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Contributions to Emerging Techniques in Survey

Sampling

Sanghamitra Pal

Preface

This dissertation contains seven Chapters. The contents in the respective
Chapters may be briefly recounted as follows.

A topic of classical interest in survey sampling is how to ensure the ex-
istence of a uniformly non-negative (UNN) unbiased estimator for the mean
square error (MSE) of a homogeneous linear estimator (HLE) for a finite
survey population total. Héjek (1958), Vijayan (1975) , Rao and Vijayan
(1977) and Rao (1979) developed a number of results which boil down to the

following as narrated in the monograph by Chaudhuri and Stenger (1992).

If there exist non-zero constants w; and the unknown values y; of the vari-
able of interest y be such that for a given sampling design the MSE of an HLE
for the finite population total Y, the sum of y;’s over all the N population
units, takes the value zero if %— is a constant for every ¢ = 1, -+, N, then the
MSE for arbitrary values of y;’s can be expressed in a specific form. When
the above-mentioned ‘constraint’ holds, then this specific MSE-form leads to
a specific form of a homogeneous quadratic unbiased estimator (HQUE) for
the MSE if it is to have the above noted ‘UNN’ - property. In the particular
case of the Horvitz and Thompson’s (1952) estimator the above ‘constraint’
induces the requirement that every sample with a positive probability of se-
lection should have a constant number of distinct units in it. When this con-
dition is satisfied, Yates and Grundy’s (1953) variance estimator is available
with simple conditions for its ‘UNN-property’, which has been examined in

the literature to be satisfied for several celebrated schemes of sampling. Two



other classical variance estimators for the Horvitz and Thompson’s (1952)
estimator are given by Horvitz and Thompson (1952) and Ajgaonkar (1967).
But no simple results are available to ensure their ‘UNN’ property. Chaud-
huri (2000a) has added a correction term to Yates and Grundy’s (1953) vari-
ance estimator in case the ‘constraint’ is relaxed giving simple conditions for
the ‘UNN’-property of his resulting variances estimator. In the first Chapter
of this thesis (i) sampling schemes have been identified satisfying Chaudhuri’s
(2000a) conditions. Certain theorems have been established to cover general
HLE’s with relaxed ‘constraints’. Further extensions have been implemented
to cover multi-stage sampling and randomized response (RR) surveys rele-
vant to this context. The details are presented in the Chapter 1 and have
appeared in Chaudhuri and Pal (2002a).

The Chapter 2 deals with a specific version of cluster sampling found
appropriate in certain kinds of surveys in practice. In this case the sam-
ples vary in size and hence the variance estimators of the kind presented in
Chapter 1 turn out relevant. We encounter a practical survey situation when
there are two kinds of sampling units -- some are ‘small’ units like ‘Primary
health centres’ (PHC) in Indian villages and some are “bigger” ones - the
so called BPHC’s. Around each BPHC there are a few PHC’s that are ge-
ographically contiguous and each serves exclusive groups of villagers. Each
such set composed of a BPHC along with the allied PHC’s in its close prox-
imity may be called a ‘cluster’. In a survey implemented by Indian Statistical
Institute (ISI) and sponsored by UNICEF in 1998 on infant, child and mater-
nal mortality it was found useful to have representations in samples of both
PHC’s and BPHC’s. In order to have adequate geographical coverage it was
found convenient to adopt, within each stratum of villages in a given district
of interest, a version of cluster sampling where (a) initially a simple random
sample (SRS) of PHC’s is to be selected without replacement (WOR), adding
(b) to the sample a BPHC from a cluster whenever a PHC from the latter
happened to be selected. In spite of this equal probability sampling of the
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PHC’s the over-all sampling of the clusters involves ‘unequal probability se-
lection” with varying sample-sizes. Consequently, a wide variety of choices of
estimators is possible leading to the need for new theoretical developments.
The details are presented in the Chapter 9. The contents have appeared in
Chaudhuri and Pal (2003a).

A simple, yet popular, scheme of sampling is the well-known circular
systematic sampling (CSS) with probabilities proportional to sizes (PPS)
with a random start but a ‘pre-assigned sampling interval’, as determined
by the consideration of the sample-size required and the known normed size-
measures. This scheme has the following well-known disadvantages:

(1) the realized sample-size, in certain situations, falls short of the ‘intended
one’, (2) the inclusion-probabilities of certain units fail to be proportional
to the sizes and their ascertainments sometimes become too hard, espe-
cially if the size-measures be very high in magnitude as is often the case,
(3) inclusion-probabilities of many pairs of units become zero leading to the
non-availability of an ‘unbiased estimator’ for the variance of a linear esti-
mator for a finite population total. Following the earlier approaches by Das
(1982) and Ray and Das (1997) we develop encouraging results for a ‘mod-
ified” CSSPPS scheme that admits a ‘random’ choice of a sampling interval
as a random number between 1 and (X — 1), where X is the aggregated
value of all the population size-measures, which are adjusted to be positive
integers. In particular, this scheme admits positive inclusion-probabilities
for all the pairs of population units. In terms of efficiency also this scheme
competes well against an analogous scheme of drawing two ‘independent’
CSSPPS samples with a number of draws fixed in a comparable way. The

details are narrated in Chapter 3. The contents are to appear in Chaudhuri
and Pal (2003b).

Many followers of Warner (1965) restrict to sample selection by ‘simple
random sampling with replacement’ (SRSWR) in developing estimators for

proportions of people bearing socially stigmatizing characteristics by gen-
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erating ‘randomized responses’ (RR) from the people sampled on adopting
ingeneous devices. We illustrate how the theory may be extended to cover
‘general sampling schemes’ by referring to particular RR procedures given
by Singh and Joarder (1997), Franklin (1989a, 1989b) and Singh and Singh
(1992, 1993). Our developments as follow-ups of Singh and Joarder’s (1997)
works have appeared in Chaudhuri and Pal (2002b). Such extensions are
necessary because it is hard to find sponsors for large-scale social surveys
exclusively to tackle ‘sensitive issues’ and especially by the very restrictive
SRSWR selection method. In practice the sampling schemes are more com-
plex, allowing stratification, clustering, selection in two or more stages, with
varying probabilities and selection ‘without replacement’. Also, in such sur-
veys numerous items of enquiry are covered and only a few of them may relate
to sensitive features. So, methods of estimation are needed based on ‘direct
responses’ (DR) relating to ‘innocuous’ and ‘randomized responses’ (RR) re-
lating to ‘stigmatizing’ issues from the same persons selected by a common

complex sampling procedure. The subject is dealt with in our Chapter 4.

In survey sampling one procedure used in common to construct a confi-
dence interval (CI) for a parameter like a finite population total is to use a
pivot, which is ‘an estimator minus the parameter’ divided by an estimated
standard error of the estimator, treat the pivot as a standard normal deviate
- an assumption that may be valid for large samples — and thereby consulting
the normal table work out the CI with a pre-assigned confidence coefficient.
In terms of the ‘generalized regression’ (greg) estimator such a procedure is
easy to employ. But if one intends to avoid this assumption of normality
alternative ways to construct CI's are to employ the bootstrap technique in
diverse ways. Treating the greg estimator, motivated by a ‘regression mod-
elling through the origin with a single regressor’, as a non-linear function
of four different Horvitz and Thompson’s (HT, 1952) estimators of the pop-
ulation totals of four different variables it is easy to apply Rao and Wu’s

(1988) bootstrap technique to construct CI’s for population totals employing
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non-linear functions of statistics. But this technique applies only under the
two conditions that (1) every sample with a positive selection - probability
has a common number of distinct units in it and (2) the product of inclu-
sion probabilities of any two distinct units must not be less than the joint
inclusion-probability of these two units. We present modifications needed in
methods when either of (1) and (2) is violated at a time.We carry out cer-

tain simulation-based numerical calculations for comparative studies in our
Chapter 5.

In Chapter 6 we describe a situation where an initial sample may not yield
enough observations on a variable of interest to ensure adequate level of effi-
cacy for generalized regression estimators and for empirical Bayes estimators
developed therefrom for several non-overlapping domain totals. In such a
case we examine how adaptive sampling technique may be suitably applied
to effectively enhance the relevant information content by dint of gathering
supplementary sample observations by appropriate formation of networks so
that the above two types of estimators may acquire improved accuracy lev-
els. We utilize Chaudhuri’s (2000a) results concerning ‘Adaptive’ sampling

which we adopt in this context.

Sarndal (1996) introduced the striking idea of bypassing the preponder-
ance of the terms involving the ‘inclusion-probabilities’ of paired units in
estimates of variances of Horvitz and Thompson’s (1952) estimator and of
the generalized regression estimator derived therefrom for a population total
because (i) they are hard to calculate and (i) they often destabilize the vari-
ance estimators. Deville (1999), Brewer (1999,2000) and Brewer and Gregoire
(2000) have interesting contributions as follow-ups of this approach.

The concluding Chapter 7 pursues with this topic adding a few results and

presents a few numerical evaluations for competing estimation procedures.



Contents

0

1

A Critical Review of the Literature 1

Alternative Mean Square Error Estimators in Complex Sur-

vey Sampling 12
1.1 Introduction . . . . . . .. ... ..o 13
1.2 Alternative MSE estimators . . . . . . . . . . . .. .. ... 14
1.3 An Illustrative sampling scheme for which the ‘Constraint

C’ does not hold but alternatives to HT, YG Estimators have

the ‘UNN’ property . . . . . . .. . .. .. .. .. ... 17
1.4  MSE estimation for greg predictor . . . . . . . . . ... .. 20
1.5 Multi-stage sampling and randomized response survevs . . . . 24
1.6 A numerical exercise on efficacy in estimation . . = . 27

1.6.1 Comments on numerical findings and recommendations 32
On a version of cluster sampling and its practical use 34
2.1 Introduction . . . . . . . . ... 35
2.2 Estimators and Variance Estimators. . . . . . . . . ... .. 38
2.3 Numerical Evaluation of Relative Efficacies of Various Proce-

dures by Simulation . . . . .. .. ... 0L ... 45
2.4 Concluding Remarks and Recommendations . . . . . . . . .. 49

Systematic sampling: ‘Fixed’ versus ‘Random’ Sampling In-
terval 52

vi



3.1 Introduction . . . . . . . . . A 53

3.2 Alternative Circular Systematic Sampling Schemes and Re-

spective Estimators . . . . . ... ..o oo 54
3.2.1 CSSPPS Scheme of Sample Selection . . . . . . . . .. 54
3.2.2 CSSPPS with ‘random sampling interval’ . . . . . . . . 58
3.3 Conclusion and Recommendation. . . . . . . . ... ... ... 68

4 Estimating numbers/proportions of people with stigmatiz-

(91

ing features from randomized responses by specific devices

through complex survey sampling 69
4.1 Introduction . . . . . . . . ..o 70
4.2 Unbiased Estimators and Variance Estimators . . . . . . . .. 72
4.3 A Comparative Study with Numerical Illustrations . . . . . . 77
4.4 Repeated randomized response techniques of Franklin (1989a,b)
and of Singh and Singh (1992, 1993): . . . . . .. . ... . .. 81
4.4.1 Estimation using SRSWR-based repeated RR’s . . . . 82

4.4.2 Estimation using Repeated RR’s in Complex Surveys 87
4.5 Conclusion and recommendation . . . . . . .. .. .. ... 100

Bootstrap Procedures for Generalized Regression Estima-

tors 101
5.1 Introduction . . . . . . . . ... o 102
5.2 Bootstrap Procedures . . . . .. ... o000 103
5.3 Simulation for a numerical study of efficacies . . . . . . . . .. 107
5.4 A Discussion on the Simulated Results and Concluding Remarks110

Estimating Domain-wise Distribution of Scarce Objects by
Adaptive Sampling and Model-based Borrowing of Strength112

" 6.1 Introduction . . . . . . . ... e e 114

6.2 Sampling and Estimation Methods . . . . . ... ... .. .. 115
6.3 Simulation - based Numerical Evaluation of Relative Efficacies 120

vil



6.4 Concluding Remarks and Recommendations . . . . . . . . .. 122

7 Simplified variance and mean square error estimation avoid-

ing inclusion-probabilities of paired units 124
7.1 Introduction . . . . . . . . . .. 125
7.2  Numerical comparison of cfficacies of a few alternative estima-
tors of a population total . . . . . ... ... o0 131
Bibliography 140

viil



Chapter 0O

A

Critical Review of the

Literature

In the traditional design-based approach to the problem of inference in sam-

pling from a finite survey population of a given number of labelled units

we are aware of a few well-known ‘negative’ or ‘non-existence’ results which

briefly are as marked I and II below.

L.

[I.

In the class of design-unbiased estimators (UE) of a finite population
total or mean there does not exist one with the ‘uniformly smallest
variance’ so long as a non-census design is employed. Basu (1971) re-
inforces this theorem of his by citing his famous ‘Circus’ or ‘elephant’
example to point out how the celebrated estimator given by Horvitz and
Thompson (HT, 1952) as also, earlier by Narain (1951), ceases to be
effective, in spite of its theoretical properties of Admissibility (vide Go-
dambe (1960), Godambe and Joshi (1965)), hyper-admissibility (vide
Hanurav (1968)), Necessary bestness (vide Ajgaonkar (1967)) etc. un-

less it is based on an appropriate sampling design.

Godambe (1955) earlier showed the non-existence of a uniformly mini-

mum variance (UMV) estimator of a finite population total in the class



of homogeneous linear unbiased estimators (HLUE) for a general class
of sampling designs. That this does not apply to what are characterized
as ‘uni-cluster designs’ (UCD) has been pointed out by Hege (1965) and
Hanurav (1966).

Stenger (1977) further showed that an exception is also provided by ‘in-
formative’ and especially ‘sequential’ sampling designs for which UMV
estimator in the HLUE class is available for a population total or mean.

[II. That the HT estimator is the unique and hence the UMV estimator in
the HLUE class of estimators for a population total when one employs a
UCD is demonstrated by Hanurav (1966) by appealing to the concepts
of “sufficiency” and ‘minimal sufficiency’ in survey sampling. Basu and
Ghosh (1967) and Basu (1958, 1969) discuss how the combination of
the set of distinct units in a sample ignoring their order of appear-
ance along with the unit-wise variate - values constitutes the ‘minimal
sufficient statistic’ based on ‘elementary survey data’. Murthy (1957)
earlier laid the foundation for the construction of a ‘complete class’
of statistics by showing that given an unbiased estimator of a finite
population parameter that is not a function of this ‘minimal sufficient
statistic’ there is available one with a less variance which is a function
of this ‘minimal sufficient statistic’. Unfortunately this ‘complete class’
is not adequately narrow to yield serviceable estimators, many of which
remain competitive among themselves. Basu (1971) again pointed out
that when the parametric space in the context of inference in finite pop-
ulations is allowed to be ‘wide enough’ with each value of a variable
of interest permitted to be any real number, thus 0 = (0,0,...,0), for
example, being a possible realization for the vectorNY = (y1,...,yn) of
values for the N units of a finite population for a va;iable of interest v,
then of course not only the HT estimator ty = 3,/};, with 7;(> 0) as

i€s
the inclusion probability of a unit 7 in a sample s but also the ‘infinitely



N
: ; — :
many’ others like t4 = Z Y : ~+E a,, with 4 = (a1,...,ay) as any
ics i 1 ~
element in the parametric space of Y with real co-ordinates are admis-

sible for Y = ‘Z:yi. But if the parametric space is narrowed down to
a ‘close neighbéurhood’ of A, then ty is inferior to t4 if 4 excludes
0 and hence is ‘inadmissiblg’. Yet the HT estimator still :)ccupies a
gentral position in the ‘survey sampling’ literature though many of its
competitors enjoy attention and are also emerging anew supported by
modern ‘model assistance’ and ‘calibration’ approaches, which we shall

briefly narrate in what follows.

About estimators for population totals a major concern is to derive their
suitable variance or mean square error (MSE) formulae by way of getting
estimators for them as estimators of measures of errors in estimation. More
importantly, one needs to get estimators of standard errors (SE) of the es-
timators of the totals so as to construct plausible confidence intervals (CI)
with high enough Confidence Coefficients (CC). In order to achieve this one
needs to ensure the MSE - estimators to be non-negative. The problem
of getting uniformly non-negative (UNN) unbiased estimators for the MSE
of a homogeneous linear estimator (HLE) for a finite population total has
been addressed by many survey sampling researchers like Hajek (1958), Sen
(1953), Raj (1954), Yates and Grundy (1953), Vijayan (1975), Rao and Vi-
jayan (1977), Rao (1979) among many others. In case one employs a sam-
pling design admitting samples only with a common number of distinct units
each, Sen, Yates and Grundy’s (SYG) unbiased estimator for the variance
of the HT estimator is UNN for many sampling designs for each of which
the condition “mw; > m;; for every i,5(: # j)” is satisfied, writing m,; as the
inclusion-probability of the pair (7, 7) of units in a sample. But no plausible
result covering the “unequal sample - size designs” exists in the literature.
So, we first address this problem in our Chapter 1 with certain ramifications

because a plenty of sampling schemes admitting variable sample sizes often
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are realistic in practice as we shall presently illustrate in this thesis. In the

context of survey sampling we need to briefly describe

(1) Super-population modelling approach (cf. Cochran, 1939, 1946),
(2) Prediction approach (cf. Brewer (1963), Royall (1970)) and

(3) Model assisted approach (cf. Siarndal, Swensson and Wretman (1992)).

°)

Since the unified survey sampling theory that treats ¥ = (y1,..., %, .-

yn) as a vector of fixed constants is not adequately selective of right strategies
for sample-selection and estimation in%uitably optimal way, one way to sort
this out is by supposing Y to be a random vector allowing wide possibilities
for the nature of its progability distribution suitably modelled in terms of
certain unknown low order moments and possibly with independence or zero
correlations.
A population generated by such a probability distribution is called a super-
population. An advantage for this is to apply a new criterion of controlling
the ‘model-expected design-variance’ often called the ‘Anticipated Variance’
(AV) (cf. TIsaki and Fuller (1982), Fuller and Isaki (1981)) of a design -
unbiased estimator and derive optimal strategies.

A prediction approach starts with ¥ as a random vector and consequently
Y as a random variable and hence instead of estimating Y attacks the prob-
lem of predicting Y by adding Z ¥; to a predictor of Z y; based on a suitable
modelling of Y. This approac}zfzioes not need probalk?isiity sampling. Rather,
purposive sar;lvpling may yield the most desirable predictor so long as a pos-
tulated model is simple as well.as correct. Here ‘robustness’ is an important
requirement b‘ecause one needs a strategy to work in a desirable way not
only when a postulated model is tenable but also when it is ‘not’. Brewer
(1979) and Sdrndal (1980, 1981, 1982) have recommended going for a pre-
dictor which is model unbiased or more importantly is asymptotically design
unbiased (ADU) and asymptotically design consistent (ADC) so that it may

4



perform well at least when the sample-size is large irrespective of the correct-
ness or otherwise of the model. This leads to the ‘model assisted approach’
of Sirndal, Swensson and Wretman (SSW, 1992) under which a postulated
model “suggests a particular form of an estimator” but its efficiency and
accuracy are gauged in terms of its design-based properties of being ADU
and/or ADC.

A measure of its error is also design-based and a design-based performance
of an estimator of this measure is in question in evaluating its accuracy. A
model-based study of a measure of error and its estimation is also of course
recommended and pursued with in the literature by many researchers.

A central position is occupied by Cassel, Sirndal and Wretman'’s (CSW,
1976) generalized regression (greg, in brief) estimator, rather predictor for a
finite population total in the literature on ‘Model assisted survey sampling’
approach, a principal reference for which is Sérndal, Swensson and Wretman
(SSW, 1992). Our work relating to HT estimator in Chapter 1 is also relevant
to the Greg estimator which is a generalization upon it. Hence, the Chapter
1 pays attention also to the Greg predictor in a way similar to that paid to
the HT and other related homogeneous linear estimators.

Stratified, multi-stage and cluster sampling and related methods of esti-
mation of finite population totals and means are the immediately next steps
in the development of the classical theory of design-based estimation covering
strategies directly relating to a finite unstratified population of its units. The
Chapter 2 deals with a novel method of cluster sampling and related estima-
tion methods necessitated by a specific practical survey sampling situation
deemed crucially worthy of attention.

- Our proposed cluster sampling permits sample sizes to vary and hence
we had a scope to try our methods developed in Chapter 1 to take care of
the situation.

Systematic sampling is another classical form of cluster sampling and is
traditionally used in Indian ‘National Sample Surveys’ (NSS) with probabil-
ities of selection of the first stage units (fsu) proportional to their sizes. Here

3



also a pre-assigned sample - size may not be realized, vindicating the role of
some of the results in our Chapter 1 in case one employs the HT method of
estimation.

Since m;; may be zero for certain pairs (¢, 7), ¢ # 7 for the traditional PPS
(probability proportional to size) systematic sampling with a ‘fixed interval’,
taking a cue from Das (1982) and Ray and Das (1997) we eliminate this
shortcoming on allowing ‘varying intervals’ as is needed in variance estima-
tion. Here also sample size neced not be a constant calling for our results in
Chapter 1. The issues are covered in our Chapter 3, the content of which is
now accepted for publication in Pak. Jour. of Stat., Vol. 19(2), 2003, as a
joint paper by Chaudhuri, A. and Pal, S.

[n multistage sampling the units ¢ in U = (1,...,4,..., N) are treated as
the first stage units (fsu) with y;-values supposed to be unascertainable and is
itself to be composed of a certain number M; of second stage units (ssu) with
y, (7 =1,...,M;) as the value of the jth second stage unit (ssu) in the sth
fsu namely ¢j with y; as the sum of all these y;,’s, the ijth ssu in its turn being
composed of a certain number of third stage units (tsu) and so on. In order
to estimate Y = Xy, one starts on taking a sample s of fsu’s, following up by
sampling ssu’s independently from the respective fsu’s sampled, ascertaining
the sampled y;; values and repeating the same procedure in the subsequent
stages like-wise if y;;'s themselves are not ascertainable as well.

Thus one may visualize that from such a multistage sample r;’s are avail-
able as independent quantities satisfying

(i) Er(r;) = ys, (i) Vi,(r;) = V; or V,; and numbers v, or v,;’s are available
such that either (iil) Fr(v;) = V; or (iv) Ep(vy) = Vi, writing £,V as
~operators for expectation, variance with respect to sampling at stages ‘later’
than the first. Then an estimator e = t(s,r;|¢ € s) corresponding to ¢ =
t(s,y;]i € s) for Y is available along with estimators of variance or MSE of
e in terms of (s,r;,v;(i € s)) or (s,ri,vs(2 € s)). Raj (1968), Rao (1975)
and Chaudhuri, Adhikary and Dihidar (2000) provide the research materials
relating to these.



These ideas extend themselves straight forwérdly to help one in address-
ing the problem of handling randomized response (RR) usable in estimating
Y when y;’s relate to sensitive issues like earnings by gambling, amounts of
taxes evaded, expenses on alcoholism, numbers of days of drunken driving
etc. or in estimating proportions of people addicted to stigmatizing habits
and practices. Warner (1965) introduced the RR technique to estimate the
unknown proportion of people bearing a sensitive characteristic on choosing a
simple random sample with replacement (SRSWR) and gathering data from
selected persons about their bearing a stigmatizing characteristic A or its
complement A¢ not as a direct response (DR) but by dint of a randomization
device in order to protect a respondent’s privacy. A spurt of research ensued
as documented by numbers of published papers and a monograph by Chaud-
huri and Mukerjee (1988). Estimation of the proportion parameter noted
above is mostly based on SRSWR’s. But estimation of totals of quantitative
variables is based on general sampling schemes as well. Chaudhuri (1987)
showed that the above formulation for multistage sampling is available to
take care of RR’s, replacing Er, Vi, by Er, Vg respectively namely the expec-
tation and variance operators for ‘randomized’ response gathering instead of
direct questioning.

He could visualize expressing V; in the form
Vi = oy} + Biyi + 0;

with a;, B;, 6; as known constants determined by specific RR devices leading

to
1

=1 (oir? + Biri + 6;), provided 1+ a; # 0
Q4

U;

as satisfying Fg(v;) = V;i. This yields easy solutions for estimation including
variance estimation.

In our Chapter 4 we present a few results concerning RR’s applicable
under unequal probability sampling, a portion of which is published as a
paper by Chaudhuri, A. and Pal, S. in Jour. Ind. Soc. Agri. Stat. (2002Db).
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In constructing a confidence interval (CI) for Y a traditional procedure
is to start with a point estimator e for Y along with an estimator for the
variance or the MSE of e as say v, and straightaway regard the pivotal

quantity
e—-Y

Nz
as a standardized normal deviate and hence take (e — 1.96\/v, e + 1.964/v)
as a 95% CI for Y. Godambe (1998), Rao and Wu (1987) and Woodruft
(1952) presented alternatives to this approach including the application of
the theory of estimating function.

Another approach is to avoid normality assumption altogether and use
bootstrap samples to construct CI’s either by (1) Percentile method or (2) the
Double boostrap method or other alternatives combining bootstrap statistics
with jackknife statistics as recommended by Rao and Wu (1988). Starting
with the greg predictor motivated by a linear regression model through the
origin for a single regressor as e and v as its estimated MSE as provided by
Sarndal (1982) for a fixed sample-size design and treating it as a non-linear
function of HT estimators for four separate finite population totals one may
casily apply the traditional and Rao and Wu'’s (1988) bootstrap sampling pro-
cedures to construct 95% CI’s for Y respectively with and without normality
assumptions and compare the two procedures on examining the lengths of
the respective CI’s.

In our Chapter 5 we cover the case of ‘non-fixed sample size’ designs
utilizing developments in our Chapter 1 relevant to this case and modifying
Rao and Wu’s (1988) bootstrap sampling technique which applies only with
fixed sample-size designs in the present context. Our comparison of the CI’s
by the two alternative approaches is however simulation-based.

In the broad area of survey sampling research one emerging sub-area of
promise is concerned with a situation when for many population units y;’s
are each zero but there are many other units with y;’s not only positive but

also with some of them quite large. Consequently Y is large too but unless



the sample captures enough of the latter units its information content may
be low and an accurate estimation of Y may be a tough problem.

