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Chapter 1

INTRODUCTION

In this thesis we develop statistical methods for dealing with two problems
namely (1) THE SLIPPAGE PROBLEM and (2) THE CHANGE POINT PROB-
LEM in the set-up of directional data. In this chapter, we provide an intro-
duction to these problems and discuss the importance of the present work.

The slippage problem is basically a problem to detect whether any unspeci-
fied observation in a given random sample comes from a distribution different
from that for all the other remaining observations. This can also be viewed
as a problem of “outlier” detection or that of “spuriosity”. This problem as-
sumes great importance in many practical situations where directional data
are encountered, e.g. in applications to meteorological data, wind direc-
tions, movements of icebergs, propagation of cracks, biological and periodic
phenomena, quality assurance and productivity measures, etc. However, lit-
tle seems to be known regarding its theoretical foundations in the context
of directional data under a parametric model, say e.g. a ‘slip’ in terms of
the mean direction of the circular normal distribution (see however, Col-
let, 1980, Bagchi and Guttman, 1988, 1990 and Upton, 1993). The circular
normal distribution with mean direction g and concentration parameter ,
denoted by CN(y, &), is one of the most popular distributions for modeling
circular data. Some useful facts regarding this distribution can be found
in Appendix-1. A survey of the work done on this problem can be found in

Barnett and Lewis(1994).



In CHAPTER 2, we consider the problem of testing Hy : ©;,7 =1,...,k are
identically distributed as CN(uo, k) against H; : ©1,...,0;_1,0i41,...,60k
are identically distributed as CN{uo, ) and ©; is distributed as CN(p1, ),
1 <i<k,pu > po, p1,00 and & are all known, using a decision theo-
retic route. We derive the Bayes test with respect to the prior distribution
invariant with respect to permutations of Hj, ..., Hy. We also study the per-
formance of the Bayes test when the null hypothesis is true and also when
one of the alternative hypothesis is true.

In CHAPTER 3, we consider the problem of testing Hy against Hy :
There exists i, 1 unknown, such that ©; is distributed as CN(yu;,«) and
61,0,,...,0;.1,0i1,...,0, are distributed as CN(po,%),01,...,0, are
all independent. We derive the LRT and study its performance using simu-
lations. We illustrate the use of this test by analysing two well known data
sets. We introduce the notion of a LOoCALLY MOST POWERFUL TYPE TEST
(LMPTT) and derive it for this problem. We also indicate a Multiple Testing
approach for the outlier problem, which can be easily generalized to situa-
tions where the underlying distribution is not circular normal.

In CHAPTER 4, we provide a simulation based comparison of the various
procedures for outlier detection, namely, the L-statistic(Collet, 1980), M-
statistic(Mardia, 1975), the LRT, the LMP and the Bayes-rule with different
values of p. It is found that the LMPTT performs best when outliers of small
magnitude are sought to be detected, LRT performs best when outliers of
moderate magnitude are sought to be detected and the Bayes-Test performs
best when outliers of large magnitude are sought to be detected.

The onset of an abrupt change, which usually leads to poor quality prod-
ucts is a phenomenon which is common in the industrial context. Several
methods like control charts, Cusum charts, EWMA charts etc. are all de-
signed to detect such a sudden change. It is of interest to note that the orig-
inal and which is also currently adopted, formulation given by Page (1955)
does not consider any possible correlation between the successive time se-
quenced observations which makes it markedly different from the usual time
series models. The problem of detecting whether at all there is a point of
abrupt change in a given data set and thereafter the problem of detecting
the change point has received a lot of attention. These problems have been
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extensively studied for the usual linear data e.g. in the normal and nonpara-
metric setups see eg, Chernoff and Zacks (1964), Hinkley (1970), Sen and
Srivastava (1973, 1975a, 1975b), Siegmund (1988) etc. A review of the esti-
mation of change points can be found in Krishnaiah and Miao (1988). The
change-point problem assumes great practical significance in the context of
many real-life encounters with directional data also. However, no work on
the parametric inference for this problem seems to have been done. Only
Lombard (1986) has initiated investigations in a non-parametric setup. Here
we present some results in the parametric framework.

In CHAPTER 5, we look at the change point problem for the mean di-
rection of a circular normal distribution when the concentration parame-
ter is known using likelihood based techniques. We are interested to test
Hy : ©,,...,0, are i.i.d CN(py, k) against the alternative H,: There exist
r,1 <r <n-1,suchthat ©y,...,0, are identically distributed as CN (o, k)
and ©,4,,...,0, are identically distributed as CN(u;, &), 1 # po- In the
case when iy is known but g, is unknown we derive the Locally Most Pow-
erful Type Test LMPTT for this problem. The asymptotic null distribution of
the LMPTT statistic is shown to be same as that of the supremum of a time
reversed Brownian Motion on [0,1]. When g, and yu; are both unknown, then
we derive the LRT for this problem. We find the cut-off values and the power
of the LRT using simulations. We also indicate a generalization to the case
of multiple change points. A multiple testing approach is provided which
can be easily used even in situations where the underlying distribution is not
circular normal.

In CHAPTER 6, we develop statistical methods for dealing with the above
problem when the concentration parameter is unknown. The problem is com-
plicated since « is neither a location nor a scale parameter. Hence the usual
techniques of nuisance parameter elimination like similarity, sufficiency, in-
variance etc. do not work here. One can use conditional arguments but that
would mean substantial loss of information contained in the data set (Lay-
cock,1975). When the initial direction pg is known, we suggest a multiple test
procedure based on the LMP Conditional Type Test LMPCTT derived under
the assumption that the change point is known. When all the parameters
are unknown we introduce the notion of Neyman-Rao Type Test(NRTT) and
derive it for this problem. The Neyman-Rao Test is an extension of the well-
known C,, test. We have not found any reference to the use of the C, test or
NR-test in the context of change point problems even in the linear case. Qur
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approach for circular distributions here easily applies to linear distribution
also. Since the NRTT is a large-sample test for small samples we obtain its
cut-off values and also its power using simulations. We also illustrate the use
of the LRT, LMPTT and the NRTT using two real-life data sets.

In CHAPTER 7, we look at the change point problem for the concentra-
tion parameter of a circular normal distribution when the mean direction is
known using likelihood based techniques. We consider the problem of testing
Hy : ©;,...,0, are 1.i.d CN(p, k) against the alternative H; : ©4,...,0,
are identically distributed as CN(p, o) and ©,41, ... ,©,, are identically dis-
tributed as CN(p,&;),K1 # Ko for some r,1 < v < n-— 1. When &g 1s
known, we introduce the notion of UNIFORMLY MosT POWERFUL TYPE
TesT (UMPTT) and derive it for this problem. When k¢ is unknown we
derive the LRT for this problem.

In CHAPTER 8, we look at the change point problem for the concentration
parameter when the mean direction is unknown. We derive an NRTT for this
problem.

In CHAPTER 9, we look at the change point and outlier problem for some
skewed circular distributions. We consider three different skewed circular
distributions, one due to Papakonstantinou(1979), another due to Rattihali
and Sengupta(2001) and the third due to Batschelet(1981). We use the
LMPTT as the main tool in tackling change point and outlier problems for
these distributions.

In CHAPTER 10, we look at a few alternative approaches to the change
point and outlier problems like (a) Semi-Bayesian and Hierarchial Bayes ap-
proach, (b) A new type of Integrated Likelihood approach, (c) Randomization
tests and (d) Markov chain based approach. The last approach can be used
for predicting change points.

In CHAPTER 11, we provide three new exploratory data analytic tools :
(a) Changeogram, (b) Circular Difference Tables and (c) Circular CUSUM
chart. These are useful for detection of change points in the context of
directional data. Their uses are illustrated through some examples also.

In CHAPTER 12, we discuss some possible generalizations, and indi-
cate scope for further research. The LMPTT is used as a tool for tack-
ling change point and outlier problems for Cartwright-Mitsuyasu distribu-
tion(Cartwright, 1964, Mitsuyasu et. al. 1975), wrapped Cauchy distribu-
tion (Mardia, 1972) and the wrapped stable family of distributions (Mardia,
1972). Also a few interesting change point problems like Circular Uniform to
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Circular Normal and Circular Uniform to Circular Uniform-Circular Normal
mixture are shown to be easily tackled using the LMPTT approach. Finally, a
general method of obtaining the NRTT statistic value for the case when exact
computations are formidable is presented. This method yields an Unified
Approach through which, we expect, important change point testing prob-
lems can be tackled, for all usually encountered circular distributions. Our
pursuit of the solutions to our testing problems is thus brought to a halt at
this point. Scope of further research in related areas is also indicated.

In CHAPTER 13, we provide some computer programs which are useful
for implementing some of the methods developed in this thesis.

In CHAPTER 14, we provide tables of cut-off values and powers of someof
the tests developed in this thesis.

In CHAPTER 15 we provide a collection of figures including graphs of
some of the skewed circular distributions discussed in this thesis.
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Chapter 2

SLIPPAGE PROBLEM - A DECISION
THEORETIC APPROACH

2.1 Introduction

In this chapter we look at the slippage problem for the mean direction of the
circular normal distribution. We assume that there is atmost one observation
in a data set which comes from a different distribution than the rest. We
follow a decision theoretic approach and derive the Bayes’ test with respect to
an invariant prior which is a natural choice in such contexts. The performance
of the Bayes’ test when the null hypothesis 1s true and also when any one of

the alternative hypotheses is true is studied.

2.2 Decision Theoretic Rule

Suppose Oy, ..., 0, are independent CN(u;, &) random variables with density

\ ¢ 0 — u:
F(O: s = exp {x cos ( : “')},0 <f<2m K >0,0< < 2mi=01(21)
277'10()‘»)

where Io(x) is the modified Bessel function of order 0.
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We assume that 0 < pg < gy < 27 and n > 3. We are interested in finding
the Bayes’ rule for the multiple decision problem of accepting one of the n+1
hypotheses Hy, Hy, ..., H, with respect to the prior distributions invariant
under permutations of H,,..., H, using the loss function which assigns loss
= 0 if the correct hypothesis is accepted and loss = 1 otherwise. The prior
distributions invariant under permutations of H,, ..., H, give equal weight
to H,,...,H, and hence they are of the form 7,, where

Tp (HO) = 1= np,
p (2.2)

=
i

where 0 <p < (1/n),and 1 <i < n.

Let ®(©) = (6(1;0),...,9(n;©)), be a generalized critical function or a
multiple decision rule (Ferguson,1967) with ¢(;®),2 =1,...,n taking values
0 or 1, and Zqﬁ(i;@) — 1. Thus ® chooses H; when © = § is observed if
#(i;0) = 1. Let R; be the likelihood ratio at ©; under p; to po, i.e.,

R; = f(©;;m) /f (85 10) = exp [ {cos (8 — pu) — cos (8 — mo)}] (23)

Theorem 1 : The Bayes’ test with respect to 7, for Hy against H;,1<:<
n is qiven by

#(0;©®) = 0 whenever (1 —np)/p < max R; (2.4)
and
#(i;©) = 0 whenever either R; < max R; or
J
(1 —np)/p >max R;;1 <i<n (2.5)
j

Proof : The result follows from the general theory given in F erguson(1967,pp.
299) after some simplifications.
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The following theorem gives the performance of the Bayes’ rule given in The-

orem under the null hypothesis. Let,

+ exp {H, cos ((5 +sin~! 7’)}
+ exp {rc cos (5 + 37 —sin™! 7’)} )

and G(n) = /" g(t)dt, n € (—1,1) where,
-1

___ K@
9(n) = 2nly(k)V1 — 7?

Further let § = £ and u = {(1 - np)/p}Znsiné‘

Theorem 2 : In the framework of Theorem 1,

(a) Pr(¢(i;©) =0 | Ho is true ) = 1— L [G(w)]"

n n

(b) Pr(¢(0;©) =0 | Hy is true ) = 1—[G(u)]"
Proof: Observe that,

R; = exp (2ksin dsin(0; — p — 9))
Thus,

max R; = exp {(2n sind)max sin(©; — p — 5)}
i j

(2.6)

(2.7)

(2.10)

(2.11)

since exp(z) is an increasing function of z and 2k sind > 0 as a consequence of
our assumption 0 < g < py < 2m. Let j; = sin(@;—p—4) forj =1,2,...,n.
Since, Oy, . .., O, areii.d it follows that 5,72, ..., 7, areii.d. We first derive
the distribution of 5. Let us consider that branch of sin™' § which is monotone

13



on [, 321] Then the inverse transformation is defined uniquely through the

domain of # as partitioned below, is

Y(n) = p+6+ (r—sin"'y)if /1+5$93g+n+5
. o 3
= pu+d+sin 'y if g+/t+6§6§~§+ﬂ+(5

NKY:s a
= pu+8+3r—sinly if 7+u+6§0§27r+u+6(2.12)

After some calculations we get the density of 5 to be g(n). Note that the
density does not exist for the points -1 and 1. But then the set {—1,1} has
Lebesgue measure zero and hence any value can be put at these points with-
out changing the distribution. We put 0 at these points. Define W = max .

Then W has distribution H where H(w) = [G(w)]". Let W} = WAX 7¢. Then
the c.d.f of W} is H} (w) = [G(w)]*"!. Now

_ In (1=re
Pr (ma.x R; < ! np) = Pr (W < -—(—l—)—)
J P 2Kk sin §

= [ uldH(w) (2.13)

In (=22

where u = oy

Note that the event, R; < max R; is equivalent to the event n; < W. Further,
j

Pr(n; > W) = Pr (n; > 1,, s # 1) since the distribution of #;’s are continuous.
Thus,

Pr (> maxn) = [ (1-Go)a;(m)

= [-nu-pyy=1 @

14



where we put y = G(n) and dH; (n) = (n — 1)[G(n)]""2dG (7). Now.

Pr(#(i;©) = 0) = Pr(n; < W) + Pr(W < u) — Pr(g; < W < u)

Thus, the problem of finding Pr(¢(i; ©) = 0 | H, is true) is solved if Pr(y; <
W < u) is obtained. Now,

Pr(n; < W <u) = Pr(y; <W; < u)
= [ Gma; ()
= (-1 [GOIdGH)

6w
— (n—1)/0 "y

= o)y

n

So, Pr(¢(i;60) = 0] Hp is true) = 1-— 1 + (G(w)]”

n n

Pr(¢(i;0) = 1| Hp is true) = 1 —Pr(¢(¢;0) = 0| Hy is true)
_ 1[G
n n
Pr(¢(0;6) =1 | Hy is true) = Pr(W < u)
= [G)]"

Pr(¢(0;6) = 0| Hy is true) = 1 —[G(u)]"

The following theorem gives the performance of the Bayes’ rule when H; is
true. Let 7; be as in the proof of the Theorem 2 and let G be its dlstnbutlon
function (d.f.) when ©; is CN(uo, x) and let G* denote its d.f. when ©; is

CN(/‘I’ K’)

Theorem 3 : In the framework of Theorem 1,
Let, 1 < 4,5 < n,

() Pr(¢(i:©) =0 | H; is true ) = 1+ /_1 [G(w)]*2G" (w)dG(w)

15



—(k - 2) /31 [G(w)]* (1 — G(w)]G* (w)dG(w)

_ /_‘l [G(w)]* 1 — G(w)]dG" (w)
where | # j
(B)Pr(6(0;0) =0 | H; @s true ) = 1-(k—1 / (Gl 2 (w)dG )

- [G(w) k YG* (w)
[

() Pr(¢(j: ©) = 0 | H, is true ) = /_ 1 [G(w)] ™ dG" (w)
k=) [ (G 6 @)dG(w)

Proof : (a). Using arguments similar to that in the proof of Theorem 1 we
have when H; is true

Pr(m; < W) = Pr(n < W)
= 1—Pr(p > W)

= 1 {(k-2 / (1= GG 6 (n)dG)

+ / (1= GG 2dG" ()} (2.15)
since 7; and W/ are independent.
Also,
Pr(W <u) = (k—1) /_ "1[G(w)]’°-2a*(w)dc:(w)
+ /_ ul[G(w)]"“ldG*(w) (2.16)
and

Pe( <Wi<u) = (k=2) [ [GOIC" (ndGn)

+ [ (Gm1ae o) (217)

16



Hence,

Pr(¢(i;©) = 0| Hj is true ) = Pr(n; < W) + Pr(W < u)
—Pr(m < W < u)

=1 +/ )1NF G (w)dG(w)
~(k=2) /_ [G)L = G| (w)dG(w)

[ [t - GGt ) (219

Pr(W > u | H; is true)
1 — Pr(W < u | Hj is true)

1 - /_ thi(w)
1 [ (k= DG G (@)dG(w)

+/ (w)]*dG" (w) (2.19)

(b) Pr(¢(0;©) =0 | H; is true)

on

where H;(w) = [G(w)]k'lG* (w) is the distribution function of W under Hj.

(c) Pr(¢(j;©) = 0 | Hj is true ) = Pr(n <W;)+ P(W < u)
—Pr(n; <W; <u)
Pr(n; <W;) = (k-1 / G (w)[G(w N 2dG(w)
Pr(W <u) = (k-1) / (G(w)] 26" (w)dG (w)
Pr(n; <W; <u) = (k—1 / G* (w) L 224G (w)

Pr(4(j;0) = 0] Hjistrue) = (k-1 / G* (w)[G(w)] G (w)

+/ JE G (w) (2.20)

17



— Pr(#(j;0) = 0| Hjis true) = (k_1)/_116'*(w)[G(u.;)]’““‘sz(w)

+[ (G a6 w) (2.21)

18



Chapter 3

SLIPPAGE PROBLEM - LIKELIHOOD
BASED APPROACH

3.1 Introduction

In this chapter we provide a likelihood based approach to the slippage prob-
lem for the mean direction of the circular normal distribution. In section 3.2
we provide the LRT. We use simulations to obtain the cut-off points and the
power of the LRT. The results are discussed in section 3.3. In section 3.4
we discuss the results of a simulation based sensitivity analysis for possibly
mis-specified £. In section 3.5 we provide two examples of the use of LRT in
analysing real life data sets. In section 3.6 we introduce the notion of the
"type tests”. In section 3.7 we derive the LMPTT for the present problem.
Finally in section 3.8 we provide a multiple testing approach to the slippage
problem. The results of this section are general and widely applicable.

3.2 Likelihood Ratio Test

Case I : Suppose ©,,...,0,, are all independent. Let Hy : ©4,...,0, are
i.i.d CN(po, x) and H; : Thereexist j,1 < j < n, such that ©,,...,0;_1,0;41,
...,0,, are identically distributed as CN(ug,x) and ©; is distributed as
CN(u1,Kk); 11 > po. We first consider the case of testing Hy against Hj
when 0 < pg < g1 < 2m,p1, 0 and k are all known. As in the previ-
ous chapter, let gy = g and py = p+ 26 (mod 27), 0 < § < 7. In this
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case we prove the following theorem. Let G be the distribution function of
sin(©; — p — &) under Hy.

Theorem 4 : In testing Hy against H; the LRT-statistic s equivalent to
V = max sin(0; — p — 8). The ezact sampling distribution function of V

J
under Hy is given by M(8) = [G(0)]".

Proof : The likelihood under Hj is,

fo(61,0s,...,0,) = (27r[0(r£))'"exp{ﬁ§:cos(9,-—u)},

0<6; <2m,k>0,0< p<2m, (3.1)

and that under Hj is,

fi1(61,02,...,0,) = max (271 (k) " exp[r{D_ cos(8; — p)
i)
+COS(0]' —p— 25) }]’
0<6;<2m £>0,0<p<2m,0<d<m (32)

Thus the LRT-statistic A is given by,

—In A = m]ax[n{z cos(f; — p) + cos(8; — p— 28) — Z cos(6; — 1) }]

i£j
— maxs{cos(8; — p— 29) = cos(8; = W)}
= IIIJ%_D{[K,{Z sin(6; — p — 8) sind}] (3.3)

Since 0 < & < 7 we have, sind > 0. Thus — In A is equivalent to the statistic
max sin(©; — p — §) = V (say). Now note that under Hy, sin(©; — p — 9)

i
are i.i.d. Hence the distribution function of V is M(8) = [G(6)]".

Observe that G(§) can be evaluated numerically and hence the cut-off points-
for the LRT are readily available.



Case II : In this case we are interested to test Ho against Hy when & is
known but g and ¢ are unlmown The form of the LRT is given by the
following theorem. Let sy and fi;* denote the estimates of p under Hy and
H; respectively. Further, let f; denote the likelihood when there is a slip at
J.(7=1,2,...,n). Let 7 be that j for which f; attains its maximum.

Theorem 5 : In testing Hy against H} the LRT-statistic A is gien by

—In A = &{(D_cosO;)(cos fi" — cos jio)
i#
+(Z sin ©;)(sin fi} — sin fig) + 1 — cos(O; — o)} (3.4)
i#]

Proof : The log-likelihood under Hy is,

In f0(011 . n) = —nln 27?10(5) + K ZC()S(Oi —_— “)
= —nln2rly(x)+ x{cos ) cosb;

+sinp Y siné;}

Putting d1n fo/0p = 0 and solving for p gives

fip = tan™’ (Z sin 0;/ Z cos 9,-) .

Under H; the log-likelihood is

In f; (61,...,0,) = max[-—n In2nly(k) + £{cos p Z cos 6;
i#j

+sinp Y sinb; + cos(f; — p — 26)}]
i#j

Thus, f; = ma.x f;- Fix1 < j < n. We now compute ji; and 6 which are

the maximum hkehhood estimates (MLE’s) of g and of 4 under H;. Putting
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dln J; dln f; . _
Onfi — g and 225 = 0 and solving for x and J gives

O )

Z sin 0"

= Y [ —
Z cos b;
i

and
g otlimH
J 2 :

Let 7 be that j for which f; attains its maximum value after substituting
fi; and 0;. Thus under H; the estimate of p is pi5(= 4:*) and that of 4 is
d;(= 8). Therefore the LRT-statistic A is given by

—InA =r{l+)_cos(f; — i) — > cos(6; — fio) }
i#j :

which after some calculations gives

—In A = &{(3_cosbi)(cos 1] —cos fi)
i£j
+(3 " sin6;)(sin i} — sin fig) +1 — cos(f; — o)}
i#j

The exact sampling distribution of the LRT-statistic is formidable - no closed
form or even any analytic representation for it in small samples seems to be

possible.

Remark 1 : We note that Collet(1980) considers a problem very similar to
the above. He tests for no slippage versus a slippage alternative and derives a
LRT-statistic for it, which he calls the L-statistic. However the difference from
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our approach is that, he first uses a data-based measure to detect the outlier
candidate. Subsequently formal tests are conducted to statistically validate
the hypothesis that it is in fact an outlier. The choice of the measure may
not be reasonable for even symmetric data sets where clusters may appear far
from the mean direction. In our procedure the detection and testing for the
outlier is based on the LRT and is entirely probabilistic.

3.3 Simulation

We use simulation to obtain the null distribution of A as well as its power.
The simulation results for the null distribution are based on 5000 repetitions
with sample size n,n= 10, 20, 30. The random sample from circular normal
distribution is drawn using the IMSL library routine RNVMS. For simulating
the power a particular observation is drawn from a circular normal popula-
tion, CN(A, 1) with A = 20(20)180 (in degrees) and repeating it 5000 times.
Since the power function is symmetric about 180° the above computation is
sufficient. The cut-off points for the LRT at 5% level of significance is given
in Table 1, Chapter 14. By looking at the null distribution of the test statis-
tic it is seen(see Table 2, Chapter 14) that it gets increasingly concentrated
with the increase in sample size. Further the null distribution is seen to be
increasingly concentrated around 0 as the value of & increases.

Note that since the assumptions involved in the usual large sample approx-
imation of the LRT A, i.e. —2In A is distributed as x? is violated here, for
example the parameter space [0, 27) x (0, 7) x {1,2,...,n} is not an open set,
it is not appropriate to use this approximation in this situation. We obtain
the power of the LRT with x =1 through extensive simulations. The power
of this LRT (see Table 3, Chapter 14) increases with increase in sample size.

The LRT exhibits (see Table 4, Chapter 14) encouraging power performance
starting from k even as somewhat small as 4. Also, the convergence of
the power to one increases rapidly with x. This is expected since with the
higher value of the concentration parameter the observations tend to be close
together making it ‘easier’ for us to detect an outlier.
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3.4 Sensitivity Analysis

The LRT statistic is derived under the assumption that the value of & is
known. But in real life applications the value of & is usually unknown. Thus
to apply the LRT in real life situations we need to specify a value of & which
may be estimated from the data or arrived at from other considerations.
Since the specified value of k may not be exactly equal to the actual value
of &, it is important to study the sensitivity of the level of significance and
the power of the LRT to the possibly mis-specified value of .

