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Introduction

The main theme of this thesis is topological classification of affine flows on
nomogeneous spaces and rigidity of equivariant continuous maps between such
Zows. Both these aspects have been extensively studied in the literature for
subgroup actions (cf. [Be], [B-D; and [Wi}) and for automorphism flows of the
crelic group (cf. [Ar], [K-R] and [C-S]). We will consider similar questions in
more general situations. A detailed outline is given below.

For a topological group T, by a I-flow we mean pair (X, p), where X is a
=opological space and p is a continuous action of I on X. For any two I-flows
N.p) and (X',0), a continuous map f : X — X' is said to be T-equivariant
Fioply) =o(y)of, YyeT. TwoI-flows (X,p) and (X', 0) are said to be
::pologically conjugate if there exists a [-equivariant homeomorphism f : X —

X . and they are said to be orbit equivalent if there exists a homeomorphism
X = X' which takes orbits under p to orbits under o.

If G is a locally compact topological group and H C G is a closed subgroup,
“zen the quotient space X = G/H is called a homogeneous space. If X; = G;/H;

(> = G2/ Hy are homogeneous spaces then a continuous map from X; to X

='said to be 2 homomorphism if it is induced by a continuous homomorphism

Z:m G to G which maps H, into Ha. Isomorphisms and automorphisms of ho-

neous spaces are defined similarly. A continuous map f from X; to X, is said

=2 be affine if there exists an element gy of G, and a continuous homomorphism 8



from G to G such that §(H,) C H, and f(gH)) = go6(9)H, Vg € Gy. A T-flow
(Y. p) is said to be affine if for all 7 in T. p(+) is an affine map. (X, p) is said
to be an automorphism flow (resp. a translation flow ) if each p(7), v € T, is an
automorphism of .\ (resp. a translation on X'). Two I-flows (X1, p) and (X5, 0)
are said to be algebraically conjugate if there exists a I-equivariant isomorphism
from X to Xy,

In Chapter 1 we set up various definitions, notations etc. and discuss the
background material. In Chapter 2 we consider flows on compact connected
metrizable abelian groups. We give various sufficient conditions for ‘rigidity’ of
I'—equivariant continuous maps in this situation. In particular we prove that if
G and H are compact connected metrizable abelian groups and p. o are affine
actions of a discrete group I on G and H respectively such that (H,o) is ex-
pansive then every I-equivariant continuous map f : (G, p) = (H,0) is an affine
map. Ve also classify certain classes of translation flows on such groups up to
orbit equivalence and topological conjugacy. For I’ = R, we prove that two one-
parameter translation flows on such groups are orbit equivalent if and only if they
are algebraically conjugate after a change of scale. This generalizes an earlier re-
sult in the case of tori (see [Be]). Also for any topological group I', we prove that
two translation flows of T' on compact connected metrizable abelian groups are
topologically conjugate if and only if they are algebraically conjugate.

In Chapter 3 we study rigidity of continuous equivariant maps between au-
tomorphism flows of a discrete group T on nilmanifolds. When I' = Z, (X5, 0)
is a factor of (X1, p) and p, o are generated by affine transformations, this phe-
nomenon has been studied in [AP], [Wal] and [Wa2]. In this case a necessary
and sufficient condition for existence of a non-affine I'-equivariant map is given
in {Wa2]. Our methods are however different and applicable in more general
$ituations.

In Section 1 we consider arbitrary automorphism flows of a discrete group T on
nilmanifolds. We give several necessary conditions for existence of I-equivariant
non-affine maps between such flows. In particular when (X),p) is ergodic or



(X2, 0) is expansive we prove that every TI'-equivariant continuous map from X
to X> is an affine map. In Section 2 we give a necessary and sufficient condition
for rigidity of I-equivariant continuous maps when X is a torus. In Section 3 we
consider the case when I is abelian. In the special case when (X1,p0) = (X2, 0)
and we prove that there exists a non-affine I-equivariant continuous map from
(X:.p) to (X3.0) if and only if (X p) is not ergodic.

In Chapter 4 we classify one-parameter automorphism flows on certain com-
pact connected Lie groups up to topological conjugacy. In particular we prove
that if G = SO(2n + 1), Spin(2n + 1) or Sp(n) for some n > 1 then two one-
parameter automorphism flows on G are topologically conjugate if and only if
they are algebraically conjugate.



Chapter 1

Preliminaries

In this Chapter we introduce notations and definitions and discuss some back-
ground material.

1.1 Locally compact abelian groups

In this Section we recall some basic results from duality theory of locally compact
abelian groups. For details the reader is referred to [Mo].

For a locally compact abelian group G, by G we denote the set of all continuous
homomorphisms from G to §'. It is known that & is a locally compact abelian
group under pointwise multiplication and the compact-open topology. If G and
H are two locally compact abelian groups and if 6 : G — H is a continuous
homomorphism then § will denote the continuous homomorphism from & to G
defined by

5(0) =008 YoeH.
It is easy to see that a locally compact abelian group G is compact if and only if &
lS discrete. The following proposition characterizes various topologlcal properties
oi' a compact abelian group G in terms of the dual group G.

Proposition 1.1.1 : Let G be a compact abelian group. Then

a) G is connected if and only if G is torsion free.
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b) G is metrizable if and only if G is countable.
¢) G is finite dimensional if and only ifé’ has finite rank.

In particular a compact abelian group G is connected. metrizable and finite
dimensional if and only if there exists n > 0 and a subgroup H of @ such that
Z* C H and H is isomorphic to G. We recall also the following results concerning
dual groups.

Theorem 1.1.2 (Pontryagin Duality Theorem) : Let G be a locally compact
abelian group and o : G — G be the homomorphism defined by
a(g)(0) = olg) YgeG.6€G.

Then o is an isomorphism of the topological groups.

In particular G separates points of G i.e. for any g.h € G, g # h, there exists a
o0 € G such that ¢(g) # (k).

Proposition 1.1.3 :  Let G, H be locally compact abelian groups and let f be a
continuous homomorphism from G to H. Then there ezists a unique homomor-
phism 0 : H — G such that f = §.

For a compact abelian group G we denote by Ag the normalized Haar measure
on G. If G is a discrete abelian group then Ag will denote the counting measure
on G. For any compact abelian group G and a function fin LG, Ag) we denote
by f G — C the Fourier transform of f. namely the function defined by

Flor = | 1191900) dre.

, Proposition 1.1.4 : Let G be a compact abelian group. Then the elements of
G form an orthonormal basis for L*(G. Ag). Furthermore the map f > f is an
wometry from L%(G, Ag) onto L2 (G. Ag)-

We will also use the following result due to Van Kampen; for a proof see [Ax],[Va).
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Theorem 1.1.5 (Van Kampen): Let G be a compact connected metrizable
abelian group and f : G — S' be a continuvous map. Then there exist ¢ € S1,
6 G and a continuous map b : G — R such that

hO)=0 . f(r)=coizr)e

Moreover ¢, ¢ and h are uniquely defined.

1.2 Structure of nilmanifolds

For a Lie group G, we denote the Lie algebra of G by L(G). We will denote the
set of all linear automorphisms of L(G) by Aut(L(G)). The standard exponential
map from L(G) to G will be denoted by exp. We denote by Ad the adjoint
representation of G into Aut(L(G)) and by ad the differential of Ad.

Let G be a connccted simply connected nilpotent Lic group and let H be
a closed subgroup of G such that G/H is compact. Then the quotient space
X = G/H is called a nilmanifold. In this Section we recall a few basic results
concerning the structure of nilmanifolds. For details the reader is referred to [Ma]
and [Ra].

Let X' = G/H be nilmanifold and H, be the connected component of H
containing the identity. Then Hy is a closed normal subgroup of G. Furthermore
if G = G/H, and D = H/H, then we have:

a) X = G/H is homeomorphic to X' = G'/D

b) G’ is a connected stmply connected nilpotent Lie group.

¢) D is a discrete subgroup of G'.

Henceforth we will restrict the discussion of nilmanifolds to the case when

= G/D, where G is a connected simply connected nilpotent Lie group and D
is a discrete subgroup of G such that G/D is compact.

Proposition 1.2.1 : Let X = G/D be a nilmanifold and let 7 : G — G/[G,G]
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be the projection map. Then [G.G]N D is a closed uniform subgroup of [G,G)
and (D) is a closed uniform subgroup of G/[G.G].

Since G/[G.G] is an abelian Lie group, this implies that for any nilmanifold
X=G/D, X =G/([G,G] - D) is a torus.

Theorem 1.2.2 (cf. [Ma]): Let Xy = Gi/D, and X2 = G2/D. be nilmani-
folds and let ¢ be a homomorphism from Dy to D,. Then there exists a unique
continuous homomorphism & from G, to G such that 3|p, = ¢.

We recall the following fact (cf. [Au]. pp. 34).

Proposition 1.2.3 : Let X = G/D be a nilmanifold. For a = (ay,...,a,) in
R" let I, denote the set defined by

L={z]le<zi<ea+1Vi=1l,...,n}
Then there ezists an invertible lincar map T from R to L(G) such that for all a
in R*, the set exp o T(,) is a fundamental domain for X = G/D.

The preceeding result in particular implies the following.

Proposition 1.2.4 : Let X = G/D be a nilmanifold and let p be an automor-
phism action of a discrete group T on X. Let B C X denote the set of points
with finite p-orbit. Then B is a dense subset of X.

Proof : We define 4, 4;, 4,,... C L(G) by

Av={vlesplhr) € D}, A=UT A

If = : G = G/D denotes the projection map then we define B.B), Bs.... C X
by

By =nmoexp(dy), B=U5 B



From Proposition 1.2.3 it follows that each By is a finite subset of X and Bis
dense in .X. Also it is easy to see that each B is invariant under the action P
Therefore for any element z in B, the p-orbit of r is finite. u]

The following theorem is an analogue of Theorem 1.1.5 (cf. {Wa2j).