Thompson (1990, 1992), Thompson and Seber (1996) did a substantial pi-
oneering research in tackling this, introducing their Adaptive sampling tech-
nique which is one of capturing further units with positive y;’s by additional
sampling starting with an initial one. Chaudhuri (2000) showed how an
estimator based on an initial sample with any design may be revised to acco-
modate additional data gathered from an adaptive sample realized through
the initial one. Also Chaudhuri, Bose and Ghosh (2002) demonstrated its ef-
ficacy in capturing rare units bearing the features of interest and in deriving
efficient estimators.

We already mentioned the role of model-based prediction approach, where
no specific form of the distribution of Y is postulated. If one is prepared as
well to postulate a specific parametricNmOdel for the random vector Y, for
example normality, independence in suitable ways, a simple Bayes estimator
for Y is also available starting with an appropriate initial estimator. As this
Bayes estimator generally involves unknown parameters one may instead cm-
ploy empirical Bayes (EB) estimator (EBE) replacing the model parameters
by their suitable estimators say, by the method of moments. Fay and Herriot
(1979) and Prasad and Rao (1990) provide basic tools for using the EBE’s
along with estimates of their measures of error.

These methods are particularly appropriate when one intends to effec-
tively estimate not just the population total itself but also the totals of its
various non-overlapping segments, called domains on drawing a sample de-
signed without taking account of the domains when in particular there is
low representation of the sample observations among some of these domains,
called small domains. In order to correct for low efficacy levels for the es-
timators for these small domains one tries for improvements on borrowing
strength from outside the domain - specific parts of the sample but from
other parts of the sample on proper postulation of models to reflect affinity

among the domains. Thus, instead of using the ordinary greg estimators for
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the domain totals one may employ their ‘synthetic’ versions with borrowed
data from the entire sample in estimating the postulated regression slope
parameters. One may further improve thereupon by the EB technique with
further model- specifications. In the Chapter 6 of our thesis we illustrate
how adaptive sampling may fare in the context of such domain estimation by
synthetic greg and EBE’s derived therefrom. Besides the ‘model assisted’ or
‘model-motivated’ justification for the greg predictor a ‘model free’ property
is also provided for it in the literature.

To rid the HTE of some of its shortcomings one may replace the weights
ﬁ% of ty by some other weights 97%, say, close to Fi with a well-defined concept
of a ‘distance’ to quantify this closeness. Using some auxiliary observations
z;'s well related to y;’s one may impose a condition like

Z; -
——gsi = 4\ .
5

which is called a ‘calibration equation’, which is somewhat a ‘side condition
on the weights’ to be chosen.

One possible choice is

. ZiniQi

s = 1+ (X _ _’> s

S1 zezs T Z T?Qz
1ES

for many suitable choices of Q;(> 0).

But Z &gsi is a ‘greg’ estimator and this is a ‘calibration’ estimator with
ics i
no ‘backing up’ by any super-population modelling.

This is an additional qualification for the greg estimator for it to remain in
a central position. Because the greg estimator is a calibration estimator and
hence with an interpretation as an exclusively design-based estimator with
no appeal to any model we may be satisfied with the design-based estimators
for its mean square error in constructing a CI for Y based on it as a point

estimator.
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Sirndal (1996), Deville (1999) and others propagated the idea that a
usual estimator of the variance of the HT estimator may be unstable as it
involves too many cross-product terms with coefficients which are difficult to
calculate as they involve m;;’s which for many sampling schemes are hard to
compute. So, Hajeks (1981) Poisson sampling scheme provides a relief as it is
free of cross product terms because m;m, — m;; = 0 for this scheme. But as the
sample size for this scheme may vary widely over 0 to IV, instead of the HTE,
some other estimators need to be used to ensure stability in estimation.

One such proposed estimator turns out to be a particular form of a greg
estimator. Brewer (1999, 2000) and Brewer and Gregoire (2000) introduced
certain approximations connecting m; and m;;’s. Hartley and Rao’s (1962)
scheme involving PPS Circular Systematic Sampling with a prior random
permutation of the population units also provides some approximate formulae
for m;;’s which all turn out positive.

In the Chapter 7 of our thesis we examine numerically the performance

of several of these alternatives including a few suggested by ourselves.
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Chapter 1

Alternative Mean Square Error
Estimators in Complex Survey

Sampling

Abstract

JNK Rao (1979) gave a ‘necessary form’ for an unbiased mean square
error (MSE) estimator to be ‘uniformly non-negative’ (UNN). The MSE is
of a homogeneous linear estimator (HLE) ‘subject to a specified constraint’,
for a survey population total of a real variable of interest. A corresponding
theorem is presented when the ‘constraint’ is relaxed. Certain results are
added presenting formulae for estimators of MSE’s when the variate-values
for the sampled individuals are not ascertainable. Though not ascertainable,
they are supposed to be suitably estimated either by (1) randomized response
techniques covering sensitive issues or by (2) further sampling in subsequent
stages in specific ways when the initial sampling units are composed of a

number of sub-units, rather ‘subsequent stage units’.
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1.1 Introduction

Let us consider a survey population U = (1,---,4,---, N) of a known number
N of identifiable units labeled ¢ = 1,---, N. On it is defined a real variable
of interest y with values y; with a population total Y = Ly;, writing ¥ to
denote sum over 7 in U. We suppose that a sample s is drawn from U with
a probability p(s) and the values y; are ascertained for the units 7 in 5. A
homogeneous linear estimator (HLE) for Y is to be employed. For such an

estimator written as

ty = Lyibsila (1.1)
with by;’s as constants free of Y = (y;, -+, yi,- -, yn) and [ = 1 if ies; 0 if
it £s; then the MSE is

M(tb) = El(tb — )/)2 = EEdely] (12)

Here, E; denotes expectation with respect to the design p corresponding to

p(s) above; £3 denotes sum over ¢, 7 in U with no restrictions :
dij = Ey(bsils — 1)(bs;I5; — 1).

Rao (1979) considered a sub-class of estimators ¢, in (1.1) for which the
following

“Condition, say C” holds:

‘If there exist w;(# 0) as constants free of Y, then
M(ty) =0, if z; = Y for every ¢ in U is a constant’. (1.3)
i

Under “C” it follows that M(t,) may be written as

Yi Y;
M(tb) = —-iz<§di]"ll)iw]‘(a — u—)])2’ (14)
? J
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here %(%? denotes sum over 7,j(: < j) in U. This was enunciated by Rao
(1979) following the approach of Hajek (1958). Rao (1979) then deduced
that in the class of homogeneous quadratic unbiased estimators (HQUE) of
M(ty) one that may be uniformly non-negative (UNN) is “nccessarily of the

form”

2
m(ts) = ~Ldy Lujwiw; (i— - Z—J) : (1.5)
i j

)

here d,;'s are constants free of Y and I;; = I,
subject to E\(ds;ls;) = d;; for every 4,7 in U. (1.6)

This is Rao’s (1979) theorem as a further development following Vijayan’s
(1975) and Rao and Vijayan’s (1977) earlier works. In the next section we
present certain results when the ‘Constraint C’ is relaxed.

1.2 Alternative MSE estimators

Rao (1979) illustrated several classical sampling strategies for which the
above theory applies. For example, by denoting m; = ¥ p(s)I;,

writing ¥ as the sum over all samples s with p(s)s> 0, as the inclusion-
probability gf 7, in a sample, the Horvitz and Thompson’s (HT, 1952) esti-
mator (HTE) given by ty = Eyi%, assuming “m; > 0 for every ¢ in U - a
necessary condition for the existence of a design-unbiased estimator for Y,
satisfies ‘C" if ‘v(s) = X1, the number of distinct units in s, is a constant

for every s with p(s) > 0.

Since ¢ty is unbiased for Y, its MSE equals its variance which is, writing
mij = Lp(s)Ls;, as given by HT (1952), on taking I; = Ily;,

Vilty) = Eyf%ﬁ+22<2yiyj%ﬁ, in line with (1.2). If p(s) > 0 = v(s)
K3 1 ] 7
is a constant, then ‘C’ holds and in accordance with (1.4), Vi(ty) equals
) Yi Yj
VQ(fH) = %%('ﬂ'i'frj - 7rz])(—’ - _])2

m; U
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a form of the variance of ty as given by Yates and Grundy (1953). Accord-
ingly, if ‘C’ holds, ¢ has its unbiased variance estimator given by Yates and
Grundy (YG, 1953), as

Toui\f us : . o
vyG = %g(mﬂj —mi) () (% - 7%)2, assuming m;; > 0 V4,7

This is ‘UNN” if T4 > T4 VZ,]

If ‘C’ does not hold, then Vi(ty) may be unbiasedly estimated by

o 1= I, My = ity Lo
o — S0 DV oy (L — L) 2 2.1
ur = S; ( - )m+ i<jyy]( T, )sz’ 24

as was proposed by HT (1952).

Unfortunately, it is difficult to work out conditions for ‘UNN" property
of vy, except noting that m;, m;;’s should be such that vyr must be a “non-
negative definite” as a quadratic form in terms of y;’s for i in s for every
s with p(s) > 0. This is too hard a condition to check for most sampling

designs.

We intend to provide another alternative unbiased variance estimator
for t; when ‘C’ fails and yet it is easy to present conditions for its ‘UNN’

property. Before that we present a theorem covering the general estimator
ty for which ‘C’ fails.

Theorem 1. Let there exist non-zero constants w; free of ¥, for zeU. Then,
writing z; = ¥, it follows that

2 N
M(tb) = w§<2j3d,—jwiwj(zi - Zj)2 + Z%}l—_ai, where &y = jgl diﬂUT (22)

7

2 2
Proof: —l%:dijwiwj(zi —25)° = —3 IE;E dij wiw}-(ag + E]i - —_—_u),-wj)
v N »
— %ZJ} dijyiyj - Xz: E( _El dijwj — diiwi)

= Yidiyy; — 2 -y—i—ai.
1 W

1
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This completes the proof with one obvious step.

Corollary 1. Two unbiased estimators of M(t,) immediately suggested by
Theorem 1 are:

-[9i
my(ty) = Engz]Iﬂ]wlw]( i y]) + Eyl i —
w; w; T
with dy,, subject to (1.6) and
1 Y ; 2
may(ty) = ———[EEcgwiw; (— i _Yiye Z‘y—lazcsi]
p(s) i<J w;  uy w;

lsi5di; Jp— I )
g sij’c‘” Zsﬂsi'

This my(ty) is motivated somewhat by Aigaonkar’s (1967) estimator of
V(ty), which is va(ty) = p(l)[(N 1)Ey1 L + 5 EEylyJIsU]

n—-2

Writing cg; =

when v(s) = nVs with p(s) > 0.

Remark 1. Conditions for the ‘UNN’ properties of m;(t,) and mo(t,) are

obviously

(1) wiw;dg; 155 <0, w05l > 0 for
the former and

(ii) wiw;csi; < 0, wiuls; > 0 for the latter.
Remark II. n;, >0 Vi=3YI[;>0V1
S
and Mg > 0 \V/Z,] = 2]51']' >0V 1,].

The easy proofs are omitted. The Corollary 2 given below was given by
Chaudhuri (2000a).

Corollary 2. If ‘C’ does not hold, writing v = Xv(s)p(s), the variance of

tg equals, on allowing v(s) to vary with s, p(s) > 0,

Vi Yive |, VP
Va(ty) = S8(mm; — m) (= — =)+ 225 (2.3)
1<J T Ty 5
writing
, 1 ,
Bi=1+— % m, —v),iel. , (2.4)
Ty j#i
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Proof: Easy, on_recalling v = Xm;.

Corollary 3. Two unbiased estimators of V3(ty) are

Li; Yi Y L y?
£) = SN o (Y Yiy2 g il g 2.
vi(ty) 2oy (i, Wg)(m Wj) + . mﬂ (2.5)
and 2
1 T — Wiy, Y Y v;
2 = ZZISZ L LA TR A E/si—l i 2.
U?( H) p(S)[i<j J( Elsij )(’/Ti 7{_]_) + uc ﬂ,iﬁ] ( 6)

Remark III. Conditions for the ‘UNN’ properties of both of v;(ty) and
vy (ty) are:

‘mmy >y Vi, (i #5),6: 20 V.
In section 1.3 we illustrate situations when (A) v(s) varies with s when

p(s) > 0, but the (B) conditions for ‘UNN’ properties of v (ty) and va(ty)
hold.

1.3 An Illustrative sampling scheme for
which the ‘Constraint C’ does not hold
but alternatives to HT, YG Estimators

have the ‘UNN’ property

Brewer (1963) gave a sampling scheme when normed size-measures p;(0 <
pi <1 Vi,Ip, = l)are available for ieU. Here, on the first draw, the unit
i is chosen with a probability proportional to g, = Tﬁ;—;”)) and leaving aside
the unit 7 so chosen, a second unit j(# 7) is chosen in the second draw with
a probability 1—{-? Writing

D = E(;25-) he showed that for this scheme the ‘inclusion-probability’

7:(2) for i equals 2p; and ‘that’ for (i, j), denoted by 7;;(2) equals (—21%%—)( 1~1.'2p1 +

17



1-1713,-)' [t is further known that
Aij(2) = m(2)m;(2) = m5(2) 2 0 Vi, j(i # j) in U. (3.1)

We use ‘2" within parentheses to emphasize that this scheme uses 2 draws.
Let the sample chosen as above be augmented by adding to the 2 distinct
units so drawn as above, (r — 2) further distinct units from the remaining
(N — 2) units of U by simple random sampling (SRS) without replacement
(WOR). For such a scheme introduced by Seth (1966) admitting r distinct
units in each sample, the inclusion-probabilities 7,(r) for ¢ and m;(r) for

(2,7)(# # 7), involving r(> 2) draws, are respectively

) = sl =2+ (N = )],
ry(r) = mj(2)+(;,__22)(m(2) b (2) — 2 (2)
r—2._ r-—3 . )
+(N — 2)(N — 3)(1 = 7i(2) = 7;(2) +7y(2))

Let us slightly modify this sampling scheme of Seth (1966) by allowing (r — 2)
to be (1) a number (n — 2) to be chosen with a pre-assigned probability
w(0 < w < 1) and (2) a number (n—1) to be chosen with the complementary
probability (1 — w). Then a sample s so drawn will have a size ‘n with
probability w’ and ‘(n+ 1) with probability (1 —w)’. Thus v(s) is either n or
(n+1). Putting n, (n+ 1) by turn in m;(r), m;;(r) above we get the inclusion

probabilities 7}, say, for i and 77; for (2, j) for this ‘modified Seth’s sam-
pling scheme’, as

! =  wm(n)+ (1 —w)m(n+ 1)
and 7}, = wm;(n) + (1 —w)m;(n + 1).

Then, we have

Theorem 2. ni7} > 7' Vi,j (1 # j)inU.

18



Proof: On simplifications we get, using the results of this section,

My = 'ﬂz(2)7fj(2)+%}‘)(Wi(z)Jrﬂj(?)“27%‘(2)7@(2)) 52
(n—1-w), 3.2
[W] (1= mi(2) — m;(2) + mi(2)m;(2))
and
nfo = my(2) + U (m(2) + m(2) - 2my(2))
(n—2)(n—1-2w) (3.3)

(N —2)(N -3) (1 = mi(2) = m;(2) + mi;(2)).

Subtracting (3.3) from (3.2) and using (3.1), on further simplications the

theorem is immediately proved.
Next, let us note the

Lemma. For any design p

L v(s)p(s) = L my +m
P s)p(s) 2,

Proof : 7, = % p(s)l;. So, g mi; = S p(s)(v(s) = 1)y = X p(s)v(s) — 7.
8 VE=! 8

§31
This gives the result.

Incidentally, using this Lemma, f; in (2.4) may be alternatively written
also as |
Bi=— T v(s)p(s) —v, 1€ U. (3.4)

T; 8§31
For the scheme of sampling given by Seth (1966) as modified above, the

formula for f; turns out to be
* 1 * *
The above Lemma, yields

Theorem 3. 3 > 0V wel.
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Proof: ¥ p(s)v(s) = wnm(n) + (1 —w)(n+ 1)m(n + 1). So,

g = ;};[wnm(n) + (1 —w)n+ Dm(n+1)] = [wn+ (1 —w)(n+ 1)]
= (- w)mln 4 1)~ m()] > 0

because m;(n + 1) — m;(n) = l(;vwi;) > 0.

Since for this scheme v(s) is either n with a probability w or (n+1) with
a probability (1 —w), Rao’s (1979) ‘Constraint C’ here is violated. Yet, for iy
based on this scheme, our proposed new estimators vy (ty), vo(ty) for Vi(ty)

are ‘uniformly non-negative’.

It seems to us that the celebrated generalized regression (greg) estimator
or predictor given by Cassel, Sarndal and Wretman (CSW, 1976) for ¥ needs

a discussion in the present context. Let us take it up below.

1.4 MSE estimation for greg predictor

Let X = (z1, -, -, on) with z; as the positive value of an auxiliary

variable z for 7 in U with a known total X = Zz;. Then, choosing numbers
. L1 1 1 l—m 1 b it
R, suitably for example as - or 3 or — or =M or ., (with suitably

11

specified ¢ in (0,2)) etc., the greg prledictor for Y given by ‘CSW (1976) is

i Y; z;
o =Sl g = L, 4 bp(X - S0,
(9 5 Up
writing gy = 1+ (X — D& L) Zall

TiitiLs

ZyimiRiIsz
bp = LTt
>—:’331' RiIsi
Let E R
Y 1,75
BR = W‘,Ci =Y; — bRIi, Elt =1y — Binv
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Then, t, is a (design-) biased predictor for Y but its bias may be neglected
for large

samples. Assuming large samples and applying Taylor series neglecting
terms involving second and higher order derivatives, the following formulae
for MSE of ¢, and estimators of MSE are well-known, especially from Sarndal,
Swensson and Wretman (SSW,1992).

i 1<J 107
= variance of £t vide HT (1952),

My, = M(t,) = 4};%(7(,%]' - Wij)(% - %—)2, following YG (1953), appli-
cable

when ‘v(s) is a constant for every s with p(s) > 0’ - an example where Rao’s

(1979) ‘constraint C’ is imposed taking
(i) E; = am;Vi with ‘a’ as a constant and

(ii) v(s) = v for every s with p(s) > 0.
Estimators of M; are well-known (vide SSW (1992)) to be

2 1_7Tz Isi 7rz'j _Tl [szj

= €4 —_ 2 % €q 12 VAN 3
Mg E(akzez) ( T )'/Ti + :L-_:<j (akle )(akje])( T )7Tij (4.1)
k=1,2; a1 = 1,02 = gs-
Estimators of M, are well-known to be
i€ €5 \2y Lsij i
rhg = SD(mem; — mg) (P - ) k=12 (42)

i<y i T 5

For my,, conditions for ‘uniform non-negativity’ are difficult to check, but
they are usable even if v(s) varies with s. On the contrary, 744 1s ‘UNN’ if

mm; > my for @ # 4, but its use is recommended if ‘v(s) is a constant for
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every s with p(s) > 0'. If v(s) varies with s we have the following alternative

approximate formula for M(¢,) based on Taylor series expansion:

, , 2
My = M(t,) = SE(mem; — m) (2 - 22y + £ le g (4.3)
i<J T Uy T

To see this let us write

=S80t = B0 1, ty = Sy Rl ty = SRl  t = (t, b, 13, ta),

61 = Ey, = Y’,gg = 2.’131' = )(,H;; = EiniRiTl'i,&; = El?fRﬂT,;,Q =
(91392393)94)’

Then, E\(t;) =6;, j=1,---,4,

Also, ty =t + (X - tz)%i‘ = f(1), say;
f@)=Y.

M= f(O)les = LA = 50 [(D=g = =Br, As = 55 [ (D)]i=g = 0,

A= 5 f(t)]1=g = 0.
Then, t, = f(t) may be approximated by

f(8) + At — 01) + Aoty - 02) = Y +(t, —Y) — Bg(t, — th)
— Y4+ (in{fi ~YE)
T
Then, M(t,) is approximately equal to
M;(ty) = Ey [EEzér’i - LE]?

which is the variance of ZE}-%.

Now applying Corollary 2, we get analogously to (2.2),

E, E, E?
My(ty) = B8(mim; - my) (= = =2)?) + £=45,

1<) P M
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So, our proposed estimators for Ms(t,) are

Aki€i  Oky€5 .\ 2\ Lsij
vk (t g) E@%:(Wﬂf; 7Tij)(( T _—7?]»_])2)77;
+ S(aie:)*fi s, (4.4)

kE=1,2.

By way of justification of vk(t ) we may observe that

gaer = {1+ (X — Soels) (SRED Hu - FiFer o)

may be approximated, through Taylor Series expansion, by E;,iel/ on ap-

proximating t; by 6;,j = 2,3,4. The rest follows as in corollary 2 in Section
1.2.

Next we consider application of the above results when y; is not directly

ascertainable. This happens, for example, (1) when y relates to a sen-
sitive characteristic like number of days of drunken driving, amount of tax
evaded etc so that it is embarrassing to ask for and get direct responses (DR)
concerning such questions and instead ‘randomized responses’ (RR) by dint
of ingeneous devices may be generated to yield ‘estimates’ for y;,7 in s and
(2) when ¢ itself contains a large number of further sub-units or second-stage
units of which only a sample may be observed or more generally multi-stage
sampling may seem feasible in a given context. We present, relevant results
i the next section. In these 2 cases (1) and (2), appropriate devices and
designs are employed by an investigator to derive suitable estimatiors for
y:,1 € s to be subsequently used in estimating Y = Ty;. A third possibility
of a super-population model-based approach of dealing with the situation
when y; is subject to measurement and observational errors as treated by
Fuller (1987) and Bolfarine and Zacks (1992) among others is not considered

here.
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1.5 Multi-stage sampling and randomized re-

sponse surveys

Let F5 denote the operator for taking expectation and V5, that for variance
with respect either to (a) randomized response (RR) gathering from a person
in the population or (b) sampling at later stages of sampling. Let ‘indepen-
dent’ observations r, be available in either case along with sample-based

observations v; such that
(2)  Eo(ri) =wi, (11) Va(r)) =V; and (itz)  Es(v;) = Vi, ieU. (5.1)
We may further assume that
E\Ey = EyEy. (5.2)

Raj (1968), Chaudhuri (1987) considered this set-up in the contexts respec-
tively, of multi-stage and RR given in (5.1). Chaudhuri, Adhikary and Di-
hidar (2000) use (5.2). Let E,V denote the over-all expectation, variance
operators. Then, £ = E|Fy = FE>F, and

V= E\Vo+ VE, = EV; + VL E; by (5.2).

Writing any of the above-noted estimators or predictors for ¥ based on

Ui, L€S aS
t=t(s,Y),
we may write
e =e(s,r),
where r = (ry,---,7;, -+, 7n), to denote the function

t(.,.) in which y; is replaced by r; for ies. We shall next write R = Er,
and V. = (v, -+, v, -+ -, vn). Then, the MSE of e about Y will be taken as

Mi(e)=FE(e=Y) = E\Ey[(e—t)+ (t—Y)]* = E1Ey(e — t)° + M(t) (5.3)
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where M(t) = E (t — Y)2,

and

Mi(e) = E(e - Y)? = EE[(e- R)+ (R~Y))

(54
E>M(e) + XV, (5.4)
Remark IV. M(f’) = E1(€ - R)2 = El(t — Y)2|_y_:£ = M(t) Y =R
ey = tb|X:E,M(e,,) = M(tb)|xzﬂ = —%i%:dijwiwj‘(ﬁ — %)2 + E%(Yi, from
(2:2),
en = tily=r,
View) = Va(tu)ly=r = ;g(ﬁﬂrj — my) (5 = )7+ B2B; from (2.3),
€ = toly-r, ,
Ms(eg) = Ms(ty)ly=r = E2(mim; — m) (B0 E0y2) 4w B0 g, writing
1<) k3 2 1
Ei(r) = E;|ly=g, from (4.3)
Next, let us write
Bi(T) = 61"!:3, =T; - bR(T‘).??i, (55)
writing
Yrx Rl
b — (2ad 1+ 8t — b .
R(T) E.T?Ri[‘gl R',X"E
Our proposed estimators of MSE’s are the following:
For M (e,) the proposed unbiased estimators are:
" Vi Y
ml(eb) = ml(eb) -+ Zstiszij’win‘(‘—E -+ —5)
R LS IR
wp Ty
. 1 v; U;
mi(er) = males) + —=[ELcswiwi(— + =)
o P wi W (5.7)
—Eiaicsi] + Zvibjilsi,

writing my(ep) = mi(ty)|y=g, k = 1,2 given in Corollary 1.



It is easy to see that

E(m,‘;(eb)) = M{‘(eb) = ElEz(Gb - tb)z + M(tb),k = 1,2,

For M;(ep) the proposed unbiased estimators are
mr(es) = me(ey) + Zvibsi I k= 1,2 (5.8)
It is easy to check that
Emy(ey) = Mj(ep), k =1,2.

For Vl*((?H) = ElEQ[(EH - tH)z] + ‘/r(tH) = El[z‘/;%%] + V(t”)

our proposed unbiased estimators are:

‘ L v, I, _
vi(eg) = vi(ey) — z?<%: - L (mimy — i) (=5 22 + W_jQ) + Yui(1 - 5 )W—? (5.9)
and
X 1 Uy vy U, B
vslen) = valen) — () [§<§CSU(7T1’/T] Wij)(ﬂ,_ig + -?) + chi'_i/))i] + L’Uaz;?"
(5.10)
writing vk(eg) = ve(tu)|ly=r, k = 1,2, given in Corollary 3.
For ‘/2*(61-[) = EgEl[( ) : (R - Y)] = EQV[(eH) + 2V
where Vl(GH) = Vl(tH)|x:_I§ = v(tH)l}/_:Ev
our proposed unbiased estimators are
k(PH)—’Uk(eH)-{—E Isz,k)—l 2 (511)
Next our proposed estimators for
M;(eg) = EaMs(ey) + EV;
are /
my(eq) = vk(9) x:ﬁ-i—Zvi;;—_z,k: 1,2,. (5.12)
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Here vg(e)|y=r equals vg(ty)|e,=e;(r) as given in (4.4), k=1,2.

Remark V. Rao (1975), in the context of multi-stage sampling, illustrated
a situation where (ii) should be replaced by (1) Va(r;) = Vi, vi by vs and
(iii) by (:21)'Ea(vsi) = Vi when 1es, corresponding to (5.1) given earlier.
Chaudhuri et al (2000) noted that in this situation (5.2) is not applicable.

