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Notations and symbols

The player st N
Set of all coalitions 2
The empty set @
Cooperative game S BE e (N.v)
Subgame on § nee ams s vls
Restriction of a vector e e el s
The core ()
Interior of the core o e Cfe)
Imputation set e e e I{v)
n-dimensional real space ek s RN
z dominates y via .§ Fesy
x dominates y See e vy
no domination R DN
Set of acceptable vectors g e Alv)
Lower boundary of A(v) = mm wm L)
Set of upper vectors e v gn (v)
Totally balanced cover of v P
Ordered vector space Ry
All permutations of = _— =(r)
Urcom(z) =(C)
Ef::J‘( - (s )
z; a5 e s )

2z R 2(8)

2 y(8) =v(8)} AR Sy

k* specified vector S N y*
Indicator vector of coalition 7' or
Indicator vector for player 7 €
Minimum of s and ¢ At
a; > b, for all i e e a> b
equivalence S e e o=
NTU game RPN V()
The boundary of V(S) ote e V(S)
The interior of V(S) - V(S)
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Chapter 1

Preliminaries

1.1 Introduction

This monograph deals with the area from game theory known as co-
operative games. Except the last chapter on NTU games, it deals

with transferable utility games. Iere we will introduce and discuss the

involved game theoretic notions and set a mathematical base for the

chapters to come.

In 1944 von Neumann and Morgenstern[45] introduced a theory of solu-
tions for n-person games in characteristic function form in which coop-
eration and coalition formation is a crucial aspect. The primary math-
ematical concern regarding this model is the existence of solutions or
stable set. In 1968 Lucas[19] described a ten person game which has no
solution. Howcver, researchers have gone on to identify properties of
such solutions when they exist and their relationship with other known

concepts, in particular, the core. Sharkey[43] defined and studied the

7
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concept of largeness of the core which arose while he was studying an

economic problem involving cost allocation. He showed that largeness

of the core is a sufficient condition for the the core to be a stable set.
We present in this thesis some results concerning the coincidence of
the stable set and the core. This has been particularly done through
the concept of Jarge core. We also present conditions for the core to

be large and quite a few examples giving insight into the results proved.

Sharkey[43] proved that largeness of core is sufficient for the core to
be a stable set. We identify a subclass namely the svmimetric games.

where largeness of the core turns out to be also necessary and leads to

other interesting and easy to check conditions for stability of the core
in symmetric games. Subsequently we answer the question if every ex
act game has a latge core. We prove that for games with 5 players or
more, every exact game need not posses a large core, however. in the
subclass of symmetric games largeness of core and the stability of the
core turn out to be equivalent to the concept of the game being exact.
For general TU games with 3 or 4 players every exact game has a large
core. So for totally balanced symmetric games large core, stable core

and exactness turn out to be equivalent.

However, for general TU games, largeness of the core always implics

core stability and there are examples where the core is stable but not
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large. 1t is known that under the extendability condition introduced by
Kikuta and Shapley (17] the core is a stable set but the core may not
be large. In this thesis, we show that the Kikuta-Shapley condition is
sufficient for the core to be stable as well as large for TU games with
five or less number of players. We provide a connter example when the
number of players is six. We then introduce a stronger cxtendability

condition and show that this condition is necessary and sufficient for

the core to be large.

The core of a TU game is perhaps the most intuitive and easiest so-
lution concept in Cooperative Game Theory [33]. The other approach
to solution concepls is the stable sets introduced by von Neumann and
Morgenstern[45]. Thus far the relation between the two most crucially
important solution concepts for cooperative games has been investi-
gated in the context of symmetric transferable utility games and this
has heen related to the notion of large core. We have further investi-
gated the relation betwcen the von-D Yeumanu-Morgenstern stability of
the core and the largeness of it in the case of non-transferable utility
(NTU) games. The main findings arc basically extensions of existing
results obtained in [43], (4], [5] in the case NTU games, which are very

similar to the results in TU cases.

During the course of research over the last few years, we have solved

a few problems, we have also understood a few problems better, as a
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result we have a few conjectures and formulations which we present in
the last chapter for further attention by researchers. One of which is of
a combinaloric nature and can be called as old as the concept of stable
set. The problem is precisely to find a necessary and sufficient condi-
tion for a stable core. The other appears to be more of an LP problem
than of a Game Theory problem. The problem is to find a vector with
the largest sum of components in the set of the lower boundary points

of the set of acceptable vectors.

Section 1.2 begins with an introduction of the game theoretic model
and some basic notions. Much attention is paid to the notion of the

core and the stable set.

1.2 Cooperative Games

The Game Model

The game model discussed here consists of two components. Given a
finite and non-empty player set N, and a real valued function ¢ on the
set 2V of coalitions of N [v: 2V — R}, the ordered pair (N, v) is called
a cooperative Transferable Utility(1'U) game, which assigns 0 to the
empty coalition ¢. The function v is called the characteristic func-
tion of the game. For a coalition S C N the worth v(S) is interpreted
as the savings that can be obtained by players in § in case they decide

to cooperate.
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To make a few fundamentals explicit; the members of NV are called
players, it is often convenient to number the players, i.e., to assnme
that NV is equal to {1,2,3,...,n}, where n also denotes the number
of players. NV itself is also called the grand coalition. Any subset S of
N[S C N]is called a coalition; the players in such a coalition are free to
cooperate. v(N) is an important number for the game and is referred
to as the worth of the grand coalition. Normally a game is identified
with its characteristic function. In case this leads to confusion we will

explicitly mention the player set.

The 0 — I normalization

For a game (V,v) the 0-normalization vy of v is defined by vo(S) =
v(S) — Tiesv({7}) forcach § C N. For a game v with ve(V) >
0, ie., (V) > S,env({i}), we call the game vy with vy (S) =
%

(3, for each S C N the 0 — 1 normalization of v. I visa 0~ 1

normalized game then v{{i}) = 0 for cach i € NV and v(N) = 1.
Example 1.2.1 Let N = {1,2,3} and v(S) = 1 for all coalitions with
two or three members, v({i}) =0 fori =1,2,3.

The above game is called a simple game as all coalitions take value

either 0 or 1.

Subgames
The subgame of a gamc (N, v) relative to a non empty coalition § is

the game (S, v)s) where vjg is defined to be the restriction of v to the
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subsets of 5. So the subgame vy is defined as follows : vs(7") = v(T")

for cach coalition 7" C 5.

Monotonicity in games

A game v is called monotonic if v(§) < v(T) for all non-empty coali-
tions § € 7. Tt expresses the property that coalitions possess savings
exceeding those of the subcoalitions.

I v satisfics the condition ©(5) 4 v(T) < v(SUT) for all disjoint coali-

tions &, 7" € N then the game is said to be superadditive. Under
this situation it is advantagious for already existing disjoint coalitions

1o join and form larger coalition.

Further a game is called convex if the following holds:
D)+ (1) < v(SUT)4 v(SAT) forallSand TC N (1)

Balanced games
Finaly, we will mention here the so-called balancedness condition. Let
B be a collection of non-empty coalitions. Such a collection B with
positive weights (As)gey is called balanced if
> As=1 for cach player i€ N, (L.2)
SeB, 55

and B C 2N\ {¢} is called a balanced family of collections if a collection

(As)scu of positive weight exist for which (1.2) holds.
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As an example consider the set N to be {1,2,3} and B to be the set of
two person coalitions of N. If the corresponding weights are all equal
to % then these sets in B form a balanced collection.

A game v is called balanced if it fulfills for every collection B
3 As0(S) S v(N) whenever 3 Ages —eny  with Ag >0 (1.3)
seB seB
It is immediately clear that if the worth of the grand coalition is chasen
as Max {3 g Asv(5)} over all balanced collections then the game will
be balanced. The game v is said to be totally balanced if each subgame

is balanced.

Definition 1.2.1 Let (N,v) be « TU-game. Let (S,v)5) be a sub-
game. For cvery subset § G N we define 5(S) = Maz 5, z,0(S)

where the maximum is taken over all balanced collection of subsets

.Sm} of § and @;’s are corresponding balancing cocffi-

cients. The game (N, ) is called the totally balanced cover of (N, v).

1.3 Solution Concepts
The Core and Solutions
One of the goals of cooperative game theory is to obtain reasonable

rules which reflect the strength of a player in a game. In this context

the following notions appear.
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Allocations

Au clement @ = (1), v € RY is called an allocalion. 1t can be
interpreted to represent a distribution of strength or savings among

players. In game v an allocation x is called efficient if,

er] =(N).

Ig
A (set valued) function on a subset of the game space is called a solution
scheme if it assigns to a game one (a sct of) efficient allocation(s) of
that game. An allocation .z is said to be individually rational if for each
player 7 his distribution 2; cquals or excecds the worth he can get by
operating on his own, i.c.,

o({i}) for cach player i¢ N.

Let 1{v) denote the set of allocations which are both efficient and in-

dividually rational in the game v, i.e..
I(e)= {x e RN : 37
jeN

= o(N) and x; 2 v({i}) for all i € N}.

I'his set is called the imputation set of the game v.

U'he imputation set, considered as a set. valued function, may serve as
an example of a solution scheme. The best known and most widely
applied solution scheme, however is the core. In this monograph we

deal with certain special properties of the core vis-a-vis coincidence of

other solution schemes with the core.
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Definition 1.3.1 : A(v) is called the set of all acceptable vectors of

the game v,
A@) = {y €R" :y(S) > v(S) forall §C N}, where
¥(8) = 37 yi foreach SCN.
i €S

We may refer to the sets I(v), A(v) cte. as I, A ete. Loo, when the
referred game is clear from the context. In the litcrature this is also

called the sct of aspirations.

‘The core

If for an efficient allocation 2 we have Ses 7; = v(S) for cach coalition

S then z is called a core allocation of the game v. The set of all core

allocation is denoted by C'(v).

Cv) = {z e RV ;

v(N) and 37 2; 2 0(S) for each § < N}
JES

(1.4)
The core C'(v) of (IV,v) is thus the intersection of two sets, that is,
C@) = {z € R": 2(N) = v(N),2($) = () for all § < N} = 7 4.
In games with a non-empty core there is an incentive among the players
to cooperate and form the grand coalition N. Unfortunately the core of
a game nced not be non-empty. Non-emptiness of the core is equivalent
to the balancedness of the game (see Theorem 1.3.1). A game v has a

non-empty core if and only if v satisfies (7.). We will sce more lator.
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Let us now look at an aspect which will define preferences of players
between two different allocations. In a game v. let 2 and y be two -
putations. Suppose the players in the game are confronted by a choice
between # and y. It is clear that unless z = y. there will be some
playvers who prefer = to y (those ¢ such that o, = y,). Becanse both the
vectors arc imputations, there will be some players who prefer y to .
Hence, it is not enough to merely say that some players prefer = to y.
On the other hand, it is not possible that all players will prefer  to
y [since the sum of the components of « as well as y is v(V)]. What
is necessary is that the players who prefer @ 1o y be actually strong

enough to enforce the choice of 2.

Domination
Let . and y be two imputations, and let § be a coalition. We say i

dominates y via S (notation : & >4 y) if
l. #2; >y; foralli e S.
2. Slies T < v(9).

We say @ dominates y (notation : 2 > y) if there is a coalition S such
that x5 y. ere condition I states that the members of S all prefer
Z to y: condition 2 states that they are capable of obtaining what
offers to them. It is easy to see that the relation >y (for any given §) is
a partial order relation. On the other hand, the relation =, while it is

irreflexive, is neither transitive nor antisymmetric (since the coalition
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S may be different in different cases). This is a serious difficulty; and

we will see the resulting complications in this thesis.

Solutijons

A set K, (K € I(v)) is called a solution (stable set) for the game v if

L. Ifxz, y €K, then ~(z = y).
2. Iz ¢ K, then thereis ay € K such that y > z.

Thus, a stable set satisfies the two conditions of internal stability; i.c.,
no imputation in A dominates another imputation in K, and ezfer
nal stability; i.e., any imputation outside X is dominated by some im-
putation in /. Stable sets were first defined by von Neumann and

Morgenstern[45] and they are often called solutions of the game.

Properties of the Core

Theorem 1.3.1 (Bondareva(1963) and Shapley(1967)) 7The core
of the game v is non-cmpty if and only if the game v is balanced [sat-

isfying 1.5].

Let us look at the definition of core from a Linear Programming point
of view. A vector z is in the core if #(5) > v(S) for all § C N and of
course the vector must be an imputation i.e., z(N) = v(). Consider

the following Lincar Programming Problem(LPP] :
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Minimize (z¢ 4 2, + -+ a,)
subject to

Sres i = 0(S) for all & ¢ N,

The core is non-empty if and only i the minimum is at most o(N).
The dual of the above programme can be written as follows :

Maximize Sseps Aso(S)

subject to

PIEEH

s = 1 forall;i € N and As = 0 for all § ¢ 27N,

By the duality theorem the core is non-empty if and only if Ssc v

(5

< o(\V) for all feasible points of the dual programme. Now if we take

the solution to the dual and consider the coalitions with positive Ag’s,

they form a balanced collection: recall (7.2). A further reference to
(£.3) tells us that if the optimum objective value of the dual is less

than or equal to ¢(/N) then the core of the game is non-cmpty.

Domination aspeet in the Core : Domination as defined between two
vectors (x s y) requires that dominating vector » must have z(S) >
¥(S) and that #(8) < v(5) there by forcing y(5) < v(:5). This in turn
means that no core vector can be dominated by any other vector; not
even another core vector. This gives rise to the following lacts :

1. All core vectors are undominated imputations and

The core is an internally stable sot.
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The game in the example [.2.1 has an cmpty core, as the balanced
collection {{L, 2}, {2, 3}, {3, 1}} with balancing weights } cach
does not satisfy equation (1.3)

S Asv(8) = 1.5 > v(N) = 1.

SeB
T'his however does not constraint the game v to have a solution or a

stable set. In fact the game v has a continuumn stable sets indexed by
< apart from a three point stable set.

Stable sets of three person simple majority game :

A finite stable set: K ={(, 1, 0), (4, 0, 1), (0, L, 1)}
Continuum of stable sets: For all ¢ such that 0 < ¢ < 1 the following sct
A can be checked to be a stable set of v. K. = {(c, t, I —c—1) : 0<
c<050<t<1—c)

[n the following we define a few basic concepts which are used through-
out this thesis. We may however recall few of these definitions in the

chapter when we actually use them.

For a game v, A(v) is non-empty, and is bounded from below.
Definition 1.3.2 : The lower boundary L(v) of A(v) is defincd by
L) ={y € A@): f ¥ € A(v) and y < y theny' = y}.

Alternatively call z a lower boundary point of A, if Q. N A(v) = {z},

where Q. = {y€R": yi < =;, foralli = 1,2, ..., n}. Then

L{v) is precisely the set of all lower boundary points of A(x).
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Tt is a well known fact that L(v) is non-empty since A(v) is a non-empty
convex set bounded from below. See [10] page 69, for a proof.

From the definition of (/(v) and L(v) it is easy to see that C(v) € L(v).

Definition 1.3.3 (Sharkey) : The core of a game (N,v) is large if
Jor cveryy G A(v). there cxists 1 € C such thal z; < y; for all i.

Sharkey proves the following theorem in [43].