Table I and Table II below give the results of a simulation-based sensitivity
analysis for different values of true and specified x. To study the sensitivity
of the level of significance we generate 1000 random samples of size 10 each
from CN(0, k) where & is the true value of the concentration parameter. The
LRT statistic is computed using the specified value of k. The cut-off points
used are such that the level of significance of LRT is 5% when the true value
of k is known. In Table I, the actual level of significance of the LRT is given
for different combinations of true and specified x.

To study the sensitivity of the power of the LRT we generate 1000 random
samples of size 10 each. In each sample of size 10, nine observations come
from CN(0,2) and one comes from CN(A,2) where A = 45°,90°,135°,180°.
The LRT statistic is computed using the specified value of k. The cut-off
point used is that of an LRT with level of significance 5% when the value of
x is known to be 2. In Table II, the power of the LRT is given for different
combinations of specified value of & and .



TABLE I Sensitivity Analysis of the Level of Significance
of the LRT for outlier problem
(n = 10)
Specified k
True x 0.5 1.0 1.5 2.0 4.0 10.0
0.5 0.050 0.129 0.194 0.391 0.978 1.000
1.0 0.042 0.050 0.124 0.241 0.901 0.998
1.5 0.017 0.035 0.050 0.134 0.708 0.974
2.0 0.006 0.021 0.022 0.050 0.497 0.936
4.0 0.000 0.000 0.000 0.002 0.050 0.629
10.0 0.000 0.000 0.000 0.000 0.000 0.050

TABLE II Sensitivity Analysis of the Power
of the LRT for outlier problem

(n=10,k=2)

A
Specified k  45° 90°  135° 180°
0.5 0.008 0.015 0.028 0.046
1.0 0.009 0.027 0.056 0.075
1.5 0.035 0.034 0.073 0.130
2.0 0.053 0.098 0.213 0.293
4.0 0.556 0.706 0.854 0.949
10.0 0.953 0981 0996 0.998

From Tables I and II we find that both the level of significance and the power
of the LRT are sensitive to the variations in the values of k. If the specified
value of x is less than the true value then we find that the LRT is conser-
vative but if the specified value of k is greater than the true value then the
misspecification leads to anti-conservative nature of the LRT.

It 1s also important to know the sensitivity of the LRT with respect to the
underlying distribution i.e. how the LRT will behave if data coming from
a distribution other than circular normal is analysed using the LRT which
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is derived under the assumption that the underlying distribution is circular
normal. It is particularly interesting to know the behaviour of the LRT if
the underlying distribution is a skew circular distribution. A skew circular
distribution of particular interest is the Rattihali-SenGupta’s skewed circular
distribution (Rattihali and SenGupta, 2000) discussed in Chapter 9. The
RS(ky, ko, t) distribution has probability density function

1
[0k ko) = m exp [k, cos(6 — p) + kg cos 26]

0<80<2m, ki ky>0,0< <2, (3.5)
It is clear from the above that if k, = 0 we get the CN(pu, k;) density.

A small simulation based sensitivity study was conducted regarding the level
and the power of the LRT when the underlying distribution is a Rattihali-
SenGupta’s skew circular distribution. Random samples from RS(ky, ko, 1)
can be easily generated using the acceptance-rejection technique based on
the CN(y, k,) as the envelope function. Each time 10 random samples
f,...., 01 are generated of which 6,,...,0, are from RS(0.9,1.1,0.7854) and
f10 = (8* +A) mod 27 where 6" is a random sample from RS(0.9,1.1,0.7854)
distribution and A = 0°,45°,90°,135° and 180°. Since the value of the mea-

sure of concentration p, which is defined as p = \/EE(COS 0))? + (E(sin 9))*,
for RS(0.9,1.1,0.7854) is quite close to that of a circular normal distribution
with & = 1, the LRT with x = 1 is applied. The nominal level of significance
of the test is fixed at 5%. For each A the above procedure is repeated 1000
times and the power of the test noted. Note that the power corresponding
to A = 0 is the actual level of significance of the test. The results are given

in Table I1I below.




TABLE III Sensitivity Analysis of the Power
of the LRT for the outhier problem w.r.t
skewed circular distribution RS(0.9,1.1,0.7854)

(n = 10)
A Power
0° 0.142
45° 0.121
90° 0.093
135°  0.123

180°  0.173

From the above table we find that the actual level of significance of the LRT
is much larger than the nominal value when the underlying distribution is
actually a Rattihali-SenGupta’s skewed circular distribution, as intuitively

expected.

3.5 Examples

We illustrate the above tests through two well-known examples on directional
data. For both these examples, we assume that the ‘known’ needed value of
Kk is £, the MLE, as obtained from the data. The relevant computations as
needed below were done through DDSTAP (SenGupta, 1998), a statistical
package for the analysis of directional data. We tested these data sets for cir-
cular uniformity using the Rayleigh test which resulted in rejection for both.
These were however, found to be not incompatible with the assumption of
the circular normal model.

Example 1. Fisher and Lewis (1983) give data from three samples of pale-
ocurrent orientations from three bedded sandstones layers, measured on the
Belford Anticline, New South Wales. We consider here the first sample. The
data set is (all figures in degrees) : 284, 311, 334, 320. 294. 137, 123, 166,
143, 127, 244, 243, 152, 242, 143, 186, 263, 234. 209. 267. 315. 329, 235, 38.
241. 319, 308. 127, 217, 245, 169, 161, 263, 209, 228. 168. 98. 278, 154, 279.

To use the LRT we need to specify a value of & which is to be treated as the



true value of k. We use the MLE of ~ under the null hypothesis as the ‘true’
value of x. The MLE of x under the null hypothesis for this dataset is 0.885.
With this value of & the LRT picked up the observation 38 as an outlier with
an observed value of A = 0.1675 and with a P-value of 0.01. This outlier
may be attributed to the segment of the sandstone layer corresponding to
the outlier 38 being (inconsistently) disorientated by some ‘external shocks’.
Since the specified value of & is small the sensitivity analysis of the previ-
ous section indicates that the chance of arriving at a wrong conclusion due
to the use of the estimated value of x as the true value of & is relatively small.

Ezample 2. We next consider the famous Roulette wheel data obtained from
Mardia (1972). The data set is : 43°, 45°, 52°, 61°, 75°, 88", 88°, 279°, 357°.
This data set has previously been analyzed by Bagchi and Guttman(1990).
They assumed circular normal distribution for this data set. We also assume
the same for analyzing this data set. As in the previous example we use the
MLE of x under the null hypothesis as the true value of k. The MLE of
under the null hypothesis is found to be 2.076. The LRT when carried out
with this value of x yielded A = .0276 which is not significant at 5% level
of significance. The P-value of the test is 0.12. At this P-value the LRT
identifies the observation 279° as an outlier.

Remark 2 : Observe that in Ezample 2. at P-value 0.12 the observation
979° is identified as an outlier which indicates that unlike 1n the linear case,
mternal values can be outliers in the context of directional data. Thus mct-
dentally also coincides with the analysis done by Bagchi and Guttman(1990).

Remark 3 : Once an outlier has been dctected as above. one may discard
1t and proceed with further statistical analyses as needed using the vest of the
data set. Alternatively, one may fit to the entwre data set an extended model,
say a contaminated or a mizture model with o circular normal distribution,
which should give a better fit than the orgmal one with only o crrcular normal

distribution.
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3.6 Optimality based ‘Type Tests’

At various points in this thesis, we encounter the problem of testing a null
hypothesis H, against an alternative hypothesis H, which can be decom-
posed into several hypotheses Hj,. Usually it is possible to construct a test
of Hy against H,, using a well known test construction procedure. We then
construct a test of Hy against H) based on the above test of Hy against Hi,.
We name such a test of Hy against H, according to the following principle:
First, the name of the test on which it is based is written followed by the
phrase ‘type test’. For e.g., a test which is based on a LMP test of Hy against
H,, will be called LMP type test or LMPTT, in short. Similarly, for UMPTT,

NRTT, and LMPCTT.

3.7 Locally Most Powerful Type Test

In this section we assume g~ to be known and § to be unknown. Fix
1 < j < n. For each j. let H; denote the alternative hypothesis that the j*
observation is an outlier. We derive an LMP test of H, against H;. Motivated
by this we propose a test of H, against Hj.

Theorem 6 : In testing H, against H; the LMP test s giwen by:

Reject Hy of sin(©; — p) > ¢

for some constant ¢ depending on the size of the test.

Proof : Observe the log-likelihood is given by

Inf;(6;6y,....0,) = N+ Z('os((i,» — ) +cos(f; — 0 — 26)  (3.6)
iZ;

where Is 1s a constant.



Then. the score function is given by

Si(8) = == = 2sin(b; — p — 20)

and hence

S;(0) = 2sin(f; — 1)

Thus the LMP-test statistic for testing Hy against H; is sin(©; — p). We re-
ject Hy if sin(©; i) > ¢ for some constant ¢ depending on the size of the test.

Motivated by Theorem 6, for testing Hy against H{ we propose the LMPTT
Reject Hy if max sin(Q; — pu) > ¢
1<j<n

where ¢ is a constant to be determined from the size condition.

The exact sampling null distribution of the test-statistic can be easily ob-

tained using standard techniques.

Recall that we designate 6 as the outlier if Hy is rejected and sin (¢ — i) =

max sin(6; — p).

1<j<n

Remark 4 : The general technique of constructing an LMPTT wn outher
problems is as follows. We first derive the LMP test statistic for testing Hy
against H;. Then we take the mazimum (or minimurn) of these LMP test
statistics to get a nmew statistic. A test based on this statistic 1s called the
LMP type test or LMPTT wn short.

3.8 Multiple Testing Approach

The LMPTT test statistic is constructed usually by taking the maximum (or
minimum) of the n LMP test statistics for testing Ho against H;. An alter-
native way is to follow a multiple testing approach. Let o be the desired
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level of significance. We can individually test Hyy against H; using the Lump
test statistic at n level of significance. We reject H, if any one ot the tests
turn out to be significant. This 5 has to be chosen in such a way that the
overall level of significance of the test procedure is o, Since it is usually dif-
ficult to obtain the exact value of 1 often ® is used as an approximation. By
Bonferroni's inequality it is easily seen that the overall level of significance
of this procedure is at most «. It is known that tests of this nature are quite
conservative and the true level of significance obtained from this procedure
is usually much less than a, particularly when the test statistics are not in-
dependent. Now we note that in outlier problems usually the n LMP tests
of Hy against H; are all independent. The true level of significance of the
multiple test procedure (with 7 = ) can then be easily obtained as follows :
Lemma : An approximate level o multiple testing procedure for testing H,
against H} is obtained by testing H, against Hj foreach j = 1....,n at level
i"—(ff;‘ﬂ if n is large. Hp is rejected if and only if atleast one of the tests of

Hy against H; turn out to be significant.
Proof : Pr(Reject Hy | H, is true)

= Pr(at least one of the tests of H, against H; rejects Hy | H is true)
=1 - Pr ('none of the tests of H, against H; rejects H, | Hy is true)
=1-1 Pr(Hy is not rejected in favour H; | Hy is true)
i=1
(since the tests are independent)
n _ . N
=1~ (1 — %) (since leve] of significance of each test of H, against H; is %)
2 3 n
o & ntl [ &
=a=(@) 5+ GE)— -+ (=) (;)
If n is large the above expression approximately equals 1 — e ™2,

Hence when n is large, to obtain an approximate level o test procedure we
have to carry out each of the n individual tests of H, against H; at level of

.. —In(1—
significance —3("—6'1
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Chapter 4

COMPARISON OF THE VARIOUS
PROCEDURES FOR IDENTIFYING

AN OUTLIER

4.1 Introduction

In this chapter we provide a simulation based comparison of the various
procedures for identifying an outlier. The statistics which are included in
this comparison are the L-statistic (Collet 1980), M-statistic (Mardia, 1975),
Bayes’-statistic. LRT-statistic and the LMPTT-statistic. The results of this
chapter will help practitioners in choosing the most effective test-statistic for
detecting outliers in a given situation.

4.2 The L-statistic and the M-statistic
THE L-STATISTIC

Suppose that f, is the observation with the greatest angular deviation from



the sample mean direction. Then L-statistic is defined as

L=(Ry+1)kt — KRR~ nln{%’%}

where # is the usual maximum likelihood estimator of x given by A (k) =
dinly (&) /dik = R/n.R} = C? + S} where C and S are the values of C
and S based on the n — 1 observations exclusive of 8, and & is such that

A(fy) = (Re + 1) /n.

The sampling distribution of the L-statistic is non-standard and the cut-off
points for this statistic can be obtained through simulation. Collett (1980)
mentions that the null distribution of the L-statistic is effectively indepen-

dent of k for k > 2

THE M-STATISTIC

The M-statistic is defined as

Ry — R*+1
M=—"F—
n— R*

where, Rt = max {R!} and R} is the length of the resultant omitting 6;.

For sufficiently large &, fhe null distribution of M-statistic tends to the null
distribution of n(n — l)b , where b* = max {lz — JI/Z ; — T) } is the
well-known statistic used for tests of discold(m(} in univariate normal sam-
ples (Collett, 1980). It is also mentioned in Collett(1980), that the estimated
percentage points of the M-statistic is effectively independent of x for values
of & > 2. Upton(1993) provides in his Table 2 the 5% and 1% cut-off points
of the M-statistic for various sample sizes.
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4.3 Performance of Different Test Statistics

For the purpose of comparison, 1000 samples of size 10 each containing one
outlier are generated such that nine observations are drawn from CN(0, )
while the outlying observation is drawn from CN(u;, k). p; is varied to
measure the effectiveness of the procedures in detecting outliers of different
severity. For L, M, LRT and LMPTT statistics we record the frequency of
acceptance of the null hypothesis, the alternative hypothesis and also the
number of times the correct observation is identified as the outlier. For the
Bayes’-statistic we also need to specify the prior probability p of any of the
observations being an outlier. Since the performance of the Bayes’-statistic
is seen to depend on the value of p we examine the performance of the test
for several values of p. The study is conducted for two values of k, namely,
2 and 4. The results of these investigations are given in Tables I, II, III and
IV below.

There are several well known criteria for comparing tests of outliers, (Bar-
nett & Lewis, 1994). We compare the above test statistics based on Pj(the
power of the test) and Ps(probability that presence of outlier in signaled and
the outlier is correctly identified). A good test will have high P, and low
P; — P3(which is the probability that the test wrongly identifies a good ob-
servation as an outlier). Based on the these criteria, we see from the Tables
I to IV that the LMPTT performs best for small values of y;, which are most
difficult to detect, as expected. The LRT performs best for moderate values
of py and the Bayes’-statistic performs best for large values of p; which could
be important in a practical case. We also note that the Bayes’-statistic gives
increasingly better result with larger value of p, which is expected since the
data set actually contains an outlier.

The Bayes’ rule with p = pg, pg such that 1 — npy = 0.5 may be used in
cases when there are no prior information about an outlier being present in
the data set. Since the efficacy of the Bayes’ rule in detecting the presence of
an outlier is seen to increase with p, a higher value of p should be specified in
cases where presence of outlier is suspected. The LMPTT appears to perform
slightly better than the LRT when outliers of lesser severity is sought to be
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detected (i.e. p; is small) which is expected due to the nature of the LMPTT.
However if we are interested in detecting outliers of moderate to large sever-
ity the LRT performs much better than the LMPTT. Moreover, we note that

the Bayes’-statistic, the LRT and the LMPTT all perform better than the tests
based on the L-statistic and M-statistic.
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TABLE I. Performance of the Bayes’ Test for Outlier
(k =2,n=10,p = .05,.06 & .07)
I Hy not rejected H, Accepted : H, Accepted :
(in degrees) Correct Obsn. Wrong Obsn.
p=.05 06 07 p=.05 .06 .07 p=.05 .06 .07
15 1000 1000 1000 O 0 0 0 0 0
30 1000 1000 1000 O 0 0 0 0 0
45 1000 1000 731 O 0 94 0 0 175
60 1000 735 373 O 121 294 0 144 333
75 754 453 271 146 295 395 100 252 334
90 527 343 204 315 420 506 158 237 290
120 343 213 136 533 625 662 124 162 202
150 240 157 97 666 722 765 94 121 138
180 214 125 84 712 763 785 84 112 131
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TABLE II. Performance of the Bayes’ Test for Qutlier
(k =4,n=10,p = .05,.06 & .07)

I Hy not rejected H, Accepted : H; Accepted :

(in degrees) Correct Obsn. Wrong Obsn.

p=.05 06 .07 p=05 .06 07 p=.05 .06 .07
15 1000 1000 1000 O 0 0 0 0 0
30 1000 898 650 O 45 153 0 57 197
45 692 540 372 207 271 353 101 189 275
60 457 372 232 423 477 561 120 151 207
75 319 231 181 595 646 695 86 123 124
90 200 165 128 741 779 801 59 56 71
120 89 63 54 888 913 928 23 24 18
150 53 23 26 940 970 963 7 711
180 23 19 16 974 974 980 3 7 4
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TABLE III. Performance of the LRT, LMPTT, L & M test for Outlier
(k =2,n =10)
i Hy not rejected H, Accepted : H; Accepted :
(in degrees) Correct Obsn. Wrong Obsn.
LRT LMPTT L M LrT LMPTT L M LrT mMpPTT L M
15 955 948 948 965 6 14 9 4 39 38 43 31
30 910 943 938 965 24 21 11 3 66 36 51 32
45 935 940 930 970 18 24 12 4 47 36 58 26
75 906 924 902 964 45 44 30 21 49 32 68 15
90 877 922 893 966 78 41 41 27 45 37 66 7
120 766 936 823 951 181 25 8 44 53 39 88 5
150 698 938 732 934 253 13 184 64 49 49 84 2
180 681 945 743 912 271 5 170 84 48 50 87 4
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TABLE IV. Performance of the LRT, LMPTT, L & M test for Outlier

(k =4,n = 10)
m Hy, not rejected H, Accepted : H, Accepted :
(in degrees) Correct Obsn. Wrong Obsn.
LRT LMPTT L M LrRT LMPTT L M wrTr MPTT L M

15 931 936 953 969 7 19 5 3 62 45 42 28
30 929 929 952 964 27 38 12 8 44 33 36 28
45 895 883 942 958 53 81 26 19 52 36 32 23
75 726 739 873 920 219 242 112 14 55 19 15 06
90 562 689 782 846 400 289 212 153 38 22 06 01
120 236 743 578 706 734 222 421 299 30 35 01 0
150 43 890 404 581 947 73 596 419 10 37 0 0
180 16 934 324 508 979 15 676 492 5 51 0 0
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Chapter 5

CHANGE PoOINT PROBLEM FOR
MEAN DIRECTION IN CN(u,x)-x
KNOWN

5.1 Introduction

In this chapter, we look at the change point problem for the mean direction
of the circular normal distribution using likelihood ratio techniques and give
examples.

We discuss the problem of testing the null hypothesis that there is no change
in the mean direction against the alternative hypothesis that there is one
change in the mean direction. We assume that the concentration parameter
K is known.

In section 5.2 we consider the case when both the initial mean direction
and the possibly changed mean direction are known. We derive the LRT for
this case and also derive its asymptotic null distribution. In section 5.3 we
consider the case when the initial mean direction is known but the possibly
changed mean direction is unknown. We derive the LMPTT for this case and
also derive its asymptotic null distribution. In section 5.4 we consider the case
when both the initial and the possibly changed mean directions are unknown.
The form of the LRT is derived. The cut-off values and the power of the LRT
is obtained by simulation. The results are discussed in section 5.5. The
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results of a simulation based sensitivity analysis for possibly mis-specified &
is discussed in section 5.6. The generalization to the case of multiple change
points is discussed in section 5.7. In section 5.8 we provide a multiple testing
approach to the change point problem. The method discussed is quite general
and can be applied in a variety of situations.

5.2 Change Point Problem for the Mean Di-
rection - All Parameters Known

Let ©4,0,,...,0, be independent random variables. In this section we con-
sider the case when the initial mean direction, the possibly changed mean di-
rection as well as the concentration parameter are all known. Since the initial
mean direction is known we can then w.n.l.g. assume that the initial mean di-
rection is the zero direction. We want to test Hy : ©4,...,0, are distributed
as CN(0, ), against Hy : ©y,..., O, are distributed as CN(0, ) and ©, 4, ...,
O, are distributed as CN(y;, &) for some r,1 <r <n-1,k > 0,0 < p; < 27
are both known.

Let v = E [sin(@,- - &)] (under Hy)

2
= —sin (%) A(k) (5.1)
and
72 = Var [sin (Gi - %)] (under H,)
"
cos® %1— - ‘;ZE:)) cos i, — sin? %A2(ﬁ) (5.2)
where A(k) = %{:—; and [j(x) and I§(k) are the first and second derivatives

of Iy(x) with respect to k respectively.

We will denote by Bj(t) the time reversed Brownian Motion on [0,1] with
drift 0 and diffusion coefficient 1. Further let,

k
Sf(n,a) = > sin(y; — a) (5.3)

i=l
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and

.
Chm,a) = 3 cos(; - a) (5.4)

=l

Then we have the following theorem.

Theorem 7 : In testing Hy against H,, the LRT-statistic is equivalent to

A = max S7,, (@, %) , (5.5)

The asymptotic null distribution of

St (©,8) —(n—r)w
mhax nl/2 r
15 the same as that of sup Bg(t).
0<t<1

Proof: Let 6,...,6,,0 < 6; < 27 be the given observations. We apply the
likelihood ratio test. Fix r, 1 <r < n — 1. Under Hy the likelihood is,

Jo(br,...,6,) = 2nly(k))™ exp(kC7T(6,0))
and under the alternative we have
fi(0r...0,) = (2nIo(x)) ™" exp {x (C7(6,0) + CPy, (8, 1)) }

Then the LRT test statistic for fixed r is,

A, = exp {K {C?+I(®’0) - Cr+1(®’“1)}]

If r is unknown we estimate it by # where # is that r for which A, is minimum.
Define A = A;. Then the rule is to reject Hy if A < ¢ for some constant ¢
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depending on the level of significance. Note that the test A < c is equivalent
to

st (@, %) > k.
Let
A =max S, (@, %5) .

Also, note that under the null hypothesis the random variables

X _ M
sin (9, 5 )

are i.i.d with finite expectation v and finite variance 72. Then by an ap-
plication of the functional central limit theorem (Bhattacharya & Waymire,
(1992)) we get that,

Sty (@, “2—1) —(n—r)v

nl/2r

converges in distribution on DI[0,1] (the set of all functions on [0,1] that
are right continuous and possess left hand limits at each point) to the time
reversed Brownian motion in the interval [0,1] with drift 0 and diffusion
coefficient 1 as n — co. Since sup is a continuous function on D0, 1] we see
that under the null hypothesis

5741(0,5) — (n— 1)y

L
2

max myom
_ Shr1(0,8) = (n — [nt])y
=L nl/2r
wStsl-o

which converges in distribution to sup Bj(t) as n — oo.
0<t<1

Remark 5 : The exact sampling distribution of A is formidable. However
the cut-off points and P-values based on the asymptotic distribution can be
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computed using the result given below. Hence, in practice, the test may be
carried out easily for large samples.

Result :
Pr ( sup Bj(t) > oz) =2Pr(Z > a) (5.6)
0<t<1
where o > 0 and Z ~ N(0,1).
Proof = By(1 — t) where By(.) is the standard Brownian Motion.

o (%)
( sup Bg(t) > oz)
0<t<1

sup Bo(l —t) > a>

0<t<i

= Pr < sup By(t) > a)

0<t1<t
= 2 Pr(By(l) > a) (see e.g. Billingsley, 1991, page 529)
= 2 Pr(Z > a).

The next theorem gives an alternative statistic based on the LRT whose
asymptotic distribution can be easily obtained. Let

Inlnln(n - 1)
2(2Inln(n — 1))%

u(n,t) = 2lnln(n - 1)% +

t
(2Inln(n - 1))%

(5.7)

Theorem 8 : Let

S55(0,8) —(n—rjv

U= max i 7

1<r<(n—1) (n
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Then as n — 00,

Pr(U < u(n,t)) — exp ( NG exp(~ ))

Proof : The proof follows immediately on application of the results in Dar-
ling and Erdos(1956).

