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Preface

This thesis is devoted to the classification of a special class of comnmuting

squares called vertex models.

The first chapter is indroductory in nature and is included for the sake of
completeness and convenience of reference. It starts with the description of the
basic construction and the invariants called the principal and dual graph for an
inclusion of /I, factors. After defining a commuting square we describe the special
class of commuting squares called vertex model given by an M, & M; biunitary

matrix . Finally we state some results, without prool, about vertex models {rom

(KSC].

The second chapter is the core of the thesis. It is devoted to the classification
of vertex models given by an M, ® M, biunitary matrix. If B(k,n) denotes the
collection of M, ® M; biunitary matrices, then B(2,3) is classified up to the nat-
ural equivalence relation on it. Further, a simple model form for a representative
from each equivalence class in B(2,n) and also necessary conditions for two such
‘model connections’ to be themselves equivalent are obtained. Then we go on to
show that B(2,n) contains a (3n — 6) parameter family of pairwise inequivalent
connections and show that the number (3n — 6) is sharp. Finally, it is deduced
that every graph that can arise as the principal graph of a finite depth subfactor
of index 4 actually arises for one arising from a vertex model corresponding to

B(2,n) for some n.

In the appendix, we give elementary and direct proofs of two known results
in the literature (due to Kosaki-Yamagami and Bisch, respectively) using the
techniques of bimodules and elementary matrix manipulations. The first result
is the computation of principal and dual graphs for the inclusion of Il; factors
N =P >xH C P >G = M, where ¢ is a discrete group acting as outer
automorphisms of a I'l; factor P, and H is a subgroup of G such that [G : H] < oo.
It 1s this proof that has basically been reproduced in [JS]. The second result (due
to Bisch) is that if N € M C P is an inclusion of I'l; factors such that ¥V C P
has finite depth, then N C M and M C P have finite depth.
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Chapter 1

Preliminaries

In this chapter we recall some facts about subfactors. For a proof of these facts
presented here one can refer to [GHJ] or [JS], from where most of the meterial here
18 reproduced. We start with the description of the basic construction for N C M,
an inclusion of ff; factors of finite index. Then we describe two invariants for
N € M called the principal and the dual graph. After defining a commuting
square, we describe a special class of commuting squares called the vertex models,
a smaller class of which will be analysed in Chapter 2. We also reproduce certain
facts about vertex models (proved in [KSC]) without proof. We end this chapter
with a proposition, which removes the ambiguity in a fact proved in [KSC].

1.1 The basic construction

If M is a finite von Neumann algebra with a fixed faithful, nomal, tracial state ¢r,
by an M —module, we mean a Ililbert space H equipped with an action of M into
L(H). One such example is the standard module L%(M), with its distinguished
cyclic trace vector {1, obtained through the GNS construction applied to the the
tracial state tr (ref [JS]).

Now suppose N C M is an inclusion of finite von Neumann algebras. Con-
sider the module L?(M) (which is actually an M — M — bimodule -see the
appendix). Since H is the completion of M$2, it follows that the subspace
H, = [N§] can be naturally identified with L%(N,tr). Let ey denote the or-
thogonal projection of H onto the subspace H;, then it is a fact (see [JS], for

|
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instance) that ey (AM§2) C N

Hence the projection induces, by restriction, a
map Fy : M —

N, which is called the conditional expectation of A onto V.
This tnap satishes the following properties:

(1) enven = Exn(rley ¥ x € M, and consequently Ex defines a Banach
space projection of M onto N. (i1) Ex is an N —- N bilinear map i.e. £xy(rnmn,} =
'r].IP;,a,r(m)ﬂ.:g A4 Ty, e € N, (11]) IT‘(ENI:RT)} = t?‘[.‘I.‘} ¥V r M.

DEFINITION 1.1.1 The passage from the intial inclusion N C Al lo the
Neuwmann algebra M, = < M,en > = (M U {ex])”

R

o~

. consequently to the lower

N C M C M, is called the basic construciion. The projection ¢pn is called the

Jones projection for the basie construction of N C M.

Supposc N C M is an inclusion of 71, factors of finite index. [ Jar denote

the extention of the adjoint map in M to LF(M), then M, = JyN'Jyrr. Hence
My 1s also a TH factor.

The trace £r defines a Markov trace for ¥ € Af, 1.e. 1t extends 10 A trace on
M, so that tr(veny) = 7ir(x) Vo e M, where 7= [M - N1, and its extention

to Afy is a Morkov trace for M C M . Tt is farther true that {M, @ M) = (M N

Lising this, we can iterate the basic contruction aud obtain Jones™ tower of
the basic contruction for N C M

NCMOM CM---C M, & -

We end this section by stating a fact - see [J] or [GHJ] - regarding the basic
construction for finite dimensional C”-algebras.

PrROPOSITION 1.1.2 Lel A C B be an inclusion of finite dimensional (" -algebras.
If 7 is a Markouv trace for the inclusion A C B, then of cetends lo a stale tr on

< [ eq > which s a Markov trace for the inclusion B < < B,eq >.

1.2 The Principal and the dual graphs

We start with a brief description of inclusions of finite dimensional € -algebras

and the associated Bratelli diagrams. If A € £ is an inclusion of finite dimnen



sional C'"-algebras, then (by the Wedderburn-Artin theorem) A and B are isomor-
phne to direct sums of inntely many matrix algebras over C. Let A = ™, M, (C)

and [3 = 0 M, (C).

[t #(X) denote the set of minimal central projections of X, then the Brattel
diagram for the inclusion A € £ is the graph A whose set of vertices is the disjoint
union of two sets labelled by w(A) and #(B) and p, € #(A4) is joined to ¢; € 7(8)
by m;; bonds, where mz;; is ‘the multiplicity of AL, (C) in M, (€) under the
mclusion. The m X n matrix with its entries as m;; 15 called the inclusion matrix
[or A € B. Itis afact (ref [JS]) that if ¥ € Af is an inclusion of finite dimensional
(" — algebras with Bratteli diagram A, then the Bratteh diagram for the inclusion
M C M,, where M, 15 the finite dimensional (7" algebra obtained by the basic
contruction; 1s given by a ‘reflection’ of A, i.e. the inclusion matrix 1s given by

the transpose.

Suppose ¥V © A 1s an inclusion of £/, [actors with finite index and

N==M_,CM==»MCMCAM.  -CM C-.

i the tower of basic contruction, then {M/ M M; - —1 < i < j} is a grid of finite
dhimensional (— algebras, which 15 canonically associated with the inclusion

N C M, and is consequently an ‘invariant’ of the intial inclusion.

Because of a periodicity of order Lwo, we need to only consider ¢ = -1
and ¢ = 0. It 1s a fact that (ref [JS]) ' M A, contains a copy of the basic
construction lor Lthe inclusion N M Af,_;, € N M M, and consequently that the
Brattch diagram [or the minclusion N M, € N'M M, contains a ‘rellection’ of
the Brattell diagram for the inclusion N"MAM, ., € N'NAL, The graph obtained
by starting with the Bratteli diagram for the tower {N'MAL, 0 = — 1} ol relative
comnuitants, and removing all those parts which are ebtained by reHecting Lhe
previous stage, 18 called the Principal graph invariant for the inclusion ¥ € M.
A similar reasoning applies for ¢ = 0 also, and the resulting graph is called the

dual graph invariant for the inclusion &V € M.

1.3 Commuting squares

IYirst. we deline the notion of a commulting square.



DeriNITION 1.3.1 Suppese D is a finite vorn Neumann algebra with a finite,
faitleful. normal tractal state tr and A, 2 and O are subalgebras of 12 such that
A C BNC; then the following dragram

CC D
L L) (1.3.1)
A C B

15 sard to be a commuling square of [Ny(C') = e (12) = A, where the condilional

rrpectation s defined on I} with respect to the trace ir.

Suppose
By © I3
L LJ (1.3.2)
Ay © L

is a comnmuting square of finite dimensional ('* -algebras with respect to a trace

on 2, which is a Markov trace for the inclusion By € f7;. Assume that this

commuting square is ‘symmetric’ or ‘non-degenerate’ (see [T18] or [PI]).

l.et [f; =< H;,e > denote the hasic coanstruction for the inclusian 5 € 4,
where ¢ denotes the projection w3, which implements the conditional expec-
tation of Hy; onto By, Dehne A, o< Ay,e = © £2;. Then the following 1s also
a commuting square (with respect to the unique trace on f3; which extends the

given trace on ) and 1s a Markov trace for the inclusion £, C ;) :

3, C B
U U (1.3.3)
Ay © Ag

suppose that 8o € By € {25 C .- 8, € --- 15 the tower of basic construction

with the Jones projections e,,, and A, = < A, _1,¢,_1 = lor n > 2; then the

tollowing i1s also a commuling square, for n > 2:

Bn—'l f:.: Bn
U U (1.3.1)
AH—' {:_—_ Aﬂ

Now If we define B = (U, 8,) and I, = (U, ALY, then 2, < £ is a subfactor
and its relative comnmutants are described by a result due to Qeneann which we

state here for the first relative commutant. (See [O1] or [JS].)
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THeoOrREM 1.3.2 (Ocneanu Compactness) Let A,, B,, Ra, & be as above
then
Ry R = AN By

The above construction of the subfactor s canonical and we call the subfactor
the horizontal subfactor associated with the commuling square 1.3. By applying
the basic construction to the pair A; € f3,, in a simmilar way we construct another

sublactor which we call the vertical subfactor.

1.4 The vertex models

(Consicder the following commuting square:

AL & Al
N U WY (1.4.5)
.-‘13 EF; ;l?
where (/, H, KN and L are the corresponding inclusion matrices; then the following

are equivalent:
(VG =L =[r]land H = K = [£].

(11) the square {1.4.5) 1s iIsomorphic to a commuting square of the forin

Wil @ M (CHW- C M {C) e M (C)
U U ; (1.:£.6)
C ML (C) =1
where W = ((Wg)) € M, (C)® M (C) is unitary. (We use the convention that
| < e, <, | <a,b<i))

I

If W = ((W52) € M (€)D M (C) is any unitary matrix, then the square
(1.1.6) 15 a comnmuting square iff W is biunitary - 1.e., both W and 1% given by
e = lfl’ﬂ:' are unitary. We call such a commuting square a vertex maodel. We

shall use the syinbol (4, n) to denote the set of such biunitary matrces,
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Two biunitary matrices W and W’ are said to be equivalent if the corre-
sponding commuting squares are isomorphic. It is true that if W, W’ € B(k,n),
then W and W’ are equivalent if and only if there exists unitary matrices {7, /7 €
M., A, A" € M; such that ({7 0 AYW = WL A

Given W € B(k, n), the basic construction yields a grid of commuting squares
and consequently, a horzontal (respectively rvertical) sublactor A2, € Al (re-
spectively AG® C© A7) with index A (respectively n»%). As this construction is
canonical, 1somorphic commuting squares (i.e., equivalent binnitary matrices)
vicld isomorphic hornzontal (respectively vertical) subfactors. The following the
oremn, which decribes the relative commutants of the horizontal subfactor when
the biunitary matrix is in a particular form, is proved in [KSC]. (Sce also [BILI})

Belore stating that result we describe what is called the Cayley graph of a group.

For a group ¢ € U(N), let © denotes the standard (or identity) represen
tation of &/ in U{NV)}, and let ff[(ﬁ'}:r} denote the bipartite graph obtained as
[ollows: let. G denote the bipartite graph with the set of cven (respectively odd)
vertices being given by G = ¢ x {0} (respectively GO = € {1}). wheve 3
denotes the (unitary) duaal of €7, and the number of bonds joining (p, 0) and (7, 1)
Is given by (p &0 m,o); here and everywhere we write < p 9 7.0 > to denote the
multiphicity of o in p & 7. Finally, let !.':;'{ff:r'ﬁ ) denote the connected component
in & contaning ({1, 0), where £r denotes the trivial representation of (7. Now we

stale the theorem.

THEOREM 1.4.1 Let {v1,v2,..., vn} be any collection of k < k wunilary mairices,
with v — 1 and define W' = 65(~v. )i then W is a biunitary and the principal
graph of the horizontal subfactor yiven by the vertexr model corresponding to W is

((G, n), where G s the group generated by {1, %2, - ¥n}-

Also it is proved in [KSC] that whenn = & = 2, any W € B(2, 2} is equivalent,

to a biunitary matrix of the form

{1 0 0 0 )

, g 1 ¢ 0
Vi(w) =
0 0 1 0O
\ 0 0 0 w /
where w € T = {z € € : |z] = 1}. l"urther neither the verltical nor the hori

zontal subfactor is irreducible. We explicitly point out the ambigiaty in such a

representation.



|

ProproOsSrrioNn 1.4.2 Wiw) is cquivalent to W(W') if and only if He{w) = Re(w').

Proof: Let

0 1 | |
[/ = . AT = . . and 4 = 0 .
1 0 0 w g |

Then it can be easily verihed that (U & A)W(w) = Wiw)(U & A').

Conversely suppose

I 0 [ 0
(/& A = &y A
wom(}8) = (L 8 )woux

1 0 1 { S/
where [ = , D= 0 LA = “ P A = “ .
0 w D wf e oo

Then the following equations hold:

all = &7 (1 -1.7)
bUD = b (1..1.8)
cll = DU (L.:1.9)
dUD = d'Dtr (1.1.10)

Suppose a # 0. Then ¢ # 0 by equation 1.4.7, and so also & # 0 (as

D, Y U, U are unitary matrices). From equations 1.4.7 and 1.4.10, we see that

d'da1a' U DU = [¥. Now by comparing the eigenvalues, (as /' is an
unitary matrix) we conclude that {d' " 'da 'e’,d" 'da~'a'w} = {l1,w’'}. Hence
citherw = W orw — @&, Suppose that ¢ = 0, then as 4 1s an unmitary matrix, it

is the case that b # 0. IIxactly in a similar way. using equations 1.4.8 and 1.4.9,

we can again conclude that either w = W orw = &' O



Chapter 2

Connections in Small Vertex
Models

This chapter 1s the core of the thesis. It i1s devoted to the study of small vertex
models - 1.e. the vertex models given by a biunitary matrix in £2(2.n). We at
tempt to classify the connections in small vertex models. We are able to classily
13223} completely and for B(2,n) we specify the maximum number ol indepen-

dent parameters with pairwise inequivalent connections.

Firsl we get a simple model [or a represenlative [rom each equivalence class
i 3(2,n). In the second section we classily B{2,3) completely, 1.¢. we obtain
necessary and sufhicient conditions [or two such representatives in the model form
to be theinselves equivalent. In the third section we obtain necessary conditions
(and some sullicient conditions also) for two matrices from B(2,n) in the model
form to be equivalent. We also prove that the vertical subfactor associated with
the commuting square (corresponding to a connection in £3(2,n)) s always re-
ducible and we provide some conditions for the the horizontal subfactor to be

rredineible or reducible.

Using these facts we go on to prove that B{2, ) contains a (37 - 6)-parameter
fanily of pairwise inequivalent connections and show that the nmmmmber (3n - 6)
Is sharp - 1.e. there does not exist a subset of H{2, n) homeomorphic to an
open subset of Euclidean space of dimension (3n — 5) and consisiting of pairwise
imequivalent coumections,  Minally, using Theorem 1oh Lo woe deduce that every
oraph that can arise as the principal graph of a linite depth subfactor ol index

1 actually arses as the principal graph of the horizontal sublactor for a vertex

3



tnode] corresponding to a biunitary matrix in B{(2,n) for some n.

2.1 A model form for a matrix in B(2,n)

In this section we prove that every biunitary matrix in B(2,n) is equivalent to a
biunitary matrix in a model form - similar to the one for n = 2 described at the
cned of Chapter 1 - with (3n -~ 5) independent parameters. First we prove that
any biunitary mateix in f7(2, #) 15 equivalent to a block diagonal matrix of the

form [:-r:“:-;-r‘.l“il“}f'.(] in the fﬂllcwing Pl‘{)pﬂﬁiti()ﬂ.

PROVOSITION 2.1.1 Any biunttary matric W € 13(2.n) is equivalent to a malrix
of the form
(- (75
VS UV
where {7V are diagonal unitary matrvices and (', 5 are positive diagonal matvices

such that (72 4+ 52 = 1.

a b o ¢

. so that W =

where a. b, ¢, d ¢ A,
¢ o O

Proof: T.et W = (

Then W is a biunitary matrix if and only if both W and W are unitary matrices.
T'he unitarity of W oand W (i.e. the relation WW* = 1 = W) implies the

following equations:

aan” + b = |
cc” + dd™ = 1

a ¢ + cTe =1
bbb 4+ e = 1
aa + et = 1

bh™ + dded” = 1
a“a + b"h =1
e+ dtd =]

By premultiplying by | ¢, where »# € Af,, is a suitable unitary matrix (i.c.

by working with an equivalent binnitary matvix), we may assume, without loss
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ol generality, that a is positive. 'L'hen it follows fram the above equations that
D<a<l. Let € = a. So there exist a unique positive matnnix & € M, such that,
D <8< 1 and 2 4+ 52 = 1. Then [rom the above equations we can conclude
that b, ¢, d are normal and also that b* = ce® = 57 and dd* = (2. So there exist
utitary matrices O, V, ' € M, such that b = /5,¢ = V.S and d — TC', and such
that {7 and ¥V commute with 5 (hence, also with ) and T commutes with C

{hence, also with 5).
So we find that W ois equivalent to the biunitary matrix
¢ Ux
| T Y i ) ?
where €5, /. V and I are as abovce.

The biunitarity of W (i.e. the relation WW= = WIW* = 1) also implies Lthe

following equations:

SCV | Ty = 0.

SCU7T + VT = 0.

SC + TV = 0.

SC(V +T) = 0. (2.1.1)

Since {7,V and 17 leave the cigenspaces { H ) iey of O lnvanant, we may, by con-
jugating W by a unitary matrix of the form 1" ¢ 1 (where [ 15 a unitary matrix

which <iagonalises (), assnme that

(' = Biercilu, » 5 = Bicrsilp,

U = ticills , V=B, Ve, T = ePeiT,

where L, denotes the identity in £(H;), 0 < e;,8, < 1 and U,, VW, T, € L(H;).

Thus we see that W = be; W;, where W, 1s a binmtary matrix in M, &2 Mo

and re; 15 the dimension of &, ancd that

¥ *'!:r: ‘{’F: o
i-"i"r." = Ci ' . .
Sy I"/1'. L I:

Note that in order to complete the proof of this proposition we need to show

that cach of this W; is equivalent to a biunitary matrix of the form presented in
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the proposition. To prove this we now consider two cases depending on whether

C; 15 ZOTO O NON-Zero.

suppose ¢; = U, thea, by pre-multiplying ¥, by the umtary mateix {7 ¢ 1,
we may assume that {; = Ly o Now, by conjugating W, by a unitary matrix pco 1,
where poas a unitary matrix which diagonalises Vi, we can conclude that 5 as

ecquivalent to a matrix of the desired form.

Suppose that ¢; # 0; If 5, = 0 we can assiune, by conjugating by a unitary
matrix pi2 1 (where p is a unitary matrix which diagonalises 7}), that the mmatrix
W, 13 m the required form. If 5, is also non-zero, then first conclude from the
set of equations 2.1.1 that 1, = [, V, = —Vv.{/;,., Now, by conjugatng W, by a
nnitary matrix of the torm p ¢ 1. where p is a unitary matrix which simultane-

we miay conclucde that VW;oas

? L3

ously diagonalises the commmuting umitaries L) V7,

cqvalent to a matrix of the desired [orm.

Henee, 1nany case, we lind that W ois equivalent Lo a matriy of Lthe form

. {15
Vy —0vVo

where {7,V oare diagonal unitary matrices and €7, 5 are positive diagonal matrices
such that (72 | 82 = 1. »

The next proposition gives a subclass of B(2,n), in the model form promised
in Lhe begining of Lhis chapter, which has at least one element equivalent to any

given biunitary matrix in B(2, n).

ProrosrrioN 2.1.2 Axy W € BH(2,n) is equivalent lo a brundary ialver of

e formn

ft 0 0 0 O 0
o1 0 0 0 0
Wiwb.ocy = | 00 € 00 05 1
0O 0 0 I O© 0
0 0 0 0 w 0
\ 0 0 ¢S 0 0 —04C )

where 8 = diag{@y, 0, .0, _2), & = diag({h . Dy oo Gu_2)s O = deag(C O, L0, _2).
S diag(Sy,52,...5022), Oi, o w € (e Uzl =1}, Dfw) =0, 0,5 <
|, and (77 + 5% = 1.
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Proof: From Proposition 2.1.1, we may assume that W = T, B W

(where W; is a 2 x 2 unitary matrix and {E;; : 1 < {,7 < n} denotes - here and
elsewhere- the usual systermn of matrix units in M, ), and that W; has the form

C; a8,5;
m _ }i:' 1 3oty 1
( &:S5: —0:¢:C )

where A\; = 1, 8;, ¢; are complex numbers of unit modulus, and 0 < ', 5; < 1
and C? + 57 = 1.

