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Preface

We consider some problems in the homogenization of partial differential equations.
The subject of homogenization deals with the process of obtaining the macroscopic
or effective properties of materials having heterogeneities on a scale much smaller
compared to the material dimensions. The following discussion, from the intro-
duction of Bensoussan, Lions and Papanicolaou (6], is illustrative of the theory
of homogenization. Consider a generic, well-posed boundary value problem, hav-
ing coefficients which are rapidly oscillating {periodically), depending on a small

parameter €,

Aue = finQ {0.0.1)

subject to appropriate boundary diti The of high freqy oscil-
lations is troublesome. For example, in the numerical solution of this problem a
very fine mesh has to be used, leading to costly numerical computations. Thus, the
need arises for an asymptotic expansion of the solution. One such expansion is the
two-scale asymptotic expansion,

v, = u0+eu'(z,§)+£1u2( 'g)+‘” (0.0.2)
which is modelled on two separate scales, the macroscopic scale z, and the micro-
scopic scale /¢ capturing the high frequency periodic oscillations. One, now, hopes
that the u”s in the asymptotic expansion can be obtained by solving some numeri-
cally friendly equations where these Ligh frequency oscillations are absent. Usually,

it is seen that «® satisfies a homogenized equation
A = finQ (0.0.3)
with appropriate boundary conditions. The most important aspect of the passage

from (0.0.1) to (0.0.3) is the explicit analytical construction of A and not merely

the assertion that it exists '. The construction requires, typically, the solution

"However, in problems which lack a periodic structure, it is not always possible to construct 4
explicitly. In this case, one is satisfied with showing the cxistence of a homogenized operator and

with obtaining bounds for coefficients of this operator.



of a boundary value problem within a single period cell. nsually ealled the cell
problem. The problem of computing .4 from the cell problem and also the problem of
calculating u° from {0.0.3) are, usually, numerically stable and cheap. The solution of
the cell problem is also used to obtain the second term in the asymptotic expansion of
ue. Thus, for example, if it is now shown that u,(z)—u®(z) or uc(z)—u®(z)—cu!(z, 2)
converges to zero in an appropriate sense, we will have obtained an approximation of
. by the terms in its asymptotic expansion. Also, this approximation is numerically
cheap to compute.

To sum up, problems in homogenization are of the nature of obtaining the global
behaviour of solutions of problems in partial differential equations having rapidly
oscillating coefficients. The aim is always to identify a suitable homogenized prob-
lern whose solution approximates the solution of the original problem, for small
oscillations.

The theory of homogenization has developed over the last three decades and
is used systematically in solving many problems coming from Mechanics of Solids

and Fluids, Geology, Engineering, and many other branches of Physics and Chem-

istry. The books by Lions and Papanicolaou [6], Sanchez-Palencia [35],

Bakhvalov and Panasenko [4] are classical treatises and treat a broad range of prob-
lems having a periodic structure, while that of Jikov, Kozlov and Oleinik [22] is a
recent, comprehensive monograph on problems and methods in homogenization. Dal
\laso (16] gives a detailed introduction to T convergence. The appendix of his book

ion. Oleinik, St and

is a comprehensive guide to the literature on by

Yosifian [32] treat homogenization problems in elasticity theory, Hornung(ed.) [21]

treats problems on flow and transport through porous media, and Conca, Plan-
chard and Vanninathan [15] treat spectral problems in the asymptotic analysis of
Huid-solid structures and also give an extensive bibliography on homogenization.
This thesis consists of two parts: the first, concerns the homogenization of a
class of optimal control problems; in the second, we justify the second term in the

asvmptotic expansion for a flow in a partially fissured medium.
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Homogenization of some optimal

control problems
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Chapter 1

Introduction

1.1 Introduction

“We study the homogenization of a class of optimal control problems, under several
~ituations, in this part of the thesis. To begin with, we introduce the class of optimal
sntrol problems and briefly review the existing literature on the homogenization of
<uch problems. Following this, we list the various contexts in which we study these
vroblems in the thesis and give an overview of the results obtained.
Let  be a bounded open set in R*. Let 0 < a < b, 0<c<d, N >0 be given
~mstants. We denote by A{a,b,§2) the set of all n x n matrices, 4 = (a;;), whose

-ntries are functions on {2 such that,
alé]? < Az)e.€ <blE[ ae. .

frallé = (&) € R*. Let A € M{a,b,Q) and B € M(c.d. Q) with B symmetric.
ot Ugq be a closed convex subset of L2(Q2) and let f € L2((2) be a given function.

The basic optimal control problem is the following: Find 6* € U,q such that,
(P) JE7) = min J(0), (1.1.1)
where the cost functional, J(8), is defined by

N ’
J(#) = 1/ BVu.Vudr + 7/ 6 dw, {1.1.2)
2 Ja 2
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state a — ul0) is the weak solution in 2§ (€2) of the boundary value problein,
—div(AVu) = f+6 inQ,

(1.1.3)
0 on 9.

u

Il

- an be shown (cf. Lions [28]) by direct methods in the calculus of variations that
-:.-re is a unique optimal control, 6* € U,q, minimizing J over Ung-
We will consider situations where the cocfficients of this problem or the domain

zin to vary rapidly with a parameter, £ > 0, which tends to zero. For example,

1. € M(a,b,Q) and B, € M(c,d,Q) be two sequences of matrices, where the
.5 are assumed to be symmetric. For each €, the optimal control problem whose
officients are A, and B, has a unique optimal control ;. From the assumptions
. A, and B, it can be shown that 8] is a bounded sequence in L%(Q) and so, for a
-ibsequence, 87 — 6" weakly in L?(?) for some §* € Usq. The question of interest is,
<1 8* be shown to be the optimal control of a homogenized problem, i.e. an optimal
ntrol problem of the same type, say, with coefficients A* and B* 7 If the answer is
-5, then identify the homogenized problem by an appropriate limiting procedure.
Kesavan and Vanninathan [27] consider the periodic case where the coefficients
1. and B; oscillate periodically and obtain explicit expressions for the coefficients A
.ad B* of the homogenized problem. For the gencral case, i.c. when A. € M(a,b,Q)
ad B, € M(c,d,Q), with B, symmetric, are arbitrary sequences, Kesavan and
<aint Jean Paulin [24] obtain the homogenized problem in the framework of H-
mvergence. The extension of this problem, in the casc of perforated domains and
liere the states satisfy a Neumann condition on the boundary of holes, was solved by
“\wsavan and Saint Jean Paulin [25] in the framework of Hy-convergence. Here, one
.50 needs to identify the correct space of controls U, for the homogenized problem,
e

. for each ¢ the space of admissible controls Uf, is different. being dependent on
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1.2 Thesis Summary

“hapter 2 and Chapter 3 are devoted to the study of the problems considered in
21 and [25), and [27] respectively, but from new points of view which allow us to
btain some generalizations of the existing results. Chapters 4 and 5 are devoted
- the study of the homogenization of the class of optimal control problems in two

« situations, viz. those governed by elliptic systems and Dirichlet boundary value

sroblems in perforated domains, respectively.

In Chapter 2, we first try to get to the essence of the two scemingly different
:.omogenization procedures adopted in the papers [24] and [23] for a domain without
:.oles and with holes, respectively. Essentially, we have a sequence of functionals J,
-ach having a minimizer z¢ in a set K, C L%(f2) and 27 — z* weakly in L2(2). Is

- the minimizer of a functional J over a set K C L?(§2), where J and K can be
~hosen in a natural way? The question, in this generality, forms the subject of study
f the theory of - convergence. However, for the problems in question, the special
nature of the J.'s and K,’s allows us to formulate and prove a lemma, which is in
“he spirit of [-convergence, giving an answer to this question. Then, the problems
-onsidered in [24) and [25] can be homogenized, again, in the framework of this
jemma. Subsequently, the same lemma will be used as the framework in which to
homogenize the optimal control problems considered in Chapters 3, 4 and 5.

A crucial step in the verification of the hypotheses of the lemma is the charac-
-orization of the limit of some energies associated with the state equations. This

snestion of characterization was taken up by Kesavan and Saint Jean Panlin in [24)

aid [25], as a matter of independent interest. This is solved by first introducing an

-djoint state equation, which is coupled to the state equation, and then homogeniz-

:ng the resulting system. The characterization of the limit of energies is obtainable
rom a knowledge of the homogenized state-adjoint state system of equations. We
sk the question, “can we, from a characterization of the limits of such energies,
~av what the homogenized state-adjoint system of equations is going to be 77 We

~how that this is possible and interestingly, the unigueness of the coefficient B* in
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homagenized cost follows from this. with the knowledge that i is symmetric
Ji-xt. we give another expression for the matrix B* obtained by Kesavan and Saint
“-an Paulin [25]. In fact, we show that B* is the distribution limit of M!B.M.,
s.ere the matrices M, are the corrector matrices of Murat [29] corresponding to the

uatrices A.. This has the advantage that it gives an upper bound for the matrix

. a question left open in [24]. Also, the symmetry of B* is got for free, while,
: reviously, it needed a careful proof. This new description is also simple as it does
.ot involve too many test functions.

In Chapter 3, we recover the results of Kesavan and Vanninathan [27] in the

< -riodic case, directly, using two-scale convergence. We show that the adjoint for-

nlation can be bypassed by using a corrector result, which allows us to use the first

-wo terms in the asymptotic expansion of the states instead of the states themselves
the computation of the limits of energies. This reduces the computation to one
7 taking limits of integrals of the form f, g(z, £) dx for functions, g, periodic in the
~«vond variable. This is easily done and an explicit formula for B* is obtained, which
-zrees with the formula of Kesavan and Vanninathan [27] in the non-perforated case.
=ung further, we consider the case of a domain which is periodically perforated on
---veral microscopic scales and having coeflicients which have periodic oscillations on
these scales. The homogenized problem is identified, and explicit formulas for B*
2.l A* are found using the method of multi-scale convergence introduced by Allaire
<21 Briane [2].
In Chapter 4, we study the homogenization of optimal control problems governed
«lliptic systems in perforated domains. The principal difficulty is to pass to the
:.its in the state equation which is now an elliptic system. f{j-convergence cannot
:ndle this. To the best of our knowledge. the little literature on this problem that
- wvailable deals with the periodic case and that too. for non perforated domains
{6]). The problem is resolved by developing the theory of Hy-convergence for
k matrices, whose order exceeds the space dimension, in analogy with the usual

vergence and Ho-convergence. Then, using the framework of Hy-convergence,
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“wenization of the optimal control problem ean be completed. by following

- procedure outlined by Kesavan and Saint Jean Paulin [25] in the scalar cage.
21 Chapter 5, we obtain some results for the homogenization of the optimal
wrol problem governed by Dirichlet boundary value problems in perforated do-
-uns. The nature of this problem is different from the one considered in [25),
.. we require the states to satisfy the homogeneous Dirichlet condition on the
:ndary of the holes. As a result, while dealing with the states during the process
! L.omogenization it is enough to extend them by zero in the holes. However, the
~yiirement that the states vanish on the boundary of the holes contributes to a
«ir order term, with a measure y as coefficient, in the operator corresponding to
..~ homogenized state equation, when the holes have a critical size and distribution,
-« was discovered by Cioranescu and Murat [12). Under the same assumptions on
- domain and with the assumption that the coefficients appearing in the state
;zation and cost functional are independent of ¢, we show that the cost functional
: he homogenized optimal control problem also picks up a lower order term which

-responds to a different measure. This measure is identified.



Chapter 2

General Results

2.1 Introduction

. this chapter, we first discuss the results of Kesavan and Saint Jean Paulin con-
~ning the homogenization of some optimal control problems considered in [24],
An analysis of the steps involved in homogenizing the problems provides us the

-.<piration for Lemma 2.1.1 which deals with the limits of minimizers of a sequence

“functions. The role of the lemma is to identify crucial steps in the homogenization
s-cedure. By using the framework of this lemma and by verifying the hypothe-
--~ involved, the homogenized problem can be found. This applies to the other
.~ 'problems considered in the subsequent chapters as well. Next, we consider a
- ~zion concerning the limit of energies which is of independent interest. Solving
~ ruestion also leads to a proof of the uniqueness of the coefficients appearing in
st functional of the limit problem. Finally, some properties of the coefficients
-aring in the cost functional of the homogenized problem are discussed.
"V now discuss the results of Kesavan and Saint Jean Paulin [24] concerning
‘.smogenization of the optimal control problem over non perforated domains.
2 be a bounded domain in R*. Let ¢ be a parameter which tends to zero.
< = M{a,b,Q), B. € M(c,d,Q) are two sequences of matrices and it is assumed

- 3% are symmetric. Uy, the space of admissible controls, is a given closed
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L wabset of L2(82). Let f & L2(£2) Le a given function and let N be a positive
(L) L

- -=ant. For £ > 0 fixed, let 6 be the optimal control minimizing the functional,

N
P.) J.(0) = %/K;B£Vus,Vusdz + E/HQZdz

7",4- where u; = u.(6) is the solution of the state equation,
—div(AVu,) = f+0 inQ, _—

u = 0 on 9.

- be shown that (up to a subsequence) 8 — 0* weakly in L*(R2). Now, is 6*

ptimal control of a homogenized optimal control problem? It was shown that

r..nimizes the functional,
/B'Vu.Vudr+ E/
o 2 Ja

: 4 € Uyq, where u = u(f) is the solution of,

—div(A*'Vu) = f+6 inQ,
0 on 99,

(P J(@) = ? dx

-+» 4" is the H-limit of the sequence A, and B" is given by (2.1.7) below. The H-

--rgence method introduced by Murat [30] and Tartar [36] is discussed briefly,
: following it, a full description of the A* and B* are given.

+finition 2.1.1 A sequence of matrices, A, € M(a, b,), is said to H-converge to

crir. A€ M(a',b,Q), if for every g € H'(), the solution v, of

—div(AVy) = ¢ @nQ }

(2.1.2)
v, = 0 ondf
-5 the weak convergences,
v = v weakly in H}(Q), 213)
AV, — AVy  weakly in L2(Q)",
- v is the solution of,

—div(AV = in 2,

(AV) = g in 14

v = 0 ondQ

ate 4 2 4. &
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L finition along with the following compactness theotem is tailor-made for

.~-ing to the limit in the equation (2.1.1).

heorem 2.1.1 Every sequence, A, € M(a,,Q), has a H-convergent subsequence.

. H-limit for the subsequence belongs to M(a, 2, $). W

- following are some known facts about H-convergence: a sequence of matrices

. . . S "
-i-h H-converges, has a unique H-limit; H-convergence is local, i.e. if Fr — F

G. 5 G and F. = G, on some w CC §2 for all € > 0, then F = G on w; lastly,
1, 5 A, let g. — g strongly in H~'(Q) and let v, solve (2.1.2) with right
- side g. - in this case also, the convergences (2.1.3) hold and v solves (2.1.4).

By Theorem 2.1.1, we may assume that the sequence (if necessary, by restricting
+ subsequence) of matrices A, has a H-limit. Then, this limit, by the discussion
we. is the desired A®
The description of B* in the article [24] involves a few test functions. The first,
- the sequences X%, k = 1,2, ..., n, with the following properties (cf. Murat 29)),
Xt = oz weakly in H'(Q),
AVXE = Ate weakly in L2()", (2.1.5)
div(A.VXY) cc H YQ)

symbol CC denotes precompactness; here, the precompactness of the sequence

-~ A,VXY) in [I-'(92). The existence of such XX can be deduced from the H-
.vergence of A, to the limit A*. One also defines the sequences, vf € Hy(Q),
= 1.2,...,n, which solve

—div(ALVyE + B,YXE) = 0 infL 216
wk = 0 on I
+ cach k, the sequence %¥ is bounded in H{}(S2) and it is assumed, without loss of
_ erality, that ¥ converges weakly to some w* in H{(§2) and that ALV + BV XE

..verges weakly in L2(2)". B is, then, defined (through its transpose ') as follows,

(B*)er = 1m(,‘(Agwf + B.VXE) - (47)V*. (2.1.7)

"B, need not be symmetric for this approach.
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L results in the perforated case obtained by Kesavan and Saint Jean Paulin
23] are now discussed. For each ¢ > 0, the perforated domain € is given to be
S.., having characteristic function x.; S. is assumed to be a closed subset of £
:+h smooth boundary. The space of admissible controls also depends on ¢ and for
whe >0, U, is a closed convex subset of L?(§). For given € > 0, the optimal

ntrol problem consists of minimizing the functional,
1 N 2
(Pe) J@) =< [ BVu.Vudr+ o [ 6ds
2 Ja, 2 Ja.

vor Ugy, where ue =

<(8), is the solution of the state equation,

—div(A.Vu,) = f+60 inQ,
AVucn, = 0 on 85, (2.1.8)

u = 0 on 9.
This problem has a unique minimizer 87 in U¢,. It can be scen that if these mini-
-..izers are extended by zero in S, then the extensions 9:‘ form a bounded scquence
:. L%(2). It may be assumed (for a subsequence) that 6 — 6% weakly in L%(R2). In

-1.15 case, it was shown that the #* minimizes the functional
1 N 6
(PY) J() =5 / B*Vu.Vudzr + —/ —dz
2Ja 2 Ja x
~er a suitable Ugq (see the discussion below), where u = u(8) is the solution of,

—div(4*Vu) = \f+6 inQ,
w = 0 on 9.
i is the “Ho-limit” of the sequences -, and, B* is given by (2.1.18) below; x is the
~ak® limit of x¢ in L*(£2). Notice the sccond term in the cost functional of the

s. [24) and [25), considered.

