CONSTRUCTION OF SOME COMBINATORIAL DESIGNS
ARISING OUT OF STATISTICAL EXPERIMENTS

By
Tridib Kumar Dutta

Under the supervision
of

Dr. Bimal Kr. Roy
Indian Statistical Institute
Calcutta

Thesis submitted to the Indian Statistical Institute in partial fulfilment
of the requirements for the degree of Doctor of Philosophy

September, 1997.



CONSTRUCTION OF SOME COMBINATORIAL DESIGNS
ARISING OUT OF STATISTICAL EXPERIMENTS

By
Tridib Kumar Dutta

Under the supervision
of

Dr. Bimal Kr. Roy
{ndian Statistical Institute
Calcutta

Thesis submitted to the Indian Statistical Institute in partial fulfilment
of the requirements for the degree of Doctor of Philosophy.



ACKNOWLEDGEMENT

3 take thia appartunity to emprecs my deep gratitude to Dn. Bimat XK. Roy,
the oupewsican of my neseanch wonk, fon his able quidance, constuctive
cniticiem and constant eupewsicion ab afl otages of my work. Thie thesia
woutd nat hase seen the Ught of the day but fon hic continuous inteneot

3 awe a opecial debt of qnatitude to Dn. 4.6. Hukhopadhyay fon hia

4 and cnitical , which has gane
a tang way in shaping and completion of thio wonk. He was kind enaugh to
ablige me neadily wh % approached him fon and 4

on my wank.

¥ thank Pnof. $.B.Raa, the Dinecton of the $ndian Ftatistical Fnatitute,
M. 4. Majumden, Head of the ¥QE and OR Disision, and Dn. 9. P. Hukhenjee,
Kead of the $Q8-OR (T6P) Unit fon kindly gising me the oppontunity of

cavwing aut the h wonk and prosiding the w help wh
~equented fon.
fast bul not the feaot, 9 late the di and  coope

posided by the ofuff of ¥QE-OR (T5P) Unit in genenal and $hni 3. ¥hanma
in ponticutan duning the cowwe of thin wonk.

Inidih ¥ Dutta



CONTENT S

Chapter 1. Introduction

1.1.

.2,
1.3.
1.4,

Repeated Measurements Designs
Symmetric Balanced Squares

Literature Survey

Summary of work done

.4.1. SBURMD under circular model (chapter 2)
.4.2. SBURMD under non-circular model (chapter 2)
.4.3. NBURMD under circular model (chapter3)

P

.4.4. Two variants of RMD (chapter 4)
1.4.4.1. BURMD(t,1,p, k) under circular model
1.4.4.2. Second order SBURMD under circular model

1.4.5. Symmetric balanced squares

Chapter 2. Construction of Strongly Balanced Uniform

2.

2.

1.

Repeated Measurements Designs

Under a circular model
2.1.1. Introduction
2.1.2. Method of differences
2.1.3. The case t = 2k + 1
2.1.4. The case t = 2k and n an even multiple of t
2.1.5. The case t = 4k
2.1.6. Concluding remarks

Under a non-circular model

2.2.1. Introduction
2.2.2. Solution
2.2.3. Concluding remarks

22

22
22
22
23
24
26
29

29

29
29
31



Chapter 3. Construction of Circular Nearly Balanced
Uniform Repeated Measurements Desigas
3.1. Introduction
3.2. Modified method of differences
3.3. (1) Case p < t and p even
(11) Case p < t and p odd
3.4, Case t = 2kand p > t
3.5. Case t = 2k+1 and p > T+1

3.6. Concluding remarks

Chapter 4. Two Variants of Repeated Measurements Designs

4.1. Introduction

4.2, BURMD(t,1,p) partitioned in blocks of k distinct elements

4.2.1. Method of differences
4.2.2. Case k = t-1 and t even
4.2.3. Case k = t-1 and t odd
4.2.4, Case k = t and t odd
4.2.5. Case k = t and t even
4.2.6. Concluding remarks

4.3. Construction of second order strongly balanced uniform

repeated measurements designs
4.3.1. Case t an odd prime

4.3.2. Case t a pover of 2
4.3.3. Concluding remarks

a1

a1
a1

43
43
44
45
45
46

16

47
48
51



Zhapter 5. Comstruction of Symmetric Balanced Squares

Introduction
. Definitions and some observations

. Case n < v and n odd

. Case v <n<2v

. A theorem on existence

a0 g aaaa

1
2
3
4, Case n < v and n even
s
3
7. Concluding remarks

Chapter 6. Concluding Remarks

BIBLIOGRAPHY

72



1. INTRODUCTION

“his dissertation considers construction of two kinds of combinatorial
iesigns as used by statisticians: repeated measurements designs (RMDs)

2nd symmetric balanced squares (SBSs).

1.1. REPEATED MEASUREMENTS DESIGNS

The researchers need to perform experiments where each experimental unit
receives some or all of the treatments in an appropriate sequence over a

number of successive periods. These designs are known by several names in

the statistical 11 : rep neasur designs, or
changeover designs, (multiple) time series designs, and before-after
designs. If there are n experimental units 1,2, . . . .n, t treatments
and p periods 0,1, . . . ,p-1, over which these treatments are to be
((d“)) each

element of which is one of the t treatments. The ith row of D gives the

applied, then an RMD(f,m,p) is an n x p array, say D

sequence of treatments applied to the ith unit over different periods.
Generally in statistical literature transpose of the matrix D, D' is
defined as RMD(t,n,p), however, we will use D and not D' in subsequent

sections.

The applications of these designs are not limited to any single field of
study but are gaining importance over such diverse fields as agriculture,
medicine, pbarmacology, industry, social sciences, animal husbandry,
psychology and education. The designs have proved to be attractive
because of thelr economic use of experimental units and because of the
more sensitive treatment comparisons that result from elimination of
inter-unit variation. The practical necessity of the experimental setup
may also force us to use RMDs. These are the only options to an
experimenter in studies to evaluate the effect of different sequences of
drugs or nutrients or learning experiences. For details of models,
practical applicability and examples, one may refer to Hedayat and
Afsarinejad (1975), Hedayat (1981), Afsarinejad (1990), Patterson (1950,



51, 52), Patterson and Lucas (1962), Davis and Hall (1969) and Atkinson
(1966).

The application of a sequence of treatments to the same unit in RMDs,
however, has the potential of producing residual or carryover treatment
effects in the periods following the application of the treatment. A
residual effect which persists in the ith period after its application is
called a residual effect of the ith order. In most of the work done, till
date, it has been assumed that second- and higher-order residual effects
are negligible. Consequently, most of the designs developed so far,
permit only the estimation of first order residual effects along with the
treatment effects. In this discourse, we also restrict our attention
mostly to the first order residual effects except in section 3.3 where we

have constructed designs considering second-order residual effects.

Residual effects are inherent to RMDs. In some cases, it might be
desirable to measure such residual effects. In those cases where residual
effects are undesirable but cannot be avoided due to inherent mature of
the experimental requirement, they act as nuisance parameters and may
need to be eliminated or measured by a prcper design. So, RMDs gain

importance over other designs in such situations too.

Before proceeding to literature survey on the subject, let us formally

define some useful concepts.

DermniTion 1.1.1.  An RMD is called uniform on periods if in each period

the same number of units is assigned to each treatment.

DeFmmiTion 1.1.2.  An RMD is said to be uniform on units if on each unit

each treatment appears in the same number of periods.

DeFintrion 1.1.3.  An RMD is sald to be uniform if it is uniform on

periods and experimental units simultaneously.

DeFrwTioy 1.1.4.  The underlying statistical model is called circular if
in each unit the residuals in the initial periocd are incurred from the

last period.



:NiTIoN 1.1.5. The underlying statistical model is said to be linear

~ithout preperiods or non-circular if in each unit the residuals in

initial period are zero.

1TioN 1.1.6. Under the non-circular model an RMD is called balanced

¢ the collection of ordered pairs (d,.d, ), 151 =n 0=Jsp2

itains each distinct ordered pair of treatments the same number of

es and does not contain the pairs of identical treatments at all.

INITION 1.1.7. Under the non-circular model an RMD is called strongly
calanced if the collection of ordered pairs (d,,d . ) 1=1i=n,
p-2 contains each ordered pair of treatments, distinct or

2=

entical, the same number of times.

SeFInITION 1.1.8B. An RMD is called circular balanced if the collection

°f ordered pairs (d,.d,, ). 1=1i=n 0=js=p1l (operation on the

second suffix is module p) contains each ordered pair of distinct

ireatments the same number of times and does not contain the pair of

entical treatments at all.

DEFINITION 1.1.9.  Under the circular model an RMD is called circular
strongly balanced if the collection of ordered pairs (d,.d, ).
1 =1 =n, O =j = p-1 (operation on the second suffix is modulo p),
contains each ordered pair of treatments, distinct or identical, the same

~umber of times.

FINITION 1.1.10. In case p < t we call an RMD balanced (strongly

salanced) if it is uniform on periods, balanced (strongly balanced) for

residuals and each experimental unit is administered distinct

“reatments,viz., no treatment is repeated on the same experimental unit.

CeFmnTIon 1.1.11. An RMD(t,n,t) is called a Williams design if it is
wniform =and the number of times treatment i appears adjacent to
ireatmentf (i # j), on the same unit, are equal for all i,j = 1,2,....,¢t.
[Treatment i is said to be adjacent to treatment j if either treatment i

ecedes or follows treatment j on the same experimental unitji.




1.2 SYMMETRIC BALANCED SQUARES

Latin squares and symmetric latin squares are used in designing
experiments, requiring two-way elimination of heterogeneity 3in the
absence of interaction in the model. The book by Denes and Keedwell
(1974) contains an excellent presentation of the subject. The
combinatorial and algebraic features of the subject are covered, also
applications to statistics and information theory are emphasized in it.
Gomez and Gomez (1984) have pointed out the limitations of latin square
designs. The requirement that all treatments appear in each row-block
and in each column block is too stringent. As a result, when the number
of treatments is large, the design becomes impractical, because the
number of plots or experimental units 1s the square of the number of
treatments. For practical purposes its use is restricted to trials with
fewer than ten treatments. A more general class of squares, where such

restriction is removed, is the class of balanced squares (BSs).

A BS of size nin v elements is an m x n array, D= ((d,)), where
d,, denotes the element assigned to the jth column in the ith row,
i, = 1,2, . . .,n, satisfying the following conditions:

i) each element occurs r or r + 1 times in every row and in every

column (viz., rows and columns are balanced), where r = [n/v].

ii)} each element occurs f or f + 1 times in the array (viz., array is
bvalanced), where f = [n°/v].

A balanced square of size n in v elements is abbreviated as BS (n,v). It

is said to be symmetric if d =d ., 1,J = 1,2,...,n. A symmetric

1) 1
BS (n,v) is abbreviated as $BS (n,v).

It may be noted that in SBS(n,v), the only properties of a Latin Square
extended are those given by (i) and (ii) above. A Latin Square also
satisfies other important properties like perfect pairwise balance of
elements in rows and columns. Those properties may no longer be preserved

even in the extended sense in the SBS(n,v).



= generalized notion of balanced squares is balanced rectangles (BRs). A

of size nxc in v elements, abbreviated as BR(m, c,v), is an nxc array

ntaining v elements where

i) each element occurs either r or r + 1 times in every column, where
r = [nvv].
ii) each element occurs s or s+l times in every row, where s = [c/vl.

1i1) every element appears either f or f + 1 times in the array, where

f = [mxcrv].

We are not aware of much work in this area except for the pioneering work

done by P J Schellenberg, who has also introduced the problem to us.

1.3 LITERATURE SURVEY

A number of papers in the statistical literature in recent years have
considered the structure of designs with certain desirable statistical
properties. As this dissertation considers only construction of designs,
so a survey of literature on construction of RMDs s undertaken and a
summery of important work done is presented in subsequent sections.
Different authors have used various methods of construction, like cyclic
arrangements of the treatments when the number of periods is less than
that of treatments, and construction based on  finite fields and
sequenceable non-abelian groups for generating uniform and balanced

designs.

Cochran, Autrey and Cannon (1941) were probably the first to point out
that the classical designs are not suitable for estimation of direct and
residual effects in their dairy cattle feeding experiment. Williams
(1949,50) introduced and constructed two families of balanced RMDs when
number of periods is equal to number of treatments. Algorithms for
construction based on Williams’ method are given by Bradley (1958) for
even number of treatments while the same by Sheehe and Bross (1961) is

for odd number of treatments.



Willlams, and Sheehe and Bross basically used cyclic groups  for
construction of RMDs and failed to construct balanced RMDS for an odd
number of treatments having a minimal number of experimental units.
Houston (1966) showed that construction of such minimal balanced RMDs is
not possible based on a cyclic group when number of treatments are odd.
However, Williams, and Sheehe and Bross gave methods for constructing
balanced RMD(2,2¢,t) for all odd t. Later Medelshon (1968) constructed a
balanced minimal RMD for 21 treatments based on a non cyclic group.
Balanced minimal RMDs do not exist for t = 3, S, or 7 while they exist
for t = 27, 39, 55 57 (Denes and Keedwell, 1974). Hedayat and
Afsarinejad (1978) 1ist such designs for t = 9 and 15 attributing them
to K.B.Mertz and E.Sonnemann respectively.

Seattered results on construction are available prior to 1970. Hany
examples can be found in works by Patterson (1850,51,52), Patterson and
tucas (1982), Atkinson (1966) and Davis and Hall (1969). The paper by
Hedayat and Afsarinejad (1975) puts the subject in proper research
perspective. In this paper, they have given method of comstruction of
nininal (viz., requiring minimun number of experimental units for given
values of number of treatments) balanced EMD(t,2t,p) with p < ¢ whenever
¢ 1s a prime power and also claim to have done the same for any odd
Integer t. Here they have also provided a method of construction of the
universally optimal RMD with p < ¢t whenever ¢ is a prime power and is
congruent to 3 modulo 4. Patterson (1952) has also considered the case in
which the number of periods is less than the number of treatments and
constructed a series of minimal balanced RMDs. Patterson and Lucas
(1982), Davis and Hall (1969) and Atkinson (1968) have also constructed
some fanilies of balanced minimal RMDs. Constantine and Hedayat (1982),
and Afsarinejad (1983) have constructed by two different methods,
balanced minimal RMDs whenever p < t and the divisibility conditions
aliow for their existence. Afsarinejad, in the same paper, has also
constructed strongly balanced RUDs whenever p < t.

1 ¢*
the existence of a strongly balanced uniform RMD and give a method to

| nand p/ t is an even integer then Cheng and Wu (1980) showed



construct such designs. Berenblut (1964), Patterson (1970,73), and Kok
and Patterson (1976) have constructed similar designs. Sen and Mukherjee
(1987) have given a method of construction of such designs when t2 | n
and pt™" is an odd integer, using MOLS of order t. Consequently, the
method fails for t = 6. However, they have listed a different method of
construction for the same design which works for t = 6. But these later
designs lacks some statistical properties compared to the ones based on
MOLS.

Sonnemann, quoted in Kunert (1985a) gives a method of construction for
circular balanced uniform RMDs with a minimum number of experimental
units whenever t > 2 is an even integer. Afsarinejad (1880), using
disjoint directed Hamiltonian cycles, constructs circular balanced
uniform RMDs with minimum number of experimental units whenever t is an

odd number.