Note next that if D = diag(dy,---,d.) € M, is a diagonal unitary matrix,
and if W, W; are as above, and if V4, V3 € M, are unitary, then

(DWW (1® V) = i d;(Ei @ ViW;V;). (*)

Set Vi = 1,V = W if the (1,1) entry of W W/ 1s w;C;, with C; > 0 and
lw;] = 1, define di = @w;. We may now deduce from equation (*) that we may
reduce to the case where W, is the identity matrix, and W; are as above, with
A =1 Vi

Next, let I/ be the unitary matrix which diagonalises (the new) W3. Then,
by setting d; = @y if w;C! is the (1, 1) entry of U*W,U, with C!>= 0 and |wi| = 1,
and by setting /' = V* = V;, we find that we may reduce to the case where W
is as above, and in addition, W; = 1 and W3 = diag(l,w), where w is a complex

nurmber of unit modulus.

If Irn(w) > 0, the proof of the Proposition is complete. If Im(w) < 0, then

set
0 1
V, = V, = ,
1 2 ( 1 U )
and d; =1, do = w, d; = —0;¢: ¥i = 3,---,n, to conclude that W is indeed
equivalent to a biunitary matrix of the prescribed form. O

2.2 Classification of B(2, 3)

In this section we classily B(2, 3) completely up to the natural equivalence relation
on it. We shall use the notation 2(2,n) = T% x T* 2 x T""? x [0, 1]*~%, where



1:3

T is the unit circle iu the complex plane and Tt = {w € T : [fm(w) = 0};

we shall denote a typical pair of points of 2(2,n) by P = (w,0,¢,) and P =
(w0, ¢, C') and the corresponding biunitary matrices by W oand W°.

We shall find it convenient to isolate a few simple assertions as lemimas, since

we will need to repeatedly nse them.

LEMMA 2.2.1 Supposc a,b,c,d £ 0. Consider the following cqualions.
a=runb, c=mq.d , a =mie. b= 1mld;

for these equations to be consistent, it is necessary that the Jollowrng condition

i= =alisfied:
17T 1)

172 res

—

Proof: Both ratios are equal to :—f B

it b

e o

LEMMA 2.2.2 Suppose [ ts o unidary mafriv. and suppose 0,¢,w,, 7 =

0. 1.2 are compler numbers of unil modulus, and suppose €' and S are non-

negative real numbers satisfying C?% + 52 = 1.
Asswine that wy £ 1 and that the following cquations are salisfied:

a(C —wp) -+ bepS = 0

a5 — b(0C + wowy) = 0. (2.2.3)
(€ — wows) + dédS = 0
08 — d(04C + wowriwy) = 0

Consider the following distinet possibilities:
(‘ase i) a = d = 0.

{n this case, S =0, 8¢ = —wpow, wowe = 1.
Caxe {1} b = ¢ = 0.

In this case, 5 =0, 8d = —~wwywy, wy = 1.
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{ase (tii): a,bye,d F£ 0.

fn this case, 5§ £ 0,C # 1 and
fte(wz) = —[8% - Re(w,8¢) 2| ; (2.2.6)

Jurther, if we # +1, then,

LL'T]. i H‘;ﬁ ({ﬂ' E ¥
= ) (2.2.7)
W (1 + w2)

In particular, equation 2.2.6 13 satisfied tn all three cases.

Proof: 1l @ = 0, then necessarily |b] = |¢|l = | and d = 0} so equation 2.2.2
nnplies that 8 = 0, whence ' = 1; then equations 2.2.3 and 2.2.1 imply that
0 = —wpw and that wgows = 1, respectively.

If b = 0, then necessarily |a| = |d] = | and ¢ = 0, and equations 2.2.3 implies
that & = 0 so ' = 1; and equations 2.2.2 and 2.2.5 imply that we = | and that
iy = —whws, respectively.

So assume a, b c,d #F 0. If 5§ = 0, then the equations 2.2 and 2.2.4 would
i'"F’]l‘" that W = wole = ]l. f'{{.‘tlﬁ_'{_".. as we have assumed that Lt -,15 1, conclnde
that 5 #£ 0. Now, deduce from 2.2.2 and 2.2.3 that

T r *2 3 =
(Lr.Jn (ﬁ) (H(}ﬁ'(r | I.J.PQL:.J[] — ﬁq‘)fl ’ (2+38]
sinilarly, deduce from equations 2.2.4 and 2.2.5 that
(wotes — () (DO + wounwe) = 1Y
These equations may be re-writien as
2 .2
w1 + wcp[ﬂt,ﬁ — wh }C = O¢5
» ot
wiwiwy + wowy (8¢ —un ) = 0657,
[rom which we may deduce that
wi(l — wilw + woll —uw2)(0p —wi)C = 0. (2.2.9)

[f w; = —1, then the [irst term in equation 2.2.9 vanishes. and we find that

we st have 8¢ = wy or (7 = 0; it is clear that equation 2.2.6 1s satished n

cither case.



If wy £ -1, then since wy # 1, by hypothesis, we may infer from equation

2.2.49 that
(w, - B8O
L (.l + l.'.-r.-"z]' 1

Substituting this expression for wy Into equation 2.2.8, we find that

L0y

(wo = (1) (8¢C + wown )

¢’ ]
e (e - 08wl w)) S (08 (1 w) (0 — 09))
( » :
(2 .
'*“ o )z(wlﬂﬂ.ﬁ + wyw + Bdey) ;
+ we

and hence,

085S -- (wo ~ ) (06 + wowr)

| Cr? | _
— B¢ [S°+ s (w0 + wr){w) ep + w:a]:l
(1 -1 wsz)
Thius we find that the equation (wy  €°) (80C 4+ wown ) = 065% will be satislied
precisely when
I:I d l:l '|- Ll.-"‘_g}jfl“z }- (f‘z(w,ﬂf} i Ldg](wl-ﬁ I— J'..-:J-g}
= WIS 4 C) b wa(25% 4+ 207 Re(cn06)) + (5% + C?)

- ,"_.;,?3 - E{IWE + 1 1 [Sily)i

where @ = (5% + C?* Re(w, 09)).

On the other hand, it is clear that if a complex number w satisfies the equalion

w? - 2w + 1 = 0, where « is real and |af < 1, then w = a + ivV/1 — o, so Lhat
fie(w) = e, and hence equation 2.2.6 is satished. O
LEMMA 2.2.3 Suppose 0, ¢,w;,j = 1,2 are complex numbers of unil modulus,
and C,S are non-negative real numbers satisfying C? + 5% = 1.

Assume thal ws 54 £1. Define

wpn —

(w1 = 08)C
wnfl +we)

() The following condilions are equivalent:

fi) Relwy) = - (S?2 1+ Re(en0@) CF) ;
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(i) Juwo| = 1.

Further, if these equivalent conditions are satisfied, then,

(L:.I{_. — {?J (@:’,ﬁ(' -+ L-r.-"‘ﬂl'.r.?]) = (Lt.‘{:i.dg — {'?} (Hm(' -+ Luuwlwg} —_ &iﬁ"ﬁﬁ .

th} Assume, further, that S # 0 (r.e.. C # 1), and tha! the equivalent conditions
of (0} are satisfied. Define

- _ E,i.'r?f'r . ql;ﬁ(_: 4w p s | {_.T:PCJ" o ﬂ_(,f-'(‘ + woktyws
! C-‘ — L 05: ' 2 (’_,’ — Ll QE;

Then, ey and s are well defined and non-zero, and

(i)

;. w + wofld
Treo - wiws + f¢
it el
(re) rmamr; = —1.
eof: (a) We have |up|® — “_:igikii” . and hence,
wol =1 < 1 4+ Re{wy) = (1 — Relw06))C"7
& Re(wz) = (1 Re(w,84))(C7°% — 8% - (7

©  Re(w:2) = - (87 + Re(@0¢) C?) |

as desired.

[f conditions (i) and (ii) are satisfied, then, the validity of the desired equa-

tions is verified by the reasoning given at the end of the proof of the last lemma.

(h) (1)

1TL | 7 — gt

Ty 8 — wy
‘ (i (1 + we) — walw; - O))

-:.:1 [ l.-l-w;__-j 4

T s (1 T ) — e~ 06)
w | Wiﬂ({?

wiws + 8¢




(n} Condition {(a)(1) may be re-writlen as [ollows:

0 = wytwy+2 (52 + He(wlﬁ'rﬁ)f—”')
= wrtws+ 2 201 — Re(uwn86))
= (1 Fwy) - 2C%1 — Re(wn8)) + (1 + &) .
Notice now that if |z| = 1, then =2 = L divide the above equation by

L+
(I +w;), and use this observation (twice), as well as the fact that 2f¢(z) = 2z + =

Lo lingd that:

T

| — o | — w8
0 = 1| — (2 —= S L
( I + wo * 1+I-:-‘-z.)|_w‘==
{l'.-dl — ﬂﬁ!’J{:T I:Lr.-:'] . ﬂ_ﬂf‘}{f'
= l - G’ — 3.
(Wl“‘f“wz] L:’l{'l—l—f-:!z}{’he it
= 1 — ((wo + @oie) + @y
52 4 CF — (Nwo + wulds) + @y
= S? 4 (€ = we)(C - Toez)
and conscguently,
54
T = - = -—1.

LeMMA 2.2 4 Suppose a,b,c,d # 0, and suppose 0, ¢, w;,j = 0,1,2 are compler
numbers of wnil modulus, and ', .5 are non-negative numbers salisfying ("% 5% =
| and 5 # 0. Assume thal wa = —1 and thai the equations 2.2.2-2.2.5 are
sutisfied. Then,

(a) either (i) " =0, or (ii) O0¢p = w,, and wo = £1.

(b) Define

l:ﬂh":lr. L ﬁ}(ﬁ'(’? + g -'.;fhc‘-’l ﬂﬂh{. 1 Liplaiyuwdy

My T e e = — R - ==
(' — wo 0.5 ' (7 — Wy £l

Then my and my are well defined, non-zero, and

ey { -1 i =1
o 1

. ¢+l = w
T, = if Oc¢b = wy .
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Proof: Applying Lemma 2.2.2 we conclude that —1 — —(5% -+ (7?) = —(5? +
Re(05)C?) and consequently conclude that either (&' = 0 or 0¢ = w,. [ ¢ — wr,

then equations 2.2.2 and 2.2.3 become
alC’ —wy) + 65 = 0 = a5 - b {C + wy)

[tom which we may deduce (since a, b # 0) that

wi(C? - wl) = —0pS* = w57
which implies that w2 = |, thereby proving (a).
The proof of {b) 15 an easy verification. O

[ Lhe next two Propositions we give the exacl deseription ol when /72 and
P (as in the first paragraph of this section) afford equivalent connections W oand
IV when n = 3. In the lirst Proposition we assume Lhal cither | € {w,w'} or
(£ ") € Qy and present. necessary and sullicient conditions lor 1 and W Lo be

cquivalent - where Qg denotes the following sct:
1y = {{F, Py Tm(w), Fendw’) >0, 155 10,00y + L (€7) } _
We exhaust the remaining cases in the second Proposition.
ProrositTioNn 2.2.5 In order for W oand W' lo denole equivalen! connections,
H s necessary thal one of the following ten relations ts salisfied; if il is further

the case thatl either | € {w,w"} or (P, P') € Qy, then each of the len condilions
(i)-(x] s also sufficient for W and W' lo be cquivalent.

(i) w —w and 7 — (7 = 0.
fii)w—w, 5 = 95,C = C and (0)(0'd") — w.
(i) w=w.,5=58,0C =", and (0)(0'¢") = 1.

fir) (o) Re(w') = —(S5? 4+ Re(04)C?), Re(w) = (57 + Re (")), and

d) i i ois the case that (0 = ' = 1, then

w o (TP and W {0
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o

w = —(0F) ,and &’ = —-(08) ,

(v} of it 15 the case that C # 1 #£ (' and [m{w), Im(w’) > 0, then

Il Fw'Od 1 | 0
o+ 06 w0

(r} fa) Re(w') = ——(5? 4+ Re(wbo)C?), Re(w) = — (5% + Re(0'¢")C"?); and

() if il es the case that CC = (" = 1, then

—_—

w = —(0'») ,und &' — -{wl¢) ,

I r

o= = ('S and O = —(wld)

(v} if if ts the case that C Z 1 Z£ C and Tm(w), Tm(') = 0, then

1 4 ww’0¢ | 4wt

T X w0h T @t e

(ri) fa) Re(w') = —(82 4+ Re(04)C?)., Re(w) = (57 + Re(&'0 ")) and

(i) if il is the case that C = (Y =1, then

w = — (W) ,and ' = —(0) ,
(P
w o= -—(m‘ﬂ’(ﬁ'] cand @' = --(0d) .
() tf i 15 the case that C # 1 # 7 and I'm{w), m{w') = 0, then
l + -I:I..FFHI”:EF B I. "I" mlmg.f{‘ﬁf
& 0P w W
frii) far) Re(w’) = —(5% 4+ Re(wbH)C'?), Re(w) = — (5 + Re(W'0 YY) and

{3} of b s the case thal O = (" = 1, then

w = — (&'@Y, und W' = —(wle) |,



or
o= —(w0¢") ,and &' = -(W0¢p): and
(v} if it is the case that C #£ 1 # C' and fm(w). Im(w’) = 0, then
I +ww'f¢ |+ Wl e’
o' f.;.a‘ﬂ@ '_ w b {.-;.'-"rl'j"ﬁ;"' ;
; _ 05 - L -
feiii) w = w = 1, and the matrix N i unitaridy equivalent to a
bS5 —O(
w7 ! r
constand mulfiple of ¢ ) 9o :
ﬁbI;S'j __ﬂ}“i?.f ;l'.‘

fir)w=w' = =1, =8.,C = C" and (06)(Pd") = 1.

(rjw=w = 1,85 =5, =, and (04)(6'd') = —1.

Proof: First we present the condition for W oand W’ to be equivalent as
hiunitary matrices in the form of a set of equations. By definition H s equivalent

to B il and only if there exist unitary matrices

S
A —= @ b , Al = = J e A,
c o o

andl U = (u;; 1, U = (ul;) € Mz such that (7 ¢ AYW = W/(L/' ) A'); e, i

anct only 1f the following egquations hold:

aiy =  a'uy, (2.2.10)

buy,, = bHul, (2.2.11)

cuy = (2.2.12)

diuy,, = d'ul, (2.2.13)

aty o =  a’uy, (2.22.14)

ooty ., = "y 4 (2.2.15)

ctipz -~ Cuf " (2.2.16)

dwiy 3 = r{,_“,t'? (2.2.17)

(aC’ + bpS)uy s - a'ul, (2.2.13)
(alS5 — bOSC )y y = Hul, (2.2.19)



(cC + dopS)urs = cujg (2.2.20)
(c0S — d0C Y,z = duj, (2.2.21)
amn,, = a'uly, (2.2.22)

b, , = 'If“:?.l (2.2.23)

cuy, = cwhl (2.2.241)

AT = rfw"u;.l (2.2.25)

(it 2 = A, (2.2.26)

b, , = bu,, 202270

etz — dwlul (2.2.28)

diotty , =  d'wul, (2.2.29)

(aC’ + bpSYuay =  a'u), (2.22.30)
(a0S5 — bOGHC Yuas =  buly (2.2.31)
(e’ + dp Sy —  cwlul, (2.2.:32
(c0S - dDHC Vuuyn =  dwuly, (2.2.33)
sy, = (a'C"+ JS Y, (:2.2.31)

busyy = (&'C +d0°5 ), (2.2.35)

ciz, = {a'd'y —d0C Yy, (2.2.36)

ity = (V'S - STl (2.2.37)

attzy = ('O 4 OS5, (2.2.38)

bous , = (O 4 d’ﬂ'ﬁ"]u;_z (2.2.39)

cizg — (a'@'S — S C g, (2.2.10)

duwtis, = ('S - d'0¢'C )y, (2.2.41)

(al! + bpS)uga = (d'C"+ ¢S, (2.2.142)
(205 — I NVuay = (B'C 1+ &5, (2.2.43)
(cC + dpS)uzs = (a'd'S — ¢ CHu (2.2.44)
(cBS — dO0dC )y, = (0SS —d0dC)ul, (2.2.15)

Iirst we will prove that in order for W to be equivalent to W' it is necessary that
one of the relations (1)-(x) should be satisfied. The proof will be broken up into
the consideration of numerous cases, depending on whether certain entries of [/
are nol, or are, cqual to 0, and on the values of w,w’, and n each case we will

end up by proving that one ol the ten conditions (1)-{x) holds.
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First assume w £ 1 #£ w'.

Casef{): ) # 0

The unitarity of A and A’ together with equations 2.2.10-2.2.13 (which say
that w4 = 25 A") imply that |u, | = [u] |. Let wy) = zu) where =] = 1;
it follows that A" = zA. So (by replacing the pair (A, {/) by (zA.z7'{/), in case

: # 1) we may assume, without loss of generality, that A —= A" and wu,, = ] ,.

Since (¢, ¢) s the first column of a unitary matrix and hence not zero, deduce
from 2.2.14 and 2.2.16 that ©; 2 = u| ,: similarly, deduce from equations 2.2.15 and

2217 that wity » = 1} ,. The assumption w # | now implies that «, , = «)| , = Q.

Similarly equations 2.2.22 and 2.2.23 imply that a3, = ), ,, while equations
2.2.24 and 2.2.25 imply that uy,) = «’uh 5 so, as before, u, = v, = 0.

We now consider two sub-cases depending npon whether the entry wy o 13

MY FA0 0y O AeTo,

Cuse (£.f): us» # (O

Ilquations 2.2 26 and 2.2.27 now read: ait,; 2 = aul , and bwwy o, = bul,,. Since
« # |1t cannol be the case that both o and & are non-zero. So either a = (0 or
h = 0. Since A is unitary, this means that cither a = o = 0 or = = ). Henee

there are two possibilities. We consider them separately in two sub-sub-cases

Case (£.1.1): b=0¢ =0 (and s0 a # 0 #£ o).

We will show in this case that either relation (i) or (i1} s satished. It follows
from (Lhe assuinptions of Lthis case and) equation 2.2,26 and 2.2.29 that wuy » = u),

and w = w'.

Now we will consider each of the possibilities of u; 3 and w33 being either

NGMN-zZe1ro O 2ero.

Suppose now that «; 3 £ 0. Since equation 2.2.19 impliecs that 5w, 4 = 0,
we liest conclude that 8 = (0. Deduce next from equation 2.2.153 and also rom
equation 2,221 that | , = w13 = —0duy, and that hence, 09 = —1. Simce we

alrcady know that wy 5 — e — 0, we find [rom the orthogonality of the hiest two



rows of £/ (and the assumption w3 £ 0) that we3 = 0. The orthogonalhity of the
second and third rows of I/ now implies that uz 2 = 0. Thus the sccond entry of
the first and third columns of &/ are 0; the orthogonalhity of the fArst and third
colwmns then shows that necessarily wuz, # 0(# uw34). In a similar way, we can
prove that 5 = 0,u3; = ul | and 0’¢" = --1. So. in this (sub-sub-)casc, we do
have w = w5 = (0 =)5,C = (1 =)C", (8&)(0¢") = | - 1.e.. the relation (11} of

the proposition holds.

If uy 3 = 0, then 2.2.13 implies u’;j = 0. Supposc for a moment that uwz 3 7 0
then 2.2.31 would imply that 5 = (0. We could then infer from equations 2.2.33
and 2.2.30 that —80¢u, 3 = w'uj 5 and w3 = w35, and hence that d¢ = -,
The orthogonality of the first and third rows of {7 would show (as before) that
i3, = 0. Then the orthogonality of the second and third rows of {7 wonld show
that wusz. £ 0. In a simnilar way, the [act that wa2 £ 0 will imply that 5 = 0 and
'y = —w and the relation (1ii) is satisfied in this case also. So, we are through

i Lhus case also.

inally, 1F ey 3 = 1y 5 2 0, then equations 2.2.18 and 2.2.30 imply that w) , . 0
and why 4 — 0. By orthogonality, wa; — u}, — @), = wz. = 0. From 2.2.43 we
gel adSuy g = d0'5%u ;. Taking absolute values, we get 5 = S I ¢ = () £ 0
- 1.e. Lhe relation (1) 15 not satisfied - then from equations 2.2.15 and 2.2.42, we
get Hduss = 0'¢'uy 5 and uss — uf 4. So it follows (0¢)(07¢') = 1. Hence cither
Lhe relation (1) or the relation (i1} is satisfied in Lhis case. We have completed

the proof in the case (1.1.1).

(‘nse (1.1.2): a =d = 0 {and so b # 0 # ¢).

We will show in this case that either relation (1) or (ix) is satished. Il follows

that w = w’ and that wu,; = @ul, , # 0. Since w and w' are both, by defimtion, 1n
the upper half plane, and since w is assumed to be not equal to L, it must be the

case that w =w' = — 1.