Theorem 1.2.5 : Let X, = G,/D;, X, = G2/D, be nilmanifolds and let f be
e continuous map from X to Xy, Let F : G — Gs be a lift of f. Then there
erist a gg € G2, a continuous komomorphism 6 : Gy — G, and a continuous map
P :G; = G, such that

a) Pler) =ex. P(g-7)=P(g) VgeT.
b) F(g)=P(g)-g0-6(g) VgeT.

Moreover  and P are unigue.

1.3 Compact Lie groups

In this Section we recall a few basic results about structure of compact connected
Lie groups. For details the reader is referred to [B-T].

If G is a compact connected Lie group then a subgroup T C G is called a
maximal torus if it is 2 maximal connected abelian subgroup of G. It is easy to
see that such a subgroup is closed and hence topologically isomorphic to a torus.

Theorem 1.3.1 : Any two mazimal tori in a compact connected Lie group are
conjugate and every element of G is contained in a marimal torus.

If G is a compact connected Lie group and T C G is a maximal torus then L(T)
is a maximal abelian subalgebra of L(G). Restricting the Lie algebra homomor-
phism ad : L(G) — End(L(G)) to L(T) we obtain an action of L(T) on L(G)
and this induces an action of L(T) on L(G) ® C which will also be denoted by ad.
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It is known that if dim(T) = r then there exists a basis {z1... .2y, Yk} of
LiG)®C and homomorphisms R;. ... Ry : L(T) — R such that forall w € L(T),

ad(w)(z;) =0 forj=1..... r.
ad(w)(y;) = 27iR, (uw)y, forj=1..... k.

Ri...., Ry, are called the real roots of G. For each real root a we define a hyper-
plane H, C L(T) by

Hy =ker(a) ={u | a(w)=0}.
Each connected component of the set
W =L(T)-uH,

is called a Weyl chamber of L(T).

Proposition 1.3.2 : Let G be a compact connected Lie group, T be a mazimal
torus of G and C be a Weyl chamber of L(T). Then for any w in L(G), there
erists @ g € G such that Ad(g)(w) lies in the closure of C.

1.4 Ergodicity of automorphism actions

Let (X, ) be a finite measure space and let p be a measure preserving action of
a group T on (X, A). Then p is said to be ergodic if every I-invariant function
fin L2(X, A) is a constant almost everywhere. If G is a compact abelian group
then it is easy to see that any continuous automorphism of G preserves the Haar
measure on G. An automorphism action p of a discrete group I on a compact
abelian group G is said to be ergodic if p is ergodic with respect to the Haar
measure Ag. The following theorem of Halmos gives a necessary and sufficient
condition for ergodicity of automorphism actions on compact abelian groups.

Theorem 1.4.1: Let G be a compact abelian group and let p be an automorphism
sction of a discrete group T on G. Then p is ergodic if and only if the dual action
3 has no nontrivial finite orbit in G.
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Iz particular if A is an element of GL(n.Z) and p is the induced automorphism
zction of the cyclic group on T™ then p is ergodic if and only if the spectrum of
4 does not contain any root of unity.

If X' = G/D is a nilmanifold then by X we denote the torus G/([G.G]- D)
2nd by #° we denote the projection map from G onto X'°. If p is an automorphism
2ction of a discrete group I on X then p° will denote the automorphism action
of I on X° induced by p.

We will use the following two results.

Theorem 1.4.2 (see [Ber]. Theorem 5.1): Let T be a discrete abelian group, T®
i< the n-torus and p be an ergodic automorphism action of T on T™. Then there
eoists an element vy of I' such that p(o) is an ergodic automorphism.

Theorem 1.4.3 (sec [Pa]): Let X = G/D be a nilmanifold and 0 be an au-
worphism of X such that 6 induces an ergodic automorphism on the torus

G/(IG,G]- D). Then 6 is an ergodic automorphism of X.
We note the following simple consequence of the above mentioned results.
Proposition 1.4.4 : Let T be a discrete abelian group, X = G/D be a nilmanifold

cnd p be en automorphism action of T on X'. Then (X, p) is ergodic if and only
(X°p% is ergodic.

Proof :  Let ¢ : X' — X° denote the projection map. Then it is easy to
check that g is a measure preserving I-equivariant map from (X, p) to (X?, p°).
Therefore ergodicity of (Y. p} implies ergodicity of (X?, p°). On the other hand if
X0 p%) is ergodic then by Theorem 1.4.2 there exists a ~ in I such that (7o)

/ is an ergodic automorphism of X°. Applying Theorem 1.4.3 we see that plvo) is
an ergodic automorphism of X i.e. (X, p) is ergodic. jm)



Chapter 2

Affine actions on compact abelian
groups

L= this Chapter we study continuous affine actions of a group I' on compact

cocoected metrizable abelian groups. We show that if I is a discrete group and

0. (H, o) are affine I-flows on such groups then under certain conditions every

ivariant continuous map from (G, p) to (H,o) is an affine map. We also

- certain classes of translation flows on such groups up to orbit equivalence
2 topological conjugacy.

2.1 Structure of continuous maps

Lz this Section we study the structure of continuous maps between compact con-
22cted metrizable abelian groups. For a compact connected metrizable abelian
£2up G. we denote by L(G) the topological vector space consisting of all homo-
=rphisms from G to R. under pointwise addition and scalar multiplication and

pology of pointwise convergence.

£ G and H are compact connected metrizable abelian groups and 6 is a

inuous homomorphism from G to H then by D6 we denote the map from
L G 1o L(H) defined by

Dé(p)(6) = ploob) Vpe L(G).pe B

12



It is easy to see that this defines a functor from the category of compact connected
metrizable abelian groups to the category of topological vector spaces. For any
compact connected metrizable abelian group G. we define a map E from L(G)
to G by the condition

(60 E)(p) = P9 Ype L(G).o<G.

Since for a fixed p in L(G). the map 6 — **#%) is a continuous homomorphism
from G to S?, by the duality theorem the map E is well defined and unique. \We
note the following properties of the map E.

Proposition 2.1.1 : For any compact connected metrizable abelian group G,
the map E : L(G) — G is a continuous homomorphism and the kernel of E is
a totally disconnected subgroup of L(G). Furthermore if G and H are compact
connected metrizable abelian groups and 0 is a continuous homomorphism from
G to H then@o E = E o Df.

Proof: From the defining condition it is easy to sce that E is a homomorphism.
Suppose p. — p pointwise. Then ¢ o E(p,) — 0o E(p) for all ¢ in G ie.
E(pa) — E(p). Therefore E is a continuous homomorphism from L(G) to G.
Clearly the kernel of E can be identified with the set of all homomorphism from
G to Z. We note that for any ¢ in G, p — p(¢) is a continuous function from
L(G) toR Since Z is a totally disconnected subset of R it follows that the kernel
of E is totally disconnected. To prove the last assertion we note that for any ¢
in H and pin L(G),

080 E(p) = 2mH(eo8) = 27iDIRO) — o F o Dé(p).

Since # separates points of H, it follows that § o £ = E o D§. o

Note that using the duality theorem we can realize L(G) as the set of all
one-parameter subgroups of G, and E as the map a — a(1). In particular when
G is a torus, L(G) can be identified with R". the Lie algebra of G, and E can be
identified with the usual exponential map. However the following example shows
that in general E is not surjective.



Example 2.1.2 : Let G = @ where Q is the additive group of rational
numbers equipped with the discrete topology. Then it is easy to check that L(G)
is isomorphic to R Ve claim that in this case the map E : L(G) — G is not
surjective. Suppose otherwise. Then G is the image of R under the continuous
homomorphism E. Since G is compact. this implies that G is isomorphic to S*.
Since ST2 Z and & = Q. we get a contradiction; this proves the claim.

For any two groups G, H and any continuous map f : G — H we will define
a continuous homomorphism 8(f) : G — H as follows. For each character ¢ of

Hletc, € S, 0(6) € G and f,: G — R be such that
F40)=0, 60 f(z) = ¢, Bo)(z) =) Vr € G;

by Theorem 1.1.5 there exist ¢, GA(G')) and f, satisfying the conditions, and they are
unique. From the uniqueness one can deduce that ¢ — §(¢) is a homomorphism
from & to G. By the duality theorem there exists a continuous homomorphism

0(f) : G = H such that
8(e) = ¢o0(f) vseH.
Using the uniqueness part of Theorem 1.1.5 it is easy to see that

i) If f is a continuous homomorphism then 6(f) = f.
ii) If f : G1 = G» and g : G2 — G be two continuous maps then

(g o f) =0(g) 2 6(f)-

The following generalizes VanKampen's theorem.

Theorem 2.1.3 : Let G, H be two compact connected metrizable abelian groups
and f be a continuous map from G to H. Then there erist ¢ € H. a continuous
homomorphism 6 : G — H and a continuous map S : G — L(H) such that
S(0) = 0 and f(z) = cO(z)(E o S)(z). Vr € G. Moreover c.9 and S are

untque.



Proof : For each character o of H define co € S48 (0) € G and fo:G =R
by the condition

fol0)=0. oc f(x) = ¢, 6 (5)(z) e vreG:

we note that by Theorem 1.1.5 there exist uniquely defined ¢, 6'(6) and fo sat-
isfving the condition. From the uniqueness it follows that

fou=fot fo. for =—f,.

Define S : G — L(H) by S5(x)(9) = fo(z). Since each fs is continuous, S is
continuous. Similarly using uniqueness of € we see that the map ¢ > ¢y is a
homomorphism from & to §*. By the duality theorem there exists ¢ € H such
that ¢, = 6(c) -Vo € H. Also. putting 6 = §(f) we see that §'(¢) = oo 6,
¥¢ € H. Hence for all = €G and ¢ € A, we have

¢ f(z) = €5 6(6)(x) &) = 8(c) (600)() (¢ 0 E o S)(z).