. mogenized problem is different in the two ¢

Since, the space of admissible controls varies with ¢, it is also required to prescribe
-:.» limiting space of admissible controls. One guesses that U,q is the, so called,
“iratowski limit of the sequences U, in the weak topology of L2(€2). This guess

---ms to be verified in the examples of Ug, considered in (25]. When Ug, is one of
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fuilowing,

= L*(%%),

Uz, = {6€L2()0> v in Q.}, (2.1.9)
aa = {0€ Ly <0<y in Q)

Usy = {0€ L%(Q] fy, 0°dz <1}

i+ corresponding U,y was shown to be the Ugq's given below, in the same order,

U = LX),
Uwa = {6€ L]0 = xv in Q},
ad { (D8 = xv in 2} (2.1.10)
U = {0€ L*(D)Ixy <0< x¥e in @},
Usw = {0€ L2 [y Zdz <1}
I+ is assumed that the characteristic functions x. satisfy
Xe > x weak * in L®(Q), o

x' e L=(9).
“Ne now give a full description of the A* and B* after introducing the notion of
Ho-convergence proposed by Briane, Damlamian and Donato [7].
The framework of Hp-convergence imposes some restriction on the geometry
f the perforated domain Q. by presupposing the existence of suitable extension
perators. Let V; = {u € H'(Q)lu = 0 on 9Q}. It is assumed that there exist
-xtension operators, P : V. — H{(£2) which are bounded uniformly with respect to

coie.

R(Pa) = u,
[VPeuloq < ColVulos,

for all u € 1, (2.1.12)

where the symbol R, denotes the operator which restricts a function given on Q to
.2, and, Cp is a constant independent of . A sequence of holes S, for which the

haracteristic functions of Q. satisfy (2.1.11) and there exist extension operators

-atisfving (2.1.12), is said to be an admissible sequence of holes for Q.
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Definition 2.1.2 Let A, € M(a,b,) and S, be admissible in 2. The pair (4, S.)
= said to Ho-converge to e matriz A € M(a,¥,Q) if for every g € H-YQ) the

ution ve in V; of,
~div(4.Vv) = Prg inQ,
AVven, = 0 on 38, (2.1.13)
v = 0 on 892,

znisfies the weak convergences,

Py — w weakly in H} (), @114)
QA Vv) — AV weakly in L2(()",
_iere v is the solution of
—div(AVv) = in Q,
WAvY) = g (2.1.15)

v = 0 ond, M
rere Q. denotes the operator yielding the extension by zero over the holes. This

:+inition and the following compactness theorem are exactly what are required to

to the limit in the cquations (2.1.8).

Theorem 2.1.2 For every sequence, A. € M(a,b, Q), the sequence (A, S:)
~is a Ho-convergent subsequence. The Ho-limit for the subsequence belongs to
aCy? 2,0). m
i:-convergence has all the propertics of H-convergence, in a suitable form. One
-+ has the independence of the Ho-limit on the actual choice of extension oper-
* s satisfying (2.1.12). Further, suppose that (A, S.) 2% A and let x.g, — ¢
~ikly in L*(Q), and let v, solve (2.1.13) with right hand side g.. The convergences
2 1.14) still hold and v solves (2.1.15). These properties of Hy-convergence are
rth remembering. H-convergence is, really, a special case of Hp-convergence, but
- -+ assumptions involved are few.
Now, if A, is the sequence appearing in the problem (P), the conclusion is that
S:) can be assumed to have a Hy-limit, under the assumptions made on S,

~cerning its admissibility. This limit is the desired A*.
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The description of the matrix B* involves a few test functions. The analogue of
%7 that was seen in the non perforated case is defined through the following means.
Let €' be a bounded open subset of R™ such that 2 CC . Extension operators
: - O can be obtained by first extending by P. to € and then by zero in Q' \Q. With
“~2se extension operators, S. are admissible for Q' also. As a function, the matrix

1, is extended to ' by defining it to be a I in Q' \ Q2. The extension is also denoted

4. and they clearly belong to M(a,b,€)’). It may be assumed that (A, S.) has

 Ho-limit A" in . By the local nature of Hp-convergence, A’ restricted to  has
be the A* above. Let ¢ € D(Q') with ¢ = 1 in Q. Then, the test functions Xk,

« =1,2,..,n, are defined to be the the solutions of

—div(A,VXE) = —Prdiv(A*V{¢zy)) in Q,
AVXEn, = 0 on S, (2.1.16)
Xk = 0 on %Y,

=+ Ho-convergence, P, X} converges weakly in H{(Q') to ¢z, and hence to z; when

ricted to 2. The test functions ¥, k = 1,2, ..., n are, by definition, the solutions

—div(ALVYE + B.VXE) = 0 inQ,
(AIVYE + B.VX¥)n, = 0 onds., (2.1.17)

P2 = 0 ondQ.
T:r each k, it can be seen that %Y is a bounded sequence in H} () and therefore,
- may be assumed that P.i)¥ converges weakly to some %* in H}(S2) and that

ALVyE + B.VXF) converges weakly in L2(£2)". Then B* is given by
(B )er = lim Qe(ALVYE + B.VXE) — (A%)tVyh. (2.1.18)
E

The above problems on homogenization boil down to essentially the following

-=stion: let F, be functionals defined on sets K. C L?(f), having a minimizer
z1 £ K. and, suppose that £ — z* weakly in L?(2). Is z* the minimizer of a
tional F defined over a set K C L?*(Q), where F and K can be chosen in a

- »tural way? A question of this generality is the subject of study of the theory of
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nvergence. But, for the problems in question, because of some properties that
" : and UZ,’s have, the answer is provided by the lemma below which is in the spirit

i T-convergence. We need to place the following assumptions on F, and K,: there

s a K C L*(Q) such that,

1. € K., v, = z weakly in L?(Q) implies z € K.

1 Forevery z € K, there exists a sequence, z. € K, such that z. — z weakly in

=dmits the decomposition, F, = F! + F? and there exist functionals F!, F2 on

uch that:

For any z, € K,, z. — z weakly in L?(Q) implies
lilrst‘(zE) = F!(z) and, (2.1.19)
lim,0F7(ze) > F?(z). (2.1.20)

71 For any z € K, there exist a sequence z. € K. such that z, — z and
fimo FE(ze) = F(z).
Lemma 2.1.1 Under the assumptions made above, z* is a minimizer in K for the

‘uction, F = F1 4 F2,

Proof: For any z € K, choose a sequence, z. € K, so that (P4) holds. Then, by
21.19) and (P4),

lim Fu(ee) = limy P z:) + i F2 (o)
= F'(z) + F?(z). (2.1.21)
- the other hand,
limoFe(z;) = lim F(z]) + lim .o F7 ()
> F'(z*)+ F*(z"). (2.1.22)

< =-e we have, F.(x!) < F.(z.), taking lim._,o and using (2.1.21), (2.1.22), we get,

F(z*) = F'(z") + F¥z*) < F'(z)+ F%z) = F(2).
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This is true for any * € K. Thus 2* minimizes F over K. W
Though for a general sequence z. in K, converging weakly to z, only (2.1.20)

holds, we show that we have equality in (2.1.20) for the sequence of minimizers.

Proposition 2.1.1 Let K., K, F}, F', F2, F? be as above, satisfying the conditions
(P1)-(P4). Let z? be the minimizer of F, in K. and let 2 converge weakly to z* in
L*(Q). Then,

lim F2(23) = F2(=").

Proof:  Choose a sequence, z. € K. such that r, — z* weakly in L?(Q) and

lim, o F2(z.) = F?(z*). Taking lim sup on either side of the inequality,

Flap) + FX(x3) < Fl(ze) + F2(ze).

It follows from (2.1.19) and the choice of ¢ that.
Fl(z*) + im0 F2(z}) < F'(z*) + F*(z*)

ie. Tm.,oF2(z:) < F2(z"). On the other hand, by (2.1.20), lim . oF2(z%) >
F2(z*). Therefore, lim.,o F2(z}) = F2(z"). B
We now show an application of Lemma 2.1.1 by using it to the homogenization
problem considered in [25], again, in the framework of this lemma, with the help
of some facts from [25]. K. is chosen to be one of the Uf, given in (2.1.9). For
this, we note that any of these Uf, may be thought of as a closed convex subset
of L?(Q) by imbedding L?(Q,) in L2(f2), which is done by extending a function
given on €2, by zero in the holes. K is taken as the corresponding Uyq (cf. (2.1.10) ).
Also, take F; to be the cost functional J. and note that it is the sum of the functionals
F/0) = § [o, BeVue.Vucdz and F2(9) = %fm 02dx, where u. = u.(6) is the
solution of,
—div(4.Vu,) = f+6 inQ,,
ANVuen, = 0 on 98,
u = 0 on 9.
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F(8) = %/ﬂB'Vu.Vu dz,

~here u = u(f) solves,

—div(A'Vu) = xf+0 inQ,

u = 0 on 9, }
where A* is the Ho-limit of the sequence (A, S;) and B* is given by (2.1.18). And
set,
1 /6
F2(0) = E‘A;dz.

It is now verificd that for these choices of K, F! and F? the hypotheses (P1)-(P4)
are satisfied. (P1) is trivial except in the last example for K. in (2.1.9) and for this

ex le (P1) is a of the following lemma (c¢f. Proposition 2.2 (25]).

Lemma 2.1.2 If 6, € L%(S)) and 6. — 6 weakly in L*(S2), then

2
li_mHo/ Gﬁer/idxl
e o X

To verify (P2), given any 6 € K, the choice 8, = (x./x)6 belongs to K, and . — 6
weakly in L2($2). Thus, (P2) is also verified. Again from Lemma 2.1.2 it follows
that F? defined above verifies (2.1.20) of (P3). To verify (P4), for any # € K we

take 0 as above and by the idempotence of x., we get,

/xfﬂzdz = /x59—2d1
o “ 2 x?
e / 9—2 dz .
2 X
This shows that F? satisfies (P4). It remains to show that F' satisfies (2.1.19) of
P3), but, this is a consequence of the following fact about B*, proved in [25].
Let g. € L?(Q) be any sequence such that x.g. — g weakly in L2(2) and let v,
e the solution of,
—div(4,Vve) = g in,
AVv.n, = 0 on 8S.
0 onoQ.

Ve
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i Lave the following convergence of energics,
/ B, Vv.. Vv dr 23 / B*Vv.Vvdz
Qe 1]

v is the solution of

div(A'VY) = ¢ inQ,
v = 0 ondQ.
.:-: that, to verify (2.1.19) using the above it is enough to take g. = f + 6 for
. szquences §, in K, such that 6. — 6 weakly in L?>(Q2). Now, Lemma 2.1.1 shows

. which is the limit of the optimal controls 87, is the optimal control of the

7_: -ional F!' 4+ F2, where F' and F? are defined above.
The results in the non perforated case are a special case of the above; however,

re allowed to choose any closed convex set K we like, provided, we take all the

= equal to K.

Remark 2.1.1 In the subsequent chapters, the choice of K. will remain the same,

=z one of the spaces listed in (2.1.9). Also, the form of F? will be similar to the one
.- “ave just considered. For these reasons, we will only need to identify a suitable
T :ind verify (2.1.19) for that function as the other hypotheses have already been
ed for these choices of K. and F2. B

2.2 Convergence of Energies

“.und, in the last part of the previous section, that the convergence of the energies
.- iated with the state equations played a crucial role in the homogenization

<. ress. chiefly in identifying the function F! of Lemma 2.1.1. We shall address this

on in some more detail now and we restrict ourselves to the non perforated

=+> 10 convey our ideas better. The results, in the perforated case, are only stated
= he proofs go through, mutatis mutandis.
1s before, A4, is a sequence of matrices in AM{a,b,Q) and B is a sequence of

<~ rmmetric matrices in M(c,d,2). It is assumed that the sequence A, has as its
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#{-Himit the matrix 4*. We wish to compute the limit of
'/BEVvs.va dx
o
where ve solves,
—div(AVv,) = g inQ,
ve = 0 ondQ.
and g, is a sequence in L%() such that g, — g weakly in L2(£2). We know that

v, — v weakly in H}() and v solves,

—div(4A°Vv) = g inQ,
v = 0 ondQ.
It is desirable to express this limit in the form fn BVv.Vv dz for a suitable symmetric
matrix B and this should be independent of the sequences g, one may consider. To
alculate these limits is not so easy as the integrand is a product of weakly convergent
sequences. In the case when B, = A, for all ¢, we can compute the limit using the

=quations that v, and v solve. Indeed,

/AEVvPVvEdz = /g,vsdz
« . Q

— /gvdz
o

= / A'Vou.Vvdz.
i1}

We have only done some integration by parts and used the strong convergence of v,

“a v in L*(2), which follows from the compact inclusion of H*(€2) in L2(22)(Rellich’s
ompactness theorem).

When B, # A, there is, usually, no direct way of obtaining the limit

iMesso fq BeVUe. V. dz. In this case, introducing the adjoint problem can be of

ielp and this is as follows. Let p. € H{(Q) solve

—div(AtVp, — B,Vv,) = 0 inQ,
pe = 0 ondQ.
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. nén. p, is known as the adjoint state corresponding to the state v.. It can be seen

-rat p. is a bounded in sequence in H§(£2). One can suppose that,

pe — pweakly in Hi(Q),
2. = ALVp. — B.Vv, — =z weakly in L2(Q)".

+{esavan and Saint Jean Paulin [25] have shown that z = (A")'Vp — B*Vv for the
3* they have defined through (2.1.7) (cf. Theorem 2.2.3). Using this, they show
-hat (cf. Remark 3.3 [25] or Theorem 2.2.1 below)

lim/B€Vv5,Vv5 dz:/B'VuAVvdz,
=0 Jo o

The upshot is, if you know how to homogenize the state-adjoint state system of
=quations then it is possible to identify the limit of energies. There are still a few
:nteresting questions which need to be answered.

“Juestion 1: Is the matrix B* given by (2.1.7) the unique matrix which appears in
-he limit of energies?

Question 2: Is there a converse to the statement, “if you know how to homoge-

e the state-adjoint state system of equations then you can identify the limit of
znergies” ?

The answer to the second question is provided by the following theorem. First,
we write two statements concerning a matrix, B not necessarily symmetric, and the
-heorem will be about the equivalence of these two statements.

Staterment-1 Let g. be any sequence in H~!(Q) such that g. — g strongly in

H-'(2). Let v, be the solution of,
—div(4.Vv,) = g inQ,
ve = 0 on 9.
Let v, — v weakly in H}(Q). Then
lim/ B. Vv, Vv.dz = /BVu,Vvdz (2.2.1)
0 Jo A
B.Vv.Vy, — BVv.Vwvin D'(Q). (2.2.2)
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Statement-2 Let g. be any sequence in F/~!(52) such that g. —» g strongly in
H7YQ). Let (ve,pe) € HE(2)? solve the state-adjoint state equations,
—div(A.Vve) = g inQ,
—div(ALVp, — B.Vv.) = 0 in%,
ve =0= p, on d%

Zince (ve,pe) is bounded in HE(€2)?, let

Ve —

<

weakly in H(S),
pe — weakly in H3(S),
% = AlVp, — B.Vy, — z weakly in L3 (Q)".

k]

Then
2= (A")!'Vp— BVu.M

Remark 2.2.1 If Statement-2 is true for some B then it is to be noted that (v, p)
i olve the system,

—div(A*Vo) g inQ,
—div((A*)'Vp — BVv) 0 inQ, (2.2.3)
p =0= v ondQ.M

The div-curl lemma (cf. Murat [30]) will be used to prove many of our results

r.cluding Theorem 2.2.1 and hence, it is stated here.

Lemma 2.2.1 (The div-curl lemma) Let &, 7. € L2(Q2)" be such that & — £ and
— 7 weakly in L2(Q)". Further, assume that the sequences divé, and curlz, are
-2compact in H~'(Q). Then,

&.me — £nin D'(Q). M (2.2.4)

Theorem 2.2.1 If B is a matriz for which Staterment-2 is true then Statement-1

- true for B. The converse is true if B is also given to be symmetric.
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Proof: Suppose that B is a matrix for which Statement-2 is true. Let the hy-
zotheses in Statement-1 hold. Let p, € H} () solve the adjoint-state equation,
—div(AtVp, — B. Vo, = 0 inQ,
(AL Vpe — B-Vv,) \ (2.2.5)
Pe = 0 on8Q.
~he uniform coercivity of 4 implies that p, is bounded in H}(Q). For any subse-
suence, € of € there is a further subsequence £” such that,
po — p’ weakly in H}(S),
ALVps — BoVus — 2" weakly in L3(Q)".

Sy Statement-2, it follows that 2" = A*'Vp" — BVv. By Remark 2.2.1 and unique-

of solution to (2.2.3), it follows that p” is independent of the subsequence and

e denote it by p, the solution of (2.2.3). Now, by an integration by parts and using
juation (2.2.5),
/ BVus Vuuds = / ALy Vp,s Ty dz
] o]
= /n A Vg Vp dx
= <GP ZH-YQ),HLR)
— < §:P>Ha-va),Hie)
= / A'Vou.Vpdz
[
= ./n BVv.Vudz

where the last equality follows from (2.2.3) after an integration by parts. As every
-:bsequence has a further subsequence converging to the same limit, f;, BVv.Vvdz,
-iis proves (2.2.1).
Fewriting

BV Vg = —(AlwVpe — By V). Ve + An Ve Vp,e. (2.2.6)

Note that,

il
e

div(AL Vps — B Vv,)
div(AVye) = gn
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znd hence are precompact sequences in H-Y(Q). So, we may apply the div-curl

‘»mma in (2.2.6) to conclude,

By Ve Vo — —(A*'Vp— BVv).Vu + A°Vv.Vp in D' (9)
= BVu.Vv

As the limit is independent of the subsequence, we conclude that,
B,Vv..Vv, — BVv.Vvin D'(Q).

