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Abstract

Uncertain information processing by fuzzy if~then rules has received a lot of attention. Here we have taken
a different path to model a system. about which we do not have precise information namely. modelling the
system by fuzzy valued functions without resorting to fuzzy if-then rules. As a result. the phase (state)
space of the system becomes a fuzzy set and the underiving fuzzy mapping becomes a fuzzy attainability

set mapping,

A fuzzy phase space is a collection of special class of fuzzy subsets (fuzzy points) of R for some positive
integral n. Let the collection of all fuzzy real numbers be 1. A relationship of fuzzy phase spaces has been
established with R". A field like structure tor W (it has important similarities and differences with the
classical ficlds) has been developed and a vector space like structure (it has important similarities and
differences with the classical vector spaces) has been developed for . A metric has been defined on ",
It has been proved that any arbitrary fuzzy subset of R" can be generated by a suitable collection of
members of " by max-min operations. Some possible role of ™ in pattern recognition has been explored.

Uncertain or fuzzy dissipative dynamical systems have been defined in terms of fuzzy attainability set
mappings. A criterion for determining dissipativeness of a dyvnamical system has been formulated.
Attractor. stability. robustness. predictability. homoclinicity ete.. for fuzzy dyvnamical systems have been
defined. Devaney’s definition of chaos has been extended to tfuzzy dynamical systems. Fuzzy differentiable
dyvnamical systems have been discussed with a panticular emphasis on fuzzy differential inclusion (FDI)
relations. An evolutionary algorithm for solving one dimensional FDIs has been developed. Using this
algorithm a second order FDI relation has been solved.

Fuzzy fractals have been defined as attractors of contractive iterated fuzzy sets systems. which is a class ol
discrete fuzzy dissipative dvnamical svstems. Fuzzy fractals are so defined that. crisp fractals obtained as
attractors of Barnsley's chaos games become special cases of fuzzy fractals. Fuzzy fractal based gery level
image generation has been discussed. Using this method some fuzzy fractal images have been generated.
Model of a simple two dimensional turbulence. as a chaotic occurrence of vortices in a two dimensional
dyvnamic fluid. has been proposed and simulated. Each coordinate of the position of the centre of a vortex
in the dynamic fluid plain is given by a chaotic value obtained by an iterated logistic function system for an
appropriate parameter value. Fach vortex is modelled by a fuzzy valued function. where uncertain
parameter and variable values are fuzzy numbers. This is obtained by solving an FDI with the algorithm
developed. The simulated turbulence thus obtained has been presented.

The starting stage of an intense tropical storm is a svstem about which so far very Iittle precise information
15 available. [t is recognized that a sufficiently strong mitial disturbance must be present to give rise (o @
tropical storm of hurricane intensity under favourable climatic and geographical conditions. A model of
this initial disturbance in the form of a vortex. created by winds coming from different directions and
colliding under certain conditions. has been proposed in terms of FDIs. It has been simulated by the
evolutionary algorithm developed earlier in the thesis. Uinder favourable conditions this initial vortex may
become a severe cyclone.

The Lefever and Horsthemke model has been considered for the highly uncertain system of evolution of
tumour in a human body. Some dynamical system theoretic properties of the model has been studied by
extensive simulation. Comparmg these studies with available data the ranges of the uncertain parameters
have been estimated. This in turn has helped us to introduce suitable fuzzy numbers to model these
uncertain parameters. Thus an FDI relation model of the whole system has been created. where the FDI
relation substitutes the original stochastic differential equation 1o model the uncertain svstem. This has
been justified from the therauptic point of view. The simulation is achieved by the same algorithm
mentioned above. Analyzing the simulation results. modification in some of the therauptic planning for a
tumour patient has been suggested.

The thesis s concluded with a summary and a briet discussion on the future scope of research
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Chapter 1

Introduction

When using a mathematical model. careful attention
must be given 1o the uncertainties in the model.
- R. P. Fevnman on the reliability of the Challenger space shuttle [51]

Management of uncertainty is a challenging problem in computational science in general
and modelling problems in particular. This is very much evident in nonlinear dynamical
system modelling of various natural and social phenomena. where uncertainty and
complexity go hand in hand. Often analvtical tools to study such systems are to be
complemented by computer simulations.

Advances in computer technology have been steadily extending our capabilities for
coping with systems of an increasingly broad range. including the systems those were
previously intractable to us by virtue of their nature and complexity. While the level of
complexity, we can manage, continues to increase. we begin to realize that there are
fundamental limits in this respect. As a consequence. we begin to understand that the
necessity for simplification of systems. many of which have become essential for
characterizing certain currently relevant problem situations. is often unavoidable. In
general. a good simplification should minimize the loss of information relevant to the
problem of concern. Information and complexity are thus closely interrelated.

One way of simplifying a very complex system — perhaps the most significant one —
is to allow some degree of uncertainty in its description. This entails an appropriate
aggregation or summary of the various entities within the system. Statements obtained
from this simplified system are less precise (certain). but their relevance to the original
system is fully maintained. That is. the information loss that is necessary for reducing
the complexity of the system to a manageable level is expressed in uncertainty. The
concept of uncertainty is thus connected with both complexity and information.

It is now realized that there are several fundamentally different types of uncertainty
and that each of them plays a distinct role in the simplification problem. A mathematical
formulation within which these various types of uncertainty can be properly
characterized and investigated is now available in terms of the theory of fuzzy sets and
fuzzy measures [80].

In this thesis we propose some approaches to modelling and simulation of dynamical
systems about which precise information is not available. A dynamical system is a
system. which changes with respect to time [60]. By a dynamical system with imprecise
or unknown information we shall understand either one or both of the following: (1) a
dynamical system whose mathematical formulation. in terms of a set of equations. is not
precisely known. and (2) even if this formulation is known. the quantities involved in
these equations are not precisely measurable (that is the parameter and/or the input values
are uncertain). In all these cases modelling of the inherent uncertainty can effectively be



accomplished by fuzzy set theory based techniques. where in many cases the uncertain
quantities involved are fuzzy numbers. The relationship between multidimensional fuzzy
real number system and uncertain dynamical systems has been explored in [98]. A
diverse class of dynamical systems involving uncertain or imprecise quantities from the
fields of image generation. turbulence. atmospheric science and medical science have
been studied involving extensive use of modern electronic information processing
systems [1.2.5.21.97. 100. 101. 102, 135}].

A dvnamical system is denoted by the triplet (X. T. n). where X is the phase space. T
is the set of time and m: (X x T) — X is the time evolution law or the attainability set
mapping. Often T is omitted and a dynamical system is denoted by (X. ). When there is
no risk of confusion about the phase space a dynamical system is simply expressed by 1

(i) A phase space X. whose elements or points represent possible stares of the system.

(ii) Time. which may be discrete or continuous. It may extend either only into the future
(irreversible or noninvertible processes) or into the past as well as the future
(reversible or invertible processes). The sequence of time moments for a reversible
discrete-time process is in a natural correspondence to the set of all integers:
irreversibility corresponds to considering only nonnegative integers. Similarly. for a
continuous time process, time is represented by the set of all real numbers in the
reversible case and by the set of nonnegative real numbers for the irreversible case
(Appendix A) [95].

(iii) The time-evolution lavw or attainability set mapping. In the most general setting this
is a rule that allows us to determine the state of the system at each moment of time t
from its states at all previous times. If our system was initially at a state x € X, it will
find itself after time t at a new state. which is uniquely determined by x and t. and
thus can be denoted by m(x.t). The set {n(x.t)} is called the attainability set or the
reachable set at time t. Fixing t, we obtain a transformation ¢': x — n(x.t) of the
phase space into itself. These transformations for different t are related to each other.
Namely, the evolution of the state x for time s + t can be accomplished by first
applying the transformation ¢' to x and then by applying ¢” to the new state @'(x).
Thus we have m(x. t + s) = n(@'(x). s) or equivalently, the transformation ¢ is equal
to the composition of ¢' and ¢* [74].

Throughout this thesis we shall denote a dynamical system by (X. ) or when there is
no risk of confusion just by m.

In virtually all situations of interest the phase space of a dynamical system possesses
a certain structure which the evolution law respects. Different structures give rise to
theories dealing with dynamical systems that preserve those structures [74]. For example.
when the phase space X is a measure space ‘with a o-finite measure p and the time
evolution laws are a group or semigroup of measurable transformations on X each of
which either preserves p or transforms it into an equivalent measure then the underlyving
dvnamical system theory is called ergodic theorv: when X is a topological space. usually



a metrizable. compact or locally compact space and the time evolution laws are group of
topological homeomorphisms or semigroup of continuous functions defined on X then
the underlying dynamical system is called topological dvnamics: when X is a smooth
manifold e.g.. a domain or a closed surface in a Euclidean space and the time evolution
laws are group of diffeomorhpisms or semigroup of non-invertible differentiable maps on
X then the underlying dynamical system is called differentiable dvnamical systent: when
X is a collection of fuzzy sets (usually nonempty. compact fuzzy subsets of R") and the
time evolution laws are a semigroup of fuzzy set valued functions defined on X then the
underlying dynamical system is called fuzzy dvnamical svstem (FDS) [82]. An ergodic
theory for fuzzy dynamical systems is also in existence [39].

Any dynamical system theoretic model of a physical phenomenon consists of a
number of variables and parameters. each of which is measurable. But unfortunately any
measurement is prone to error. The more we want to make a measurement error-free the
more time is needed to accomplish that measurement. So achieving accuracy is a time-
complex (apart from other complexities) task. We can reduce this complexity by allowing
and accommodating uncertainties in our measurements. Fuzzy sets as enunciated by
Zadeh [151] are the basis of fuzzy uncertainties. The more uncertainties are involved the
more complex is the system. To model these complex systems uncertain systems were
born. where complexity is reduced by recognizing and accommodating uncertainty rather
than ignoring it [43. 80]. Since fuzzy set theory is a broad based tool to model a wide
range of uncertainties [41. 80] FDS (which takes into account uncertainties involved both
in the initial input values and in the parameter values) is a very potential means to model
a wide range of uncertain systems.

Generally speaking. the approach to model uncertainty in a dynamical system should
be two fold namely. (1) phase space approach and (2) attainability set mapping approach.
They are often not independent but only complementary to each other. Generally. both of
them are simultaneously employed under an FDS modelling. Since crisp phase spaces are
special cases of fuzzy phase spaces and crisp attainability set mappings are special cases
of fuzzy attainability set mappings. the crisp dynamical systems are only special cases of
fuzzy dvnamical systems.

Fuzzy set theory has entered the world of uncertain dynamical systems through the
study of non-deterministic automata [6]. This approach has given rise to the idea of non-
deterministic systems in which the current state does not determine a single unique next
state, but rather determines a set of possible next states. In other words {m(x.t)} is no
longer a singleton set. It is a fuzzy set in case of an FDS.

A fuzzy system is described by the evolution of a state (which is a fuzzy subset of
the state space) over time. In many important cases (but not in all) this evolution is
governed by a differential relation. Fuzziness. so introduced in the representation of a
system. reflects our lack of knowledge about it. The introduction of fuzzy set theory into
the field of dvnamical system theory was motivated mainly by [27]:

(i) The needs for a theory of syvstems whose structure and/or behaviour involve
uncertainties.



(ii) The desire to apply system theoretic methods to systems which have proved
impervious to mathematical analysis and computer simulation.
(i1i) The design of fuzzy controllers.

Design of fuzzy controllers has perhaps remained the single most important
implementation of FDS [72. 86. 87]. Fuzzy control is a nonlinear control based on
heuristic control tables, and is actually “another™ way of implementing the proportional-
integral-derivative (PID) control strategy. although not limited to PID. Any nonlinear
system can be approximated as accurately as required with some number of fuzzy control
rules. The fuzzy controller is also regarded as a universal approximator. and its use offer
many advantages [72]. Traditionally, fuzzy controllers have been designed without an
explicit knowledge of the system [66]. The objective function of the controller is
approximated to any desired degree of accuracy by a set of fuzzy if-then rules. Stability
of such svstems have also been extensively studied [72. 128].

(i) above has so far remained a less explored area. The modelling and simulation
capability of the fuzzy set theory based techniques has not been explored much beyond
the implementation of if-then rules involving fuzzy linguistic variables. fuzzy relations.
fuzzy quantifiers, etc. [135]. Importance of simulation of an uncertain phenomenon.
through actual formulation of a fuzzy valued function and not approximating it by fuzzy
if-then rules. has been explored in [62. 63. 149]. The necessary tools for this purpose
have been developed mainly in [17. 18.24.27.32. 62.63. 82]. Here we shall concentrate
more on this aspect.

Differentiable dynamical systems theory began with Poincare’s endeavour to find
qualitative rather than quantitative solution of nonlinear differential equations. As for
example. take the equations of the Lorenz system (LS). which came into being as a
simple mathematical model for heat convection in atmosphere [93].

dx/dt = o (v - x).

dy/dt = rx - v - xz.

dz/dt = xy - bz
where 6. r and b are real, positive parameters. which Lorenz fixed at o = 10, b= 8/ 3 and
r=28 [93]. The corresponding (numerical) solution space generated by computer can be
seen in [124]. A very deep exploration of this very versatile vet mysterious system
appears in [140]. The divergence of the flow is

ox'/ox + oy /oy + ¢7' )z = -(c+b+ 1)

where x" = dx / dt. etc. Since the divergence of the flow is negative. the volume element
is a decreasing function of time. All the systems whose "volume element’ is decreasing or
the so called phase space is contracting is called dissipative dvnamical system (DDS).
Each DDS must have an arrracior. Later in this chapter a more general definition of a
DDS independent of “volume element” will be proposed.



Another very important class of dynamical systems is the class of irerated function
systems or IFS for short. which gives rise to a class of discrete-time dynamical systems.
For example, take the logistic function

f(x) = px(l - x). (1.0.1)

where x is in | = [0. 1] and p is a positive real number. Like the Lorenz system this
system too has generated tremendous amount of interest among the dynamicists. (1.0.1)
first appeared in the form X,.; = pt Xp(1 - x,,) In population studies. where X, indicates the
total population at the nth vear. So iterated logistic function system (ILFS) is a dynamical
model of yearly population growth. This function was used to model population
dynamics. The population dynamics is an uncertain system. May was the first to explore
this uncertainty through extensive numerical simulation [106]. He indicated that this
uncertainty is chaotic in nature. He also showed that this simple looking system actually
has a very complex dynamics. This is also a good example to indicate that uncertainty
spawns complexity and vice-versa. Feigenbaum explored the mystery of the quadratic
iterators like the ILFS employving computational approach [50]. ILFS has a fuzzy
counterpart too. namely the iterated fuzzy sets systems (IFZS) [21]. which are the most
prominent examples of discrete (dissipative) fuzzy dynamical systems. IFZS has been
discussed and extended in [97].

Both the above crisp systems are dynamical systems representable completely by a
set of mathematical equation(s). When a dynamical svstem is completely representable
by a set of mathematical equations and no noisy or random input or parameter is present.
we call the dvnamical system deterministic dvnamical svstem. Otherwise it will be called
non-deterministic dvnamical system. Though the non-deterministic dynamical systems
can not be modelled very precisely like the LS or ILFS. they are often of great
significance in real life. For example. the system of creation of a cyclonic storm
(cvclogenesis). This system is so complex that, for any model of it describable in terms of
a precise set of mathematical equations. noise free non-random inputs or parameters
would have been a remote possibility. FDS is some time an ideal tool to model this type
of imprecise systems [43. 100. 101].

Another recent trend is to replace a stochastic differential equation by a fuzzy
differential inclusion relation (which is a special kind of FDS) in the model of an
uncertain system. This trend has been introduced in biological system modelling. Like
the atmospheric systems biological systems too are often very imprecise. To model the
inherent uncertainty in population dynamics. conventionally stochastic differential
equations were used. But recently. in population dynamics the stochastic differential
equations have been replaced by differential inclusion relations and fuzzy differential
inclusion relations [5. 84]. with similar qualitative (but not quantitative) results [84].
Likewise in a stochastic differential equation modelling of evolution of tumour in human
tissue the stochastic differential equation has been replaced by fuzzy differential
inclusion relation. which has vielded some significant results [102. 103].

FDS is an extremely powerful tool for modelling and simulation of very complicated
non-deterministic dvnamical svstems. where the level of uncertainty is very high. By and
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large the fuzzy system modelling has remained confined to engineering sciences only.
particularly to the information science [135]. Attempts have also been made to apply it to
economics and other branches of social science [76]. The number of such attempts has
increased rapidly in last few years.

1.1 General Dynamical Systems and Cybernetics

In literature there exist many different definitions of general systems [40]. Bertalanfy
was one of the first to define general systems [11]. A prominent subclass of general
systems is the class of linear systems [160]. Here we present the definition of a general
dynamical system. We take a complete, locally compact metric space (X. d) (we call just
X) as the state space and give

Definition 1.1.1: A single valued dynamical system on a state space X is defined
axiomatically in terms of a single valued mapping n: X x T — X satisfying the following
four axioms, where T is the set of time:

7t is defined for all (x.1) € X x T.

n(x. 0) = xforall x € X,

n(x.s +t) = m(n(x.s).t)forallx e Xands.te T.
7 is jointly continuous in (x. t).

B =

Definition 1.1.2: When 7 is obtained as the solution to a set of differential equations the
dynamical system is called differentiable dvnamical system.

Definition 1.1.3: n(a. t) for a given a € X and t varies over an interval of R is called a
trajectory or an orbit of the dynamical system. Collection of all such orbits of a
dynamical system is called the phase space of the dynamical system.

We have already seen that the Lorenz system is a dissipative dynamical system. By
a dissipative dynamical system we mean one whose phase space is “shrinking’, that is. in
general for n-dimensional phase space (having n state variables) the n-dimensional
volume element should typically decrease (dissipate) in time so that the volume of the
final set will be less than the volume of the initial set. As a consequence of this.
dissipative dynamical systems are typically characterized by the presence of attractors
[56]. Many important real life systems are dissipative systems. Since attractor of a
dissipative system is actually the phase space as t — oc (for all practical purpose. after
sufficient lapse of time) the behaviour of the system on the attractor is of ultimate
importance. Let us formalize the notions of dissipative dynamical system and attractor in
more rigorous terms.

Definition 1.1.4: n is a dissipative dvnamical svstem if ©(X. ) < n(X. 1;). where (X. d)
1S a nonempty compact metric space and t;. t» € T such that. 1, < to. X is the initial phase
space of m. L.e.. at t; (the time at which the system starts) 7 can start from any point of X.



If n(X. t) = m(X. t;) holds strictly for t; <ty we call the system strictly dissipative or

monotonic dissipative.

Let0 <t <t <tyand n(X. 1) = X;. If we start from t = 1, instead of t = 0 then the
definition still holds good or in other words Definition I.1.4 is well defined. The initial
phase space is X = n(X. t;) instead of X = n(X. 0). aX. ) =Xy th-4)= m(m(X.
t). th - 1)), (X, )= X, c X. X = m(X,. 0). So. (X, ) = (m(X;. 0). t» - 1y). Sllﬂllall}
X, ) = (X 0. -4). -t >b-1 and 7 is dissipative. So. m(n(X. 0). . - t)) ©
a(r(X,. 0), t3 - ). ie.. (X, 1) € (X, 13).

Definition 1.1.5: In a dissipative system lim n(X. 1) = A ¢ X. We define A as attractor

1

of m.

This notion of attractor is easy to implement. but can be generalized to a more
versatile form.

Progress of sciences and all other components of civilization can be traced to certain
types of challenges and responses. The subject of cybernetics emerged through the
interaction of traditional sciences when scientists faced a set of problems concerned with
communication. control and computation in machines and living tissues. The foundation
of cvbernetics were laid and its basic principles formulated over centuries by the work of
mathematicians, physicists. physicians and engineers. Though the decisive factor in the
emergence of cybernetics was the swift development of electronic automation and
especially the appearance of the high speed computers which opened up boundless vistas
in data processing. simulation and the modelling of control systems [40]. Cybernetics is a
special class of dynamical systems. where to achieve the goal of communication, control
and computation Weiner envisioned a grand exchange of ideas and methods among
various disciplines to enable the scientists to efficiently tackle complex problems of one
area with the suitable techniques borrowed from the others | 150].

1.2 Uncertain Systems

Uncertainty may enter into a dynamical system (X. 7) in two ways. If n(x. 0) = x and
x can not be ‘located” in X accurately. we call x uncertain and this means that the value
of 7t(x. 1) is also uncertain for any t > 0. Since the location of x is uncertain in X. each
time we want to locate x in X we end up landing upon some neighbourhood N(x) of x in
X. The possibility of finding x in N(x) is 1. So the membership value of x in N(x) is 1
[156]. Beside x there are other members of N(x) with membership values in [0. 1]. If y =
x and y € X such that, membership value of y is o then possibility of landing at y when
searching for x in N(x) is .. Any point outside of N(x) has membership value 0. N(x) is a
typical fuzzy subset of X. The same reasoning that holds for an uncertain x holds for m(x.
1) too for any t > 0. To model this tvpe of uncertainty we should replace X by the
collection of nonempty fuzzy subsets of X. denoted by F(X). Since each crisp point is a



singleton fuzzy set. X is a subset of F(X). This will be called the phase space uncertainiy
of a dynamical system.

The other uncertainty in a dynamical system is the uncertainty in determining 7. @
may be a member of a class of functions C. Each member of C is a possible attainability
set mapping of the underlying dynamical system with a given membership value in [0. 1].
C is the fuzzy set of all possible attainability set functions. Following [27] we call C the
fuzzy attainability set mapping. The uncertainty will be called arntainability set mapping
uncertainty.

In an uncertain dynamical system both uncertainties may occur simultaneously. In a
general FDS both tvpe of uncertainties are treated simultaneously [43].

Conventionally. uncertainty used to be treated by statistical means and they have
remained very successful in modelling uncertainty in atmospheric science. engineering,
economics, biology. etc. But at least in some cases FDS modelling of uncertainty has
been found to be easier to implement and less computation intensive. yet with good
results [5, 43, 63. 97, 100. 101. 102]. For example, the starting stage of an intense
tropical storm is yet to be understood clearly [47. 48. 113. 133]. An FDI modelling of this
uncertain atmospheric system has been able to show the generation of an initial
disturbing closed vortex out of a wave under certain conditions [100. 101]. The
uncertainty involved in biological systems often used to be modelled by stochastic
differential equations [43. 44, 52, 58. 61. 88. 89]. Only recently in some of the biological
systems stochastic differential equations have been successfully replaced by differential
inclusion relations and FDI relations [5. 84, 102. 103]. On one hand. in some cases. this
has given completely new insight into the system and based on this. improved therauptic
planing has been suggested [102. 103].

1.3 Dealing with Complexity

Complex systems are much less understood and not even well defined mathem-
atically. Roughly speaking they are in the frontier between simple and chaotic systems: A
complex system is a dynamical system depending on many parameters, in constant
evolution and distances along trajectories increase (decrease) polynomially and not
exponentially. One considers that the brain’s neural network is one such system [119].
Some salient feature of complex systems are (a) it is a dynamical system in constant
evolution formed by a great number of units. (b) some characteristics of the system are
randomly distributed and (c) the system may have several attractors {1 19].

Our view of complexity is slightly different from that enunciated above. To us a
chaotic system is also very much a complex system. Therefore the trajectories may vary
exponentially also. Not all uncertainties in a complex system are essentially statistical in
nature. There may be other uncertainties too. e.g.. fuzzy uncertainty. chaotic uncertainty.
Dempster-Shafers” evidence theoretic uncertainty. etc. The possible notions of
applications of complex systems are not vet conclusive and perhaps can never be



conclusive. like the case of functioning of brain. origin of life. generation of cyclones.
evolution of tumour, evolution of social systems. etc. [45].

Historically. the first serious attempt to resolve complexity. which withstood the test
of time, was the probabiliny theory. which chiefly deals with the uncertainty some time
remains involved in determining a value. Then came Zadeh. In his seminal paper of 1965
[152] he further broadened the scope of dealing with the complexity by recognizing and
accommodating uncertainty and unspecificity with his revolutionary idea of fuzzy sers. In
[154] Zadeh showed how complexity of a system can be tackled by the notion of fuzzy
sets. After this. innumerable researchers have successfully (to a varied degree) employed
fuzzy set theory based techniques to deal with complexities in various systems. Wang
and Lengari have attempted to model complex systems via fuzzy logic in [145]. A good
example in point is the simulation of the complex decision making tasks of an intelligent
human expert by fuzzv controllers [86. 87. 120]. Mathematically speaking. fuzzy
controllers are nonlinear dynamical systems. where the (complicated) nonlinear objective
function is very difficult to determine. That objective function can be approximated by a
set of fuzzy if-then rules to any desired degree of accuracy. A relatively new approach is
to represent an uncertain system by a fuzzy valued function. which is a fuzzy set of crisp
functions [27. 43, 62. 63. 97, 100. 101, 102. 103]. Turbulence is regarded as one of the
most complex natural phenomena [16]. Numerous models of turbulence are in existence.
each of them highlights some particular aspects of turbulence [125]. A simple model of a
two dimensional turbulence has been proposed as a chaotic occurrence of vortices in a
two dimensional dynamic fluid [97]. Each such vortex is modelled by a fuzzy valued
function taken as a fuzzy set of crisp functions [97]. In [159] Zadeh argues in favour of
reducing complexity by replacing conventional numerical computations by computations
with words of a natural language. He has even developed a specially meaningful

vocabulary for this purpose [155].

1.4 Chaos

The study of dynamical systems started with astronomy. In that sense study of
dynamical systems is more than two thousand vears old. Theory of differentiable dynam-
ical system was created by Poincare in 1885. Comparing with this. chaotic dyvnamical
system (some times also known as applied nonlinear dvnamics [74]) is a relatively new
branch of the classical dynamical systems theory. It is believed to have started with the
seminal paper of Li and Yorke titled. “Period Three Implies Chaos™ in 1975 [90]. The
main result of this paper was only a special case of a much more generalized but lesser
known result of Sharkovskii published in 1964 [137]. But a serious attempt to define
chaos was first made in [90]. Later Devaney gave a definition of chaos in [30] and this
definition is a modification of that of Li and Yorke. Today Devaney’s is the most widely
accepted definition of chaos. at least theoretically. Here we present that definition in
terms of iterated function systems. i.e.. in discrete dynamics. Extension of it to the
contin-uous dynamical svstems is straightforward and will be undertaken wherever
required.



Definition 1.4.1: Let { : X — X. { is said to have sensitive dependence on initial
conditions if there exists & > 0 such that, for any x € X and any neighbourhood N of x.
there exists a y € N and n > 0 such that [ {(x) - {"(v)| > 8. {" denotes nth iterate of {.

Definition 1.4.2: { is said to be ropologically iransitive on X if for any pair of nonempty
open sets U, V < X there exists k > 0 such that. 1"‘(U) ~ 'V = O (null set).
Definition 1.4.3: x € X is said to be a periodic point of { if and only if {(x) = x for
some integral p > 0. p is said to be period of x with respect to { if there does not exist any
i such that. 0 < i< pand f'(x)=x. When p =1 we call p a fixed point of {.

Definition 1.4.4: (Devaney [30]) { : X — X is said to be chaotic over X if and only if
{ has sensitive dependence on initial conditions.

{ is topologically transitive, and
Periodic points of { are dense in X.

LI P —

According to Robinson if { satisfies conditions 1 and 2 only from among the above
three. then { is said to be chaoric [131]. Banks. Brooks. Cairns. Davis and Stacey have
shown that. any map which is topologically transitive and also has dense periodic points
must have sensitive dependence on initial conditions [8]. So all the three conditions in
Devaney's definition of chaotic dynamical system (CDS) are not mutually independent.

The above mathematical definition of chaotic dynamical system is rather restrictive
as far as practical applications are concerned. So there are methods compatible with the
above definition but which concentrate on determining the satisfiability of only some of
the aspects (most often the sensitive dependence on the initial conditions), taken into
account by Devaney’s definition. by a system to decide whether the system is chaotic.
Some of the popular methods to determine chaos in a system are (i) by measuring
topological entropy. (ii) by measuring Liapunov exponent. (iii) by determining whether
the attractor (when exists) is fractal in nature and also has homoclinic points. etc. Detail
discussions about some more methods appear in [107. 121].

A recent trend in the contemporary dynamical system theoretic studies is the
emphasis on fractal sets. To us the most important fact is that, many important dynamical
systems have fractal attractors. Usually a dynamical system which has a fractal attractor
often (but not always [73]) turns out to be a chaotic dvnamical svstem. Studying the
fractal attractors i1s a very standard way to understand such systems [56. 107]. In the last
twenty vears this notion has found wide spread application in physical. biological and
social systems. But fuzzy chaos has so far not found any significant application though an
attempt has been made in [19]. Fuzzv fractal is an even less explored area. Fuzzy fractals
come naturally as attractors of the irerated fuzzv sets svstems (IFZS) [21] exactly the
same way as the crisp fractals are generated as attractors of contractive iterated function
systems [9). In [21] Cabrelli et. al.. have treated any grey level image as a fuzzy subset of
the euclidean plane. A normalized grev level pixel intensity value at each pixel is taken
as the fuzzy membership value of that pixel or point. In [21] IFZSs have been used to
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generate grey level images. The method used here is a bit complicated. Recently some
simplification has been introduced in it [97]. Fuzzy chaos and fuzzy fractals have not yet
been related as in case of crisp dynamical systems. This is not possible in case of fuzzy
differential equation based dynamical systems due to the possibilistic irreversibility [14].
But FDI relations hold a great promise in this direction. Fuzzy fractals and fuzzy chaos
hold the promise to find useful applications in FDI modelling of complex natural
phenomena. A typical outline of exploration for the future researchers should be as
follows. Choose a natural phenomenon. Make a model of it in terms of a set of FDI(s).
Solve the system of FDIs. Let the system be dissipative. Then as time t — o« the fuzzy
trajectories converge to the attractor A. If A is also a fractal subset of X we shall call A a
fuzzy fractal [97]. If the dynamical system during evolving on A satisfies the conditions
to be a fuzzy chaotic dynamical system then it is a fuzzy chaotic dynamical system with a
fuzzy fractal attractor.

Fuzzy chaos has been described by Buckley and Hayashi [19]. Teodorescu [142].
Kloeden [83] and Diamond [31]. Buckley and Hayashi have shown some applications of
fuzzy chaos in [19]. But this is an area which is vet to be fully explored. It turns out that
the extension of Definition 1.4.4 to FDSs. which may be regarded as a new definition of
fuzzy chaos, is a generalization of the existing notions [43].

1.5 Scope of the Thesis

In this thesis we are developing a methodology for tackling complexity arising due to
inherent uncertainty in a general dynamical system. Since the subject is highly
multidisciplinary in nature we have taken a special interest in cybernetics. The tools we
intend to use here are fuzzy set theory based techniques in general. and iterated fuzzy sets
systems (IFZS) [21] and fuzzy differential inclusion (FDI) [7. 62. 63] relations in partic-
ular. The thesis is divided into seven chapters. The first or the current one is Introduction.

In Chapter 2 we propose to deal with the phase space uncertainty of an FDS. Phase
spaces of crisp dvnamical systems in most cases are in one way or the other associated
with R". In case of FDSs almost no attempt has so far been made to associate fuzzy phase
spaces with ‘R", where W is the fuzzy real number system. This has been addressed in
Chapter 2 [98].

In Section 2.1 we have presented a brief review of fuzzy phase spaces so far used to
describe various fuzzy dvnamical systems.

In Section 2.2 we have explored fuzzy real number system ‘R. In subsection A we have
highlighted the uncertain quantity (parameter) modelling capability of W. Precisely for
this reason R is so important in describing fuzzy phase spaces and fuzzy parameters [95].
Crisp dynamical systems evolve either in R" or in a subset of R". Aithough ‘R does not
have as rich a structure as that of R vet "R" can play an important role in describing fuzzy
phase spaces. We have dealt R" in Section 2.3. Treating R in Section 2.2 prepares the
necessary background for this purpose. In Section 2.2 we have described a field like
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algebraic structure over R so that we can describe a vector space like structure for W" i

the next section. We have defined additive and multiplicative binary operations over ‘R
We have shown that 3 is closed. commutative and associative under these operations. In
subsection C we have defined inverse with respect to both these operations. We have
modified the definition of inverse and the notion of the relation between identity and
inverse (subsection D) to make the inverse of a fuzzy number unique. This way we have
defined an algebraic structure over W. which we call an F-filed. In an F-field like R
distributivity does not hold but subdistributivity holds. F-fields have important
similarities and differences with crisp fields. In subsection F we have shown that R is
embedded in 93 as a crisp field. In subsection G we have defined a metric on R.

In Section 2.3 we have discussed ", which may be regarded as a tool for modelling
multidimensional uncertain quantities [95]. We have constructed a vector space like
structure. called generalized fuzzy vector space (GFVS). for W" [94. 98]. Each
generalized fuzzy vector may be regarded as a multidimensional fuzzy number. A GFVS
is more general than the Katsaras-Liu fuzzy vector space [75] but less general than the
Buckley-Aimin topological fuzzy vector space [20]. We have shown that. R" is contamed
in ®". A metric is defined on M". It has been shown that this metric defined on R"
equivalent to the metric of the metric space R x N x M x W ... up to n times.

In Section 2.4 we have shown how an arbitrary fuzzy subset of R" can be obtained from
R" by max-min operations. In Theorem 2.4.1 we have established that. each element of
R" is a normal. uppersemicontinuous. convex and compact supported fuzzy subset of R".
In particular. any fuzzy point of E" (collection of all normal. uppersemicontinuous.
convex and compact supported fuzzy subset of R") either belongs to R" or can be
generated from elements of k" by max-min operations. But in Section 2.1 we have seen
that E" is the phase space of the FDSs as described by Kloeden [82]. De Glas [27].
Kaleva [68]. Seikkala [136]. Hulermeier [62] and many others.

In Section 2.5 we have discussed fuzzy pattern recognition. Our primary objective in this
section is to show the relationship of various fuzzy pattern vectors or fuzzy feature
vectors with the elements of R". We have shown that every fuzzy pattern vector can be
generated from elements of R" by max-min operations. In this section by picking up two
examples from applied research [116. 127] we have indicated some possible role of R" in
computer vision and pattern recognition.

Fuzzy attainability set mapping (FAM) or fuzzy reachable set mapping is the most
important part of an uncertain dvnamical system. where the uncertainty is fuzzy
uncertainty. All dvnamical svstem theoretic properties of such uncertain dynamical
systems or FDSs are described in terms of FAMs. In Chapter 3 we have discussed about
attainability set mapping uncertainty of an uncertain or fuzzy dynamical system. In other
words in this section we have discussed about fuzzy time-evolution law [43].