Supposce now that v, 3 # 0. Then equation 2.2.18 shows that 5 — @ (and so

("= 1). Deduce now trom equation 2.2.19 and 2.2.20 that — 0@, 5 = u| 4, — w3,

and hence that 8¢ = — 1. Arguing exactly as in the third paragraph of the proof
of Case (1.1.1). we may conclude that in this case, we have: wz sy — vy = 0, ugy #
0.5 =0 and #¢" = ~1. T'hus, we do have w = W'(= - 1).5 = (0 =)5, (" = (1 —

WO and (08)(¢") = 1| - te. the relation (ix) holds.
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If uy3 = 0, then it follows from equation 2.2.21 that ) ; = 0. Suppose for
a moment that u#.3 # 0; then, we infer from equation 2.2.30 that S = 0. Now,
equations 2.2.31 and 2.2.32 show that —f0¢us 3 = u} 3 and uz 3 = w’'uf 5; and hence,
0¢ = —w. Arguing exactly as in the fourth paragraph of the Case (1.1.1), we may
conclude that uz; = 0,u32 # 0,5 = 0 and 8'¢¢' = —@w, and so (8¢)(#'¢') = 1; and
we again find that relation (ix) holds.

Finally, if u;3 = uo3 = 0, we find from equations 2.2.21 and 2.2.31 that

uy; = 0 and u} ; = 0. By orthogonality, we get ua, = Uy, = Uz, = uUzz = 0.
IfC # 0, - 1.e., if relation (1) does not hold - then equations 2.2.43 and 2.2.44
imply that —8¢u3 s = uj 3 and uszs = —0'¢"u; ;. Hence (04)(8¢’) = 1, and again,

relation (ix) is seen to hold.

We now come to the remaining sub-case of Case (1).

Case (1.2) : uz2 = 0.
We will prove that in this case the relation (iv) is satisfied.

Equations 2.2.26 and 2.2.27 imply that v}, = 0 (since @ or b must be non-
zero). Thus U and U’ are both 3 x 3 unitary matrices which have 0 entries in
the (1,2), (2,1) and (2,2) places; a moment’s thought shows that such a unitary
matrix has non-zero entries precisely at the (1,1), (2,3) and (3,2) places; i.e.,

Uzl = Uy; = U]z = U3 = Uzz = uj, = 0. Let wp and wj be the complex
- ¥ r r
numbers of unit modulus such that u} 5 = wouz 3 and uz 2 = wWius ,.

Now, equations 2.2.30-2.2.33 and equations 2.2.38-2.2.41 may be re-written
thus:

a(C —wp) + bpS = 0.
al5 — b(0¢C + wo) = 0.
c(C — wew') +dpS = 0.

0

c0S — d(84C + wow') = (2.2.46)

a(C’' —wp) + 'S = 0
ad'S" — (0 C +wh) = 0
B(C!' — wiw) + dé’'S’ = 0
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It

bd'S' — d(0'¢'C! + whw) = O (2.2.47)

There are three possibilities now, which we consider separately.

(use ([.2.1): e =d = 0.

—0é, wow' = 1, (s0 that w’ = —0¢), and that §' = 0, w) = —0F¢, whw = 1 (so

that w = =0 ¢*). The relation (1v} 1s easily scen to be satished.

(ase (1.2.2): b= ¢ =1(.

it follows from two applications of Case (i1) of Lemima 2.2.2 that 5 = 0, ' =
—0, wg = | (50 that ' - -80¢), and that 5 — 0, w = —80¢", W = | (so0 that
w = —¥g"), Thus the relation (1v) is satished.

{ ‘nxe {.-'..”3.3) sa,b,e,d 0.

It follows from two applications of Case (i) of Lemma 2.2.2 that 5 #£ D and

fte(w’) = =(5%4Re(0¢)C?), and that S £ 0 and fe(w) — — (57 + Re(079) 7).

If it 15 also assumed thal w,w’ £ £ 1, we mmay deduce from Clase (111) of Lemima
2.2.2 Lhat e
( I. - H(jﬁ)(_._: p .- ( I. T.-_ﬁfp )f_'.l

LWo —= —F - e
1 1 w' ’ 1 | w

Now, (irst by applying (b) (i) of Lemma 2.2.3 separately to wog and w and then
nsing Lemma 2.2.1 we may verify that the condition () is satisfied and hence

Lhe relation {1v) 1s indeed satishied.

Now the proof for the Case (1) is complete.

Cluxe (2) 0wy = O
The proof 1s again divided into many sub (and snb-sub-) cases.
(ase (2.0) 0 w9 # 0.

llsing the unitarity of A and AY, we see {rom cquations 2.2.11-2.2.17 that

[ 2] = |} 5] By resoning as in Clase(1). we can assume without loss of generality



that 0 = @', o =¥, ¢ = ¢, dw = d& and u,, = u) 4. Then, equations 2.2.26
and 2.2.27 imply that w2, = u},, while equations 2.2.28 and 2.2.29 imply that
tpz = 1ty 5. By our standing assumption that o’ # 1, we may conclude that

Now, equalions 2.2.22.2.2.25 may be re written as:
r
ity = @Uy ,, buy | = Eh.:.:u’.;.]‘ Clip | == {'-.-.:"u‘.;_]. ity | = d:....u..u"u;_, (1)

We consider two cases now, according as whether or not w,; == 0.

Cuse (2.0.01) 1wy #£ O

in this case, we immediately see from the first two equations of (j) that
cither ¢ or & must vanish. Since A is unitary, we thus have two possibilities:
(e =d =0, and (1) b = ¢ = 0. Similar to case (1) we consider these two

|'.II.JHH”.'III]1[',.1EE :-;t:pELl‘il.Lt‘l}Z

tiya =d = 0. This and (§) imumediately yvield u, , = wiuy  #F 0. and w — W

We will show that either velation (i) or (i1} 1s satished in this case.

Suppose w3 £ 00 Then deduce from equation 22,13 that S = 0. IS¢quations
2220 and 2.2.19 then imply that w, 5 — u} , and #¢ = -w. The orthogonality of
the first two rows of {7 now shows that w, 3 — (. The orthogonality of the last Ltwo
rows of {7 then shows thatl uz; = 0. The orthogonality of the first and last rows

of {7 then shows that u; 2 5% 0. Deduce then from equation 2.2.39 that «f, # 0;

then appeal to equation 2.2.38 to conclude that 57 = 0, and then (again) from
veualion 2.2.39 that in fact ug_z = us02. inally conclude from equation 2.2.10
that ¢’ = —1. S0 we have (08)(0°¢") = w, and the relation (ii) is satisfied in

Huos mstance.

Suppose now thal w, 3 = 0. Then 2.2.19 implies that @} , = 0. Suppose in
addition that us 3 7% 0; then 2.2.30 imnplies that 5 = 0. [Lquations 2.2.232 then
implies that we3 = @'ul,, and consequently 2.2.31 implies that 8¢ = 1. Fhe
orthogonality of the last two rows of 7 show that necessarily u;z,; # 0. The non-
vanishing of w3, will, together with equations 2.2.3:4 2.2 .36, show (by arguing as
in the last paragraph) that 57 = 0 and #'¢' = —.. Thus, (#¢)(00') = w. and the

relation {1t) s again satistied.

Finally, il w5 = #,45 = 0, then 2219 and 2.2.31 imply that TP T |
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Again using orthogonality conclude that uz, = u)y, = ui, = uasz2 = 0. Now
using 2.2.42 we get the relation bdSuzz = ¢0'S'u;, which in turn (by taking
absolute value) implies that 5 = 5. If (= ') # 0 (i.e.the relation (i) s not
satisfied), then equations 2.2.43 and 2.2.44 imply that —b8¢us s == beul , and

cityy = —el ¢'uly 5. Hence, (0¢)(0'¢") = w, and the relation (ii) is again satisfied.

We now come to the second possibility in this sub-case:

(M) b=¢ = 0,
In this case we witl show that cither the relation (1) or (x) is satisfied.

st equation (1) implies that w == w’ and that wu,;, = u) - Our assumptions
that w amd o’ are in the upper half-plane and not equal to L then force w = W' =

Suppose u, 4 # 0. Deduce [romn equations 2.2.18-2.2.21 that &5 = 0, uy 3 = 1] 4

and fp — —w. Then use orthogonality to get w,y = v, = uzy — n;y, = 0. and
uy 5 # 0. Then conclude from 2.2.38.2.2.11 that S8 = 0, u32 = uiy, and #¢’ = -1,
so that (08)(0'¢") = -1 and the relation (x) is satishicd.

Next, if w3 = 0 # wsra, then deduce from 2.2.30-2.2.33, that 5 = 0. uy 3 =

wa'tt, s and 8¢ = —1. Deduce from orthogonality that wuz, — wj, = 0 and that
wy, # 0; and then deduce from 2.2.31-2.2 37 that 5’ = 0 and "¢’ = -w, so that
(6)(07¢) = - 1. Hence the rclation (x) holds.

And Anally, if wy g = wuey = 0, then deduce 2.2.18 and 2.2.30 that o) ., =
w4 = 0. Also from erthogonality deduce that wy, = uf | == uh, = usz, = 0, and
henee that g a #£ 0. Now use this and equations 2.2.42-2.2.45, in an analogonus

way to the previous case, to conclude that (7 = (7, and that if C(==C") # 0 (i.e.
the relation (1) is not satisfied), then (8¢)(8'9') = — 1. Thus the relation (x) does

hold 1n any of these situations.

Case (2.0.2) 0wy, = 1.

[t follows from equation () that also u}, , = 0. We will show that the relation

(v) s =atished 1n this case.

First, we deduce, from unitarity of {7 and {7 (and by arguing exactly as i
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the second paragraph of the proof of Case (1.2)), thal both {7/ and /' have non-
zero entries at precisely the (1,2), (2.3) and (3,1) places. Let w) ., = wota 3 and

iy = wiug, where |wo| = |wj| = 1.

I17rs51 re-write equations 2.2.30 2.2.33 as

al{l) -~ wo) 4+ bdS = 0
E’IHEJ." - {J{ﬂf}ﬁ(: -+ LL.?'['_.LL.-'} == 0
(O - wow' ) + dehS = 0
05 — d(0HpC + wpw'w) = (2.2.48)
and equations 2.2.34-2.2.37 as
a(C' — W) + 'S =
ad’ S — (' HCT ) = 0
b — wim) + dO'S" = 0
b’ S — d(0'd' '+ W) = 0. (2.2.19)

As in the proot of Case (1.2), we need to separately consider three possibili-

| pees;

Cuse (o) a = o = ().

Deduce from Case (1) of Lemma 2.2.2 that S5 = 0, 0¢ = —wew. ' = g
and that 8" = 0, ¢ = —w|, w = w; deduce that ¢ = 1| = ¢ and that
w— —0¢, W = --wld: i.e., condition (v)() 15 satisfied.

(ase () b= = 0.

Deduce from Case (1) of Lemma 2.2.2 that § = 0, 8¢ = —ww', wp = |
add that 57 = 0, 8¢’ = —&, w) = 1; deduce that (' = | = 7 and that
w = Y, & = —wlé; ie., condition (v)(3) is satisfied.

Cuse (ue): a b e, d £ 0.

0, Hefw’) = (57 + Re(w86)C?), and that & # 0. fte(w) = (57 4
Re (072,
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If w,w'7# X1, we may deduce from Case (iii) of Lemma 2.2.2 that

(w —88)C / (1 —&¢"H)C"
" w = = L]
w(l + w') © 1 +w

wo

Now apply (b) (ii) of Lemmma 2.2.3 and Lemma 2.2.1 to verify that the part ()
of the relation (v) is also satisfied.

Case (2.2): uy3 = w12 = 0.

Then by orthogonality of the first two rows of /) we find that u; 5 £ 0 and
uz3 = 0, and that at least one of us,; or uz> must be non-zero. We consider these

cases separately.

Case (2.2.1): ugy # 0

We will show that the relation (vi) is satisfied in this case. As before using
equations 2.2.22-2.2.25, we can assuume without loss of generality that a = a’, b =
¥, ao’ = ¢, do’ = d' and wuazy = uh,. We may next deduce from equations
2.2.26-2.2.29 that us 2 = uf 5, = wuz 2. Since w # 1, we get uz 2 = us , = 0. Then,
using orthogonality, we find that both I/ and U/’ have non-zero entries precisely
in the (1,3), (2,1) and (3,2) places. Let u} 3 = wouiz and uzz2 = wjuh,, where
|wo| = |wp| = 1. Re-write equations 2.2.18 to 2.2.21 thus:

a(C —wo) + bpS =
afS — b(0pC + wy) =
c(C — we@’) + depS =

c8S — d(0C + wp’) =

o o ©

=

: (2.2.50)

Next, re-write equations 2.2.38 to 2.2.41 as

a(C’ —wp) + 0’95’ = 0

ad'S" — (GO H'CT + W)
b(C' — wiw) + dO'0'S" = 0

bp'S’ — d('0' ' C* + wiw) = 0. (2.2.51)

|
o

As in the proof of earlier cases (1.2) and (2.1.2), we need to separately con-

sider three possibilities:
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Case (i): a =d = 0.

Deduce from Case (i) of Lemma 2.2.2 that § = 0, 8¢ = —wp, W' = wo
and that S’ = 0, @'0¢ = —wf, w = @); deduce that C = 1 = €' and that
w=—wl¢, o = —0¢; i.e., condition (vi)(3) is satisfied.

Case (11): b= ¢c = 0.

Deduce from Case (ii) of Lemma 2.2.2 that S = 0, 08¢ = —@', wo = 1
and that §' = 0, @'#¢’ = —w, w;, = 1; deduce that € = 1 = " and that
w=—wo¢, & = —0¢; i.e., condition (vi)(3) is satisfied.

Case (iii): a,b,c,d % 0.

It follows from two applications of Case (iii) of Lemma 2.2.2 that S5 #
0, Re(w') = —(5% 4+ Re(84)C?), and that S’ # 0, Re(w) = —(5"” +
Re(&'0'¢')C™?).

If it is the case that w,w’ %= +1, we may deduce from Case (111) of Lemma

2.2.2 that
(1 —84)C , (' —0¢)C

(1+aw) > °° (1 + w)
As before verify the part («) of the relation (vi) by using (b) (ii) of Lemma 2.2.3

and Lemma 2.2.1

Case(2.2.2); upy = 0

As already noted - see the paragraph at the start of the discussion of Case
(2.2) - this forces ug 2 # 0. We will show that in this case, the relation (vii) will
be satisfied.

As before, using equations 2.2.26-2.2.29, we may assume, without loss of
generality, that @ = a’, bw = ¥, o’ = ¢, dwa' = d and that uzz = uj,.
Using orthogonality, we see that both U and U’ have non-zero entries precisely
in the (1,3), (2,2) and (3,1) places. Let u}; = wot1,3 and ua = wju;where

lwo| = |w!| = 1. Re-write equations 2.2.18-2.2.21 thus:

a(C —wp) +bp5 = 0
afS — b(0SC + wow) = O
c(C — wpe') + depS 0
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c0S — d(04C + wod'w) = 0. (2.2.52)
Also, deduce from equations 2.2.34-2.2.37 that
a(C’ — wj) + c'¢' S’
ﬂ¢f‘.5rf _ C(Q'H’tﬁrﬂr' + WE]J
b(C' — wow) + d'6'S’
bp'S" — (D' C" + wiw)

]
© © o ©

(2.2.53)

As in the proof of earlier cases, we need to separately consider three possi-

bilities:

Case (i):a=d = 0.

Deduce from Case (i) of Lemmma 2.2.2 that S5 = 0, 8¢ = —wow, W = wy
and that 5’ = 0, &'0'¢" = —w}j, w = wj; deduce that € = 1 = C’ and that
w=—&'f¢, v = —o0¢; i.e., condition (vii)(3) is satisfied.

Case (ii): b= ¢ = 0.

Deduce from Case (ii) of Lemma 2.2.2 that 5§ = 0, 8¢ = —wD’, wyg = 1
and that 5’ = 0, &'0'¢ = —@, W) = 1; deduce that C = 1 = C’ and that
w=—-w0¢, & = —wbe¢; i.e., condition (viz)(B) is satisfied.

Case (%ii): a,b,c,d # 0.

It follows from two applications of Case (iii) of Lemma 2.2.2 that S
0, Re(w') = —(8% + Re(@84)C?), and that S’ # 0, Re(w) = —(57 +
RE(:‘:J’H';E)C’E}.

Similar to the earlier cases if w,w’ # +1, we may deduce from Case (ii1) of
Lemma 2.2.2 that
(w—08)C , (= 0¢)C
) —_
w(l4+aw) > ° (1 4 @)

wp =

and then, by using (b) (ii) of Lemma 2.2.3 and Lemma 2.2.1, that the part (7y)

of the relation (vii) is also satisfied.

Finally, in order to complete the proof of *if’ part of the proposition, we
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need to drop the assumption that w ## 1 # w’. We separately consider three
possibilities : () w=1# ', (ii) W' =1 # w (iii) w = w = 1.

(1) w=1# .

Since w = 1, equations 2.2.10-2.2.17 and 2.2.22-2.2.29 may be re-written as:

D f ! _ Fi F

ugilA. = u;rl DA’ 2 HE,EA = HIE‘ED’A’ .

where we write [’ for the diagonal matrix diag(l,w’). (Notice, by the way,
from the above equations and the unitarity of the 3 x 3 matrices I/ and {/’, that
|u|'.j| — Iu;,jlj V1 < i'.rj i‘:. 3'}

Since w’ # 1, the matrix D’ is linearly independent from the identity matrix.
At the same time, as IJ is a 3 x 3 unitary, it cannot have a 2 x 2 block being identi-
cally zero. Thus, we find that exactly one vector in the set {{(u; 1,u1,2),{(2u21,u22)}

15 NON-ZEero.

Suppose (u1,1,u1,2) ¥ 0. Then, using the unitarity of A, A" and the equations
2.2.10-2.2.17, we may (and do) assume without loss of generality that A = A’,
and (u;1,4;2) = (u] ,,u] ). It follows then, from the untarity of &/ and U”’, that

uz3 # 0 # uj 5.

Now, from the equations 2.2.30-2.2.33, we can deduce the validity of the
equations 2.2.46, and hence we may conclude, using Lemma 2.2.2 as before, that

Re(w') = —(S? + Re(84)C?).

Note that the unitarity of U, coupled with the fact that uy; = us0 = 0,
enables us to conclude that usz 3 = 0, and hence that the veclor (ua 1, us2) 7 (0,0).
By comparing the two sets of equations 2.2.34-2.2.37 and 2.2.38- 2.2.41, and
Cf HFSF
S 9!

using the fact that the matrix ( ) is unitary, we may derive the

following relations:
(O &' s’ a , | a
o 'Y=l = o
$'ST —@HC c c

C’ &’'s’ b o b
$'S —9HC d = Yo d

and
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where wy 1s a complex number of unit modulus.

The fact that the vectors (a,c) and (b,d) are orthogonal forces the above
unitary matrix to be a scalar matrix and as the (1, 1) entry 1s positive we conclude
that it 1s the identity matrix. Hence we deduce that §/ =0, C' =1, #¢' = —1
and that Re(w) = 1 = —(5"? + Re(8'¢')C'?). Also note that when S = 0, the (3)
condition in the relation (iv) is satisfied. Hence the relation (iv) is satisfied.

If it turns out, instead, that (us,,u22) 7 0, we would, by proceeding as in
the case discussed above, first assume without loss of generality that A = ¥ A4’
and that (u2,,u22) = (u} ,,u},); we would then deduce from the uniarity of U
and U’ that u; 3 # 0 # u] 5, and eventually, from the equations 2.2.18-2.2.21, find
that the equations 2.2.50 are valid. Now conclude, using Lemma 2.2.2 as belore,

that Re(w’) = — (5% + Re(8¢)C?).

Again, using the unitarity of U/ and the fact that (u;,1, u1,2) = 0, conclude that
(us,1,usz2) # 0. Now, by comparing the two sets of equations 2.2.34-2.2.37 and
C!'}' HJSI

2.2.38- 2.2.41, and using the fact that the matrix
g (qﬁ"S' -—ﬂ’{éf{?"

) 15 unmitary,

we may derive the following relations:
C’ &' S’ a pr{ @
@'S! —8'H'C” c c
C’ &5 b
-‘:}‘SISI —f?’e;ﬂ'C?' d

where wj 1s a complex number of unit modulus.

||
&

I
DE""

3
"‘H“\
R oo
S

The fact that the vectors (a,c) and (b,d) are orthogonal forces the above
unitary matrix to be a scalar multiple of ), but by again comparing the (1,1)
entry we would find that «}, = 1. Hence we deduce that §' =0, C’' =1, 8¢’ =
—w' and that Re(w) = 1 = — (5" + Re(@'9’¢')C"?). Also when S = 0, (vi)(B) is
clearly satisfied. So we find that the relation (vi) is satisfied in this case.

(i) ' = 1 # w.

Since w’ = 1, equations 2.2.10-2.2.17 and 2.2.22-2.2.29 may be re-written as:

Lk ¥ I F
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— ! r _— r r
HE,IA —_— u211A ¥ ﬂ‘zrﬂﬂﬂ — HE,ZA ]

where we write D for the diagonal matrix diag(l,w). (Notice, as before, from

the above equations and the unitarity of the matrices I and U’, that |u;;| =
|“i,j|1 V1 5 l}.? i: 3*)

Since w’ # 1, by resoning exactly as in the Case (i), we find that exactly one
vector in the set {(u1,1,%u2,1), (¢1,2,%22)} is non-zero.