Thus, we have shown that if B satisfi t. -2, then it satisfies Statement-1
zlong with (2.2.2).

Conversely, suppose that B is symmetric and satisfies Statement-1. Now, let the

aypotheses in Statement-2 hold. Let w CC Q and let 7 € D(R2) be a cut-off function
such that 7 = 1 on w. We define test functions nf € H (), k = 1,2,...,n, as solving

—div(A4,Vnf) = —div(A*V(nzs)) in Q.
By ‘the H-convergence of the matrices A,, we obtain,
nf — 5z weakly in HY (),
AVnf = A*V(nzy) weakly in L2(Q)".
By superposition of the equations for v, and £,
—div(A:V (v, £ 7)) = g, + (~div(A*Vnzy)) in Q.
Therefore, by Statement-1,

Be(Vve £ Vf)-(Vve £ Vnf) = B(Vv + V(nzx)).(Vo + V(nzy)) in D' (Q).

Hence, using the polarization identity and the symmetry of B,

B.Vv..Vyf = BVv.V(n2e) in D' (). (2.2.7)
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Now, we obtain the distribution limit of 2z, = A!Vp, — B, Vv, in two ways. By the
Ziv-curl lemma applied to z.VnF, we get,
2..Vnf = 2.V (nz,) in D'(Q) (2.2.8)
on the other hand,
2.Vf = A:VnE.Vp. — BV, Vit 22.9)
- A*Y(yz).Vp — BVu.V(nzy) in D'(),

zsing (2.2.7) and applying the div-curl lemma to pass to the limit in the first term
{ the sum. So, from (2.2.8) and (2.2.9), we get,

z.ex = A"'Vp.ex — BVu.ey in D' (w)
Since this is true for all w CC €2, we have the desired conclusion. Thus B has been

shown to satisfy Statement-2. M

The answer to our first question is given by the following theorem.

Theorem 2.2.2 Any tric B satisfying Stat 1 or ivalentl

Statement-2 is unique.

Proof: Suppose B, B’ are two symmetric matrices for which Statement-1 with
2.2.2) is true. For nf defined in the proof of previous theorem, we have for any

. kef1,2,..,n},
B,Vnl.Vnf — BVY{(nx;).V(nzs) in D'(§2) and,
B.Vni.Vnf — B'V(yz;).V(nzg) in D' ().

3
Therefore, B = B’ for all w CC 2, and this proves the result.

Another proof would be to use (2.2.1) and the desired resuit follows directly from
_emma 22.5 of Dal Maso [16]. @

Now, is there is a matrix B satisfying Statement-2 ? which of course implies B
-atisfies Statement-1. It was shown by Kesavan and Saint Jean Paulin in [24] that
B* defined through (2.1.7) satisfies Statement-2. We prove this, now, for the sake of

anpleteness; also, our proof turns out to be much shorter than the original proof

o [24].
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Theorem 2.2.3 B* defined by (2.1.7) satisfies Statement-2.

Proof: Let g. be any sequence in H~'(Q2) such that g. —» g strongly in H-1(£2).
Let (ve,pe) € H(2)? solve the state-adjoint state system of equations,
div(A.Vv,) = g inQ,
div(A'Vp, — B,Vo,) = 0 inQ,
ve =0= p, on 9N
Since (ve, pe) is bounded in H}(S2)?2, we may suppose that,
ve — v weakly in H(S),
pe — p weakly in Hi(),
2 = A'Vp, — B;Vv, — z weakly in L2(Q)".
Let B* be given by (2.1.7). We need to show that z = (A%)!Vp — B*Vu. Let X* be
the test sequences having the properties (2.1.5). Then,
2. VXF = Vp.A.VXF— B.VXEVo,
= Vp.A VXS — ((B.VXE + ALVYE). Vv, — A,V . Vipk}.

We may apply the div-curl lemma, use the convergence properties of X%, ¥, v, pe

2te. and (2.1.7) to conclude that,
2. VXF = Aex.Vp — (B*)'e,. Vv in D'(2).
On the other hand, directly from the div-curl lemma,
2. VXF — z.e in D'().

Zo. we conclude that z = (A*)'Vp—B*Vv in D'(2). However, tlléy are both L2(Q)"
“inctions and the sequence z is bounded in L?(Q2)". Therefore, they are equal as

Z2(Q)" functions as well. W

Remark 2.2.2 The symmetry of B* follows from Theorem 2.3.1 in the next section.
by the theorems we have just proved, the matvic appiaring in the cost functional

:f the homogenized problem can only be the B* which is defined by (2.1.7). R
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Remark 2.2.3 Though, in [25] it is observed that B* satisfies Statement-2, they do
: observe that B* has the convergence property (2.2.2) while still observing (2.2.1).
have seen now that these two convergences characterize the homogenized state-

i mnt system of equations. M

The versions of Theorem 2.2.1, Theorem 2.2.2, and Theorem 2.2.3 for the perfo-
-.:2d case are now stated. Let (A.,S.) Ho converge to 4*. In the perforated case,
<-:tement-1 and Statement-2 concerning a matrix B are to be replaced by,

Statement-3: Let g, be any sequence in H~!(§2) such that g —> g strongly in

#7Y). Let v, be the solution of,

—div(A.Vv,) = Plg. in Q.
ANVyene = 0 on 8S.,
ve = 0 on 992.

Lt P, — v weakly in H}(Q). Then

lim/ B, Vv, Vo dz = /BVv.Vudz
Q. o

€0

XeBeVPv. VP, — BVv.Vuvin D' ().

Statement-4: Let g, be any sequence in H~!(Q2) such that g. — g strongly in

27YQ). Let (ve,pe) € H{(S)? solve the state-adjoint state equations,

—div(A.Vv.) = Pg. inQ,
—AVuen, = o on 88,

div(A!Vp. — B.Vv,) = 0 in Q,
(A'Vp. — B.Vv)ne = 0 on 3S.,

ve =0= p. on J9N.
<:ince (P.ve, Pop.) is bounded in H}(Q)2, let
Pov. — v weakly in H}(Q),
P.p. — p weakly in H} ().
Ze = Qu(ALVp, — B,Vy,) — z weakly in L2(S)".
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Then
z2={(A")'Vp—-Bvv.R
The following theorems are true.

Theorem 2.2.4 If B is a matriz for which Statement-/ is true then Statement-3

is true for B. The converse is truc if B is also given to be svmmetric. W

Theorem 2.2.5 Any symmetric B satisfying Statement-$ or, equivalently,

Statement-4 is unique. M
Theorem 2.2.6 B* defined by (2.1.18) satisfies Statement-4. W

A similar remark (cf. Remark:\2.2.2) can be made about the uniqueness of B* after
showing that it is symmetric. The symmetry and some other properties of B* are
shown in [25] but with much difficulty as the expression (2.1.18) is not convenient.

The next section deals with these problems.

2.3 Properties of B*

The properties of B* that are of interest to us are its symmetry, ellipticity and upper
“ound. We now reformulate B*, given by (2.1.18), in a natural way as to give us
some properties of B* like symmetry and upper bound, easily; the question on the
ipper bound was left open in [24], [25]. The ellipticity of B* was shown in [25] in a
sertain sense, but not of the matrix itself. So, we will also prove the ellipticity of B*.
We recall the test functions, X%, which were defined through (2.1.16). Define,
-he corrector matrices, M, by,
M.ex = VP XE, fork=1,2,...n (2.3.1)
" is known (cf. Proposition 1.14 (7]) that they have the following properties,
M. — I weakly in L* ()",
AN, AT weakly in 12(0)7,
div(xeA: M) cc H™YQ).
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The proof of Theorem 2.3.1, below, will use the following lemma.
Lemma 2.3.1 (cf. Proposition 1.18 [7]) Let €& € L*(Q)™ be a sequence of vector

fields such that the sequence, Q.(€.), is bounded in L*(Q)" and satisfies

—div(&) = P in n} (252)

[ = 0o0nds.

and the sequence, f., is in a compact subset of H-Y(Q). Then, the sequence div(Q.&.)
is in @ compact subset of H~'(Q). M

Theorem 2.3.1 Let B* be defined through (2.1.18). Then, B* is the limit, in the

distribution sense, of the sequence of matrices Xe MEB.M,.
Proof: 1t is enough to show, for any j, k € {1,2, .., n}, that,

XeM{B:M.ex.e; — Btep.e;in D'().
We first rewrite the left hand side as follows

XeM{B.M.exe; = x.B.VP.XFEVPXI
Xe(ALVPAE + BVP.XE).VP.X] — X AV P.X3.V Pk
= Q(AiVYS + B.YXE).VPX! — xoAM.e;.V Pk,

We are in a position to apply div-curl lemma provided we show that
divQ:(ALVYf + B.VXE) is precompact in H-'(2). But this follows by taking
& = (ALVYf + B.VXE) and f, = 0 in the previous lemma. Therefore, we get
XeM!B.M.ex.e; — lim Q.(A{VYE + B, VXE).e; — Ae;. Vy* in D' ()
&
= DBlere;
from the definition of B*. M

As an immediate consequence we have,

Corollary 2.3.1 B* is symmetric. B
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We now obtain bounds for the matrix B*.
Corollary 2.3.2 B* € M(cCy?%,db?%/a?,Q).

Proof: First we prove the upper bound. Let ¢ € D(£2), ¢ > 0 and let £ € R*. We

have, using the bounds on A, and B,
/rz XeBM.EM.Ebdz < dja /ﬂ XeAMLEM €0 dx. (2.3.3)
It can be shown, using the div-curl lemma and the properties of Af., that
XeMIAM, — A*in D'(Q).

We know from Theorem 2.3.1 that x, M¢B. M, converges in D'(R) to B*. Therefore,

we may pass to the limit as ¢ — 0 in (2.3.3) and obtain
/ B*¢.£pds < dfa / A€ Epdz.
n a

As this holds for any ¢ > 0 in D(Q), we conclude that B*(z)£.£ < (d/a) A*(z)£.£
for almost every = in €. Since it is known that A*(2)£.£ < b2/a€]? ae. = € Q, we

conclude that
B (x)£.£ < db?/a®|E? ae. z€Q (2.3.4)

and for all £ € R*. This proves the upper bound.
A lower bound already exists (cf. Theorem 3.3 [25]) for the quadratic functional
defined by B* viz. ,

zcl;’/n;w:’dx < /nB'vl-.w dz for all v € HL(Q). (2.3.3)

Then, it follows from Proposition 2.3.1 below, proved by Juan Casado Diaz {9), that

the matrix B* is itself elliptic and indeed
cC2E|? < B*(2)€.£ ae. z € Q.

This gives the lower bound. W
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Proposition 2.3.1 Let A = (ai;) be a symmetric matriz whose entries belong to
L>(2). Then,
/ AVv.Vudz > 0 for allv € Hy(2) (2.3.6)
a
implies that A(z)€.£ > 0 a.e. in Q and for all € € R™.

Proof: Let £ € R* and let ¢ > 0 be any function in C}(2). Consider the sequence
ve, given by v, = € cos(e7'£.z)¢. It is clear that for each £ > 0, the function v,

belongs to H(€2). Rewriting (2.3.6) with v, we get,
0 < & /n AV $.V¢cos?(£.x/e) dx — 2¢ /n AV $.£ cos(€.z/e) sin(€.z/e) ¢ dx
+ /ﬂ Aggsin®(E.x/e)p? dz.
Similarly, starting with € sin(¢7'€.z)¢ one gets
0 < Ez./n AV¢.Vsin®(£.x/e) dz + 26-/‘;AV¢.§COS(541/€) sin(é.z/e)¢ dx
+ A Ag.£cos?(E.z/e)d? dz.
Adding these two inequalities gives
0< 52/QAV¢.V¢dz + /n AtE¢?dz.
‘We may let € — 0 to obtain
0< / AEEp*dz
Q

for all ¢ € C5(f2). From this it follows, by standard arguments from measure theory,
that A(z)é.£ > 0ae. z€ Q. 0
Remark 2.3.1 The original proof of Juan Casado Diaz uses the test sequence v,
defined by, ve = eyp(e~'€.z)¢ where ¢ is the roof function,

t if te[0,1/2],

we) = 0,121

1—¢t if tei/2,1].
We have modified it to resemble the proof of a result due to Dal Maso (¢f Lemma
22.5 [16]) where it is essentially shown that if (2.5.6) changed to an equality then

A is the zero matriz in the almost everywhere sense. M



Chapter 3

Periodic Case

3.1 Introduction

In this chapter, we study the homogenization of the optimal control problem with
periodically oscillating coefficients and posed over periodically perforated domains.
We obtain formulae for the homogenized coefficients, directly, employing a corrector
result, using the method of two-scale convergence. This recovers the formulae of
Kesavan and Vanninathan [27] in the non perforated case. In Section 3.4, gener-
alizations of these formulae are obtained by considering the situation where there
are several(well separated) scales, using the method of multi-scale convergence pro-
posed by Allaire and Briane [2]. The results of this chapter appeared in Kesavan
and Rajesh [23].

First, some notations and definitions.
o Periodic function spaces on R* with the unit cell, ¥, as period will be denoted by
the subscript #. For e.g., C(Q, C(Y)) will denote the space of continuous functions
on Q0 x R* which are Y-periodic in the second variable.
o The optimal control problem will have as coefficients, Ac(z) = A(z,Z), Be(z) =
B(z, %), where A(z,y) € M(a,b,Q x R*), B(z,y) € M(c,d,Q x R*), with A,B €
C@, LE(Y)). :

o A periodically perforated domain, €, is obtained from Q by removing a set T,
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consisting of holes, where,

T.= |J ek+7)

kez~

for some T, closed, C Y with Lipschitz b dary. Itis d that Q, is d

The boundary of 2. has two parts -the interior boundary given by,
Oint% = |J {8k + T)le(k +T) c Q}.
€zn

and the ezterior boundary, Gyt = 9% \ djpt Q. The material part in the unit
cellis Y* = Y \ T and is assumed to have non-zero Lebesgue measure, m*. Note
that m* is also the L> weak™ limit of the sequence x..
* Q. or”will be used to denote the operator which extends a function given on €,
by zero in the holes.

For ¢ > 0 fixed, the optimal control problem consists of minimizing the cost

functional
1 N 2
(F) Je(0) = = BVu.. Vucdr + — 8% dz
2 Ja, 2 Ja,
over 8 € U, where u, = u.(#) is the solution of the state equation,

—div(4,Vu,) = f+60 inQ.,
AVuene = 0 on JiniS2,

v = 0 on Bense.

Uz, is taken to be one of (2.1.9). Set,

F1(6)

l/ B, Vu..Vu.dr and,
2 Qe
F2(6) = %A 6% dz

The homogenization of (P.) is performed in the framework of Lemma 2.1.1. As
already remarked (cf. Remark 2.1.1), the limiting space of controls is the corre-

sponding U,q given by (2.1.10) and F? is the function defined in Section 2.1. We
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need to identify F which will satisfy (2.1.19). This involves two things-first, to pass
to the limit in the following equations,
—div(A,. Vo) = f. inQ.,
AVven, = 0  on 8imf, (3.1.1)
Ve = 0 on Gef.

for any sequence f; € L*(2), with x.fo = m* f weakly in L?(Q); and second, to

obtain the limit of the energies,

/ B, Vv, Vv, dz.
e

This will be done using the method of two-scale convergence which is described in

the next section.

3.2 The Two-Scale Method

In this section, we shall discuss the formal two-scale method and its counterpart,
the two-scale convergence method. We shall, mostly, recall various results found in
the literature or small modifications of these, without proof. For the proofs, Allaire
[1] or Conca, Planchard and Vanninathan [15] is a suitable reference.

In the homogenization of problems with a periodic micro structure, the solution

is, usually, assumed to have a two-scale asymptotic expansion,
z z T
u(T) = ug(z, ;) + eu, (z, ;) + e?ug(x, —E—) + (3.2.1)

where each u;(z, y) is assumed Y — periodic. By formal expansion of the differential

and by ing the ffici of various powers of ¢, it is possible to
obtain the homogenized equation that ug solves. The coefficients of this equation
and the next term wu, in the asymptotic expansion are obtained by solving some cell
problems. The formal calculations are made rigorous by proving the convergence of
U to up in a suitable topology (usually weak). Previously, the convergence results
were proved by the energy method which consists of some clever manipulations of
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the equations and carefully chosen test functions. A recent method, which is very
suitable to handle convergences in the homogenization of periodic micro-structures,
is the method of two-scale convergence, proposed by Nguetseng {31] and refined
by Allaire [1]. At the basis of this method is the following averaging principle (cf.
Lemma 5.2 [1] or Lemma 5.3, Ch. III [15])

Lemma 3.2.1 If ¢(z,y) € C(Q, Cyu(Y)), then
/n #(@, 5y dr 2% fn /Y b(z,y) dydz.m (3.2.2)

Remark 3.2.1 [t is easy to see that if u. has the asymptotic ezpansion (3.2.1)

where the u;’ s are smooth, then

/{;ugd)(a:,g)dxﬂ-/n/‘;uo(a:,y)(b(z,y)dydz (3.2.3)

for all ¢ € C(L, Cy(Y)). Thus we obtain the first term in the asymptotic expansion
of uc. B

This leads to the following definition,

Definition 3.2.1 A u. of fu 7 which isfies (8.2.8) is said to two-

scale converge to ug and we write ue 2=3 ug(a, y). u

The following compactness result helps us to obtain the first term in the asymptotic

expansion of u, whenever the sequence, wu, is bounded in L?(Q2).

Theorem 3.2.1 For each bounded sequence u. in L2(S?) one can eztract a subse-
quence and, there exists a function uo(z,y) € L2(R x Y) such that this subsequence

two-scale converges to up.