In Section 3.1 we have introduced several new notions into FDS as well as extended the
scope of some of the existing ones in terms of the fuzzy attainability set mappings
(FAM). In subsection A of Section 3.1 we have presented a slightly modified and



extended version of Kloeden's original definition of an FDS [82]. In subsection B we
have defined fuzzy dissipative dynamical system and presented a criterion to test
dissipativeness of an FDS. In subsection C we have defined attractor for an FDS in terms
of FAM. where the attractor exists. We have defined nonwandering set for fuzzy attractor
and extended Ruelle and Tukens™ notion [109] to fuzzy attractor. We have defined
Liapunov stability or orbital stability for an FDS. We have defined omega limit set for an
FDS and the realm of attraction for a fuzzy attractor. Then we have defined asymptotic
stability for an FDS. In subsection D we have defined likely limit set for an FDS and then
extended the notion of robustness to the FDS. In subsection E we have discussed fuzzy
chaos and extended Deavney’s definition of chaotic dynamical system [30] to FDS. Here
we have also defined periodic point and homoclinic point for an FDS. We have suggested
a criterion for a fuzzy attractor to be a fuzzy chaotic attractor in terms of existence of
fuzzy homoclinic points. We have also suggested a practical criterion for a dissipative
FDS to be chaotic in terms of existence of fuzzy fractal attractor and fuzzy homoclinic
points. In subsection F we have defined Liapunov exponent for an FDS and given a
formula to measure it. In subsection G we have defined fuzzy metric entropy and fuzzy
Liapunov time (the time up to which the underlving FDS is predictable).

In Section 3.2 we have discussed fuzzy differentiable dynamical systems (FDDS). FDDS
can be divided into two parts namely. fuzzy differential equations (FDE) and fuzzy
differential inclusions (FDI). In subsection A we have discussed FDEs. In this subsection
we have defined autonomous and nonautonomous FDDS. We have stated the notion of
Hukuhara derivative [126] and briefly stated various classical developments of FDEs
based on this derivative. We have also mentioned some of the recent attempts for their
generalization [17]. Fuzzy partial differential equations have recently been defined in
[18]. It turns out that the points of the phase spaces of [17] and [18] are elements of R".
In subsection B we have discussed about FDI. An existing numerical method for solving
a system of FDIs has been discussed [63]. Compared to this. in this subsection we have
devised a much less complex algorithm to solve a system of one dimensional FDIs [99].
Since this algorithm only produces the fuzzy solution. which represents the system
behaviour with the degree of possibility greater than or equal to a pre-assigned value. this
is an example of an evolutionary algorithm [122]. Unfortunately it can not be extended to
the multidimensional cases. As an example, we have solved a system of second order
FDIs with the help of this algorithm and presented the simulation results.

In Chapter 4 we have discussed fuzzy fractals and fuzzy turbulence. First we have
studied a very important class of fuzzy discrete dissipative dyvnamical systems. Discrete
dynamical systems are represented by iterated function systems (IFS). The most
interesting 1FSs are the dissipative IFSs. Being dissipative dynamical systems they must
have attractors. In crisp dissipative 1FSs these attractors often turn out to be fractal sets.
In particular any fractal can be generated by an IFS. Barnsley has emploved this notion to
generate various (fractal) images as attractors of randomized. contractive. iterated
function systems [9]. This entire notion has been fuzzified by Cabrelli et al.. where they
have called it iterated fuzzy sets systems or IFZS for short [21]. In Section 4.1 we have
defined fuzzy fractals. Attractors of IFZS turn out to be fuzzy fractal images according to
this definition. It has been shown that the randomized crisp fractals. such as those
described by Barnsley [9]. are only special cases of fuzzy fractals. In Section 4.1 fuzzy
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fractal image generation has been discussed in detail. In subsection A of this section it
has been reasoned that any image is a fuzzy subset. where the fuzzy membership value at
each point (pixel) of the image is the normalized (i.c.. lies in [0. 1]) grey level pixel
intensity value. This is a novel interpretation of fuzzy membership value. Here the fuzzy
membership value is no longer a measure of vagueness or nonspecificity but a measure of
‘lack of uniformity” in the normalized pixel intensity value distribution. In subsection B
detail of the pixel intensity value determination has been worked out. In subsection C an
image generation operator has been described. which iterates on U" (the class of normal.
uppersemicontinuous and compact supported fuzzy subsets of R") to generate the desired
images. In subsection D two examples of IFZS have been considered and fuzzy fractal
images generated as their attractors have been presented. Barnsley has called the fractal
generating dynamical systems as “chaos games™. Similarly. we can call an IFZS a ~fuzzy

chaos game.’

In Section 4.2 we have discussed fuzzy turbulence. As far as we know this is a comple-
telv new notion. Turbulence is regarded as one of the most perplexing phenomena of the
physical world. Neither it has been properly understood nor there is any universally
acceptable definition for it. Our treatment of turbulence in this section is based on a
rather simple definition of turbulence given by Brown. which says that. turbulence is the
chaotic occurrence of vortices in a dynamic fluid [16]. In this section we have presented a
model of turbulence. which ideally follows this definition. For simplicity we have taken
this model only two dimensional. However this model can also be extended to three
dimension. But that will be much more complicated. This model has two parts namely.
the spatial distribution of vortices within the (two dimensional dvnamic) fluid and the
generation of the vortices. To model the chaotic spatial distribution within a subrectangle
of the xy-plane we have used the chaoticity of f(x) = 4x(1 - x) for x € [0, 1]. under
iterations (Appendix C). If the rectangle is given by [a. b] x [c. d] and a vortex is centred
at (a,p) then o € {a+ (b—a)lim,, {"(x) | x € [0. 1]} and B € {c+(d—c)limyos {(X) | X
e [0, 17} limyox £(x) | x € [0. 1] is chaotic has been proved in Appendix C. We have
modelled the vortex at (a,3) by FDI. In this model we have assumed that the vortices are
created by collision of fluid jets coming from different directions and colliding. We have
taken the projections of the velocity of the resultant fluid jet at a point of the fluid along
and perpendicular to the radius vector of that point with respect to certain polar
coordinate system. Velocity component along the radius vector is radial velocity and that
along the perpendicular to the radius vector is cross-radial velocity (discussion about
radial and cross-radial component of a velocity can be found in any standard text of
particle dynamics. e.g.. Loney [92]). Since both these components are derived from the
velocity of irregular fluid jets their values will be very much fluctuating in nature and so
also will be their ratio m. We have taken the value of m to lie in some trapezoidal fuzzy
real number M. We have used this m in an FDI and simulated the vortex by the
Algorithm 3.2.1 developed in Section 3.2. Next we have presented the simulated two
dimensional model of a fuzzy turbulence. We have given the complete computer program
of this simulation so that any interested reader of this thesis can generate more such
turbulence. Here all the parameters have been kept uncontrolled (random quantitv). i.e.. it
is highly unlikely that any two turbulence generated by this program. even with identical
inputs. will ever be identical. This a salient feature of a real turbulence. as for example.



no two coils of smoke emanating out of a chimney are ever identical or at least the
probability of happening so is very low.

In Chapter 5 we have chosen to model and simulate a highly uncertain system of
nature namely, the starting stage of a cvclone [100. [01]. Several (crisp dynamical
system) models of steady state matured cyclones are available [29. 47. 113]. In these
models steady state cyclones are treated as intense cylindrical vortices. A set of
differential equations (usually in cylindrical coordinate system) are formulated governing
the fluid dynamic (e.g.. angular momentum) and thermodynamic (e.g.. latent heat transfer
from sea to atmosphere) aspects of the cyclonic vortex [29. 47]. But the fact is that.
although necessary climatic and geographical conditions for formation of tropical storms
prevail over a large part of the globe during the storm seasons. yet only about 80 tropical
storms on an average are formed in a year all over the world. About one half to two third
of them can ultimately reach hurricane stage [104]. Hurricanes (cyclones) are so rare
because they need a strong disturbance to start [47. 48. 133]. Very little is known yet
about the starting stage of a storm [48. 133]. In Chapter 5 we have modelled this starting
stage. i.e.. the strong initial disturbance in terms of a fuzzy differential inclusion relation
[100. 101]. In Section 5.1 we have formulated the mathematical model of the disturbance
in a manner similar to the generation of fuzzy vortices in the model of a fuzzy turbulence
described in Section 4.2 (This also supports the opinion that atmospheric turbulence may
some time be responsible for generation of a tropical storm). It is well known that the
shape of a cyclonic vortex is spiral (log-spiral to be more precise) [15. 45]. The initial
disturbance is in the form of a very strong wind jet or wave [48]. We have resolved the
velocity of this wind jet into radial and cross-radial component with respect to certain
polar coordinate system. Ratio of these two components is

(dr/dt)/{r(dB/dt)} = m
or.
dr/d0 = mr. (1.5.1)

If we take m as a constant the phase (solution) space of the differential equation (1.5.1)
will be a log-spiral (both in Chapter 4 and Chapter 5 m denotes the ratio between radial
and cross-radial components of velocity and r denotes the radius vector). So the computer
generated phase space of (1.5.1) may be taken as a reasonable estimate of a initial
disturbing vortex, which under favourable conditions may become a severe cyclonic
storm. But m being the ratio of two wind speeds is liable to fluctuate even within a very
short time interval. So m can not be a constant in crisp sense. We have taken the values
of m to lie in a fixed trapezoidal fuzzy number M (That is, we have fuzzified m). The
fuzzy quantity M plays the major trick in uncertainty management of this model.
Fluctuation of m with respect to time has been taken care of in M. The initial condition of
(1.5.1) is also imprecise. Therefore (1.5.1) should be formulated as an FDI relation. We
are interested not in the whole system behaviour of (1.5.1). but only in the best system
behaviour of (1.5.1) (that is the solution with the highest degree of possibility). So the a-
cuts have been introduced over the solution space of (1.5.1).



In Section 5.2 we have formulated the FDI relation and solved it by Algorithm 3.2.1 and
generated the phase space representing the best system behaviour (corresponding to « =
1). This computer simulation is a realistic representation of the initial disturbing vortex.
The fuzzy flow of this phase space tends to converge to a fuzzy point. which becomes the
central cloudless region of the cyclonic vortex. when it matures. as seen as a small dark
spot in satellite images. If this initial disturbing vortex develops into a matured storm this
dark spot becomes the eye of the cyclone. In other words. the formative stage of the eye
of a cyclone is a very natural example of fuzzy attractor of the fuzzy dynamical system
modelling the disturbance. By the Liapunov stability criterion. defined in Chapter 3. this
system is a stable one. In fact the system is asymptotically stable. We have also shown
that this model is compatible with the model presented in [47]. Since this model
represents the very starting stage of a cyclone. it has the potentiality to advance the storm
warning.

In Chapter 6, as yet another test of efficacy of the FDSs in modelling uncertainty of
complex systems. we have modelled the complex uncertain system of the evolution of
tumour in human body as an FDS [102, 103]. To be more precise, here we have
substituted a stochastic differential equation by a fuzzy differential inclusion relation.
which has given us a new insight into the system that may lead to some modifications in
some of the therauptic plans of a tumour patient. Treating biological systems in general
and human physiological systems in particular as general dynamical systems is not new.
Bertalanfty initiated this approach as a mathematical biologist in 1970 [12]. His equation
was used for study of growth in animals and tumours. Tsetlin had also taken a similar
approach in modelling some properties of a muscle and a ganglion [143]. Uncertainties
inherent in medical diagnostic systems have long been recognized. Adlassnig attempted
to tackle this uncertainty by developing a fuzzy logic based medical diagnostic expert
system [1]. Many more attempts have been made to apply fuzzy set theory based
techniques in medical science. But introduction of FDI in modelling a biological system
is only a recent trend [5]. Several fuzzy if-then rule based medical expert systems have
been developed for clinical diagnosis [1. 2].

In Section 6.1 we have described a model of the evolution of tumour in human tissues.
The original model was due to Garey and Lefever [52. 88]. Later Lefever and
Horsthemke improved this model to give it a more complete shape [89]. To model this
uncertain system we have replaced the conventional stochastic differential equation by an
FDI. The model is based on the coupling of three principal phenomena [89]:

(1) the transformation of normal cells into neoplastic cells (tumour cells) denoted by X.

(2) the replication of transformed cells (that is. X becoming 2X).

(3) the immunological interaction of the host organism with transformed cells. i.e.. the
immunological propensity of the T-lvmphocyte (a kind of white blood corpuscle)
and some other cells to fight and destroy the unwanted growth of cells in a tumour.

It has been shown in Chapter 6 that this gives rise to the following equation in normaliz-
ed form.

N
1o

dm/dr = v + m(l - um) - rim/(1 +m)}. (1.
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where m = (k,/k2)X (m has completely different meaning in Chapter 6 than in Chapters 4
and 5. In Chapter 6 m is proportional to the number of tumour cells in a given volume of
tissue). v = K| AN/Ka(7. - A). 1= K EJ(h - A) (r has different meaning in Chapter 6 than in
Chapter 5. In Chapter 6 r is proportional to the tumour cell destruction rate). u = kaa/k(%
-AN and 7 = (A - A)t. u remains fixed and its value is taken as 0.1 [44]. X. Eq. E, are
respectively the populations of target cells (tumour cells). of free effector cells and of
effector cells having recognized and bound a target cell. A. %, kj. k; are rate constants. X
is the population of target cells. E, = Eyy + E;. The immunological conditions under which
this assumption is reasonable have been discussed in [52. 88]. N is the maximum number
of target cells which can be packed in a given volume element. The factor (N - X)
expresses simply the existence of an upper limit N for X in the volume element under
consideration. This complicated construction is not however our primary concern in this
chapter. Our objective here is only to explore the dynamical system theoretic behaviour
of (1.5.2) and investigate its possible implication into the therapy administered on a
cancer patient by means of induced fluctuations [44. 102].

In subsection B of Section 6.1 we have undertaken some (crisp) dynamical system
theoretic analysis of (1.5.2) by means of critical points and Hopf bifurcation. Hopf
bifurcation is typically a multidimensional phenomenon. which enters into the solution
space of (1.5.2) because it has complex solutions. It has been suggested that the Hopf
bifurcation is responsible for the existence of the bistability exhibited by a bimodal
probabilistic distribution function in [89].

In Section 6.2 we have taken up the uncertainty management aspect of (1.5.2). u is
assumed to remain fixed. but r and v are liable to fluctuate due 1o inherent uncertainty in
determining their values. This fluctuation has been modelled by a stochastic differential
equation in [89]. In [89] these fluctuations have been treated as spontaneous
physiological activity. But in [44] it has been suggested that these fluctuations may be
artificially induced into the body of a tumour patient through suitable (multiple) therapy
in order to regress the tumour. Throughout the Section 6.2 we have taken the fluctuations
in the values of r and v as entirely induced by an human expert (the cancer specialist
administering the therapy). r is proportional to the tumour cell destruction rate and v is
proportional to the new tumour cell growth rate. During a therapy these parameters need
to be controlled. In the course of treatment the expert often does not resort to statistical
analysis to determine the amount of fluctuation needs to be induced. On the contrary. he
usually relies on an heuristic subjective estimation based entirely on his skill and past
experience. So the uncertainty involved in the fluctuations here is not objective but
subjective in nature and hence can not be modelled by probability theory. Fuzzy set
theory is the ideal tool to model this type of uncertainty [13. 65]. In this section we have
treated the process of evolution of tumour in human body as an evolutionary uncertain
system as suggested in [44] and modelled it by fuzzy differential inclusion relations
[102]. To convert (1.5.2) into an FDI we must have a reasonable estimate for the entire
fluctuating ranges of r and v. In the first part of Section 6.2 we have endeavoured to have
reasonable estimation for the ranges of r and v. within which they can fluctuate. We have
achieved this goal by extensive computer simulation with the help of the data available
from [44. 52. 88. 89]. One remarkable feature of this investigation is that the present
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model is predictable only for m > | and v < 2. This suggests the need for introduction of
new models for m < | or v > 2. Then in the next part of Section 6.2 we have presented the
FDI simulation of the model with the help of Algorithm 3.2.1. The best possible solution
(in the sense that the fuzzy membership grade of the solution is 1) region indicates the
desired effects of the therapy on the patient. In subsection D we have made therauptic
suggestions based on our modelling. We have suggested that. perturbations in the form of
increasing arterial pO- to 90 mmHg. decreasing venus pO- to 20 mmHg. etc. under the
heading of “Multistep therapy™ and combined perturbation of glucose level. temperature.
anti-tumour drugs. radiation. etc. under the heading “Multiplex therapy.”

We conclude this thesis in Chapter 7 with a summary and a discussion on future
directions.

In Appendix A we have explored the meaning of time from a dynamical system
theoretic point of view [93]. In Appendix A our aim is to make a thorough investigation
about how the set of real numbers R has been associated with the notion of time. In
Section A.1 a formalization of time is presented. To do this first a very broad based
definition of event (not in sense of relativity) is proposed. We have proposed that time is
an orderer of events. Time itself is a standard event, for example. the event of Sun’s
diurnal motion with respect to the Earth (as seen by an observer on the Earth). To show
that, T is the positive real axis R™ we have first mapped deffiomorphically the trajectory
of the Sun round the Earth onto a circular helix in R* whose axis is say. the Z-axis. Each
complete circular motion on this helix will give a day’s time and total number of units
advanced along the Z-axis will give the number of days that have elapsed. Then we have
mapped deffiomorphically the portion of the helix above the xv-plane onto the positive
Z-axis. Then with the notion of reverse process [129] we have extended T to the whole of
R (Theorem A.2.1). So time can be represented by R (as is the standard practice in the
dynamical systems theory) and that. symbols like dx/dt are well-posed [85] at least from
the point of view of t.

In Appendix B we have discussed about Mandelbrot's definition of fractals [105].
We have stated this definition in Chapter 4 and used it to define fuzzy fractals.
Mandelbrot’s definition of fractals is rather complicated and demands some knowledge
of set theory. and we have made an attempt to explain this important definition term by
term as pedagogically as possible. In Lemma B.l we have proved the existence of
Hausdorff dimension. Then we present the definition of Hausdorff dimension. Then we
have stated topological dimension. In Lemma B.2 we have established that. if the
Hausdorff dimension of a metric space A is s then the topological dimension (small
inductive dimension) of A = [s]. [s] is the greatest integer less than or equal to s. From
this we have derived an equivalent definition for fractals.

In Appendix C we have discussed chaoticity of logistic function f(x) = ux(l - x).
where x € [0. 1]. [t is well known that this function is chaotic under iteration on [0. 1] for
p 2 4. Devaney has given a proof of the same for p > 2 + \'S and says that the proof for
the case p > 4 is difficult [30]. But we need the fact that { is chaotic under iteration for p
=4 in Section 4.2. where we have constructed a fuzzy dvnamical system modelling of a
turbulence. So. for the sake of completeness of our model we have given an original
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proof of this important fact in Appendix C. First we have shown that. for each positive
integer n there are 2" fixed points of {" (1t = 4) in [0. 1]. Each of them is not necessarily
of period n. This result and the reasoning to prove it are of great help in subsequently
proving that. (1) { is topologically transitive on S for p = 4 and (2) periodic points of {
are dense. Then by the result of Banks et al.. the sensitive dependence on initial condition
follows immediately [8]. So { is chaotic under iteration on [0. 1] for = 4.



Chapter 2

Uncertainty Management in Phase Spaces

The closer one looks at a real world problem.
the fuzzier becomes its solution.

- L. A. Zadeh [154]

In this chapter we will be concerned with modelling the uncertainty inherent in the phase
space of a dynamical system. We have already seen in the last chapter that uncerttain or
fuzzy states in the phase space give rise to fuzzy phase spaces. A fuzzy phase space is a
collection of fuzzy points. It is already well recognized that, the fuzzy numbers are great
tools to measure uncertain quantities [43. 96]. In this chapter we shall explore the role of
the fuzzy numbers in describing fuzzy points or fuzzy states [98].

In classical crisp dynamical systems usually the phase space is either R" or a subset
of R". where R is the (crisp) real number system and n is a positive integer. Here our aim
is to investigate how far this is true in case of fuzzy phase spaces. If W is the system of
fuzzy real numbers. what is the relation between R" and a fuzzy phase space? This is a
very important question needs to be answered. Fuzzy quantities. fuzzy real numbers and
fuzzy arithmetic have been discussed in [35. 36. 69. 76. 81. 123]. Multidimensional fuzzy
real number system ‘R" and its application in pattern recognition have been discussed in
[98]. R" is algebraically a vector space and topologically a metric space. Fuzzy vector
space and fuzzy topological vector space were first defined by Katsaras and Liu {75].
More recently a more generalized fuzzy topological vector space has been defined by
Buckley and Yan [20]. We have defined a vector space like structure on R". which is
more general than Katsaras and Liu structure but less general than Buckley and Yan
structure. M" is the phase space of some important FDSs [17. 18]. For all other FDSs
fuzzy states can be derived from R". A metric has also been defined on R". We have
shown how arbitrary fuzzy points. fuzzy feature vectors or fuzzy pattern vectors can be
obtained from N".

In this chapter we shall try to find connections among these various phase or state
spaces defined for different fuzzy dynamical systems. We have already noticed in the
beginning of this chapter that the classical crisp dynamical systems mostly evolve on n-
tuples of crisp real numbers. That is. in this case the underlying phase spaces are either
R" or some subset of R” for some positive integral n. The reason behind this is that R" has
a very rich algebraic and topological structure. Algebraically R" is a vector space and
topologically it is a complete metric space. The roots of the structures of R" lies in R
itself. R is an algebraic field and topologically it is a complete metric space. which is also
endowed with a total or linear order relation. An immediate question is. "How far all
these developments of the phase spaces of crisp dynamical systems can be carried out to
their fuzzy counterpart?” In other words this question means. Do all the fuzzy phase
spaces belong to M"?" For the systems defined by Buckley and Feuring in [17] and [18]
the answer is “Yes.” In this chapter we shall try to find an answer to the above question
for other fuzzy dynamical systems.
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In almost all cases fuzzy dynamical systems evolve in F(R"). the space of fuzzy
subsets of R". for some positive integral n. Of particular importance are the nonempty
compact subsets of F(R") on which a Hausdorf! distance metric can be defined. More
restricted subsets of F(R") have been considered for various special purposes. A lot of
mathematical theories have already come up about them. But almost no attempt has so far
been made to connect them with R". In this chapter we have made an attempt to develop
a theory of fuzzy phase spaces starting right from W. In Section 2.2 we shall concentrate
into developing an algebraic structure over W. Our ultimate aim in this chapter is to
develop an algebraic as well as a topological structure over R". Next we shall show how
various fuzzy phase spaces can be obtained from W". During this entire development we
shall try to follow the path of similar developments in R" as closely as possible.

2.1 Fuzzy Phase Space Preliminaries

According to Kloeden {82]. ... the underlying state spaces of the fuzzy dynamical
systems are complete. locally compact metric spaces. ..... a fuzzy dynamical system can
be considered as a crisp dynamical system on the state space of nonempty compact fuzzy
subsets of the underlying state space.” In [21] discrete FDSs in the form of IFZSs are
evolving in the space F*(X). where (X. d) is a compact metric space (hence complete)
F*(X) is a collection of all fuzzy subsets of X such that. if u € F*(X) then

(1) u is uppersemicontinuous (u.s.c) on (X. d):
(2) uis normal. that is. u(xy) = I for some x; € X.

These properties vield the following results [21]:
(a) For each 0 < o < 1. the a-level set. defined as [u]” = {x € X |u(x) 2 a} is a
nonempty compact subset of X:
(b) The closure of {x € X | u(x) > 0!, denoted by [u]" is also a nonempty compact
subset of X.

Discrete fuzzy dynamical systems have also been discussed in [10] and the phase space
here is taken as the space of all the fuzzy subsets of R" for some positive integral n. More
general fuzzy dynamical systems have been defined in {43] by extending Kloeden's
definition of fuzzy dynamical systems [82]. where the underlying phase space is taken as
(3. 8). T is the collection of all the nonempty compact fuzzy subsets of a complete
locally compact metric space (X. d) and & is the metric defined on 3 (0 is a metric). De
Glas has considered fuzzy subsets of X < R" as the state space of fuzzy systems [27].
Fuzzy differentiable dynamical systems need a more specialized underlving phase space
to be defined. Kaleva has defined fuzzy differential equations on (E". D) [67]. where E" =
fu:R" = [0. 1] u satisfies (i) - (iv) below

(i) uis normal. i.e.. there exists an xy € R" such that. u(x,) = 1:
(i1) u is fuzzy convex:



(il1) u is upper semicontinuous:
. ) . . .
(iv) [u]" = closure{x € R" | u(x) > 0} is compact.

The metric D: E" x E" — R™ W {0} is defined by the equation

D(u.v)= sup d(fu]® [v]") (2.1.1).

O<axl

where u. v € E" and d is the Hausdorff metric (Definition 2.1.1) defined on the collection
of all nonempty compact convex subsets of R". Seikkala has defined fuzzy differential
equations on E' or just E [136]. Hullermeier has also taken E" as the state space for
modelling uncertain dynamical systems through fuzzy differential inclusions [62].
Buckley and Feuring have defined fuzzy differential equations on a more general state
space namely, the space of n-tuples of fuzzy real numbers [17]. They have defined fuzzy
partial differential equations also on the space of n-tuples of fuzzy real numbers [18].
Since the phase space of a dynamical system must always be a metric space. we define
Hausdorff distance and Hausdorft metric as follows.

Definition 2.1.1: Hausdorff distunce between two nonempty compact subsets A. B of a
metric space (X, d) is defined as h(A. B) = max{D(A. B). D(B. A)}, where

D(A. B) = sup inf d(x.v) (2.1.2).

xeA veB

h is a metric on the collection of nonempty compact subsets of (X. d) [46] and we call
this metric Hausdorff metric.

2.2 Fuzzy Real Number System R
A. Motivation

The concept of fuzzy numbers stems from the fact that each time we want to locate a
point (value) on the real line R. irrespective of the degree of sophistication of our
technique. we may end up locating some other point within some neighbourhood of that
point. So, by fuzzy number we mean certain neighbourhood of a crisp number r as a
whole instead of that crisp number r alone. If N(r) is the neighbourhood of r which is
taken as the corresponding fuzzy number then for each x € N(r) we assign a grade of
membership u(x) to x denoting the certainty or the possibility measure [156] with which
we may end up locating x when we actually intend to locate r. According to Dubois and
Prade in [36]. “A fuzzy number M is defined as a bounded support upper semicontinuous
fuzzy interval with a unique modal value m: it is a representation of the imprecisely
specified quantity “approximately m™.” The definitions of fuzzy numbers in [54] and [81]
are but slight modification of this. We call ‘R the svsiem of fuzzv real numbers. In this
section we are going to build up an elaborate algebraic structure on R [97] and we have
also defined a metric on YR. Whenever we want to choose a value in R we end up
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choosing a fuzzy number in W instead. The motivation behind all this is to recognize and
accommodate fuzzy uncertainty in describing (complex) physical systems (by a collection
of measurable attributes i.e.. mathematical modelling. where edch attribute is quantified
by fuzzy numbers). When more than one attributes are involved. say n in number. we
replace R by M" [94. 98]. (We shall develop an elaborate algebraic structure on R" in the
next section and we shall also define a metric on it.) On one hand this justifies Zadeh's
contention, “Fuzziness comes from the description of complex systems.™ [146]. and on
the other it is in complete harmony with the way in which fuzzy poinis and fuzzy vecrors
are defined by the fuzzy systems community [23. 107. 116. 127]. Elaborate discussion on
fuzzy numbers. fuzzy arithmetic and interval analysis appear in [35. 36. 69. 76. 81. 123].

A good way to justify the use of the fuzzy real numbers is the use of fuzzy linguistic
variable. According to Zadeh. *... the main contribution of fuzzy logic is a methodology
for computing with words. No other methodology serves this purpose.” [159]. To
elaborate. let us take one example of Zadeh from [158]. Let Age be a linguistic variable
and its fuzzy constraints [159] are young. not young. very young. more or less voung. not
very voung, old. not old. not very_young and not very old. etc. Each of these values
represents a label of a fuzzy subset of a universe of discourse which is associated with
Age (in years) - e.g.. the interval [0, 100]. For voung (According to Zadeh. “The label
voung may be regarded as a linguistic value of the variable uge. with the understanding
that it plays the same role as the numerical value 25 but is less precise and hence less
informative.™ [146]) we can choose Hao30) from WR. Similarly. for very voung we can
choose 1i1525) from R, etc. So we can regard W as the collection of all possible fuzzy
constraints associated with all possible linguistic variables. )" may be a possible
mathematical frame work from where Zadeh's computing with words [159] may take off.

The certainty factor (CF) of transmission of uncertainty from premise to conclusion
as described by Zadeh in [157] can be explained most naturally in terms of fuzzy real
numbers. For example. let us consider the proposition. “If X is small then Y is large with
CF = 0.8" from [157]. Let small be represented by py, . and large by Vied)- Let u e [a. b]
such that. p(u) = 1. where p(u) denotes the degree of "X taking the value u”. One instance
of the proposition is “If X is u then Y is v*". where v [c. d]. such that, v(v) = 0.8 x u(u)
=0.8. Interpretation of any other instance is similar.

B. Basic Definitions and Important Results

Definition 2.2.1: Let F(R) be the collection of fuzzy subsets of R. A € F(R) is a fuzzy
real number if and only if (1) A is a normal fuzzy set. (2) [A]” must be a closed interval
of R for every o € (0. 1] and (3) support of A is a compact interval of R.

In view of Theorem C.2 of [81] it is clear that. if the support of fuzzy number A.
denoted by [A]O is [a. b] and A(x) =0 for x e [a. b] then x = either a or b or both (fora=
b). There exist c. d € R such that. a < ¢ < d < b and A(lc.d]) = {1}. A is increasing and
continuous from right in [a. ¢). A is decreasing and continuous from lefi in (d. b].
Obviously. a fuzzy number A is a convex fuzzy set. To summarize. when A: R — [0. 1]
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is a fuzzy number. A is a normal. upper semicontinuous. fuzzy convex fuzzy subset of R.

In other words. A € E'.

We can take the collection of all fuzzy real numbers A or Aj,p). where [a. b] is the
support of A. and denote this collection by W. We call W the system of fuzzy real
numbers.

The binary operations "+ and “*" are called addition and multiplication respectively.

are defined on 'R as follows.
Definition 2.2.2: Let . v € . Let = + v. Then & is defined as follows.

3(c) = sup inf[p(a). v(ib)] Va.b e Rst,c=a+b. (2.2.1H)

c=a=rh

And similarly in case of . = pt * v.

Mc) = sup influ(a). v(b)] Va.b e Rst.c=a.b. (2.2.2)

¢=a.b

Lemma 2.2.1: (a) ‘R is closed under *+".
(b) M is closed under "*".

Proof: For the proofs one may consult [81}].
Lemma 2.2.2: Associativity holds in R both with respect to + and *.

Proof: Refer to [81]. ~
C. Inverses of Fuzzy Numbers

Our next target is to define additive and multiplicative inverses in R. This is perhaps
the biggest challenge of this section. for it is generally accepted that unique inverse for a
fuzzy number does not exist [151]. Here in no way we are contradicting the established
facts. We only intend to introduce some modifications to obtain a reasonable algebraic
structure. To endow a fuzzy number with a “unique’ inverse we shall have to modify the
classical definition of inverse. We shall accomplish it here in such a way that the
principal spirit of the notion of inverse remains preserved despite allowing other
compromises. The spirit of inverse lies in the symmetry property of a system. For
example an algebraic system called group is symmetric (in fact groups are standard
mathematical tools for modelling symmetry). because every element of a group 1s
invertible i.e.. every element of a group has a ‘mirror image’ with respect to some fixed
element. in this case the identity element. If x € (G, +). where G is a group with respect
to+.x + (-x) = e. -x is inverse of x and e is the identity element of G. Uniqueness of -x is
an obvious consequence of the group axioms. Here inverse is defined with respect to the
identity and this automatically preserves the mirror image property of inverse. We shall



see shortly that defining inverse with respect to identity will not preserve the mirror
image property in case of R. Therefore in R we shall define inverse of an clement only as
the mirror image (in some sense) of that element without regard to the identity. Of course
in N identity and inverse will be related butin a less stringent way.

In this section we must keep in mind that, we are dealing with fuzzy sets and not
may have to relax our penchant for precision. This

with crisp elements and therefore we
= by a more

means, for example, we may have to replace a rather stringent predicate

relaxed one like = or .

Definition 2.2.3: Let p e R. Additive inverse ol n is defined to be v, where v(x) = p(-x)
V¥ xeR.
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Fig 2.2.1 Trapezoidal fuzzy numbers M and -M.

Here we have taken inverse of fuzzy number p by considering the graph of p on the
cuclidean plane. We have taken the mirror image ol p on the euclidean plane with respect
to the y-axis (i.e., as if a mirror is placed along the y-axis to reflect the image of the graph
of ). Automatically we get a mirror image ot x on R with respect to the same mirror.
The entire scheme becomes very clear at the Fig 2.2.1. Obviously additive inverse so
defined for a fuzzy number is unique. We shall subsequently define additive identity of R
and the relation of additive inverse with it.

Definition 2.2.4: Letp € Mand 0 ¢ [1]°. Let us define & such that, 5(a) = p(l/a) V a ¢
R and a # 0. Then we call & the multiplicative inverse of p.

This time to determine a multiplicative inverse of a fuzzy number we have taken
mirror image of py on the euclidean plane with respect to the unit circle. Apart from
changing the mirror from the y-axis to the unit circle everything remains same here. It is
clear that, multiplicative inverse of a fuzzy number, when exists, is unique. We shall be
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defining multiplicative identity of R and its relation with multiplicative inverse in next

few lines.
D. Identin: and Irs Relation with Inverse

Definition 2.2.5: Let 0 = . where po(p) = 1 if p € [0. 0] and py(p) = 0 if p & [0. 0]. We
call 0 additive identity of . Similarly. we define | = p. where w (p) = 1 if p € [1. 1] and
wp)=0ifp g [1.1]. We call 1 multiplicative identiy of R.

From Definitions 2.2.3 and 2.2.4 it is clear that both additive and multiplicative
inverses of fuzzy numbers are unique. Both addition and multiplication on the set of real
fuzzy numbers R are commutative. Clearly p+0=pVpe Randpx1=p Ve
Alsop+v=0.

E An Algebraic Structure on 9t

Fuzzy subgroups of a (crisp) group were first defined by Rosenfeld in [132].
Subsequently this definition was generalized by Negoita and Ralescu and by Anthony
and Sherwood [4]. Here we have just established that. R satisfies the following
properties.

(1) R is closed under addition. which is also commutative.

(2) M is closed under multiplication. which is also commutative.

(3) Both addition and multiplication in 'R are associative.

(4) Additive and multiplicative inverses uniquely exist in R (up to a new definition
of inverse).

(5) Additive and multiplicative identities uniquely exist in ‘R.

Definition 2.2.6: Let G be a set (of fuzzy sets). closed under a binary operation. say +.
Forabce G.a+(b+c¢c)=(a+b)+c.Foreachae G.3e e Gs.t.a+e=a. Foreacha
€ G 3 aunique a' € G. called inverse of a. The relation between identity and inverse is
given by a+a' > e (2 is some predicate which is a generalization of =). Then G is called
an F-group. If the F-group is commutative then it is called abelian F-group.