Suppose {u1,1,u2,1) # 0. Then, using the unitarity of A, A” and the equa-
tions 2.2.10-2.2.17, we may assume without loss of generality that A = A’
and (u;1,3,u2)) = (uy,,u3,). Now, deduce using the unitarity U/ and U’, that
uz2 # 0 # uj,. Now, from equations 2.2.38-2.2.41, we would find that the equa-
tions 2.2.47 hold. Hence, using Lemma 2.2.2, conclude that Re(w) = —(57° +
Re(0°¢")C™).

Also note that the unitarity of U, coupled with the fact that u; 2 = usz2 = 0,
enables us to conclude that uz 3 = 0, and hence that the vector (u, 3, u2.3) # (0, 0).
Proceeding 1n an analogous way to case (i), using equations 2.2.34-2.2.41, we

would find that the relation (1v) is satisfied in this case.

If it turns out, instead, that (ui,2,u22) # 0, we would, by proceeding as in
the case discussed above, first assume without loss of generality that AD = A’
and that (ui2,u232) = (u},, u35); we would then deduce that usz, # 0 # uj;,.
Now, from equations 2.2.34 -2.2.47, conclude that the set of equations 2.2.48
are valid. Hence, using the lemma 2.2.2 as before, we again find that Re(w) =

—(S” + Re(8'¢")YC™?).

Again, using the unitarity of I/, we find that (u;3,u23) 7 0. The equations
2.2.34-2.2.41 and arguments anlogous to the previous cases imply that the unitary

matrix ( fg _ch ) 15 equal to ). Hence we find that relation (v) is satisfied

in this case.

(1) w = 1 = w’. First note, from the unitarity of U, that at least one entry in the
set {uy 3, Uy 2,U2,Uz2} is non-zero and hence - from equations 2.2.10-2.2.17 and
2.2.22-2.2.29 - we may assume (without loss of generality, as before) that A = A’.
Also note that the veclors (wy a3, u2,.3) and (us 1, us2) have the same norm. So they
have to be both zero or non-zero. If they are both non-zero, then arguing as in
cases (1) and (11), we can conclude that the relation (iv) is satisfied.
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suppose both the vectors (w3, 12 2) and (w3, uz2) ave zera. Then, conclude
from equations 2.2.18-2.2.21 and 2.2.30-2.2.41 that also (1] 5, w4 5) and (|, uf ;)
arc zero. The umtanty ot U, 0" then implies that wuszs and ¢, ; are complex

numbers of unit modulus Then, equations 2.2.42-2.2 145 may be simplified thus:

a b - a5 Y (' s a b
= w .
e o Dy =0 0 s i U / e o ¢

where wy 1s a complex number of unit modulus.

. (.’ 05 . L :
[lence the matrix _ . is nnitarily equivalent. to a constant mul.
g g 5"
tiple of ? | , and the relation (viil) is satishied in this case.

{,’-’5’ lil'_};.t L u.r f;{"'r(--”

[Finally, the proof of the “if’ part. is complete.

Now, we will first prove the sufficiency of the relations (1)-(111) and {(viit)-(x) and
then dispose the case § = 0 = 57 for the remaining cases. Finally, with the
assinplion that fio)(5) + f0y(57) # 2 (i.e. atleast one among S and 57 is non-
zere), we will prove the sufliciency of the relations (iv)-(vi) separately for the
cases | € {w,w'} and (£, P') € ¢. The proof basically consists of an explicit
presentation of unitary matrices A, A’ {7 and {77, which would satisfy the set of
equations 2.2.10-2.2.415.

(i) Suppose w = ', 0 = ' = 0

Let = = (0)(0'¢') and =2 denote any fixed square root of z. Now choose
1 [
A= 4 = s v {(/ = 7,1 = 0O 1 0
_ 0 0 40" ’ T '
0 0 ==z

Il can be easily checked that the equations 2.2.10-2.2.45 are satisfied and hence
that (If & A)W = W/ & A"). So Wiw. 0, é,0) is equivalent to W (w, 0, ¢',0)
lor all values of 8, &, 0", and &'.

() Souppose w = w5 = 5, C = O, and (0H) (P ') = w.

A = ( U ¢ ) , A = ( U weo ) anl
—1 U — 1 ()

{ ‘hoose
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O 1 0O 0 1 0
{/ = w 0 0 . U = 1 O 0 ;
0 0 w 0 0 —-0¢

verily that equations 2.2.10-2.2.45 arce satisfcd, and conclude that (I @ AW =
”“rr = .*'l'r}.

(i) Suppose v = w5 = S (' = Y, and (ﬂ@j(ﬂ’qﬁ’} = 1

Now clhioose
> )
A=a=(2") v=uv =1
0 &
Again, equations 2.2.10-2.2.15 are satisfied, and so, (I7 ¢ AYW = W/ (/7 & A').
(viii) Suppose now thal the relation (viit) is satisficd; this means that w = 1 = W',

and thal
(H ﬂlc}‘ I_r"rr ﬂr‘cjw
Aﬂ . = _ ] v -"1.;]
b5 00 &S G

whore (g is a 2 x 2 unitary matoix and g 15 2 complex numbeer of wnt modulus.
Deline

I 0 0
A= A" = Ay, /5 = T, 07 = g 1 0
ﬂ [] LL0)

and verily that equations 2.2.10-2.2.45 are satislied to conclude that (L7 & AYW =
NAE 2 A

(ix) Suppose w =w' = — 1,5 = 57, (" = (" and (&) (') = 1,
Define
1 0 0
’ 0 -0'0 s
I;Az(l 0)*1’;’-—")’[": 0 -1 () )
0o 0 0

and verify that equations 2.2.10-2.2.45 are satizsfied Lo conclude that ({7 AYW =
(L o AT

(x) Suppose w = w = - 1,5 — 5,0 — " and {ﬂﬁ'ﬁ]{ﬁf}’r} = — I
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Define

_.I'D _;ﬂ UID
A=(¢:1)1A,=(¢§ 1)1U=U’= 1 0 0|,
- 0O 0 1

verify that equations 2.2.10-2.2.45 are satisfied, and conclude that (U @ A)W =
WU @ A).

Assume that 5 = 5" = (.

Note that, under the above assumption, the relations (iv), (v), (vi) and (vin)
are basically the () part of the corresponding relations. We prove the sufficiency
(i.e. provide the desired unitaries A , A’, I/ and U') separately for each relation.

(iv) Suppose the relation (iv) (i.e.(8B) of (iv)) is satisfied. We consider the two
cases in the relation (3).

If w= —0¢ and w’ = —0¢, then define

o 1 1 0 0 1 0 0
AZAfz(lﬂ)’U= 0 0 1 , U' = 0 0 -84 |,
0 —&¢ 0 0O 1 0
and verify that the equations 2.2.10-2.2.45 are satisfied.
If w= —8¢" and ' = —8¢, then define
1 0 0
A=A =T ,U = U = 0 0 1 .
0 1 O
and verify that the equations 2.2.10-2.2.45 are satisfied.
(v) Suppose the relation (v) (i.e.(3) of (v)) is satisfied.
If w=—0'¢" and ' = —w8¢, then define
0 1 0 0 1 0O 0 1 0
A=(l[])iﬂr=(1;’)aﬂ= 0 0 1 , U = 0 0 —wie |,
¢ 0 0 1 O 0

and verify that the equations 2.2.10-2.2.45 are satisfied.



fw=—0¢ and w' = —f¢, then define

0 1 0
A =TI, A = diag{l.w} , / = U = 0O 0 I ;
1 0 0
and verifly that the equations 2.2.10 2,215 are satislied.
(vi) Suppose Lhe relation (vi) s satisfied.
I[w = -~ and ' = —-60¢. then define
0 0 | 0 0 8¢
0 I , o 1 | )
A= _— , A= 0 , U= ) 0 01, U = 10 0
“ ¢ —w'te O g 1 0
atnd verify that the equations 2.2.10-2.2.45 are satisfied.
If w = ¢ and w’ = —8#é, then define
o 0 1
A = f, A = diag{l. W'} . U/ = 7 = L 0 0
0O 1 0
aml verify that the equations 2.2.10-2.2.15 are satished,
(vii) Suppose the relation (vii) is satisfied.
If w = ¢ and ' = —wlé¢, then define
0 1 0 0 o | 0 0 wie
"l:(lu)w"":(.--:z)ib’: 0 L 0o |. =101 0
= Py 00 I 0 0
andd verify that the equations 2.2.10-2.2.45 are satislicd
Hw= -u0¢ and w’ = wh¢, then define
0O 0 |
A= 1, A = diag{l.ww} , U = U = 0 1 0
|l 0 0

and verily that the equations 2.2.10-2.2.45 are satisficd.
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Assume that 1 € {w,w’'} and that 2 # I0)(5) + I{6)}(5').

First note that, if w = w’' = 1 and the pair (P, P’) satisfies part (a) of any
one of the relations (iv), (v) or (vi), then it follows that § = 5’ = 0, which is a
case we have already disposed. So we only consider the case when exactly one of
w,w’ 1s equal to 1.

(iv) Suppose that the relation (iv) is satisfied and that exactly one of w,w’ is
1. To be specific, suppose w — 1 # w’; (the other case is similarly treated by

replacing every thing by a corresponding ‘primed’ expression;)

As w = 1, the pair (P, P’) satisfying the relation (iv) implies that 5’ = 0 and
that ¢’ = —1. Note, by our standing assumption, that 5 # 0.

Suppose w’ = —1, then -again as the relation (iv) is satisfied- it follows that
either C =0 or 8¢ = 1. If it is the case that C = 0, then define
1 1 0 O 1 0 0
A — AI = E ( ¢) wﬂ ) - U, p— u ﬂ ;_._10 x U == D D 1 5
e 01 0 01 0

where wg i1s any fixed square root of 84¢.

If it is the case that 8¢ = 1, then define

o4 715(1 _ C}—l}'iqﬁg 715(1 . C)IIE N
T\ RO+ o)y es 2+ )2 )

1 0
0 0
0 1

o0

Verify in both the cases that the equations 2.2.10-2.2.45 are satisfied and
hence conclude that (U ® A)W = W/(U' @ A’).

Now assume that w' #£ —1. Define wg = }l_fi,g. Using Lemma 2.2.3
concludc{ that |wg| = 1 and that "E#:ST.J — fﬂ'ﬁg;wul = my (say); —a% =
(EeCtwor’) — m, (say); Note that, by Lemma 2.2.3, m.,, m2 are well defined and

that m, ?'3 0 ?‘—L My,

Now choose complex numbers b,d such that |8|Z = m, and |d]|? = ﬁ%’l
If we define ¢ = mqd, and a = b, then it clearly follows that |a|? + |b]* =

le|? + |d|* = 1. Again using (b) (ii) of Lemma 2.2.3 we conclude that ac + bd =
fl&(l + myms) = 0.
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Thus, if we deline

1 0 0 1 0 0
, a b , _
_.-.:,;1:( ),U: 00 wo | 0 =]001].
c o
o1 0 g 1 0O

(all of which are clearly unitary), then all of the ecquations 2.2 10-2.2.145 - with
Lthe possible exception of 2.2.30-2.2.33 . are readily seen to be satisfied: equations
2.2.30-2.2.33, however, arc exactly equivalent to the system 2.2.46 of equations:
these latter equations are satisfied by the very definition of a, b, ¢, d. Thus, firtally,
({7 W = WL @ AT,

(+) Suppose the relation (v) is satisfied. Note that when w — I, the relation
(v} 18 same as the relation (iv), whose sufficiency has already been established.
So suppose that w # 1 = w’. This immediately implies -as the condition (v) is
sabistied - that S = 0 and that ©0¢ = —1. Also it follows from our assurnption
that 57 £ 0,

Suppose w = ~-1, then - as the relation (v) 13 satisfied - either ¢ = 0 or

Fo' = 1. I it is the case that (7 = 0, then define

L L e v Y -
VG WA TV W Wy )

g 1 0 [T
/ = 0O 0 1 g 0 1

ws 000 1 0 0
where wi 1s a fixed square root of ¢7¢7.

L1t is Lhe case that #/¢' = | then doline

, A = O Res () )= 2 g
A = | | |
— (1 - )2 (1 C1)1/2

. ( (1 — )= 250 (1 4 oy “"""H’fﬂ")

:-I"-:;(l _ (:u}];‘ﬂ L i-z[:l 4+ (---.t}lj,r-.!
O 1 0

(7 = [/I" = 0 0 1
1 0 0
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Verify in both the cases that the cquations 2.2.10-2.2.45 are satisfied and
hence conclude that ({/ @ A)W = W (U’ @ A").

fl{—llig:l}ﬂ_ Uging Lermma 2.2.3

o grst (8’ ClH4uwg) . g8 __
conclude that |wj| = 1 and that — e = 5 = 1, (say); —piars =
(8'6"C 4wl @)

PO

Assume, now, that w # —1 and define w =

= m. (say). Note m,;, ms are well defined, non-zero.

Now choose ¢,d such that |¢|? = m’ and |d|? = I—_Hl;;r-l- Define b = mad,
1 brs

and a = myc. Clearly |a|? + |¢|? = |b]? + |d|* = 1.

Now using (b) (ii) of Lemma 2.2.3 conclude that ab + c¢d = 0. Hence clearly
the matrices A, A", U, U/’, defined below, are all unitary:

.5 R 0 1 0 0
A:(“ ),A’=( “’),U= o o1}, =10do
0 0 1

c d c  wd :
el ¥

oo -
o o= O

Now verifly as before that the egquations 2.2.10-2.2.45 are satisfied and hence
conclude that (U @ AYW = W' (U"'® A).

(vi) Suppose the relation (vi) is satished. Note that when «' = 1, the relation

(vi) is same as the relation (iv), whose suffliciency has already been established.

Suppose that w = 1 ## w’. This immediately implies that 5" = 0 and &'8'¢" =
—-1.

When w' = —1, it is the case that either C = 0 or 8¢ = 1. If C = 0, then
define
1 ¢ o s 1 @ o
A = — , A = — ,
V2 ( ¢ —wo ) V2 ( —¢ wo )
0 0 wyo 0 0 1
U = 1 0 0 ; Uy = 1 0 0 ’
0 1 O 0 1 0

where wp 1s a fixed square root of 8.

If 8¢ = 1, then define

A = (1 —CYy V23S (1 — C)/72
= _715(]_ —+ c)—]fiqu's ?15(1 + C)lf? t
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v [ FQ—O)2es  Ha—oy
“\ L0 +0) VS —Ha+ o)y )

U = U =

o = o
- =

1
0
0

Verify in both the cases that the equations 2.2.10-2.2.45 are satished and
hence conclude that (U @ AYW = W (U' @ A’).

Now assume that w’ 7 —1. Define wy = %ﬁ‘%. Using Lemma 2.2.3
cﬂm:]udf that |wg] = 1 and that —% = {E‘#{;;wﬂ = my (say); _ﬁﬂﬁ =
Wﬂ;‘;“""] = m3 (say); By Lemma 2.2.3, m,, m2 are well defined, non-zero com-
plex numbers.

Now choose complex numbers b, d such that |§]% = iT‘mg—l, and |d|? = T’lmg_l

1
If we define ¢ = mod, and a = m,b, then it clearly follows that |a|? + [b|? =

lc|* + |d]? = 1. As before using (b) (ii) of Lemma 2.2.3 we conclude that ac+ bd =

bd(1 + mym,) = 0. Hence the matrices A, A’, U, U’ defined below are all unitary:

, o, 0 0 wo 0 0 1
{
A:( d)’AIZ(ﬂ _rd)”rf: 10 0 |, U=|10 0
[
e 01 0 0 1 0

Now, by verifying the equations 2.2.10-2.2.45, we would find that the relation (vi)

is also a sufficient condition.

(vii) Suppose that w = 1 # W’ (respectively w # 1 = «'), then the relation
(vii) is same as the relation (vi) (respectively the relation (v)). The proof of the
sufficiency of the relations (iv)-(vii), when the condition 1 € {w,w’} is satisfied,

is complete now.

Assume that (P, P’) € €2y and that 2 £ I¢3(S5) + I{0)(5").

Note, from the above assumptions, that it actually follows that 5 £ 0 #% S5'.

(1—04)C (1—8'")C’

(iv) Suppose that the relation (iv) is satisfied. Definewo = ‘105w = 7o)

As before, by applying Lemma 2.2.3, we conclude that wp is of unit modulus and

that —f_‘% = BeCtwo) — my (say); —G—_ij, = EChwow’)  _ 1, (say). Note

that m; and my are well defined and non-zero. Again applying Lemma 2.2.3 to
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. . 8 bt ’
wh, we conclude that w} is of unit modulus and that — 22, = { ‘#;’ST“"“} = mj
o
el E‘!‘ ‘C“' r . -
(say), and —z23— = 22 E,_.;;w“w] = mf, (say). Notice that again m’, m} are well
1]

defined and non-zero. Now from the condition (), using (b) (i) of Lemma 2.2.3

derive that mym; = mim-.

Choose a complex number d such that |d]| = -l-_;ll?fl- Define ¢ = mad, b =
maod, and @ = m;b. Using the relation mymi = mim2, we find that a = mic
also. Also, by (b) (i1) of Lemma 2.2.3, it is the case that m,/ms = —1 and
consequently a¢ + bd = 0. Again, by (b) (ii) of Lemma 2.2.3, m,m} = —1, and
hence |m;mz| = |mim5%| = 1. But the relation mym, = mim, then implies that
|my]| = |mi| and |m2| = |m%|. Now note that the definition of ¢,d implies that

lc)*+|d]? = 1 and also that la|2+]b|2 = (141 |D) s |2]d]?2 = (14| [2) ez 2] d]? =
(Jm2|? + |ram2|?)|d|? = (|m2|? + 1)}d|? = 1. Thus if we define

A(=A) = (j j)

then A is a unitary matrix.

Now define

1 0 O 1 0 O
U = 0O 0 1 , and U’ = 0 0 wqg
0 wj 0 o 1 0O

and verify that the equations 2.2.10-2.2.45 are satisfied to conclude that (I/ ®
AW =W (U @ A").

(v) Supposc the relation (v) is satisfied. Define wg = {i:f_'ﬂg, wh = “Ef_:_'f:gc"
Uselemma 2.2.3 to conclude that wg and wy are of unit modulus and that — L =
o 9 G r P E-J .I'G.I'_I_ l
(9 ;.-SMJ = m, (say); _f:..jl—;f;.p..-" _ (0 iﬂ;::duw} = m, (say); _cf?‘.‘; — ¢¢-‘S'w o)
. o' (PR @
m} (say); and — e = ( E,S,““w} = m, (say).

Now, choose d such that |[d]| = ﬁllz'ﬂ’ and define ¢ = mad, b = mid, and
a = m;b. As in the proof of (iv) using the condition (v}, and (b) (ii) of Lemma
2.2.3, conclude that mymj = mim. and consequently that a = mjc also. Similar
to the previous case, by applying Lemma 2.2.3, conclude that a¢ + &d = 0, and
that |¢|2 + |d|? = |a|? + |b|?2 = 1, and finally that each of the following matrices is
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unitary:
5 b 0O 1 0O 0 1 0
A= ¢ ) Af — ¢« » — 0 0O 1 ? U' = 0 0 o
c d c wd
wg 0 0 1 0 O

Now verify that the equations 2.2.10-2.2.45 are satisfied and conclude that (I &
AW = W'(U' ® A').

e : s ] _ (1—88)C r (1—0' O
(vi) Suppose relation (vi) is satisfied. Define wg = 1“—_'_3?-:-.—, wy = (1) As
in the previous cases use lemma 2.2.3 to conclude that wg,wy are of unit modulus
S 0 C + 5 8P twp w’
and that _E"f—:ﬁ = &suﬂ] = 1y (say); —C_"S'—uw = ¢ E__;""—’""'} = ma (say);
'8 5 (@8 S'C Hwy) ’ pgtgt (@O wfw) ’
_E}',_ua = o5 = mj (say), and —--—It:;."';'_w;;w — O = m!, (say).

Exactly in a similar way to the previous cases, define a, b, ¢, d and A, and conclude
- using Lemma 2.2.3- that A is a unitary matrix, and finally define

b o 0 1 0 0 wo
A‘=(_“_),U: 1 o o) ,U'=1]10 o
w'e w'd
0 wg O 0O 1 O
to verify that the equations 2.2.10-2.2.45 arc satisficd.
(w=8)C s __  (1-—@'¢'e)C’

(vii) Suppose (vii) is satisfied. Define wp =

wil+a’) ? =0 (1+x) )
Use Lemma 2.2.3 to cnclude that wp,w) are of unit modulus and that: —E"_'E— =

w0
(06C+wow) _ __ 5 _ (8¢CHwo@'w) __ . _e'st _ (& Cldunp) oy
o =y, — s = 85 = m2 (say); — &= = P =™
=g s [;-'r&’l#'{:';"' APy - r !
(say), and ————G“I_wam — ( C b - m? (say). Again m,,mq,mj,my # 0.