5.3 Change Point Problem for the Mean Di- -
rection - Changed Direction Unknown

In this section we look at the change point problem with g; unknown. We
derive an LMPTT in this case. For some fixed r,1 < r < n — 1, let us denote
by H,, the following hypothesis H), : ©,,...,0, are distributed as CN(0, k)
and ©,4,,...,0, are distributed as CN(y1, k), where 0 < p; < 2m. Further
let

0 = Var(sin®;) (under Hy)

Iy (k)
-2 (5.8)

Then we have the following :

Theorem 9 : (a) In testing Hy against H,, the LMP-test is given by :

Reject Hy of Si1(©,0) >

for some constant c.
(b) The LMPTT of Ho against H, is based on the statistic max S r1(0,0).

Under the null hypothesis the asymptotic null distribution of
max S,’}+1 (67 O)
r Jna
is the same as that of sup Bg(t).

0<t<1
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Proof : (a) Let us fix r,1 < r < n— 1. Let 0i,...,6,, 0 < 6; < 2r denote
the observations. Observe the log-likelihood is

I(py;601,...,6,) = const +/€{C{(9,O)+Cf+1'(0,u1)}

dl
Then %— = kS, (6, 41) and hence —d—(O) = KS;,,(60,0)

diy th

Thus the LMP-test statistic for testing H, against Hj, is 57.1(0,0) (since &
is known). We reject Hy if S*,,(©,0) > ¢ for some constant c.

(b) Imitating the proof of Theorem 7 above we get that under the null hy-

. St (0,0
pothesis as n — oo,max—ff'l—’2
r no

topology sense on D[0,1]) to sup Bg(t).
0<t<1

converges in distribution (in Skorohod

Remark 6 : The LRT is easily computable but doesn’t have a tractable
asymptotic null distribution. The form of the LRT for the more general case
15 shown in the nest section - the asymptotic null distribution of which 1s
also not tractable.

5.4 Change Point Problem for the Mean Di-
rection - Initial and Changed Direction
Unknown

In this section we look at the change point problem with both pg and g,
unknown. We propose the LRT for this problem. Let gjiy, 1/l denote the
estimate of o under Hy and H, respectively and /i, denote the estimate of
#; under Hj.

Theorem 10 : In testing Hy against H, the LRT-statistic is A — mrin A,
where

Ar =exp ['ﬁ {cr(®, o) - C7 (©, 1j10) - Crei (O, 1in)}]
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Proof : Let us fix r,1 < r < n — 1. Then the log-likelihood under Hj is

In fo=-n In(2rly(x)) + &CT(8, to)

Putting 220 = 0 we get ST(6, s19) = 0 which is equivalent to tan po = “‘L"’“’g;%g))
The estimate of g under Hp is,
ST(6,0)
o =t pat Rt ) 59
o = Cr(6,0) (59)

Under the alternative we have,
In fi = —n ln(27lo(x)) + & {C7(8, o) + C2yy (6, 1) }
Putting %—Zoﬁ = 0 we get S7(6, po) = 0 which yields the estimate of pg under
Hl as
. -1 { Si(6 0))
=t N Nt RN A 5.10
o = tal (C;(e,m (5.10)

and putting %%{L = 0 we get S2, (0, ;t1) = 0 from which we get the estimate
of 4,0 under Iﬁ as

. st (9 0)
-1 r+1\"
1fly = tan (————-———————3 G )> (5.11)

Thus the LRT statistic for testing Hy against H,, is,

Ar = exp [k {CT(®, ofto) = C1(8, 1fi0) = CF41(®, 1jn)}]

When r is unknown we estimate it by 7, where 7 is that r for which A, is
minimum. Define A = A; = mrin A, which is the LRT-statistic.
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Remark 7 : The ezact sampling distribution of A 1s formidable. The large
sample distribution of LRT does not work here because of the violation in the
assumptions (for example, the parameter space here is not an open set) of
the relevant theorem.

5.5 Simulation

We use simulation to compute the null distribution (see Tables 5 and 6,
Chapter 14) of the LRT-statistic given in Theorem 10 as well as the power
(see Table 7, Chapter 14) of the test. The null distribution results are based
on 5000 repetitions with sample size n,n = 10, 20, 30 drawn from CN(0, 1)
distribution. The power is simulated by drawing the first r observations from
CN(0,1) and the rest n — r from CN(A,1), A = 10(10)180 (in degrees) and
repeating it 5000 times, where r = 5. Since the power function is symmetric
about 7 the above range for A is sufficient. By looking at the null distri-
bution it is seen that it gets increasingly concentrated towards low values as
sample size increases. The same feature is also observed as the value of
increases.

Observe that the estimation of yy and p; under H; depends on the exact
location of the change point. We vary r (the location of the change point) in
a limited way (r = 5, 9, 13, 17) keeping n (= 20) fixed to study it. It is seen
(see Table 8, Chapter 14) that the power of the LRT is maximum if the change
point is near the middle than at the extremes and this phenomenon becomes
increasingly pronounced with the increase in the magnitude of change. In
this context it is worthwhile to note that for the linear case Hinkley’s (1970)
derivation of the asymptotic distribution of the change point estimator as-
sumes that the change point is not too close to 1 or n. As expected the power
Is seen to increase with increase in sample size.

We also use simulation to determine whether the LRT is consistent. We
fix K = 1, the level of the test to be at 5% and the change point at 20.
We then generate the first 20 observations from CN(0,1) and the remaining
n — 20 observations from CN(A,1),A = 45°,90°,135°,180° and repeat the
procedure 1000 times. This is done for n = 30,40, 50 and 75. The results are
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given in Table 9 of Chapter 14. We find from the table that the power of the
LRT increases. While for small A this increase is slow with n, for large A it
rapidly approaches 1 as n increases. This indicates that the LRT may indeed
be a consistent test.

5.6 Sensitivity Analysis

The LRT statistic is derived under the assumption that the value of » is
known. But in real life applications the value of x is usually unknown. Thus
to apply the LRT in real life situations we need to specify a value of x which
may be estimated from the data or arrived at from other considerations.
Since the specified value of ¥ may not be exactly equal to the actual value
of k, it is important to study the sensitivity of the level of significance and
the power of the LRT to the possibly mis-specified value of .

In Table I and Table IT below we give the results of a simulation based sen-
sitivity analysis for different values of true and also specified k. To study
the sensitivity of the level of significance we generate 1000 random samples
of size 10 each from CN(0,x) where & is the true value of the concentra-
tion parameter. The LRT statistic is computed using the specified value of
k. The cut-off points used are such that the level of significance of LRT is
5% when the true value of x is known. In Table I, the actual level of sig-
nificance of the LRT is given for different combinations of true and specified «.

To study the sensitivity of the power of the LRT we generate 1000 random
samples of size 10 each. In each sample of size 10, the first five observations
come from CN(0, 2) and the next five observations come from CN(A, 2) where
A = 45°,90°,135°,180°. The LRT statistic is computed using the specified
value of k. The cut-off point used is that of an LRT with level of significance
5% when the value of & is known to be 2. In Table II, the power of the LRT
is given for different combinations of specified value of k¥ and A.
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TABLE 1 Sensitivity Analysis of the Level of Significance
of the LRT in change point problem
(n = 10)
Specified &

True k0.5 1.0 1.5 2.0 4.0 10.0
0.5 0.050 0.144 0.299 0.486 0.852 0.977

1.0 0.020 0.050 0.144 0.275 0.675 0.940

1.5 0.002 0.011 0.050 0.135 0.521 0.888

2.0 0.000 0.006 0.014 0.050 0.322 0.806

4.0 0.000 0.000 0.000 0.000 0.050 0.440
10.0 0.000 0.000 0.000 0.000 0.000 0.050

TABLE I1 Sensitivity Analysis of the Power
of the LRT for change point problem
(n = 10, k = 2, change point at 5)

A
Specified £ 45° 90°  135° 180°
0.5 0.006 0.125 0.562 0.805
1.0 0.031 0.249 0.730 0.924
1.5 0.085 0.505 0.899 0.979
2.0 0.186 0.624 0.957 0.989
4.0 0.578 0.933 0.998 0.998
10.0 0.904 0.993 1.000 1.000

From Tables I and II we find that both the level of significance and the power
of the LRT are sensitive to the variations in the values of k. If the specified
value of k is less than the true value then we find that the LRT is conser-
vative but if the specified value of « is greater than the true value then the
misspecification leads to anti-conservative nature of LRT.

We now study the sensitivity of the level and the power of the LRT when
the underlying distribution is a skewed circular distribution like, Rattihali-
SenGupta’s skewed circular distribution RS(kq, k2, #), using simulation. 20
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random observations 6,,...,60y are generated of which 6;,...,6;¢ are from
R5(0.9,1.1,0.7854), and for ¢ = 11,...,20, 6; = 6 + A mod 2w, where
07 is a random observation from RS(0.9,1.1,0.7854) and A is varied over
0°,45°,90°,135° and 180° as explained below. Since the value of the measure
of concentration p for RS(0.9,1.1,0.7854) is quite close to that of a circular
normal distribution with x = 1, the LRT with ¥ = 1 is used. The nominal
level of significance of the test is fixed at 5%. For each \ the above is
repeated 1000 times and the power of the test noted. Note that the power
when A = 0 is the actual level of significance of the test. The results are
given in Table I1I below.

TABLE IIT Power of the LRT for change point
problem in RS(0.9,1.1,0.7854)
(n = 20, change point at 10)

A Power
0° 0.059
45° 0.069
90° 0.068
135°  0.054
180°  0.050

We find that the actual level of significance of the test is close to the nominal
value but the power of the LRT is substantially reduced when the underlying
distribution is the Rattihali-SenGupta’s skewed circular distribution.

5.7 Generalization

In case the data are suspected of having more than one change point, the
above procedure can be easily modified as follows. Consider the case when
we suspect that the data may have upto two change points. The data set of
60 successive flare launches analyzed by Lombard (1986) is of this kind. In
this case we take A to be the minimum of

Ar,i<r<n—-land A, ,,,1<r<rp<n-1
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where A, ., is the likelihood ratio test statistic with suspected change points
at r; and 5. In case we do not know the number of change points in advance
but have a prespecified upper bound ‘k’, then also we can suitably modify
the above scheme. We will take

A= mm{Ara Aryy oy Argy r32,T389 % 1 ) A"kh"kz,-u»rkk}

where

1<r<n—-1,1<ry <rp<n-11<ry <rp<rp<n-—1ete

5.8 Multiple Testing Approach for Change
Point Problem

Here we suggest a multiple testing approach for the change point problem. As
will be seen the approach is completely general and can be used in a variety
of situations. We note that we can reject Hy if even one of the (n - 1) tests of
Hy against Hy,,1 <r < n — 1 turn out to be significant. The problem is to
choose an appropriate level of these tests so that the overall procedure does
not exceed desired level of significance say a. One simple solution is to use
— as the level of significance of the individual tests of Hy against Hi,. By
Bonferroni’s inequality it is easy to see that such a procedure will have level
atmost . However, unlike in the outlier problem the test statistics for testing
H, against H,, are usually correlated. Due to this reason simple solutions
such as using -2 as the level of significance of tests of Hy against Hj, usually
yield very conservative procedures. Alternative multiple test procedures may
be derived by using the joint distribution of the test statistics and obtaining
the cut-off values of the individual tests from it.




Chapter 6

CHANGE POINT PROBLEM FOR
THE MEAN DIRECTION IN
CN(u,x)- x UNKNOWN

6.1 Introduction

In the previous chapter we have looked at the change point problem in
CN(p, k) for the mean direction #1 assuming that the concentration param-
eter £ is known. However, in most practical situations the concentration
parameter is not known in advance. In this chapter we look at the change
point problem for the mean direction when the concentration parameter & is
unknown. We note that the usual methods of removal of nuisance parameters
like use of sufficiency, invariance, similarity etc. do not work here. More-
over use of conditional arguments is not always desirable as Laycock(1975)
observes“. .. for circular data this is arguably equivalent to discarding half
the available information in the data”. In section 6.2 we assume that the
initial mean direction as well as the possibly changed mean direction are
known and derive the LRT. In section 6.3 we consider the same problem but
with the changed mean direction unknown and propose a conditional test.
In section 6.4 we consider the practically most important case when both
the initial mean direction as well as the possibly changed mean direction are
unknown. We introduce the notion of N RTT and derive it. The behaviour of
NRTT is studied through simulations and the results are given in section 6.5.



In section 6.6 we provide examples of the use of the techniques discussed in
this and the previous chapter by analysing two real life data sets.

6.2 Change Point Problem for the Mean Di-
rection - Initial and Changed Direction
Known

Let ©,,...,0, be independent random variables. In this section we con-
sider the case when the initial mean direction and the possibly changed
mean direction are both known. Thus then concentration parameter is the
only parameter unknown. Since the initial mean direction is known we can
then w.n.l.g assume that the initial mean direction is the zero direction.
We want to test Hy : ©y,...,0, are distributed as CN(0, k), against the
alternative Hy : ©y,...,0, are distributed as CN(0,«x) and ©,44,...,0,
are distributed as CN(u;,x) for some 7,1 < r < n—1,u; > 0 is known.
For each fixed r,1 < r < n — 1 we will denote by Hj, the hypothesis
Hy, : ©y,...,0, are distributed as CN(0, k) and 0,4, ..., 0, are distributed
as CN(py, &), 1 > 0 known. Let &g and ,&k; denote the MLE of x under H,
and H,, respectively. '

Theorem 11 : In testing Hy against H, the LRT-statistic is

A= mrin A,

where

_ I(:R)
Iy (£o)

is the LRT-statistic for testing Hy against Hi,.

A, exp { (Ro — +£1)CT(8,0) + RoCly1(6,0) = +&1CPyy(6,) } (6.1)

Proof : Let 6,,...,0,, 0 < 6; < 27 be the given observations. We apply
the likelihood ratio test. Fix 7, 1 < r < n—1. Under H, the log-likelihood is,

bo(K;01,...,6,) = —nIn271 — nln Iy(k) + cC}(6,0) (6.2)
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Putting %} = 0 we get the MLE of k under Hy as &y = A~!(C) where

C=1Cp(8,0) and A(.) = ;‘;% Under the alternative Hj, the likelihood is

te(r;01,...,0,) = —nln 27 — nln Iy(k) + CT(6,0) + kCP (8, 1)  (6.3)

%if = () we get the MLE of x under Hy as .51 = A~} { C, + (1 — ﬁ) C_'-z}
S r g n Ip(.
where Cy = [C7(6,0), Cp = ;1-C%,1(6, 1), and A() = 1244

n—r

Putting

Then the LRT-statistic for testing H, against H,, is,

— [O(rkl)
Io(Ko)

exp { (Ro = rR1)CT(6,0) + RoClt1(6,0) — 1Ry Cyy (6, 111)}

When r is unknown we estimate it by # where # is that r for which A, is
minimum. Define A = A;. Then the LRT for testing H, against H; is given

by :

Reject Hyif A< ¢

for some constant ¢ depending on the level of significance.

Remark 8 : The ezact sampling distribution of A is formidable. The cut-
off points required for carrying out the test can be easily obtained through
stmulation.

Remark 9 : Let Z, =  Jnax 1(—21nAr). The asymptotic null distribution

of Zn%, can be found by an application of Theorem 1.3.2 of Csorgo & Hor-
vath (1997). This can be used for obtaining the cut-off points if we have a
large sample. In this context note that all the assumptions of Theorem 1.3.2
hold good since we have assumed that both the initial and the changed mean
directions are known. If any one of these is unknown then the assumptions
of Theorem 1.3.2 do not hold good. (In fact, assumption C.4 does not hold. )
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6.3 Change Point Problem for the Mean Di-
rection - Changed Direction Unknown

In this section we consider the case where the initial mean direction Mo is
known but the possibly changed direction x, is unknown. With no loss of
generality s is assumed to be 0. We propose a conditional test based on the
LMP-test for H, against H,, for the case of known x.

Theorem 12 : A test for Hy against H,, is quen by :

Reject Hy +f S, (©,0) > ¢

for some constant ¢ where the constant ¢ is chosen based on the conditional
distribution of S7\,(©,0) given CT(©,0).

Proof : Note that under Hy, C}(6,0) is sufficient for x. Hence the condi-
tional distribution of S7,,(®,0) given C}(©,0) = ¢ is free from x. Hence a
test for Hy against H,, is given by :

Reject Hy if S} ,(©,0) > ¢

for some constant ¢ where the constant ¢ is chosen based on the conditional
distribution of S, | (®,0) given C7(®,0).

A test for Hy against H, based on the above can be carried out using the
multiple testing approach as follows :

Reject Hy if any one of the (n — 1) tests of Hy against Hy,, 1 <r <n-1is
significant at -2 level.

This test has level of significance at most «.

Remark 10 A test based on the LMP-test statistic (initially derived under
the assumption that & is known) which is free from the nuisance parameter K
upon conditioning will be called a LMP Conditional Type Test (LMPCTT).

Remark 11 : The LRT-statistic can be easily computed. However in this
case even for fired r, the parameter space (0,00) x [0,27] is not an open set.
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Therefore, the large sample approzimation for the distribution of the LRT-
statistic 1s not valid. Thus we have to use simulation or numerical techniques
to get the cut-off points for carrying out the test. However this is complicated
by the fact that & is unknown. One may start with the conditional likelihood
gwen CT(®,0) which is free from k. The LRT can then be derived using this
conditional likelihood.

6.4 Change Point Problem for the Mean Di-
rection - Initial and Changed Direction
both Unknown

In this section we deal with the case when the initial direction Mo, the changed
direction y; and the concentration parameter s are all unknown. This is a
very important case since in most practical situations Mo, pb1, and Kk are not
known. We assume s, > po. In advance we rewrite f1 as g + 6. Then
the null hypothesis of no change can be rewritten as Hy : 6 = 0 and the
alternative hypothesis can be written as H, : § > 0. The construction
of a test for Hy against H, is complicated because of the presence of two
nuisance parameters pg and k. We use the Neyman-Rao(NR)-test (Hall and
Mathiason, 1990) which is an asymptotically optimal test in the presence of
nuisance parameters for this purpose. The NR-test is an extension of the
well known C, test (Neyman, 1959).

Let us first consider the problem of testing Hy against H;, for a fixed r,
1 <r < n~—1. Since there is no cause for confusion we will denote o simply
by p. The log-likelihood of the observations will be denoted by £(d, p, k). We
note that for the validity of the NR-test it is sufficient to check Assumption 4
of Hall and Mathiason(1990) which consist of three sub-parts 4(i), 4(ii) and
4(iti). It is simple to check that the log likelihood £(d, u, k) has a matrix of
continuous second-order partial derivatives and this verifies Assumption 4(i).
Now observe that in our case,

K
Su(f) = = s = = Sm (0, +9).



1 0¢ K or n
Salp) = Tnon “\/—E{SJ (6, 1) + S741(8, n + 8)},
and
1 06 1 . .
Sa(k) = N 7——;{—”1‘1("3) +CT(0, 1) + C71 (6, 1+ 8)},

Under Hy, putting § = 0 in the above expressions we get,
1 o¢ K

Sn(d) = Nt ﬁsfﬂ(@,ﬂ)-
S, = <=5 = S=5(0,m)
and 100 1
Sn(k) = Tnon ﬁ{—"A(ﬂ) +CT(O, )}

Let us suppose that n —» co,r — oo in such a way that Z —3 ¢ where
t #0,1. We shall use the Cramel Wold technique to show the asymptotic
joint normality of (S,(d), S,(u), Sn(k)).

For any three real numbers t1,te,t3

t150(0) + 125, (1) + t35,, (’)
tl n

= —=K sin + sin(©; —
Vvn i=r+1 (0= #) Z (

% {écos(@,- - p) - 'IIA(IC)}

= ,-;1 [tz-\/—g_sin(@,- — 1)+ %cos(@.- — ) - %A(n)]
¢ 3 | (e 22 )0 = ) + L cos@r - ) - o0



- L [tarsin(©; — p) + t3cos(0; — p) — t3A(k))

\/ﬁ i=1
1 n

+-—= Z [(t) + t2) £ sin(©; — p) + t3cos(O; — p) — t3A(k)]
\/7—1' 1=r-+1

Let Z; = t; k sin(©; — p) +t3 cos(©; —p) —t3 A(k), 1 <i<r
(t1 + t2)k sin(©; — p) + t3cos(0; — p) — tzA(k),r+1<i<n

Now we note that Z;’s are bounded independent random variables with
E(Z:) = 0,1 <4 < n and finite variances. Hence by the Lindeberg-Feller
Central Limit Theorem we can conclude that ¢,.5,(8) + 25, () + t35,(x) is
asymptotically normally distributed.

Thus we find that the distribution of any linear combination of S, (x), S,(k)
and S, (d) is asymptotically normal and hence by the Cramer-Wold theo-
rem we can conclude that the joint distribution of (S,(6),S.(1), Sn(x)) is
asymptotically trivariate normal.

Now since

E(S.(8) = E(Sa(n) = E(Sa(x)) =0, (6.4)
V(Sam) = rA(x), (6.5)
V(Sa(k) = A'(x), (6.6)
V(Sa(8) = k(1= )A(x), (6.7)
Cov (i), Sa(r)) = 0, (6.8)
Cov (Su(), Su(8) = w(1— D)A(), (6.9)
Cov (Sn(k),Sn(8)) = 0 (6.10)

we have (5,,(4), S, (), Su(p)) — N3(0,B) where the nonsingﬁlar symmetric
matrix B has elements ,

bin = k(1 —1t)A(x), (6.11)
by = k(1-1t)A(k), (6.12)
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b3 = 0, (6.13)
by = KA(k), (6.14)
by = 0, (6.15)
bss = A(k). (6.16)

We will denote by B, (6, u, &) the average sample wmformation, which is the
negative of the matrix of the second order derivatives of ¢ (3, p, k) divided by
n. To verify assumption 4(iii) we have to show that Bn(:’%, o+ %, K+ -\'}%)
converges in probability to B uniformly in bounded h = (hy, hy, h3). Let us
suppose that || h ||< K for some real number K. Then | k; |,| h, | and
| by | are all less than or equal to K. We will denote the (¢,7)-th element of

(%,u+%,n+§§;) by bg;).

B.
Now,
i} K+ hn h
b — b, = 73'0" 2

hy
= e (o enr )
—k(1 — t)A(x) (6.17)

Using Taylor series expansion we have
n K n k(h1+ he) .,
ng) by = B’Cr+1(®al‘) + *(Tl\/“—-n—zz r+1(@,/1)

hs .. hs(hy + ko) .,
+n_ﬁcr+l(®1 /J') + _TT—ST+1(®, IL)

—£(1 — t)A(x) + terms involving higher powers of n.

Thus,

sup | b{Y — by, |
Il <K

K
<1 5C2, (00 = k(1 - ) A(s) |
L2 50 |

vn n
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KO0, |
vn n
+2K2 | 5241(O, ) |
n n
+ | terms involving higher powers of n | . (6.18)

Since by the weak law of large numbers —-CP ,(®,u) —p A(x) and
—-57.,(®,u) —p 0 we note that each term in the right hand side of
the above expression converge to 0 in probability. Hence we conclude that
bg';) —p byy. Using similar arguments, it can be shown that bg?) —p bi;
forall 1 <1i,57 <3.

Henceforth we will denote S,(8), S.(u), and S,(x) by S, S, and S,
respectively, suppressing the subscript n. The first, second and third rows of
the matrix B are denoted as (Bss, Bsy, Bsx), (Bys, By, Bux)s (Brsy Bryy Brr)
respectively. Since B is a symmetric matrix we have Bs, = Bys, Bsy = Bys
and B, = B,,. The vector of nuisance parameters (y, ) is denoted by
1. The vector S is partitioned accordingly into (Ss,S,). The matrix B
is also partitioned into blocks Bjs(upper left), Bs,(upper right) B,s(lower
left), By, (lower right). Following Hall and Mathiason (1990), we define the

effective score for &

Sg = S5 — BanB;nlS,,

and effective information

B; = B;ss — BgnB;nlB,,g.

Let 4i; and R, be the estimated mean direction and the sample resultants
based on the observations 6,,,,...,6, and let R be the resultant computed
on the basis of the entire sample 6,,...,6,.