By now we have proved the following Theorem 2.2.1, which induces an algebraic F-
group structure on R both with respect to + and *. Note that F-group has important
differences with classical crisp groups as well as with classical fuzzy groups.

Theorem 2.2.1: R is an abelian F-group with respect to "+ and also the collection of all
elements of k. whose multiplicative inverse exist. form an abelian F-group with respect
to ¥,

Generally distributivity property does not hold in ‘R. but subdistributivity does. i.e..
forp. v.d € Mo p* (v+38) < p* v+ pu* 3. However when p. v. 8 become crisp numbers
(ie. [u]" = [a. a] for some a € R: p(a) = 1 and u(b) = 0 for b = a. Replace p by {a! etc.)
then of course distributivity holds.



Fuzzy field has been defined in [110]. Here we shall define F-field on line of F-
group. By fuzzy field we shall understand the classical fuzzy fields only.

Definition 2.2.7: A set [ will be called an F-field if and only if (1) I is an abelian F-
group with respect to addition. (2) all the elements of I whose inverse exist with respect
to multiplication. also form an abelian F-group with respect to multiplication. and (3) T’
also satisfies the subdistributivity property.

We have proved the following
Theorem 2.2.2: 'R is an F-field.
F. The Relation Benveen R and ¢

Theorem 2.2.3: The crisp real number system R is embedded in *R. In other words
ordinary crisp real numbers are only special cases of fuzzy real numbers.

Proof: We will show that. R is embedded in *R as a field. We know that. p € R. where
u(y)=1ify e [x.x]and u(y) = 0 if y # x. for some x. Take the collection of all such . €
R and denote it by F. It is a routine matter to verify that F is a field with respect to the
standard binary operations defined on R. Let ¢: F — R, such that. ¢(u) = x. ¢ is clearly
one to one and onto. Also ¢(p + v) = x + z. where v(y) = 1 if y € [z.zJ and v(y) =0 if y #
z. The "+ in the argument of ¢ is as defined in Definition 2.2.2. Similarly. ¢(u * v) = x .

isomorphism between F and R. i.e.. R as a field is embedded in .
G. A Metric on 7

To define a metric on R. i.e.. to induce the notion of distance between two points
p/mb, and " q; of M we can follow the notions of Goetschel and Voxman [54]. / varies
over indices of all membership functions mapping R into [0. 1]. satisfving the conditions
laid down in (1), (2) and (3) of Definition 2.2.1 and which vanish outside [a, b]. m is
defined similarly. Normally. we shall omit [, m. Let p* = {(x.y)|a<x <b, 0 <y < u(x))
and v¥ = {(x.y) | c £x <d. 0 <y <v(x)}. Let H be the Hausdorff metric defined on
compact subsets of R* and define D: W x R — [0. o0) by D( . v)) = H(p*. v*). Then D is
ametric on R. To see this. it suffices to establish the triangle inequality for metric spaces.
H(p*. v¥) = sup [(x - x') + (v - v')]'7 (xy) € p* and (x'y') € v*. H satisfies triangle
inequality [64]. so does D. Henceforth we shall denote the metric space of fuzzy numbers
by (R. D). When there is no risk of confusion we shall simply write R in place of (R. D).



2.3 The Space R"

R" is the most important of all spaces in theory as well as in practice. not only in
mathematics but in all other branches of science. R" occupies such a central position in
science because of its unique structure. This structure has two main parts: algebraic and
topological. Algebraically R" is a vector space and topologically it is a complete metric
space. In this section we shall try to find out an algebraic structure for R" and also we
shall define a metric on it.

2.3.1 The Algebra of R"

We have defined an algebraic F-field structure over the collection of all fuzzy real
numbers W in the Section 2.2. The current subsection is a continuation of this trend in
case of R". Development of an algebraic structure over " is motivated by an analogy in
the classical Linear Algebra. where an n-dimensional vector space R" is defined over the
field of real numbers R. Similarly. here also we shall try to develop a vector space like
structure (though it does have important differences with classical vector spaces) for R"
over the F-field 3. Fuzzy vector spaces have already been defined by Katsaras and Liu in
[75]. Recently Buckley and Aimin have defined fuzzy topological vector space [20]. Our
definition of fuzzy vector space is more general than the first but less general than the
second. None of them has been developed from the fuzzy numbers. To utilize the
uncertain quantity modelling role of fuzzy real numbers here we have undertaken the
development of fuzzy vector space from the system of fuzzy real numbers R. We would
like to call the algebraic structure developed here as generalized fuzzy vector space or
GFVS. In fact in this section we will show that 'R" is a GFVS. The following definition is
essentially on line of the classical definition of crisp vector (linear) space [59] with
necessary modifications.

Definition 2.3.1: Generalized (real) fuzzy vector space V is a collection of fuzzy subsets
pof R"and R be the F-field of fuzzy real numbers. V is an abelian F-group with respect
to additive binary operation *+°. And for every o € R and p € V. there is defined an
element ap € V. subject to

a(pt+v)<apt+av
(a+Pp<opt+ Py
a(Bp) = (ap)p
lp=p

B0 —

whereaf=a * . a.f. 1 € Wand p. v € V. Let A = ap. then A(a) = sup infla(b).u(c)).

a = be

a is a fixed crisp vector of R" equal to given value of be. where as usual. b varies over R
and ¢ varies over R".

It is a routine matter to verif\ that the generalized fuzzy vector space is well defined.
From this point onwards by fuzzy vector space we shall mean generalized fuzzy vector



space unless otherwise specified. From the above definition it is clear that. fuzzy vector 1s
) o : . R A
nothing but a bunch of crisp vectors in R” for some positive integral n (Fig 2.3.1).

| A typical
v en v point of
. R
(O.C) /
/ H ‘
/ Y
/ \
! k!
/ \
(a.0) (b.0)
ue R

Fig 2.3.1 A two dimensional generalized fuzzy vector (or fuzzy point in R7) as a product
of two simple trapezoidal fuzzy numbers, where the associated membership function is
nothing but a normal. fuzzy convex fuzzy subset of R" with compact support. Clearly. "a
typical point of 7" is a collection of crisp points (vectors) of R-.

We have already defined F-group and F-field in the previous section and by now we
have completed the definition of generalized fuzzy vector space too. Our next theorem
will help us to reformulate the definition of GFVS in an equivalent vet intuitively more
appealing form.

Theorem 2.3.1: Let R be the field of crisp real numbers. Let V,, be an n dimensional
(crisp) vector space over R. Let B = {ej. es. ..o en; be a basis of V. e, = (0, 0........
I(ith position). ...., O)T. Let B' = {Mer. Meas voeeeneinnns Henj . Where pei(e)) = 1 and pe(v) =0
forv#e.v e R" Take the linear span [59] of B' over R and denote it by y. Then y is a

GFVS.

Proof: First we will show that B’ < k" in the sense that each coordinate of an element of

B’ belongs to . p,, € B' forsome i € {1. ... n}. ith coordinate of e, is\1 and all other
coordinates are 0. To get the ith coordinate of .. 1 € R is taken. To get all other
coordinates of . 0 € R is taken. pe(X) = min{ LX), po(X2). o [VRT 5.9 N Lo(Xp)}

(this notion is very standard and has been used by Katsaras and Liu [75]). where x = (x).
........ Xn) and py. wo have usual meaning. Clearly. i.i(x) = 1. for x = ¢, and 0 otherwise.
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Now take the linear span of B’ over W defining membership of ae, according to
Definition 2.3.1. Let x € y. Then x = cjey + v + a,e, where o, € R forall i e
) DR n}. Now it is a routine matter to verify that y satisfies all the properties of
Definition 2.3.1.

Definition 2.3.2: Let V, be an n-dimensional crisp vector space over the field of crisp
real numbers R. B is the basis of V, as described in Theorem 2.3.1. R be the F-field of
fuzzy real numbers. B’ be as described in Theorem 2.3.1. Then the corresponding  fuzzy
vecior space denoted by V,, is the linear span of B" over k. We also write " in place of

V,. R" is the collection of all elements of the form p = ({y. ......... i) Where p; € R for
allie 1.2, ......n} and p((x;. X2 e Xn)) = min{ (X)), pa(xo). o Ua(Xxp)}. X, € R
forallie {1.2.......... ni).

Definition 2.3.3: Dimension of the corresponding fuzzy vector space V, in Definition
2.3.2 is n. B" will be called a hasis of V,,.

Definition 2.3.4: v. va. ........ vi € V, are said to be lincarly independent if and only if
MVt i, + AV = 0 implies that. 4y =......... = = 0. Where 4. ........ M € R.0=
tp. where po(0. ....... 0 (nth term)) = 1 and py(v) = 0. for v = (0. ... 0 (nth term)). 0 is

the additive identity of V.
Theorem 2.3.2: The crisp n-dimensional real vector space is contained in V, (= R").

Proof: Let E be a real vector space of dimension n. Then we take V, defined over K. In
the first step we “extract” R from R. To do this. for each x € R take only the closed
bounded interval [x. x] with the membership function n : R — [0. 1] s.t.. p(x) = | and
u(y)=0 VY y # x. It is a routine matter to verify that [x. x] + [y, y] = [x + y. x + y]. Where
membership value of x + y is 1. for membership value of both x and y are 1. [-x. -X]
exists and membership value of -x is | etc. So the collection of fuzzy real numbers of the
form [x, x] along with the membership function defined above make an F-field. where x -
x = (0 whose membership value is 1 and x * 1/x (whenever defined) = | with membership
value 1. x * (v + z) = x * y + x * z. membership values on both sides are | by Definition
2.2.2. So this F-field is reduced to a field, with each member having a membership value
I. And this is precisely the field of crisp real numbers R. Now, any n-dimensional vector
space defined over R (i.e.. R" for some n) is clearly a subset of V,. for V, contains all the
fuzzy sets p. where (xi. ........ Xp) € R"and p((xy. ... Xo)) = 1o (Ve e vp)) = 0 if
vigxiforanyie {1 ... nj.

In Theorem 2.4.1 in the next section we shall prove that the Katsaras-Liu fuzzy
vector space [75] over R" can be obtained by construction from V,,.

By now we have completed. what may be called a reasonable definition of W" as a
fuzzy vector space. Since the vector space structure is the principle algebraic structure of
n L. A .
R". we have been able to develop a somewhat similar algebraic structure for R" also.



2.3.2 A Metric on R"

We have already seen that. each real fuzzy vector u is a fuzzy subset of R" for some
positive integral n. Each coordinate of u being compact interval of R is a compact set. So
by Tyvchonof's theorem [138] u is a compact (fuzzy) subset of R". Since there is at least
one element in each u with membership value 1. each u is nonempty. R" is collection of
fuzzy sets p. Where p is a membership function such that. p(v) = min(pi(vi). ua(va). ...
Ha(Va))e V = (V1. Vo e, vy)! forv e u and uw(v)y=0forv ¢ u.

Definition 2.3.9: To define a metric D" on R". let us take py. py € R D'(Ku. ) = sup
(H((u. x). (v.y)) foru e u. v e vand 0 < x < py(u). 0 <y < p(v)j.

Since R" x [0. 1] is a complete metric space. (W". D') is a complete metric space
(Theorem 4.4 of Edgar [46]).

Lemma 2.3.1: For any x € R and any membership value m (0 <m < I) givento x, J a
fuzzy number € R such that, p(x) = m.

Proof: We will choose a suitable [a. b] and a trapezium shaped p over it. Obviously p is
a trapezoidal fuzzy number with support [a, b]. We take a < x. Take the straight line on
Euclidean plane (X. Y). passing through (a. 3) and (x. m). i.e.. (X -a)/(a - x) = (Y - d)/(d -
m). Where & is a fixed nonnegative crisp real number. We can take & as small as we
please. Take the intersection of this line with Y = 1. Denote this point of intersection by
B. Denote (a. 8) by A. (b. 1) by C and (b. 8) by D. where b > x. p is so chosen that the
graph of u(X) is the trapezium ABCD for a < X < b and u(X) = 0 otherwise and thus we
get pu(x) = m.

Theorem 2.3.3: The resulting metric topology (\R", D’) is homeomorphic to the product
topology of M". where R is equipped with the D-metric topology as described at
Subsection G of Section 2.2.

Proof: To prove this, all we need to show is that, (R. D/’) is topologically homeomorphic
to (*R. D), where D/’ is the induced metric on the ith coordinate set by D’. i.e.. in other
words pi((R", D)) = (R. D,"). where p, is the ith projection map of (‘R". D’) onto (R. D,").

A typical element p of R" is, more explicitly. of the form p, . Where 1 is
compact interval of R, pu(xy. oo Xn) = mMin (L(Xy). a(Xa2)e e H(xy)). where x, €
I and p, € M. We define pi(pi 1 1) = 1. Notice that x; varies over R. pi(x;) > 0 if
x €l and p(x;)) = 0 if x; € R - 1. Let x; = x, for some x,” € I. Let pi(x,/) =m. If m =
min(p(X,). ....... [THE 0 - Ha(x,)). where x;" € 1, ¥ i. But for this p(x/)2m V j = i. We
can always choose values of pi(x,") 2 m by Lemma 2.3.1 ¥V j # i. So. for any x,’ we can
reconstruct pi(x,"). This way we get p,((*\R". D")) = (K. D/). It remains to show that D, and
D are equivalent metrics on . But. D'(p. v) = D//(p,. v,). where for j # i, ;= v, = 3 =
& such that. w(a) = vi(a) = o(a) = | and pi(x) = vi(x) = d(x) = 0 when x = a for some fixed



a e R. Now from definition of D in Subsection G of Section 2.2 and defmition of D’ in
Definition 2.3.9 it is clear that. D/'(p. vi) = D(p. vi). This completes the proof.

2.4 R" as Generator of F(R")

Application of fuzzy set theory based techniques often involves the metric space of
normal fuzzy convex fuzzy sets over R". where the metric is denoted by the supremum of
the Hausdorff distances between corresponding level sets. This metric has been found to
be very convenient in studying fuzzy dynamical systems. fuzzy differential equations.
fuzzy differential inclusions and chaotic iterations of fuzzy sets. So it would be very
natural for us to want to find out the relationship of the normal fuzzy convex fuzzy sets
over R" with SR". First we shall show that F(R") is generated by ®". The set of normal
fuzzy convex fuzzy sets of R" is a subset of F(R"). In the last section we have already
described the defining properties of the normal fuzzy convex fuzzy subsets of R". Let us
reformulate them in the following

Definition 2.4.1: E" be collection of all the functions u of the form u : R" — I and
satisfving the following conditions

(i) uis normal. i.e.. there exists an x; € R" such that. u(xy) = I:

(i) u is fuzzy convex. i.e.. forany x. v € R"and 0 <% < 1. u(Zx + (1 - A)y) 2 minju(x).
u(y)):

(iii) u is uppersemicontinuous: and

(iv) the closure of {x € R" | u(x) > 0}. denoted by ju]". is compact.

u is called compact supported normal fuzzy convex fuzzv subser of R". For the sake of
brevity we shall call them basic n-fuzzy ser.

Theorem 2.4.1: For every p € N". p is a basic n-fuzzy set.

Proof: We have already seen in Section 2.2 that. when p is a fuzzy number, p: R — 1. is
a normal, upper semicontinuous. fuzzy convex fuzzy set. So, for each fuzzy number p e
R pis a basic 1-fuzzy set. Now we shall show that. for any p € R". n > 1. p is a normal,
upper semicontinuous, fuzzy convex fuzzy set.

In each fuzzy number p, is normal. So by Definition 2.3.2 p = min(uy. ........ Hy) IS
clearly normal. To prove the fuzzy convexity of p we must show that for any (x. .....
Xn)o (Vie oo vi) € RTp(h( xpe o Xn) H (1= 2)Y i e Vi) = MINTI(X G e Xn)s H(Y1.
........ yn)j. where & € [0 1]. We have p(A X1, cooeee Xn) T (1 = 2)(V1e i Vi) = Hi(AX +
(1 - »)y)) for some i1 (Definition 2.3.2). wi(Ax, + (1 - A)v) = min{pi(x;). m(vi);. for p, 1s
fuzzy convex for each i. But p((x;. ....... Xo)) = (%) < pilx). Similarly, p(yy. o Vi) <
Hi(y). So min{p(x,. ....... No)e BV Vol b € minf (X)), (Vo)) S (s + (1 -2y =
WA N, NXp) (L= 2NV vi)). To prove upper semicontinuity of p we observe
that each 1, is upper semicontinuous. Let we are to verify upper semicontinuity of p at an
arbitrary point (Xj. ......... No). Let Bo((xg. s Xn)) 1s an open e-ball centering (X;. .......



x)). pi be the ith projection map on R piB((X). e o)) = Nod(x)). is a €' open

neighbourhood of x, in R.

lim pl( m Ng(\\)) = Hl( lim M Ne(\x))

€' -0 e'>0 e’ =0 e>0

Since the above equation is true for any i and p(xi. ....... Xn) = Wi(x,) for some i. we have
lim p( N Be((Xge oo xo))) = pim A Bal(X. . xn))).
- e>{ e >0

This implies that, p is upper semicontinuous. To verify property (iv) of Definition 2.4.1
in case of p we notice that, cartesian product of compact supports of all p. i e {1. ...
n} gives the support of p. Hence by Tychonof’s theorem [u]” is compact.

Theorem 2.4.1 also establishes that each element of k" is a fuzzy vector as defined in
Definition 3.1 of [20]. Of course the fuzzy vectors defined in [20] are more generalized
entities compared to the GFVS defined in this chapter. Our next target is 1o express any
arbitrary basic n-fuzzy set of E" as fuzzy union of fuzzy intersections of u’s. where p €
R" Let u € E". We shall show that for each u there exists a sequence {p"'mp**} such
that. p*'. p** e M" for each k (k varies over some suitable index set). satistying the
equation

_ Kl K2

u = U ().
The fuzzy set intersection and union are in sense of Zadeh [152]. This method has an
exact analog in General Topology, where basic open sets are obtained as (finite)

intersection of subbasic open sets. Then any arbitrary open set is expressed as union of
basic open sets [138].

To prove the above equality we shall show that. for any x = (x). ........., X») such that.

u(x) =m e (0. 1] there exist u*' and p*". as described above. such that. TRl pe(x) =m
and p“ M pk‘(y) = (0 for any v # x. In place of the above equality we can also write

u(X) = Z\EX (u\] M Hl\z(X))/X

for X < R" in standard terminology.

Letie {1, ......... n}. Let us define y, in the following manner
m(y,) = 0 for -oc <y, <X - € (e >0)
= for x, - e <v, <x -€/2
= m for x, - €2 <y £x

= 0 for x, <V, £ x

|52
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It is straight forward to verify that. p, € W Letj e Pl n! and j # i. Take p, € .

such that.

iy = 1ify = x and

=0ify, #x,.
Now consider fuzzy numbers p; with support [x;. x]. p2 with support [Xa. Xa]. cooovs L,
with support [X; - €. Xi]. cooeernn and p, with support [X,. Xn]. From Definition 2.3.2 we
have u € M" with support ([Xi. xXi]. [X2. Xa]. e [X - €. X e [Xn. Xn]). We take p =
ph Letp’ e " where pyg € W forallje (1. n!and @' = min(u. ... o). Lo

for all j is given by

woty;) = 1 for y; € [x.xj] and
=0 for y, & [x.x]

Clearly.

p((X)s o X)) = 1 and
= () otherwise.

A . . 2 N
We take p’ = p*. From the above construction we have a0 = moand pt' A
w3(y) = 0 for any y # x. Obviously p*' ~ u** does not belong to R".

Definition 2.4.2: We shall call the above fuzzyv union-intersection operation max-min
operation or just m-m operation.

Definition 2.4.3: We call p € WR". nn dimensional elementary fuzzy set or simply n-set.

The biggest disadvantage of the m-m operation over the collection of n-sets is that.
the collection of n-sets is not closed under this operation. But it is clear from the above
calculation that the m-m operation is indeed a very useful method to obtain not only any
basic n-fuzzy subset of R" but also any other member of F(R") starting from the n-sets as
base sets. So. we have already proved that.

Theorem 2.4.2: We can get any fuzzy subset of R" (including the Katsaras-Liu fuzzy
vector space over R") by m-m operation over the collection of all n-sets or in other words
F(R") can generated by R" by m-m operations.

Definition 2.4.4: Collection of all fuzzy subsets of R" is denoted by F(R"). Collection of
all n-sets be denoted by L,. Let L, be called a generaror of F(R").

Theorem 2.4.2 is significant from an application point of view. Fuzzy vector has
immense potentiality for application. particularly in pattern recognition and computer
vision. But in any experiment the object under investigation may be of any arbitrary
shape and size. In those cases fuzzy vector in the form of fuzzy feature vector. fuzzy
pattern vector. etc.. may be any arbitrary fuzzy subset of R" for some n. Compared to this.



the Katsaras-Liu fuzzy vector space over R" or the basic n-fuzzy sets may be too
restricted entities to come in any use. In these cases m-m operation is a very useful way
(though may not be very simple yet computationally) to get these arbitrary fuzzy feature
vectors or fuzzy pattern vectors starting from n-sets. though the collection of n-sets 1s not
closed under m-m operation. In the next section we shall explore some relevance of R" in
fuzzy pattern recognition.

2.5 Some Applications of R" in Uncertainty Management in
Pattern Recognition Systems

Fuzzy set theory provides an approximate but effective and flexible way of
representing. manipulating and utilizing vaguely defined data and information and of
describing the behaviours of the systems that are too ill-defined to admit of precise
mathematical analysis by classical methods and tools [42. 116. 118].

The most obvious manner in which the fuzzy set theory can be applied to Pattern
Recognition (PR). is to treat the classes as fuzzy sets [42, 116]. Hence each pattern does
not necessarily belong to one class. rather, there is a certain degree of possibility that it
belongs to each of the classes to possibly different degrees. the extent being measured in
terms of the membership functions. If the information processing ceases immediately
after classification then nothing extra can be gained by using fuzzy set theory, since one
has to ultimately decide in favour of just one class. possibly the one for which the
unknown pattern has the maximum membership value. The different possibilities acquire
added significance only if the import of the decision propagates into a network of other
related decisions. In such situations it is possible to use fuzzy set theory to advantage for
combining the evidence borne in a collection of membership function values [42].

The concept of fuzzy sets can be used at the feature level for representing input data
as an array of membership values denoting the degree of possibility of certain properties.
at the classification level, for representing class membership of objects and for providing
an estimate (or a representation) of missing information in terms of membership values
[13]. In this section we shall be considering two specific examples to elaborate this point

5N

with a view to suggest how the GFVS "R" can be connected to them.
A. Recognition of Speech Pattern by Fuzzy Technigues

Our first example is from the applications based on the theory of fuzzy sets in the
problems of computer recognition of vowels and identifving the person from his/her
spoken words. where only three features of the unknown utterance are considered [116].

The concept of pattern classification may be viewed as a partition of feature space or
a mapping from the feature space to the decision space |117]. More often than not.
situations in the field of natural and social sciences are too complex for precise
mathematical analysis. Classes of objects in that field do not have well-defined criteria of
membership. To demonstrate such complexly behaved svstems. the concepts of fuzzy

)
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sets and the subsequent developments in decision process could be applied to a
reasonable extent. This concept is approximate but provides an effective and more
flexible basis for analysis of systems which are not precisely defined [116].

An unknown pattern has been considered as X = (X). ........ xn)[. where T denotes the
transpose. X, denotes the measured nth feature of the event. represented by a point in the
multidimensional vector space R". There are m ill-defined pattern classes Ci. ....... Ch.
Let Ri. ..ot R,, be the m reference vectors. where each class C, contains h; number of
prototype patterns R forle [l ... hii. R e (R"}. The pattern X can then be
assigned to be a member of that class to which it shows maximum similarity as measured
by certain distance based membership values |116]. Here we suggest an alternative but

equivalent scheme.

Each x, be replaced by a triangular fuzzy number <x;-8. X,. Xj+0>. Then (<x;-0. Xi.

X HO>. <X, Xp. xn+8>)" € W™ So by now we have the fuzzy pattern Xg = (<X~
O, X1, X|H0>. ooovenn, <Xp=0. Xn. x,,+6>)T in place of the crisp pattern X = (X1s vevvnn xn)’l-.
Similarly. if R = (yu" v-"" then we can replace R’ by Ry = (<y,"-8.
vy 8> <y -8 v v +8>) . Obviously Ri"" e M". & is a fixed positive

crisp real number. We can choose & as small as we please. We call | R;{,“)}. forl e {I.
........ h;}. the class of fuzzy patterns Cy,. Next we present the modified version of the
methods for determining the membership function for each class Cr; with respect to the
pattern Xg. This is only a slight extension of the original methods devised for determining
the membership function for each C, with respect to the pattern X in [116] to the fuzzy
cases.

Method I: We define a membership function p(Xy) associated with the fuzzy pattern X¢
for the jth class of fuzzy patterns Cy, as

w(Xp) = [1+ (h(Xp.Re/E)'T (2.5.1)

where E is an arbitrary positive constant. p is an integer, h is the hausdorff metric
(Definition 2.1.1). Clearly h(Xp.Ry;) = d(X.R)) as 8 — 0. where d is the usual euclidean
distance metric in R" or a weighted distance metric as

d(X.R) = min{Z(W " (xn — Ry 112 (2.5.2)

where \2\",,1”) (|W»,n(”j < 1) corresponds to the Ist prototype in the class C, and denotes the
magnitude of the weighting coefficient along the nth coordinate. We can keep o
sufficiently small so that the efficiency in classification. matching and selection of
patterns as achieved in [116] is not compromised.

Constants E and p in (2.5.1) have the effect of altering fuzziness of the clusters Cy,.
The grade of membership of X; as defined by (2.5.1) is | when h(X;.R;;) = 0. and 0 when
h(Xi.Ryy) = oc. The value of (X)) increases as the value of h(X;.R;)) decreases. Thus an
unknown fuzzy pattern X; is recognized to be a member of the kth class of fuzzy patterns
Cry if



(X)) = max (X, s L XE) § -
The fuzzification of pattern serves at least two purpose. Firstly. it enables us to
describe and compute everything in )" instead of R" (complexity of computation remains
the same) and secondly. it allows us to accommodate the uncertainties in measuring each

feature x, within the description of the pattern.

Vectors having imprecise or incomplete specification are usually either ignored or
discarded from the design and test sets. Impreciseness or ambiguity in such data may
arise from various sources. For example. instrumental error or noise corruption in the
experiment may lead to partially reliable information available on a feature measurement.
Again. in some cases the expense incurred in extracting a very precise exact value of a
feature may be very high or it may be difficult to decide on the most relevant features to
be extracted. In such cases it is not appropriate to give an exact numerical representation
to uncertain feature data. Rather. it is reasonable to represent uncertain feature
information by fuzzy subsets [13]. The fuzzy pattern X; described above by means of a
multidimensional fuzzy real number (the so called generalized fuzzy vector developed in
this chapter) may help us realize this goal (as we shall see more clearly in our next
example).

Method II: Let pi. .......... pn be N measurable attributes (features) of the unknown
pattern X. Each p; is ‘normalized’. i.e.. have values in [0. 1]. We can write

I

X=(Pleoeevrnnnn p) (2.5.3)

where

po= {1+ (X —x)E]} . (2.5.4)

x', is the ith reference constant determined from representative events of all classes.
Constants E and p has the same effect as in Method 1. If x, varies over a closed and
bounded interval of R (this can be done easily by taking all the ith coordinate values of
the patterns belonging to all the pattern classes to lie within a minimum closed bounded
inter;/a] of R) then it is a routine matter to verify that p, will be a fuzzy number. That is. X
e R

If there are h number of prototypes in a class C,. each reference point may then be
represented as

h

RJ(H _ (ph(l). ............. PNJ“))T- (2.5.3)

; (h . .
where p,"’ denotes the degree to which the property p; is possessed by the Ist prototype in
C,. Then the similarity vector S;(X) for the pattern X with respect to the jth class has the
form ‘

S|(X):(Sll. ............... Sy\;,). (256)

37



ST ]/h)zsum- (2.5.7)
s, = (1 + W1 = (p/p,"I7>". (2.5.8)

where the numerical value of s; denotes the grade of similarity of the ith property with
that of C;. W is any positive constant dependent on each of the properties and Z is an
arbitrary integer. With the knowledge of all the similarity vectors one can decide X € Cy
SO < [Sk(X) kg e {1 ... m: k = j}, where [S(X)| = max(|syl. ............... [snih)-
Generally S§;(X) ¢ ™. But then S;(X) can be obtained from W™ by max-min operations.

B. Recognition of Two Dimensional Visual Objects by Fuzzy Technigues
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Fig 2.5.1 Representation of fuzzy feature vector/pattern vector. Reproduced from [127].

Our second example is taken from fuzzy computer vision [127]. Here pattern
classification is achieved in a two dimensional fuzzy feature vector space as shown in Fig
25.1. A geometric definition of fuzzy vectors has appeared in [127]. which has been
stated subsequently in Definition 2.5.1.



Definition 2.5.1: Let Fy be a fuzzy vecror having n components each of which is a fuzzy
set A, defined over the universe F,. The fuzzy vector Fy; is a fuzzy set in the cartesian
product Fy x F» x ... x F.. Each element of the fuzzy set is a vector having same initial
point. but different terminal points. Each terminal point of each vector in the set carries
one membership value indicating its (vector’s) possibility to belong to the set Fyj. A fuzzy
vector Fy is represented as Fj = {(urg(F). F) V F € Fy x Fa > x Fy ) where pg 0 Fy x Fa
X... x Fn = [0, 1] is the membership function of Fy and p(F) is the grade of
membership of F € Fy x F» x.... x F, in Fy; which is a set of vectors. Here Fy; is a pattern
vector. The suffix f stands for a particular pattern in the class of patterns (Fig 2.5.1).

Each fuzzy pattern vector or fuzzy feature vector Fj, can easily be obtained from R
by just a single min operation between two suitably chosen fuzzy numbers from R. Once
we get I, for each i. we need only a finite number of max operations to get M, (i = 1. 2).
This is true for any fuzzy point in R”, no matter however complicated the shape is. The
concept of fuzzy vectors will be very effective in analyzing shapes of very complicated
objects, say for example. analyzing the two dimensional satellite or RADAR images of a
cyclone (Fig 5.1.2). Two sets of possible features to be extracted from the satellite or
RADAR image of a cyclone are {grey level pixel intensity. curvature} and {grey level
pixel intensity, the angle between the radius vector and the tangent}. We know that in the
image of a cyclone the cloud bands tend to curve in log-spiral shape (Fig 5.1.2) [45]. So
to detect possible cyclone from the satellite or RADAR images by a machine (computer)
we must train the machine to recognize log-spiral shapes (of cloud bands).
Computationally log-spiral shapes may be identified either by constant curvature or by
constant angle between the radius vector and the tangent. In the images of cyclones due
to the inherent uncertainty neither of these quantities can be crisp constant. Instead they
can be viewed as fuzzy numbers. i.e.. members of k. Also the grey level pixel intensity
distribution function satisfies all the properties of a fuzzy membership function, defined
on R. to become a fuzzy number (for the detail method see Section 4.1). So the Fig 5.1.2
is actually in $R” rather than in R°.

Here the entire image of the storm may be treated as a fuzzy fractal (Definition
4.1.5). where the grey level pixel intensity will give an estimate for the density of cloud
at a point (pixel). Measuring the density of a cloud by grey level pixel intensity is quite
standard [45]. This fuzzy fractal is a fuzzy subset of R (which is also a point of R%). We
may take the relative density of cloud at a point P (with suitable gradation or
quantization) = the grey level pixel intensity at P = the membership value assigned to P.
where relative density at a point = actual density at that point / maximum possible density
(of cloud) at any point at any time. Note that here the fuzzy membership function is no
longer a measure of uncertainty but a measure of lack of uniformity.

2.6 Discussion

In this chapter we have remained concerned with the mathematical and structural
analysis of a generalized fuzzy vector space and the application of it in the management
of the phase space uncertainty in a dynamical svstem. Here uncertain quantities have



been modelled by fuzzy sets and the uncertain dvnamical systems have become fuzzy
dynamical systems. Since usually the phase spaces of the crisp dynamical systems are
subsets of R". in this chapter we have established a relationship of the fuzzy phase spaces
with R". This gives us the opportunity to utilize the uncertain quantity modelling
capability of the fuzzy numbers to model the uncertainty or ambiguity involved in the
states (phases) of the dynamical system. Taking two specific examples of fuzzy pattern
recognition we have shown how useful this approach can be in tackling real life
problems. The fuzzy number system developed in this chapter will be useful in modelling
the uncertain quantities in the real life dynamical systems to be studied in Chapters 4. 5
and 6. Modelling uncertain quantities of a dynamical system by fuzzy numbers gives rise
to fuzzy phase spaces, which we have studied here.

Unfortunately the fuzzy phase spaces are not as directly related with R" as the crisp
phase spaces are related with R" or C" (C is the set of crisp complex numbers). The
reason behind this lies in the structural differences between R and R. Unfortunately R is
not equipped with as rich an algebraic and a topological structure as that of R. Also
ordering W is not very easy and various fuzzy mathematicians have so far ordered R in
various different ways. In this chapter we have considered R as an orderless structure.
Nevertheless we have been able to show here that any arbitrary fuzzy state of an arbitrary
fuzzy state space can be generated from " by max-min operations. Also in the last
section we have indicated some possible role of multidimensional fuzzy numbers in the
uncertainty management in some of the pattern recognition systems.

In the next chapter we shall deal with the management of attainability set mapping
uncertainty. In a general fuzzy dynamical system fuzzy attainability set mappings or
fuzzy time-evolution laws evolve within a fuzzy phase space. In such a system the
compound uncertainty is due to the fuzzy states and also due to the fuzzy time-evolution
laws.
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Chapter 3

Uncertainty Management in Time-Evolution Laws

In the previous chapter we have dealt with uncertainty management in phase spaces. In
the present chapter we shall concentrate on uncertainty management in time-evolution
laws or attainability set mappings or reachable set mappings [43]. These mappings will
evolve within uncertain phase or state spaces. Uncertain quantities in an attainability set
mapping will always be modelled by fuzzy numbers. which we have studied in detail in
the last chapter. We have mentioned that the study of dynamical systems is mainly the
study of time-evolution laws. We have mentioned in Chapter 1 that. according to De Glas
one of the motivations behind the introduction of fuzzy set theory into the field of
dynamical system theory was the needs for a theory of systems whose structure and / or
behaviour involve uncertainties. which can not be encompassed within the purview of
probability theory [27].