Sharma (1982) constructs circular balanced uniform RMDs whenever n = t
and pt™ is an even integer. Roy (1988), and Dutta and Roy (1992)
have constructed circular balanced uniform RMDs, using different methods,

when t / n, pt™' is an odd integer and t = 0, 1, 3 (mod 4).

The problem of finding optimal experimental designs for comparing ¢t
treatments with a control in repeated measurements model has recently
been considered by Pigeon (1984), Pigeon and Raghavarao (1987) and

Majumder (1988). Pigeon and Raghavarao have constructed several families
of efficient balanced RMDs for comparing test treatments with a control.
Majumder provides a method of construction for certain optimal designs
for direct treatment effects for comparing w’® test treatments with a

control in the collection of such RMDs for a model without preperiods.

In situations with correlated errors, the optimal designs usually prove
to be variants of the designs constructed by Willams (1949) and called
Williams designs by Kunert (1885a). For t = 2 (mod 4) Street (1988a)
gives a method of construction of Williams design with a circular
structure. Matthews (1987) obtains optimal designs under a linear fixed



effects model with auto-correlated errors for three- and four-periods
designs.

An extreme form of an RMD is the one in which the entire experiment is
planned on a single experimental unit. Details on this can be found in
Williams (1952), Finney and Outhwaite (1956) and Kiefer (1960).

For a general survey of RMDS one can refer to Hedayat and Afsarinejad
(1975), Hedayat (1981), Bishop and Jones (1984), Street (1989) and
Afsarinejad (1990). Hedayat and Afsarinejad (1975) and Afsarinejad (1990)
have extensive bibliography on the subject. For structure of optimal
designs when the treatments to be applied have a factorial structure, the
interested reader is referred to Fletcher and John (1985) and Fletcher
(1987).

1.4 SUMMARY OF WORK DONE

All the designs, discussed in subsequent chapters, arise out of
statistical considerations. However in this dissertation we only consider
the problem of construction of these designs based on combinatorial
arrangements. We are solely concerned with the combinatorics and not the
statistical properties of these deslgns. For construction of RMDs
different adaptations of R.C.Bose’s method of “"symmetrically repeated
differences” (1938) have been used under the heading of “method of
differences”. The method of construction employed to construct ‘symmetric
balanced squares are l-factorizations or near l-factorizations of a
complete graph and Hall's matching theorem together with Fulkerson’'s
(1959) theorem on the existence of a feasible flow in a network with
bounds on flow leaving the sources and entering Sinks.

1.4.1. In Chapter 2, section 1, we assume the underlying statistical
model to be circular for construction of strongly balanced uniform
repeated measurements designs and introduce the following notion of the
method of differences. If G is a group with t elements and operation +, B

is a p-tuple (a,, a,,....,a ) of the elements of G, where each element



of G occurs exactly s (s = p/t) times in B and {2 - a 6 : i=20 1,

., p-1} (operation on the suffixes is modulo p) contains each element

of G precisely s times, then {B + g : g € G} arranged in t rows, forms
SBURMD(t, t,p). The tuple B + g is defined as (a_+ & 2+ & a8

To simplify the construction of the designs, it is observed that an
SBURMD(t,n,p) may be constructed by repeating n-t™' SBURMD(t,t,p)’s
vertically and, if SBURMD(t,t,2t) exists then SBURMD(t,t,mt), where m is
even, can be constructed by repeating SBURMD(t, t,2t)’s horizontally. Also
we note that if SBURMD(t,t,2t) and SBURMD(t,t,3t) both have two
consecutive columns of the form (0 1 2 ... t-1)7,then SBURMD(t,t,mt),
where m is odd and @ = 3, can be constructed by taking SBURMD(t,t,3t)
followed by SBURMD(t,t,2t)'s horizontally. These conditions are ensured
if SBURMD's are constructed using difference vectors. We then attempt to
get difference vectors for SBURMD(t,t,3t). The contents of this chapter
has been published (Dutta and Roy, 1992).

The cases t odd and even are dealt with separately.

When t is an odd integer we define the Zk-tuple D to be:
(0,2k,1,2k = 1,...,k - 1,k + 1,k kk+ 1,k ~ 1,...,2k - 1,1,2k,0).
Next, one occurrence of i is replaced by the triplet ( i, 2k - i, i ) for
i=0,1, ...., k- 1 and one occurrence of k is replaced by the ordered
pair (k, k). The resulting ordered 3t-tuple is called D'. It is then shown
that (D" + I : i =0, 1,...,2k} is an SBURMD(t,?,3t). In view of this and
the earlier observations, we obtain that for t an odd integer if t|n, t|p

and p > t then SBURMD({,n,p) always exists.

Next we consider the case t = 2k and n an even multiple of t and define
the following notation:

If A is an n-tuple (a,a,...,a)) then 4’ 1is the tuple
(an.--..az,al). If A (a‘,.“,an) and B : (bl,....b“] then by AB we mean
a,b,...,b ).

n h 'm
- (a,,az,“..ak) and l72 bl (ak'

the (n + m)-tuple (a,...,

Next on Z, we define D L RRERRT Wl

where



(i=1)/2 if i is odd

2k - i/2 otherwise

Considering D = DO, B =D D'D’ and C = DDD,DD', it is proved that if
D,={C+i:icZy}andD=D UD, thenD

D ={B+i:
is an SBURMD(t,2t,3t). So it follows that If ¢t is an even integer and if
tin, tip, p > t and nt™' is even then SBURMD(t,n,p) always exists.

Construction of SBURMD(t,t,3t) for t an even integer is considered
separately for t = O (mod 4) and ¢ = 2 (mod 4).

For t = 0 (mod 4) we define

D: (1,2,3,...,4k - 2,4k - 1,0,1,2,...,2k,0,2k,0)
and tuples 4.'s as:
A ¢ U2k - 40, 1=1,2,....k-1
A k)
A, ¢ (42K - £ 5,2k - 4), f=2k+1,2k+2,...,3k=~1
Ay o (3K,3K,3K).

A tuple D° from D is obtained by replacing one occurrence of i by 4 for
i=12....kand I = 2k + 1,...,3k Now we define a new operation f.
This method of construction do not use the usual notlon of difference
technique. We term this technique as method of sum-difference. Such a

concept is entirely new.

if 4= (a,a,...,2), a, € Z_and k € Z, then A * k is defined to be
1 n i N N

the tuple C = (C,,C, .C), where
.+ k 1f a, is even
i i

- k otherwise

We now show that (D" I : i€ Z,} is an SBURMD(t,t,3t) where t = 4k In

view of this and the earlier observations we have for t = 0 (moed 4), if
tIn t| pand p >t then an SBURMD(¢,n,p) always exists.

When t = 2 (mod 4) and n.t™' is odd, the existence problem of
SBURMD(t,n,p) is still unresolved. The method of differences for
constructing SBURMD(t,t,3t) works only if the group with t elements has

the property that the sum of all the elements in that group is the

10



identity element. We could not get a group with (4k + 2) elements having
the above mentioned property. The method of linked sum-difference uses

the fact that t = 0 (mod 4) and could not be extended to the case t = 2
(mod 4).

1.a.2. In Chapter 2, section 2, strongly balanced uniform repeated
measurements designs when number of periods is an odd multiple of number

of treatments have been constructed under a non-circular model.

First it is shown here that if t2| n and p = 3t then there exists a
SBURMD(t,n,p). It is further observed that this method of construction

works for p = 2t also.

Next using the previous result we prove that if t°| n and p/t is an odd
integer greater than ome then there exists a SBURMD(t,n,p).

The construction method suggested is for obtaining SBURMDS when the
underlying statistical model is non-circular. But for the same set of
parameters,  the constructed designs are strongly balanced uniform

repeated measurements designs under circular model too.

1.4.3. A strongly balanced design is not possible for all combinations
of the parameter values. So, in Chapter 3, section 1, we present methods
of construction for a wide class of circular nearly balanced uniform
repeated measurements designs (NBURMDs) when number of experimental units
(n) equals the number of treatments (t). This work also suggests the
existence of such designs for n < t, when number of periods (p) is less
than number of treatments. In this section constructions of nearly
balanced uniform RMD's are discussed when the underlying statistical
model is circular. These designs are uniform on periods but not on
experimental units. Here near uniformity on units is achieved, viz., on
each experimental unit the frequencies of administration of treatments

differ by at most one.

The notion of method of differences, adopted in the previous chapter



is modified here. The modified notion is as given subsequently.
If G is a group with t elements and an operation +, B is a p-tuple (a;,
a..... a,) of elements of G, where each element of G occurs s or s+l
(s = [p/t]) times in Band C = {a; - a; i=01,...,p-1} (operation
on the suffixes is modulo p) contains each element of G either s or s+l

times then { B + g + g € G ) arranged in t rows, forms NBURMD(t,t,p).

It is observed that NBURMD(f,f,t-1) where t is an even integer,
NBURMD(t, t, t-2) and NBURMD(t,t,t+1) where ¢ is an odd integer cannot be
constructed using the method of difference over Z, and using the usual

operation of addition module .

The cases p < t and p > t are dealt with separately. The case p < t has
two sub cases, one for p even and the other for p odd. Similarly in case
p>t we deal separately for t even and t odd.

For the case p < t and p even, we define

a,  =i-17/2 for odd i and 1=i=k
=t-is2 for even § and 1= 1=k
=is2 for even i and k3l s isp

=p-(i-3)/2 forodd i and klvlﬁjﬁp

where k and k, are odd positive integers such thab K+ k, = pand

0=k -k =2
1T %2

It is proved that B : (ag,a.a,...,a, ) is a difference vector and

when developed over Z, produces a NBURMD(t,t,p)

Next for the case p < t and p odd, it has been observed that if p =1t - 2
for ¢ an odd integer or p = t - 1 for t even then using the method of
differences does mot produce a NBURMD(t,t,p). For p mot equal to these
two values, the construction of NBURMD(t,t,p) for p < t and p odd has
been discussed. If p’ = p + 1, then p’ is even. Following the steps for
the case p even, we comstruct a difference vector for NBURMD(Y,t,p’)
where K+ J= p’, k and k, are odd integers and 0 = k- k, =2 If k=

k, then we drop 2, else if k= k¢ 2 then ak{ , is deleted from this

difference vector and we call this resultant p-tuple as B.



In view of the preceding discussions, and the earlier result for p even,
we show that the p-tuple B is a difference vector and when developed over
Z, gives a NBURMD(t, t,p).

It is observed that if some of the rows in the previous designs are
deleted then they still continues to be a NBURMD. So NBURMD(t,n,p) can be
constructed for n = t, p< t and t not equal to p + 1 or p + 2 for odd p.

Next we have shown that if n = t, p < t and, t is not equal to p+l or p+2
for p an odd integer, then an NBURMD(t,n,p) exists.

The case p > t is dealt with separately for t even and t odd.

For t even, we use the same notation as defined in section 1.4.1. We
consider Z, and the t-tuple D : (0 2k-1 1 2k-2 . . . k+1 k-1 k), and
observe that if the model is circular then D = D D’ is a difference

vector for construction of SBURMD(t,t,2t).

Next we defined tuples 4,'s as:

A+ i, 2k-1-i, 1) . i=0, 1.....[k2]-1
(i, 2k-2-i, 1) . i= [k/2], [k/2]41, ... k=2
(k=1,k-1) . i= k-1
(k+[(k-1)r2], k+[(k-1)/2])} e i= k.

For t < p < 2t, considering the t-tuple D, We replace an occurrence of i
by the tuple 4;, O = i = (p-t-1)/2 - 1 for (p-t-1)/2 elements of D and

replace the element k-1 by A, . if p-t is an odd integer. If p-t is an

k-1
even integer then replace i by A; for (p-t-2) elements of D, Os i =
(p-t-2)/2 - 1 and the elements k-1 and k+[(k-1)/2) by 4, _, and 4,

respectively. We also note that the procedure gives a difference vector

for p = 2t too which on developing over Z, gives an SBURMD(%,t,2t).

For 2t < p < 3t, we follow a similar procedure on the 2t-tuple D . Here,
if p-2t is an odd integer then replace i by 4; for (p-2t-1)/2 elements of
D, 0 =i = (p-2t-1)/2 - 1 and the element k-1 of D by 4, . Else, if
p-2t is even then replace an occurrence of i by the triplet 4, for

13



(p-2)/2 elements of D, 0 = s (p-2t)/2 - 1.

We denote the augmented t-tuple D or 2t-tuple D by the p-tuple E and
then we obtain that { £ # i : i = 0,1,...,t-1 } is an NBURMD(t,t,p) when
t is an even integer, t [ pand t < p < 3t.

We further note that if SBURMD(t,t,pt) has two consecutive columns of
the form (0 1 2 ... t-1 )" and NBURMD(t,t,p,) has & column of the form
(012 ... t-1)7 then NBURMD(f,1,p t+p)) can be constructed by taking
SBURMD(t, t, pt) followed by NBURMD(t,tf,p.). If SBURMD's and NBURMD's are
constructed using difference vectors then this condition is trivially
satisfied.

For any t and p such that p > t we can express p as p+ p, where p, is an

g
even integer and t < p, < 3t. Since SBURMD(t,t,p,) and NBURMD(t, t, p,)
exist, we obtain that if t is an even integer and p is any integer such

that t | pand p > t then NBURMD(t,t,p) always exists.

If t is odd and p > (t+1) [ for p = t+1 NBURMD(%,t,p) cannot be

constructed using the method of modified differences ] define tuples Al's

as:
Ay U 2E DL E=0 Lkl

Gk, K . i=k, and
A 5 kel kD)

The construction of NBURMD(t,t,p) for t+1 < p < 2t and for p > 2t is

dealt with separately.

For t#1 < p < 2t, let D be a difference vector for a NBURMD(t,t,t-1) and
let p = (t-1) + j. Note j = 3.

For construction of difference vector when j is an odd integer we replace
the elements k-1 and k by the tuples 4, and 4, respectively. Also we
replace an occurrence of i by A0 = i = (j-3)/2 - 1 for (j-3)/2
elements of D. If j is an even integer, then we replace the elements k-1

and k by the tuples 4, and 4 respectively. Next in this augmented

14



(t+2)-tuple, say DZ. we replace the element k+l by the ordered pair A and
replace an occurrence of i by 4, 0 = i = (j-4)/2 - 1 for (j-4)/2

elements of DZ.

For p > 2t, let p
P, < t. Suppose D, is a difference vector for a SBURMD(%,t,rt). If p, is

rt + Py where r (= 2) is a positive integer and

an odd integer then we replace an occurrence of i by A; for (p; 172
elements of D, 0 = i = (p- 1)/2 - 1 and k by 4,. Else if p is even

then we replace i in Dby 0 =1i=p-1

i

The p-tuple obtained by augmenting (t-1)-tuple D or rt-tuple D, is called
E. In view of the preceding discussions it follows that if t is an odd
integer and p is any integer such that t}p and p > t+1 then NBURMD(t,t,p)
alvays exists and is obtained by developing E over Z,.

