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Chapter 1
Introduction

1.1 Introduction

A recent trend in computing is to distribute (he computations among a set of
processing elements. There are two basic appronches to this — one is to build a
loosely-coupled system and the other is to fonn a tightly-coupled system [PS835].

In a loosely-coupled system, the processors do not share common memory or a
common clock; but sharing of important resources like data files, softwares, special
hardware components etc., is possible without duplicating the resources themselves.
The processing nodes may even be geographicully separated from each other and
are connected through databuses, telephone/radio links, satellite, etc. Such loosely-
coupled systems are also commonly reterred (0 as distributed systems.

In a tightly-coupled system, the processors share a common clock and/or common
memory resulting in a parallel processing environment. Such a system enables one
to meet the requirement for enormous amount of fast real-time computations in many
practical applications, e.g., weather torecasting, image processing, etc. Examples of
parallel processing systems include pipelined computers, array processors and
multiprocessors. A distributed system or a parllel processing system involving array
processors requires an inferconnection network for communication among the

processing elements.

Interconnection Networks may be classified into two broad categories [Fe81]. They

arc .

i) Static interconnection network
and ii) dynamic interconnection neiwork.

A static interconnection network is a collection ol processors and links among them.
Such an interconnection network is usually represented by a graph. The nodes of
the graph represent the processing elements and the links of the graph stand for
the communication links. This graph is usually called the network graph or the
network topology. A dynamic interconnection network has a set of sources and a
set of destinations (may be the same as the set of sources) which are connected



through switches and links. Different input-oulput connection patterns may be
achieved by changing switch-settings.

The desirable properties of a good network topology are :

i) Low degree of nodes: The upper bound on the degree is, in practice,
restricted by the number of 1/O ports that can be provided by a node.

ii) Low number of Ilinks : This helps in rf';dur;ing the cost of the
interconnection.

iil) Low diameter : This is to reduce lhe inter-node communication time.

iv) High degree of fault-tolerance.

v) Regular structure : This is for ensicr implementation in VLSI.

vi) Incremental extensibility

and vii) Simple routing algorithms in both fault-free and faulty conditions.

Some of these properties are mutually conflicting. For example, the third property
is in conflict with the first two. The fourth ‘one in the abowve list is impeded by
the previous three. Some of the problems of recent research interests in the area

of static networks are as follows

1. Design of a network topology : An integrated design approach, simultaneously
optimizing all of these aspects, is very difficult. The usual practice is to consider
one or some of them, but not all at a time, to arrive at an optimal or near-optimal
design. Many such topologies, e.g., tree, mesh [Le93], de Bruijn [Br46], Mdbius
[LS82], hypercube [J492], cube-connected-cycle |[I'V81], double-loop [DHL'90] etc.,
are available in the literature.

2. Modification of the existing topologies : Some properties of some existing
topologies may be improved upon, by suitable modification, without affecting much
of the other desirable properties. For example, the diameter of a hypercube can be
reduced by adding some extra links or exchanging some suitable pairs of links

[ENS91].

3. Analysis of network topologies : Properties like diameter, average path length,
fault-tolerance etc. may be derived for the existing or new network topologies.

4. Routing : Simple routing is one of the most important needs of a network topology.
Routing problem may be classifed into four categories :



i) node-to-node routing (sending a message from one node to another node),

ii) broadcasting (sending the same musunge from one node to all other
nodes),

iil) scattering (sending different messages (o ditferent nodes from one single
node),

iv) multi-node scattering (scattering from a set nodes).

Algorithms for all the four categories exlst in the literature [BOS'91].
Some important considerations for a dynmamic Interconnection network are

1. Permutation capability : Some networks cannot realize all possible permuations
in a single pass. These are called blocking networks. Examples of blocking networks
are Baseline [WF80], Omega [La75] etc. For blocking networks it is important to
find the minimum number of passes that mmny be required to realize a given
permutation.

Again, some networks can realize any permutation it the whole permutation is given
together. But if the requests for input-output conncction are given one by one, some
requests may be blocked by some of the existing connections. Such networks are

called rearrangeable networks. Very popular among the rearrangeable networks is
the Benes network [Be63].

Networks which can accommodate any request at any stage are called non-blocking
networks. Examples of non-blocking networks are Crossbar and Clos network [CIS3].

Studies on the permutation capabilities of different dynamic networks constitute a
major area of research interest.

2. Routing algorithm : Finding simple routing algorithms is an important
consideration for a dynamic interconnection nciwork. For blocking networks, it is
desirable that a given permutation is realized In minimum number of passes. For
some networks, permutations can be realized by distributing the routing algorithm
to the switches with some small extra hardware. Such networks are called self-routing
networks. For the others, a given self-routing strategy may realize a subset of
permutations.

3. Fault-tolerance : Detection and diagnosis ot different types of faults is an



important problem. Different fault models may also be considered [FW81], [Ag82].
When the faults are diagnosed, the routing algorithms may suitably be modified to
by-pass the faulty areas, with graceful degradation of performance.

1.2 Scope of the Thesis

In this thesis we will address some problems relating to the design, analysis, routing
and fault-tolerance issues of both static and dynamic interconnection networks. In
the follwing subsections we discuss some of the problems we have addressed.

1.2.1 Static Networks

Results on the static networks include i) the design problems involving fault-tolerant
hamiltonian topologies, ii) modifications on the hypercube topology for reduction
of diameter, iii) an in-depth study on distributed loop networks and iv) reliability
analysis of networks.

A. Fault-Tolerant Hamiltonian Topologies

Fault-tolerance of a network graph can be expressed In several ways. In a typical
application, a network graph may be called faull-tolerant if a specific structure, for
example, a hypercube or a hamiltonian cycle, is embedded in the network even after
the occurrence of the fault(s). In this thesis we propose a family of network
topologies, each of which has a hamiltonian cycle in the fault-free situation as well
as when there is a single node or link failure. The proposed topologies require the
minimum number of links among all possible interconnection structures having the
above properties.

B. Bridged and Twisted Hypercubes

Hypercube is a very popular network topology. In this thesis, we propose two
techniques of reducing the diameter by

i) adding some extra links
and ii) exchanging some pairs of links (fnwisring) without adding any extra link.



In the first technique, the number of additionnl links, referred to as bridges,
constitutes a very small fraction of the total number of links. We show that by adding
8 bridges to an n-cube (n > 4), its diameter can be reduced by 2; also by adding
16 bridges to an n-cube (n>6), its diameter can be reduced by 3. In general, we
can show that by adding ( ™ )+ 1 bridges to an n-cube (n>4m and m > 2), its

diameter can be reduced by 2m; by adding 2 ("™ * ) +1 bridges to an n-cube (n >
4m-2 and m > 2), its diameter can be reduced by 2m-1.

In the second technique, we consider the reduction of the diameter of an n-cube
by exchanging some independent links. Two links are called independent if they are
not incident on a common node. We show that by exchanging 4 pairs of independent
links in an n-cube (n> 5), we can reduce its dinmeter by 2. Exchange of 16 pairs
of independent links, reduces the diameter of an n-cube (n = 7), by 3. For n >
9, the diameter can bereduced by 4, by exchanging 57 pairs of independent links.
In general, to reduce the diameter by n/2, where n is an even number > 10, we
need to exchange (" ')+ 1 pairs of independent links, where 1 = [n/4] +1.

C. Distributed Loop Networks

The ring network is a popular network topology used in local area networks. But
it has the disadvantage of high diameter and hence large communication delay. So
loop networks were introduced with some extra lixed-jump links added to the ring.
Some work has already been done on the optimal choice of the jump-size. The
minimum diameter of a loop network with N nodes for different choices of jump
size is bounded below by Ib(N) = [(Y(2N-1)-1)/2]. In this thesis, we characterize
a subset of the values of N for which the lower bound on the diameter of the
network can be achieved. An algorithm for tinding a shortest path between any two
nodes of a general loop network is also reported. Lastly, we propose a scheme for
finding a near optimal path (path length not more than one over the optimal) in
the case of a single node or link failure.

D. Reliability Analysis of Networks

Fault-tolerance of a general-purpose network is usually measured in terms of the
connectivity of the underlying graph. For a better quantitative measure of the degree
of fault-tolerance, an alternative concept of reliability is also considered. In this
approach, failures of the different nodes and/or links are described using a
probabilistic model. We propose a method for evaluating this reliability when only



the nodes may fail but the links are fault-free. Analytical expressions for the
reliabilities of some common networks are derived. Non-recursive formulae for the

reliability of a few families of network topologies are also found.

1. 2. 2 Dynamic Networks

In the case of dynamic networks, some new results have been obtained involving
i) self-routing in Benes network, and ii) non-blocking Multistage Interconnection
Networks (MINSs).

A. Self-Routing in Benes Network

Among the dynamic interconnection networks, an NxN Benes network can realize
all N! permutations. Though the communication time in a Benes network is
O(log,N), the routing algorithm takes O(N. log N) time. For some permutations, it
is possible to set the required switch-setting by setting each switch independently
by considering only the inputs to that particular switch. Such permutations are called
self-routable permutations. In this thesis, we classify the self-routable permutations
according to some possible self-routing strategics. For such a class S, of self-routable
permutations, we establish that [S|> 2" (2" + nl - 1), where n = log,N. In fact, it
is a lower bound on the size of the intersection of all S’s considered here. Some
interesting properties of these self-routing strategies are analyzed, which essentially
help characterize the set of permutations realizable by these techniques. We also
propose an O(n) time algorithm that may apply to any of these classes S; for a
given permutation P, it checks whether PE S, nnd if so, it generates the necessary

controls for routing.
B. Analysis of Non-blocking MINs

Another important consideration for the dymaic interconnection networks is their
blocking nature. In this thesis, we present some new properties of non-blocking
interconnection networks. We also propose some classes of non-blocking multi-
layered interconnection networks and their corresponding routing strategies.



Chapter 2
A Brief Review

2.1 Introduction

As already mentioned in chapter 1, there are several points to be considered in the
design of a network topology. It is impossible to optimize all the aspects to arrive
at an universally optimal design. Some of the optimization criteria are even mutually
conflicting in nature. For example, the requirement of low valency of nodes gives
rise to higher diameter i.e., the maximumshortest distance between any pair of nodes
and also reduces the fault-tolerance of the nctwork. There are many topologies
available in the literature, which have their positive as well as negative sides with
respect to different parameters, e.g., valency ol nodes, diameter, fault-tolerance,
incremental extensibility etc.. Depending upon the specific application area, one may
need to optimize one or several parameters of the network, and based on that, one
chooses either one of the existing topologies or designs a new one to fit the
requirements.

2.2 Loop Networks

One very common network topology is the ring. The ring has many attractive
properties like simplicity of structure, incremental extensibility, low valency, ease
of implementation etc. But it has some drawbacks as well. It is highly wulnerable
to faults in the network. Also the diameter of a ring of N processors (nodes), is
IN/2] (Lx] denotes the maximum number < x) which leads to large transmission
delay. There have been several approaches to bring down the diameter of a ring
by adding some more links to it. One such iden, chordal ring, was proposed by
Arden and Lee [ALS81], where there is one chord from every node of the ring. This
is a 3-regular graph with diameter O(N°>). Another approach is to use two chords
from every node. We define the length of a chord as the distance (along the ring)
between the nodes that are joined by the chord. Using this metric, chords are made
to be of fixed length. These graphs are 4-regular, provided that the chords are not
of length N/2. These structures are called Dowuble-Loop Networks or simply Loop
Networks. .



Loop networks are special cases of an important class of graphs, called Circulants.
Circulants have been known in the graph theory for a long time. According to Davis
[Da79], they were first introduced by Catalan in 1846. A Circulant C (s, s,) is
a graph with N nodes numbered from 0 to N-1 and node i is connected to nodes
(i+s,) mod N and (i +s,) mod N. There have been several works on their properties

[Da79], [BT84], [BWS5].

We consider a set of N nodes labelled V, V , ..., VH_I. Each node V. is adjacent
to 4 other nodes, V. . V. ,V. and V_, where s is the length of a chord. Using
standard notation, [DHL*90] let us call this graph G(N; 1,s). The question that arises
is : what value of s should be chosen so that the diameter of G(N; 1,8) s minimum

among all possible double-loop networks with N nodes?

Let d(N; 1, s) denote the diameter of G(N: 1,s) and
d(N) = minimum_ {d(N; 1, s)}

Wong and Coppersmith [WC74] gave a lower bound (V(2N)-3)/2 for d(N). Boesch
and Wang [BW85] made the bound tighter to Ih(N) = [(V(2N-1) -1)/2], where [x]
denotes the minimum integer > x. However, the lower bound Ib(N) may not be
achievable for all values of N. For example, Du et al. [DHL*90] showed that for
N =24, d(24) =4 with s =7, but Ib(24) = 3. The graphs whose diameters are equal
to d(N) are optimal for the given value of N, and those whose diameters are equal
to Ib(N) are called tight optimal. Thus, a graph G(N; 1,s) may be optimal for some
s, but may not be tight optimal if d(N)> Ib(N). Du et al. gave some classes of
values of N, for which the lower bound Ib(N) can be achieved. They also gave some
other classes, for which the lower bound cannot be achieved but an optimal choice
was given for such graphs.

2.3 Hypercubes

The hypercube interconnection scheme is a very popular network topology. An n-
dimensional hyperculie. Q,_ consists of N =2" nodes interconnected as follows :
i) each node is labeled by an n-bit binary number (a,a, ... a),

ii) two nodes are connected by a link it and only if their binary labels differ
in exactly one bit position.

The n-cube has become an interesting topic of research in recent years due to its
versatile applications in parallel and distributed processing. An n-cube with N = 2"
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Figure 2.1 : Examples of hypercube nctworks of lower dimensions
nodes has the following properties :

i) It has diameter n = log, N.

ii) Degree of each node is n.

iii) It has a very symmetric structure. Any two nodes are isomorphic with
each other.

iv) An n-cube consists of two disjoint (n-1)-cubes. An alternative definition
of n-cube is Q =Q__, x K,, for n> (0 where Q, is an isolated node, and
‘x’ denotes the Cartesian product ot two graphs [Ha69].

Figure 2.1 shows examples of hypercubes of dimension 0, 1, 2 and 3. Many
interesting properties of the n-cube have been reported in the literature [AG81],
[AP89], [Le93].

In [AL90], it has been shown that by adding (") extra links to a 4m-dimensional
cube (m > 2), its diameter can be reduced by 2m-1. In [TW91], the effect of adding
some extra links on the performance measures, such as diameter, mean internode
distance, traffic density etc. have been discussed.

Two links of a hypercube are called independent it they are not incident on a common
node. For example in figure 2.2 links (1000, 1001) and (1100, 1101) are two
‘independent links. In [ENS91] it has been shown that by exchanging a pair of
independent links in a 4-cycle of an n-cube (n > 3), known as twisting, its diameter
can be reduced by 1. Esfahanian et. al. [ENS91] have shown that by replacing two
links by two new links, the diameter of an n-cube (n>2) can be reduced by one.
Figure 2.2 shows a twisted hypercube of dimension 4. In figure 2.2 the links (0000,
0100) and (0010,0110) have been twisted to get links (0000, 0110) and (0010, 0100).
In [HKS87], it is shown that by exchanging (n—1)2""* link pairs in a n-cube (n

-9 _
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Figure 2.2 : A twisted hypercube of dimension 4.

=2m+1), its diameter can be reduced to (n+1)/2. In [AP91], performance measures
in terms of routing, fault-tolerance etc., of such twisted cubes have been studied.

An n-dimensional hypercube has exactly 2" nodes, thus strongly restricting the
possible system sizes. So peaple have considered what is called an incomplete
hypercube, where the number of nodes can be more flexible [Ka88], [Tz90]. Katseff
has presented simple and deadlock-free algotithms for routing and for broadcasting
messages in the incomplete hypercube with an arbitrary number of nodes [Ka88].
Tzeng analyzed the structural properties in incomplete hypercubes with size 2" +
2k, 0 < k<n, ie., incomplete hypercube composed of two complete hypercubes

[Tz90].