When (i), (i41)' are assumed and (5.2) is ruled out our proposals are the
following:

(I) Replace v; by v in the formulae (5.6), (5.7), (5.9), (5.10);
(II) Rule out the uses of (5.8), (5.11), (5.12).
Remark VI. For M} (e,) = E1Ea(e, — ty)* + M(ty) we do not propose any

estimator because no elegant estimator seems to be available.
Remark VII. To prove uniform non-negativity of an unbiased estimator of
the mean square error (MSE) of a linear estimator of a finite population total

when the size of a sample is allowed to vary across the samples is not easy.

We are able to prove this so far only for one situation with Seth’s (1966)

scheme with our modifications on it through our Theorems 2 and 3 above.

This illustration of course is too artificial Unfortunately we are yet to
hit upon a more natural one. Also, we do not come across any better one in

the literature to date.

1.6 A numerical exercise on efficacy in esti-

mation

Applying the modified sampling scheme of Seth (1966) we illustrate how the
estimators given by (2.1), (2.4), (4.1) and (4.4) fare in yielding estimated
coefficients of variation (CV) of estimates of totals. From SSW (1992, Ap-
pendix C, pp. 660-661) we take the first N = 29 clusters of municipalities as

27



our illustrative population for which ‘size’ - values are taken as size-measures
to apply the modified Seth (1966) scheme with w = 0.4 and the values of the
total population in 1985 and 1975 are taken as respectively the values of y,
the variable of interest and of . the auxiliary correlated variable. We take
n = 9. Table 1 presents, for 10 replicates of samples drawn as above from
this population, the values of

n(t 100, /Mg, JU
a = 10()@,@ = 1001—;(11—?.1“. VIR 9 e = 100YE k= 1,2,
LH i g g
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Table 1

Performance of vy (tg) V'S vyr and vgy V.S my, in terms of the criteria
ai,ay, be, ¢, (k = 1,2) based on modified Seth (1966) Scheme using
SSW (1992) data. We take w = .4.

Sample Sample a; a9 by c by ¢

number size

realized
(1) (2) 3) (@ () 6 () (8

9 29.95 1.34 1.20
2 9 14.84 1.31 1.43
3 9 18.17 0.74 2.38 0.87 2.79
4 10 27.32 0.33 0.28
5 10 11.41 0.80 0.70
6 10 11.77 0.28 0.38 0.40 0.53
7 9 15.11 0.27 0.27
8 10 18.34 0.36 0.43
9 9 13.63 1.08 1.24
10 9 16.13 0.59 1.15 0.54 1.07
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Table 2

Performance of vy (ty)V'S vgr and veyV'S my, in terms of the criteria
), ay, b, cx(k = 1,2) based on ‘modified Seth (1966) scheme’ using

Indian census 1991 data.

Sample Sample a; as b, 1 b,y Co

number size

realized
(1) (2) B @ G 6 () ©®
1 6 20.36 7.86 7.77
2 7 1742  0.00 850 0.00 7.88
3 7 12.37 12.15 10.15
4 7 18.34  6.73 6.52 901 8.70
5 7 9.56 3.08 3.47 499 5.62
6 7 1823  6.33 1031 532 8.52
7 7 27.95 193 1084 209 11.74
8 7 12.73 1053 10.05 11.16 10.65

We apply the same method taking n = 6 and w = 0.4 as before to draw
samples from 23 villages in a particular district for which the household
size is taken as the size measure, y as the area in hectare and z as the total

population size, the source for each being the Indian population census, 1991.

For 8 replicates of samples the values of ay, as, by, ¢k are presented in Table
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Note: Absence of an entry in Tables 1,2 and 3 signifies ‘negative’ values
of vy or myy. Everywhere R; is taken as (1 — m;)/miz;, tel.

Table 3

Performance of v, (tg)V' S vyr and vk V'S My via the criteria a, aq, bg, Ck,
(k = 1,2) based on PPS circular systematic samples repeated twice using

data from SSW (1992).

Sample realized a; az b C1 b Cy

number sample

size
(1) (2) (3) 4 6 6 (@ (8)
1 8 41.61 164.24 4.68 10.38
2 9 31.04 107.24 2.85 5.12
3 10 22.19  84.80 1.54 3.19
4 10 29.09 101.60 0.26 1.73 057 3.82
) 10 27.77  94.01 2.39 4.42
6 7 37.07 124.40 1.43 3.73
7 10 30.82 106.58 0.09 1.49 0.16 2.76
8 10 32.56 149.02 3.11 3.36

Finally we illustrate instead of the rather artificial sampling scheme above a
realistic one which in fact is usually applied in Indian annual national sample
surveys covering many socio-ecomomic issues. This is the circular systematic
sampling (CSS) with probability proportional to size (PPS) in a pre-assigned

number of draws but the entire draw is ‘independently’ repeated twice. The
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draw is repeated because for many pairs (7, j) the inclusion-probabilities 7;,’s
turn out to be zero in case of a ‘single’ draw of the sample. For the CSSPPS
sampling repeated twice, each sample being of size n, the realized number
of distinct units v(s) varies between n and 2n, the inclusion-probabilities,
;, say, of 1 are determined in terms of the normed size measures p;’s and
the inclusion-probabilities v;;’s of (4, )’s, say, turn out positive. So, for
this sampling scheme vy and v, (ty) are competitors and so are my, vis-a-
vis Ukg, (k = 1,2). Using the same 29 values of size-measures, y and & as
in Table 1 and taking n = 5 for each CSSPPS repeated twice the similar

exercise as in Tables 1 and 2 above is presented for 8 replicated samples in

Table 3.

1.6.1 Comments on numerical findings and recommen-

dations

For the ‘modified Seth (1966) scheme’ vy is throughout negative justifying
thoroughly the introduction of v;(ty). For CSSPPS repeated twice however

this is not the case and v, () leads to loss in efficiency.

For both the schemes, both my,, (k = 1,2) turn out negative, justifying
the proposal for vg,(k = 1,2) as their competitors. However when they turn

out positive, they often yield higher efficiencies compared to vgg(k = 1,2).

Incidentally, for CSSPPS repeated twice, (1) (v%; — ;) have variable
signs but (2) B; > 0 for every ¢, while (3) our proposed MSE estimators turn

out positive for each sample.
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Our recommendation is that when employing ¢, and ¢ty based on ‘varying
sample size sampling schemes’ one should employ, respectively, vy, as possible
competitors against mkg(k = 1,2) and v,(ty) against vyr irrespective of
whether theorems like Theorems 2 and 3 apply for the sampling scheme

employed or not.
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Chapter 2

On a version of cluster

sampling and its practical use

Abstract

We consider a practical sample survey problem in which we require to
reach households in villages which in batches are served by certain pri-
mary health centres (PHC) or by somewhat ‘bigger’ primary health cen-
tres (BPHC) located in various territorial cross-sections in a district near
Calcutta. We present here a comparative study of alternative schemes of
sampling the PHC’s and the BPHC’s and estimating the totals of variate

values related to all the BPHC’s and PHC’s in the district. The situ-
ation demands adequate representation of the BPHC’s in the sample and
geographically, each BPHC separately has an exclusive group of PHC’s con-
tiguous and hence attached to it. So, a BPHC together with the neigh-

bouring PHC’s may be supposed to constitute a cluster, each cluster disjoint
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with every other and values within a cluster are supposed to be well and
positively correlated. Some of the possible alternative ways of sampling are:
(1) Sampling from the pool of all the BPHC’s and PHC’s taken together,
(2) Sampling independently from the two separate strata of BPHC’s and
PHC’s and (3) Two-stage sampling with the clusters mentioned above as the
first stage units and choosing from each selected cluster the BPHC in it and
a sample from the PHC’s contiguous to this BPHC. But we recommend a
fourth alternative that selects first a sample of PHC’s from all the PHC’s in a
cross-section and attaches to each selected PHC the BPHC in the cluster to
which it belongs. This yields several alternative estimators of interest. By a
simulation exercise we present numerical findings of relative performances of
these various procedures. Though it is difficult to identify a best procedure
theoretically, empirically our proposed procedure appears to be quite encour-
aging. It ensures a desirably wide territorial coverage of PHC’s in the sample

and reducing a stage of sampling promises to yield efficient estimators.

2.1 Introduction

Recently, Indian Statistical Institute (ISI), Calcutta collaborated with
UNICEF, Calcutta to examine the extent of Infant and Maternal mortality
experiences in a district near Calcutta. It was found convenient to identify
several cross-sections of the geographical coverage as various strata classified
according to varying levels of accessibility to them from the adjoining cities.
Within each stratum households were to be sampled within selected villages.

The villages themselves were observed to be served in exclusive batches either

35



by a separate primary health centre (PHC) ov a ‘bigger’ PHC, say, a BPHC.
To each BPHC were contiguous and hence at tached a number of PHC’s. So,
it was felt that each BPHC combined with its associated PHC’s might be
regarded as a ‘Cluster’ and values of variables of interest pertaining to each
PHC and BPHC in such a cluster to be well correlated. Each such cluster
is disjoint from every other. In this chapter we consider appropriate ways
of sampling the BPHC’s and the PHC’s within each separate cross-section
or stratum and in the entire district as well Of course, from each selected
PHC and each BPHC we further take samples of villages separately served
by them and select households from the chosen villages. In other words
at the PHC and BPHC levels we handle only ‘estimated totals’ of values
related to them. But in our presentation here we ignore this aspect and treat
these ‘estimated totals’ as true PHC- or BP11C- specific values in developing
our analytic results. This is because our intention here is only to discuss
appropriate ways of sampling the PHC’s an the BPHC’s and using values
related to them to produce serviceable estimates of totals of all the PHC-

and BPHC-specific values in the respective «irata and in the district.

[t was recognized that medical facilities were available in greater abun-
dance from the BPHC's than from the PH(!'s. So, adequate representation
of BPHC’s in the sample seemed to be an immportant requirement. So, the

following two sampling schemes appeared to be worth trying:

I. A two-stage cluster sampling. We could tivat each cluster as a ‘first stage
unit’ (fsu) and take a sample of them. From each selected cluster one may

then take the BPHC and a sample of PHC’s from all the PHC’s in it.
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II. A single-stage cluster sampling. In order to achieve a wide geographical
coverage a sample of PHC’s may first be chosen from all the PHC’s in a
‘cross-sectional’ stratum and for each chosen PHC the BPHC in the cluster

to which it belongs may be added in the sample.

We actually adopted the scheme II in the ISI survey because we felt the
inherent ‘correlation’ among the values ‘within the cluster’ could thereby be
well exploited in estimation and the sample would achieve a wide territorial

representation.

We find that the scheme II permits several alternative estimators of to-
tals and variance estimators. For simplicity the PHC’s were chosen by the
method of simple random sampling (SRS) without replacement (WOR). Yet

the BPHC’s turned out to have varying probabilities of inclusion.
Two other possible ways of sampling might be:

[11. Treating the BPHC’s and the PHC’s as two separate strata within each

cross-sectional stratum a stratified SRSWOR method may be tried;

IV. An SRSWOR, from the pool of all the BPHC’s and the PHC’s may be

selected independently from each cross-section.

In section 2.2 we present some details of the features of the scheme II,
several alternative estimators of totals and their variance estimators. In
section 2.3 we present some numerical results based on simulations to indicate
how the various alternative procedures may fare in respect of two well-known
criteria for comparison on the basis of such empirical studies. The section

2.4 gives some concluding remarks and recommendations.

37



An alternative prediction method of two-stage sampling as discussed by
Bolfarine and Zacks (1992), however is not considered as a possible competi-

tor here.

2.2 Estimators and Variance Estimators

Our focus is on scheme II and so let us first present the material related
to this. We need the following notations to start with. For a typical cross-
sectional stratum let there be k BPHC’s labeled 7 and N; PHC’s be attached
to the :th BPHC labeled 21,---,4j,---,iN; with ¢ = 1,---, k. Let y; and y;;
be the values of a variable y of interest for the ith BPHC and for the jth

PHC attached to the ith BPHC respectively.
kN,

Let Y| = i Yi, Yo = Z Z yi; and Y =Y, + Y, Our task is to estimate
Y using v, anld:Lij—va,luesli?olr]?sample of PHC’s and BPHC’s. For the scheme
11 let n, denote the number of PHC’s that happen to be selected from among
the N; PHC’s that together with the ith BPHC constitute the sth cluster
(i = 1,-+-,k) when an SRSWOR of n PHC’s is chosen out of the total of
N =N+ -+ N, +--- 4+ N, PHC’s in the above stratum. Then, the
value of y; may be recorded n; times. By E(.),V(.),C(.,.) we shall denote
~ the operators for expectation, variance and covariance with respect to an
adopted scheme of sampling. Let s denote a sample of PHC’s coupled with-
the chosen BPHC’s for the scheme II.

Let I,(a) = 1, if a PHC or BPHC labeled « is in s,

= 0, else; here o =11, ---,17,- - iNjt=1---k;
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1o = E(Is(a)) = the inclusion probability of « in a sample for scheme

1,
Ta = the inclusion-probability of BPHC’s «, @' in a sample,
m" , = the same for PHC’s a, ¢/,

n” , = the same for BPHC « and PHC o/,

mh o s a common notation reserved for 74 a1, T, o, g o the one meant for to

be clear from a given context;

v(s)= the number of distinct units i.e. PHC’s, BPHC’s in s; v = E(v(s));
r; = &; d = the number of distinct BPHC’s sampled, M;’s are the numbers
N;’s when arranged in the increasing order; Tj’s are N;’s arranged in the
decreasing order; thus
M < SM<--SMyT 22T, 2 2TC = My + -+ My
Di=Ti+-+Tsi=1, kP =%Q =1-Pip;= ¢ =1-p;
p(s4) = the probability of selecting a particular sample s4 of BPHC’s with

exactly d distinct BPHC’s in it;

s% = the collection of samples of BPHC’s each having a common set of

distinct units as in a given sg;

5= the sum over samples like s4 ignoring ‘order’ and/or ‘multiplicity’

of BPHC’s in it,

p(d)= the probability that d is the number of distinct BPHC’s that

happen to be sampled;
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g;= the frequency of the ith BPHC in the sct of all s}’s with various

values of d.

By 0 we shall denote a typical estimator for a parameter , by ¢ an estimator

for its variance, regard § = \/—9 as a standard normal deviate and hence treat

(0—1.96/v, 6+1.96,/1) or (§41.96,/v) in brief as a 95 per cent confidence
interval (CI) for #. We present below four alternative unbiased estimators

for Y based on scheme II and their unbiased variance estimatorq
k . k
I,(7) r;

Let elzzyiTa eQ:ZE( )——Zy7 V = ‘d)’

1=1 t 1 1

_ _ 1 Yi "ea(sa)p(s $a)
@2 = ea(sa) = gy 2 g > psa)
1684 1

Zzyw oA47) = ﬁiiy”

1=1j=1 Tij i=1 =1

Then, Horvitz and Thompson’s (HT, 1952) unbiased estimator for ¥ for

the scheme Il is t; = e; + f1.

Three other obviously unbiased estimators for Y are

to = ey + f1,t3 = ez + fi and ty = eq + fi.
Remark I. The number of distinct units in s is a random variable. It is
v(s) =n+d.

The range of variation in d is given by the
Proposition 1. m < d < M.

Here M = min(n, k);

It may be checked that m is either (i) the minimum value of r for which

- C, < 0 or (ii) the minimum value of r for which n — D, < 0.
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Because v(s) is not a constant the Yates and Grundy’s (YG,1953) form of
variance estimator for the HT estimator ¢, is not available. We shall consider
(1) the HT form of the variance estimator of ¢; which is

7r0£ aa’ = TaTar | 1 a,a’
Z 2 +ZZyaya RAGELE

afa’ TaTa! Mool

and (2) the alternative form of variance estimator of #; given by Chaud-
huri(2000a) and as discussed in details in the Chapter 1 of this dissertation,

namely

TaTlo — 7T:; o'\ Yo o / ' gz
vl =0 () = ZZ(—————————’——)(U— — L)le(a,oz) + Z %—@xls(a)

a<a ﬂ-:;,a’ Ta Mo « g
_ 1 «
where f, =1+ - NS T =Y T
o (#) o

Similarly, for e; as an unbiased estimator for Y; and f, as that for Y, the
corresponding HT forms of variance estimators may be denoted by v(e;) and

v(f1). For f; however v(f;) is also of the YG form.
We may observe the following formulae which are easy to check:
mi; = w forevery 7 =1,---, N; for the respective + = 1,-- k.

= 20U for every ij(=11, - iN;; ¢ = 1, - k) different from

i5,¢'j" N(N-1)

i (=1, i'NL i =1, k)

7,0

1" n . . .
T, = —fora=il,---iN;and1 =1, - - k;
N
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n 1 N—Ni—].
= ﬂi+N—1+—(~ﬁj< n ),

n

fora=i'l,---,i'Ny but ' #4,1=1,--- k.

In the Appendix we add a few numerical illustrations concerning the well-
known consistency relations that the inclusion-probabilities should obey to
show that they in fact do so for the scheme II. To work out the variance
estimators for tq, t3,t4 we note the following.

V(ta) = Viea) + V(fi) +2C(e2, f1).

kL kk
Viea) = (%)2[; yiV(rs) + %e% yiye C (ri, T )]
V() = (2)2V(p) = ()2 (22 NE%
C(Tiari ) - Nn;], (NN )f(vl\f 1;),7
2 N

"‘M?T

_ 1 - A
Y= ZZUU s(i5), s (n—1) 21:]9( )i = 9)°
Though both are known, V'(r;) and C(r;,ry) may also respectively be unbi-
asedly estimated by

~ . _ e A 2 _ npip.
V() = (2)2(Nen) 2% Clrry) = — g (B2) x 1222

The product Y7Y,; may be estimated by

Yala'

7raa

(Yle) = %E I(a,d)

and also by
(V1Ya)o; = erf1 = Cyler, fr),5 = 1,2,
writing
Ciler, f) = v(t) = v(er) = v(f)
and
Cyler, fr) = v (tr) = v(er) = v(f1)
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on observing that

Cley, fi) = E(e1 f1) — ViYa.
Similarly, C (e, f1) may be unbiasedly estimated by
01(627.](1) =eyf1 — (YTYQ)l

or by
C?2]'(627f1) =eyf1 - (Yflyz)zj,j =1,2.

V(ey) may be unbiasedly estimated by

N .k I,  kk I(1,7
'U](CQ) = (—E)2l% y?V(rz)-— + 12#%: yzyi’C(Tza Ti’) 37(r- _r )]
and by
N ok o5 . kk A :
walea) = (VIS0 (r) () + B3 Cris o) 114

An unbiased estimator for V' (f1) is v(f1) = N*(552)s”.

So, four unbiased estimators for V (te) are:
vor(2) = volez) + v(f1) + 2C\(ez, f1);0 = 1,2, A= 1,2.

Two more unbiased estimators for V' (e;) and hence ver(2),€ = 3,4, A =1,2,
as four more unbiased estimators for V(t;) may be proposed as presented

below following Rao (1979).
Writing dii = V(’l"i), dii’ = C(T’i, T'il), dii = V(Ti), Czii/ = é('f“i, ’I"i/) we have

N . kk
Vieg) = (—77)2(213‘%%1%’%')'
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We may observe that if
y;00N;, then ey equals Y5 and hence V(ey) equals zero. Then, from Rao

(1979) it follows that

. N ., Kk Ui Yyt
Viey) = = (— 2 ¥y J’Vifvr LA Qdiil.
(c2) ( n ) i<y’ ' (‘1\/’1 j\fl»,)

This observation yields two unbiased estimators for V(e;) as

ea) = (0 F ES NN N ! "fféf”
and

vg(ez) = —'(%)2 122—; NiNi’(“]%iz - K’:’I )Qdu" I,(3,7").
So,

1)5)\(2) = U{(?) + ?)(fl) + 2@)\(82,][1),6 = 3,4;)\ = 1, 2](] =1, 2)
are several further unbiased estimators of V'(t,).

In order to unbiasedly estimate
V(ts) = V(es) + V(f1) + 2C(es, f1),

we first note that respective unbiased estimators for Y%, V' (e3) and Cf(es, f1)

are
YQ(]') = 6% - U(el) and YZ(Z) = 6% — 'U’(el)
vi(es) = €3 — Y2(5),7 = 1,2; and

01(€3>f1) =e3f1 (}ﬁé)l

and also

ézj((f3- fr) =esf1 - ()TSTTZ)Z.},]' =12
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Consequently,
V (ts)oe = voles) +v(f1) + 2Ce(es, f1),

say, 0 = 1,2;6 = 1,25(j = 1,2) emerge as several unbiased estimators of

Vi(ts).

To unbiasedly estimate V(t4) we observe that e4 is derived from ey by
Rao-Blackwellization and note from Chaudhuri and Stenger (1992) that we
have

‘/(62) - V‘(€4) = E(CQ - 64)2

and so using any one of the unbiased estimators vg(ez) for V(ey) one may

employ an unbiased estimator
ve(eq) = ve(eg) — (e2 — €4)” for Vi(eq), € = 1,2,3, 4.
Similarly we may unbiasedly estimate C(eq, fi) by
Calea, fi) = eafr = Ya)r, A= 1,250 = 1,2).

So, V(t4) = V(eq) + V(f1) +2C(es, f1) may be unbiasedly estimated by v(t4)

which is, say,

vea(4) = veles) +v(f1) + 2C\(eq, f1),€ =1,2,3, 4,2 =1,25() = 1,2).

2.3 Numerical Evaluation of Relative Effica-
cies of Various Procedures by Simulation

As mentioned at the introduction in Section 2.1 the problem treated here orig-

inated when an actual survey was undertaken. The scheme Il was adopted
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from a pragmatic- consideration. But the theory discussed above was devel-
oped even before the actual survey was executed. Since our plan here is to
anticipate how this scheme may compete with others which cannot all be
implemented in the same survey, instead of waiting for the actual survey
results to be gathered we are curious to evaluate below its possible perfor-
mance with fictitious data through a simulation study. Of course, the survey
results are now at hand. But these are ignorable in arriving at the kind of
conclusions we plan to reach concerning the efficacy of scheme II relative to
its possible competitors. The criteria for comparison employed cannot be

calculated from ‘Sample Survey Data’ alone.

So, for the sake of illustration of how the various procedures may compete
we present in the Table 1 below some arbitrarily chosen values for N, k, N;(i =
.-+, k),n,y;, y;;, number of strata H and use the notation Ly for the hth

stratum total Y'’s.
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Table 1
Some fictitious data about strata-wise BPHC's, PHC’s.

Stratum serial BPHC values  PHC values Ly k N, n N
number h Yi Yij i
1 103.00 (196.00, 151.00, 4
-97.00, -39.00)
-100.00 {74.00, 0.00, 141.00, 6
131.00, 63.00, 22.00)
116.00 (5.00, 80.00, 179.00, 6
52.00, 10.00, 2.00)
-127.00 38.00, -152.00, 29.00, 8
2.00, 99.00, 10.00,
34.00, -87.00)
975.00 g 5 24
2 72.00 93.00, 126.00, -38.00) 3
33.00 46.00, 133.00, -121.00), 6
107.00, 51.00, 84.00)
-75.00 (9.00, 71.00, 101.00, 4
7.00)
-84.00 (5.00, 28.00, 75.00, 51.00, 7
-35.00, 22.00, -269.00} 7
495.00 ! 6 20
3 62.00 0.00, 30.00, -62.00) 3
65.00 126.00, 36.00, -71.00}, 8

110.00, 51.00, 106.00)
34.00, -77.00)

-39.00 (3.00, 0.00, 69.00, 6
12.00, 271.00, -29.00)
-37.00 -25.00, 50.00, 57.00, 8
4.00, 19.00, -62.00
5.00, 32.00)
-54.00 39.00, -84.00, 26.00, 7
2.00, 35.00, -15.00,
60.00} )
“RIT00 5 737
3 98.00 53.00, 0.00, 0.00) 6
1.00, 129.00, -127.00),
-85.00 78.00, 0.00, 13.00, 846.00) 8
°10.00, 83.00, 29.00, -2.00)
-88.00 (125.00, 27.00, 66.00, 7
-31.00, 77,00, 67.00, -77.00)
-84.00 (1.00, 65.00, 60.00,
104.00, 6.00, -43.00) 6
T38L00 4 8 U7
5 20.00 67.00, 100.00, 6.00, -73.00) 3
22.00 32.00, 141.00, -5.00), 5
24,00, -2.00)
-12.00 40.00, 3.00, 0.00), 3
-16.00 31.00, 4.00, 73.00, -4.00, 8
3.00, 41.00, 3.00, -12.00)
-28.00 (48.00, 41.00, 132,00, -26.00) 4
B53.00 5 Y-

A Remark: We have included negative values to cover situations considering
changes over time which may reflect growth as well as decay.

To examine the performance of any pair of an estimator e for a parameter
f admitting a positive variance estimator v we take R = 1000 independently
replicated samples and calculate the ‘Actual coverage percentage’ i.e.
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(I) ACP = the percentage of the replicates for which the interval (CI) (e~
1.961/v, e+1.96+/v) covers the parameter @ - the closer it is numerically
to 95 the better;
and the Average coefficient of variation

(I1) ACV = the average, over the R replicates, of the values of 100 x YU

lef

this reflects the length of CI - the smaller it is the better.

5

In this case § = Z Ly, and the sample is chosen according to scheme II from
h=1
cach stratum and e stands for ty, ¢, t3,t4 and v for their various alternative

variance estimators discussed in section 2. To bring the Scheme I under
comparison we repeat this exercise for it likewise. From each stratum a
preassigned fraction 7y, say, of ¥ BPHC’s is chosen by SRSWOR method
and from each cluster consisting of the selected BPHC and the associated
PHC’s a pre-assigned fraction, 79, say, of the PHC’s in the cluster is chosen by
SRSWOR and to the selected PHC’s the BPHC in the cluster is added to give
the sample from the stratum. Then, the standard estimation of stratum total
and variance estimation formulae, and therefrom the estimator for the district
total and its variance estimator, say, e; for § and v, for v(e;) are employed.
We omit the explicit formulae to save space. We choose r; and ry judiciously
to keep the over-all sample sizes for schemes I and II as close to each other as
practicable. Similar exercise is carried out for scheme III yielding estimator
err; say for @ and variance estimator vy;; based on SRSWOR'’s of BPHC’s
out of all BPHC’s and independently chosen SRSWOR’S of PHC’s out of
all PHC’s from each separate cross-sectional stratum in numbers comparable
as practicable with those for schemes I, II. Similarly for the scheme IV also
his, renlicated.samnpling is. imnlement ecl.vielding estimate s fan. A and.ouyf
for V(e;v) on choosing SRSWOR’s of BPHC’s and PHC’s out of all the
BPHC’s and the PHC’s from each ‘cross-sectional stratum’ in independent
manners’ repeating the same independently across the strata. The formulae

for e;r7, eqv and vygp, vy are too well-known to bear specifications here. The
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numerical findings appear in Table 2.