Theorem 13 : The NR-test for testing Hy against Hy, is : Reject Hy, if

KRy sin®(4iy — f1)

(k = %) cos(ji — fiy) — “2fis)

2
> Xl,a

where « s the level of significance.
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Proof: The estimated scores of the parameters g, £ and § under Hj obtained

by substituting the MLE’s of ¢ and k under H, are

~

Sy = 03

and

5 IAiRz Sin(/jg -~ f&)

N

The estimated Fisher information matrix has the following elements :

B = KR
ap =TT
B = A’(k)a
B = KRRy cos(fi — 4is)
88 - '
n
B,. = 0,
5. - KRRy cos(fi — jiz)
ué = n ’
- Rysin(ii— i)
Bs., = .
8x "
Hence, the estimated effective score is
S; = S

and the estimated effective information is

; : B} B!
B} = Bg—{—=t4+ =%
£ LY {Bm‘ Bm}

Thus we have

5.2 2y a A
Sy kR sin?(jiy — 1)
Bi (k- %) cos(ii— fip) — Bl
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(6.19)

(6.20)

(6.21)

(6.22)
(6.23)
(6.24)
(6.25)
(6.26)

(6.27)

(6.28)

(6.29)

(6.30)



and we reject Hy at level of significance « if

KRy sinz(ﬁz - f) )
oy S 6.31
(R — %) cos(jt — jis) — 2f-ti) Ko (6:31)

Remark 12 : [t is seen that the estimated effective information can some-
times become negative. In such cases we propose an alternative way of esti-
mating the elements of the information matriz. First compute the expecta-
tions of the elements of the information matriz under Hy and substitute in
them the MLE s of the parameters under Hy to get estimates of the elements
of the information matriz. Using this principle we have

. kR

Bu = —, (6.32)
B.. = A'(r), (6.33)
. r . R

Bis = (1--)k—, (6.34)
B,. = 0, (6.35)
B ryi B 6.36
wo = (1= )R, (6.36)
Bsx = 0. (6.37)

Using these estimates of the elements of the information matriz the NR-test
turns out to be: Reject Hy if

n?RBsin’(i — 1)
r(n—r)R X1

where « 1s the level of significance. We refer to this statistic as the NR-test
statistic.

We use the above statistic to propose the following procedure for testing Hy
vs. Hy. Let us call the NR-test statistic for testing Hy against H,, as 7T,. We

use T =  Jnax 1T' as the test statistic for testing H, against H;. We call T
r<n-—

the Generalized NR-test statistic. We provide the cut-off points and power
of this test using extensive simulations.
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6.5 Simulation

We use simulation to compute the null distribution of the NRTT statistic as
well as its power. The null distribution results are based on 5000 repetitions
with sample size n,n = 10, 20, 30, 40, 50, 75, 100 drawn from CN(0,1)
distribution. The 5% cut-off points of the NRTT for different values of s and
n are given in Table 10 of Chapter 14. It is seen that as the sample size
increases the cut-off point becomes less sensitive to changes in x, which is
expected. The power of this test statistic is simulated by drawing the first 5
observations from CN(0, 1) and the rest n— 5 from CN(A, 1), A = 10(10)180
(in degrees) and repeating it 5000 times. The results are given in Table 11 of
Chapter 14. It is seen that as A increases power also increases upto a point
and then onwards the power decreases. This is expected since the NRTT is
based on the NR-test which is only asymptotically locally optimal. However,
the power of the test is seen to increase with increase in n.

6.6 Examples

In this section we look at two examples. In example 1 we analyse a data set
of wind directions given by Weijers et. al. (1995) and in example 2 we look at
the data set of flare launches analysed by Lombard(1986). Exploratory data
analysis conducted on both these data sets using the Changeogram and cir-
cular difference tables indicated the presence of more than one change point.
These techniques are discussed in detail in Chapter 11.

We applied the LRT, LMPTT, the test for single change point developed
by Lombard and the NRTT to these data sets. We first tentatively identified -
the points of change using the exploratory techniques mentioned above and
then divided the data set into several parts. We tested for circular normality
of each of these parts separately using the test developed by Lockhart and
Stephens(1985). Since the LRT and the LMPTT- tests could be carried out
only when « is known we decided to proceed in an adaptive fashion for
carrying out these tests. We tested for equality of the k values using the test
given in Mardia(1972). On acceptance of the hypothesis of equal & values
we decided to use the pooled value of k as the known « for the purpose of
computing the LRT and LMPTT-test statistics. The NRTT and the Lombard’s
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test can be applied when & is unknown.

Ezample 1: As a first example we analyse the data set given by Weijers et.
al. (1995). They investigated the horizontal perturbation wind field within
thermal structures encountered in the atmospheric surface layer boundary. A
field experiment with four sonic anemometers on the vertices and one in the
centroid of a square was performed to obtain the necessary data set. Struc-
tures were selected on a typical ramplike appearance in the temperature time
series. Altogether a set of 47 ‘ramps’ was obtained. Ensemble averages of tur-
bulent temperature and horizontal and vertical velocities were constructed
using conditional sampling and block averaging followed by a compositing
technique. We are interested in the behaviour of the direction of the hori-
zontal wind field as recorded by the anemometer at the centroid for the 32
bins after the ensemble averaging procedure. The method of construction of
the bins and the ensemble averaging procedure show that the bins have a
temporal ordering. We retrieved the actual data from the graphical repre-
sentation presented in the paper. From the Changeogram (Figure 1, Chapter
15) one notices that there are possibly two change points, one around 17 and
the other around 23. We decided to consider only the observation numbers
1 to 22 for our analysis. We split this set into two parts, one containing ob-
servations number 1 to 17 and the other containing observation numbers 18
to 22. The two sets were first tested separately for circular normality, which
were not refuted at 5% level of significance. The NRTT was then applied
and it gave a very significant result indicating the presence of change and
identified the change point to be at 17. To apply the LRT we require to know
the value of k. For this purpose we estimated the value of & for the two sets
separately. Then we tested for equality of x values of the two sets which was
accepted at 5% level of significance. We used the pooled value of & as the
true £ for the purpose of LRT. The LRT detected a significant change and the
change point was once again seen to be at 17. The Lombard test for single
change point detected the presence of change but quite surprisingly as seen
from the difference table, Table C, Chapter 11, it indicated 13 as the change
point.

The LMPTT-test could not detect any significant change but indicated 17 as
the most likely candidate for change point. We suspected the failure of the
LMPTT was due to the small number (only five) of observations in the post
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change set. We extended the data set to 34 observations by augmenting 12
observations generated from the circular normal distribution using the post
change mean as the mean direction and the pooled x as the concentration
parameter. After augmenting these observations we applied all the four tests.
Now all the four tests -NRTT, LRT, LMPTT, as well as the Lombard test,
detected the presence of change and detected the change point to be at 17.

Ezample 2 : As the second example we treat the flare data analysed by
Lombard (1986). The raw data is reproduced in Fisher(1993). The data
consisted of 60 observations. Lombard detected two change points at 12 and -
42 respectively using his change point statistic for single change iteratively.
Based on that, he used a test statistic for detecting the presence of two change
points and detected 12 and 37 as change points. Since our test statistics are
also designed to detect at most one change point we decided to apply the
iterative technique. Based on the information provided by Lombard(1986)
we break up the data set into two subsets, one subset consisting of the first 42
observations and the other subset consisting of the remaining 48 observations
after deletion of the first 12. The Changeogram (Figure 2, Chapter 15) and
the circular difference tables for the observations 1-42 (Table A, Chapter 11)
and also for observations 13-60 (Table B, Chapter 11) are given in Chapter
11.

Based on the Lombard’s test and also on the findings from the Changeogram
and the circular difference tables we decided to break up the data set consist-
ing of observations 1 to 42 into two parts, the first containing observations 1
to 12 and the next consisting observations 13 to 42. We first tested the two
parts separately for circular normality using the method given in Lockhart
and Stephens (1985). The test could not refute the claim that the data came
from a circular normal distribution. The NRTT was then applied which gave
a very significant result indicating the presence of change and indicated the
change point to be at 17. The LRT and LMPTT-test requires the value of «.
We proceeded in an adaptive manner and first computed the x values for
both these sets and applied the two sample test for equality of x values as
given in Mardia (1972). The test indicated the equality of two k’s at 5%
level of significance. Figure 1, Chapter 15 gives the Rosogram (a scatter
plot superimposed on a Rose diagram) of the part of the data set between
observations number 13-42.
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Then we proceeded to pool the two k values to obtain the estimate of k. Sub-
sequently we treated this value of x as known for the purpose of computing
the LRT and LMPTT-tests. By an application of LRT we were able to detect
the existence of a change point at 5% level of significance. The change point
was detected to be at 12. Then we applied the LMPTT-test on this data set.
This test could not detect any change at 5% level of significance. However
the point 36 was shown as the most prominent candidate for a change point.
This is parallel to what the Lombard’s two change point test has shown. Now
considering the observations number 13-60 of the flare data we again divided
it into two parts, one comprising of observations number 13-42 and the re-
maining 43-60. Like the earlier case we first tested each of these parts for
circular normality which was not refuted. The NRTT was then applied and it
gave a very significant result indicating the presence of change and identified
the change point to be at 42. Next we tested for equality of x which again
was not refuted at 5% level of significance. Then we proceeded to obtain
the pooled estimate of x which was used as the known value of & for the
LRT and the LMPTT-tests. The LRT also detected a significant change in the
mean direction and the change point was seen to be at 42. The LMPTT-test
however failed to detect any change in mean direction. The failure of the
LMPTT-test in detecting a change may be due to the possibly large changes
in the magnitudes of the observations present in the data as seen from the
circular difference tables, Tables A and B, Chapter 11, and also from the
Changeogram given in Figure 2, Chapter 15.
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Chapter 7

CHANGE POINT PROBLEM FOR
THE CONCENTRATION PARAMETER
IN CN(p,x)-4 KNOWN

7.1 Introduction

In this and the next chapter we discuss the change point problem for the
concentration parameter of the circular normal distribution. In this chapter
we discuss the case when the mean direction is known and in the next chapter
we deal with the case when the mean direction is unknown. In section 7.2
we assume that the initial concentration parameter is known and derive a
Uniformly Most Powerful Type Test (UMPTT)). In section 7.3 we discuss
the case when the initial concentration parameter is unknown and derive the
LRT.

7.2 Initial Concentration Parameter Known
Let ©,,...,0, be independent random variables. We are interested to test

the null hypothesis Hy : ©y,...,0, are identically distributed as CN(0, k)
against the alternative hypothesis H, : Thereexistr,1 <r <n—1,6,,...,0,
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are identically distributed as CN(0, k¢) and ©,4,...,0,, are identically dis-
tributed as CN(0, k), kK > ko. Let H;, denote the alternative hypothesis that
there is a change point at r. Note that the problem of testing Hy against
H,, is equivalent to that of testing Hj : Kk = ko against H] : k > Ko.

Theorem 14 : The UMP test for Hy against Hy, is given by :
Reject Hy if CT, (©,0) > ¢
where ¢ 18 a constant depending on the level of significance.

Proof : Let us fix x; > ko. Then by Neyman-Pearson Lemma the Most
Powerful (MP) test of Hy against Hj, is given by :
Reject Hy if CT'1(©,0) > ¢

where ¢ is a constant depending on the level of significance.

Since the critical region does not depend on the particular value of k; > kg
we claim that the above test is Uniformly Most Powerful (UMP) for testing
H, against H;,. Motivated by the above theorem we suggest an UMPTT for
testing Hy against H,.

Theorem 15 : The UMPTT for testing Hy against H, 1s given by :

Reject Hy zf Jnax r1(©,0) >

where ¢ 1s a constant depending on the level of significance. The asymptotic
null distribution of

oy CEa(©,0) = (n— 1) A(xd)
1<r<n—1 Ig (#o)
i ()~ 2 (xy)

is same as that of sup By(t).
0<t<1

Proof :

Under Hy, E(cos©;) = A(ky) (7.1)
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and
Iy (Ko)
Io(lﬂ',o)

Hence by the Functional Central Limit Theorem and using the fact that sup
is continuous on D0, 1] we get the asymptotic null distribution of

Var(cos ©;) — A%(ko) (7.2)

max T 1(©,0) — (n — r)A(ko)
1<r<n—1 ™
T () ax(ey)

to be same as that of sup Bj(t).
0<t<1

7.3 Initial Concentration Parameter Unknown

We now consider the case when the initial value of the concentration pa-
rameter and the possibly changed value of the concentration parameter are
both unknown. As before, let ©;,...,0,, be independent observations. We
are interested to test Hy : ©y,..., 0, are identically distributed as CN(0, k)
against the alternative H; : There exist »,1 < r < n-1, such that ©,,...,0,
are identically distributed as CN(0, k¢) and ©,44,..., 0, are identically dis-
tributed as CN(0, k1), K; # Ko. Let Hj, denote the alternative hypothesis

that the change point is at 7. We first derive an LRT for testing H, against
Hy,.

Theorem 16 : The LRT of Hy against Hy, is given by :
Reject Hy if

rinlo(-Re) + (n—r)Inly(,k1) — ninly(oko)
+ (oRo — rRo) C1(O,0)
+ (oko — K1) C1y1(©,0) < c (7.3)

where ¢ is a constant depending on the level of significance.
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Proof: Under Hy, the log-likelihood is
bo(K0;01,...,0n) = —nln2zx — nln Iy(ke) + koCT(6,0)
Hence under Hy, the MLE of kg is
~ -1 1 m
olkg = A (; Cl (@,0))
Let ¢, denote the log-likelihood under H;,

br(Ko, K1301,...,0,) = —nln2r —rinly(ke) — (n — 1) Inlp(k)
+£0CT(6,0) + k,C1, 1 (6,0) (7.4)

Hence under Hi,, the MLE’s of k¢ and k; are

1
o = A (; C;(@,O)) (7.5)
and
i o= A7 (1 Cra(0,0)) (7.6)
_ L)
where A(.) = iAeE

The LRT-statistic A, for testing Hy against Hy, is given by :

A, = rinlo(ko) = (n—r)In(ho(#1))
—nln Ip(oko) + (0ko — rRo) C1(©,0)
+(oko — rR1) r+1(®’0) (7.7)

The LRT for Hy against H, is

Reject Hy if InA, < ¢

for some constant ¢ depending on the level of significance.
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Remark 13 : For large n, the cut off points may be obtained using the fact
that the asymptotic null distribution of ~21n A, is x3.
The next theorem gives the LRT for H, against H,.
Theorem 17 : The LRT for Hy against H, s
Reject Hy if 151%13-1 InA. <c

where ¢ 1s a constant depending on the level of significance.

Proof : Note that the LRT A is given by

InA = [0(0;60; 91, e ,0,»,) —  max gr(,.kg,,‘f’il; 91, v ,Hn)
1<r<n—1
= min 60(0;60; 01, e ,9,,) e K,.(,.k,o, r’%l; 91, ‘e a()n)
1<r<n-1
= min InA,. (7.8)
1<r<n—1

Hence the LRT is

Reject Hy if min InA, <ec
1<r<n-1

where c is a constant depending on the level of significance.



Chapter 8

CHANGE POINT PROBLEM FOR
THE CONCENTRATION PARAMETER
IN CN(u,k)- o UNKNOWN

8.1 Introduction

In this chapter we deal with the case when the initial concentration param-
eter x, the possibly changed concentration parameter k; = (x + J) and the
mean direction g are all unknown. This is a very important case since in
most practical situations o, &1, and g are unknown. Let ©y,...,0, be in-
dependent random variables. We are interested to test the null hypothesis Hy
: ©4,...,0, are identically distributed as CN(p, k) against the alternative
hypothesis H, : There exist 7,1 < r < n — 1 such that ©,,...,0, are identi-
cally distributed as CN(u, k) and ©,,1,...,©, are identically distributed as
CN(u, & +6),8 > 0. Then the null hypothesis of no change can be rewritten
as Hy : 6 = 0 and the alternative hypothesis can be written as Hy : 6 > 0.
The construction of a test for Hy against H; is complicated because of the
presence of two nuisance parameters ko and p. We derive a NRTT for this
problem. Like in earlier cases we denote by Hj, the alternative hypothesis
that the change point is at r.
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8.2 Neyman-Rao Type Test

Let us first consider the problem of testing Hy against Hy, for a fixed r,
1 <7 < n—1. The log-likelihood of the observations will be denoted by
{(6, %, ). We note that for the validity of the NR-test it is sufficient to check
Assumption 4 of Hall & Mathiason(1990) which consist of three sub-parts
4(1), 4(ii) and 4(iii). It is simple to check that the log likelihood £(4, &, i)
has a matrix of continuous second-order partial derivatives and this verifies
Assumption 4(i). Now observe that in our case,

Sy = S.(6) = —\}5%
—(n-—-r H+Cr (O
— ( )A(Kt/ﬁ)"*' r+1( !u) (81)
S;x:Sn(ﬂ) = %g‘fj
= %5$(@,u)+~}~5s§+1(®,u) (8.2)
and
Sk = Su(k) = -\%_,—)%
— =[O~ rA(s) - (n= A+ 6] (83)

Under Hy, putting § = 0 we have



—(n—r)A(x) + C7,.1(©, 1)

NG
1 0¢
Sn(p) = N
K 7
= 77—;51(9,#)
and
1 0¢
Sl = Tnow

- Jﬁ[cm@,m—mm]

For any three real numbers ¢, 5, t3

t15n(5) + tzsn(ll) + tas"(lﬁ',)

i=r+1

{icos — ) = nA(k )}
__z[ sn(©: = 1) + = cos(©; - u)—%A(n)]

tl tl +t3

+
sm —u)+ 7 cos(©; — p) — Tn A(I{)]

- —‘/z Z[tzn sin(©; — p) + t3 cos(©; — ) — t3A(x)]
Z

Z; = ty Kk sin(O; —u) +t3 cos(©; — p) —t3 A(k),1 <i<r

Il

75

=ﬁ {_(""T)A(’“)"""i COS(ei“H)}+% {ngsin(@

(8.6)

[t2Ksin(©; — ) + (¢ + t3) cos(©; — p) — (1 + t3)A(k)]

ty K sin(0©; — p) + (81 +t3) {cos(©; — p) — A(k)},r+1<i<n



Now we note that Z;’s are bounded independent random variables with
E(Z;) = 0,1 < i < n and finite variances. Hence by the Lindeberg-Feller
Central Limit Theorem we can conclude that 8155 + 3., + t3S, is normally
distributed as n — oo, r — 00, - — t t#0,1.

Thus the distribution of any linear combination of S.(4), Sn(p), and S, (k)
1s asymptotically normal and hence by the Cramer-Wold theorem we can
conclude that the joint distribution of (S,(4), Sa(n), Sn(x)) is asymptotically
trivariate normal. Now since (under H,)

V(Sa(p)) = kA(k) (8.8)
V(Su(k)) = A(x) (8.9)
V (5.(6)) = (1 - %) A'(k), (8.10)
Cov (Su(), Sulx)) = 0, (8.11)
Cov (Sn(), Sn(d)) 0, (8.12)
Cov (Su(k), Sn(8)) = (1 - %) A'(r), (8.13)

we have (S5,,(6), S,.(x), Sa(1)) — N3(0,B) where the nonsingular symmetric
matrix B has elements |

bu = (1-t)A'(x), (8.14)
b = (1-1t)A'(x), (8.15)
by = 0, (8.16)
byy = A'(k), (8.17)
bys = O, (8.18)
bz = kA(k) (8.19)

To verify assumption 4(iii) we have to show that B, (%,n + %,,u + %)
converges in probability to B uniformly in bounded h = (h1, ha, h3). Let us
suppose that || h ||< K for some real number K. Then | hy |,| By | and
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| hs | are all less than or equal to K. We will denote the (7, j)-th element of

3 h b n)
B, ('7;;,&-{-%,#%—'7};) by bfj .

Now,

B by, = (1—%)/1' (N+%+h—\/%>
—(1 - t)A'(x) (8.20)

Using the Taylor series expansion we have

B — by = (1 - %) {A’(n) + A"(n).(-’f?—fﬁh—‘l}

—(1 — t)A'(k) + terms involving higher powers of n
_ r ! r (hz + hl) "
= (- 5) 4w+ (1-0) R A

+ | terms involving higher powers of n | . (8.21)

Hence,

sup | b7 = byy |
[hll<K

r
< — !
<l Ty |
2K T w
(1= ) 14|
+ | terms involving higher powers of n | . (8.22)

We see that the right hand side of the above expression converges to 0 as n
— 00

Hence we conclude that bﬁ’;) —p by; uniformly in bounded h. Using similar
arguments, it can be shown that bg;') — p b;; uniformly in bounded h for all

1<i,j<3.
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Let fi, and Ry denote the sample mean direction and resultant computed
from 6,41,...,6, , and R the resultant computed from the entire sample.

Theorem 18 : The NR-test for testing Hy against Hy, s :
Reject Hy if

R2 cos?(ji — 1ia) + (1 - ;’;)ZR2 -2 (1 - %) RR; cos(fi — pa)
2 (1= 2) AR) ~ 2 sin®(fi — i)

n

> xio (823)

where o 1s the level of significance.

Proof : The estimated scores of the parameters y, k and § under Hy obtained
by substituting the MLE’s of u and k under Hy are

S, =0, (8.24)
5. = 0 8.25)

and
S5 = Rycos(fa — fi) — (1 - -2) R (8.26)

The estimated Fisher information matrix has the following elements :

By, = '%—?, (8.27)
B = A'(R), (8.28)
By = (1-%) A'(R) (8.29)
By = 0, (8.30)
B = 2gin(i— ) (8.31)
By = (1—%) A'(R) (8.32)



Hence, the estimated effective score is
S; = Ss

and the estimated effective information is

. A 2 B2
Bg = B(;(; — B:SN -+ :S #
B.. By,

r N . R L. . :
= - (1 - ,_) A'(k) — a-;ffsm?(u — 1i2) (8.33)

n
Thus we have
5‘;2 B R cos?(ji — i) + (1 - %)QR —2 (1 - -) RRy cos(i — jiz)
B; (1= 2) A(R) — 25 sin®(i ~ fip)

and we reject Hy at the level of significance « if

Rycos’(ji = i) + (1= £) R* = 2 (1 = &) RRa cos(fi = )
t(1-5) A(R) - 2 sin® (i — in)

2
> Xl,a

where « is the level of significance. We refer to this statistic as the NR-test
statistic.

We use the above statistic to propose the NRTT for testing Hy against Hj.
Let us call the NR-test statistic for testing Hy against H;, as T,. We use

T = 1(ma.z)c T, as the test statistic for testing Hy against Hy. We reject Hy if
r<n-—1

the observed value of T' is “too large”. Since the asymptotic null distribution
of T is free from the nuisance parameters, the approximate cut-off points can
be obtained through simulation for large n.

79



Chapter 9

ON CHANGE PoOINT AND OUTLIER
PROBLEMS FOR SKEWED
CIRCULAR DISTRIBUTIONS

9.1 Introduction

In this chapter we look at the change point problem for some skewed cir-
cular distributions. Though in most statistical applications we deal with
circular distributions which are symmetric with respect to the mode, oc-
casionally there is a need for using skew circular distributions (Batschelet,
1981). We discuss outlier and change point problems for three different fam-
ilies of skewed circular distributions, one of which is due to Papakonstanti-
nou (1979), another due to Rattihali and SenGupta(2000), and the third
one, which is an extension of the circular normal distribution, is given in
Batschelet (1981, page 286). In section 9.2 we discuss the outlier problem
for Papakonstantinou’s skewed circular distribution. In section 9.3 we dis-
cuss change point problems in the same distributions. The outlier problem
for Rattihali-SenGupta’s skewed circular distribution is discussed in section
9.4 and the change point problems in the same distribution are discussed
in section 9.5. The outlier problem in Batschelet’s skewed circular distribu-
tions is discussed in section 9.6 and the change point problems in the same
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distribution in section 9.7. For all the outlier and change point problems
with skewed distributions it is found that LMPTT has wide applications and
1s quite simple to derive in such set-ups. Other tests in this set-up are likely
to be much more complicated.

9.2 Outlier Problem with Papakonstantinou’s
Skewed Circular Distribution.

Papakonstantinou’s skewed circular distribution has probability density func-
tion

1 k
f(6;k,v) = 5;+ﬂcos(0+ucos9)
0< 0<2n,v>0,-1<k<]1, (9.1)
which is equivalent to
f(6;k,v) = L-i-i in(f + vsin 6)
YRy V) = o 27rsm sin
0< 0<2mv>0,-1<k<1, (9.2)

as shown in Batschelet(1981). v = 0 yields the symmetric cardioid distri-
bution while » > 0 results in a skew distribution. We will use the latter
form in the subsequent discussions. We denote this distribution by P(k,v).
The Figures 5 and 6 of Chapter 15 give the graphs of the above density for
different values of k and v.

Suppose the random variables O, ..., ©,, are all independent, and % is known.
We are interested to test the hypothesis Hy : ©4,...,0,, are identically dis-
tributed as P(k,0) against the alternative H 1 : There exists r,1 < r < n such
that ©1,...,0,.1,0,41,...,0, are identically distributed as P(k,0) and O,
is distributed as P(k,v),v > 0. We will denote by H, the hypothesis that
the 7% observation is the outlier. We will derive the LMPTT for this problem.