Define a.b,c,d and A exactly as in the proof of the sufficiency of the relations

(iv), (v) and (vi) and finally define

o
Ar:(f —:)=U= 0o 10,0 =]]01 0
w'e wo'd ,
wg 0 0 1 0 0
and verify that the equations 2.2.10-2.2.45 are satisfied.
The proof of the Proposition is finally complete. ()

In the following proposition we consider the remaining cases of the preceding
proposition. We have to consider the case when exactly one among C', €’ 1s equal
to 1 and the case when —1 € {w,w’}. Note that this exhausts all the possibilities.
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PROPOSITION 2.2.6 (a) Assume w # 1 #£ w'. Then, Wi(w,0,¢,1) is not equiva-
lent to W(w', &', ¢',C") for all C’' < 1 and for all values of 6, ¢, 6, ¢'.

(b) Assume C,C" < 1. In order for W(—1,8,¢,C) and W(—1,0,¢,C") to be
equivalent, it 1s necessary and sufficienl thal one of the relations (1)-(iit)}, (ix),

(x) of Proposition 2.2.5 holds.

(c) Let f : T — C be the map given by f(z) = 2. Assume C,C’' < 1 and
1# W # —1. Then, W(—1,0,¢,C) is equivalent to W (w', 8, ¢',C’") if and only

if one of the following five relations is satisfied.
(1) C' =0, Re(w') = C? — §? and 8¢ = +1.

(2) ¢’ = 1, Re(w') = —(5? + Re(04)C?) and C’ = +f(w') f(84).

(3) ¢’ =1, Re(w') = —(5? + Re(—0¢4)C?) and C’ = & f(W') f(—0¢).
(1) 04" = ', Re(w') = —(5? + Re(0¢)C?) and C' = & f(@0') f(08).

(5) ¢’ = ', Re(w') = — (5% + Re(—84)C?) and C' = + f(u’) f(—00).

Proof: (a) We shall suppose that W{(w, 8, ¢, 1) is equivalent to W (W', &, &', C"),
and arrive at a contradiction. Under the assumed equivalence, it follows from
Proposition 2.2.5, because of the reason ' # 1, that one among the relations
(1v)-(vi1) of Proposition 2.2.5 is satisfied. In other words, as w # 1 # w’', in the
proof of Proposition 2.2.5 the only cases possible are Case (1.2), Case (2.1.2),
Case (2.2.1) and Case(2.2.2) (since the other cases lead to the conclusion that

¢ =)

Suppose we are in the Case (1.2); by looking at the equation 2.2.46, under
the assumption that «’ # 1 and § = 0, we conclude that cither a = d = 0 or
b = ¢ = 0. But both these possibilities imply that 5’ = 0 (see the proof of the
Case (1.2.1) and the Case (1.2.2)). The desired contradiction has been reached.

When the relations (v), (vi) and (vi1) are satisfied, by reasoning in an ex-
actly similar way, - by looking at the proofl of Case (2.1.2), (2.2.1) and (2.2.2)

respectively - we can deduce that S’ = 0. The proof of (a) is complete now.
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(b) As we have proved the sufficiency of the relations (i)-(iii), note that it is
enough to prove that when w = —1 = w’ (as w,w’ # 1) the Cases (1.2), (2.1.2),
(2.2.1) and (2.2.2) in the proof of necessity in Proposition 2.2.5 lcad to one among
the relations (i)-(iii) itself (because all the other cases anyway lead to one among

the relations (i)-(iii), (ix), (x)). We consider the four cases separately.

Case (1.2): As § 3% 0 # 5’ we are in the Case (1.2.3). As the relation (iv) (o)
holds, 1t 1s the case that either C = 0 or 8¢ = 1 and either C' =0 or ¢’ = 1.

Suppose 1t 1s the case that ¢ = 0 and €’ = 0, note that the relation (i) is

satisfied.

Suppose C' = 0 and &’¢" = 1, As the sets of equations 2.2.46 and 2.2.47 are
satishied, first by using Lemma 2.2.4 and then by applying Lemma 2.2.1, conclude

¥

that E:—J_r:f,: = —1. Hence it is the case that C’ = 0 and the relation (i) is again

satisfied.

In an exactly similar way we may prove that the relation (1) is satisfied when

C'=0and 8¢ = 1.

Suppose that 0¢p = 1 = ¢ and C # 0 # C’; Again applying Lemma
224 and Lemma 2.2.1 to the sets of equations 2.2.46 and 2.2.47 implies that
;.;H‘L::E: = %, and hence i1t follows that ' = wquuweC. But, because of our
assumption that €' # 0 £ (', it is the case that wy = wj and € = ', and the

relation (1i1) is satisfied.

Case (2.1.2): As 5 3£ 0 £ 5’ it i1s the case that a, b,c,d £ 0. Also, as the relation
(v) (a) 1s satished, conclude that either ¢ = 0 or 8¢ = —1 and either C’' = 0 or
o' =1.

Suppose that € = 0 and &’¢’ = 1. Exactly as in the previous case applying
Lemma 2.2.4 and then applying the Lemma 2.2.1 to the sets of equations 2.2.48
and 2.2.49 conclude that C’ = 0 and the relation (i) is satisfied. The proof of the
relation (i) is being satisfied when C’ = Q0 and 8¢ = —1 is exactly similar.

Suppose that 8¢ = —1 and #'¢" = 1; In an exactly similar way application
of Lemma 2.2.4 and Lemma 2.2.1 straightaway implies that ¢ = (', and the

relation (111) 1s satisfied.
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In an exactly similar way - by using the corresponding set of equations -
2.2.50 and 2.2.51 (2.2.52 and 2.2.53 respectively) - and the Lemmas 2.2.4 and
2.2.1 we may prove that either the relation (i) or (iii) ( (i) or (i1) respectively) is
satisfied 1n the Case (2.2.1) (Case (2.2.2) respectively). This completes the proof

(b).

(c) First we prove that it is necessary that one among the relations (1)-(5) should
hold for W(—1,8, ¢,C) to be equivalent to W (w’, 8, ¢",C"), where 1 # ' # —1
and C #£ 1 #£ C".

Suppose W(—1,80, ¢,C") is equivalent to W{w’, 8, ¢’,C"), for Im(«’) > 0 and
C,C" # 1; then as w' # —1, it follows from Proposition 2.2.5 that that one among
the relations (iv)-(vii) is satisfied. These relations are arrived (as w’ #£ 1) in the
cases (1.2), (2.1.2), (2.2.1) and (2.2.2) respectively in the proof of necessity in
Proposition 2.2.5. We will consider each of these cases separately below, assuming
that the corresponding relation holds. Due to our assumption that S £ 0 £ 57,
it is the case that a,b,¢,d £ 0 in all the following cases we are going to consider.

Case (1.2): We will prove that either the relation (1) or the relation (2) is satisfied
in this case. First, from the condition (iv) (&), note that it is the casc that either
C'=0o0r &#¢' = 1.

Suppose that C’ = 0; Let m,; and m3 be as defined in Lemma 2.2.3. Then as
wp = %;‘!}E (see the Case (1.2) in the proof of Proposition 2.2.5), by applying

(b) (i) of Lemma 2.2.3 (note that w’ # £1) to wo, conclude that Bx — ltwde

Also let m] and mf be as defined in Lemma 2.2.4 with the set of equations 2.2.2-
2.2.5 replaced by the set of equations 2.2.47. By applying Lemma 2.2.4 to the

set of equations 2.2.47 conclude that 1—11—; = —1. Now, by applying Lemma 2.2.1,
conclude that
1 + '8
= —1.
w' + 8¢
The above equation may be re-written as (w' + 1)(#¢ + 1) = 0. Since ' # —1
it follows that 8¢ = —1. As the rclation (iv) is satisfied, it also follows that

Re(w') = C? — §2. Thus the relation (1) is satisfied.

Suppose that 8¢’ = 1; Let m,, m2, m{, m} be exactly as defined in the pre-

vious paragraph. Again as wy — W, by applying (b) (1) of Lemmma 2.2.3 to
wp first conclude that 7 = :‘:i;'ff and then by applying Lemma 2.2.4 to the sct

of equations 2.2.47 conclude that E;‘; — E‘% Hence, by applying Lemma 2.2.1,
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conclude that

1+wldp  C 1
w48 0 C'F1
and hence that C* = + f(w') f(@¢). Hence the relation (2) is satisfied in this case.

Case (2.1.2): In this case we will prove that either the relation (1) or (3) is
satisfied. First note that (v) (a) again implies that either C’' = 0 or 8¢’ = 1.

Suppose that C’ = 0; Now, first by applying (b) (i) of Lemma 2.2.3 (note

w' # £1) to wp (= %‘}}E) and Lemma 2.2.4 to the set of equations 2.2.49, and

then by applying the Lemma 2.2.1, conclude that

1 — W'l 1
w’' — O ’
The above equation may be re-written as (v’ + 1) (—80¢ + 1) = 0 to conclude,

asw # —1, that 8¢ = 1. As the relation (v) is satisfied it also follows that
Re(w') = C? — S§2. Thus the relation (1) is satisfied. |

Suppose that ¢’ = 1; First by applying (b) (i) of Lemma 2.2.3 to wp and
Lemma 2.2.4 to the set of equations 2.2.49, and then, using Lemma 2.2.1, conclude

that
’ 1 — W' %1
w —808¢  C'F1’
and hence that C’ = X f(w') f(—80¢). Hence the relation (3) is satisfied in this

case,

Case (2.2.1): In this case we will prove that either the relation (1) or (4) is
satisfied in this case. As before first note that (vi) () 1mplies that either C' = 0

or ¢ = .

Suppose that € = 0; As before, first by applying (b) (1) of Lemma 2.2.3

to wp (= %}]E) and Lemma 2.2.4 to the set of equations 2.2.51, and then by

applying the Lemma 2.2.1, conclude that

1 + &8

{:Jf—*—ﬂtﬁ — _1-

The above equation can be re-written as (@' + 1)}{(0¢ + 1) = 0 . Since ' #F —1
it follows that 8¢ = —1. As the relation (vi1) i1s satished, it also follows that
Re(w') = C? — §2. Thus the relation (1) is satisfied.
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Suppose that 8¢y = «'; Again apply (b) (i) of Lemma 2.2.3 to wg and Lemma
2.2.4 to the set of equations 2.2.51, to conclude that

1 + '8¢ Cr+1

Fe ey

o' +0¢ 0 C'F1’

and hence that C”" = & f(&') f(6¢). Hence the relation (4) is satisfied in this case.

Case (2.2.2): In this case we will prove that either the relation (1) or (4) is
satisfied . As before first note that (vii) () implies that either C’ = 0 or ¢’ = .

Suppose that C' = 0; as before, first by applying (b) (i) of Lemma 2.2.3
wo (= %E}E) and Lemma 2.2.4 to the set of equations 2.2.53, and then by

applying the Lemma 2.2.1, conclude that

1 — '8¢ 1
o —0¢ '
Re-writte the above equation as (&' + 1)(6¢ — 1) = 0, to conclude, again as

w # —1, that 8¢ = 1. As the relation (vii) is satisfied it also follows that
Re(w') = C? — 5?. Thus the relation (1) is satisfied.

Suppose that 8¢’ = w'; again apply (b) (i) of Lemma 2.2.3 to wo and Lemma
2.2.4 to the set of equations 2.2.53, to conclude that

1 —@'8¢ C'+1

o'—60¢ @ CrF1l’

and hence that ¢ = x f(&') f(—8¢). Hence the relation (5) is satisfied in this
case. The proof of the necessity of one of the relations (1)-(5) to hold is complete

now.

Now we will prove that the relations (1)-(5) are all sufficient.

(1) Suppose the relation (1) is satisfied and 6¢ = —1. Define wo = %:‘}E.
Conclude, using Lemma 2.2.3, that wg is of unit modulus and that _E% —

(PCtun) _ (say); — 25 — (06C+wouw’) _ m2 (say). Let ) be a fixed square

75 C—wou' 25
root of §'¢’, and notice that &%, = wy¢’ = m} (say), and set m}, = —m’,. Using
the relation #¢ = —1 and (b) (i) of Lemma 2.2.3, we may derive that 2 = —1 and
consequently that the relation m,m% = mjm. is satisfied. Now choose a complex
number d such that |d| = m Define ¢ = mad, b = mid, and a = m,b.
2

Using the relation m,mj = mima2, we find that @ = m’c also. Also, by (b) (ii)
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of Lemina 2.2.3, 1t is the case that m,m. = —1 and consequently aé + bd = 0.

Also clearly m i, = — 1, and hence |myma| = |mm)] = 1. But the relation

nagmy, = g implies that || = [m]| and |mg| = |m24]. Now the very definition

of e.d implies that |e]? + |d|? = 1, and also |a|? + |62 = (1 + | |2} mS|%]d]? =

(L | P 2|2 = (|1re]? + ey |9)id)2 = (ling|? 4+ 1)|d)? = 1. Thus if we
a b

define A = ; then A s a unitary matrix. Also, clearly, all Lthe [ollowing
& ¢

matrices are unitary:

1L 0O QO 1 0 O
A= A, I/ = 0 0 1 , L = 0 0 wo .
0 w, O 01 O

Now verily that the equalions 2.2.10-2.2.45 are satisfed to conclude that (£/ ¢
AW = WL ¢ AT).

. - L - 8H)0r . Sy ey -
Il & = 1. then defne wy, = Lﬁti%‘],]—j and conclude, using Lemuna 2,203,
- - 27 bl — ]
thal wy 15 of umt modulus and that - {—‘i—w{; = -‘--'?&-_;_;.--""*"-’-J- = 1y (say); "E—_pl,..:l.;.-ﬁ

LA T |
oM

pararraph and use exactly similar arguments to find that A is a nnitary matrx,

= 11 (say). Dehne w,mi,mj, a,b c,d and A exactly as in the last

|"'i|1;1]|}* define

U 1 0 0 1 0
A = AD ] = 0O 0 1 N 0 0 wo
wi, 0 0 L 0 0

and verify that the cquations 2.2.10-2.2.45 are satisfied.

(2} Suppose the relation (2) is satisfied;

I o . L 0 . . ] —E.i'.;’ { : _ N
First we consider the case (" = (W)W F(0¢). Define wp = o - A hefore,
9 B b
use Lemina 2.2.3 1o conclude that Juwpg| — 1 and that - E_,’i:”: — | “ﬂ;“”} — 11y
» A e . {Eir,ﬁ{:-'-i—wuu._.r_'_} . . P - L I N . ,
(fjaV); g = e = my, (say). Let m] = [/ (= _ i using the
relation 8'¢" = 1) and . (= Si=1 again using #¢° = 1) By an
2 l_l_{:'r ﬂ5115_-: ¥ - 3

applcation of Lemima 2.2.3(b)(1) to this wg, we find that

rreq I + '8¢ N £ "+
— = . while — = ———.
T2 w’ - Q¢ Tred, |
Now, using the relation €7 = (W) f(0), we find that rmigin!, = s, Choose

whoe d and define A exactly as before, and use exactly the same arguments to



assert the unitarity of A, and finally defhne

1 0 O 1 0 ()
A = A , L= 0o 0O 1 . it = O 0 wy ]
0O 1 0O 0O 1 ©O

and verify that the equations 2.2.10-2.2.15 are satisflicd to conclude that (L' &

A = WL e AN

Suppose next that {7 = — f(w")f(05): define wq, riey, ey exactly as in the
el . . . s 'y L= i3-S - - LY
preceding paragraph and define | = e (= 55 using the relation 8¢ = 1),
Y . r . . . . .
m', = - B2 (= 57 again using 0°¢" = 1). Now by applying Lemma 2.2.3(b)(i)
1o wy. we find that
778 1 + w'eh N -1
—_— = . while P == ey e i
Trig w' + B T ¢+ 1
llenee. using the relation € = — f(W' Y f(0¢), we find that yeyind, = rnfn,.

Define a, b, ¢.d, A and 7 exactly in the preceding paragraph and define

! o 0
{/ = 0 0 1
0 -1 0

Procede exactly in a similar way to conclude that IV is equivalent to W7,

(1) Suppose relation (3) is satisfied and 7 = f(") f( - 0¢); Define wy == g;—f%
: . - i % - - - R e My e ﬂﬂs'c-:—w — . - k.
As Iu_‘lt;-n—h._ usmg Lemma 2.2.3 conclude that - E:.iwu— ( oS o) — 1, (say);
—f—% = {ﬂ‘ﬁcg;gwl = 1, (say). Let mj = ]H_—E (— %) and mf, = - lﬂ+':::, (=
':j-;—l] Using the relation 7 = f(w") f(—0¢), we may derive that rrymi, — rnimas.
Now choose a, b, ¢, d and define A exactly as before and finally define
0 1 0 0 1 0
A= AD, U = 0 0 1 LU = 0 0 wy
1 O O 1 0 O

aned verify that the equations 2.2.10-2.2.45 are satished Lo conclude that (IS
AN = WL e AN

Sappose ¢ = — (W) f(-~0¢); The proof is same as for the case considered
m the preceding paragraph exept the definition of 2}, 12, and {/. Dehne
. 0 | O
, g'.57 M= L, 0’5’ C' o+ J
T T TR e VT Ty S h oy = Cr o 1N s ). UV = 0 0 1



Now preede exactly in a similar way as in Lthe preceding paragraph to verily the

equivalence.

1) Suppose that the relation (1) is satisfied and that 7 — f(w') f{8¢); deline

o (8 ine Lo o 2.0 S (G twe) _ avYe — @S
0= Tiron Using Lemma 2.2.3 Tmon — S — 1ty (say): e
l'if-.*-f.'lu..rn.;r"! _ . ; Ll L . (AT L S - ) T . .
TN -= Frip (bﬂ}’]- Let Ly — i {-— Y I 1S1IE & & = u;) ancel

m'y = - “E’Jf;ﬁ’ (= m’ﬂ’fg:’;ﬁ:’—!_ ). Using the relation 7 = f(&') f{04), we may derive

that rrynl, = mims. Now choose a, b, ¢ d and deline A exactly as before and

linally define

0 0 1 0 0 wy
A= D7TA U = 1 0 0 U = 1 0 0
O 1 0 0 1 0

andl verily that the equations 2.2.10-2.2.15H are satislied to conclude that (7 &

AW = W o AT).

TRl A Sl |

] r - o - F ""-_.."" .
Suppose that ¢ = - (W) f(0¢); define | = - “"T_ff_‘;, (= *=5— using
. T LR AT " -
o = W'l), mi = —“E,f}_"; (= = ;f? Ly, and wo, 1, 1. A, AU exactly as in

the previous paragraph, and finally dehne

0 §] 1
[/ = | ) 0
0O -1 0

Now prucede exaclly i a similar way Lo conclude that W and W are equivalent.

(7) Suppose that the relation (7) is satished and that (Y = f{&'f(—0¢); deline

l. 'E} ; - + ._1
Jo = ﬁﬁ& Use Lemma 2.2.3 Lo couclude that Juig| = | and that — L.“f’_zu- =
fitear”” - h 5 Aehl * — gy mar” , Tl
- Ej,:q“’"-}- — . (say); - -:'-:UU:;’ = %2 ﬂ:‘.‘-'“-‘i—] — ity (say). Lot m) = S== (=
L 0F et ! . Y F P et s o et — . . -
=T using #'¢’ = w') and m;, = -5 (= 4w ). Using the rclation

(" = f("Yf(—8¢), we may derive that rnymf, = mym,. Now choose a, b, ¢, d and

deline A exactly as belore and finally define

o0 0 | ¢ 0 wy
A= DUTAD U = O L 0|, = 0O 1 0
L 0 0 1 0 0

amdl verity that the equations 2.2.10-2.2.45 are satishied to conclude that (17 0

AV = WL 0 AT



. : o o et . - P @' sy @@ =1 I
Suppose that € - —f (f;:* ),flg—{?-;ﬁ'), define m| = —%—=(- 7S usIng

. - F fl:_; - ; .
o' = w'), mi = —"EL‘EL"I = ¥ ;‘"E +1 ), and wg, ey, e, A, AL U exactly as in the

previous paragraph, and hnally deline

0 0 1
i/ = 0 [l 0
I 0 0

Now procede exactly 1n a similar way Lo conclude that 1V and W' are equivalent.

This completes the proof of the Proposition 2.2.6. -

2.3 Classification of I2(2,n)

llere we try to classity f3(2, 1) up to the natural equivalence relation on tt. 'he
method of analysis 1s more or less similar to the case 1 — 3. As points in (2, n)
eive at least one connection from each ecquivalence ¢lass, similar to the case e = 3
here also we attempt to describe when a pair of points P, /2 € (2,n) alford
cqumvalent connections.  In the following Proposition we state lour conditions
aul prove that 1t 1s necessary that a pair of points should satisfy at least one
of them 1n order to alford equivalent connections. We also prove that two of
those conditions are even sulliclient also. Finally using Ocneanu’s Compactness
we prove the reducebility of the vertical subfactor and provide some conditions

lor the hornizontal subfactor to be irreducible, and also for being reducible,

PROPOSITION 2.3.1 Let n be arbitrary. Assuwme that frn{w), (W) = 0, and
(L5050 A0 for all .

fa) If Wiw,8,¢,C) is equivalent to W{(w', 0',¢".C"), then one of the following
reditfions holds:

(1) w = W', and there exists a permulation o € 5, ; such that
Ad{E WY = 7 Ad( P y(0) = ¢, and Ad{ )b = Co'

where = some compler number of unil modulus. P, denotes the permudalion

malvir correspoding to o, and we wede Ad(P,) — P, () P!