A few properties of two-scale convergence are listed below. Let u, be a sequence in
L*(Q).

1. For any two-scale convergent sequence its two-scale limit is unique.

2. If u, — u strongly in L?(£), then v, 225 u(z).

3. If u. 23 up(z,y), then u, — Jy vo(=,y) dy weakly in L?(2). Then it follows
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from the uniform boundedness principle that any two-scale convergent sequence, u,
is bounded in L2(2).

Property 3 above shows that two-scale convergence yields something weak and
is not quite enough to pass to the limit in integrals involving the product of two
weakly convergent sequences in L2(Q2). To handle this situation we need to have a

stronger two-scale convergence. This leads to the following definition.

Definition 3.2.2 A measurable function ¢ : @ x R — R which is Y-periodic in

the variable y is said to be admissible if

/nw(z, ;)2 dz—)/n_/yw(z,y)zdydz. (3.2.4)

More generally, let u,. be a sequence in L*() which two-scale converges to uo(z,y).

It is said to be admissible if

/ugdz—>//uo(z,y)2dydz.- (3.2.5)
o aQJy

Remark 3.2.2 Though the most general condition under which ¥(x,y) is admissible
is not known, it is known that if ¢ belongs to one of the spaces L*(Q,Cyu(Y)),
Ce(Q, LE(Y)) or C(Q, LF(Y)) then it is admissible (cf. Allaire [1]). Moreover,
¥(@:5) S v(z,y). @

We, then, have the following strong convergences,

Theorem 3.2.2 (Allaire [1]) Let u. 25 up(x,y) and assume that u, is an admis-

sible sequence. If v, is any sequence such that v, =% vo(z,y) then,

UV — / uo(z, y)volz, y) dy in D'() and, (3.2.6)
Y

lim/ugvgdz://uo(r,y)vo(x,y)dydz. (3.2.7)
=0 Jq oty

Further, if uo(z, £) 223 wo(z,y) and up is an admissible function then,

lim [Jue — uo(a, f)” =0. = (3.2.8)
=50 = 2.9
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Remark 3.2.3 We observe that, due to Remark 8.2.2 and Theorem 3.2.2, any ¢
from the spaces L* (2, Cy(Y)), Ce(Q, LF(Y)) or C(Q, LF(Y)) can be used in the

definition of t 1 wergence. Besides, as these spaces are dense in L2(2x Y)

the compactness result, Theorem 3.2.1, is also valid if in the definition of two-scale

one of the admissible spaces for C(Q,Cy(Y)). B

convergence we

To obtain more terms in the asymptotic expansion of u., we need higher regularity

of u. than L?(R2). In fact,

Theorem 3.2.3 Let u. be a bounded sequence in H'(Q) converging weakly to a
function u € HY(Q) . Then, there ezists wi(z,y) € L2, HY(Y)/R) such that, up

to a subsequence, Vu, two-scale converges to Viu(z) + Vyu (z,y). B

We, thus, obtain the second term, », in the asymptotic expansion of u,. Now, we

prove a result which turns out to be quite useful in several proofs in the next section.

Theorem 3.2.4 Let u; be a bounded sequence in L2(Q) such that ue 2=3 ug(z,y)
and let ¢ € C(Q, LF(Y)). Then,

ub(z, 2) 255 uy(z, 1)o(z,)- (3.2.9)

Proof: Let ¢ € C(&, Cy(Y)). We note that ¢y € C(Q,LF(Y)) and so, by
Remark 3.2.2, ¢(z, 2)¥(z, £) 2= ¢(z, y)¥(z,y) and ¢ is an admissible function.
Therefore, by (3.2.7) of Theorem 3.2.2, we get,

tim [ e, Dy6e 2yt = [ [ ol )60tz 0) dody W

Corollary 3.2.1 Let uc,uo and ¢ be as in the previous theorem. Let v, be an

Imissibl which t le converges to vo(z,y). Then,

x
2 ) d: . 2.
[lu5¢(z,5)vg £ —>L/Yun¢uudzdy (3.2.10)

Proof: By the previous theorem, u.¢ (z, ) 223 uo(z, v)é(z, ). Also, we are
given that v, 2% vo(x,y) and that v, is an admissible sequence. Therefore, (3.2.10)

follows from Theorem 3.2.2. B
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3.3 Homogenization-Two Scales

‘We now resume the discussion from where we left off in Section 3.1. The homogeniza-

tion of the equation, (3.1.1), was done by Allaire [1], using two-scale convergence.

This is recalled.

Let f. be a sequence in L?(2) such that X.f. — m* f weakly in L?(£2) and let
ve be the solution of (3.1.1) in,

Ve ={u € H'(%)|u = 0 on 9eze}

equipped with the inner product, < u,u >v,= [, |Vu|®dz. It can be shown, using

the ellipticity, that Sup, ||velly, < oco. Further, a uniform Poincar¢ inequality,
[eloe. < Cllwelly,

holds for some C independent of & (cf. Lemma A.4, Allaire and Murat [3]). Thus,
#, and Vo, are bounded in L2(2) and leads to the following theorem which is similar

to Theorem 3.2.3.
Theorem 3.3.1 [1] For some v € H}(Q) and v, € L*(Q, H4(Y)/R),
G 5 x((e),
Vo, 33 x(@)(Vev + Vyulz,v)
up to a subsequence, where x(y) is the characteristic function of Y*. M
Remark 3.3.1 Note that U, — m*v weakly in L*(2). B
Further,
Theorem 3.3.2 1] The v,v) solve the two-scale homogenized problem,
—divy(A(z, y) (Vv + Vyuibr,y)) = 0 inQx Y™,
Az, ) (Vv + Vyu(z,y))ny, = 0onQxdY*\8Y,
—aiv. { [ XAV + V@) ay) = s imom

(3.3.1)



CHAPTER 3 PEerIODIC CASE 36

Remark 3.3.2 In fact, v, € L’(Q,C,‘#(Y)/]R), the extra regularity coming from the

smoothness of the coefficients ai;(z,y). B
It is possible to decouple the equations (3.3.1) for v and v, by setting
B
vn(z,y) = ﬁX'(I,y), (332)

where, X*(z,y) solve the following periodic boundary value problem in Y* :

—divy(A(z,y)(e: + Vy X¥(2,9))) = 0 inY*aez,
Az, y)(e; + VyXi(z,y))my = 0 on 2 x Y*\ 8Y, (3.33)
- Xi(@y)dy = 0 ae. z, o
y — X'(z,y) is Y-periodic.
Defining the matrix A* by,
. ax7
450 = [ x@) @) + o) Pz, 0) dy, (334
Y Yk
it can be verified that v solves the homogenized problem,
—div,(A*(z)Vv) = m'f inQ, (335)
v =0 on 9Q.

It is now to be shown that, there exists a B*, independent of the sequence f., such
that the limit, lim, o fm B,Vv,.Vv. dz, can be written as f, B*Vv.Vudz. For
this, we use a corrector result which will be proved immediately after the following

lemma.

Lemma 3.3.1 Let v, be the solution of (3.1.1) and (v,v,) be as in Theorems 3.3.1
and 3.3.2. Then x (Vzo(z) + Vyui(x, £)) is an admissible sequence.

Proof: Note that by Remark 3.3.2, V,v(z) + Vyui(2,y) € L*(Q, Cx(Y)). Hence,
by Remark 3.2.2, it is admissible and further,

€)= Vo) + Ty (2. D) 23 V,0(a) + Vynle ) 2 €my) . (336)
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Now, since x € LF(Y), by applying Theorem 3.2.4, we get,
X (Vov(@) + Vyu(2, D)) 3 x() (Vav(a) + Vymi(mv)) (3.3.7)
Since x. is idempotent, to prove the theorem it is enough to show that
tim [ 1906 + V@ D e = [ [ x()19:000) + Vyur(o )Py
which readily follows from Theorem 3.2.2 using (3.3.7)and the admissibility of

Vev(z) + Vyu(z,y). B

The corrector result is as follows,
Theorem 3.3.3 Let v.,v,v, and £ be as in the previous lemma. Then,
. P z
lim 95 — xe (Va0(2) + V4012, 5)) o = 0. (3.3.8)

Proof: Set r, = Vo, — xc€ (z, £), where £ is as in (3.3.6). Then,

ai’e'ﬁ,n
< L A (Vo - (.9)) . (Vo€ (D)) e
< [ [ 4(e) Fs (D)
Q. a

- LA (z, g) £ (z, ;) Vv, dz + -/n XeA (z, ;) 13 (z, g) £ (z, g) dz.(3.3.9)
where we have used the idempotency of x. = x(£) and (3.1.1). Note that from
Theorem 3.3.1, Vv, 2% x(y)é(z,v); A € C(, LF(Y)) and; as already observed,
£ (z,Z) is an admissible sequence. Using these as inputs in Corollary 3.2.1 we get

the following convergences as € — 0,

[ D) e (e D) e

/n 4(=2)e (=) Fuas — /n /Y XWA, 1)@, v) £(z, y) dydz

&

[xEa(2)e () 6 (. 2) ar
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Taking Hm g in (3.3.9) we get,
T empolrlin < Tmeso [ fovedz = [ [ )4G0 )60 0) dyds.
. aly
(3.3.10)
We note, using (3.3.1)-(3.3.5), that
L[ xwaeveens@ads = [ e @a
Y
‘We still need to compute lim._,o fnz feve, but it was shown by Allaire, Murat and
Nandakumar (cf. Lemma A.3 [3]) that, if
Sup, Jluclly, < oo
e — m"wv weakly in L?(Q)

. = m* f weakly in LX(Q),
then,

/ fzu,.dz—>/m'fvda:, (3.3.12)
2 o

Therefore, it follows from (3.3.10), (3.3.11) and (3.3.12) that |r.Joe —> O as e — 0
completing the proof. W

Remark 3.3.3 It is easy to see that the sum of an admissible sequence with some-

thing which converges strongly to zero in L?(Q) is admissible. Therefore, it follows

from Lemma 3.3.1 and Theorem 3.3.3 that ﬁ is also an admissible sequence. M

We, finally, prove the convergence of energies to a suitable energy.

Theorem 3.3.4 Let v, v be as before solving (3.1.1) and (3.3.5) respectively. Then
lim/ BV, Vv dz = / B*Vv(z).Vu(z) dz (3.3.13)
>0 Jo, N

where,

Bj(=) = /} xW)B(@,¥)Vy (5 + X (2,9))-V,(y; + X/ (z,y)) dy. (33.19)
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Proof: As a consequence of Theorem 3.3.3 we may write
/ BV, V. dz = / B, Vv, Vv de
Q0 [}
z
= [ XB(9:0() + Vyn(a, E.(920(0) + Py, £)) o+ o(0).
2
Then arguing as in Theorem 3.3.3 it can be shown that,
lim/ B.Vv,. Vv, dz
&0 /o,
o [ B2 + o 0,10)-(T20(0) + Vy1(2,9)) e . (3.3.19)
aly-
Then, (3.3.13) follows from (3.3.15) and (3.3.14) due to the relation oz, y) =
e Xi(z,y). B
Remark 3.3.4 In the case where there are no perforations, by taking x(y) = 1 in
(3.8.14) we recover the formula of Kesavan and Vanninathan [27]. m

From Theorem 3.3.4, it follows by taking
Fi(6) = 1/ B*Vo.Vudz
2 i1

where v = v(6) solves

—div(A*Ve) = m*f+0 inQ,
v = 0 on 8.

that F! verifies (2.1.19) of Lemma 2.1.1. For this, it suffices to take fe to be equal
to f + (xe/m*)6, for some 8 € U,q in Theorem 3.3.4. Thus, by Lemma 2.1.1, the

homogenized problem is the following; minimize the cost functional,
® J(o)—l/ B*Vu.Vuds + /9%:
T2/, VHET o JoT

over 8 € U,q and where u = u(f) solves,

—~div(A*Vu) = m*f+6 inQ,
u = 0 on A0,

where A* and B* are given by (3.3.4) and (3.3.14) respectively.
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3.4 The Case of Multiple Scales

We now consider optimal control problems on multi-scale periodically perforated
domains and whose coefficients have oscillations on several microscopic scales.

Let a;(¢),az(€), ., am(€) be m microscopic scales and assumed to be well-
separated i.e. there exists 7 > 0 such that for i € L2,..,m,

1 [ as(e) ]':0_ (3.4.1)

P ai_1(€) [ai-a(e)

and the macroscopic scale ag(e) = 1.
Example: a;(e) = e*, where 0 < k; < kp < ... < kyn. B
For any function ¢(z,y1,..,%m), which is Y-periodic in y; for all ¢, the scaled

function ¢ { z,

57,3 ) 1 denoted by [¢)..

Let A€ M(a,6,2xY™) and B € M(c,d,Q x Y™) with B symmetric. Assume,
further, that 4,B ¢ L®(Q,C4(Y™)). We consider the optimal control problem
having coefficients [A],, [B). on a multi-scale periodically perforated domain, €,,
which is defined as follows.

Let T3, ¢ = 1,2,..m, be closed subsets of the unit cell, Y and having smooth
boundary. Set,

= Oa.-(e)(k+T,)

k ezni=l

which is the region occupied by the holes. Then, Q. = Q\ T¢ and is assumed
to be connected. The interior boundary of 9, comprises of the boundary of holes
strictly contained in  and is denoted by &;,,Q. The ezterior boundary is the set,
ezt = 09 \ OineS2e.

Following Lemma 2.1.1, it is enough to homogenize the state equation and to
find the limit of associated energies. We accomplish this using the multi-scale con-
vergence method introduced by Allaire and Briane [2]. To begin with we recall the

notion of multi-scale convergence and a few results from their paper.
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Definition 3.4.1 4 sequence u, € L%(Q) is said to (m + 1) -scale converge to a
Sunction uw € L2(Q x Y™) if

Jovtleds— [ [ [ o) r vyt (342)
[t} aJy Y

Jor all § € L2(S, Cp(Y™)). We write ue "7 u(z, py, .o ym). W

The definition makes sense because of the following compactness theorem.

Theorem 3.4.1 (cf. Theorem 1.4 [2]) From each bounded sequence in L%(Q) one

can eztract a subsequence which (m+1)—scale converges to a limit in LY (QxY™).m

The proof of the theorem uses the fact(cf. Donato [19]) that if ¢ is any function in
LR, Cy(Y™)) then

Li_f,g/n[¢]§dr=/n/y -~-/Y¢2(x,y-,--,ym)dym“dy1¢n (3.4.3)

Also one knows(cf. Allaire and Briane [2]) that [¢le (m+1)-scale converges to
&(Z, Y1, -, ym). Such functions are said to be admissible functions. One can intro-
duce, like in the two-scale case, the notion of an admissible sequence and obtain the
following version of Theorem 3.2.2 for the product of two (m+1)-scale convergent

sequences at least one of which is'an admissible sequence (cf. Theorem 1.5 [2]).

Theorem 3.4.2 Let u. be a sequence of functions in L2(Q) which (m+1)-scale con-

verges to u(z, 1, .., ym) and satisfies

1im/u§dz:// / (2, Y1, - Yon) Dy d.
€20 /g oy Y

Then for any sequence v which (m+1)-scale converges to v(z,y1, .., Ym), one has

lim/usvgh:// / U(E, Y1, s Ym) V(T2 U1, s Ym) QYpm..dyndz. B
€30 /g aly Jy

Remark 3.4.1 A sequence like u, in the above theorem is said to be an admissible

Clearly a of functi which converges strongly in L? is an admis-
Y

sible sequence. Also by the above theorem, the sum of two (m+1)-scale convergent

sequences which are admissible is also an admi. g . |
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One proves a version of Theorem 3.2.4 as follows.

Theorem 3.4.3 Let u, be a bounded sequence in L*(Q) such that ue "%
U@, Y Ym). Lot 6 € LXQ,Cp(Y™). Then uldle ™5 (uh)(z, 1, vm)-
Proof: Let ¢ be any function in L?(f2, Cx(Y™)). Then ¢% also belongs to this

space. Hence, by the definition of (m+1)-scale convergence,
[uttlvlas = [wipvlca
Q Q
— // / WT Y15+ Ym) (S5 415 Ym) .. dpndz
aly Jy
= // ---/(w)(z,yn.«-,ym) B(&, Y15 s Ym) QY- dyrdz.
QJy Y

This completes the proof. B

3.5 Homogenization-Multiple Scales

To obtain the homogenized coefficients, A* and B*, in the limiting optimal control
problem we follow the same steps as in the two-scale case. Let f. be a sequence in
L*(Q) such that x.f. — m*f, where m* is the material part of Y. Let u, be the

weak solution of the following elliptic boundary value problem,
—div([Al.Vu) = finQ,
[Al:Vuene = 0on 8,
U = 00n 8oz
It is required to homogenize these equations and to find the limit of the sequence

B Vu..Vue dz. The h ization of the i 3.5.1) was done by Allaire
2.

and Briane [2] and it is summarized in the following theorem (cf. Theorem 3.4 [2]).

Theorem 3.5.1 Denote by™ the extension by zero in the holes U\ Q.. Then

T " w@)x(, )y
-

o (35.1)
Vu, () Veu+ Zvykuk) X1, ey Ym)
k=1
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where X (Y1, ... Ym) = [TiZy Xi(¥:) and x; is the characteristic function of the set Y;'.