When p is an odd integer and t = p+ 1 or t=p+ 2and vhen t=p -1
for an even p, the existence problem of NBURMD(Z,n,p) is still
unresolved. Our inability to construct these designs is basically because
of the same reason as mentioned in the earlier section. Also it would be

interesting to find such designs when t | nand t f pand n> t and / or

p>t.
1.4.4. Chapter 4 deals with two problems on construction of repeated
measurements designs involving ¢ treatments. In the first, balanced

uniform repeated measurements designs have been constructed when the
number of experimental unit is 1, which can be sliced or partitioned into
blocks of k distinct elements each. Construction algorithm is given when
t(t-1) divides p, and k divides p for odd t while k divides t or t~1 for
even t, p being the number of periods.

In the second problem, we consider the class of SBURMD's and give
constructions for SBURMD's where the collection of ordered triplets

(dxj’dijT:'dijTZ)' 1si=n 0= j=p1 (operation on the second suffix
is module p), contains each ordered triplet of treatments, distinct or

not, the same number of times, that is, np/t’ times. This design is



referred to as a second order SBURMD(¢,n, p). The problem is solved when t

is an odd prime and partially solved when t is a power of 2.

1.4.4.1. In section 2 of chapter 4 we consider the first problem. Here
the number of experimental unit is one and we look for balanced uniform
design in t elements over p periods which can be sliced or partitioned
into blocks of k distinct elements. Such designs are denoted by
BURMD(¢,1,p, k). A fourth parameter k 1is introduced due to slicing
requirement and absence of this fourth parameter, viz., a BURMD(t,1,p)
indicates a balanced uniform repeated measurements design on which there
is no slicing requirement. Since the design is balanced, so t(t-1)lp. We
note that if BURMD(t,1,t(t-1),k) exists then BURMD(t,1,mt(t-1),k) where m
is  any positive  integer, can be  constructed  repeating
BURMD(t,1,t(t-1),k)’s horizontally m times. So we claim that if
BURMD(t, 1, t(t-1), k) exists then BURMD(t,1,p k) exists where p = mt(t-1),

m e positive integer.

Therefore we consider designs with p = t(t-1). Additional requirement on

blocks requires slicing or partitioning of the design, viz., the sequence

of t(t-1) tr into each of k distinct elements.
Therefore, it is observed that it is necessary for a BURMD(¢.1,t(t-1).k)
to exists that k = ¢ and klt(t-1).

Further we note that if BURMD(t,1,t(t-1),k) exists for k = t and k = t-1
then BURMD(t,1,t(t~1), k) exists for all k, where k divides ¢t or else t-1.

In construction of BURMD's for k = t or t-1, the following adaptation of
the method of differences is used.

If G is a group with t elements and operation + B = (b, b, s b
b,) is any circuit on G, e; = (b b, ), 1 =0.1,....n°1, (operation on
suffixes is modulo n) and all elements of the collection D = { b, .- b,
i=0,1,...,n-1} are distinct, then the circuits {B + g : g € G} are arc

disjoint.

B is referred to as a difference vector and D as the set of linked
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differences in B. The construction of BURMD(t,1,t-1,k)

is taken up
separately for k = t-1 and k = ¢,

and for t odd or even, by applyi

g the
z,, or z, , and denoting the vertices of
the complete directed graph with n vertices by the elements of z,.

method of differences with G =

In case of k = t - 1 and t even,

we consider G, = z, | v {w}, where = is
such that X + @ = @ + x = w for all x « z, .. Let k and k, be odd
positive integers such that k+ k=t - 2 and 0 = k- k, = 2 and we
def ine
b, = (i-1)/2 »ols ik and i odd,
= (t-1) - is2 L 1=is=k and i even,

= (t-1) - (i-1)/2

. k*1si=¢t-2 and iodd, and
is2 « k+1=i=t2 and {even.
If B = (bk"‘, bk“zv ceesby_nububo,....b .®) then differences on edges

1
of B contain all non-zero residues modulo t-1 except 1, exactly once. So,
developing B according to z__, provides a total of t-1 blocks of size t-1

sach. If one additional block € = (b, .b _+ 1,...,5 ) is adjoined to
1 1 1

these blocks,a total of t blocks of size t-1

is obtained which is a
BURMD(t,1, t(t-1), t-1).

For the case k = t-1 and t odd, we consider G‘l = zt_1 v {w} as before and
the following directed elementary path

0O t-2 1 t-3 2 t-4a... (t-1)/2 -1 (t-1)/2
The differences among edges of the above path contain all non-zero
residues modulo t-1, exactly once. B = (0,t-2,1,1-3,2,...,(t-1)/2-1,w) is

obtained by replacing (t-1)/2 by w. Now by developing B according to

we get a total of t-1 blocks of size t-1 each. To this
we adjoin one additional block €

z,_,. as before,

(0, 1, 2,..., t-2) and obtain the
required t blocks of size t-1 for a BURMD(t,1,t(t-1), t-1).

Next we have considered the case k = t and t odd. For G = z,_ v {w},

-1
the same directed elementary path is considered as in case k = t-1, viz.,

0 -2 1 t-3 2 t-4 ... (t-1)/2 -~ 1 (t-1)/2.



If B = (0,2-2,1,1-3,...,(t-1)/2,») then developing B according to Z,,
produces a total of t-1 blocks of size t each for a BURMD(t, 1, t(¢-1), ¢).

For k = t and t even, we consider V = 24, v {w} v (m‘} where @ is
defined in the same way as  and, define a directed elementary path E by
E= (0, w, t=3, 1, t-4, 2, t-5, ..., (t-2)/2+1, (t-2)/2-1, (t-2)/2, ).
Since among the differences on the edges of E, all non-zero residues

modulo t-2 except -1 occur precisely once, developing E according to z

t-2
produces a total of t-2 blocks of size t. We adjoin to this an additional
block ¢ = (w, =, 0, t-3, t-4, t-5, ..., 2, 1), and obtain the required

BURMD(¢,1, t(¢-1),t) when t is even.

Following the construction of BURMD(t,1,t(t-1),¢) for t odd, it is noted
that any sequence of less than or equal to t-2 elements contains all
distinct treatments. So BURMD(t,1,p, k) where kst-2 and k|p, exists. Also
we have given construction procedure for BURMD(t,1,t(t-1),k) for k = t
and k = t-1. Hence we obtain that if t is odd, k = t, t(t-1)|p and klp
then BURMD(t,1,p, k) exists.

Also we have proved that BURMD(t,1,p,k) exists for even t if k = t,
t{t-1)|p and k divides t or else t-1.

1.4.4.2. In chapter 4, section 3 we have considered the second problem
discussed in section 1.4.4.1. earlier, viz., construction of second order
strongly balanced uniform repeated measurements design.

Given a set T = {a.a,....a,) of t treatments. the problem considered

-
here is to construct an RMD, viz., an array Dpyp = ((d;)), where each

d, €T, tin tipand t’Inp such that i
(1) each treatment appears exactly p/t times in a row,
(11) each treatment appears exactly n/t times in a column,
(ii1) the design is strongly balanced, and
(v) 1f 4, = ( (d‘,j. a‘.j“, d”‘z) los=js= ;rlr; addition of the
second suffix is modulo p }, 1 = i s n theniyxAi contains each

ordered triplet of treatments (a;2.a); a;a.a < T, exactly

JK J
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the same number of times, that is, np/t® times.

We note that requirement (iv) implies requirement (

1), that is, a
second order URMD is also strongly balanced. Without loss of generality,
we denote the treatments by the elements of z,.
The notion of the method of differences, adopted in this section, is same
as the one given in section 1.4.1. The definitions of difference vector

and the set of linked differences also remain the same.

The cases for t an odd prime and t a power of 2 are dealt with
differently.

For the case t an odd prime we define for 1 = i = [t/2] and O = j = 2¢-1,

bJ(i) =(i.j /2 mod t) for j even, and
= (~i.j*1 /2 mod t) for j odd.
Considering the 2t-tuple By = (b (i),b (1),...,b, (i), 1 = i = [t/2].
Bi is a difference vector over Zt for each i = 1,2,...,[t/2]. We now
modify B, and replace the ordered pairs (£&-1,t-8) by the quadruplets
(&-1,t-8,8-1.t-8), ¢ = 1,2,...,t-3/2, and the ordered pair (t-1/2,
1-1/2) by the triplet (t-1/2, t-1/2, t-1/2). The modified B, is termed as

Bj. It is now proved that B = BjB,...By, 5] is a difference vector over

z, for t an odd prime number and when developed over z, produces a second
order SBURMD(t,t,t%).

Since we have shown that a second order SBURMD(Z,,t%) can be constructed
for t an odd prime number, so second order SBURMD(t,n,p) can also be
constructed for n = mt and p = rt°, both m and r are positive integers,
by first writing m SBURMD(t,t,t%)’s vertically and then by repeating this
configuration r times horizontally. Thus we obtain that if t is an odd

prime number and, t|n and t?|p then a second order SBURMD(t,n,p) exists.

For the case t a power of 2, we consider z, and define for 1 = i = t/2,
0= j=2t-1,
b () = ((21-3).(j/2) mod t). for j even, and
= ((i-1).J mod t), for j odd.
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Next we consider B, = (b (i)I0s j = 2t-1), i = 1,2,...,t/2 and replace
(t-i+1,0) in B, by (t-i*11B;10) for i = 2,3,...,t/2. The resultant
configuration is termed as B’. Here the ordered pair (1,0) appears at the
end of B, and b, (t/2) = t/2 + 1 and b (t/2) = t/2. So B'+(t/2}
contains the ordered pair (1,0). This new array B‘+{t/2} 1is so arranged
that (1,0) appears at the end and this rearranged B’+{t/2} is termed as
D. Now (B’|D) developed over z, is a second order SBURMD(t,t,2t%). Thus
we prove that if t is a power of 2, t|n and 2t°|p then a second order
SBURMD(t, n, p) exists.

1.4.5. In Chapter 5 symmetric balanced squares for different sizes of
array and for different numbers of treatments have been constructed.
Algorithms, easily implementable on computers, have been developed for
construction of such squares whenever the parameters satisfy the
necessary conditions for existence of the square. The method of
construction employs l-factorizations of =a complete graph or near
1-factorization of a complete graph, depending on whether the size of the
array is even or odd, respectively.A paper based on the results of this
chapter has been accepted for publication (Dutta and Roy,1997).

First, it is shown in this chapter that a BS(n,v) always exists. It is
further noted that this result is easily extended to balanced rectangles
with n rows, ¢ columns and v elements. The same construction procedure as
with BS's works as well with BR's.

Further, we note in this chapter that the necessary conditions for
existence of an SBS(m,v), n > 1 are v = n(n+1)/2, and the number of
elements of odd frequency in the square should not exceed the size of the
array, n. Next, it is proved that if SBS(n,v) exists for v = n < 2v then
S$BS(n,v) exist for all n = 2v. Also we note that an SBS(n,n) is a

symmetric latin square of order n which always exists.

Following these results, we define 1-factorization and near

1-factorization of a complete graph and proceed to provide a constructior
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of these factorizations which are used for construction of SBS's

The construction of these squares are considered separately for n <

for v < n < 2v. For n < v, the cases corresponding to n odd and n e

are dealt differently. For n < v and n odd our algorithm on construct

is based directly on near 1-factorization of K, .

The case n < v and n even is divided into subcases — f even and f odd,
where f is the integral part of n°/v. The construction algorithm for f
even, uses a l1-factorization of Kn along with Hall's matching theorem.
For the case f odd, we use Hall's matching theorem together with
Fulkerson’s (1959) theorem on the existence of a feasible flow in a
network with bounds on flow leaving the sources and entering the sinks,

to obtain the required SBS.

When v < n < 2v, a simple approach exploiting the arrays for n < v is

proposed for construction of SBS's.

Finally we conclude with the result that necessary and sufficient
conditions for the existence of an SBS(n,v) is v = n(n+*1)/2, and the

number of elements with odd frequency is at most n.
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2. CONSTRUCTION OF STRONGLY BALANCED UNIFORM
REPEATED MEASUREMENTS DESIGNS

2.1. UNDER A CIRCULAR MODEL

2.1.1. INTRODUCTION

In this section we give construction of SBURMD(t,n,p) for t =0, 1 or 3
(mod 4) assuming the underlying statistical model to be circular. Sharma
(1982) and Sen and Mukherjee (1987) give method for constructing
SBURMD(t,n,p) if t | n and pt™* is an even integer. Roy (1988) gives a
method of construction for t = 0, 1 or 3 (mod 4). The method used here
for construction is considerably simpler than that of Roy. Especlally the

0 (mod 4) is dealt by a completely new method. Also we give a

case t =
1

method of construction of SBURMD(%,n,p) when ¢ =0 or 2 (mod 4) and nt”
is even. The methods used are method of linked differences and method of

linked sum-differences.

2.1.2. METHOD OF DIFFERENCES

Let G be a group with operation +, B be a subset of G and g € G. Then
B + g is defined as follows:

Beg={b+g:beB}.

The proof of the following theorem which is an adaptation of R.C.Bose's
method of “symmetrically repeated differences” (1939), being trivial, is
omitted.

Theorew 2.1.1. Let G be a group with t elements. Consider the p-tuple B

(2, aj.. . . .,a _ ) where a € GV i =0, 1,. . . ..,p - 1; each
element of G occurs exactly s (s = p/t) times in Band C = (a - a_
i=0,1,. ..., p-1) (operation on the suffixes is modulo p) contains

each element of G precisely s times. Then {B + g : g € G) arranged in t
rows, forms SBURMD(t.t,p). o
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B will be referred to as a difference vector and C as the set of linked
differences in B. It is easy to see that the following are true.

Note 2.1.2. An SBURMD(t,n,p) may be constructed by repeating n-t!

SBURMD(t, t, p)’s vertically.

Note 2. If SBURMD(t,t,2t) exists then SBURMD(t,¢,mt), where m is

even, can be constructed by repeating SBURMD(t,t,2t)’'s horizontally.

Note 2.1.4. If SBURMD(t,t,2t) and SBURMD(t,t,3%) both have an identical
column then SBURMD(t,t,mt), where m is an odd integer and m = 3, can be
constructed easily. Since the underlying statistical model is circular,
we can always assume, w.l.g., that this identical column is the first
column for both these designs. Consequently, SBURMD(t,t,mt), where m is
odd and m = 3, can be constructed by taking SBURMD(t,t,3t) followed by
SBURMD(t, t,2t)'s.

If SBURMD’s are constructed using difference vectors, then the condition

of Note 2.1.4 holds trivially.

We now attempt to get difference vectors for SBURMD(t,t,3t).

2.1.3. THE CASE t = 2k + 1

Consider the difference vector
D: (0,2k,1,2k - 1,...,k - 1,k + 1,k,kk + 1,k - 1,...,2k - 1,1,2k,0)
as constructed by Sen and Mukherjee (1987).

We replace one occurrence of i by the triplet (i,2k -~ i,i) for i =0, 1,.
..k - 1 and replace one occurrence of k by the ordered pair (k, k).

Consider this modification on D and call the resulting ordered 3t-tuple

D .
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Leww 2.1.5. (D" + i : i =0, 1,...,2k} is an SBURMD(t,t,3t).