]

(1) w = W, and there erists a permutation o € S, o such that

Ad(F () = 7, Ad(FP,)(0) = €07, and Ad(FP,)(¢) = wCd"™
where ¢ is some compler number of unit modulus,
(2] There extst 1,1 such that (Re(&'). Be{w)) € A, x AL, where A, = {--(5%+

Re(0:6:)C2), — (57 + Rele0id)CE)Y and N = {—(S* + Re(020))C7). (57 4
Re(w'0:01)CT )}

(1) There exist 1,3,7', 3" such thal (Re(w'). Rc(w)) = (=g , . ) where
i, = 1 — (1 + ffﬁ(ﬂ;'gﬁ,gjq_’)j])fff[f — {1 + fff_'(ﬂgcﬁjﬂjrﬁi}]ﬁ'?h’f — 2{ e (H:0,) +
Reepih; )T C 508, and i is the corresponding “primed’ expression.

th) In (a). condilions (1) and (1) are also sufficient conditions for Wi, 0,4,C7)
to be equivalent lto W(w, 8,6, (7).

(e} (1) The vertical subfactor associated with W (w.0,¢,07) is always reducible.

(2} (i) The horizonlal subfaclor associated weth Wiw,0,0,C") is irreducible o

cether of the following conditions holds:
() wF# 1 and S # 0;

() 65 and ¢5 arec not scalar multiples of one anaother.

(ti) The horizonlal subfactor s reducible +f S = 0.

Proof: Similar to the case n = 3 we first write the condition for 2, I € Q(2,n)
lo afford equivalent connections. as a set of equations. Thnus, in order for W to be
cqnivalent to W' de. (17 AYW(w. 0,6, 0) — W(D,0O,¢,C YWU' 5 A"), where

.j' f F
A=), a4 =" ")Yeuwo
e o



,_“_.'l.
] |

£ o L et
Uy, U1z Ly Yy
+ _— - t - F —_— ) I
i/ = ttpy  MUpn CF , U0 = T T & g [i(n).
A Y A X’ bl =1

cddenoles

PO, X, Y. P, QN XY ¢ Mo 2y and Z. 27 ¢

the matrix transpose of X', 1L is necessary and sufficient that the following sct of

M, _s, where X!

equations holds.

wy g A

Wy 20

PHal! 4+ bgpS)
P(a0S ~ bOHC)
PleC! + d¢pS)
PielS — dpC)
e 1 A

ey 2 /D

Q'al) + bps)
Q' (adS — bOHC)
Qe + dbS)
(S - diep()
o X

&X

e X

dX

at

oY

cY

deoy”

Z(al’ | bpS)
Z{a0S5 - bBSCT)
Z{eC + dpb)
Z{efS - dOp(T)

It

ey A

ty 5 A

a’ 1

v P

P

d P

| 1A

)y I A

a’ ()’

by

'’

d'er’ Q"

(@' 4 975X
(¥ + S X!

(@' ¢'S" — O CYX
('S — 0" CY X!
(a'C 4 0 S)Y!
(V'O + 0 S)Y!
(a'@’' 5" - S COHY
('S - ' CNHY
(a'C ) S8 2!
(O'C 4+ d'O'SHZ!
(a'@¢'S" — 'Y 2!
('’ S" — 0" Y2

~3.59)
23.60)
3.61)
3.G2)
3.63)
.3.64)
-3.65)
.3.66)
3.67)
.23.68)
-3.69)
23.70)
3.71)
3.72)
3.73)
3T
3.T)
3.76)
3.77)

As before, we consider cases depending on whether various entries of {7 are

ATy O Y- ACTO



Cascf{) = wy, # 0.

Using the unitarity of A and A’ and from equation 2.3.51, we can assumc
without loss of generality, as for the case nn = 3, that A = A’ and u,,, = u},;. Also
v the assumption w,w’ Z£ 1, using equations 2.3.55 and 2.3.60 and arguments
exactly simmilar to the one used in the previous section, we find that @, ; = u} , =
wpy = th, = 0. We consider lwo sub-cases depending upon whether the entry

"y 15 NION-ZEr0 O ZeTro.

Clase (1.1): upp # 0.

As fm{w), fm(w’) > 0, First we deduce {rom equation 2.3.61 that either
a=0o0r & = 0. But ¢« = ¢ = 0 implies that w = &'. But as we have assumed
that Frie{w), Fr(w’) = 0, It is the case that that 8 = ¢ = 0, and that w — W', and

tyz — Uy, We will show that the relation (0) is satisfied 1 this case.

As S; # 0 for all i (by the assumption in the statement of the Proposition),
we find - from equations 2.3.57 and 2.3.63 that P! — Q' = 0. At the same
time the equations 2.3.56 and 2.3.62, imply that £ = Q" = 0. Also by the
assiumption S7 #£ 0 for all i, we lind - from equations 2.3.67 and 2.3.71 - that
N = Y = 0, while the equations 2.3.66 and 2.3.70 implyv that X — ¥ == 0. The

ninitarity of {7 and {7 is now scen to imply that also £ and Z° are unitary.

The cquations 2.3.74 and 2.3.77 may be rewritten as:

ZC = Mz (2.3.78)
Z2C0p = 07 (2.3.79)

Since ' and " are invertible positive operator, (as follows from the assump-
tion in the statement ol the Proposition that €; # 0 for all z) and since equation

23,78 may be re-writlen as
(ZZ""WZ'CZ7)y = .
we may dechice from the uniqueness of polar decomposittion that 2 = Z7.

Next, we may deduce from equations 2.3.78 and 2.3.79 - using the invertibility

of the matrix 7 - that Z02" = 0'¢’.

Thus,

Z¢' = ("2 ., (hence also 2S5 — S'Z) and X0¢ = 0" 2 .



Notice now that

ZOS8 = (048
= (M) 25

= ('YW A" X )ZS
= (WAL~ Z™)S' 7

Hence, we may deduce from equation 2.3.75 that
a( WL~ L™V 72 = dO0' S 7
deduce from the invertibility of 577 that
A2 = Cod'T
where { = dfa. Since Z0Z~ = (#'¢"), we thus find that also
Z02" = (¥ .

L.et A (vesp., A°) denote the ™ -subalgebra of M, .» genervated by {0, o, '}

(resp., {07, 0, C'}). The preceding analysis shows that the map Ad(Z) = Z(-)Z°

maps A onto A’ (since it carrics the generators to non-zero multiples of the

g:'.;t-?l‘jt-‘*.l‘.ﬂ.‘t.ﬁl‘.‘-'r:l.

Note now that 4 and A’ are contained in the algebra of diagonal matrices.
If {en : @ € A} denotes the set of minimal projections in the abelian C77-algebra
A, and if ZeZ™ == el | then clearly {e/ : o € A} is the set of minunal projections
in .A’. The fact that some unitary matrix - i.e., Z - simultaneously conjugates
cach ¢, into ¢/, clearly implics now that we can find some permmtation o € SN2

such that Ad(F,) maps each e, into .

[t follows easily now from the construction that

Ad( I, N0) = CO. Ad( )0 @) — (&', and Ad{P. )y =" .

(asec (1.2): w,, = O

We will prove that the relation (2) is satisfed in this case. From the equation

AT X L - = f J— : . £ ___ IO : . — _—
2.3.61 we conchude thatl uf, , = 0. Sapposc QY = (1. G2, Gr—2). A5 ey = Wy s =
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0, we iind that ¢ is a unit vector; hence there exists an index ¢ such that ¢, #£ 0.

Then, we lind {rom equations 2.3.62-2.3.65 that

g:(aC’; + b5y =  agq (2.3.80)

g:(a0;S; - b0;6,Cy) = bg, (2.3.81)

G:i{cC + d: S)) = 'y, {2.3.82)

gi(c0:5; —d0:6,C;) = dw'q] (2.3.83)

The unitarity of the matrix Ci Pis2i woulld imply that necessarily that

05, —0:5,07,
/'] = lgil # 0. Also, as S; # 0, we may infer hhom equations 2.3.80 and 2.3.51
that e, b,c,d # 0. Let ¥Y*' = (1. 92, " Yn_2}. Since uy 3 = vz = 0, we lind that
Y is a unit vector; hence there exists an index ¢ such that g £ 0. Then, we Aind

[rom equations 2.3.70-2.3.73, that the following equations hold:

CLifie == (e C -+ 8L 57yl
“rf ') i F
Eﬁ,ﬁy!r = (tt}(_,./‘l'j + {.Iﬁtr'c‘r*]yl;'
cipir - (adl,Sh — c0LoLC )yl
n : «F # . . W
fj-l'.t_?yll f— (hq‘iﬁ':pi‘i:, == ffﬂ:;f):r(*':]_i_flr (3--571‘}'1)
o . o L ehsL
Again, using the unitarity of the matrix . , . ) deduce that
{}-rlt_'l'; w'ﬂ'f{jﬁ-"r{""l
I T L ]
yir and gyl have the same absolute valne.
Let wo = ¢lq;”! and wf = yhys'. Now, first by re-writing the above two
cquations in the form as in equations 2.2.2-2.2.5, and then by applying Lemma

2.2.2 separately Lo the two sels of equations above {exactly as in the previous

seclion), couclude that
(Re(w'), Re(w)) = (—(S2 + Re(0:¢;,)C2). — (502 + Re(0,.¢1.)CL?) .

Hence the relation (2) 1s satished 1n this case.
(ase (2) w3 = 0

Case (2.4) w12 # 0

Using 2.3.55 and the unitarity of A and A’ we can assume withont loss of

generality that A = A" and w, . = 1} ,. Also as &' # 1. we [lind [rom 2.3.61



Al

il

that wz, = u,, = 0. T'here are two cases now, depending on whether wg (15 not

or is (), which we consider separately.

f.'ﬂgﬁ' (&.’?Ijr} Hg11 —__pé U

As Im{w), Im(w’) > 0 we may deduce from equation 2.3.60 that a = « = ().
r

w = w, and uz,; = wu,,. We will show that the relation (1) is satisfied in this
case.

As N is invertible, (i.e.5, £ 0 for all ) we And from 2.3.56 and 2.3.62 that
U= = 0. From 2.3.57 and 2.3.63, we get P = Q' = 0. As 5’ Is invertible,
2.3.70 that X' = ¥’ = 0, and then from 2.3.67 and 2.3.71

we get X — Y = 0. Now it follows that Z and Z’ are unmtary.

we find [rom 2.3.60 and

From 2.3.75 and 2.3.76 we have

— 2040 = (X
fo — . 9!{'{}!(‘1:21

It follows (as before, from the uniqueness of polar decomposition and the

imvertibility of the positive operators (7, () that Z0¢ = —wZ and 2 = -Ho'2'
These equations Logether with the equation b2 S = 527 (which 1s a conse-

quence of equation 2.3.71) are seen to nnply (after some minor manipulations)
that
Ad(ZYWCY = C*, Ad(Z)(0) = ¢8O, and A Z' YD) = wie'™

where ¢ 1s some scalar of unit modunlus.

Arguing exactly as in the prool of Case (1.1), we may deduce the existence

ol a permutation o € 5, .. such that

Ad{ P )(C) = C', Ad(P,)(0) = (8", and Ad(FP,)(¢) = wle'™ .

(‘ase (2.1.2) uyy — 0O

It. follows from equation 2.3.60 that also v}, = 0. Using the unitarity of &/
and the fact that (wz,uz2) = 0, deduce that QU= (¢1.- - - . ¢n_2)) i5 a unit vector
artedl henee that theee exists an index 7 such that ¢, 5 0. Stmalarly the unitarity of
{7 and the fact that (v 3,m1,2) = 0, implies that the vector X (= (.- 0a-2))

= a unit vector and hence that there exists an tndex 7 such that .z, £ 0,
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Then, we find from equations 2.3.62-2.3.65 that

gilaC; + b, 5;) —  agq]
gilal;S; — b0;$;C;) = by
G eC 4+ ddi S = ew'd!
qi(c0;5, — df,0,) = dwdq] (2.3.35)

Also we find from the equations 2.3.66-2.3.69 that the lollowing equations hold:

ary =  (all + c0,50)x%
bory = (bCL + dOLSU)a,
cry = (a¢h5L — c0L$LCL)xh
dwry = (bghShL — d0,ClL)x
- . * ¥ {:': Qf"'r-l:;t .
Now using the unitarity of the matrix . ) (resp. the matrix
girl:‘l “"'{}]Iﬁg}l{'t
(_-.-T"F; fhr 15;(
' e ) deduce that |gf = |g;| £ 0 (vesp. |a]| = e ). Also, as
Fy A d ¥ f TF
f"‘:'t" _H;"'r}{‘;"{-’."

S, 7 0, we may infer from Lhe set of equations 2.3.835 that a.b,c.d £ 0

1

.ol wo = ¢'qo7" and w, = x5t Now. by applving Lemma 2.2.2 twice to

the two sels of cquations above (exactly as before), conclude that

(FRe(w'), Re(w)) = (—(S2+ Re(@0;0:)C2), —(5.° + Re(0L % )CLT) .

Hence the relation (2) is satisfied in this case.

('nse (2.2) uy, =0

We break this into cases depending on whether wus, vanishes or not.

('ase (2.2.1) w2 # 0

As bhefore using the unitarity of A, A’ and equation 2.3.60 we may assume
that w3, = u,, and A = /A" Using the unitarity of {7/ and the fact that
(te7 1, t1.2) = U, deduce that (= (py, -, pu—2)) 18 a uml vector and hence that
Lthere exists an index 7 such that p; £ 0. As w £ 1, the matnnx 12 s hineavly
tndependent from the identity matrix. Hence nsing equation 23,61 conclade that

39 = gz — 0. Now the unitarity ol & and the fact that (. us ) = O, tnplies



i ]

that 1he sector Y (= (1. . #o—2)) 15 a unit vector and henee that there exisi-

an dnelex 27 sneh that g £ 1).

1 hien, we hiad Tearn l‘ll'llit‘i![ﬂl.""n 23002359 that

pal, | b Sy =
pnlal, S, by = bl

plcC, +do,s) = el'p
p e, S, - di,o)y = do'p!

Also we b from the equations 2.3.70-2.3. 73 that the Following cquations hold:

TR = (et Oy -k r'w"rf"}:.."ﬁ':, }_.*Jr:,
I!.h..-l'..-“i",”-’ i (l{i'( ':i' _I_ {f._,-_,:'!f}:,,i'ﬂl:,]rf‘;:,
{8f,r — {.‘_’! 1';":!:,:';:, -= f‘,..l.:rl‘rj:r.r l:._;.:"l:i'f- ':l :'J'f::
oo, — (bGLSL - dT0LSL Oy
+ - - - - { .l {.Ji *L}-r .
Apain the amtarity of the matrix : _ (respr. the miatey
- L}J'Hi H:r—ae{ ¢
( l:.r 'l'_.jl:: :""I:l . . ; . r
0, 5 0 ¢ )y nmplies that |pf = |pi #F 0 (vespe o] - ol ) Ak,
gt RSP FE Y RN

as S, £ 00 we may inler from the above set ol equations that a. b oo, d # 1.

— --1 - vy = h - r
et wo = pip, " and wf, == gl . Now, by applyving Lemma 2,22 1wice to

the Lwo scts ol equations above (exactly as helore). conclude that

[H.r'{w’}, fe{w)) = ( (,'-'-;"f b HE(H*‘;;)"]("EL . [,‘."-':.2 4 Hr[wfﬂ‘:,-:-';r:,)(*:,g) :
Hence the relation (2) is satislied in this case.
(Case (2.2.2) up, = 0

First, suppose uz2 # 0. Then, using the unitarity ol A and equation 2.3.61.

woe may assume without loss of generality that w,, = ), , and AfY = D'A As
before using the unitarity of {f and the fact that (e (. u;2) = 0, deduce that
P(={(p1. "y Pn—2)) i1s a unit vector and hence that there exists an index @ such

that p;, # 0. Also the unitarity of {/ and the fact that (uy e ) = G0 implies
that the vector X (= (., - -, r,p 2)) 18 a nnil vector and hence that there exists

an index ¢ such that e 55 0.
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Then, we lind from cqgnations 2.3.56-2.3.59 thal

Pl 4 hes, N — gy
n”!'[ ”'H:'Hlf '_' hﬂr‘.‘-}‘f .{ } - h""‘f'}:
'-"-';'{i"'( .: + ff{')f“—‘if } - {“'*".Iul”i
plefd, N, i) o)) -!'-‘r...;..'-..a..-'l'f.-":

Also we find from the cquations 2366 22369 that the tollowing cqgnations hold:

il .r{' — {H'-f .:: I f't.-{.-irfr-,::.‘-'l_:; }.!“i.
e = b, e dT S
h..r'!,.r-{ ‘-' —_— ¥ .|:: - | § ™ E.l. ‘_i }-! J"
f‘.l','- - i:ff-f,:f:p."“:r - f'q.q'.-‘ri}:.l "',.'-J'I::.fl‘ r:i ]J':r
el == (hol, ST o dl 0,0, O ) e
{ '_. L ."‘-".

Agan the unitanty of the matnx (tespr. the matrix

0,5, 0.0

Ly = F 1_:1
et U!f! it

(j:i’ l'.:‘":-f _H:J 'f".}.:;f 1;.‘

as N, F D we may infer f'rom the above sct ol equations that e b d 0.

) implies that [ph] = |[pd & O (resp. o] = e )0 Alseo.

o ! — 1

1 . . . . - . . B . IS B IR reera
and w, = L5 Now. by applving Lemma 222 twice to

et o = ;J-':-_.u; N
the two sets of equations above, conclude exactly as before that
(Fe(w’), Re(w)) = (=(S7 + Be(wt, o )7, -'I:.""-'::-"J'r + e (.J’f):.r.’h:-]f-':,lg}.

[lence the relation (2) s satishoed 1n this case also.

Next we consider the linal case when w5 is also zwero.

. . “.1,1 '“.1.2
Case 2.2.3:

I
=

ey Ua2

First note that /2,2, X and ¥ are all unit vectors. 5o, there exist indices ¢,

such thatl p; # 0 # q,. We see from equations 2.3.56-2.3.5%9 and 2.3.62-2.3.65 that

pilaCi + 66,5,) = «'p
j),'{f"ff:’,.'_:;; = flﬂ,‘{',ffl;,'{:;} == !’}p:
P (0O A doS)) = 'pl

p el S — d;h, (7)) — 'l (2.73.36)



£:3

ancd
i, (a7 4 ho, N = H:{;_I:;
g, lal, S, — b0 e, (7)) . f,r’r;:
e, (el ey ,"-r'_l,] = ;.fw,frf_:
i, (el 6,0 07, = :ff._u‘rr‘.r_:
(2.3.57)
Arguing exactly as in the proof of Case (1.2) {of this proposition). we lind
that [p!] = |pe] and gt ] — g, |- Fucthers the tact that 5,05, # 0 implies (as helore)
that a.b.e.d # 0. Setting wo — ppt 7 g, 7 gl we see that equations 2086 and
2.3.57 imply the lollowing identities:
f!,{n..d..-"uf r; — ‘-] } {:.1'{...4..‘“4:',}1._“;“: L ."'"r_j‘j == ()
clwol, S - 0,5,) - wpt, o0 - 0,0,07,) = 0
f'(u.d..-'u-.dfl‘:- ‘e ' f’ '_f] - I’.IF(-...J...:.;}LA.-"’{':J,.""I, -— r_'JJ,Hr_}} = ':}

elawow’ 0,8« 0,5,) = dlwod 0,0,0° ~ 0,0,,) = 0

T'he consistency of the above eqguations denands that

(wol — C ) wolidiC —0,6,07,) + (w50 — o, 5 W woli S~ 0,5,) = 0
(wow O — Ci M waw’00,C — 0,0,0,) + (w0, 5, — 0,5, N wo'0,5; - 8,5,) = 0

The fact that ' #£ &1 enables us to derive the following conscequence of the

two equations above:

(i0; + 0;¢,)C5C; + (0.0, + 8;9i)5.5;
D (1 + ')

wly =—

Substituting this value for wp in equation 2.3.833, we gt

2
w4+ 2w’ 1 = 0.

where, of course, rm;; is as in the statement of relation (3) in the proposition. It

follows that Fe{w') = —rmy ;.