Theorem 1.3.2 (Sharkey) : The core of a game v is large if and
only if C(v) = L(v).

As we would sce a large core is characterised by the L(v) members,
particularly so, because of the above theorem. The following delinition
will help us to characterise an L(v) element in terms of a collection of

.2 connects it to

tight " coalitions. Following this definition Lemma 2
a lower boundary point and describes an important property which is

of strategic importance in quite a few proofs in Lhis thesis.
Definition 1.3.4 : For y € A(v) define S, = {8 C N : y(S) = v($)}.

With the background developed so far, we will study different subclasses
of games and attempt to characterise their solutions in the following

chapters.



Chapter 2

Symmetric Games

2.1 Introduction

Largeness of the core is sufficient for stability of the core. In general
the necessity is not true. In this chapter we answer affirmatively the
necessity for symmetric games. We also prove its equivalence to n
specified vectors being imputations and also to the convexity of the
lower boundary of the set of all acceptable pay-off vectors of the game.
la this chapter we cstablish the equivalence of a condition given by
Shapley to the newly evolved conditions, thereby we give an alternative

proof to Shapley’s result. Thus the maiu results of this chapter arc :
1. Coreis large < L(A) = C ¢ L(A) is convex, and

2. Core is large > the specified vectors are in the core < the core

is stable.

In 1944 von Neumann and Morgenstern[45] introduced a theory of so-

lutions for n-person games in characteristic function form in which co-

21
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operation and coalition formation is a crucial aspect. The primary
mathematical concern regarding this model is the cxistence of solu-
tions. Tn 1968 Lucas[19] described a ten person game which has no
solution. However researchers have gone on to identily properties of
such solutions when they exist and their relationship with other known
solution concepts, in particular, the core. Muto[28. 29, 30, 31] and
Heijmans|13), studied extensively these aspects of von Neumann and
Morgenstern solution concepts for symmetric games and also a special
class of symmetric games known as (n.k) games. Sharkey[43] defined
and studied the concept of largeness of the core which arose while he
was studying an cconomic problem involving cost allocation. He showed
that largeness of the core is a sufficient condition for the stability of
the core, The purpose of this chapter is to identify a subclass where
largeness of the core turns out to be also necessary and leads to other
interesting and easy Lo check conditions for stability of the core in sym-
metric games. The convexity of the set of all lower boundary points of
the set of all acceptable vectors is shown to play an important role in

the largeness and stability of the core in this subclass of games. We

need the following definitions in the sequel.

Definition 2.1.1 : A game v is called symmetric if the characler
istic function depends only on the cardinalily of the coalitions. Let
S i00.1,2,....n) — Ry be a map with the property f(0) = f(1) = 0.

Such a map defires a symmetric gamc by v(S) = f(s) whenever

18] =
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Definition 2.1.2 : 7The totally balanced cover of a symmetric game
(N,v) is denoted by (N,9), and is given by (k) = Mazocear f(5).(5),
forallk=1,2 ..., n.

Where f and f are the corresponding symmetric game defining func-

tions.

2.2 Conditions for Large Core

Since we deal with symmetric games throughout this chapter, we intro-
duce some notations which will be useful for our discussions. First
we note that set W C R™ is called symmetric if = € W implies
that all n-dimensional vectors obtained from z by permuting its co-
ordinates are also contained in W. Tet R = {z € R* : r; <
3 < ... < 2.}, and for any = € RZ, let x(z) be the set of all
n dimensional vectors obtained from z by permuting its coordinates.
For any W. € RZ, let n(W<) = Usew.n(z). For simplicity denote

(s,1) for any @ € R%, and use (L) to denote z(1,¢). Let

I. = {x € R% : 2(N) = l,a = 0}. Then we have [ = n(l). I is

called an ordered impulalion sel. For any , y € I and non-empty

S {i(1), - Li(s)}) © N with i(1) < .-+ < i(s) we say ¢ dominates
y via S, denoted by @ >, y via S if wi;y > y; forall j =1, ...s

and 32, @i < f(s). The core C is given by C = n(C<) where
Co = {o € Ic:a(s) = f(s) forall s = 1, ..., n—1}. In what
follows, our discussions will be proceeded exclusively on ordered impu-

tation set I, and thus, to simplify notations, we will eliminate . and
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use I, A, C, L(v) for I, Ac, Ce, L(vg).

The following is a well known result.

Lemma 2.2.1 : An n-person 0—1 normalized symmetric game (N, v)
with characteristic function v has a non-empty core iff 22 < 1) fo,

all 1 < s <n—1. The game is therefore totally balanced {ff the function

L) iy a weakly monotonic function.

Lemma 2.2.2 : Let (N, v) be a T'U-game with non-empty core. Then

symmetric

¥ € L(v) if and only if Us ¢ 5,5 = N. In particular if v i
andy € 1(v)\C then yoy = y,.

Proof : If y ¢ L(v). we have ' < y and ' € A(v) implies

y. But

if there is a player & such that y(%) > v(5) for all coalitions S with
k€ S, then y’ = y—cex € A(v) for small positive numbers . Recalling

the definition of S, = {5 : y(§) = v(S)}, conversely. if S, covers N,

we haver if ' < y and y' € A, then v(8) < y/(5) < y(S) < v(S) for all

S € 8, and therefore yls — yis for all S € S,. ie. y' = y because S,
covers N.

Now suppose v is symimetric and g, < y» < - < y,. and y € L(v)\ C,
so y(N) > f(n) also assume yn > yn-1- Let 7' be such that (n—1) € T
and y(7) = v(T). Because y is an ordered vector, [7] < n — 1.

But now there is no § with n € § such that y(5) = o(5). As § £ N
and if S| < n — 1 and i(< n) ¢ S then y, < y, and replacement of n

with 7 will yield a contradiction as y, is largest. -
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Remark 2.2.1 In general it is simple to prove that for any y € L(v)\

(!, the coordinates of y will be as follows: yy < yz < -+ < g1 = yrg1 =
T Yne

Definition 2.2.1 : For an n-person (0 — 1) normalized symmetric

game (N,v), the following vector y* for any given k, 1 < k < n

will be called “The Specified Vectors for a Symmetric Game’.

: (k) ifi<k 7
v _{ Maa{J@) —y*G = 1), wb\) i > k. 1)

We will see the importance of these vectors in Lemma

and Theorem 2.1 etc.

Lemma 2.2.3 : For an n-person (0 - 1) normalized symmetric game
(N, v), the specified vectors are lower boundary points of the st of all

acceptable vectors A(v).

Proof : From the definition of * it is clear that y* € A. So we need to
prove that Uses,, S = V. If y*(N) = f(n), then we are done. Assume
Yy (V) > f(n), and let | = max {i: y*(:) = J(i)}.

Claim 1 : 1>k

Ui=4k, y¥=28 lor i< ksoyk,, > yk, then by definition yk,, =
J(k + 1) — y*(k). Hence y*(k + 1) = f(k + 1). This contradicts the
maximality of /. Thus the claim holds.

Claim 2 : yf = yfir = =y}

This also follows from the maximality of /. From claim 2, we know

yE+ o uf = F() =yt + -+ yb, + yfy ete. This shows that

2.2.3 Lemma 2.2.
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U,scgy,;b‘ = N with respect to v. Here we use the fact that © is
symmetric since » is symmetric. That is, y* € L(v) where A(v) = {y:
y(S) = v(S) for all § € N} and L(x) is the lower boundary of A(v).

Hence the lemma holds. -

Lemma 2.2.4 : For cvery y € L(v) there is an indcr k such that

YEON) 2 y(N) where y* s are the specified veetors.

Proof : Let y € L(r) and suppose y(N) > f(n). Let p < n =1 be
Take

the index with 3, < ... < y,_q < yp, — --- = y,. Ihen p
2 Yp Yp Yn k;

=yP7. We have: y, < [(p) — f(p—1) =
The first inequality because of y({l, ..., p—1}) = f(p — 1) and
yi{l.....ph) = f(p):

the second inequality because of z({l1,...,p — 1}) = f(p — 1) and
({1.....p}) = J(»).

Then

y(N) (i + -+ )+ (o + - )

= fP)+ Wpr + -+ )

= fle-D+U@) Sr—)+ @+ byn)

= ((za4- 4 zm) @ = F =) e + -+
< (mA o+ 2) et FYn)
< AmAh A+ ) (=P

IA

(14 F 2p) + (n—plz, < 2(N)

so. y(N) < yP~1(N). This completes the proof. -



2.2. CONDITIONS FOR LARGE CORE 27

Theorem 2.2.1 : For the symmectric game (N, v), the core of the game

(N, v) is large if and only if the specified vectors are imputations.

Proof : As has been observed already in Lemma £.2.3, the vectors
y* € L(v)forall &k, 1 < k < n. So the only if part is obvious by
Sharkey [43] as C(v) = L(v) when the core is large.

if part : By Lemma 2.2.4 it is clear that for every y € L(v), there is
an index k, such that y(N) < y*(IV). As all the y*'s are imputations
L(v) = C(v) and hence the core is large. See Remark 2.2.2 given

below. L]

Remark 2.2.2 : From the definition of A(v) and C(v) it is casy to
see that C(v) = L(v) if and only if C' is large. Refer to Sharkey[{3] for

a proof.

Theorem 2.2.2 : For an n-person (0—1) normalized symme(ric game

the core is the unique stable set if and only if the core is large.

Proof : Suppose y € L(v) and 31 S y2 < ... < y,.. We have to prove
that y(N) = f(n). If y(N) > f(n), we can decrease the vector y in
the following way: because of y € L(v) we have y, < gpy1 == -+ = yn

with 1 < p < n — 2 We decrease ypqq,. ..,y with the same number

& till the sum y(N) — (n — p)e = f(n) or ypi1 — & = y,. In the first
case we have an imputation @ ¢ C and in the second case we have a

vector y = (11(= 41) < y2(= 12) < 0 < Yo(= ¥a) < Forr(= yor1) =

= Yy41)) wWith ¢ < p. We repeat the same process with § and ¢
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instead of p. After finitely many steps we have a vector # and an index

k: a(N) = f(n). x; = y; for j < k, 2pgr = - = @, and w, < y, for
J = A+ 1.

The core is stable and therefore there is a coalition 7 and a core allo-
cation z € (& with z =4 2.

Let 42— |T] and let z* be the vector obtained from = by ordering the

coordinates in a weakly increasing order.

Write 7' == {#(1),...9({)} with #(1) < i(2) < --- < #(Z). Note that
iy = kfor kb — 1.... st

Claim : =7 =7+ x.

Now £ = k& + 1. since ;= T yp for p = ¢ < Ak and thercfore
=5+ iy z )it <k

Then =*(N) 2E (e K)zhy, > () b (- k),

w(N) = f(n). This contradicts that = ¢ . -

Shapley[10], and Menshikova[26] have given an equivalent condition in
terms of the characteristic function of the game for stability of the core
for symmetric games. We state Shapley’s theoremn below. Menshikova’s
conditions arc the same, and the authors version of an cquivalent con-

dition which is simpler and casy to check is available in Theorem 2.2.7.

Theorem 2.2.3 : [Shapley(1973)] Supposc C(v) # & in an n-
person symmetric game. Then C(v) is a stable sct if and only if

LT > JOTE) for all 1,k with 0 < k < 1 < n, where [ and [

ic game and its totally balanced cover of t.

denotes the symmetr
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This theorem is known to many rescarchers through private commu-
nications to Shapley, and we present a slightly different proof of this
theorem in Chapter 3.

In the following remark we characterize the largeness of the core of a

symmetric game by the convexity of the set of lower boundary vectors.

Remark 2.2.3 : For an n-person (0 — 1) normalized symmetric game

with non-empty core, L(v) is convez if and only if the core is large.

‘The above is casy to prove by taking any y € L(v)\C so that y(N) > 1.

Consider y° the convex combination of all the permutations of y with

cqual weights. Observe that for all 4, yf = @21 58 4 = ¥ 5 1
This contradicts the fact that y° € L(v) as (£, £, ---, L) e C.
Remark 2.2.4 : The core of a symmetric game when exists is the

mazimal symmetric convez set within L(v) i.e., if C(v) is the core and

if D is another symmetric convex set in L(v) then D € C(v).

Example 2.2.1 Let C = {(z1, %2, ¥3) : @1 < @2 < 73, # >0, + <

a

&y 472 < 2,5 @ = 1}. Then n(C) is a symmetric convez sct.

In fact 7(C) is the core of a 3-player symmetric game with f(1) =
0. f(2) =025, f(3) =1.

Remark 2.2.5 : The core of a symmetric game, when non-empty,
cither has a non-empty interior or has only one element. Further a

single point core can not be large in a symmetric game.
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ETRIC GAMES
Theorem 2.2.4 : In the subclass of balanced games the following state-
ments are cquivalont
(&) v has a large core.

(ii) © has a large core.

Note : This is true for general cooperative games and to prove, observe
(hat the definition of large core depends on two concepts; namely, C(v)
and L(»). Tt is casy to prove that these two are cqual for v and © using

balanced collections and Shapley-Bondareva type conditions.

Example 2.2.2 Consider the following 6 person symmetric game, where
it can be checked thal y'. y?, y® y® arc imputations and y* and y* are
not. Conscquently the game docs not have a large core. This example
depicts that defining n vectors as has been done is a neccssily. Given
k< n. examples can be constructed so that y* fails to be an imputa-

tion. as long as the game does not have a large core.

y? = (.06, .06, .10, .10, .33, .35)
v? - (0733, .0733, 0733, .0733, .3567, .3567)
¥t = (0733, .0733, .0733, 0733, 3567, 3567)
G5 == 18, .13, A3, .13, 18, .35

y® = (1667, .1667, .1667, .1667, .1667, .1667)
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Theorem 2.2.5 : The specified vectors of a symmelric game are ez-

treme points of the ordered core of the game, when the core is large.

Proof : Take y* and supposc & and z? arc two ordered core vectors

such that g% = Az! -+ (1 — X)z?, =t # y* #

and 0 < A < 1.
If ot < L& then 2? > L& Consequently z2(k) > f(k), and z'(k) =

J(k) as = € C(v). Hence a contradiction to the definition of y*. Simi-

larly we can show that z} # Z&. So «}
yhyy = Maz{f(k+1)— f(k), &}, Since z is ordered, zig = L8 by

the conclusion above. Further zi,, > f(k- 1) — f(k) as =/ € C. Hence

= I8 for all i < k.

Zl41 = yky for j = 1,2. Therefore x3,, = ykyy for j = 1,2
The equality of other 7 s to the corresponding ykF follows sequentially

in a similar manner. Ilence the theorem holds. -

Remark 2.2.6 All extreme points of the (unordered) core are not nec-
essarily ‘specified vectors’. Further, all specified vectors are not extremne
points of the (unordered) core. In particular onc may look at the last

specified vector, which is the centre point of the (unordered) core.

Example 2.2.3 Consider a four player symmetric game v, with f(1) =
0, £(2) = 20, [(3) = 57 and f(4) = 100. Observe that the core is large.
Now consider the vector (0, 25, 32, 43). This core vector can not be ez-
pressed as a convez combination of the specified vectors, meaning there

are extreme points other than the specified vectors.

Remark 2.2.7 : Consider a symmelric game (N,v) and the corrc-

sponding (N,5). The set of specified vectors for (N,v) coincides with
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the sct of specified veetors for (N,v).