Proof: Sen and Mukherjee (1987) have shown that D is a 2k-tuple, each
element of Z, . occurs twice and the collectlion of linked differences
in D contains each element of Z, . precisely twice. Now introduction of
(i,2k - 1,i) instead of an i contributes the elements 2k - i, i to D
and, 2k - 2i and 2f + 1 in the collection of linked differences in o,
i=0,1,...,k - 1.

k-1
It is easy to observe that | ) {2k - i, 1} v {kt =2,  and also

k-1
(J{2k-2i,2i+1} v {0} = Z

; 2ke1”
i=o

Hence D contains each element of Z, . thrice and the collection of
linked differences in D  also contains each element of Z, , thrice. Thus

D" is a difference vector for SBURMD(t,t,3t). a

Illustration: k = 3, t =7 and
D:(061524334285160)
One O is replaced by (0 B 0), one 1 is replaced by (1 5 1), one 2 is
replaced by (2 4 2), one 3 is replaced by (3 3). Thus
p*: (060615152424333425160).

In view of the previous lemma and notes the following theorem is

immediate.
Tweorew 2.1.6. Let t|m, tlp and p > t. If t is an odd integer, then
SBURMD(t,n, p) always exists. o

2.1.4. THE CASE t = 2k AND n AN EVEN MULTIPLE OF t
We define the following notations:

1f 4 is an n-tuple (a.a,....a,) then 4’ is the tuple (a,...,a,a). If
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A: (a ,..<,an) and B : [bi""'bm) then by AB we mean the (n + m)-tuple
"bm)' Consider lzk'

.ak) and D, = (ak“.ak’z.

azk) where

{ (i - 1)/2 if i is odd
a

17 | 2k - i/2 otherwise
Let D = DD, Then D’ = DJD{. Let B = D D'D’ and C = D,D|DD,D".
Lewen 2.1.7. Let D = ( B+ i: ieZ, }, D,=(C+i:ie€Z,) and

D =D v D, Then D is an SBURMD(t,2t,3t).

Proof: (1) The fact that both B and C have all the elements of 2,

thrice follows from the observation that the set of elements in D is Z,,.

(i1) One can easily check that the collection of linked differences in B
contains the element k four times, 0 twice and all other elements in Z
thrice.

Also the collection of linked differences in C contains the element k

twice, element O four times and all other elements in Z,, thrice.

Hence, a pair (a,a), a € Z appears twice in D and four times in D,

2K 2

thus appearing six times in D.

A pair (a.b). where a - b = k, appears four times in D and twice in D,

thus appearing six times in D.

Any other ordered pair appears three times in D, as well as in D, thus

appearing six times in D.
Hence D is an SBURMD(t,2t,3t) where t = 2k. o

Illustration: k=51i.e. t=10,
b =(09182),
D,=(736485).
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Then
B-(0918273645546372819054637281890)
c=(091822819054637736455463728190)

Observe that SBURMD(t,2t,3t) constructed in the above method satisfies
the condition of note 2.1.4. Hence we have the following theorem.

Turomex 2.1.8. Let tin, tlp, p > t, nt”' be even and t be an even
integer. Then SBURMD(t,n,p) exists. o

2.1.6. THE CASE t = 4k

Consider the tuple

D: (1.2.3,...,4k - 2,4k - 1,0,1,2,...,2k0,2k,0)
Define tuples 4's as follows:
4 (i,2k - i, 1), i=1,2,...,k-1
4, 0 kK
4, (i.2k - i,i,2k = i,1), i=2k+ 1,2k +2,...,3k- 1
A, ¢ (3K,3K30).

Form a tuple D from D by replacing one occurrence of i by A,
i=1,2,...,kand i =2k+ 1,.:..3k

Let us define an operation * as follows:

Let 4 = (aa,
the tuple C = (C..C,...

,a), a, € Z_and k € Z. Then A * k is defined to be
n i N N

C ), where
n

a, + k if a, is even
{ ] i
2

; ~ k otherwise

Lewwa 2.1.9. (D 2 i: i€ 2, ) is an SBURMD(%,t,3t) where t = 4k.

Proof’: (1) 1In D the elements O and 2k have occurred thrice, the
elements 1,2,....,2k - 1 have occurred twice and the elements 2k + 1,
2k + 2,....,4k - 1 have occurred once. Observe that the collection of
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elements in {{2k-i

i}, 1 = 1,2,...,k-1} is {1,2,...,k-1,k+1,...,2k-1},
the collection of elements in {{2k-i,i,2k- } i i = 2k+1,...,3k-1} is
2.{2k+1,...,3k-1,3k+1,...,4k-1} where if X is a collection of elements

then 2X denotes the collection of elements in X, each occurring twice.
Also we replace k by (k,k) and 3k by (3k,3k,3k). Thus in D  each element
of de occurs thrice.

(11)  The collection of linked sums in D contains all the odd numbers in
Z,, and the number 2k precisely thrice.

(1i1) The collection of linked differences in A;, 1 =1, 2,..., k and
i = 2k + 1,..., 3k, contains all the even numbers in Z, except 2k,

precisely thrice.
(iv) The sum and difference of O and 2k are both 2k.
(v) iand 2k - i are either both odd or both even.

(vi) Let us see that a pair (a,b), a,b & Z,, occurs in {D'* i : i € Z,}
precisely thrice.

Case 1 : b = a.

(a,a) occurs precisely once in D % (2 - k) and twice in D° * (a - 3K) if
k is even and precisely once in D  * (k - a) and twice in D  # (3k - a)
if k is odd.

Case 2 : a - b = 2Zk.

(a,b) occurs precisely twice in D° % (a - k) and once in D' % a.

Case 3 : a + b is odd or equivalently a - b is odd.

In D, the collection of linked sums contains a + b precisely thrice, say

the corresponding occurrences in D’ are (u,v), (w,x) and (y,z). Then

D’t (a-u) if u is even

(a,b) occurs once m{ .
Dt (u-a) if u is odd.

Similarly (a,b) occurs once corresponding to (w,x) and (y,z}.
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Case 4 : a - b is even or equivalently a + b is even and a - b = 2k.

Due to (iii), we can find pairs (u,v), (w,x) and {y,2z) in D such that

u-v = w-x = y-z = a-b. Then corresponding to the pair (u,v),
D't (a - u) if u is even
p’% (u - a) if u is odd.

(a,b) occurs once in {

Similarly (a,b) occurs once corresponding to (w,x) and (y,z). o

Illustration : k=2, t = 8.
(123456701234040)
131

(2 2)

(57578)

(6 6 6)

Nt

CCSECS N}
o

-
The method described gives the following SBURMD(S8,8,24).
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B35365
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36060
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31 3
20 2
17 1
[ o
75 7
6 4 B
53 S
42 4
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One can see that the condition of note 2.1.4 is satisfied by the design
constructed by the method described in this section. Hence, we have the

following theorem.

TheEOREM 2.1.10. Let t Il n, t |l p, t < pand t = 0 (mod 4). Then an
SBURMD(t,n,p) always exists. o
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2.1.6. CONCLUDING REMARKS

' is odd, the existence problem of

When t = 2 (mod 4) and n.t’
SBURMD(t,n, p) is still unresolved. It has been shown by Roy (1988) that
SBURMD(2,2,6) does not exist. The method of differences for constructing
SBURMD(t, t,3t) works only if the group with t elements has the property
that the sum of all the elements in that group is the identity element.
We could not get a group with (4k + 2) elements having the above
mentioned property. The method of linked sum-difference as used in
sub-section 2.1.5 uses the fact that t = O (mod 4) and could not be

extended to the case t = 2 (mod 4).

2.2 UNDER A NON-CIRCULAR MODEL

2.2.1. INTRODUCTION

Here a method of comstruction of strongly balanced uniform repeated
measurements designs for t treatments, n experimental units and p periods
is given under a non-circular model, when t°| n and p/t is an odd integer
greater than 1. Cheng and Wu (1980) show that t°|n and t|p are necessary
conditions for the existence of an SBURMD(t,n,p) and give a method for
construction when t2| n and p/t is an even integer. We basically mimic
this method to arrive at the required design. Sen and Mukherjee (1987)
too provide method of construction for such designs but our method is

much simpler.

2.2.2. SOLUTION

Let G be a group of t elements with operation + (i.e. addition modulo t)
and let A = ((a”)) be an n x p array with elements from G. For g € G,

define A + g as an n x p array ((ax.\ + g)).
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Leww 2.2.1. If t2| nand p = 3t then there exists an SBURMD(t,n,p).

proof: Let A be an orthogonal array of size t° in 3 constraints, ¢t
levels and is of strength 2. This array always exists; a latln square
design of order t is an example of such an 4. Note that between any two
consecutive columns, every ordered pair of treatments appear exactly
once. Consider the n x 3t array B constructed as :
B = [ Alas1las2]. ... L4 (t-1)]

Since 4 is an orthogonal array of strength 2, so are A+l,A+2,...,4+(t-1).
Note that every ordered pair of treatments occur exactly once in the mx2
cubmatrix constructed using the third column of 4+g and first column of

A+(g+1); O = g = t-2. Thus B 1s obviously an SBURMD(t, t%,3t).

An SBURMD(t,ut2 3t) with p being any positive integer is obtained by
plecing p copies of B together as

B
5

Note 2.2.2. This method of construction may also be followed when p=2t.
It is easy to see that the treatment combinations as suggested by Cheng

and Wu (1980) for the first two periods is really an OA(n,2,t,2).

Tuzorew 2.2.3. If t°| n and p/t is an odd integer greater than one then
there exists an SBURMD(t,n,p).

Proof: Suppose p = at, where o is an odd integer greater than 1. Let 4
be an SBURMD(t,n,2t) and B be an SBURMD(t,n,3t) constructed as above.
Clearly we can obtain C. an SBURMD(t,n,p) by piecing (x - 3)/2 numbers of
A with B as

c=[ ala]...]4]8 ]. o
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Illustration : t =

units

NN N === 000

NP ONRONGSDO

2.2.3 CONCLUDING REMARKS

~ONONRNGREO

p = 9. The following is an SBURMD(3,9,9):

periods
1
1 2
100
2 1 2
2 2 0
2 01
01 0
0o 2 1
00 2

mh,re,O0O0ONNDN

~ONmON®RON

ON s NROROWN

The preceding construction method is suggested when the underlying model

is non-circular.

But for the same set of parameters,

the constructed

designs are strongly balanced uniform repeated measurements designs under

circular model too.
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3. CONSTRUCTION OF CIRCULAR NEARLY BALANCED
UNIFORM REPEATED MEASUREMENTS DESIGNS

3.1. INTRODUCTION

In this chapter construction of nearly balanced uniform RMD's are
discussed when the underlying statistical model is circular. Such designs
are constructed when the number of experimental unit (n) is equal to the
number of treatments (t). These designs are uniform on periods but not on
experimental units. Here near uniformity on units are achieved, viz., on
each experimental unit the frequency of administration of each treatment
differ by at most one. An RMD(t,n,p) is called circular nearly balanced
if the collection of ordered pairs (d; ;,d; ). 1sisn, Osjsp-1 (operation
on the second suffix is modulo p), contains each ordered pair of
treatments, distinct or not, either s or s+1 times, where s = [ p/t ],
the integral part of p/t. A circular nearly balanced RMD(t,n,p) which is
uniform on periods and near uniform on experimental units is termed as
circular nearly balanced uniform repeated measurements design and is
abbreviated as NBURMD(t,m, p). Note that for such designs t|n and tip. If
t|p then circular SBURMD(t,n,p) exists except when pt™' is odd and t = 2
(mod 4) [, refer Sharma(1982), Sen and Mukherjee (1987), and Dutta and
Roy (1892) 1. In this section SBURMD's are used to construct NBURMD's for
p > 2t. Also the method of differences, as presented in section 2.1.2, is

modified here for such constructions.

3.2. MODIFIED METHOD OF DIFFERENCES

Let G be a group with operation +, B be a subset of G and g € G. Then
B+g is defined as in section 2.1.2, viz., B+ g={ b+ g: be B ). The
proof of the following theorem being trivial, is omitted.
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Theorew 3.2.1. Let G be a group with t elements. Consider the p-tuple

B: (ay a...., a ) where a; € G¥ i =0, 1,...., p - 1, each element
of G occurs s or s+1 (s = [ p/t ]) times in B and C = (a; - a;: i =
0,1,...,p-1} (operation on the suffixes is modulo p) contains each

element of G either s or s+l times. Then { B + g : g € G } arranged in t
rows, forms NBURMD(t,t,p).

B will be referred to as a difference vector and C as the collection of
linked differences in B.

In B and C, the frequency of different elements of Z, differ by atmost
one and the sum of the elements of C is zero. So in a difference vector B
for an NBURMD(t,t,p), where p < f, no element can repeat and consequently
the element O does not belong to C. Also note that the sum of elements of
Z, is t/2 if t is an even integer and is O if t is odd. Therefore C can
neither be a -1 element set for t even and nor a i-2 element set for t
an odd integer. Also for p = t+1 when t is odd, the existence of a
difference vector B will imply C contains one non-zero element of Z,
twice and the rest once. Since the sum of the elements of such a C is
non-zero, it cannot be a set of linked differences. Thus in view of these

discussions, the following is easy to note.

NoTe 3.2.2. NBURMD(t,t,t-1) where t is an even integer, NBURMD(t,t,t-2)
and NBURMD(t, t, t+1) where t is an odd integer cannot be constructed using
the method of difference over Z, and using the usual operation of
addition modulo t. For these cases no construction procedure is provided
in this chapter.

3.3.(i). CASE p < t AND p EVEN

Define, a; = (i-1)/2 for odd i and 1= 1Sk
=t-is2 for even i and 1 =i sk
=is2 for even i and ki1 =i =p
=p-(i-3)/2 forodd i and k+1=1i=p
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where k‘ and k2 are odd positive integers such that k‘+ kz = p and
0=k -k, =2
1 2

Lewa 3.3.3. B : (ag,2,2,....,a, ) is a difference vector and when

developed over I, produces an NBURMD(t, t,p).

It is easily seen that a/’s are all distinct elements of Z,. Let

Proof:

d‘ =a;-a;, for i = 1,2,....,p where ap = a, Then the following can be

easily noted:

(1) | i Range of i dq; Range of d;
lsiskl—z t - i t—k’-*ZSdlit—l
2=1i=k-1 i 2=d, =k-1

1 1=k
i k. 1 1
3
kel=isp2 | pr1l-i 3 =k,
k‘-rZSiﬁp*l t-p-1+1i t-k2+1 t-2
i P t-p/s2
(ii) For even integers i, di,s are even for i = kif 1 and are odd for

i=k+ 1. Sodsare distinct and 2 = d; = max( k-1, k,) = p/2.

(ii1) For odd integers i, if d;'s are even (odd) for I = k- 2 then djs
are odd (even) for i = k+ 2. So, in this case too. d;'s are distinct and

t-p/2+1=min(t-k+2 t-k+1)=sd =t-1L
1 2 i
(1v) For i = k. d; > 1 ( =d ) and p/2 <t - p/2 (=a) <t - pr2+ 1
1

Hence, the linked differences in B are all distinct elements of Z, and
from the modified method of differences it follows that (aj.a,....a, )
is a difference vector and when developed over Z, produces an

NBURMD(?, t, p). °

Illustration : p= 10, t = 15.
Note k= k= 5. Thus the difference vector is B: (0 14 1 13 238 47 5)
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and the set of linked differences is C = {14,2,12,4,1,5,11,3,13,10}. So,
{B+ 1:1e2Z is an NBURMD(1S,15,10).