2.4 Fault-Tolerance and Reliability

In designing or selecting a network topology, one fundamental consideration is
system-level fault-tolerance. At this level, the types of faults to be tolerated are
processor (node) or link failures. The system is said to be fault-tolerant if it can
remain operational in the presence of failures. It is, however, the functional
requirements on the topology set by the application environment that determine when
a network is considered operational.

Two basic operationality criteria have widely been accepted in the literature.
According to one of these criteria, a network is considered operational as long as
a certain topology is logically embedded in the system. The desired topology mayr
be a hypercube, ring, binary tree etc. Much work has been done in developing parallel
algorithms and the best topologies for their executions [Qu87], [Le93], [J492].

- 10 -



The second functionality criterion considers the network operational as long as there
is a non-faulty communication path between each pair of non-faulty nodes. One
simple measure for fault-tolerance is the node-connectivity or the link-connectivity
of the underlying network graph. Though this measure is relatively easier to compute,
it does not reflect the complete picture. For example, a proper subgraph of a graph
may have the same node- or link-connectivity.

Another approach is to use a probabilistic model. Here each node and each link
is assigned a probability of failure. The measure of fault-tolerance is the network
reliability, which is defined as the the probability that the system is connected. A
popular simplification in this model is the assumption that the failures are
independent. Also, for the sake of simplicity, most of the works available in the
literature either considers faulty links with fault-free nodes or faulty nodes with fault-
free links.

The reliability problem where the links fail independently and nodes are perfectly
reliable has been studied extensively in the literature for directed as well as undirected
graphs. Let V(G) be the set of network nodes. Consider the general case where
every operational pair in a set of nodes K, K € V(G), needs to communicate with
each other. The reliability of the network is delined as the probability that there
is subgraph G' of G whose nodes are operational and all operational nodes in K
lie in the same component of G'. In the special case when K= V(G) the reliability
is known as the all-terminal reliability or the residual node connectedness problem
[E192]. For |[K|=2, the reliability is called the two-terminal reliability. Valiant [Va79]
has shown that computing the two-terminal reliability is a #P-complete problem.
Ball [Ba80], and Provan and Ball [PB83] have proven similar complexity results
assuming different forms of reliability evaluations and approximations. Subsequently,
Provan [Pr86] has shown that the problem remains NP-hard even if G is a planar
graph or an acyclic graph and |IK| = 2. In view of the apparent intractability of the
problem, many researchers have focussed on developing efficient algorithms for
computation of reliability for restricted classes of graphs and efficiently computable
lower and upper bounds for reliability. Some results in this effort have been reported
by Colbourn [Co87a]. Ball and Provan [BP82] reported one such class of reliability
bounding techniques for a restricted class of graphs. Satyanarayana et al. [SSS92]
introduce an interesting transformation called the swing surgery. If H is the graph
obtained by deleting m independent links from the complete graph, then for any
other graph G with the same number of nodes and the same number of links as
.in H, R(H, p) > R(G, p) for all 0 < p <1, wherc R(G, p) denotes the all-terminal

-11 -



reliability of G with all nodes having identical failure rate P-

Another important case which has received much attention is the case when nodes
fail independently but the links are fault-free. Similar complexity results for this
case can be obtained from the unreliable link case, by replacing each unreliable
link by two reliable links incident on a new unreliable node. AboElFotoh and
Colbourn [AC90] have shown that a variant of the problem where nodes in K are
perfectly reliable remains NP-hard for chordal graphs and comparability graphs.
Sutner et al. [SSS91] proved that the residual node connectedness reliability problem

is NP-hard for split graphs and bipartite planar graphs.

Another measure of network reliability is the netmwork restlience. The resilience of
a network is defined as the expected number of pairs of distinct nodes that can
communicate. This is also a #P-complete problem, even when the network is planar
and the nodes are fail-safe. The apparent complexity of computing the resilience
has led to the development of efficient algorithms on the class of partial 2-tree and
k-tree networks [Co87b], [Ma91], [SI87]. Mata-Montero [Ma91] describes a linear
time algorithm to compute the resilience of partial k-tree networks given with a
suitable embedding in a k-tree (for a fixed k).

Najjar and Gaudiot proposed an alternative definition for network resilience [ING90].
According to them, for some given value p, O<p < 1, Network Resilience NR(p)
is ‘“the maximum number of node failures that can be sustained while the network
remains connected with a probability (1 — p)*’. Relative Network Resilience RNR(p)
is defined as NR(p) /N, where N is the number of nodes in the network. They
showed that the single-node disconnection probability is the dominant factor
irrespective of the topology under consideration. They derived an analytical
approximation for the disconnection probability and verified it with a Monte Carlo

simulation.

In case the components are associated, the assumption of independence of failures
leads to underestimation of reliability if the system is in series, whereas the converse
holds for parallel systems. Egeland and Huseby [EH91] consider monotone systems
and study the error resulting from the independence assumption when the component
states are, in fact, distributed to certain dependence model. Two models considered
by them are the shock model and standby model. Shock model has also been

considered by others [BS84], [Hu86].

- 12 —



2.5 Dynamic Interconnection Networks

Extensive studies on dynamic interconnection networks indicate the following issues
as being the most fundamental in the design ot interconnection networks :
i) network topologies,
ii) permutation capabilities
iii) routing
and iv) fault-tolerance.

In general, a dynamic interconnection network can be depicted by a graph, in which
a node represents a switching point and a link represents a communication link. The
overall graph representation is called the network topology. Many topologies have
been proposed so far for use in parallel computer systems.

Characteristics used to categorize the topologies of dynamic interconnection networks
are namely, the stages of switching elements and functional capability.

According to stages of switching elements, dynamic interconnection networks can
be characterized into two categories : single stage and multistage interconnection
networks

The recirculating shuffle-exchange network [St71] is an example of a single-stage
network. Multistage interconnection networks (MIN’s) include baseline [WF80],
omega [La75], delta [Pa81], indirect-binary-n-cube [Pe77], flip [Ba76], banyan
[GL73], data manipulator [Fe74], cube [SM81], Benes [Be62], Clos [CI53] and
Cantor [Ca71] networks.

Depending upon the capability of a dynamic interconnection network (IN) to achieve
different permutations of input-output combinations, dynamic IN's may be classified
into a) blocking and b) non-blocking. If we assume that input-output connection
requirements are coming one by one, in blocking IN's it may so happen that a
particular input-output connection request can not be satisfied till some of the existing
connections finish their communications. In other words, some input-output
connection request may be blocked by the existing connections. In such networks,
multiple passes may be necessary to achieve all possible permutations from input
to output lines. In blocking networks, simultaneous connections of more than one
path may result in conflicts in the use of communication links [WF80], [La75],
[Pe77], [Ba76], [GL73], [Fe74], [SM81] and [Pa81]. MINs for which, each source
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Figure 2.3 : An 8x8 omega network

may reach every possible destination (full-access) and exactly one path exists
between any source-destination pair (unique-path), are referred to as unique-path full-
access MIN’s [RV86]. Baseline, omega, cube, reverse baseline and inverse omega
are some renowned examples of this class. Figure 2.3 shows an example of an 8x8
omega network. Some IN's are blocking but rearrangeable. In rearrangeable
networks, a request for a particular input-output connection may not be possible,
because of the existing connections; but by rearranging the existing connections it
is always possible to accommodate a new request. Benes network is the most popular
rearrangeable network. However, the setting of switches to realize the paths requires
time O(N log N) in contrast to its propagation delay O(log,N). Figure 2.4 shows an
8x8 Benes network. In non-blocking IN's, it is always possible to accommodate a
new request between a free input line and a free output line, without disturbing
the existing connections. Extensions have been done to consider non-blocking
networks for one-to-many connections as well [Th78].

The fact that blocking MIN’s can not realize cvery possible connections, due to
conflicts in links, leads to some studies on functional relations among such networks.
Siegel and Smith examined and demonstrated some functional relations among a
number of MIN’s [SS78]. In [Si79], explicit maps are constructed to provide a
simulation environment within a class of MIN’s. Wu and Feng further examined
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Figure 2.4 : An 8x8 Benes network
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the relations among existing MIN’s and introduced the notion of topological and
functional equivalence [WF80], [WF80a]. According to them, two MIN’s are
topologically equivalent, if one can be obtained from the other by properly permuting
switching elements and associated links within the same stage. Some studies on
topologically non-equivalent MIN’s are also reported in [AKS88]. The functional
equivalence is a more practical notion as it amounts to just renaming the terminal
nodes of a MIN without disturbing its internal switching structures. The research
efforts reported in [PK80], [Ag83] and [OO85], made significant contributions to
the understanding of functional equivalence relations among interconnection
networks. Many of these studies, however, have been limited to MIN’s with 2 x
2 switches only.

A different and more general problem is addressed in [OO85], [OOB85] and [Sr89].
They tackled the problem of determining equivalence between any two arbitrary
interconnection networks with N inputs and N outputs and realizing k permutations
each and construct the maps which conjugate one network onto the other [Sr89].

MIN's are usually used to interconnect a set of processors among themselves or
a set of processors with a set of resources. In an interleaved memory organization
[Hwang Briggs], different permutations of memory-processors may be neded to run
a given algorithm. In a particular environment, only a typical subset of the set of
all permutations may actually be needed. But, larger the set of permutations
achievable by the MIN, the more powerful and flexible is the system.

The permutation capability of a MIN generally rcfers to the fraction of all possible
permutation requests that can be realized without blocking [SH87]. It is needless
to mention that permutation capability is an important parameter in the evaluation
of performance of an IN.

Tﬁﬂugh non-blocking networks are better from the point of view of performances,
they are more expensive too. Two examples of non-blocking IN's are crossbar [Fe81]
and Clos networks [CI53]. In a crossbar network, the hardware cost is O(N?) for
N inputs and N outputs. In a 3-stage Clos network C(n, m, r), the number of
crosspoints for n=VvN is, 6N¥? - 3N, i.e., O(N"?). Compared to this, an NxN Benes
network, which is rearrangeable, has cost O(N log N). Another non-blocking network
is the Cantor network [Ca71]. Cantor network consists of several layers of NxN
Benes networks. Each input line is connected to all the corresponding positions in
the different layers. Similarly each output line is connected to all the multiple layers.



Now, the nonblocking and the rearrangeable IN’s can perform all possible
permutations in a single pass, whereas, an NxN blocking MIN, like baseline, omega,
cube or any other equivalent networks, can realize only N 2¥? permutations out of
total N! permutations in single pass [AA80], [AS82]. Therefore, depending on the
set of permutations necessary in a system, one can select an appropriate MIN. It
has been shown that perfect shuffle is an important interconnection pattern for a
parallel processor, solving FFT (Fast Fourier Transform), polynomial evaluation,
sorting and matrix transposition [St71]. Batcher have studied the flip network in
STARAN; the allowable sets of permutations are barrel shifts, barrel shifts on
substrings and FFT-butterflies, which are useful for sorting, FFT, image wraping
and solving partial differential equations on multi-mesh regions [Ba76]. Seznec
[Se87] proposed a new interconnection network, namely the Sigma network, which
is essentially an omega network followed by an inverse omega network, very much
like Benes network. He has shown that in SIMD machines, this MIN can implement
a general family of permutations, covering the standard needs of scientific vector
processing, such as rearrangement, compression, expansion, perfect-shuffle, bit-
reversal etc. using a simple and efficient control algorithm. However, in real
applications, it is not enough to know that a particular permutation is realizable
in a MIN, but it is also important to find how efficiently it can be routed in the
MIN.

Ultimately, the universality of an IN, i.e., the capability of it to realize every possible
permutation function becomes a concern. In blocking MIN’s, one can achieve
universality by increasing the number of passes, such that conflicting transmissions
are realized in different passes [WF80], [WF&1]. The shuffle-exchange connection
provides an efficient interconnection scheme for parallel computation for many
problems [St71], [WF80]. A single-stage multiple pass recirculation technique is
an economic way to construct these connections to realize any arbitrary permutation.
An asymptotic lower bound of (2n — 1) stages of 2x2 switching elements for
rearrangeability has been known for long [Wa6{], n =log, N. Now an interesting
problem is that, whether (2n — 1) stages of shuffle-exchange are necessary and
sufficient for universality. Stone [St71] observed that using an algorithm due to
Batcher [Ba68], sorting of arbitrary sequences of data can be performed in n? passes.
Parker has shown that 3n passes are sufficient [Pa80] and Wu and Feng provide
an upper bound of 3n-1 passes [WF81]. In [HT86], it has been proved that 2n-
1 passes are necessary and 3n-3 passes are sulficient to realize all permutations.
Raghavendra and Verma established an upper bound of 3n-4 passes for
rearrangeability [RV87]. For some well-known classes of permutations, such as BPC,
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LC etc., it has been already shown that (2n-1) stages of shuffle-exchange are
sufficient [Na89], [RB91]. The rearrangeability of (2n-1)-stage shuffle-exchange
network was undecided for a long time. Recently Abdennadher and Feng [AF92]
have proved some general results regarding the rearrangeability of MIN's. Using
them, them have shown that omega-omega and (2n-1)-stage shuffle-exchange
networks are rearrangeable.

Every dynamic interconnection network needs a control strategy to route data or
messages from a source to various destinations. Usually, in MIN’s with dynamic
topology, a path is to be established before data is actually transmitted over the
path. Therefore, the routing problem must be solved in the path connection phase
by specifying switch settings in the path. The controls for setting the switches are
usually derived from source and destination addresses.

Nonblocking networks do not need extensive care on their control algorithms, since
in such networks, no input-output connection block any other path. But control strate-
gies for blocking and rearrangeable networks are quite involved due to sharing of
common links among different input-output paths.

For the full-access unique-path class of MIN's, destination tag routing is widely used
to realize any input-output connection [La75], [WF80], [WF80a], [RV86]. But
problem arises, when more than one simultaneous paths conflict with each other
i.e., they demand some common links in the network and theretore can not be realized
in the same pass. Hence, for cost-effective routing, it is important to determine,
how a given set of input-output paths can be realized in minimum number of passes.
This is known as the conflict resolution problem [WF80], [Ag83], [RV86], [BRI1].
For an NxN MIN, maximum N transmission paths are to be set up simultaneously,
which can be represented as an NxN permutation (assuming that communications
from input to output are one-to-one and onto). Given any arbitrary permutation P
: inputs (0, 1, ..., N-1) = outputs (0, 1, ..., N-1), the conflict resolution problem
is equivalent to the problem of partitioning P into a minimum number of subsets,
such that transmissions in each subset are conflict-free and hence are routable in
the same pass. Unfortunately, the problem, in general, is NP-hard [BR91].

A non-optimal conflict resolution scheme has been proposed in [WF80]. In [Ag83], an
upper bound of 2!"2) passes was derived for realizing any arbitrary permutation on the
omega network. Optimal solutions are reported only for well-known classes of
permutations. '
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In [RV86], given any NxN permutation P, the conflict information is represented
by a graph, namely the conflict graph G(V, E), such that G consists of N nodes,
each representing a transmission and two nodes are adjacent if and only if the two
transmissions are in conflict. With this model, the problem of conflict resolution
is mapped to the well-known graph-coloring problem. For BPC (bit-permute-
complement) class of permutations in delta network, they observed some typical
characteristics of conflict graphs and hence developed an algorithm for optimal
routing of permutations of that class.

The (s,d) mask formalism is introduced in [BR91]. It represents a message pattern,
that is a generalization of BPC permutations. The optimal routing for this class of
permutations on bundled omega network has been solved in [BR91].

However, the set of permutations for which the problem has been solved optimally
includes a very small fraction of the whole set of possible permutations and as N
increases, this fraction asymptotically becomes vanishingly small.

An O(N?) heuristic algorithm for routing arbitrary permutations in baseline network
is developed in [DF87]. Therefore, the search for optimal number of passes required
to realize any arbitrary permutation still continues.