Table 2
Relative performance of ACP/ACV values for four schemes I-IV

Estimator, ACP/ACV Estimator, ACP/ACV Estimator, ACP/ACV

variance variance variance

estimator estimator estimator

(e,v) (e,v) (e,v)

(t1,v1) 94.3/45 (e1,v1) 100/115 (t3,v13) 95.0/40

(ty,v1) 95.6/40

(t2,v11(2)) 93.9/29 (t2,v12(2)) 94.7/29 (t3,v23) 95.4/43
(t2,v1,5(2)) 96.1/26 (t3,vh3) 96.1/23

(t2,v21(2)) 93.9/29 (t2,v22(2)) 94.7/29 (eHI,UIH) 94.0/41
(£, v4,(2))  96.2/26
(t2,U31(2)) 937/29 (t27U32(2)) 947/29 (filv,Ulv) 920/38

(t2,v4,(2))  96.2/26
(o (2))  931/20  (t2,usa(2))  94.2/29  (ts,v12(4))  96.5/41
(t2,05(2))  96.6/26  (ta,v},(4))  94.3/39
(oo (4)  963/40  (te,vai(4)  96.3/40  (ts,v22(4))  96.5/41
(ts,vh,(4))  94.3/39
(fr,om(4))  96.3/40  (te,var(4)  96.2/40  (ta,v32(4))  96.5/41
(ts,v4,(4))  94.3/36

(t2,va2(4))  96.3/41
(ts,v4(4))  97.3/38

2.4 Concluding Remarks and Recommenda-

tions

From the illustrated empirical study reported in Table 2 it seems pretty clear
that in terms of the twin criteria of ACP and ACV the Scheme II outperforms
all other competitors if the estimator ¢, is employed no matter which variance
estimator is used for it. The obvious traditional two stage procedure palpably
takes a back seat. Schemes 11T and IV also are poorer. Even for the Scheme
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[1 the rival estimators t;,¢3 and ¢, do not fare competitively with ¢,.The
scheme II using v} fares better than when using v, instead vindicating the

usefulness of Chaudhuri’s(2000a) variance estimator for the HT estimator.

So, our Scheme II with the estimator t is recommended to take care of

a situation similar to the one presented here.
A Remark. The real data for the actual survey carried out in 1997-1998
based on our proposed cluster sampling scheme, providing estimated coeffi-
cients of variation are not quoted here because it is impossible for them to
provide any insight about the performance of the strategy actually employed
relative to other strategies which might have been implemented but actually
not thereby producing no live data for comparison. Hence our falling back
upon simulations alone for comparative studies.

A major justification for the choice of scheme II is that on choosing ran-
domly the PHC’s first and adding next the allied BPHC’s we expect a wider
territorial coverage and a greater information content compared to choosing
the BPHC’s first and the surrounding PHC’s next.

Moreover the scheme II admits several alternative estimators and a few
novel ones permitting comparison among themselves and thus it is quite

flexible in applications.
Appendix

For the Scheme II we check here a few consistency conditions. To check

that (i) v = E(v(s)) equals ¥ 7, and (i) V(v(s))+v(r—1) equals > > 7
aZa’
let us illustrate with k =3, N; =3,Ny = N3 =2; N =T7and n =4.

Using proposition 1 we observe m =2, M = 3,2 <d < 3.

I follows that p(2) = () () () + (G @)+ DO Q)+ G )

[
)
G)(2) ()] = 5 likewise p(3) = 5. Then, v = 6(33) +7(35) = 5 V(v(s)) =
1226;5vv( v(s)) + vy —1) = 3

+

)

5

34 30 _ _ _ — o _ _
Also, m = 35, M2 = 35 = M3, Ty = Mg = M3 = Mgy = T2 = W31 = W32 =
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ENIEN

Thus, (i) is verified. Furthermore,

Tig = 2 = M13;T23 = Bl = 2 for every o # o (= 11,12,13; 21, 22;

35

R/ — __Il_f4____ll_ll_,_ll__ll_ll_
31, 32); T = T2 = T = 7 = To21 = Tooo = M331 = T3325 Ti21
v 19 _ 1 o R w16
Tiae = 35 = Ti31 = T3 T2, — To12 = To13 = T231 = T232 = 352 311

/] - __ 16 __ .1 B /]
T319 = M313 = 35 — 7321 = 7322

Adding these 7, ,/’s the relation (ii) is also verified.
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Chapter 3

Systematic sampling: ‘Fixed’
versus ‘Random’ Sampling

Interval

Abstract

In the customary ‘circular systematic sampling’ (CSS) scheme with se-
lection ‘probabilities proportional to sizes’ (PPS), with (i) a single random
start, (ii) a pre-assigned number of draws and (iii) a preassigned ‘sampling in-
terval’, the joint inclusion-probabilities for certain pairs of units may be zero
leading to non-availability of an ‘unbiased’ variance estimator for a linear
estimator of a finite population total. To get over this problem a well-known
‘convention’ is to apply the CSSPPS scheme with 2 ‘independent’ random
starts.

Here we consider an alternative approach with a ‘single random start’
but with a ‘random’, instead of a ‘fixed’ “sampling interval” for which ‘mod-
ified CSSPPS’ scheme every pair of units has a positive inclusion-probability
admitting thereby unbiased variance estimation. Numerical evidences are

presented to examine relative efficacies of some of the competing procedures

52



relevant to CSSPPS suggesting possibilities of improvements over the con-

ventional one by certain alternatives.

3.1 Introduction

As, for example, with the Indian Annual National Sample Surveys (NSS), a
very common practice of sample selection is Circular Systematic Sampling
(CSS) with ‘probabilities proportional’ to known measures of ‘sizes’ (PPS) of
the units in estimating a survey population total. This scheme, except in rare
circumstances, fails to ensure a positive inclusion-probability of every pair of
population units. Because of this, for a linear estimator of a population total
a design unbiased variance estimator cannot exist. A standard way out is to
repeat this ‘CSSPPS’ scheme independently twice. Following Das (1982) and
Ray and Das (1997) we modify this CSSPPS scheme allowing the ‘sampling
interval’ to be chosen at ‘random’ out of a specified set of positive integers
rather than ‘keeping it fixed’, as described in Section 3.2. This modified
scheme CSSPPS(M), say, ensures positive inclusion-probability of every pair

of units and thereby admits unbiased variance estimation.

In the original CSSPPS and also in CSSPPS(M) schemes the number of
distinct units realized may be less than the number of draws which is the
intended effective sample-size. Also, the inclusion probabilities of the units
need not be proportional to their size measures. Consequently, for both,
to employ the usual Horvitz-Thompson’s (HT,1952) estimator one has to
calculate the inclusion-probabilities directly on counting the numbers of sys-
tematic samples containing the respective units. Even in this computer age
this calculation is a nontrivial problem if the sum of the size-measures of
all the population units is very large, as is commonly the case in practice.
So, to judge the efficiency of CSSPPS(M) versus CSSPPS as a reasonable
course, we resort to numerical exercises illustrated in section 3.3. The speci-

mens presented suggest that in terms of accuracy in estimation CSSPPS(M)
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competes quite well against the currently common CSSPPS scheme indepen-
dently applied twice.

3.2 Alternative Circular Systematic Sam-

pling Schemes and Respective Estimators

Let U = (1,

variable of interest with values y;, 7€/ and = a correlated variable with values

-,i,+--,N) denote a finite survey population. Let y be a

r; which are positive integers, 1¢U. By 3 we shall denote summing over ¢ in
[ and by %&Z]: that over 4,5(¢ # j) in U. Our focus is on estimating Y = Xy,
using the values y; for ¢ in a sample s chosen with a probability p(s) adopting
a design P, say. In chooging a design or scheme of sample selection here we

shall use the values p; = %, called the ‘normed size-measures’ with X as ¥x;.

3.2.1 CSSPPS Scheme of Sample Selection

From Murthy (1967) we know that the standard “circular systematic sam-
pling with probability proportional to size” (CSSPPS) scheme is applied in
the following way. (i) The intended number of distinct units to be realized
in a sample s to be selected, called the effective size of the sample, is fixed at
an integer n(1 < n < N), (ii) a positive integer k, called the ‘Sampling inter-
val’ is suitably chosen - conventionally it is fixed either at [ ], the hightest
integer not exceeding = = or at [—n~] + 1; (iii) an integer R is chosen at random

from the interval (1, X); (iv) the positive integers
= (R+rk) mod (X), r=0,1,---,(n—~1)

are calculated ; (v) defining Cp = 0,C; = Z x4 =1,---, N, one ascertains
the units ¢ in U for which C;_, < a, < C are satisfied, r = 0,1,---,n — 1.
Then, s, the sample generated for this CSSPPS scheme, consists of the units



ascertained in “(v)”applying the convention that if a, equals 0, then the “unit

N ” is to be taken in s.
For any design P, m; = Y p(s)ls; and m;; = £ p(s)lsi; respectively denote
S S
the inclusion-probability of 7 and of (i,7) ; I; = 1 if ies,0 if @ £s; [y =
L1
A design P is an IPPS (‘inclusion probability proportional to size’) design

if 1, « z;, ieU. By v(s) we shall denote the effective size of a sample s. It is
well known that

vm; = Lr(s)p(s) = v, say, the expected value of v(s). If v(s) = n for
every s with p(s) > 0, then P is a ‘fixed effective sample size’ design.

If for the CSSPPS design described above (i) v(s) equals n and (ii)
m, = np; for every i in U, then it is a truly ‘IPPS’ design. But “(ii)”
obviously cannot hold if np; > 1 for ¢ in U. We shall presently illustrate
X = (zi,--, 24, -+, zy) and n for which both (i) and (ii) may be violated.
[ustration 1. N =13, X = (6,5,6,7,14,5,6,6,11,9,7,13,5), X = 100,n =
T,k=[2]+1=15 Herenp, <1 VieU=(1,...,13).

Table 1

Showing descrepancies in (1)v(s),n and (ii) m;, np;

1 2 3 4 5 6 7 8 9 10 11 12 13
5 42 .35 42 49 94 35 42 42 76 63 .49 88 .35
b =mi —np; 0 0 0 0 -04 O 0 0 -01 0 0 -.03 0

Thus, np; < 1Vi,m; = 6.92,v(s) cquals 6 for some and 7 for other
samples.

Nlustration 2. N = 19, X = (34,1,9,3,2,1,22,2,5,2,19,5,10,2,3,19,7, 21,
11). X = 178,n =8,k = [£]+1=123; np; =1.5280 > L,np, < Lo =2, -,
19.



Table 2

Showing discrepancies in m;, np;.

i i §; =m; —np; 1 m; 8; iom 8, 1 T &;
0@ ®) O @ ®_ 0o 0 o o o

1 1.00 -.5280 4 .1348 0 7 .9606  -.0281 10 .0899 0

2 0449 0 5 .0898 0 8 .0899 0 11 .8427 0112
3 4044 0 6 .0449 0 9 .2447 0 12 2247 0
13 4494 0 14 .0899 0 15 1348 16 .8426 -.0113
17 3146 0 18 9213 -.0225 19 4943 0

Here ¥m; = 7.3988; v(s) takes the values 6,7 and 8.

Remark 1. In case np; <1 Vie U, Hartley and Rao (1962) have given a
modified CSSPPS scheme for which the units of U are first randomly per-
muted and the CSSPPS scheme as described above is applied on the realized
permutation of the elements of U. For this scheme, (a) v(s) = n for every
s, (b) m; = np,Vi and (c) m; > 0 for every 4, j(i # j) in U. For CSSPPS, “(¢)”
is known to be violated and (a), (b) also may not hold as illustrated above

but it is applicable even if (d) “np; < 1 V7" is violated as is exemplified
above too.

For a population total Y = £y, the well-known Horvitz and Thompson's
(HT, 1952) estimator is

tp = L& 1 = '8 writing X' as sum over ¢ in s.
1 1

Here it is assumed that “m; > 0 V 7"~ a well-known ‘necessary condition’

for the existence of an unbiased estimator for Y. We have, however, the

Theorem 1. For CSSPPS, 7, >0 VieU.

Proof : Since z; > 0, Prob [C, | < a, < C;] > 0V at least for one
r,r=0,1,---,n—1,if n>1.

In practice, especially for example in Indian NSS, even without checking



whether (a) v(s) =n V s with p(s) > 0 and/or (b) 7; = np, < 1V 1,

Y

1
Pi (3-1)

=Ly
n

is taken as an estimator for ¥ based on a CSSPPS, disregarding the possi-
bility of the bias in ¢t when 7; # np;Vi”. Since for CSSPPS, m;; may be zero
for some 4, (¢ # j) and hence an unbiased estimator may be unavailable for
V(t), the variance of ¢, a convention is to draw 2 samples s, 55, say, from
U independently applying the same CSSPPS scheme. Then. calculating ¢ in
(3.1) for these samples and denoting them by ¢, ¢,,

(i) £ = 5(t1 +t2) is used to estimate Y and
(ii) v = X(t; — t3)? is used to unbiasedly estimate V'(f).
For any two designs P, k = 1,2 with inclusion-probabilities 7,(k), m;; (k). k =

- 1,2, if two samples s, and sy are ‘independently’ drawn, then the pooled

sample § = (s1, s2) has the selection-probability, say,

po(5) = pi(s1)pa(s2)-

Writing m;(0), m;;(0) as the inclusion-probabilities for this design P, say.
giving po(§), we have the

Theorem 2. If 0 < m;(k) <1 Vi, k=1,2 then
(1) m(0) =1 -1 -m(1))d - m(2)) >0 Vi

(i) 735(0) = 1= [(1 =m(1)) (1 = mi(2)) + (1 = m; (1)) (1 = 7;(2)) = (1= m(1) ~
my (1) + mi; (1)) (1 = mi(2) — m;(2)) + m35(2))] > 0 Vi, j. in U(i # j)

Proof: (i) is obvious. For (ii) note that
735 (0) = mi (V) (1 =mi(2)) +7mi5(2) (1 —ms(1)) +75 (1) ((2) 735 (2)) +75(2) (m:(1)
~mi5(1)) + mi(1)m;(2) > 0



by the ‘hypothesis’ and on observing that =, (k) < m;(k) for every j(s# i) and

every 7 in U, for k = 1,2

For the design Py corresponding to 2 independent drawings by the
CSSPPS method we shall write #; for the inclusion-probability of 7 and 6,
for 7, (¢ # 7) in U. Then, as an alternative to ¢ in (3.1) it seems proper to
use

ty = (3.2)

as the ‘unbiased’ HT estimator for Y. Since §,; > 0 Vi, (2 # j) an unbiased

estimator exists for V(ty).

3.2.2 CSSPPS with ‘random sampling interval’

In the context of Circular Systematic Sampling (CSS) with equal probabil-
ities, namely the special case when z; = 1V i, 4eU, Das (1982) and Ray and
Das (1997) recommended the choice of a ‘random sampling interval’ k£ as a
number to be chosen at random as an integer between 1 and (N —1) in order

to get over the problem of unbiased variance estimation inherent in the CSS
with a fixed k.

Inspired by this, let us introduce the “Modified CSSPPS” scheme, de-
noted by CSSPPS(M), which is same as CSSPSS of section 3.2.1 except that
in a,, we take “k as an integer chosen at random between 1 and (X - 1)”.
Then, we have the

Theorem 3. For CSSPSS(M),
(i) m; >0Vi and Vn > 1
(i) my; > 0V ¢,5(¢ # j) provided "n > 2”

Proof: Note first that
m;=[Number of samples out of all possible X(X-1) samples for which
Cioi < (R+r1k)mod(X) < C;,R=1,., X,k =0,1,.,(X = 1),r =
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0,1,.,(n—1)]/X(X ~1)

and similarly

m;=[Number of samples out of all possible X(X-1) samples for which
Cici < (R+ rk)mod(X) < Ci,Cj-y < (R+ rk)mod(X) < C; with
R,k,r as in m; above]/ X (X - 1).

(i)Then since z; > 0, Prob [Ci_; < a, < C;] > 0 for every 7 and for
every r = 0,1,---,;n—1,since0<ag, < X—-land1 < k< X ~ 1,
So, m > 0Vi if n > 1. (ii) Since z; > 0V7,0 < a9 < X — 1 and
I1<k<X~-1andn>2,

Prob [Ci—-l < a, < Ci7Cj—1 < Qry; < C;] > OV’L,](Z 7£ j) in U and
Vr=0,1---,(n—-1). Som; >0Vi,j(i #j)inUifn> 2.

For the variance of ty given by

o 21—7; oy (=TT
V(tH) = 2?/1‘ ﬂ_:r + %%:ylyj( ™ )7
based on any design ‘with variable effective sample-sizes’ the following two
unbiased estimators are available based on (I) “CSSPPS - repeated twice”
for which 7; will be understood as 6, and m;; as 03 throughout and on (II)

CSSPPS(M), namely

g, L —m g Ty — T A g
= T2 (VIS L Sy (L T T sy
V) Y, ( T ) .y + i¢§yzyj( s ) -
given by HT (1952), and
1 7 Isi' 2 1 ]s1
Vg = ‘ZZ(ﬂi’ﬁj — 7(1'7')('y“ - &)24‘ + E_Z_IL(I +— X Tgi — Eﬂ'i);
i#£] Ty T Ty 5 T 7#1 s

due to Chaudhuri (2000a), as discussed in Chapter 1.

One advantage of v, over v, is that it is easier to check for its ‘uniform
non-negativity’ for a given design.

Remark 2. The first term of v, is the well-known Yates and Grundy’s (YG,
1953) estimator for V'(¢;) but this is ‘biased’ for ‘CSSPPS - repeated twice’
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and CSSPPS(M) because the effective sample-sizes for these two schemes are

“variables”.

For Y we propose another unbiased estimator as

fis
E(fis)’

writing f;, for the number of times ¢ occurs in s.

Writing V; = V(fis),Cij = Cov (fis, fjs) and F; = E(f.s), an unbiased

estimator of the variance of e is

Vi Isz Ci; 1sij
vy = Lyl P + EZgz Y; Fl:: mj

=Ygt (3.3)

We give an example below to demonstrate that for a CSSPPS(M), v(s) may

vary and differ from n.

Ilustration 3. N = 19, X=(34,1,1,3,2,1,7,2,2,3,5,2,3, 5,3,4,7,46). X\ =

95,1 = 6. By s* we shall denote the set of distinct units in s.
Table 3

Showing discrepancies in v(s) vis-a-vis n in CSSPPS(M)

R,k (3, 63) (17, 48)

(ag, a1, az, as, as, as) (3,66,34,2,65,33) (17,65,18,66,19,67)
s* (1, 13) (1,1,4,13)

v(s) 2 3

3.3. Numerical evaluation of comparative efficacies

With Y as an estimator for Y and V as an estimator of the variance of
Y, the pivotal

d=(Y - ))/\/‘I, provided V> 0,
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Is treated, in practice, for large samples, as a standardized normal deviate
ignoring the resulting error. Then, (Y —1.96yV,Y + 1.96\/‘;) is treated as a
95% confidence interval (CI) for Y. Taking the pairs (£,v), (ty,v1), (ty, va),
(e, v3) successively for (f’, V), we present some numerical evidences, through
some simulations based on live data, about their relative performances. As
performing criteria we consider 7' = 1000 replicated samples by a specified
procedure, (A) the average length (AL) of the CI's, (B) the percent of repli-
cates for which, the CI’s cover Y - called the ‘Actual Coverage percentage’
(ACP) - the closer it is to 95 the better and (C) the average coefficient of vari-
ation (ACV) i.e. the average over the T' = 1000 and also for the T" = 10, 000

replicates of the values of 100(—\1//12) - the smaller it is the greater the accuracy
of Y as well as the shorter the CI. Since it is possible that v (k = 1,2, 3) may
turn out negative for a sample we also indicate the ‘number of replicates for
which they turn out negative’ coded by ‘NEG’ in the tables - in calculat-
ing ACP, ACV the ‘replicates with negative variance estimates’ are omitted.
The actual number of replicates is denoted by AT=T-NEG.

The live data we use in our calculations are (1) N=>50 clusters along with
their (2) Population figures in 1985 (v) and (3) the number of municipalities
or (3)" the population size in 1975 taken as r respectively coded as z(M)
or x (1975) as are reported in Sdrndal, Swensson, Wretman (SSW, 1992, pp.
660-661.)

In our numerical calculations we split the population into 4 strata of
sizes Np(h = 1,---,4) and draw samples of sizes ny(h = 1,---,4) from the
respective strata, calculate strata-wise estimates and variance estimates and
adding the estimates across the strata derive estimates for the population
total along with the variance estimates. The strata are formed by the 4 con-
secutively numbered clusters as are given in the Text by Sarndal, Swensson
and Wretman (SSW, 1992), pp. 660-661. In keeping, CSSPPS(M) closely
comparable to ‘CSSPPS repeated twice’ we take n}’s in the former as ny’s

which are closest integers to ¥6; - strata-wise.
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Table 4
Relative efficacies of competing procedures
() N =50; Ny =11, N, =16, N3 = 10, Ny = 13;ny = 3,np = T,n3 = 3,nyg =
6;Y = 8339,z = x(M);n} =5,n, =10,n; = 5,nf = 9; X = 284.

In this case m, = np; V@ in each stratum.
For T' = 1000.

Sampling (Y, ﬁ) - values Based on
scheme for 1 typical replicate AT=T-NEG
replicates
AL ACP ACV NEG
(1) (2) () 4 ()  (6)
CSSPPS (f,/v) = (10817.41,2592.11)  9857.36 89 22 0
repeated (tu,v,) = (8320.73,1031.38) 5638.74 86 14 15
twice (ti,V/Uy) = (- — —,948.77) 5096.07 94 15 8
(e,v/vy) = (8733.31,1543.78)  4062.69 88 12 66
CSSPPS(M)  (tu,v,) = (8726.34,1186.32) 5984.22 91 18 0
(th,Vvy) = (- - —,1267.08)  5881.09 96 15
(e, Vuz) = (9995.82, 780.92) 3782.03 90 10 6

(I') For T" = 10, 000.

Sampling (v, \/§ ) - values Based on
scheme for 1 typical replicate AT=T-NEG
replicates
AL ACP ACV NEG
(1) (2) 3) @ (6 (©
CSSPPS (,v/v) = (9219.05,2713.01) 8803.25 928 2282 O
repeated  (tm,/7,) = (8252.27,1039.70) 4532.44 924 1406 0
twice (tu,Vvy) = (=~ —,1001.39)  4201.59 93.5 1427 21
(e,/v3) = (8481.25,1103.50) 4301.03 95.9 10.78 34
CSSPPS(M)  (tw,+/v,) = (8575.11,1091.88) 5301.58 93.0 1880 O
(tu,/vy) = (— - —,1046.25)  5305.51 944 13.20
(e, Vv3) = (8939.25,803.50) 3616.94 89.3 13.50
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(II) N = 50;N1 = 11,N2 = 16, ]\[3 = 9, N4 = 14;7&1 = 3,77,2 = 7,713 = 3,TL4 =
6;Y = 8339,z = x(1975);n] = 5,n% = 9,n} = 4,n, = 8 X = 7980.
For T = 1000.

Sampling (v, \/IT/) - values Based on
scheme for 1 typical replicate AT=T-NEG
replicates
AL ACP ACV NEG
(1) (2) (3) 4) (5 (6
CSSPPS (t, Vv) = (8749.24,416.61) 7204.48 99 18 0
repeated (tw,/v,) = (7559.19,978.03) 2576.65 90 9 11
twice (tr,Vvy) = (- — —,656.24)  2493.88 93 9 0
(e,v/v3) = (8195.99,416.56) 1466.49 90 7 95
CSSPPS(M)  (tu,/v,) = (8853.26,959.71) 3394.45 93 11 0
(ta,Vv,y) = (= ——,750.92)  3356.09 94 11 0
(e,v/v3) = (8320.50,630.11) 2129.01 91 7 63

(IT') For T = 10, 000.

Sampling (v, ﬁ) - values Based on
scheme for 1 typical replicate AT=T-NEG
replicates
AL ACP ACV NEG
(1) (2) (3) 4) (5 (6)
CSSPPS (t,Vv) = (9378.24,4120.74) 6903.58 96.2 2287 O
repeated (ta,vv;) = (8375.10,980.64)  2623.06 949 1137 10
twice (ta,Vvy) = (= — —,899.35) 2215.39 95.5 11.539 &
(e,v/v3) = (9724.83,603.50) 1632.24 91.8 10.76 15
CSSPPS(M)  (tm,+/v,) = (8286.21,1031.88) 2301.58 92.0 1870 0
(tw,vvy) = (= — —,1021.37)  2305.60 92.0 1870 0
(e,v/U5) = (7667.11,931.51)  2616.94 845 1010 15

63



(III) N = 507N1 = 11,]\[2 = 16, V; = 10, N4 = 13. ny = 3 Ny = 7,n3 =
6.7y = 8,2 =x(M):n| = 5,n) = 10,05 = 8 n) = 10;Y = 8339, X = 284.
Here m, # np; for every stratum.

