among the regions are variable and statistically significantly different [62% (central
region) — 33% (northern and north-eastern regions)]. The second most frequent haplotype is
00110001010 in all the linguistic groups, except the Austro-Asiatic. This haplotype is on a non-
M haplogroup background (described in detail later), while among the Austro-Asiatic the second
most frequent haplotype is different (00111101000) and on a M background. However, even
though the second most frequent haplotype among Dravidian, Tibeto-Burman and Indo-
European is the same, the frequencies of this haplotype are significantly (p<0.05) different
among these linguistic groups. The haplotype 00110011010, on a non-M background, occurs
with a high frequency (16.1%) in the northern region, but is significantly lower (1.1% - 7.1%) in
the other regions. Another haplotype, 00111101000, occurs with a high frequency (13.9%) in the
castern region, but occurs at lower frequencies in the other regions (2.5% - 9.5%). Thus, the
conclusion from the above findings is that there is strong evidence of a fundamental unity of
female lineages across ethnic populations of India, irrespective of their geographical location of
habitat, socio-cultural or linguistic affiliation. The minor deviations that are found to occur in
certain populations/locations are easily explained by documented historical immigrations (such
as of Indo-European speakers into northern India).

Population-specific haplotype diversities are presented in Figure 2.2. The haplotype

diversity in most populations, except the Kota, is quite high (64.30%-89.74%).
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Diversities of mitochondrial RSP haplotypes among 44 ethnic populations of India
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Distribution of haplogroups: The RSPs examined in the present study permitted the classification

of individuals into the following haplogroups (HGs): A, B, C, D, H, L, M, U. Table 2.3 presents

the frequencies of these haplogroups in the 44 study populations, HG-L was not found in any of
the study populations. HGs A and C, which are predominant haplogroups in Siberia and among
American Indians (Wallace 1995), occur at intermediate frequencies (1.96-%-14.20%) in study
populations. HG-B, which is present in very high frequencies in the Pacific Islands (Wallace
1995), is present only among the Riang with 4% frequency. HG- D is present mostly in the
northeastern populations; the highest frequency was observed among the Mog (56%). This
haplogroup has been reported to be frequent in populations of Tibet and Korea, among the Han
Chinese and also among American Indians (Wallace 1995). Of particular interest are the
frequencies of HGs M and U. HG-M has been proposed to be an ancient east-Asian marker
(Ballinger et al 1992) and is virtually absent among African (except Ethiopian) and Caucasoid
populations (Torroni et al 1994; Passarino et al 1996a; Passarino et al 1996b). The origin of HG-
M has been somewhat controversial. Quintana-Murci et al (1999) have proposed that the origin
of HG-M is in Africa, while others (Roychoudhury et al. 2001; Maca-Meyer et al. 2001) have
proposed that it may have originated in India and later migrated to Africa. HG-U has been found
in high frequencies among Caucasoid populations, making it suitable for identifying Caucasoid
admixture in Indian populations. The frequency of HG-M in Indian populations is very high
(overall 59.9%: range 18.5% [Brahmins of Uttar Pradesh] to 96.7% [Kota]), confirming that it is
an ancient marker in India. HG-M frequencies are significantly different (p<.001) among the
geographical regions. It is lowest among north Indian populations (38.39%). From north India,
HG-M frequency increases towards all other directions (Figure 2.3). It is possible that the
frequency of HG-M was uniformly high throughout India, before the arrival of the Indo-
European speakers from Central Asia about 3000-4000 ybp through the northwest corridor of
India. Subsequently, as these Indo-European speakers penetrated into India, they pushed back
the existing populations, thereby establishing a gradient of HG-M frequencies from the north
towards the other regions of India. This inference, of course. assumes that the Indo-European
speakers who entered India were not exclusively male; there must also have been a significant
number of females with non HG-M mitochondrial haplotypes. HG-M frequencies are
significantly different (p<.001) among the populations belonging to different socio-cultural

groups. [t is highest among the tribes followed by lower caste, middle caste, upper caste and
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Figure 2.3
Frequencies (%) of mitochondrial haplogroups M (hatched ) and U (solid black) in 44

ethnic populations of India
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Table 2.3

Percentage Frequencies of Various Known Haplogroups in 44 Ethnic
Populations of India and in the Total Sample