In rearrangeable networks, every possible permutation is realizable in a single pass
but the routing is not very straight forward. For any input-output pair, there exists
a number of paths and depending on the whole permutation, an appropriate path
is to be established for each, such that all paths are conflict-free.

Benes network [Be62] is a well-known rearrangeable network and the best known
routing algorithm for an NxN Benes network is of time complexity O(Nn) on a
uniprocessor system [Wa68], compared to its propagation delay O(n) only, where
n = log, N. Even with parallel setup algorithms the time needed to realize any
permutation is dominated by the setup time [NS81], [LPV81].

However, in practice, it is found that, the permutations used very often in a parallel
computer system, are in general regular in structure and may be routable by some
simpler algorithms. Extensive studies have been made to develop fast routing
algorithms for many useful classes of permutations required in parallel computations.
A parallel control algorithm for the Frequently Used Bijections (FUB) have been
_ developed in [Le78]; it includes O(2°") permutations only out of total 2"! all possible
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permutations. A simpler algorithm for self-routing a class of permutations F, that
includes BPC (bit-permute-complement) class, IQ2 (inverse omega) class and the
‘FUB’ families, is proposed in [NS81]. It has been shown there, that for any
permutation in class F, one need not look over the whole permutation to find a
conflict-free path but the switching elements independently can set up their
configuration of their own. A new self-routing technique with the same idea has
been presented in [RB91] that can route the LC (linear-complement) class of
permutations as well as IQ class of permutations. Das et al. [DBD90] have introduced
the group interchanges and group transformations on the set of permutations. They
have shown that the conflict graph remains isomorphic under group transformations.
Thus the existing algorithms for the conflict resolution problem can be extended to
much bigger classes. For instance, the algothms applicable to the BP (bit-permute)
or BPC classes are extendable to a much bigger class called the BPCL (bit-permute-
closure) class.

Many research works have been reported so far, presenting different self-routing
techniques in rearrangeable networks. However, the scope of these techniques have
not been explored fully; it has always been mentioned that the proposed algorithm
may realize many more permutations than it has been specified in the literature.

However, the blocking and rearrangeable network structures considered so far, have
evolved with the idea of optimizing the number of switching elements used in the
system (an NxN IN consists of O(N logN) switches). It has led to an interesting
paradox. The recent research results appear to conjecture that the setup algorithm
to realize any arbitrary permutation on these networks requires at least O(N logN)
sequential time in contrast to its proapgation delay O(logN) only. It indicates that
optimizing the performance of an IN over the number of its switches alone is not
necessarily the best strategy.
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Chapter 3
Optimal Loop Networks

-

3.1 Introduction

Loop networks present a good improvement over the simplistic ring topology. It
preserves the desirable properties of symmetry, expandability, uniform building
blocks for switching mechanism and uniform token passing. Diameter of a loop
network depends on the choice of the jump size. Given the number of nodes, say
N, one may be interested to know whether it is possible to select a value for the
jump such that the lower bound on the diameter is achieved. Another important
problem is to find a good algorithm for finding a shortest path between two arbitrary
nodes. It would be desirable that the routing algorithm takes care of any fault that
may occur in the network.

The tight optimal classes mentioned in [DHL'90] are not exhaustive. The complete
characterization of the chord lengths for the design of the tight optimal double-loop
network is yet to be solved. Apart from the choice of the jump-size s, there are
also some other problems related to the loop networks, which remain to be solved.

Du et al. suggested some problems. Two of them are :

1) Classify those N’s for which the tight optimal loop networks can be found.

2) Study the routing algorithms for G(N; 1,s) when there is no fault and also
when a node or a link fails.

About the classification, we suggest some classes of values for N, which achieve
the lower bound on the diameter. These classes cover a large class of values of
N. They also include many N's not classified by Du et al. Then we focus our attention
on the problem of routing. We propose an algorithm to find a shortest path between
any two nodes. We also propose how to find a near optimal path (not more than
1 over the optimal) in case of a single node or a link failure.



3.2 Optimal Design Criteria

As we have mentioned in chapter 2, circulants have been studied quite extensively.
Let C,(s,t) represent the graph on N nodes labelled V, V,, V,, ...,V such that node
V. is connected to V. _, V. , V. and V._ . Boesch and Wang [BWS8S5, Theorem 5]
have found out that for N > 6, d(N; Ib(N), Ib(N)+1) = Ib(N). We try to use the above
result, when it is given that one of the jumps is 1 and we have to minimize the

diameter over the other jump of length t.
We shall refer to a link from V, to V, —as an x-jump, x=s5s or t.

Lemma 3.1: If gcd(N,s) =1, then in C.(s, t) there is a hamiltonian cycle using only
S-jumps.

Proof: If we prove that for 0<m <n<N, ms mod N=nsmodN, then V_ , V_,
V, 5V =V, gives us the required hamiltonian cycle.

Let, ms mod N=nsmodN forO<m<n<N. Then (m -n)s =kN for some k> 0.
But as gcd(N,s) =1, N must divide (m — n) where 0 <m - n <N, which is a
contradiction.

It can easily be shown that the other way implication is also true. ¢

Lemma 3.2: If gcd(N, Ib(N)) =1 then C(Ib(N), Ib(N) + 1) is equivalent to G(N;
1,s) for some s.

Proof : Since gcd(N, Ib(N)) =1, by lemma 3.1, V,, Vl-l:-(N] s Voo > > Vo £OTM
a hamiltonian cycle in C(Ib(N), Ib(N)+1). We relabel the nodes VHHN) as V, for
0 <i< N. Obviously, there are links from V. to both V., and V, . Now as (i.lb(N)
mod N) are all distinct for 0 <i <N, choose j such that j.Ib(N) mod N = Ib(N)+1.
We have links from V. to Viﬂ. for 0 <i< N. This implies that we have link from
V.. to V. also. That is, C(Ib(N), Ib(N)+1) is equivalent to G(N; 1, j).
Lemma 3.3: If gcd(N, Ib(N)+1) =1 then C(Ib(N), Ib(N)+1) is equivalent to G(N;
1,s) for some s. :

Proof : Similar to that of lemma 3.2. ¢+

If we combine lemmas 3.2 and 3.3 with Theorem 5 of Boesch and Wang [BW85],
we have the following result.
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Figure 3.1(a) : G(14;3,4) Figure 3.1(b) : G(14;1,6)

Theorem 3.1: For N > 6, if gcd(N, Ib(N)) =1 or gcd(N, Ib(N)+1) = 1, then d(N) = Ib(N).

Example 3.1 : Consider the case of N =14 nodes. Here we see that Ib(14) =3, i.e.,
gcd(N, Ib(N)) = 1. So, by theorem 3.1, G(14; 3, 4) has diameter 3 and it can be
redrawn as G(14; 1,s) for s = 6.

In figure 3.1(a), we see G(14; 3, 4) with the 4-jumps shown in broken lines. Here
nodes 0, 3,6,9,12,1,4,7,10,13,2,5,8, 11,0 form a hamiltonian cycle. In figure
3.1(b) these have been relabelled as 0,1, 2, ..., 13, 0. The 4-jumps are converted
into 6-jumps.

Using theorem 3.1, we get an excellent coverage over the possible values of N, the
riumber of nodes in the network. We have exhaustively searched the optimal designs
upto N=16,000 and found that the tight optimal designs can be obtained for more
than 80% of the values of N by following the scheme of theorem 3.1. For 7<
N < 5305, the classes given by Du [DHL*'90] cover only about 13% of the values
of N, whereas theorem 3.1 covers about 88.6%; nearly 10% of the values remain
unclassified by either scheme. As N increases, the classes defined by Du give lesser
coverage.
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3.3 Optimal Routing

For two nodes with a link connecting them, communication is carried out through
that link. In absence of a direct link, the message is transmitted through some
intermediate nodes. The number of links traversed in such a path represents the
transmission delay. So for any two nodes, it is important to find a path with
minimum number of links. Such a path is called a shortest path. Note that shortest
path between two nodes may not be unique. Here we consider the problem of finding
a shortest path from V., to any arbitrary node Vj We note that because of the
symmetry in the underlying topology it is enough to consider the problem of finding
a shortest path from V, to an arbitrary node V.

For our convenience we shall differentiate between two s-links from V_, depending
on whether they are used to gotoV___or V___by using a “+” or ‘-’ sign respectively.
Similarly we define +1 and -1 links. Considera path involving w, x, y and z (all
non-negative integers) number of [+s], [-s], [+1] and [-1] links respectively. Let
the endpoints of the path be V. and Vj. Then the relation ‘j=(ws—xs + y —z) mod
N’ holds irrespective of the order in which the links appear in the path. Since we
are interested only in the lengths of the paths, we shall denote such a path by (w)/+s/

+ (X)[-s] + W[+1] + (2)[-1].

Lemma 3.4 : Let (W)[+s] + (x)[-s] + (¥)[+1] + (2)[-1] be a shortest path from V. to
“v’j. Then at most one of w and x and at most one of y and z is non-zero.

Proof : Let both w and x be non-zero. Without loss of generality let w> x. Consider
the path (w—x)[+s]+ (0)[-s] + (¥)[+1] + (2)[-1]. As (W)[+s] + (X)[-s] + (W)[+1] + (2)[-
1] was a path from V,to V,(i+w.s-xs+y - z) mod N = j. Hence (w—x)[+s] + (0)[-
s]+ (y)[+1] + (2)[-1] is also a path from V, to V, and it is shorter than (W)[+s]
+ (x)[-s] + (¥)[+1] + (2) [-1], which contradicts the hypothesis that (w)[+s] + (x)[-s]
+(y)[+1] + (z)[-1] is a shortest path. Similarly, at most one of y and z may be

non-zero. +

In view of lemma 3.4, at most two of w, X,y and z can be non-zero. From now
on, we shall drop the terms with zero coefficient.

As a consequence of lemma 3.4, we note that a shortest path from V, to V, would

be using either (+s, +1) or (+s,-1) or (-s, +1) or (-s, =1) links. So if we find the
shortest of the paths of each combination of links, that path will be the required
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shortest path. We shall discuss in details a method for finding a shortest path using
+s and +1 links. The case of +s and -1 links would be very similar. The other
two cases would be the same as finding a shortest path from V, to V, = using (+s,
-1) and (+s, +1) links. From now on, by a (+s, +1)-shortest path we shall mean
- a shortest path among the paths using +s and +1 links only.

Lemma 3.5 : Let (w)[+s] + (x)[+1] be a (+s, +1)-shortest path from V to V . Then
X <S.

Proof :If x>s then (w+1)[+s] + (x-s)[+1] is a shorter (+s,+1)-path from V, to V .
\ 4

Lemma 3.6 : A (+s,+1)-shortest path from V, to V_ has at least |u/s| number of +s-
links.

Proof :If we use less than |u/s] number of +s-links, then we have to use more than
s number of +1-links. But a group of s number of +1-links can always be replaced
by one +s-link. 4

Let S. =s and W, be the cost of reaching the node at S from V using +s-links
only. That is W_=1. For u>s, we can use lemma 3.6 and reduce it to a problem
of reaching V  from V  with u< S,-

Lemma 3.7 : For u<s, the number of +s-links in a (+s, +1)-shortest path is either
zero or at least W, = (IN/s]+ 1).

Proof : Let (w)[+s] + (x)[+1] be a shortest path from V, to V  for some w, 0<
w< W, =|N/s|]+ 1. Then s<ws=<N. Length of this path is w+ (u+ N —ws) > u.
But (0)[+s]+ (u)[+1] is a (+s, +1)-path between V and V_ and its length is u. Hence
the contradiction. \ 4

]

Remark : W, is the cost of reaching the node at S, =(W,.s) mod N = s (IN/s]+
1) - N, from V, by using +s-links only. Clearly, S,=s-Nmods<s=8S5,.

Now, if S, >u=>S,,and W, < S,, then we may use W, +s-links from V  to reach
the node number S, . We may use groups of W, +s-links repeatedly, till we would
reduce the problem to one of routing to a node within S, distance. If, however,
W,>8,, then (+s, +1)-shortest path will not have any +s-link at all, because instead
of using W, +s-links we can use S, +1-links to reach the node at S, by a shorter
path. If the distance of V, from V is still = S, we can repeat the replcement of
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W, +s-links by S, +1-links and repeating this we can reach a node within S, distance
from V ,by using +1-links only. Again by lemma 3.7, the number of +s-links is
either zero or at least W, . But a direct +1-path has lengthu<S, <W,. So we may
refine our lemma 3.7 as follows.

Lemma 3.8 : For u <s, the number of +s-links in a (4s,+1)-shortest path is
i) zero {if W,=>85,}
or, ii)at least [u/S,] W, {if W, <S,}

Example 3.2 : Consider G(258; 1, 100). Suppose we have to find a shortest path
from V, and V, . So N=258, S =s=100 and u=70. By lemma 3.8, we may use
W, = 3 +s-links to reach node number S, =3 x 100 - 258 = 42. If we take W, +s-
links once more, we shall raech V,,, crossing our destination. Since we cannot use
-1-links, reaching V,, from V_, using +1-links would not generate a shortest path.
What we can do is, we can use 3 x 3 =9 +s-links from Vu to Vms and use one

-s-link (i.e., use 9 — 1 =8 +s-links from V,)) to reach V_.

Now we proceed to generalize the results in lemmas 3.6 - 3.8. In order to do that

we define some terms :
i) SU‘ == N,. Sl - 5:
S = Sk IS /S 1+ = Sy,

i) W,=0, W, =1,
W =W _.(S_,/ Sk_lj +1) — Wk_z

We now describe some properties of the sequences {S.} and {W.,}.

Lemma 3.9 : The sequence {S} satisfies the following properties.

i)S, > 0.

ii)S, > S, > S, >

iii) If S. =S, , for somei>=0, then S, =S, for all k>0.
Proof :

i) As S,_, (IS, ,/S,_1+1)=S the result follws from the definition of S,.

k-2 ?

ii) Again the result follows from the definition and the observation that
SI:—I (I_Sk_EKSk_lj +1) < Sp2 = Sk -

iii) If for some k, S =S then
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Sy =S, -US,_,/S,] +1)-S,_,=2.85, - S, _,=5,, and so on. ¢

Lemma 3.10: W, <W <W,< ...

Proof : From definition, W <W . Let W, <W <... <W_,.AsS , > S,_, (lemma
3.9, W, =2.W_ -W_, > W, - 4
Lemma 3.11 : (W.s) mod N = S, for 1= 0,1,2,..

Proof : The result is easily verified to hold for i =0 and 1.
et the result be true for i= k, for some k > 0.

Then, (W, ,.s) mod N |
=[(W,.(US,_,/S]J+1)- W, _).s] mod N {From definition of W __ }

=(S, - (S, ,/SJ+1)- S,.,) mod N {By induction hypothesis}
= Sy
Theorem 3.2: For1<p<W,, psmodN=>=S5, ,, =2, 3, ...

Proof : For i =2, W, =|N/s]+ 1. Take p such that, 1 < p<|N/s]. So, s<ps <N,
i.e., psmod N>s=8§5,.

et the result be true for 2 < i< k. We shall show that the result holds for k+1.

Let 1<sp<W__ =IS_,/SJ W+ (W, =W, __,). From induction hypothesis, the result
is truefor 1<p<W,. For p=W,, ps mod N =5, (lemma 3.1 1). So we have to consider
only W _<p<W,__ . Suppose the result is not true. Then there exists W _<p<W,
such that ps mod N =v for some O<v <S,.

Casel:p=x.W,_+y, where x < (IS, ,/S,)) and y < W, . So,

[ps + (W, _—y)s] mod N
=[(x. W, +y + (W, -y))s] mod N
= (x+1) S,

= [(W, —y)s] mod N
= [(x+1) S, — ps] mod N
=(x+1) S, —v
=<xS, <S,_, {asx<(S,, /S D}

But this contradicts the induction hypothesis, as W _—y < W,.
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Casell:p=x W, +y, where x=|S,__ /S ] and y <W_-W_ .