For T = 1000.
Sampling ()T', \/_“) - values Based on
scheme for 1 typical replicate AT=T-NEG
replicates
AL ACP ACV NEG
(1) (2) 3) 4) (5)  (8)
CSSPPS (t,+/v) = (11486.73,688.62) 8046.19 83 19 0
repeated (tr,v/v,) = (7912.92,1733.61) 4530.19 88 14 2
twice (ta,Vv,) = (- — —,387.52) 4113.29 94 14 8
(e,Vvy) = (8794.72,1326.64) 3874.73 94 11 65
CSSPPS(M)  (tu,v,) = 9031"71,2003.08) 5579.18 93 19 0
(th,vv,) = (- — =.1819.31)  5121.06 96 16 0
(e,v/vy) = (92()8, 1035.57) 3238.11 91 9 55
(III") For T = 10, 000.
Sampling (v, \/f—’) - values Based on
scheme for 1 typical replicate AT=T-NEG
replicates
AL ACP ACV NEG
(1) (2) (3) “4) (5 (6)
CSSPPS (t,Vv) = (9764.94, 3185.07) 8321.97 89.1 20.05 0
repeated (th,Vv,) = (8465.22,1120.27) 4364.30 89.5 13.56 22
twice (tg,Vv,y) = (= — —,1147.70)  4584.48 90.1 13.69 60
(e,/vy) = (7651.51,923.51) 3581.39 939 1049 126
CSSPPS(M)  (tg,+/v,) = (6481.28,1109.04) 6291.58 93.0 1870 O
(th,Vvy) = (— - —,1204.82)  6293.46 93.0 18.80 0
(e,vv3) = (7633.85,1003.56) 3522.01 86.1 9.50 73

The picture with T' = 10,000 replicates does not show any marked de-
viations from the conclusions reachable from the Table 4 with 7' = 1000
replicates.

We add Table 5 below to present our simulation-based study of sampling

64



errors relevant to the context.

Table 5

[llustrating relative performances of competing strategies in terms of an es-

timated standard error of Percentage error, CV = 100.,/,1%2(6’ — ¢)2, where
- T t-Y
e = Qlyﬁ.lOO and B=¢ = %E(—Y-).l()O, an average (over replicates) of
1

relative sampling error e’

(I') For the population (I) (as mentioned above), T' = 10, 000.

Sampling (v,vV) NEG CV B

scheme

(1) (2) (3) 4) (5)

CSSPPS (£, V) 0 16.40 11.2

repeated (tu,vvy) 0 14.30 .65

twice (tw,V0,) 21 1460 .68
(e,vU;) 34 1640 124

CSSPPS(M)  (tm,v/,) 0 1850 1.74
(t11,\/172) 0 1850 1.74
(e,2v/v;) 8 24.70  2.09

(IT") For the population (II) (as mentioned above), T' = 10, 000.

Sampling v, \/‘7) NEG CV B

scheme

(1) (2) B @ 6

CSSPPS (t,/v)) 0 16.95 2.1

repeated (tu,vv,) O 14.78 .31

twice (tr,Vvy) 5 15.02 .33
(e,2vU5) 15 1676 .60

CSSPPS(M)  (tm,v/v,) O 1860 02
(th,V3,) O 18.60 .02

(e, Vvy) 15 24.65 .03
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(III") For the population (IIl)(as mentioned above), T' = 10, 000.

Sampling (v, \/17) NEG CV B

scheme

(1) (2) (3) (4) (5)

CSSPPS (t, Vv)) 0 15.61 269

repeated (tu,vv)) 22 13.61 .16

twice (tH, \/1-)2) 60 13.88 .16
(e,VT,) 126 1584 60

CSSPPS(M)  (ty.\v,) 0 1850 1.73
(t, v, 0 18.50  1.73

(e,v/v,) 73 24.77 1.96

This Table 5 gives some ideas about simulation-based sampling errors
. which appear to be mostly under control.

For the traditional CSSPPS scheme repeated twice, the pair (¢;,vy) seems
to beat the traditional (¢,v) for all the three examples I-11I; (e, v3) with
too many negative values of v3 ‘replicate-wise’ is not quite a viable alterna-
tive. CSSPPS(M) can be treated just as a competitor against ‘CSSPPS
repeated twice’ - it cannot be labelled ‘superior’ through what is revealed
above. However, compared to the current practice of using (t,v) all the
other newly proposed pairs (ty,v1), (ty, v,), (e, v3) all based on ‘CSSPPS-
repeated twice’ seem to perform better. Further, the same pairs based on
CSSPPS(M) compete well against those based on ‘CSSPPS repeated twice’

and are superior to (£, v).

Remark 3. A possible alternative to CSSPPS and CSSPPS(M) described
above may be to “Continue drawing units’ till a pre-determined effective
sample-size v is realized. From the example below it may be checked that the
number of draws may far exceed v. By CSSPPS(R) and CSSPPS (M,R) we
denote these revised schemes. However, we do not pursue with this approach

further for the present.
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Table 6

Showing ‘Number of draws’ versus ‘Effective sample size’.

N =6,X =(18,1,2.158,6),X = 50, = 4.

CSSPPS(R) CSSPPS(M,R)
R=1 R=1k=28
a, (1,14,27,40,3,16,29, (1,29,7,35,41,19)
r=0,1,2,--- (42,5,18,31,44,7,20)
s (1,1,4,5,1,1,4,5, (1,4,1,4,1,5,2)
1,1,4,5,1,3)
5* (1,4,5,3) (1,2,4,5)
v(s) 4 4

Finally, we illustrate that CSSPPS(M) is also really not an ‘inclusion
probability proportional to size’ scheme of sampling so that detailed compu-
tations are needed to evaluate m; by counting the samples out of the total

number X (X — 1) of possible samples that contain the respectively specified
units 2 in U,

Table 7
Showing deviations D; = m; — np,, ieU CSSPPS(M).
N =13X =(6,5,6,5,10,5,6,12,4,6,7,9,5), X = 86

1 D,=n; -np; 1 D;=m —np;

i Di=m —=np; i D; =m; — np;
1 (2 (1) (2 (1) (2 (1) (@
.0167 4 0234 7 .0169 10 .0169
2 .0736 5 -.0520 8 -.1117 11 .0051
3 .0169 6 .0235 9 0273 12 -.0299
13 .0235
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Remark 4. From the computational point of view it must be emphasized
that for our proposed procedures only 7;,6;, 7, 6;; are needed for ies and
t # j in s. This is a great relief if v(s) is modest.

3.3 Conclusion and Recommendation.

Kunte, Sudhakar (1978) is, to our knowledge, the first to point out that each
draw may not yield always a distinct unit in systematic sampling. Though
called a ‘probability proportional to size’ scheme of sampling, CSSPPS may
not ensure ‘inclusion-probability proportional to size’. With a single random
start unbiased variance estimation with systematic sampling is ‘always pos-
sible’ only by ‘CSSPPS(M)’; for Hartley and Rao’s (1962) CSSPPS with a
prior randomization it is possible only if “np;, <1 Vi”. Whenever “x, differs
from proportionality to p;” computation of «; is difficult in practice. With
CSSPPS repeated twice the standard estimator is ‘biased’. For the proposed
CSSPPS(M) one may, as a third alternative, employ (e,vs). but vs often
turns out negative and its calculation is also not quite easy. So. research on

systematic sampling promises to continue for better solutions.
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Chapter 4

Estimating
numbers/proportions of people
with stigmatizing features from
randomized responses by
specific devices through

complex survey sampling

Abstract

Warner(1965) gave a standard procedure for estimating the proportion of
people bearing a sensitive characteristic, say, A like tax evasion, alcoholism
etc. in a given community when a simple random sample(SRS) is chosen with
replacement (WR) in a specified number of draws on eliciting a ‘randomized
response’ (RR) rather than a ‘direct response’(DR) of ‘Yes’ or ‘No’ truth-
fully about ‘bearing A’, on adopting a suitable randomization device. Many

ramifications followed to effect improvements and/or to counter specific ex-

69



igencies. Chaudhuri (1987), Chaudhuri and Mukerjee (1988) among others
gave general accounts of RR including situations needed to cover qualita-
tive as well as quantitative characteristics when sampling may be ‘simple’ or
‘complex’ as well. We shall here follow Chaudhuri (1999, 2000b) to (1) show
how Sarjinder Singh and Anwar H.Joarder’s (1997) results given for SRSWR
may extend to unequal probability sampling without replacement(WOR) and
(2) develop similar and additional results concerning RR given by Franklin
(1989a, 1989b) and Singh and Singh (1992, 1993) for SRSWR, when one ex-
tends to complex survey designs. Arnab (1996, 2000) also dealt with certain
aspects of Franklin’s and Singh and Singh’s work and other related RR’s but

ours are different from his developments.

4.1 Introduction

In estimating the proportion 8 of people bearing a stigmatizing characteristic
A like habitual tax evasion, drunken driving, gambling etc it is well-known
that Warner (1965) considered it useful to avoid seeking direct responses
(DR) from respondents in a social survey. Instead he gave us a randomized
response (RR) technique by way of protecting the respondent’s privacy. Ac-
cording to this a sampled respondent is to implement a randomizing device
by which with a pre-assigned probability p (0 < p < 1) a truthful response is
to be “Yes’ or ‘No’ about bearing A and with probability (1 — p) about bear-
ing the complementary characteristic A without divulging to the interviewer

whether the response relates to A or A.

Based on such RR’s procured from an SRSWR chosen in n draws an
unbiased estimator for # and an unbiased estimator for its variance are given
by Warner (1965). Singh and Joarder (1997) recommend a modification of
Warner’s RR procedure enjoining a (I) respondent bearing A to respond as
in Warner’s case but a (II) respondent bearing A to postpone the response

to a second performance of Warner’s randomizing device unless the first one

70



induces a ‘Yes’ response.

With such responses from an SRSWR in n draws they prescribe a better

unbiased estimator for § along with an unbiased variance estimator.

Though the fact is not made explicit by these authors 6 here is a ‘fi-
nite survey population mean’ of an ‘Indicator’ variable which is valued 1
for a population unit bearing A and 0 for one with A. But in practice a
finite population survey is implemented according to complex designs involv-
ing selection in multi-stages and through stratification with sampling in the
early stages with unequal selection-probabilities. A sample survey in prac-
tice covers numerous, say, fifty items of enquiry of which only a few, say.
five may relate to sensitive issues. From such a single survey one must de-
rive good estimators based on ‘direct responses’ (DR) related to innocuous
characteristics and those based on RR’s related to the sensitive ones. So.
we consider it important to present a theory to show how # above may be
estimated admitting variance estimates when RR’s are obtained by Warner’s
(1965) and Singh and Joarder’s (1997) techniques but the respondents are
sampled by general sampling schemes with varying probabilities and without

replacement.

After presenting revised methods of estimation we supplement Singh and
Joarder’s numerical findings with ours for the sake of comparison in sections
4.2 and 4.3.

Franklin (1989a, 1989b), Singh and Singh (1992, 1993) and Arnab (1996)
consider repeated realizations of RR’s from each sampled person to estimate
numbers and proportions of people bearing a sensitive characteristic. We

present a few further developments in sections 4.4 and 4.5.
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4.2 Unbiased Estimators and Variance Esti-

mators

According to Warner’s RR device the probability for a *Yes’ response about

the possession of the characteristic A or its complement A is
Yo =pf+ (1 —p)(1-0)=02p-1)0+(1—p) (2.1)
The corresponding probability for Singh et al’s scheme is

Ys; = po+p(1-p0+(1-p)(l-0)
= [(2p—1) +p(1 =P+ (1-p) (2.2)
= Yy + p(l —p)o.
Writing n as the number of draws in SRSWR and m as the number of ‘Yes’

responses in either case we have:

Warner’s well-known unbiased estimator for € is
Oy = (2 —1+p)/(2p— 1), taking p # % (2.3)

[ts variance and an unbiased estimator of the variance are:

Yar (1- 1-6)  pll-p) 2.
V(OW) = ,LW(QT;TM J'—) T R )2 (2:4)
and
Uw = m(l - 7:)/(” 1)(21) 1)“ (2 3)
é 1 (
= Wlpw) + mpleeee L

Singh et al’s unbiased estimator for 0 is

- m
= [—— (1~ 2 — 1)+ p(1 — p)|.
Os. [—--a p))/1(2p = 1) + p(1 ~ p)] (2.6)
choosing its denominator non - zero.
[ts variance and unbiased variance estimator are
5 yo, (1—Ysy)
V(lsy) = al(Zp- J1)+p3J P)}( :
_ 6(1-0) p(1-p o -
- Ta + n[(2p—1)+p(1-p)]? (2‘)
gp(1-0)

T alzp—Drp(i-p))?
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21-2) .
n—D[2p-D)+p( D) (2.8)

VsJ

Singh et al’s main theoretical result is:

A V((jw) > V([;’SJ) for every p > 0.5.
(2.9)
Following Chaudhuri (1999, 2000b) we present below unbiased estimators
for 6§ along with unbiased variance estimators based on RR’s obtained by
Warner’s and Singh et al’s devices when the respondents are sampled with

unequal selection-probabilities.

Chaudhuri’s (1999, 2000b) approach is the following. Let U = (1,-- .1,
-+, N) denote a finite survey population of a known number of N people
labeled 7 = 1,---, N. Let y be an indicator variable with its value y; for ¢ as

y; = 1if¢ bears A

= 0, otherwise.

Then, 6 = Xy, writing ¥ as sum over zeU.

Let s be a sample from U chosen according to a design P with a selection-
probability p(s). By E,,V, we shall denote operators for expectation and
variance with respect to P.

We suppose that y; is not ascertainable for a person ¢ in a sample but
adopting a suitable RR device, from an ¢ in a sample, an RR may be procured
as r; such that

(1)Er(ri) = vyi, (1) Vr(r,) = Vi(>0), (e4)r;’s are independent over 2 in
U and (iv) there exist v; ascertainable from RR’s such that Eg(v;) = V4, ieU.

Here Egr, Vgr denote operators for expectation, variance with respect to
RR devices. The over-all expectation and variance operators will be denoted
by

L= EpER = EREp and V = EpVR + V;,ER = ERV;, + L}{Ep
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Writing Iy, = 1 if 1es,0 if @ £s,[; = 1,1, let it be possible to choose
bsi,ds as constants free of Y = (yy,-- -,y -, yn) and R = (ry, -+, 1y,
rn) such that

1
ty = —NEy,-bs,-I” subject to E,(byls) = 1 Vi.

Then, V,(ty) = 7 (SyiC; + E;E 4:4;Cy5], where
i#]
Ci - Ep(bgilsi) - Lcij - E (b b [sz]) - 1

Then v,(ty) = 3z [Zyldsly + ZZ Yiyidsiilsij] satisfies Eyuy(ty) = V,(t,)

provided dg;, dy;;’s are chosen subject to
Ep(dsi[si) = Cia Ep(dsij]sz;) = Cijﬂ

The literature on ‘Sample surveys’ is full of numerous such possibilities of
choices for P, by;, dg;, dg;;'s. Since y;’s are not ascertainable, ¢, is not available
as an estimator for 8. So, Chaudhuri’s (1999, 2000b) recommended unbiased
estimator for § based on RR is

1
= ]—V-Zn-bsilsi for which E(e,) = 8.

Here ¢, is just t, with y;’s replaced by r;’s, ies.

Similarly we should write V,(e;) as V,(t,) with y; replaced by r; for 2 in
U and vy(ep) as v,(tp) with y; replaced by 7y, ies.

Two unbiased estimators for the variance V'(e,), of e, which is,

V(eb) = EPVR(eb)+‘//;)ER(€b)

| , (2.10)
= 'Nl'z(Ep[EVibﬁz'[siD + Vp(tb)

= EgrV,(ep) + VrE,(es)

(2.11)
— Elylen) + (Va(Er)
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are

1 ,
u(l) = “p(eb)+ j—\'ﬁ(zvibsi[si) (2.12)
and .
’1)(2) = ’Up(eb) + NE[Eul(b; — dsi)lsi]- (213)
[t is easy to check that
Ev(1) = V(ep) = Ev(2). (2.14)

In order to develop formulae corresponding to ey, v(1), v(2) for the specific
RR devices by Warner (1965) and Singh et al (1997) based on a sample of
r;'s for ies let us use the following notations.

Let I, = 1if i responds “Yes”

= (0, otherwise.

Then, for Warner’s (1965) scheme r; should be taken as

_ I — (1 -p)
(2p-1)

with a variance, say, V;(W) as

T2

= 1;(W), say, for which Eg(r;(W)) = v,. (2.15)

VW) = Valr(W)) = sl = 1)+ (1 p)

~(w(2p - 1) + (1 - p))?Y (219
p(1—p) g 2
—_ .W, noting y; = y;.

Since V;(W) does not involve any unknown parameters we need not seek

any estimator v;(W), say, for it and use this V;(W) straightaway for v; in
(2.12) -(2.13).

For Singh et al’s (1997) scheme, r; should be taken as



I; — (]— - 20)
(2p—1) +p(1 - p)

Writing for simplicity, @ = (2p — 1) + p(1 - p)

T, =

= 1, (SJ), say. Then, Br(ri(S.J)) = yi.  (2.17)

we may work out the variance of r;(S.J) as, say,

L {BR(L)(1 ~ Ex(1)))

o?

- dl_'z[((kyz +(1-p) = (ag + (1 - p))?]

Vi(SJ) = Vr(ry(SJ)) =

il

1 .
;Y—Q[ﬁyz— +p(1 — p)], writing 8 = a(l — a) — 2a(1 - p)

Since (3 is thus known, this V;(S.J) may be estimated unbiasedly by
v:(SJ) = & [Ar. + p(1 - p)),
which may be used to replace v; in (2.12),(2.13) in using v(j),j =1, 2.

On simplifications we may check that

Vi(ST) = p(1 —p)/o? ify, =0,
= p(1 -p)?2-p)/aify; =1.

Writing e, (W), ep(SJ) for e, based respectively on Warner’s (1965) and
Singh et al’s (1997) schemes and V' (e,(W)), V(ep(SJ)) as their respective
variances we have

Vies(W)) = Vien(SJ))
it V(W) 2 Vi(ST) Vi

Proof: Follows immediately from (2.10). Next we have

Lemma 2. V;(W) > Vi(SJ) Vuifp> .4384

Lemma [.



Proof: V;(W) — Vi(SJ) = 2i=p) _ Buite(l-p)

(2p-1)? a?

=1~ Plgmre ~ @enrsapp) T3 =0
> 01f p > 0.4384 as verifiable using Matlab |, (7)

and - 1 (-D2-8) iy
and = p(1 = P)poe — @] L4 =1

> 0 if p > 0.4366 as verifiable using Matlab. (i7)

Hence follows Lemma 2. Hence we have the
Theorem. V(ey(W)) > V(ep(SJ)) > 01if p > 0.4384.

The next section presents a numerical study as a follow-up of Singh et

al’s exercise.

4.3 A Comparative Study with Numerical Il-

lustrations

In order to maintain parity with Singh et al’s (1997) numerical illustration let
us make separately 9 alternative choices of y;’s in Y = (y1,- -, %, -, Yn) S0
as to get 9 alternative values for § = —I%Zyi as 0.1 (0.1) 0.9 treating y, = 1 for
the ¢ th person having a minimum monthly income C;, say, with 9 choices
of = 1,---,9 with y; = 0, else. Further, we associate with ¥ a vector
Z = (Zy,- -, Zy) of positive numbers as size-measures to be used in drawing
a sample with suitable unequal seleetion-probabilities. For illustration we
take N = 20,n = 7 which in the case of (I) SRSWR is the number of draws
and is the number of distinct units to be selected in employing two other
sampling schemes, namely (II) Rao, Hartley and Cochran’s (RHC, 1962)
scheme and (IIT) Hartley and Rao’s (HR,1962) scheme. We take

Z = (21.9,20.1,18.9,18.3,17.3,17.2, 16.5,16.4,15.7,11.6,9.5, 9.3, 9.2. 9.2,
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8.4,
8.4,7.6,7.5,7.2,5.8).

Writing Z = £z;,p; = %, which are the normed size-measures we may
briefly describe the schemes (I1), (III) as follows: In the RHC scheme the
population is divided at random into n groups of sizes /V; each of which is
closest to % subject to X, N; = N, denoting by X, the sum over the n groups.
Writing Q; as the sum of the p;’s of the N; units in the :th group for the
RHC scheme 11, we have

1 Q; 1 T NNy ,
th = —=Xpyi—, Vit —Lt ¥y (=—-Y)Y =2y,
2N} — N ) Q;
wlie) = 7 (m> "Q( — )" b =
EnNE - N Qz Q2 (22
dSl = (N2 . ETLNZ )( p i ( TLQ ) 7) p_ )

/ .

i Di

T N2Z-N
N(N=-1)

For the SRSWR scheme I, we have

writing B =

bg, = &;f’*—‘, writing f,; = number of times 7 occurs in s;

N2 2 6(1 — 6 N+n-—-1
b= — (=) vy = 1020

4+
n(n — 1) n n niN?

Vi

In the HR scheme III the units of I are permuted at random and then n
units are chosen circular systematically with probabilities proportional to

sizes. Further, for this

1
_ IZ Iﬂ,m =np;, = Ep( ), = % ps), b = —

§31,7 i
Tij — TiTy L
y 3 21_1_5_1 + ZE ¥ vy th_,
U ( ) Yi 7 J1y]( 7Ti7Tj )—Wij
dsi = J)i “dg = 77 = b“ implying v(1) = v(2);
M5 — TG V..
Vie :'—1—221—1&“{'22'1"'” im sV
(Fb) N2{ Y; T it Yily; o, 7(1-}
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Following Singh et al we consider the criteria for comparison, namely

L
PRE = 10020w) (3.1)
V(bs))

- the higher its magnitude the better is 85, relative to Oy and present these

values based on each of the three schemes of sampling we employ as above.
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Table

Showing the values of PRE for 3 schemes
(I,ILIII) given from top to bottom

p 045 0.6 0.7 0.8 0.9

0.1 219.85 47760 226.23 15448 119.18
219.48 487.18 233.54 160.65 123.55

219.23 487.62 234.06 161.21 124.06

0.2 222.40 47731 224.63 153.06 118.64
221.42 494.80 237.83 163.72 125.54

220.83 494.75 238.29 164.39 126.31

0.3 225.21 482.88 226.87 154.40 119.55
223.87 50495 243.53 167.64 127.88

223.06 504.02 234.55 168.07 128.51

0.4 228.33 494.65 232.88 158.14 121.54
226.93 517.54 250.57 172.00 130.03

226.09 516.31 250.26 172.39 130.63

0.5 231.76  513.58 243.29 164.66 124.77
22978 33743 263.06 181.35 135.56

228.70  535.38 262.73 18191 136.61

0.6 23554 541.48 259.69 175.18 129.92
23297 563.19 280.40 194.63 143.55

231.71 560.47 280.04 195.75 145.60

0.7 239.73 581.54 28544 192.69 138.68
236.32 597.98 306.40 216.72 158.34

234.84 594.84 306.62 219.88 163.90

0.8 244.37 639.46 32798 225.04 155.99
240.14 642.84 343.45 252.07 185.06

238.56 641.44 347.12 262.89 204.73

0.9 249.50 726.07 407.08 301.04 204.80
24523 694.49 386.29 291.64 210.43

244.08 702.17 40199 323.65 262.03
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Comments on the results in the Table :

(a) Compared to I, the other two schemes yield higher efficiency except
when p=0.45;

(b) The schemes II and III are quite competetive with each other but with
increasing p the scheme III tends to fare better than Il but valies of p

close to 0.5 are of real consequenses.

(c) Even though they utilize additional data, namely the size-measures
for sample selection it is surprising that Il and III do not uniformly
outperform 1.

Remark : The entries in the first rows of the above table corresponding to
p = 0.6(0.1)0.9 for each 8 “equal to 0.1 (0.1) 0.9” match the PRE values given
by Singh et al (with a few slight discrepancies possibly because of misprints
in Singh et al) calculated by them using the formula

PRE = 100 V({)“")

Vi(ls,)

as they obviously should.

4.4 Repeated randomized response tech-
niques of Franklin (1989a,b) and of Singh
and Singh (1992, 1993):

On taking a simple random sample (SRS) with replacement (WR) and on

eliciting repeated “Randomized Responses” (RR) in suitably devised ways

from each person sampled, methods have been given by Franklin (1989a,

1989b) and Singh and Singh (1992, 1993) to estimate the proportion of peo-

ple bearing a sensitive characteristic in a specified community. But in large
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scale sample surveys a complex design with unequal selection probabilities
‘Without replacement’ (WOR) is commonly employed yielding sample obser-
vations on numerous variables of which only a few may relate to stigmatizing
issues. Moreover, sponsorship for a comprehensive exercise to cover sensi-
tive features alone is hard to come by. So, we present ‘modified’ procedures
to extend the above estimation methods to apply not only to SRSWR but
also to complex sampling designs. Arnab’s (1996,2000) works deal with the
extension of Franklin’s and Singh and Singh’s procedures to cover complex

designs but follow a somewhat different line of approach.

4.4.1 Estimation using SRSWR-based repeated RR’s

First we discuss below the procedures given by Franklin (1989a, 1989b). A
person labeled ¢, if selected in an SRSWR, taken in n draws, is to report
k numbers z,; if he/she bears A or k numbers y;; if he/she bears A; here
for each respondent labeled 7, the numbers z;; are ‘independently’ drawn
from a population with pre-assigned means p,; and variances a%] and y;;’s
are ‘independently’ drawn from populations with means p;, and variances
(7%], (j =1,...,k) ‘independently’ across every 7 in U.

Then, these RR’s may be written as z;; such that

Zij = IiZEi]‘ -+ (1 - ]i)’(l/m,‘j = 1, ey k,? € [, (21)"
Here we write

I, = 1ifibears A

= (ifi bears A, the complement of A
Of course, § = &X1,
Writing expectation, variance and covariance operators generically as
Eg, Vg, C, for the RR’s we have
Er(zij) = Oy + (1 — 0)pa
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Vir(zi;) = 0ot +(1— 0)os; +0(1 — 0)(p; — pia;)°

=1,...,k;2=1,...,N
Crl(zij, 2ij0) = 01 = 0)(pa; — pg;) (g — haye),
G #£7)=1,..ki=1,...,N.

Letting

k k
Zip = 121 Zij, My = ‘21 prj, T = 1,2;my # my
J: J:

it follows that

ER(Z,;()) = 0(77’),1 — mg) + mo
0, = —fﬁf}ﬁf satisfies Eg(6;) = 6 and

k k
~ 0 % (0F; = 03,) + X 03
Ve(6) = 60(1-0)+ = 5=
6 = L5
=1

(m1—ma)?

_ 2 2 2

Further, writing

Er(Zoj) = 01y — prog) + Haj-

Then, choosing py; # poy it follows that for

0 = . Wj(ZOj - U2j)/(#1j - ﬂ2j)

~
ek
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' k
with assignable weights W;(0 < W, < 1,)}231 W; = 1), one has Ex(0;,) = 0.