Theorem 19 : (a) The LMP test for testing H, against H, s given by :

sin 20,

Reject Ho meé— >c
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for some constant ¢ depending on the level of significance.
(b) The LMPTT for testing Hy against H} s given by :

sin 20,
Reyect Hg 'Gf <r<n m >c

for some constant ¢ depending on the level of significance.

Proof : (a) Let 6,,...,6, denote the observations. Observe the log-
likelihood is

t(v;0y,...,6,) = Zln( +—k—-9m9)+1n<—2—1—7g+isin(0,+ysin9r)>

l;ér 2 2r
ot = cos(9 +vsind,).siné,
o ﬁ-}— % sin(8, + vsiné,)
Q{(O) _ k cos 6‘, sin 6,
ov 1+ ksind,
k sin 26,

2(1 + ksiné,)
Thus the LMP test of Hy against H, is :

sin 20, > ¢
1+ ksin®,

where c is a constant depending on the level of significance.
(b) The LMPTT for testing H, against H} is:

Reject H, if

sin 20,
Reject Hy if mr<n m >c

where ¢ is a constant depending on the level of significance.
If v is the level of significance then

sin 20,
" = P e, > ¢ 1)

sin 20,
= P (e e, <)
n sin 20,
- l—iglpr(1+ksm@ IHO)
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- ] [P( sin 20, < IH)}N( e O O, are i.id under Hp.)
= r m_C 0 since 1y.-.4 Oy, are 1.1. 1 > 0-

Hence we need to find ¢ such that

$in 26; L
Pr{i——-<¢)=(1 -a)n.
r(1-+—ksin(~),- "(> (1-a)

Now under Hy such a ¢ can be easily found using numerical integration.

9.3 Change Point Problem in Papakonstanti-
nou’s Skewed Circular Distribution

Let us suppose that k is known. We are interested to test the hypothesis
Hy:0,,...,0, arei.id P(k,0) against the alternative Hj : O1,...,0, are
identically distributed as P(k,0) and ©,,1,...,0, are identically distributed
as P(k,v),v > 0, for some r,1 <r < n—1. We propose a LMPTT test for
testing Hy against H;,. We denote by H;, the alternative hypothesis that
the change point is at r.

Theorem 20 : (a) In testing Hy against H,, the LMP test is gwen by :

L sin 20;
Reject Hy 1 —_ 9.3
ejec OZf,‘:L;A 1+ksm@;>c (9.3)
for some constant ¢ depending on the level of significance.
(b) The LMPTT of H, against H; is based on the statistic
- sin 2("),'
A= 1<rency i:};l 1+ ksin©; (94)
2": sin 20; (n | -
< 1+ ksin®;
The asymptotic null distribution of ,Jnax. i=rtl N : where
n= E(lffs%?é'_) and 7% = Var (%@9—;)" is same as that of sup Bg(t).

0<t<1
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Proof : (a) Let 6,,....6, denote the observations, 0 < §; < 27. Observe
the log-likelihood is

. 1k " 1k
(v:6,,6,....0,) = =+ " Ging = 4+ sin(6+vsing) )|
(v;61,02,...,6,) Z_;ln<2 + 5—sin )-}-Z 1n[<27r+27rsm( + vsin ))J

w i=r+1
Then,
ot _ i: %iﬂcos’g&—.i-ysiné’) 'sinH (9.5)
v i=rt135 T 5 sin(f + vsin §)
Therefore,
ot 2, kcosf;sinf; 1 & sin 26;
5;/—(0) - '.:Xr_:H 1+ ksing;, -2_‘.;1 1+ ksiné; (9.6)

Thus, the LMP test for testing Hy against H,, is

sin 26, >c
14+ ksin @,’

where ¢ is a constant depending on the level of significance.

Reject Hy if Z

i=r+1

(b) Since %‘;% are 1.i.d under Hj and sup is a continuous function on
D[0,1] we have by Functional Central Limit Theorem (Bhattacharya and

Waymire, 1992) that
n sin 20;

,._z,;q T+ ksing, (=7
max — (9.7)
1<r<n—1 vnr

converges in distribution to sup Bj(t).
0<t<1

9.4 Outlier Problem in Rattihali - SenGupta’s
Skewed Circular Distribution

Rattihali-SenGupta’s skewed circular distribution (Rattihali and SenGupta,
2000) has probability density function given by :
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f (85 ki, ko, pt) exp [k; cos(8 — p) + ks cos 26]

1
C (ky, ko, p)
0<6<2m ki, ke >0,0< pu<2m. (9.8)

(Rattihali and SenGupta, 2000). We will denote this distribution as RS(ky, ks, p).
The Figures 7 and 8 of Chapter 15, give the graphs of the above density for
different values of ky, k; and p.

Suppose Oy,...,0, are all independent. Let k;, k; be known. We are in-

terested to test the hypothesis Hy : ©,,...,0, are identically distributed as

RS(ky, ks,0) against the alternative H} : there exists r,1 < r < n, such that

O1,...,0,.1,0,41,...,0, are identically distributed as RS(k;, k2,0) and ©,.

is distributed as RS(k;, k2, pt), 0 > 0. Let H, denote the hypothesis that the
th observation is the outlier.

Theorem 21 : (a) The LMP test for testing Hy against H, s given by :

Reject Hy if sin O, > ¢

for some constant ¢ depending on the level of significance.
(b) The LMPTT for testing Hy against H} is given by :

max sin O, > ¢
1<r<n
for some constant ¢ depending on the level of significance.
Proof : (a) Let 6,,...,6, be the observations. The log-likelihood is
(s by,...,60,) = n(n—1)InC(ki, k2,0) — InC(ky, kz,u)

+k,ZcosH + ky cos(6, — u) +k22c0828,~

iy i=]
ot C'(ki ko, p) :
a/,t = m—-)“ + kl 8111(9,. M)
o0, C'kyky0)
8‘[,(0) = —‘m k] Sin 0,-
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Thus the LMP test for testing Hy against H, is

Reject Hy if sin ©, > ¢
where ¢ is a constant depending on the level of significance.

(b) Thus the LMPTT for testing Hp against H] is

Reject Hy if max sin ©, > ¢
1<r<

<r<n
where ¢ is a constant depending on the level of significance. Since under

Hy,©y,...,0,, are i.i.d the value of ¢ can be explicitly computed using nu-
merical integration.

9.5 Change Point Problems in Rattihali - Sen-
Gupta’s Skewed Circular Distribution

Suppose Oy, ...,0,, are mutually independent and &,  are known.

Case I : Note that for k; = 0, this distribution reduces to CN(y, k,) while
for p = 0, it reduces to a possibly bimodal distribution. We treat these two
cases separately below. Without loss of generality we assume that g = 0
and further assume x; is known. We are interested to test the hypothe-
sis, Hy : ©),...,0, are identically distributed as RS(k,,0,0) against the
alternative Hy : ©,...,0, are identically distributed as RS(k;,0,0) and
©r+1,...,0y are identically distributed as RS(ky, ks,0),k2 > 0, for some
r1 <r<n-—1. We propose a test motivated by the LMP test for known r.
We denote by H,, the alternative hypothesis that the possible change point
1s at  where r is known.

Theorem 22 : (a) In testing Hy against H,, the LMP test is given by :
Reject Hy if

) cos20; > ¢ (9.9)

i==r41
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for some constant ¢ depending on the level of significance.

{b) The LMPTT of Hy against H; is based on the statistic
> 0s20; — (n—r1)v
A = =rl 9.10
vnr (9.10)
where v and T are the mean and standard deviation of cos20; under H,..

Then the asymptotic null distribution of A is same as that of sup B;(t).
0<t<1

Proof : (a) Let 6y,...,60, denote the observations 0 < 6; < 2#. Observe
that the log-likelihood is

Olke;61,...,0,) = —rinC(k,0,0) = (n—r)InC(ky, k2,0)
+k12 cost; + ko Z cos 26; (911)
=1 t=r+1
Now,
o —(n = r)C"(k1,0,0) =
—(0) = 26; 9.12
ok, %) Cn0,0) T2 (812)

Hence, the LMP test for Hy against H,, is given by :

Reject Hy if Z c0s20; > ¢

t==r-+1
where ¢ is a constant depending on the level of significance.

(b)Under Hy,

. _ Iy (k1)
E(CObQ@,) = 1+2m

= wv(say) (9.13)
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and,

_ B0k (o)
V(cos26;) = 4|:[0(k1) _{Io(kl)}

= 7%(say) (9.14)

Hence by the Functional Central Limit Theorem (Bhattacharya and Waymire,
1992) and using the fact that sup is a continuous function on DI0, 1] we have

> c0s20; — (n—r)v > c0s20; = (n—r)v

i=pr4-1 i=[nt]+1
max — = sup el

converges in distribution to sup B*[0,1]
0<t<1

Case II : We next assume that ki, k; are known and g is unknown. Sup-
pose O, ...,0, are mutually independent. We are interested to test the hy-
pothesis, Hp : ©1,...,0, are identically distributed as RS(ki, k2,0) against
the alternative H; : ©4,...,0, are identically distributed as RS(k,, k2, 0)
and ©,41,...,0, are identically distributed as RS(k1, k2, ©), i > 0, for some
r.1 <r <n-—1. We propose a LMPTT for testing H, against H,. We denote
by Hi, the alternative hypothesis that the change point is at 7 where 7 is
known.

Theorem 23 : (a) In testing Hy against Hy, the LMP test is given by :
Reject Hy if S;',1(©,0) > ¢ (9.15)

where ¢ is a constant depending on the level of significance.

(b) The LMPTT of Hy against H, is based on the statistic
max Sr+1 (@, 0)
1<r<n=1 y/np

where 1 1s the standard deviation of sin©; under Hy. Then the asymptotic

null distribution of A is the same as that of sup Bg(t).
0<t<1

A= (9.16)
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Proof : (a) Let 4,,...,6, be the observations, 0 < 6; < 2x. Then the
log-likelihood is

E(p;01,...,0,) = —rInC(ki,k2,0) — (n = 1) InC(ky, kg, )
+k1 [C1(6,0) + C2y1 (6, 1)) + k23 cos 26;. (9.17)
i=1
Therefore,
o¢ (n = r)C'(ky, kq,0)
— = k1 S? (6 9.18
6N(O) C(kl,kz,O) + ISr-H( 7()) ( )

Hence the LMP test of Hy against H,, is given by :
Reject Hy if ST ,(©,0) > ¢
where c is a constant depending on the level of significance.

(b) Under H, ,
E(sin©;) =0 (9.19)
and let,
Var(sin ©;) = n(say) (9.20)

Then by an application of Functional Central Limit Theorem and using the
fact that sup is a continuous function on D[0, 1] we conclude that the asymp-
totic null distribution of

5r41(©,0) 5141(©,0)

max ————— = §
1Sr<n-1 /g Larciol VMY
n -~ - n

is the same as that of sup B, (t)
0<t<1

|

0

=
o
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9.6 Outlier Problem in Batschelet’s Skewed
Circular Distribution

The Batschelet’s skewed circular distribution is an extension of the circular
normal distribution. The probability density function of this distribution is

1
6k = ; y
f(8; k,v) o) exp [k cos(6 + v cos )]
0<0<2mk>0,~00<v<oo. (9.21)

We will denote this distribution as Ba(k,v). Note that v = 0 yields CN(0, k).
The Figures 9 and 10 of Chapter 15 give the graphs of the above density for
different values of & and v.

Suppose Oq,...,0, are independent random variables and k is known. We
want to test the hypothesis Hy : Oy,...,0,, are identically distributed as
Ba(k,0) against the alternative H} : ©4,...,0,_,,0,,,...,0, are identi-
cally distributed as Ba(k,0) and ©, is distributed as Ba(k, v),v > 0 for some
r,1 <r < n. Let H, denote the hypothesis that the r** observation is the
outlier. The next theorem gives the LMP test for testing Hy against H, and
the LMPTT for testing H, against H;.

Theorem 24 : (a) The LMP test for testing Hy against H, is given by :

Reject Hy if sin2 O, <c

where ¢ 1s a constant depending on the level of significance.
(b) The LMPTT for testing Hy against Hf is given by :

min sin2 O, < ¢
1<r<n

where ¢ s a constant depending on the level of significance.

Proof : (a) Let 6,,...,6, be the observations. The log-likelihood is

{vib,....0,) = —(n—1)ln ¢(k,0) —In c(k,v)
+k Z cos 8; + k cos(6, + v cos 6,)
t#r
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ol d(k,v)

= — — ksin(6, + v cos6,) cos 6,

ov e k,v)
ol d(k,0) .
5—;(0) = TR0 — ksiné, cos 8,
d(k,0) &k .
= - — Zsin26
(ko) ~25mE

Thus the LMP test for testing Hy against H, is

Reject Hy if sin2 O, < ¢
for some constant ¢ depending on the level of significance.

(b) Thus the LMPTT for testing H, against H; is

Reject Hy if min sin2 O, < ¢
1<r<n

for some constant ¢ depending on the level of significance. The value of ¢
can be computed from the distribution of sin 26, under H, using numerical
integration.

9.7 Change Point Problem in Batschelet’s Skewed
Circular Distribution

Let us assume that k is known and ©y,...,0, are mutually independent.
We are interested to test the hypothesis, Hy : ©,,...,0, are identically
distributed as Ba(k,0) against the alternative H, : 0i,...,0, are identi-
cally distributed as Ba(k,0) and ©,,4,...,0, are identically distributed as
Ba(k,v),v > 0, for some r,1 < r < n — 1. We derive an LMPTT for testing
Hy against H;. We denote by Hj, the alternative hypothesis that the change
point is at r.

Theorem 25 : (a) In testing Hy against H,, the LMP test is given by :

Reject Hy 1if Z sin20; < ¢

i=r+]
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where ¢ 15 a constant depending on the level of significance.

(b) The LMPTT for H, against H, is based on the statistic

n
Z sin 2@,
A= min =
15131517111—1 vn¢

where ¢ s the standard deviation of sin 20; under Hy. The asymptotic null
distribution of A is same as that of Oi<rt1£]Bg(t).

Proof :
C;by,...,0,) = —rinly(k) — (n—r)lnc(k,v)
+k |CT(6,0) + > cos(b; +vcost;)| (9.22)
i=r+1
Therefore,

tel4 d(k,0) k K.

FO) = ~(n- 2 9; .

81/(0) (n—r) .0) 2‘21 sin 2 (9.23)

Hence the LMP test for H, against H,, is

Reject H, if Z sin20; < ¢
1=r41

where c is constant depending on the level of significance.

(b) Under Hy,

E(sin29;) = 0 (9.24)



and
Iy (k) = 1" (k)
Io(k)
= (*(say) (9.25)

Var(sin20;) = 4

where I" (k) is the fourth derivative of Io(k) with respect to k.

Hence by using the Functional Central Limit Theorem and the fact that infis

a continuous function on D[0, 1] we get that the asymptotic null distribution
of

> sin20; ) sin26;
i=r41 - inf i={nt]+1

min e
1<r<n—1 /¢ l<i<i-t Vvl

is same as that of inf Bj(t)
0<t<1

Remark 14 : The case of nuisance parameters for each of the above testing
problems may be tackled by the general unified theory of NRTT derived in
section 12.10 and hence are not discussed here separately.
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Chapter 10

ALTERNATIVE APPROACHES TO
CHANGE POINT PROBLEMS FOR
THE MEAN DIRECTION

10.1 Introduction

In this chapter we provide some alternative approaches to change point prob-
lerns for the mean direction. In section 10.2 we discuss the Semi-Bayesian and
Hierarchical Bayes’ approaches. In section 10.3 we introduce a new method
of computing the integrated likelihood which we call “modified integrated
likelihood”. This method can be used to tackle change point problems in
situations where nuisance parameters are present. In section 10.4 we discuss
the use of randomization tests in the context of change point problem. In
section 10.5 we provide a Markov chain based approach which can be used
for change point prediction.

10.2 Semi Bayesian & Hierarchical Bayes'Ap-
proaches for the Change Point Problem

In the next two sections we indicate the possibility of applying the semi
Bayesian and hierarchical Bayes’ approaches in solving the change point
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problem. In section 10.2.1 we take the semi-Bayesian route and illustrate it
with an example whereas in section 10.2.2 we discuss the hierarchical Bayes’
approach for estimation of the change point using an example.

10.2.1 Semi-Bayesian Approach

Often we have some a-priori information regarding the possible location of
the change point which can be quantified in the form of a prior distribution.
Let p; denote the probability that i’ is the ‘point of change’, 1 <i<n-—-1.

Let p, denote the probability of no change, Z pi = 1. Assume that all the
i=1
parameters (g, i, k) are known. We are interested to test Hy : 0,,...,0,

are CN(po, k) against the alternative H,. There exist r,1 < r < n — 1 such
that ©,,...,0, are CN(ug, &) and ©,,4,...,0,, are CN(pu1,&). Then the
likelihood under Hj is,

fo(8) = pa(2Lo(R)) ™" exp [RCT(8, o)) (10.1)

and that under H, is,

n—1

f1(6) = 3 pi(2nlo(w)) " exp [k {C1 (8, m0) + CPy (B, m)}] . (10.2)
i=1

Then the Bayes’ factor is,

;Ezg =3 (/pa)exp [w {CB0m) — CEa0m)]  (103)

which after some simplifications becomes

QEZ; =k y.l‘;(p"/p” exp (ST (6, (11 + o) /2)) (10.4)

where k is a constant. A test for Hy can then be based on the Bayes’ factor.
Hy is rejected if the Bayes’ factor is large.
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Example: Let

pi=c. e AN/l 1<i<n, (A known) (10.5)

n

where ¢ is chosen so that Y p; = 1.

i=1
Then
Pi/pn =nIN"/i 1< i<n (10.6)

and

fo8) = © > (N7/it) exp (SEa (6, + o) /2) (10.7)

=1

where ‘k’ is a constant. Hy is rejected if %(% is large.

10.2.2  Hierarchical Bayes’ Approach

This popular approach (Berger, 1985) is used in cases where it is difficult
to specify the parameters of a prior distribution. The escape route is to
specify priors for these parameters as well. For the change point problem
we assume a prior on the change point. The prior is specified upto its form
but its parameters are left unspecified. We further specify a prior on these
unspecified parameters. Then to get the estimate of change point we merely
find the posterior distribution of the change point given the data and find
the posterior mode.

To illustrate this approach we assume that the change point is a random
variable denoted by K. Let the prior probability of the event K = k be
given by

P(K=k)=c()pr1-p)"*k=1,...n, (10.8)
where c is a constant such that Y P(K = k) = 1. Further assume that p is

k
distributed uniformly over (0,1). Let
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h(t) = exp [ {CH(8, o) + Ciyy cos(8,p) }] , (10.9)

lig, it and ~ are all known. The posterior distribution of K is then given by

P(K =k . 6)="8) @) BlEtln-k+1) 5,

S () Ble+1,n—£+1)

£=1

The posterior mode can be used to estimate the change point.

10.3 A Modified Integrated Likelihood Ap-
proach

In the usual integrated likelihood approach, the likelihood of all the obser-
vations is first computed and then this likelihood is integrated with respect
to the prior density on the nuisance parameter. The resultant likelihood is
used for the purpose of drawing inference on the parameter of interest. In
this new approach for eliminating nuisance parameters we first consider the
likelihood for each observation separately. A proper prior density is chosen
for the nuisance parameter assumed to be the same for all observations. The
likelihood corresponding to each observation is multiplied by the prior den-
sity and then integrated over the range of all possible values of the nuisance
parameter to get the integrated likelihood for that observation. The like-
lihood of all the observations is then obtained by multiplying all of these
individual integrated likelihoods together to yield the modified integrated
likelihood. This likelihood is then used for drawing inference on the param-
eter of interest. We illustrate this technique by applying it on the change
point problem for the Papakonstantinou’s skewed circular distribution. Let
0y,...,0, be independent random variables. We are interested to test the
hypothesis Hy : ©y,...,0, are identically distributed as P(k,0) against the
alternate H; : There exist r,1 < r < n — 1 such that ©,,...,0, are iden-
tically distributed as P(k,0) and ©,41,...,0,, are identically distributed as
P(k,v),v > 0. For each fixed r, let H,, denote the alternative hypothesis

97



that the change point is at 7. Note that in this case k is a nuisance parame-
ter. We put a prior density v with E,(k) # 0, on k. Now for a fixed r, the
likelihood for one observation under H,, is

k
L(v, k;6;) = —2—1; + —2—7—;sin(0i + v;sin 6)
0<h <2m,-1<k<l (10.11)

where

v, = 0ife=1,...,7
= vifi=r+1,...,n (10.12)

The integrated likelihood for one observation is

1

L*(l/,‘;e,’) = /—1 L(Vzak,gz)’Y(k)dk
1 | Ey (k)
27r+ 2

Hence, the modified integrated likelihood is

sin(6; + v; siné;) (10.13)

Ll (v;6) = igl L*(v;; 0;) (10.14)
== InL}(v;0) = ZlnL*(l/,-;O;) (10.15)

= }:1 (27r %@sin&)
+ }: In ( E,(k) sxn(0;+1/sin9,»)) (10.16)

1=r+1 2m

We compute the maximum value of In L? (v; #) and compare it with the spec-
ified value under Hy i.e InL}(0;6). Let v} be the value of v for which
InL:(v;60) is maximum. If the difference In L} (v};6) — In L2(0;6) is sub-
stantially large then we reject Hy in favour of Hy,. To test for Hy against H;
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the appropriate quantity to look for is
Jnax InL7(v};6) —In L3 (0;6)

If this difference is large then we reject Hy in favour of H,. The estimate of
change point is that value of r for which In L>(v;;6) has the largest value.

10.4 Randomization Tests for the Change Point
Problem for the Mean Direction

Suppose we have n observations from a circular distribution. We are inter-
ested to know whether all observations come from the same population say
Fo having mean direction pq or there is a point after which all the observa-
tions come from another distribution say F; with mean direction f1. Usually
Fy. Fy have the same form, e.g. both may be circular normal and there is
only a location parameter shift.

We consider the problem of testing Hy : O, ... , O, are i.i.d. Fy against the
alternative. H, : There exist r,1 < r < n —1 such that ©,,...,0, are i.i.d.
Fo and @r-Hv ey (—)n are 1.1.d. Fl.

Lombard (1986) provides a non-parametric test for testing this hypothesis
based on the uniform scores test. Here we propose a randomization test (Rao,
1973) utilising the fact that under the null hypothesis the observations are
all independent and hence exchangeable. This test is distribution free and
completely data based.

Since we are looking for a change in mean direction it is natural for us to
use a test statistic which is based on the angular difference of the two mean
directions. The following statistic is based on these considerations :
For1<k<n-1,let
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T, = |tan™! 51(6,0) -191(6,0) ] (10.17)

k
1
Ct(8,0) Cia(8,0)

where tan™!(.) is so defined as to yield an unique value.

Define
Dk = min(Tk, 2m — Tk)

Thus Dy, gives the difference in the mean direction of the first k and the last
(n — k) observations. Define the test statistic

D = max D,.
1<k<n—1

The value of D is computed for all possible permutations of the observa-
tions. This gives rise to n! values of D which are then sorted in increasing
or decreasing order. If the observed value of D is towards higher end of this
ordered list then we reject Hy. Since n! increases very rapidly with n, so even
for moderate values of n it is not possible to compute D for all permutations
even with the most powerful computers. Thus it becomes necessary to use
a random sample of permutations to use this test. A sample of k¥ permuta-
tions are chosen randomly from the possible n! permutations and the above
method is applied to the values of D computed on these permutations of the
observations.

Ezample :  We applied the Randomization Test on the flare data (Lombard,
1986). Since this test is designed to indicate the presence of atmost one
change point, and earlier analyses had indicated the presence of two change
points in this data set, one at 12 and the other at 42, we decided to con-
sider only the observations number 1-42 for the purpose of application of this
randomization test. We generated 2000 random permutations of these ob-
servations and computed the statistic D for each one of these. The resultant
values were sorted and the observed value of D l.e. 2.94 is compared against
the list. It is seen that more than 90% of the values in the list are less than
the observed value. Hence we can say that there is a change point in the
data set at 10% level of significance.
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Note : It has been observed by one of the referees that randomization type
tests based on the test statistics considered in Chapters 5 to 8 can be devel-
oped along the same line as randomization test based on 10.17. In all setups
considered in Chapters 5 to 8 the null hypothesis corresponds to the i.i.d.
case.