This is trivial as the vectors are defined in terns of the totally balanced

cover of the game ¢ and not ¢ which need not be totally balanced.

Corollary 2.2.1 : For o symmetric game (N,v) if y* 's arc as defined

in Definition 2.2.1, then 122l > JOZH for all . s with O <

s < t < n, if and only if y* is an imputation forallk : 1<k =mn,

where f denoles the totally balanced cover corresponding to v.

Though Corollary 2.2.1 follows from Theorems 2

2, 2.2.3 and 2.2.1,
a direcs proof is interesting. In the following we give the simple direct
proof.

Proof of Corollary 2.2.1 : Let us first observe that hecause of fe-
mark 2.2.7, Shapley’s condition is true with f(1) replacing f(#) in the
right hand side of the incquality. In the following we make use of this

fact and hence f(t) appears in place of f(#).

if part : Let 0 < k < t < n and consider y*. Observe that y*(t) = f(1)

for k < t < m.

LLI‘HEIislhea\crageofyf+,‘-- Ly R )]
NI g the average of ¥k, - YL s s {(2)

Because of the ordered nature of the vector y* it is easy to sce that (1)
is greater than or equal to (2).
I IO BRI S (1) RIS O 1L 2 F(t)= (k)

n- k o t—k i—k = t—k %

This is the end of if part.
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only if part : {W=IB) > [OLE o<k<t<n oo o (B
Observe that Shapley’s condition above is also equivalent. to the follow-

ing two conditions. [Refer Kikuta and Shapley]{16]

mﬂi—{’ﬁz“;* 0<k<t<mn @ N )
fmego > MmfB osk<t<n e

Suppose if possible that a vector y* defined in Definition 2.2.1 is such
that y*(N) > f(n). This implies that there exists { such that yf =
yhy = - = yk and () = y*(D), ie yf = FO =y =1

Now put t = [ and k = { — 1 in (4) above, we get

Ioozf) > [0=[U=D > F(O)—y*(I—1) = yf. Hence F(n) = F(O+(n—
)y¥ = y*(IN). This is contrary to the hypothesis that y*(N) > f(n).
This completes the proof of only if part. =

Alternate proof to Shapley’s Condition : Theorems 2.2.2, 2.2.1
and Corollary 2.2.1 put together can be regarded as an alternate proof
to Theorem 2.2.3.

The following Theorem sums up the new results of this chapter.

Theorem 2.2.6 ; In a symmetric game (N,v) if the corc is non-empty
then the following are equivalent.
1. The core is large.
2. The core is stable.
The lower boundary of the set of all acceptable vectors is convez.

3.
4 ARTE > SOFE poranl tk with 0 < k<t <o

The specified vectors of the symmetric game (N,v) are all imputa-

lions.
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Sorne more results on symmetric exact games arc presented in the chap
ter on exact games under the section on symmetric games.

Weber Vector : Consider a permutation = = (x(1), -+, 7(n)). The
marginal worth vector defined below for each permutation of the player
set N is known as a Weber Vector. Refer to Weber [44].

27, = o{m(1), 7(2), 7w — v({ (1), (2w = D))

Note : The Weber vectors of a symmetric game are all permutations of
one another, and if the game is convex then the ordered Weber vector is
a core clement,, i.e. (0, £(2), £(3)—f£(2), fF(#)—F(3),---, f(n)—f(n—1))

is an imputation and the core is large

2.3 Examples

Example 2.3.1 : The following yame has a nou-empty core which

howcver is nol a stablc sct.

o] 5 1]
f(s) [0 [ 020 [0.65 | 1.00

Take « = (0.0.20,0.35,0.15), it is easy to sce that @ & ( as z,+x2 75 =
0.55 < f(3) = 0.65, However all other core conditions are satisfied.
Check that Ay € € > y > = Domination if possible must occur via
= 0.45 — 2¢ > 0.35 =

coalition {1,2,3) 3 @} = a5 = 0.20+¢;

= 0.35,2h > 0.35 = & 4 2% < 030 = @)+« + 74 < 0.65. Finally
we observe that at least one of the specified vectors for this symmetric
game has a sum more than v(N)

¥ = (0,0.2,0.45,0.45); y (N) = 1.1
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A stable set for this game is explained below :

Forn =4, f(2) and f(3) completely specify the game. When the core
is not stable then, f(3)— /(2) > 1 — f(3). Consider /(2) < & and f(3)—
J(2) > 1= f(3). X = {z = (21,%2,73,24) 1 1 = 0.35;02 + 75 + 24 =
0.65; z2 + x3 = 0.20; x3 -} x4 = 0.20; x3+ x4 > 0.20}.

Define K = x(X). Then K is a symmetric stable set for the game v.

Example 2.3.2 : Consider the following 6 person symmetric game,
which is not super-additive but has a large core.

[s 1] 2 3 14 [ 5 6]
[f) [0 1017020 632 [0.65 ] 1.0 |

Consider S; = {1, 2} and Sz — {3, 4}, o($h) + v(Sy) > ©(SUS)
but all the specified vectors for this symmetric game are imputations.
y' = (0, .17, .17, .17, .17, .32)

y? = (.085, .085, .085, .085, .31, .35)

y* = (.085, .085, .085, .085, .31, .35)

y! = (.085, .085, .085, .085, .31, .35)

= (.13, .13, .13, .13, .13, .35).

Example 2.8.3 : Consider the following 5 person symmelric game,

with a single point core which is naturally not stable :

It is easy to sce that one of the specified vectors has y'(N) = s

Muto[31] gives the following symnmetric solution for a game of this type.
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= (1€ — o, = — s 0 1 3 - )

Nefrelsa =u=m=a > L 25 < 1} Define K = n(X)
then. K is a symmetric stable set for the game v. [lowever we also
present a non-symunetric solution as follows. Define.

Xi={c3> = = (L

o

0=z <1}

Np={en o = (4L 4 Lan2-z) 10<2, < 4
Detine N = X; U X,, then K is a non-symmetric stable sct for the

game.

Example 2.3.4 : Consider the following symmetric game whose core

i large

Consider the specified vectors

v o= (0, 0.2, 0.4, 0.4),

y* = (0.1, 0.1, 04, 0.4)

y? = (0.2, 0.2, 0.2, 0.4)

observe that y' (V) = y*(N) = y*(N) = L.

Example 2.3.5 : Consider a game (not necessarily a symmetric one)

(N.v) and define a symmetric game v* bascd on v as follows:

I7(s) = Mawig. v(S) for all s suchthat 1<s<n
Denote by €~ the core of the game o* and assume (™ # 3. Denote by
€' the corc of the game v and it follows that ' % ¢ as (™ C (. (- is

stable does not necessarily imply (' is stable.
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An izample: Take N = {1,2,3,4} o(1,2) = 0.20, v(3,4) = 0.15,
v(1,3,4) = 0.60, »(2,3,4) = 0.60. It is easy to check thal the game v*
defined as explained above has it’s core as the unique stable set. (v*
coincides with the previous example) The core of the game v however
is not a stable set. Consider the vector 2% = (.45, 45, .10, 0), z°¢C
It is easy to check that this vector can not be dominated by any core
element.

Example 2.3.6 : Under the definitions of v* above the Jollowing ezx-

amples shows that C could be large but not C*.

Let N = {1,2,3,4} and v(1,2) = 0.2,5(1,2,3) = 0.7,u(N) = 1,0(5) =

0 for all other S C NV Hence v” is as follows :

" is not large as one of the specified vectors y' = (0, 0.2, 0.5, 0.5)
is not an imputation. However C' is large - can be proved as follows :
Observe that ' = {z = (21, 3, @3, 1) : 71+ 75 > 0.2, zy + z2 +
732 0.7, #1+ 23+ T3+ x4 = 1}. We need to show that L(v) = C, Let
7= (21, 72, T4, 1) € L(V) = oy baz > 02, 24 oadas> 0.7
If possible 2| + zp + 23 + 24 > 1.

Case 1 : xy+xs > land o) + 22+ as+ 24 > 1. Write y = (11,y2,0,0)
where y; <oy, 42 <2, Dy +y, =1 contradicting z € L(v).

Case 2: 1> xy+a2 2 0.2, 0.7 > 214 2,+25 > 1 zitagtastag > 1.

Write y = (41, 12, 0, 0) where 31 < 21, y, < 75, ys < 23 D
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[
&

Y1+ 92+ ya =1 contradicting = € L(v).
Case 3:1> ri+r; 202, 1 > Titzo+as > 0.7, 2y 4agtrg4x, > L

Write y = (41 ya. 0, 0) where y; = 0y, 3, = o, s SYs =

1 — (a1 + x2 + 23) contradicting x € L(v). Thus L(») = (.

Also recall Erample 2.2.2.

Concluding remarks

s been the question

The primary interest in Game Theory has alway
of existence of a solution or a stable set. Lucas[20] showed that there
are games for which a solution may not exist. Search is still on for

subclasses where solution may always exist. Do Symmetric games form

one such subclass 7 ~remains the question! However Rabie[35] showed

that a solution need not necessarily exhibit the symmetry of the game.
In view of these the question assumes greater significance. Do symmet-
ric games always have a solution ? not necessarily a symmetric one!
Sharkey has proved that a convex/subconvex game has a large core, but
we had a fecling that these conditions are still too strict as sufficient
conditions. One can ask whether exactness is sufficient. Biswas et al[5]
have answered this question in the aflirmative for syminetric games.

For non-symimetric case the reader is referred to Chapters 3 and 4.



Chapter 3

Exact Games

3.1 Introduction

In this chapter we will answer the question if every exact game has a
large core. We will prove that, for games with 5 players or more, the
answer is no. For TU games with 3 or 4 players every exact game has a
large core. For totally balanced symmetric games a large core, a stable

core and exactness will be proved to be equivalent.

To start with we recall the definitions of both concepts.

Definition 3.1.1 (Sharkey) /34 T'U-game (N,v) is said to have a
large core, if for every vector y € R™ with y(S) > v(§) for all § C N,

there is a core element x € C(v) with z < y.

A vector y satisfying the conditions y(S) > v(S) for all § N will be
called an upper vector of the game (N, v). The set of all upper vectors
is denoted by U(v). 1t is a polyhedral set and not dependent on the

value of the grand coalition v(N) (as we only take the inequalities for

39
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S C N). The recession cone of the polyhedral set U/(v), ie. the sct
fw € R™: x4 tu € U(v) forall = € U(v), t 2 0} is the cone R, as
can be seen casily and by the structure theorem for polybedral sets
Ute) = ch(extrii(v)) + R

(ch means “convex hnll of and exrfr means “extreme points of ).

From this description one can sce that the core is large if and only if

(N) 2 2(N) for all extreme points = of I(v).

Definition 3.1.2 (Schmeidler) [39] A TU-game (N, v) is called ex-
act if for cvary coalition T C N, there is a corc allocation = € (1)
with o(T) = (7).

Note that an exact game is balanced and that every subgame (5, vjs)
is also balanced : (N, v) is totally balanced.

Games with large core have been studied, mainly because of the follow-
ing property:

Proposition 8.1.1 (Sharkey) (/3] If @ TU-gamc has a large core,

the core is the unique stable sct.
Proof : For completencss we repeat the proof. If y € I(v)(the impu-

tation sct of (NV.v)) and y is not a core allocation, there is a coalition

s > yls

S with y(S) < ©(S) and y(T) = w(7) for T' C . ‘Take

and z|s(§) = v(S). It is possible to extend z|s with payoffs for play-

zlvys) € U(v) and =(N) > o(N).

ers outside S such that =z = (z]g,

There is a core allocation = with = < = (largeness of core). Then
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o(8) < 2(8) < 2(8) = v(S) and £y = z5. Then x dominates y via S.

Su, every imputation outside the core is dominated by a core alloca-
tion. Hence, the core is a stable set and there can not be another one,
as every stable set contains the core and no imputation can be added

without violating internal stability. [ ]

(N1} is a balanced game then we define the folally balanced cover
(N.e) by o(S) o= mae{ ey yro(T) s yr 2 0 and Spcsyrer = s}
where, €7 is an n vector with (er); = 1 for all ¢ € 7" and (er); = 0 for
allr ¢ T As U(v) = U(v) for every TU-game and C'(¢) = ("(v) for
every balanced game, the game has a large core if and only if the totally
balanced cover has a large core. So. we can restrict our attention to

totally balanced games. For totally balanced games we have

Proposition 3.1.2 (Sharkey) [/3] If a totally balanced game has a

lurge core, il is an exact game.

Proof : Take any T C ¥V and a core element z|p & C(T rfy ). As

hefore we can extend =g to an element =

vys) in (e} and
HN) = e(N). There exists a cove allocation @ € ('(v) with =

Then o(T) < z(1

= o(T). So. ¢ is a core allocation with

o(T) = o(T) .

Remark 3.1.1 What is really nceded in the proof of Propositions 3.1.1

and S.1.2 is that every core element of a subgame (S, os) can be exr-
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tended to a corc clement of the whole game. In an unpublished manuscript

Kikuta and Shapley[16] proved :

If in a balanced game (N,v) cvery core element of a subgame can be
crtended to a corc clement of the wholc game, then the core is stable set.

They conjectured that this condition is also nece

ry for core stability.

The question we will answer is the converse of Proposition 3.1.2:
Does cvery exact game have a large core ?

The history of this problem is curious. In Sharkey [43], the author
claims to have a counter example in Lucas’ famous 10-person game

without a stable set. This counter example however is false.

Example 8.1.1 (Lucas[19],cf.Sharkey[43]) Consider the TU-game
(N.0) with n = 10 and coalition valucs v(S) = 0 cxeept for the following

coalitions :

v(12) = 0(34) = 0(56) = (78) — ©(90) =
p(137) = 0(139) = v(157) = v(159) = v(35

= v(359) = 2,
p(1479) = 0(2579) — v(3679) =
o(1379) = v(1579) = #(3579) =
v(13579) = 4.

[Numeral 0 in the coalitions stand for player 10]
Sharkey states that the totally balanced cover of the game (N.v) is
exact if o(N) > 5, that the game has a stable core for v(N) > 7 and

has a large core if o(N) = 8. None of these statements however is true.



MAIN RESULTS 3

Vor exactness v(V) must be at least 11 and, by Proposition 3.1.2, the

same must be true for a large core. Iinally. the core not is stable for

first.

v(N) < 11. We show the statement about exactne:

Pake the coalition (1679). This coalition and cach of its subcoalitions
has value 0. To have exactness there must be a core allocation with

1 (by coalition (12)). xa > 3

7; =0 fors =1, 6. 7, 9. Then

(by coalition (1379)), z4 > 2 (by coalition (1179)). ws = 3 (by coalition

3)), w0

(1579)). Finally o5 = 1 (by coalition ( 1 (by coalition (90))
I'hen (V) 2 11. The allocation obtained by taking cqualitics in the

(0, 1. 3. 3.0.0.00,0. 1) Itisan

above mentioned coalitions
extreme point of [/(v). Tt can be proved that the allocation obtained
by diminishing the coordinates of z on the places 3, 1 and 5 with same
amount ¢ € (0, 1] gives an imputation in the garne with e(N) =11 —=3¢

that can not be dominated by any core allocation of that game.