Also, (u,us, ..., um) is the unique solution in
m
V= Hj (@) x [J(@ x Y= HL (™))
i1

of the (m+1)-scale homogenized problem:

—divy, (A(Vou+ 30, V) = 0in Y,
A(Vu+ 30, Vyu)n = 0 on 8T,
Jy Xm(ym)um dym = 0,
—divy, fyrfy ITF xe@) A(Vou + 30, Viu)dym - dyjn = 0in Yy,
S Jy 7o xa @) A(Var + Sy Yy ) dym. dyja)n = O on 8T,
Sy, x3ws)uidy; = 0
for j=1, 2, ..., m-1 and finally,
—divy fy Jy TTT Xe(uk) A(Vare + 0 Vyu)dymdyn = m*f inQ,
u = 0ondQ

(3.5.2)
m*, here, is fi.. fi, TIT xe(vk)@Ym..dy,. W

Remark 8.5.1 It is possible to decouple the (m+1)-scale homogenized problem by

setting

) _ Ou Buy 34
uz(r,yl,»..,ym)—ax, Zay,;,w T, Y15 e Ym) (3.5.3)

for j = m,m —1,..,1 successively. For alll {1,2,..,n}, the wj; are obtained
successively for j =m,m — 1,...,1 by solving the periodic boundary value problems
in the cells with holes, Y

~divy,(A(er + Vi) = 0
Alle+Vwi)n = 0 ondTy, (3.5.4)
Jy x5 (@, g ) dy; = 0
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forwit € LXQxYIY, HY(Y})) and the A7 ’s are obtained ively in conjuncti
with (3.5.4) as follows,
A™ = 4
Al le / Xi (i) A% (e + Vy,w)dy; for all I (3.5.5)
Yy

I

The homogenized problem that u solves is,

—div(A*Vu) = m*'finQ,
u = 0ondQ

where A* = A° given by (3.5.5) forj=1. R

We now wish to compute the limit of the energies fn‘[B]sVu,.Vug dz. Note that
this can be written as fn[B]EVTLE.ﬁdz. From Theorem 3.4.3 and Theorem 3.4.2
it follows that

lim / 1Bl Free. T d
£=0 o
- ///B (Vau+ 3V u) (Vo + 3 Vyws)dym. dynds (3.5.6)
Yy Y k=1 k=1

provided we can show that ﬁe is an admissible sequence. To prove this we re-
quire the solutions u; of the cell equations to be more regular, i.e. they belong to
L¥(Q, Cl(Y*)) and we can assume this provided the coefficient matrix A is suffi-
ciently smooth (cf. Allaire and Briane [2]). Under these assumptions we show that

%‘us is an admissible sequence.

Lemma 3.5.1 x:(Vazu(z) + SfL, [Vy ) is an admissible sequence.

Proof: The regularity assumptions on u ’s imply that V,u + >y Vyug is an
admissible function. We also note that

m m

.

Xe(Vat 3 (Votele) TN (g (Vo + 3 V),
= =
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Therefore, by Theorem 3.4.2
[elTeate)+ YTl

k=1

S RS Y RARICATERS yLRNRPS
@ k=1 k=1

m m
— // / X(z,yl,..,ym)(V,u+Zvykuk)<(vzu+Zvykuk)dym..dyldx.
Wy Iy k=1 k=1

This completes the proof. B
Under the same regularity assumptions one can prove, as in the case of two-scales
(cf. Theorem 3.3.3 ), the following corrector result;
m
Voue — Xe(Vau(z) + E[V“uk]z) converges strongly in L*(€) to 0.
k=1
From Lemma 3.5.1, the corrector result and Remark 3.4.1 it follows that %5 is an
admissible sequence. This justifies (3.5.6). The left hand side of (3.5.6) may be now

be written as [, B*Vu.Vudz using (3.5.3) and the following iterative formulae,
B™ = B,
Bflee; = /Xk(y,,)B"(e,' + Vi ). (¢; + Vi ).
Y

for k=m,m~1,..,1 and we set B* = B° obtained by this process.
Thus, the homogenized optimal control problem, (P*), is as given at the end of

the Section 3.3 with m*, A* and B* obtained in this section.



Chapter 4

Elliptic Systems

4.1 Introduction

In this chapter, we study the homogenization of an optimal control problem governed
by elliptic systems on perforated domains. We need some notations in order to state
the problem and we do this first by recording all the notations that will be used in
this chapter.

Let Q be a bounded domain in R*. Let 0 < a < b be constants. We define
M7 (a,b,9) to be the class of nm x nm block matrices, C = ((Ci))i, 5 =1,2,...,m,
where each block C; € L(Q2)"*" and for a.e. z € 0 we have,

alé* < C(z)€.£ and |C(z)€] < bl¢] for all £ € R*™. (4.1.1)

In the sequel, the Greek indices, o, 8 will take values in {1,2, ..,n} and the Latin
indices, #, 7 will take values in {1,2,...,m}. Thus the (, §)* element of (s, )"
block in C will be denoted by Cff‘ Let u = (u1, 2, ., Um), ¥ = (v1,73, ..., Umm) be

R™ valued vector fields on Q. Then, we set,

Dy

n

(Vuy, Vg, ..., Vi) and,
m

Z Vu;. V.
=1

Du.Dy
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For an R* valued vector field on ©, n = (', n?, ..., 7"), we recall that,
o™

oz’
a=t

B o anf
curlyp = ((W—@))

For an (R*)™ valued vector field on 2, ¢ = (€, . -, Cn), Where each Cilz) € R?,

we define,

divp =

div¢ = (div,, dive,, .., dive,),

curl¢ = (curlCy, curls,, ..., curll,,).

The product C¢ will be written in the block form ((C¢))2, where (C¢); =
(i CiC)yi=1,2,...,m.

For £ > 0, the perforated domain £, is defined to be £ \ S, where S is a closed
subset of  with smooth boundary. Xe is the characteristic function of ©,. Let
A, be a sequence in M(a,b,Q) and let B, be a sequence of symmetric matrices
in M7(c,d,Q) for some constants 0 < ¢ < d. Let K € M*(a,b,92) and let N €
Mi(c,d,$2) be symmetric. The space of admissible controls is taken to be Usy =
L*(9)™ or some analogue of those defined in (2.1.9). Let f € L*(2)™ be a given
function.

For each € > 0, the optimal control problem consists of minimizing the cost

functional

(Pe) Je@) =3 /Q B.Du,.Du,dz + %/H NO.8dx,
over 0 € Ug, and where the state, u, = u,(8), is the solution of the elliptic system,
—div(A.Du,) + Ku, = f+6inQ,,
(A:Du,);in, = Oon dS,,
= Oon Q.

%

There cxists a unique optimal control 8; for this problem. It can be assumed that §¢

converges weakly in L2(2)™ to some 8* and it is required to identify the homogenized
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problem for which 8* is the minimizer. We once again work in the framework of

Lemma 2.1.1 (or an appropriate modification) and set,
F®) = 3 [ B.Du.Dydz s,
1
@) = 5[ Nogdz
2 Ja,

As before, it is easy to identify U,q as an analogue of those given in (2.1.10). The
F? which verifies (2.1.20) and (P4) of the lemma is,
1 [ N8.9
F20) == / —=dz
® 2Ja x
where x is the L weak” limit of the sequence x. (x~! is assumed to be in L>()).

This follows, as in the scalar case, from Lemma 4.1.1 below.

Lemma 4.1.1 Let 8° be a séquence in L2(Q)m such that §¢ — 8 weakly in L2 (y™.
Let N be the symmetric matriz mentioned above. Then
)

liminf/ NE‘.E‘de/LdL (4.1.2)
€0 o a X

Proof: By the hypotheses on x, (x./x) 8 € L?*()™. Since, N is a positive matrix
the functional ®(¢) = [, N¢.¢ dz is convex. Therefore,

7 8 X8 7 x:8
(@) - o(XZ) > /Ni,ﬂz——dz
() (X) z x(’ x)

I

8 5 _ xf
NZ.(§F - 2=y da. 413
./n x(‘ x) 8 @19

The right hand side in (4.1.3) tends to 0 as & — 0, since § — 0 weakly in LAy,
Further,

Xt / NE.§
Q(==— = dz
( " ) X2

No.8
/;dz_
o X

It remains to identify a F?' verifying (2.1.19). This shall be done in the next

From these one concludes (4.1.2).

section by developing a notion of H-convergence for block matrices and then we can

proceed along the lines of the scalar case to obtain the homogenized problem.
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4.2 Hp-convergence

Continuing our discussion, we need to homogenize the equations,
—div(A.Dw) = f inQ,
(A:Dy)in. = 00ondSs., i=1,2,..,m, (4.2.1)
u, = 0onds
for any sequence, f. e L2()™, such that Xef, = f weakly in L2(Q)™. And, we

need to obtain the limits of associated energies,
/ B.Du,.Duy, dz. (4.2.2)
e

To the best of our knowledge, the homogenization of problem (4.2.1) has not been
studied except in the periodic case and that too only in non perforated domains (cf.
Besoussan, Lions and Papanicolaou [6]). In order to homogenize (4.2.1) we need to
develop a notion of Ho-convergence for block matrices on perforated domains. This
is done now and we shall call this Hy-convergence; the subscript, b stands for block.
Certain additional hypotheses are required on the geometry of the domains, as in
the case of Hy-convergence (cf. Briane, Damlamian and Donato [7))-

‘The holes S, are said to be admissible if,
(H.1) Whenever x. — x weakly" in L*(Q2), we have x > 0 almost everywhere.
(H.2) Let Vi = {u € H'(Q)|u = 0 on 99} be equipped with the norm,
llelly, = [Vuloq,.. There exists a sequence of extension operators P, : V, — H ()

and a constant Co independent of ¢ such that,
|VPeulon < Co|Vulog, for all u € V,.

Remark 4.2.1 Ezamples of such holes are spherical holes of size € periodically dis-
tributed in space with period 2¢ (cf. [18]). Therefore, we have eztension operators,
#e 2 VI — Hy ()™ which are simply the extension operators P, applied to each

component. Note that,

|Dpculoa < Col Dujon, for allu e (Vo)™ 1 (4.2.3)
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Remark 4.2.2 The operators p. have the following interesting property which will
be used in the nest section. If v € H} ()™, then

Pe(vy,, ) = v weakly in Hy ()™ (42.9)

A proof of this can be found in the paper of Briane, Damlamian and Donato (cf.
Lemma 2.1 [7]). W

In what follows, g} : H~1(Q2)™ — (V)™ will denote the adjoint operator of p,. For
f € H'(Q)™, let u, € V™ be the solution of the boundary value problem,

—div(A.Dy,) = p.fin Qe

(AcDu)in. = 0ondS,, i=1,2,..
u, = 0ondQ.

(4.2.5)

where n, is the outward normal on 8S,. We have the following definition:

Definition 4.2.1 Let A, be a sequence in M(a,b,Q) and {S.} be an admissi-
ble family of holes. The pair (A.,S:) is said to Hy converge to a matriz A €
M (a,¥,Q) for some constants 0 < o' < ¥ if the following holds:

For any f € H™' ()™, the sequence of solutions u, of the boundary value problems
(4.2.5), satisfies,

peu, — u weakly in H{(Q)™, @26
Q.(AcDu,) — ADu weakly in L3(Q)"™

as £ = 0, where u is the solution in H ()™ of

—div(ADu) = in Q,

(aby = f 4.2.7)
z = 0ond

We write (A.,S:) 25 A. &
Remark 4.2.3 For m = 1, this coincides with the H, gence of Briane,

Damiamian end Donato [7]. B
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Our main theorem is the following and this directly leads to the homogenization

of the state equation.

Theorem 4.2.1 (C ) Let A, be a

g in M (a,b,$) and let S, be
an admissible sequence of holes. Then there ezists a subsequence indexed by € and
A € MP(a/CE,b2/a,Q) such that the pair (A, S.) 25 A

‘The next section is devoted to proving the theorem.

4.3 Proof of the Main Theorem
The following propositions are required in proving the Main Theorem.

Proposition 4.3.1 Let u, be the solution of ({.2.5). Then the following estimates
hold:

Ipcteligam < |l mriaym - } (431)

1R(A:Dwloa < e [lfll-1am
where ¢, = C}/a and c; = Cob/a. )
Proof: Note that, by Poincaré’s inequality, | V. lo2 is a norm equivalent to the

original norm on H}(f2). So we assume that H3(S) is equipped with this equivalent

norm. Then,

Ipetellmgam = |Dpelon } (432)

< ColDu o,

Now, using ellipticity and (4.3.2), we get,

alDu,Bq, < /ﬂAeDQE.DyedI

= <gifu >
= <[ peu >
< Nl g It gy
< Collflly-1ym 1D2eloe-



CHaPTER 4 ELLIPTIC SYSTEMS 52

Therefore, we get,
|Dyloo, < Coa™ ”i”n—l(n)"-‘

From this and (4.3.2), the first estimate follows. By using the estimate for | Dy, |o.q,

we get,
|Q:(A:Du oo = |A.Dulog,
< b Dulosn.
< Coba™ ”i“}rl(n)"‘ -
The proofs of the following iti are straigl ward ad of those

found in Briane, Damlamian and Donato (7] for the case m = 1.

Proposition 4.3.2 Let €, € L*(Q.)"™ be a sequence of vector fields such that the
sequence, Qc(&,), is bounded in L?>(Q)"™ and satisfies

—di = pif inQ.,
ivg) = if, im0, w3
(&)ine = 0 0ndS, fori=1,2,...,m,
and the foisina 7 subset of H™1(Q)™. Then, the sequence

div(Q.£.) is in a compact subset of H-'(Q)™. B

Proposition 4.3.3 (div-curl lemma) Let ¢, and &, be two sequences of vector fields
in L2Q)™™ such that div¢, is in a compact set in HY ()™ and curlé, is in o
compact set in H='(Q)"™. Furthermore, suppose that ¢, — ¢ and &, — € weakly in
LY(Q)"™. Then,

(b — ¢ Ein D'(Q).m

The following abstract theorem will be used in the proof of the main theorem (cf.
Murat (29]).

Proposition 4.3.4 Let V be a separable Banach space and let W be a reflezive
Banach space. Let T, be a sequence of linear operators T, : V — W such that
I Tellleeviwy < d for a constant d. Then, there exists a subsequence indezed by €

and a linear operator T : V' — W such that Ty v — Tv weakly in W Jorallvel' M
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We now prove our main theorem. Our arguments are along the lines of those of
Murat( [29], [30]) and Briane, Damlamian and Donato ( [7]) for the cases of H—

and Hy— convergences respectively.

Proof of Theorem 1.1: It is done in several steps.
Step 1: Let Q cC . Note that the sequence S, is admissible for the domain £’
also. Just observe that the extension operators F; can be extended by zero on a\Q
and (H.2) holds for the new extension with Q replaced by €. Extend A by af on
€'\ Q2 and we denote the extension by A, again. Note that A, € M7 (a,b,Q'). Let
Q =9\ S, and,
Ze={ve H(Q)™:u=00n 80}
Define a sequence of operators T, : HY Q)™ 5 HYQ)™ by
Teg = pev, for g € HY(V)™, where . is the solution in Z, of the equations
—div(A{Dy,) = piginQ,
(A{Dy.)in. = Oon 8S., i= 1,2,...,m, (4.3.4)
: ¥ = Oondf.
By Proposition 4.3.1, we have the estimate,
1Tegllyerym < a7'C3 gl -2y -
Therefore, by Proposition 4.3.4, we can extract a subsequence indexed by & and
find an operator T : H=Y(Q')™ — HY(')™ such that
T.g — Tg weakly in H}(Q)™ (4.3.5)

for all g € H-1(Q)™.

Step 2: We show that T is coercive. Define subspaces W, of Z, by,
We={v € Z|(A!Dv)in. =0 on 8S,,i = 1,2, wym}.
W. is a closed subspace of Z.. Define the operators C. : W, — Z by,

Cev = —div(ALDy) for y € W,.
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Then, for u € W,,v € Z,, we have,

| < Ceu,u>| A!Du.Dydz

I

2
< |A:Dulo g, | Dulog;

IA

b| Dy o [ Dulo g

blullw, llvll, -
Therefore, we have the following bound for the operator norms of the sequence C;
ICelleqwe,zzy < b (4.3.6)
Let R, be the restriction operators, Ry = u, from H}(Q')™ to Z.. For any u €
HQ)™,
1Reull;, = |Dulog, < |Dulyg-

So,

Nl Ly erym 2y < 1 (4.3.7)
Let g€ H-(Y)™ and let 2, be the solution of (4.3.4). Then,

(CeoR:oTh)g = (CeoRe)(pere)

Celze)

= g

Therefore, using the estimates (4.3.6)-(4.3.7),
legll,, = 1CeoReoTgl,, }
< b||T=£||H;(n‘)m'

Let w be any function in H{(Q')™ be such that el gy g ym

(4.3.8)

< 1. Then, by (4.3.7),

[l ]I, < Mg < 2.

Therefore,

letall,, = 1<eigm, >

| < g pewy,) >
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Letting € — 0 and using (4.2.4), we get,

limeo|lplgll,, 2 I<gw> I

As this holds for every w € H} (Q')"‘ whose norm is less than 1, we conclude that

limeso [l03gll 5, 2 Nlgll o iqrym - (4.3.9)
Now,
<Tg: g >m@rmm-r@yn = < Peed >y yma-i@n
= <u,p09>z.z
- / A.Dy, Dy, dz
o

a|lDy[3 g,

[\

v

aCo?| Do, [} o

= aCy? "Tfﬁnizgm')m .

.
Therefore, passing to the limit for the subsequence indexed by ¢’ and using (4.3.8)-
(4.3.9), we get,

<Tg,9>2 aCy™ lglfmsarym - (4.3.10)

Thus, the operator T has been shown to be coercive.

Step 3: Construction of test functions and computation of H, limit.