[(xW, _+y+ W, __})s] mod N
=[v+S _,]modN
=[v+xS_+ (S, -S,, )] mod N {From definition of S__,}

= [(y + W,_)]smodN
=V + (Sk - Sk-l)

As y+ W, . <W,_, by induction hypothesis, v+ (S, -S_ )=S,, 1.e., v=5, .

Now, [(p+ W, —y).s]mod N = (x+1) S, .
= [(W_—-y)s]modN = (x+1)S_-v

<(x+1)S_-5, .
=5, {From definition of S__,}
But this contradicts the induction hypothesis, as W, _—y < W,. L

Theorem 3.3 : For u<S,, the number of +s-links in a (+s,+1)-shortest path is
i) zero {if W._.. >=S. .}

or, ii) at least [u/S, |W, ~ {if W _ <S, }

—

Proof : Let (p)[+s] +(q)[+1] be a (+s, +1)-shortest path from V  to V.. Since (0)[+s]
+ (u)[+1] is a (+s, +1)-path from V  to V,, p+gq<u. In particular, g<u<§;. So,
if p>0,0<psmodN <S.. By theorem 3.2, we must have p>W,_ .

If W. ,>S, , then (+s, +1)-shortest path will not have any +s-link at all, because
instead of using W.  +s-links we can use S, | +1-links to reach the node at S,
by a shorter path. If the distance of V_ from V  is still =S, | we can repeat the
replacement of W, , +s-links by S, | +1-links and repeating this we can reach a
node within S, distance from V , by using +1-links only. As S, <5, again by
theorem 3.2, the number of +s-links is either zero or at least W, .; but a direct

+1-path has lengthu<S,  <W.

Now consider the case when S, >W, . If we do not use any +s-link, the length
of the path is u. By theorem 3.2, if we use any +s-link, we must use at least W,
+s-links. Ifu>S, then we may use W,  +s-links and reach S, . Even if we take
all the remaining links as +1-links, we have path of length W. .+ (u-S, ) <u.

Again, if the distance of V. from S,  is more than S, |, we may further reduce
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the path length by taking groups of W. —+s-links repeatedly till we reach within

a distance of Siﬂ‘. from V.. So, in this process we take [ufSiﬂj WHI +s-links. We

note that in order to reach V, we may take some more +s-links. But the number
of +s-links is at least [u/S,_ | W, .. ¢

By repeated application of theorem 3.3, we can get a (+s,+1)-shortest path as follows.
Algorithm (+s,+1)-shortest path :

STEP1 :p<0; i< 0;

STEP 2 :i<i+1; If W.>S. then golo step 5;

STEP 3 :If u<S, then goto step 2;

STEP4 :p<—p+ |u/SJW.; u<u mod S;; golo step 2;

STEP 5 :q <« u — (ps mod N); output ((p)[+s] + (q)[+1]); stop.

3.4 Routing Under Fault

In this section we consider the problem of routing when one of the nodes (or links)
is faulty. We note that the paths as we have defined, specifies only the number
of links used for different types of links. It says nothing about the order in which
they are traversed. The question is : can we always bypass the faulty node (link) by
some ordering of the links traversed? In some cases we can bypass the faulty node

(link). The result is stated in the following theorem.

Theorem 3.4 : The links of any shortest path (p)[*s] + (q)[*1] with p,q >0, can
always be ordered in a way such that it does not pass through a specified node.

Proof : Without loss of generality, let the path be (p)[+s]+(g)[+1]- We also assume
that one of the endpoints of the path is V. First we consider the following realization

R of the path, where we traverse all the p [+s]-links and then the q [+1]-links.
If the faulty node V. is not on R, then R gives us the path bypassing the faulty
node. Suppose V_is a node on R.

Csael : f = zs mod N, O<z<p.
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We consider another realization R’ of the path (p)[+s] + (qQ)[+1], where we first
traverse a [+1]-link, then p [+s]-links and lastly the remaining (q — 1) [+1]-links.
We claim that V_is not a node on R’. Suppose V_is a node on R’. The segments
of R and R’ from V_ to V, must have equal length. Otherwise we can replace the
longer segment by the shorter one to get a shorter path. Note that a typical node
on R" is V, where i= (ts+1) mod N, 0 <t < p, ori = (ps + j) mod N, 2 <
] = 4.

Subcasela : f = (ts+ 1) mod N, 0O <t< p
From the equality of path lengths from V, 6 to V, we have, z = t+ 1.
So, f = (t+1)s mod N.

= (ts+1) mod N = (t+1)s mod N = (ts +s) mod N
= (s—1)mod N =0, Contradiction !
Subcase I'b : f = (ps +j) mod N, 2 <j < q.

Again form the equality of path lengths from V
we know that z <« p and j > 2. Contradiction !

o to V., we have z = p+ ). But

Case IT : f = (ps + j)) mod N, 1 < j <q-1.
Here we take R’ to be the realization of the path where first we travarse (j + 1)
[+1]-links, then the p [+s]-links and then the rest of the (q —j+1) [+1]-links. A

typical node on R’ is V, where i=t, 0 <t < j+1,0ori=(ts + j+1) mod N,
l<t<pori=(ps+t)ymod N, j+2 <t < q.
Subcasella :f = t, 0 <t<j+1.

Again from the equality of path lengths from V  to V, we have, p+j = t.
So, p+J]=1(ps + j) mod N
= (3—1)modN =0, Contradiction !

Subcasellb : f = (ts + j+1) mod N, 1 <t < p.

From the equality of path lengths from V  to V, we have, p+j=t+j+ 1.
So, (p-1)s+j+1) mod N = (ps+j) mod N.

= (s—1)mod N = 0. Contradiction!

Subcasellc : f = (ps+t) mod N, j+2 <t < q.

From the equality of path lengths from V,  to V, we have, p+j=p+tor j =t
Contradiction ! 2
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For nodes which do not have a mixed (using both types of links) shortest path,
length of a shortest path in faulty situation will be at least one more than that in
the fault-free case. We may, however, add one each of ‘+” and ‘-’ links of the
type of link not used in the fault-free shortest path and this path may be at most
one link longer than a shortest path in the faulty case.

3.5 Conclusion

In this chapter we have classified many wvalues of N for which tight loop networks
exist. Though this gives a much wider coverage than the classes defined by Du
et al, some wvalues of N remain yet to be classified. Some further works on the
classification have also been reported in the literature [Tz91], [BT91]. We also give
an algorithm to find a shortest path between any pair of nodes and a near optimal
routing in the presence of -single node or link failure.

For improvement over the ring we have considered the addition two chords from
every node. One may consider a further generalization where there are 2k chords
from every node. Let G(N; 1,s.,s,,...,s ) denote the supergraph of ring where from
each node V. there are links to the nodes V.21, V.+s,V.+s,,..., V. +5s . Below,
we list some of the problems which remain to be solved.

1) Deriving an analytical formula for the diameter of G(N; 1, s),
2) Design of optimal loop networks for all values of N,

3) Optimal routing under single as well as multiple faults,

4) Analysis of generalized loop networks G(N; 1,s,s,, ...,s ) etc.
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Chapter 4
Bridged and Twisted Hypercubes

4.1 Introduction

The hypercube interconnection scheme is a very popular network topology. An n-
dimensional hypercube Q_ consists of N =2" nodes interconnected as follows : i)
each node is labeled by an n-bit binary number (a, a, ... a ), ii) two nodes are
connected by an link if and only if their binary labels differ in exactly one bit
position. The n-cube has become an interesting topic of research in recent years
due to its versatile applications in parallel and distributed processing. Many
interesting properties of the n-cube have been reported in the literature [AG81],

[AP89], [Le93].

Esfahanian et al. [ENS91] have shown that by adding two new links, the diameter
of an n-cube (n > 2) can be reduced by one. In [AL90] it has been shown that
by adding (42) extra links to a 4m-dimensional cube (m > 2), its diameter can be
reduced by 2m-1. In [TW91], the effect of adding some extra links on the
performance measures, such as diameter, mean internode distance, traffic density etc.
have been discussed.

Two links of a hypercube are called independent if they are not incident on a common
node. In [ENS91] it has been shown that by exchanging a pair of independent links
from a 4-cycle of an n-cube (n3>3), known as twisting, its diameter can be reduced
by 1. In [HKS87], it is shown that by exchanging (d—1)2%* link pairs in a d-cube
(d=2m+1), its diameter can be reduced to (d+1)/2. In [AP91], performance measures
of such twisted cubes have been studied.

In this chapter, we have proposed a new family of network topologies, by modifying
the original hypercube structure, which will have diameters lesser than that of a
hypercube, but still retaining the other desirable features of the hypercube, e.g., ease
of routing under fault free and faulty situations, high connectivity, i.e., high degree
of fault-tolerance, etc. Two possible approaches have been considered for this —one
involving addition of a few extra links called bridges, and the other involving
exchanges of pairs of independent links (i.e., twists) without the need for extra links.



We shall first show that by adding(rmfl‘ﬂ) + 1 extra links, termed as bridges, to a d-
cube (d > 4), its diameter can be reduced by |d/2). Then we genaralize this scheme
to add (4;’”) +1 (m > 2) bridges to an n-cube (n>4m and n > 8) to reduce its
diameter by 2m. To reduce the diameter by 2m-1 we add 2(““':'3) +1 (m > 2) bridges
fo an n-cube (n >4m-2 and n> 10). We have also given routing algorithm for the
bridged hypercubes Q, with diameter [d/2]. The proposed routing algorithm ensures
path length less than or equal to the diameter without much overhead. Routing in

other cases can similarly be dealt with.

Next we shall show that by exchanging 4 pairs of independent links in a d-cube
(d = 5), we can reduce its diameter by 2. By exchanging 16 pairs of independent
links, the diameter of a d-cube (d>7) can be reduced by 3. By exchanging 57 pairs
of independent links, the diameter can be reduced by 4 for d > 9. To reduce the
diameter by |d/2|, where d > 10, we need to exchange ("i'r1 )+ 1 pairs of independent
links, where r=|d/4] + 1. In [HKS87], one type of twisted hypercube with lower
diameter has been devoloped. But there the number of link pairs exchanged is much
more. Starting with a d-cube, where d = 2m+1, (d-1)2%* link pairs are exchanged
to get a graph of diameter (d+1)/2. Accordingly, in an 11-cube one needs to exchange
10.27 = 1280 link pairs to reduce its diameter to 6 by the method given in [HKS87].
In our scheme we need only 121 link pairs to be exchanged in an 11-cube to get
a graph of diameter 6.

We introduce a few definitions and notations in section 4.2. In section 4.3 we show
how the extra links, referred to as bridges, can be connected to a d-dimensional
hypercube for reducing the diameter to [d/2]. Section 4.4 deals with the generalization
of the idea of adding bridges for reducing the diameter of a hypercube by any given
value. We discuss twisted hypercubes in section 4.5. Section 4.6 deals with the
routing algorithms in bridged and twisted hypercubes.

4.2 Notations and Terminologies

A node in a hypercube is represented by a string of binary digits. A subcube is
represented by a string over the alphabet {0,1,%¥}, where ‘*’ stands for ‘0’ or ‘1°.
For example, 0l1*1* represents the subcube formed by the nodes 01010, 01011,
01110, 01111. In order to make the representation more compact, we would replace
p consecutive occurences of a given symbol by that symbol raised to the power
of ‘p. For example, 00011 will be written as 0*12
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Let f(x) be the number of 1's in the binary representation of a node x. We now
define the following sets:

W = {x|f(x)=r}

r
A = {x|xEW_ and x € *""'0}
B = {x|XxEW_ and xE€*"'1}

Example 4.1 : Take a 5-dimensional cube. For r = 3,

w, = {00111, 01011, 01101, 01110, 10011, 10101, 10110, 11001, 11010, 11100}
A, = {01110, 10110, 11010, 11100}

B, = {00111, 01011, 01101, 10011, 10101, 11001}

Also, let HD(x, y) denote the Hamming distance between two nodes x and vy.

If a node x is represented by x=a a,...a_, a € {0,1}, a node diametrically opposite

to x is denoted by X = a

1 1 3 L n'

For a source destination pair (s,t) where s=a a,..a_ and t=b, b, ...b_we define

four sets of bit positions S, S,, S, and S, as follows:

S0 = 1hla =0, b, =0}
S,;, = 1ih|a_ =0, b, =1}
Sm = {h a = 1, hh = 0}
S,, = {hla =1, b, =1}
Example 4.2:1Let s = 01001001

and t = 10011011
Then S, = {3, 6}, S,, = {1,4, 7}, S,= {2}, S,, = {5, 8}.

We denote the cardinalities of the sets S, S;,,, S,, and S, by s, s, s, and s,

respectively. Hence the number of O's in s =(s,+s ) and the number of 1'sin s =
(s, +s;). Also HD(s, t)=s, +s5,.

4.3 Bridged d-Cube with Diameter [d/2]

The extra links that we propose to add to a cube are always in the form of (x, X).
We refer to these extra edges as bridges. In a d-dimensional cube (d > 4), we take
a fixed value of r, 0 <r<d/2, and then connect bridges from all the nodes in W
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UW,. The cardinality of the set W _is (% ). Hence the cardinality of the set W_
UW,is (9)+ 1, which will be equal to the number of such bridges that will be
added to the hypercube. To find an expression for the diameter of the bridged
hypercube, we first try to unfold the possible paths between two nodes s and t through

a bridge.

Let x be a node at which a bridge is connected. To reach t from s, we can reach
X by changing some bits in s. Let Sij' ;Sij, i, jE {0, 1}, be the sets of bit positions

r F

where these changes are done. Let s, s/, s, and s,” be the cardinalities of the

sets S,.°, 8,,'. 5,,, and S, ' respectively. Then we have the following lemma.

Lemma 4.1 : The shortest path between two points s and t, via the bridge (x, X) is
o ’ ’

of length p=1+2(s," +5,) +5, + 5,.

Proof: From s, we reach x in (s, +5," +s,’ +5,") steps. Another single step via the
bridge leads to the node x. x differs from t in all bits of S/, S ', S-S,  and

S,,— 8, and nothing else. Hence,

— t F r r ] r r _ r
P=1(s, +8,/+ s,/ +8,)+1+(s/'+s, +5,—-5,+5,-5,)
= 14+2(8 +s)+5,+5,. 4

Example 4.3 : Consider an 8-cube with s =01001001 and t=10011011. Then S,
={3,6}, 5, =1{1,4,7}, 5, = {2}, 8, ={5,8}. Take r=3 and x =01100010. Then
S =13} S, ={7}, 8,, =9, S,,"= {5, 8}. From the formula in lemma 4.1, the
length of the shortest path between s and t using the bridge (x, x) is 1+ 2(1+ Q)
+2+2=7. Also we see that the distance between s and x is 4 and the distance
between t and x is 2, giving the path length as 4 +1+2=7.

Remark : To get a shorter path length between s and t, we would change as lesser
number of bits in S, and S, as possible.

Lemma 4.2 : There exists a path of length p,=d+1 +s,-s between s and t, via
the bridge connected to the node in W,

Proof: Starting from s, we reach the node in W, by changing all bits in S and
S,;- By lemma 4.1, p,= 1+ s+ s,+ 2s,. Putting s, +s,=d - (s, +s,) we get p,=d
+1+s,—5. L 4

Example 4.4 : In the example 4.1, the distance between s and 00000000 is 3 and
then the distance between 11111111 and t is 3. Thus the minimum path length via
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the bridge from W, is 3+ 1+ 3 = 7. The path length using the formula in lemma
4.2 is again 8+1+1-3 = 7.

Lemmad.3: For s, >d —r there exists a path of length p=—-d+2r+1+s —s, between
s and t, via a bridge connected to some node in B.