As X,Y # 0,in asimilar way Lo the previous cases, it follows (from cquations
2.3.66-2.3.73) that there exist indices ¢, j* such that |r.| = |&}] # 0 # [ul| = |y
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ane
are o= {a'C F SOLS,
fra e = (OCT + 0,500,
e o= {a'LSL - OGO
of.r = {e’;:,f_';r':;.“‘l':r : r.l"ff,-’:;f.‘:-‘:,f : }.f':'r (2.5 =0
ancl
rif = (et C : + f'jﬂ:,.""';: ]:‘!jf
hocif = (H'¢ : -+ :f’ﬂ;.ﬁ'i. ]_Jjjr
CH = {H’mj.,‘?{_‘;, — r~".|"j:r.,.:_::r:,[' '.:, }_l’jj;,
deciy = [h":’,};,.“ﬁ'} fjl'rrﬂ'_:,e:::';,f '_:,}_r;_‘;. (2.:3.90)

Again. setting o« = w0t gy, tyl we lind the [ollowing consequence of

the abrove sets ol equations:

r r e F it r r ! e ! “a f
l'-l" {hl:..:.]f .I:' - {- J;.r } + ‘' {-HL:U{’,!! -'._-""jl - {)Ji -H-J;.r l} = []
! I|-Il I if T o f ‘.Ir 1_? r £ g I r rf — . a
if {-,,;_..U:':}:-,."'Jr, — ll’,-".j'r.r."_ll;i;l —- f {W[}r.j:';ﬂ,j‘:i{ v f)J‘.ﬂf:-'.r.r( Ji:' — {] {.L:'.;.'."}I :l
ancl
I ! if F £ g r s £ i
{’} (i,.-..-"'ﬂ-i.r_.:'( P ( Jr } + l'.-l!iI {"'L:l:_l"“'“‘:,l"' :‘1‘:, -— ﬂ,f;rl-‘.}:' } f—— []
hf{‘-h‘:;'i-'-:{.:‘}f.f}jlfx - (.'--;'J.J :;‘r‘.'.r } _ fff‘l[\.ﬁ;j’;w‘ﬂi; Ej'!.l'( ';: - ﬂr: f.'-:"!_.r( rir ] T {.] {E-}[ "'_-J]
- . ) r R . s ey r R, 2 . Ry

The consistency of these two sets of equations himplies that

N +f F St  f Ll ¢ # o
{'-"-"[j("t! - {-'jl]{‘.ﬁrtiﬂlfﬁbﬂ'f{'r'; e ﬂjf{ﬁjf(_;'j—l_
1-"‘ . -  F " f o f r Lt ! iy -
(Lll.ruf;-:"t';-‘.}!'.r - qﬁj;.tﬁ_j;:](muﬂ*-;hf- — ﬂj.r-{.‘j.l ] —_— [] -

ancl

(Wil = € (ol ol — 8l Cl)

f r i = -p
(Ld'um:ji)::s:: - @3r;5_;r}(w{3L&JH::S:# - H;;;{j;r) —_ []

and we may deduce as before that fe(w) = —mi . i.e., the relation (3) is

satishied. Finally the proof of (a) is complete.
(b) If condition (0) is satisfied, we may define

7 0
0 o101

A = A =



(1)

anel
| () ()
{ = {7 - O 1 QO
b0 f

and verify that cquations 2.3.510 1o 2.3.77 arve satishod: and thas, it s indeed trone

that ({7 - )b (e oo Oy = W 0 o 07" (87 ),

I condition {1} s satished, we may deline

(} l 1) !
A== _ A= :
—w U -, )

ated
(y 1 (} 9 ()
{7 = o ) 0 [ = | O 0
> 0 =& F, o a £

an<d verify that equations 2.3.51 to 2.3.77 arce satisficd: and thas. 1t s indeed true

that ({7 AW {w, 0.6.C") = Wi lw. . )7 A7),

(¢) (1) By Ocneanu's Compactness resalt (O heoren 13,290 we know tha
AT 0 AT = (ML Dy WA, - D)

It 1= easily seen that ot X = £, (21, then WX W™ = X and so we see that
AT M AT contains a non-trivial projection, thus establishing reducibility of the
vertical sublactor.

(2) In this case, Ocneanu’s Compactness result savs that

A2 N AL = (1@ M) W (1 co My

T'he above algebra does not reduce to the scalars - 1.e., the horizental subfactor

15 reclucible - precisely when it is possible to find non-scalar matrices
. gyl aadn i dn  wod
Y o= 1%n 2 -_, T Hiin Harin e lf:}" _-"'IJ?
:.E."J.Fn :qu-n y.'jf.u. yri‘rn
- where ;. .y, € C - such that W.X = Y W.

Ilasy calculation shows that this matrix equation i1s satished if and onlv 1f

the following relations hold:
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ry = ih U B/
U2 = U = WMy, T g o wy
S = pLoN ()
rofll + 0oy = (e, - 0N
rall + do)" = () - r)ols .

(1) () e # L and 5 # 0, it Tollows at once from the =ccond and Tourth Tines
ol (77) that the equations above are satistioed il aned ondy il ey — yo — g = gy = 0.
and oy =y = oy = 4y - e i and only 1t XN = %Y == ¢f,, lor some ¢ € ¢, Henee

the horizontal subfactor is irreducible in this case

(F) Buppose 05 and @85 are not scalar mtltiples of one another. ‘Then, in
particular. 5 # 0, and we mayv also deduce from the third line of (") that

=y = o simee S # 0L either of the last two lines then forces o« = oy,

(n) IS = 0,11 is readily secen that a non - scalar sohition 1o 1he above sy stem
of cquations is provided by
| I ) I |

0 otherwise

We end this section with the following Proposition. which asserts the oxis-
tence of a continous (37 — 6)-parameter family of pairwise incguevalent connec-
tions in £2(2,n). It also asserts that the number (3 — 6) is sha rpr. YWhat we mean
by the sharpeness of the number (3n - 6) is that there does not exist a subset
B C I3(2,n) with the following two properties: (i) no two distinet clements of 3
are equivalent (as connections); and (ii) B is homeomorphic to an open subset of

Fuclidean space of dimension (3n - 5).

PROPOSITION 2.3.2 Therc exist non-empty open sets 3 T, @ C T2 &, C
T, I' (0, 1)* 2 such that tf (w, 0,6, C), (&, 0, ¢°C")Y € A xOxd <1 where
S = {1} xPg and (w,P,p,C) # (&, &, C7Y then Wiw. 8, ¢, ) iv not cquivalent
to Wi(w', ¢, @', C"). Thus, there erist a (3n — 6) parameter family of pairwise

enequivalent conncetions and that is the best possible nwmber.



£

[Pavthie r, we may assome thal 1 @€ S U: fiener adl these comnmections have the
property tal the associaled vevtical subfactor s reducible and has indor 0 and

Hee fiavizontal sabfactor is ivveducible and has fnder |

Proof: I'x U = vy < au o) i and define £y = {c € Y ey s o ey

Fix m /2 < yy <y < 37/ such that O < 4, — gy < 4. and let Oy - e v
Uiy =0 <<y}

Ihe defimtions have the following (easily verilied ) conseqguences.,

Suppose o, € Oy and L7 & Oy are arbiteary, 1 hen.,

o (¢ £
o Re(w)+ Fe(() #£ O
o [fefw) + Fo('C) # O

o fclw) - Re(CCY # 0.

Define f |01 x T x'T — # by f(C.C.w) = fe(w) + (1 —C2) + 2RO,
Then O & f({1} x40 x2). The compactness of ({1} % Og x§0,) and continuity ol
S mmply the existence of an ¢ > O such that forall O € (I - ¢, 1).w € . € € ©y.
we have Re(w) 4+ (1 —C*)+ 1) # 0. Ina sinilar way, by considering suitable
continuons functions, we can sce that if ¢ is chosen sufliciently small. then the

following relations ave also valid:

Suppose w € {2y, and 0,6,0°. ¢' € T arc such that 8¢, ¢ € Of. and suppuose

(', "€ (1 —e,1). Then we simultaneously have:

Re(w) + (1 — ") + CPRe(0'04) # 0 .
arnd
Re(w)+m #£ 0,

where m = 1 — (1 + Re(0pd @ ))C2"? — (1 + Re(05 0 3))S257 — 2 Re(00) +
Re{dd" )OS ST,



T h

Let © denote the interior of €, and 1y« (1 - . 1) Let Q7 01 -
Y 21 be a collection of pairwise disjomt upen snubsets ol Gyl Deline
| Vliag{Cho o O, L) O e gWet.and O - Ldvagic. - Cou) s & SNATRY

Deline @ = G @, = {1} and for | < 7 < # - 2. choose non emply open
siuhsets @, @, L osuch that G.db, o0 Q) Let @ = {dvag(f.--- 8, )« M,
. @V} and @ = {dragloy.- - o,2)€ M, ;10 € &V

Suppose now that Hi{w. #.0.0") s equmivalent to W 0. o (") where

(w0 e, Oy (0. 7)) O b o 1)

Fivst notice that i ¢, ¢ ¢ @ and if o € 5,5 ave such that ( AJ{ 72 01(C) == .

then necessanly ¢ = ¢ and o 15 the identity permuatation.

Our cholce of (¢ and consequently o) 17 ensures that neither of the relations
(2) or (3) of Proposition 2.3.1 (a) can occur. Supposc the relation (1) were Lo
hold: thns wonld 1miply that (in the notation of the proposition) (A2, D0 =
<07 particular, looking at any one diagonal entry of this matrix equation.
woe wauld be able to produce elements L ¢ © O snelh that w - ¢ C,. which we

have already observed 1o be impossible. Thus the relation (1) can also not hold.

Thus. by Proposition 2.3.1 (a). the relation (0) must necessarily hold. Then

Lthe permatation @ (whose existence is the content of () mmst <atislyv the condi-

tion (Ad( £, ))(0@) = (0¢7), which can only happen when o is the identity perinm
lation (by the discussion in the paragraph preceding the last one). [lence o = (&
- where ¢ s as in the statement of Proposition 2.3.1 (a) (U): since o) = o] = 1,
we see that necessarily ¢ = 15 but relation (0), when o = id and ¢ = 1, then just

says that (w. 8.6, 07) = (W0, &, 7).
Now we will prove that the number (3n — 6) is sharp.

For this, let £ :'I' x T" 2 % T"" 2 x [0, 1]"~% — B(2,1) denote the (obviously
continuous) mapping given by £{w,0,¢,C) = W{w, 0,6, ). Suppose now that
there exists a subset B with the following two properties: (1} no two distinct
clements of B are equivalent (as connections); and (ii) B is homoemorphic to an
open subset of Euclidean space of dimension (3 -~ 5). Then F7'(B) is a subsct
of T"77 x {6, 1]*7? which is homeomorphic to an open subset of '£47 7% x [G., {]°72,

and is conscquently itself open - see, for instance [Spal]. Th. 4.8.16.
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So it sullices 1o show that any open subset ol L o (00 1) < contans 1wo
distinet points whose nnages under 17 ave equivalent. ax connections, [t clearly
snifices to establish thix assertion when the open subset is a product € € b > |

with open lactors,

So. suppose QO 1. .9 T U o (001 are open sahsetss et

o ¢ ®. 0 € O be arbitrary, As @ is is assumed 10 he open. tor all ¢ = 0 there

exists a o € @ such that. ¢, £ o and Arglo;of) < . where op and of ave
(he (1.1) th entry of o and &" respectively. Let ¢ = opo]. Now deline 00 = 0,
for + = L.2.....on =2 and & = o lovr | = 2.3.....0n - 2, Now choose ¢ - as

O and o are open - so that 07 € @ and ¢ € & Now at is casily seen that the
pair (w. 8. 0. ) and (w0, ¢, (") satishies the relation (0) in Proposition 2.3, 1.
and henee - using () of the same proposition - we conclude that Ww. 0. 0.C7) s

cquivalent to Wilw. 87.¢7, (7). Finally. the proof is complete, B

2.4 The Principal Graph of the Horizontal sub-

factor

In |P] it is shown that for finite-depth sublactors ol index L. the principal graph
has to be one of the extended Dynkin diagramns. AWe will show that all those

diagrams can be obtained from vetex models coming from £3(2.1) [or some .

THEOREM 2.4.1 (Popa) Let N C M be an inclusion of Tl factors. with finite
depth and [M : N = 4. Then the principal graph for the inclusion N C A s one
of the following diagrams: ALY, DAY IS H;”.. f'_f;_i”-

U3

Suppose H is a finite subgroup of SQO(3). Let ¢ : SU{(2) — S0O(3) be the
2.fold covering map (i.e., surjective homomorphism such that kerd = {+f, =1}
lot 7, be the (unique, up to isomorphism) irreducible representation of SU(2) of
dimension nn + 1. Let ¢ = ¢ ' (H), and let 7 = &y
be casily seen to be true.

e;. The following lemima can

LEMMA 2.4.2 Lel p &€ (. Then



el (p. ) € ('{(ﬁ;. Y fand oty if 70 1) = D ifand oy f 5 Tp0 0

E

for somc oy € f.
fee) (o 1) &€ ('({:f'. WY i and ondy of (1) #F L f and only if 7 docs nol
factor through 11

Provosiriox 2.4.3 for ol G € [ A1 DU !,-,:'{:H‘ f',‘é[-”, .-‘r'.':;”} Hrere caists an 1 €
IN and 1Y € B(2,n) such that the principal graph of the horizontal subfactor goeon

by the verter model corresponding 1o \V s G

Proof: 1t s enough to show that there exists (0 O SE(2) with the prop-
eriv that (((GL.7) = G. Note that 7 s self-contragrechent and laithinl, Using
Che Temma and some combinatorial arguments one can sce. without too muach

difliculty, that if we let H be the group Z,. D, A 5 or A0 then the corre

sponding Cayley graph ('{((/.7) turns oul to be the extended Coxeter graph

.-'I..Elri,], f.)fil_:.z_ f';;_[a”- BV or fi‘é” respectively, L]



Appendix A

Appendix

lHere we provide an elementary and direct prool of two known results in the it-
crature [due 1o hosaki-Yamagarm and Bisch. respectively) using the techniqgues
ol bimodules and elementary matrix manipulations. In the [irst section we vecall
certain basic tacts about £/ factors and their bimoduales, and =<ct up the basic
machmery. Then i the second section the principal and daal graphs for the
mmclusion ot £, factors N = 2 =aff < f =>a¢; = M. where ()0 1= a discrete
group acting as outer automorphisims of a £f) factor 2. and 1} s a suibgroup of
({ such that [(/: /] = x are computed. Finally in the thivd section i1 is proved
that it N € M C 7 is an inclusion of £/, factors such that N 7 has finite
depth, then ¥ € M and MW C P have finite depth.

A.1 Preliminaries

In this section we recall various elementary facts about [/, factors and their
bimodules. These facts can be found in [GHJ], [JS], [PP] and [S]. We assume

throughout that the symbols V and M denote Il factors.

A.1.1 A bifinite N — M bimodule is a Hilbert space H equipped with unital
normal *-homomorphisms = and #°7 of N and M®? respectivelv into L(H) such
that #(NV) € #P(M°P) and both #m(NV) and x°P(M°?) arc finite von Neumann

algebras, where W denotes the opposite algebra of Af. The Hilbert space H,



thought ol as an N - M Litnodule, s denoted by Hoage

A.1.2 Let M, .. 00 denote the set of matrices whose cntries corte oy 4 For
a Nilbert space H. consider M, (H) as a Hilbert space with V¢ V7= 521 C, 1.
We denote M, L0 by Mo N s oa Iy Tactor, then L40N) = an N AY
Limmodule. and more gencrally. Tor any positive itegoers rn and ri ML TEESEN T

has a natural structure of an M, (N — M, (V) bHitnocdnle,

Lot A denote either N or L2(N). For vrea)l numbers v define

M.y = {oee M) o prg =0 L
where o is any integer greater than both rand s, and p. g are projections in M i)
such that Tr{p) = r and Tr{g) = . where T denotes the nen-novrmahbiscd 1race
defined by Tr{a) = 32, f a,,. As belore. when 7 = 5 we abbreviate M (V) o
M)

A1.3 I a: M —» M(N)is a unital normal “-homomorphism such that
[MAAN) - a(M)] < oo, then siuch an a is called a cofinite morphism ol 4.
et M = A (120N )): then H is a natural v - MAN) bimodule. Aldso H s an
N A bimodnle (where the right action of M s given by C.o = Cala)) whiceh

is bifinite as [Af (V) @ a{M)] = oo, Write 'H,, for M A0L2N))Y viewed as an

N o= A bimodole via e and write o, = 1.

A.1.4 Let ~ Las{Hs) denote the space of bounded operators on .. which are
right M -lincar and left N-lincar. Then, 7" € « Ly (HL) Alf there exists a matrix
= Al (NYN o M) such that T'¢ = C_:f’ for all ¢ € H.,.

A.1.5 Every N — A bimodule is equivalent to a mmoduie H, given by a
cofinite morphism o as in A.1.3.

A.1.6 For N € M such that [M : N] = r < o0, any A = (A})ier - where
A; € MY 1 € [ and the cardinality of 7 1s no smaller than - i1s called a (right) basis
for M/N, If Ex(AX™) = @i is a projection in MAN) with T'r(QA) = [M : V]
(We always regard A as a column vector, and we have used the notation Fax(AAT)

for the I x I matrix with (¢, 7)-th entry f£x(A;A%).)



i
The taple s called an ONB Tor M/N G010 satisfios the [ollowing conditions:
(i) £ — {12, -+ 1} where s - (M 0 N <70 s
(n} v (AMATY = 00l £ g

(i) Foa{AAT) = Llor ¢ = 1.,2.:

Ao and f-,'_x-{.\,,,rl,l;_,rl] 15 & projection of
trace cqual 1o (MW 0 N] - n).

ACLT Mis oa (vight) baxis for AF/N 0 A7e A

= | where o 15 the projection
which implements the conditional expectation of M oonto N (Here woe write A7 A

lor the matrix product 37 o, ATed,. Sinnlarly. in the sequel we shall juxtapose

syvinbols to mean matrix products. Also we shall only vse (right) bases here and
we shall heneeforth stinply call them bases. )

ALSB I N C AL [M 0 V] = r o el and 0 A is a basis Tor M/AN, then
O : M — M (N defined by 8y = Fao(MndT) Tor all e € M. s a cofinite
morphisim. (Hereo D4 (A A7) denotes the matrix obtained by applving the inap
Iy entrywise to the inatrix A A7) Aldso L4500V )y s equavalent 1o My (V).

( The cohmte morphisi ¢ was introduced by Oeneann. See [O])

A.1.9 Let H,, Hi be N — M, AT - F bilinite bimodules given by cofinite mor
phisms ot M > My, (N), 717 — M, (M), respectively. Define o ; M (M) -

Mg, (V) i the obvious way., Then the NV — P2 bimodule M a4, . given by the
colinite morphism a® o 3 : P — My AN) s amodel Tor o (H ) ar Coar ar(FHos e

A.1.10 Let H be an NV -- M bimodule: (a maodel of ) the contragredient of H s
an M — N bimodule H for which there exists an anti-unitary operator .J : H — H
satisfying J(a.(.b) = d".J(().a" forallaec N, 6 M and ¢ € H.

A.1.11 Let H = L5 (M)ay = M (L2 NV))g be as in A.1.3 above. Then the
contragredient

ﬁ = nfﬂz[r"lif]hr = f_,"'!(ﬁ’f:l”,

wheore oy is the inclusion of &V into M. Hence

Hoeone H= M (L3N Do = v LA(M)N,



where &5 is the restriction of ¢ to N. Also,

(H @m H) On H =M, (L3N ))or,00 =n LH{M)uy.

Iterating the same yields
NEA(M M @y m L (M = N LM )N = Ml,rnﬂ{LE(N]‘}E[P.;;

NI (MO @y NLA(M)a = LA (Mg )y = My pnaz (L2IN Y gnea .
In the above, 80" : M — M. (N) is defined by

{n)
Ot iain) sl izeiny = Pivgr © igip © 0o, 080, 5
A.1.12 Clearly,
NLm(LE(Mn)) = NrﬁJMﬂM'JM" = NN Ms,.
Similarly,
NLN(LE(MT;)] — *MIHJMHN,I'IM" - NfﬁM2ﬂ+1

. Tt follows from (A.1..11) and (A.1.4) that
N’ N Mar 2 NEar(My onsr (L2(N) ) gine1y) = Mons (N) N U (MY

N' O Mangr = NLN(Ml,r“+1{L2(N)}gw+”} = Mo (N) O OUTD(N)

Similarly, we get

MoaA(M)YN@™(ALY

1

M’ N M,
(A.1.1)
M' N Moni1 = Ma(M)YNOTHNY.

A.2 The subfactor corresponding to a subgroup

We assume throughout this section that N = P >dH € P >G = M, where
G is a discrete group acting as outer automorphisms of a IJ, factor P denoted
by «, and H is a subgroup of G with [G : H] < co. Let G (resp., H) denote the
principal (resp., dual) graph for the subfactor ¥V € M. The bipartite graphs G
and H admit the following descriptions: (in the sequel, we use the notation | ] to

denote disjoint unions.)