Population Haplogroups*

Code M U H D C B A

AGH 75.00 20.83

AMB 90.00 6.67

BAG 61.29 12.90

CHA 64.00 32.00 8.00

CHK 30.00

GAU 46.15 15.38

GND 68.63 13.73 1.96

HAL 70.21 6.38 2.13

HO 74.07 7.41

ILA 53.33 23.33 3.33

[IYN 50.00 10.00

IYR 50.00 23.33 3.33 3.33 3.33

JAM 58.18 ]1.82 5.45 3.64

JSK 39.60 18.70 6.25

KBR 83.87 6.45 9.68

KHT 45.80 20.80 10.40

KMR 75.93 7.41

KOT 96.67

KUR 76.67 6.67 3.33

LOD 81.25 18.75

MAH 45.45 21.21 9.0Y

MNP 45.45 9.09 9.09

MOG 68.00 4.00 56.00

MRT 63.41 7.32

MUN 71.43

MUR 80.00 6.67

MUS 3571 32.14 7.14 14.29

MZO 65.52 3.45 3.45 3.45 6.90

NBH 65.00 17.50

PBR 25.00 20.80 4.16

PLN 73.33 6.67

RAJ 31.37 15.69 5.88 3.92 5.88

RIA 64.71 7.84 1.96 3.92 13.73

SAN 70.00 10.00

SBR 57.69 19.23

SCH 50.00 29.16 6.25

TAN 81.25 12.50

TOD 28.00

TRI 56.86 5.88 7.84 1.96 7.84

TTO 96.67 46.67

UBR 18.52 25.93 7.41 3.70 3.70

VAN 53.33 10.00

VLR 55.81 2.33

WBR 59.09 4.55

Total 59.46 11.67 1.27 3.22 0.74 0.13 }.88
(n=886) (n=174) (n=19) (n=48) (n=11) (n=2) (n=28)

* Haplogroups C and D are subsets of haplogroup M: therefore individuals belonging to haplogroups C and )
are also counted as belonging to haptogroup M. Individuals belonging to haplogroup A, B, H and U are all

non-M.
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Muslims. The frequencies of HG-M in different categories are depiéted in Figure 2.4(a). The
frequencies of this haplogroup are also significantly different (p<.001) among the four linguistic
groups. It is found that Austro-Asiatic speaking group harbors the highest HG-M frequency,
which is significantly higher (p<0.03) than the Dravidian, Tibeto-Burman and Indo-European
groups. Among Indo-Europeans, the HG-M frequency is significantly lower (p< 0.001) than
Dravidians and Tibeto-Burmans.

There is an inverse relationship, albeit somewhat rough, between the frequeﬁcies of the
" M and U haplogroups (Figure 2.3). HG-U frequency is significantly higher (p<.001) among the
north Indian populations than among populations of other geographical regions. Thus, the Indo-
European speakers in India harbor the highest frequency of HG-U:; this value is significantly
higher (p<.001) than among Austro-Asiatic, Dravidian and Tibeto-Burman speakers (Figure
2.4(b)). Among the caste populations, although the lower caste groups have the highest HG-U
frequency, the frequencies of this haplogroup are not significantly different among the caste
groups of different ranks. Another relevant Caucasian specific haplogroup is HG-H. This
hapi\ﬁgroup occurs at high frequencies among north Indian populations (Uttar Pradesh Brahmin,
Punjab Brahmin, Khattri). These findings are consistent with our earlier inference of Indo-
European speakers geographically displacing pre-existing populations.

In order to determine the relative effects of linguistic, socio-cultural and geographical
differences among the populations on HG-M and U frequencies, we carried out a stepwise
logistic regression analysis. We found that all of the three factors are significant in explaining
the observed variation in the frequencies of both HGs M and U, although rankings of their
relative effects differ for the two haplogroups. For HG-M, geographical locations of the study
populations have the most significant effect, followed by linguistic grouping and socio-cultural
status. On the other hand, for HG-U, linguistic grouping has the most significant effect followed
by geographical zone and socio-cultural category. In view of the confounding of language and
geographical groupings mentioned earlier, we think that these results reinforce our earlier
interpretation that HG-M was generally ubiquitous in India and with the infusion of HG-U
linecages by imfnigration of Indo-European speakers and the resultant pushback of the pre-
cxisting populations in the southern and eastern directions, there is clear geographical and

linguistic distinction in frequencies of these haplogroups.
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HVS | sequence variation and subhaplogroup frequencies: The hypervariable segment 1 (HVS1)

was sequenced in a total of 528 individuals, randomly selecting at least 10 individuals from each
cthnic group. Upon alignment of these HVS1 sequences against the CRS (Cambridge Reference
Scquence), four gaps were introduced in the CRS: one after np 16169, one after 18183 and two
after 18189. These four gaps were eliminated from all the sequences prior to statistical analysis.
The stretch of 357 nucleotides of HVS1 region, show deletions of nucleotides at positions 16166,
16182, 16183, 16189, 16190 in several individuals and there are a total 153 polymorphic sites.
Table 2.4 provides the list of observed frequencies of various nucleotides at the 153 positions at
which variant nucleotides (compared to the CRS) were noted in the pooled sample.

‘I'he number of distinct sequences among the 528 individuals for whom HVS1 sequencing
was carried out is 323. Of the 323 distinct sequences, 91 (28.2%) sequences were shared by 296
(56.1%) of the 528 individuals. Thus, there is considerable sharing of HVS|1 sequences, again
reinforcing our earlier inference of a fundamental unity of female lineages in India. It was of
interest to investigate the nature of sharing of sequences across the various groupings of
populations (Figure 2.5). From this figure, it is clear that there is considerable sharing of
sequences among tribals and castes. In the subset of sequences that are shared across soci