Proof: s,>d-r implies r>d—-s,. If we want to reach a node in B_ from s, where
r>d-s, = s,+s,+s, we must change all bits in S;) to 1 and also some more bits
in S;,. The number of bits in S to be changed is equal to s'=r—-(d-s)=s,
—(d - r). Note that if the d-th bit is in S, these s, bits must include the d-th bit
to reach a node in B_. The path length p,=1+2s '+ s +s; (bylemma 4.1). Putting
s,+s,=d—(s,;+s,) and s'=s —-(d-r), we get p =1+2r-d+s —s,. ¢+

Example 4.5 : Take s =00001000, t=11110110 and r=3. Then s, =6 > 5=d -
. After changing the bit in S, we reach 00001001. We must change another 0
to 1 in order to reach a node in W,. So we change the seventh bit to reach 00001011.
From there we take the bridge to 11110100 and then to t in another step. Thus
the path length is 4. Using the formula in lemma 4.3, p=1+6-8+6-1=4,

Lemmad4.4: For s, <d-r and s,<r, there exists a path of length p=1+s,+s5,
between s and t, via a bridge connected to a node in W.

Proof: Casel : s,+s, <r, i.e., the number of 1's in s is less than or equal to r.
The number of O's in a node in W_is greater than or equal to s, since s, <d -
r, by the given condition. Hence, starting from s, we can reach a node in W_ by
changing all (for s =d —r) or some (fors, <d-r) bits in S . By lemma 4.1, p=
1 +5s,+s,.

Case IT : S,+ 8, >T1.

By the given condition s, <r, i.e., the number of 1's in a node in W_is greater

2
than or equal to s,. Hence starting from s, we can reach a node in W by changing

some bits in S, only. By lemma 4.1, path length p=1+s +s,. \ 4

11

Example 4.6 : Take 5={11{]D.10[H, t=10011011. If we take r=4, then s =3<4
=d-rand s,=1<4=r. Since s, +s,=3<r, by changing one bit of S, (say, the
third bit) in s we reach 01101001, a node in W_. Then we take the bridge to reach
10010110 and then to t in three steps. Thus the path length is 1+ 1+ 3=5. From
lemma 44 p=1+2+2=25.
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Lemmad4.5: For s, < d-r and s, <r, there exists a path of length p=1+s5s +s,
between s and t, via a bridge connected to a node in W.

Proof: Similar to lemma 4.4, except that we start from t. \ 4

Lemma4.6: For r<s <d-r and r<s,<d—r, there exists a path of length p=
d-2r+1+s,-s via a bridge connected to a node in W.

Proof: Since s,>r, the number of 1's in a node in W_is less than that in s. Thus,
to reach a node from s we have to change some 'l' bits to '0'. We can change all
bits in S, and some s,” = s, —r bits in S, to reach a node in W_. By lemma 4.1,
p=1+s,+s,+2s) . Putting s+s,=d—-(s,+s,) and s,”=s,—1, we get p=1+d-2r

+8,—8,. L 4

Theorem 4.1 : A bridged hypercube of dimension d (d > 8), with bridges connected
to all the nodes in W,UW_(r=|d/4] + 1), has diameter equal to [d/2].

Proof: We can assume w.l.o.g. (without loss of generality) that s, < s,. Also we
need to consider only those s,t for which HD(s, t) > [d/2], i.e., s ,+s,<[d/2]-1.
There can be three possible cases,

Case 1l : s,;>d-r
Case 2 : r<s, <d-r
Case3 : s <

Case 2 can, however, be divided into two subcases

2a)s, <d-r,8,<r1

2b)r<s <d-r,8,>r
Note that the case s, =d—r and s, >r cannot arise, since in that case s, +s,>d -
r+r=d, but the total number of bits is only d.

Case 1. By lemma 4.2, p,=d +1+s,—s, and by lemma 4.3, p;=1+2r—d+s,
-§,. Hence, min (p,, p,) <(p,+ p,)/2 =r+1<[d/2].

Case 2a). By lemma 4.4, the path length p= 1+s+s, <[d/2]. When s + s, =[d/
2] -1, the path length p=[d/2] = HD(s, t).

Case 2b). By lemma 4.6, p=d-2r+ 1+ s,—s, <d-2r+ 1. For r=[d/4] +1, p<
d2, as d is even.

Case 3. By lemma 4.5, the path length p=1+s,+s, <d/2.

Hence the proof. | 4
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Figure 4.1 : [llustration of a Bndged 8-Cube.

Example 4.7 : An illustrative example is given in figure 4.1 with n= 8, where the
solid lines represent the already existing lines in the 8-cube and the dotted lines

repressent the bridges added to the cube.

The number of extra links that we add is small compared to the total number of
links in the d-cube. As we increase d, the ratio (9)+ 1:d.2%" becomes smaller,

where r= |d/4] +1. Table 4.1 shows the values of this ratio for different d.

Table 4.1
d (D+1 (H+1:d.24
6 16 .083
8 57 .05
10 121 .02

4.4 Reduction of Diameter by an Arbitrary Value

In the previous section we have considered the bridged hypercube whose diameter
is reduced to half of its dimension. Now we will show how to reduce the diameter

of a cube by any arbitrary value k, 1 < k < d/2.

4.4.1 Reduction by an Even Value

First we consider the case when k is even. Assuming that there are bridges connected
to all the nodes in W_ for a given value of r, 0 < r < d/2, we investigate some

more properties regarding the paths between s and t.
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Lemma 4.7 : For s, >r and the d-th bit in S, there is a path of length P,=d-
2r+1+s,—s, between s and t via a bridge connected to Ar.

Proof: Starting from s, we can change all bits in S, and s,” =s, —~r bits in S
to reach a node in A. Hence p,=1+s,+s,+ 2s, (by lemma 4.1). Putting S, + 5,
=d-(s,+s,) and s, =s,—1 we get p=d—-2r+1+s,-5,. 4

Lemma 4.8: For s, >r and the d-th bit in S  there is a path of length p,=d -
2r+1+s,—s, between s and t via a bridge connected to A

Proof: Proof is similar to that of lemma 4.7, except that we start from t. . 2

Lemma 4.9 : For s, > r and the d-th bit in S, or S, there is a path of length Po
=d-2r+1+s, —s, between s and t via a bridge connected to A

Proof: Similar to that of lemma 4.7. *

Lemma 4.10 : For s, > r and the d-th bit in S,, there is a path of length p,=d-
2r+1+s —s, betwean s and t via a bridge cunnected to B.

Proof : Starting from t, we change all bits in S, and s"=s —r bits in S , (excluding
the last bit) to reach a node in B. Hence p)=1+s,+s,+ 2s,’ (by lemma 4 1). Putting
Sot s;=d—(s;+s) ands,'=s —r1, we get p,=d - 2r+1+51~52. \ 4

Lemma 4.11 : For S, >r and the d-th bit in S there is a path of length p,=d-
2r+1+s,—-s,, between s and t via a bridge connected to B..

Proof: Similar to that of lemma 4.10 except that we start from s. 4

Lemma 4.12: For s,2r—1 and the d-th bit in S, or S |, there is a path of length
P,=d-2r+ 3 +s,—s, via a bridge connected to B.

Proof: If the d-th bit is in S 1p» Weé cannot change the d-th bit to reach a node in
B,. So, starting from t, we can change only s,—1 bits in S, and the remaining
s,"=s,—(r—1) bits in S,. Hence P,=1+s,+s, +2s’—d 2r+ 3 +s,—s,. If the d-
th bit is in S,, we must change it to 1. So, starting from t we can change all
s, bits in S, and 51'=51—(r—1) bits in S,, to reach a node in Br. Hence, p,=d
-2r+3 +s,—s,. L 4

Theorem 4.2 : By adding 8 extra links to an n-cube (n > 4), its diameter can be
reduced by 2.
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Proof : Casel : n=4.

Let us connect all diametrically opposite pairs by bridges. For this 8 extra links
will be added to the cube. Let us take any two points s and t. Let p be the length
of the shortest path between s and t. To show that the diameter of this bridged
4-cube is 2 we consider only those (s, t) for which HD(s, t) > 2. IfHD(s, t) =3, HD( 5,
t)=1 and hence p=2. If HD(s,t) =4, t= s and hence p=1.

Casell : n> 4. We take a 4-dimensional subcube C,=0"*+* We connect bridges
within this subcube as in case I, i.e., the bridges are from 0" *x to 0"* X, where
x is a binary string of length 4. Take two nodes s =ax and t= by, where x and
y are binary strings of length 4, a and b are binary strings of length n-4. Let f
be the number of bit positions at which s and t are same. To show that the diameter
of this bridged n-cube is n-2, we consider only those (s, t) for which HD(s, t) >

n-2, i.e.,, f<1.

If f=0, then x= y. The shortest path between x and y is through C, and is of
length n—-4+1=n-3. If f=1, there can be two possible cases :

a) If the bit position at which s and t are having the same wvalue, is within the
last 4 bits, then shortest path between 0" x and 0"y is of length 2 (by case I). So
the shortest path between x and y is through C, and is of length n—-4+2=n-

2.

b) If the bit position at which s and t are having the same value, is within the
first n—4 bits, x = y. The shortest path between s and t is through C, and is of
length n—4 or n-2 respectively, depending on whether the bit value is O or 1. ¢

We generalize this idea to reduce the diameter of a hypercube by an even number
2m (m > 2) as follows. We take an n'-cube (n’ =n + 4m). We take two subcubes
Cy=0"**" and C, =1"+*" In C,, we add bridges of the form (0" x, 0" X), where
x is a bit string of length 4m. Similarly, in C, the bridges of the form (1" x, 1" X)
are also inserted. For the subcubes C, and C, we define the sets W, A, B, as
for a 4m-dimensional cube by ignoring the leftmost n bits of the node representation.

In C,, we connect bridges from all the nodes in A and W_. In C, we connect
m+1 0 1

bridges from all the nodes in B__ .. An illustration for connecting such bridges is

shown in figure 4.2 for the case when n= 2.

Theorem 4.3 : In an n'-cube (n"=n+ 4m, m > 2), by adding (;Tl) +1 extra links
in the above mentioned way, we can reduce its diameter by 2m.
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I : links connecting nodes which differ in the i-th bit, i = 1, 2.

Figure 4.2 : An Illustration for Connecting Bridges in a (4m+2)-Cube

Proof: We can represent any two nodes s and t in this n' cube as s =a a,..a
a ., ,.and t=b b, ...b b_. bmm. We define two strings x and y as x
=a _a ,..a . and 3’=bn+1 l:rHz b_...r Let p, be the length of a path between
0°x and 0%y in C, and p, be that between 1"x and 1"y in C,.

Among the first n bits from left, let p be the number of bits those are 0 in both
s and t and q be the no of bits those are 1 in both s and t. We define Sg» S;» S,
and s, for the two strings x and y as before. We consider only those (s, t) ﬁnr which
I-ID(S, t)>n+2m, ie., p+q+s,+s, < 2m-1. We now consider two paths between
s and t, one using a bridge in C, and the other using a bridge in C,. Let the path
through C, be of length P, i€ {0,1}.

We can easily verify that the total number bits to be changed to get 0" x from s,
and t from 0"y is equal to (n—-p-q)+2g=n-p+q. Hence, P,=n-p+q+p, Similarly,

Pl=n+p—q+pl.

Now, min (P, P)) < (P,+ P,)/2 =n + (p,+ p))/2.
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la finding p,, p, we apply the lemmas where d =4m and r = m+1. There can be
4 possible cases as in theorem 4.1.

Case 1 : 8,>d=-r=3m-1
Case2a : s, <cd-r=3m-1, s, <r=m+l
Case2b : m+1=r<s, <d-r=3m-1, s,>r=m+1
Case3 : s, <sr=m+1
Case l: By lemma 4.2, p,.=4m+ 1+s,—s, and by lemma 4.3, p,=-2m+ 3 +5s —
s,. Hence, min(P,, P)<n+m+ 2<n+ 2m, since m > 2.

Case 2a: By lemma 4.4 at least one of p,, p, is equal to 1+ s, +s,. Hence, at least
one of P, and P, is less than or equal to n+p+q+s,+s,+ 1< n+2m,[as p+q
+s,+s,<2m-1]. When p=q=0 and s, +s,=2m-1, either P, or P, =n+s,+s,
+1 = n+2m < HD(x, y).

Case 2b: If the (n+ 4m)-th bit is in S ,or S , p,=2m -1 +s,—s, (by lemma 4.9)
and p,=2m + 1 +s —s, (by lemma 4.12). Hence, min(P, P,) < n+ 2m.

If the (n + 4m)-th bit is in S, p,=2m -1+s,-s (by lemma 4.7) and p,=2m
-1+s,—-s, (by lemma 4.10). Hence, min(P, P,) < n+ 2m - 1.

If the (n + 4m)-th bit is in S , p,=2m -1+s,—-s, (by lemma 4.8) and p, =2m -
1+s,—s, (by lemma 4.11). Hence, min(P, P|) < n+ 2m - 1.

Case3: If s,<3m -1, by lemma 4.5, one of p, p, is equal to 1 +s, +s,. Hence,
at least one of P, P, is less than or equal to n+p+q+s,+s;,+1<n+2m, [as p
+q+s,+s;, <2m-1].

If.s,>3m — 1, the case is similar to case 1 if we interchange s and t.

Hence the proof. *

4.4.2 Reduction by an Odd Value

To reduce the diameter by an odd number say 2m -1 (m > 2) we take an n'=n
+ 4m — 2 dimensional cube. We add bridges to the subcubes C,= 0" **™? and C,
= 1" %*M-2 55 before. Now we will see that this construction does not give a graph
of diameter n + 2m — 1 for m > 2. But, for m = 2 this construction gives a graph
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of diameter n+2m-1. To do that, in theorem 3 we substitute d by 4m-2 and r by
m. We note that between two points x and y the path length is at most (n+2m-
) m all cases except in case 2b when the (n+4m-2)-th bit is in S, or S .

In case 2b. when the last bit is in S, or S
P,=n-p+q+2m-1+s,-5,
P=n+p-q+2m+1+s -5,

11

If p-q <s,-s,-1, then P, <n+2m and if p—-q > s,-s,—1, then P, < n+ 2m.
P,=P,=n+2m only if p—q=s,-s,-1 ...(a).

For HD(x,y)>n+2m-1=n+3, p+q+s,+s, < 2. Also s;+s, > 1, since the (n
+4m — 2)-th bit is in S or S .

Hence, p+q < 1. Then p+qcanbe 1 or 0. If p+q =1, p—q is an odd number.
But s, +s, is equal to 1. Hence, s, —s is an odd number. So condition (a) does
not hold. If p+q = 0, i.e., p=q=0. We can take either of the path through C,
which are of lengths n+2m-1+s,-s and n+2m~-1+s -s..

To reduce the diameter of a hypercube by some odd number 2m -1 (m > 2), we
make a slight modification to our previous scheme. Before going into that, we make
some more observation regarding paths between two nodes s and t in a d cube,
where bridges are connected to all the nodes in W_.

Lemma4.13: Fors, < d-r-1, s, <r and the d-th bit of s is 0, there exists a path
of length p,=1+s,+s, between s and t, via a bridge connected to a node in A.

Proof: Casel : s,+s;, < r. The number of O's in a node in A_is greater than or
equal to s, + 1, since d-r > s + 1, by the given condition. Hence we can reach
a node in A by changing at most s, — 1 bits in S, to 1. Hence we never change
the last bit even if it's in S ;. By lemma 4.1, p,=1+ s, +s,.

Casell : s,+s; > r. Starting from s, we change some bits in S, to reach a node
in A. p,=1+s,+s, (by lemma 4.1). L 4

Lemmad4.14: For s, < d-r and s, < r and the d-th bit of s equal to 1, there exists
a path of length p, =1 +s,+s,, between s and t, via a bridge connected to a node
in B.
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Proof: Casel : s, +s, < r. Starting from s, we change some bits in S, to reach
a node in B. p,=1+s;+s; (by lemma 4.1).