The potential application to systems theory has from the beginning significantly
motivated and influenced the direction of development of the theory of fuzzy sets. Fuzzy
systems were first discussed in 1965 by Zadeh in his expository paper [153]. The first
systematic treatment of abstract fuzzy dynamical systems was in 1973 by Nazaroff [111].
who fuzzified Halkin's crisp topological polysystems to obtain fuzzy topological poly-
systems. These were further investigated by Warren [147]. They. however. suffer the
shortcoming of not explicitly exhibiting the time dependence of the systems. Time
dependent fuzzy sets were considered by Lientz [91]. but are not. strictly speaking. fuzzy
dynamical systems as they do not admit variations in initial conditions. In 1982 Kloeden
defined and developed the notion of fuzzy dynamical systems in [82] on line of the
classical notion of mathematical dvnamical systems developed since the time of Poincare
in the 1880s and whose essence has been mentioned at the beginning of Chapter 1.

In a parallel development almost at the same time fuzzy dynamical system theory
was developed from a more system theoretic and less topological outlook. There are
systems, where some deterministic dynamical characteristics are unknown or deliberately
ignored as well as uncertainties attached to their mathematical model are such in nature
that. the probabilistic approach can not be used. This observation led Chang and Zadeh to
the concept of fuzzy systems [24]. In 1983 De Glas considered fuzzy dynamical system
(or dynamical fuzzy system as he himself liked to call it) F as the fuzzy set of all possible
crisp dynamical systems representing an uncertain dynamical system [27]. He even
considered oa-cuts of this fuzzy set to signify the system behaviour with the degree of
possibility a or more. De Glas was the first to consider stability and attractor of an FDS
[28].

Bassanezi et al. have defined discrete FDS in terms of iterated fuzzy valued

continuous function of a fuzzy variable [10]. Discrete FDS in terms of iterated fuzzy sets
systems (IFZS) have been described by Cabrelli et al. in [21].

41



In an FDS (X.F) if F is obtained as a solution of a fuzzy differential equation the
FDS (X.F) is called fuzzy differentiable dvnamical system (FDDS). Fuzzy ditferential
equations were first defined and discussed by Kaleva [67] and Seikkala [136] under the
name of fuzzy initial value problem (FIVP). The fuzzy differentiation involved in [67.
136] is Hukuhara differentiation [126]. Another kind of fuzzy differential equation has
been defined by Kandel et al. [70. 71]. Recently Buckley and Feuring have considered a
very generalized notion of fuzzy differential equation [17]. Henceforth we shall call it
BF-system. BF-system subsumes all other first order linear fuzzy differential equations.
For various definitions of fuzzy derivatives it gives various classes of fuzzy differential
equations.

So far the development of FDDS has progressed in two different directions. One of
them is fuzzy differential equation which we have mentioned in the last paragraph. The
other course of development is through fuzzy differential inclusion (FDI) introduced by
Aubin [7] and Hullermeier [62]. Henceforth we shall call it AH-svsiem. Due to
possibilistic irreversibility [14] the fuzzy solution sets of a BF-system generally tends to
blow up. That is. if x(1) is a solution of a BF-system usually diam (x(t)) — o as t — oc.
On the other hand in an AH-system diam (x(1)) < oc as t — oc. Naturally an AH-system is
a much better tool for modelling and simulation of an imprecise or uncertain system
compared to the BF-systems. Diamond has undertaken dynamical system theoretic
studies of the AH-systems [32, 33].

Under the above background of mathematical theory of FDSs in Section 3.1 we
introduce the notion of dissipativeness into the FDS and formulate a criterion to
determine it. In Section 3.1 we shall also introduce a few other new concepts into the
theory of FDS. as for example. chaoticity (as defined by Devaney). predictability.
robustness. homoclinicity. etc.

Hullermeier has made elaborate discussions about the direct numerical simulation
(DNS) of FDIs [63]. In Section 3.2 we have provided an algorithm (Algorithm 3.2.1) to
solve an one dimensional FDI. So far the fuzzy differentiable dynamical systems have
been described by first order and first degree fuzzy differential equations or inclusions. In
Section 3.2 we have formulated a second order FDI, solved it with the help of Algorithm
3.2.1 and simulated the solution space for the best system behaviour. Throughout this
thesis we shall interchangeably use the terms FDI and AH-system.

3.1 Some Extension of Fuzzy Dynamical Systems

We have defined a (crisp) dynamical system on a complete. locally compact metric
space (X. d) (we call just X) (Definition I.1.1). In this section our aim Is to present a
rigorous definition of FDS in terms of fuzzy time-evolution law (fuzzy attainability or
reachable set mapping) and then defining attractor. stability. periodicity. chaoticity.
predictability. etc. for an FDS in terms of the fuzzy time-evolution law. As a link
between classical crisp dvnamical svstem and the FDS we shall start with a definition of
the crisp generalized dvnamical sysiems (GDS).



A. Basic Definition of Fuzzy Dynamical Systems

Definition 3.1.1: GDS is defined axiomatically in terms of an attainability set mapping F
: X x T — C ((C, h) be the metric space of all nonempty compact subsets of X with the
Hausdorff metric (Definition 2.1.1) h). where for each (x. 1) € X x T the attainability set
F(x. t) is the set of all points in X attainable at time t € T (unless otherwise mentioned T
will always mean the set of time in this thesis) from the initial point x. satisfying
following four generalizations of axioms (a) - (d) above:

(A) Fis defined forall (x.1) e X x T:
(B) F(x. 0) = {x] forall x e X:
(O Fixos+t)=FFxos). ) =u [F(y.t):y e F(x.s)} forall x e Xands.t e T:

(D) F is jointly continuous in (x. t).

Definition 3.1.2: A trajectory of a GDS F is defined to be a single-valued mapping ¢ :
[t.. t;] = X for which

o) € F(d(s). 1-9) (3.1.1)
forallty<s<t1<t;.

The existence of trajectories and attainability by trajectories of all points in the
attainability sets follows from axioms (A) - (D) [82].

Before we extend Kloeden's definition of fuzzy dynamical system we shall have to
do a little ground work. Let D be a metric on X x I (I =[0. 1}) defined by

D((x1. 1), (X2, 12)) = max{d(x,. X2). |r) -]}. x;.x2 € Xandr,.rm e |,
Then (X x 1. D) is also a complete. locally compact metric space [82]. In the last chapter
we defined support for fuzzy numbers. Here we are extending that definition to arbitrary

fuzzy subset.

Definition 3.1.3: The support of an arbitrary fuzzy subset pa. denoted by supp pa. such
that.

supp ua = closure{x € X | pa(x) > 0}.

Definition 3.1.4: The endograph of a fuzzy subset pa. denoted by end pa. is the subset
end pa = {(x.r) € X xI|pua(x)=r)

of X x I and the supported endograph. denoted by send pa. the subset

send iy = end pa M osupp pa x 1



Ha is a compact fuzzy subset of X if and only if pa is an upper semi-continuous
function on X and supp s is compact subset of X or equivalently. if and only if send pia
1s a compact subset of X x [ [82]. Let I denote the collection of all nonempty compact
fuzzy subsets of X. and let & be the metric on T defined by

O(pa. up) = H(send 1. send ug). H is the Hausdorff metric for nonempty compact
subsets of X x I.

(3. 08) is not a complete metric space [82]. The metric space (C. h) is embedded in
the metric space (J. &) under the mapping i : C — 3 defined by i(A) = ya. the
characteristic function of A. Each individual point of X is compact subset of X. So {x} ¢
C.forallx € X. So {x} « JIforx e X.

And now we are in a position to present an extended version of Kloedens definition
of fuzzy dynamical system.

Definition 3.1.5: Fuzzy dyvnamical system (FDS) (3. o) on a state space 3 is defined
axiomatically in terms of a fuzzy attainability set mapping (FAM) (Definition 3.1.6) G :
I x T — T satisfying the following four axioms:

(A) o(x. 1) is defined forall (x.1) e I x T;

(B) o(x. 0) = p for all x € J (u, has support {x}):
(O)ox.stt)=o(c(x.s).t)forallx e Tands.t e T:
(D) o is jointly continuous in (x. t).

Since each individual point of X is also a member of 3. an FDS o can start from X as
well. In fact in Kloeden's original definition of an FDS o always starts from X.

Definition 3.1.6: o(x. t) is called the fuzzy antainabilin set or fuzzy reachable set of (3,
o) at time t starting from the fuzzy point (which is a nonempty compact fuzzy subset of
X) x € 3J. The time-evolution law o is also called fuzzy attainabilin: set mapping (FAM).

Of course an attainability set is also a nonempty compact fuzzy subset of X and
hence is an element of J. Definition 3.1.5 is a slightly more generalized version of
Kloeden's definition FDSs in terms of FAMs. De Glas has defined an FDS as
representable by a fuzzy subset of all the possible crisp time-evolution laws representing
an uncertain crisp system [27]. This idea turns out to be very useful in fuzzy dynamical
system modelling.

Axioms (4) - (D) of an FDS are fuzzified version of axioms (A) - (D) of a crisp GDS
and because the metric space (C. h) is embedded in the metric space (3. §) by the
identification mapping i : C — 3 defined by i(A) = y4 for each A e C. Thus crisp
dvnamical systems can be considered as a subclass of fuzzy dynamical systems [82].
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Definition 3.1.7: A fuzzy trajectory of an FDS o is a mapping v @ [t.. t;] — I for which
y(t) 1s a singleton fuzzy subset of X for each t, £t <t) and

y(t) € o(y(s). t-5) (3.1.2)
foralltp<s<t<t,.

Unlike a crisp trajectory a fuzzy trajectory need not be continuous [82]. Also note
that. fortp <t <t

—
(US)
2

N

W{(t) = r(xg-

where ¢(t) = supp y(t) and r(t) = w(t)(d()). I r(t) > a for all t then it is a-trajectory of
De Glas [27]. Existence of fuzzy trajectories has been proved in Theorem 5.2 of [82].

FDSs have been defined in terms of fuzzv cocyeles also [32]. Attainabiliy set
mappings are special class of cocycles. Another important notion of FDS is that. let S be
the set of all possible crisp models of an imprecise dynamical system. By a fuzzy model
of the system a suitable fuzzy subset of S is understood [27]. This clearly comes down to
the notion of (1) identify and accommodate the initial (fuzzy) imprecision by choosing a
suitable fuzzy initial point in the phase space and (2) then identifying and accom-
modating the propagation of imprecision in determining any subsequent state by a
suitable fuzzy attainability set mapping. The description of FDSs in terms of FAMs is
perhaps the most powerful notion so far. Also such description is an immediate
generalization of the notion of crisp dynamical systems to the FDSs. Therefore it is quite
natural to expect that. many important notions of the crisp dynamical systems can be
extended to the FDSs described in terms of FAMs. Throughout this thesis we will be
concerned about FDSs described in terms of FAMs only.

B. Fuzzy Dissipative Dynamical Sysiems

We have defined a (crisp) dissipative dynamical system in Definition 1.1.4. Now we
want to extend it to the FDSs to define fuzzy dissipative dynamical systems.

Definition 3.1.8: (3. o). where 3 is defined over X as above. is a fuzzy dissipative
dyvnamical system if o(X. 12) € o(X. 1)) (Lo € Moo in fuzzy set terminology). where
(X. d. p) is a nonempty compact metric space. which is also a fuzzy set with membership
function . ), t; € T such that. t; < .. X is the initial phase space of . i.e.. at t; (the time
at which the system starts) o can start from any point of X. If o(X. 1) < o(X. t;) holds
strictly for t; < t2 we call the system is strictly dissipative or monoionic dissipative.

Given the importance of dissipative dynamical systems in real life let us suggest here
an easy 1o implement test for dissipativeness of an FDS. If there exists a non-negative k
e R such that.



IIm 3(X.o(X. 1)) < k (3.1.4)

o

holds then we call ¢ a dissipative FDS. Clearly. X = o(X. 0) and dissipativeness implies
that o(X. t) < o(X. 0) for t = 0. which means 3(c(X. 0).c(X. 1)) < k for some non-
negative k € R and all non-negative t €T. On the other hand if (3.1.4) holds and o(X. 1)
z o(X. 0) for some t > 0 then we can extend X in the following manner

LD
wn
=

closure( Uo(X. 1)) = X'. (3.

20

Because of (3.1.4) X" is a bounded metric space. Being union of fuzzy subsets X' is also a
fuzzy set. But X' is not compact in general. However in most cases of interest X is a
compact subset of R" for some n and in that case X' being closed bounded subset of R" is
compact (by generalized Heine-Borel theorem). We extend d to X' and get the space (X'
d. p). We just replace (X. d. p) by (X', d. p) and define (3. &) on (X'. d. p). Because of
(3.1.4)

lim d(X".o(X'. 1)) < k (3.1.6)

=7

holds. which implies o is dissipative on X' or rather on .
C. Fuzzy Attractor and Stabilin: of Fuzzy Dynamical Systems

Now we are in a position to define fuzzy attractor. De Glas was the first to define and
discuss fuzzy attractor (or rather a-attractor) in [28]. The authors of [21] have used the
term “attractor’ only. instead of fuzzy attractor’. In a recent paper Bassanezi et al. have
dealt attractors and stability of fuzzy dynamical systems [10]. Fuzzy attractor has been
defined in terms of fuzzy cocycle by Diamond [32]. Here we have defined a fuzzy
attractor in terms of an FAM o of the FDS (3. o).

Definition 3.1.9: In a fuzzy dissipative dynamical system lim_,, o(X. ) = A < X. We
define A as fuzzy artractor of . Of course A is a fuzzy subset of X. If we introduce the
notion of a-cuts into it we will get lim,, [o(X.)]* = [A]" for 0 < o < 1. [A]” is the a-
attractor defined by De Glas in [28].

Now. how to define the membership function n, for A? Note that the fuzzy
trajectory given by wy(t) in the expression (3.1.2) converges to A as t — o. Also each
point of A belongs to a fuzzy trajectory y(t) for some t. From equation (3.1.3) it
transpires that membership value of y(t) is r(t). So for each x € A. there existsat e T
such that. x = wy(t). and

Ha(W(t)) = r(t) = wa(x). (3.1.7)
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But through a given point x € A more than one trajectorics may pass. In that case to
determine a unique value for pa(x) we are to take the fuzzy set union of La(y.(t)) over all
c. where (1) is a (fuzzy) trajectory passing through x.

UeHa(ye(D) = supeirdt)j = pa(x). (3.1.8)

Attractors have played an increasingly important role in thinking about (classical)
dynamical systems. An excellent exposition of (crisp) attractors was presented by Milnor
in [109]. In this chapter we shall be extending some properties of attractors presented in
[109] to the fuzzy attractors.

Since attractor is actually the phase space of the underlying dynamical system as t —
o, we may consider attractor as a matured state of the phase space. Naturally. the
dynamical system evolving within the attractor is rather matured compared to the initial
state. To understand a dynamical system therefore the study of attractor. when one exists.
is of considerable importance.

Every attractor has an important superset called nonwandering set. We define (o)
as fuzzy nonwandering set of a fuzzy dynamical system .

Definition 3.1.10: Fuzzy nonwandering set of a fuzzy dynamical svstem o be denoted by

Q(c), which is a fuzzy subset of X. Then x € Q(o) implies that o(x. t) € Q(o) for all t €
T.

Lo @ X — [0, 1] and for any y € Q(o) pae(y) > 0. Now following Ruelle and
Tukens [109] we can give the following

Definition 3.1.11: A subset A of the fuzzy nonwandering set €X(c) is a fuzzv attractor if
it has a neighbourhood U such that.

Ao(U. 1) = A. (3.1.9)

>0

Of course o(U. t;) ¢ o(U. 1)) for t; < to. i.e.. o is dissipative in U.

Note that the above definition of fuzzy attractor implies that all fuzzy trajectories
sufficiently close to the fuzzy attractor A must converge to A. This is a standard stability
condition of a dynamical system [109]. and when this stability condition is satisfied we
call the underlying fuzzy dynamical system o. stable. This form of stability is known as
Liapunov stability. Let us state this more formally in the following

Definition 3.1.12: A is a closed subset (in sense of fuzzy topology [23]) of X with o(A.
D= A (Hoian = pa in fuzzy set terminology) for any t > 0 will be called Liapunov stable
(also called orbitally stable) if A has arbitrarily small neighbourhoods U with o(U. t) <
U forall t > 0.
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There is another important form of stability called asymptotical stability. Before we
can define it for a fuzzy dynamical system we need to develop some more concepts.

Definition 3.1.13: Omega limit ser o(x) of a point x e X is the collection of all
accumulation points (v will be called an accumulation poinr of the sequence {G(X. 1)} .
if and only if there exists a fuzzy trajectory through x which converges to v for some t 2
0) of the sequence {o(x. 1)} 0.

Definition 3.1.14: The realm of attraction of an attractor A. denoted by p(A). is the
collection of all points x € X for which w(x) < A.

Obviously. for any (fuzzy) attractor A of a fuzzy dynamical system c. 6(A. t) = A for
allt=0.

Definition 3.1.15: A fuzzy attractor A of a fuzzy dynamical system is called asvmpro-
tically stable if it is Liapunov stable and its realm of attraction p(A) is an open set (in
sense of fuzzy topology [23]).

In the asymptotically stable case if we choose U with closure (in sense of fuzzy
topology) contained in p(A), then it follows that A is equal to the intersection of the
sequence of forward images U o o(U) o o:(U) ) G"(U) ........... where ¢'(U) = o(U. i).
This definition of stability for a fuzzy svstem is an extension of the notions of stability
discussed in [28. 33. 141]. Stability is perhaps the single most important aspect of any
fuzzy system and therefore has remained the most widely studied one from different
angles. e.g., [72. 77. 128]. Here we have kept our attention confined only within some of
the most basic forms of stability of a fuzzy dynamical system.

D. Robustness of Fuzzy Dyvnamical Systems

Let us next extend the concept of robustness to fuzzy attractors. Again. we shall have
to do some ground work.

Definition 3.1.16: The /likely limit ser A = A(c) of a fuzzy dynamical system o is the
smallest closed subset (in sense of fuzzy topology [23]) of X with the property that w(x)
c A for every point x € X ((X. d) is a compact metric space as mentioned in Definition
3.1.8.) outside of a set of lebesgue measure zero. (Lebesgue measure can be defined on
X. for (X. d) is compact and embeddable in R" for some finite n.)

Clearly. the likely limit set A is the largest attractor of o [109].
Definition 3.1.17: The likely limit set A(c)) of a fuzzy dvnamical system o, is called
robust if and only if the likely limit set A(c») of any other fuzzy dvnamical system o- has

Hausdorff distance (Definition 2.1.1) with A(c,) & then o, converges uniformly to o> on
X implies & — 0.

48



L. Fuzzyv Chaotic Dyvnamical Svstems

Our next target is to define fuzzy chaotic dyvnamical svstem. Crisp chaotic dynamical
svstem has been defined by Devaney [30]. This has been stated in Definition 1.4.4. We
shall make an extension of this definition to a fuzzy dynamical system o. But fuzzv chaos
has already been defined by Kloeden [83] and Buckley and Havashi [19]. Kloeden has
defined fuzzy chaos in terms of iterative maps on fuzzy sets on line of what Li and Yorke
did for certain crisp cases [90]. Li and Yorke's definition of chaos is only slightly
different from that of Devaney. Buckley and Havashi have defined fuzzy chaos in terms
of iterated function system. A chaotic fuzzv ser A is represented by iy and this iy is then
taken as the limit of an iterated function. which is known to be chaotic under iterations.
subjected to suitable conditions (e.g.. the logistic function for suitable parameter values).
Apart from Kloeden and Buckley and Havashi fuzzy chaos has also been defined by
Teodorescu [ 142] and Diamond [31]. Next we shall extend Devaney’s definition of chaos
to fuzzy dynamical systems.

Definition 3.1.18: Let o be a fuzzy dynamical system. A point p e X is called periodic
of period S (> 0) if and only if p € o(p. S)and p & o(p. S) forany 0 < S' < S.

Clearly p is a fuzzy singleton of X and hence a member of 3.

Definition 3.1.19: o will be called a fuzzv chaotic dvnamical sysiem if and only if the
following three conditions are satistied.

(1) There exists € > 0 such that. for any x € 3 and any neighbourhood N(x) of x
there exist y e N(x) and t 2 0 such that. é(a(x. ). o(y. 1)) > € (5 is Hausdorff
distance). We say that. o has sensitive dependence on initial conditions. As
usual here x. v are nonempty compact fuzzy subsets of X. i.e.. fuzzy points of N
and hence individual elements of 3.

(2) For any two nonempty fuzzy open sets A and B in (3. &) such that. pa A py = 0.

there exists t > 0. such that pga o At # 0. We call o is topologically transitive.

Let P be the collection of periodic points of 6. P < 3. If P is dense in 3. ie..

equivalently. in each open subset of (3. 8) there is at least one member of P.

density of periodic points property is satisfied by .

]

Notice that. if we take tin the set of all non-negative integers instead of all non-
negative real numbers. we get the discrete chaotic fuzzy dvnamical systems of iterated
functions on fuzzy sets. But this time the definition of fuzzy chaos is on line of Devaney
rather than Li and Yorke as adopted by Kloeden in [83].

Buckley and Hayashi have iterated the logistic function for suitable parameter values
to generate chaotic membership functions over the set of real numbers R to get the
concomitant chaotic fuzzy numbers [19]. But in reality chaotic fuzzv sers may be far more
complicated and may not be generated by iterations of any known function.
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In a crisp dynamical system an attractor plays a decisive role to determine whether
the underlying dynamical system is chaotic. For a crisp dynamical system we know that
the presence of a homoclinic point in the attractor implies that the underlying dynamical
system is behaving chaotically [109]. In this section we want to extend this idea to the
fuzzy dynamical systems.

To give a formal definition of homoclinic points we need to know what does it mean
by transversality. A precise mathematical definition of transversality is not very easy to
state. We shall however present here a geometric notion of transversality. Rigorous
mathematical detail may be found in [57].

If two curves C; and C; intersect in R" at a point B. Then C; and C, will be called
transversal to each other at B if and only if they can not be pulled apart from each other
at B by a small deformation of either of them or both. i.e., in other words, their
intersection at B is ‘stable’ (Fig 3.1.1). :

Definition 3.1.20: In a crisp dynamical system p will be a homoclinic point if and only if
two different trajectories T; and T, transversally intersect at p such that, neighbouring
points of p on T, converge to p and neighbouring points of p on T, diverge from p under
the dynamical system.

N ,/ :
NS N )
b \. ’ N e
Transversal intersection Non-transversal intersection

Fig 3.1.1 Transversal vis-a-vis non-transversal intersections.

Likewise, we define fuzzy homoclinic point of a fuzzy dynamical system in terms of
changing membership values.

Definition 3.1.21: In a fuzzy dynamical system let two fuzzy trajectories T," and T,'
intersect transversally at p'. If membership values along T’ increase towards p' and
membership values along T,' decrease towards p’, then p" will be called a fuzzy
homoclinic point of the underlying fuzzy dynamical system.

Horse shoe effect, described by Smale in [139] is another very important aspect of a

multidimensional (crisp) chaotic dynamical system. Like fuzzy homoclinic point fuzzy
horse shoe effect can also be defined in a similar manner.
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This membership interpretation of p’ is equivalent to crisp notions of converging
towards (increasing membership values) and diverging from (decreasing membership
values) p.

Definition 3.1.22: When there will be a fuzzy homoclinic point in a fuzzy attractor ofa
fuzzy dynamical system. we call that attractor fuzzy chaotic atiractor.

Definition 3.1.23: For all practical purposes we shall call a fuzzy dissipative dynamical
system evolving in (X. d) chaotic if

o the fuzzy attractor A is a fractal subset (this means A is a fuzzy subset whose
Hausdorff-Besicovitch dimension is greater than its topological dimension. the
explanation of these terms is appearing in Appendix B) of X. and

® A contains at least one fuzzy homoclinic point.

According to the above criteria of chaotic fuzzy dynamical system it is clear that the
shape of the fuzzy attractor will usually be very complicated and the membership
function defined on the attractor will take abruptly fluctuating values within any
arbitrarily small neighbourhood of almost every point (in sense of measure theory) of A.
Ideally. the set of fuzzy homoclinic points will be dense in A in the relative metric
topology of A as a subspace of (X. d).

F. Fuzzy Liapunov Exponent

Liapunov exponent is perhaps the most important of all the measurable quantities of
a dynamical system. Fuzzy system theorists have already defined and measured various
forms of Liapunov exponent of a fuzzy system [141]. Here. we would like to define the
notion of Liapunov exponent for a fuzzy dynamical system, which will be called fuzzy
Liapunov exponent. Note that we have been describing the fuzzy dynamical system in
terms of time series. In this type of description of a dynamical system the Liapunov
exponents are relatively easy to measure [26]. For a fuzzy dynamical system o(x. t) we
define the Liapunov exponent A on line of equation 2.19 of [26] as follows.

Definition 3.1.24: For a fuzzy dynamical system (3. o) evolving on (3. 8) the fuzzy
Liapunov exponent X is given by the equation

o

A=lim(1/k) 2 lim  Jog 8(o(x. ty).o( X. t-1) / [ty -ty . (3.1.10)
k—x k=1 t 51
kK kel

Equation (3.1.10) is in complete harmony with [141]. Generally. o(x. 1) is a fuzzy
subset of X (attainability set) for any given x and t. So. fuzzy Liapunov exponent % is in
general a fuzzy number (because the Hausdorff distance between two fuzzy sets may not
be determined with crisp precision). In a multidimensional fuzzy svstem if the largest
Liapunov exponent tends to zero or a negative value (i.e.. membership value at 0 or at the
negative value is | and membership values are less than | outside a progressively smaller
compact intervals of R containing 0 or the negative value) the svstem is stable. Liapunov
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exponents are very crucial in analyzing local instability and predictability of a dvnamical
system.

G. Fuzzy Metric Entropy and Fuzzy Liapunoy Time

Definition 3.1.25: In a fuzzy dynamical system . evolving in (3. 6). the local metric
entropy (LME) [148] is defined at any point x to be the sum (in the sense of fuzzy
arithmetic) of all the fuzzy Liapunov exponents at x. where each fuzzy Liapunov
exponent is such a fuzzy number that. no crisp member of that fuzzy number is non-
positive or in other words this is a fuzzy number of the form pu whose support is [a. b] and
az0.

Definition 3.1.26: Sum of all the Liapunov exponents at x is the divergence of the phase
space at X.

The greater is the value of LME the more the system is chaotic and the less it is
predictable. From [148] we can conclude that, T, = 1 / & (in sense of fuzzy arithmetic).
where 2 is the average value (calculated according to the arithmetic of fuzzy numbers as
described in Section 2.2) of the maximum Liapunov exponent over the elapsed time.
Clearly & € R. We have seen in the last chapter that 1 / & is defined and is in W if and
only if the support of & does not contain 0.

Definition 3.1.27: T,. when defined. will be called fuzzy Liapunoy time. i.e., the system
is predictable up to a time T;.

Note that. the fuzzy Liapunov time determined according to the Definition 3.1.27 is a
fuzzy subset of T (an analytical treatment of T has been presented in Appendix A). The
time of Definition 3.1.27 may be called fuzzy time. In Appendix A we can see that the set
of time T = R. A particular instance of fuzzy time is a fuzzy subset of T. more precisely a
particular instance of fuzzy time is a fuzzy real number i.e.. a member of K.

3.2 Fuzzy Differentiable Dynamical Systems

In the previous section we extended some important dynamical system theoretic
notions to the FDSs. In the current section we shall be concentrating on the special case
when the underlying fuzzy attainability set mapping of an FDS is a solution to a set of
fuzzy differential equations (FDEs) or fuzzy differential inclusions (FDIs). i.e.. fuzzy
differentiable dynamical systems (FDDSs).

A. Fuzzy Differential Equations
Definition 3.2.1: When one or more of the FDEs are time dependent we call the system

nonautonomous FDDS. Time dependent expressions in a nonautonomous svstem are of
the form

N
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X)) = (N.0. X(0) T xo. (3.2.1)

where (3.2.1) is a fuzzy differential equation. x' is fuzzy derivative (explained below) of
the fuzzy valued function x with respect to t.

Definition 3.2.2: When none of the FDEs is time dependent we call the system
autonomous FDDS. A fuzzy differential equation of an autonomous system takes the
form

93]
1o
19
—

X'(D) = f(x). X(ty) = Xo. (

FDDS was first defined by De Glas [28]. But his definition of “fuzzy derivative of a
real valued function™ [28] is rather restrictive. Puri and Ralescu have presented two
definitions of derivative of a fuzzy valued function whose domain of definition is an open
subset of some normed (crisp) space [126]. One of them is H-derivative or Hukuhara
derivative and the other is a more generalized notion called canonical derivative. Since
the H-derivative had great influence on latter works we are presenting the definition
below.

Let U be an open subset of R. Let So(R") be the collection of fuzzy subsets (u: R" —
[0. 1]) of R" satisfving the following properties:

(i) u is upper semicontinuous:

(i) uis fuzzy convex. i.e.. u(2x; + (1 - A)x2) = min[u(x)). u(x»)] for x;. xo € R". % e
[0. 1]:

(iii) closure(fu]®) is compact for o € (0. 1].

Definition 3.2.3: A fuzzy function F: U — Sy(R"). which associates with each pointy €
U a fuzzy subset F(v) of R" with properties (i). (ii) and (iii) described above. is called H-
differentiable at v, € U if there exists DF(vy) € So(R") such that. the limits

F(yo +h)-Fyo) F(yo) - F(yo-h)
lim and lim (

h—0+ h—0+

(95
19
(OS]

both exist and are equal to DF(vy).

Kaleva was the first to define fuzzy differential equation (FDE) in terms of H-
derivative [67]. At the same time Seikkala also defined FDE in terms of a slightly
generalized form of H-derivative [136]. Their formulation of fuzzy initial value problem
(FIVP) is as follows.

X'(1) = f(t.x(1). x(a) = xq. (3.2.4)

where x(1) is a fuzzy valued function defined on T (whose range set is certain class of
fuzzy subsets of R"). x'(1) is the H-derivative (or some generalized form of H-derivative)

n
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of x(t). { is also a fuzzy valued function and x; is an inital value of (3.2.4). which is a
fuzzy point in the phase (solution) space. In their works and in almost all subsequent
works x(t) takes values only in the class of normal subsets of So(R"y denoted by E". This
E" is the phase (solution) space of the FDEs. We have already established in Section 2.4
about how a member of E" can be obtained from "

Recently Buckley and Feuring have generalized (3.2.4) in terms of various
definitions of derivatives of a fuzzy valued function [17].

dX
— = {(t. X, K). X(0) = C. (3.2.5)
dt

assuming that we have adopted some definition for the derivative of the unknown fuzzy
function X(t). In (3.2.5) all capital letters denote fuzzy quantity. X: T — S(R"), where
S(R" is the collection of fuzzy subsets of R". K = (Kj.......... K,) is an n dimensional
fuzzy number and C is a fuzzy number. X(0) is of course the initial value of X. (3.2.5) is
the Buckley-Feuring form or BF-form of FDEs. In their paper Buckley and Feuring have
taken Ki. i € {l........ n} and C as triangular fuzzy numbers [17]. but here for the sake of
generality we prefer to keep them as arbitrary fuzzy numbers. To obtain a solution for
(3.2.5) the entire range of crisp solution set of (3.2.5) is considered and then a-cuts over
various fuzzy quantities responsible for generating that solution set is taken. Then the
required solution set is constructed by using Zadeh's extension principle.

Solution of an FDE usually involves summation of two fuzzy numbers [67. 136]. But
if we add two fuzzy quantities generally the diameter of the resultant fuzzy quantity is
greater than any of the constituent fuzzy quantity. As a result diam(X(t)) = oc as t — oc.
where X(t) is the solution of an FDE. This render FDEs unsuitable for modelling. Also
due to the same reason the classical dynamical systems theoretic notions are not possible
to extend to the FDEs [32. 33].

B. Fuzzy Differential Inclusions with Solutions by an Evolutionary Algorithm

Since the solution or the phase space of (3.2.5) is supposed to represent the
behaviour of the system represented by (3.2.5). determining the degree of possibility of
the solution set is very crucial to determine the system behaviour. In this situation if we
only concentrate on determining the solution set of highest possibility. which obviously
represents the best system behaviour. we shall be able to reduce the computational
complexity to a great extent. Taking the solution space with highest degree of possibility
has been emphasized by Hullermeier {62] and Diamond [32] and their approach is termed
as fuzzy differential inclusion (FDI). which was originally proposed by Aubin [7] and
Hullermeier [62] and developed by Hullermeier [62. 63] and Diamond [32. 33]. Diamond
has extended the classical dvnamical svstems theoretic studies to the systems represented
by fuzzy differential inclusion (FDI) relations {32, 33].



FDI is a reformulation of (3.2.4) in a different form. where an equality (=) is replaced
by an inclusion (&) as formulated below:

2.6)

(V8]

X'(1) e {(t.x(1). x(a) € xp. (

Unlike in equation (3.2.4). in (3.2.6) x(1) is a crisp trajectory and f{(t. x(1)) is a fuzzy set
of crisp functions (actually in (3.2.6) x'(t) € {(t. x(t)) means x'(t) € | {(t. x(1))]"). The
derivative of x(t) is not the Hukuhara derivative but the classical derivative. Equation
(3.2.6) in more general form in terms of arbitrary a-cuts becomes

N'() e [t x(1)])” x(a) e [x0]“ (3.2.7)
where 0 < o < 1.

A classical FDE due to Kaleva [67] or Seikkala [136] proceeds from a fuzzification
of the differential operator and considers the entire fuzzy flow (by the fuzzy flow of
(3.2.4) we mean the FAM x(t) as a solution of (3.2.4)) which describes the system
behaviour. As opposed to this the FDI proceeds from a generalization of differential
inclusion relations and considers a fuzzy set of individual. crisp solutions. much the same
way De Glas thought of an FDS in [27]. As long as the crisp initial value problem

X'(1) = fo(t.x(0). x(a) = 1 € [x(.]“.

where f; is a crisp member of the fuzzy set of crisp functions f(t. x(t)) and % is a crisp
member of X;. has a unique solution. existence of a unique solution of (3.2.7) as a-cuts of
fuzzy set of crisp solutions is guaranteed. The a-cut of the fuzzy set of crisp solutions of
(3.2.7) is the fuzzy flow representing the system behaviour with possibility o or more.

Be it (3.2.4) or (3.2.7) the solution is more difficult compared to the classical crisp
differential equations. So the quest for a qualitative rather than a quantitative solution to
(3.2.4) or (3.2.7) is even more natural than the crisp case.

A numerical method for solving the FDIs like (3.2.7) has been developed by
Hullermeier [63], which is as follows. The admissible domain of t is y to 8. We partition
[v. 6] in n equal subintervals, where the ith subinterval is denoted by I..