Since characters separate points, we get f(z) = c 0(z)(E o S)(z), Vz € G. Using
Theorem 1.1.6 we see that for a fixed ¢ e 1?, ¢fc), o0 and the map z — S(z)(¢)
are determined by the equation

(60 f)(z) = d(c) (60 6)(x) e?miSt=)e),

Hence ¢, and S are unique. a

2.2 Rigidity of affine actions

Suppose I be a discrete group and (G.p) be an affine T-flow on G. Note that P
induces an automorphism flow Paand amap p; : T — G defined by the condition

PONE) = pal~)(z) pe(3) Yz € Gand v € T.
We define an automorphism action p. of I on L(G) by
P-()(P)(0) =p(60pa()) Vo€ G,y €T.

15



Theorem 2.2.1 : Let T be a discrete group and G and H be compact connected
metrizable abelian groups. Let p, o be affine actions of T on G and H respectively.
Let f: G — H be a T-equivariant continuous map. Then there erist ¢ € H, a
continuous homomorphism 6 : G — H and a continuous map S : G — L(H)
such that

a) S(e) =0 and for all z in G, the orbit of §(x) under o, is bounded.
b) f(z) =c (z)(EoS)(z), Vrea.
Moreover, if p and o are automorphism actions then S is a I'-equivariant map

from (G, p) to (L(H).0.).

Proof : Suppose f =c(Eo S) where ¢.6 and S are as in Theorem 2.1.3. Fix
any v € I'. Note that for all z € G.
fop(1)(x) = c1 Bu(x)(E 0 S\)(z),

where ¢ = fop(y}(e), 6 = 80 pu(+) and Si(z) = S0 p(7)(z) - S0 p(7)(e). Also
forallz € G,
a(7) 0 f(z) = ¢ 62(2)(E 0 $)(x),
where ¢ = 0(7) 0 f(e) , 6y = 0,(~) cfand S = o, (7) o S. From the uniqueness
part of Theorem 2.1.3 it follows that 5 =5, ie.
Sop(1)(z) = Sop(~)ie) = ou(z) 0 S(x), VzeG.

Since for a fixed £ € G the left hand side is contained in a bounded subset of
L(H), it follows that for all z in G. the o.-orbit of 5(x) is bounded. Also it

is easy to see from the previous identity that when p and o are automorphism
actions, S is a [-equivariant map. [}

Let (X, d) be a compact metric space and p be a continuous action of a group
T on X. Then (X,p) is said to be expansive if there exists € > 0 such that for
any two distinet points z.y in X.

Sup { d(p(7)(2)-p(1)(w)) | 7T } 2 ¢
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an ¢ for which this holds is called an expansive constant of (X, p). It is easy to
check that the notion of expansiveness is independent of the metric d. When X
is a topological group, (X', p) is expansive if there exists a neighborhood U of the
identity such that for any two distinct elements T.y € X thereexistsa v € I’
such that p(7)(z) p(7)(y)~* is not contained in U: such a neighborhood is called
an expansive neighborhood. For various characterizations of expansiveness of
automorphism actions on compact abelian groups the reader is referred to [K-S]
and [Sc].

Corollary 2.2.2 : Let T be a discrete group and G and H be compact connected
metrizable abelian groups. Let p, o be affine actions of T on G and H respectively
and suppose that (H.o) is ezpansive. Then every I'-equivariant continuous map
f from (G, p) ta‘(H, o) is an affine map.

Proof :  Since o is expansive, o, is an expansive automorphism action on H.
We claim that for every nonzero point p € L(H), the orbit of p under o, is
unbounded. Suppose this is not the case. Choose a non-zero p and a compact set
C C L(H) such that orbit of p under o. is contained in C. Since kernel of E is
totally disconnected, there exists a sequence {t:} such that t; — 0 as i — oc and
E(tip) # e Vi. Let U be an expansive neighborhood of e in H. Since e is fixed
by 0, e is the only element in G whose orbit under 0, is contained in U. Since
t; = 0. it is easy to see that U t71E-Y(I') = L(H). From the compactness of C
it follows that there exists n such that #,C E-YU) ie. E(t.C) C U. Since
the orbit of t,p under o. is contained in t.C and E o 0.(%) = da(y) o E Vv, this
implies that orbit of E(t,p) under o is contained in L. This contradicts the fact
that E(t.p) # e.

Now suppose f = c{E o S). where c. and S are as in Theorem 2.2.1. Then
from Theorem 2.2.1 and the preceding observation it follows that § = 0, i.e. fis
an affine map. ]

Corollary 2.2.3 :  Let T be a discrete group, G and H be compact connected
metrizable abelian groups and p, o be automorphism actions of T on G and H
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respectively. Suppose that H is finite-dimensional and (G. p) is ergodic. Then
every continuous ['-equivariant mep from (G. p) to (H,o) is an affine map.

Proof : Suppose f = ¢ (E o S) is a continuous [-equivariant map from (G, p)
to (H,0) where ¢.8 and S are as in Theorem 2.2.1. Clearly to prove the stated
assertion it is enough to prove that S = 0. Since H is finite-dimensional, applying
Proposition 1.1.1 we see that L(H) is a finite dimensional vector space over R.
Let 1V denote the subspace of L(H) consisting of all points with bounded o,-
orbit. Then from Theorem 2.2.1 it follows that the image of S is contained in V.
We fix a norm ||.|| on 1V and define a map N : 1" = R by

Nw) = Sup {[lo.(1)(w)ll | v €T }.

It is easy to see that N defines another norm on 1V. Since any two norms on
a finite dimensional vector space over R are equivalent, N is a continuous map
from 1V to R. Since S is [-equivariant, A = N o S is a continuous [-invariant
map from (G, p) to R. From the crgodicity of (G, p) it follows that 4 is a constant
map. Since the image of k contains 0, this implics that S is identically zero. O

For a set A we denote by |4 the cardinality of A.

Corollary 2.2.4 : Let T be a discrete group and G and H be compact connected
metrizable abelian groups. Let p, o be automorphism actions of T on G and H
respectively such that
a){g€G||p(T)g)| < oc} is dense in G.
b ) for any finite-indez subgroup Ty C T, the set of points of H whick are fized
by (L) 1s totally disconnected.
Then every continuous [-equivariant map f : (G, p) — (H. o) is an affine map.

Proof : Suppose f = ¢ §(E o S). where ¢.6 and S are as in Theorem 2.1.3.
Let g € G be such that the orbit of g under p is finite. Let Ty C T be the
stabilizer of g. Since S is I-equivariant by Theorem 2.2.1, S(g) is fixed by Ty
under the action .. Since o, is a linear action on L(H) and E is a T-equivariant
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map from (L(H).c.) to (H.0). it follows that for all ¢ € R. the stabilizer of
E(tS(g)) under o contains I'y. Now from b) it follows that S(g) = 0. Since
{9€G | 1p(T)(9)l < x} is dense in G. S =0 i.e. f is an affine map. [m}

Remark 2.2.5 : It is easy to see that condition (a) as in the previous corollary,
holds when G = T™ for some n. Various other conditions under which the set of
periodic orbits of an automorphism action on a compact abelian group is dense,
viz condition (a) as in corollary 2 holds, are described in [K-S]. Condition (b)
holds in the case of H = 7™ if T contains an element acting ergodically; more
generally this holds for any finite dimensional compact abelian group H.

2.3 Classification of translation flows
We begin with the following observation.

Lemma 2.3.1 :  Lect G be a compact connected metrizable abelian group and
a be @ one-parameter subgroup of G. Then there exisis a p € L(G) such that
E(tp)=a(t) Vte R

Proof : For each ¢ € G, we define as € R by
doaft) = et vt e R

Since ¢ o a is a continuous homomorphism from R to S, a, is well defined. We
define p € L(G) by p(o) = a, Yo € &. Fixt € R From the defining equation of
E it follows that for all 0 € G,

00 E(tp) = 799) = g2%iast — 5 a(3).
Since characters separate points. it follows that oft) = E(tp) Vt e R. o
The following lemma is needed to prove Theorem 2.3.3. The main idea of the

proof is derived from [Be].
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Lemma 2.3.2: Let Gbe a compact connected metrizable abelian group and
p.q € L(G). withp £ 0. Let f : R — L(G) be a bounded continuous function
such that

J(O)=0and {E(tp+f(1)) | teR} = {E(tg) | teR}.
Then p = cq for some nonzero c € R.

Proof : First we will prove the special case when G = T2, the two-dimensional
torus. After suitable identifications we have

L(G) =R, E(x1.72) = exp(zy. 1) = (€371, 7%z,

Define a function d : R? — R~ by
d(x) = distance between the point z and the line {tg |t e R}

=inf {||y|| |  + y = tq for some ¢ € R}.
By our hypothesis, forallt € R , tp+f(t) = z+tgforsome ¢ € R,z € Z2 This
implies
{dtp+ f(t)) | t e R} C {d(2) | z € Z3}.

Since the map ¢t — d(tp + f(¢)) is continuous, the left hand side is a connected
subset of R containing 0. Since the right hand side is countable, d(tp + f(#) =0,
for all ¢. Since f is bounded this implies that d(tp) is bounded by a constant M,
forallt € R Since distinct lines in R? diverge from each other we conclude that
P = cq for some c # 0.