Since T is coercive, by the Lax-Milgram theorem,
T Q)™ = HY(Q)™

exists. Define vector fields P : @ — R™ for ¢ = 1,2,..,m and
o =1,2,...,n by, P?(z) to be the vector in R™ whose only non-vanishing component
is the ¢ th component and is z®. Then note that, ef = DPF = (0, ..., €%, ..., 0) where

eq is the ath standard basis vector in R™.
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Let ¢ € D(Y') be such that ¢ = 1 on 2. Define the sequence of test functions,
(M =T, o T-H(PEY). (4.3.11)
Note that, by (4.3.5),
¢ < ToT 1(Prg) = P26 weakly in H ()™
Therefore, restricting to §2,
¢ = P2 weakly in H'(Q)™. (4.3.12)

Since Q. (A:,Dg"s') is bounded in L2(Q)"™, there exists functions 1 and a further

subsequence &” such that,
Qo (AL DC") — 0 weakly in LH(Q)™™ (4.3.13)

for all i and o.

By definition of (** and from Proposition 4.3.2, we conclude that
divQ. (AL D) is in a compact set in H~'(¥')™. Consequently, when restricted to
Q,

—div(Q.A.D¢*) is in a compact set in H~1(Q)™. (4.3.14)
Define A through the relation,
Alef =77, (4.3.15)

Step 4: We shall now show that {(A.«, Sor) 5, A. For convenience we denote £” by
€.

Define the operators, G, : H={(Q)™ — H}()™ and H, : H-H(Q)™ — L(Q)™™ by,
Gef = peu, and H, = Q.(A.Dy,) where w, is the solution of

—div(4.Dy,) = p:finQ,
(A.Dw)in. = OondS.fori=,1,2,...m,
u, = 0on o0
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By Proposition 4.3.1, the operator sequences G, and H, are bounded and hence, by
Proposition 4.3.4, there exists a subsequence €' of ¢ and operators G and H such

that,

Guf — Gf weakly in H}(Q)™,
. Hgf — Hf weakly in L2(Q)"™,

&

forall f € H™Y(Q)™. Set u=Gf and £ = H f. Restating the above, we get,

pouy — wweakly in Hi(Q)™, } (4315)

Qu(AyDu) — € weakly in L3 (Q)™.

We now show that £ = ADu where A was defined in Step 3. Let % € D(Q).

[ aca,Du)gdvar = [ 4Dy D pas
Q Q.

/ Duy AL D ydo
Qe

| Docu il DG pas

[

By applying Proposition 4.3.2, we conclude that —div(Q.(A.Dx,)) is in a compact
set in H~'()™. Therefore, by this and (4.3.14) and applying div-curl lemma we
can pass to the limit as € — 0 in the above, and we get,

/E.ef‘wdz:/Dg.A‘e;‘wdm
Q n

As this holds for all ¥ € D(2) we conclude that £ = ADu. Now, we show that z

satisfies the equations

z = 0ondQ.

—div(ADy) = finQ } (4.3.17)

Set £, = (A.Du,) and let ¥ € D(2)™™. We have,

< —divg,, T}, > = / A.Du, DV dz
Ja.

I

[ e Duds.
o
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Passing to the limit for the subsequence ¢’ using div-curl lemma and (4.3.16), we
get,

lim < —dive,, @, >= /ne.uqfdx.
On the other hand

< —divg, ¥, > = <pif, ¥, >

= <Lpe(¥a,) >

Note however that p.(¥), ) — ¥ weakly in H}(Q)™. Thus the limit of the above
sequence is also equal to < £,¥ >
Thus we get, [, DV dz =< f,¥ > forall & € D($)™. From this we conclude that

—divg = fie. —div(ADy) = f.

The argument of this step can be applied to any subsequence of € and by uniqueness
of the solution to (4.3.17) we conclude that (4.3.16) holds not only for the sequence

&' but also for the entire sequence €.

Step 5: Bounds for A.
We can show, as in Step 2, that the operator G is coercive and its inverse,
G~ = —div(AD(.)). For any ¥ € D(Q),

| ADuDuvdr > o | 1pufvas
> ar?/n |Ac Dy, [*¥? dz.
That is,
[ o401 Decusas > e [ 104Dy e a.

Passing to the limit as ¢ — 0 and observing that the left hand side has a limit while
the right hand side can be handled using weak lower semi-continuity of norm, we
obtain,

/nADg.pr2 dz > ab™? /ﬂ |ADy|*p? dx.
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We can choose f and hence u such that u = P? on the support of . Then we

Tud. 1

using Cauchy inequality, that,

|Aefplsq < bPa~ [veflonlAetPon-

Therefore,
lAefylon < b'a~'[pellon
= b la
for all ¥ € D(Q) (and by density for all ¢ € L?(Q) ) and ¢ = 1,2,...,m and
a =1,2,...,n. By duality, we conclude that A € L®(Q)™™ and || A||,, < b%a~'.
Again starting from,
/ A.Dy,Dudz > a/ | D |? dz
e .

2 aCi?|Dpeulia

v

and taking limits we find,
/ ADu.Dudz > aC;z/ |Du|? dz
i f

for all w € H3()™. Therefore, A > aCy2I a.e. (for a proof cf. Lemma 22.5, Dal
Maso [16]).
Thus, A € M™(aCy?, 5%, Q). This concludes the proof of Theorem 4.2.1. W

Remark 4.3.1 Note that we have assumed |Ac(z)A| < b|A| a.e. T € Q, following
[29] and not A7'(z) > b I a.e. z € Q, which would have been the analogue of the
corresponding condition in (7). So, though we define the operators T, in a manner
similar to Briane, Damlamian and Donato [7], the proof of the coercivity of T needs

different arguments from those of (7], as can be seen in Step 2. B

Remark 4.3.2 H,— convergence cannot be obtained from Ho— convergence because
of the presence of coupling in the highest order terms. Thus, we need to construct
new test functions (cf. Siep 3). Similar sequences have been constructed in the

periodic case by Bensoussan, Lions and Pepanicolaou [6]. B
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Remark 4.3.3 It can be shown that H,— convergence enjoys properties similar to
Ho—convergence (cf. [7]). In particular, it is independent of the choice of extension
operators, is local in nature, and the H, limit of the transpose of a sequence of ma-
trices is equal to the transpose of the H, limit. Also, the existence of local correctors
can be proved. As the statements and proofs of these results are only minor modifi-

cations of the corresponding ones for Ho— convergence (cf. [7]), we omit them. B

Remark 4.3.4 Let (A, 50) 2 A. Let f, € L*(Q)™, such that x. fo — xf weakly
in LX(Q)™. Then, the solutions u, of (4.2.1), corresponding to right hand side f,,
converge to the solution u of (4.2.7), corresponding to the right hand side xf, and

the convergences (4.2.6) hold. The proof is along the lines of Theorem 1.5 [7]. B

4.4 The Homogenized Problem

In view of Theorem 4.2.1, it can be assumed that A, has a H, limit. This is the
desired A*. The matrix B" is obtained in terms of the test sequences (™ € H (Q)™
defined as follows.

Let €' be a bounded open set in R™ containing the closure of Q. Extend A, by
oI on '\  and call it C.. Notice that S, form an admissible set of holes for €
also. Without loss of generality, let (C., S;) e By locality, C restricted to 2
is A*. Let ¢ € D(QY), with ¢ = 1 on Q. Then, ¢ are taken to be the solutions in
HYSY) of

—div(C.DEF) = g2 (~div(CDGEY)) in €,
CeD(n; = OondS,i=1,2,

= 0OondQ.

(4.4.1)

u
Then, it follows from H, convergence that,
PeC™* = P2 weakly in H'(Q)™
Q:(A.DC) —  A’e weakly in L2(Q)™™ (4.4.2)
divQ.(AL(He) cc H Q)™
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fori=1,2,..,mand a = L,2,..,n.
The corrector matrices, M, &, are defined as follows,
M.ef = Dp. (7). (4.4.3)
Then, B* is given by the formula
B =limx.M{B.M, in D' (). (4.4.4)
Let F'(8) be defined as follows.
Fi(6) = %./HB‘DE.ngI

where u = (@) is the solution of

(445
u = 0ondQ. )

~div(A'Du) + Ku = xf+8in @, }
It can be verified, as in the scalar case, by first introducing and homogenizing the
state-adjoint state systems of equations that A* and B* defined above are the

coeffici for the h. ized system. This implies, as in the scalar case, that the

energies converge to an appropriate energy in which the matrices A* and B* appear
naturally. All these show that F! defined above will satisfy (2.1.19) for a suitably
modified Lemma 2.1.1. So, this and the discussion in Section 4.1, where F? and Uaa
have been defined, show that §* is the minimizer of the functional F! + F2 over the
domain U,y.

In the periodic case, it is possible to give an explicit formula for A* and B*.
Let S be a closed subset Y with Lipschitz boundary. We then define a periodically
perforated domain as in Chapter 3 and we assume that Q. is a connected set. Let
A € MP(a,b,R*) and B € M™(c,d, R") be Y-periodically defined block matrices

and B is assumed to be symmetric. Define the sequences A4, and B, as follows:
A@ = AD), B =BE).

We cousider the homogenization of the problem (P.) defined with these coefficicuts

on periodically perforated domains. To obtain the homogenized coefficients we need
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to define test functions, Q‘, which solve the following periodic boundary value prob-

lem in the basic perforated cell

—div(AtD(£?+g)) = 0¥\
(AD(BE+¢)in = DondS,j=1,2,..,m, (446)
y = (ly) Y-periodic

fori=12.,mand a=12..n It can be shown by calculations similar to
those in Kesavan and Rajesh (23] or in Section 3.3 - 3.4 of the thesis, that the

homogenized coefficients A" and B* are those given below

=S

Helej = /Y ’ AWD(E)+ ) DB + (L)

P

Bed - / BDIE) < ) D)+ ) o
ns I

forij=12.,mande,f=12,..n



Chapter 5

The Dirichlet Problem

5.1 Introduction

In this chapter, we consider the homogenization of optimal control problems gov-
erned by Dirichlet boundary value problems on periodically perforated domains. The
definition of the periodically perforated domain €, differs from the one in Chapter
3 in that the size of the holes bear a ratio, a, : ¢, to the length of the scaled cell
€Y. We do not consider the situation where the coefficients appearing in the state
equation and in the cost functional oscillate. This is a problem still open to investi-
gation. The optimal control problem that we want to homogenize is the following:
Let B € M(c,d, ) be symmetric, N be a given positive constant and g € L2(Q) be
a given function. We take the space of admissible controls, US,, to be one of (2.1.9).

For & > 0 fixed, we find 6] which minimizes the cost functional

1

(Pe) Je(6) /BVUE.V‘UEdI+E/ 0% dz (5.1.1)
2 Ja, 2 Ja,

over & € Ug, and where the state u, = u,(6) is the solution of the Dirichlet problem,

It

—Au,

Ue

g+6in Y,

(5.1.2)
0on Q..
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Once again, the homogenization is performed in the framework of Lemma 2.1.1 by

setting,

F}O) = %/ﬂ BVu,.Vu, dz and,

N 2
5 059 dz

F2(0)

The corresponding F? and U,y are as before (cf. Section 2.1). It is required to
identify the F! which satisfies the lemma. This can be split into two parts-one, to
homogenize the following Dirichlet boundary value problems:

Let f. € L*(Q) such that x.f. — f weakly in L*(Q) or f. € H~(Q) be such that
fe — f strongly in H}(). Let u. € H () solve,

—Ay, = in Q,,
e fe e (5.1.3)
ue = 0ondQ,.
Two, to obtain the limit, lim_,o fn, BVu,.Vu, dz in a suitable form.
The homogenization of (5.1.3) has been studied by Cioranescu and Murat [11],

[12]. It was shown that the asy: ic behaviour of the soluti of (5.1.3) d d:

on the size of the holes. A critical size ¢, is found so that:

a) if ac >> ¢, i.e. the hole size tends to zero slower than c., then @, — 0 strongly
in H}(Q).

b) if ac = O(c.), then there exists a measure p such that @ — u weakly in H}(Q)
and u solves the following Dirichlet boundary value problem having an eztra lower

order term,

5.1.4
« = 0ondf. ¢ )

Autpu = finQ, }
The lower order term is known in the literature as the ‘strange term’.
¢) if . << ¢, i.e. the hole size tends to zero faster than ¢, then @, — u weakly in

H}{(Q) and u solves the equation

Au = finq, }

u 0 on 982,
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In the above, denotes the extension by zero onto the holes. Since, the u, vanish on
the boundary of Q. the extension &, also belongs to H}(2).

In cases b) and c) above, these results are proved in [12] by constructing a
sequence of test functions, we € H'(Q), with the following properties:
CM1) we =0 in 2\ Q,,
CM?2) w, — 1 weakly in H'() and,
CM3) For any sequence v, € H!(Q) with v, = 0 in \ €% and such that v, — »
weakly in H'(Q) and for any ¢ € D(£2), we have,

/ Vwe. V{dv)de —< p,dv > .
0

for some constant p (z = 0 in the case ¢ ). We will, henceforth, refer to these
conditions jointly as [CM] conditions.

In fact, the homogenized equations corresponding to (5.1.3) can be shown to be
(5.1.4) with just the assumptions that a sequence w, € H!(f2) and a distribution
# € W-h(Q) exist satisfying [CM], or just CM1 and CM2; as it has been shown
by Juan Casado Diaz (9] that CM1 and CM2 together imply CM3. There are more
general geometries than those considered by us in the thesis which satisfy [CM], as
can be seen from numerous examples in [12].

We also have the fact that 4 is a positive measure from,
<pp>= lim/ |Vw|2p dz.
=0 Jq

This gives the existence and uniqueness of solution to (5.1.4).

Now, we would like to characterize the limit of the energies fn(BVus.VuE dz as
€ — 0. We observe that if c; = o(a.), i.e ¢, << a., then fn, BVu,Vu.dz — 0
which follows from the fact that @, —» 0 strongly in H}(R). We, therefore, look
at hole sizes which are much smaller or comparable to the critical size. Then, we
can work under the general hypotheses of the existence of a sequence w, as above.
Under these assumptions, we shall obtain a characterization of the limits of energies
in Section 5.2 and derive conclusions for the optimal control problem in Section 5.3.

We end this section with the following remark.
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Remark 5.1.1 If B = I, then the limit of the energies take the following form
/ |V 2 d 23 / |Vu|2dz+/u2du.
Qe o Q

This can be proved (cf. [30]) by a simple tntegration by parts and by using equations
(5.1.8) and (5.1.4). m

5.2 Strange Term for the Energy

Let Q. be a general perforated domain. Assume that there exists a sequence, w,
satisfying the [CM] conditions. We show that there exists a subsequence €' of ¢
and a distribution pp such that, for u,. as given by (5.1.3) we have the following

convergence,
/n BVu, . Vu, dx — /n BVu.Vuds+ < pp,u? >
where u solves the Diric}{let problem (5.1.4). Further, we show that
BVi;.Viy — BVu.Vu+ uug in D'(Q).

To define pp we need to define a sequence of test functions, which we do in the

following lemma.

Lemma 5.2.1 Let ¢, € H}(S2) be the solution of the boundary value problem,

(5.2.1)
Ye = 0 ondQ,.

—AY, = —div(BVw,) in O, }
Then, the sequence, ¥,, is bounded in H{Q) .
Proof: Multiplying (5.2.1) by #, and integrating by parts we get,

/ |VePde = / BVw,. Vi), dz
Qe 2.

< dVuweloq. | Vielog, -



CHAPTER 5 DIRICHLET PROBLEM 67

Therefore, since w, is a bounded sequence in H(Q),
IV¥cloa = [Voiloa. < d|Vucho < C

where C is a generic constant. This completes the proof. M
So, by the lemma, H' boundedness of w, and the bound for B in L>(€), we also
deduce that the sequence, Vi, — BVuw, is bounded in L?(R2). Hence, there exists a

subsequence & of & and a function v € H3(S) such that,

. lz; — 1 weakly in H}(Q), .22)
Vi — BVwy — Vi weakly in L2(Q)".
Define, up € D'(2) by,
pe = —AY +Ppu. (5.2.3)

Note that the definition of 45 depends only on w, and B.
Proposition 5.2.1 Let pp be given by (5.2.8). Letuy be the solution of the Dirich-
let problem (5.1.3) in Q. such that us — u weakly in H} (). Let P € Hi() be

the solution of:

~Apy = —div(BVu) in Qg (52.4)
ps = 00ondQ,.
Then, b7 — p weakly in H}(Qt) and p is the solution of,
—Ap+pp = —div(BVu) +upp in Q, (5.2.5) N
p = 0ond.

Proof: It can be shown, as in Lemma 5.2.1, that P, is bounded in H(Q). So
there is a subsequence £” of ¢’ and p € H}(Q) such that,
Per — p weakly in H}(Q),
N = Vpgr — BViy — Vp— BVu = 7 weakly in LX(Q)".
We need to show that
—divy + pp = upp.
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Let ¢ € D(£2). We note that $w,n vanishes on 0. So using this as a test function
in the equation, —divy» =0, which holds in Q0 we get

/ N Vwe ¢pdr = ~/ N .V wer da.
" Qu

Therefore, since w, — 1 strongly in L2(Q) and Mer — 7 weakly in L2(Q)»,

limo_,q fnz,, Ner-Vwe ¢dz = — JonVedz } (5.2.6)

= <divp,¢ > .
Again,
/ e Ve ¢dz = / VP . Vwg ¢da:—/ BVun . Vws ¢dz
20 20 2
= Lo+ T
Now,
Iy = / Voo Vwg ¢ ds
.

= / Vw . V(ps ) dz~/ PV Vo dr
Qu Qn

Therefore, using properties CM2 and CM3 of w,, the weak convergence of pv in
H{(R2) and its strong convergence in L?(£2), we get,

lim Lo =< p, ¢p>. (5.2.7)
=0
Now,

Ju = - / BV Vuu ¢pdo
Q.