3.3.(ii). CASE p < t AND p ODD

It has been observed in note 3.2.2 that if p =t - 2 for t an odd integer
or p= t - 1 for t even then using the method of differences does not
produces an NBURMD(t,t,p). For p not equal to these two values, the
construction is discussed. Let p’ = p + 1. Note p’ is even. Following the
steps in 3.3.(1), construct a difference vector for NBURMD(t,t,p’) where
p’. k and k, are odd integers and 0 = k- k, s 2. It is easily

seen that p’/2 + 1 does not appear as a linked difference in this

difference vector. So, if k= k, then drop a, else if k= k+ 2 then

K

delete a, _ from this difference vector. :
1

Call this resultant p-tuple as B.

In view of the preceding discussions and lemma 3.3.3, the following is

immediate.
Lemta 3.3.4. The p-tuple B is a difference vector and when developed
over Z, gives an NBURMD(t,t,p). o

Illustration : p=9, t =15. So p’ = p + 1 = 10.

Here k = k= 5. Thus the difference vector B’ for NBURMD(1§,15,p’= 10) is
same as that of B obtained in the illustration in 3.3. (1), viz., B’ =
(014 1 13 23 8 4 7 5). Since k= k, so we drop a_= 3 and obtain B as
(014113284 75S5) and C as {14,2,12,4,6,11,3,13,10}.

Note 3.3.5. It is observed that if some of the rows in the previous
designs are deleted then they still continues to be an NBURMD. So
NBURMD(t,n,p) can be constructed for n = t, p < t and t not equal to
p+1orp+2 for odd p.
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In view of the preceding discussions the following theorem is immediate.

Turorew 3.3.6. If n = t, p < t and, t is not equal to p+l or p+2 If p is
an odd integer, then an NBURMD(t,n,p) exists. E

3.4 CASE t = 2k and p > ¢

Ve define the following notations:

"52'31)‘
.,b ) then
m

If 4 1s an n-tuple (a.a,...,a ) then 4’ is the n-tuple (a,

2

If 4 is an n-tuple (a,a,. ...,a,) and B is an a-tuple (b, b,

2
by 4B we mean the (nem-tuple (a,a,....,a,.b,b,.....b,). Consider Z,,

and the t-tuple D : (O 2k-1 1 2k-2 . . . k+l k-1 k). Note in D each
element of 7, occurs exactly once and, the collection of linked
differences in D contains each element of Z, precisely once except for
the elements O and k. Assuming the model to be circular, the set of
linked differences in D contains the element k twice and the element O
does not figure at all. Sharma (1982) and, Sen and Mukherjee (1987) have
shown D, = D D’ to be a difference vector for construction of
SBURMD(t, t,2t), viz., D and the associated set of linked differences in
D, contain each element of Z, twice.

Define tuples 4;'s as:
=0 1,...,[k21-1

A, : (i, 2k-1-4, ) , i
(i, 2k-2-i, 1) . 1= [k2), [k2)+l, ... k-2
(k=1, k=1) . i= k-1
(k+[(k-1)/21, k+[(k-1)/2]) B i=k

Let 4 be an ordered triplet (i,j, 1) or an ordered pair (i,i) then by {4}
we will denote the set {i,j} or {i} respectively. The collection of
linked differences in 4 will mean the set {j-i, i-j} or {0} respectively
and will be denoted by {d(4)}. Note that M {4;}is Z, and Yolatan
contains each element of Z, exactly once except for the elements O and
k. The difference 0 occurs twice while the difference k does not appear

in the collection.
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For t < p < 2t, consider the t-tuple D. Now replace an occurrence of i by
the tuple A‘., 0 = i = (p-t-1)/2 - 1 for (p-t-1)/2 elements of D and
replace the element k-1 by Ak—l if p-t is an odd integer. If p-t is an
even integer then replace an occurrence of i by 4, for (p-t-2) elements
of D, 0s i = (p-t-2)/2 - 1 and the elements k-1 and k+[(k-1)/2] by 4,
and Ak respectively. Note the procedure alsc gives a difference vector

for p = 2t, which on developing over Z, gives an SBURMD(t.t,2t).

For 2t < p < 3t, we follow a similar procedure on the 2t-tuple D . Here,
if p-2t is an odd integer then replace an occurrence of i by A; for
(p-2t-1)/2 elements of D, 0 < i = (p-2t-1)/2 - 1 and the element k-1 of
D, by 4, .. Else, if p-2t is even then replace an occurrence of I by the

triplet A, for (p-2t)/2 elements of D,, 0 =1i=(p2t)/2 - 1.

i
Let us denote the augmented t-tuple D or 2t-tuple D, by the p-tuple £. In
light of the preceding discussions the following lemma holds.

Lewwa 3.4.7. ( E + i : i = 0,1,...,t-1 } is an NBURMD(t,t,p) when t is

an even integer, t f p and t < p < 3t. o

NotE 3.4.8. If SBURMD(t,t,p t) and NBURMD(t,t,p,) both have an identical
column then NBURMD(t,¢,p t + p,) can be constructed easily. Since the
underlying statistical model is circular, we can always assume that the
identical column is the first column for both these designs. Consequently
by taking SBURMD(t,t,p t) followed by NBURMD(t,t,p,) we obtain an
NEURMD(!,!,pIt*pZ).

If SBURMD's and NBURMD’s are constructed using difference vectors then
the condition of the note is trivially satisfied.

For any t and p such that p > t we can express p as p+ p, where p is an
even integer and t < p, < 3t. Sen and Mukherjee (18987) showed the
existence of SBURMD(t,t,p ) using difference vectors and we have given
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method of comstruction of NBURMD(t,t,p.). In view of the preceding

discussions, lemma 3.4.7. and note 3.4.8, the following theorem is true.

Tuzores 3.4.9. If t is an even integer and p is any integer such that
t I pand p >t then NBURMD(t,t,p) always exists. a

Illustration : t = 10 and p = 15.

D: (0918273645)
A (08 0), A4: (181) .4, (262), 4; (353, 4: (40, 4: (T 7).
Replace an occurrence of i in D by 4; for i = 0,1 and replace 4 in D by

(4 4). The resultant is the difference vector
E: (080918182736445)
and the set of linked difference in E is
c=4{9 1,9 2 7, 3,7 4,5, 6,3, 8 0, 1, 5).
Now developing £ over Z, produces an NBURMD(10,10,15).

3.5 CASE t =2k + 1 AND p> (t+1)

Define tuples a;’s as:

Ap o Uiy 2kei D), £=0,1,....k"1
(k, k) ., i=k, and
A : (k+l, k+1)

The construction of NBURMD(t,t,p) for t+1 < p < 2t and for p > 2t will be

dealt with seperately.

For t+l < p < 2¢, let D be the difference vector for an NBURMD(t,t.:-1)
constructed following the steps given in 3.3.(i) and let p = (t-1) + j.

Note j = 3. In D, the element k+1 does not occur while the collection of

linked differences in D does not contain the element 0. Note U {4} = Z,

t
odd integer replace the elements k-1 and k by the tuples 4, = and 4,

and ).L)O{d(A‘)) = Z,. For construction of difference vector when j is an

respectively. Also replace an occurrence of i by 4,0 = { = (j-3)/2 - 1
for (j-3)/2 elements of D. If j is an even integer, then as before,
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replace the elements k-1 and k by the tuples 4, . and A, respectively.

k-1
Next in this augmented (t+2)-tuple, say D, replace the element k+1 by
the ordered pair 4 and replace an occurrence of i by A, O = i = (j-4)/2

- 1 for (j-4)/2 elements of D,.

For p > 2t, let p=rt + p, where r (=2) is a positive integer and
p, < t. Let D be the difference vector for an SBURMD(t,t.rt) constructed
following Dutta and Roy (1992). If p, is an odd integer then replace an
occurrence of i by A, for (p- 1)/2 elements of D, 0 = i = (p- 1)/2 - 1
and k by 4,. Else if p is even then replace i in D by A;, 0 =i =p-1.

Let the p-tuple obtained by augmenting (t-1)-tuple D or rt-tuple D be
called E. In view of the preceding discussions the following theorem

is immediate.

THEoREM 3.5.10. If t is an odd integer and p is any integer such that
tip and p > t+1 then NBURMD(t,t,p) always exists. o

Illustration : t =9, p=16. Note p = (t-1) + 8 and t + 1 < p < 2¢. Let
D be the difference vector for an NBURMD(9,9,8) where

D: (0817236 4)

The tuples A;'s are:

A (0 8 0), A (1 71), (262}, A; (35 3), (4 4), A: (5 5).

3]

2

Since j = 8, we replace the elements 3 and 4 in D by Aand 4

respectively and the element 5 by A. Also the elements O and 1 are
replaced by the tuples 4, and A respectively. The resultant difference

vector is
E: (0 8 08 17 17 2 355 3 6 4 4)
and the collection of linked differences in E is

{8 1,8, 2,6, 3 6,41,2,0 7,3, 7,0, 5}
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- z2veioping £ over Z_ the followlng NBURMD(9,9.16) is obtained

o
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3.6 CONCLUDING REMARKS

When p is an odd integer and t = p+ 1 or t=p+ 2and when t=p-1
for an even p. the existence problem of NBURMD(t,nm,p) 1is still
unresolved. Our inability to construct these designs is basically because
of the same reason as mentioned in section 2.1.6. Also it would be
interesting to find such designs when t | nand t J p, and n > t and/or
p>t
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4. TWO VARIANTS OF REPEATED MEASUREMENTS DESIGNS

4.1 INTRODUCTION

This chapter deals with two problems on construction of repeated
measurements designs (RMDs) involving t treatments. Both the problems
were posed by Bose (1995). In the first, balanced uniform repeated
measurements designs have been constructed when the number of
experimental unit is 1, which can be sliced or partitioned into blocks of
k distinct elements each. Construction algorithm is given when t(t-1)
divides p, and k divides p for odd t while k divides t or t-1 for even t,
p being the number of periods. It is easily noted that for such a design
to have the same number of units assigned to each treatment in each
period is infeasible as there is a single experimental unit. So in light
of the earlier definition, the design lacks uniformity over periods. This
property of uniformity is required to eliminate the heterogeneity of the
units in estimating the treatment effects. But when there is only one
unit this aspect is taken care of. So for n = 1 we term an RMD to be
uniform if on the unit each treatment appears in the same number of

periods.

In the second problem, we consider the class of SBURMD's and give
constructions for SBURMD's where the collection of ordered triplets
[dij’dijﬁ’diﬁ
is modulo p), contains each ordered triplet of treatments, distinct or

), 1=i=n 0= j=p1 (operation on the second suffix

not, the same number of times, that is, np/t’ times. Such a design is
considered by Bose (1995) which is optimal if treatment effect from two
previous periods are assumed in the model. Henceforth, such a design will
be referred to as a second order SBURMD(t,n,p). The problem is solved

when t is an odd prime and partially solved when t is a power of 2.

4.2. BURMD (t,1,p) PARTITIONED IN BLOCKS OF k DISTINCT ELEMENTS

Here the number of experimental unit is one and we are looking for a

balanced uniform design in t elements over p periods which can be sliced
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or partitioned into blocks of k distinct elements. Such a design will be
denoted by BURMD(E,1,p, k). Notice that a fourth parameter k is introduced
due to slicing requirement and absence of this fourth parameter, viz., a
BURMD(¢,1,p) indicates a balanced uniform repeated measurements design on
which there is no slicing requirement. Since the design is balanced, so
t(t-1)|p. Also one can note that if BURMD(t,1,t(t-1),k) exists then
BURMD(¢,1,mt(t-1),k) where m is any positive integer, can be constructed
repeating BURMD(t,1,t(t-1),k)'s horizontally m times. In view of these

preceding observations, the following lemma is immediate.

Lemua 4.2.0.1. If BURMD(t,1,t(t-1),k) exists then BURMD(t.1,p,k) exists

where p = mt(t - 1), m a positive integer. o
Therefore to start with we consider designs with p = t(t-1).

Additional requirement on blocks requires slicing or partitioning of the
design, viz., the sequence of t(t-1) treatments into subsequences, each
of k distinct elements. Therefore, k = t and kit(t-1).

A BURMD(t,1,t(t-1)) is an eulerian circuit in K; which exists for all t,
(refer Berge, 1985). But for the problem concerned an eulerian circuit
which can be sliced into blocks of k distinct elements is required. For
example, if t =4 and k=3 then 103121310231 120isa
BURMD(4,1,12,3). It is easy to see that the following lemmas are true.

LEwka 4.2.0.2. It is necessary for a BURMD(t,1,t(t-1),k) to exlist that
k =t and klt(t-1). o

Lewmsa 4.2.0.3. If BURMD(t,1,t(t-1),k) exists for k=1t and k=1 -1
then BURMD(t,1,t(t-1).k) exists for all k, where k divides t or else t-1.

a

The proof of lemma 4.2.0.3 is trivial since we have to put a ‘|’ mark
after every k elements in a BURMD(t,1,t(t-1),1t) or in a
BURMD(t,1, t(t-1),t-1) depending on whether k divides t or divides t-1

respectively.
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In construction of BURMD's for k = t or t-1, the following adaptation of

the method of differences is used.

4.2.1 METHOD OF DIFFERENCES

Let G be a group with operation +, B = (b, b,....b b)) be a circuit,
b€ G, for i =10,1,...,n"1, then B+ g, g € G, is defined as the circuit
(by* g b+ g.... b+ g b+ g). The proof of the following lemma,

being trivial, is omitted.

Lenna 4.2.1.4. Let G be a group with t elements. Let B be any circuit on
G and e, = (b, b, ), I = 0,1,...,n-1, (operation on suffix is modulo
0,1,...., n-1)

n). If all elements of the collection L ={ b, - b

are distinct, then the circuits {B + g : g € G} are arc disjoint. )

i

B will be referred to as a difference vector and L as the set of linked
differences in B. We now attempt to construct BURMD(t,1,%-1,k) for k = t
and k = t-1 by applying the lemma with C = Z,  or Z, , and denoting the
vertices of the complete directed graph with n vertices by the elements

of Z .
n

4.2.2. CASE k =t - 1 AND t EVEN

U {=}, where w is such that x + @ = w + X = w for all

Consider G = Z,

X € Z, , Let k and k, be odd positive integers such that k+ k= t - 2
and 0 = k- k_ = 2.

1T 2
Define

by = (i-1)/2 1= dsk and i odd,

= (t-1) - yr2 sl ==k and i even,

=(t-1) - (i-1)/2, k+ 1 =i =t-2 and iodd, and

= is2 » k+1=4ist-2 and i even

Note b,b,....,b, ..b, 1is a directed elementary circuit of length t-2

(f-2-circuit), and contains all the differences from 1 to t-2 and all

% 1
1

b 's are distinct. Also note b - b 1 (mod £-1).
1
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Let B = (b, ..b

,+1 P 2t b, > b.by,. .. 'bk ,m). Differences on edges of B

-
1
contain all non-zero residues modulo t-1 except 1, exactly once. So,

developing B according to Z,_ provides a total of t-1 blocks of size i-1

1

each. If one additional block € = (b, ..b, + 1.....b ) is adjoined to
f 1

these blocks,a total of t blocks of size t-1 1s obtained which is a

BURMD( 2, 1, t(t-1},t-1).