To get a solution of (3.2.7) we shall have to determine the fuzzy reachable set x(t)
for any arbitrary value of t. Like equation (17) of [62] we can write

,\"wl - ,\‘|
€ (L. y). (3.2.8)
At

where { is a fuzzy valued function with values in E'. Note that a fuzzy set of crisp
functions. when considered as a single function. maps a crisp or fuzzy set onto a fuzzy set
and hence may be called a fuzzy valued function. E" is the collection of normal fuzzy sets
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of Se(R™). E™ is a metric space (E". D). where D is the Hausdorft' metric on E". Based on
(3.2.8) the following generalized difference equation scheme can be defined for fuzzy
valued function of a crisp variable

Y(ter) = Uly + AL (L Y1) Y(0) = X, (3.2.9)
ve Y(

tr)

Since the set Y(t,) may have very complicated structures. it is generally not possible to
represent them exactly [62]. So in addition to discretization of time discretization of a
class of subsets of R" also will have to be considered. Let 4 be a class of subsets of R
which can be represented by means of a certain data structure. Denote by A(Y) € A the
approximation of a set Y € R". The following approximation of (3.2.9) has been defined
in [62]:

Z(tisy) = A (uz + At A4 (f'(t,.Z))), Z(0) = A(X). (3.2.10)

The implementation of solution of (3.2.7) is based on iteration of (3.2.10). The class 4
used in (3.2.10) for approximating sets was implemented as different classes of
geometrical bodies. such as convex hulls or more general classes including nonconvex
sets. All this have been very elaborately described in [63]. where some examples have
also been presented with simulated results.

However the entire process of finding numerical solutions according to (3.2.9) is
very computational intensive. which may be a disadvantage for applying the FDIs for
modelling and simulation despite its immense potentiality. Here we have been able to
find out an easier method to solve one dimensional FDIs. But unfortunately it can not be
extended to solve the multidimensional cases.

In one dimensional formulation of an FDI in the form of (3.2.7) the graph of x(t) is a
(crisp) trajectory in R* and {(t. x(1)) is a fuzzy valued function (as a fuzzy set of crisp
functions) defined on R* with values in E-. x(a) € R is an initial (crisp) point (that is at t
= a). X¢ is a fuzzy point in R. x(a) can take any value from x. i.e.. x(a) varies over all
crisp members of the fuzzy point x. xu is known as the fuzzy initial point. t is always a
crisp quantity. Then f(t. x(1)) is fuzzy valued because x(t) can start (at t = a) from any
member of the fuzzy point x; and some fuzzy valued parameters may also be present in
f(t. x(t)). Since this algorithm chooses the fuzzy solution representing the best system
(represented by the FDIs) behaviour with the degree of possibility o or more, this is an
evolutionary algorithm [122].

Algorithm 3.2.1 [99. 102]:

START

Step 1: fix o € [0. 1}]:



Step 2: calculate [ {(t. x(1))]" by Zadeh’s extension principle [ 112} or otherwise as the
case may be (the a-level set [ f(t. x(1))]"” is an n-tuple of a-cuts of fuzzy
numbers for some n):

Step 3: solve (directly or numerically) the ordinary crisp DE X'(1) = f(t. x(1)). x(0) = xq
only for the boundary values of the a-level set of step 2:

Step 4: the region of R” enclosed by the graphs of the solutions obtained in step 3.
possibly along with the coordinate axes. is the a-level set of the solution of the
FDI (3.2.7) for the fixed a of step 1.

END

This is the most important algorithm of this thesis and we will use it time and again
for simulation. In step 2 standard numerical methods for solving ordinary crisp
differential equations may be employed when methods for direct solution are not
available. Of course in computer simulation all the methods used are numerical methods
only. In each implementation we shall present a more case specific version of the above
algorithm. where a single step of this original version may be divided into more steps for
the convenience of implementation.

Justification: Now. let us justify the Algorithm 3.2.1.

In step | we fix o. where 0 < o < 1. The more is the value of o the higher is the
possibility of the solution set of (3.2.7) to represent the actual system behaviour. Often
only the highest value of o is taken to represent the best system behaviour.

In step 2 we calculate the o-level fuzzy set on the right side of the expression X'(t) €
[f(t. x(t))]” in (3.2.7). This gives the set in which x'(t) can take its values.

In step 3 we choose only those values for x'(t) which fall on the boundary of the
fuzzy set [f(t. x(1))]* and solve x'(t) only for those values just like ordinary (crisp)
differential equations. If f(to. x(ty)) is a boundary point and we resort to numerical
methods. which is always the case for solving by computer. starting with i = 0 at the
boundary the following steps are obvious.

X(teg) = X+ AL (L. X(1)). x(a) = 7.
from which we get

N(t-1) = U I+ AUt X)) . X(@) = N (3.2.11
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X(t) is an approximation of the fuzzy attainability set obtained at time t by the fuzzy flow
of the solution of (3.2.7) starting at t = a. So by the way of equation (3.2.11) we can reach
at an approximation of the fuzzy attainability set given by equation (3.2.9).

In step 4 we demarcate the a-level subset within the fuzzy attainability set by
specifying the boundary of the a-level subset. In step 4 we achieve the same goal, which
is set to be realized in [62] by iteration of equation (3.2.10). Unfortunately this technique
of curving out the a-level subset out of the fuzzy attainability set will not be effective in
multidimensional case. This is precisely where the algorithm fails in multidimensional
casc.

So far the theory of fuzzy differential equations or fuzzy differential inclusions has
remained confined to treating first order and first degree equations or inclusions only.
Algorithm 3.2.1 is also designed to solve first order first degree FDIs like (3.2.7). But in
the following example we shall solve a simple sccond order fuzzy differential inclusion
with the help of this algorithm.

Example 3.2.1 [99, 102]: Find the solution representing the best possible behaviour of
the system (in the sense that the degree of possibility of the behaviour by the system is )
given by

x"(1) e [kx]", (3.2.12)
k e [K])’, (3.2.13)
x'(0) € [L]* for x(1) e [M]%, (3.2.14)
x(0) e [xo]". (3.2.15)
g i
/ i
/ \
/ %
[ z
0 04 06 | 1.2 )
Fig 3.2.1 Trapezoidal fuzzy number Fig 3.2.2 Triangular fuzzy number
K. Xo-
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where x"'(t) = dx'(t)/dt, x'(t) = dx(t)/dt, K is a trapezoidal fuzzy number given by Fig
3.2.1, L is a triangular fuzzy number given by Fig 3.2.2, M is a triangular fuzzy number
given by Fig 3.2.3 and X, is a triangular fuzzy number given by Fig 3.4. 0 < a < 1. Also
show the simulated state space of the system.

Solution: Notice that we are to determine the solution representing the best system
behaviour only. In that case = 1. So k € [K]" = 0.6, 1] (Fig 3.2.1). In search of a ‘seed’
solution we shall have to fix a representative crisp expression in the fuzzy expression
[kx]* or [kx(t)]" on the right of (3.2.12), surely k € [K]" x(t) is a crisp variable but x(0)
can take any crisp value from a fuzzy number. This contributes to the ‘fuzziness’ of x(1)
(there may as well be other factors to contribute in this direction), that is x(t) becomes a
crisp member of a fuzzy set of crisp functions. So in search of a seed solution it suffices
to take

oy o -2 Y
Fig 3.2.3 Triangular fuzzy number Fig 3.2.4 Triangular fuzzy number
L. M.
x"(t) = kx, (3.2.16)

where k € [0.6, 1] and x is an ordinary crisp variable. We shall proceed by solving
(3.2.16) just like an ordinary crisp differential equation. Multiplying both sides of
(3.2.16) by 2x'(t) and then integrating we get

(x)* = kx* + C, (3.2.17)
where C is an integration constant. From (3.2.14) we get that x'(0) € [L]* for x(1) €
[M]*, which means x'(0) e [L]' for x(t) € [M]". Since L, M are triangular fuzzy numbers
given by Fig 3.2.3 and Fig 3.2.4 respectively, we have x'(0) = 0 for x(t) = 1. Hence from
(3.2.17) we get C =-k. Or,

X't = Vkx*- D", (3.2.18)

59



3

x10'

Fig 3.2.5 Fuzzy state space of the system represented by (3.2.12). (3.2.13). (3.2.14) and
(3.2.15) is enclosed by curves " 1" (extreme left curve of the band) and 2" (extreme right
curve of the band). Only the region representing the best system behaviour has been
considered.

Solving (3.2.18) we get

2

sin”'x(t) = vkt + D. (3.2.19)
where D is an integration constant and we are considering the positive square root of k
only. From (3.2.15) we get x(0) € [x()]“. But we are interested only in x(0) € [x(;]' or x(0)
=0 (Fig 3.2.2). So

x(t) = sin(~kt), (3.2.20)

where k € [0.6, 1]. (3.2.20) the seed solution of (3.2.12). (3.2.13). (3.2.14) and (3.2.15)
for any k € [0.6, 1]. To determine the fuzzy flow corresponding to the best possible
behaviour of the system represented by (3.2.12). (3.2.13). (3.2.14) and (3.2.15) in the
phase space we shall have to determine the boundary of the fuzzy flow in R°. The
boundary is represented by the graphs of x(t) = sin(0.7746t) (curve *1° of Fig 3.2.5) and
X(t) = sin(t) (curve 2" of Fig 3.2.5).

3.3 Discussion

In this chapter we have concentrated on uncertainty management in time-evolution
laws. Where these uncertainties can not be modelled by probability. they are to be
modelled by fuzzy set theory based techniques. Our emphasis was on the latter. Zadeh
introduced the notion of fuzzy svstem more than thirty five vears ago. One of the earliest
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fuzzy systems to be implemented were the fuzzy controllers, first successfully
implemented by Pappis and Mamdani in 1977 [120]. Compared to this the theory of
fuzzy dynamical systems is a relatively new branch introduced in 1982 and 1983 by
Kloeden and De Glas respectively. In the first section of this chapter we have introduced
several notions into this theory to extend its scope and applicability, as for example,
fuzzy dissipative dynamical systems, chaotic fuzzy dynamical systems, periodicity,
robustness, predictability, local metric entropy, fuzzy Liapunov exponent and fuzzy
Liapunov time, etc. In the second section fuzzy differential equations and fuzzy
differential inclusions have been discussed. An alternative method of solution for one
dimensional FDIs has been proposed. With the help of this method solution of a second
order FDI has been obtained.
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Fig 3.2.6 A more generalized solution of (3.2.12), (3.2.13), (3.2.14), (3.2.15) representing
the system behaviour for 0 < a < 1, assuming that, 8 — 0 and A — 0. Here the red region
is giving the fuzzy flow representing the best possible system behaviour (a = 1) and the
blue region is giving the fuzzy flow representing the other possible system behaviour (o
< 1). The scaling of t-axis has been magnified by a factor of 10 compared to Fig 3.2.5.

In this chapter we have seen that, fuzzy differentiable dynamical systems use fuzzy
numbers to model uncertain quantities in a dynamical system. This shows how powerful
a tool the system of fuzzy real numbers is to represent uncertain and imprecise
information. In Chapter 2 and Chapter 3 we have theoretically dealt with the uncertain
dynamical systems, where the uncertainty is fuzzy in nature. In the next three chapters we
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shall remain preoccupied with the modelling and simulation of some of the very
interesting yet uncertain real life dynamical systems. where some of the theoretical tools
developed in these two chapters will become useful. We shall begin our study of
applications in the next chapter with a very important class of discrete fuzzy dynamical
systems.
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Chapter 4

Application of FDS in Fuzzy Fractal Based Image Generation and
Modelling of Turbulence

In the last two chapters we have discussed management of phase space uncertainty and
attainability set mapping uncertainty respectively of a dynamical system. In Section 2.5
we have discussed fuzzy pattern recognition. There we have shown that either fuzzy
pattern vectors are multidimensional fuzzy numbers or can be generated from them. In
the present chapter we shall discuss fuzzy fractals and fuzzy turbulence [97]. In Section
4.1 we shall be defining fuzzy fractals and describing their role in image generation. In
Section 4.2 we will propose a hypothetical fuzzy dynamical system modelling of a
turbulence as a chaotic occurrence of fuzzy vortices (that is. vortices modelled by FDIs)
in a (two dimensional) dynamic fluid. All the models will be implemented by simulation.
some of them with the help of the evolutionary Algorithm 3.2.1. formulated in the last
chapter. All the phase spaces are tacitly assumed to be fuzzy phase spaces. which we
have discussed in Chapter 2.

4.1 Fuzzy Fractals and Image Generation

Mandelbrot defined fractul as a special class of subsets of a complete metric space
for which the Hausdorff-Besicovitch (or just Hausdorff) dimension strictly exceeds the
topological dimension [105]. Detail explanation of this definition may be found in
Appendix B. Barnsley has shown that. fractal sets can be generated as attractors of a class
of randomized. contractive or hyperbolic. iterated function system (IFS) {9]. In other
words a given set of randomized. hyperbolic [FS is able to generate a particular image as
a fractal set. Such a system is a discrete dynamical system with a fractal attractor. The
initial mathematical background for this work was earlier prepared by Hutchinson [64].
Barnsley further extended this background by proposing and proving a number of
important mathematical results [9]. A fractal attractor is called a strange attractor. where
the underlying dvnamical system may or may not be chaotic [73]. Of course there is no
universal agreement yet over this point [109].

Definition 4.1.1: Let (X. d) be a complete metric space. {: X — X is a vperbolic iterat-

ed function system if there exist N contraction mappings {w,} 1. w,;: X — X fori e {1..
N

........ Ni.s.t. f(D)=uw(D) for D ¢ X. When each w, is an affine transformation then {
1

is called an Hutchinson operator.
Definition 4.1.2: Let (X. d) be a complete metric space. 12 X — X is a randomized

perbolic iterated function systen it { = (Wi, . WAL Dl e pn). Each w0 X
- X is a contraction mapping. Each p, is the probability of occurring w,. Thus



N N
Tp = 1. And forany D € X. (D) =w w,(D). { under iterations has been called chaos
1=

1=l

gume by Barnsley [9].

Barnsley has shown how a simple randomized. hyperbolic [FS. often consisting of
just three to four such simple contractive functions. can generate extremely complicated
arbitrary shaped images [9]. This method has been extended. with suitable modifications.
by Cabrelli et al. to :c erate. analyze and / or approximate images as the fractal attractors
of iterated fuzzy sets systems (IFZS) [21].

Images with grey or colour levels admit a natural representation in terms of fuzzy
sets. In this regard our method incorporates the technique of the discrete dynamical
system ofIFS. Let { be an IFS as defined in Definition 4.1.2. Since each w, is contractive
(e d(wi(x). wi(y)) < sd(x. v). s € (0. 1)) tisalso contractive or dissipative (take x. y €
X such that d(x.y) = Kk is the dlalmtu of the compact set X. then d(f(x). {(y)) <
which satisfies the criterion for dnwpatmness (3.1.4). described in the last clmptel) So t
must have an attractor A < X. i.e.. limy, {"(X) = A. where ("= { 0 ™' Under each
iteration of f. the degree of possibility (by degree of possibiliny we shall mean fuzzy
membership measure, for a detailed discussion on possibiliry refer to [156]) of occurrence
of w, is p. For a given set of possibilities {p,} there exists a unique invariant fuzzy
membership measure p with support A. The novelty of our approach may be summarized
in terms of the following two Key points:

(1) The entire setting is provided by a subclass (J. 8) of the class F(X) of fuzzy subsets
of X. where 3 is the collection of all the nonempty compact fuzzy subsets of a
compact metric space (X. d) and o is the metric defined on 3 (for the detail of (T, 9)
see Section 3.1). All images are considered as fuzzy sets. This leads to two possible
interpretations:

(a) in image representation the value of the fuzzy membership function at a point
(pixel) x € X. within the image will be interpreted as the normalized (values
Iving in [0. 1] only) grey level intensity associated with that point (pixel).

(b) in pattern recognition. the membership value of x when lies in [0. 1} indicates
the possibility that the point x is in the foreground of an image.

—_
T2
~—

Associated with each contraction map w. 1= 1. ....... N.isagrev level map ¢, : I —
I. where [ = [0. 1] is the grey level domain. The collection of maps {w, ¢,} is used to
define an operator T : U" — U" (U" is the collection of normal. uppersemicominuous
members of T). which is contractive with respect to the metric & on U™ This metric
is induced by the Hausdorff distance defined on the collection of the nonempty
compact subsets of N. Starting with an arbitrary initial fuzzy set up e U the
sequence u, € U produced by the iteration u,.; = T(u,) converge in the ¢ metric to
a unique invariant fuzzy set v e U™ where T(v)=v.
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Definition 4.1.3: {: T — 3 will be called iterated fuzzy sets systems (IFZS) if { = (wy.
cerenreeees WNy (WD), oo, (W), Each wy @ 3 — 3 is a contraction mapping. Each
u(w;) is the possibility or fuzzy membership value [156] associated with w;. For any u e
U,

N

f(u]*) = o wi[u]®), (4.1.1)
where [u]® is the a-level set of u for0 < a < 1.
Definition 4.1.4: The compact set X will be called the base space of the IFZS.

If there exists a fuzzy set v e U" such that, {"([v]*) < [v]® for 0 < a < | and for all
positive integral n, then v is clearly the fuzzy nonwandering set (Definition 3.1.10) of the
discrete fuzzy dynamical system (3, f) or just {. When {"([v]®) =[v]” holds for 0 < a < |
and for all positive integral n, v will be the unique invariant (fuzzy) set of f under
iterations [64]. Then clearly v is an (fuzzy) attractor of the IFZS f. In the last chapter we
have defined fuzzy chaotic dynamical systems, where we had to mention about fuzzy
fractal sets (Definition 3.1.23). Here we are presenting the definition of fuzzy fractals in a
formal way as

Definition 4.1.5: A fuzzy subset A of a complete metric space (X, d) is called a fuzzy
fractal if A is also a fractal subset of X according to Mandelbrot’s definition.

Clearly v is the fuzzy attractor of the image generating operator T in (2) above. In
addition if v is a fractal subset of X (which is more often than not the case) v is a grey
level fuzzy fractal image generated by T just like Barnsley’s chaos games generating
crisp fractal images.

In case of image generation p(w,) will depend on a normalized grey level pixel
intensity value. We could also take p(w;) = p;. where p, is a probability measure. That is, 0
<pi<1land X pi= 1. When p, is a probability measure instead of a possibility measure
the underlying IFZS reduces to Barnsley’s chaos game and the resulting fractal set
generated is a crisp fractal. So crisp fractal is only a special case of fuzzy fractal.

A. Images as Fuzzy Sets
A black and white digitized image is a pixel matrix {p;;}, where p; is the (i, j) (both
are nonnegative integers) coordinate point (pixel) in R®. Associated with each pixel pj; is

a nonnegative grey level or brightness value t;. We assume a normalized measure for
grey levels, i.e., 0 < t;; < 1 (0 = black: the background. 1 = white: the foreground) [21].

Definition 4.1.6: The function h : {p;} — [0. 1] defined by the grey level distribution of
the image is called the image function.

The digitized image is fully described by its image function h. This is also the
situation in the more theoretical case where grey level are distributed continuously on the
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base space X. At this point one can see that, an image as described by an image function
is nothing but a fuzzy setu : X — [0, 1].

It is usual to classify the pixels according to their grey levels in the following way.
For each o € (0, 1]. we consider the set {x € X | u(x) > o} = [u]’. i.e., the set of all
pixels whose grey levels exceed the threshold value a is the a-level set (a-cut) of u. For
a € (0, 1], [u]® represents a thresholding of the grey level distribution at o. Clearly there
is a one to one correspondence between the image function h as a fuzzy set and the a-

cuts of u.

Since X is a compact metric space (J, d) is also a compact metric space [46]. In
particular it contains all the a-level sets [u]®, 0 < o < 1. of all u € U". & is the Hausdorff
metric (Definition 2.1.1). The metric space (U". 8) is complete [46]. { is the IFZS of
Definition 4.1.3, which being a contraction map (time-evolution law of a dissipative
dynamical system) must have an attractor [v]' = A < X, where v € U". In all practical
situations X is a compact subset of R* and A is a fractal subset of X, which is also a fuzzy
subset of X.

Definition 4.1.7: A as described above is called a fuzzy fractal image generated by the
IFZS f{.

One very important thing to notice in this subsection is a novel interpretation of
fuzzy membership value. Traditionally fuzzy membership values signify the degree of
vagueness or nonspecificity [43]. But in this subsection fuzzy membership value can not
be interpreted that way. Here fuzzy membership value means ‘lack of uniformity’ (in the
normalized grey level pixel intensity values). So far we have not gone into the detail of
the grey level intensity distribution of the pixels p, of the fuzzy fractal image A. In the
next subsection we are going to take up this issue.

B. Determination of the Grey Level Pixel Intensity

In Barnsley’s randomized IFS each component w; of the hyperbolic map f has a
probability of occurrence p; under each iteration of { (Definition 4.1.2). In the definition
of IFZS (Definition 4.1.3) p; of hyperbolic randomized IFS is to be replaced by p(w),
where p(w;) is the possibility (in sense of Zadeh [156]) of occurrence of w, under each
iteration of f. Since value of possibility is equal to fuzzy membership value, p(w) is the
fuzzy membership value associated with w;. From image generation and processing point
of view we are going to give here an interpretation of u(w;) in terms of the grey level
map ¢;: I — I, where I = [0, 1] is the grey level domain.

Definition 4.1.8: A function ¢ : [0, I] — [0. 1] is said to be nondecreasing right
continuous (n.d.r.c) if and only if (i) ¢ is nondecreasing and (ii) ¢ is right continuous.

The following lemma justifies this definition.
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Lemma 4.1.1: Let ¢ : [0. 1] — |0, 1] and X be an infinite compact metric space. then a
necessary and sufficient condition for ¢ o u to be uppersemicontinuous for all u € U" is
that ¢ is n.d.r.c.

Proof: [21].

We are now in a position to summarize properties. which should be satisfied by a set
of grey level maps {¢,}. i= 1. ....... N, so that they can be associated with p(w;) of an
IFZS f.

(1) @i : [0, 1] — [0. 1] is nondecreasing.

(2) i is right continuous in [0, 1).

(3) ©i(0)=0.

(4) Foratleastonej e {I......... Ni.oi(1)=L

Properties (1). (2) and (4) above and Lemma 4.1.1 together will guarantee that the
associated IFZS maps U" into itself. Property 3 is a natural assumption in the

consideration of the grey level functions, which says that, if the grey level of a point
(pixel) x € X is zero, then it should remain zero after being acted upon by the maps .

C. The image generating fuzzy contraction map
Let us define a contraction map T, : U" — U" such that. 3(Ty(u). Ty(v)) < s8(u, v) for
allu. v e U'and 0 < s < 1. Since T is a fuzzy valued contraction map defined over a
collection of fuzzy sets, the system of iterated Ty is a discrete dissipative fuzzy dynamical
system and hence must have an attractor. This is an IFZS. where T, consists of N
contraction mappings {w.}.:1N.
Ts(u(x)) = sup{cpl(u’(wf'(x))), ........... \ q)N(u'(wN"'(x)))}. (4.1.2)

where

u'(B) =sup{u(y)|y e B X}.if Bz
(4.1.3)
=0 if B={.
Obviously, u’'({x}) = u(x) for any x € X. Since IFZS of iterated T, must have an attractor

limyL. Ts'(u) = v. (4.1.4)

v is the fuzzy attractor of the IFZS. which is the generated fuzzy (fractal) image. In the
next subsection we shall be generating two such fuzzy fractal images.

Equivalently. we can take {: 3 — 3 of Definition 4.1.3 as the image generating
IFZS. where
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rW(x)) = @iu(w, ' (x))) (4.1.5)

forall x € X and u € 3. When p(w(x)) € [0, 1] is a constant function fori e {1..........
N}. such that, P u(w;) = 1, that is, p(w;) is a random (probability) measure then the
[FZS is simply crisp random hyperbolic IFS as described in [9] (Definition 4.1.2) and the
fuzzy fractal attractor reduces to crisp fractal attractor. That is the crisp fractals are only
special cases of fuzzy fractals.

D. Examples

In the two examples considered in this subsection the base space is X = [0, 1] x [0.
1]. Computer approximation of the attractors of the IFZS has been shown as normalized
grey level distribution. The brightness value t, of a pixel p; representing a point x € X
obeys 0 < t; < 1, with tj; = v(x), where v is as defined by the equation (4.1.4). t; = 0 if x is
in the background.

Example 4.1.1 [21]: N =4,

) 0.8 0 0.1
wi((x1, x2)") = +
0 0.8 0.04
- BS 0| x 0.25
wa((x1, x2)') = +
_ JL L
— - - — .
5.355 -0.355] | x; 0.266
wi((x1, x2)") = +
0.355 0.355| | %2 0.078
‘ 0.355 0.355] | x; 0.378
wa((x), x2)) = +
-0.3550.355] | x» 0.434
To define a base space IFZS { = (Wi. .o WNe (W)L n(wn)). whose
attractor A < X is shown in Fig 4.1.1. we consider the identity grey level intensity maps
given by gi(t) =t forie (1. ... 4}, Since gi(1)y=1fori e {I...... 431.v =ya. that is.

v(x)=1ifx € Aand v(x) =0if x ¢ A. The attractor v has been shown in Fig 4.1.1.
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Fig 4.1.1 The attrctor of the IFZS { = (W, cvvevrvroes Wi, (W), e u(wn)). Each w;
: 3 — T is a contraction mapping. p(wi(x)) = @;(u(w;'(x))) for all x € X. Note that x € 3
also. (Adopted from [21].)

Example 4.1.2: N = 3,

0.5 0 | x, 0.005
wi((x1, x2)") = +
0 0.5 | x» 0.005
BS 0 x, 0.005
wa((x1. x2)") = +
S x 25
0 0] 025
wi((x1. x2)") = +
0 O.ﬂ Xo 0.255
L. L L -
To define a base space IFZS = (w,. o........... WNe (W )e o, Hiwn)). whose

attractor A < X is shown in Fig 4.1.2. we consider the constant grey level intensity maps
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given by @i(t) = 1/3 fori € {1.2,3}. Since @i(1)=1fori e [l......4}.v=1ya. thatis,
v(x) = 1ifx € Aand v(x) = 0if x ¢ A. The attractor v has been shown in Fig 4.1.2. Note
that here @i(t) is a probability distribution function and the generated attractor is the
Sierpinski’s gasket, which is a crisp fractal. Definition 4.1.3 and Definition 4.1.5 have
been formulated in such a manner that the crisp fractal of Fig 4.1.2 becomes only a
special case of fuzzy fractal. This is true in general.

Fig 4.1.2  Sierpinski’s gasket generated as the fractal attractor of the IFZS described
above. The starting point is on the gasket.

4.2 FDS Modelling of a Turbulence

In this section we will be concerned about another novel application of fuzzy set
theory based techniques in general and FDS in particular. Here we have proposed a
hypothetical model of a two dimensional turbulence. Turbulence is considered as one of
the most complex natural phenomena, which has defied persistent efforts to reveal its
mysteries by some of the most brilliant fluid dynamicists. Here we have made only an
humble attempt to model an ideal turbulence (according to some definition) in terms of
an FDS. Our purpose in this section is not to delve deep into the mystery of turbulence
but only to indicate the potentiality for application of fuzzy dynamical systems. This
idealistic model at least serves this purpose.

A. Preliminary Discussion
Turbulence occurs in a moving fluid in the form of a spontaneous yet completely

irregular appearance and disappearance of vortices. Despite reientless efforts of last more
than hundred years, particularly by the fluid dvnamicists. turbulence has not vet been
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completely understood. Naturally there is no mathematical model yet which can
completely describe a turbulence. “Historically. many models have been proposed and
many are currently in use. It is important to appreciate that there is a broad range of
turbulent flows and also a broad range of questions to be addressed. Consequently it is
useful and appropriate to have a broad range of models, that vary in complexity, accuracy
and other attributes.” [125]. An usual description of turbulence starts with the Navier-
Stokes equation describing the motion of the underlying body of the fluid [125]. Here we
have not considered Navier-Stokes equation. In this section starting from a simple
definition of turbulence we shall try to present a mathematical model of an ideal
turbulence in terms of an FDS. This may serve as yet another example to emphasize the
potentiality of FDS to model various complex real life phenomena. To start with a
definition of turbulence let us state,

Definition 4.2.1 (Brown [16]): Turbulence is chaotic occurrence of vortices in a dynamic
fluid.

Devaney’s definition of chaos has already been stated in Definition 1.4.4. For the
sake of simplicity we shall keep our model only two dimensional. It is a common practice
to use a discrete distribution of point vortices in the analysis of two and three
dimensional flows of fluid [144]. In [144] an elliptic function (doubly periodic function
in the complex plane) has been used to describe the distribution of vortices in a two
dimensional channel flow. It is also a very common practice to describe the distribution
of such vortices by probability distribution functions [125]. Here we have described the
distribution of vortices by a two dimensional chaotic function. We have outlined an
extension of this method to three dimensional case in Section 7.2.

We locate a two dimensional vortex by the centre of its core. In a two dimensional
cross-section of a turbulent fluid to model the chaotic distribution of vortices we need
some chaotic function. Let the two dimensional cross-section be the xy-plane. According
to our idealized model if in the xy-plane the coordinate of the centre of a vortex is given
by (x(s),y(s)) for some s then x(s) and y(s) are given by equation (4.2.1) below.

x(s) = alim {"(s) and y(s) = b.lim {"(s). 4.2.1)

—x n-»or

where {(s) = 4s(1 - s), s € [0, 1] and coordinates of the vertices of the rectangle enclosing
the cross-sectional area is given by (0,0), (a.0). (a,b) and (0.b). For practical comput-
ational purpose n can never be infinite. Only a sufficiently large value of n can be taken.
Here it is important to remember that for every value of s there may not be a vortex with
centre of the core (or just centre for short) at (x(s).v(s)) but every centre of the core of a
vortex will be given by (x(s).y(s)) for some s. In Appendix C we have mathematically
proved that x(s) and y(s) as given by equation (4.2.1) are chaotic. Here we are only
invoking these results for our modelling purpose. In actual computer simulation the value
of n is finite but large. say n > 20.000. Then we get the famous Feigenbaum diagram (Fig
4.2.1).
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Fig 4.2.1 Feigenbaum diagram of x(s) for very large n and a = 1, irrespective of s,
provided s € [0, 1]. {(s) = ps(l —3), 3 < p < 4. x(s) is plotted along the ordinate and p
along the abscissa. For p = 4 x(s) can converge on any pixel along the ordinate. Exactly
the same diagram will also hold for y(s). (Reproduced from [124].)

We assume that the vortex centering (x',y") (we shall write (x',y") in place of
(x'(s),y’(s)) whenever there is no risk of confusion) is generated by two local tiny fluid
jets coming from different directions and colliding. We are not bothered about the origin
of the wind jets here. Number of such collisions will be more at higher Reynold’s
number. After collision the resultant wind jet will create a spiral like vortex under certain
conditions. To understand these conditions let us concentrate into the Fig 4.2.2 below. In
Fig 4.2.2 for convenience the coordinate system is polar (r,0), where r = ((x - x) + (y -
y')z)”2 and 0 = tan”' ((y - y')/(x - X")). On the other hand x =x' + r.cos @ and y =y’ +r.sin
0.

The Fig 4.2.2 below is self-explanatory. For detail explanation of radial and cross-
radial component of velocity any text on particle dynamics, e.g., Loney [92] may be
consulted. From elementary particle dynamics we know that the expression for radial
component of velocity at a point (r,0) is dr/dt and that of the cross-radial component is
r(d/dt) [92] with respect to some polar coordinate system. If

Resultant radial component of velocity dr/dt
= — = 1m, (4.2.2)
Resultant cross-radial component of velocity r(d6/dt)
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where m is a constant holds then

12
(09

dr/d® = mr. (4.2.

Resultant Cross-radial component of velocity
Fluid et 1

(r.0}

Resultant radial component of velocity

T Flud jet 2

Imual line

Fig 4.2.2 Fluid jet 1 and fluid jet 2 are colliding at (r.0). Their resultant radial component
of velocity and resultant cross-radial component of velocity after collision have been
shown. If the ratio of these two components is constant a spiral shaped vortex is
generated.

B. Dealing Nonlinearity with Fuzzy Quantities

In equation (4.2.3) if m is a constant then the solution of (4.2.3) will produce a log-
spiral. which describes the shape of a vortex. But in reality m can not be constant. Instead
the values of m are liable to fluctuate within some range. Note that (4.2.3) is a simple
linear equation modelling the generation of a vortex in a dynamic fluid. But the
generation of a vortex is supposed to be a nonlinear phenomenon. Then the immediate
question is how is it possible to model a nonlinear phenomenon by a simple linear
equation? We assume that the nonlinearity is responsible for giving rise to uncertainty in
the model. Had there been no uncertainty involved in the model it would have been
perfectly deterministic. In that case we could have described it with a set of linear
equations. Here we take the opposite approach. We assume that the model is
deterministic in the first place. So we describe it with a set of linear equations. Next. to
bring it closer to the reality we try to accommodate the elements of inherent uncertainty
within it. In this spirit the generation of vortex in a dynamic fluid has been described by
(4.2.3). Our next task is to accommodate the uncertainty. inherent in the underlying
nonlinearity of the system. within (4.2.3) (thereby brining it closer to the real life
nonlinear model). To accomplish this. we should notice that m being the ratio of two
wind speeds, can not be a fixed value even for a short time. m will fluctuate within some
closed bounded interval of R. In the most general case this interval is a fuzzy subset of
R. the membership distribution function, whose support is the interval. Without much
loss of generality we may assume that this membership distribution function satisfies all
the three properties of Definition 2.2.1. So this fuzzy subset of R is actually a fuzzy

number. say A € R. Similarly. the measurement of r(0). the initial value of r. is also



subject to uncertainty due to measurement error (uncertainties involved in m and r(0) are
different. in m it is due to smoothing out the nonlinearity and in r(0) it is due to
measurement error). Classically. the probability distribution of the error in measuring r(0)
will follow the normal distribution law. So when we are going to model this uncertainty
with a fuzzy quantity we should opt for a triangular fuzzy number. say B. to describe r(0).
such that. r(0) € B € 'R.

A being a fuzzy number must be increasing and continuous from right in [a. ¢).
decreasing and continuous from left in (d, b], where [a. b] is the support of A anda <c¢ <
d < b. Also A([c. d]) = {1}. which means that the values of highest possibility within the
universe of discourse of A lies in [c. d]. So a trapezoidal fuzzy number <a. c. d. b> (Fig
2.2.1) may be an approximation of A.

r(0)-0 r(0) r(0)+d

Fig 4.2.3 The triangular fuzzy number <r(0)-3. r(0). r(0)*+5>. The value r(0) will vary
from vortex to vortex.