10.5 Prediction of Change Points for the Mean
direction - Markov Chain Based Approach

We give a method for predicting change points using a Markov Chain based
approach. We assume that at each point of time ‘t’ there is a pair of circular
random variables (©,, W;). We only observe the ©,’s and the W,’s remain un-
observed. If W, = 0 then ©, comes from a circular distribution having density
fo whereas if Wy = 1 then ©, comes from a circular distribution having den-
sity f;. We assume that ©y,...,0, are independent given Wy,..., W, and
Wi(= 0),W,,...,W,,... form a Markov Chain with transition probability
matrix,

Wt+l =0 Wt-H =1
Wt =0 l-p P
Wt = 1 O 1

We call the parameter p the ‘propensity for change’. Note that as p increases
the chance of a change point being present in the given data set increases.
When p = 0 we can conclude not only that all the given observations come
from the distribution with density f, but also all future observations will
come from the same distribution. Thus in this situation we can predict that
there will be no change of distribution in future. Let n* = min{n : W, = 1}.
If p > 0 then it is easy to see that n* has the geometric distribution with
parameter p. We can use this fact to predict the change point. Thus we
see that it is of some interest to test Hy : p = 0 against H; : p > 0. Let
f1,....0, be the given observations. The following theorem gives the LRT for
this problem. Let,

Lp)=p Y. 11 o(6:) ﬁﬂ HiB)(1=p) ™ + (1= p)" 1L fo(63)

r=1"'~ =r
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where 0 < p <1 and we use the convention 0° = 1.

Theorem 26 In testing Hy against H, the LRT is :
Reject Hy if
A = —.__E_Q)_A__ < '3
sup L(p)
0<p<1

where ¢ is a constant depending on the level of significance.

Proof: The proof follows immediately from the definition of the LRT.

In the above theorem, to compute the denominator of the LRT-statistic i.e.
sup L(p) we need to compute the MLE of p which is a soluticn of L'(p) = 0.
0<p<1

f}:}i_s usually calls for solving a complicated polynomial equation involving
higher powers of p. Instead of attempting to solve the complicated equation
analytically one may try obtain the approximate value of the denominator
numerically. Genetic Algorithms(GA) are often used for this purpose. We
use a variation of the GA for continuous parameters called Genetic Algo-
rithm Without Coding of Parameters, (GAWCP), (see e.g. Raol and Jalisatgi
(1996), Haupt and Haupt (1998) etc.) to find the approximate value of the
denominator. We adopt a very simple version of the algorithm with the con-
sequence that it takes much longer to reach the maximum value with this
algorithm than with more complicated algorithms.

The description of our algorithm is as follows: Start with parameter val-
ues p, and p,.

Suppose L(p,) > L(ps)

We compute two new quantities

1
pe = §(pa+pb) (10.18)

and

Pa = pa+¢&, (10.19)
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where § ~ U(—1,1), where U(a,b) denotes the uniform distribution on the
open interval (a,b).

(If ps <0 orpy > 1 anew € is generated and py is recomputed). The values
L(p.) and L(py) are computed. Among the four values L(p,),L(ps), L(p,)
and L(py) parameter values corresponding to the largest and the next are
retained and are called p, and p; respectively. The entire procedure is then
repeated with the new values of p, and p.

It is easily seen that the value of L(p) non-decreasing function of the
number of iterations. When the value of L(p) does not increase for a large
number of iterations we conclude that the maximum value has been reached
(approximately). This value is then used in the denominator of the LRT.

Remark 15 : If the densities fy and f, contain unknown parameters it be-
comes necessary to take supremum of the likelthood function over the param-
eter space of these parameters for computing the LRT. The above algorithm
can be easily generalized to accommodate more than one parameters.

Remark 16 : The distribution of £ need not be necessarily U(—1,1). Other
distributions including circular distributions may be used.
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Chapter 11

DATA ANALYTIC TOOLS

11.1 Introduction

In real-life situations statisticians often require some tools which are simple
to use and can quickly indicate whether a feature is present in the data set
or not. In this chapter we discuss three data analytic tools for exploratory
change point detection. These tools can quickly indicate whether a change
point is present in the data set or not. If the presence of a change point
is indicated then one can proceed with formal testing as discussed in other
chapters in this thesis. The data analytic tools introduced here are

(a) Changeogram

(b) Circular Difference Tables and

(c) Circular CUSUM.

11.2 Tools for Indicating The Presence of a
Change Point

11.2.1 Changeogram

A Changeogram displays pictorially in terms of directed arrows, each of unit
length, the direction in terms of the angle as given by the corresponding
observation. A change in the mean direction can be visually observed by
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inspecting the sequence of arrows, carefully. In Figures 2 and 3, Chapter 15,
we give examples of changeogram based on the flare data and the wind data.

11.2.2 Circular Difference Table

The circular difference table is another data analytic tool particularly suitable
for detecting changes of moderate to large magnitudes when the dispersion is
not too large. The circular difference table is constructed by considering the
change of direction between two successive observations. For eg. if 6; and 6,
are the two successive observations then we consider the circular difference
to be min (|64, — 64| ,27 — [641 — 6:]) . The circular difference table shows a
large value when a change in mean direction occurs. If the dispersion is not
too large such a large value immediately indicates the presence of a change
point. We illustrate this tool by applying it on the flare data and also on the
wind data. It is seen that the tool is not that effective in indicating a change
point in case of flare data because of the high amount of dispersion in the
data set (see Table A and B). However for the wind data the change point
is (see Table C) well indicated by the circular difference table. Note that
the circular difference between observations 17 and 18 is 73° which is much
larger than the circular difference between any two successive observations
in the data set. Thus a change point is indicated at 17.
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TABLE A

Circular Difference Table for flare data :

Observations 1 - 42

t Dif t Diff ¢ Diff
1 8.5 15 100 29 77
2 172 16 1222 30 30.1
3 163 17 121 31 286
4 527 18 204 32 717
5 19 19 782 33 534
6 111.8 20 46.3 34 75.1
7 526 21 106.1 35 1204
8 464 22 504 36 150.2
9 78 23 177 37 63
10 1146 24 132 38 745
11 1227 25 624 39 96.1
12 1669 26 153 40 42
13 1153 27 54 41 925
14 369 28 1472
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TABLE B

Circular Difference Table for flare data

: Observations 13 - 48

t Dif ¢+ Dif t Diff
13 1153 29 77 45 13.6
14 369 30 30.1 46 286
15 100 31 286 47 138
16 1222 32 71.7 48 120
17 121 33 534 49 253
18 204 34 751 50 11.8
19 782 35 1204 351 66.1
20 46.3 36 150.2 52 59.5
21 106.1 37 6.3 53 164.6
22 504 38 745 54 3
23 177 39 96.1 55 159.1
24 132 40 42 5 51.3
25 624 41 925 57 1524
26 153 42 133 58 30
27 54 43 113.1 59 623
28 147.2 44 121.8

TABLE C

Circular Difference Table for wind data : Observations 1 - 22
t Dif ¢+ Dif ¢+ Diff
1 2 9 13 17 73
2 7 10 8 18 8
3 7 11 10 19 29
4 3 12 10 20 32
5 1 13 9 21 22
6 8 14 19
7 4 15 31
8 6 16 8
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11.2.3 Circular CUSUM

The circular CUSUM is another useful data analytic tool for indicating pres-
ence of change point in case the initial mean direction is known. Let p be
the known initial mean direction. Note that in a circle there are two direc-
tions in which the angular difference can be calculated, one being clockwise
and the other being anticlockwise. We first obtain ¢ by solving the equation

e.e = e If 0 < § < 7 we say that the angular difference is anticlockwise
of magnitude §. If 7 < § < 27 then we say that the angular difference is
clockwise of magnitude 27 — 4. Analogous to the linear case we compute
cumulative sums in the anticlockwise direction C;* as follows

where §4 = 4 if the ith angular difference is in the anticlockwise direction
= 0 otherwise

and

where ¢ = 4 if the ith angular difference is in the clockwise direction.
= 0 otherwise

In case of no change in mean direction both C#* and C£ will grow at the
same rate whereas if there is a change in mean direction then one of CA or

C¢ will grow at a much faster rate than the other. Hence if we plot —J;— or

%;v with time then we will find a distinct change of inclination in the curve
if a change point is present.

Ezample : We illustrate the above method by applying it on the flare data.
Since from previous analysis we know that the data consists of two change
points one at 12 and the other at 42. We consider only the portion of the data
consisting of observation nos. 1 to 42. Since the mean direction is unknown
we use the mean direction of the first 12 observations as the true mean and
construct the circular CUSUM chart. We plot the ratio ~—5; over time and as

expected the graph (see Figure 4, Chapter 15) shows a change of inclination
after the point of change.
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Chapter 12

SOME GENERALIZATIONS AND
SCOPE OF FURTHER W ORK

12.1 Introduction

In this chapter we discuss the outlier and change point problems in sym-
metric circular distributions other than circular normal. The distributions
covered in this chapter almost exhaustively covers all distributions that have
been used in real-life applications. In section 12.2 we discuss the circular
uniform to circular normal change point problem. This problem may arise
in real-life situations for e.g., in study of wind directions where at the be-
ginning there may be no preferred direction but after a certain period of
time may exhibit a preferred direction. In section 12.3 we study the circular
uniform to circular uniform - circular normal mixture change point problem.
The motivation hehind the study of this problem is it’s potential for use
in real-life situations. The circular uniform - circular normal mixture has
been used in various applications e.g., see Ducharme and Milosevic(1990),
SenGupta and Pal(2001) etc. In section 12.4 we discuss the outlier prob-
lem in the Cartwright - Mitsuyasu distribution. This distribution has found
much applications in oceanography. In section 12.5 we discuss the change
point problem in the same distribution. In section 12.6 we discuss the out-
lier problem in Wrapped Cauchy distribution. This distribution has also
found several applications (see e.g., Kent and Tyler (1988)). In section 12.7
we discuss the change point problem in the same distribution. In section
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12.8 we discuss the outlier problem for the symmetric wrapped stable family
of distributions. This is an omnibus family of distributions including some
well known distributions like wrapped Cauchy and wrapped normal as its
members. In section 12.9 we discuss the change point problem for the same
distribution. In section 12.10 we discuss the robustness with respect to the
level of significance of the LMPTT for change point problem for the mean
direction in the circular normal distribution. We use the symmetric wrapped
stable family of distributions as the class of alternative distributions for the
purpose of robustness study. In 12.11 we provide an unified approach of
constructing NRTT. This is particularly useful for drawing inference (about
the existence of a change point) in situations where nuisance parameters are
present. In section 12.12 we discuss the scope of further research.

12.2 Change Point Problem in Circular Uni-
form to Circular Normal

Let ©4,...,0, be independent variables. We are interested to test the
hypothesis Hy : ©,...,0,, are identically distributed as circular uniform
against the alternative H; : There exists 1,1 < r < n —1, such that
01,...,0, are identically distributed as circular uniform and ©,,,...,0,
are identically distributed as CN(0, x),x > 0. We propose a LMPTT for the
above problem. For each fixed r, H), denotes the alternative hypothesis that
there is a change point at r.

Theorem 27 : (a) The LMP test for Hy against H, is given by :

Reject Hy of CT1(0,0) > ¢

where ¢ 1s a constant depending on the level of significance.
(b) The LMPTT for Hy against H, is given by :

cC" (®,0
max —-————"H( ,0)

1<r<n—1 vnrT
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where ¢ is a constant depending on the level of significance. The asymptotic

o Cr(0,0) . .
null distribution of max €r41(9,0) s same as that of sup Bg(t).
1<r<n-—-1 vnmw 0<t<1

Proof : (a) The log-likelihood of 6;,...,6, is :

6(r;01,...,0,) = —nln2r — (n—r)Inly(s) + Cr1(68,0)
o I(k) n
% - (n 7") IO(I‘C) + Cr+l(6’0)
= —(n=r)A(r) +C7,, (6,0) (121)
o¢ n
5 = G0 (12.2)

Hence the LMP test for H, against H,, is given by :

Reject Hy if C7'1(©,0) > ¢
where ¢ is a constant depending on the level of significance.
(b) The LMPTT for Hy against H, is given by :

max Cr+l(®90)

1<r<n—1 vnm

where ¢ is a constant depending on the level of significance. Now, since
under Hy, E(cos ©;) = 0 and Var(cos©,) = 7 we have the asymptotic null

>c

. Cr (0,0 .
distribution of max €rn(©,0) as n — oo is same as that of sup B;(t).
1<r<n=—1 nw 0<t<1

Remark 17 The outlier problem is not quite meaningful in this set-up and
hence is not considered here '
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12.3 Change Point Problem in Circular Uni-
form to Circular Uniform-Circular Nor-
mal Mixture

Let ©,,...,0, be independent random variables. We want to test the
hypothesis Hy : ©4,...,0,, are identically distributed as circular uniform
against the alternative Hy: There exist r,1 < r < n — 1, such that ©,,...,0,
are identically distributed as circular uniform and ©,41,...,0, are identi-
cally distributed with pdf

=P — ! (
f(6) = 27r+(1 ‘())27r exp(kcosf),k >0, 0<p<1

]o(li)

p is assumed to be known. Note that when & = 0 the above pdf reduces to

.-z—; which is the pdf of the circular uniform distribution. As before let for

each v, H;, denote the alternative hypothesis that the change point is at r.
From the above we note that a test of Hy against H,, is equivalent to a test
of Hy : k = 0 against Hj, : k > 0.

Theorem 28 : (a) The LMP test for Hy against H,, is given by :

Reject Hy if C),(©,0) > ¢

where ¢ s a constant depending on the level of significance.
(b) The LMPTT for Hy against H, is given by :

S}
Reject Hy if Jnax M >c

<n-1 vnmw

where ¢ is a constant depending on the level of significance.
The asymptotic null distribution of —’f‘7(==—- is the same as that of sup Bg(t).

0<t<1

Proof: (a) The log likelihood of 6;,...,6, is
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€k;61,...,0,) = —rln2r+ Z In {—p~+ 1 -p) exp(ncosﬁi)}

ard® 2n - 2mly(k)
o o Io(x) exp(x cosb; ).[;:)(s:).jz—exp(n cos 6) 17 (x)
Z =+ ﬁ% exp(x cos §;)
o e pems,
L =1 2T g

= (1-p) C1(6,0) (12.3)
Hence the LMP test for Hy against H,, is
Reject Hy if C7,,(©,0) > ¢

where ¢ is a constant depending on the level of significance.
(b) The LMPTT for H, against H, is

Reject Hy if max w >c

1<r<n~1 nw

for some constant ¢ depending on the level of significance.
Now since under Hy, E(cos ©;) = 0 and Var(cos ©;) = 7 we have that the

. e €7 1(0,0)
asymptotic null distribution of max €r1(9,0) 1s same that of sup B;(t).
<rn-l vnm 0<e<1

Remark 18 The outlier problem is not quite meaningful in this set-up and
hence is not considered here.

12.4  Outlier Problem in Cartwright-Mitsuyasu
Distribution

We will denote by CM(y, s) (Cartwright, 1964, Mitsuyasu, 1975) the proba-
bility distribution having density

fl:ims) = kocos®? 3 Eo<o<on (12.4)

113



27
where 0 < p < 27,5 > 0, and k is so chosen that / f(6;pn,s)db = 1.
0

In this section we discuss the outlier problem for the Cartwright - Mit-
suyasu distribution. Let ©,,...,0, be independent random variables. We
are interested to test the hypothesis Hy : ©,,....0,, are identically dis-
tributed as CM(0, s) against the alternative H} : There exist r,1 < r <n
such that ©,...,0,_,,0,4,,...,0, are identically distributed as CM(0, s)
and O, is distributed as CM(p, s), ¢ > 0. We will assume s is known and we
will denote by H, the hypothesis that the rt* observation is the outlier.

Theorem 29 : (a) The LMP test for Hy against H, is given by :

Reject Hy if tan % >c

for some constant ¢ depending on the level of significance.
(b)The LMPTT for testing Hy against H} is given by :

, . o,
Reject Hy if lrgras)sl tan > >c

where ¢ is a constant depending on the level of significance.

Proof : (a) The log-likelihood of the observations 6, ...,8, is :

E(p; by, ,0,) = nlnk+23{Zlncos%—}-lncose';“}

i#r
gﬁ = stan b — 1t
of @
aH(O) ~ stan (12.5)

Hence the LMP test for testing Hy against H, is :

. . 0,
Reject H, if tan 5 >c
for some constant ¢ depending on the level of significance.
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b) The LMPTT for testing H, against H} is :

. . O,
Reject Hy if max tan — > ¢
1<r<n 2

for some constant c¢. Since the random variables tan % are 1.i.d under H,
therefore the value of ¢ can be easily obtained following standard techniques
and using numerical integration.

12.5 Change Point Problem in Cartwright-
Mitsuyasu Distribution

Let us assume s is known. Let ©;,...,0, be independent random variables.
We are interested to test the hypothesis Hj : ©1,...,0,, are identically dis-
tributed as CM(0, s) against the alternative H, : There exist r1<r<n-1
such that ©y, ..., ©, are identically distributed as CM(0,s) and ©,,4,...,0,
are identically distributed as CM(y, s), 1 > 0. For each fixed r, let Hy, de-
note the alternative hypothesis that the change point is at r.

Theorem 30 : (a) The LMP test for Hy against H,, is gwen by :

Reject Hy if ) tan % >c

t=r-+1

for some constant ¢ depending on the level of significance.
(b) The LMPTT for Hy against H, is given by :

> tan % —(n—r)¢
Reject Hy if  Jnax il

<r<n-1 \/ET

where £ = F g:an %l) , 72 = Var (tan %) under Hy, and ¢ is a constant
depending on the level of significance.

The asymptotic null distribution of the LMPTT-statistic is same as that of
sup By (t).

0<t<1

>cC
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Proof : (a) The log-likelihood of 6,,...,4, is

Oy 6y,...,60,) = nlnk+2s{ ln(()s—~+ Z lncose 2#}

i=1 i=r+1
ot §; — u)
— = 8 tan
8/1' s—zr-:%l < 2
%(0) = s Z ta,n~21 (12.6)
i=r41

Hence, the LMP test for Hy against Hy, is :

Reject H, if Z tan % >c

t=r+1

where ¢ is a constant depending on the level of significance.
(b) The LMPTT test of Hy against H, is based on the statistic

n

O,
max Z tan —
1<r<n—1 4 — 2

Let Z; = tan %i. Now Zs are independent random variables having identical
distribution under Hy. Hence by the Functional Central Limit Theorem and
using the fact that sup is a continuous function on D[0,1]

z": Z; —(n—r)é Z Z; — (n — [nt])¢

i=r+1 i=[nt]+1
max = sup

1<r<n—1 \/7—17' %Stsl—% \/7_7,

where { = E(Z;) and 7° = Var(Z;), has the same asymptotic null distribution

as sup Bg(t).
0<t<1
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12.6 Outlier Problem in Wrapped Cauchy Dis-
tribution

We will denote by WC(y, p) the wrapped Cauchy distribution(Mardia, 1972)
having p.d.f

1 1 - p?
0 —
(0 p.p) 2w 14 p? — 2pcos(6 — p)’
0<<2n,0<pu<2m-1<p<l. (12.7)

In this section we discuss the outlier problem for the wrapped Cauchy
distribution. Let ©,,...,0, be independent random variables. We are in-
terested to test the hypothesis Hy : ©4,...,0, are identically distributed as
WC(0, p) against the alternative H; : There exist r,1 < r < n such that
0),....0,.1,0,41,...,0, are identically distributed as WC(0, p) and O, is
distributed as WC(p, p), # > 0. We assume p is known and we will denote by
H, the alternative hypothesis that the r* observation is an outlier.

Theorem 31 : (a) The LMP test for testing Hy against H, 1s given by :

sin ©, S
p? —2pcos O,

Reject Hy ifl n c

where ¢ is a constant depending on the level of significance.
(b) The LMPTT for testing Hy against H} is given by :

’ ' sin©,
Reject Hy iflfgraé, 14 p? —2pcos O, ” e

where c 1s a constant depending on the level of significance.
Proof : (a) The log-likelihood of the observations 6,,...,6, is :
p;01,...,6,) = —nln2r+nln(l — p?) - > In(1 + p* — 2pcosé)

i#r
—In (1 + p? — 2pcos(f, — ,u))
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ot 2psin(f, — pu)

on 1+ p% —2pcos(8, — p)
4 2psin @
Therefore, — r :
erefore, B (0) 15 22— 2pcosd, (12.8)

Hence the LMP test for testing H, against H; is given by :

sin ©, S
+ p?2 — 2pcos O,

Reject Hy if 7 ¢

for some constant ¢ depending on the level of significance.
(b)The LMPTT for testing H, against H, is given by :

. sin ©
Reject Hy if max ‘ d >
J 0% rén + p? - 2pcos O,

C

where c is a constant depending on the level of significance. Since —I—Jr,ﬂ—s_i’;‘%m
are i.1.d under Hy, therefore the value of ¢ can be computed following standard

techniques and numerical integration.

12.7 Change Point Problem in Wrapped Cauchy
Distribution

In what follows we will assume p is known. Suppose ©,,...,0,, are in-
dependent random variables. We are interested to test the hypothesis Hy :
O4,...,0, are identically distributed as WC(0, p) against the alternative Hj :
There exist 7,1 < 7 < n — 1, such that ©y,...,0, are identically distributed
as WC(0, p) and ©,,,...,0, are identically distributed as WC(u, p), e > 0.
We will denote by H), the alternative hypothesis that the change point is at r.

Theorem 32 : (a) The LMP test for Hy against H,, 1s given by :

n sin ©;
Reject Hy 1 : t ‘
ejec ozfi:§11+p2_2pcos@;>c

where c is a constant depending on the level of significance.
(b) The LMPTT for Hy against H, is given by :

118



n

Z sin ¢,
: i1 L+ p? = 2pcos O,
Reject Hy if  Jnax = +

<r<n-1 \/FLT

2 __ sin 6
where 7* = Var (sz_z,pcos e,-)

>c

n

Z sin (‘),‘

: L =31 L+ p* = 2pcos©;

The asymptotic null distribution of max = 18 same
1<r<n—1 vnr

as that of sup Bj(t).

0<i<1

Proof : (a) The log-likelihood of the observations 8,,... 0, is :

Uu;0y,...,8,) = —nln27 + nin(l — p?) — Zln(l +p? - 2pcos b;)

i=1

- Y In(l+p2 - 2pcos(b; — p))

i=r+1]
ot i 2psin(6; — u)
On L5 1+ 0 —2pcos(h; — p)
o¢ z 2psin 6;
+—(0) = 12.9
a,u.( ) i:;rl 1+ p? —2pcosé; (12.9)
Hence the LMP test of H, against H,, is given by :
n sin 6;
Reject H, if >c
fect Ho igl 1+ p? —2pcos ©;
where ¢ is a constant depending on the level of significance.
(b) The LMPTT for H, against H; is given by :
" sin ©;
ject Hy if . >
Reject Hy i Jnax i:rZ+1 [+ 73,0056, > ¢
where ¢ is a constant depending on the level of signiﬁcance._
Now, E (Fg—ﬂ%’%m = 0 and the random variables WS_‘“T'?C';@; are i.i.d
under H,. ﬁence by using the Functional Central Limit Theorem, and the
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fact that sup is a continuous function on D[0,1], we find the asymptotic null

n

Z sin ©;
e 14+ p?—2pcosO;
distribution of max = P P is same as that of sup Bg(t)

< <y f
1<r<n—1 \/ﬁr 0<t<1

12.8 Outlier Problem in Wrapped Stable Fam-
ily of Distributions

We will denote by WS(y, p, a) the wrapped stable distribution (Mardia, 1972)
having p.d.f.

1 X e
fBippa) = —|1+2> pF cosk(d— )|,
2m k=1

0<0<2m0< pu<2m,p>0,0<a<2 (12.10)

In this section we discuss the outlier problem for the Wrapped Stable dis-
tribution. Let ©4,...,0, be independent random variables. We want to
test the hypothesis Hy : ©,....,0, are identically distributed as WS(0, p, a)
against the alternative Hy : There exist r,1 < r < n, such that ©,...,
0,-1,0,41,...,0, are identically distributed as WS(0, p,a) and O, is dis-
tributed as WS(g, p,a), 0 > 0. We assume both p and a to be known and
we will denote by H, the alternative hypothesis that the r** observation is
an outlier.