S~

BVw, .V, ¢ de

/ (Ve ~ BVw) Vo ¢dz — / Vi Ve ¢dz
Q. (P
Kgu + Leu.

]

it
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We have, by (5.2.1),

0 = <div(Vi,» — BVaw,), pug >
= / (Vi — BYVw, ).V ur dx — / (V¢ — BYw0).Vu ¢pds
2, o
= - f (Ve — BVw).V upr dx — K.
2
Therefore,
lm K, = — lim / (Vo — BVww) Ve @5 dz
&0 &0l
= —/Vl&.vdt udz.
[
‘Therefore,
lm K = / Vu. VY ddo+ < ulAp, ¢ > . (5.2.8)
&0 2 |

~
I

7‘/ Vg Vu ¢pdz
2
= - / V. V(P ¢) de +/ Vg . Vé o dz
2 20
= - [ o v [ iz v T da.
[ o
Therefore, using (5.2.2), we have,
lim L. = —/ f¢wda:+/ Vu.V$ ydz,
&0 s a
which, using (5.1.4), gives,

lime oL = <Au—up,yé>+ [,VuVe pdr (5.2.9)
= — [ Vu.VY ddi— <up, b > -

after an integration by parts. From (5.2.6)- (5.2.9), we get,

<divp, ¢ > = <pi.d >+ <ulv.d > — < uhp, d >

= <pu,d>— <upp,¢>.
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Since the above holds for all ¢ € D(), we have —~Ap+py = —div(BVu)+uug, i.e.
p satisfies (5.2.5). Since 4 is a positive measure, the solution to (5.2.5) is unique,
and therefore, it follows that the entire sequence P — p weakly in H}(Q). This
completes the proof of the proposition. M

‘We now prove our main theorem.

Theorem 5.2.1 Let ¢ be the subsequence of € chosen prior to Proposition 5.2.1.
ue be the solution of the Dirichlet problem (5.1.3). Let pug be given by (5.2.3). Then,

/ BVuy Vusdz — / BVu.Vudz+ < pp,u’ > (5.2.10)
Q, Q
and,

BVu,.Vuy — BVu.Vu+ulug in D'(Q). (5.2.11)
Proof: Define ps € Hj () to be the solution of (5.2.4). We write,

/ BVu,.Vuyds = / V.V, dz — / (VP — BVu,).Vuy dz
o o, f

1

/ Vb . Vu, do = / X' fo P dz
a2, a2

where we have used the fact that u, and p, are solutions of (5.1.3) and (5.2.4)

respectively. Therefore, by integration by parts and using Proposition 5.2.1,

lim BVu,Vuydz = / fpdz
é=ota, )
= < -Au+uy,p>
= <u,-Ap+pu>

= <u,—div(BVu)+upupg > .

From this, we get (5.2.10), after an integration by parts.
Let ¢ € D(R). Set 7, as in Proposition 5.2.1, then
/ BVuy.Vug ¢dz = / Vs Vu, ¢pdzr — N Vuy ¢dz
o, a,

= Lo+ J.
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7

On one hand, it can be shown that (cf. arguments for convergence of L, in Propo-

sition 5.2.1 )

€50

lim I, = lim/ Vpo Vu. ¢pdz
&>0 a,

= <~Au+uu,p¢>f/Vu.V¢pdz
o

/Vu.Vp ¢dr+ < up,pd > .
o

On the other hand, using the fact that p,s solves (5.2.4) and using Proposition 52"1,

we get,
limJ, = lim— [ 7n.Vu, ¢ds
=0 £ =0 @,
= lm [ 7,.V¢usdz
&—0Ja,
= / n.Vé uds
4]
= —/nAqubdz-f— < —divy, ug >
- Ja
= 7/17.Vu ¢dz+ < upp — pu,ud > .
o
‘Therefore,

lim BVuy Vug ¢dz = limTy + Js)
ea0la, €0

/Vqu ddz+ < up,pd >
it

—/n.Vu ddr+ < upp —pp,ug >
Q

/Q(Vp —1).Vu ¢pdz+ < ulup, ¢ >
= ABVu.Vu ddz+ < ulup,¢ > .

This holds for all ¢ € D(Q2). This proves (5.2.11). W

Theorem 5.2.2 Let up be as defined in (5.2.3). Then,

< pp, ¢ >= lim BVw,.Vw, ¢dzx for all € D(Q).
¢

—oJa,

(5.2.12)
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Proof: Let ¢ € D(£2). We have,
/nvaEr.va: ¢dr = /n Vipo . Vwy ¢dz — /ﬂ (Vo — BVw,).Vu, ¢dx
’ = -/n Vw, . Ve b, dz:r < —Awy, da¢ >
+/n‘ (Vb — BVw,).Ve w, dz.
Passing to the limit is easy now ax:d we get,

lim /BVW.VwE, bdr = <p b +/v¢.v¢dz
¢>o0Ja, il
= <upYPd>+ < —Av, 0>
= <pup,¢>.
This completes the proof. B
Corollary 5.2.1 pp is a positive measure. B

Proof: Theorem 5.2.2 implies that g is a positive distribution. Hence, by Riesz
Representation Theorem it is a Ppositive measure. B

We now prove a result on the partial uniqueness of p5.

Theorem 5.2.3 Suppose that py and 1 are measures. Let f € H™Y(Q) and let
ug solve the Dirichlet problem (5.1.3) and let u solve (5.1.4) for this data. Then,
G = u weakly in HE(R) (of [12]). Suppose that for every f € H-Y(Q),

BVu..Vue — BVu.Vu+ulyg in D'(Q) and,
BVuc.Vue — BVu.Vu+uy in D'(Q).
Then o = py in D'(Q).

Proof: Let v € H}(Q) be arbitrary. Then Av € H~Y(R). Since, u € W-beo(q),
we also have vy € H=}(Q). Thus we are allowed to take f = —Av + vy in the

hypothesis. Now, let u, be the solution of (5.1.3) with right hand side Q:f. Then
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4 — u weakly in H}(S2) where u solves

—Au+tupy = —Av+vuin Q,
u = 0ondQ.

Since 4 is a positive measure, the solution to the above equation is unique and

therefore, v = v. Now, from the hypothesis of the theorem, we conclude that,
vl o = v in D'(Q).

But v € H}(2) was arbitrary. For any w CC Q, we choose v € D({2) such that » = 1
on w. Then, pio($) = p1(4) for any ¢ € D(Q) with supp¢ C w. That is, o), = 1,
or i = 1 in D'(w). As this holds, for all w CC £, we have #o = 1 in D'(Q). This
ends the proof. B

The proof of Theorem 5.2.1 becomes simpler, when a strong corrector result of

Cioranescu and Murat (cf. [12]) holds. The corrector result is as follows:
Proposition 5.2.2 Let f € L*(Q) and let u, be the solution of (5.1.8) and let u be
the solution of (5.1.4). Then, @, — u weakly in H}(Q). Further assume that u is
C3(R), then

Ue — uwe —> 0 strongly in HY().M (5.2.13)
When this holds we can give a proof of Theorem 5.2.1 using Theorem 5.2.2 as follows.
Alternate Proof of Theorem 5.2.1: Set Te =i —uwg. By Proposition 5.2.2,

7o — 0 strongly in H3(R). Therefore,

/ BVuy . Vusdzr = /BVﬁ:,Vi:ldx
Q, «

/ BV (uw,). V(uw,) dz + o(1).
o
Now, since Vuw,s — 0 weakly in H}(%) and B and u are bounded functions on Q,
/ BV (uw,).V(uw, ) dz = / BV, Vw,u?dz
i o

+/ BVu.Vuw} dz + o(1)
o
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Note that, in Theorem 5.2.2, it is possible to take ¢ = u and the same proof works.
Therefore, using Theorem 5.2.2 and the strong convergence of we to 1 in L2($2), we

conclude that,
lm I =< pp,u® > +/ BVu.Vudz.
&0 n

This proves (5.2.10). The proof of (5.2.11) is similar. W

5.3 The Homogenized Problem

Casea, = O(c;) : As remarked in Section 2.1, the function F? defined there and
the space Uyq which corresponds to the particular choice of Uz, satisfy the hypotheses
of Lemma 2.1.1. We also remark that, by Rellich’s compactness theorem, w, — 1
strongly in L?(2); so, passing to the limit in the identity, x.w, = w. we conclude
that x is the constant function which takes value the 1 in €. From Theorem 5.2.1
it is possible to conclude that the function F* defined below satisfies the remaining

hypothesis of Lemma 2.1.1.
Fl(9) = 1/ BVu.Vuds + / W dus,
2 Q Q
where u = u(0) solves the Dirichlet problem,

—Au+pu = g+86inQ,
u = 0ondN.

Thus, the limiting optimal control problem is: minimize the cost functional
1 2 N [,
J@) = [ BVu.Vudzr+ | v?dup+ = [ 6%dz
2Ja a 2 Jo

over 8 in U,q, where u = u(6) is as given above.
Caseas << ¢ : The same conclusions as in the previous case but both #and pg
are identically zero.

Caseae >> c. : We have seen that fm BVu, Vu.dz —» 0. Thus, F' is the
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Flow in porous media
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Chapter 6.

Correctors for a flow in a partially

fissured medium

6.1 Introduction

A fissured medium consists of a porous and permeable matriz interlaced, on a fine
scale, by a system of highly permeable fissures. Fluid flow in such a medium takes
place, primarily, through the fissures. The fissured medium is said to be totally
fissured if the matrix is broken up into disjoint cells by the fissures. In this case,
there is no direct flow through the matrix but only an exchange of fluids between
the cells and the surrounding fissures. If, on the other hand, the matrix is connected
there is a global flow through the matrix as well. This is the partially fissured case
and this is the one we will consider.

The exact microscopic model for flow in a fissured medium, written as a classical
interface problem, is both analytically and numerically intractable. But, by mod-
elling the flow on two separate scales, one microscopic and the other macroscopic,
the approximate global behaviour of the flow can be obtained from a knowledge of
the flow in a typical cell and the flow in a homogenized problem. Such a model
for flow in a partially fissured medium was considered by Douglas, Peszyriyska and

Showalter [20] assuming the diffusion operator to be linear; and later, by Clark and
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Sh Iter [14], ing the diffusion operator to be quasi-linear. The models were
homogenized in the framework of two-scale convergence, while assuming weak mono-
tonicity conditions on the quasi-linear operator. Though, by this, it was shown that
the first two terms in the asymptotic expansion of the flow approximate the flow of
the exact micro-model, the approximation was only in a weak sense. By assuming
that the quasi-linear operator is strongly monotone, we show that the approximation
is strong. This is a corrector result.

Such a corrector result is proved for the homogenization of quasi-linear equations
. z
— div (a (;,Vus)) =1 (6.1.1)

by Dal Maso and Defranceschi [17] under some strong monotonicity conditions on
the function a. Later, the proof of the corrector result was greatly simplified using
the two-scale convergence method by Allaire [1]. The results of these papers provide
the inspiration for the result proved in this chapter.

The plan of this chapter is as follows. In Section 6.2, we describe the micro-
model for flow in a partially fissured medium as considered in [14]. In Section 6.3,
we recall the results on the homogenization of this model, obtained by Clark and
Showalter in [14], under weak monotonicity of the diffusion operator. In Section 6.4,
we obtain corrector results, under strong monotonicity conditions.

The results of this chapter appeared in Rajesh [33].

6.2 The Micro-Model

The flow domain € is a bounded open set in R*. It is made up of fissures €5 and a
matrix 3, both having a periodic micro structure. The micro structure is obtained
by tesellating R* with the cells €Y' where ¥ = [0, 1]*; the region occupied by the
fissure and the matrix in the cell Y are denoted by Y and Y2, respectively. The
micro-structure on §2 is obtained by restriction of the micro-structure on R* to 2.

It is assumed that Q! and Q? are connected.
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Xj(y) will denote the characteristic function of ¥; (j=1, 2) extended Y-
periodically to all of RV. Then, xI(Z) is clearly the characteristic function of Q4
this will simply be denoted by xZ. ', = 805 (N 89% N will denote the interface
of Qf with Q5 which is interior to © and, I'i; = 8Y;(8Y2(Y will denote the
corresponding interface in the reference cell. We also set Q§ = 5, Y3 = Y3, and

X3 = X2, to be used to simplify notation at times.
Let u; : RN x RY — RV (j = 1,2,3) be Carathéodory functions, Y-periodic

in the first and continuous in the second variable, for which there exist positive

constants k, C, ¢ and 1 < p < oo such that for every £, n € R and ae. y€ Y

Iy, &)l < ClEP" +k (6.2.1)
iy, &) — iy, M) - €~m) > 0 (6.2.2)
iy, 6).€ 2 el P —k. (6.2.3)

Let ¢; € Cy(Y) (j = 1,2,3) be continuous Y-periodic functions on R such that
0<c<Le <C. (6.2.4)

The exact microscopic model for diffusion in a partially fissured medium is given by

the system
Cl(s)at ~ div (g,wf) =0 ingg (6.2.5)
& (z)%—‘divuz (g,w;) = 0 in0g (6.2.6)
c(:)a; —ediv g (E,EVug) = 0 in0g (6.2.7)
ou+ fuf = uf onT%, (6.2.8)
o (E,Vui) = m( Vi) (6.2.9)
B (;Vui) = eus(  Veus) v (6.2.10)

where the last two conditions hold on I'f ,. We have the homogeneous Neumann
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condition on the external boundary

P (7 Vu,) v = 0 on 30NN (6.2.11)
P (7 Vu;) v = 0 on HE NN (6.2.12)
m( L€Va5) v = 0 on 005N EN (6.2.13)

where v denotes the outward normal on 8.

The system is completed by the initial conditions
w0, ) =ul € L), 1< <3 (6.2.14)

ui(z, 1) is the flow in the fissures 2§ with the flux given by —pu, (5 Vu“), The flow
in the matrix has two components: u$(z, ) with the flux —u, (£, Vus), is the usual
flow through the matrix and; the slow scale flow u§(z,t) with ﬂux —eps (2,6Vug),
leading to local storage in the matrix. The “total flow ” in the matrix is au§ + fug,
where o + 3 = 1 with @ > 0,8 > 0. (6.2.8) represents the continuity of flow across
the interface and (6.2.9), (6.2.10) determine the partition of flux across the interface.

We now describe the variational formulation needed to study the well posedness

of the Cauchy problem. The state space is the Hilbert space
H, = LX) x L*(Q5) x L3(Q) (= L*(Q5) x L3(Q5)?)

equipped with the inner product

5

5

(T, v, usl, 1, o2, @5l = 3 [ &i(Euy(o) 0,00 .
=179

Define the energy space

B = H, n{[®] € W'(Q5) x WIP(%)? : uy = aws + fus on T}

where % = (ui,uz, u3). B: is a Banach space with the norm

il w1, we, wallin, = Z I /\; uy lpagny + z il A5V lizee-
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Define the operator A, : B, —» B, (where B, denotes the dual of B;) by,
Ac (s w2, wa (@1, #2806 ]) = S50 fog (2, Vy). Vs do
+Jag #3(Z, eVus) e Vs dz
for [u1, uz, us), [#1, ¢2, ¢s3] € B..
Let V. = {& € L2((0, T} B.) : (&)’ € L4(0, T|; BY)}, ¢ being plp—1).
For ¢ > 0, the Cauchy problem is equivalent to finding a solution 2 € V; to the
problem
L .
T': +A4.2 = 0in L9([0,T}; B) (6.2.15)
2O = Bins (6.2.16)
and this problem is well-posed, thanks to the conditions (6.2.1)-(6.2.3) (cf. Showal-
ter [34]). We end with an identity(cf. [14]),

%"?(T)”l - ||?(0)”‘1 - /OTAE(E?)(E?M: —o. (6.2.17)

6.3 Homogenization

The micro-model presented in the previous section was homogenized in [14], using
two-scale convergence; we recall the main results.

In this case, the definition of two-scale convergence (cf. [1], [14]) is the following.