ProvosrrioNn A 201 fod H\frf.-’}’ = W Myl be the dicomposition of €0 inteo
I -double coscds with ¢' = U the identily of O Let W= (g Vg MV L 1 fing
G0 = ), = {7}, and l’j“}' = H(~ M), Tet € be ihe bi- poactite graple with the

el of cocn rortices being given by G and the =t of odd colices boing given by
Gt = ” anil p e i dJoin the covter (i) = G g i iy by < oy, L o
bonds, Then G i< e conuneceted cotmpent ul in G of (feve o LY o owliere Pedie denote =

the triviel representaiion of 1.

PROPOSITION A.2.2 Lof H™ ¢ Jo), M = f1 {1} aud et H be the
bepavidte graph with HY and HYY g5 the sefx of cren apd odd reriices. ueth the
cren vorler (0.0) connected o the odd verter (po 1) by < T, - = howds. Thon
H ois the connected component of H containing (eic . O), where triv denotes th

{rivial representalion of I,

I'he results described above have heen proved by Nosaki and Yamapgan - see
[KY] - using bimodules arising from bundles. Here an clementary and more direcl
prool ol the same is presented using the thicory of tensor prodncts of himodiles

(via composition of morphisms).

et ¢ — A, denote the unitary representation of ¢ in Moand o, bhe the

corresponding outer autormorphism on /2.

Let [07: H] =n and let Hg, i:2 1.2 1 be the distinet rnght cosets of £
in O If we set A = [-J'*_u. iz & My n (M), then £a (A, 5 Sr ) == I;_.r{yﬂf;_, YA, =1 =
and so, Fx(AA") = [ and hence A forms an ONB for MIN (sec .JLL{}].

The group 7 has an action 4 on the set {Gr2g2.- - . ¢} thus: for ¢ C €. 3,
sends g, to the coset representative of g7 1.0,

Belgi) = g; if there exists &' € H# such that g; = R'gig™ ", (A.2.1)

Note that for 2 € H, 8i(g;) = g; only if g;, g; lic in the same double coset of .

Note that NN A C P M = €.

PROPOSITION A.2.3 N'NAf, = b?_ O, where d is the number of douwble coseis
of {f in €.



i £

Proof: By 1.0 NN AL = MLUNY O 0 NY D whene 00 M 0 VL TN 1=
viven by 00m) — (A AN Observe that for o« 2 o U 20 v p 70 n0 we have
ﬂf.l,._rr‘,[r] = f:;\.'{}k_,.h}";k.;r] == f&‘__\f{{‘fm[f'].:"km:j T BT Bt Jrir_l"_“lf""-.___.. [ I N {_\r”.__.h 1y - AT =

AN then clearly

NediNY = X ed )y oo ho d}.
NOw.
X ed()Y & (X0, = (0r)N),,, Y1 < <<u re }
& N, 5,0,r) = o, ()N, Y =S e v f’
An )iy..]‘x'fﬂr-!fj Amr — '*'J";-,-.l-j":.:n-_u, J"n, R I I o T I I
= .-’\_;l Nogvow, Ay, € PP M = OV Sl
o .,’f”._ﬂJ == {_"_'”hﬂ-,},lm!”__, for =ome 7, ., & O, Y or.g
but X, 4, € N implies (', = &,,C, Torall 1 < < nowhere O, € O
“Fhus,
N e M (NYOoP)Y e X, ., = &6,0, Vig . lorsome O, ¢ O (A2.2)
Now 8, ., (A,) = fl‘.-v(‘)‘,f:r,.‘:,r;:‘} = lulyihy, I.};&"mhar;' - 'h.*h--f;.l:n]'J‘yrh.f:,”l' o, it

< . theo

NO(AL) = 8(An) X <= 'Y.":I':-n':jh{_!lj}Aj%h{g_,;ihﬂl;' = ’.]"H.hh"fh-|l:.u'.J!“'Y{-Jh.-niﬂ.}}"'.:jj Vi

It [ollows that if X satisfies the cquivalent conditions ol A2.20 a6 further,
N ¢ {O(A) - he T}, and if g; = Bu(g;) for some b € 1] (so that g; = - (gi)),
then O, ‘}"y!hyj-

This N M M, = 3L O, where d is the number of double cosets of 77 in (/0 11

i=1

"1 + T —_— r = i . . - ' e . . . - N
v o= Oy, Jkg‘_,wj_:, so (g, = (', if g, g; lic in the same double coset.

The group G has an action 87 on the p-fold Cartesian power {g1,¢2. - gn}”
as follows:

ﬁ;?((giljgizll"'?gip)) — [H:',:H:;a-.ff.;,) [A+E:iJ
if and only il

-1 ]
Hgigu - gy, = HgiGip g™ VI =Zs=p.

( This is easily scen to define an action of (/) Il ¢'. g%, ---,g" arc distinet

double coset representatives, with ¢! being the identity and £, = H M (¢ )~ " g



e

- . . . . v 4o .

for v = 1.2 e et 77 ddenole the poernmtation representation of €7 on O (oiven
- 1 . - - !

by the action 37), and let i denote the perinmntation representation ol £, on

{given by the action 4, restricted £,

We shall ind it convenient 1o use the lollovwing notation i the sequel: g ¢ IN
ane 1L = (4l Jo2 b then we shall write o = (oo - g, ) and

il g g, - g

PHOPOSITION A 2.4 (7)) Ny VL, = 20Ny pro= 2.

(i) N"OVMy,_y = =Ny v o= oo,

Proof: (1) From A 1.12. we have
N VM0 = M (N oWy,
where 0200 A — ML) s given by
(py ., T A A
ﬂy;+yj[’”] == Lh‘f}"y;; N {J":n_, £ {J‘ﬁ.t, ”""’Hj;] ) J'*”’;;' ]J‘y:’] ).
b giogy € {91092, ga )2

F'or € 7, note that

(e (r) = fﬂ‘p,;{..lﬂ“ E'le""f[}‘.f;,. e '\-{’1"*; r ."‘ _') Y ]'JL-‘J_I}

#3495
. *‘E:N{Aﬂ., H.V(:\y,.‘, . 5';:['} P (A e 1 J' ”--l :J,lyj-ll )

£2

— 6ijﬂ'!§i!(T‘).

As before, observe thadt, 0P Ny = MYy OO N s b 1}, and compute

as follows:
Forafixedre P, i,j € {1,2,--+,n}?. notice that
(*YH(pJ(?'J)Ei g5 (ﬁ{p}(r‘ﬂ)*r,‘gi.yj e -Ygim_grjﬂ.’gj.'(r} — €Y '(?'} Xgl 45
and hence,

X € M (N)NOPHNY o )"l.'!ﬂi!}"l‘xd!h.ﬂ.r}"!ﬂj! € PPM=0CvVij;

{(Notice however that, in order for the matrix ¥ to have entries from &V, the

last condition means that X gy g; = D unless (1gi")(lg5") "1 € H.)



Thuas we find thar X < NI ancd ontsy il there exist scalars (‘”i""i e A
such that

\ { CoiagAeun 0 (el e
Srupery T . .

(). O he e pse

Terporarily lix p e IN: we write I.J Tor elements of 1.2, --

for the elements of {1.2,... Aol detined by i

oot and 1- 0§

= (faadzafac o l0,) ote

.
Ciiven an element

L (RS ; 1
(((ﬂi_._r;j__ ,.c,r;,-,}}_r_,ri '-"i'j_E{-‘-"J-."J'_’-"'~.‘finJ""_'t.,',.n'.l,E{_'J'h.'_.l'.‘-' e b E ':‘;‘.zk:lf”p-l{ﬂ _}

clefine (*-"i‘”i as in equation A2 by
‘ O DR T B
¢ '{ﬂi_-.’}i__ ar- gt i € Hyy
Bt B s AYEPHRIES .
! 0 F gD gt ¢ M
Notice now (hat if (¢i_ - gi_-gx) is arbitraryv. then there s a unique pair Gi- 13
such that gl tei! € Il sinee the [irst co-ordinates are determined as follows:
gi, 15 the coset represent ative of Hew (g g, - 4, 37) So there is a one to-one
correspondence between matrices [l’f"ﬂihﬂi} as described in A2 | aned sy MW (O
via AL205.

Nefine

Cur s o Ay paen 1. if Taptl 1g0) H o1,
% __{ YE_ 2§ gk 3005t th-gis. gy € gy, (A.2.6)

B B Y if Cnt) ()" o 4
where ¢; = (Five Giss Gy i) Gi. = (s fynn - - 5. 1. I muast be elear from the
preceding that the assignment N ([f.'f:_.i 93 ax ) defined by equation A.2.6.
defines a *-algebra 1Isororphism Af, - (V) N oY Py == o A e (€7,

- Lgp=1f

Now notice that, if A € H, i.j€ {1,2,---.2}”, then
05&??93('}"“}
= E’IN(‘J‘;?., Ejvfﬂgiz e ILZV{AH.PI"-IH}‘-H—I ) SRl ,]l.g—-: -]}"g-lj
Ip 2 J1
= L (g, "'?-HJ?Jlu{yip_tﬂfpfl[ﬂ,;,,_lﬂ,ap}“') o e (gD Aa(lg!) ! }A[!ﬂi-’h‘d-’.ﬁj!l -1
=6 VA

a3}, NER (930D MHay) T -

It foliows easily that X Mur(N)N{OPH A 1 b e i} aIr

*‘ﬁ':'r::[.q;}.ﬁﬁmpf"u:ﬁ::mjnrhtrf.ajm-1 = Auspiopnatiopn =t Xop s (A.2.7)



vhe H, i,j€ {1,2,---,n}".

Notice now that if both '(¢;)! and !(g;)! lie in the same right coset H g, then

both ('A% (gi))! and (13} (g;))! he1n the same right-coset H Bn(gr). Hence if X and
((Cgy 93 o)) are related as 1n equation A.2.6, then X satisfics equation A.2.7 iff
C"ﬁh"lﬁr;_}.ﬁﬁ_]lﬂj_‘.rﬂh{gk] Cloy_.a5_ 9 LRSI (A.2.8)
Thus, X € M,»(N)NPHN) iff X is given by equation A.2.6, where the scalars
Clys 95_ 9 satisly equation A.2.8; this says that for each &,1 € {1,2,--+,n}, such
that HgeJ[I = HgH, the matrix ((C..z.)) completely determines the matrix

((C..4)) by equation A.2.8. Assertion (i) of the Proposition now follows easily.

(ii) Begin by observing that
M (N)D P M) = M p(N)N H{P}(N)-* s {H{P}(lm} 1 <1< n)Y;

and that for i,j € {1,2,---,n}?, [ € {1,2,---,n},

04 0; (Xar)

En(Ag, En(Agy, 0 ENQgy Aadgmt) - Agzi)Aon)

11 9i,9195, VN H(Gipo: 9i,91 (G551 i )Y - 1 ((giDge(lg) T A g natiegn =

—_—

= 84,08, (s A5 o5 gnl Mgz~ -

Hence if X € M.r(N), an easy computation shows that X commutes with 8(P)(A,,)

ifF
(A.2.9)

8%, (930, P59 M LNttt T A5 (g e e~ Xojog ¥ 12

As before, we find that X € M, »(N) NP M) iff X is given by equation A.2.6,

where the scalars ((Cyg, _gj“.gk]] satisfy equation A.2.8 as well as:

CoE=19; )85 (95_):Pa(9x) Co g5 on ¥ 1K, 150 (A.2.10)
O

Assertion (i1) follows quite easily from this.

Proof of Proposition A.2.1: It is seen from the proof of Proposition A.2.4
that the isomorphisms established in that proposition are such that the following

composite maps

NrﬁMgP_g = ﬂ'i_l(H)r _{; an—ui{c)



~1)
sl
are given by
andl

N oo e )

respectively, wherve, of course. X and ({7 ) are related as in eqnation A2.6.

Since 77" = 78740 it follows that the inclusion N 0 Vo, 0 € N1 Moy,
15 desertbed by the matnix W = (M, -0 with rows indexed by the sed
{p € 1 . <« " ' = 0 0} and columns indexed by the  set
v 1) o € il,. < ‘.TT:-U_'].!{’T =# 0, = L2 d}and 1, 4 =< Plye - T =

As the principal graph s alwayvs connected. 11 [ollows [rom the above that the
Brattel diagram for the inclusion N0, . © NNV, s the connected com-
ponent ol (Lodrre ), where tree s the trivial representation. in the bipartite graph

with odd vertices indexed by ff 0 even vernices by L_]'E‘r_” ff,. an<d with adjacency

relations as deseribed above: and the prool of the Proposition s complele.

£

Proof of Proposition A.2.2: The starting point for the computation is

the equations A 1.1, and the fact that

MM =2 NOM C oM o=

.ot X = ('Yﬂi'ﬂj} € M, »(M); then for a hxed r € 2, 1.3 € {1,2.---, 1},

notice that
(}(E}{F}](T'])yi-g‘j — (E)IP}[TJ*Y)gi.gj A }:yi,gjﬁ!yj!(-‘"] = ﬁ!giT(r:}*:{y;.gjé

and hence,
X c M -(M)YN ﬂ[P}(P)" = A“Hi!}-l .Yyh_qj}ugjg c PPNM=0CV1,];

Thus we find that X & M,.(M) N 6P (L)Y if and only if there exist scalars
C'*ﬂi-ﬂj € €' such that
Xﬂjﬁj = A (A2.11)

9785 Mlg gy !



=y
Argning as before, we see that, for X ax abiovel i ix Tarther trie that
N M NYO oW N € HEYOOI

LA T (AN20102)

¢ '-'*f:ll:.'i}ﬂ*f,'{:f_i} - r.=11~:fj
an<d consequently
M v My, T =Y (L2013
Fowations AL L cleanly inngly that

M O Ay, = (MO My, )OI A s S k< )

If Y is egiven by equation A2 0L, ann easy computation shows  that
E \ | b |
Noe (M O Maypy M {0WH A ) L Sk < )" il and only il the scalars . 11

adedition to 20120 satisty
(l‘j;'{”i}'il!;{.”j] — {'ui,_l'jj "g) I-'Q-J-‘ff F (flq. (_-'i'i.-_'.}. ].']:j
aned we [ind, consequently. that

M AL, = PG (A2.15)

The argument for the rest of the proofl of Proposition A.2.2 s exactly hike

the proof of Proposition A2 1. -

A.3 Intermediate subfactors

I this section it is proved that it & € M C 7 an uclusion of {4 [actors such
that & € P has finite depth, then VN € M and M C I? have linite depth. This
result, which was proved by Bisch - see [B] - follows easily from another fact which

we shall prove - see Proposition A.3.2.
We begin by stating an elementary lemma which is proved in[JS].
LEMMA A.3.1 Lel N C M C P be an inclusion of [y factors. If A = {A, }ier &5

a basis for M/N, and if 1 = {1;},es ts a basis for P/M, then An — { Ay }icijey
is a basis for PN,
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ProroOsITION A 3.2 Let N C M C P be inclusion of II, factors such that
[P : N] < oco. Let NC M C M, C M, C --- be the tower obtained by basic
construction for N T M and N C P C P, C P, € --- be the tower oblained

by basic consiruction for N C FP. Then for each n > 1, there erxist a projection
Pn € N MV 5,y such that p,, (N 0V Py 1 o, =N M Msy_ .

Proof: Let {A;}ie; be a basis for M/N and {5;};es be an ONB for P/M such
that 77; = 1. (Then in particular, Fas(n;) = 0 for all 7 # 1). Then, by Lemma
A.3.1, {Ain,}ierjes forms a basis for P/N. Hence, by (1.5). we have co-finite

morphisms

H:P — M::{J(N}, ?,J}:M — MI(N}
defined by

Oy (P) = En(Xinpns ALY, dio(m) = Ex(AmAl)
respectively.

As before we consider (7} . P M nn (V) and H M — Mpn(N)
defined by

(O (PNaanigy = EvQamn En(Agny, - En(Nin . P05 Ad Y g AG Y AL )
for pe P,(1,3),(i',j) € (I x J)*, and
()i = En(Ai En(A - En(AiamAL ) - - )AL)AS)
for m e M,i,i € I™.
By (A.1.12), we have
N N Py =2 8N (NY Q0™ (1) (M rx s (N))O) (1) (A.3.16)
and

N' 0O Maonr = pUN(NY N (1) (M (V)™ (1). (A.3.17)

In the sequel, we shall consistently identify I™ x J™ with (J x J)*; we shall
also find it convenient to use the notation 1 = (1,1,--:1). Thus, our assumption

about n; implies that

(E{n}(m))[i,l},{i’,l} == (’:‘f’(“}(m))i,i' Vze M, Vi,]. (A.3.18)



Yebine gi," = My Lt A by

(oo Jagnardn = Qi ®Ganaay (A5.18)

WWe Liest cBanno tha
pot € BUNNY OV Nyl e (V) (A2
As g0 s diagonal we have to vertly that
(Va6 )y = (U@ 5 P Var ot i) L2

lovr afl & V(1. 3). (1)) € (F = 0y, W neither 3 nor §° s equal 1o B then botl
sirles of equation A2 vanish: while if both J ancd )7 are equal ta 1. then ot
siles of the cquation are scen to he cqual 1o ”‘H“]['*'}}{i.ll.li’.ll' In ca~c exactly ane
of J and 37 s equal to 1. the validity of equation A 32T s a consequence of 1the

Following claim.

Claim: IlI'.e ¢ N.GJ).(VJ) & (f < )y and if exactiy one of J aml ) s
el to 1. 1then
(H[“}(*"}}(Li}-{i’d’l = [}

We prove the claim in case J £ 1. the other case being similar. Let v be
the smallest co-ordinate such that 32 #Z 1 it follows tha there exists an elenent

20 NV such Lhat

(O nargy = Qo Exn(Ag - Ex(N, 205 A0 ) - )y AL i AL
— LA BN (A - NN A G AL g AL s A )
= 0

and the claim 1s proved.

Now consider the projection p, = p,/8U" (1), which is clearly dominated by
0')1(1). Notice that if X € 8(NY N OUI (1) Mireaym (N NV 1) then

(P XPn)agnG iy = 4G40 1N 1)1y



Bois casy to see that the map
£y ‘,':F”{ﬂ{”}{;'\']' 1 {{’HH}{I]{-‘![,‘Fh{]n{.\\.}}I{-‘IE“}[I}}}..”-“ -+ Mpa (N | NC322)

ilefisneel Pry

E’” ':.”.n A f';rr} ]],i' = “"-{i.ll.{i;.l} (1\.525}

1 an injective homomaorphismn.

We clanm now that the map o delines an isomorphiso. i.e.

POV NN Y OOV M Gy (V)OO0 )
N R A TR Y P N SR A D TR A N A (3.2

Since o) = SN (see A3 1R). it Tollows that

A (g (BN Y OO M ey (DO 1)) S C DM L (V).

Further. if X € 0420V )Y (g0 WM e pya (NDIOU1)N). 0 € NL we have, lor
allici e " 5§ e g
(3 (P Npade Ui == D7 Nk e ey

ket

= 2 Niapoe U ) yging (hy equation AL3UES)
ki

= > X1y oy O () a1 (by claim)
(kjls{Fr=.am

= [.'{TJ{"][-‘t')]'{i.uu{i’.l]'
= (0" )X )61y
) A K R TN PR TR T R INCIR S

l

(kjye(fxa)n

— 2: i'r.-"{n]{.i'}[‘._]_}l[k 1]."5;-[]:‘1]’[]:‘1} {IJ‘I- {'lﬂ.illlj
ke i

= Z 7;““”(-*")[i,k]-j\:[k.ll.[i*,l} (by cquation A.3.18)
kefn

= (" x)alp, X0 ) s

and we see that indeed, o maps g, (82U (AN Y N (B0 MMy (NP, into
(1) M (N Y)™(1)) NI (VY.

On the other hand, it is clear; (by using similar arguments), that if
Y o€ WM (NP DNH(NY ) and if we define Xgra'd) = 2Gaa.1 Vi
Lhen X € p, (0 AN)Y N ﬂ'[“](l'_}{.Jlf“,h””(.r""l."']}!'?[“}{l]}j‘f,, and o(X) = Y.



| s we Lave proved 3020, and henee - o view of A3 and A3 1T the

proot ol the proposition is complete, (J

RENMARK A 3.3 Conlinuing wilh Hie nolation of Proposdion A cef Moo

S S
(2 < Qo T - ds e doweor obtainod by busee construction for M2 1P thon for

cach v 22 1, Hiere ceist a projoction o, ¢ Por i, such Hhad
g PP vy, TP 0,
(Brason: Apply Proposition V.02 e the inclusion of T factors 12 C Q) < 1)

CoOROLLARY A 3.4 Lo N C M C P be wup snclusion of 1§y factors. {f N C [
feas finede depth then, alsa N C AN and M S8 have finde depth.

Froof: The inclusion & C W has himte depth, since il g, 1s as in Proposition
A2 then

-5 ”.IIr‘IHE] l:“"f.'r”{‘:r:( "\'1‘ M "l""ir'.hr—- | ] }.} 'H'”f}“-::‘_' ||;'rh:”"(";?{fju(':x” M ‘F}Hn—l .}P.’- }}}

| A

..h_”.”pr:fl[,,’;,”{}f[;‘\” ML, 0)))

A,

f

Srumlarty, tor A C© 20 apply Remark A 33, 0
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