Illustration : t =8, k=7, and G = Z v {a}.
Therefore, k=3 and k= 3, and
(b,b,....b.b)=1(0 6 1 2 5 3 0

So, B=(2 5 3 0 6 1 =),

B+ i =(2+i S+i 3+i i B+i 1+i »), ieZ.

Therefore, the blocks are

B0 =(2 5 3 0 B 1 =),
B+1=(3 6 4 1 0 2 w),
B2=(4 0 5 2 1 3 =),
B+3=(5 1 6 3 2 4 =),
B4 = (6 2 0 4 3 5 =),
B+5=(0 3 1 5 4 6 =),
B+6 = (1 4 2 6 S 0 ), and
c =(2 3 4 5 6 0 1).

Thus we have constructed a BURMD(8,1,56,7) as:
B+0 | B+1 | B+2 | B+3 | B+4 | B+S | B+6 | C.

4.2.3. CASE k = t-1 AND t ODD

Consider G = Z, v {w} as before and the following directed elementary
path
o 1 2 ENES V7] (t-1)72

R
The differences among edges of the above path contain all non-zero

residues modulo t-1, exactly once. Let B = (0, t-2, 1, t-3, 2, t-4,.

(t-1)/2-1,w) obtained by replacing (t-1)/2 by «=. Developing B according
to Z, . as before, produces a total of t-1 blocks of size t-1 each. If
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this is adjoined by one additional block € = (0, 1, 2,..., t-2), we
obtain the required t blocks of size t-1 for a BURMD(t,1,t(t-1), t-1).

Illustration : t =7, k=6, and G=Z uiwl. SoB=(0 5§ 1 4 2 w).
Hence the blocks for BURMD(7,1,42,6) are

BfO=(0 5 1 4 2 =),
B*1=(1 0 2 5 3 w),
B2=(2 1 3 0 4 =),
B+3=1(3 2 4 1 5 =),
B+a = (4 3 5 2 0 w),
B+#5=(5 4 0 3 1 =), and
c =( 1 2 3 a 5).

The required design is:
B+O | B+1 | B+2 | B+3 | B+4 | B+5 | C.

4.2.4 CASE k=t AND t ODD

Consider G, = Z, = v {«}. Consider the same directed elementary path as
in section 4.2.3, viz.,

0 -2 1 t-3 2 t-4 (t-1)72 - 1 (t-1)/2.
Let B = (0,t-2,1,¢t-3,...,(t-1)/2,»). Now developing B according to z,.,
produces a total of t-1 blocks of size t each for a BURMD(t, 1, ¢(t-1),t).

Illustration : t =7, k=7 and G= Z_ u {=} as before.
So B = (0,5,1,4,2,3,@). Hence the blocks of size 7 for BURMD(7,1,42,7)
are:

B+0 | B+1 | B+2 | B+3 | B+4 | B+5.

4.2.5 CASE k=t AND t EVEN

Let V = 2z, ,
Define a directed elementary path E by £ = (0, ©. t-3, 1, t-4, 2, t-5,
-» (t-2)r72+1, (t-2)/2-1, (t-2)/2, =). Since among the differences on

v {e} U {=} uhere w 1is defined in the same way as w.

the edges of E, all non-zero residues modulo t-2 except -1 occur
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precisely once, developing E according to Z, , produces a total of t-2

t-2
blocks of size t. AdJoin to this an additional block € = (=, =, 0, t-3,
t-4, t-5, ..., 2, 1), to obtain the required BURMD(t,1,¢(¢-1).t) when ¢
is even.

Illustration : t =8, k=8, and V = 1s U {e} v (ml).
Define E = (0,@,5,1,4,2,3,=). Therefore, the required BURMD(S,1,56,8) is
E+O|E+1|E+2]. .. |E+S|C, where C = (w,®,0,5,4,3,2,1).

Following the construction of BURMD(t,1,t(t-1),t) for t odd (section
4.2.4), it may be noted that any sequence of less than or equal to t-2
elements contains all distinct treatments. So BURMD(t,1,p, k) where kst-2
and kip, exists. Also it is observed that BURMD(t,1,t(t-1),k) for k=1t

and k = t-1 exists. Hence we have the following theorems.

Theorew 4.2.5.5. If t is odd, k = t, t(t-1)|p and klp then BURMD(t,1,p.

k) exists. o

Tueoren 4.2.5.6. A BURMD(t,1,p,k) exists for even t if k = t, t(z-1)lp
and k divides t or else t-1. a

4.2.6. CONCLUDING REMARKS

If t is odd, k = t, t(t-1)|p and klp then the existence problem of
BURMD(t,1,p, k) is fully resolved. But the same is not true when ¢ is an

even integer. For even t, an additional requirement, that is kit or else

T is imposed on k to construct BURMD(t,1,p,k)'s.

4.3. CONSTRUCTION OF SECOND ORDER SBURMDs

Given a set T = {a,a,...,a} of ¢ treatments, the problem is to

construct an RMD, viz., :n array anp - ((du)). where each dU €T, tin,
tip and t’|np such that

(1) each treatment appears exactly p/t times in a row,

(11) each treatment appears exactly n/t times in a column,

(111) the design is strongly balanced, and
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Gv)af 4y = dp

| 0 = j = p-1, addition of the
n

second suffix is modulo p }, 1 = i = n thenU A; contains each

ordered triplet of treatments (a;a.a,); 22,2

jax € To exactly

the same number of times, that is, np/t> times.

It may be noted that requirement (iv) implies requirement (ii1), that is,
a second order URMD is also strongly balanced. Without loss of
generality, we shall denote the treatments by the elements of Z,.

The notion of the method of differences, adopted in this section, is same
as that of section 2.1 (Theorem 2.1.2). The definitions of difference

vector and the set of linked differences also remain the same.

4.3.1. CASE t AN ODD PRIME

Given t. an odd prime number, define for 1 = i = [t/2] and O = j = 2t-1,

b(1) = (4.5 /2 mod 1) for j even, and
= (-i.j*1 / 2 mod t) for j odd.
Note, the 2t-tuple B; = (b (i),b (i),...,b, (i), 1 = i = {tr2],
contains each element of Z, twice.
On By, let us define e, as the ordered pair(b (1),b, (i)). Also, note
for e;
= by, (i) = b(i) = (=.J¥1 mod t) for j even, and
= (i.J*1 mod t) for j odd,

where addition on suffix of b is modulo 2t. So the collection {d,
3

B;Y. 1 = i s [t/2], contains each element of Z, exactly twice. Therefore,

B, is a difference vector over Z, for each i = 1,2,....[t/2].

It is easily checked that for the difference vector B, sum of any two
consecutive difference is *i over Z‘, 1 = i = (ts2). So, among the pair
of differences in the preceding [t/2) difference sets, missing are the
ones whose sum is zero. We now modify B and replace the ordered pairs
(£-1,t-8) by the quadruplets (&-1,t-£2-1,t-8), £ = 1,2,...,t-3/2, and
the ordered pair (7=1/2, T-1/2) by the triplet (ZI-1/2, T-1/2, T-1/2). Let
the modified B be termed as 5.
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Lewna 4.3.1.7. B = B{B,...B{, 5 is a difference vector over Z, for t an
odd prime number and when developed over Z, produces a second order

SBURMD(t, £, 7).

Proof: 1In B each element of Z, occurs t times and the collection of
differences over the ordered pairs of B, viz., the set of linked
differences, contains each element of Z, exactly t times. Also, it may be
observed that each ordered pair of elements of Z, appears exactly once in
the collection of linked differences over the ordered pairs of B. So,
developing B over Z, produces a second order SBURMD(E.t, %),

For any triplet (i,J.k), i,j.k € Z,, let d= j-i, d,= k-jand d =d;+ d,.
If d is 0, +1 or -1 then the triplet can be found among the triplets
developed from Bj. Otherwise, if d = =, 2 = ¢ = [ts2], the triplet can

be located among the triplets developed from By a
Illustration : t = 7.

B,=( 8 1 5 2 4 33 4 2 5 1 6 0)

B, = s 2 3 4 16 6 1 4 3 2 5 0)

B =(0 4 3 1 85 2 2 65 6 13 4 0).

3

Note sum of two consecutive differences lis #i for B;. Those pair of

differences whose sum are zero, are missing. These triplets are

6 06 5 15 424 333 242 151 ad 0680

Consider B, and modify it as follows:
B“=(050615152424333425180).

B = 5] B, B, s a difference vector for a second order SBURMD(7,7,49) and

developlng % according to 2, produces the required design.

Searching for a triplet:

Let us locate the triplet (1,2,3). Note the sum of the differences (d) is
2 and the first difference (d,) is 1. The triplet (2,3,4) is a similar
triplet in B,. It is easy to see (2,3,4) + 6 = (1,2,3) over Z . So the
triplet (1.2, 3) can be located in the 7th row of the said SEURMD(7,7.45).

Since we have shown that a second order SBURMD(t, t,t%) can be constructed

48



for t an odd prime number, so second order SBURMD(t,n,p) can also be
constructed for n = mt and p = rt?, both m and r are positive integers,
by first writing m SBURMD(t,,t%)’s vertically and then by repeating this

configuration r times horizontally. Thus the following theorem is true.

Teoren 4.3.1.8. If t is an odd prime number and, tln and t°|p then a
second order SBURMD(t,n,p) exists. a

4.3.2. CASE t A POWER OF 2

Given t, a power of 2, let us consider Z, and define for 1 = i = t/2,
0= j=2t-1,
b,(4) = ((2i-3).(j/2) med t), for j even, and
= ((i-1).j mod t), for j odd.
Let d; ;= b, ()-b,(1), D; = (a, | d; ;v d
0 = j = 2t-1) (operation on suffix j is modulo 2t). It can be observed
that

0 s j s 2t-1), and D} = (

/2
i) D; contains each element of Z, twice. So UD, contains each element
of Z, t times.

11) d;(i) = @, (i) where j' = 2t-(j+1). This implies no ordered pair of
i=1,2,...,t/2, j=0,1,....2t-1.

elements of Z, can repeat in D,

uf contains 2(i-1) and 2(i-1)-1 (computations are modulo t) of Z,, t
times each and also note that no other difference appears in
D}. So,any ordered pair of elements of Z, can appear in only one of

the D;'s, i =1,2,...,t/2.

trz
1) U {(d; 5d; 7501 0 = j = 2t-1, operation on j is modulo 2t} cdntains

each ordered pair of elements of Z, exactly once.

Now let us count the frequency of each element of Z, in B where
trz
B= U b (i) 10 =j=2t-1).
Note (bj(l) | O0=j=2t-1, j even} = 2,, since t is a power of 2. Therefore,
/2
‘.gl(bj(x) | 0 = j = 2t-1, j even} contains each element of Z, t/2 times.
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Now for the case where j is odd, consider the collection:

trz
c, =34 (b i), CiNy, 1,3,5,...,t-1.

J

2t-
It is easy to note that

1) by(1) *+ by, (i) =0 mod ¢,

i

i) b (1) = by, [(i') implies i = i =1, and b (1) = 0 for all j = 1,3,

,2t-1. So pair of the type (a,2), 2 € Z, does not belong to C;

for nonzero a.

131) b (1) + by(17) =0 mod t implies i = i’ = 1. So in the same column
we cannot have elements whose sum is zero. Therefore, for a,b & Z,
such that a = b, it is impossible to have the ordered pairs (a,b)

and (b,a) both in C .

iv) All the elements in {b (1)] jodd, 1 =i s t/2} are distinct since ¢

is a power of 2.

v) G contains the pair (0,0) and all pairs sum to zero, and either

(a,b) or else (b.a) belongs to C, for a,b € Z, 3 a * b.

In view of the above observations, it is concluded that among the

elements of Z,, O appears twice, (/2 does not appear and rest appears
tre

once in C. Therefore .U (b (i)10 = j = 2t-1, j odd} contains the element

O t times, the elements other than O and t/2 exaqctly t/2 times, and the

element t/2 does not appear.
In view of the preceding discussions, it is noted that the frequency of
different elements of Z, in B is as follows:

the element O appears 3t/2 times
the element t/2 appears t/2 times, and

rest appears t times each.

Let By = (b ({)I0s j = 2t-1), i = 1,2,....t/2. Note B = (0,0,¢-1,0,¢-2,

~..,t-j*1,0,...,1,0), j even, and B, {0, cvieesennynne, t=i*l), for i=l.
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,t/2, and the

Now replace (t-i+1,0) in B, by (t-i+1(B|0) for i = 2,3,.
resultant configuration be termed as B’. Note the ordered pair (1,0)
appears at the end of B’, and further note that b!_‘(t/Z) = t/2 + 1 and
bt[t/Z) = t/2. So B’+{t/2} will contain the ordered pair (1,0). Let this
new array B’+{t/2} be rearranged such that (1,0) appears at the end and
this rearranged B’+{t/2} be termed as D. Now (B’[D) developed over Zt is
a second order SBURMD(t,t,2t%). Following the procedure mentioned in
section 4.3.1, one can easily construct a second order SBURMD(t,mt,2rt?),
where both m and r are positive integers, and t is a power of 2. Thus the

following theorem is true.

THeoReM 4.3.2.9. If t is a power of 2, tln and 2t°|p then a second order

SBURMD(t,n,p) exists. a

4.3.3. CONCLUDING REMARKS

The existence problem of the second order SBURMD(t,n.p)'s, where e
assume that in each unit the residuals in a period are incurred from the
two previous periods, is not fully resolved. If t is neither an odd prime
nor a power of 2 then the problem remains unresolved. Also for ¢ a power

of 2, the problem has a partial solution.
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5. CONSTRUCTION OF SYMMETRIC BALANCED SQUARES

5.1. INTRODUCTION

In this chapter a conmstructive proof of existence of symmetric balanced
squares (SBSs) for different sizes of array and for different numbers of
treatments is given. An algorithm, easily implementable on computers, has
been developed for construction of such squares whenever the parameters
satisfy the necessary conditions for existence of the square. The method
of construction employs 1-factorizations of a complete graph or near
\-factorizations of a complete graph, depending on whether the size of
the array is even or odd, respectively. For odd sized squares the method
provides a solution directly based on the near 1-factorization. In the™
case of the squares being of even size, we use Hall’s matching theorem
along with a 1-factorization If (n?/v] is even, otherwise, Hall’s
matching theorem together with Fulkerson's (1958) theorem, on the
existence of a feasible flow in a network with bounds on flow leaving the

sources and entering the sinks, lead to the required solution.

Let us recall the definition of a balanced square BS(m,v) as given in
section 1.2. Let r = (n/v], the integral part of n/v, and let f = (v},
From the definition it follows that a BS of size n in v elements is an
nxn array, D=((d

)). where d, . denotes the element assigned to the jth

tN)
column in ith row, I,J = 1,2, . . . .,n satisfy the following conditions:
(i) each element occurs r or r+l times in every row and column (viz.,

rows and columns are balanced),

(11) each element occurs f or f+l times in the array (viz., array is

balanced).