For the purpose of modelling. next we shall have to make some reasonable estimate
for the values of a, c. d and b. which we have given in Table 4.2.1. One very important
thing to note that if m € [A]" then also m € [-A]". Som € [A]' U [-A]". We shall take the
triangular fuzzy number B as <r(0)-8. r(0). r(0)+6> (Fig 4.2.3). where & > 0 is a crisp real
number, whose value depends upon the emploved measurement techniques. The more
accurate the technique is the smaller is the value of 8.

a c d o)
0.001 0.03 Q0.1 0.2

Table 4.2.1. Numerical estimation of the constant fuzzy number A for a zero viscosity
fluid in a model with moderate shear.
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Fig 4.2.4 The simulated diagram of a fuzzy vortex centering at (0.5.0.5). where r; (in
cm) belongs to a fuzzy number. with the best possible value < 0.1. This diagram is the
phase (solution) space of (4.2.4) for o = 1. where x = r(0)cosBexp(m®8) is taken along x-
axis and y = r(0)sinBexp(m®0) is taken along v-axis. The range of 6 is a random number <
16m. The enclosed region indicated by the spirals is the fuzzy flow representing the most
possible (grade of membership 1) behaviour of the system represented by (4.2.4). We get
the spirals by putting m € [0.05. 0.1] in (4.2.4). If we replace A by —A in (4.2.4) the
orientation of the vortex will be reversed.

Here we are not too bothered about the actual numerical specifications. These may
be determined more accurately through appropriate experiments.

So by now (4.2.3) is no longer an ordinary differential equation (ODE). Instead we
shall have to reformulate it as a fuzzy differential inclusion (FDI) relation to make the
modelling more realistic. The FDI formulation of (4.2.3) is described below.

r'(0) e [mr(0)]”. m e [A]". r(0) e [B]" (4.2.4)
where as usual 0 < o < 1. Similar formulation also holds for —A. The solution of (4.2.4)
by Algorithm 3.2.1 described in Section 3.2 yields the following phase space or solution
space diagram (Fig 4.2.4). which resembles a generated vortex in a dynamic fluid. For

convenience we describe step by step the solution of (4.2.4) below.

C. Simulation



1) fix o € [0, 1];

(2) calculate the a-level set on the right hand side of r'(6) € [mr(0)]* by Zadeh’s
extension principle [112], which is a 2-tuple of a-cuts of fuzzy numbers;

(3) solve (directly or numerically) the ordinary crisp DEs for r'(0) taking only the
boundary values of the a-level set;

(4) complete the (crisp) trajectories on R? obtained as the graphs of the solutions
derived in step 3, the space enclosed by these graphs on R? is the a-level set of
the solution of the FDI (4.2.4) for the given a.

1.2 T T 1 T T T

06}

04}

0.2}

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

Fig 4.2.5 Simulation of a two dimensional fuzzy turbulence in a two dimensional
dynamic fluid. Red and blue vortices have different orientation.

Fuzzy vortex is modelled by (4.2.4) and its chaotic occurrence within a finite
rectangular cross-section of area ab is given by (4.2.1). To fill up the enclosed region
some other non-boundary solutions have also been included. The simulation diagram is
presented in Fig 4.2.5, where a = b = 1 and n = 20,000. r(0) and range of 6 varies from
vortex to vortex. From equation (4.2.1) and Fig 4.2.1 it appears that (x(s),y(s)) can be any
pixel in [0, 1] x [0, 1]. So this model can account for all possible occurrence of vortices
in [0, 1] x [0, 1]. In this sense it is the most general representation of fuzzy turbulence.
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Definition 4.2.2: Since we get a simulated vortex in a dynamic fluid by solving the FDI
(4.2.4), we call the vortex a fuzzy vortex. Chaotic occurrence of such fuzzy vortices in a
dynamic fluid will be called fuzzy turbulence.

The following MATLAB program will generate more two dimensional fuzzy turb-
ulence, with the command gen(argument1, argument2), where the ‘argument|’ and
‘argument2’ are positive integers denoting the maximum number of vortices desired and
the density of the texture of the FAM respectively. A large value for argument2 (> 10)
will slow down the simulation process without any significant enhancement in quality. It
will also display the actual number of vortices generated, the number of red or anti-
clockwise vortices and the number of blue or clockwise vortices. The program should be
stored in a machine, loaded with MATLAB, as an M-file named gen.m in the directory
MATLAB\BIN. This program generates turbulence in an uncontrolled manner. The
probability of two turbulence gencrated with the same set of arguments being identical is
very low, which is an essential feature of real turbulence.

funiction y = gen(max, flow)

num = 1 + floor(max * rand(l)):

countl = 0;
count2 =

|
o

if max < O
disp('Error, the number of vortices can not be negative.');
end

if flow < 1
disp('Error, the FAM can not have less than 1 trajectories.');
end

for 3 = 1 : num
aj rand(1);
b3 rand(1l);

I

= rand(1l);

rand (1) ;

rand(1l);

0.05 + 0.1*floor (2*rand(l) - 1);
0:.001l:a.*b*16*pi;

I It

Q00w
It

Generation of fusnoy vort

Voo e Chicarioei
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for 1 =1 : floor(flow)

if d >= 0
xi = 0.02*c.*cos(t).*exp((d + 0.005%1)*t);
yi = 0.02*c.*sin(t). *exp ((d + 0.005*1i)*t);
plot(aj + xi, bj + vyi, 'r');
hold on;
countl = countl + 1;

end

if d <=0

X1 = 0.2*c.*cos(t).*exp((d - 0.005*1i)*t);
yi = 0.2*c.*sin(t).*exp((d - 0.005%i)*t);
plot(aj + xi, bj + vyi, 'b');
count2 = count2 + 1;
hold on;

end

end

end
hold off;

if max >= 0
if flow >= 1
disp('The actual number of vortices generated is')
disp(floor (num))
disp ('The number of red or anti-clockwise vortices is')
disp(countl / floor(flow))
disp('The number of blue or clockwise vortices is')
disp(count2 / floor(flow))
end
end

The above program generates a two dimensional turbulence only as a “Chaotic
occurrence of fuzzy vortices.” Here we have not taken carc of the detail of the fluid and
its motion in generating the turbulence. In this section our aim is only limited to
indicating how FDS can be used to model a turbulence. A vast scope of improvement in
this simulation is remaining open. For example the program can be so written to take
arguments like ‘viscosity’ and ‘Reynold’s number,” which represents the fluid and its
flow to a good extent.
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4.3 Discussion

In this chapter we have presented iterated fuzzy sets systems (IFZS). which are
discrete fuzzy dynamical systems. We have also discussed about the practical
significance of the concept of FDI in modelling of complex real life systems. We have
shown that fuzzy fractals are generated as attractors of IFZSs. We have defined fuzzy
fractal sets. It has been shown that the crisp fractals are only special cases of fuzzy
fractals. We have described an arbitrary image as a fuzzy subset of R*. Then we have
described fuzzy fractal image generation by IFZS. Finally we have presented two
examples of fuzzy fractal images generated by IFZS.

Next. a turbulence is defined as a chaotic occurrence of vortices in a dynamic fluid.
We have considered a finite rectangular cross-section of a dynamic fluid. where vortices
are occurring according to some two dimensional chaotic distribution. The vortex is
modelled by an FDI. In the next chapter we shall present FDI modelling of an initial
disturbing vortex in atmosphere. which under favourable conditions may become an
intense storm. In Chapter 6 we shall find more applications of FDls.
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Chapter 5

Modelling and Simulation of Cyclogenesis by FDI

In the last chapter we have modelled a turbulence as a chaotic occurrence of vortices in a
dynamic fluid. In the present one we intend to model the occurrence of a strong vortex in
the dynamic atmosphere of the earth [99, 100]. Under favourable climatic and geograp-
hical conditions such a vortex can become an intense storm. Here we are particularly
interested about the starting stage of a cyclone over the tropical seas.

In many atmospheric systems modelling uncertainty management plays a very
significant role. Yet the fuzzy set theory based techniques have so far found little or no
application in this field. Here we intend to describe a model of a climatic disturbance in
terms of FDIs. Under favourable conditions this disturbance may mature into a severe
cvclonic storm (known as Hurricane in U.S.A).

5.1 Modelling of a Climatic Disturbance

Tropical cyclones rank with earthquakes as the most destructive natural disasters.
and their origins in the normally serene tropics have been shrouded in mystery.
Forecasters have long been aware of the existence of the several empirical conditions that
are necessary but not sufficient for the formation of cyclones. The first of these requires
the sea temperature to be at least 26"C through a depth of at least 60m. A second
requirement is the absence of significant vector changes of the mean wind with height
through the troposphere (a layer in which temperature is strongly controlled by moist
convection and which in the tropics extends upward to about 15 km. containing 80 to
85% of the mass of the atmosphere) [48]. There are other empirical conditions as well.
but even when they are satisfied storm formation usually does not take place. In fact
necessary climatic and geographical conditions for the formation of the tropical storms
prevail over large areas of the earth during storm seasons. vet actual appearance of a
storm 1is a relatively rare phenomenon. According to statistics, only about 80 tropical
storms with maximum sustained wind speed 40-50 knots/hour (I knot = 1.94 km) are
observed per year over the entire globe. Of these between one-half and two-third attain
hurricane strength [104]. This indicates that there must be a rare coincidence of
circumstances before development of a storm. The formation always occurs in
connection with some kind of pre-existing disturbance associated with deep cloud laver.
All of these disturbances do not intensify into tropical storm. Only a small percentage of
these systems start intensifying. Numerous studies have been made to clarify the process
of their formation. but no general mechanism has yet been accepted [104]. In this chapter
our research will centre around this point. ‘

In one such study described in [48] the evolution with time of maximum surface
wind speed in two of the experiments is shown in Fig 5.1.1. The first experiment starts
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with a maximum wind of 43.2 km/h. After about three days. the vortex rapidly intensifies
to a nearly steady state amplitude of about 162 km/h. The second experiment is identical

Maximum wind speed (m/sec)

o] i i L
0 50 100 150
Time (hr)

Fig 5.1.1 Graphs showing the evolution with time of the maximum surface wind speed
produced by the numerical model of Rotunno and Emanuel. The upper curve starts with a
12 m/s (43.2 km/h) amplitude vortex. while the maximum velocity in an experiment that
starts with a 2 m/s (7.2 km/h) amplitude vortex. but is otherwise identical. is shown by
the lower curve. The failure of the weak vortex to amplify demonstrates that cyclones in
this model can not arise out of weak disturbances: rather a vortex of sufficient amplitude
must be provided by independent means. (Reproduced from [48].)

to the first, except that it was started with a maximum wind of only 7.2 km/h. The model
storm in this case did not amplify even after 150 hours had elapsed. Apparently. the
model needs a sufficient “kick™ (disturbance) to get a cyclone started [48].

The need for a strong starting disturbance is consistent with the observation that real
cyclones never start spontaneously. Rather. some pre-existing disturbance of independent
origin seems to be necessary [48]. Our proposed model of this disturbance is as follows.

To build the model of “a vortex initiated by a sudden disturbance™. we take our clues
from two dimensional satellite images of cyclonic vortices. Though these features are of
a matured cyclone, we accept them as clues towards the development of such shapes. It is
natural to assume that the initial disturbing vortex is of log-spiral shaped strong wind
vortex that is yet to draw large clouds from the surrounding areas to be prominent enough
to be photographed from a satellite. We have taken the following features of such images
to infer the initial stage.
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e The clouds from the surrounding areas of the eye are curving inwards to the eye in
log-spiral shape (as in Fig 5.1.2). It is already recognized that the curved cloud bands
surrounding the eve of a disturbance indeed take log-spiral shape [15. 45].

e Here clouds are taking shape along the drag of the wind converging to the eye. So the
wind tending to converge to the eye is supposed to traverse a log-spiral path in the
vicinity of the eye.

Fig 5.1.2 INSAT-1B cloud picture of the vortex of a severe cyclonic storm on the Bay of
Bengal taken on 7th May. 1990 at 0600 UTC. The dark spot at the centre of the vortex
(the central cloudless region) is known as the eve of the cyclone. (Reproduced from
Mausam, vol - 41, no. 3, 1990).

In the study of atmospheric phenomena, it is often useful to consider a mathematical
model which includes only those processes that are fundamentally important. In such
models of cyclones the storm is often treated as a stable cylindrical vortex. where several
thermodynamic and fluid dynamic equations are governing the surface fluxes of latent
heat. angular momentum etc. To get a model cyclone started. a weak vortex, had to be
superimposed on the basic state (of the model) of formation of the storm [48]. The
disturbance is considered to be limited within certain layer of the atmosphere. We
additionally assume that the wind drag towards the centre of the vortex will be along log-
spiral paths similar to that around the eye of a cyclone (Fig 5.1.2). Resolving the velocity
of the disturbance or the “kick™ (which is nothing but wind jet(s) or wave(s) in reality)
along the components of the cylindrical coordinates (r. 6. z) we get,

dr/dt = radial component:
r(d0/dt) = cross-radial component:

dz/dt = vertical component.

To get log-spiral shape of the vortex. as seen from the top of the cylinder. i.e.. along Z-
axis downwards (negative z-direction). the following equation must be satisfied.
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(dr/dt)/(r(d6/dt)) = m

or. r'(dr/d8) = m. (5.1.1)
where m is a constant, because the solution to (5.1.1) is

r = A exp(m0). (5.1.2)

where A is integration constant to be determined by the initial condition. (5.1.2) is the
polar equation of a log-spiral. Note that in Chapter 4 as well as in the present chapter m
denotes the ratio between radial and cross-radial components of velocity. Also r denotes
the radius vector in both the last and the present chapter.

In reality. the starting disturbance is often provided by large-scale waves that arise
from instabilities of the east-to-west flow over sub-Saharan Africa in summer. Most such
easterly waves run their course. often as far westwards as Florida. without developing
into tropical storms. Only occasionally does a wave develop into a cyclone. Other
starting disturbances arise from waves on cold fronts that sometimes manage to penetrate
into the tropics, and form thunderstorm complexes that occasionally drift out over the
ocean from middle-latitude continents [48]. In view of these facts we may assume that
the disturbances propagate parallel to the ground. That is,

dz/dt = 0. (5.1.3)

It is important to note that the equations (5.1.1) and (5.1.3) give a simple dynamical
model of only a disturbance leading to the development of a tropical cyclone. (5.1.1) and
(5.1.3) are valid only for a very short time at the very beginning of the genesis of a storm.
Once the storm is formed the model of the storm may be represented by a set of suitable
equations like the ones in [29, 47. 113].

The basic problem with equation (5.1.1) is that it can appropriately model only when
(r. 0) denotes the precise location of a point. But (5.1.1) is intended to model a vortex
created by a certain wind jet, where (r, 0) denotes the position of an average point on the
tip of the wind jet creating the vortex (exactly how the jet creates the vortex will be
discussed more elaborately later). In reality location of such an average point can not be
determined with great precision. A substantial uncertainty will always remain involved
which can not be ignored.

Clearly. our model based study of a climatic disturbance leading to the genesis of a
storm is a knowledge based system made up of vague or imprecise information. How the
vagueness or imprecision or uncertainty arises in equation (5.1.1)?

Well. here value of r depends on value of 6 (0 is crisp) and initial value r(0). In
practice. (a) the value of m being the ratio of velocity components of wind. is liable to
fluctuate even in short time intervals and (b) we can not determine the initial value r(0)
preciselv. Uncertainties (a) and (b) propagate to the value of r calculated by solving
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(5.1.1). So the uncertainty in determining the value of r is the compound uncertainty due
to (a) and (b).

To model the system with these uncertainties let us reformulate (5.1.1) as a fuzzy
differential inclusion. Our formulation is as follows.

r(0) e [mr(8)]”. r(0) e [ro]”. (5.1.4)

Next we are to specify m and ro. Here rq is a fuzzy number containing all possible
values of r at © = 0. For any given value of 6 r(8) is a fuzzy number in E'. Fuzziness
occurs because we can not determine r(0) precisely for any given 0. We take ry as a
triangular fuzzy number in E' (Fig 5.2.1).

To get ideas about m we may concentrate on (5.1.2). the solution of the crisp ODE
(5.1.1). where m = cot ¢. ¢ is the angle between the radius-vector and the tangent at (r. 0).
In case of log-spiral or equiangular-spiral ¢ is independent of both r and 6. In [45]
overlaying of a log-spiral, whose ¢ = 10" on the curved band axis of a tropical storm of
moderate intensity (T3). to measure the intensity of the storm from the length of the
spiral arc has been suggested (page 11 and Fig 6 at page 12). cot 10" = 5.67. However at
the moment of starting the disturbance ¢ may not be equal to 10°. In fact the actual
numerical simulation of (5.1.1) is very enlightening in this regard. We notice that for
values of m close to 5.67 the radius of curvature of the generated log-spiral is very high.
i.c.. the curve is quite flat in this range of m. The vortex signified by this curve is not
likely to survive against the resistance due to wind-shear. To overcome the initial
resistance of wind-shear to give rise to an intense stable storm the initial vortex must be
more strong and this means that the simulation of (5.1.1) must produce a more “circle
like" log-spiral. In course of time the curved cloud bands i.e.. the curved wind patterns of
this initial vortex become rather flat due to wind-shear resistance. So we assume that for
the sustenance of a stable storm m must take values from a compact interval [a, b], whose
interior is nonempty. M is such a fuzzy number that only consists of all feasible values of
m. By feasible values of m we mean only those values for which a stable vortex is
possible to generate, whose intensity is “enough’ to give rise to a tropical storm (may or
may not be of hurricane intensity). We take M as a trapezoidal fuzzy number (Fig 5.1.3).

M([-ec, a]) = M([b, o0]) = {0}. which means for values of m in {-0c. a] U [b, o] the
generated vortices will not be strong and stable enough to give rise to a tropical storm of
a given intensity, say T3, or more in Dvorak scale [45]. For values of m in [a, ¢) U (d. b]
(a. c. d and b are to be determined experimentally) the vortices generated may still
mature into a tropical storm but only under very strong favourable conditions. The
greater is the membership value the more is the possibility of the generated vortex to
mature into a tropical storm under relatively less stronger favourable conditions. When m
e [c. d] the possibility of cyclogenesis is the highest. Under favourable conditions for m
e [c. d] a storm of hurricane intensity is very likely to be generated. A relatively small
length of [c. d] indicates the lesser possibility of generation of storms of very high
intensity. This is of course a very simplified structure for M. Some other structure(s) for
the fuzzy number M is (are) also quite possible.
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Notice that in the current chapter we have used the phrase under favourable
conditions in several places. All of these uses imply the same meaning namely. the sea

temperature to be at least 26"C through a depth of at least 60m. an absence of significant
vector changes of the mean wind that extends into the troposphere. relative humidity will
have to be 85% or more for a long time throughout the region of storm formation and
development. etc. These conditions will facilitate the latent and sensible heat transfer
from the sea into the atmosphere, which in turn will supply the required rotational kinetic

energy to intensify the vortex. Here we are only concerned about the generation of the
initial vortex and not about the detail of its maturing into an intense storm.

e

Fig 5.1.3 Graph of the fuzzy constant M (not according to the scale).

5.2 Simulation

By now we have the complete mathematical model of an atmospheric disturbance
which has the potential to become a cyclonic storm. The variation of this disturbance
along the z-axis is negligible. So FDI relation (5.1.4) is sufficient to represent the model.
Let us restate (5.1.4) as

r'(0) € [mr(0)]”. r0) e [r]”. m e [M]". (5.2.1)
where the fixed trapezoidal fuzzy number M is given by Fig 5.1.3. Let us mention here
that (5.2.1) should have been written as r'(8) € [M=*ry]°. which is the mathematically

correct form. where * denotes the product of fuzzy numbers. However this form is less
convenient to follow and we shall continue with the form appearing in (5.2.1).

Let us recall Algorithm 3.2.1 described in Section 3.2 for solving the one
dimensional FDIs like (5.2.1). For a numerical simulation of (5.2.1) we shall follow that
method. We have already used it in Example 3.2.1 and in Section 4.2. For convenience
lel’)us restate Algorithm 3.2.1 in a more case specific way suitable to solve or simulate
(3.2.1).



(1) fix o € [0, 1];

(2) calculate the a-level set on the right hand side of r'(8) e [mr(8)]* by Zadeh’s
extension principle [112], which is a 2-tuple of a-cuts of fuzzy numbers;

(3) solve (directly or numerically) the ordinary crisp DEs for r'(0) taking only the
boundary values of the a-level set;

(4) complete the (crisp) trajectories on R? obtained as the graphs of the solutions
derived in step 3, the space enclosed by these graphs on R? is the o-level set of
the solution of the FDI (5.2.1) for the given a.

The crisp ordinary differential equation r' = mr has solution (5.1.2) for any m and
any value of r(0) (A is determined by value of r(0)). m € M and r(0) € ry. A membership
value will be assigned to each such crisp solution. where the membership value will be
determined by the membership values of m and r(0) in the fuzzy sets M and 1
respectively by Zadeh's extension principle [112]. This way we get the fuzzy set of
solutions of the differential equation r' = mr. where m and r(0) take values in fuzzy
subsets of R. As a solution of (5.2.1) for a given a € [0. 1]. we take only those solutions r
whose membership value > a.

5 10 15

Fig 5.2.1 Graph of fixed triangular fuzzy number r,. Support of ry is [5. 15] in 50 km
scale, which is compatible with. ry(10) = I [47. 133].

We have already mentioned in the previous section that the values of a. ¢. d and b are
to be determined experimentally. Here we have determined them by computer
simulations using synthetic data. It is rather an attempt to make meaningful inference
about the values of a. c¢. d and b. which have been presented in Table 5.2.1. More
accurate values of a. ¢. d and b can be determined only by applving the model in real
situations many' times over.
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a c d b
-0.2 -0.1 -0.05 -0.001

Table 5.2.1. Numerical specification of the fuzzy constant M.

One very important thing to note here is that. m is taking negative values only.
Mathematically m could take positive values as well (compare this with the modelling of
fuzzy turbulence in Section 4.2, where both M and -M have been considered (Fig 2.2.1)).
But in that case the orientation of the vortex would have been just the opposite. The
vortex would not then be cyclonic but anticyclonic in northern hemisphere (in southern
hemisphere the orientation will just be the opposite). Under the favourable influence of
the coriolis force [16]. due to the rotation of the earth about its own axis. the cyclonic
vortices gather extra angular momentum to intensify. For the same reason the
anticyclonic vortices tend to gradually subside rather than intensify. Therefore in this
chapter we are concerned about the cyclonic vortices (of northern hemisphere) only.

3
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Fig 5.2.2 Numerical simulation of (5.2.1) in 50 km scale. where o = 1. that is, the phase
space is showing the fuzzy flow representing the best system behaviour only. This flow
tends to converge to a (fuzzy) point of the (fuzzy) phase space, which is known as the
fuzzy attractor of the autonomous FDDS (5.2.1). If this vortex ultimately matures into a
severe cyclonic storm this fuzzy attractor will become the eye of the cyclone (Fig 5.1.2).

Now we are in a position to solve (5.2.1). where M is given by Fig 5.1.3 and Table
5.2.1 and ry is given by Fig 5.2.1. For a solution of (5.2.1) we have to evaluate the

product of two fuzzy numbers M * r, by Zadeh's extension principle [112]. Let M * r, =
S. then

S(s) = sup inf(M(m).ro(r(0))).

s=mr(()
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For any given a. let U = {s | S(s) = a}. Solve the crisp differential equation r' = mr for
such m and r(0) that. mr(0) = s e U. This particular solution is an a-solution, 1.e.. a
solution with membership value a or more. of (5.2.1). Collection of all such a-solutions
of (5.2.1) will give the a-flow of (5.2.1) (in Fig 5.2.2 the 1-flow is shown). This a-flow is
actually the fuzzy solution of (5.2.1). which signifies the behaviour of the system given
by (5.2.1) with possibility a. The best system behaviour is obviously given by the a-
flow. when o = 1. Fig 5.2.2 gives the phase space of the best system behaviour of (5.2.1).

The physical significance of the log-spiral shaped fuzzy flow of Fig 5.2.2 is that, it
represents the initial disturbance generating the initial vortex (like the ones in [48]
(intensity given by the graph in Fig 5.1.1)), which if sufficiently strong. under favourable
conditions may develop into a cyclone. As we have seen that the (fuzzy) log-spiral shape
of the vortex is due to the (fuzzy) constant ratio between the radial and cross-radial
components of the velocity of the disturbance. As the vortex is matured into a severe
cyclonic storm the fuzzy flow of Fig 5.2.2 tends to converge to a fuzzy point, which has
(0.0) as a crisp member with membership value 1. If this initial disturbing vortex matures
into a cyclone, this fuzzy point will ultimately become the eye of the cyclone (Fig 5.1.2).
So the preliminary stage of formation of the eye of a cyclone is a very natural real life
example of a fuzzy attractor (Definition 3.1.9) (of the autonomous fuzzy differentiable
dynamical system (5.2.1)). Also from the Definition 3.1.15 (t is replaced by 0 in the
definitions, because here the FDDS is autonomous) we see that the system represented by
(5.2.1) is asymptotically stable for the given values of m and r(0) with a fuzzy limit point
as the point of equilibrium (crisp points also are special cases of fuzzy points).

One very interesting aspect to note here is that the inclusion relation (5.2.1) is not
explicitly time dependent. That is, it is an autonomous fuzzy differentiable dynamical
system. But the development of a storm is surely a time dependent process. The solution
of this apparent paradox lies in the facts that, (1) the inclusion relation (5.2.1) is valid
only for a very short time during which the change taking place does not depend on time.
but rather on the intensity of the disturbance and (2) the fluctuation of intensity of the
disturbance is completely accommodated in the fuzzy number M. Once the vortex is
created its dynamics with respect to time is taken care of by a set of time dependent
differential equations, which we are not bothered about in this thesis.

For a more straight forward interpretation for the generation of the initial vortex we
may consider not one, but two simultaneous disturbances, both of them are linear wind
jets or waves coming from different directions and colliding and merging to produce the

wind jets or waves are involved. one of them is very strong and the other is very weak).
In this case one of them acts as the radial component of the amplitude of the vortex (the
strong one) and the other acts as the cross-radial component. Our mathematical model
and the subsequent numerical simulations give a very realistic picture of this nvo
disturbance hypothesis. For example. we have seen in Fig 5.1.1 how a 43 km/h initial
kick has ultimately generated a 162 km/h storm. If in our model we take this 43 km/h
kick as the cross-radial velocity (acts in anti-clockwise direction in the northern
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hemisphere and hence positive) the radial velocity we can calculate from m. If we take m
e [-0.1, -0.05] so that M(m) = 1. the value of the radial velocity must lie in the range {-
4.3.-2.15] km/h (in the southern hemisphere cross-radial velocity will be negative and m
will be positive. i.e.. the radial velocity will always be negative in both the hemispheres.
which means that the wind and along with that also the clouds will always tend to
converge towards the centre of the vortex). which at any rate is a minor, almost
negligible disturbance. Note that the cross-radial velocity must be obtained from the
major kick. i.e.. the major kick must act tangentially to the vortex. The minor kick must
act along the radius-vector of the vortex. This shows that our choice of M in particular
and our model in general is very much realistic.

This model is compatible with the model presented in [47]. Once the sufficiently
strong initial cyclonic vortex is created according to our model. the development of the
vortex towards maturity (that is. a stable matured intense cyclone) can be simulated as
given in [47]. Structure of such a storm in matured stage is given by equation (11) of
[47]. The manifold of this structure has been elaborated in Fig 1 of [47] in terms of
constant angular momentum surfaces in the r-z plane (r radius. z height), the real life
significance of which has been illustrated in Fig 5 of [47]. Fig 1 and Fig 5 of [47] pertain
to the vertical cross-section of the vortex of the storm. Fig 5.2.2 on the other hand gives
the horizontal cross-section of the vortex of the storm. at the starting. near the surface of
the sea. This model however is not compatible with [133], for we have not taken the
velocity of the propagation of the disturbance during formation of a weak initial
disturbing vortex according to equation (37) of [133]. We have shown instead that the
initial disturbing vortex can be generated in a more natural and simple way. We have
proposed our model mainly based on the observations made in [15.45, 47,48, 133].

The development of the storm is an example of the finite-amplitude air-sea
interaction instability described in [47]. In [47] it is argued that when entrainment and
other buoyancy reducing effects are taken into account, the mean tropical atmosphere is
very close to neutral, rather than conditionally unstable. Because of this, anomalous
surface winds are necessary to enhance the surface heat fluxes. This energy is then
redistributed in the vertical by convection., which then intensifies the large scale
circulation and the surface heat fluxes. and so on. When viewed in this context, the initial
vortex must have a large enough amplitude to enhance the surface fluxes enough for the
instability to occur [29]. Keeping this in mind we have taken r(0) about 500 km, which is
compatible with [47, 133].

This model can also give satisfactory explanation of the phenomena of occurring of
the most intense cyclonic storms often either during April-May (just before the onset of
the monsoon in the Indian sub-continent) or during October-November (just after
withdrawal of the monsoon from the Indian sub-continent) over the Bay-of-Bengal.
During these times of the year major changes take place in the wind pattern over the seas
surrounding the Indian coasts (Indian Ocean. Bay of Bengal and Arabian Sea). The wind
change course from land-to-sea to sea-to-land (April-May) and from sea-to-land to land-
to-sea (October-November). Naturally during these periods possibility of simultaneous
occurrence of one major and one minor disturbances as described above is very high.
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along with the other favourable conditions. and hence the relative high frequency of
occurrence of intense cyclones.

5.3 Discussion

An FDS modelling of the incipient stage of the generation of a hurricane or cyclone
(cvclogenesis) over the seas in terms of FDIs has been presented. Solution of the FDI has
been accomplished by Algorithm 3.2.1. Here computer generated phase space only
represents the best system behaviour. i.e.. only the solutions with degree of membership |
have been considered.

We have shown the initial phase of formation of the eye of a cyclone as a fuzzy
attractor. It is a very special type of fuzzy attractor namely. a fuzzy limit point to which
the fuzzy flow tends to converge. According to Definition 3.1.12 the fuzzy dynamical
system of generation of the storm is a stable one. Our model is actually valid for a very
short time. It only models the creation of the initial vortex. which under favourable
conditions may become a severe cyclonic storm. The most important fact that we have
been able to establish through this model is that climatic disturbances in the form of
simple linear wind jets or waves are capable of creating log-spiral like cyclonic vortices.
The uncertainty managing aspect of an FDS has played a great role in it. The role of such
disturbances behind creation of cyclones have long been suspected [48]. Unfortunately
we have not been able to test this model in real life. A lot of time and resources are
needed for this purpose. However this model has the potentiality to advance the time of
cyclone warning by several hours to several days.

Currently the prediction starts with the satellite pictures of cloud bands of a cyclonic
vortex once it is already formed. It usually takes five to six days to attain maximum
intensity and hit the coastal areas [45]. where it becomes a wide spread catastrophe.
Therefore presently cyclones can not be predicted more than five to six days before it
actually wrecks havoc. According to our model. storm warning is possible by constantly
monitoring the wind speeds over high seas of cyclone prone regions during the storm
seasons. provided other climatic conditions are also favourable for the generation of a
storm. This way a storm warning can be given even before the actual formation of the
initial cyclonic vortex.

In the present chapter we have shown how efficiently an atmospheric uncertainty can

be modelled by an FDS. In the next chapter we shall test the effectiveness of FDS in
modelling uncertainty in a biological system.
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Chapter 6

FDI Approach in Modelling the Evolution of Tumour

To demonstrate the efficacy of FDS in modelling uncertain systems we have so far shown
application of a class of fuzzy discrete dynamical systems in image generation and
application of fuzzy differentiable dynamical systems in modelling a turbulence and the
generation of a tropical storm. In this chapter we will show yet another application of
fuzzy differentiable dynamical system in modelling uncertainty of the dynamics of
evolution of tumour in human tissues. This application has a basic difference with the
previous ones. in the sense that. it substitutes a stochastic differential equation by a fuzzy
differential inclusion relation in modelling the underlying uncertainty. This substitution
turns out to be very fruitful. for it offers us a completely new insight into the model [102.
103].

The evolution of a tumour and turning it into a malignant one (carcinogenesis) is a
very complex physiological process, which the scientists have not vet been able to
understand fully. Numerous attempts are being made to better understand the process
from various points of view. Here we propose to view the entire physiological process
from a general system theoretic out look as suggested in [40. 43, 44. 52. 89]. For
example. in physics there are a few fundamental equations like Schrodinger’s equation.
Dirac’s equation. Yang-Mill's equation. etc. These equations can not explain everything
of the phenomena thev are supposed to model. Yet they can explain many things and play
very important role in understanding some of the most complicated behaviours of nature.
A new approach is suggested by the above mentioned authors so that the medical
cybernetics, as studied from a general dynamical system theoretic out look, should adopt
this spirit of physics [44, 52. 84. 89]. Systems theoretic pioneer Bertalanffy himself
initiated this approach as a mathematical biologist way back in 1970 [12]. His equation is
used for study of growth in animals and tumours. Tsetlin had also taken a similar
approach in modelling some properties of a muscle and a ganglion [143].

6.1 The Model

A. Motivation and Construction

We present a kinetic model of the onset of tumour which involves the coupling of
three principal phenomena [89]:

(1) the transformation of normal cells into neoplastic cells (tumour cells).

(2) the replication of transformed cells.

(3) the immunological interaction of the host organism with transformed cells. i.e.. the
immunological propensity of the T-lymphocyte (a kind of white blood corpuscle)
and some other cells to fight and destroy the unwanted growth of cells in a tumour.
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where X denotes the population of the tumour cells. The rate of transformation from
normal to neoplastic cells is proportional to a constant A. E is the population of effector
cells (T-lymphocytes, macrophages. natural killer cells etc. [89]) having recognized and
bound a target cell (tumour cell). Eq is the population of the free effector cells, i.e., those
T-lymphocytes. macrophages. natural killer cells etc.. which have not yet identified and
attacked a target cell. & is a replication rate constant. k. k> are rate constants. The first
two steps represent phenomenologically two ways in which the X population can grow:
either by the transformations of the normal cells into neoplastic ones (step la) or by
cellular replication (step 1b). In step lc Ey free effector cells bind (recognize and attack)
X target cells depending upon the rate constant k; to produce E; number of bound
effector cells. From E; number of bound effector cells depending on another rate constant
we ultimately get the number Ey + P. where P is the number of tumour cells destroyed in
the operation, which will not replicate any more. We assume that E, = Ei + E, is constant.
Within this framework the dynamics of the growth in time of the target population X is
given by

dX/dt = (N-X){A + (WN)X] - KIEX {1+ (ki/ka)X]. (6.1.1)

[52. 89]. where N is the maximum number of target cells which can be packed in a given
volume element. Let us notice that equation (6.1.1) does not refer to the rotal population
of these cells in the entire tumour. The problem of main interest in this model is the local
transition mechanism (involving the local interactions of target and effector cells)
between tissual states of different nature and not the process of growth of the tumour as a
whole. Thus the factor (N - X) expresses simply the existence of an upper limit N for X
in the volume element under consideration. For the sake of convenient dynamical system
theoretic analysis (6.1.1) can be reformulated in the following simple form:

dm/dr = v + m(] - um) - rim/(1 + m)}. (6.1.2)
where m = (k/k2)X. v = K, AN/Ka(% - A). r =K\ E/( - A). u = kai/Ki(%. - A)N and 7 = (% -

A)t. u remains fixed and its value is taken as 0.1 [44]. Note that in Chapter 5 we also used
m and r. But the meaning of m and r are completely different in this chapter than that in



Chapter 5. Here m is proportional to the number of tumour cells in a given volume of
tissue and r is proportional to the rate of destruction of tumour cells.