To prove the general case choose ¢ such that p(0) # 0. For each v € G define
R:G—T2and h*: L(G) = R® by

hz) = (6(x). w(2)) . k(1) = (r(o).r(¥)).
Now for all r € L(G).

ho E(r) = (00 E(r). ¢ o E(r)) and exp o h*(r) = (¢27r(®) g2iriv)).
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From the defining equatlon of E it follows that ho E = expoh®. Define r.qd eR?
and f' :G >R by p =h" (p). ¢ =h"(g) and f = h~ o f. From our hypothesis
it follows that

{exp(tp + £'(1) 1t € R} = {expltq) | t € R}

Now applying the special case we see that (p(0).p(v)) = ¢ (g(6). g(v)) for some
nonzero real number c. Therefore g(o) # 0 and. since v is arbitrary, p = cog
where ¢y = p(¢)/q(¢). a

Theorem 2.3.3 :  Let G and H be compact connected metrizable abelian groups
and o and 3 be one-parameter subgroups of G and H respectively. Then the
translation flows induced by a and 3 are orbit equivalent if and only if there
ezist a continuous isomorphism @ : G — H and a nonzero ¢ € R such that
fa(t) = B(ct) VteR.

Proof : Let f be an orbit equivalence between the translation flows induced by
a and B. Define h: G — H by h(z) = h(z)h(e)~'. Then h(e) = e and it is easy
to check that £ is also an orbit equivalence. Suppose h = 8(E 0 S), where 8 and
S are as in Theorem 2.1.3. By Lemma 2.3.1 there exists p.q in L(H) such that
E(tq) = 8(t) and E(tp) = 8(a(t)). Since h is an orbit equivalence,

{R(a(t)) | te R} = {3(t) | t € R}.
Now for all t € R, 8(t) = E(tg) and
h(a(t)) = (8o a)(t)(EeSoa)(t) = E(tp+ 5o at)).

Since k is a homeomorphism, § is an isomorphism. Hence 8(a) % 0, ie. p # 0.
By applying Lemma 2.3.2 we see that p = cq for some nonzero ¢. Therefore for
some c # 0, 8(a(t)) = 3(ct). vt € R. This proves the theorem. a

Theorem 2.3.4: Let G, H be two compact connected metrizable abelian groups
and p,o be two translation flows of a topological group I on G and H respec-
tively. Then (G.p) and (H.q) are topologically conjugate if and only if they are
algebraically conjugate.
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Proof: Let f be a topological conjugacy between the induced translation flows.
Suppose f =c @ (E o S), where ¢.0 and S are as in Theorem 2.1.3. Since f is a
homeomorphism, 6 is an isomorphism. We claim that 8 is an algebraic conjugacy
between (G, p) and (H.0). To see this fix any v €. Definez, € G, yo € H by

P(7)(z) = 7oz and o(+)(y) = yoy V€ G, ye H.
Then for all z € G,
f(zoz) = ¢ 6(zoz)(E 0 S)(20z) = c; 8(z)(E o 81)(x),
where ¢ = ¢ 8(z0)(E 0 S) (20) , $i() = S(zoz) — S(xo). Also for all 7 € G,
%0 (z) = c2 8(z)(E o S)(x).

where ¢; = ¢ y. Since f(zox) = yof(z). from the uniqueness part of Theo-
rem 2.1.3 it follows that S; = S i.e.

S(zoz) = S(z) + S(x0), Vz €G.
Putting z = zo.7Z,... and using the above recursion relation we obtain
S(z5) = nS(zy), YneZ*.

Since the left hand side is contained in the image of S, which is compact, it follows
that S(zo) = 0. Since ¢; = ¢, this implies 6(xq) = yo. Hence fop(7) = o(y)e8.0
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Chapter 3

Rigidity of actions on
nilmanifolds

In this Chapter we study rigidity of equivariant continuous maps between auto-
morphism actions of discrete groups on nilmanifolds. Throughout this Chapter
for i = 1,2, X; = G,/D; will denote a nilmanifold, e; will denote the identity
element of G; and &; will denote the image of ¢; in G;/D;. Also if p is an auto-
morphism action of a discrete group T on a nilmanifold X' = G/D then p will
denote the induced automorphism action of T on ¢ and pe will denote the induced
T-action on L(G) defined by

pe(v) =dp(7) Vyel.

Definition : Suppose X}, X, are nilmanifolds and p. 0 are continuous actions of a
discrete group T on X} and .\, respectively. Then a continuous map f : X; — X
is said to be almost equivariant if there exists a finite-index subgroup Iy Cc '
such that
foo(v)=0(y)0f vyel,

In Section 1 we give a necessary and sufficient condition for existence of a non-
affine almost equivariant continuous map between such actions. As a consequence
we prove that if either (X1, p) is ergodic or (X2.0) is expansive then every I-

equivariant continuous map is an affine map. In Section 2 we consider the case
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when X is a torus. We give a necessary and sufficient condition for existence of
a non-affine [-equivariant continuous map in this case. In the final Section we
consider the case when T is abelian and (X5.0) is a factor of (X1, p).

3.1 Almost equivariant maps

Let X} = G1/D, and X, = G»/D; be nilmanifolds and let f be a continuous
map from A to X;. Then by Theorem 1.2.5 there is a unique continuous map
P(f): Gy — G satisfving the following conditions.

1) P(f)(er) = €2, P(f)(g-~)=P(g) VgeT.

2) For some affine map A : G; — G,. we have the following commutative diagram.

P(f)A
G 5]

Suppose 8, is an automorphism of \'; and 8, is the induced automorphism on
G). Then we have the following commutative digram.

P(f)-A
feh N G ) G,

AV L X —)—X,

Since (P(f)-A)o8, = (P(f)<8,)-(Ac8;), from the uniqueness part of Theorem
1.2.5 it follows that P(f 0 8,) = P(f) o 8,. Similarly if 6, is an automorphism
of X, and 8, is the induced automorphism on G, then 8; o P(fy = P(8,0 f).
Therefore if (X, p) and (\3.0) are automorphism actions of a discrete group I’
and if f : X — X, is a [-equivariant continuous map then P(f) is a T-equivariant
continuous map from (G,.5} to (G2.7).
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Lemma 3.1.1 : Let X, = G,/D,. X, = G2/Ds be nilmanifolds and p, o be
automorphism actions of a discrete group T on X and X, respectively. Then
there ezists a non-affine continuous I'-equivariant map from (X1, p) to (X3,0) if
and only if there erists a nonzero continuous T-equiveriant map S from (Xi. p)
to (L(G1). 0.) such that S(€) = 0.

Proof : Suppose there exists a non-affine T-equivariant continuous map f from
(X1, p) to (X3,0). Let P = P(f) : G, — G, be as defined above. Since Ple;) =ex
and P(g-v) = P(g) for all g € T, there exists a unique continuous map Q from
X1 to Gy such that Q(e7) = e, and we have the following commutative diagram.

G—E —q,

X,

It is easy to see that Q is a I-equivariant map from (X1, 0) to (G,,7). Note
that since G, is a connected simply connected nilpotent Lic group, the map exp :
L(G2) — G is a diffeomorphism. Hence there is a unique map S : X; = L(G,)
such that the following diagram is commutative.

G,
e exp]
b .37 2

Then S(&r) = 0 and since exp is a [-equivariant map from (L(G2), 0.) to (G4,7)
it is easy to see that S is a [-equivariant map from (1. p) to (L(G2), 0.). Since
f is a non-affine map. P(f) = expc S ¢ x, is non-constant ie. S is a nonzero
map.

Now suppose there exists a non-zero T-equivariant continuous map S from
(X1, p) to (L(G2), 0.) such that S(€;) = 0. Define a map f:X; = X, by

f(z) =moexpo S(x) Vr € X.
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It is easy to check that f is a T-equivariant map from (X1.p) to (X2,0) and
P(f) =expo Sow. Since the map exp o S is non-constant. so is P. Now from
the uniqueness part of Proposition 1.2.5 it follows that f is a non-affine map. O

Lemma 3.1.2 :  Let X = G/D be a nilmanifold and V" be a finite dimensional
vector space over R. Let T be a discrete group and p. o be automorphism actions
of T on X and V" respectively. Then for any T -equivariant map S: X - V there
ezists a finite indez subgroup Ty C T such that S o p(7) =8 Vv €T,

Proof : Let 11" denote the subspace of 1" which consists of all elements of V*
whose o-orbit is finite and let B C X denote the set of points in .\ with finite
p-orbit. Then from Proposition 1.2.4 it follows that B is a dense subset of X.
Since S is I‘-equivariant, it follows that the image of S is contained in W. Now
choose a basis {wl,wz,...w,) of . Define I';,Ty,.... I; and Ty by

Fi={yel|oM(w)=u;}, To=NT.

Since each T; C T is a subgroup of finitc index, so is T'g. Since Ty acts trivially on
W and image of S is contained in IT", it follows that S is a [g-invariant map. O

Theorem 3.1.3 :  Let T be a discrete group and X, = Gi/Dy, Xy = G2/D, be
nilmanifolds. Let p and o be automorphism actions of T on Xy and X, respec-
tively. Then there ezists a non-affine almost equivariant continuous map from
(X1, p) to (X3,0) if and only if the following two condit are satisfied.

@) There ezists a non-constant [ -invariant continuous function from X, to R.
b) There ezists a nonzero vector v in L(G») such that the o.-orbit of v
is finite.
Proof : Suppose there exists a finite index subgroup I'y C T and a non-affine
continuous map f from (X}, p) to (X>. ) which is [g-equivariant. Then applying

Lemma 3.1.1 we see that there exists a nonzero continuous Tp-equivariant map
S from (X, p) to (L(Gs),0.) such that S(€1) = 0. Let 11" denote the subspace
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of L(G,) which consists of all elements of L(G>) whose o,-orbit is finite. Since
T'g is a finite-index subgroup of T'. it is easy to see that, if v is a vector in L(G,)
with finite [o-orbit under the action o, then » € 11", Since S is To-equivariant,
from Proposition 1.2.4 it follows that the image of S is contained in 1. Since S
is non-zero, there exists a nonzero vector ¢ in L(G3) such that the g.-orbit of v is
finite. To prove a) we choose a norm |.|{ on 1} and define a function N : W — R
by
N(w) =Sup {llo.() ()l | v€T }.