Construction of such a square is quite simple. The clements are written
sequentially over a row. A new row starts with the element that follous
the last element of the previous row. If the element already appears in
the first position of onme of the previous rows, and if not all the
elements have appeared in the first column, then take an element which
does not appear and repeat the process. Here s an example of BS(5,4).

Note r=1 and f£=9.
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Table 5.1: BS(6,4)

A BS (n,v) is said to be symmetric if d; =d,, f,J =12 . . ., n &
symmetric BS (n,v) is abbreviated as SBS (n,v).

If the number of elements (v) is the same as that of the size of the
array (n), then an SBS (n,n) is a symmetric latin square of order n. The

addition table of Z modulo n is such an example.

A generalized notion of balanced squares is balanced rectangles (BRs). A
BR of size nxc in v elements, abbreviated as BR(n,c,v), is an nxc array
containing v elements where
1) each element occurs either r or r + 1 times in every column, where
r = [n/vl.

i1) each element occurs s or s+1 times in every row, where s = [e/v].
iii) every element appears either f or f + 1 times in the array, where
£ = [nxesvl.

The same construction procedure as with BS's works as well with BR's.

z

o[ 0ol | | o] o] -
[XENIN X ENTY
EEERNEER
ol ] cof o] |
o] wf | | o] 00| |

3
Table 5.2: BR(7,6,4)

S.2. DEFINITIONS AND SOME OBSERVATIONS

Let r=[n/v], the integral part of n/v, and let f = [n°/v]l, the integral
part of n°/v. It can be easily seen that
n = (n-rv)(r+1) + (r+1 v-n)r (5.2.1)
nP= (RP-fv) (£+1) + (FFIv-n®)r (5.2.2)
Thus an SBS (n,v) has (r+lv-n) elements in r cells each and (n-rv)
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clements in r+1 cells each in any row or column. Also, there are
(F7Tv-n?) elements in f cells each and (n°-fy) elements in f+1 cells each

in the square.

An SBS being symmetric, any element with odd frequency must occupy a
position on the main diagonal. So a necessary condition for the array to
exist is that the number of elements with odd frequency must not exceed
the size of the square, n. It 1is also easy to note that the maximum
number of distinct elements that a symmetric square can accommodate 1s
n(m+1)72. The existence of SBS (1,v) is a triviality. These observations
imply the following lemma.

Lewwa 5.2.1. The necessary conditions for existence of an SBS(m,v), n>l
are (i) v=n(n+1)/2 and (ii) the number of elements of odd frequency in

the square should not exceed the size of the array, n. o

It can be seen that if SBS (n,v) exist for v = n < 2v then SBS (n,v)
exist for all nz2v. Let n=rv+ s, 0 =s<v-l, r =2 AnSBS (n,v), n

= 2v, can then be generated as

A A A TA]B
A A AlAB

Al---1]AJA|B
AJTAT---1TA C
BT BT [ &7

where A is any symmetric latin square of order v, B is the first s

columns of A and C is an SBS (v+s, v).

Lemwa 5.2.2. If SBS (n,v) exist for v = n < 2v then SBS (n,v) exist for

all n = 2v. o

In view of the preceding lemma, we will restrict our construction
algorithm to n and v such that n < 2v. The proposed construction
algorithm depends on 1-factorization/mear 1-factorization of K depending
_on whether the value of n is even or odd, respectively. So we define and

discuss it in subsequent sections.
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DEFINITION 5.2.3. Let n be even. A spanning subgraph of K, consisting of
n/2 vertex-—disjoint edges is called a 1l-factor of K_. A decomposition of
K, into (n-1) disjoint 1-factors is called a l-factorization of K.

DeFimITION 5.2 Let n be odd. A spanning subgraph of K consisting of

an isolated vertex and (n-1)/2 vertex-disjoint edges is defined as a near
l-factor of K, . A decomposition of K inte n disjoint near l-factors is

called a pear 1-factorization of K.

These factorizations exist for all n. Now we proceed to provide one such

construction which will be used in subsequent sections for construction

of SBS's.
Let the vertices of Kzn be denoted by 0,1, . . .,2n2,e. Define for
i=1,2, . . ..2n-1, the ordered set of edges

S; = (=, I-1)} v ((FF1+], T-1-J), J=1,2, . . .,n-1}
where each of the vertices i-1+j and i-1-j is expressed as one of the
numbers O, 1, 2, . . -» 2n-2 modulo 2n-1. Clearly, the collecticn
($J.,X=l,2,, . .., 2n-1} is a 1-factorization of Kzn'

If the number of vertices is odd say 2n -1, then we use a near
1-factorization. This is obtained by just replacing the edge (e I-1) in
the ith factor of K . as defined above, by the vertex {i-1} to obtain a

near 1-factor of K__ .
2n-1

The above edge-decomposition of K will be termed as an array of edges
associated with the corresponding 1-factorization or near
1-factorization. Let there be an nxn array Dn= ((d)'j)) associated with
this array of edges, whose row and column are labelled with the vertices
of K. The edge (i,)) represents cells (i,j) and (j,i) of D. We say an
element x is placed in the edge (i,j), if and only if, d;, = d, = x
furthermore, we say that x is placed in vertex i of the near 1-factor
S":'1 if and only if dijX'

We say m edges are consecutive if either they are consecutive edges in
the same row of the array of edges, or are divided between rows as
consecutive edges at the left most end of a row and the right most end of
the subsequent row. To be more precise, the factors are considered in the
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order

San-1%2n-2 - S5,
and the edges are scanned from right to left. The consecutiveness of
edges discussed above implies these edges are consecutive edges in this
ordered arrangement of factors. For example let us consider the following
1-factorization of K.

consacutive

2(00) (16) (25) (34) "
(co1) (20) (36) (45)
(02) (31) (40) (56)

(006) (05) (14) (23)
Here edges (2 5) and (3 4) are consecutive edges, so are the edges (= 0)
and (4 5.

It is easy to note that any set of n-1 consecutive edges, either in the

1-factorization of K, or in the near 1-factorization of K contains

2n+e1’
2(n-1) distinct vertices of the corresponding complete graph. Any
complete row contains all the vertices. This observation is instrumental

in providing an algorithm for the comstruction of SBS's.

5.3. CASE n< v AND n ODD

Let n and v satisfy the two necessary conditions for existence of an
SBS(n,v). Let r and f satisfy the equations 5.2.1 and 5.2.2 respectively.

If £ is odd then F¥lv - n°

elements are to be placed in the array of

edges using i(r—n edges each and n’- fv elements using é(nn edges

each, provided all can be accommodated in the array without using the
>

—v(f+1)/2

while there are n(n-1)/2 edges in the array. Thus, there will be a

jsolated vertices. Total number of edges required will be n

shortfall of [n-(F¥1v-n®)1/2 edges, which are to be obtained from the

diagenal cells, replacing each edge by two vertices, viz., two diagonal

cells The number of cells left on the diagonal after this allocation

will be F#T v- n°, meant for allocating elements with odd frequency.

If f is even then all v elements are to be placed in the array of edges
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allocating f/2 edges each for every element. Thus we fall short by [n-(n°

-fv)1/2 edges. These are obtained again from the main diagonal in the
same way as before. The remaining n’-fv positions left on the diagonal

accommodate the elements with odd frequency.

In view of the above observations we propose a simple algorithm to
construct an SBS (n,v) when n is odd. Before we proceed with the general

algorithm, let us deal with two special cases, namely, f=n-1 and f=n-2.

Case f=n-1. Let v = n+ &, where 8 = 1 as n < v. Note, n°= (n-1)(n + A) +

[~ (A=-1)nl. Now f=n-1implies 0 =A-(A-1)n<v, viz., 0 <A
=1+ 1/ (n - 1). A being integer, we have & = 1.

So, an SBS (n,n+1) has to be constructed. This is easily achieved by
considering a symmetric latin square of order n+l1, and then dropping any
of the n+l rows and the same column from the square, viz., if we drop ith
row then ith column has to be dropped to get an SBS (m,n+1).

2

Case f =n-2. Note n° = (n-2) (n+ 8) + {2 A - ( A -2)n], where v=n + A, &

= 1. Now, f =n -2 implies 2 = A = 2 + 4/(n-2). So for n > 6, we have 4 =
2, and for n =5, A =2 or 3. But, if A =3, viz., v = 8, the necessary
condition for existence of SBS is violated since the number of odd
frequency elements is greater than the array size. So if n=5 then A = 2.

The only other case to be looked into is that for n=3.

If r=3 then 2=As6. For SBS to exist it is required that v = n(n+1)/2 =

this implies 2 = A = 3. Let us deal with the case A = 3 separately. The
following is an SBS (3, 6).

[o[ol]

[4]
[2]
(6]
Table 5.3: SBS (3,6)

Now the remaining case, viz., construction of SBS (n,m+2) is discussed.
Since n is odd, consider the near 1-factorization of K . Allocate m2
elements in the array of edges, each placed in (n -1)/2 consecutive edges
or vertices, starting with the right most edge in the first row. The
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jsolated vertex, {n -1}, remains unallocated. During this allocation
process, 3 elements are placed in (n -1)/2 consecutive edges only; n-i
clements are placed in (n-3)/2 consecutive edges and a vertex. Three of
these latter n-1 elements do not contain the vertex {n-1}. So, attach to
any of these three elements the vertex (n-1}. Thus an SBS (n, m2) has
been constructed.

Example 5.3.5. n=7 and v=8. Thus r=0 and f=5. This implies 4 elements
occur with frequency f+1 = 6 and the remaining § with frequency f = 5.

Consider the near 1-factorization of K .

0123 456
o g en ea (PETTET
1 (20) 38 (45) T05[1[6
2 31 (0 66 4 5111712
T a0 (o INEAR
4 (53) (62) (1) & 218
5 (64) (03) (13

56 (05) (14) (23) 2

Table 5.4: SBS (7,9)

The above is an example of an SBS (7, 8) with frequency of elements 1,4,5

and 9 being 6 and the frequency of the remaining elements being 5.

ALcoRITHM 5.3.6. (Case n < v, n odd and f < n -2)

Step 1. Consider the near 1-factorization of Kn. Calculate the number of
positions to be filled on the diagonal to account for the even
parts. (An even part of an element with frequency f is f-1 if f
is odd and is f if f is even.] This is n ~(F7Iv-n®) or n-(n°-fv)

depending on whether f is odd or even respectively.

Ocoupy these vertices by placing elements necessarily with
even frequency, so that nc vertex is repeated for the element
placed using the diagonals and the left most consecutive edges

jast row in the array of edges. A simple algebraic
manipulation will give that number of elements of even frequency
that occupy vertices of K is r. and p vertices of K, are

nccupied by an element of even frequency where
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p = n(f+iv -9 if

f  odd,
= n-(n"-fv) if £ even, and
r = [p/f] if f even,
= [prir+1)] if  f  odd.
Step 2. Place elements, one by one, starting from right most end of

first row, in the required number of consecutive edges and
vertices of the near 1-factorization of K. During this
allocation of elements, whenever an occupied vertex of K, (that
is, a vertex which already has an element placed in it) is
encountered, it is simply passed over and the next edge in the
sequence is considered. The elements placed in a vertex of the

array of edges are the ones having odd frequency.

Ope can easily note that the construction has proceeded by maintaining
the requirement on frequency of the elements, and as f < n2, so the
vertices occupied by each element are distinct. Thus the following lemma
follows.

Lewa 5.3.7. The algorithm 5.3.6 produces an SBS (n,v), when n < v, n is
odd and f < n-2. o

Example 5.3.8. n =7 and v =11. Thus r = 0 and f = 4. So, there will be
5 elements with frequency 5 and 6 elements with frequency 4. Now consider
the near 1-factorization of K . Total number of edges required to
accommodate the even parts is 5x2+6x2 = 22. The total number of available
edges is 3x7 = 21. So we fall short by 1 edge, which is accounted for by
2 diagonal positions, viz., 11th element contains the last edge (0 §) and

two diagonal cells from amongst 1,2,3,4 and 6.

01 2 3 4 5 6
0 16 25 3 4 o[2]7[3] 9 4 |11 [ 5
TN Gh LR e
2 61 ) 56 3 6 1 8 3
(42) G (60) TI[3[0
(53) (01 5 13
(64) (03) (13) T
[ 0s) a9 (23

Tablé §.5: SBS {7,11)
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locz

ted vertices 6 and 4 %o the 11th element along with the edge

For the rest we start from (2 4}, allocate 2 edges for elements
t oscupying @ vertex and Lwo edges plus a vertex for those occupying
one. Thus the above is an SBS (7,11) where elements 1,4,7.8,10 and 11
appear 4 times and 2,3,5,6 and 9 appear 5 times in the array. No element
appears twice in a row or column.

S.4. CASE n < v AND n EVEN

Let n and v satisfy the necessary conditions for existence, and let r and
f satisfy equations 5.2.1 and 5.2.2.

Case f e Since f+1 is odd, any feasible solution must contain n’- fv

elements, those with frequency f+1 in the array, appearing on the maln
diagonal an odd number of times, and the remaining elements either do not

appear, or appear even number of times, on the main diagonal.

¢« 5.4.9. (Case n<v, n even and f even)

Step 1. Consider the t-factorization of K, . Siarting from the right hand
end of the first row of the factorization, place elements one by
one, in f/2 consecutive edges, until all the edges are exhausted

or the left over edges are fewer than f/2.

Step 2. Let X be the set of vertices of K, Y be the set of elements
allocated in step 1, and let E be the edges (x, y) such that the
vertex x is not allocated to the element y. Consider the
bipartite graph G(X,Y,E). Get a matching of X into Y. Place the
matshed slements of Y in the corresponding main diagonal cells

s cepresented by the matched vertices.

Step 3. Consider the next element not allocated in step 1, if any. If
there are unallocated edges in the last row, allot them to this

element. Coatinue the

ilocation on diagonal cells, counting two
diagonal ceils as one edge equivalent, so that no vertex is

repeated.
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Step 4. If there are unallocated elements, then allocate them on
diagonals, at f positions each, replacing the matched elements
of step 2. The positions occupied by the element placed in-step
3 should not be disturbed. Continue this until all v elements

are placed.

REMaRK 5.4.10. At least n+l elements will be allocated f/2 edges each,
in step 1.

REMARK 5.4.11. The matching, discussed in step 2, exists.
Proof: |X| = n < n+*l = |Yl, by remark 5.4.10. deg(y) = n~f for &all y € Y.
Note any vertex x will be contained in either n-1 or n-2 of the elements

depending on whether or not the vertex stands allocated in the last

factor S__ .. viz., last row.

So, deg (x) = u or u+l, where u = Y| - (n-1).

Therefore, min deg (x) = w = n-f = max deg (y). Thus it follows from
xeX yey

Hall's theorem on matching that X can be matched into Y. . o

Lewsa 5.4.12. The algorithm 5.4.9 constructs an SBS(n,v) when n < v and,

both n and f are even.

Proof: Let t = [Aln-1)/f), then in step 1 y.y,. . . ..y, elements are
allocated to f/2 edges. Consequently, they have a frequency of f in the
array. At step 2, for n of these t elements, the frequency in the array

is increased to (f+1).