Theorem 33 : (a) The LMP test for testing Hy against H, 1s :

> kp* sink ©,
Reject Hy if —=L >c

1+2Zpkacosk 0,
k=1

where ¢ is a constant depending on the level of significance.
(b) The LMPTT for testing Hy against H, 1s :
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Z kp*“ sink ©,
k=1
o a
1+22p“ cosk O,
k=1
where ¢ is a constant depending on the level of significance.

Reject Hy if max >c

1<r<n

Proof: (a) The log-likelihood of the observations 61,...,0, is

Up:by,...,6,) = —nln27r+Zln[l+22 pkacoskﬁ,-J
i#r k=1

+1In [1 +2) P cos k(6, — ,u)]

k=1

Zwk kasink&,—
o k}::l p (6 — p)
On 1+2)" p* cosk(b, — p)
k=1
o0 2 Z kpka sink 6,
on

= kst (12.11)
u=0 1 +2Z P cosk 6,
k=1

Hence the LMP test for testing H, against H, is :

Z kpka sink ©,
Reject Hy if —f=L _ > ¢
142 Z pka cos kO,
k=1
where c is a constant depending on the level of significance.
(b) The LMPTT test for testing H, against H; is:

> kp*'sink ©,
k=1

1+2Z p* cosk O,

k=1

Reject Hy if max

>c
1<r<n
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where cis a constant depending on the level of significance. Since the random
variables

o0

Z kpka sink O,

k=1

142 Z P cosk O,
k=1

are i.i.d under Hy the value of ¢ can be found using standard techniques and
numerical integration.

12.9 Change Point Problem in Wrapped Sta-
ble Family of Distributions

In what follows we assume p and a to be known. Let ©,,...,0, be inde-
pendent random variables. We are interested to test the hypothesis Hy :
O1,...,0, are identically distributed as WS(0, p, a) against the alternative
H, : There exist 71,1 < r < n—1,0,...,0, are identically distributed as
WS(0, p,a) and ©,41,...,0, are identically distributed as WS(u, p,a), s > 0.
Let H,, denote the alternative hypothesis that the change point is at r.

3" kp* sin kO,
Define T, = —2=1_ , (12.12)
142 Z P cos k©;
k=1
Let ¢ = E(T;) and
7 = Var(T}) (12.13)

Theorem 34 : (a) The LMP test for Hy against Hy, is given by :

Reject Hy if Z T, >c

t=r+41
where ¢ is a constant depending on the level of significance.
(b) The LMPTT for Hy against Hy is given by :
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Reject H, zf Jnax. Z T: >c

1—r+1
where ¢ is a constant depending on the level of significance. The asymptotic
null distribution of
Z T, — (n—r)

i=r+1

max
1<r<n—1 \/FLT

18 same as that of sup By (t).
0<t<1

Proof : (a) The log-likelihood of the observations 6, ..., 6, is

(p;b1,...,0,) = —nln2r+> In [1 +2Y p* cos kﬁ,}
i=1 k=1
+ > In [1 +2Y p* cosk(b; — u)jl
i=r+1 k=1

Py L 2 kM sink(6; — p)

k=1
o - Z 2 e
142y P~ cos k(8; — p)
k=1

25" p* sinké;

g£ I =1 (12.14)
Hlamo =t 1 4 950 o4 cos ke,

k=1
Hence the LMP test for Hy against H, is given by :

Reject Hy if Z T; >c
i=r+1
where ¢ is a constant depending on the level of significance.
(b) The LMPTT for Hy against H), is given by :

Z T, — (n—r)¢
Reject H, if | nax izt >c

<r<n-—1 \/;1,-7'
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where ¢ is a constant depending on the level of significance. Since the ran-
dom variables T}’s are i.i.d under Hy therefore, by Functional Central Limit
Theorem, and the fact that sup is a continuous function on D, the asymptotic
null distribution of

> T (n—rg

.
max =rF

1<r<n—1 \/ﬁ'r

Is same as that of sup Bj(z).
0<t<1

12.10  An Unified approach for NRTT con-
struction

In this section we outline a method of computing the NRTT statistic in cases
where it is not possible to compute the effective score for the parameter of
interest and the effective information in a closed form. We illustrate this
technique by applying it in the context of change point problem for Pa-
pakonstantinou’s Skewed Circular distribution but the method is equally
applicable for other distributions as well. Let ©1,...,0, be all indepen-
dent. We are interested to test Hy:0,,....0, are identically distributed as
P(k,v) against the alternative H 1:0y,...,0, are identically distributed as
P(k,v) and ©,,,,...,0, are identically distributed as P(k,v + §) for some
rnl<r<n—1,8 >0. We will denote by Hj, the alternative hypothesis
that the change point is at r. Note that a test of H, against H,, is essentially
a test of Hy : 6 = 0 against Hy, : § > 0. Since k and v are unknown these are
the nuisance parameters for this problem and 4 is the parameter of interest.
We follow the notations of Hall and Mathiason (1990). The general theory
of NR-test tells us that the NR-test of H, against Hj, is given by :

: LS5,
Reject Hy if = > y?
B; ‘
where S} is the estimated effective score for parameter § and B} is the esti-
mated effective information. Unlike the case of Circular normal distribution
it is not possible to compute S; and B; by substituting the MLE’s of the
nuisance parameters into the expressions of S; and B;. This is because of

124



the fact that it is not possible to compute S; and Bj in a closed form.

Note for this problem, under H, (i.e. putting = 0) we have

s — 1 i kcos(©; + vsin ©;).sin O,
> 7 v £5 1+ ksin(©; +vsin 6;)

s - 1 ikcos(@;-l—usin@ﬂsin@;
T Ui )¢ 1 + ksin(©; + vsin ©;)

i=1

and

¢ _ L i sin(©; + v sin ©;)
" VA l& 1+ksin(O; + vsin©;)

Now we note that we can write

=1

n—r 1 2": k cos(©; + vsin ©;) sin ©;

Ss = . . :
’ Vi n—r 4 1+ ksin(6; + vsin ©;)

We can then get Ss5 by substituting consistent estimators of k and v in
the expression of S5. Similarly we can get S, and S,. Now to estimate the
elements of the matrix B we need to compute the variances and covariances

of S5,5,, and S,.
Let
k cos(©; + v sin ©;) sin ©;
1 + ksin(©; + vsin ©;)
Var(Ss) = (1 - C)Var (Zn) (since Zjs are i.i.d under H)
n

Z;

This can be consistently estimated by the corresponding sample variance.
Similarly the covariances can be consistently estimated using the sample -
values, under H,. Now since S; and Bj are continuous functions of Ss,S,, Sk
and the elements of the matrix B we can use estimates of these quantities to
yield consistent estimates of S; and Bj. An NR-test of H, against H;, can be
carried out based on these. An NRTT statistics is constructed by taking the
maximum of the (n — 1) NR-test statistics. An NRTT is carried out using this
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NRTT statistic. Alternatively, we may use the average empirical information
matrix (Hall & Mathiason (1990) as an estimate of B. However unlike their
method our new approach has the advantage that it continues to hold even
in cases where the second order partial derivatives are difficult to obtain or
may even not exist.

12.11 Robustness

In this section we study the behaviour of the LMPTT-statistic derived in sec-
tion 5.3 with the circular normal distribution as the underlying distribution.
We use simulations to study the variation in the level of significance of the
test when the observations come from the symmetric wrapped stable family
WS(u, p, a) of distributions. Note that this family of distributions is indexed
by the parameter ‘a’. We consider « = 0.4,0.8,1.0,1.2,1.6. Note that for
a = 1.0 we get the wrapped Cauchy distribution and for a = 2.0 we get the
wrapped normal distribution. We take g = 0,5 = 1 for the circular nor-
mal distribution and use the facts that for WS(0, p,a), E(cos ©) = p for any
a,0 < a < 2 and for circular normal distribution E(cos ©) = A(x) to find a
matching value of p. We equate A(x) with p and solve to get the matching
value of p. This yields p = 0.446. The results given in the following Table 1
below are based on 5000 simulations.

Table 1 : Robustness of the level of significance

Actual level when | Actual level when

nominal level is 5% | nominal level is 1%
Circular Normal .050 | .010
Wrapped Normal 075 | .018
Wrapped Cauchy 076 | .019
WS (0, .446, 4) .080 | .020
WS (0, .446, .8) 081 | .022
WS (0, .446, 1.2) 080 | .022
WS (0, .446, 1.6) .081 | .021

From the above table we see that though the actual levels exceed the nominal
level the amount of exceedance is not very high. Thus this test may be
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used with reasonable safety even in situations when we are not sure about
the underlying distribution but can restrict to the family of usual unimodal
symmetric circular distributions.

Remark 19 :  Such studies may be carried out for other test statistics
discussed in this thesis. This particular test statistic is chosen because of its
simplicity which makes it particularly attractive for use in analysing real-life
data sets.

12.12  Scope of Further Research

In this section we indicate scope for further research.

(a) One possible generalization is the outlier and change point problems for
the case of spherical data. Suppose the data comes from the Langevin dis-
tribution (Mardia, 1972) which is a popular parametric distribution used to
model spherical data. It is possible to adapt some of the techniques developed
for outlier and change point problems for the circular normal distribution to
the outlier and change point problem for the mean vector of the Langevin
distribution.

(b) Another possible generalization is the outlier and change point problems
in multivariate circular distributions i.e. where the marginals of a p-variate
distribution are all circular. Here also a LMP type approach may be used
using a generalisation of it to the multiparameter case (see e.g. SenGupta &

Vermier (1986))

(c) In this thesis we have considered outlier and change point problems in the
context of directional data with independent observations. These problems
may be studied when the observations are dependent.

(d) It is of interest to predict the change point based on the observations
gathered upto a time point. This is of particular interest in studies of relating
to movement of cyclones. It is of great practical importance to know when
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does the cyclone changes its path. This is an interesting and challenging
practical problem which requires prediction of the change point.
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Chapter 13

COMPUTER PROGRAMS

13.1 Introduction

In this chapter we provide eight programs which would be useful in imple-
menting some of the tests discussed in this thesis. Some of these programs

are written in VAX-FORTRAN and some others are written in QBASIC.

13.2 Programs

L. QBASIC Program for finding the cut-off points for the NR-test statistic
for the change point problem for small samples

DECLARE SUB vmsran (cdf())

DECLARE SUB vmsran2 (n, cdf())

DECLARE FUNCTION akappa (k AS DOUBLE)

DECLARE FUNCTION apkappa (k AS DOUBLE, a AS DOUBLE)
DECLARE FUNCTION atanf (s AS DOUBLE, ¢ AS DOUBLE)
DECLARE FUNCTION kapest (r AS DOUBLE)

DIM theta(500) AS DOUBLE

DIM cdf(5000)

pi# = 3.141592654#

INPUT "the sample size", n

INPUT "the random number seed", trn
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RANDOMIZE trn
CALL vmsran(cdf())
OPEN "C:\RES\scalpha.out" FOR OUTPUT AS #2
OPEN "C:\RES\stemp.dat' FOR OUTPUT AS #3
OPEN "c:\res\simcalph.dat" FOR OUTPUT AS #4
calr = 0
calsup# = -1
FOR rep 1 TO 5000
CALL vmsran2(n, cdf())
OPEN "C:\RES\scalpha.dat'" FOR INPUT AS #1
PRINT #2, rep
FOR 1 =1 TOn

INPUT #1, theta(i)

theta(i) = theta(i) * pi# / 180
NEXT i

si#t = 0
cot = O
FOR 1 =1 T0n
si# = si# + SIN(theta(i))
co# = co#t + COS(theta(i))
NEXT 1

PRINT #3, "si", si#t, "co'", co#
muest# = atanf(si#, co#)
PRINT #3, '"muest", muest#

Ri# = SQR(si# ~ 2 + co# ~ 2)
PRINT #3, Ri#

rbar# = Ri# / n

PRINT #3, "Ri", Ri#

kest# = kapest(rbar#)
PRINT #3, "Kapest", kest#

bmm# = kest# * rbar#
PRINT #3, "bmm", bmm#
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ak# = akappa(kest#)

akl# = apkappa(kest#, ak#)
bkk# = aki#

PRINT #3, '"bkk'", bkk#

bmk# = 0
PRINT #3, "bmk", bmk#

smu#f = 0
PRINT #3, "smu", smu#

skap# = 0
PRINT #3, "skap", skap#

FORr =1 TO n - 1

PRINT #3, r
sir# = 0
cor#t = 0

FORi=r +1T0n
sir# = sir# + SIN(theta(i))
cor# = cor# + COS(theta(i))
NEXT 1i

PRINT #3, "si_r", sir#, "co_r", cor#
muestr# = atanf(sir#, cor#t)

PRINT #3, "muest_r", muestr#

R2# = SQR(sir# ~ 2 + cortt ~ 2)
PRINT #3, '"R2", R2#

bdd# = kest# * (Ri# / n) * ((n - r) / n)
PRINT #3, "bdd", bdd#

bmd# = bdd#

131



PRINT #3, "bmd", bmd#

bdk# = 0
PRINT #3, "bdk", bdk#

sdel# = (1 / SQR(n)) * (kest# * R2# * SIN(muestr# - muest#))
PRINT #3, "sdel", sdel#

sdeleff# = sdel#t
bdeff# = bdd# - ((bmd# ~ 2) / bmm#t)

PRINT #3, ”Sdeleff”, Sdeleff#, "bdeff", bdeff#
calstat# = (sdeleff# -~ 2) / bdeff#

PRINT #3, "calpha', calstat#

PRINT #2, r, calstat#

IF calstat# > calsup# THEN
calsup# = calstat#
calr = r

END IF

NEXT r

CLOSE (1)

PRINT #4, calr, calsup#

calr = 0

calsup# = -1

PRINT rep

NEXT rep

END

FUNCTION akappa (k#)
IF k# > 1.55 THEN
t = 1= (1/(2%k#)) - (1/ (8% (k#°2)))- (1/(8*%(k#°3)))
akappa = 1- (1/(2*k#))- (1/(8*(kx#°2)))- (1/(8*(k#°3)))
ELSE
t o= (k#/2) * (1-((k#°2)/8) + ((k#°4)/48))
akappa = (k#/2)*(1—((k#“2)/8)+((k#“4)/48))
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END IF
END FUNCTION

FUNCTION apkappa (k#, a#)
apkappa = 1 - (a# "~ 2) - (a# / k#)
END FUNCTION

FUNCTION atanf (s#, c#)
pi# = 3.141592654#

IF s# >= 0 AND c# > 0 THEN
atanf = ATN(s# / c#)
ELSE
IF s# >=
atanf
ELSE
IF s# < 0 AND c# > 0 THEN
atanf = (2 * pi#) + ATN(s# / c#)
ELSE
IF s# < 0 AND c# < O THEN
atanf = pi# + ATN(s# / c#)
ELSE
IF s# > 0 AND c = 0 THEN
atanf = pi# / 2
ELSE
IF s# < 0 AND c# = 0 THEN
atanf = 3 * pi# / 2
END IF
END IF
END IF
END IF
END IF
END IF
END FUNCTION

(@]

AND c# < 0 THEN
pi# + ATN(s# / c#)

FUNCTION kapest (rbar#)
IF rbar# < .53 THEN
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kapest = (2 * rbar#) + (rbar# ~ 3) + (5 * rbar#t ~ 5 / 6)
ELSE
IF rbar# < .85 THEN

kapest = ~.4 + (1.39 * rbar#) + (.43 / (1 - rbar#))
ELSE
kapest = 1 / ((rbar# "~ 3) - (4 * (rbar# " 2)) + (3 * rbar#))
END IF
END IF

END FUNCTION

SUB vmsran (cdf())
pi# = 3.141592654#
inc = 2 * pi# / 1000

kappa = 4
x =0
FOR 1 = 1 TO 1000

X = X + 1inc
y = (1 / (2 * pi#)) * EXP(kappa * C0S(x))
IF i = 1 THEN
cdf(i) = y * inc
END IF
IF 1 > 2 THEN
cdf(i) = cdf(i - 1) + y * inc
END IF
NEXT 1
FOR i = 1 TO 1000
cdf(i) = cdf(i) / <df(1000)
NEXT 1
END SUB

SUB vmsran2 (n, cdf())

OPEN "c:\res\scalpha.dat" FOR QUTPUT AS #1
pi# = 3.141592654#

inc = 2 * pi# / 1000

FOR1i =1 T0n
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(O

t = RND

j =1

WHILE cdf(j) < t
j=3+1

WEND

vran= ((j-1)*inc)+((t-cdf(j-1))/(cdf(j)-cdf(j-1))*inc)
PRINT #1, vran * 180 / pi#

NEXT 1

CLOSE (1)

END SUB

QBASIC program for computing the NRTT statistic for the change
point problem for a given sample

DECLARE FUNCTION akappa (k AS DOUBLE)

DECLARE FUNCTION apkappa (k AS DOUBLE, a AS DOUBLE)
DECLARE FUNCTION atanf (s AS DOUBLE, c AS DOUBLE)
DECLARE FUNCTION kapest (r AS DOUBLE)

DIM theta(500) AS DOUBLE
pi# = 3.141592654#
INPUT n
OPEN "calpha.dat'" FOR INPUT AS #1
OPEN '"calpha.out'" FOR OUTPUT AS #2
OPEN "temp.dat" FOR OUTPUT AS #3
FOR 1 = 1 TO n

INPUT #1, theta(i)

theta(i) = theta(i) * pi# / 180
NEXT 1

si#

1l
o O

co#
FOR 1 =1 TO0O n

si# = si# + SIN(theta(i))
co# = co# + COS(theta(i))
NEXT 1
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PRINT #3, "si", si#, "co'", co#
muest# = atanf(si#, co#t)
PRINT #3, '"muest'", muest#

Ri# = SQR(si# ~ 2 + co#t " 2)
PRINT #3, Ri#

rbar# = Ri#t / n

PRINT #3, "R1", Ri#t

kest# = kapest(rbar#)
PRINT #3, "Kapest'", kesti

bmm# = kest# * rbar#
PRINT #3, "bmm'", bmm#

ak# = akappa(kest#)

ak1l# = apkappa(kest#, ak#)
bkk# = aki#

PRINT #3, "bkk", bkk#

bmk# = 0
PRINT #3, "bmk", bmk#

smu# = 0
PRINT #3, "smu", smu#

skap# = 0
PRINT #3, '"skap", skap#

FORr =1T0n - 1

PRINT #3, r
sir#t = 0
cor#t = 0

FOR i =r + 1 TO0n
sir# = sir# + SIN(theta(i))

136



cor# = cor# + COS(theta(i))
NEXT 1

PRINT #3, "si_r'", sir#, "co_r", cortt
muestr# = atanf(sir#, cor#)

PRINT #3, "muest_r'", muestr#

R2# = SQR(sir# ~ 2 + cor#t =~ 2)
PRINT #3, "R2", R2#

bdd# = (kest# * R2# * COS(muest# - muestr#)) / n
PRINT #3, "bdd'", bdd#

bmd# = bdd#
PRINT #3, 'bmd", bmd#

bdk# = (R2# * SIN(muest# - muestr#)) / n
PRINT #3, "bdk", bdk#

sdel#= (1/SQR(n))*(kest#*R2#*SIN(muestr#t-muest#))
PRINT #3, '"sdel", sdel#

sdeleff# = sdel#
bdeff#= bdd#-((bmd#"~2) /bmm#)-((bdk#"2) /bkk#)

PRINT #3, '"sdeleff'", sdeleff#, "bdeff", bdeffi#
calstat# = (sdeleff# ~ 2) / bdeff#

PRINT #3, 'calpha'", calstat#
PRINT #2, r, calstatt#

NEXT r
END

FUNCTION akappa (k#)
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PRINT k#
IF k# > 1.55 THEN

t = 1-(1/(2%k#))-(1/ (8% (k#°2)))-(1/ (8% (k#°3)))

PRINT t

akappa=1-(1/(2*k#))-(1/(8*(k#°2)))-(1/(8*(k#"3)))

ELSE

t=(k#/2) (1 - ((k#t "2 /8) + ((k# ~ 4) / 48))
PRINT t

akappa = (k# / 2) * (1 - ((k# ~ 2) / 8) + ((x# ~ 4) / 48))
END IF

END FUNCTION

FUNCTION apkappa (k#, a#)
apkappa = 1 - (a#t = 2) - (a# / k#)
END FUNCTION

FUNCTION atanf (s#, c#)
pi# = 3.141592654#

IF s# >= 0 AND c# > 0 THEN
atanf = ATN(s# / c#)
ELSE
IF s# >= 0 AND c# < 0 THEN
atanf = pi# + ATN(s# / c#)
ELSE
IF s# < 0 AND c# > O THEN
atanf = (2 * pi#) + ATN(s# / c#)
ELSE
IF s# < 0 AND c# < 0 THEN
atanf = pi# + ATN(s# / c#)
ELSE
IF s# > 0 AND ¢ = 0 THEN
atanf = pi# / 2
ELSE
IF s# < 0 AND c# = 0 THEN
atanf = 3 * pi# / 2
END IF
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END IF
END IF
END IF
END IF
END IF
END FUNCTION

FUNCTION kapest (rbar#)
IF rbar# < .53 THEN
kapest = (2 * rbar#) + (rbar#t -~ 3) + (56 * rbar#t ~ 5 / 6)
ELSE
IF rbar# < .85 THEN
kapest = -.4 + (1.39 * rbar#) + (.43 / (1 - rbar#))
ELSE
kapest = 1 / ((rbar# ~ 3) - (4 * (rbar# ~ 2)) + (3 * rbar#))
END IF
END IF
END FUNCTION

3. VAX-FORTRAN program for computing the LRT-statistic for the change

point problem for a given data set

DIMENSION A(100)
write(*,*)'Disp. Par. ?’
read(*,*)c
open(unit=1,file=’data.dat’,status=’0ld’)
write(*,*)’'No. of observations : '’
read (*,*)nr
do i=1,nr
read(1,*)a(i)
a(i)=a(i)*3.1416/180
enddo
CALL ENULL(A,NR,XMUON)
XMIN=1
DO J=1,NR-1
CALL EALT(A,NR,J,XMUOA,XMU1A)
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CALL XLAM(A,NR,C,J,XMUON,XMUOA,XMUlA,XLR)
IF(XLR.LT.XMIN) THEN
XMIN=XLR
CPT=J
write(*,*)cpt
ENDIF
ENDDO
XRT=XMIN
WRITE(*,*) 'LRT =’ ,XRT,’ cpt =’,cpt
STOP
END

SUBROUTINE ENULL(A,NR,XMUON)
DIMENSION A(100)
SI=0
C0=0
DO I=1,NR
SI = SI + SIN(A(I))
CO = CO + COS(A(I))
ENDDO
XMUON = ATAN2(SI,CO0)
RETURN
END

SUBROUTINE EALT(A,NR,J,XMUOA,XMU1A)
DIMENSION A(100)

SI0=0
C00=0
DC I=1,]
SI0 = SIO0 + SINCA(I))
C00 = CO0 + COS(A(I))
ENDDO
XMUOA = ATAN2(SIO0,C00)
SI1=0
C01=0
DO I=J+1,NR

SI1 = SI1 + SIN(A(I))
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CO01 = CO1 + COS(A(I))
ENDDO
XMU1A = ATAN2(SI1,C01)
RETURN
END

SUBROUTINE XLAM(A,NR,C,J,XMUON,XMUOA,XMU1A,XLR)
DIMENSION A(100)
CON=0
COA0=0
COA1=0
DO I=1,NR
CON = CON + COS(A(I)-XMUON)
ENDDO
DO I=1,J
COAO = COAO + COS(A(I)-XMUOA)
ENDDO
DO I=J+1,NR
COA1 = COA1l + COS(A(I)-XMU1A)
ENDDO
C1=CON - (COAO+COA1)
XLR = EXP(Cx*C1)
RETURN
END

4. VAX-FORTRAN program for computing the cut-off points of the LRT
statistic for the change point problem for the mean direction

DIMENSION A(100),XR(5000)

WRITE(*,*) 'INPUT KAPPA’

READ(*,*) C

C1=C

WRITE(*,*)’INPUT N

READ(*,*) NR

DO I=1,5000
WRITE(*,*)'I=", I
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C=C1
CALL RNVMS(NR,C,A)
CALL ENULL(A,NR,XMUON)
CALL KAPEST(A,NR,SKAPPAA)
C=SKAPPAA
XMIN=1
DO J=1,NR-1
CALL EALT(A,NR,J,XMUOA,XMU1A)
CALL XLAM(A,NR,C,J,XMUON,XMUOA,XMU1A,XLR)
IF(XLR.LT.XMIN) THEN
XMIN=XLR
CPT=J
ENDIF
ENDDO
XRT=XMIN
XR(I)=XRT
WRITE(*,*)'XRT ’,XRT
ENDDO
CALL SORT(XR)
STOP
END