Most recently Biswas et al. [1] proved that the converse of Proposition
3.1.2 s true for symmetric TU- games (coalition values depend on the

size of coalition).

3.2 Main Results

In this section we prove that the converse ol Proposition :3.1.2 holds it

[Nl = n < 4 and we give a counter example for every mumber 7o 2
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Theorem 3.2.1 If (N,v) is a ezact game and n < 4, then (N,v) has

a large core (and the core is a stable sct). Ifn > 5, then there are ezact

games (N, v) not having a large corc.
g 9 2

Remark 38.2.1 Kulakovskaja[18] gives, for n = 4, the following neces-
sary and sufficient conditions for a zero-normalized balanced game (o
have a stable corc. For cocry ordering of (4,7, k1) of the players in N,
v(ij) + v(Gh) + v(il) = o(N),
clijh) + o(il) < o(N),
eligh) + e(ijl) — v(ij)

o(N).

In fact these conditions check the exactness of the (totally balanced
cover of) the game. The first two relations check the exactness condi-
tions for coalitions (i) and the last condition is the exactness condition

for (ij). For 3-person coalitions the exactness condition follows from

the total balance condition.

Proof of Theorem 3.2.1: The proof of the theorem and the distine-
tion between 1 < 4 and n > 5 mainly rest on the following observation:
only if n > 5, there exists a collection 7 of proper coalitions in N, i.e.
T = {1y, .... T,} with the following propertics:
(a) {er : T € T} is a basis of R™,
(b) the vector equation Sper yrer = en + acs does not have
a non-negative solution (yz. a) for any coalition S.
Condition (b) says that 7 does not contain a balanced collection and

also that it is not possible to combine the vectors er, 7" € 7 in such
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a way that every player get either weight 1 or 1 + a. For n > 5, the
collection 77, := {(1), (1,2), (1,3), (1,2,4), (1,2,5), ---, (1,2,n)} has
properties (a) and (b). For n < 4 such a collection does not exist(see

Lemma 2.2.1).
If one has a collection 7~ with properties (a) and (b) one can proceed

as follows:

The vector eny can be written as %, yrier,- Let the vectors {w;} be
defined by w;(T;) = 0if i # j and wi(T:) > 0. If we compute w;(V), we
find that w,(N) < 0 if and only if yz, < 0. We normalize the vector w;
by w;(N) = —1 if y7, < 0 and denote the sct of indices j with yr, < 0
by J. By property (b) J contains at least two elements. Next we define

a game (N, v) by v(S) :

= min, e w,(S) for S € N

The game (N,v) is the minimum of |J| additive games. Note that
(N.v) has the following properties:

(c) for every coalition S C N there is an index J with w;(5) = ©(5).
(d) for every index j € J and every coalition S we have w;(5) > v(5).
from (c) and (d) we find that (/V,v) is an exact game.

(e) v(N) = —1 and »(7') = 0 for all 7" € 7 (here we use |J| > 2).

If the game (N, v) happens to be non-positive, the vector z = 0 is an ele-
ment of U(v) (as the collection of ‘tight’ coalitions T i.e. coalitions with
2(T) = v(T'), contain the basis 7 of R™). Then z € U(v) can not be

decreased to become a core allocation and the core of (N, v) is not large.
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For the collection 7, we find e v = ==c 1y (0 1je 1oyt | - +(ram;-
Fiven o/ — 41,2} (two cocflicients are negative) and
o il =l 00 e 0 and ey = L Tay O, = 3]

We check that »(5) = i (S) LS S000 e (S

=01 wo(S) > 0l 2 € N and S0 {1,

So the game (N 0) is exact and nov-positive. ¢f Nj = — 1 and = — 0 ix
an extreme point of U{e). The game (N, e) does not have a larpe core.
In fact. we think that the game {N. o) delined accordine 1o the previons
rifes ds alwavs o non-positive game, 1 this is 1rue then every collection

T with properties (a) aud (bj

gives a counter example for the converse

of Proposition 3.1.2

Lo prove the first part of the Theorem we

assume that oo § and

that (Noe) s an exact game. We assume that o colleetion § with
properties {a) and (b) exists. Let & he any extreme point of { (et and

N s T) = (1) The collection Stz ) contains a basie

of R (as

< an extreme point of £70e)) By the absence of property
thy there is. for at least one coalition S, non negative solution of the
veetor equation

2iresyrc = x bacs (B
I'here exists a core element & of (Vo) with r( &) — rliSexactess of

(N o)) From equation (1) we find.

WPE(P) = BOVY 4408 and theselore, Sesaret?) & o N

ar(S) But also Spes yrat17) — w(N) ©ow(S) implyine. Yyesur el

CUN) o an(S). So. e(V) 2 2(NV) for every extreme point = ol (7 (e),
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Ify € U(e) is an upper vector and y(N) > o(V), there is a vector w C
ch(ectr(U(v)) and a vector w > 0 with y = w | . As y(N) > v(.V) and
w(N)

(V). there is a number £ € [0.1) with w(N) + tu(N) = v(N).

‘I'hen 1w + fu is a core element

y. So (N.v) has a large core. -

We arc left with the following combinatorial Lemma:

Lemma 3.2.1 Ifn < 4, there is no collecction T salisfying (a) and (b).

Proof : Suppose That 7 is a basis of R” with n = 1. If 7 contains a
3-coalition. say w.lg. {1,2.3}, there is a coalition 7' 3 1 in 7. Then

[ ex b ernaazm-IT T contains only I coalitions, it is the

balanced collection {(1).(2),(3).(4)}. So to satisfy (b) 7 must contain
at least one 2-coalition and no 3-coalitions. Say (1,2) € 7. Lhere is
also a coalition Ts containing player 3 in 7 and a coalition Ty containing
player 1in 7. These coalitions are not the same. Otherwise (3.1) € T
and 7 contains a balanced collection {{1.2),(3,4)}. At least one of the
coalitions 13 or 1y is a 2-coalition: otherwise 7 2 {{1.2).(3).(1)}. a
balanced collection. W.lg. we may assnme 15 = (1,3). Then cay +
ey Foen, = (2,11, 1).(2.1.2.1), (3. 1. L 1) or (2.2.1,1). There exists
no collection 7 with properties (a) and (b) for n = 1. For n = 3 the

proolf is cven casier. L]

3.3 Symmetric games

Let f:]001.2,..., n] — R, be a map with property f(0) — f(1) =0

Such a map defines a symmelric game by o(8) i= f(s) whenever |5] =
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For svinumetric games we will investigate the relation between exactness.

having a stable core and having a la:

s core

For anv totally balanced U gmne we have:

If the game has a large core, il is cracl and it has a stable corc. (see

Propositions 3.0 snd

Theorem 3.3.1 For totally balanced. symometric TU-games (N v) i
Sollowing stalcments are cquivalent

G AN bas o largc cor

o ANLe) has a stable core

co N ey s craci

Io prove the above Theorem we note that (a) = (h1 follows frown

(b) == () Tollows from Lomma o5 and Proposion

Sharkey [12]

nd () = (a) follows from Proposition 3.1,

1t 3= well known that symmetrie games defined by a function fis bal

anced if L8l L for ol i

s = — 1. The game is therefore totally

Lalanced iff the Minetion 72 i weakly monotonic function.

Lemma 3.3.1 V sgumetric game defined by a function [ ix ceact if

and only if the function = — 20 is qwcakly monotonic and for ciery
W) S g
paiv of infogers < = ¢, A o LI Shapley conditions).

Proof : Il f satislies the condition in the Lemma and 1 = £ = 0 1owe

define o0 A and o LU IE 7 s coalition of size £ we give
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the players in 7' the payment ' and the players outside 7" the payment
27, Call the vector # := z’er + z”envr. Then (N) = f(n) and z(T') =
/(). We have to prove that « is a core allocation of size s, we have
2(S) = (sAl)a'+ (s— (s Al))x". Where s At designates the minimum of
sand £. If s < ¢ we have sa’ = [(s)(by the totally balanced conditions)
and, for s > ¢, we have tz’ + (s — )" > f(t) + (s — ) L= — f(s)(by

Shapley conditions).

The converse can be proved as follows : if f defines an exact game, for

every t : 1 < ¢ < n — 1 an element x of R™ can be found such that

o Lay < < xn, @ @2t oo+ a. = f(s) for all s and equality
for s = ¢ and s = n.

We first replace the first ¢ coordinates by their average ' = £ and
the last n — ¢ coordinates also by their average o = L= e still

have a core allocation. So, we find sZ2 > f(s) for s < t and f(t) +

(s — ) =A@ > f(s) for s > t.
The last inequality gives the Shapley inequalities. =
Proposition 3.3.1 Every symmetric exact game has a large core.

Proof : We prove that, if the game has no large core, then it is not
exact. If the core is not large, then there

U(v) with (V) > f(n) and 3,

exists an extreme point y of

C = Yne

There exists an index k:2 < k <n — 1 with ye1 < Yk = Y41 = -

yn. If all the coordinates of y are equal (ie. k= 1), y; > Lok > L
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for all indices 7 and we can decrease g with a positive vector without

aving U (0). Then g can not he extrene, as one can always increase g
witlh the same positive veetor withont leaving {(e). 10k noone can

decrease iy, without leaving (e} and again g is not extremal

We prove that there exists an index r n—1 with g, tyo=
i

If siieh a vector does not exist and 7' is a coalition with y( Ty R,
have f(1) <5y by 5yt [y and therelore. 7< [1L

Twe define o < RE by O Tor i< hand g4 fon IR

vector v owith a(7) = 0 for all T with y(7') = [(2}. We can tal
I'hen y can not be extreme point of {7(e)

Finallv. we prove that there is no core allocation o with .y

reoao= f(k i If such a core clement @ exists, we may e that
o e Then a4 oo a2 ) — ftk - V) ithe ndex
;i as before). For y we have ye + --- by = f(r) Sk =1
B T O I B B B S e PP B [ )
Sk = 1) () e e D) (e e ) LD

PO e — e = g(N) > () -

Summarizing. we have the following:
For totally balanced symmetric games (AL o) the following are cquiva-
lent

La) the Shapley conditions.

(b)) exaciness.

i¢) having a large core.
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From cach of these properties follows : (d) the stability of the core.
We prove, finally, that (d) stability of the core implies (a) the Shapley

conditions.

Propaosition 3.3.2 If the core of a totally balanced symmetric game is

stable set, then it satisfies the Shapley conditions.

Proof : Suppose that f docs not satisfy all the Shapley conditions
Let £* be the index snch that L= o JO=LED for some index
We will give, explicitly, a point y € I(¢) that is not a core allocation
and can not be dominated by a core allocation ..

B < 1% and g e LI for o ge,

Pake y, =n 2890 for 7 <

I S is a coalition with |S] = s < 17, we have y(&) > s L85 > f(s) by the

1%, we

totally balancedness condition. H S is a coalition with [S] — s >
find y(S) = [(£7)+ (s — ) L2=LE = f(4) il the Shapley condition for

17 < s < nis satisfied. Hence if y(S§) <2 v(5), then 17 < s < and

the Shapley condition for #° < s < n is not. satisfied. For & = {1...... s}

we have g(&) < v(8). 16 y can be dominated by a core allocation .. it

ing the Shapley

must be done by a coalition S of size s >, not sati

condition €7 < s < n.
Suppose that @ € U(v), o5 > ys and #(S) = f(s). Let & 1= |5 U
{1,...,7}]. Then, f(s) = 2(8) > s'2E 4 (s — LA = pen) 4

(s — 4y Llm=1u)
e
Furthermore, @; = L= for j & § (otherwise #((S\i)Uj) < [(«),

sE sy afim)—g{e*
i g > AL
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F(N) > f(t7) 4 () fom =

(0

There is no core allocation dominating » and the core s not stabie. =

By Lemma 1. the Propositions 450 and S 2 we have Theorom

I

Finally we prove that fotally cract 1 U-eames are convex. Totally exact

means that the games and all subeamies are exact. Iy Monlion? T andd
Kikua [17] the weaker result is proved that “totally Targe core” ievery

subgame has a large corel implies convexity.

Proposition 23 Tolally cract gamcs are conves

Proof : Take two coalition S and 7 arbitrarily Asothe snhgarne
(S U1 epsar) is ¢ a core allocation o of the eowith
riN 0T (SO Mtalso trivially i SN 7 o). P hen ef S P
PUSY () == (ST b S0y ey DAY er s T Thos s e
convexity relation. -

onclusion: For balancod symmetric eames and balanced eanies witl
less than 5 playvers exactness (of the totally balanced covery. stable

core and large core are cquivalent. For non-symmetric balaneed gaies

with 5 or more players this is 1o more true. Shapley in his wnpiblished

manuseript [10] also proved the following theorem. hefore stating which

we define the dual of a gaine.

Definition 3.3.1 Gircn o game (N.¢) the daal of the quue (.

defined by v7(S) = o(N) - o(S) for all § N,
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Theorem 3.3.2 The corc of a symmetric game is stable if and only if

the negative of the dual of the game is lotally balanced.

However, Shapley expressed a doubt that in non-symmetric case the
equivalence may not be true. We confirm his doubts to be true through

examples in the following section.

3.4 Examples

We recall the generic example of an exact game which does not have a

large core, and consider a 5-player version.

Example 3.4.1 Consider the 5-player exact game defined through two
vectors s wi = (1, —1, —1, 0, 0) andwy = (0, 1, 0, —1. —1). Define
v(S) = Min{wi(S), ws(S)} for all S C N.

It is easy to check that the negative of the dual of the game (N. —0*) is
given by the following similarly defined game. —v*(8) = Min {—w,(5),
—wy(8)} for all § € N. It is further easy to check that the game —o* is
also exact and hence totally balanced. But the core of the game (V, v)
is not stable as y = (0, —1, 0, 0, 0) ¢ C(v) and is undominated by

any core element.

Example 3.4.2 Consider the following 6-player game with a stable
core. |N| =6, v(N) = 3, v({1,2}) = v({1,3}) = v({4,5}) = o({1.6}) =

L. All other v(S)’s can be evaluated from total balance consideration.
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Now consider the negative of the dual of the game and the subgame of

vt on {2.3.5.6}. In the following wo present the coalitions in flower

brackets and the corresponding worth below them.

-1 -1 1

Now consider the balanced collection B = {{2,5}. {2.6}. {3.5}. {3.6})
b Vsendse(S) =

" is not totally balanced.

of {2.3.5.6}. with the balancing vector & = {1

- So the game - 1

3 = wl{ld

These two examples show that Shapley’s result in symmetric games is

false in both directions in the non-synimetric casc.