Casell : s, +s, > r. Starting from s, we change at most s, —1bits in S | to reach
a node in B_ as s, <r. Hence we never change the last bit even if it is in S . p,
=1+s,+s, (by lemma 4.1). *

Now, we describe our scheme as follows. We take an n'-cube (n'= n+ 4m - 2).
We take two subcubes C,=0"**"2 and C, =1"**"2 In C, we add bridges of the
form (0" x, 0" X), where x is a bit string of length 4m — 2, and in C, the bridges
are of the form (1" x, 1" X). For the subcubes C, and C, we define the sets W,
A, B_as for a (4m - 2)-dimensional cube by ignoring the leftmost n bits of the
node representation. In C;, we connect bridges from all the nodes in A and W,
In C,, we connect bridges from all the nodes in B__ ..

Theorem 4.4 : In an n’-cube, where n’=n+4m -2 (m > 2), by adding 2(*"2) +1
bridges in the above mentioned way we can reduce its diameter by 2m - 1.

Proof: We represent two nodes s and t as s = a,a,...a a__ ..a , , and t =
b,b,...b b, ...b ,, .. We define two strings x and y as x = a__ a ., ..
A, 4m-2 aNd Yy = b b b amor We define p, q, Py, P), Sp S;5 S S5, Py and

P, as in theorem 4.3. We consider only the case when HD(s,t)>n+2m -1, i.e.,
p+q+s,+s, < 2m — 2. There can be three possible cases.

Casel : s >3m-3

Case2a : m<s <3m-3, s,<m
Case2b : m<s <3m-3, s,>m.
Case3 : s;<m

Casel: In lemma 4.2 we putd = 4m-2 and r = m+1, to get p, = 4m—-1+s,
—s,. Similarly, from lemma 4.3 we get p, =-2m + 5+ 5s,-s,. Hence, min (P, P)) <
n+m+2 < n+2m-1, as m > 2.

Case 2a : If the rightmost bit of s is O, putting d = 4m -2 and r = m in lemma
4.13, we have p, = 1 +s,+s,. Hence, P, < n+p+q+s,+s,+1 < n+2m - 1.
Alternatively, if the rightmost bit of s is 1, puttingd=4m-2 and r= m+ 1 in lemma
4.14, we have p,=1+s,+s,. Hence P, < n+2m -~ 1. When p=q=0 and s +s,
=2m -2, P, =n+2m -1 < HDg(, t).

— 43 —



Case 2b : If the rightmost bit of s is in Sgp Pp = 2m —1+5s,—s (by lemma 4.7)
and p, = 2m -3 +5s, —-s, (by lemma 4.10). Thus min (P, P,) <n+ 2m - 2. The proof
is similar for the case when the rightmost bit of s is in S, ,» If the rightmost bit
of s is in S, or S, p, = 2m - 1 +s5,—s, (by lemma 4.9) and p, = 2Zm -1 +s, -
s, (by lemma 4.12). Hence, min (P, P.) <n + 2m - 1.

Case 3: If s, > 3m - 3, we interchange s and t so that case 1 becomes applicable.
If s, < 3m - 3, we interchange s and t so that case 2a becomes applicable.

Hence the proof. \ 4

4.5 Twisted Hypercubes

We now consider the reduction of the diameter of a d-cube, by exchanging a few
pairs of independent links. Consider two independent links (u, v) and (x, y) of the
cube. If the links (u, x) and (v, y) are not present in the cube, then to exchange
two independent links (u, v) and (X, y), we delete these links and add two new links
(u,x) and (v, y). In this way, the degree of each node remains the same . We call
such an exchange of a pair of links, a twist. In [ENS91] only 4-cycle twists are
considered, where the nodes u, v, x and y form a 4-cycle in the hypercube. There
it is shown that a single 4-cycle twist can reduce the diameter of an n-cube (n
>2) by 1. We consider in general, reduction in diameter by any given value k, 1
<k<m where m depends on the dimension of the cube. First, we show that by
making 4 twists in a d-cube (d > 5), its diameter can be reduced by 2.

Definition : A twist of type r applied on a d-cube consists of the following operations.
Let y be a bitstring of length (d — 1). For all yOE A, we delete the link pair
(y0, y1) and ( y O, y 1) and connect (y0, y 1) and (y1, y 0). We denote the twist
of type r by T. The total number of link pairs exchanged by such a twist is equal

to (47).

Lemma 4.15: To effect the twists, if we delete links of the type (yO, y1), where
yOE€ A, for some given r, then the path length between any two points s and t
is HD(s, t), provided HD(s, t) > 1.

Proof: Suppose there is a path s — a,—>a,—>..—>a —a —>..—>a —>t of length

HD(s, t), in the original cube from s to t, where a,, a, etc. are intermediate nodes.

Suppose the link (a, aj) is deleted due to the twist. Hence a, and a, must differ in
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Figure 4.3 : An Illustration for a 4-Cube with a Twist of Type O (T,)

the rightmost bit, and so also s and t. For HD(s, t) > 1, both s=a, and t=a, can
not be true. We can assume w.l.o.g. that s=a.. Hence by first changing the rightmost
bit in s, followed by the changes in the other bits, we can reach t along a path
of length HD(s, t). L 4

Remark : If we delete the links of the type (y0,y1), yOEA forr=r,r,...,r, where
r,—-r, >1
r.,—r, >1

37 02
r,—r.,>1,

then for any two points s and t where HD(s, t) > 1, we have a path of length HD(s,

t), between s and t. When HD(s,t) =1 and the link (s, t) is deleted, lets = y0 and

t=yl. There exists a node y 0 such that HD(s, y,0) =1 and the link (y,0,y,1) is

intact. Now we can get a path s — y 0 —y 1 — t, which is of length 3.

Lemma 4.16 : If we apply a twist of type 0 on a 4-cube, its diameter becomes
equal to 3.

Proof: Figure 4.3 shows a 4-cube with a twist of type O, where new links are shown
by dotted lines. Let s and t be any two nodes in the above cube. If HD(s, t) >
1, there always exists a path of length HD(s, t) after the twist. To show that the
diameter of this bridged cube is equal to 3, we need to consider only the cases
where HD(s,t) =1 or 4. We can assume w.lo.g. that s is in A _, 0 <k <3.

Case 1 : HD(s, t) = 1.
The link (s, t) is deleted only for sE A  or s€EA,. If s€E A = {0000} then t is equal
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to 0001 for HD(s,t) =1 and the link (s, t) deleted, We take the path (s — 0010
— 0011 — 0001 = t) which is of length 3. The proof is similar for the case when

s E A,.

Case 2 : HD(s, t) = 4.

We assume s to be in A, O0<k<3.

If sEA, or sEA,, s and t are directly connected by a bridge added due to the
twist.

If s€ A, then tEB,. The path (s = 0* — 1* — t) is of length 3. The proof is
similar for the case when s € A,. ¢

Lemma 4.17 : If we apply a twist of type 1 on a 4-cube, its diameter becomes
equal to 3.

Proof: Referring to the figure 4.4, let s and t be any two points in the 4-cube.
Path length between s and t can be greater than HD(s, t) only if s and t differ in
the last bit. We can assume w.lo.g. that s is in A, O<k<3.

a)sE A,

If t€B,, there can be two cases. If HD(s, t) =1, we take the path s — 0* — 0°1
— t which is of length 3. If HD(s, t) = 3, we take the path s — s —t which is
of length 2.

If tE B,, there can be two cases. If HD(s, t) = 4, path length =1, due to a direct
link provided by the bridge. If HD(s, t) = 2, we take the path s — s— 1% —
which is of length 3.

The proof is similar for the case when s &€ A_.

Figure 4.4 : An Illustration of a 4-Cube with Twist of Type 1 (T))
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b)s€ A,

If t= s, there is always a path between s and t of length HD(s, t). If t= s =1111,
we take the path 0* — 10° — 01* — t which is of length 3. The proof is similar
for the case when s € A,. *

Theorem 4.5 : By exchanging 4 link pairs in Q__,, (n>0) we can reduce its diameter
by 2.

Proof: We apply T, within the 4-dimensional subcube C, = 0" %% . This involves
an exchange of 1 link pair. We apply T, within another one dimensional subcube
C,=1"=%*. This involves exchanges of 3 link pairs.

Take any two nodes s and t in Q__,. Let s=ax and t=by where a and b are strings
of length n. Let the path length between s and t be represented by p(s, t);

CaselI :1f a=b=0" p(s,t) < 3 (by lemma 4.16).
Casell :If a=b=1" p(s,t) < 3 (by lemma 4.17).
Case Il : If HD(s,t) < n+ 2, then p(s,t) < n+ 2.

Case IV : HD(s,t) = n+ 4, then X = y and there exists a path from s to t via one
of C, and C, of length n+ 1.

Case V : HD(s,t) = n+ 3. In this case s and t must agree in one bit position.
i) Suppose the bit common to s and t is within the lefttmost n bit position i.e.,

x= y. Either 0"x is connected to 0" x or 1"x is connected to 1° x. Hence, the path
length is at most n + 2.

ii) The bit common to s and t is within the rightmost 4 bit position, i.e., a= b

Subcase a): If x and y do not differ in the rightmost bit, then let z& {0,1}
and the path s=ax — z"x — z" x — z"y —>.by=t, is of length n+2.

Subcase b): If x and y differ in the rightmost bit, then there may be the
following cases :

i) If b=0" or 1", then the path s = z"x —z" x —>b x — by is of length n
+ 2.

ii) If b = 1°, then for xEAUA,UB UB,, yEA;UA,UB UB, and the
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path s = 0" — 0" x — 10" x — 10"'y — 1"y is of length n + 2.
On the other handﬂfnr x%AIUA?LJBEUBP yEA UA,UB,UB, and the
path s=0"x—= 0"y —= 1" y —= 1" is of length n + 2.

iii) If a=1", it can similarly be proved that p(s,t) = n+2. *

Before investigating the effect of a twist of type r on a d-cube we prove another
lemma regarding the path between two points s and t when bridges are connected
to all the nodes in A.

Lemma 4.18 : For s >d—r -1 and the d-th bit in s is 0, there exists a path of
length p, < 2r + 2, between s and t, via a bridge connected to some node in A.

Proof: t > d-s, for s, >d —r— 1. If the d-th bit is in §;,, we can reach a node
in A_from s, by changing all bits in S, to 1 and also some s, = s, —(d —r) bits
in S,,. The path length p = 1+2s '+ s, +s, (by lemma 4.1). Putting s +s,=d
-(s,+s,) and s,'=s —~(d~-r1), we get p = —d+2r+1+s —s,. Since s, —s, < d,
p, < 2r+ 1. If the d-th bit is in S, we change all but the d-th bit in S ; and (s,
+1) bits in S, to reach a node in A. Thus p= —d+2r+ 3 +s,—s, In this case
s,—Ss, < d-1. Hence p, < 2r+ 2. \ 4

Lemma4.19: In a d-cube (d being an even number), if we apply a twist of type
r, where r is an integer between 0 and d/2 - 2, path length between any two points
s and t is less than or equal to max(2r+2,d - 2r+ 1, d/2, 4)

Proof: First consider that only bridges involved in the twist of type r are added,
but no links are deleted. We can assume without loss of genarality that s, < s..
Because of the symmetry of the twisted cube, we assume s to be in some A, 0
< k < d-1 (proof for the other case is similar).

We define s, s, s, and s, as before. As in theorem 4.1, there are 4 possible cases

11'
Case 1 :sl:vd—r—l
Case2a : s;<d-r-1, s,<r
Case2b : r<s<d-r-1, s,>r
Case3 : s <71

Case I : By lemma 4.18, the path length p < 2r + 2.

Case 2a : By lemma 4.13, the path length p=1+s,+s, < d/2 if HD(s, t) > d/2.
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Case 2b : If the rightmost bit of s is in S, 'by using lemmas 4.7 and 4.10, we
can show that the path length p < d - 2r. If the rightmost bit of s is in S, by
using lemmas 4.9 and 4.12, we can show that the path length p< d - 2r + 1.

Case3 : If s, > d—-r—1, we interchange s and t so that case 1 becomes applicable.
If s, < d-r—-1, we interchange s and t, so that case 2a becomes applicable.

Now it follows that the path length is less than or equal to max(2r+ 2,d - 2r+ 1,
d/2).

Regarding the deletion of links we make the following observations :

Observation 1 :For HD(s, t) > 1, there is always a path of length HD(s, t) between
sand t (by lemma 15).

Observation 2 : For HD(s,t) = 1, and the d-th bit of s and t are same, the link
(s, t) is not deleted.

Observation 3 : For HD(s,t) = 1, and the link (s, t) is deleted, there exists a path
of length 3, between s and t. In this case s is connected to s and t is connected
to f.

Now, consider a path between s and t via a bridge (x, X) which is of length HD(s,
x)+ 1+ HD( Xx,t) before deletion. If HD(s, x) > 1 and HD( X,t) > 1, the path length
does not change after deletion (by observation 1). If HD(s, x) = 1 and the link (s,
x) is deleted, then s is connected to s. If HD( s,t) > 1, then there is a path of
length 1+ HD( s,t) between s and t (by obseravtion 1), which is less than or equal

to d/2 for HD(s,t) > d/2. If HD( s,t) = 1, the path between s and t is of length
at most 4 (by observation 3). L 4

Example 4.8 : Take an 8-cube and apply twists of type 1. Take s = 00000000 and
t=11111110. Since s, =7>6=d-r -1, this falls under case 1. In order to reach
a node Wl, we first use one link to reach 00000010, say. Then we take the twisted
link to reach 11111101. Now note that we can not go to 11111100 because that
link has been deleted due to the twist. So we reach our destination via 11111111
in another 2 steps. Thus the path length is 4, which is equal to 2r + 2.

Lemma 4.20 : In a d-cube (d being an even number), if we apply twists of type

O and type r, where r is an integer between 1 and d/2 - 1, path length between
any two points s and t is less than or equal to max(r + 2,d — 2r + 1, d/2, 5).
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Proof: First consider that only bridges are added, but no links are deleted. We can
assume w.l.o.g. that s, < s_. Because of the symmetry of the twisted cube, we assume
s to be in some A, O0<k<d-1 (proof for the other case is similar).

We define s, s
4.1.

» S, and s, as before. There can be 4 possible cases as in theorem
Casel : s;>d-r-1

Case2a : s, <d-r-1, s,<r

Case2b : r<s<d-r-1, S,>T

Case 3 : s, <r

Case 1: Using lemmas 4.2 and 4.3, we can show that the path length p<r+ 2.
Other cases are treated as in lemma 4.19.

Now it follows that the path length is less than or equal to max(r+ 2,d - 2r+ 1,
d/2).

Regarding the deletion of links we have the following observations :

Observation 1 : For HD(s, t) > 2, there is always a path of length HD(s, t) between
s and t.

Observation 2 : For HD(s,t) < 2, and one of s and t is not connected to a bridge,
there exists a path of length HD(s, t) between s and t.

Observation 3 : For HD(s,t) = 1, and both of s and t have bridges connected to
them, there exists a path of length at most 3, between s and t. |

Observation 4 : For HD(s,t) = 2, and both of s and t have bridges connected to
them, there exists a path of length at most 4, between s and t.

Now, consider a path between two points s and t via a bridge (x, X) which is of
length HD(s, x) + 1 + HD( X, t) before deletion. If HD(s, x) > 2 and HD( x,t) > 2,
the path length does not change after deletion (by observation 1). Consider HD(s,
x) < 2, and s is connected to s. If HD( s,t) > 2, then there is a path of length
1+ HD( s,t) between s and t (by observation 1), which is less than or equal to d/
2 for HD(s, t) > d/2. If HD( s,t) < 2, the path between s and t is of length at
most 5 (by observation 3). L 4
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Lemma 4.21 : If we apply a twist of type 1, on a d-cube (d being an even number
> 6), its diameter is reduced by 2.