Then it is easy to see that N defines a norm on Vi" and the map NoS is a
non-constant continuous [g-invariant function from X to R. \We choose a finite
set 4 C T which contains exactly one element of each right coset of [ and define
a function ¢4 : ¥, — R by

qa(@) =Y NoSop()(z).

v€A

Since N o S is Tp-invariant, it is easy to sce that for any two elements ; and ¥,
in the same right coset of Iy,

NoSop(n)=NoS5op(m).

Hence if B C T is another finite set containing exactly one element of each right
coset of I'y then g4 = gp. This implies that for any 7 in T,

940 p(7) = g4y = qa.

Since N o S is a non-negative function which is not identically zero, it follows
that g is a non-constant continuous [-invariant function from X;toR

Now suppose both the conditions a) and b) are satisfied. Then W, as defined
above, is a nonzero subspace of L(G.) and there exists a finite index subgroup
Ty C T such that the o.-action of [y on 11" is trivial. Furthermore there exists a
non-constant continuous [-invariant function ¢ from X to R. We choose a con-
tinuous map / : R +— 11" such that the map hogq is nonzero and hog(é;) = 0. Since
the o,-action of [g on 11" is trivial, S = hogq is a nonzero continuous T'¢-equivariant
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map from (X1, p) to (L(G). o.) and S(¢,) = 0. Applying Lemma 3.1.1 we see that
there exists a non-affine continuous [y-equivariant map from (X1, p) to ((Xa,0).0

Corollary 3.1.4 : Let X, = G,/D;. X, = Go/Ds be nilmanifolds and p, o be
automorphism actions of a discrete group T on X; and X, respectively. Suppose
that either (X).p) is ergodic or (X2,0) is ezpansive. Then every continuous I'-
equivarignt map from (X1, p) to (X3,0) is an affine map.

Proof: If (X1, p) is ergodic then there is no non-constant I-invariant continuous
function from (X1, p) to R. Applying Theorem 3.1.3 we see that there exists no
non-affine continuous T'-equivariant map from (X;.p) to (X5.0).

Now suppose that (X2, o) is expansive. Choose a metric d on X, and an
expansive constant ¢ > 0 with respect to d. Define open sets U < X, and
V C L(G,) by

U={z|d(& z) <e}and V" = (mo0exp)”' (V).

We claim that for every nonzero vector v in L(G), the o.-orbit of v is infinite.
To see this suppose vy € L{G>) is such that the o,-orbit of vg is finite. Choose
a > 0 sufficiently small so that the o.-orbit of ary is contained in 1" and does
not intersect the set exp~'(D,) — {0}. Then the o-orbit of the element Io =
72 o exp(awvp) is contained in U Since & is fixed by the action o, it follows
that zp = & i.e. 15 = 0, thus proving the claim. Now from Theorem 3.1.3 it
follows that every continuous I'-equivariant map from (Xj.p) to (. (»,0) is an
affine map. a

3.2 Automorphism actions on tori

In this Section we will consider automorphism actions of discrete groups on tori.
Suppose p is an automorphism action of a discrete group T on T™. Then p will
denote the automorphism action of I' on the dual of 7™ defined by

AN0) =xen() ¥xeT™ yel.
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From Theorem 1.4.1 it follows that (T™. p) is ergodic if and only if P has no
nontrivial finite orbit. If (T™.p) is not ergodic then F, ¢ T™ will denote the
subgroup consisting of all elements with finite p-orbit and T, C I will denote the
subgroup defined by

Ly={vixepr)=xVre€F,}.

Since F), is a finitely generated group. it follows that I, C T is a subgroup of
finite index.

Lemma 3.2.1 : Suppose T, p and T, are as above. Then there exists Xo € Tm
such that

Lo = {7 I xoop(7) = x0}-
Proof : For any x in F, let Ty C T denote the stabilizer of x under the I'action
p. We claim that for any xy, Xz in Fp, there exists a x in F, such that Iy =
Ty, NTy,. To see this, for i = 1,2 define 4; ¢ 7™ by
A = {viop(x) —xilveT}

Since X1, X2 are elements of F,. both A, and A, are finite. Choose n large enough
so that nd; N A, = {0}. Define X' = nx, — x,. Clearly Ty, NTy, is contained in
T',,. On the other hand if v € Ty then

n(x100(7) = x1) = x20p(7) - xo-

Since nA; N A = {0}. this implies that v € Ty NTy,

Suppose xi, ..., Xa is 2 finite set of generators of F,. From the above claim it
follows that there exists a , in F, such that

Fo=Tun--Nly, =T,

a

Lemma 3.2.2: Letl', CT bea subgroup of finite indez and f be a T'y-invariant
continuous map from (T™, p) to a metric space (Y, d). Then f is T ,-invariant.
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Proof : First let us consider the case when (}.d) is the complex plane with the
usual metric. Let f Tm C be the Fourier transform of f. Then f is invariant
under a subgroup I'y ¢ T if and only 1ff is Tp-invariant under the action P (see
Proposition 1.1.4). Since I, acts trivially on F, under the action 5, to prove
T'p-invariance of f it is sufficient to show that f =0on 7™ — F,.

Let ¢ be an element of 7 — F,. Sincel;isa subgroup of finite index, the
Fl—orbn. of ¢ is infinite. Since f is T'y-invariant, f is constant on the I'j-orbit of
. Also if A € 7™ denotes the T'j-orbit of o then applying Proposition 1.1.4 we

2P < 30 1F00F = [ 17601 dhc < o0,

x€A xefm

see that

Since I';-orbit of.¢ is infinite. this implies that f(6) = 0. Thus f = 0 on T — F,.

Now let (Y, d) be any arbitrary metric space and f be a continuous I'y-invariant
map from T™ to Y. If C(¥;C) denotes the set of all continuous functions from
Y to C, then for each g in C(Y,C) the map go f is I'-invariant. Hence from
the previous argument it follows that for each g in C(¥,C) the map go f is
Tp-invariant. Since C(},C) separates points of 1", we conclude that f is T,-
invariant. =]

Theorem 3.2.3 : Let T be a discrete group, T™ be the m-torus and X =
G/D be a nilmanifold. Let p.o be automorphism actions of T on T™ and X
respectively. Then there erists a non-. affine continuous T -equivariant map from
(T™, p) to (X,0) if and only if the following two dit are satisfied.

a) (T™, p) is not ergodic.
b) There exists a nonzero vector v in L(G) which is fired by T, under the

action o,.
Proof :  Suppose there exists a non-zero continuous - equivariant map from

(T™, p) to (X, o). Then the condition a) follows from Corollary 3.1.4. Also from
Lemma 3.1.1 it follows that there exists a non-zero continuous -equivariant map
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S from (T™, p) to (L(G).0.). Applying Lemma 3.1.2 and Lemma 3.2.2 we see
that S is T -invariant. This implies that the o.-action of T, on the image of S is
trivial. Now the condition b) follows from the fact that S is nonzero.

Now suppose the conditions a) and b) are satisfied. Fix a finite subset A —

W denote the subspace of L(G) which is fixed by oe(7) for all v in T,. For any
Tp-invariant map h: T™ — V', we define a map hy : T™ — L(G) by

hs=3Y (v o hoplr).

24
Let a and 8 = 7 be two elements of I' belonging to the same right coset of T,.
Since & is I'p-invariant and T'p-action on 11" is trivial, it is easy to see that

a(87) o ho p(3) = afa) o ho pla).
Therefore if B is another set containing exactly one element of each right coset
of 'y then hy = hp. Now it is easy to verify that for all 4inT,
haop(y) = 0e(7) 0 huay = 0e(7) © ha.

Hence %4 is a -equivariant map from (7™, p) to (L(G),0.). We will show that
for a suitable choice of h, h4 is nonzero and ha(e) =0.

Let xo € T™ be as in Lemma 3.2.1 and 2o € T™ be an element generating a
dense subgroup of T™. Define ¢y, ¢y, ...,cq € S by
co=1 ¢ =x00p(v)(xo) fori=1....,d
Since the cyclic subgroup generated by zq is dense in 7™ and Vi:..-;7a belong

to different right cosets of T',, it follows that lLey,.... ¢q are distinct. Let g be a

continuous map from S! to 11" such that
g{ca) #0, g(e;) =0, i=0,....d—1

Since the map go xo : T™ — W is T -invariant. from the previous argument
it follows that the map S = (g o xo)4 is a T-equivariant map from (T™, p) to
(L(G),0e). Also it is easy to see that S(e) = 0 and

S(x0) = 0e(7") 0 g(ca) # 0.
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Now applying Lemma 3.1.1 we see that there exists a non-affine T-equivariant
continuous map from (T™. p) to (X.0). o

The following corollary generalizes earlier results of [AP] and [Wa1l].

Corollary 3.2.4 :  Let A and B be elements of GL(m.Z) and GL(n,Z) respec-
tively. Let k4 be the smallest positive integer k such that A* has no eigenvalue
which is @ root of unity other than 1. Then the following two statements are
equivalent.

a) There ezists a continuous non-affine map f : T™ — T satisfying
foA=Bof.

b) 1is an eigenvalue of B*4.

Proof : Let I be the cyclic group. p be the [-action on 7™ generated by A and
o be the I-action on T" generated by B. Then after suitable identifications we
have,
T = 2™ and F,={:€2"| A'(z) = z for some i}.