Further, observing
H

VR(ZO]) = %[9(0%] - crgj) +'0§] +6(1 — 0)(j11; — p2,)%] and
Cr(Zoj, Zoy) = ﬂln;el(llfu ~ i1y )(phay ~ paj), one has
k w2
Vr(0;, = WO Ly T f(0} — o) + o5,
R( ) n ni (,u’lj . /1/2j)2[ ( 17 2]) 2]]
(2.5)
Hence Franklin (1989a, 1989b) recommends the choice
W, = _k]_“,‘_J_‘_ﬂ = _D_j’
S iy — pogl
say, and gets 6, as, say,
1 D _
0 = =5 (2o, ~ 2 (2.6)'
P D (1 — o) ! 2] ‘
for which
* 9(1 B 9) 1 p y y ¢ /
ValBp) = " + (0ot ~ o) + o) (2.7

Franklin’s (1989a, 1989b) proposed estimators for § are 6 in (2.2)" and 6},
in (2.6)" with the

Theorem 1 (Franklin).

Vr(0p) < Vr(0)

with an equality only if the signs of all the pairs (p1; — o), (150 — pojr) are
the same for j # j'(=1,...,k) implying (m; — my)? = D*

Singh and Singh (1992) modify Franklin’s (1989a, 1989b) procedure. first,
to require a sampled person i to choose with a probability P.(0 < P, < 1,7 =

1,2,3, Py + P+ P; = 1) a number x,,; from a distribution with mean 1, and
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variance aflj if 7 bears A but a number Yri; from a distribution with mean
Mo; and variance 032]- if i bears A. For each i, the z,;;’s are ‘independent’
forj=1,2,...,kand r =1, 2,3 and similarly for Yri;'s. Also, across 7 in U,
Zr;’s are ‘independent’ and so are Yri;'s. For the observable RR’s denoted
by Li; for j =1,... k and 1 = L,..., N,

Er(Lyy) = 0(p1; — po5) + poy (2.8)

VR(Lij) = 9<2 P( Oy — r2])+ Z POT2]) (29)/
HO(1 = 0)(p1j — p1g;)?
Cr(Liy, Liy') = 0(1 = 0) 1y ~ prag) (piryr — paage), (2.10)

i€U§J:1,=~~/€ jj(.j;éj,)zla"‘ak"
Writing L, = E L”, noting Eg(Lj) = l[H(Tm — ma) + my),
]:

Singh and Singh (1992) propose the estimator for § as

5 = ~—--—-1~—* [k }71: LiO — mQJ fOI' WhiCh (211),

n(m; — my)

Er(f) = 6 and

3 k
[0 g‘ [)T( _z;: (031] - OT2])) + Z = E Ur?_;)J

~ 9 1 _ 0 r—= /
Va(9) (=6 L oE (2.12)
n n(my — my)?
Also, noting that
0;= (11, *I’uz_a) [% i§1 Lij = paj]

~ ~ k ~
satisfies Er(@ ;) = 6, they propose another estimator for @ as 0w = 121 W;e,
]:

k ~
with W;'s as weights (0 < W, < 1, '21 W; =1) so that Eg(g,) = 6 and
]:



k [ezp( Or15 — 12])+2P( 1‘2])]

Vr(f,) = 220 4 L2 (2.13)’
“ " T (H1j = p2)?
They further recommend the choice W; = <#tul _ — Do gay 50 as

%3 |1 — paj] D

to propose finally aﬂ = iD XDy 5j as their estimator for 8 and observe that

Vr(g,) = 220 4

nD2

[HZPT%)(UQ —02,) +2PT§UEQJJ (2.14)"
They have then the

Theorem 2 (Singh and Singh).

V(9 ) < Va(6)
with an equality only if (p1; — pe;) and (p;7 — poj)¥5 # ' have a common
sign in which case (m; — my)? = D2
Singh and Singh’s (1993) subsequent work is only a simple modification
of their previous work which only allows 7 to take on only 2 values, with
P, =T and P, = 1 — T keeping everything else in tact. Denoting 9 by 57

and § , by 6 ,r to cover this case they have

016 (92051]‘4“(1_9)20%2]‘)
V(GT) = (n_ ) + . (m1 Tma)? ! ‘
L )2 [9(2 011] %3031]') + (1 —6) ?(012] 0‘52])]

n{my—my

and

V(Zj #T) = 9_(.17:_‘9_) + 7:,[})2[(9%;0311 + (1 — 0) ?032]-]

+apl0(S oty — odiy) + (1= 0) S0y, ~ o))
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They also have a corresponding
Theorem 3. (Singh and Singh).

~ ~

V(0 ur) <V(67)

with equality only if (141, — po;) and (py5 — p10;,)¥7 # 7' have a common sign
rendering (m; — my)? = D2

4.4.2 Estimation using Repeated RR’s in Complex
Surveys
Let s be a sample drawn from U according to any sampling design P with

a probability p(s). We shall write E,, V,, C, to denote operators for expec-

tation, variance, covariance in respect of P. Let b,; be freely assignable

constants not involving the elements of I = ([;,...,;,... Iy) but subject
to
E,(bsils) = 1 for every i in U. (3.1)
Here
I, = lifies
= 0ife ¢ s.

Later we shall write I,;; = I;I;,1,5 € U. If I,’s were ascertainable for 2

in s we could employ

N
t = g Iibgi1s; (32)



by virtue of (3.1)".
Since DR’s are not available on I,’s for 7 in s we need suitable estimators

[; for I, for i € s to be substituted into ¢ in (3.2) to derive estimators

N .
e= 3 Libyly (3.3)

=1

for . We shall write £ = E,Eg = EgE,, C = Cp(E.(.), Ex(\)) + E4Cr(.,-)
and V = E, Vg + V,Er = ERV, + VRE, to denote the over-all expectation,
covariance, variance operators covering both sampling design and RR-based
generation of data.

Then, e is an unbiased estimator for I because

E,(e) = $I; and so E(e) = Er(S1;) = SL = [

and also

Egr(e) =tand E(e) = Ep(t) = XL =1

Noting [? = [; and writing
g4

V() = S Lid; + 5 Ll ds,
1 t J

where

di = F [)2»_[31:. — ].,di = E)(bsibs‘]Si‘) - 17
p\Ugq ] P J J

let it be possible to find constants Cl;, Cyj, both free of I satisfying the

conditions

Ep((;'si[si) = div Ep(Csijjsi]) - dij=
Then

vp(t) = L LCa 1y + Z;g_: LI;Cyi51 5
1 7]
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satisfies Epup(t) = V,(t). We may also note that

since 1? may not equal I,.

The literature on Survey sampling, in particular the texts by Cochran
(1977), Chaudhuri and Stenger (1992), Sirndal, Swensson and Wretman
(1992), among many others, give numerous accounts of choices concerning

P, by, Cy; and Cy;5’s . A choice of by, equal to &, where m; = ¥ p(s), is very
$31

w0
common leading to Cy; = 1, Cyj; = B0 where m; = % p(s) - it
i Ry ]

5$31,]
1s assumed that m; > OVe, m;; > OV4, j(i # j), a design P ensuring this is of

course possible. This choice of by,, Cy;, Cyij;'s is due to Horvitz and Thompson
(HT, 1952).
If it is possible to find I;,i € U, such that

admitting v; such that Eg(v;) = V; and (iii) I;’s are ‘independently’ dis-
tributed, then one may easily check the following:
Let

’Up(e) = EI?CSilsi -+ 2#2 jijjcsij]sij
i#]

writing 2_;2 for sum over 4, j(i # j) in U.
i
Then, for

vi(e) = v,(e) + Lubg 1, and (3.4)

’Ug(e) = ’l)p((i) + Zvi(bfi - Csi)]si (35)

one has
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(w)Evi(e) = ErEyvi(e)
= Eg[XI%d; + D) L1;d;j] + EpSu
= YILd; + ZEE Lil;d,;; + £Vid; + LV,
noting ER(f~2) = Vi+I;
so, Evi(e) = V,(t) + V(1 + d;);
and (v)Evy(e) = E,Egruv(e)
= E[XLC,T, + EE[I FLOMY ol
+E,(SViCy 1) + E;,Evi(bfl — Cyi) I
= XLd; + %% [i1;d; + EVid, + V(1 + d; — d;)
= YILd, + ‘122]? L1;d, + V(1 + d;)
= Vo(t) + ZVi(1 + dy)

On the other hand,

Vi) = ByVe(e) + 1, En(c) = Ep[SViBE L] + 15(t)
= Vp(t) + ZVi(1 + d,)
A]S(), V(e) = ER‘/[)( )+ ‘/RE ( ) (36)

= Shd, + L Lld, + SVid, + Va(E1)
1 i
= Vp(t) + V(1 + d,)
So, v1{e) and v,(e) may be taken as unbiased estimators for V(e). Further,
noting that for
’U)p = Up(t) I=i = EjiCsi[,;i -+ %Z iijj(jsiylszj
1 1 l j A

we have
E(wy) = EyEr(wy) = Eyu,(t) = V,(t), and so for vz(e) = wy, + Lu;b%4 1,
we have Evg(e) = V,(¢) + EVi(l + d;).
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So, wz(e) is a third unbiased estimator of V (e).

With these preliminaries let us extend the methods of Franklin (1989a,
1989b) and of Singh and Singh (1992, 1993) to general sampling designs.
Chaudhuri (1999, 2000b) examined certain aspects of the approach we are
going to present here. An interested reader may consult Chaudhuri and
Mukerjee’s (1992) text.

We shall now calculate RR-based expectation, variance, covariance “con-
ditionally throughout on I = (Iy,...,I;,...,Iy) as given” but continue to use
the same notations Eg, Vg, Cg. Then, for the RR’s z;; based on Franklin’s

(1989a, 1989b) scheme we have

Er(zij) = Limy+ (1= L)pay,
‘/R(Zij) = IiO‘%j + (1 — Ii)Ugj,
Crlziyyzip) = 0 Vj#j5,1€U.

Then, for [; = A" we have ER(fi) = J;, and for

(m;—m2)

S1;byI,; we have
Vie) = Vi(t) +

[e\]
il

[i (01] UQJ)E 21 b2 sz

(my - my)? =1

| 55) By (S0, L)

I

+(

]

1

(my —my)?

(07 — o)X L(1 + d;) + 055(1 + dy)) (3.7)

= V1) +
Then, ’03( ) E j C i-[si + E#E iijjcsijlsi]
1 1F)

b ((0} — AL+ oI L (38)
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is an unbiased estimator for V'(e). Similarly, vi(¢), v2(e) may also be written
down explicitly. Let

_ N . 2 2
Zb;,‘ = injb.s‘l[.ﬁ'?* OJ = [y — 251 AA; =0y, = 09y

Then,
Er(Zyj) = 0;S1bg 1 + pojbsi L, (39)
Va(Zy) = Bl 4y

Let

1

€ = 5. (Zh] - /L212b3i131)'

j

Then,

EH(EJ') = YLibyl; =1
1 . . .
Vale;) = 5—2[A‘7}:[Zb§i15i+05
J
Vie)) = E,Vrle;) +V,(Er(e;))

1 y v

J

2

k
Let W,’s be assignable weights such that 0 < W; < 1, v}j] W, = 1 and
]:

k
* 7 o
e, = EIWJeJ. Then,

V(e:u) = EW’JZ"<(°7) -+ ]X;% I/V]wr];c\'(e]’ (j,)

writing Z;ZI for sum over 7,7'(j # J) = (1,..., k).
i#i

Now
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Cley,e5) = E,[Crlej,e;)] + CplER(e;), Er(ey)]
= Cy(t,t) = Vp(t)

because z;;’s being independent across j = 1,...,k,Cr(e;,e;) = 0Vj # j".
So,

k k .
View = WO - X W)+ V@) £ W
k W2
+ X 52 S IAY }:I(1+d)+02]2(1+di)]
J

e W2A,
= V(&) + (SL(1+d))[ 2 5]
1 j=

J
r W2o2.
+3(1 +dy) (_E ’ﬁ).
j=1 6]

)

Then,

vs(e,,) = ; L,Cyls + ZE, jif'csijfsij

u

. 2N,
@L@LJ§ i
- ¥
k W22,
-Hzﬁga<z ’?Q
; =1 &3

is an unbiased estimator for V (e*). Similarly, v (el)), v2(e},) may also be writ-

ten down But we omit them.
Remark 1. To facilitate a comparison between e and e;, we need to have

2

=0y, = 0]2- for every j =1,...,k. (3.10)

2
0'1]-
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- . . . “ k y
For simplicity we shall write 0% = % ¢?
j:

Then,

Vie) = V,(t) + ————— (1 + dy).

(my —my)2 7

and V(e;) = V,(t) + <

Then, we have the

1M

1

2
w222 ) (1 + d,
7

Lemma 1. V(e},) is minimized for the choice

L__

qk0|k)og0

.

L i=1,... k.

k
Proof: V'(eZ,) is minimized if W;’s subject to ¥ W
=
2 j
mize E I/V2 (5%

Thl\ is achleved on solving

_ 9 29)
0= 7 LW’y+A&W )

bl

with A as the Lagrangian undetermined multiplier, leading to (3.12)

optimal e, will be written as e* and it follows that

I
—
9;

Vie) = Vlt) + (S(1+ )~
p

q

J
Then, we have the

Theorem A. V(e) > V(e*).
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. The
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Proof.

ko
o? 1 20, L oy
my—mg)2 k62 Lk ., & 02 =
(my —my) 5 % (% 5,)? (% %
j=10; J=1 j=10;
using the Cauchy inequality.
Remark 2. Franklin’s (1989a, 1989b) choice
W; = —k—lm leads to (3.14)

g = pajl
J=1

2 202

7 %3|lm — i)

Writing ¢}, for e}, with this choice of W; as in (3.14) we have the

Theorem B.

Proof.

(my — m2)2 - [% IMU - I»L2j”2

= %;S,(Mlj = pigj) by — prayr) — ‘]EE, [1j = pizg| g — praye] < 0.

J

Hence (3.15) follows.
For the Singh and Singh’s (1992) scheme, corresponding to (2.8)" - (2.12)’

we respectively have in the present case:
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Er(Lij) = Li(py — pra) + po; (3.16)
. 3 .
‘/‘R(Lij) = Ii E_ P"(nflj - 7'2]) + Z Png]
Czc(Liy-, Lm') =0V # ]’

¢ = XLb,l,,

where

L,y - m,
——— giving E,(¢) =
nmy — my

ji:

1

(777/:7”2)

( rl] UfQj))

Mu

V(@) = Wt + (2P 3

EL(1+d) + (EP Z o

r=1

121+ d,)]

r23

for which an unbiased estimator is

03(2) = Eiicsi[si + ZZ jiijsijlsij

+

ST P, z (071, ~ 0%,))

(m] - TTLQ)‘2 T

SLbE T+ (P z am)zzyfifsi]
Similarly, v;(€), va(€) may be written down but we omit. Next, let

Lyj = ELijbsils, vy = S F (o2, - o? ). ¢, = Yok,
Then,
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Er(Ly;) = 6;251ibgdy + po; 501,

~ 1 .. ~
¢j = (Lo — poEbeilss) giving Br(e) = ¢,
J
Ve(e;) = [wjzl b2 e + ¢; 0% 1]

~ 1
V@) = o SIS+ d) + 6,5(1+d)]
J

~ k ~
With W;’s, as before, as assignable constants, let e, = ¥ Wje; be a
=1 '

convex linear combination of e,’s. Since L;; and L;; are ‘uncorrelated’ for

J# I,

because

So,

and

V(Ew) = SWRV(E) + (EEW W0

W2 .
Y =20, 2L(1 + di) + 0, 5(1 + d;)]

V(Ew) = V;?(t) + 7 ¢§

v3(€4) = Eji(jsi[si+zgj;iiijcsi[sij

[1/)]21 b+ ¢, 5% 1)

is an unbiased estimator for V(¢ ,,). Formulae for v1(€ ), v9(€ ) are similar
but omitted.
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Remark 3. To compare ¢ with ¢, let us incorporate the simplifying as-

sumption that

TRy = Oy 7,
for everv r = 1,2.3 and j(=1,... k) and write E(’T? = o2
Then,
52
V(6) = V() + ey (1 4 d
() = Wll) (my — my)? é( 2
and
o~ ) koo, 0)
V(é’ w) = ‘p(f) + b ‘/VJ Sz 2(1 + d1)
]::Tl j

Since V (€) equals V(e) and V(¢ ,,) equals V(e},), as in (3.10) and (3.11)

1

respectively, the results concerning “e Vs ¢” apply to ¢ Vs e, under
the assumptions in Remark 3.

Since Singh and Singh’s (1993) work is a special case of Singh and Singh's
(1992) work, extension of the former to cover the general sampling designs

is straightforward and hence we omit the details.

Remark 4. Incidentally, Franklin (1989a, 1989b) and Singh and Singh
(1992, 1993) have not presented estimators for the variances of their esti-

mators.

‘Remark 5. Franklin (1989a, 1989b) gave as follows also a maximum likeli-
hood estimator (MLE) for # and not only the estimators by the ‘Method of
Moments’ (MM) as discussed in Section 4.2. Taking fi; as the ‘probability
density function’ (pdf) of z;; or the ‘probability mass function’ (pmf) in the

discrete case and g;; as that of y;, the likelihood of @ given the

RR as z = (z“ﬁ.,..zlk,..‘,z“,.,,,zlk,..,znl?,_‘,,znk) is
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k k
LOlz) = 7 [0 7 fi+(1-6) 7 g

is HAM which is the solution of the equation

0= alogL(Olz)_ _ % [ (vi — ) }
a0 =1 | 0(vi —m) +
as obtainable by the ‘grid search’ method. Further properties of 05 are not
reported. But a major shortcoming is that its value may often go beyond
the possible values of § which are only ﬁ,i =0,1,...,N -1 N.
With our formulation we may write down the ‘Likelihood’ of I; given
2y = (Zi1y -5 Ziy ooy Zik) @S

k Ltk =k I 1-1,
L(Ii(z;;)) = (J.Wl fij> LZI gij) =% -

Since I; = 1 or 0, the parametric space is composed of only two elements,

namely 1 and 0 So, the MLE of I; is, say, m; given by

m; = Llify>mn
= 0if Yi < 1%
if v, = n,, no MLE of m; exists.

Using this m; as an estimator for /; we may proceed to estimate I by

Em = Emibsilsi (317)

For Singh and Singh’s (1992, 1993) schemes, in our formulation, the ‘Like-
lihoods’ of I; given the RR as L;; and R;j, say, in these two respective cases.

are
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' say

Hllky) = ( {rl frij)[i) (rél Iy <J7irl gm)) .
o/
(T

Bl
and L(L|R,,) = 4? ) (U =T) T fo)!

The MLE’s of I; in both cases are immediately derived. But subsequent

investigation of the properties of the estimators of I of the form (3.17) is not
easy and is not taken up here.
Chaudhuri (2001) presented estimators by the maximum likelihood approach
to cover RR models given by Warner (1965), Kuk (1990), Mangat (1992),
Mangat and Singh (1990) and Mangat, Singh and Singh (1992).But we do
not persue further with this approach here.

4.5 Conclusion and recommendation

Repeated RR’s elicited from each sampled person allow alternative estimators
for proportions of people bearing sensitive characteristics and an appropriate
choice among them is possible when samples are suitably drawn not neces-
sarily with equal probabilities and with replacement. Unbiased estimation of
the variances of the estimators is also easy to implement. Our recommenda-
tion is that for complex large scale surveys a few sensitive items should be
covered and inference concerning them may be implemented employing some

of the procedures presented here.
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Chapter 5

Bootstrap Procedures for
Generalized Regression

Estimators

Abstract

From the works of Sirndal (1996), Deville (1999), Brewer (1999, 2000)
and Brewer and Gregoire (2000) among others we gather that “Variance
and Mean Square Error” - estimation for Horvitz and Thompson’s (HT,
1952) and generalized regression (greg) estimators for a finite population to-
tal needs to be simplified preferably by omitting the cross-product terms
that involve ‘second order inclusion-probabilities’ which are often hard to
compute. We present two ‘Bootstrap’ sampling procedures as a simpler al-
ternative to cover situations left beyond the applicability of Rao and Wu’s
(1988) bootstrap method for the greg estimator. Through simulated numeri-
cal exercises we illustrate how the procedure may work vis-a-vis the available
traditional estimation procedures concerning the greg estimator. We illus-

trate three sampling schemes, each with variable ‘effective sample sizes’.
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5.1 Introduction

We consider estimating the total " of a real-valued variable y defined on a
finite survey population. We suppose that positive values of a related vari-
able z are available for all the units of the population for their utilization
as the size-measures to assist the drawing of a suitable sample with unequal
selection probabilities. We also suppose that for a sample the values of an-
other correlated positive-valued variable x with a known population total X
may be ascertained along with those on the first variable of interest. In such
a situation an appropriate estimator of the total is known to be the general-
ized regression (greg) estimator introduced by Cassel, Sarndal and Wretman
(CWS, 1976) motivated by a postulated line of regression of y on z through
the origin as an improvement upon the classical Horvitz and Thompson’s
(HT, 1952) estimator HTE. In large -scale surveys utilization of both is of
late being considered jeopardized because (1) one has to accurately evaluate
a large number of cross-product terms with widely variable coefficients in the
formulae for the estimators of the variances of HTE and of the Mean Square
Errors (MSE) for the greg estimator and (2) in both cases computation of
the Second order inclusion-probabilities of the pairs of units becomes discour-
agingly hard for many sampling schemes. To tackle these problems several
prescriptions are emerging especially through the recent works of Sarndal
(1996), Deville (1999), Brewer (1999, 2000) and Brewer and Gregoire (2000)
among others. Without detailing them we may only suggest here that the
use of the ‘Bootstrap’ technique may be convenient to produce simple vari-
ance estimators for the greg estimator avoiding one of the two difficulties (1)
and (2) noted above. This may be accomplished using Rao and Wu’s (1988)
bootstrap technique, provided (A) every sample s with a positive selection
probability p(s) has the number of distinct units v(s) in it which is constant
across the samples and (B) the design P employed with the probabilities p(s)
is such that “mm; > m,;Vi, j in the population U = (1,---, N) of the units,
1 # 77, writing m; = Eq)p(s)[si,m-j = Xs]p(s)lsij, assumed throughout positive
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Vi#j=1,---,Nandi=1,---,N. Here ¥ is sum over all the samples,
I = 1 1f 1es,0 otherwise and I;; = I,1,;. ’

We shall first present ‘methods of drawing the bootstrap samples’ needed
to evaluate estimates of MSE of the greg estimator when (I) (A) is violated
but not (B) and (II) both (A) and (B) are violated so that Rao and Wu’s
(1988) method does not apply.

Next we illustrate 3 sampling schemes for which (I) holds, generally, or at
least for certain ‘real life’ data. Next we present simulated exercises to show
‘How the bootstrap procedures’ proposed may fare vis-a-vis the traditional
procedures of using the MSE-estimator m(t,) for the greg estimator ¢,. For
this we apply the usual criteria of

(i) ACP, the actual coverage Percentage for a 95 percent confidence in-
terval (CI), namely (t, — 1.96,/m(t,),t, + 1.964/m(t,)) treating (¢, —

Y)/\/m(t,) as a standard normal dev1ate calculated for R = 1000 repli-
cates of samples drawn by the same method when all population values
y, z,x are given - the closer ACP to 95 the better; and

(ii) ACV, the Average coefficient of variation, which is the average, over

the same R = 1000 replicates, of the values of 10()@ the smaller
it is the narrower the CI and the more accurate the pomt estimator .

The procedures are given in section 5.2, the simulated results in section

5.3 and a few concluding remarks in section 5.4.

5.2 Bootstrap Procedures

With Q;(> 0) as suitably assignable, for example, as +, 2, lel =M ete we

z;’ 7} iTi ) mTy
have t, = Ei’—gmlm with g;; = 1 + (X - Z——L)-i”—”x—'%”[—‘ Writing t,, for the

HTE for the total of a variable w we may write t, = f(t, ts, tyzom, te2gn) =
+ (X — ¢ ) 2227 which is thus a non-linear function of 4 HTE’s of the
r2Qn
populatlon totals of 4 specified variables.
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In case (A) and (B) of section 5.1 hold, Yates and Grundy’s (1953) esti-

mator

RN TR
VyGs = ZZ(mvrj — 77,»]-)(& - _7)2 8
! moom T

is a ‘uniformly non-negative’ (UNN) unbiased estimator for the variance of
the HTE = E%[S, = ty namely V(¢g). In this case, Rao and Wu (1988)
have given a procedure of drawing a bootstrap sample from the original
sample so that the ‘Bootstrap’-sampling based expectation F, and variance
V.. generically denoted, of two functions defined by them may respectively be
equated to {5 and vygs. Taking the cue from them we propose the following
‘bootstrap’ sampling schemes in the two cases (I) when (A) fails but (B)
holds and (IT) when both (A) and (B) fail.

Case 1. Out of v(s)(v(s) — 1) ‘ordered’ pairs of units z,j(z # j) in s let
a ‘Bootstrap’ sample s} of pairs (¢*,7*) in ‘m’ draws ‘with replacement’ be
chosen with probabilities (to be specified in what follows)

Qe (1T # T7)y Ginjr = Gjein-

With numbers k;-;- to be presently specified, let

| ) .
o= — B8 k(XU
m (i* g es]) T = =

. Y Ui\
Then, Bu(ti) = 2% gk (7 - .77]_) =0and V.(t)) = ;; BY aik; (m - ;é)z
which equals vygs on choosing (a) m = v(s)(v(s) — ), (b) gij = = and (c)
ki, = 7n(ﬂri~_f—’1)1/2 i # jes. Chaudhuri (2000a) has shown that even if (A)

1 .
fails, v, = vy(5+2‘1-’lal , with o, = 1+ (E mij) —om; = — S v(s)p(s)la—
Ty 8

Y r(s)p(s) is an unb1ased estimator for V(tH)
S

[n order to see the useful role of v, let us now draw from s a second boot-
strap sample s3 ‘independently’ of the selection of s} following the Poisson’s

sampling scheme, as described by Hajek (1981) with 7, as the probability of
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‘Success’ associated with 2 in s implementing a Bernoullian trial. Let

Yir Lsyir

ty = .
i*esy Tis Ty=

Then, E*(tg) = tH and ‘/*(tg) = E(% - 1)(%)2153 Letting f = tl + t2 and
1

choosing r; = 375- one has E.(f) = ty and Vi(t) = v., provided of course
a; > 0ensuring 0 < r; <1 Vi

This is just a mimicry of Rao and Wu (1988) when “because (A) fails vy s
is not an unbiased estimator for V(¢y) so that a modification is needed”.