Definition 6.3.1 A function, 9(t,z,y) € LI((0,T] x Q, Cy(Y)), which is Y-periodic

in y and satisfies
T e T
li t,z, =) drdi= t,z,y)? dy dz d
sﬂloo/nw(zs)z /O/n/yw(zy)dyzt
is called an admissible test function. B

Definition 6.3.2 4 sequence f* in L?([0, T]x ) two-scale converges to a function
f(t,z,y) € LP([0,T) x 2 x Y) if for any edmissible test function Wt z,y),

511@0/:./“ sy (he,2) dedt = ./.)T/n./yf(t‘ o, ) ¥lt,,y) dydz de

We write f* 25 f. m
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Remark 6.3.1 The space of admissible functions used in the definition of two-
scale convergence differs from the one used in Chapter 3. But this is justified by
Remark 8.2.8. Two-scale convergence is also obtainable for sequences in LP spaces,

1 < p < oo (¢f Allaire [1]). W

Proposition 6.3.1 [14] Let & be the solution of the Cauchy problem (6.2.5)-
(6.2.14). The following estimate holds

z 9510, + 5V 0, < & Z Slie-m @31

Proposition 6.3.2 [14] Let @ be the solution of the Cauchy problem (6.2.5)-
(6.2.14). There ezist functions u; in LP([0,T); W'P(Q)), 7 = 1,2 and functions
U; in LP([0,T] x WI"’(YJ»)/R), 7 =1,2,3 such that, for a subsequence of u?, (to
be indezed by € again) the following hold:

suf 23 (et ), 5=1,2,

e 23 @)Ut 5,y),
X5V I3 x(0) (Va8 2) + VUt 2,9)), §=1,2,
X5V 3 ) VUit a, ),
x,u;( V) IS Xy, Ve + VU), 5 =1,2,
XzﬂS(ngV“:a) 35 xeWisaly, V,Us),

iz

xi(Wu;(T,2), j=1,2,
xzus(T, z) x2(¥)Us(T, z,y) and,
ui(t,z) =  aup(t,z) + AUs(t,2,y) for ally €Ty, W

X5u5(T, z)

Ik

Proposition 6.3.3 [1/] The functions uy, up, Uy, Us, Us satisfy the homogenized sys-
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tem

2 T T

—Z/ // c,(y)uj%dydzdt—/ // ca(y)U;,@dydzdt
2o Jaly, ot o Jatv, at
:

=30 [ et 4,00,2) dy - L) awweoe e
=1 Jaly; aly;
2 T

3 [ Ve + 90,92y 4 9,0 dydzae
oo Jaly,

T
[ L] 0.0 dyasde=o
0 aQJy,

for all

(6.3.2)

$i(t2) € LP([0,T); W), j=1,2
@it z,y) € LP(0,T) x {W)P(Y;), §=1,2,3

satisfying
o,
at
2%,
at

€ LU0, TiW-9(Q)), j=1,2

€ LUO.TIx & (WP (Yy)), 5=1,2,3
Bes(t,z,y) = ¢1(t,7) — ada(t, x) for all y € Ty, and,

6i(T,7) = $o(T,2) = B3(T,z,y) =0. W
The strong form of the homogenized problem has the following description. The

state space is H = L2(Q) x L*(R) x I*(§ x Ya) equipped with the scalar product
2
@B = X[ [ aww@sie
=17ty
+ [ st e aaz
aJy,
— —

for every % = [, ¥z, Wal, @ = [¢1, 62, @3] € H. Define the energy space,

B={(d1.¢2%:] € HNW(Q) x W'P(2) x L3 Wi #(¥;)/R)
B%3(z,y) = ¢ () — ada(z,y) for all y € T ,}

and the corresponding evolution space V = L?((0, T]; B).
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Proposition 6.3.4 (1) @ = [u1,u,Us] € V and is the solution of the strong

homaogenized system,
|, ctaGies + 52 [ awuatana

= divel [ s, Ve + 9,0 d)

[ aw@bies - 22 awurna

i

dival [l Voa 4 9,0 dy)
o

o )au;(t )

= divy pa(y, VUs(t,z,v)) =
where Us(t,z,y) and pa(y, VyUs(t, ,y)). are Y-periodic and,
BUSE, 7, y) = wi(t,2) - aug(t, ) fory € Tz
with boundary conditions
/; W, Ve + VU dyr = 0 on 80
/y 12y, Veuz + VU dy.y = 0 on 0Q
and initial conditions
(0,7) = ul(z) j = 1,2; Us(0,7,y) = ul(x)
The functions Uy(t, z,y) solve the cell problems,

divy 5y, Vaus(t, 2) + V,U(t,2,9)) = 0 for y € ¥

#5( Vaus(t, ) + VyUs(t, 7,y)) v = 0 on I » and

(63.3)

(6.3.4)

(6.3.5)

(6.3.6)

(63.7)

(6.3.8)

(6.3.9)

(6.3.10)

(6:3.11)

Yperiodic on Tyy, for j = 1,2, In the above, L, 5 arc treated as parameters and the

cell equations are solved. W
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For € € RV, define the following functions;
(€)= /y i€+ ViV (W) dy, 5=1,2 (6.3.12)
5
where Vf is the Y-periodic solution of

divy pi(9, £+ Vi) = 0inY; (6.3.13)
W E+VVi@)w = 0onTy, (6.3.14)

Then, because of (6.3.10), (6.3.11), the right hand sides in (6.3.3), (6.3.4) can be re-
placed by the functions divy A (Vu (2, 2)) and div;A2(V,ua(2, )) respectively. Also
the left hand sides of (6.3.7), (6.3.8) can be replaced by A(V;w).v and Ax(Vaug).v

respectively.

Remark 6.3.2 We note that the functions A; can be interpreted as the integrands
in the T — limit of the functionals

Fe90) = [ xg(E o) ds.

In fact, T —lim F;.(Vv) = f, A;(Vv)dz (¢f. Dal Maso [16]). Further, the functions
Aj, 7= 1,2 satisfy conditions (6.2.1)-(6.2.3) for the same p but maybe for different
constants k,C, & (cf. (17], {10]). W

Proposition 6.3.5 [14] The following energy identity holds
1< 1
1> [ cwmarad ] [ [ awsre it
olaly alv,
1< 1
- ¢ uqzzddz—f'//cyu"zzddz
Z’Z/Q/Y SR dvds 5 [ [ @@ a
2 T
+Z/ // 15y, Vauj + VU (Vay; + V,Uj) dy dz dt
=it Jaly,

T
+/ // 3y, VyUs).VyUs dy dz dt = 0.8
0 JaJy,
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6.4 Correctors

‘We now prove corrector results for the gradient of flows under stronger hypotheses
on p;’s than (6.2.1)-(6.2.3). Let ki, k2 > 0 be constants and assume now that the
u;'s are Carathéodory functions, Y-periodic in the sécond variable, satisfying for

£,m€ RY with |¢|+ [n| >0 and ae. y€ Y

#i(y,0) = 0, (6.4.1)
15, &) — s < ka(lE] + )P %€ — nl, (6.4.2)
(15, €) = s, m)-(E =) = ka(l€] + )" %1€ — . (6.4.3)

Remark 6.4.1 Note that (6.4.1) and (6.4.2) imply

|5y, O < kalgP~? (6.4.4)
and, (6.4.1) and (6.4.3) imply

13 (Y, €)-€ = kalglP. (6.4.5)

Thus, the new hypotheses are indeed stronger than the original hypotheses on p;’s.

Moreover,

(53,8} — 5w, M) =) 2 kel —nl” ifp>2 (6.4.6)
iy, €) — (v, m)) < k€—aP'ifl<p<2 (6.4.7)

These inequalities follow from (6.4.3) and (6.4.2) and triangle inequality in RV. B

Remark 6.4.2 An czample of u; satisfying (6.4.1)- (6.4.8) is u; = |£P7%¢€, ie. the
corresponding diffusion operator is the p-Laplacian. Let T',~ be positive constants.
The following class of functions, f € C*(Tx RY; RY)NCH(SQ x R¥\ {0}; RY), which
satisfy condition (6.4.1) and

N
3,

> 1521w < T

=1

o~ 2y -
> IE L=, mEE = nlPlEl
=1 o
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for all z € @ € R¥\ {0} and & € RN, also satisfy (6.4.1)-(6.4.3) (cf. Damas-
celli (18]). m

Let uf, uf, u§ be the solution of the Cauchy problem (6.2.5)- (6.2.14) and let
[t11,u2, Uy, Uz, Us] be as in Section 6.3. We will denote [0, T] x 2 by Q. Define the

sequence of functions

G2y = (et z) + VUit ), §=1,2, (6.4.8)
&t ay) = x(¥)Vylst,z,y) (6.4.9)

and let,
Geo =629, i=123 (6.4.10)

The main theorems of this Chapter are the following:

Theorem 6.4.1 Let € s be as above and assume that the functions V,Uj, j = 1,2,3
are admissible (cf. Definition 6.9.1), then

- P §
e o) (7569 - )|, — 0512
s
o [ 5) € Vus(t,2) - 5000, — o.m
€ 2uy
‘Theorem 6.4.2 Under the same assumptions as in Theorem 6.4.1

e x5 (i (5. 905) = (£ 502))]
e [fa) (s (5 e90) = (Lem))]

Remark 6.4.3 Theorem 6.4.1 shows that x,(2)V<(u;(t, 7) + eUs(t,z, %)) strongly
approzimates x(2)Vus(t, z) for j = 1,2 in LP([0,T] x ), whereas Proposition 6.3.2
only implies that these tio sequences have the same two-scale limit and hence, the
same weak limit in LT, Similarty, for the third component of the flow. Theorem 6.4.2

is about a strong approzimation for the fluz terms. The utility of the corrector results
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lie in the fact that the approzimations involve the homogenized Cauchy problem and
cell problems which are computationally simpler compared to the original Cauchy
problem. In this context, it is desirable to get order of € estimates for the corrector

results and, this is still open. W

We first prove a few lemmas yielding some limits and estimates required in proving
Theorems 6.4.1 and 6.4.2.

Henceforth, M will denote a generic constant which does not depend on &, but
probably on p, ky, kz, o, C, and the L? norm of the initial vector 8. Let 0 < & < 1

be a constant and ®;(¢,z,y) be admissible test functions such that
3
Z Iv,U; - cI’.7||:,[o,’r]><n><v, <k
=1

Note that,
2(t.2,2) 25 @,(t,2,9)

for j=1,2,3. Define the functions:

7tz = Xj(g)(vzu,(t,r)+<I>,-(t,z,§)),j=1,2 (6.4.11)
%) = D)D), (6-4.12)

Then we note that the functions 75(¢,z) and u§(Z,75(¢,z)) arise from admissible

test functions and we have the following two-scale convergence (cf. [14]),

7 I3 G(Vai(t7) + 04t 7,0) = ny(h7,y), =12,
S @) st z,y) = m(tz,y),
w5 60w, ), 5= 1,23

Lemma 6.4.1 (cf. Lemma 8.1 (17]) Let 1 < p < 2 and o1, ¢5 € LP(Qr)™. Then,

T 1
o=, < [[ [ w.—¢,|2<|¢,r+|¢z|)ﬂxdzdc]

x [/Olfn(ws-l + |¢2|)"dxdt:|
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where x denotes the characteristic function of the set

{(t,z) € [0,T) x Q= |$u](t, 2) + |62](2, 2} > 0}.
Proof: Multiply and divide the integrand in left hand side by (|¢1] + |¢2])@-P?/2
and apply Hélder’s inequality to get the result. B

Lemma 6.4.2
2 c & 2
2 Ixs) (Vs + VUG + ) VUl < 5= S s 0
= =
Proof: Follows from the energy identity (Proposition 6.3.5) and (6.4.5). B
Lemma 6.4.3 Let &,m:, &5, 75,7 = 1,2,3 be functions as defined above. Then,
] ”
o x x
o [ [ (w(E7u0) = mEn)) (V= ) dz et
o 3 € €
< Th ST fad, (50, 6) — 13w, my)) (& — my) dy ddt
for i=1,2 and
T
o [ (0 e905) = i (E,78)) eV = ) dode
o 3 € €

< 3 I fal, (36, &) — 3w, ) (& — my) dy it

Proof: Denote the integrals appearing in the left hand sides of the above relations

by i,15 and [§ respectively. Then for i=1,2,3, using (6.2.17), we obtain,
s
s 3y
13 LY 2 13 L 2
322 | @@ =537 | (ORST 2 dz
=79 =179
o e
=3 [ s dma
i Jo Jag e
N z
= [ e — o) dma
0 ﬂj €

2T . T
—Z/ / u,(i,Vuj).njdzdt—/ / 1ia(E, eVug) g de dt
=1 Jo Jag £ o Jag €
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We now use the two-scale convergence properties of various functions discussed so

far to pass to the limit. We get,
3 1 3
T _ 0
et = 27g// eIl dy d
. 13 z, . 2
lmeod Y [ DR r
=179
3 T
—Z/ // 15 (Y, 15).(& — ;) dy dw dt
i=iJo Jaly,
3 T
—Z/ /_/ 25(y,€&5)m; dy da dt
oo Jaly,

‘The right hand side can be written as

3 3
%;,/n/v, (Yl (2) | dy dz — li_mg_.o% ,Z:,:/n; cj(§)|u§(z,T)f2 dz
3 T
+§/0 S, 05006 = 0. 0)) (65 =) dyazan

~gf:/n/y 10, 69)-65 dy du dt

which, using Proposition 6.3.5 to replace the last expression, is nothing but,

2
1 1
32 L) s arada] [ [ awiodsvrade
o daly aly,
1 L x
~limeng /. O D) de

3 T
1?-;:/0 /Q/Y’ (159 &) = w50y, m5)) (& — my) dy dz dt

However, by standard arguments,

2
>[/ @l ol dyds + [ [ @720 dyds
=1 g 2
- R 3 z £ 2
> /n;cx;nu,(wn dz

‘This completes the proof. B
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Lemma 6.4.4 Let &,n;,x be as before. Then,

3 T
ZA Lfy 50,€5) = wsty, 7)) (& — my) dy dudt < ME*®
= g
where
1 ifl<p<2,
2 yp>2
Proof: Let the left hand side of the estimate be denoted by S.

) =

Case 1: 1< p< 2. Using (6.4.7) we get,

.
s < zj A/V’|(u;(%i})*m(y‘m))H(fz"v,)\dydzdt

s
& /// — P dydzdt
1‘;‘“ ﬂY,I& P dy
Mx

n

<
Case 2: 2 < p. Using (6.4.2) and Hélder’s inequality we get,

3 T
> 11450 65) — s ) 165 — i dy dz e
= do Jalyy

«
IA

s o7
< k;[u /“/y 165 = (61 + )P =2 dy dz
s s
< B2 te -l ([a fnfy,us,um,n"dydzdt)
:
< kNG - ally (UM, + Il )
s i =
<k (ZII&*%KI.’,) (Z(ns,||,+un,u,,>')
s i
< ki (Z &, —n,ll:) (Z(z €51l + lig5 = n,u,,)")
s P
< k2 (ZI!E,—W,\I:) (Z(zwlz,u:wm—mn:))

Therefore, by the estimate for the second term proved in Lemma 6.4.2, we get the

result|
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Theorem 6.4.3
Iim xi{(=) (Vui(t, ) — ni(t, = i < Myx™®
-0 || X5 5) ;5 5(t, ) o ,

o oD (Vas(t ) - o) < aw®

where
2 ifl<p<?,
y=1 2
; Yp2z2
Proof: Case 1: 1 < p < 2. We use Lemma 6.4.1 with the functions

X5Vu§ and 75, j = 1,2 to get,
X595 = 551,
S U6 fog 1925 = m PV + I )7~2 dz d) (fF fog (751 + ()P dte) 5
Therefore, using strong monotonicity (6.4.3), we get,
T z T
lIxsous — n5112 g, < ( L/ (G V) = wGam)) - (T o) do
-
(s vy + [l 117 ="

where k = 22352 k2 gimilarly,

2
H

2
< & _ ElP 7 z e T e e _ e :
lIx5eVus — niliq, <k 13(25eVus) — pa(=,m5) ) - (€Vus ~ n5) ddt
o Jng € 3

22
x(lIxzeVuslly + limglip) =

2
I

2
SNVt — nif2 o, + ixse Vs — g,
o
Z (T z z
st= 3 [ (w9 - Eom) (Vs - ) doae
i=1 5
T
+/ / (e Erevus) — na(Z,1)) (Vs — m5) drat and,
o Jag € €

)
S5 = 2o IxVaslly + linslE + lxcevusiiy + lmgli3 -
J=1
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Then, from the estimates for the individual terms in $§ and a simple application of
Hélder’s inequality in R®, St < k(S5)% x (S§)*%

Note that 7§ arise from admissible test functions. Therefore,

hmz i1

3
Z ||W]||,':,1u,‘r]xnxy
j=1

3 3

S PG ey + 20105 = &l o mpeany)
<

< M

where the last estimate follows from Lemma 6.4.2. Also by (6.2.17) and (6.4.5), we

get,

N

Sl + ety < 5 |7 <

From this we conclude that, fim,0S§ < M. Therefore, taking limsup as & — 0

and using Lemmas 6.4.3 and 6.4.4, we get
Tim 505% < Mx5.

This concludes the proof in this case.

Case 2: 2 < p. From (6.4.6), we get,
1905 — 25 S & (s, V) — ytE, ) (Vs — )
Therefore, by integrating with respect to ¢ in [0,7] and z in Q, we get,
16695 = 711 0, < 2 o S (15 (2, F) — (2, m))- (V5 — ) i e
Similarly,
56 Vs — w70, S & 5 fos (Ha(2,6V68) — (2, 78)) (Vg — ) dvdt

We note that if 5] and S5 are defined as in the previous case, then Sf < S5

Passing to the limit, as before, we reach our conclusions. B
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Theorem 6.4.4
B ecs x5 (2, V) - wEB, < mew
imoo ||xm(;,sVuaJ - m(;,m)“mm < My

where
z fl<p<2,
2 fp22

-1

s(p) =

Proof: We will prove only the first of these estimates, the other is proved similarly.

If1<p<2 by (6.4.2) and triangle inequality in RV, we get,
T z z T
L G v - mEmprdzar < 7 gy 1935 - rgioe-0
o ﬂ; 4

Since g(p — 1) = p, using the Theorem 6.4.3, the estimate follows easily. Let 2 < p.
Then,

T x
L) E v - mE e ae
<b I fag 1905 = m51e (IV5] + ) ® ™ i e
The right hand side, by Hélder’s inequality,

o2
<2 (47 Jog IV05 ~ PPz dt) i (& Jog (Vusle + i) dodt) =
< M |xgus - nsl| 75
So, again using Theorem 6.4.3, we get the desired result. B
Proof of Theorems 6.4.1 and 6.4.2: Since, V,U;'s are assumed to be admissible
test functions, we can take ®; = V,U;. Thus, & can be taken arbitrarily small and
therefore, Theorem 6.4.1 follows from Theorem 6.4.3. Similarly, Theorem 6.4.2
follows from Theorem 6.4.4. W

Remark 6.4.4 The functions V,Uj(t, z,y) will be admissible if we have C' regular-
ity of Uy in the variable y. Even if the functions V,U; are not admissible, Theorems

6.4.3 and 6.4.4 are corrector results in their own right. ®
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