Since no eigenvalue of A*4 is a root of unity other than 1, it follows that 4%+
leaves F, pointwise fixed. Furthermore if j is another positive integer such that
A7 acts trivially on F, then j is a multiple of k,. Therefore [, = kaZ. Tt is easy
to see that the action o]r, has a nonzero fixed point in L(R™) if and only if 1 is
an eigenvalue of B¥+. Now the given assertion follows from Theorem 3.2.3. O

3.3 Rigidity of factor maps

In this Section we will consider the case when T is abelian and X, is a topological
factor of X i.e. there exists a continuous T-equivariant map from X, onto Xo.
Recall that if X = G/D is a nilmanifold then X denotes the torus G/([G,G]-D)
and #° denotes the projection map from G onto X°, Also if p is an automorphism
action of a discrete group I' on X then p° will denote the automorphism action
of T on X induced by p.
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Proposition 3.3.1 : Let T be an abelian group and 1" be a finite dimensional
vector space over R. Let p: T — GL(1") be an automorphism action of T on
V' such that the induced T-action on the dual of V" has a nontrivial fized point.
Then p has nontrivial fired point in 1",

Proof : By passing to the complexification we see that it is enough to prove
the analogous statement when 1" is a finite dimensional vector space over C. In
that case after suitable identifications we can assume that V=V=C,p:
I' = GL(n,C) is a homomorphism and p*:T = GL(n.C) is the homomorphism
defined by p*(v) = p(v~!)T. Let us consider the special case when with respect
to some basis in C* each p(7) is given by an upper triangular matrix with equal
diagonal entries. In this case it is easy to verify that p or p* has a nonzero fixed
vector in € if and only if for any 4 in T all the diagonal entries of p(v) are
equal to 1. To prove the general case we note that since T is abelian, there exist
subspaces V1, V5,..., 1% of C* and homomorphisms p; : I' — GL(V}); i = 1,. Lk
suchthat C* = Vi@ ---@Vk, p=p, @--- @ pr and cach p; satisfies the above
condition (see [Ja), pp. 134). [u]

Proposition 3.3.2 : Let ¢ be an automorphism action of a discrete abelian
group T on a torus T". Then (T",0) is ergodic if and only if there is no nonzero
element in L(T™) with finite o.-orbit.

Proof : Since T™ = R*/Z", o, can be realized as a homomorphism from I to
GL(n,Z), the dual action o can be realized as the homomorphism from T to
GL{n,Z) which takes 7 to o.(+"!)T and & can be identified with 07|z~ Suppose
(T".0) is ergodic. Let [ C T be a subgroup of finite index. Since & = 7|z,
applying Theorem 1.4.1 we see that no element of Z is fixed by Iy under the
action 7. Since 07(v) € GL(n.Z) for all ~. this implies that no nonzero element
of R* is fixed by Ty under the action o.. Applying Proposition 3.3.1 we see
that no nonzero element of R" is fixed by Tp under the action o,. Now suppose
(T",0) is not ergodic. Then there exists a finite index subgroup I'y C T and a
nonzero point z in Z" such that = is fixed by Ty under the action o;. Now from
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Proposition 3.3.1 we conclude that there exists a nonzero element in R* which is
fixed by Ty under the action e o

Theorem 3.3.3: Let X1..Ys be nilmanifolds and p.0 be automorphism actions
of a discrete abelian group T on X1 and X, respectively. Suppose that (X2,0) is
a factor of (X1, p) and either (X1.0) = (X2.0) or X1 is a torus. Then there is a
non-affine continuous I'-equivariant map from X\ to X if and only if (X3,0) is
not ergodic.

Proof :  Suppose (X2.0) is not ergodic. By our assumption there exists a
continuous I'equivariant map f from (1. p) onto (X3.0). If £ is non-affine then
there is nothing to prove. Therefore we may assume that there exists a gy € G,
and a continuou$ homomorphism 6 : G — G, such that FlgD1) = go8(g) Dy for
all g in Gy. Since f is surjective and [-equivariant, so is 6. Let §° denote the
homomorphism from X? to X9 induced by 6. Then 6° is surjective. Since (X3,0)
is not ergodic, from Proposition 1.4.4 it follows that (X7,0°) is not ergodic. Let
4 be an element of X such that o9-orbit of ¢ is finite. Since 6° is T-cquivariant,
it follows that E’-orbit of ¢ 06° is also finite, which implies that (X?, pp) is not
ergodic. Also for any v in T,

600%7) 08" = 606%0 (7)) = S0 8",

Since 8° is a surjective map, this implies that ©000%(7) = ¢ for all vinT,. Let n9
denote the projection map from G- onto XY and let ¢ denote the map ¢onoexp.
Then dg : L(G,) — R is an element of the dual of L(G) such that dqoo.(y) =dg
for all v in T',. Now from Proposition 3.3.1 it follows that there exists a nonzero
point in L(G,) which is fixed by I, under the action o,. Applying Theorem
3.2.3 we see that there exists a continuous non-affine I'-equivariant map A from
(XP. %) to (X2.0). If 70 denotes the projection map from X, to X? then it is
easy to see that hox? is a continuous non-affine T'-equivariant map h from (X1,p)
to (X2, 0).

Now suppose (X»,0) is ergodic. Since by our assumption either (X1,p) =
(Xz2,0) or Xs is a torus, from Proposition 3.3.2 it follows that either (X, p) is
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ergodic or there is no non-zero element in L(G5) whose o.-orbit is finite. Applying
Theorem 3.1.3 we conclude that every continuous I-equivariant map from (X7, p)
to (X3,0) is an affine map. al

The following examples show that Theorem 3.3.3 does not hold if any of the
assumptions in the hypothesis is dropped.

Example 3.3.4 : Let T be the cyclic group and p. o be the automorphism actions
of I' on R/Z generated by the identity automorphism and the automorphism
z — —z respectively. Then it is easy to see that I', = ' and no nonzero element
of L(R) is fixed by I, under the action o.. Now applving Theorem 3.2.3 we
conclude that there is no non-affine continuous I'-equivariant map from (S, p)
to (S%,0). Note'that in this case [ is abelian and neither of the two actions is
ergodic.

Example 3.3.5 : Fix n > 3 and define a subgroup I' of GL(n, Z) by

r={(‘g ’l’) | AecL(n—l,Z),bez"-'}

Let p denote the natural action of I on R*/Z". Then it is easy to see that for
any z = (z1,...,2,) in L{R"), the p.-orbit of z is given by the set

{Ay+zb | A€ GL(n ~ 1.Z).b € Z"'} where y = (z1,.. ., Zno1)-

Hence for every nonzero z in L(R"). the p.-orbit of z is unbounded. Applying
Theorem 3.1.3 we see that there is no non-affine continuous [-equivariant map
from (7™, p) to (T, p). Note that in this case (T™.p) is not ergodic since the

vector xo = (0. 0,1) is fixed by the dual action p*.

Example 3.3.6 : Suppose X = G/D where G and D are defined by

1z 1 -
G:{(O 1 y)lz.y.ze‘R},D={(0 lq)|p.q,rEZ}.
001 001

Let A be an ergodic automorphism of G/D. If Gy denotes the center of G then
it is easy to see that Go/(Go N D) is isomorphic to S'. Hence replacing A by A?
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if necessary we may assume that -l acts trivially on G,. Define a nilmanifold X,
and an automorphism Arof X by X = XU xS!, Ay = AxId. Let p, and p denote
the automorphism actions of Z on 2\ and Y generated by 4, and 4 respectively.
Then (X, p) is a factor of (X1.p1). Let 7 : X; — S be the projection map
and k: S' — L(G,) be any nonzero continuous map such that h{e) = 0. Then
how(2r) = 0 and kor is a nonzero T-equivariant map from X, to L(G). Applying
Lemma 3.1.1 we see that there exists a non-affine continuous I'-equivariant map
from X, to X.
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Chapter 4

Conjugacy of flows on compact
Lie groups

In this Chapter our goal is to classify one-parameter automorphism flows on

compact connected Lic groups up to topological conjugacy.

Definition : Let G be a Lie group and 9,4’ be two one-parameter subgroups of
Aut(G). We say that ¢ and ¢ arc topologically conjugate at the identity if there
exists an invertible linear transformation S : L(G) — L(G) such that

dé,0S=Sodg, ViER

In Section 1 we classify one-parameter automorphism flows on compact con-
nected Lie groups up to topological conjugacy at the identity. In Section 2 we
prove that on certain compact Lie groups two one-parameter automorphism flows
are topologically conjugate at the identity if and only if they are algebraically con-
jugate. In Section 3 applying results of the previous Sections we prove that if
G = Sp(n), SO{n+1) or Spin(n) for some n > 1 then two one-parameter automor-
phism flows on G are topologically conjugate if and only if they are algebraically

conjugate.
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4.1 Topological conjugacy at the identity

For a Lie group G. ¢ : G — Int(G) will denote the homomorphism defined by
o(g)(z) = gzg™! for all g.r € G. Also for any v in L(G). o will denote the
one-parameter subgroup of Aut(G) defined by

7 = ofexp(tr)).

Proposition 4.1.1 : Let G be a compact connected Lie group and ¢ be g one-
parameter subgroup of Aut(G). Then o = 6 for some v in L(G).