Just as t above is calculated using vy, one has to calculate the same ¢ with
y; replaced by z;, y;7;Q;m; and x?Qm; so as to be able to calculate ¢, based
on the bootstrap sample s* = (s}, s3) as above. Calling such a sample s* as a
bth bootstrap sample s}, one has now to replicate the same, a large number
of times, say, B = 1000 and calculate t, for these B replicated bootstrap
samples s;,b=1,---, B. Then, {, = + bi ty(s;) gives us the ‘bootstrap greg
estimate’ and we take

1 B ~

vy = 51 2 (te(5s) = tg)*

as the Bootstrap estimate of the MSE of the original greg estimator ¢4 about
Y.

Obviously in this MSE estimation though computation of 7;; is not avoided
there is no problem of correctly computing too many cross-product terms
with (m;m; — m;;)/m;; which are usually volatile rendering vy g unstable. A
95% CI for Y is then calculated as (Lgs, Ug7.5) using the lower 2.5% tail point
L 5 and the upper 2.5% tail point Uy 5 of the ‘Histogram’ of the ty(sy) values,
b=1,---,B. This is by the ‘well-known’ percentile method. An alternative
‘Double Bootstrap’ CI may be calculated as follows: From s, B = 1000 more
bootstrap samples are independently drawn using the same scheme and they

are used to calculate v, as above - to be denoted by v,(b). This is repeated
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for every initial b = 1,---, B = 1000. For the histogram of

,‘!}(Sg) B t.‘l hb=1.--- B
v,y (D) ' ’

the lower 2.5% point I, 5 and the upper 2.5% point ug7 5 are then calculated
and (ty - Ug7.5/Vgs by — 125\/@) is taken as the 95% ‘double bootstrap’ CI
for V.

In these computations of CI’s the traditional MSE estimators for ¢, using
the cross-product terms are avoided. With powerful computers the above
computations are easy. Next we present our proposed ‘Bootstrap’ sampling

procedures to cover the

Case II. First we note that though in case v(s) for every s is a constant
it is impossible to have m;; > mm; Vi, jeU, (i # j), in a contrary case it
may yet hold especially if for the ‘largest sample-size n, sav’, one has n >
1+ E(v(s)) —m; Vileading to

Var (v(s)) > Zmi(lL — 7).

So, in case (II) holds, let from s a bootstrap sample s} be drawn by Poisson
scheme with k;, as the ‘probability for success’ for a unit ¢ in s. Again (2)
‘independently’ of the draw of s}, let a ‘bootstrap’ sample s be drawn from
the v(s)(v(s) — 1)) ‘ordered’ pairs of distinct units of s again by Poisson
scheme with A;,;. as the ‘probability of success’ for the (¢*, 5*)-paired unit,

(1* # 7% in s). Let us construct the bootstrap statistic

Yix Yi*

Yix Is*i* . Tk %
t = Y () (Y e
7(1'*( ki* ) ' (7.’*#]" )\i*j* et
_EE gﬁg{]”])
g\ T T
Then, E.(t) = E%lsi and
2
, Ly 1 1 Y2 Yj
Vit) = Y3 (— - DI, + 58 (— —1)==
(0= S5 - D+ 23 - D2 )



Choosing (1) k; = 35— and (2) A\j = -—r~ this Vi(¢) is equated to

i 2— (_.J_)

mij
the HT form of the estimator of V(ty), which is vyt Eyl(TL)ﬂ +
i — s A
S gy (—L—1) =24 S The condition (IT) is needed to ensure 0 < A;; <
1#] T 7r1]

1Vi # j. For the applicability of this ‘bootstrap’ sampling scheme it is a
‘prime requirement that’ vyy for s must be ‘non-negative’ because to it is
equated a variance. If y; > 0Vi, of course vgr is non-negative in case (I1)

holds and moreover m;; > mm; Vi # j.

5.3 Simulation for a numerical study of effi-

cacies

We have not encountered yet any real-life data for which v(s) varies and
mi; > mm;¥i # 7. But we shall illustrate 3 specific sampling schemes below
for which (I) applies for every vector Y = (y1,---,vs,---,yn) of real y;’s, ieU

or for the values encountered for Y at hand together with related Z.

Scheme 1. As discussed in Chapterl in details, Chaudhuri and Pal (2002a)
showed that v, is uniformly non-negative for the scheme of sampling in which
in the first 2 draws units are chosen using given normed size-measures p; (0 <
pi < 1Vi, 2p, = 1) employing Brewer’s (1963) scheme followed by either (n —
2) additional draws by simple random sampling (SRS) without replacement
(WOR) or (n — 1) additional draws by SRSWOR from U leaving aside the 2
distinct units already drawn - here n is pre-specified but the choice of (n—2)
is made with an assignable probability w(0 < w < 1) and (n — 1) is chosen
with probability 1 — w.

Scheme 2. Following Ray and Das (1997), as discussed in Chapter 3, we
consider a ‘circular systematic sampling’ (CSS) with ‘probabilities propor-
tional to sizes’ (PPS) which are certain known numbers with the modification

on a standard CSSPPS that ‘the sampling interval’, instead of being a pre-
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assigned positive integer is chosen as a random integer between 1 and Z — 1,
where Z = Yz;, where 2;’s are positive integers chosen as size-measures of ¢

in UU. The number of draws is taken as a pre-assigned number n.

Scheme 3. This is the standard PPS scheme with replacement (WR) in a
pre-determined number of n draws.

We shall illustrate N,Y,n, z, p; etc. for which at least one of Rao’s re-
quirements (A), (B) is violated for all the above schemes 1-3. From Sarndal,
Swensson and Wretman’s (SSW, 1992) book, p.660, we consider N = 50
clusters and n = 17 for schemes 1 and 3, with y as the ‘cluster population in
1985°, = as the ‘cluster population in 1975 and z as the ‘number of munic-
ipalities’ in a cluster, the size-measure, p; = 2,72 = Z For scheme 2 we
take n = 7 and N = 29, leaving out the last 21 dusters dbove. For schemes
1 and 3, Y = 8339, Z = 284 and for scheme 2, ¥ = 5816 and Z = 165. For
scheme 1, w = 0.4.

Following Chaudhuri and Pal (2002a) we consider for t, = 21 + (X —

E%Iﬂ)% Q= 17‘3”1 and the 2 MSE-estimators as, for £ =1, 2,

I A€ Ag;€54 ak(’,)Q ]9 .
mi(ty) = XX(mr; — wly)ﬂ( L Epl—aii with a;, =
' <] Ty T 7 T e
1,02 = Gsi, 1€S; €, = — boxi,bg = %ﬁg—]j Next /mg(ty) is taken as

the Standard Error (SE) of t,. In Tables 1-3 below we present, for the
respective schemes 1-3, (a) for a specific replicate of a sample the values of

to, SE separately as (1) \/Ug, (2) /mi(t,) and (3) /ma(ty), CI's as (1) by
percentile method, (2)’ by Double bootstrap method, (3)'(ty + 1.96,/m,(t,))
and (4)'(t,+1.96,/ms(t,), and lengths of CI's and (b) for R = 1000 replicates
of the original samples (i) the average lengths (AL) of CI's, (ii) ACP’s, and
(iii). ACV’s for the pertinent procedures that we could actually implement
with the given data described above.

The nature of the distribution of the statistic e = fng_) may be examined
s.e(ty

through the skewness and kurtosis coefficients v, and 7, (defined below) for
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the T=1000 replicates drawn.
Here v; = —\/%2 andfyg:ﬁg—?;

where y, = 75(e — €)",& = 3:Xe,r = 2,3,4 over the replicates.
Table-0

Showing values of 7,7, for different sampling schemes

Sampling scheme ; Y2

(1) (2 )
Scheme 1 .02 .76
Scheme 2 -.03 -.68
Scheme 3 -.54 .93

From the calculated values given above, departure from normality seems to
be evident. So it is desirable to employ an alternative procedure avoiding
normality. So we use bootstrap samples to construct CI's by 1) Percentile
method and also 2) by the Double bootstrap method.
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Performance characteristics based on Scheme 1

Table 1

tg tg SE CI Length of CI AL ACP ACV
(1) (2) (3) (4) (5) (6) (7) (8)
8436.0 8439.4 (1) 269.0 (1)’ (7978.7, 8780.0) 801.3 958.6 98.1 (1) 3.4
(2) 120.3  (2)' (7979.0, 8647.0) 668.0 549.0 934 (2) 1.0
(3) 112.0  (3)’ (8059.9, 8514.1) 454.2 3388 90.7 (3)2.1
(4)' (8117.6, 8456.3) 338.7 351.0  92.1 :
Table 2
Performance characteristics based on Scheme 2
ty ty SE CI Length of CI AL ACP ACV
(1) (2) (3) (4) (5) (6) (7) (8)
5598.5 57232 (1) 204.6 (1)’ (5530.7, 6116.0) 585.3 652.1 94.5 (1) 6.1
(2) 180.1 ) - - - (2) 3.5
(3) 106.9 (3)' (5343.4, 5853.5) 510.1 549.1 91.1 (3) 2.4
(4)" (5485.3, 5711.6) 226.3 73.2 90.3
Table 3
Performance characteristics based on Scheme 3
ty t, SE CI Length of CI AL  ACP ACV
(1) (2) (3) (4) (5) (6) (7) (8)
8462.1 8440.8 (1) 408.0 (1)’ (7583.9, 9395.9) 1776.0 1503.4 99.2 (1) 7.3
(2) 141.6  (2)' (8157.4, 8620.7) 163.3 672.8  97.1 (2) 2.2
(3) 83.7  (3)' (8258.7, 8813.9) 555.2 493.6  89.1 (3) 1.3
(4)" (8372.2, 8700.4) 328.2 446.1 87.1

5.4 A Discussion on.the» Simulatéd Results

and Concluding Remarks

Our proposed bootstrap method in “Case (I)” gives a bootstrap estimate

quite close to the population total and gives the best ACP-values among its
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competitors. But the bootstrap standard errors and ACV-values come out
much poorer, with too wide lengths of the CI's. The sophisticated standard
errors for the greg estimator especially the ones using gg-values give better
SE’s, ACV’s and lengths of CI's but the ‘coverage-probabilities’ turn out less
than the ‘desirable’ magnitudes.

Even though for the use of HTE for ¥ the PPSWR method may not be
a good sampling scheme it competes well in respect of the greg estimator
against the more reasonable sampling schemes 1 and 2.

We may conclude however that though there is a clamour against the use
of traditional MSE-estimators for the greg estimator because of too many
cross-product terms a ‘bootstrap’ technique though available need not be
good enough to dislodge them in terms of performances. It may be useful to
study how our bootstrap procedures may compete against the emerging ap-
proximate MSE-estimators that bypass the involvement of the ‘cross-product’
terms as are recommended by Sarndal (1996).

A final remark. Brewer and Gregoire’s (2000) estimator

Z’/Tl‘

Y
t = E—[%‘,
BG I/(b) :

1

though not originated through them, based on Poisson’s scheme of sampling

with m;(0 < m; < 1,Viel) as the ‘probability of success for i” is really a greg

estimator, as was noted by Van Deusen (1987) for the choices: (); = mlzt
and z; = m;. Here v(s) varies over (0,1,2,---,N — 1,N). So, for this our

procedures discussed above may be applied with no difficulty. as in this case

mi; = mm; Vi# 7 in U. We do not pursue with this here.

111



Chapter 6

Estimating Domain-wise
Distribution of Scarce Objects
by Adaptive Sampling and
Model-based Borrowing of
Strength

Abstract

Utilizing the known (1) geographical areas (z) of the districts in India
and (2) those of the total wastelands (x) therein we consider estimating (3)
the total unknown areas (y), under ‘Mining and Industrial Wastelands’ for
the groups of districts together but separately in the Northern, Southern,
Eastern and Western regions in India, restricting to districts each possessing
at least 5 per cent of its total area as a wasteland. The total numbers of such
districts in these respective 4 regions of separate interest are 48,48 42 and 91
giving a total of 229 out of which we consider sampling a total of 73 districts
employing Rao, Hartley and Cochran’s (RHC, 1962) scheme of sampling
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using the known values of z above as the size-measures. Treating the above
4 regions of districts as the 4 domains of interest we consider utilizing known
x above as a regressor in estimating the ‘domain total’ values of y above to
form an idea of the distribution of these district-wise scarce objects in these
regions.

For this we employ (a) non-synthetic as well as (b) synthetic versions of
generalized regression (greg) estimators motivated respectively by postulated
regression lines of y on z through the origin, for simplicity, with (i) domain-
specific and alternatively with (ii) domain-invariant ‘slope-parameters’.

Next we employ empirical Bayes estimators (EBE) with these greg esti-
mators as the ‘initials’ with further specifications in the models.

Finally, in order to capture more districts beyond the ‘initial sample’ ac-
commodating the rare commodities namely the ‘mining and industrial waste-
lands’ we employ the technique of Adaptive sampling defining appropriate (1)
‘neighbourhoods’ and (2) ‘networks’. One may refer to Thompson (1992),
Thompson and Seber (1996) and Chaudhuri ( 2000a) for a discussion on
adaptive sampling technique. The resulting relative performances of the al-
ternative estimators noted above based on ‘initial’ and ‘adaptive’ samples are
numerically examined through a simulation exercise utilizing known values
of all the 3 variables noted above based on a given set of ‘Remote sensed’
observations.

The synthetic greg estimates based on adaptive samples turn out to be
the most promising ones in terms of the standard twin criteria of (A) actual
coverage percentage (ACP) of confidence intervals (Cl) based on assumed
normality of a standardized ‘pivotal’ derived from a ‘domain-specific’ esti-
mator and of (B) average coeflicient of variation (ACV) of an estimator
both calculated from ‘replicated samples’.
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6.1 Introduction

From the website “envfor.nic.in/naeb/naeb.html” entitled “The National
Wasteland Identification Project” (NWIP) we gather certain data relating to
48, 48, 42 and 91 districts, each with at least 5 per cent of its total area as ‘a
Wasteland’ area respectively in the northern region of UP, Haryana,Himachal
Pradesh, Punjab and Jammu & Kashmir states, the southern region of Kar-
nataka, Andhra Pradesh, Tamil Nadu and Kerala states, the eastern region
composed of Arunachal Pradesh, Nagaland, Manipur, Assam, West Bengal,
Orissa and Bihar and the western region consisting of the states of Maha-
rashtra, Gujarat, Goa, Rajasthan and Madhya Pradesh.

For each of these 229 districts are separately known the total (1) geograph-
ical area (z), (2) the total ‘wasteland area’ (x) and (3) the total ‘mining and
industrial wasteland area’ (y). Since the value of y for many of the districts
is zero while when it is positive its magnitude is substantial and ‘how far the
remote-sensed data on y matches the ground realities’ is unknown, we con-
sider it useful to prescribe, through a prior investigation, a fruitful method
of (A) sampling of these 229 districts and of (B) estimating the total values
of y for all the districts together but separately within the above-noted 4
regions of interest.

Using the known values of z as size-measures it seems plausible to adopt
a suitable ‘unequal probability sampling’ scheme to start with and since
z-values are known, a generalized regression estimator seems worthy of ap-
plication. Further, since even with as high as a 25% sample of districts we
may not find enough ‘region-wise’ sample-sizes it may be useful to apply the
‘principle of borrowing strength’ as in small area estimation by appropriate
modelling. Finally, since y is positive only for a very few districts region-wise,
in order to capture more districts with positive y’s we may contemplate em-
ploying adaptive sampling to extend the original sample to hope for improved
estimation.

In section 6.2 we describe the procedures of sample selection and the
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estimation methods along with the motivating models. In section 6.3 we
present a numerical evaluation of the competing procedures by a simulation
exercise. We give our recommendations in the section 6.4 with which we
conclude.

6.2 Sampling and Estimation Methods

For a simple presentation we need the following notations. Let
U=(1,--+,4,---,N) denote a population of units labelled i = 1,---, N and
let this be a union of D non-overlapping sets of units Uy, called ‘domains’,
with known sizes Ny,d = 1,---, D. Let y;, x;, 2;,i€U be the values of the
variables respectively y,z,z with (1) totals Y, X, Z and (2) domain totals
W Xg, Zg,d = 1,---,D. By p; = %, we shall denote the ‘normed size-

measures’ of the units. 3

From U let a sample of n units be chosen employing the Rao-Hartley-
Cochran (RHC, 1962) scheme. For this, U is randomly divided into n groups
of My, -+, M;,---, M, units with M;’s as integers closest to ’7\—1 with their sum
Y, M, over the n groups equal to N. From the ¢th group so formed one unit,
say, ¢j 1s chosen with a probability ’%, writing r; = p;; + -+ + pipg; this is
repeated independently over all these n groups.

Let 14 = 1if ieUy; 0 else and (p;, y;) be the normed size-measure and the
y-value for the unit chosen from the ith group. Let ¥ denote summing over
1 in U. Then,

Yy = Yy;14 and RHC’s unbiased-estimator for Y is

~ T
Yo = Zn_lyildi-
bi

- SaM2-N . : - .

Writing B = 35—z, RHC’s unbiased estimator of V(Yy), the variance of
1

o N yil yilai\2 o o o e T

Yy is v(Yy) = BE,Lanirj(%‘ﬁ- - ’TJL) , writing 3,3, as sum over pairs of

distinct groups with no overlaps. Let us postulate a model so that we may
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write
Yi = Baxi +€,1€Ug,d = 1,---, D
with 34 as constants and ¢;’s as random variables. Following Chaudhuri et al

(1995) we may employ the following version of a possible improvement upon

Y,, namely

Ti T
toa = Za—ils +bga(Xa— Tn—x.:14)
Pi i
r
= Zn—lgdiyildi-

Di
Here boy = TnvyiziQils/Tnz?Qily with Q; as a suitably assignable posi-
. 1=k
tive constant, for example, as &, 2, gt ete. and gy = 1+ (Xa -
~ . {L’l‘Q‘i—)_L l "
P mida) 5

_P

In this presentation we shall mostly take @Q; as ( = L=y etting

pr/lf) =
ex = Y;i — bgaz;, following Sdrndal (1982) the mean square error (MSE) of
t,a about Y, may be estimated by
Migd = BEnznrirj(gdﬂff—lﬂ - Eﬂ—”ﬁﬂ)?, k = 1,2 on writing a4 = 1 and
@24, = 94, In order to improve upon t,4 by ‘borrowing strength’ from outside
the ‘intersection of the sample with ;" but within the initially chosen sample,
s let us postulate an alternative model for which 3, above is replaced by 3
for every d but keeping everything else in tact. This revised model motivates
the ‘synthetic’ greg predictor for Yy as t,sq which is t,q with bgs replaced by
bo = TnyiziQ,/E,22Q;. Then we may write
(). b
tgsa = En}%yi[[di + (XNg ~ Znﬁxi[di)%

Pi an‘?Ql}

T3
= En——yigsdia say,
i

with g,q; as ‘within the square brackets’. Then, following Sirndal (1982).
MSE-estimators for t,54 are

€ibrai

BCLIN

MkgSd = BZnZ"Tﬂ'j( ,
Pi Pj
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on writing
e; = Y; — boxi, bigi = Lai, baai = Gsdi-

In contrast with tyeq, the ty4 is a ‘non-synthetic’ greg predictor.
Writing tq for an initial estimator/predictor for Yy let us now postulate

the more sophisticated model permitting us to write:

wnd
(i) tqlYa N N(Yy, mg), with my as a known MSE-estimator for tg4,
nd
(i) Yy N N(6X,4, A), 6, A as unknown constants
(iii) €q = (ta — Yq) “independent” of ng = Yy — X ford=1,---,D.

Then, from Fay and Herriot (1979) we have

A my
= (—)t 60X
tpa (A+md)d+(A+md)( d)

as the Bayes estimator of Yy, d=1,---, D.

R thd/(A + md)
Writing 6 = 8

EMU [Iisels

13(3/(14 + md)

and solving by iteration for # and A starting with a ‘zero value for A’, the

equation

D -
dgl(td — QXd)Q/(A + md) =D -1,

we may derive moment estimates 0, A respectively for 6, A. Then,

A my A
EBd (A +—md) ! (A+md)( )

gives the EBE for Yj.
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From Prasad and Rao (1990) we get the MSE-estimator for tgpq as

mepa = Ga(A) + goa(A) + 293d(/i)

~

where g14(A) = Yamu
A4
T A + my
R . X2
g2a(A) = (1-73) - ;(3
d=1 (A + md)
2
. m -
(A = ——1¢
goa(A) (A +my)?
here V{4) = = % (A+ma)’
where V(A) = e dgl(A + myq)

For the validity of mgpg, D is required to be large. But in the present
case we employ this even though D is only four hoping that this may still
work

Suspecting that the initial sample s drawn as above may not yield enough
units with positive values of y ‘respective domain-wise’, we may apply in the
following way the technique of adaptive sampling to enhance the capture of
more sampled units with positive and possibly high positive y-values.

For every unit, namely district in the present investigation, let a ‘neigh-
bourhood’ be defined as the collection of districts including this unit itself
and those with a common boundary with it as is determined from the map
of the 229 districts we are considering.

Any unit, rather district with a zero value for y is called an ‘edge’ unit or
a singleton network. For any unit with a positive y-value one should check
for the positive/zero-value of y for each of its neighbouring units and proceed
with this checking until every neighbouring unit has a zero value. The ‘set

of units thus checked starting with the positive y-valued unit’ constitutes a
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‘cluster’ for the unit including itself. Those units with positive y-values in
the cluster constitute a ‘network’ for the initial unit. Writing A(7) for the

‘network’ to which the unit ¢ belongs and m; for its cardinality, let

1 1
bh=— % yoli=— Y Zk
m; keA(z) mM; keA(7)

Then, as is recorded by Chaudhuri (2000a), one may check that T' = ¥ ¢,
el
equals Y and L = ¥ [; equals X.

L ) . el
Similarly, letting
) Yily ., EA(,)I;fdj
€ 2 ;i € (2
tid ]—du——l)— and l;y = ](d—f_i)— it follows that
Jlaje A7) GlaeA(R)
Yy = _EUtid =Ty, say, Xq = _%lid = Ly, say .

The collection of the units in the original sample s together with those in
their respective clusters constitutes an adaptive sample.

Corresponding to t,q the non-synthetic greg predictor for Yy based on the
adaptive sample is
tga(A) = (Tn S tialss) + bga(A) (Xa — Tn lialai) writing boa(A) = L—;:%@%

Since l;4 is often zero, we shall take @Q; as (1 — 1';—:‘)/’;—:’- omitting l;4 in the
denominator which we might use as equivalent to z;.

The MSE estimators for t,4(A) are myg4(A) obtained from myyq replacing
therein y; by tiq, z; by lia, boa by boa(A).

Instead of t,54 we shall employ ty54(A) for the adaptive sample obtained
on replacing y;, z; by tig, lig in the former. The MSE estimator for ty54(A)
will be taken as mys4(A) obtained from m; g4 on replacing y;, z; in the latter
by tiq and l;4 respectively in the terms involving Iy and by ¢;,l; for the terms
free of Iy. Because of the form of mysq(A) it is not possible to use a second
MSE-estimator corresponding to mgysq because

T3

LT Entz’lez
thd(A) = Ln;tid[dz + (Ld — En;lidldl)( > ZZ_ZQv

)
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cannot be expressed as a weighted sum of (¢;4/4)-values. Corresponding to
(tppd, MieBd), (LEBSd, MkEpsa) We obviously have (tgpa(A), meppa(A)) k =
1,2 and (tgpsd(A), mepsi(A)) with obvious notations for the EB estima-
tors based on adaptive sampling and the MSE-estimators corresponding to

TTI,kEBd.,k = 1,2 and Mi1EBSd-

6.3 Simulation - based Numerical Evaluation

of Relative Efficacies

Given an estimator/predictor fy for Yy with an MSE-estimator vy we shall
treat s4 = (fs — Ya)/\/Ua as a standard normal deviate and take (fs —
1.96,/Vg, fa + 1.96,/v4) as the 95% confidence interval (CI) for Y. To com-
pare alternative choices of (f4,v4) we shall calculate, based on R = 1000
replicates of the samples, the criteria measures (I), ACP, the actual coverage
percentage which is the percent of the replicated samples with CI's covering
Y, - the closer it is to 95 the better and (II) ACV, the average coefficient of
variation namely the average over the R replicates of the values of 100 %
the less it is the less the width of CI and the more accurate is the point

estimator fy for Y.
For the NWIP data mentioned earlier our numerical observations are as

in the Table below.
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Table

Relative Efficacies of Alternative Procedures

ACP/ACV Values

Serial Domain North South East West
Numbers Specifications
of items  numbered (d) (1) (2) (3) (4)

Domain sizes

Ny 48 48 42 91

fa/va
1. tgd/Migd 80.2/20.0 83.4/24.1 80.6/23.9 87.1/14.1
2. tod/M2gd 82.1/21.3 84.4/27.2 83.5/22.2 88.0/17.2
3. toa(A)/miga(A) 87.1/15.6 89.4/19.3 86.3/21.4 93.0/9.8
4. tga(A)/maga(A) 89.4/19.1 92.7/26.3 88.1/25.9 93.6/10.3
5. tEBd/MiEBd 00.3/23.5 91.1/32.0 84.1/39.1 92.1/22.2
6. tgBd/MoEBY 92.5/31.4 93.7/34.1 83.1/32.3 97.1/31.6
7 tppa(A)/migpa(A)  94.6/41.3 90.1/29.2 86.3/41.4 96.3/29.5
8. tepd(A)/mappa(4) 94.4/374 92.1/32.2 88.1/43.5 95.1/24.7
9. tgsa/Migsd 88.8/27.1 82.1/29.1 85.6/25.1 89.6/18.2
10. tosd/Magsa 91.3/28.5 84.9/29.3 83.6/24.9 90.0/19.1
1. tgsa(A)/mgsa(A) 93.9/18.5 92.4/20.1 89.9/23.8 96.1/10.5
12. tEBsd/mEBS 95.4/24.3 90.3/34.9 89.1/40.2 95.1/24.1
13. tEBSd/M2EBS 95.8/32.9 90.6/29.6 94.8/37.1 96.1/29.5
14. tepsa(A)/mepsa(A)  95.3/42.1 94.9/30.1 91.2/43.2 95.1/26.3

It may be noted that the number of districts to be covered by adaptive
sampling varies between 117 and 146 with an average of 134 while the initial
sample size is only 73. Adaptive sampling always involves additional costs.
The question is whether and how much it pays in terms of gain in accuracy
in estimation.
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6.4 Concluding Remarks and Recommenda-

tions

If guided by the criterion of ACP, one may be convinced that empirical Bayes
estimators for adaptive samples as well as the original samples fare better
than ¢,4 and ¢354 and more so if coupled with myyq, mggsq respectively rather
than with mygq, mygsq.