Proof: By lemma 4.19 the path length is less than or equal to (d - 2r+ 1, d/2, 2r
+2,4). Putting r=1 we get a maximum path length of d — 1 corresponding to d
—2r+ 1. But the path length is less than d = 2r + 1 if the d-th bit of s and t are

different. If the d-th bit is in S) or S, the path length p, = d-2r+ 1 +s,~-s, (by
lemma 4.9) and p, =d-2r+1+s, —s, (by lemma 4.12). In this case, the path length

becomes equal to d -2r+1 only if s, =s,, i.e., when HD(s, t) < d - 2. ¢

Lemma4.22: In a 6-cube, if we apply twists of type 0 and type 2, maximum path
length between any two points is less than or equal to 4.

Proof: According to lemma 4.20 the maximum path length is 5 for d=6 and r=
2. But the path length can be 5, only if HD( §,t) = 2. In that case HD(s, t) = 4. Hence
path length is at most 4. . 4

We take a d-cube (d=n+6, n > 1). In this d-cube we take two subcubes, C, =
0"+® and C, = 1% We apply twists of type 0 and 2 in C, and twist of type 1
in C,. The total number link pairs exchanged in the process is 16. Now we have
the following ‘theorem.

Theorem 4.6 : By applying twists on a d-cube as above (d >7), we can reduce its
diameter by 3.

Proof: Take two points (s,t) in the above cube. When both s and t are in C, or
C,, there is a path of length at most 4 between them. We can assume w.l.o.g. that
t is outside C,, C,. From the discussion in section 4.3.2, it follows that if no links
were deleted in C,» C, the d-cube would have diameter d — 3. Now also this result
holds, as whatever links are deleted are of the type which change the d-th bit. We
can change the d-th bit, if required, outside Co C- *

‘Lemma4.23 : In an 8-cube, if we apply twists of type O and 3 its diameter becomes
equal to 5.

Proof: Follows from lemma 4.20. 4
Lemma 4.24 : If we apply a twist of type 2 in an 8-cube, its diameter becomes

equal to 6.

Proof: Follows from lemma 4.19. .
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Lemma 4.25: If we apply twists of type 0 and 3 on a 9-cube, its diameter becomes

equal to 5.

Proof: Follows from lemma 4.20 where we replace d/2 by [d/2]. ¢

In a d-cube (d=n+ 8, n > 2) we exchange 57 link pairs in the following way.
We apply twists of type 0 and 3 within one 8 dimensional subcube 0" *%. We apply
a twist of type 2 within another subcube 1" *®*. Now we have the following theorem.

Theorem 4.7 : The d-cube twisted as above has diameter equal to d — 4.

Proof: The proof is similar to that of theorem 4.6. : *

Theorem 4.8: In a d-cube (d being an even number > 10) if we apply twists of
type O and r where r= |d/4] + 1, its diameter becomes equal to d/2.

Proof: Follows from lemma 4.20.

4.5.1 Reduction in Diameter by d/2, d an Even Number and d=10

If we want to reduce the diameter by d/2 in an (n+d)-cube (n>1 and d> 10) we
apply some twists in a d-dimensional subcube C,= 0" *“ so that any two nodes within
this subcube have a path between them of length at most d/2. In another d-
dimensional subcube C, = 1" *® we apply some twists so that any two nodes within
this subcube have a path between them of length at most d/2+1. Now we state the

following Theorem.

Theorem 4.9 : The (n+d)-cube twisted as above will have diameter equal to n + d/
2.

Proof: We define x, y, p,, p,, P, q as in theorem 4.3. Hence, p, < d/2 and p, <
d/2+ 1. If p>gq, the path between s and t, via C, is of length n-p+q+p,<n
+d/2. If p <q, the path between s and t, via C, is of length n+ p—g +p,<n+
d/2 + 1. : ¢

4.5.2 Reduction in Diameter by 2m (m = 4) in Q. .4, (>0
We take two 4m-dimensional subcubes C; = 0" *‘™ and C, = 1" **™. We apply T,

and T_ , within C; so that any two nodes in C, are apart by a distance of at most
2m. We apply some twists within C, so that any two nodes in C, are apart by a
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distance of at most 2m+2. We call the resultant graph Q' ., and claim that the
diameter of Q' . is n+ 2m.

Theorem 4.10: The (n+4m)-cube twisted as above will have diameter equal to n+2m.

Proof: We represent two nodes s and t as s=a,;a,..a a  ..a . and t=b,
b,...b b ., ..b .., We define two strings x, y as x=a_ . a ,...a_ ., and y
=a ,a ,..a . .. We define p, q, p,, P;» Sy S;» Sp» S;, P, and P as in theorem
4.3. Hence p,<2m and p, <2m + 2. We consider only those s, t for which HD(s,

t)>n+2m, ie., p+q+s,+s,< 2m - 1.

When P, 1 + 8, +s;,
Hence ifq-p < 1, P, = n+(q-p)+p, < n+2m
ifq-p>1, P, =n-(q-p)+p,<n+2m+1, ie., P, < n+2m.
When p,=1+s,+s,,P,=n—-p+q+1+s,+s, < n+p+q+1+s,+s, < n+2m.
\ 4

P, < max (m+2, 2m-1) < 2m-1.

Let X(k) denotes the number of link pairs to be exchanged to reduce the diameter
by k in Q__, (n>0) then we can write

m
X(k)=> { (1) + 1} + 57 { x(4) = 57} fork =2m, and m > 2,
1=3
4m+1 _
X@2m)+ ("7 ) +1, for k = 2m+1, and m > 2,

4.6 Routing Algorithms
4.6.1 Routing in a Bridged Q, of Diameter [d/2]

In this section we describe the routing strategy in a bridged hypercube of dimension
d (d > 4). The routing algorithm merely consists of

i) deciding whether a bridge is to be used or not.
ii) if a bridge (x, x) is to be used, then finding that node x from which a bridge

will be used.

A packet to be routed from the source node s to the destination node t, is transmitted
along with a tag like this :

Y



t b|r:|

where t is the destination node, b is a ﬂag bit and C is a d-bit vector used for
the following purposes.

b =1 indicates that a bridge is to be used and b =0 indicates that we can route
the packet without using any bridge.

C is called the routing vector. Each bit of C is associated with a specific dimension
of the hypercube so that if a bit of C is ‘1’, then we transmit the packet along
a link of the hypercube in that dimension. Thus, given a routing vector C, we scan
the bits of C from one end, say the left end and whenever we encounter a ‘1’
the packet is transmitted from the intermediate node along the corresponding
dimension.

When s, + s, < [d/2] we set b=0 and c is set to s@t. When s, +s,> [d/2] we
set b= 1. In this case, we have to find the node x from which a bridge will be

used. For this, we first enumerate s, s, s, and s,. For different values of s, and

s, we enumerate p,, p, and p as done in the proof of theorem 4.1. Then we find
the minimum path length. Now to find the node x to achieve this minimum path
length, we have to suitably change certain bits in s in a way as described in the
lemma which corresponds to this minimum pathlength. The routing vector C is then
set to s @ x. Routing from s to x is done by scanning the bits of C from left. The

bridge (x, x) is then used. Then we set b=0 and set C= x@®t and route according
to this C.

4.6.2 Routing in a Twisted Hypercube

We now describe the routing strategy for a twisted hypercube Q} on which we apply
T, and T (for r=|d/4] +1). We discuss here the routing technique for hypercubes

of even dimension d (d = 10). The cases for twisted hypercubes of smaller dimension
can similarly be dealt with. The scheme for routing a message from the source node
s to the destination node t is described as below.

1) If HD(s, t) < d/2, define the routing vector C=s@®t. Let C=c,c, .. C. For two
nodes a=a a, ... a and b=b b, ... b_, if a and b differ only in the i-th bit then
transmitting from a to b is equivalent to transmitting along the dimension i.
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1a) If HD(s, t) =1 and the link (s, t) is present, then transmit to t.

1b) If HD(s, t) =1 and the link (s, t) is deleted (because of twisting), then the routing
will be via a node s’ adjacent to s. From s’ send the packet along the d-th dimension
to t' (' will be adjacent to t) and then route from t’ to t.

1c) If HD(s, t) > 1, then let c, Cjp --=5 Cys i<j<..<k be the bits in C which are
1. There can be following cases :

i) sand t do not differ in the rightmost bit. In this case the deleted links do
not affect the path between s and t. The routing is the same as in the original

(untwisted) cube Q..

ii) s and t differ in some bits including the rightmost bit. If s is not connected
to s, then transmit the packet from s along the dimensions k, ..., j, i andin that
order. Ifs is connected to s, then first transmit along the dimension i and then along

the dimension d. Afterwards, transmit to t.

2) If HD(s, t) > d/2, then we use the link (x, x) and route from s to x, then from
x to x and finally from x to t. Our aim is to find x from s. If t is such a node
that (t, t) is connected then x < t; otherwise x is found as follows depending on

the wvalues of S, and S,.

22) s€EA, ,0 <k <d-1.

Casel : s, >d-r-1

Case2 : s, <« d-r-1, s,<r
Case3 : r<s <d-r-1, s,>r1
Case4 : s <71

In each case we find the minimum path length p as done in the proof of lemma

4.19. To find the node x to achieve this minimum path length, we have to suitably
change certain bits in s in a way as described in the lemma which corresponds to

this minimum path length.

2b) s€EB,_ ,1 <k <d.

Because of the symmetry of the structure, routing can be done as follows :
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For a source destination pair (s, t), define a new pair (s’, t") where s’ differs from
s in the d-th bit and t' differs from t in the d-th bit. Then find a bridge (y, y)
to be used for this new pair (s, t) as in case 2a. Now for s the corresponding
bridge to be used is (x, x) where x differs from y in the d-th bit.

Routing from s to x and from x to t, in both the cases 2a and 2b above will be
done following the method described above for HD(s, t) < d/2.

4.7 Conclusion

Hypercubes have various applications in parallel processing. This chapter describes
different methods for reducing the diameter of a hypercube by adding some extra
links, called bridges and also by exchanging some pairs of independent links (without
any extra link). The addition of bridges will not only reduce the diameter but also
the average internode distance. In this chapterer we have aimed at reducing the
diameter, by adding as few links as possible. Also, we have given an algorithm
for routing in such bridged hypercubes. We add (¢)+ 1 bridges (where r=[d/4]
+1) to a d-cube (d > 4) to reduce its diameter by |d/2]. The extra links constitute
a small fraction of the total number of links and this fraction is (f )+ 1:d.29%,
which decreases with increase in d. One important result is that the number of bridges
to be added to reduce the diameter by k remains constant for all hypercubes of

dimension greater than 2k.

Twisting of hypercubes has an extra advantage of reducing the diameter without
changing the degree of nodes. Though the routing in this case becomes a little more
complicated we have devoloped a suitable algorithm for routing in a twisted
hypercube. Also, the number of link pairs exchanged to reduce the diameter by a
given value is much small compared to that given in [HKS87]. For example, we
apply twists of type 0 and type 3 in an 11-cube to get a graph of diameter 6. The
number of link pairs exchanged in the process is 121. In comparison, the number
of link pairs to be exchanged in the method given in [HKS87] is equal to 10.27
= 1280. It will be interesting to study the improvement of some other performance
measures such as average routing distance, traffic density etc. of the architecture

proposed in this chapter over the original hypercube.
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Chapter 5
Fault-Tolerant Hamiltonian Topologies

5.1 Introduction

Design of the topology of a computer network is guided by many mutually
conflicting requirements. It is not always possible to get a network design, which
is optimum from all angles. Depending on the requirements and their priorities,
one has to design a suitable network structure. Certain applications need some
particular properties to be present in the design. We consider, in this chapter, the
application areas requiring the presence of a hamiltonian cycle in the structure. An
example of such an application may be a distributed operating system where mutual
exclusion of certain shared resources is implemented by a ‘Token Passing’ approach
[PS87]. In such cases, the token passes along a logical ring. As long as the structure
is connected, it is possible to construct a logical ring by revisiting some of the nodes.
But it is desirable that a hamiltonian cycle be present in the network so that all
the nodes in the network get equal chance to grab the token.

Let G=(V,E) be a graph, where V is the set of nodes and E is the set of links.
Let |[V] = N. Two nodes are said to be adjacent if there is a link joining them.
A cycle is a sequence of three or more nodes such that i) two consecutive nodes
are adjacent and ii) the first and the last nodes are the same. A cycle is called
a hamiltonian cycle, if its nodes are distinct and they span V. A graph having a
hamiltonian cycle is called a hamiltonian graph.

Definition : A graph is said to be I-node-deleted hamiltonian if the graph is
hamiltonian after the deletion of any node and its adjacent links.

Definition : A graph is said to be I-link-deleted hamiltonian if it is hamiltonian -
after the deletion of any link.

Many network topologies have hamiltonian cycles embedded in them. In this chapter,
we try to construct a network graph which is hamiltonian as well as 1-link-deleted
hamiltonian and 1-node-deleted hamiltonian. After a node or a link fails, the degree
of some of the nodes may decrease by one. But the presence of a hamiltoian cycle



needs that the degree of every node should be at least 2. Hence, for a graph to
be 1-link-deleted hamiltonian or 1-node-deleted hamiltonian, all nodes must have
degree at least 3. Here we propose a design such that i) when N, the total number
of nodes is even, all nodes are of degree 3 and ii) when N is odd, all but one
of the nodes are of degree 3 and the remaining node is of degree 4. The proposed
graph has minimum number of links among all the graphs which are 1-link-deleted
hamiltonian or 1-node-deleted hamiltonian.

5.2 Design of the Graph

First we consider the construction of the graph for N = 6n+4 nodes for n>0.

1) Connect 6n+3 nodes to form a ring.

2) Place the remaining node, labelled as V(0), at the centre of the ring and
connect it to three equidistant nodes on the ring. Label these nodes on the
ring as V(1), V(2) and V(3) in the clockwise direction.

3) Starting from each V(i), i=1,2, 3, label the n nodes encountered in traversing
the ring counterclockwise as V(i, 1), V(i, 3), ... , V(i, 2n—1). Similarly, the n
nodes encountered in the clockwise traversal from V(i), i=1, 2,3, are labelled
as V(i, 2), V(i, 4), ..., V(i, 2n). As the distance along the ring between V(i)
and V(j), i,j € {1,2,3}, i=j, is 2n, there will not be any conflict in such
labelling of the nodes.

4) Join V(j, 2j-1) to V(i 2j) by a chord-link for all i,j, i=1,2,3 and 1 < ]
< 0.

Let us call the resultant graph as G. Figure 5.1 shows an example of such a graph
with N = 16 nodes.

G can easily be generalized for any even number of nodes. Starting from 6n+4 nodes
we can put two more nodes in G. We introduce the two new nodes on the ring
as follows : i) V(1, 2n+1) is placed between V(1, 2n-1) and V(3, 2n), ii) V(1,2n+2)
is put between V(1,2n) and V(2, 2n—1). Then we join V(1,2n-1) and V(1, 2n) by
a link. This gives us the graph for N = 6(n +1) nodes. Figure 5.2 shows an example
for N = 18 nodes. Similarly, we can put two more nodes, V(2, 2n+1) (in between
V(2, 2n—-1) and V(1, 2n+2) on the ring) and V(2, 2n+2) (in between V(2, 2n) and
V(3,2n-1) on the ring). An example for N =20 nodes is shown in figure 5.3. Finally,
two more nodes, V(3, 2n+1) (in between V(3,2n-1) and V(Z2, 2n+2) on the ring)
and V(3, 2n+2) (in between' V(3, 2n) and V(1, 2n+1) on the ring) can be added to
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Figure 5.1 : An example of the proposed Figure 5.2 : The proposed graph with

graph for N=16 nodes N=18 nodes

V(4,1) V() V(4,2)

V(4.3) V(4,4)

Figure 5.3 : The proposed graph for Figure 5.4 : The proposed graph for
N=20 nodes N=21 nodes

generate the graph for N = 6(n+1) + 4 nodes.