Chapter 4

Large Core and
Extendability

4.1 Introduction

In the case of symmetrie TU games, it is known that core stability is
cquivalent o largeness of the core. For general TU games. largeness of

the core always implics core stability and there are examples where the

core is stable but not large. It is known that under the extendability
condition introduced by Kikuta and Shapley the core is a stable set but
the core may not be large. In this chapter. we show that the Kikuta-

Shapley condition is sulficient for the core to be large for 1'U gares with

five or less number of players. We provide a counter example when the

number of players is six. We then introduce a stronger extendability
condition and show that this condition is necessary and sufficient for
the core to be large. Our proof makes nse of a well known result from

the theory of convex sets.

he core of a 'T'U game is perhaps the most intuitive and casiest soln-
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lion concept in Cooperative Game ‘Theory [33]. Another approach to

solution concepts is the stable sets introduced by von Neumann and

Morgenstern[155. In this chapter we are concerned with core stabilit
and largeness of core. Sharkey [13] introduced the notion of largeness
of the core and showed that largeness of the core implies that the core

is & stable set. van Gellekon et al[11] have given an example of a nou-

symmetrie six person T'U game where the core is stable but the core is
ot large. while Biswas ot al.[4] have shown for symmetric TU games,
the two concepts coincide. There have been sev eral resnlts which deals

with sufficient conditions for the core to be stable {12 The survey

papers by Aumann [1] and Lucas 25] and the references therein
give an excellent review of these topics. For more recent results on core

and monotonic solutions one can refer to [461 {14,

Kikuta and Shapley[17] have introduced the notion of extendability of

the game in the sense that every subgame core element {(whenever it

exints) can be extended to a core element of the original game. They
have shown that extendability implics stability of the core. Recently
van Gellekom et al.[11] have given an example showing that stability of

the core need not imply extendability property of the game. They have

ane where 1he game has the extend-

also given a seven person LU g

not large. These results immediately

ability property but the core i

raise two questions ¢ (i) Can we find a T'U game with less than 7 play-

ers satislying extendability without having a large core? (i1) Can we

strengthen Kikuta-Shapley notion of extendability so that it will imply
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largeness of core. We answer these two questions in this chapter.

We introduce a different notion of extendability property namely that
every lower boundary point of every (7 — 1) person subgame can be
extended to a core element of the original n-person game. I'his notion
will be shown to be equivalent to largeness of the core. I'herefore, we
will call this concept a bit prematurely, strong extendability. Proof of
(his result makes use of a well known result from the theory of convex
wets. Then we show that when the number of players is at most five,

extendability of the game and largeness of the core coine ide but for

"

6, we give an example to show that the game has the extendability
property but the core is not large. Our plan for the chapter is as follows.

In section - 3. we stale

2. we present some preliminaries. In section

and prove our main results. Section 4.4 contains examples and further

remarks

However. the following definitions are necessary for the discussions in
this chapter. \We now define the notion of extendability due 10 Rikuta

and Shapley[17}.

Definition 4.1.1 Let (N, o) be a TU-game with a pon-cmply corc. We
say that (N.v) is catendable if for cocry non-cmply coalition S C N

Jor which C!(v]s) # & and for cvery core clement y € C(

s) there is a

core dlement e Clo) with oy = y; fordll i € 5.

Henee if (N, o) is extendable then every subgame core clement can be

/,v).

extended to a core clement of (4
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Kikuta and Shapley have shown that if the core is large for TU-game
(AN e). then (N, ¢) is extendable. They have also shown that if C(0) £
o and if (N.e) is extendable then C(v) is stable. In a recent paper
van (elleckom et alill] have given examples to show that in general.
stability of (/(2) need not imply extendability with a six-person game
and extendability need not imply largeness of the core with a seven
person game. Our inspiration for this chapter comes from these two
papers. In order to state our main results we need a different notion of

extendability.

Definition 4.1.2 Let (N.v) be TU-game with a non-cmpty corc. 1We
say (N.v) is erlondable in the stronger sense if for cvory S © N with

[t

— w1 and every y & L(cls). there is a corc doment o

such that #; — y; for all i & 5.

In other words if (N, 2) is extendable in the stronger sense. then every
1 — I-player subgame lower boundary point can be extended to a corc
clement of (V.2).

We show in this chapter the following : (i) TU-game (WV. 2) is extendable
in the stronger sense if and only if the core is large and (i) T U-game

is extendable if and only if the game has a large core.

(N.e), with n -
Finally, we give an example of a six-person game which is extendable
but not large. These results complement the results oblained by van

Gellekom et al. (11]
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4.2 Main Results

In this scetion we state and prove some results connecting extendability
and largeness of the core. We need the following result from the theory
of convex sets [3].

Berge’s Theorem : [f [Jy,.... D, € IR™ are closed convex sets with

(a) U D is convex and (b) M4, 12, # & for every index i then (), 1, / o.

Theorem 4.2.1 Lci (N, 0) be a TU-game with a non-cmply core. Then
the core C(v) is large if and only if the game (N, v) is crtendable in the

slronger sense.

Proof : If the core is large. it is not diflicult to see that the game
is extendable in the stronger sense. Take an clement yls € L(v|s).

Extend yls to y € L{v). As the coreis large y € C(2).

So we need to prove only the converse.
Suppose there is an element y € L(v) with y(V) > o(V) and define

Dii— fe € Cle) o < b We will prove that (), D; # 0. Every core

element must belong to at least one D, since y(N) = o(N) = (V)
for any core element x. Hence we have U; Dy = C(0), a convex set. In
order to apply Berge's Theorem. we must, prove that (), 1, # o for
every i

So take i € N. We will produce a core element belonging to M4, D; #
@. Reduce yyy, to an clement Y < yna with v, € L{vvyi). This
cau be done as [ollows :

As y ¢ L(v), ywvi € A(clvy) in case it is not a L(vjvy) element, there
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is an index [ such that for all T C N\ i containing {, y(T) > v(T).
Define ¢: = Mingairemidy(1) — o(T)} and redefine yi

= y; — ¢ and
y; =y, for j # [. We repeat this with all remaining indices I such that
for all T C N \ i containing {, y(T) > v(1'). Thus we produce an an
element yiy; € L(v|ny With gy < yne Then yx,; can be extended
into a core element ().

This is an element of M, 12,. Since ¢ is arbitrary, M,z D; # ¢ for
every player i.

Hence M, i # ¢. Let  be such an element in C(v), that =i < y..
Since y is a lower boundary point with y(N) > v(N), we arrive at a

coptradiction. This shows that C(v) is large when (N, v) is extendable

in the stronger sence. -

Theorem 4.2.2 Let (N,v) be TU-game with non-empty core. Supposc
IN| = n < 5. Then the core C(v) is large if and only if (N, v) is

crtendable.

Proof : We will prove the if part only, as the only if part follows from
(he proof of Proposition3.1.1. Suppose (N.v) satisfies extendability
condition and let y € L(v) with y(N) > v(N). Recall definition of 5,
as the collection of coalitions T' with y(T') = v(T)-

Then 8, covers N and yr can be extended into a core element (y7 R €
().

The following situations are not possible:

(a) There are coalitions T3 and 13 in S, with Ty U T2 = N,
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(b) There is a coalition 1 € S, and. for each player j ¢ 1 a coalition

1€ S, with je T, C1 Ui}
If case (a) oceurs, we write Ai— N\ T3, 3= 13 075 and Ci= N\ Ty

Then AU B — Ty and there is a core allocation a = (ya. yu, < ). Then
BUC =1, and yu(B) + x(C) = o(BUC) ~ ypil) t ye(C). This

means y( V) < o(N) = o(¥), a contradiction.

If case (b) occurs, there exists a core allocation & — (yr-. {c;}igr)-

hen (7)) x; +y(I=nTy) > () = y(I" 0 1)+ y,. Then
S(N\T

(V). a contradiction.

= g(NNT7) and #(N) = y(N)

Also impossible is:
(¢) There is a coalition 7' C &, with [T] — n — 1.
In case (¢) we have Tii= N\ i € 8, for some player ¢ € N. There is

also a coalition 7%, containing /. Then 77 and 15 are not possible by (a).

Case n = L. There is at least one coalition containing 1. at least

one coalition containing 2 up to a coalition containing 1 in §,. By

case (b) these coalitions cannot be all 1-coalitions and there are no 3-

coalitions(3 -~ 1 1). So. there is a 2-coalition, say w.l.e. 1y (1.2) C

8,. Then by the impossibility of (a). there is no coalition 7y € S, con-
taining 3 and 1 and by the impossibility of (b) there are no coalitions
47 and T2 in S, one containing 3 and not | and one containing 1 and

not 3. So. there is no possibility left. for S,

Case n — 5. There is no 4-coalition in S,. Suppose 7} € S, with
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|77] — 3. Then. w.lLg. Ty = (1.2.3). There must be a coalition 75, € 8,

containing (4.5). impossible by (a) or two coalitions 7§ and 73 in S,.
one containing 4 and not 5 and one containing 5 and not 4. This is not
possible by (b). So, every coalition in 8, has size 1 or 2 and there is at
least one 2 coalition. by (1)

Impossible is

(d) v — 5 and 7; and T} are two disjoint 2 coalitions in S,

In case (di we have wlop. 77 — (1 =

2) and 1

also o coalition 15 in S, containing 5. This can be 15 =

(2.5) with o e {1.2.3.1}. W.Log we may assume that o — 1. Let
¢ = (y1.y2. w5 ras) be an extension of (y1.yz) into a core allocation
of (N.2). In the first case we bave ry++ a0y 2 v(31) = o yy and

7y 2 o0(3) = ys. Lhen w(V) 2 y(V) = v(N) and a contradiction. In

the sccond case, we also have a3 + 04 = ya + ga and gy + 25 > 41 + ¥s
Then again o(N) 2 y(N) > o(N).
Now we try to find a possibility for S,.

7y = (12). By the impossibility of (b) there must be a second 2-coalition
Ty in S, and by (d) it is not disjoint from (12). W.lo.p T — (13).

Again by (b) there must be a third 2 coalition T € &, containing 1 or
5. W.lLg. it contains 4 and T3 must interseet 7y and 7. 1 = (14) is the

only possibility. Finally there must be a coalition 7'y containing 5. This

cannot be (5) by the impossibility of (b). 1t is therefore a 2 coalition

intersecting 4. 1% and T5. Then (15) is the only possibility for 7y but

(his is after all also impossible by (b) (take 77 = (12)). This concludes
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the proof of the Theorem. -

Remark 4.2.1 Forn = 6 consider the collcction S consisting of (12),
(13). (23), (124), (138) and (236). This collection is not in coniradic-

tion with the impossibility of (a). (b) and (¢). This fact will be uscd in

the last scction as an erample of a 6-person game salisfying crtcndabil-

ity without having a large corc

Biswas and Parthasarathy|6] carlier considered the extension of all lower
boundary points of every subgame to the core elements and showed
that the core is large. Though this appears to be rather trivial, it is
worthwhile to note that the strong extendability, weaker than the above
as it may look. eventually implics the original assumption as in [6].

Theorem {.2.1 s useful in examining whether the core is large. If for
some (1 - 1) player subgame we find a lower boundary point which
cannot be extended as a core clement of the original game, then the
core cannot be large. We illustrate this with an example in section .1,
Following van Gellekom. we denote by (7(e). the set of upper vectors,

that is.

(&) {«: #(5) for all proper coalitions & € V}.

It is easy to sce U (v)

e R, w(S)

Ale). 1t is shown in {11]. that the core of a

v(N) for every extreme point

TU game is large if and only il z(2V)

of U(v). I'hi

result complements Theorem 4.2.1 of the present chapter.
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4.3 Large core of k-convex games

In the folowing we study largeness of core of a subelass of games known
as symmetric A-convex games. We also prove that the snbelass is closed
under totally balanced games. The k-convex games were defined by

Drie:

nin [9] becanse of the core structure they possess. which s the
same as that of a suitably defined convex game. These games in the
general set up are defined through what is known as the gap function
which in turn is defined through marginals of the players in a game.
However in the symmetrie case they can be defined through the vectors

defined below.

Definition 4.8.1 Given a symmelvic n-person game v defined by a

Junetion f 2 {0.1,2,....n} - RA(0) = f(n) - fOr- V). and the

corresponding allocation w(v) = (a;(v))jen s as follows:
fy)y=fo -0 k0.
pie)yi= 3 fn) - (n—k)-Da(0)  fk=1) df ks (4.1
S(n) - f(n—=1) = Aue) otherwise.

The requirement that the allocation #(r) = (i, (2)),ex of (1.1) should

be nondecreasing is cquivalent o the following system of three condi-

tions:

F(s) = fls= 1)< fl1) - flr—=1) for 1<

1 (4-2)

fr)y = [k 1) < (n =k 1) Au(r) (4.3)

Flk—1) = f(k= 2) (=) - Do) < J(n) = f(k=1) for k> 1. (4.4
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In addition. the requirement that the nondecreasing allocation x(v) =

(0,(1));en of (4.1) shonld belong 1o the core of the symmetric game »

is equivalent to the next condition:

f(n) = fls) 2

(n—s)-An(v)  forall s € {k k+1,...,n}. (1.5)

Definition 4.3.2 A symmelric n-person game (N,v) is k-convex if
the game v satisfies the jour conditions (4.2)-({.5), or cquivalently, the
nondecreasing allocation «(v) = (&,(0)),en of ({-1) belongs to the core

of v. Alternatively. the symmetric n-person game (N.o) is k-conver if

(4.2) holds and the corresponding straight line €, : {0,1.2,....n} >R
through the points (n. f(n)) and (1 — 1. f(n = 1)) satisfies the following
thrce conditions:

ok < k= 1) and  0(s) = f(s) for all s € {hkok | 1L "

(0= f(k—=1) = f(h=1)  f(k 2 whencver k> 1.

Evidently, for & € {n — Lon}. the k-couvexity of a svmmetric n-person
game v agrees with the convexity notion for v. Since n and (n — 1)
convexity are identical notions, we assume, without loss of generality,

throughout the section that & & {1 L= 1}

It is well-known that the core of a symmetric n person

cmpty if and only if £

game v is non

K o all s € (1.2, n}. Consequently,

a symmetric n person game o is totally balanced if and only if the

corresponding sequence of per capita worth

S C {2 ), s

nondecreasing. With a svimmetric n-person game v, there is associated

the totally balanced cover v, defined in Definition 2.1.2
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The totally balanced cover ¢ may be interpreted as the smallest totally
balanced symmetric game that majorizes the game @ (that is.if a totally

balanced symmetric 2 person game w satisfios w(

o(S) for all [$1 =
)

Since convex games are known (o be totally balanced [11], it holds that

<

soe {2 oond then w(S) = o(S) for all

v e for every conves

symmetric game v, Morcover. it is well-known
that both cores coincide. that is C'(v) = C'(v) whenever Clr) 7 o, In
particnlar. 2(N) — +(N) holds for every symmetric r-person game
with a non-cimpty core

Further. hoth acceptable sots coincide. that is A(e) = A(e) for every

symmetric n-person game o [1] and therefore, a balanced

nmmetric

game has a Jarge core if and only if its totally balanced cover has a

lavge core. Ax a malter of fact. largeness of the core for a symmetric

game can be formulated in various equivalent manners as has been seen

in Theorcmn

We aim to investigate. for & convex symmetric games, the largeness
ol the core. The next theorem states that the totally balanced cover
inherits the & convexily property. Thus, without loss of generality.
in the sequel we stndy the largeness of the core for A-convex totally

balanced synimetric n-person games.

‘Theorem 4.3.1 Lel ke {1.2,..., n — 1}, The totally balanced cover

v of a k-conver symmelric n-person game v is k-convez.

Proof : Let the s

the

ymmetric n person game v be A-convex. that is

four conditions (4. 4.5) applicd to v hold. We show that these four
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conditions (4.2)- (1.5) applicd to © hold too. Firstly, notice that the
convexity condition (1.2) for the game v up to size k - 1 yields that
) — [(s) for all s ¢ {1.2.....k — 1}. Thus, the convexity condition

(1.2) applied to & holds too.