Moreover, adaptive sampling coupled with non-synthetic, synthetic greg
estimators and the empirical Bayes estimators based thereupon seems to have
an edge over the original one.

In terms of the ACV criterion empirical Bayes methods perform poorer
. than the initial ones on which they are based. But adaptive sampling achieves
improvements when combined with t,4 with both m,gq, Mg and also with
tysq but the ACV increases when it is used with empirical Bayes versions of
these greg estimators. Taking both the criteria together, the synthetic greg
estimator t454(A) based on adaptive sampling seems to be the most promising
one. So, if the resources permit, our recommendation is in favour of adaptive
sampling even at an additional Cost. Compared to (tg5q, Migsa). kK = 1,2,
the pair (tg54(A), mysa(A)) is a better choice - this vindicates the efficacy of
adaptive sampling. Keeping in mind simultaneously the width of the confi-
dence interval and the accuracy in point estimation, empirical Bayes proce-
dure does not seem to be a right option in the present exercise. But adaptive
sampling coupled with synthetic greg estimator is a promising choice.

A possible reason for a p.drtial failure of the empirical Bayés estimation
approach in the present exercise may be the inadequacy of mgpgy as an MSE-
estimator in view of the number of domains here being too small-only four.

A repulsive feature of adaptive sampling is its lack of control on the
ultimate sample-size. Salehi and Seber (1997, 2002) have invented certain
safeguards against excessive inflation in sample-sizes by some ingencous de-

vices. One easy way available for the type of work presented in this chapter

122



is to (1) first set an upper limit on the total of the cardinality of all the
networks that one may come across on the basis of the initial sample and
keeping that inview suitably sub-sample, by SRSWOR method, each network
covered during the actual survey and keep the cost under more control than
for the uncontrolled Adaptive sampling. In our simulation illustrated in this
Chapter, there was no excessive increase over the initial sample size and so
we did not apply any precautionary measures.
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Chapter 7

Simplified variance and mean
square error estimation
avoiding inclusion-probabilities

of paired units

Abstract

Sarndal (1996) followed by Deville (1999), Brewer (1999,2000), Brewer
and Gregoire (2000) among others recommend avoiding the terms involv-
ing the inclusion-probabilities of pairs of units in the estimators of variance
of Horvitz and Thompson’s (HT, 1952) estimator and of the mean square
~errors (MSE’s) of the generalized regression (greg) estimators derived from
the HT estimator by certain ingeneous ways. For Hajek’s (1964, 1981) Pois-
son sampling scheme and its special case called Bernoullian sampling scheme
these probabilities are not even needed in variance or MSE estimation. Cer-
tain developments concerning these topics are available in the literature. We
attempt here at adding to them a few by analytical as well as numerical

exerclises.
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7.1 Introduction

Héjek’s (1964, 1981) Poisson scheme of sampling associates numbers §;(0 <
f, < 1) with the respective units 7 in a survey population U = (1,---,4,- -,
N) and includes the units in a sample s from U for which the N Bernoullian
trials independently implemented yield ‘success’es with 6, as the probability
of ‘success’ for the ith unit of U, omitting the units for which there are
‘failures’ with probabilities (1 — ;) for ¢ in U. In case 6, is taken as a
common number for every ¢ in U, then the scheme is called Bernoullian

sampling scheme. The following consequences are of interest for this scheme.

(i) v(s), the number of distinct units in the sample s is a random variable
with possible values 0,1,..., N — 1, N;

(1) #; equals m;, the inclusion probability - hence we shall write m; for 6,
throughout for this scheme;

(iii) E(v(s)) = m; = v, say; in practice, a number v is first fixed keeping
in view the cost of a survey and m;’s are chosen as numbers in (0, 1)
subject to Xm; = v,

(iv) The HT for ¥Xy; namely

by = Z:_y_,-Im I, =1if ies.
i = 0, else

has the variance V(ty) = Zy? —Tl because, for this scheme 7,; = m;7; and
hence the cross product terms vanish

and (v) v(ty) = Sy (=2 )—ﬂ is an unbiased estimator of V (ty).

Brewer, Early and Joyce (1972) and Brewer, Early and Hanif (1984) have
considered a ‘modified Poisson’ scheme introduced by Ogus and Clark (1971)
where the selection process is repeated in case v(s) turns out zero and stopped

as soon as v(s) turns out ‘positive’ and then the Poisson scheme is applied
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with revised selection-probabilities to retain the prescribed 7;’s. Some de-
tails are given in Chaudhuri and Vos (1988, p.198). Grosenbaugh’s (1965)
BF-Sampling is a precursor to Ogus and Clark’s (1971) above-mentioned in-
troduction as is lately gathered through a private communication.

For “modified Poisson” scheme (MPS) 7,; = mm;(1 — Py) where P, is

the probability of an empty sample. Thus P, is the solution of the equation
N

H [1 —m(1 — By)] — Py = 0 because 7;(1 — Fy) is the revised selection prob-
=1
ability of 7 for this MPS. Then the variance of the HTE (tg) based on MPS

reduces to

Vi(ty) = S(1 = m) = ~ Py(Y? — Zy))
with an unbiased estimator of V'(ty) as

P

U'(tH) = 2(1 — 7(1)71{_1 [M — 1= PO

2
7

LT zy’ ;).

When employing the original Poisson scheme of sampling, an approach is to

use, instead of tg, the ratio estimator, namely,

v V &Y
thy = ty = =TI
e v(s) T u(s) T,

for Y, assuming v(s) > 0.

Grosenbaugh (1965), however introduced thiq tru.

Writing z; = 7, X = Xz; = Yy = 1, Q; = e = # it follows that tpy
equals the generalized regression (greg) estimator for Y, namely
YyiriQilsi
t-—E IZ bo(X — Z I% bg = =7
si T Q( ) Q ZI?Q;[.W

Such a fact was earlier recognized by Deusen (1987).
DR

Since, €; = y; — bgx; equals y; — (——(;) 7, two usual MSE estimators for

1 —m Sel. \ I,
my =% . (?]i - —m*“ﬂz) —

v(s) T,

ty = try are




and

szzﬂ'z
si = 1 X -X—= Isi) S 9N 7
g * ( ExQQz st

because

equals ;(ﬂs—) for every 7 in s.
For Poisson sampling scheme an alternative MSE estimator for tgy is, ac-
cording to Brewer (2000),
1 Y URH
MBRH = 23(— - T )( : )2151‘

c  ar o u(s)

1

: §) — 1
where 7} = 1%@ the adjusted inclusion probability and C = v(s)

v(s) = oy ‘é m
From Sarndal (1980) we know that Cassel, Sarndal and Wretman's (ClS-W
1976) greg estimator t, above for Y as derived from the HT estimator tg =
Zfr—’i[“ being motivated by a modelled regression of ¥y on x which is linear
through the origin, has the property of being asymptotically design unbiased
(ADU) and also asymptotically design consistent (ADC) for Y. A generalized
version of £, may be taken as

tgb = Zyibsijsi + bQ (X - Exibsilﬁ-)

with by’s as constants free of ¥ = (y1,...,%i,...,yn) but subject to the
constraint

Ep(bsi[si) - 1 V’L € U,

writing £, as the operator for expectation with respect to a sampling design
P.

This tg, shares with ¢, the ADU and ADC properties. Chaudhuri and
Stenger (1992) have discussed these properties in depth.
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If we relax the requirement of design unbiasedness of Ly;byi 1, then, for

Poisson sampling scheme we may employ for Y the estimator

v Yi 4
toe = ——2—1Ig + by | X — 2—-Iﬂ
ge (5) T Q( l/() T )

with
b — LyiwiQils
v Z‘rzzQilsz
with
1 1 1 1-—-m
Qi = T T o IR - '
Ty T TX; ;X4
ete.

Since mzy—[ .; is already shown to be a greg estimator for ¥ with z; =
T, Qi = o = —7, it is ADU and ADC for Y. Hence t4 is also ADU and
ADC for Y. This is our justification for the use of tg4.

Since tg = Zy——i“il +boX = L& IM + boX and by Tay lor Series ex-
pansion, neglecting Sultable terms 1t 18 well known that the MSE of ¢, about

Y is approximated by
MUQ:AME(EEQ>~AHF<—LNI>
7T'L 7T'L

it. follows that for ,
v e

tpe = — |E—Tg| +boX

9 p(s) [ i } Tha
one may approximate the MSE of #,. about Y by

Vo L€
M(t,) = MSE | —S—1I| .
(ta) = 1158 | mE|

So, just as M (ty) may be estimated by

1—m Isi ¢
7m@ﬂ:2< ‘M%1V?3k:L2

Trl K3

where

: Z, Q.
ay = 1,09 = gsi = 1+ (X - E:’—r__lsz> V:tzé T
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M(t4c) may be estimated by

v

-mk(tgc) = (V—g) mk(tg), k= 1,2

Remark.

A major problem with Poisson sampling scheme is that v(s) varies across
0,1,..., N and in using the estimator tg, this variability is likely to create
excesses in the latter’s variance. The use of tzy is an attempt at a possible
check on this excess. But if v(s) happens to be zero, then ty and tgy are
not usable. Brewer, Early and Joyce (1972) and Brewer, Early and Hanif
(1984) considered alternative estimators allowing a course to follow in case
v(s) equals zero and they also treated a ‘modified Poisson sampling’ scheme,
in which ‘Poisson sampling’ is continued till one sample with “v(s) > 0" is
realized throwing away the previous ones with “v(s) = 0.

For a sampling design admitting a fixed size n for every sample s with a

positive selection-probability, Brewer (2000) gives us the identity

, y, Y\’
Vity) = 2l -~ m) (‘g“ - ;)
Ys Y) y, Y
: ) (2 - =) [ - = 1
4—4}‘%} (W” Wm]) <7rl n <7rj n) (7 )

1
= §yf ( ) + %Zli%‘(”zj = mim;) /T

1

To avoid 7;; in estimating this V(¢y), Brewer (2000) approximates 7;; by

with suitably chosen positive numbers ¢; in (0,1) and using 7~r,-j in lieu of m;;
in V(ty) he approximates the latter by

VN'(tH) = Ymi(l - ¢;m;) (y—i - Z) (7.2)
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and recommends a biased estimator for V(ty) given by
1 yi  to

vp(ty) =%(——m (—l———>[<

sltn) = 2= —m) (== ) Lu

as derived from (7.2) by multiplying by C—[j*r—
Following Brewer (2000), in case a sampling design admits varying num-
ber of distinct units v(s) with an expected value v = ¥7;, we may present

the following alternative identity

Vitn) = Tm(l—m) (2 ~ _{)2 + 2 (my = mim;) (y_ _ X) (ﬂ ~ Eﬁ)

Uy v f v T v
. 1 1 2Y
2
_y (1 -+ ﬁjazwij) + =52 (5,m,) (7.3)
1 i — TiTs
= ny L EZy,y] —-———————Or R WJ).
U UES

[ncidentally we may note that for Poisson’s sampling scheme this reduces
to

1—m,

Vity) = Tyi—

Poisson .
1
as it should be because m;; = m;m; for Poisson’s scheme.

With Brewer’s (2000) choice of 7;; as

~ C; + (',j
Ty = TiT; 9 )

(7.3) reduces to

. 51
V*(tu) = Dy,

ML E?T?(Ci - 1) (ﬂ - }:>2 )

i Ur v

Following Brewer (2000), we may employ a biased estimator for V' (t5) as

1 —m; 1y 1 T
v (tn) = Syt Milsi s (1 _ —) (y— _ —”1) L, (75)

. T ¢/ \T; v

as derived from (7.4).
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7.2 Numerical comparison of efficacies of a

few alternative estimators of a population
total

We consider from Sarndal, Swensson and Wretman’s (SSW, 1992) text, pp.
660-661, a collection of N = 50 clusters of municipalities for which the values
yi(i = 1,...,N) are taken as the populations in 1985 for the respective
clusters and z;’s as the 1975 population figures to be used in regression
modelling with known totals ¥ = 8339 and X = 8182.

We consider the first N; = 23 clusters as the first stratum and the last
Ny = 27 clusters as the second stratum. From these two strata respectively
we draw samples of sizes n; = 9 and ny, = 8 by alternative schemes using
the size-measures as 22’s where 2;’s are the numbers of municipalities in the
respective clusters, the total sample-size being n = ny + ny = 17.

We consider R = 1000 replicates of the stratified samples drawn by alter-
native schemes mentioned below. For just one of the replicates we present
in tables below the estimates of Y along with the estimated standard errors
(SE) which are the positive square roots of the estimated variances or esti-
mated MSE’s. Also, treating the pivotal 6 = L&T?* where t is an estimator for
a parameter § with v as the estimator of its variance or MSE, as a standard

normal deviate, we treat

(t - 1.96\/v,t + 1.96\/v) = (¢ £ 1.96\/v)

in brief, as a 95 percent confidence interval (CI) for #. We present in tables

below the values of

(I) ACP = the actual coverage percentage, which is the percent of repli-
cates for which a CI covers Y - the closer it is to 95 the better the
Cl,

(II) ACV = the average coefficient of variation, which is the average over
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(111)

the replicates of the values of 100_\%6 - the less it is the less is the width

of CI and the more accurate the point estimator ¢ for § and finally

AL = average length of the confidence interval over the replicates. We

consider the following alternatives :
2

Poisson sampling scheme with m; = %i—%, with n as the pre-assigned
i

sample-size intended; for this scheme we consider

(tu,v(tg)), (tra. ™), (Lris ma), (bri, mBRE), (tg, Mi(ty)), £ =1,2,

(tge» Mi(tec)), k = 1,2 as alternative choices of (t,v) when 6 =Y,

and for a “modifed Poisson sampling” scheme (MPS), (tg,v'(tx)),
(tri,m)), (trm,mb), (ts, mi(ty)), k = 1,2 are the alternative choices
of (t,v) when 6 =Y, namely v'(ty) as discussed earlier,and

2 P e
Tnk ) 2(1 )(11“ 3 1 0 {(Eakl()l »[si)g _

71'1 1“‘P0 T

2 .2
i€ 1]
2 57

i

where 0
Ty Tl T
Cl-:l,a,.:: :1+(X—“2—I) :
; e m ) BalQils’
and m), will be obtained from my(ty) for which z; = 7, X = Zz; =
T =1,Q; = ;—; = %;.and Gsi = 321—55

With Brewer’s (2000) choice of m;; as
2

for the above MPS scheme, (ty,vamp(ty)), (Erir, Minp), (Cre, Morrg),

(tg, Minr5(te))s (e, Mepr(tee)), k = 1,2 are the further alternative choices

of (t,v). The above upp(ty) is described earlier. For miyp(ty) and

M p(ty), yi in vap(ty) is to be simply replaced by e; and e;gs re-

spectively. For tpy, m,p and mhyp are obtained from mj,,p(t,) and

My plty) with z; = m, and Q; = ?12: respectively. Also

14

2
mimp(te) = | — | mimslty), k=1,2.
v(s)
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(ili) Rao-Hartley-Cochran (RHC, 1962) sampling scheme. Here to draw
a sample of size n from a population of size N we first divide the
population at random into n groups taking in the ith group N; = [%]
or [%] + 1 units subject to %, N; = N, writing ¥, as sum over the
n groups. From the ith group so formed one unit is chosen with a
probability proportional to z? for the units in the ith group and this
is repeated independently over the n groups. Writing (y;, p;, ;) for the
y-values, normed size-measure-values and the summed p;-values over
the N; units in the sth group, RHC’s unbiased estimator for Y is

Ty

trHC = Enyif=
1

The RHC-unbiased variance-estimator (RHC, 1962) is

EoN; = N v )
= |- : annli ol == )
VRHC (N2 _ an\/?) r;r <p1 P

writing ¥,Y, as the sum over the pairs of the groups already formed with
no duplication.
A greg version of tgyc is

T - Ty v T
lgr = Enyig' + br(X — Epz,—) = Znyz‘,fhm

P 7 [

En i iRz T ;I_Ii]{i%
bR - Yt /Lm =14+ (X - Tn’L'lr—> ﬁ
n-Ti )

Ena:?Ri k Pi
with R;(> 0) to be suitably chosen, as for example,

b .
Ri: " 1 ri:ri_pi

, ,
pix; %xi DT

ete.

MSE estimators of {,r are

SaN2 — N brieri  bryer, \
Vg = (m) annrﬂ‘i/ ( i — e ) s k= 1,2,

where by, = 1,by; = hy, €, =y, — bpa;,
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(iv) Hartley and Rao’s (HR, 1962) sampling scheme. Here the units in a
population are first randomly permuted. Then, from the permuted
vector of labeled units a PPSCSS sample (as described in Chapter 3)
is chosen in n draws, with n as the intended sample size, provided

22

1

Y22

For this scheme values of 7;; as given approximately by HR will be used

np, <1vieel, p, =

which are as follows :

n—-1 7 — 1Y . .
mi(HR) = (” ‘) Wi”j*(%ﬁ‘) (”fﬁﬁr”i”;)

n
n—1 2(n -1 . , .
- ( - ) 7rz-7r.727ri2 + ——713_2 (Wfﬁj + 7Ti7T; + Wfﬂf)
3n—1)/ , 2 2, 3(n—1) 242
._—n—4-> (7‘[’1- 71']' + ﬂiﬂj) 27T1 =+ Tﬂ'iﬂ']‘(z’ﬁi)
2(n — 1) 5
———n4—7ri7rj27ri

and of course m; = np;.
For the tg based on the HR scheme, V(tg) will be estimated by

2
Ty~ m\ (Vi Y
vyalty) = ox (B " Tu | (9 iy g
Y(( H) <5 ( ﬁm T 77‘]‘ 517

with m;; = m;; (HR) and m; = np,.
We shall also use, following Brewer (2000), for the HR scheme, the ap-

proximate values of m;;’s as

K

o n— 1
7T1](B) = Ty (C 5 CJ) , G =

n —m;

and V (ty) will be estimated by

1 v tg\?
vp(ty) = X(— — m) (;l__ -£> I

M, n
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Also, for the HR scheme we shall use the vyg to estimate V(ty) by

using the following two alternative formulae for 7;; as given by Stehman and
Overton (SO, 1994) namely

- . (n - 1)7'{'1’7(]‘
miy(Sol) = n— (m +mj)/2
d
o (TL — 1)71',;7!']'
7T1']'(502) =

n—m—m+ %EW?;
of course 7, = np;(< 1).

Also, we shall use t, based on HR scheme and employ my(t,),k = 1,2,
using the formulae as m;;(HR), m;;(B),mi;(Sol) and 7;(S02). The corre-
sponding estimates for variance of g will be denoted respectively by vgr(),
murk(), v80), mBr(), vso1(), vso2()s mMysonyk (), Myso2)k () for variance and MSE
estimators respectively for t; and t, using the corresponding formulae for ;;
as above.

(v) Also for the modified sampling scheme of Seth as discussed in Chapter

1 we use (tg,vamp(ty)) and also (ty.vars(ty)) with vars(ty) given by

0y, . 2
)Yy slatiy

Leis
onraltn) = NS
vms(tu) =3 i (mimj — my _— T ™,
where 1
Bo=(1+ = ¥ m; - Im),1eU

Ty j#i
for which ;, 7;;’s are as given in Chapter 1; the expression for vms(ty)
is given in equation (7.5) in this Chapter in which the =, should be as
in modified Seth scheme.
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Table 1(a)
Performances of alternative procedures based on Poisson

sampling scheme

(t,v) t (for one | S.E. = /v (for | ACP | ACV AL
replicate) | one replicate)
ti,v(ty) 9885.56 2912.16 86.9 | 22.20 | 7876.59
trH, M 8860.16 2178.56 84.10 | 1247 | 5566.04
R o 2183.50 85.10 | 12.25 | 5521.22
try.MBRH 2023.60 83.60 | 13.36 | 4921.53
with Q; =
ty,my(ty) 8322.40 127.89 84.30 1.80 508.10
tgyman(ty) 100.39 87.70 | 1.20 | 491.10
tgeymy(tge) 8860.16 1936.49 84.80 | 13.40 | 5888.70
tgey o (ty,._) 1741.64 85.80 | 13.94 | 6003.20
with Q; = L1
to iy (ty) 8329.20 103.22 7130 | .91 | 297.93
ty. ma(ty) 179.89 74.90 .85 280.30
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Table 1(b)
Comparative performances of alternative procedures based on

Poisson sampling scheme

(t,v) t (for one | S.E. = /v (for | ACP | ACV AL
replicate) | one replicate)
ta, v (ty) 9885.56 2911.9 86.9 | 22.20 | 7875.56
tpp,m) 8860.16 2243.30 85.40 | 13.26 | 5892.94
tri,mb 2158.84 85.60 | 13.05 | 5815.06
tRE M p 2236.29 89.30 | 12.32 | 4938.10
tre, Moy p 2158.36 86.10 | 13.01 | 4900.36
with Q; = ;—7!—
tg, mi(ty) 8322.40 188.60 83.60 | 1.32 511.30
tgrmh(tg) 185.44 91.30 | 1.63 | 522.63
tas ™, ay (ta) 179.38 90.10 | 1.29 | 493.29
g My ps 5 (ta) 180.36 89.30 | 1.9 | 485.06
tge, ™) (tge) 8860.16 1994.04 86.50 | 14.41 | 5260.41
tges M (Lge) 1918.97 87.00 | 14.56 | 5312.43
tge, M 0 g (tge) 1936.59 88.30 | 14.90 | 5006.30
Eges Ty g B(tqp) 1921.06 87.10 | 14.52 | 5323.90
with Q; = ﬁ
Loy (tg) 8329.20 88.55 79.70 | .95 | 312.39
tg i (tg) 110.36 83.40 | 98 | 323.02
tREHC,VRHC 10185.10 227548 93.90 | 18.02 | 4554.01
with Q; = ——;—
tar, V1 8228.09 140.49 88.50 | 1.98 521.97
tyn, U2 638.96 98.10 | 3.88 | 1273.66
with Q; = -—Tlf-
tyR, V1 8234.42 134.62 82.00 98 320.31
Lar, V2 524.62 98.30 | 4.35 | 1425.13
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Table 2
Comparative performances of alternative procedures using HT
and greg estimators based on Hartley-Rao scheme and modified
Seth’s scheme

(t,v) t | SE [acplaAcv ] AL
(Harlety-Rao Scheme)

tn,vur(ty) 9238.17 | 1700.39 | 96.70 | 17.47 | 5873.99
te,vp(ty) 2037.00 | 93.50 | 14.69 | 4980.48
tr, vsor (tr) 1608.00 | 91.70 | 13.91 | 4729.24
tw,vsoa(ty) 1604.81 | 91.60 | 13.69 | 4654.44
with Q; = —1:1-;;

to, muri(ty) 8272.50 | 124.12 | 86.00 | 1.07 | 351.13
tg, muR2(ty) 98.41 | 93.10 | 1.13 | 370.71
teymar(ty) 11745 | 8360 | .98 | 320.21
tg, mpa(ty) 93.11 | 88.50 | 1.00 | 328.43
tgs Mysonn (ty) 117.38 | 84.80 | 1.02 | 332.85
tgs M (s01)2(ty) 93.18 | 90.70 | 1.06 | 346.81
tg, m(soan (tg) 117.07 | 84.50 | .99 | 324.69
tg, M(s02)2(tg) 92.98 | 90.50 | 1.03 | 338.88
with @; = %ﬁ‘—

to.mupri(tg) 8272.68 | 12349 | 85.60 | 1.07 | 350.36
tgmura(ty) 94.90 | 9240 | 1.12 | 367.79
tg,mp1(ty) 116.86 | 82.60 | .97 | 317.23
ty,mpa(ty) 89.73 | 88.00 | 99 | 325.51
tg, m(so1)1(tg) 116.78 | 84.40 | 1.02 | 332.20
tg.m(sonya(ty) 89.86 | 89.50 | 1.04 | 342.28
te, m(so2n (tg) 116.48 | 84.10 | 99 | 323.94
tg, M(s02)2(ty) 89.71 | 89.80 | 1.02 | 336.02
t,vms(tn) 8736.21 | 7488.54 | 97.00 | 32.02 | 9665.10
tn,vmp(ty) 2297.58 | 96.30 | 23.76 | 9415.93

Comments :
Sarndal’s (1996) work motivated us to investigate whether there is any
advantage in using Poisson scheme coupled with Horvitz and Thompson’s es-

timator to avoid computing 7;;’s with complicated formulae rather than em-
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ploying the simple alternative procedure given by Rao, Hartley and Cochran
(RHC, 1962) for sample selection and estimation. The Table 1(a), Table 1(b)
show that neither tg nor tzy really beats tgyc. Schabenkerger and Gregoire
(1994) also noted the good performance of tgyc. However ¢, competes quite
well and closely with ¢,z with various choices of Q;, R; and MSE estima-
tors. The far-fetched version of ‘greg’ approach starting with another greg
rather than with an unbiased estimator does not yield any advantage as is
evident from the numerical values concerning t,. from the Tables 1(a), 1(b)
above. The modified Poisson sampling scheme fares competitively with the
original Poisson scheme with slightly less efficacies. The estimators given by
Brewer (2000) and Brewer and Gregoire (2000) now included in this revision
for comparison fare quite well.

Also, as expected, greg estimator fares much better than the HT estimnator
for every sampling scheme. There is not much to choose between Hartley
Rao’s, Brewer’s and Stehman and Overton’s schemes but modified Seth’s
scheme is inferior to them. Between the two MSE-estimators of the greg
estimator the one that uses a ‘mulplier for the residual’ fares better than the

other which uses the residual term alone in each case.
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