Proof :  Since G is compact. Int(G) is the connected component of Aut(G)
containing the identity. Hence the image of & is contained in Int(G). Since ¢ is
surjective, there exists v in L(G) such that o, = alexp(tv)) = of foralltin R O

Proposition 4.1.2 :  Let G be a compact connected Lie group and ¢%, ¢* be
one-parameter subgroups of Aut(G). Then &' and ¢ are topologically conjugate
at the identity if and only if ad(v) end ad(w) are linearly conjugate.
Proof : For any z in L(G) we have

do} = do(exp tr) = Ad{exp tz) = exp(t ad(z)).
Hence ¢” and ¢* are topologically conjugate at the identity if and only if there
exists an invertible linear map P : L(G) — L(G) such that

Poexp(t ad(v)) = exp(t ad(w)) o P Vtc R

Differentiating at t = 0 we see that the last identity holds if and only if ad(v)
and ad(w) are linearly conjugate. Conversely if P is a linear conjugacy between
ad(r) and ad(w) then it is easy to see that Po dof =dofoPforalltinR D

Recall that for a finite set 4. [4] denotes the cardinality of 4. We will denote
the group of all permutations on {I..... n} by Sp. If ¥ € S, and z € R" then
@ - r will denote the vector in R” defined by (7 x)i =225 Yi=1,....n

Lemma 4.1.3 : Letr = (x1.-..2n) and y = (y1,...ya) be two vectors in R*
such that
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o) {{iltzs€Z}=[{ilty€Z} VteRand

b) there exist w1, 72 € S, such that = -z = —x and 72 -y = ~y.

Then there ezists = € S, such that 7 -1 = y.

see that for any nonzero a in R.

Titia = X;Hilm=je}l
{ilzi/aeZ}|
HilvlaceZ}
3 Mo

S dja=0.
J

Since d, = 0 for all but finitely many a’s, there exists a ap € R such that djo, =0

1]

n

]

Hence for all nonzero a in R,

whenever j # 0. Putting & = g in the previous identity we see that do = 0. Now
to prove the given assertion it is enough to prove that do = 0 for all c. Suppose
otherwise. Since d, = 0 for all but finitely many o's, there exists a ap € R such
that dg, # 0 and ds = 0 whenever |3| > |ag|. Applying the previous identity we
obtain that

dog +do +d_g, = 0.

From condition b) it follows that for all a € R. ny = —n_, and n, = ~n_,.
Hence da, = d—a, and since do = 0. this implies that 2do, = 0. This gives 2
contradiction. u}

Theorem 4.1.4 : Let G be a compact connected Lie group and let ¢, and ¢2
be two topologically conjugate one-parameter automorphism flows on G. Then 6,

and ¢, are logically conjugate at the identity.
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Proof : Using Proposition 4.1.1 we see that there exist v1.v2 € L(G) such
that ¢; = 0" and 6, = o™. From Proposition 4.1.2 it follows that é1 and @y
are topologically conjugate at the identity if and only if ad(v;) and ad(v;) are
linearly conjugate endomorphisms of L(G). Now for j=1.2and for all ¢t € R we
define a closed subgroup Hj of G by
Hi={geGlojig)=g}
Then the Lie algebra of H is given by
L(H}) = {w € L(G) | Ad{exp to)(w) =w }.

Ifix, ... ,iX denote the eigenvalues of ad(v;) then the eigenvalues of Ad exp tv;
1 'k 7 ¢
are given by €™M ... 2™ Hence for all ¢ in R,

dim(H}) = dim(L(HY)

dim({w € L(G) | Ad(exp tv;)(w) = w })
= filtiez)

Since ¢; and ¢, are topologically conjugate it follows that for all ¢ in R, H} and
H} are homeomorphic. Hence for all ¢ in R. dim(H}) = dim(H}) i.e.

HiltN ez} =(ilta ez}
Define z;, z; € R* by x;, = (Al,..., L) and zy = (A},...,A}). We fix an Ad-

invariant inner product on L{G). Note that ad(z) is skew symmetric with respect
to this inner product for all z in L(G). This implies that for all z in L(G) and « in
R the multiplicities of i and —ia in the spectrum of ad(x) are the same. Hence
there exists m;, 7> € S, such that 7; -z, = —ryand 72+ Iy = —r>. Now applying
Lemma 4.1.3 we see that AL...., A} are same as A.....AZ up to a permutation.
Since ad(r,) and ad(z;) are skew symmetric with respect to an inner product on
L(G), it follows that ad(z,) and ad(x;) are linearly conjugate endomorphisms of
L(G). a

Now let G be a compact connected Lie group and T be a maximal torus of G.
Let Ry,..., Ry : L(T) — R be the real roots of G with respect to T. Then for any
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v,w € L(G), ad(v) and ad(w) are conjugate if and only if Ry(v)...., Re(v) are
same as Ry(w)...., Re(x) up to a permutation. Theorem 4.1.4 therefore implies
the following.

Corollary 4.1.5: LetG be a compact connected Lie group and T be @ mazimal
torus of G. Let v,w be two elements of L(T) such that o* and o* are topolog-
ically conjugate. Then Ry(v)...., Ri(r) are same as Ry(uw).....,Re(w) up to a
permutation, where Ry, ..., R are the real roots of G with respect to T'.

The following example shows that Theorem 4.1.4 does not hold for noncompact
groups.

Example 4.1.6 : Suppose G = R and ¢, ¢ are one-parameter subgroups of
Aut(G) defined by
Gu(x) = €'z, o(z) = ex.

Then after suitable identifications we have, L(G) =R and d¢, = ¢, d¢, = &,
for all t in R. Since ¢ and ¢ are not linearly conjugate, the automorphism flows
on R induced by ¢ and ¢’ are not topologically conjugate at the identity. On
the other hand it is easy to see that the map r — 12 is a topological conjugacy
between these two flows.

4.2 Algebraic conjugacy

In this Section we prove that two one-parameter automorphism flows on certain
compact Lie groups are topologically conjugate at the identity only if they are
algebraically conjugate. We begin with the following lemma.

Lemma 4.2.1: Let G be a connected Lie group and Z be the center of G. Then

for v,w € L(G) the automorphism flows o* and o* are algebraically conjugate if
and only if w = wo + dr(v) for some wy € L(Z) and 7 € Aut(G).
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Proof :  Suppose w = wy + d7(r) for some uwy € L(Z) and 7 € Aut(G). Then
foralltin R
exp(tw) = exp{tu)-exp(dr(v))

exp(tuy) - 7(exp tv).

Hence forallt € R,
6for = ofexptu)or
= o(exp tug) oo(r(exp tv))o .
Since wo € L(Z), o(exp twp) is the identity map for all t € R. Also it is easy to

check that for any 7 € Aut(G) and g € G, o({g)) o7 = T 0 5(g). Therefore from
the previous identity it follows that

¢ oT =g(r(exp tv))or =709} VtER,

i.e. ¢* and ¢" are algebraically conjugate.
Now suppose that there exists a 7 in Aut{G) such that, 70 ¢? o 77! = ¢¥ for
all t in R. Then it is easy to see that for all ¢ € R,
ofexptu) = togfor!
= Too(exptr)orT!
1

o(r(exp tr))eroT™
o(r{exp tv)).

We define o, 8,7 : R — G by

a(t) = 7(exp tr) = exp(t dr(v)). 3(t) = exp tw. and +(t) = a(t) - 3(t)~.
Since the kernel of ¢ is Z, it follows that that the image of ~ lies in Z. Differen-
tiating v at ¢ = 0 we conclude that dr(v) — w = +'(0) € L(Z). o
Let G be a compact connected Lie group. We introduce two equivalence relations
~ and = on L(G) as follows : For v.w in L(G) we define

1) v ~ w if ad(v) and ad(w) are linearly conjugate.
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2) v = w if w = wy + d7(r) for some wo € L(Z). 7 € Aut(G).

Definition : Let G be a compact connected Lie group. Then G is said to be
rigid for automorphism flows if for v.uw € L(G). v ~ w implies v = w.

Theorem 4.2.2 : Let G be a compact connected Lie group. Then G is rigid
for automorphism flows if and only if for any two one- parameter automorphism
flows ¢y and &, on G the follow: g 7 ts are eq I

1) ¢ and ¢ are algebraically conjugate.
2) ¢1 and ¢, are topologically conjugate.
3) ¢1 and &, are topologicall, j at the identi:

Proof : Suppos‘e G is rigid for automorphism flows. Let &1 and ¢, be any two
one-parameter automorphism flows on G which are topologically conjugate at
the identity. By Proposition 4.1.1 there exist v and w such that $1 = ¢ and
¢2 = ¢“. Applying Proposition 4.1.2 we sce that v ~ w. Since G is rigid for
automorphism flows from Lemma 4.2.1 it follows that ©1 and ¢ are algebraically
conjugate. Therefore 3) implies 1). Now applying Theorem 4.1.4 we see that 1),
2) and 3) are equivalent.

Now assume that 1), 2) and 3) are equivalent for any two one-parameter
automorphism flows on G. Let v,u be two elements of L(G) such that v ~ 1.
Then from Proposition 4.1.2 it follows that 6 and ¥ are topologically conjugate
at the identity. From our assumption it follows that ¢* and 6* are algebraically
conjugate. Applying Lemma 4.2.1 we see that ¢ & u'. a

In the next Section we give several examples of compact Lie groups which are
rigid for automorphism flows. Here we make the following two simple observations
about compact Lie groups satisfying this property.

Proposition 4.2.3 : Suppose G is a compact connected Lie group, TC G isa
mazimal torus, C C L(T) s @ Weyl chamber and R;. ..., Ry : L(T) — R are the
real roots of G with respect to T. Furthermore assume that for any two points
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v,w € C, the numbers R(v)..... Ri(v) and Ry (uw)..... Ry (w) are same up to a
permutation if and only if v = w. Then G is rigid for automorphism flows.

Proof : Let v,u be two elements of L(G) such that v ~ w. Then applying
Proposition 1.3.2 we see that there exist r1.u; € C and inner automorphisms
71,72 such that v = dn(v;) and w = dm(uy). Since for z.y in L(G), z =~ v
implies z ~ y and ~ is an equivalence relation. we deduce that v, ~ w;. Now
from our hypothesis it follows that 1y = wy. Since v & vy and w = w; we conclude
that v = w. [m)

Proposition 4.2.4 :  Let G be a compact connected Lie group and let K C G
be a finite central subgroup which is invariant under Aut(G). Then G is rigid for
automorphism flows if and only if G/K is rigid for automorphism flows.