Recall that o(V) = »(N) (duc to the non-emptiness of the core of k-
convex symmetric nperson games). Furthermore, f(n—1) = f(n —1)
by convention of » and thus, A,(v) = f(n)~ f(n—1) < f(n) = f(n -
1) = Au(e). It follows immediately that condition (4.4) applied to o
holds too. As a matter of fact. we claim v(n — 1) = f(n 1), By k-
convexity of o. the nondecreasing allocation z(v) = (2;(v));ev of (4.1)
beloies to the wore of » and besides, 00 w;(v) = fnn — 1) (since
() = f(n)  f(n = 1)). As a result, the nondecreasing allocation
arising from #(1) restricted to all components, except the very last one,
belongs 1o the core of the subgame (VN\{n},vay(ny). Next, on its turn,
the non-emptiness of the core of the subgame (N\{n}, ox\(ny) vields
JUe 1) = f(n—1) and henee, Ay(v) = A, (v). In summary, the three
conditions (4.2) (1.1} applied to & are identical to those applied to v,
which are supposed to hold trne. It remains to prove condition (4.5)

applied to . The prool proceeds by induction on s, s € {k k+1,.... n}.

First we prove (1.3) applicd to v and s — k. The case & = 1 implics
Tk) = F(1) = f(1) = f(k) aud (43) is invariant. Thus we may
suppose k= 1 and f(k) # fU). Recall that, by convention of f,
J(k) — max i,f(ﬂ‘] ”*" J Hence,
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Foky = ko B e S (e =1y Hi

< J(k 1)+[f(k7 1) = k=21

where the last ineqnality follows from the convexity condition (4.2) for
(he game v up to size k—1. From this and (4.4). we deduce f(n)—f(k) =
Sy fE=D)=[f(k = 1) = [(k=2)] > (n- k)-A,(v) = (n=k)- 2, (2).
Let s {kb+1....,n— l}. By induction hypothesis. suppose that
(4.5). applicd to » and s, holds. Recall that. by convention of v
Fls+1) = max [£(s 1 1 (s+1) 1] Notice thal (4.5) is invariant
whenever f(s+1) = f(s4+1). Incase f(s41) # f(s+1). then we deduce
from the induction hypothesis that f(n)=F(s4+1) = f(n)—(s 11)- L2 -
[rim = fa] = 22 = (n =) - Au(e) = K2

The non-emptiness of the core ol the k-convex symmetric n person

game v vields 2= < L) or equivalently, f(n) < - Au(v). From

this and the induction hypoll\(:ﬂs, we derive

Fs) < f(m) = (n - s) - Au(e) = f(n) = (n = 8) - Au(r) £ - Anlr) =
s ()

From f(s) < - An(#) and the former in(‘qn;ili!y we conclude that
SO = s 4 D) 2 —s) Auo) = A > (s 1) Ao

Thix completes the inductive proof of condition (1.5) applied to e, 1

Example 4.3.1 Consider the symmetric S-person game v given by

o(S) = 0.0

19,12, 18.25,31 for coaltions S of sizc s = 0,1.....%
vespectivily. This game v is totally balanced sinec the corresponding

scquence of per capita worth 285 € {1.2,...,8}, is nondicreas-

ing. Morcover, this game is 5-convex since the nondecrcasing alloca
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tion #(v) = (0,2.3,4,4,6,6.6) of (4.1) belongs Lo the core of v. The
core of v, however, s not large becausc the associated specified vector

y' = (0.2

~1

\7) of cquation(2.1) dovs not mect the efficiency
principle.

Theorem 4.3.2 Lot k€ {1.2,...,n —1}. For a k-conver totally bal-
aneed symmeliric n-person game v, the following three statements are

cquivalent.

/. v has a large core

20 J(8) = [(n) = (n =) Au(v)  fors:

3. v is a conver game.

Proof The implication (iii) = (i) holds true for every convex game
[12]. 1n order to prove the implication (i) = (iii). note that

Fls 4+ 1) — f(s) = An(v) forall s € {k,k+1,...,n— 1}, from (4.6).
JURY = [k — 1) = [(n)  f(k 1) = (0 —k)-Ap(e) < A, (v). from
cquations (4.6) and (1.3).

U= 1) [k =2) < f(n) - flh=1)—(n—k)-Au(v) = f(k) [J(k=1)
il &> 1

from cquations (4.6) and (1.4)

Hence, the symmetric game v is convex, provided that (4.6) holds. It
remains Lo prove the implication (i) == (if).
Recall that the largencss of the core of the symmetric n-person game v

is equivalent to Shapley’s conditions.

fln) — f(5)

L whenever 0 < s <t < n. (4.7)

n—s
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For the sake of notation. write €,(1) 1 f(n) —(n —t)- A, (v) for all t &

Lokl #}. The proof of (1.6) proceeds by backwards induction on
sos€{k k1, . n}. By convention of A,(v). (1.6) holds whenover
sC{n—l.n}. Letsc {hok +1.... 7 — 2}, By induction hypothesis.

stuppose that f(s+ 1) — f(n)—(n-—- s 1)- A {v) =605+ 1) From
Shapley’s conditions we obtain that

Ffls 1 1) J(s) £ 29200 o cquivalently.

(n—s—1)-fls)= (n—s)-fls 1 1) fln)

Further, from the induction hypothesis [(s 4 1) = (. (s 1 1) and £,(s 1

1) — £,(s) + A (v). we derive

(=) fls+ 1) = flon) = (u s)-Luls+1)— f()
= (1 s l(s) + AL)] = fin)

— (e sT S e s AL () = f(n)

Hence, (n —s—1)- f(s) 2 (n—s)- fls+ 1) = f(n) = (n = s = 1) (,(s)
and thus. f(s) > £.(s). By the totally balancedness of v, it holds v = ».
Together with (1.5). it follows that

FLs) < fln) — (n— ) - Aue) = (&) < [ls) = [(2).

We conclude that f(s) = (,(s). This completes the inductive prool of

(1.6). o
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4.4 Examples and remarks

We first give an example to show that Theorem {.2.2 may not be true

when the number of players is six.

Example 4.4.1 Let N—{1,2.9.4.5.6} and v is given by e({1.2}) =
e({1.3)) = o({2.3}) = L. o({1.2.4}) = ({1,

and +(N) = 4 and o(S) is defined suitably for ather S so thal v s

B = e({2.3.6)) = 2

monotonic, super-additive and totally balanecd.

I'hough it is not hard to check that this same is extendable. we indicate

the proof below. However. that the core is not large is easy to sce by

verifving that y — Lol 1) is alower bonndary point of the

;i
pame and y(N) — 1.5 > o( V) == 1. This example shows the sharpness
of Tircorcm f.2.2

We now show the extendability of the gamc

civen i Leample {1 Tt
i enough to prove extendability of one 2 player coaiition. w.Le. {1.2}
and one 3-player coalition Jike {1201 Tt ey wer = (10 03 ihen take

(s g ne ) = (1100 1) Fasy to check that o= (e e o s

w5, ad e Oe) Toh ey, wad = (0s 1) DHEH 1AKE Lo %y He Te)

(1.1.1.0). Easy to check that & — (1. wae @ £ ne 2g) € Cle)
Any other subgame core clement of {1.2} is now extendable. Similar
proofs are possible for {13}, and {2.3}.

Consider {1

1} and (oqe wpe g € {010 1000 (100 Lo 00 L D}
Now consider (.3, rg) € {(00 10 Lj. (1. 00 1 (1 1 O} i the

A}

same order, we find « e C(e). Thus it is casy to sce that the §
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subgame core is extendable, hence similar facts are true abont {1.3.5}
and {2.3.6}. The rest of the extendability property follows from the

above.

he following example given in [11] with 7 players also shows that the

pame is extendable but the core is not large.

Example 4.4.2 Lot N={[.2.3..5.6.7} and v is given by v(1.7) —

eLT 2. and o1, L30T - e T = e 6.T) = 3L

GONY = T oand o(S) = 0 otherwisc. In this crample. the (N.T) e
crtendable but the corc of N. %) s not large. Here (N.T) stands for the

tolally balanced cover of the TU-game (N, v].

et (N, ¢) be a TU-game. The restriction of v to 2V\N is denoted by ¢
Phen (N.o7) s ealled an incomplete TU-game where the value of the
srand coalition. namely Y is not specified. If the game (Voo o(N) =
5 has a large core. then the game (Nooo, o) = 4) is also large.
That is if a TU game at o(N) = 4 has Jarge core then the TU-game at
SN = 4 also has large core. In other words largeness of a corc is a

prosperity property

Definition 4.4.1 A property P on TU-games is called a (strong) pros-

pervity property if for cocry incomplelc game (N.e7) there crists @ wum-

ber ap(e”) P Sien v(i) such that (N.v” v(N)) has property P if and

only if v(N) = ap(r?)
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See {11] for more on prosperity properties. Now the following question
arises naturally. Given an incomplete TU -game (\V, +%) what is the

least value 3 so that the TU game (N.oov. 0(V) = .3) has a large core.

In (1] it is shown the least 3 is given by 3 - mar{=(.N) : = is an
extreme point of ()}, It is not easy to find the least 4 in practical
situations. Onc can find the least 3 (easily) in svimetric TU games
using special vectors defined in Biswas ef al. [1]. However the following

elementary proposition gives a rough bound for 3.
Proposition 4.4.1 Let (N.v) be a TU-game with ¢({i}) =~ O for ofl
i and o(S) = 0 for every S. Let o = mac{o(S) 5 ¢ N}

ei N

(n = v, then the core of the TU-game (N.v) ix large.

Before giving the proof of this proposition we would iike to make the

following remarks.

Remark 4.4.1 [L is well known that cvery (essential) T0-game is
strategically cquivalent to a TU-game where the worth of any coalition
S 1% non-negative and worth of every singleton coalition is ~cro. For a

discussion on these. refer to Owen (2]

Remark 4.4.2 If lwo TU-gamnes arc strategically cquivalent and if on
of them has a large core then the other game has also « large corc.
Combining the above two vemarks. il is clear that the non-negativity

assumption of v in proposition is nol restrictive,

Remark 4.4.3 [L is not possible to improve o given in Proposition. .1

as the following simple ceample shows.
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Example 4.4.3 Lot N—{1.2,3} and v is given by v(1.2) = v(1.3) =

1.o(N) = 2 and v(S) = 0 otherwise. In this case v = mar{e(1.2).0(1,3)}

Vand efNY - (n— Lya =2 In this crample core is stable and large

In other words, the core is nol stable when o(N) < 2

when v(N) =

and the corc is stable and large whencver v(N)

We now give the prool of Proposition {.4.1
T 7 $-4

Proof: Ourassumption is ¢(N) 2 (n- 1o where a = mar{o(S)

N} Clearly a = 0 since o(S) = 0. We will simply show that cvery
lower boundary point of the game is a core element. This will imply
the core of the game is non-empty and large. Suppose y € L(r) with
GIN) = o(N). Write y = (g1yz, . 4a). Since y is a lower boundany
point there exists a non-empty coalition & such that y(~) — o(S). If
y.. > a for some i, since y(N) > o(N), we can reduce y;, a little
bit so that the vector ¥y~ = (yiy2, - ¥i, S Yot - M) 05 an ac
c L(v) as

ceptable vector and this contradicts our assnmption that y

Thus y; < o for every 7 ¢ N. Without loss of generality let

Yok =41

s suppose 5 = 1,2, .5} where y{8) — w(8): Supposd |§] = L
Ihen gy = (0.ya....gn) since y(1) = ©(1) = 0 and consequently
yiN) 1n— e < »(N) contradicting our assumption y( N) o> oe(N)
So we shall and do assume [S] > 2 where y(5) — v(S). That s

Y(N) = e(S) 4 y(N\S) < v(8) + (n - s)a < (n—s+ o for v(s) = o

lience o(N) < y(N) < (n - s+ 1a = (n 1a. contradicting our

hypothesis o(N) > (n — Do Thus every y € L(¢) is a core clement and
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consequently core of the game is large. This completes the proof of ous

proposition. [ ]

Proposition §.4.1 s of limited use. For instance consider Fxample 131

In that example o — 2. The Proposition tells us that the core of the

garne will be large if o() = 10, but we know from other considerations

5. In fact we can

that this six person game has a large core il e(N)
dofine o = mac{y(N) g € L(v)}. Then any TU-game with ¢ \) 2
will have a large core. We end this section with the following problem
Is it possible to find this a efficiently through lincar progrannine 7
We can formulate it as several 1P problems and get the value of o but
thi~ method reqguires solving exponential number of LE problen:s

In view of the above proposition and cxamples one may ask whether
there are games in which stability. Kikuta Shapley extendabiliny and
largeness occur at different values of (N} for incomplete TU eames

Indecd this can oceur as the following example shows

\We consider two games. Lot Ny {1.2.3.4,5.6} and ¢ 3s given by

131 = e({2030) = e({l.2h) — el = ({35 =

L6 2. e(Vy) = 1 and ¢(S) is defined suitably for other

Ce({tL2

For example o(41,2.3}) = 1 3.5.61) — Zoe({ih) = 0 and <o

on. as we did in Feample §.4.1.

Let N, = {7.8.9.10. 11,12} with o({7.9}) = »{{7.8
F110.121) = 1. e(N) = B and oS} is suitably defined for other subsets

S of Ny, as above.
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76
Example 4.4.4 Let N = NMyUN; and if § € N and & = S, US, # N,

where S) C Nyand S» € Ny. define v(S) - o(S;) + e(Sy).

stable core when (V) =

We can easily check that this game (N ¢) ha
7 but the game is not extendable and the core is not large. The pame
I

is extendable but the core is not large when ¢f V) = 8 and the core

large (and hence stable and the game extendable)when o\ JesdBH



Chapter 5
NTU Games

5.1 Introduction

In this chapter the realtion between von-Neumann-Morgenstern sta-
bility of the core and the largeness of it is investigated in the case of
non-transferable utility (NTU) games. The main findings are that. un-
der certain regularity conditions, if the core is large then it is a stable
set and for symmetric NTU games the core is a stable set if and only
if it is large. Although the stability and largeness ol the core has been
discussed in the case of an importaut class of non transferable utility

Peles(s

(N'T'U) games, namely convex NTU games by Sharkey[1

Ichiishi[15] a direct study of the relation between them has not been
made so far. This is an attempt in that direction.
In section 5.2 definitions and preliminary results are mentioned. Section

5.3 presents some of the main results. The resnlts pertaining to the

complete characterisation of the stability of the core for symmetric

games is oblained in section 5.4,
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5.2 Definitions and Preliminary Remarks

Let N be a finite set of players of cardinality n. A coalition is a snbsct

of N. For a set A we shall denote the cardinality of A by Yor SCN
R is the set of all functions from S to R. the set of real numbers

We would think of elements of R¥ as

j—dimensional vectors whose
coordinates are indexed by the members of S, We will begin with a few

definitions in the NTU form.

Definition 5.2.1 An n-person cooperative game withoul side payment
or an NTU game is a pair (N.V) wheve V. is the (charactoristic) sl
function which assigns o cvery coalition SCN a st V(S such that:
(i) V(o) = .