SUBROUTINE ENULL(A,NR,XMUON)
DIMENSION A(100) ‘
SI=0
C0=0
DO I=1,NR
SI
Co
ENDDQ
XMUON = ATAN2(SI,C0)
RETURN
END

SI + SIN(CA(I))
CO + COS(A(I))

SUBROUTINE EALT(A,NR,J,XMUOA,XMU1A)
DIMENSION A(100)
SI0=0
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C00=0
DO I=1,J
SI0 = SIO + SIN(A(I))
C00 = C00 + COS(A(I))
ENDDO
XMUOA = ATAN2(SIO,C00)
SI1=0
C01=0
DO I=J+1,NR
SI1 = SI1 + SIN(A(I))
CO01 = CO1 + COS(A(I))
ENDDO
XMU1A = ATAN2(SI1,C01)
RETURN
END

SUBROUTINE XLAM(A,NR,C,J,XMUON,XMUOA,XMUlA,XLR)
DIMENSION A(100)
CON=0
COA0=0
COA1=0
DO I=1,NR
CON = CON + COS(A(I)-XMUON)
ENDDO
DO I=1,J]
COAO = COAO + COS(A(I)~XMUOA)
ENDDO
DO I=J+1,NR
COA1 = COAl1 + COS(A(I)-XMU1A)
ENDDO
C1=CON - (CDA0+CODA1)
XLR = EXP(CxC1)
RETURN
END

SUBROUTINE SORT(XR)
DIMENSION XR(5000)
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OPEN(UNIT=2,STATUS="NEW’ ,FILE=’CPTQ.DAT’)
DO I=1,5000
DO J=I+1,5000
IF (XR(I).GT.XR(J)) THEN
TEMP=XR(I)
XR(I)=XR(J)
XR(J)=TEMP
ENDIF
ENDDO
ENDDO
DO I=1,100
WRITE(2,*)I,XR(I*50)
ENDDO
RETURN
END

SUBROUTINE KAPEST(A, NR, SKAPPAA)
REAL MUN,MUA,MUAO,LAR,LAM,LRT,SA, CA
REAL S18AEF
REAL S18AFF
double precision sn,sd,slrn,slrd,slrt,q2,93,94,95,96,97,q98
DOUBLE PRECISION CN,RN
DIMENSION A(200),LAR(20),SA(200),CA(200) ,MUA(200)
I=0
J=0
IFAIL=1
IFI=2
81=0
co=0
DO 10 J=1,NR
Si = 8i + SINCA(J))
Co = Co + COS(A(J))
10 CONTINUE
C ~ COMPUTING THE ESTIMATES
RSQ=Co*Co+Si*Si
RN=(RSQ**0.5) /NR
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CALL SOLVE(RN,SKAPPAA,ifail)
WRITE(*,*)’r =’ RN
WRITE(*,*) 'KAPPA=’ SKAPPAA
111 RETURN
END

SUBROUTINE SOLVE(SKAP,SKAPPA,ifail)

DOUBLE PRECISION SN,SD,GS,SKAP,ERR

REAL S18AEF

REAL S18AFF

IFAIL=1

IP=0

IN=0

T=0

10 ifail=1

SN = S18AFF(T,IFAIL)

if (ifail.ne.0) then
go to 50

endif

SD = S18AEF(T,IFAIL)

if (ifail.ne.0) then
go to 50

endif

GS=SN/SD

ERR = GS-SKAP

IF (ERR.LT.0) THEN
IN=1
TN=T

ENDIF

IF (ERR.GT.0) THEN
IP=1
TP=T

ENDIF

IF (ERR.EQ.0) THEN
GO TO 30

ENDIF

IPN = IP*IN



20

30

40

IF (IPN.EQ.1) THEN
TMID = (TP + TN)/2
ELSE
T=T+0.1
GO TO 10
ENDIF
ifail=1
SN = S18AFF(TMID,IFAIL)
if (ifail.ne.0) then
go to 50
endif
1ifail=1
SD = S18AEF(TMID,IFAIL)
if (ifail.ne.0) then
go to 50
endif
GS=SN/SD
ERR = GS-SKAP
IF (ERR.GT.0) THEN
TP=TMID
ENDIF
IF (ERR.LT.0) THEN
TN = TMID
ENDIF
IF (ERR.EQ.0) THEN
GO TO 40
ENDIF
TMID = (TP + TN)/2
EABS = ABS(ERR)
IF (EABS.LT.0.0001) THEN
GO TO 40
ELSE
GO TO 20
ENDIF
SKAPPA = T
GO TO 50
SKAPPA = TMID
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50 RETURN
END

5. VAX-FORTRAN program for obtaining the cut-off points of the LMPTT
statistic for the change point problem for the mean direction

DIMENSION A(100),XR(5000)
READ(*,*) C
WRITE(*,*)’INPUT N °
READ(*,*) NR
DO I=1,5000
CALL RNVMS(NR,C,A)
XMAX = (-1)*NR - 1
DO J = 1, (NR-1)
CALL MEAN(A,J,XMUON)
DO K = 1, NR
A(K) = A(K) - XMUON
IF (A(K).LT.0) THEN
A(K) = A(K) + 6.2832
ENDIF
ENDDO
XMPS = 0
T = J+1
DO L = T,NR
XMPS = XMPS + SIN(A(L))
ENDDO
IF (XMPS.GT.XMAX) THEN
XMAX = XMPS
ENDIF
ENDDO
XR(I) = XMAX/nr
WRITE(*,*)’LMP ’,I, XR(I)
ENDDO
CALL SORT(XR)
STOP
END
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SUBROUTINE MEAN(A,J,XMUON)

DIMENSION A(100)

SI=0

C0=0

DO I=1,J
SI
co

ENDDO

XMUON = ATAN2(SI,CO)

RETURN

END

il

SI + SINCA(I))
Cco + C0s(A(I))

[}

SUBROUTINE SORT(XR)
DIMENSION XR(5000)
OPEN (UNIT=2,STATUS='NEW’ ,FILE=’LMPQ34.DAT’)
DO I=1,5000
DO J=I+1,5000
IF (XR(I).GT.XR(J)) THEN
TEMP=XR(I)
XR(I)=XR(J)
XR(J)=TEMP
ENDIF
ENDDO
ENDDO
DO I=1,100
WRITE(2,*)I,XR(I*50)
ENDDO
RETURN
END

6. VAX-FORTRAN program to compute the LMPTT statistic for change
point problem

DIMENSION A(100),B(100)
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OPEN(UNIT=1,STATUS=’0LD’ ,FILE="DATA.DAT’)
WRITE (*,*) ' INPUT N °’
READ(*,%*) NR
DO I = 1,NR
READ(1,*) B(I)
A(I) = B(I)*3.1416/180
ENDDO
XMAX = (-1)*NR - 1
DO J =1, (NR-1)
CALL MEAN(A,J,XMUON)
DO K = 1, NR
A(K) = A(K) - XMUON
IF (A(K).LT.0) THEN
A(K) = A(K) + 6.2832
ENDIF
ENDDO
XMPS = 0
T = J+1
DO L = T,NR
XMPS = XMPS + SIN(A(L))
ENDDO
IF (XMPS.GT.XMAX) THEN
XMAX = XMPS
CPT = J
ENDIF
ENDDO
WRITE(*,%) LMP ’, XMAX
WRITE(*,*) 'CHANGE POINT = ’, CPT
STOP
END

SUBROUTINE MEAN(A,J,XMUON)
DIMENSION A(100)
SI=0
C0=0
DO I=1,J
SI = SI + SIN(A(D))
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CO = CO + COS(A(I))
ENDDO
XMUON = ATAN2(SI,CO0)
RETURN
END

7. VAX-FORTRAN program for computing the LRT statistic for outlier
problem

DIMENSION A(100),XR(5000)
OPEN (UNIT=1,FILE=’data.dat’,STATUS=’0LD’)
WRITE(*,*)’INPUT C °’
READ(*,%) C
WRITE(*,*) ' INPUT N ’
READ(*,*) NR
DO I=1,NR
READ(1,*)A(I)
a(i)=(a(i)*3.1416)/180
ENDDO
CALL ENULL(A,NR,XMUON)
Write(*,*)’null estimate mu0’,xmuln
AMIN=1
DO J=1,NR-1
CALL EALT(A,NR,J,XMUOA,XMU1A)
Write(*,*)’alt est of mu0, mul’,xmula,xmula
CALL XLAM(A,NR,C,J,XMUON,XMUOA,XMU1A,XLR)
write(*,*)’j=’,3,’x1lr=’ ,x1r
IF(XLR.LT.XMIN) THEN
XMIN=XLR
SPT=]
write(*,*)’spt=’,spt
ENDIF
ENDDO
XRT=XMIN
WRITE(*,*)’SPT’,SPT
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WRITE(*,*) ’XRT ' ,XRT
STOP
END

SUBROUTINE ENULL{A,NR,XMUON)
DIMENSION A(100)
SI=0
C0=0
DO I=1,NR
SI
co
ENDDO
XMUON = ATAN2(SI,C0)
RETURN
END

SI + SINCA(D))
CO + cos(a(1))

SUBROUTINE EALT(A,NR,J,XMUOA,XMU1A)
DIMENSION A(100)
S10=0
C00=0
DO I=1,NR
SI0 = SIO + SIN(A(I))
C00 = C0O0 + COS(A(I))
ENDDO
SI0=SI0 - SINCA(J))
C00=C00 - COS(A(J))
XMUOA = ATAN2(SIO0,C00)
XMU1A = A(J)
RETURN
END

SUBROUTINE XLAM(A,NR,C,J,XMUON,XMUOA,XMU1A,XLR)
DIMENSION A(100)

CON=0

COA0=0

CO0A1=0

DO I=1,NR
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CON = CON + COS(A(I)-XMUON)
ENDDO
DO I=1,NR

COAO = COAO + COS(A(I)-XMUOA)
ENDDO
COAO=COAO0 - COS(A(J)-XMUOA)
COA1=C0S(A(J)-XMU1A)
C1=CON - (COAO+CODA1)
XLR = EXP(CxC1)
RETURN
END

8. VAX-FORTRAN program for computing the cut-off points of the LRT.
statistic for outlier problem

DIMENSION A(100),XR(5000)
C=2.08
WRITE(*,%) ’INPUT N '’
READ(*,*) NR
DO I=1,5000
CALL RNVMS(NR,C,A)
CALL ENULL(A,NR,XMUON)
IMIN=1
DO J=1,NR-1
CALL EALT(A,NR,J,XMUOA,XMU1A)
CALL XLAM(A,NR,C,J,XMUON,XMUOA,XMU1A,XLR)
IF(XLR.LT.XMIN) THEN
XMIN=XLR
SPT=J]
ENDIF
ENDDO
XRT=XMIN
XR(I)=XRT
WRITE(*,*) ’XRT ’,XRT
ENDDO
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CALL SORT(XR)
STOP
END

SUBROUTINE ENULL(A,NR,XMUON)
DIMENSION A(100)
SI=0
C0=0
DO I=1,NR
SI
co
ENDDO
XMUON = ATAN2(SI,CO)
RETURN
END

1}

ST + SINCA(I))
CO + COS(A(I))

SUBROUTINE EALT(A,NR,J,XMUOA,XMU1A)
DIMENSION A(100)
S10=0
C00=0
DO I=1,NR
SI0 = SIO + SINCA(I))
C00 = CO00 + COS(A(I))
ENDDO
SI0=SI0 - SIN(A(J))
C00=C00 - COS(A(J))
XMUOA = ATAN2(SI0,C00)
XMU1A = A(J)
RETURN
END

SUBROUTINE XLAM(A,NR,C,J,XMUON,XMUOA,XMU1A,XLR)
DIMENSION A(100)

CON=0

COA0=0

COA1=0

DO I=1,NR



CON = CON + COS(A(I)-XMUON)
ENDDO
DO I=1,NR ,
COAO = COAO + COS(A(I)-XMUOA)
ENDDO
COA0=COAO - COS(A(J)~XMUOA)
COA1=C0S(A(J)-XMU1A)
C1=CON - (COAO0+COA1)
XLR = EXP(C*C1)
RETURN
END

SUBROUTINE SORT(XR)
DIMENSION XR(5000)
OPEN(UNIT=2,STATUS='NEW’ ,FILE=’SPTQ.DAT’)
DO I=1,5000
DO J=I+1,5000
IF (XR(I).GT.XR(J)) THEN
TEMP=XR(I)
XR(I)=XR(J)
XR(J)=TEMP
ENDIF
ENDDO
ENDDO
DO I=1,100
WRITE(2,*)I,XR(I*50)
ENDDO
RETURN
END
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Chapter 14

TABLES

TABLE 1

CUT-OFF POINTS OF THE LRT
FOR THE OUTLIER PROBLEM
(o = .05, various k)
kK n=10 n=20 n=230
0.5 0.3680 0.3679 0.3679
1.0 0.1357 0.1354 0.1354
1.5 0.0504 0.0499 0.0498
2.0 0.0199 0.0187 0.0185
4.0 0.0139 0.0062 0.0034
10.0 0.0210 0.0102 0.0064
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TABLE 2

PERCENTILES OF THE NULL DISTRIBUTION
OF THE LRT FOR THE OUTLIER PROBLEM

(5=1)
PERCENTILES n=10 n=20 n=30
1 0.1353 0.1353 0.1353
2 0.1354 0.1353 0.1353
) 0.1357 0.1354 0.1354
10 0.1367 0.1356 0.1354
25 0.1441 0.1371 0.1362
o0 0.1786 0.1448 0.1398
75 0.2638 0.1707 0.1527
90 0.3884 0.2224 0.1774
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TABLE 3

POWER OF THE LRT
FOR THE OUTLIER PROBLEM

(o =.05,k=1)

A(in degrees) n=10 n=20 n=30 n=100
20 0.056 0.055 0.055 0.062
40 0.061 0.058 0.057 0.077
60 0.062 0.059 0.059 0.084
80 0.063 0.057 0.059 0.097
100 0.065 0.081 0.055 0.091
120 0.074 0.086 0.058 0.108
140 0.087 0.090 0.059 0.114
160 0.085 0.089 0.057 0.119
180 0.088 0.095 0.065 0.133

TABLE 4

VARIATION IN THE POWER OF THE LRT WITH «
FOR THE OUTLIER PROBLEM

(a = .05,n = 10)

A(in degrees) k=1 k=2 k=4 k=6 k=8 k=10
15 0.058 0.050 0.057 0.058 0.060 0.070
30 0.056 0.049 0.062 0.085 0.107 0.141
60 0.060 0.062 0.165 0.307 0.455 0.619
90 0.063 0.0908 0.437 0.727 0.891 0.964
120 0.074 0.146 0.776 0.956 0.992 1.000
150 0.077 0.240 0.947 0.997 1.000 1.000
180 0.082 0.293 0.986 1.000 1.000 1.000
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TABLE 5

5% CUT-OFF VALUES OF THE LRT FOR
THE CHANGE POINT PROBLEM FOR
DIFFERENT VALUES OF &

K n=10 n=20 n=230
0.5 0.1216 0.0559 0.0316
1.0 0.0335 0.0187 0.0152
1.5 0.0253 0.0149 0.0130
2.0 0.0214 0.0158 0.0158
4.0 0.0233 0.0167 0.0127
10.0 0.0272 0.0191 0.0150

TABLE 6

PERCENTILES OF THE NULL DISTRIBUTION
OF LRT FOR THE CHANGE POINT PROBLEM

(rk=1)
Percentiles n=10 n=20 n=30
1 0.0114 0.0034 0.0032
2 0.0181 0.0074 0.0064
5 0.0335 0.0187 0.0152
10 0.0600 0.0351 0.0270
25 0.1384 0.0962 0.0751
50 0.2498 0.1838 0.1628
75 0.4419 0.3348 0.2969
90 0.6193 0.4967 0.4503
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TABLE 7

POWER OF THE LRT FOR THE CHANGE POINT PROBLEM
(v = .05, k = 1, Change Point at 5)
A(in degrees) n=10 n=20 n=30 n=50

10 0.051 0.053 0.085  0.057
20 0051 0.054 0.056 0.089
30 0.055 0.067 0.070 0.126
40 0.069 0.090 0.087 0.194
50 0.088 0.117 0.118 0.325
60 0.104 0.139 0.146  0.432
70 0.112  0.187 0.204  0.580
80 0.151  0.250  0.251  0.709
90 0.165 0.306 0.313 0.791
100 0.204 0364 0.391 0.893
110 0.222 0443 0.460 0.936
120 0.260 0.515  0.509  0.972
130 0.257 0562  0.583  0.986
140 0.308 0.605 0.634  0.987
150 0314 0.640 0.684 0.995
160 0329 0.694 0.686  0.996
170 0323 0702 0.718  0.997
180 0348 0.715 0.725  0.999
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TABLE 8

VARIATION OF THE POWER OF THE LRT
WITH THE LOCATION OF THE CHANGE POINT

a=.05x=1,n=20

A(in degrees) Change Point at
) 9 13 17
10 0.053 0.050 0.051 0.050
20 0.054 0.062 0.059 0.049
30 0.067 0.084 0.081 0.057
40 0.090 0.109 0.103 0.071
30 0.117 0.149 0.142 0.078
60 0.139 0.202 0.183 0.107
70 0.187 0.267 0.241 0.118
80 0.250 0.347 0.310 0.136
90 0.306 0.429 0.393 0.175
100 0.364 0.512 0.463 0.220
110 0.443 0.612 0.546 0.249
120 0.515 0.673 0.615 0.293
130 0.562 0.737 0.687 0.342
140 0.605 0.793 0.741 0.350
150 0.640 0.833 0.787 0.400
160 0.694 0.855 0.812 0.412
170 0.702 0.870 0.828 0.439
180 0.715 0.872 0.836 0.446
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TABLE 9
VARIATION OF THE POWER OF THE LRT
WITH SAMPLE SIZE
o = .05, x = 1, Change Point at 20
A(in degrees)
n 45 90 135 180
30 0.156 0.553 0.866 0.953
40 0.193 0.829 0.979 0.998
50 0.265 0.832 0.989 0.998

75 0.286 0.879 0.995 0.998

TABLE 10

5% CUT-OFF VALUES OF THE NRTT FOR
DIFFERENT VALUES OF « AND n

x n=5 10 15 20 25 30 40 50 75 100

05 581 641 694 7.02 7.44 7.72 7.81 8.05 8.58 8.64
1.0 565 6.53 690 7.0 7.36 7.63 7.82 818 8.44 8.45
15 553 6.48 7.01 7.24 735 765 814 813 8.69 8.85
20 528 6.46 6.85 7.6 7.49 7.89 830 830 870 8.84
40 478 6.35 696 7.24 751 7.82 7.99 811 8.64 8.74
10.0 460 621 695 7.26 7.46 7.81 819 843 9.01 9.41
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TABLE 11

POWER OF THE NRTT FOR
a =05 k=1

CHANGE POINT AT 5.

A(in degrees) n=10 n=20 n=30
10 0.048 0.103 0.154
20 0.056 0.124 0.181
30 0.059 0.133 0.201
40 0.078 0.173 0.267
50 0.095 0.210 0.321
60 0.113 0.265 0.401
70 0.131 0.310 0.465
80 0.151 0.357 0.537
90 0.183 0.420 0.612
100 0.188 0.428 0.632
110 0.211 0.455 0.658
120 0.226 0.464 0.658
130 0.229 0.459 0.630
140 0.236 0.452 0.609
150 0.244 0.445 0.575
160 0.241 0.429 0.540
170 0.236 0.399 0.500
180 0.224 0.389 0.486
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Chapter 15

FIGURES

In this chapter we provide figures of rosogram, changeogram, circular CUSUM
and some of the skewed circular densities discussed in this thesis.
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10.

Li1sT OF FIGURES

. Rosogram of Flare Data (Obs. 13-42)

Changeogram of Flare Data
Changeogram of Wind Data
Circular CUSUM chart for Lombard’s Flare data - Obs. 1-42)

. Plot of P.D.F of P(1,2)

Plot of P.D.F of P(3,4)

. Plot of P.D.F of RS(1,1,1.5708)

Plot of P.D.F of RS(3,2,1.5708)
Plot of P.D.F of Ba(1,1)
Plot of P.D.F of Ba(2,3)

163



<. .
ot 180
< :
(.. %
A,
-
* .
Vo — - / NN AN o
5. . . . 10. . . . 15, . . . 20.

NN B B A

35. . . . 40. . . . 45. . . . 50.

Fig.2 . Changeogram for Flare Data

\\\\\"\\"“\\\\\\\\,’/‘"‘zw

5. .. .10, . . .15 . . . 20

Fig.3. Changeogram for Wind Data

164

/

25. 30
1 R IS\ ~ ~\
55 . €0

S e T T N T T N

25. . . . 30



RATIO

Series Plot

T ] ! !

50

Case

Fig 4: Circular CUSUM chart for Lombard's flare data
Observation Nos. 1-42



0.4 T T

0.3+ -

> 0.2+ -

0.0 :
0.0000 2.0944 4.1888 6.2832
X

Fig 5: Papkonstantinou's skewed circular distribution P(1,2)
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Fig 6: Papkonstantinou's skewed circular distribution P(3,4)
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Fig 7 : Rattihali-SenGupta Skewed Circular Distributions RS(1,1,1.5708)
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Fig 8 : Rattihali-SenGupta Skewed Circular Distributions RS(3,2,1.5708)
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Fig 9 : Batschelet's Skewed Circular Distribution Ba(1,1) .
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Fig 10 : Batschelet's Skewed Circular Distribution Ba(2,3)
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APPENDIX [
SOME USEFUL CIRCULAR DISTRIBUTIONS

1. Circular normal distribution

The circular normal distribution, also known as the von Mises distribution,
is one of the most popular distributions for modeling angular data. Intro-
duced by von Mises in 1918, this distribution is most frequently used for
analysis of directional data on the circle and plays a role similar to that of
the normal distribution in linear statistical analysis. It is a symmetric, uni-
modal distribution with two parameters p and s, with probability density
function(p.d.f.)

f(8) ! )exp(K(:os(H—-;L)),OS0<27r,0§u<27r,fc>0

- 2nly(k

where Io(x) is the modified Bessel function of order 0. The parameter p is
called the mean direction and the parameter « is called the concentration
parameter. For k = 0, the distribution reduces to the circular uniform distri-
bution and as k increases, the distribution becomes increasingly concentrated
near y. The circular normal distribution with parameters p and x is denoted
as C'N(p, k).

Given a data set 6y,0,,...,0,, the MLE of yx is the unique solution of the
n n

system of equations Rcosp = ) cosf; and Rsinp = Zsin 6; where R =
1

i=1

n 2 n 2
\l (Z sin 6),-) + (Z cos 0,~> and that of x is & = A™Y(R) where, R = R/n,
i=1 i=1

A() = IT‘LI—(()J and Ij is the first derivative of 1.

2. Wrapped normal distribution

The wrapped normal distribution is obtained by wrapping a normal distri-
bution around the circle. In other words, if a random variable X follows a
normal distribution then the distribution of © = X mod 2x is the wrapped
normal distribution. The p.d.f of the wrapped normal distribution with pa-
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rameters p and o (denoted by WN(u, o)) is

_ 1 S —(0—-;1,—27rm)2>
f(8) = 0\/57? Z (xp< 202 ’

mI-=—o0

0<0<2m,0< u<2m,0>0

The WN(u, o) distribution is unimodal and symmetric about p.

3. Wrapped Cauchy distribution

The wrapped Cauchy distribution is obtained by wrapping the Cauchy dis-
tribution on the real line around the circle. The p.d.f of the wrapped Cauchy
distribution with parameters y and p (denoted by WC(y, p)) is

1-p?
1+ p? —2pcos(d — p)’

f(ﬁ):;)l— 0<0<21,0< p<2m,~1<p<l.
T

The WC(y, p) distribution is unimodal and symmetric about .

4. Wrapped Stable distributions

An important class of symmetric circular distributions is the Symmetric
Wrapped Stable family of circular distributions. This family of distributions
contain both the wrapped normal distribution and the wrapped Cauchy dis-
tribution as special cases. The p.d.f of symmetric wrapped stable distribution
with parameters p, p and a (denoted by WS(u, p, a)) is

1 © .
fO:ppa) = = 1423 p* cosk(d - p)],
27 k=1

002, 0<p<2mp>0,0<a<2.

2

When a = 2 and p = e~ we get the WN(u, o) distribution and when a = 1
we get the WC(g, p) distribution.
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