Proof : If 7 : G — G/K is the projection map then the map d is a Lie algebra
isomorphism from L(G) to L(G/K). It follows that dx preserves the relation ~.
Since K is a finite central subgronp swhich is invariant under Aut(G), there is
an isomorphism ¢ : Aut(G) — Aut(G/R) satisfying i(8) o5 = 7 0 0 for all 6 in
Aut(G). Since dr is a Lic algebra isomorphism. this implies that for v, € L(G),
v = w if and only if d7(v) = dr(w). Hence G is rigid for automorphism flows if
and only if G/K is rigid for automorphism flows. a

4.3 Some examples

Example 4.3.1 : Sp(n).n > 1.

Let H denote the standard quaternion algebra and < , > denote the stan-
dard symplectic scalar product on E*. Then Sp(n) is defined as the set of all
elements in GL(n. H) which preserves < . >. \We choose a maximal torus T and
a fundamental Weyl chamber C of L(T). Then after suitable identifications we
have L(T) =R" and C = {r € R"| 1, > 2o, > --- > 1, > 0}. Further-
more For any z in L(T). Ry(z)..... Ry(z) are given by +22;, 1 < i < n and
+z; £z, 1<i<j<n
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We shall show that these groups are rigid for automorphism flows. Take z
and y in C such that Ry(x)..... Re(r) is a permutation of Ry(y),... Re(y). We
» Ri ()
and 2y, = maximum of Ry(y).... Re(y). Hence r, = y,. Choose I such that

claim that z = y. Suppose not. Note that 2r, = maximum of Ry(z),

i # y but x; = y; for i > [. Remove the numbers ; +x;, I<i<j<n
and 2z;, I <i<n from Ri(z)...Ri(zr) and denote the remaining numbers
by z....,z,. Similarly remove the numbers yity . l<i<j<n and
2y, l<i<n from Ry(y)...R(y) and denote the remaining numbers by

y'l,“.,y;. Note that maximum of 1'l z, is 2, + 2; and maximum of y;,...,y;

is yn + . On the other hand y, .y; is a permutation of r;,,..,:c't. Hence
Tn+T; = Yn+y i-e. 2y = y;. which is a contradiction. Now from the above claim

and Proposition 4.2.3 it follows that Sp(n) is rigid for automorphism flows.
Example 4.3.2 : SO(2n+1).n > 1.

We recall that SO(2n +1) is the group of all orthogonal lincar transformations of
R+ with unit determinant. After suitable identifications we have L(T) = R
and C = {z € RY| T, > Tpoy > -+ > ) > 0}. Also for any z in L(T),
Ry(z),...,Re(z) are given by +r,. 1<i<nand *r, tr.l1<i<j<n

Lemma 4.3.3: Letr; <2 < .. < xm and y; < 42 < ... < ym be two finite

sequences in R such that the numbers z, +x;, 1 <i < j < m are same as
Yi+ ¥, 1 <1< j < mupto e permutation. Then either m = 2! for some [ or

=y Vi=1,..., m.

Proof : Define two functions f. f> : R* — R by
L =3 pe) =3
1 1

Under the hypothesis as in the lemma . we have

s = Sewn,

i<j i<j
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This implies that for all ¢ in R-. F) = f3() = A - f2(t). Define h, g :
R* > Rbyh=fi—fo. g= fi+ fo. Then h(t)g(t) = h(t?) for all ¢t in R. Let h(k)
denote the k'th derivative of A. We consider the following two cases separately.

1. A®)(1) # 0 for some k.

Choose I > 0 such that A®(1) = 0 for i < I and hU+1(1) # 0. Now differen-
tiating I + 1 times the identity h(t)g(¢) = h(t?) , and using the fact A®(1) = 0
for i <! we get

A (1)g(1) = 21400 ),
Hence g(1) = 2'*!. But g(1) = 2m. So m = 2.
2 h®(1) =0 V.
In this case we have

Dowlm D (m—k) = Youln—1) (- k) V.

This implies that

Z ¥ = Z yE vk
We shall deduce from this fact that I, =y Vi. Suppose this is not the case.
Interchanging z and y if necessary we can find Jj such that z; > y; and z; = ¢,
for i > j. We choose a ¢ € R such that

Ti+c yi+e>0 Vi=1...., m.

Now for large k,
g5+ F > jly, + 0 2 S+ ).
1<
This implies that

m

SEi+oF > Em:(y. +o)*,
1

1

which contradicts the fact that 3" z% = 3 y* k. This proves the lemma. O
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Now we will prove that SO{2n + 1) is rigid for automorphism flows. Take v, win
the closure of C such that v ~ w. Put m = 2n+1 and definer; <z, < ... < Ton
and 1 <y < ... <y by

Since v ~ u, the numbers Ti+T;. 1<i<j<mand yi+y;. 1<i<j<mare
same up to a permutation. Since m is odd. Lemma 1.3.3 implies r; = y; for all
t=1,..,m ie v=w. Now applying Proposition 4.2.3 we see that SO(@2n+1)
is rigid for automorphism flows.

Example 4.3.4 : Spin(2n +1).n > 1.

For any k , Spin(k) is defined as the simply connected covering group of
SO(k). Let p; denote the covering map of Spin(k) onto SO(k) and Z, denote
the center of Spin(k). Then SO(k) can be identified with Spin(k)/Z, with py as
the projection map of Spin(k) onto Spin(k)/Z;. Now from Proposition 4.2.4 it
follows that Spin(2n + 1) is rigid for automorphism flows for all n.

We will conclude with a few examples of compact Lie groups which are not rigid
for automorphism flows. e will use the following fact.

Proposition 4.3.5 : Letz = (zy..... Ip) and y = {y...., yn) be two elements
of R" such that

n n

S =3 vier.

1 1
Then zy,...,z, are same as 1.

- Yn up to a permutation.

Proof :  Clearly it is enough to consider the case when zy 2 --- 2> 7, and
Y1 2+ 2 Ya. Suppose r, # y; for some i. Then interchanging z and y if
necessary we may assume that there exists a j such that zj > y; and z; = y; for



i > j =+ 1. Now from our hypothesis it follows that

it" =§:th Vte R*.
1 1

We choose #g large enough so that ty > nty. Then putting t = o in the previous
identity we see that

J k)
Sty snth > S,
1 1
which gives a contradiction. o
Example 4.3.6 :

Now we will take G to be SO(2n), n > 1. After suitable identifications we
have L(T) =R, C={z|2,>--- > mpand 2, > |z1] }. Also for any z in
L(T), Ri(z),...,R(x) are given by zr;+z;, 1<i<j<n

For any m > 2 define two polynomial P, @ by

P(t) = 3t7™(t+ 1) + 1=™(¢ — 1)?™ and
Q) = ™+ 1) = Lmm(e — 1)2m,

It is easy to check that for all ¢ in R.

(P-QI(P+Q)t) = t72m(t — 1) (4 4 1)2m
= (e
= (P-Q)(#).
This implies that P2(t) ~ P(1?) = Q*(t) — Q(t?) for all # in R Note that
since P(t) = P(1/t) and Q(t) = Q(1/¢) there exist r = (*1.7++,2Z) and
Y¥=(y1, -+, ¥m) in C such that

P(t) = Xm:zx- +3 o Q)= i 4 ijrﬂx.
1 1 3 1
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Hence for all ¢ in R,

SHRE = P - P(?) - 2m
= @) -Q()-2m
= S jtRa

Applying Proposition 1.3.5 we see that Ry(r)..... Ri(r)and Ry(y)..... Ryi(y) are
same up to a permutation i.e. T ~ y.

Now if G = SO(2n), n > 1, L(Z) = 0 and Aut(G) = Int(G). So in this
case r &y if and only if y = dr(z) for some inner automorphism 7 of G. Since
yp2€C,y= dr(z) for some inner automorphism 7 of G if and only if z = y.
Hence z and y do not belong to the same equivalence class of x.

Example 4.3.7 :

Let us take G to be U(n), the set of all unitary transformations of C*. Then
after suitable identifications we have L(T) =R and L(Z) = {(y....y) |y € R }
Also for any = in L(T) the numbers Ry(x)...., Re(x) are given by z; — i, 1 #
il1<ij<n

We choose two distinct positive integers k, I > 0 and define two functions
P, ¢:RY 5 Rt by

P = {t+ k)t +1). q(t) = 7" (1 + ke)(t + ).

If m = (k+1)(I+1) then we choose integers ty...., tm and wy...., wm such that

m

pt) = t" and q(t) = S

1 1
Let T be a maximal torus of L'(m). Then we define v.u € L(T) = R™ by
v= (V... Um) and w = (uwy..... wm). Since p(t)p(1/t) = q(t)g(1/t) for all ¢ in
R from Proposition 4.3.5 it follows that Ry(v))...., Re(v) and Ry (w))..... Ry(w)
are same up to a permutation i.e. ¢ ~ .
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Now we will prove that + and w do not belong to the same equivalence class
of ~. Since Aut(U(m)) is generated by Int(I°(m)) and the automorphism 4 +— 1
it is easy to see that for any two elements y. = in the Lie algebra of I'(m), y = =
if and only if y can be obtained from = by applyving operations of the following
type.

a) (Il:-~-~1m) = (=7r..... —Tm).
b) (z1,....2m) = (2, + 2. .... Tm +t) for some tin R
) (Z1,...,Tm) = (Zxqys - +:Ta(m)) for some permutation 7 of 1,....m.

Since the coefficient of #2 in P is 1. it is easy to see that there exists a j such
that v; # % for all i # Jj- Observe that this Property remains invariant under
the operations a), b) and c). Since no coefficient in g is equal to 1, it follows
that w does not satisfy this property. Hence v and w do not belong to the same
equivalence class of .
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