At step 3 and 4, remaining elements are entered on the diagonal and/or
left over edges with an individual frequency of f in the array. Some of
the n elements placed on the diagonal at step 2 are reduced to frequency

£ in the array.

Observe that the frequency of the elements in the array is f or f+1. The
algorithm allocates elements in such a way that no vertex -is repeated for
any element. Thus the frequency of an element in any row or column is at

most 1. Therefore, the algorithm yields an SBS(n,v). a
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Exampie 5.4.13. r=8 and v=10. Thus r=0 and f=6 and there are 4 elements
ia 7 cells each and & elements in 6 cells each in the array. An element
appears at most once in any row or coiumn. Consider the l-factorization

of Ka'

s 01 2 3 4 5 6
w[9[2[3] 4] 6 [ 7 8|10
(000) (16) (25) (34) O 1(6][ 3 (8 [ 419 (5
(o) (20) (36) (45 1 2 7 4 g 5 | 1
{x2) (31) (40) (56) 2 Bol| 0 [ 5 [ 16
T3] (42) (51)_(69) 3 Fol 1 1 7 |2
(cof) (53) (62) (01) 4 Aol 2 |8
{o08) (64) (03) (12 5 B | 3
(ocb) (65) (T4) (23) & 7
Table 5.6: SBS (8,10).

X : o 0 1 2 3 4 5 &

Y O 2 3 @ ¢4 4

5 78 ®®6 ©® O

[©) 9

Table 5.7: A matching of the diagonals.

The 10th element js placed ir the edge (o 6) and 4 diagonal positions
2,3.4 and 5. Thus 2n SRS(8,10} with 4 elements 1,2,7, and 9 appearing in
7 cells esch and the remaining 6 elements in 6 cells each in the array.

No element occurs more than once in any row or column.

Case £ odd. For any feasible SBS, the F+1 v-n’ elements that occur with

freguoncy £ in the array, must appear an odd number of times in cells of
the main diagonal, the remaining n° - fv elements either do not appear or

appear even number of times on the main diagonal.

ALcorITHM 5.4.14. (Case n < v, n even and f odd).

Step 1. Set t=(f + 1) v - n°. As n and v satisfles the necessary

conditions for existence, so n-t = 0 and 2|(n -t).

Let &=t+(n-t)s2 = (n+t)/2. Consider the i-factorization of K .
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Step 2. Place £ elements in (f-1)/2 consecutive edges as before.

Step 3. Place the remaining v-£ elements in (f+1)/2 consecutive edges,
starting from the unoccupied edge .consecutive to the .last edge
of the fth element.

Step 4. Let X be the set of vertices of K, Y be the set of first &
elements allocated in step 2, and let E be the set of edges
(y x) such that the vertex x is not allocatéd to the element y.
Consider the bipartite graph G(Y,X,E). Get a minimal vertex
covering, C, of G, viz., t of the elements of Y have degree 1 in
C and the remaining -t elements of Y have degree 2 in C, and
each vertex of X has degree 1 in C. Place the incident elements
of Y in the corresponding diagonals as represented by the

matched vertices.

REMARK §.4.15. All edges of the 1-factorization of K, are occupied after

the allocation of elements in step 3.

REMARK 5.4.16. The minimal vertex covering, discussed in step 4, exists.

Proof: Let X and Y be as defined in step 4 and let E be the set of edges
(y,x) such that the vertex x is not allocated tc the element y. Consider

the network [Y v X, E] with the capacity function c defined as

for all (y,x) € E, where Y is the set of sources and X is the
sinks.

Let there be associated with each y € Y, two non-negative numbers a(y;
and a’(y), and with each x € X, a non-negative number b(x), ‘defined by

a(y)=1, a’(y)=2 for all y € Y and o(x)=1 for all x € X.

Finding a minimal vertex covering in step 4 is equivalent to finding a

feasible flow f satisfying

aly) = f(y.,YuX) - f(YUX,y) = a’(y), yeY
FIYUX, %) = £(x,YuX) = blx), x &X (5.4.3)
0 = fly,x) = cly,x), (y,x) € E



Fulkerson (1959) had shown that ihe constraint set (5.4.3) is feasible if

and only if each of the ccnsiralnt sets

aly) = fly,yuX) - f(YX,y) , yey
FIYUX, x) - flx,7uX) = b(x), xe&X (5.4.4)
0 = fly.x) s ely,x), (y,x) € E.
and
Fly, Yux) = f(YuX,y) = a'(y), y €Y
b(x) = FIYUX.x) = Fx,YUX), x eX (5.4.5)
0 = #(y.x) = ely.x), (y,x) € E.

is feasible. So we proceed to show that the constraint sets (5.4.4) and

(5.4.5) are feasibie.

deg (y) = n-(f-1) for all y € Y. Let

Note Y| = & = n =
r= TFT1I/n |. Note r 1-factors are needed to accommodate ¢ elements, as
discussed in step 2. Any vertex x appears r times in these r l-factors.
So, either r of them or r-1 of them stand allocated, depending on whether
it stonds allocated in S,. This implies, either £-r or {-rel elements of
¥ are not allocated to vertex x. So deglx) = u or u+l where u =t-r.
Therefore, max deg (x) = u +1 = n~(f-1) = min deg (y}.
xeX yeY
By Hall's matching theorem a matehing of Y into X exists. Take any such

matching & € E and defire fly,x) =1 if (y.x) e M and zero otherwise.

Clearly sfies (5.4 4).

Now, Y’, 2 st o s, is defined from Y as

¥ 15158,
;= Yiw (2 +1) = i = 22

Extend E to £° by adding |E| edges by comnecting yj , to all those x's to
2. . .t

which y; is comnected, i=

ly'| = 20 = a = IXl deg (y') = n -(¥ - 1) for all y* € Y, and

Note

deg(x) = 2u or 2(

2u = n - (£-1). Ihus, max deg(y’) = n - (£-1) = 2u= min deglx). Again,
‘e X

«1) for sll x € X. 1t can easily be shown that

e;
\s theocem a matshing of X inte Y’ exists. Take any such matching

and define £/ “rom Y to ¥ by
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£y, x) =2 if (y,.x) and (y, . x) e M
=1 if (y.x) or else (y; ,x) &M

= 0 otherwise.

Clearly f’ satisfies the constraint set (5.4.5).

Thus, there exists a feasible flow f satisfying the constraint set

(5.4.3) which provides a minimal vertex covering as discussed in step 4.

Lewsa 5.4.17. The algorithm 5.4.14 produces an SBS(n,v) when n < v, n is

even and f is odd. o

The proof is simple and follows in the same way as that of lemma 5.4.12,

and thus is omitted.

Example 5.4.18. n=8 and v=11. Thus f=5, t=2 and {=5. So, there will be 9
elements in 6 cells each and 2 elements in 5 cells each in thé array
SBS(8, 11). Consider the 1-factorization of K, As suggested in step 2,
£=5 elements, 1,2,. . .,S5, say, are first placed in the array, each in 2
consecutive edges. Following step 3, elements 6, . . ., 11 are placed in

the array. each in 3 consecutive edges.

© 0 1 2 3 4 5 6
o[B8 [2]4]6] 7 [9 [10]11
(c00) (16) (25) (34) 0 T[8]4] 0[5 ]11]6
(ool) ( (36) (45 1 5(9][6 (11| 712
[ (10 _ (56 2 I3[0 7 |1 [8
(c03) ( (1) (60) 3 5 |1]8 3
(c01) (53) (62) (01 4 4310
(c08) (64) (03) (12 5 Z (5
To6) (05) (14) (23) 6 1
Table 5.8: SBS (8,11)

X o~ 0 1 2 3 4 5 6

Y : I ©1 2 2 2 @ 1

@3 3 @4 @4 @

5 ® 5 D

Table 5.9: A covering of the diagonals.

So, an SBS(8, 11) is constructed, where 2 elements, 1 and 2, appear in 5
cells each, while the remaining elements appear in .6 cells each. FEach



element occurs at most once in any row or column.

5.5. CASE v < n< 2v

Here, the necessary conditions for existence of an SBS(n,v) are satisfied
for all v and n. If an SHS {n-v.v) exists, then SBS(n,v) can be generated
as

i’ a i 8 -i

ey

where A is any symmetric latin square of order v, B is the first n-v

T

columns of A4, B' is the transpose of B, and C is an SBS(n-v,v).

If an SBS(m-v,v) does not exist then it implies a violation of either of
the necessary conditions for existence. If the condition on the feasible
number of elements is violated, viz., if v > i(n-v)(n-v+1), then n-v of
Lhe v clements occupying the main diagonal occur with frequency 1. Of the
. emaining elements, (n-v)(n-v-1)/2 cccur in the off-diagonal positions,
cach twice and the rest do not appear. So the array will not be balanced.
An extended concept is defined in such situations. A symmetric square of
size m is saic to be near balanced if the rows and columns are balanced,
and £~ £

=2, i,j=1,2, . . .,v, where f; and f are frequencies of
ith and jth elements respectively in the array. Such an array will be
abbreviated as NSBS(m, v). The above array is thus an NSBS(n-v,v).

The other case of non-existence of an SBS{n-v,v) occurs when the number
of elements with odd frequency is more than n-v. in such situations too,

a near balance is attempted.

One can easily check that m® can be expressed as m*

1)+mf’ +

Ate
x,(£7+1) where ¥ +x,=v -m and f' is odd. So, to achieve near balance x,.m
and x,- elements ere to be placed in f/-1, f’ and f’+1 cells each
respectively. This can easily be done by placing elements one by one, in
+he 1-factorization or near 1-factorization of K depending on m. The
vrocedure is similar to the ones discussed in algorithms 5.3.6 and 5.4.9,

and then finding a matching of ths elements to the diagonal if m is even



Example 5.5.19. m=7 and v=10. Thus r=4 and this implies there has to be
1 element with frequency 4 and 9 elements with frequency S in a 7 x 7
symmetric array, which is infeasible. But 7°= 2.4 + 7.5 + 1.5, viz..
£'=5, x,= 2 and x,= 1. So we find an NSBS(7,10).

2]6[3][8]4[10] 5 i
6) (25) (34) 384105 [ 1
(2.0) (4 5) 4[9(6 |1 7
(31) (40) (56 6|17 2
(4 2) ( 712 9
(33) (62) (01) 9 3
5 (64) (03) (12) 10

Table 5.10: An NSBS (7, 10)

Lemma 5.5.20. An SBS{(n, v} exists for v < n < 2v. -

Proof: let B be a v x A=V matrix whose first column is b where k=
(0,2,4, . . .,2{v-1/21.1,3,5, . . .,2(v/2]-1). Generate the i+1 th columa
of B from the ith column by moving the elemerts of the column up one
position and placing the first element in the last position. In B, d» nob
allow the column with 1 in the first position. In such a situation

generate n-v+1 columns and discard the offending ene.

Let C be an NSBS(n-v,v) where x ,n-v,x, elements have frequency f'-1, f’
and f’+1 respectively. Let x = min (x ,x,). Without loss of generality,
elements 1,3,5, . . ..2x - 1 occur with frequency f’-1 and elements
0,2,4, . . .,2x -2 occur with frequency f’+1. Censider the n x n array D,

A B_

-

BT _C
=]

\ RTuxy

where A is the symmetric latin square generated as the addition table of
Z,. Note ith row of D sontains 2(i-1) twlce and 2(i-1)+1 only once,
£=1,2, . . .,[v/2]. So by dropping the elements 0,2,4, . . ., from tne

ce in

diagonal of 4 and replacing them by elements 1,3,5,. . ., the bal
D is restored. So D i5 un SBS(n,v) for v < n <-2v after the mod.ficatian.
o
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Example 5.5.21. n=17, v=10.

Solution: Conslder the NSBS(7,1C) constructsd in the example 5.5.19. Let
us renumber the elements in it as 1 —30, 2 ~— 2, 3 -— ¢, 4 —5,

5 -—1,6--56, 7 -—7, 53— 3,9 -->8and 10 —> 9.

A= B=
~0] 123456789 0246835
1 234567890 2468157
2 345678901 4681379
3 456789012 6813590
4 5678901238 8135702
5 678901234 1357924
6 789012345 3579046
7 8901234586 5790268
D= 8§ 901234567 7902481
9 012345678 9024613
26435091
6435910
4358607
BT 3586072
5960728
9107284
1072849

=C

Table 5.11: An SBS(17,10)
Note, frequency of O in the NSBS(7,10) is 6 while that of 1 and 3 are 4.
So, from the dlagonal of the first row of the 17 x 17 matrix, 0 is
removed and 1 is introduced. The modified array is then an SBS(17,10).
5.6. A THEOREM ON EXISTENCE
Based on the previous discussions, the following theorem follows.
Tueoew 5.6.22. An SBS(n,v) exists if and only if

i) v = n(n +1)/2, and
i1) the number of elements with odd frequency is at most n. c



5.7. CONCLUDING REMARKS

It may be noted that in SBS(n,v), the only properties of a Latin Square
extended are those of balance or near balance of rows, of cclumns and of
the array. A latin square also satisfies other important properties like
perfect pairwise balance of elements in rows and columns. Gur
construction method does not necessarily provide this pairwise balance of
elements even in the extended sense. The corresponding combinatorial
problem is much more complicated and also cannot be solved, in general,
with respect to pairwise balance. Though the problem is interesting and

challenging., has not been considered in the present thesis.



8. CONCLUDING REMARKS

For t = 2 (mod 4) and n.t”' odd, the existence problem of SBURMD(t,n,p.

is still open.It has only been shown by Roy (1988) that SBURMD(2,2,6:
does not exist.

In the class of nearly balanced uniform RMD’s, our constructive proof of
existence is limited to the case n = t. Even in this class of designs,
when p is an odd integer and t = p+ 1 or t=p+ 2, and when t = p - 1
for -~n even p, the existence problem of NBURMD(t,t,p) is still
varesolved. It would also be interesting to study near balanced unifor:z
RMD’'s when n # t. We have only shown that when n < t and p < t, such

designs exist.

Qur search for an eulerian circuit in K; which can be “sliced" or
partitioned into blocks of k distinct elements, is completely successful

when t is an odd integer. It may be noted that for such a circuit

exist. it is necessary that k = t and k | T(t-1). For an odd t, we always
have a circuit with the above mentioned property whenever k satisfies

these two necessary conditions. But if t is even then in addition

these two we also need that k | t or else k | (t-1). So the problem of
obtaining an eulerian circuit for even t which can be sliced into blocks
of k distinct elements is partially resolved. A complete solution for
even t is still an open problem if k f (t-1), k } t but k | T(e-1).

The existence problem of second order SBURMD when t is neither an odd
prime nor a power of 2 is still unresolved. Also for t a power of 2, our
design is not a minimal design in the sense that it requires twice the
number of periods that 1s theoretically necessary for such a design tc

exist. So we could get a partial solution in this case.



For symmetric balanced squares (SBSs), in additisn to the type of balance
considered by us, the concept of pairwise balance (in rows and/or

columns) is also a useful concept which the statisticians are very fond

of. This property is not g following our method of
construction,even in an extended sense. The corresponding combinatorial
problem is much more complicated and also cannot be solved, in general,
with respect to pairwise balance. This would be a challenging problem
though not considered by us in the present thesis.
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