(i) For all non-cmpty SCN, V(S) is a proper subsel of RS

(¢i) Lor all non-emply SCN, V(S) is closed in R

(iv) For all non-emply SCN. V(S) is comprehensive i.c. if a < V(S

and y € RS be such that y

v then y € V(S).

For any vector « ¢ RY we shall denote the i-th component of it by

) by

and the S coordinates of it (where SC For any two vectors

a.b ¢ RS for some SCN, if @, = b; for all 7 € 5 then we shall denote
that as a 3 b. Often we shall suppress the player set & and denote the
game by V() itsell. Call V(5) the boundary of 1(&). and 1(S) the
interior of V(.5). We assume henceforth that V() satisfies the following

regnlarity conditions (sce e.g. Aumann(2}, Scarf{3s]).
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C1(No Level Segment): Il e € V(S) then y € R [y < v 1y # ]

implics that y € V().

C2(Boundedness of Individually Rational Pay off Vectors): Lot b, =

mar{c] x € V({j})}. For all SCN. the set {« € V()| «, > b, for all

j € S} is bounded.

Definition 5.2.2 A vector + € RT, (TCN. T # &) is =aid to be
blocked or dominaled by a vector y if there is a coalilion SCT such thal

yo > ooy Jor all £ € S and yls € V(S). We indicolc thisx dominalion

relation asy =g x, ie.y dominates v via S

If vector y dominates a vector o via some coalition S then we shall

denote that as y =

Definition 5.2.3 The core of the game V (1), denoted by ¢\(V) — {0 ¢

VN | there is noy such that y = r}.

Definition 5.2.4 A set K < V(N) s called crternaily stable if and

only if for all y € V(NY\ K there crists v € K such thal « > y

Definition 5.2.5 A sct K C V(N) is called internally stable if and

only f for any two x .y C KN neither y = & nor e = y.

Definition 5.2.6 A set KNCV(N) is called stable (f and only if it is

both crternally and internally stable.
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Definition 5.2.7 The acceptable sel of vectors, A(V). {y ¢ RViy

is not dominalcd}.

Definition 5.2.8 The lower boundary of A(V), LOVY — {r ¢ A(V)| ify &
A(V) and y

o then y = )

Definition 5.2.9 7he corc (V) is large if for all v € ANV fhere

exists y € C(V) such that y < @ (Cf. Ichiishi{15]).
Below we make two preliminary obscrvations
Proposition 5.2.1 The core, C(V). is large if and only if LIV) = (1)

Proof: only if : Let (V) be large and Jet there be o € LY\ (V).
I'hen there exists y € (V) such that y < @, which implics y + . Take
© € C(V)\L(v). Surcly = € A(V). Suppose thereis y < =. (y # =) such
that y € A(V). Then y € V(N). This is a contradiction to y ¢ A(V)
So ze L(V).

if ¢ Let (V) = L(V). Take @ € A(V). Il & L(V) then there is
nothing to prove. Otherwise consider the set /.. {ye AV y < x).

It is easily scen that L, is compact. Counsider the map s @ RY 1o R

such that s(2) = Slien @i Let y € Ly minimize (1) on L. Since <(.) is

continuous, such a y cxists. Surcly ¥ € L(V). Since (7(V) = L{V). for

all r & A(V) there is y € C(V) such that y -

i

Definition 5.2.10 For any y € RY define S, = {5 © N| yls €
TS}
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Proposition 5.2.2 [fy € AV) then y € L(V') if and only if ~gU\ S
. =
Proof: Let y € L(V) but Uses, S # N. Then there ix an 7 such that
yis & V(S) whenever ¢ € S. Then there is an e = 0 such that 3 —
[CT Uil — EY i msscnn ya) is in A(V). But then y ¢ L(V).

Let y & A(V), Uscs,S = N but y @ L(V). Then there s a @ = g (« #

< Y

y) such that = e A(V). This implics that for some 7 ¢ N o
Then by Cl. there is & ©€ A such that ¢ € § and «!s & Vi~ Lhis

contradicts that r e A(V). L]

5.3 Large Core and Stability

Definition 5.3.1 For a game (N.V) a subgame of V(. on 10N de-

voted by (T V) is defined by for all SCTOVH(S) = V(S

It s easily verified that any subgame of a game is itsell a garie and il
the original game satisfies C1oand €2, so does any subgame. For any

coalition S we shall denote the core of (S0V5) by €(Vy).

Theorem 5.3.1 [f the core. (V). is large then the core o a stable

SEF,

Proofl : Since (7(V) is always internally stable we are merely 1o show

that it is externally stable as well. Take C VININ OOV Lhen.,

without loss of generality (w.lg. hereafter) there exists & €\ and

u € C(Vs) such that u i w|s (see Ray[36]). By C2.for all 7SV such
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that TN (N \8) £ é there is M7 ¢ RT ; M? < oo, Vi € T, such that
for all = € V(7)) if 2, > b, forall 7 € 1 then =

CTForallig N\ &
define M, — Marqg {MT| ¢ T°& T O{N\S) £ o).

Construct M € RMY as (M) vys. Bvidently (u; M) € A(V) and this
implies that there exists y € (V) such that y < (u: A7)

We claim that v = yls. Suppose not. Then w.lg. there exists i ¢ &
such that y; < a,. However, by C1 (ufsygiy:y) € V(S).

But then, y ¢ (V). Henee, we have y ¢ 7. =

Definition 5.3.2 An N7 game (N.\7) satisfi

s« Kileuta-Shapley Con-
dition (Cf. Kikuta cf al.f16] if for coecry S © N, for any #5 ¢ O(Vy)

there crists v © C(V) such that @l = 2%,
We get the following corollary from the proof of Theorem 5.2.1

Corollary 5.3.1 If « game (N,V) has a large core then (N.V) sal-
isfics Kikuta-Shapley Condition. and a game satisfying Kikuta-Shaplcy

condition has a stable core.
So. Large core =» K-35 condition = Stable core.

However, Theorem 5.4.1 is no more valid if we consider general NTU
games that do not salisfy C'l. Consider. for example the following

gamec:

Example 5.3.1 N = {1.2.3}. V(N) = {r € B z, < I. wy <

20 x5 < 2 ¢ B a3, w € 1L ay < 2} V({1.2)) —
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(o€ 1] a,

: 20 V({1}) = V({2h) — fx ¢ B« < 1}
V({31 = {w ¢ Rl « < 2}. For all othcr non-empty S C N,V (5)
{o ¢ B[ o, <0 for alli € S}.

This game satisfies (2 but fails to satisfv Cl. It is easilv scen that

(1.2

2

) and (3.1.2) are in C(V). Here ((V) is large. To see this
consider £ ¢ A(V). Then #y > 1, r, > 1. a3 = 2. Now consider the

following cases:

a) Let w2 3 then (i) if

2 then (1.
(i) if 1< o, < 2 then (3.1.2) < o

by Let I <ty <3 then if . and (1.

However. to see that the core is not a stahle set. consider the vector
(2.1.2) in V(N).

Moreover, for an NTU game satisfving (1 and C2 the core mav not be
Tavge even when it is a stable set as the following exaniple il imtrates
I'heidea of this example was motivated by a similac cxample in van

Gellekom et al.[1] in the context of TU pames:

Example 5.3.2 N — {1, 6). V() o ginen as follows:
V(N) = {o ¢ BRY| Sien o

g} o €N s in L0123 {13} L055 (L6)) then Vi{o ) =
{r € RiM}| e+ ¥ Lif0 <o, <0 low V20, — 2 f e, < 0 and
=0} and V({iL i) {& ¢

or all other S ¢ N\ o, VI(S) - {ee R Xr, =

=

o

e <y for some

yeVifiiht 0}
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Notice that this NTU garue satisfies C'1 and C2. We show that for this

pame the core is a stable set.

L'o begin with, notice that {(1.0.0.1.1.0) is in ('(V) and so the core is
non-empty. Consider a vector 7 ¢ VENY\ (V). Then. by Ray (1989)
there must exist a coalition SCN and a vector » & (Vi) such that
r=sy. S N then we are done. Let. wilg. S be {1.2} and let
o = (ay.2) bein C(Vigay) such that « =g o Then ay 2 000y =

0. Construct the vector = € RY as (o). 0y 75.1.0.0) such that .y

2 + 15 — 2 and wn oo, One can casily cheek that such a vector

is obtainable. Then it is casy to sce that = € (V) If 5 s any of
{135, {1.5}. or {1.6} then we can proceed in exactly similar manner
to show that there is = € (V) snch that = = y. If S is any other
coalition then for at least one i € N. y, < 0. Since (0.1.1.1.0.0) and
(1.0.0.1.1.0) arc in (V). for every ¢ € N there is a veetor = in ('(V)

such that =, = 0. Heneeo (V) s a stable set.

However, the vector ¢ (01,100 1.1) ds in A(V) bat there cannot

. Hence, the core of this

exist any vector » € (V) such that

same is not large.

However. as shown in the next section il a gamne is symmetric then the
largeness of the core is necessary and sufficient for the core to be a

stable set.
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5.4 Core Stability in Symmetric Games

Definition 5.4.1 A game (N, V) is called symmetrie if for S. T €\,

c V(N) and 7 0 S — T ds a bijection. then @ € RT defined by

— xooqy for j €T is an clement of V(T)

We can suppress N, the player set and call V(.) symmetric. Since we

are concerned with symimetric games throughout this section. we now
introduce some concepts and notations which will be useful for onr
discussions

First we note that a set W S RY is called symmetric it @ ¢ W implies
that all n-dimensional vectors obtained [rom » by permuting its coordi-

1

v & RY et 7(x) be the set of all n dimensional vectors

nates are also contained in W, Let We — {o € Wiy <oy < <

and for any

RY. let

obtained {rom & by permuting its coordinates. For any W,

EI A1 e Uren 7).

vmimetrie, For

I'hen we have V(S) = 7{V(5) ) for all SCNif Vi) s

a coalition S let us call V(S), the ordored sl of attainable pay-ofls
for S. Domination by a coalition is defined in the case of ordered sets
of attainable pay-offs exactly in an analogous manner to that of the
ordinary characteristic functions. A vector « € RL G C N T F )
is said to be dominated by a vector y ¢ RL il there is a coalition 8 € 7
such that y; > o, for all i € S and yls € V(S),. From the above we can
define the corresponding notions of AV . L(V) . C(V)_ ete. Inwhat

follows. our discussions will remain confined exclusively to svimmetric
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games and hence Lo ordered subsets of R? (4 C N). So, to simplify
notations, we will eliminate < and use V(8), A(V), C(V). L(V) for
VIS)e, A(V)es C(V)ee L(V)e

Morcover, since we are speaking of large core we implicitly assume that

the games we are considering possess a non-empty core.

Lemma 5.4.1 Ify € LOVI\C(V) then yooy = yn. and so. in general.

Jor some posilive inleger k < -1y Syp S - S Yk = Pke1 T —

Yo

Proof:  Suppose not, i.c. let g i < go. Since y ¢ C(V)y ¢ VIN).

Yot — ¢} where ¢ = 0 is small enough so

Construct y' = (¥1,---

that g ¢ V() and g, —
obtainable). If y' € L(V) then y ¢ L(V). On the other hand. if for

>y, (since V(V) is closed such an e s

come S C N y'ls € V(S) then, by symmetry, y & A(V). -

Lemma 5.4.2 For all y ¢ L(V)\ C(V) there exist y' € VI(N) and
0 < [ < o~ 1 such that y' < y. in particular, g} =y, Vj < [ and

v, <y Vi Lomorcover. i = gy, ford =41 |, ek 45

as in Lemma 5.4.1.

Proof :Since V(.) is symmetric, for all i € N b has a common value
which let us call 6. Define the continious function @ @ [bya] -» RY as

s for t € [boy]
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So, x(b) = b. Consider To = {t € [byy.] | x(t) € V(N)}. Since
V(N) is closed and «(.) is continuous, 7% is compact. Moreover, since
(V) # ¢ by assumption, b (2(b)) € V(N). So, there is a t € T, such
that ¢ = maz{l € [b,ya] | =(t) € V(N)}. Since z(y.)(= y) is not in
V(N), £ < 4((= Yn—1sYn—2»- - - yr)s where k is as in Lemma 5.4.1. By

definition of ¢, z(f) € V(N). Now take y’ = z(t). -

Theorem 5.4.1 If (N,V) is symmetric then C(V) is a stable set if
and only if C(V) is large.

Proof: only if :
Take, if possible, y € L(V)\ C(V). By Lemma 5.4.1 y is of the form

1 S y2 < -0 < yp = -+ =y, for some positive integer k < n — 1.
Surcly y & V(N) as y ¢ C(V). Appeal to Lemma 5.4.2 and consider
y' < yand y’ € V(N) such that

v, =y Yi=l,

y; <y Vi>|,

Y=Y ViZ1l+1

where [ is as in Lemma 5.4.2. Also suppose | # 0. If y' € C(V) then
y & L(V). So, y' € V(N)\ C(V).

Let S be a minimal coalition with respect to cardinality such that

there exists z € C'(V) such that z > y’. This is possible because of the
stability of the core. Since y € A(V), |S| must be greater than [.
We claim that (z1, ..., 2js) 3 (U, Us)-

Suppose not. Then for some iy, . .. is); where iy € N for k= 1,...,|S|
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and iy < < o < dpspy (= (Base e mg)) 3 (W yhy,) and for all

J € {iveiae . iisih d < s =23 Sy Then for all k@ {1, (51}

iy =k and there s a k¢ {1...., |S1} such that for all & € {£....|S|}.

it = k. Since the vectors y' and z are ordered, for all & ¢ {k.....|S|}

S ULE veeeagysy) € 2 with 2, > 5

. Since z € V() and (-

for at least one k€ {1.... 18]} by Gl (21.....515) € V(S). But then
¢ (V). So. (=

From Lemma 5.4.

we know that for all i = 141, yf = yl,;. Since 2 is

ordered and [S]is at least {+ 1. z; =y forall j = [S]+ 1

So.

Cforall i€ N As = € V(N )y & VIN) by Cl and we get a
contradiction. 1f 1 = 0 then |§] > 2 and similar arguments go through.

if : This is shown in Theorcm 5.3.1. [ ]

5.5 Conclusion

Obviously the above is no complete characterisation of the stability of
the core for NTU games. One direction in which a complete charac-
terisation may be possible is some modification of the Kikuta-Shapley
condition mentioned carlier. To get the relation between large and sta-
ble core with asswmnptions weaker than the assumption CLin this work

can also be pursucd.



Chapter 6

Further Remarks and Open
Problems

I'here are few problems that arose in course of the studies which re-
sulted in the previous chapters. which are worth mentioning and pur

wiing. [ present them in the following three sections

6.1 Concept of ‘exstability’

With the Lucas 10 person game without any solution. search for coin
cidenee of other known solution concept awith the vN-M solution and

necessa

 and suflicient condition for such coincidence gained impor-
tance. In this section we deal with several suficient conditions for cove
stability and introditee a concept of extended stability of the core and
show it 1o be stronger than stability of the core. we also present a
condition in the last section which is tar less than any known sufficient
conditions and prove its necessity. Finally in that section we conjecture

the sufliciency of the same condition.