B. Dvnamical System Theoretic Analysis

A criticﬁa/ point (that is where dm/dr vanishes) of (6.1.2) is given by v =(1 - u)3/27u2. r
=(1+ 2u)3/27u: and m = (1 - u)/3u. Putting v = 2.7 and r = 6.4 (obtained by putting u =
0.1 in the expressions of v and r respectively) at (6.1.2) we have the following graph of
(m. dm/dr). which shows the remarkable feature of a cusp catastrophe with an unstable
saddle critical point at m = 3. For m > 3 dm/ds becomes negative. that is. the density of
the malignant cells decreases with time.

Fig 6.1.1 The plot of dm/dr (y-axis) against m (x-axis) with critical r and v. i.e..r = 6.4
and v =2.7.

In (6.1.2) r is the most important quantity from clinical and therauptic point of view.
In fact a therapy of malignancy has been suggested in [44] by an induced statistical
fluctuation on r beyond certain threshold limit. Comparing Fig 6.1.1 with Fig 6.1.2 it
becomes evident that 6.4 is a threshold value for r (for u = 0.1). If r is much smaller than
6.4 the value of dm/ds will not become negative for 0 < m < 6 (the admissible range of m
[44]) and therefore m, which is proportional to the malignant cell density. will not start to
decrease. So to become successful any therapy must strive to fluctuate the value of r
beyond 6.4. Only then dm/ds will become negative and m will start decreasing. provided
of course u remains 0.1. This way the increased fluctuation of r can destabilize a tumour
according to the Glansdorff-Prigogine theorem [53]. which has been therauptically
utilized in [44].

Assuming that at t = 0 m = 0 (when (6.1.2) modelis the growth of tumour cells then at
t =0 we take m = 0. but latter when from a therauptic point of view the same equation
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will be used to model the diminishing of m due to the therapy we shall take m = a high
positive value at t = 0) (6.1.2) has solutions of the form

0 1 2 3 4 5 6

Fig 6.1.2 Plot of dm/dr (y-axis) against m (x-axis) for r = 5 (above) and r = 7 (below).
Note that for r = 5 dm/dr # 0 when m € [0. 6]. But for r = 7 dm/dr becomes 0 once for m

e [0. 6].

exp(r) = (1- m/o) (1 - m/B)l(] -m/v)".

where a. 3, v are the roots of v . + m(1 - um) - r{m/(1 + m)}

+1)ym+v=0and
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(6.1.3)

=um’ + (1 - u)m2 +(v-r

Each of a. f and v is a function of u. v and r. To know the exact form of these functions
any book of theory of equations. like for example [34]. may be consulted.

Foru << | and v << 1. a bifurcation occurs in the phase space of (6.1.2). The values
of m lies on two different branches. one corresponds to low values of neoplastic cell
population (micro-cancer focus) and the other branch corresponds to higher values of the
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same (macro-cancer focus). In [44] and [89] studies have been made about how to shift
the focus from macro-cancer to micro-cancer through externally induced statistical
fluctuations on r and v. Based on this. multi-pronged therapies of tumour have been
reported in [44].

A remarkable feature of (6.1.3) is that for m = o.. B or v t becomes minus infinite.
This means that either all of a. P and v are negative (so that m can never take these
values) or one is negative and rest are complex (again so that m can never take these
values). In the latter case since the imaginary parts of the two complex roots have
opposite signs a Hopf bifurcation [73] occurs in the phase space of (6.1.2). Notice that
Hopf bifurcation is a multidimensional phenomenon [73] and can oceur only if we allow
m to be complex (complex plane is topologically equivalent to R%). Though for our
practical purpose we never allow m to be complex (to be more precise values of m lies in
[0. 6] [44]) but for the dynamical system theoretic analysis it is iluminating to allow m to
take all possible values (for non-negative t only). In (6.1.3) for any nonnegative t m has
three values. For those values of u. v and r for which m has one real and two complex
values the Hopf bifurcation occurs. This means that when the discriminant [34] of -um’ +
(1- wm® + (v -r+ )m+ v =0 (which is a function in r and v. assuming that u is fixed)
changes sign from negative to positive a Hopf bifurcation occurs. This Hopf bifurcation
is responsible for the change in stability of focus from macro-cancer to micro-cancer (or
vice versa) in the dvnamical system represented by (6.1.2).

6.2 A Formulation in Terms of FDI

Equation (6.1.2) has been treated as a stochastic differential equation (SDE) of lto or
Stratonovich type in [44] and [89] and effects of various fluctuations on it have been
studied. Fluctuations or. in other words. stochasticity is not intrinsic to this type of
fundamental equations. Rather stochasticity arises because we do not follow up all
microscopic events but rather try to describe the system macroscopically. The
microscopic events are taken care of by statistical approaches. In that way fluctuations
mirror a lack of knowledge. This lack of knowledge is introduced. so to speak. at our will
in order not to be overloaded with unessential details [58]. Various SDEs are used to
model] nonlinear stochastic processes [58]. Method to solve an SDE may not always be
unique. Depending upon the situation one method is preferred over the others. In the SDE
model of [44] and [89] the fluctuation has been introduced as white noise. But white
noise is a purely mathematical construct, which though a reasonable model of the noise
encountered in physics may not be a suitable description of perturbations in biological
systems [5. 84].

Reformulation of stochastic differential equations by FDIs has two advantages [5]:
1) The corresponding FDI is well defined and has a solution.
2) Using FDIs allows us to define “likelihood™ and thus develop a non-stochastic analog

of svstems with uncertain dvnamics.

The concept of FDIs generalizes the notions of differential inclusion [5].
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On the other hand from a therauptic point of view the induced fluctuations are not
objective but subjective in nature. because these are administered by human experts
according to their skill. This administration is bound to differ {rom one expert to another
or even for a particular expert at different times. So the fluctuation should not be
statistical in nature. Instead the fluctuation or the lack of knowledge involved here is
fuzzy in nature. Attempts for non-stochastic modelling of uncertainty in a biological
system have already been made. where a differential inclusion modelling of population
dynamics has been proposed [5. 84]. We have already indicated the need to introduce
FDI in place of SDE as the fuzzy set theory has a very long and successful history of
dealing with this kind of subjective uncertainty in complex systems [43].

A. Estimating the Uncertainty

In this section we shall subject (6.1.2) to fuzzy fluctuations. We shall induce fuzzy
fluctuations on r and v. This means that the entire fluctuating range of r and v will be
treated as fuzzy real numbers. Introduction of fuzzy membership functions in place of
probability density functions have its own advantages and disadvantages. For example,
introduction of fuzzy membership function is much less rigorous and computationally
less complex. It may smooth out many finer detail resulting in elimination of unessential
information. On the other hand there is no definite method to construct fuzzy
membership functions. It depends on the knowledge and skill of the expert who is
administering the therapy by induced fluctuations.

For the therauptic purpose fluctuations in r and v have been considered in {44]. So an
FDI formulation of (6.1.2) is necessary. where without loss of generality we can take the
values of r and v lying in some fuzzy real numbers. This is in complete harmony with the
spirit of [84]. where the noise is taken to lie within some closed and bounded interval of
R. Now the question is “What type of fuzzy real numbers are the most appropriate for
this purpose?”

We have already seen that for a therauptic purpose the value of r must be influenced
in such a way that it can go bevond some critical value (depending on u. which is fixed).
Like in [84] we (arbitrarily) assume some range beyond which the values of r can not go.
We take r € [1.9]. For r << | the X population and hence also m is close to its maximum
value and the tissue is in a cancerous state. On the contrary if r >> 1 the m population
becomes vanishingly small and the tissue tends to normality [52]. The range [1. 9] is to
be estimated from experimental result as typically done by the human experts
administering a therapy. Here the range of r is consistent with [44. 52. 89]. The best
possible range of r to be attained during a therapy. to reach the micro-cancer focus.
should be [5.95. 7] (which is compatible with [44]). Arbitrary large values of r is not
desirable. for in that case (4.2) may not represent the dynamics properly. Since we are
interested in the best possible solution (i.e.. the solution with fuzzy membership grade 1)
only (we have discussed about the general case of the other solutions at the end of this
sub-section). without loss of generality we can take r to lie in the trapezoidal fuzzy
number R, = <1. 5.95. 7. 9> for the following reason. We have seen in Definition 2.2.1 of
fuzzy real number. that a fuzzy real number p : R — [0. 1] is a membership function.
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Fig 6.2.1 An approximation of the solution space of (6.1.2) forr =595, v=2and u =
0.1. Resolution of m is taken as 0.01.

where R is the set of (crisp) real numbers. p must satisfy the following properties. (1) The
support of p must be a closed bounded interval of R, say [a. b]. (2) There must be
numbers ¢, d, such that, a < ¢ <d < b. p must be increasing and continuous from right in
[a. ¢]. 1 must be decreasing and continuous from left in [d, b]. pu(x) =1 for any x € [c. d].
Since we are interested in the best possible (fuzzy) solution only. we are interested in the
domain of . where it takes the value 1. i.e.. [c. d]. We are not actually bothered about the
shape of u either in [a. ¢) or (d. b]. The shape of the fuzzy number on the portion [c. d]
are identical in all cases. So as long as only the best possible (fuzzy) solution is required
there is absolutely no difference between a trapezoidal fuzzy number and any other
arbitrary type of fuzzy number.

Determining the proper range for the values of v is even more challenging. If v.
which is proportional to the rate of conversion of the normal cells into the neoplastic
ones. remains positive then after stopping the therapy there is a chance of reviving
malignancy. On the other hand if v becomes 0 during the therapy (6.1.2) will give
abnormal results, which means that it no longer models the dynamics properly. In Fig
6.2.1 an approximation of the solution space of (6.1.2) has been presented for v = 2. The
behaviour of the system is very abnormal and chaotic for m < I. If we increase v this
range also increases significantly (Fig 6.2.3). which means that we can not predict the
progress of the therapy beyond m is reduced to certain level (e.g.. in case of Fig 6.2.1 it is
1). This point has not been taken care of in [44] and [89]. It is to be kept in mind that t(m)
is a smooth function and its graph can not exactly be like Fig 6.2.1 or Fig 6.2.3. Here the
graphs are generated with a resolution of m as fine as 0.01. Finer resolution will give
more realistic figure. But then comes the question of the size of a pixel. no resolution can
be finer than that.
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Fig 6.2.2 An approximation of the solution space of (6.1.2) forr= 6.4 and v=2.7 and u
=(.1. Resolution of m is taken as 0.01. For most of range of m the result is abnormal and
unpredictable.

The simulation results of Fig 6.2.1. Fig 6.2.2 and Fig 6.2.3 suggests that for high
values of v (>> 2) the system be treated as a nondeterministic system with high degree of
unpredictability. Lefever and Horsthemke has modelled this uncertainty by introducing
stochastic noise (the so called Gaussian white noise) into the system and then modeliing
the system by a stochastic differential equation [44. 89]. The introduced Gaussian white
noise has a probability distribution which is a function of m and has a standard deviation
o. The value of o is varied as a result of fluctuation. For certain values of o this
distribution function becomes bimodal. which is interpreted as the cause of bistability in
values of m. That is. for the values of m in the range 0 to 6 there exist two points one near
0 and the other near 6, where the system tries to become “stable’. The point near 0 is
called micro-cancer focus and the point near 6 is called the macro-cancer focus [44].
Since the aim of any therapy is to reduce m, in [44] the therapy has been administered to
shift the value of m from macro-cancer focus to micro-cancer focus. Right at this point
our simulation results suggest that, since for high v (>> 2) the system becomes very
unpredictable the success of the therapy can not be guaranteed.

In reality v remains positive and due to the cytotoxicity of the T-lymphocytes tumour
cell density X and therefore also m can not grow [52]. In an abnormal situation where m
grows unusually, therauptic remedy is needed. In [89] v must satisfy
v << /(1 +u). (6.2.1)

In view of the limit of r we have taken (or taken in [44. 52]) this means

v < 1/(1+0.1) = 0.9, (6.2.2)
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Fig 6.2.3 An approximation of the solution space of (6.1 2)forr=3595.v=25andu=
0.1. Resolution of m is taken as 0.01. Almost in the whole range of m the result is very
abnormal and beyond any meaningful prediction.

For the values of v given by (6.2.2) dm/dr is negative for m € [0. 6} (the admissible range
of m [44, 89]). If we take r e [5.95. 7] then according to (6.2.1) v << 5.4. But since our
model is very sensitive to values of v according to this model only for 0 < v <2 itis
possible to devise meaningful therapy. So we can take v € [0.5. 2]. By introducing fuzzy
membership grades in the range we can get a trapezoidal fuzzy number V = <0.5. 1, 1.75.
2> such that, v € V.

B. Mathematical Formulation

By now we are in a position to give an equivalent FDI formulation of (6.1.2).
dm/dr e [{-um’ + (I - wm” + (v -r+ hHm+vi/(1+m)l”
(6.2.3)

re[R)]% v e [V]h m(0) e [<6-3. 6, 6+5>]".

where 0 < o < 1. <6-8. 6, 6+8> is a triangular fuzzy number. where & is a very small
positive (crisp) number. We have taken the initial condition to be the worst, i.e..at7 =0
we have taken m(0) € <6-8. 6. 6+8>. which is the highest possible value of m [44]. The
region of best possible solution as computed according to Algorithm 3.2.1, described in
general terms in Chapter 3. has been shown in Fig 6.2.4. For a better understanding of the
simulation results of Fig 6.2.4 we would like to present a more specific version of the
algorithm suitable for solving (6.2.3).
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C. Simulation

(1

(2)

(3)

4)

fix a € [0, 1];

determine all the boundary values of [R;]*, [V]® and |<6-3, 6, 6+5>]* for the o
fixed in step 1;

substitute r and v in dm/dr = {-um3 + (1 - u)m2 + (v -r+ 1)m + v}/(1 + m) by
boundary values of [R;]” and [V]® respectively determined in step 2 (all possible
combination of boundary values to be considered;

solve dm/dr = {-um3 + (1 - u)m2 + (v -r+ I)m + v}/(1 + m) (directly or
numerically) for each combination of boundary values of [R{]® and [V]® as
substituted for r and v respectively in step 3;

in the solution of step 4 m(0) is to be substituted by boundary values of [<6-3, 6,
6+6>]%

plot the graphs of all solutions obtained by step 4 and step 5 (together) on R” and
the space enclosed by these graphs, along with the coordinate axes is the a-level
set of the solution of the FDI (6.2.3) for the o fixed in step 1.

Fig 6.2.4 Region enclosed by the curves (1, m(/)) for which r=7 and v =1 (left). r =5.95
and v = 1.75 (right) and the 7 axis is the region of the best possible solution (with a = 1)
of (6.2.3).

The above algorithm. though consists of six steps. is actually an alternative

formulation of Algorithm 3.2.1. where there were only four steps. For convenience of
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implementation in the particular case of solving (6.2.3) the step 3 of the original version
of Algorithm 3.2.1 has been subdivided into three different steps here (steps 3. 4 and 5).

One important thing is to note that in Fig 6.2.4 we have kept all our computations
within the range for which m > 1. We have already seen that for m < 1 abnormal results
occur. This means that for m < 1 (6.2.3) no longer represents the dvnamics of the system
faithfully. We may have to model the dynamics for this range in a different way. This is
also the case for v > 2. Designing the dynamical system for m < 1 or v > 2 is likely to
pose great challenge to the future researchers.

The best possible solution region indicates the desired effects of the therapy on the
patient. Due to the therapy the possibility of m coming down from6to 1 in 7=2.31t0 8 is
very high (the degree of possibility or the value of fuzzy membership of such an
happening is the highest). Remember that m is the normalized (and not actual) tumour
cell density and 7 is the normalized time. To estimate the actual value of the tumour cell
density and actual value of time we must know the normalization factor. Let us remember
that, m = (ki/k2)X and 7 = (A - A)t. where X is the actual tumour cell density and t is the
actual time.

For a < 1 in (6.2.3) we get a solution which represents the system behaviour with
degree of possibility a or more. Obviously the solution representing the best possible
system behaviour is included within this solution space (or the fuzzy set of solutions as
shown in Fig 3.2.6). For example for a < | in (6.2.3) the admissible range of 7 in Fig
6.2.4 will be a larger closed bounded interval containing [2.3. 8] as a proper subset. In
general for a < | the solution of FDI(s) tends to converge less and diverge more. Let us
explain this point. The fuzzy trajectory, obtained as the fuzzy set of crisp trajectories
(solutions) of the corresponding FDI(s), at any given time will give a fuzzy subset of the
solution space. The diameter of the fuzzy trajectory at any given time will generally
increase if a < | (the fuzzy trajectory for o = | is a proper subset of the fuzzy trajectory
for a < 1). This makes the fuzzy trajectory obtained as the solution of the system of
FDI(s) inconvenient or even completely unsuitable for the dynamical system theoretic
analysis. This is exactly the reason why FDIs are preferred over fuzzy differential
equations in modelling and simulation. because in fuzzy differential equations the entire
solution space is to be considered irrespective of degree of possibility (all solutions for a
> 0 are to be taken). In FDI modelling we have the choice to take the solution
representing the best possible system behaviour for the highest value of a, which often
turns out to be 1. Once this restriction is imposed the trajectory becomes more “crisp like’
(but not always crisp exactly. particularly when not all the fuzzy quantities are triangular
fuzzy numbers). Crisp like trajectories are more convenient for dynamical system
theoretic analysis. In the particular case of (6.2.3) it is obvious from the simulation that
for o < 1 there will not be any qualitative change in the solution (Only [2.3. 8] will be
replaced by a bigger interval properly containing this. This has been clearly demonstrated
in Fig 3.2.6 for Example 3.2.1.) We practically get the same thing by keeping o = 1.

D. Suggested Modification in Therapy Planning
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Any therapy devised according to the dynamics given by (6.2.3) must presume that.
(1) the value of v will never exceed 2 and (2) after reducing m 10 approximately 1 the
course of the treatment may have to be modified. This has not been taken care of in [44].
Our basic principle of therapy remains the same as [44]. where the target was 10 shift
from the macro-cancer focus to the micro-cancer focus. Here however we shall continue
this act of shifting only until m comes near to . For m < | we can not predict the
effectiveness of the therapies under the present dynamical system modelling. At presenta
trial and error heuristic method is perhaps the only way out. A fluctuation on r is to be
induced in order it to reach the value 6.4 or even surpass it (assuming u = 0.1). To
fluctuate r the following therapies have been suggested. which are broadly subdivided

into two categories.

(1) Multi-step therapy or multiplicative therapy: Here we can use perturbation in the
form of increasing arterial pO; to 90 mmHg. decreasing venus pO> to 20 mmHg.
using hyperthermia up to 105"F, hyperglycaemia up to 600 mg% blood glucose level.
which also produce pH perturbations (up to 6.5 from the normal tissue level of 7.8).
Owing to variation of oxygenation, there is a perturbation in the oxygen index of the
blood m as 18.5 <n < 42.

(2) Multiplex therapy: Here one uses the combined perturbation of glucose level.
temperature, anti-tumour drugs, radiation. thermolabilizer and radiosensitizer.
Concentrated glucose solution is administered through superior vena caval catheter
and the following perturbations are induced:

(a) Hyperglvcaemia - Glucose level is varied between 400 mg/100 ml blood.

(b) Hyperthermia - Temperature variation used is from 98'F to 103"F. using high
frequency inductive heating.

(¢) Oxvgenation - Administered through pulmonary ventilation.

Success has been reported under both the above categories of therapies in [44]. If we
examine the region of the phase space of (6.2.3) corresponding to the best possible
solution (Fig 6.2.4) we observe that under the therapies m reduces from 6 to 1 quite
smoothly. This means that the cancer cell population X also reduces accordingly. The
corresponding values of 7 lies in the range of 2.3 to 8 (remember that 7 is not time but
proportional to time). Within this best possible solution region of the FDI relation (6.2.3)
the response to the therapies is quite reasonable and predictable just as in case of the
conventional SDE modelling.

6.3 Discussion

In our quest to test the effectiveness of the FDSs to model uncertainty of some of the
most complex real life systems. which are both scientifically interesting and practically
important to the human society. In the current chapter we have substituted an SDE by an
FDJ in modelling uncertainty of a bio-medical cvbernetics. After Krivan and Colombo
[84] and Antonelli and Krivan [3]. here we have got vet another opportunity to study a
bio-medical uncertainty by substituting SDEs with differential inclusion (DI) relations. In

102



[84] it has been shown that. the solution obtained with DI modelling is qualitatively. but
not quantitatively. similar with that obtained from SDE modelling. However our study
here has followed a different path. We have fuzzified the classical dynamical system
theoretic analysis to model the inherent uncertainty.

Here we have followed the precedence set in [44]. [52] and [89]. but we have gone
much further. We have shown that an FDS (FDI to be more precise) modelling of a
biological system is no less effective than a modelling in terms of the stochastic
differential equations. Again this is the maiden effort to introduce FDI relations into the
realm of medical cybernetics. The model adopted here is due to Lefever and Horsthemke
[89]. But we have undertaken the dynamical system theoretic analysis of this model in a
new direction and discovered the range within which the model should work. Based on
these limitations therauptic suggestions have been made. This shows that a more
pragmatic therauptic planning needs to be introduced in treating malignancy as suggested
in [44]. Our study also strongly suggests that a new dynamical system needs to be
introduced to model the evolution of tumour in human tissues when either (1) the
neoplastic cell density X and hence m becomes very low (m < 1) or (2) the conversion
rate from normal cells to the neoplastic ones becomes very high (for which v > 2) or
both. These facts were not apparent from the SDE modelling.



Chapter 7

Conclusion

The central theme of this thesis is the management of uncertainty in a general dynamical
system by fuzzy set theory based techniques. for fuzzy set theory based techniques are
very versatile tools to deal with a broad range of uncertainties [80]. Fuzzy dynamical
systems are a class of dynamical systems. which can utilize the fuzzy set theory based
techniques for modelling, simulation and analysis of uncertain complex nonlinear
systems, which we have shown in Chapters 4 through 6. Like classical crisp dynamical
systems fuzzy dynamical systems (FDS) too are defined upon three basic entities namely.
fuzzy phase space. time and fuzzy time-evolution law. We have devoted Chapter 2 to the
fuzzy phase spaces. Appendix A to time and Chapter 3 to the fuzzy time-evolution laws.
In the present thesis we have defined and discussed about quite a few fundamental
notions of a general FDS and shown a number of applications of FDS in modelling some
of the very complex real life phenomena. In each case of these applications the precise
statement of the implementing algorithm is given, followed by extensive computer
simulations. In some of these applications we have carefully chosen areas where fuzzy
set theory based techniques in general and fuzzy dynamical systems in particular have
not been used before. as for example, the modelling of turbulence and cyclogenesis.

Time may have many interpretations in science and philosophy. In Appendix A we
have presented an interpretation of time from the dynamical system theoretic point of
view. We have shown that representing time by real numbers is mathematically justified
and that, writing the symbols like dx/dt are justified, at least from the point of view of t.
Since Mandelbrot’s definition of fractal requires a considerable preparation to
understand, we have presented a detail explanation of it in Appendix B. complete with
rigorous mathematical derivations. This definition is essential in defining fuzzy fractal in
Section 4.1. In Appendix C we have rigorously proved that the logistic function f(x) =
ux(l — x), x € [0. 1], is chaotic under iterations for u > 4. We have used this result in
modelling fuzzy turbulence in Section 4.2.

7.1 Summary of the Main Points of the Thesis

Since in classical crisp dynamical systems phase spaces are often either R" or some
subsets of R". in Chapter 2 we have developed an algebraic and metric structure for the
multidimensional fuzzy number system. We have tried to make these structures as similar
as possible to those of R".

In Section 2.1 we have presented a brief discussion on fuzzy phase spaces. Here we
have presented the definition of Hausdorff metric over a collection of nonempty compact
subset of a complete metric space X. We have extensively used this definition in the rest
of the thesis.



In Section 2.2 we have discussed the fuzzy real number system R. We have defined
a field like algebraic structure. christened as F-field. over . We have also defined a
metric on K.

In Section 2.3 we have defined a vector space like algebraic structure (christened as
generalized fuzzy vector space or GFVS) over a finite number of cartesian product of N
with itself. We have extended the metric defined on % to W".

In Section 2.4 we show that any fuzzy subset of R" can be obtained from R" by a
max-min operation. An FDS either evolves in k" or any point of its phase space. i.e.. any
fuzzy state can be obtained from R" by max-min operations.

In Section 2.5 we explore the relevance of W" in computer vision and pattern
recognition. Obviously, any fuzzy pattern vector or fuzzy feature vector can be generated
from a collection of elements of " by max-min operations. In this section we have
considered two examples from applied research. one each from fuzzy speech pattern
recognition and fuzzy visual object recognition. We have shown that R" may be a good
reference frame to describe these two experiments.

In Section 3.1 a fuzzy dynamical system is defined in terms of fuzzy attainability set
mappings. A dynamical system is dissipative when the phase space is ‘contracting’. A set
theoretic definition of fuzzy dissipative dynamical systems has been given in this section.
A mathematical criterion for determining whether a dynamical system is dissipative is
formulated. Various classical (crisp) dynamical system theoretic notions like attractor.
stability, robustness, chaoticity. homoclinicity. etc.. have been extended to fuzzy
dynamical systems also. Devaney’s definition of chaos has been extended to fuzzy
dynamical systems. Predictability and predictability time for fuzzy dynamical systems
have been defined.

In Section 3.2 fuzzy differentiable dynamical systems have been discussed. An
algorithm to solve one dimensional fuzzy differential inclusions has been described. This
algorithm is simpler and easier to apply (when applicable) compared to that given in [63].
We have used the algorithm to solve a second order fuzzy differential inclusion.

In Section 4.1 fuzzy fractals have been introduced. We have defined fuzzy fractal in
this section. Then we have shown that fuzzy fractals can be generated by iterated fuzzy
sets systems as attractors. In this section we have treated any grey level image as a fuzzy
subset of R%. where the membership value at each point (pixel) is a normalized grey level
pixel intensity value at that point (pixel). As implementation of the theory developed in
this section we have considered two examples of fuzzy fractal image generation.

In Section 4.2 a simple hypothetical mathematical model of turbulence is proposed.
By the term ‘turbulence’ we have meant chaotic occurrence of vortices in a dynamic
fluid. We have kept the model two dimensional for simplicity. We have defined a two
dimensional chaotic function. which gives the distribution of the vortices in the dynamic
fluid plane. Complete mathematical background for construction of this function has



already been prepared in Appendix C. It is assumed that the vortices have been created
by collision of fluid jets coming from different directions under certain conditions. To
model a vortex. a fuzzy differential inclusion relation has been formulated by considering
the ratio of radial and cross-radial components of the resultant velocity of the colliding
fluid jets at a point as a constant fuzzy number. The solution space of this FDI. obtained
by Algorithm 3.2.1. developed in Section 3.2, gives the simulation of a vortex. We call
this a fuzzy vortex. Chaotic occurrence of such fuzzy vortices gives rise to fuzzy
turbulence. We have presented a simulated model of a fuzzy turbulence. We also have
given a computer program which will generate more such fuzzy turbulence with
uncontrolled (random) parameters.

In Section 5.1 a modelling of a climatic disturbance has been provided in terms of
fuzzy differential inclusion. It is known that under favourable climatic and geographical
conditions a sufficiently strong initial disturbance is needed to give birth to an intense
tropical storm. such as a cyclone (known as hurricane in North America). From the fact
that curved cloud bands of a cyclonic vortex are of log-spiral shape we have inferred that
the ratio of radial and cross-radial components of velocity (with respect to some
cylindrical coordinate system) of the initial disturbance is a fuzzy number. The initial
condition is also fuzzy and therefore expressed by another fuzzy number. This way we
ultimately get a fuzzy differential inclusion modelling of the initial disturbance.

In Section 5.2 we have presented the solution space of the FDI formulated in Section
5.1. with the help of Algorithm 3.2.1. We have only considered the solution space, which
represents the best possible system behaviour (in the sense that the degree of possibility
of the behaviour by the system is the highest). and this resembles a log-spiral shaped
vortex. We have established the compatibility of this model with some of the existing
models of the development of a storm. With this model of the initial disturbance, which
under favourable conditions may mature into a severe cyclone. we have been able to
explain some of the mysteries surrounding the occurrence of Bay-of-Bengal cyclones.

In Section 6.1 we have studied the evolution of tumour in human tissue as a general
dynamical system. A mathematical equation has been formulated. In this section we have
undertaken some (classical) dynamical system theoretic analysis of this system. We have
indicated how Hopf bifurcation can occur in it and what can be its possible implication.

But the parameter values and the initial input values are uncertain quantities.
Conventionally these uncertainties used to be treated by formulating the equation as a
stochastic differential equation. But in Section 6.2 we have reformulated the equation as
a fuzzy differential inclusion relation. In order to accomplish this we had to estimate the
range of the uncertain quantities. From the data available from various sources as well as
through computer simulations (to determine the range of chaoticity and to exclude it) we
have made meaningful inference about the ranges of all the uncertain quantities involved.
After completion of the FDI reformulation of the system we have solved it. as usual. by
Algorithm 3.2.1. The simulation results have been presented. Based on these results a
number of modifications in some of the therapies administered to a tumour patient have
been suggested.
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7.2 Future Directions

Let us present a chapter wise discussion in the following paragraphs about the future
scope of work.

Chapter 2: Our method in Section 2.2 can be extended to define fuzzy complex number
system. Exactly the same algebraic development will hold for the fuzzy complex number
system as well as for the multidimensional fuzzy complex number system. A metric can
also be defined over the space of multidimensional complex numbers just as in Section
2.3. In this chapter we have defined just a barest minimum for the generalized fuzzy
vector space. A lot of scope for development is remaining wide open. Also in Section 2.5
we have just treated two examples. Many more example can similarly be treated and
more importantly, scope for development of an algorithm to generate an arbitrary fuzzy
subset of R", starting with a suitable collection of elements of R". with minimum number
of max-min operations. is remaining.

Chapter 3: In this chapter we have introduced some new concepts into fuzzy dynamical
svstem in terms of fuzzy time-evolution law or fuzzy attainability set mapping. Many
more can still be introduced. for example. we have not defined structural stability for a
fuzzy dynamical system and this can be taken up by future researchers. In Section 3.2 we
have given Algorithm 3.2.1 for solving one dimensional fuzzy differential inclusions.
Unfortunately this can not be extended to the multidimensional cases. The only algorithm
{0 solve the multidimensional fuzzy differential inclusions is due to Hullermeier [63]. But
for the proper utilization of fuzzy differential inclusions in modelling and simulation of
various natural phenomena finding an easier to implement algorithm to solve them is
important.

Chapter 4: Very little work has so far been undertaken in fuzzy fractal based image
generation. The pioneering work in this direction is due to Cabrelli et al. [21]. We have
introduced some modification and extension into it to make it easier to implement. But
the whole method is for the grey level images only. where the values of intensity of red,
green and blue (RGB) at each pixel are equal and measured by integral values from 0 to
255. A very challenging work for the future researchers will be to extend it to the colour
images also. This means that the intensity values of red. green and blue will be
independent of each other at any pixel. Each point (pixel) P on the image will have three
membership grades instead of usual one, namely p. p, and p,. where p(P) is the
membership grade of P to belong to the red region pg(P) is the membership grade of P to
belong to the green region and py(P) is the membership grade of P to belong to the blue
region. Values of p(P), etc. may be determined the way described in Section 4.1. The
resultant colour image will be a superposition of the three fuzzy sets as images in red.
green and blue.

As far as we know fuzzy turbulence is a completely new concept. introduced only in

Section 4.2. Here we have introduced only a simple hypothetical two dimensional model
of a turbulence. To be more realistic this model should be three dimensional or if we also
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want to incorporate time into it. it will be a four dimensional space time model. In this
four dimensional space-time reference frame the focation of any point on the axis of a
vortex will be denoted by (x. v. z) at some instant t. The vortex will be of cylindrical
shape. whose axis may make angles . B and y respectively with the three dimensional
space coordinate axes. Obviously. cos’a + cos’B + cos’y = 1. To describe the vortex at (x.
y. z) a local cylindrical coordinate system (r. 0. h) is necessary. Also another parameter m
as described in Section 4.2 is needed. r will be expressed in terms of m and 6 (Section
4.2). So to make a more realistic model of this type of turbulence we will need the
following independent parameters: x, y. z. t. any two out of o. f and y. and m, 6 and h.
i.e.. nine in all. Modelling of turbulence involving all these nine independent parameters
(some of them including m are fuzzy numbers) may be the subject of another elaborate
piece of research.

Chapter 5: In this chapter we have presented a model of the initial disturbing vortex at
the very beginning of a cyclogenesis. Here we have shown how to make fuzzy dynamical
system modelling of a complex atmospheric phenomenon. There are scopes of improve-
ment in this model. Here we took m as belonging to a trapezoidal fuzzy number M. In
fact a lot depends on the precise nature of M. In the most general case M may not even be
a fuzzy number, but a rather more complicated fuzzy subset of R. M may depend on
various thermodynamic and fluid dynamic conditions. A lot of scope of research is
remaining to determine a more realistic M. Also suitable fuzzification of various existing
numerical model of cyclone is possible. In each such case we will get a set of fuzzy
differential inclusion relations governing the thermodynamic and fluid dynamic aspects
of the cyclone.

In this regard the potentiality of another great work is worthy to mention, although it is
not directly very much connected with the mathematical theory of FDS. But it could
indeed be a great contribution of the fuzzy set theory based techniques to the atmospheric
sciences. Detection and monitoring of cyclones are accomplished through satellite and
RADAR imaging. Various feature analysis of such images has been described in great
detail by Dvorak [45]. Dvorak’s techniques to detect, monitor and predict cyclones are
followed all over the world. Implementation of these techniques have so far remained
almost entirely manual. The system can at least be partly automated through a fuzzy if-
then rule based expert system. This may be a very challenging project for some of the
future researchers in fuzzy pattern recognition in particular and fuzzy data mining in
general.