)
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TARKS AND OPEN PROBLEMS
6.1.1 Introduction

Fver since von Neumann-Morgenstern defined the concept of stable sets

(solution), researchers wanted to know whether eve JU game has a

solution. Contrary to widespread balief Lucas in 1965 [20] came up with
a 10 person game which did not have a solution. Attention shifted to
find out what other solution concept may coincide with stable set solu

tion when it existed. Core was on

of the well known solution concepts

whicl becomes a unique solution when it coincides with vN-NM solu

tion. Since then there were attempts to know necessary and sufficient
conditions for core solutions. Qver the yvears nubmer of sufliccient con
ditions could be evolved, some necessary conditions also hecame known
Unfortunately none of these conditions were both necessary and sulfi-
cient. Kikuta and Shapley[17] were possibly the closest. but still far too

strong for the necessity. In the mean time in 1952 Sharkey[13] evolved

a sufficient condition (called large core) which was very close to the

Kikuta-Shapley condition, but mfortunately the K-S condition did not

prove to be suflicient for core largeness. Biswas of ol [7] generalized

the K-S conditjons and proved the equivalence of a conditions named

“crtendabilily in a stronger sence to Core Largeness. In this chapter

we look at re:

trictions of the K-S conditions and prove the propertics

of restricted Kikuta Shapley conditions

The very concepl of domination is also extended bevond the set of im-

putations. Hence postulate that under certain conditions core « oincides
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with the solution to the economy in which the players play the game.
I'he core is also stable with respect to lure of money from outside the
economy. That is. as long as an allocation fails to satisfy the accept

ability conditions it can alw,

vs be dominated in the extended sence by

a core allocation.
6.1.2 Preliminaries
We extend the concept of domination beyond the set of imputations.

Definition 6.1.1 Given a game (N.v), and two veclors r. and y both
in R*. we would say that © dominates y in celended sence fwrilten :
..y and called ‘exdominate’) if there is a S o 1 4 |N] A

e wp= oy Vi€ S and x(S) e(S).

Definition 6.1.2 The sct of all Upper Vectors 1'{e) is defined by

ey {r © RY @ o(S) > o(8) VSO NV

Definition 6.1.3 A stable sct defined through this crtended domina-
lion ferdomination] would be called an celcnded stable [erstable] set Jor

the game.
Remark 6.1.1 The sct of all upper vectors is an eestable scl.

Definition 6.1.4 A game (N, o) is said to satisfy the Kikuto-Shapley

condition if C(v)|s = C(o|s) for all S C N

Civen any vector « & U (v) there is a vector y in {7(v) with a suitable

value of y(V) which will exdominate x. so the set of all upper vectors is
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allways a exstable sct for the game (N, v). Lower bounds on the value

of y(N) can be given through the definition of subconvexity (defined
below) and also through the definition of large core. However. the
minimum of these lower bounds could be lower than either of the two

mentioned above, as is explained through the examples.

Definition 6.1.5 (Sharkey (1982)) Lot P {4 P} be an ar-
bitrary partition of N and let Q@ = {Q1...., Qr} be a collection of

coalitions such that Q; @ UihPi and P Qu # N, whore Py~ ar. The
IU-game (N, v) is said to be subconver if for all such collcctions VP and

&
Q it is true that o {e(PiU Q) — (Q0)] = 0(N)
=

It is cloar that if o(N) is equal or larger than the maximum over all
P and Q of the left hand side of the last inequality then o would
be subconvex. In the following we explain subconveity in a simplificd

manner.

Definition 6.1.6 Ll (N.v) be @ TU-game and lel 7 be an enunicra-
tion of N. We define the vector y* ¢ R* by
g7 = mar{e(QU)  o(QNQC PrLQUi#E N}

Where £7 is the set of all predecessors of 7 in 7 and is defined by
P = {jn () < 7@}

¥ is the maximum marginal worth of player 7 with respect to a subset
of his predecessors in any permutation 7 and the reader s referred to
van Gelekorn et al{11] for a proof of the fact that “(N. v} is subconvex

if and only il y™(N) < o(N) for all permutation = of N
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Example 6.1.1 (Lucas(1969),cf.Sharkey(1982)) Consider the TU-
game

(oY with o= 10 and coalition values v(S) = 0 cxcepl for the following

coalilions :

p(12) = o{34) = o(56) = o(T8)  1(90)

e(137) = #(139) = o(157)  0(159) = ¢(357) = 0(359) — 2.

e 133793 N

i Numeral 0 in the coalitions stand for player 10]

If (.} = 11 then the above game has a Large core and hence a stable
core. and it can be proved that for any valie of #(V) < 11 the core of
the corresponding TU game is not stable. However. for the game to be

subeonvex ¢{ V) have to be at least 16,

T et further insight inta a few other aspects of the stability, largeness

let us define a restriction of the Kikuta Shapley condition.

Definition 6.1.7 In a U-game (N.o) for all the subgames (S.vy5)
which has a core with a non-cmply inlerior, if all suck elements s €

CO(os) is cotendable to the core of (N.o) then we call the game o to

hare Restricted Kikuta Shapley/RKS] condidion.

It is easy 10 sce that even this condition is sufficient for the stability of

the core of ¢
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Example 6.1.2 |[N| =7, v(N) =T7. ¢{1.7T} = v{1.7}

e{1,2.7) = ofl.3,7} — o{4,5,7} = ¢{4.6,7) = 3. All other

2

©(S) s are defined assuming (N.v) is totally balanced.

I'his example above satisfies the Kikuta-Shapley conditions. Yet the

vector y = (2,1,1,2,1,1,0) is a lower boundary point with (V)

= (V) s0 ('(v) is not large. however the core is castable. In fact
the following statement is easy Lo prove.

If @ game (N,v) salisfies Kikula-Shaplcy condition then the corc is
crstable.

Example 6.1.3 Consider the following incomplcle game (N, 07}, which

has different characteristics with varrying valucs of v(N ). The gan

has a non-cmply cove if v(N) The core is stable if (N} > 4.

the core becomes eract f o(N) > 4.6 and finally the corc is large if

(') 2 4.8, Also core is crstable at this calue of v(N).
INT =7, o{1,2} = v{1,3} = 0{4,5} = v{4.6} = c{41.T} = 1, ¢{1. 4} =

0.2 All other v(S)’s arc derived from lotal balance consideration.

Let y — (0.2,0.8,0.8.0,1,1.1) € L(x) \ C'(¢). Then y(:V) has the

maximum sum among elements in L(2) \ C'(v).

Clearly y — (0,1.1,0.2,0.8,0.8,0.8) € C(v) when () = 4.6 such that
y({1.4}) = 0.2
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When o(¥) 1 consider the subgame on S = {1. 1} and :

this subgame core element is not extendable to ('(¢). This subgame
core also has a non-crmpty interior. So the game does not satisfy cither
the K S conditions or the RKS conditions, vet the core is stable but

not exstable.
Example 6.1.4 Consider the following G-playcr game with a stable
core. IN| =6, o(N) — 3, v{1.2} = o{l.3}= o{t.5} = v{4.6} 1

AUl other v(S) % can be coaluated from tolal balance consideration.

This game does not satisfy Kikuta-Shapley condition but does satisly

restricted Kikuta-Shapley condition and has an exstable core.

6.1.3 Main results

Proposition 6.1.1 L{v) is costable for the gamme (Noej.

Proposition 6.1.2 If (N.¢) is subconccr then C(r) is large and thon

C'(v) is exstable for the game (N.v).

Proposition 6.1.3 If (N, v} has Restricied Kikuta-Shapley condition
then ('(v) is exstable for the game (N.¢)

Definition 6.1.8 ' = {x ¢ (v} : (7

Observe that % O C(v),
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if we define m(S) = Min,ec=y(S). then (¥ is the core of the game r¥.

where v3(§) = m(5) and v (1) = o(T),VI' # 5.

Also C¥\ C(v) / ¢ if and only if m(S) < »(5).

Remark 6.1.2 If for cvery yls C C(vls) which is extendable o the

core () there exists ¢,x1 > U((‘(Jmpum71/11‘!.51).2,(;(, = o(S) (S

and z{n\s such that (yls | ¢ : z|xs) € C(V) then the core Cv) of the

TV game (N,v) is stable.
Let us look at the following statements :

1. C(v) is exstable.

2 Tor all § C N such that (“(vls) # 0. Clvls) = Cle)is RKS
Condition|

3. Given a TU game (N.v) define another game (N, w) as follows
w(S) =¢(S) VS TN
w(N)  2(N)+c¢ =0
Then C(w) is stable Ve >0

1. @ € I{o)\("(v) there exists y” € C(v) for every minimal & 3 a(S) -

v(&) and Y w4

Proof : (1) =

C'(v) exstable = (7(11v) is stable V. ¢ >0
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Take € INC(w) = o+ e R\ (v) S0y ((v) 2y rvia S
Define = as follows :

=y, Vi€e S and

S VNS (NS +

zlwvys =

Then = € Cw) and = =5 = = C(w) is stable.

Proof : (4) = (3).
IV r ¢ £(e)\ C(0) there exists ¥ € C(0) for every S 3 (S8} < o S)

and y® >y o then (o) exstable = C('(z0) is stable V. ¢ =0

Take o © R*\ () chose and fix § C 2V such that »(S) < {S5) and

YT C S

tend wls 1o an imputation & of (N. ). by the given condition 3+

m

() 5 zrsad= = - via &

Proof : (2) = (1)

IV S C N 3intCels) # o Clels)  Ceo)]s [Restricted S-K Condi-
tion| then V & € /(#)\ ('(v) there exists y™ € C(e) for every minimal

S0 w(8) < o(S)and yY g w

Take = € 1)\ C(v) and let § be a minimal set such that of §) « 0(S)
Define y; — 2 + ¢ ¥ i € S such that y(5) = o(5)
Then yls € intC(v]s) so by Restricted S K condition there exists an

extension of yls to Ce), call it y, then y =5 @
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Proof : (4) = (1).

Consider, y @ A(v), there is a coalition § such that y(§) < »(S) and for
all " C Sy(T') = v(T). One can construct an imputation x with 7, = »,
for all 2 € S. Now if we invoke (4) there exists a z € C(v). z =g r and
hence z >5 y.

So now we have the following :

2)= " =010)=03)

Conjecture 6.1.1 (3) = (2)

6.2 Specified vectors to check large core

In this section we explore the possibility of finding methods of checking
whether the core of a game is large or not through systematic compu-
tations, as we have done in the symmetric case in Chapter 2.

First we look at an LP formulation which yields L(v) vectors.

y € L(v) is characterised by the following properties.

(1) u(S) > v(8), VSCTN

(2) Uses,S = N

where S, = {5 : y(S) = v(9)}. So for all y € L(v) there exists at
least one S € N such that y(9) = »(S) and y(T) = (1) V¥ T C S
e ys € Clus)

Given = € C(v)s)if N\ S # ¢ then consider the following LP.
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Note -Minimisation is imposed by the condition (2) above
Minimise (N \ S)
The problem is feasible because A, the set of all acceptable vectors of

the game, A= {y : y(5) =2v(S), SCN}#£0o

Subject to

2(TAS) 4 y(T\S) = o(S)

VIS N, T\S#o

The above constraints are due to the rest of the conditions in (1) which
(0 = ynys) should satisfy by virtue of being a L(v) element

Recall definition of S, = {5 : y(S) = ¢(5)}. S, defines a Lir) vector

whenever Uges, & = NV

Let (.N.v) be a totally balanced TU-game and let 7 : N — {1, .n}

be a bijective map: 7 is called an enumeration of N. The set of prede-

cessors of i € N is defined by P7 = {j|x(j) < 7(1)}. Now define the
vector y7 € RY by

ul = Mar{e(QUi) =y (Q)Q C P7. QU1 # N}

Note that QU7 # N is only restrictive if #(2) = n

the subgame core element, let #(N \ ) be an cnumeration of N\ S,

For every subgame (S

%

) such that |C(v]|s)] = 1 let 2% € RY be

The set of predecessors of 1 € N\ S is defined similar to above by
Py = {j|x(j) < w(i)}. Now define the vector 2V € RV as follows:

for convenience of writing we call the vector (7> @ #™M\%) = £5 [t i
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easy to see that ¥ € R™ | and for each singleton subgame core there is

an %, In the following we supress the superscript. S in the vector
] = Max{v(SUQU) —x"(SUQ)Q C 7, SUQU: # N}
Note that QU7 # N is only restrictive if ©(i) = n
Conjecture 6.2.1 Core of a TU-game (N.v) is large if and only if
y™(N) forallm
v(N)>{ 25(N) forall S C N.
with [C(v])| = land for all =

6.3 NASC for Core stability

In this section we present some exploratory understanding to find a
necessary and sufficient condition for the core of a game to be a stable
set. Given a totally balanced TU game (N, v) let us define the following

sets apart from the usual sets like /(v), C'(v) etc.:
Definition 6.3.1 (5 = {z € I(v) : 2(T) > v(T),VT # S}.

Observe that (75 D C(v),
if we define m(S) = Min,eesy(S), then (5 is the core of the game 9.

where v5(S) = m(S) and v5(T") = o(T).¥1' # S
Also C¥\ C(v) # ¢ if and only if m(S) < v(S).

Definition 6.3.2 C = {r € I(v) 1 2(S5) < 0(S).6 £ S # N}.
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Also C5 C I(v)\C(v) and Ugeaw O = I(0)\C(v) and C5\C(v) C (F
Definition 6.3.3 C2, = {yls: zlv\s € [(n) 1y € >\ C(v)}

This set is defined for all S such that ("% \ C(v) # o. Next ("3, C '3
and there can be cases when this inclusion is strict. If C'(v) is stable

and C5\ C(v) # ¢ then for £ € (¥ there exists y € ('(v) 1y = r via S

The question now is the following
Can it still be proved that :

~5_ s
Useav O =Usean O,

If the answer to the above question is ‘YES' then we will have the

following result :

Conjecture 6.3.1 The core ('(v) of the Tl game (N.v) 1s stable of
and only if for cvery yls € C(v”|s) which is extendable to the core

C(v%) there crists €,y > 0fcomponcntuwisc),((S) = v(S) ~ i S) and

s such that (yls + ¢ : z|ws) € C(V)

The if part is true and easy to prove

In the example below we depict how the above may actually take place

Example 6.3.1 Consider |N| = 7 and define a T'U game (N v} as

Jollows : v(12) = v(13) = v(45)
0.6, v(N)=3.9

v(16) = v(47) = 1, wu(l4) =
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The above game has a stable core.

1f S = {1, 4} then m(S) = 0.55 and (0,0.55) is the only subgame core
element which is extendable to the core of v¥,

but note that any convex combination « of (0,0.5) and (0.1.0.4) is such
that = + ¢ is extendable to C(v) as long as ¢; 4+ ¢4 = 0.1 and ¢ > 0

In other words the part of C'(v|s) which is extendable to C'(n) is :
CH{(0,0.5), (0.1,04)} + e

Observe that there are elements in the above convex hull below which
there are no elements y|g such that y € ("¥\ C'(v). It is conjectured that
such elements must figure in DomClap, 1 # 5 and would be covered
under CZ,.

(.1, .90, .90, .4, .6, .5, .5) will occur in C¥S,, and C¥7,

However question remain : Whether it is possible that y € (% and
there is no ¢, > 0,¢,(S) = v(S) — y(S) such that y|s + ¢ is extendable
to C(v) ?
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