Chapter 6: In this chapter we have replaced a stochastic differential equation in a bio-
medical dynamical system by a fuzzy differential inclusion relation. This modelling has
given us some new insight. We have discovered the range of validity of the model. This
implies that new models need to be introduced for certain range of some parameter
values. where the existing model fails to represent the system. In this chapter our study
opens up the need for research on a new dynamical system to model the evolution of
tumour in human tissues when either (1) the neoplastic cell density X and hence m
becomes very fow (m < 1) or (2) the conversion rate from normal cells to the neoplastic
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ones becomes very high (for which v > 2) or both. The author believes that these two are
the most important open problems suggested by the present work.
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Appendix A

An Interpretation of Time

Time is an illusion.
- A. Einstein

As we have already observed that a dynamical system has three basic concepts namely.
phase space, time-evolution law and time. This is true irrespective of whether the
dynamical system is deterministic or non-deterministic. In this thesis our emphasis was
on non-deterministic dynamical systems. where we have modelled the uncertainty by
fuzzy techniques. In Chapter 2 we have discussed fuzzy phase space and in Chapter 3 we
have discussed fuzzy time-evolution law. In this appendix we want to discuss about time.
The meaning of time has baffled scientists and philosophers alike since the middle age.
Time has been analyzed and interpreted in different ways by different schools of
thoughts. Here our intention is to present an interpretation of time from a dynamical
system theoretic point of view. Though we have borrowed ideas from physics. whenever
required. it may not always be in conformity with all the notions of time in physics.

Length, mass and time are the three most fundamental quantities in physics. As
quantities in physics they must be measurable [22]. To make them measurable they must
somehow be associated with real numbers. The most standard way of associating real
numbers to a physical quantity is to define a real valued function whose domain of
definition is the set of that physical quantity. In this appendix one of our aims is to make
a thorough investigation about how the set of real numbers R has been associated with
the notion of time. An outline of the history of some mathematical interpretations of time
appears in [60]. But ours is different from any of them. For the physical significance of
time we have meticulously followed the relativistic interpretation [130] of time. Time Is
an orderer of events with respect to an observer. We have chosen the diurnal motion of
the Sun round the Earth as the most standard orderer of events. So we have first defined
time after this motion. Over this we have built up a physical model to give a better
interpretation of time. Finally we have established that this interpretation is equivalent to
expressing time as a variable over the whole of R. This enables us to establish that the
symbols like dx/dt are well-posed at least from the point of view of time t in the sense of
[85]. This enables us to represent a general differentiable dynamical system as

dx/dt = f(x,1).

Our arguments will hold equally good if the diurnal motion of the Sun round the
Earth is replaced by an atomic clock or any other suitable device or any other suitable
phenomenon. Here we have taken the space coordinates as real numbers. Now, for
example. consider an event space in the special relativity theory. Let each event be
expressed as (X. Y. z. )", x. v. z are space coordinates and t is time coordinate. The suffix
T stands for transpose.
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A.1 Formalization of Time

Let us start with the following ad hoc definition of time. which we shall refine later
in more than one steps.

Definition A.1.1: Time is an orderer of events with respect to a given observer. To order
we mean a linear order [138] relation.

In special relativity theory an event means a point in the four dimensional
Minkowaski's World Space [130]. i.e.. event is a four tuple (x.y. z. 0! where x. v. z
denote three space coordinates and t denotes the time coordinate. Clearly this definition
of event can not be taken to define time as orderer of events. Of course time can not exist
independent of event [129]. So we would like to associate time with event in another
manner. For us an event is a simple mathematical description of a physical incident. A
mathematical description of a physical incident consists of a number of parameters.
usually none of them depends on any other. Each parameter can take some value(s), finite
or infinite in number. Set of all such values which a given parameter can take, may be
called the domain of that parameter. In general the domain of a parameter may be an
arbitrary set, as for example. A = {Calcutta. London, Moscow}. B = {Paresh. Sujoy.
Mary. Igor}. Now. if you want to say that. Paresh is in Calcutta. you could just write it in
mathematical symbol as (Paresh, Calcutta). You may want to say. Paresh is in Calcutta.
Sujoy is in Calcutta, Mary is in London. Igor is in Moscow. A mathematical description
is like (Paresh, Calcutta) U (Sujoy. Calcutta) w (Mary, London) w (Igor, Moscow). If we
have another set C = {Summer. Monsoon, Winter, Spring} and want to describe
mathematically that. “*Mary was in London during Winter™, we can write (Mary. London.
Winter). So in general. we can mathematically describe an event by an n tuple. When
none of these n parameters depends on any other. n is called dimension of the event, i.e..
the number of independent parameters involved to describe the event. Collection of all
events of a particular context will make an evenr space or for short a space. 1f S denotes
the event space as described above. then S A x Bor S ¢ A x B x C as the case may be.
In a given space dimension of each event is same and this will be called the dimension of
the event space.

Definition A.1.2: If each parameter domain of an event is some interval of real line R
and the event space is equipped with the usual product topology. i.e.. the usual Euclidean
topology of R" [138], where n is the dimension of the event space. then the event space or
for short the event will be called continuous event.

Definition A.1.3: Whenever the event space is equipped with discrete topology [138]. the
event space or for short the event will be called discrete event.

Obviously, there may be events which are neither discrete nor continuous. For the
rest of this chapter we shall mostly concentrate on continuous events. Actually we shall
be even more specific. We shall concentrate on the event of drawing a continuous curve
in a multidimensional Euclidean space R". For example. we want to denote the events of
drawing the curve of v = sin x in the Euclidean plane. where x € [0. nt]. To do this we
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plot all the points (x. sin x). x € [0. n]. on the R". Each such point denotes an individual
event of plotting that particular point. The event space is U{(X. sin X)}. where the union
is taken over all x in [0. n]. But. to decide which point comes after what. we need to
define an order relation over the event space. When there is no risk of confusion we shall
use ‘event’ and ‘event space’ (i.e.. ‘events’) interchangeably. Observe that, drawing a
continuous curve is a continuous event. However the converse not true.

Here. we shall try to introduce a linear or total order relation [138] "<™ in the event
space S. which will enable us to write for any two events Ej and Ex in S either By < E- or
E- < E, (in what sense, we do not bother for the time being). One obvious way to do this
is to choose a linearly ordered set L. whose cardinality is greater than or equal to that of
S. Then there exists a one-to-one map [138] { : S — L. which is invertible on {(S) [138].
f(S) being a subset of L is already linearly ordered [138]. If {(Ei) = X, and f(E») = x»
and x, < x> then we define {'(x)) € f'(x2) i.e.. E; <Ea f(E)) = x; and {(E>) = x, can also
be written as (E,. x;) and (Ea. x») respectively. and since x; < x2. we define (E,. x)) < (Ea,
x»). Note that. here we have extended our definition to S x L.. This notion had been
followed by Einstein when he defined event in a four dimensional space time coordinate
system [130], where time t takes the role of elements of L..

At this point let us make a closer investigation into the age old orderer of physical
events. namely. the Sun rotating round the Earth in a circular path (with respect to an
observer on the Earth. For the time being we are not bothered by the eccentricity of
orbit). Since this happens all over this planet and perhaps this is the most important of all
incidents of our life (though we hardly ever feel it, for it is taken so much for granted), it
is quite natural that the entire human being has accepted this incident as an orderer of
events as a mere matter of fact. Here the Sun is taken as a ‘particle’ (physical
approximation of mathematical ‘point’) moving round a circular path. This particle is a
mere indicator. ‘Time’ is represented by each point on the circular path. “Time" and an
indicator to show its ‘quantity” are precisely what make a “clock’. In this sense the Sun
rotating in a circular path round the Earth is the most primitive and fundamental of all
clocks. Let us denote the points on the circular orbit of the Sun by r. Let ry be a fixed
point. We observe the Sun starts from ry and again comes back to it. This is a one
dimensional event according to our definitions (for, the dimension of a curve in R is 1).
described by r when the Sun is at r. We define this event as rime. This definition is more
concrete and more down to earth compared to Definition A.1.1. (But still this is not the
final one.) So time itself is a standardized event used to order all other events. But, the
time we have just defined, can really order other events? In strict mathematical sense it
can not. Because, the points on a closed curve (the so called Jordan curve) can not in
general be linearly ordered. Of course we have introduced such an order over the points
on the orbit of the Sun round the Earth. but not without restriction. And the restriction is.
“Our ordering is valid only from event r; up to before the next occurrence of ry”. But we
shall very often need to order events which can not be accommodated within the two
successive occurrences of ry. namelv three occurrences of ry itself. So. to build up a
consistent mathematical theory of event ordering. we must look forward for some other
orderer. But at the same time we may wish to retain as much of this good. age old orderer
as possible. To satisfyv both the needs we suggest replacement of the closed circular path



by an open ended circular helix. In three dimensional Euclidean space the equations of
the helix are

X = COSt, (A.1.1)
y = sint. (A.1.2)
z = t/2m. (A.1.3)

We have taken the radius vector of the Sun with respect to the Earth as unit. Sun’s
diurnal orbit with respect to Earth is given by (A.1.1) and (A.1.2). For any fixed event r.
to make sure that rq is never repeated, we have introduced (A.1.3). (A.1.1). (A.1.2).
(A.1.3) together give a circular helix with unit radius in R’. whose axis is the z-axis. Let t
e [0. 2n), the helical path traversed from the point (1. 0. 0) [inclusive] to the point (1. 0,
1) [exclusive] in R* has a one to one correspondence with the curve given by X = cos t
and y = sin t, where t € [0, 2rt). which also preserves the order of traversing. The curve
given by x = cos t and y = sin t. t € [0. 2%). is the diurnal orbit of the Sun. So each
diurnal motion of the Sun is uniquely represented in the helix. During a complete diurnal
motion of Sun each point on the circular orbit is uniquely identified by the position of the
Sun (indicator). So. in general, each passage of the Sun through each point of its orbit is
uniquely recorded on the helix given by (A.1.1). (A.1.2) and (A.1.3). Upon completion of
one full diurnal motion, one unit advancement along z-axis is made (to make the
advancement along z-axis unit. in (A.1.3) t is divided by 2m). Let hy be a fixed point on
the helix. Each point h traversed on the helix from hq along the positive direction of z-
axis uniquely represents a particular passage of Sun (say the nth passage, recorded on the
z-axis) through a particular point r, on its orbit. So the portion of the helix traversed from
ho along positive direction of z-axis is a standardized set of events by which we tend to
order other events.

Let hy = (cos tg, sin ty. t; / 21). We are to order the events given by the portion of the
helix from h; along the positive z direction, henceforth will be denoted by H. We notice
that t is real number. Why then we don’t try to construct a one to one and onto mapping
{: T — H, T is an interval of R, by which we will eventually be able to order H ? Let

f() = h = (cost, sint, t/2n). (A.1.4)

Obviously f is onto. If f(t)) = f(t2) thent, / 2n =t/ 2n. i.e.. t; = to. So { is also one to
one. So { is invertible. {'(h)=t. {'(hy) =t;and T = [t. ov). We write h; < hy iff {'(h}) <
£ (hy).

But. then we already have got a much simpler and more straightforward orderer of
events. namely T. Since { is a one-to-one correspondence which also preserves order. we
may replace H by T. We notice that { is continuous on T and { is continuous on H. So {
is a topological homeomorphism. At this point two questions are immediate. (a) Can T be
extended to the whole of R 2 and (b) Even after such an extension will T be sufficient to

order all physical events? In the next section we shall look for answers to (a) and (b).



A.2 Main Results
Theorem A.2.1: T can be extended to the whole of R.

Proof: Without loss of generality we can choose hy = (1. 0. 0). This makes to = 0. SoT=
[0. oc). Now let us ponder over the direction of rotation of the Sun round the Earth. In the
southern hemisphere it goes from east to west through north. Say. our observer is always
on the southern hemisphere. Suppose if the direction of rotation of the Sun round the
Earth is suddenly altered. i.e.. the Sun goes from west to east through north (this has been
described as reverse process in [129]), what is the most natural way for our observer to
try to order this event? Let on the helix. h, be the point which denotes sudden change of
direction of the Sun. Then the most natural way to order the events of reverse rotation of
the Sun should be by altering the sign of t in the equations (A.1.1). (A.1.2)and (A.1.3) of
the helix. Changing sign of t in (A.1.1) and (A.1.2) signifies the change of direction of
rotation of the Sun round the Earth with respect to the observer. Change of sign of tin
(A.1.3) signifies traversing the helix in the negative z direction. If the helix is considered
as threads of a screw inserted from positive z direction. the usual motion of the Sun is
given by the unscrewing motion of the screw through the threads (helix). So the reverse
motion of the Sun should be given by the screwing motion of the screw through the
threads (helix). Since the screw has been inserted from the positive z direction, the
screwing motion must direct the screw towards the negative z direction. This gives the
justification why the events of reverse motion of the Sun should be denoted on the helix
along the negative z direction. Now suppose h; = hg. So h, is the divider on the helix
between the events denoting the usual motion of Sun and the events denoting the reverse
motion of Sun. If an event E is denoted by a point h = (cos t. sin t. t/ 2m) on H the reverse
event. whenever it exists, is denoted by h' = (cos (-t). sin (-t). -t/ 2m) on H'. Where H' is
the portion of the helix traversed from hq (exclusive) through the negative direction of z-
axis. But. then by the reasons given above we have got a better orderer of reversible
events, namely the interval (-oc, 0) of R. And our extension of T to R is complete.
Henceforth we shall call the extended set T.

And now we are in a position to give our third and final definition of time.

Definition A.2.1: The elements of the set T described above are called 7ime.

Since T = R the notions of calculus are as valid in T as they are in R. Symbols like dx/dt
are well-posed [85] at least from the point of view of t. An event may occur att or at -t. It
is not within the scope of this appendix to decide at which of the two times should it
occur. A detailed discussion of this can be found in [55] and [129].

Theorem A.2.2: All finite dimensional continuous events are orderable by T.

Proof: A finite dimensional continuous event is by definition a subset of R" for some
integral n. 1f S be the event space. by definition of continuity of S. cardinality of Sis

equal to ¢, where c is the cardinality of continuum [138]. So there exist a one to one map
of S into T. By our previous arguments it is straight forward to order S by the order of T.
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We can explore even more. The question is. in how many different ways S can be ordered
keeping its continuity intact ? The answer is. the number of different space filling curves
[138] that can be drawn in S. If dimension of S is | then S is a continuous curve (and in
this case the only curve filling the space S) in R". If dimension of S is greater than 1. S
will be topologically homeomorphic to some subset of R™ for some minimum m such
that. 1 <m < n. Clearly in this case S will be able to accommodate uncountably infinitely
many continuous curves. Among them the space filing curves are given by functions of
the form @ : | — S. where | is some interval of T. ¢ is continuous. one to one and onto.
Now ordering of S by I is a straight forward matter. In this case however ¢ is nowhere
differentiable. So the symbols like dx/dt is no longer well-posed. where X = @(1). t € I

m

and x is a vector in R™.



Appendix B

An Elaboration of Mandelbrot's Definition for Fractal Sets

The definition of fractal we stated at the beginning of Section 4.1 was first proposed by
Mandelbrot in 1975. Towards the end of this appendix in Definition B.4 we will present a
modified version of this important definition. Later Mandelbrot himself regretted that his
definition of fractals does not include some sets as fractal. which (at least according to
him) should have been regarded as fractal. Mandelbrot has called these fractals as
borderline fractals [46]. Hilbert's space filling curve is a typical example of a borderline
fractal. In Definition 4.1.5. where we have defined fuzzy fractals we needed Mandelbrot's
definition of fractal. In this appendix we have given a complete explanation of the terms
involved in Mandelbrot's definition. Let us start with the Lemma B.1 below where. we
have presented an easy ingenious proof of existence of the Hausdorff-Besicovitch or just
Hausdorff dimension.

Let A be a subset of a complete metric space X. Let {¢;}; be an open cover of A. We

choose ¢, such that, for all i diam(c;) < € for some € > 0. Let H'.(A) = inf X (diam ¢))". A
e A

is some countable index set. s > 0. Let lim H.(A) = H(A).

e

Lemma B.1: For any subset A ¢ X. there exists unique s, € [0.cc) such that,

H(A) = o« fors<s,
H>(A) = 0. finite or infinite for s =s,
H(A) = 0 fors>s,.

Proof: A being a subspace of X. itself is a metric space. So by Urysohn’s embedding
theorem. A can be embedded in R" for some n > 1 [138] (n may be infinite too). Without
loss of generality we take n such that A can not be embedded in R™'. In this case we call
R" the minimal subspace in which A can be embedded. We call n the embedding
dimension of A. When A can not be embedded in R" for any finite n we call embedding
dimension of A is infinite. First. let embedding dimension of A n be finite.

We claim that H"'(A) = cc.

H™(A) = lim (inf 3 (diam ¢,)™") (B.1)

0 i

Where A < U ¢, and diam ¢, < € > 0. ¢; is an open set in R" for all i. Now let us explain

the right hand side of (B.1). (diam ¢)™' = Lebesgue measure of an (n - 1) cube in R™' of
side length equal to diam c,. Let I, be n-cube of edge length diam ¢,. M(l,) = (diam ¢,)"
and M(1,.) = (diam ¢)"". M is Lebesgue measure. We write 1, = U, [ CNRPENS L
¢ for I = k. Cardinality of A = number of points in a line segment of length diam ¢, (> 0).
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because (diam ¢,)" = (diam ¢;)(diam ¢ ie. M(1,) = (diam ¢)M(l). Le.. cardinality of
A is uncountable. So to cover each ¢, we need uncountably many n - | cubes. Every
metric space is second countable and therefore without loss of generality we can take (¢}
as a countable open cover of A as long as each ¢; is open in R". Let dy, is an open (n - 1)
cube in R™' whose edge length is diam c. M(di) = (diam ¢)"'. We shall need
uncountably many di to cover ¢;. Since {¢} is an arbitrary open cover of A we need
uncountably many dy to cover A. So.

H”']E(A) = inf 2.« M(dy) (i varies over countable set. k varies over
uncountable set.) Edge length of di < €.

H™'(A) = lim (inf X M(dy))

=0 Lk

lim (inf T (diam ¢,)™")

e—0 p ki

p varies over uncountable set. for k is uncountable and M(d;,) = (diam cp)”". diam ¢; =
diam ¢, < € > 0. Hence H™'(A) = .

Now we claim that H™'(A) = 0. To show this let us write the equation

H™'(A) = lim (inf 2 (diam ¢))"™).

e—0 [

¢, is an open set in R". (diam ¢,)" = Lebesgue measure of the n cube containing ¢;. A <
w ¢,. where 1 is countable.

¢

Since diam ¢; < € and € — 0. We can take diam ¢, < ( 1/i%). Hence

H™'(A) = lim (inf ¥, (diam ¢))™")

e—0 '

IA

lim (inf €2 (diam ¢))")

e—0 1

< lim (inf X (1/i1)")

e—0 1

= lim einf X (1/i)" = 0. [S(1/i")" = constant forn > 1.]

€0 | 1

H(A)=oc fors=n- 1 and H(A) = 0 fors=n + I. Let (s) = H(A) when A is fixed and
s e [0.0). From the above arguments it is clear that. for s <n - | ¢(s) = o and fors 2 n +
1 o(s) = 0. So ¢(s) has at least one infinite jump discontinuity in [n - 1. n + T]. We will
show that. @(s) has only one such infinite jump discontinuity in [n - 1. n + 1]. To prove
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this let this be not true. i.e.. there are at least two such infinite jump discontinuities s. s,
(say) in [n- 1.n+ 1], s, <s,. Butthis is impossible. for H(A) = ( whenever s > s.. And
therefore H(A) = 0 for s, < s < s, and also for s > s,. So s, can not be an infinite jump
discontinuity of @(s).

On the other hand when embedding dimension of A is infinite. A can only be embedded
in R*. From the above reasoning it is clear that s = s, = 0. This completes our proof.

Definition B.1: We define s, as Hausdorff dimension of A.

Definition of Hausdorff dimension appears in any standard text book on fractals, for
example Edgar [46]. But before presenting the definition lengthy back ground works are
needed to be done. Here. by Lemma B.1 we have accomplished the task in a simpler yet
shorter way.

Hausdorff dimension is a bit too complicated and hard to compute. So there is an
easier version of this notion namely. the box counting dimension or the capacity
dimension first enunciated by Kolmogorov. Box counting dimension is another important
fractal dimension.

Definition B.2: If Ns(A) is the smallest number of sets of diameter at most d which cover
A. Then if

logN(;(A)
Diy(A) = lim .
20 Jog(1/8)

we call Du(A) the box counting dimension or capacity dimension of A, provided the limit
eXIsts.

Unfortunately, it is not true that the box counting dimension and the Hausdorff
dimension are always equal. For example, box counting dimension of the set of rational
numbers in [0.1] is 1 (being dimension of a dense subset). But Hausdorff dimension of
this set is 0 (since the set is countable). However box counting dimension and Hausdorff
dimension do agree for a large class of sets [124].

Next, we define an important topological dimension namely, the small inductive
dimension. This is the “topological dimension™ of Mandelbrot’s definition of fractals.

Definition B.3: (Edgar [46]) A subset of a metric space is clopen iff it is both closed and
open. A metric space is called zero dimensional iff there is a base for the open sets
consisting of clopen sets. In general. the small inductive dimension for metric spaces Is
defined in an inductive manner. Each metric space A will be assigned a dimension.
written ind A. chosen from the set {-1.0.1.2.3.....cc}. consisting of integers > -1 together
with an extra symbol oc. considered to be larger than all of the integers. The empty space
@ has ind @ = -1. If k is a nonnegative integer. then we say that ind A < k iff there is an



open base of A consisting of sets U with ind cU < k - 1. ¢U is boundary of U. We say ind
A =k iff ind A <k but ind A is not less than or equal to k - 1. Finally. if ind A <k is false
for all integers k. then we say that ind A = oc.

Lemma B.2: If the Hausdorff dimension of a metric space A is s then ind A = [s]. [s] is
the greatest integer less than or equal to s.

Proof: Let embedding dimension of A be m. Two cases may occur. Eitherm - 1 <s <m
ors=m.

Case l: s=m.

For any open set U < A there exists open set U’ ¢ R™ such that U = U" m A. Since U' 18
open in R™, U’ is union of countable number of infinitesimal m-cubes. Intersection of A
with each such m-cube gives a basic open set of A (in relative topology). Since Hausdorff
dimension of A = m at least one basic open m-cube must be in A. But boundaries of this
basic open m-cube have dimension m - 1. which implies small inductive dimension of A
is m. But m is integer. So m =s = [s].

Casell:m-1<s<m.

A has an empty interior in R™. Otherwise A would have contained at least one open m-
cube and in that case s = m would hold true. Since s > m - 1. A must contain an open (m -
I)-cube. To prove this consider

HYA) = lim (inf ¥ (diam ¢)'). c.e have usual meaning.

0 1

Ifk <s, H(A) = o, if k > s H(A) = 0. i.e., Ifk =m - I, HYA) = oc, i.e.. i becomes
uncountable (see the proof of Lemma B.1). To keep i countable we take a subset of A say
B. which can be covered by a collection of infinitesimal open (m - 1)-cubes of edge
length equal to diam ¢, as diam ¢, < € and € — 0. It is clear that.

Hk(B) = o fork<m- |
HYB) = 0 fork>m- 1.

1.e.. Hausdorff dimension of B is m - 1. So B must contain an infinitesimal open (m - 1)-
cube. But B  A. So A contains an infinitesimal open (m - 1)-cube. But this open cube
belongs to an open basis of A. Boundary of this open cube has small inductive dimension
m - 2. i.e., Small inductive dimension of Aism- I.i.e..ind A=m- 1 =s].

Let us rewrite Mandelbrot’s definition of fractals as

Definition B.4: A subset of a complete metric space A will be called fractal if s - [s] > 0.
where s is Hausdorff dimension of A.
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We must note that if in case of a subset A of a complete metric space s - [s] > 0 holds
it is indeed a fractal set. However the converse is not true in general. For example. in case
of the graph of Hilbert's space filling curve. If this graph in R* is A and Hausdorff
dimension of A is sthens - [s] = 0 (for s = 2).
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Appendix C

Proof of Chaoticity of Logistic Function

First order difference equations arise in many contexts in the biological. economic and
social sciences. lterated logistic function system is one of them. where the logistic
function is given by the quadratic map f(x) = px(1 - x). This apparently very simple
dvnamical system has a very complicated dynamics. This dynamics has been explored for
various values of p. where x € [ = [0, 1]. May [106] and Feigenbaum {50] have studied
the dynamics of iterated f for 0 < p <4 by extensive numerical calculations. Devaney has
shown by symbolic dynamics that. dynamics of { under iterations is chaotic for u =4
[30]. He has also shown that, the dynamics of { under iterations for p > 2 + V5 is chaotic
[30]. Here we have established by classical analytical and geometric reasoning that. the
dynamics of { under iterations is chaotic for u 2 4.

Let us consider the logistic function {(x) = px(l - x). u = 4. For u > 4. { will take
values greater than | and f{' (i > 2) will take negative values. But whenever {' takes
values greater than 1 or less than 0. ! always takes value less than 0. We discard those
x for which f'(x) < 0 for some i. The set

S=4x]0<lim {'(x)< 1}

1—7

is a Cantor set (To be more precise. S is topologically homeomorphic to the classical
middle-third Cantor set). Formally. S is known as the nonwandering or prisoner set of {.
S is obtained as i — . S being intersection of nonwandering sets of {' for each i > 0, is
the smallest nonwandering set of f under iterations.

For u=4 f'(x) e I forall x € 1 and for any natural i. If f'(x) = 0. then {"!(x) =0 and
if f'(y)= 1. then f'“(y) = 0. Clearly. for p = 4. S = 1. We will show that. for p 2 4, the
dynamics of iterated f is chaotic on S. A (crisp) chaotic dynamical system has been
defined in Definition 1.4.4.

We divide S into two mutually disjoint sets. namely the set of end points E and the
set of interior points T. E = {x € S| {'(x) = 0. for some i}. T = {x € S| {'(x) # 0 for any
0.

Clearly. no periodic point other than 0 belongs to E. Also E is countable. But fi(x) =

v will never happen for x. v € E and for some i unless v = 0. Topological transitivity
(Definition 1.4.2) does not hold in E.

A [has points of all periods



Though in Theorem C.1 we prove a more general result. yet mainly for historical
reason. we want to start this section with the following lemma. The proof of which is
rather geometric in nature.

Lemma C.1: f(x) = pux(1l - x). u >4 has a point with period 3.

Proof: For u > 4. maximum value of {(x) > 1. where 0 < x < 1. {([0. 1]) 2 [0. 1], that is.
£1([0. 1) = [0. 1], or more particularly. {'([0. 1]) = [0. a] or {([0. a]) = [0, 1]. Since u >
4.a e (0. ). So f(f([0. a]) = {([0. 1]) 2 [0. 1]. or {3([0. 1]) < [0. a]. or {*([0. 1]) = [b.
a]. where 0 < b < a. or {*([b, a]) = [0. 1]. Likewise, *([c. a]) = [0. 1] for some ¢ € (b. a).
We can take the maximum c (< a) such that, {*([c. a]) = [0. 1] holds. {* is continuous in
[c. a], f3 is differentiable in (c, a). Since 0 < ¢ < a < 1. graph of *in [c. a] must intersect
the line joining the points (c.c) and (a.a) in the euclidean plane. In other words (p)=p
for some p € [c. a]. {(x) =x holds only forx=0and x=(u- 1)/ Foru=4.(u-1)/p
>%. So {(p) # p. for 0 < p <a< 1/2. To show that there is a p € [c. a] such that, f(p)=p
but {3(p) # p, we note that. a = [1 - {1 - (4/u)}'”]/ 2. Since {(a) = 1. {*(a) = 0. {*(b) = I.
Let us take the maximum b (< a) for which {*(b) = 1 holds. 3(b) = 0 and t‘s(a) =0. fis
continuous in [b. a]. differentiable in (b. a). Since 2([b. a]) = [0. 1]. £2([b. a]) ©[0. 1]. So
3 d e (b. a) such that. {(d) = 1. So by previous argument there is a point of period 3 in (b,
d] and another point of period 3 in [d. a). Since {(d) = 1. d can not be a point of period 3.
So there are at least two distinct points of period 3 in (b. a) but only one point of period 2.
And we are done. A similar reasoning will show that the same result holds for { for p =4

also.

By Sharkovskii's theorem [137]. { (for u > 4) has a periodic point of period 1 in {0,
1] for each positive integer i. All periodic points except 0. belong to T. Next we shall
state and prove our main theorem of this section.

Theorem C.1: For each positive integer n there are 2" fixed points of {" (u =4) in I. Each
of them is not necessarily of period n.

Proof: We shall prove it by induction on n. For n =1 we have {(0) = {(1)=0and {(1/2)
= 1. { is monotonic increasing in [0. 1/2] and monotonic decreasing in [1/2, 1]. { has two
fixed points, namely 0 and %..

So, for n = 1 our assertion holds. Let it be true for n = k > 1. We shall additionally

assume that if a, b are any two successive zeros of fk(x) then there is a unique ¢ € (a. b)
such that,

D e =1.
2) {* is monotonic increasing in [a. ¢] and

K - . . .
3) {" is monotonic decreasing in [c. b].

k=1 - - : AR :
We first show that {*° satisfies 1. 2 and 3. Then as a consequence it has ¥ fixed points.
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We have fw(a) = tf"”(b) = {*"!(c) = 0. It implies that a. ¢ are two successive zeros of
!, We also observe that {**!is continuous in [a. ¢]. differentiable in (a. ¢). Hence by
Roll's theorem 3 a e (a, ¢) such that (t‘k*'(a))' = (. or 4( a1 - 2{_'k(a)) = 0. Since
f*(x) is monotonic increasing in (a. ¢). Hence (t'k(a))’ >0.So {Na) = Y. that is. {k”(a) =
I. This a is unique in (a. ¢) follows from the fact that {* satisfies 2 and 3. Now we shall
show that {*"! is monotonic increasing in [a. o] and monotonic decreasing in [a, c]. Since
2(1/2) = 0, *(1/2) = 0 for k > 2. Either b< . or a > 2. So {is monotomc in [a. b].
Now let f**' is not monotonic in [a, a]. So 3 x.y € [a. a] such that, 1) = 'y,
where x # v. But {(x) # f(y). Therefore f f(x)) = f(f(_\ ). for * lS monotonic in [a ]
This contradiction implies that ! is monotonic in [a. a]. Since @)= 0and {'(a) =
| it is monotonic increasing in [a. a]. Similarly it is monotonic decreasing in [a., c]. So b)
induction for any natural n and for any two successive zeros a, b of {'(x) there is a unique
¢ € (a, b) such that. 1, 2 and 3 hold.

Now take g,(x) = f(x) - x. x € [a. c]. Since gy(x) is continuous in [a. c]and 0 <a<c<b
< 1. go(a) < 0 and gy(c) > 0. By intermediate value theorem 3 y € [a. ¢) such that, gn(y) =
0. that is, {"(y) = v. Leave alone the trivial case when a = 0. We want to show that only
one such y exists in (a, ¢). But before going to accomplish that, by similar reasoning we
find & € (c, b) such that, g,(8) = 0. So. for two successive roots a, b of {"(x) we are
getting at least two roots of g(x). But {"(x) and gu(x) are polynomials of same degree.
that is. 2". Hence gn(x) has exactly two roots between any two successive roots of {"(x)
that is. {"(x) has 2" fixed points.

A similar argument will establish the same result for f(x) = ux(1 - x), x € [0, 1],
where p > 4.

Example: Take f*(x). It has 2° = 8 fixed points. 0 and % are included in them. But 0. %
are the two fixed points of {(x). In fact 0, % are included in the list of fixed points of
{"(x) for any n. Similarly f (x) has all the fixed points of £3(x) and { x) as its own fixed
points. But still there are 215 2f 2) - (7’ 2) - 2 fixed points of f *(x) each of which
has an orbit of length 15.

For lim {"(x) will have at least one (actually lim {2" - X (2'-2) - 2} in number) orbit

n—x n—- 1€ ttactors of nexcludimg 1!

of length lim n. So it has the potentiality of becoming a dense orbit. In fact when we shall

n—x

prove topological transitivity of { we shall see that every such orbit is indeed dense. We
have actually proved more. Let us restate the Theorem C.1 below.

Theorem C.1: For f(x)=ux(1 -x).u>4and {:1 — 1. {"(x) has 2" fixed points in 1. not
all of them of period n. Let S, = {x e 1|0 < {"(x) < 1. for some natural n}. Then S, is
union of 2™ closed subintervals of . successive pairs are overlapping only at end points
only when p = 4. (The last one is easy to establish by induction). Precisely two branches
of the graph of {" is described on each such subinterval of S,. one is where f" is



monotonic increasing from 0 to 1 and another is where {" is monotonic decreasing from |
to 0.

B. Topological Transitivity

Now we are in a position to establish topological transitivity of f(x) = ux(l - x) for u
> 4. over the nonwandering set or attractor of { over l. that is. S = E v T as defined
above. As usual we shall always iterate { within I.

Theorem C.2: { is topologically transitive on S for p = 4.

Proof: Let us note that in the proof of the Theorem C.1 if a. b are two successive zeros of
{'(x) then 3 ¢ € (a. b) such that. {""'(c) = 0 and a. c are two successive zeros of (%)
[a.c] < [a. b]. After n iterations of { over 1, let S,, be the nonwandering or prisoner set.
Clearly. lim S, = S. Let U. V be open sets of S such that U n'V = &. We will show that,

n—

for any such pair U, V there exists a natural q such that, {(U) "V # Q.

Since U.V are openin S, let U= 1, Sand V =], n S. where |; and J, are open intervals
in | of length & and y respectively. Let x € U. Then x € ;. For any given positive integral
n there exists a closed bounded subinterval D, e S, such that, x € D,. Clearly D,, D Dy,
DDy Do, where Dpsy € Spir. Dnso € Spaa. ete. We take n so large that D, < ls. But
we have {"(D,) = 1. Also {" is strictly monotonic in D,. So {" is invertible and ({")'(I) =
D, or. {"(I) = D,. Similarly, we have F,, < J, where F,, € S,.. Let {"(Fy) = Hy < Dy,
Since f" is continuous and F,, is closed. hence H,, is also closed. {"(Hy) = Fi. {7 is also
continuous on F. So Hy, is closed bounded interval. S is the smallest nonwandering set
of { under iterations. So {"(S)= S for all n > 1. which implies {"(H, ' S) < F,, n S. for
{"(Hy) = Fn. ButHymS<c Uand F, mS < V. Hence {'(U) "V = &. Take n = q and
we are done.

C. Density of Periodic Points
Theorem C.3: Periodic points of f are dense in S.

Proof: We already know that for any natural number n there are 2" periodic points of { in
I with period n or less. Since at each of these points values of all iterates of { remain in I.
all the periodic points are in S and except 0, all are in T to be precise. For any natural n.
S, contains all the 2" fixed points of {", each subinterval of S, containing exactly two
such fixed points. (We have already seen that S, has exactly P compact, i.e., closed and
bounded subintervals.) Since lim S,, = S. any open set U of S contains S m (interior of a

n—7s

subinterval of S, for sufficiently large n). So U contains at least two periodic points of
period n or less i.e.. periodic points are dense in S.

D. Sensitive Dependence on Initial Condition
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In subsection C and subsection D we have established topological transitivity and
density of periodic points respectively for the iterated logistic function system for p = 4.
By the result of Banks et. al. [8]. sensitive dependence on initial condition then follows

immediately.

Hence by Definition 1.4.4 the iterated logistic function system is chaotic for u > 4.
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