We now extend the design technique to the case where the total number of nodes,
N, is odd. For odd values of N, it follows from the degree-sum criterion that we
can not make the graph 3-regular. However, allowing one node of degree 4 and
the rest of degree 3, we can easily generalize the previous design algorithm to get
a graph G'. We take the case of 8n+5 nodes. First we place 8n+4 nodes on a ring.
Then we place a central node and join it to 4 nodes on the ring such that the spokes
divide the ring into 4 equal parts (as opposed to 3 in the previous case). Then we
similarly name the nodes around each spoke and join them. Again, as in the case
of even number of nodes, we can add to it two nodes at a time, thus designing
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the network for any odd N. Figure 5.4 shows an example of the graph with 21
nodes.

5.3 Properties

Theorem 5.1: The graph G with even number of nodes has the following properties

a) It is trivalent.

b) It is planar.

c) It is hamiltonian.

d) It is 1-link-deleted hamiltonian.

e) It is 1-node-deleted hamiltonian.

f) It has a diameter |[N/6] +2.

g) It is incrementally extensible by two nodes.

Proof: We prove the results for N =6n+ 4. For other even values of N, the proof

is similar.
a) Obvious.

b) Planarity follows if we draw the chord-links between V(i, 2j—1) and V(i, 2j), i
=1,2,3, 1<j<n, outside the ring. Figure 5.5 shows a planar emebedding of the
graph for N = 16 nodes.

¢) First we consider the case when n is odd.

The following sequence of nodes gives one hamiltonian cycle :

V(0), V(1), V(1,1), V(1,2), V(1, 4), V(1, 3), V(1,5), V1,6), ..., V(1, 2n-1), V(1,
2n), V(2, 2n-1), V(2,2n-3), V(2,2n-5), ..., V(2,1), V(2), V(2,2), V(2, 4), V(2, 6),
---» V(2,2n), V(3,2n-1), V(3,2n), V(3,2n-2), V(3,2n-3), V(3, 2n-5), ..., V(3, 1),
V(3, 2), V(3), V(0). cee (5.1)

Similarly, for even values of n, a hamiltonian cycle is given by :

V(0), V(1), V(1, 1), V(1,2), V(1,4), V(1,3), V(1,5), V1,6), ..., V(1,2n), V(1, 2n-
1), V(3,2n), V(3,2n-2), V(3,2n-4), ..., V(3,2), V(3), V(3, 1), V(3,3), V(3,5), ..,
V(3, 2n-1), V(2,2n), V(3, 2n-1), V(2, 2n-3), V(2, 2n-2), V(2, 2n-4), ..., V(2, 1),
V(2,2), V(2), V(0).
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d) We first note that we can get hamiltonian cycles, other than that described in
sequence (5.1), by interchanging the roles of V(1), V(2) and V(3).

Case I :

Case Il :

Case IIT :

Let the faulty link be one between V(k, 2j-1) and V(k, 2j), for some k
and j,k€E {1, 2,3}, 1<j<n. If k=2, the link is anyway not included in
the hamiltonian cycle described in part (c). If k=1 or 3, we can interchange
the roles of V(2) and V(k) in sequence (5.1) to get a hamiltonian cycle
without using the faulty link.

Let the faulty link be between V(0) and V(k), k€ {1, 2, 3}. If k=2, the
link is anyway not included in the hamiltonian cycle described in part
(c). If k=1 or 3, we can interchange the roles of V(2) and V(k) in sequence
(5.1) to get a hamiltonian cycle without using the faulty link.

Let the faulty link be between two nodes V(k,j) and V(k, j+2), for some
k and j, k€ {1,2,3}, 1 <j < n-2. For the hamiltonian cycle, we start
from V(0) and go to V(k) first. The choice of the next node is guided
by the value of j so as to avoid the faulty link. If j=4p or 4p+1, then
we go to V(k, 1) else we go to V(k, 2) from V(k). The rest of the sequence
can be computed in the manner similar to that discussed in part (c).

e) First we take the case when n is odd.

Case [

Case I :

Case Il :

: V(0) is faulty.

The hamiltonian cycle exists along the ring.

Vik), kE {1, 2, 3} is faulty.

Without loss of generality, let V(2) be faulty. We can modify the
hamiltonian cycle as described in part (c), by replacing the subsequence
‘V(2,1), V(2), V(2,2) by ‘V(2,1), V(2,2).

V(l, i), 1 <i<2n, is faulty.

Let V(1, i) be connected to V(1,i) by a chord-link, where i’ =i+1 or i-
1. To get a hamiltonian cycle, we start with the sequence V(0), V(1). Next
we move either to V(1, 1) or to V(1, 2) depending on the value of i so
that V(1,i) can be bypassed by the subsequence given as follows :

Forn =1,

i) V(1),Vv(1,i), V(2,1) fori"=2
i) V(1), vQ1, i), V(3,2) fori'=1
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Forn=>1,

i) V(1), V(1, i), V(1, i'+2) for i’ < 2.

i) v(Q1, i'-2), V(1, i), V1, i'+2) for 3 < i’ < 2n-2.
iii) v(Q1, i'-2), V(1, i"), V(3, 2n) for i’ = 2n-1.
iv) V(1,i-2), Vv(1, i), V(2, 2n-1) for i’ = 2n.

The rest of the sequence can be computed in a manner similar to that
described in part (c).

f) From each node we first find the maximum number of steps needed.

i) From V(0) we can reach any other node within n+1 steps.

ii) From V(1), V(2) or V(3) we can reach any other node (via V(0)) within
n+2 steps.

iii) From V(1, i) (without loss of generality let i =2m), V(0) can be reached
within m+1 steps.

So, V(k, j), k=2, 3, can be reached via V(0), within n+2 steps for1l <
j <2(n-m). Now, V(2,2n-1) can be reached via V(1,2n) in (n—-m + 1)
steps. So, V(2, 2j-1) for n-m < j £ n can be reached within n steps.
Hence V(2,2j), for n-m < j < n, can be reached within n+1 steps.
Similarly, we can go to V(1,2m-1) in one step. From there we can go
to V(3,]j) for 2(n-m) < j < 2n in maximum of n+1 more, i.e., n+2 total

steps.

We also note that the distance between some pairs of nodes, for example
V(2) and V(3, 2n), is exactly n+2. Hence the diameter is exactly n+2.

g) Follows from the design algorithm.

Theorem 5.2 : The graph G’ with odd number of nodes has the following
properties :

a) All nodes except V(0) has degree 3 and V(0) has degree 4.
b) It is planar.

c) It is hamiltonian.

d) It is 1-link-deleted hamiltonian.

e) It is 1-node-deleted hamiltonian.

f) It has a diameter [N/8] +3.

g) It is incrementally extensible by two nodes.

- 62—



V(2,4) V(2,3)

Figure 5.4 : A planar embedding of the Figure 5.6 : A planar embedding of
graph in figure 5.1. the graph in figure 5.5.

Proof : Similar to that of Theorem 5.1.

Figure 5.5 shows an example of the graph with N =21 nodes and figure 5.6 shows
a planar embedding of that graph.

5.4 Conclusion

Although the graphs we have proposed in this chapter are hamiltonian, 1-node-deleted
hamiltonian and 1-link-deleted hamiltonian, they are not optimal with regard to
diameter. There are many denser trivalent and tetravalent graphs reported in the
literature [SSB+91], [LSS.'Z].. As an example, if we take the case of the trivalent
Md&bius graph, it has diameter O(logN) and it also has a hamiltonian cycle. However,
the existence of a hamiltonian cycle with a single node or link failure in a Md&bius
grﬁph remains yet to be established. Also the problem with the M&bius graph is
that it is defined only for N = 2" nodes. In other words Mo&bius graph is not
incrementally extensible. Further, for odd n, two of its links overlap, thus making
it not exactly trivalent. Similar problems regarding incremental extensibility also
appear in case of dense tetravalent de Bruijn graph [PR82]. The graph structure
that we have proposed here is, on the other hand, incrementally extensible.
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Chapter 6
Reliability Analysis of Static Networks

6.1 Introduction

A good network structure should have a number of desirable properties some of
which are mutually conflicting in nature. Fault-tolerance of a network topology is
of fundamental importance. The faults to be considered may be processor or link
failures. A network topology is said to be fault-tolerant if it remains ‘operational’
in the presence of faults. It is, however, the topological requirements set by the
application environment that essentially determine when a network is considered
operational. For special purpose networks, the requirement may be that the induced
subgraph on the live or non-faulty nodes satisfies some specific property, e.g.,
embedding some particular structure (say, a complete binary tree or a binary cube).
For general purpose networks, usually it is considered ‘operational’ as long as the
induced subgraph [Ha69] on the live nodes is connected.

Though there is no universally accepted measure for reliability, a simple measure
for general topology may be the connectivity (i.e, the minimum number of nodes
which are to be removed in order to make the network graph disconnected [Ha69)).
A more intricate approach may be to use a stochastic model [BC89]. Here, with

each node and link we assign a probability of failure. The failures are assumed
to occur independently. Details of the model are described later. Under this set-

up, our aim is to find the probability that the network is connected. Some work
[CH88], [SF72], [AR81], [GG81], [KA90], [Po71], [LP71] has been reported on
finding the reliability when only the links have positive failure probability.

[n this chapter, we formally define the reliability of a network. Then we give a
method for recursively computing the reliability when the links are fault-free. Lastly,
we derive analytical expressions for finding the reliabilities of certain common

networks like complete graph, path, cycle, star, wheel, complete m-ary tree, ladder

etc.



6.2 Basic Concepts

In the past, the fault-tolerance of a network has usually been expressed in terms
of the node connectivity of the corresponding network. Though such a measure is
relatively easier to calculate, it does not provide enough information regarding the
fault-tolerance of the network. It suffers from two shortcomings :

(1) Being a discrete measure, it cannot compare between two graphs with
same node connectivity, though one may be obviously more robust than the
other. For example, consider the network in figure 6.1(a). It has connectivity
2. Putting an additional link between nodes 1 and 3 in the structure, we
get the graph as in figure 6.1(b), where connectivity is also 2. But definitely
the graph in figure 6.1(b) is more fault-tolerant than the graphin figure 6.1(a).
For example, if nodes 2 and 4 fail, the graph in figure 6.1(a) becomes
disconnected, whereas that in figure 6.1(b) is still connected. This observation
demands a new measure of network reliability, which would show that a
super-graph on the same set of nodes is more reliable.

1@ 92 1T:- 92
'..""‘h-
"l...h

4 ‘ ! 4@ 93
(a) (b)

Figure 6.1 : Network Graphs

(2) Failure-probabilities of individual nodes may have a significant effect on
the reliability of a network. As an example, in the wheel-graph, the failure-
rate of the central node has the maximum effect on the reliability of the
network. But the node connectivity of the network graph does not reflect

such dependency.

Being so motivated, we formally define the network reliability under the following

mode] :

Model : Consider a network graph G = (V, A), where V is the node set and A is
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the link set, with the following attributes :
(1) With every node we assign a probability of failure.

(2) Node faults are assumed to occur independently. When two nodes are alive
(non-faulty) we assign a probability that the link between them is alive. (If
there is no connection at all, we assume this probability to be zero.) When
one of the terminal nodes of a link is dead, the link automatically dies.

Definition : For a network G = (V, A), we define the reliability of the network
(denoted by R(G)) as R(G)= P (E), where P(.) denotes probability, and E is the event
that the induced subgraph on the live nodes is connected.

In terms of sets, this beomes

E=N LLUL U (L,NLNC,)
u,vev
u Ev

where, L, = The event that the node u is alive.
C_ = The event that there is a path from the node u to the node wv.

[For a set S we denote its complement by S°]

This definition equates reliability to the probability that a live node can
commmunicate with any other live node. As a special case, if G is null, we define
R(G) = 1.

6.3 Recursive Evaluation of Reliability

Now that we have a quantitative definition of what the reliability of a network is,
we must have some way to compute it. Let us consider the case when the links
are fault-free, i.e., only the nodes may have positive rate of failure, and the failure
rate of any link is zero. We also assume that the failure of a node does not affect,
in any way, the failure of another node. That is, LILIL and L..,, are independent of each
other, for any distinct pair u,v € V.

Let us take any node vE V,
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R(G)=P(E)=P(ENLS +P(E NL)

But ENL? is the event that the node v is dead and for any x,y in V — {v} if
x and y are both alive, there still exists some route of communication between the
two (which, of course, does not pass through v).

So, P(ENLE)=R(G - {v}). P(LY)
Also, P(ENL)= P(E|L).P(L)

Let V1 be the set of all nodes in V, which have a direct link with v and V2 =
V—-(V1U {v).

In the case when v is alive, at least one communication path, between any two live
nodes in V1 exists through the node v. Thus one may try to simulate its effect by
removing v and making V1 a complete graph. Let G, be the graph constructed from
G by removing v and putting links between all pairs of nodes in V1.

Let E, = the event that the induced subgraph is connected, given that v is alive,
E1 = the event that the induced subgraph on the live nodes of G, is connected
and E2 = the event that all nodes in V1 are dead, and the set of live nodes in V2

is non-empty and they form a connected component.

Lemma 6.1 : Given v is alive, E = El1-E2.

Proof : First we show that E C E1 - E2.

If E, happens, then E1 must happen. Because for E1 to happen, there should be
a path between two live nodes in G —{v}. Tdke two live nodes s and d in G -

{v}. Let °s...u, vu,..d” be the path between s and d in G - {v}. Then s and
d will also have a path in G_ given by, ‘s...u,u,...d’, implying that E1 happens.
Thus E C E1.

If E2 happens, then there will be at least one live node in V2 which will be
disconnected from v in G, implying that E  cannot happen. Thus E, NE2=0.
Merging these two relations we get E, € E1 - E2.

Now we show that E 2E1-E2.
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For E  to happen, any two live nodes s and d in G should have a connecting path.

CaselI:If s and d both are in G- {v}, there must be a path connecting them in
G, (as E1 happens). If this path involves a link (u,, u) non-existent in G, then
we replace this link by two links (u,, v) and (v, u,) to get the corresponding path
between s and d in G, i.e., E, happens.

Casell:Let s=v. If d is in V1, then there is a direct link between s and d in
G. If d is in V2 then there must be a live node u’ in V1, otherwise E2 would
be true. There also exists a path from u’ to d in G (by Case I). Hence there exists
a path from s tod in G. Configuring the two cases, we get E D E1 - E2.

Hence the proof. ¢

Lemma 6.2 : Let <V2> denote the induced subgraph on the node set V2. Then,

P(E|L) = R(G,) - [R(<V2>) - IT P(L%)] I P(L)
uE V2 uE vl

Proof: The proof follows directly from lemma 6.1, if we note that E2Z 1s a subset
of E1 and put the values of P(E1) and P(E2). ¢

Hence we get the following theorem,

Theorem 6.1 : For any network, G =(V,A), if the links are fault-free, then for any
ve vV,

R(G)= R(G-{v}).P(L)+P(L)[R(G,)-(R(<V2>) -1 P(L)) I P(L)]
ueE vz uE vl

Remark : Theorem 6.1 provides us a recursive way of computing the reliability of
a network in terms of the reliabilities of networks with fewer nodes.

6.4 Reliabilites of Some Simple Networks

In this section, we find out analytical expressions for the reliabilities of certain
families of very simple networks, by applying theorem 6.1.
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6.4.1 Complete graph (K)

Theorem 6.2 : R(K ) = 1, for n> 1.

Proof : Let us consider a node u with P(L ) = p. Since all other nodes are connected
to u, V2 is null. So R(«V2>) =1. From theorem 6.1,

R(K,)

R(K,_)-(1-p) + p[R(K_)-(1-1)II(L)]
uevl

R(K ) =..=RK) =1 *

6.4.2 Path (P)

Here we assume that all the n nodes in the path P have equal failure-rate, q (=1
- Ps SHY)-

n - .
Theorem 6.3 :R(P ) = q" + 2(n+1-i)p'q™", for n> 4.
i=1

Proof : We shall prove by induction on n. For the base step of the induction, one
can easily check the result for n=4 and 5.

Let the result be true for all n<m, m> 6. We shall prove the result for m.

Applying theorem 6.1, by choosing the node v as that at one end of the path P™,
we have,

R(P,)=R(P, ) -pqR(P,_,)+pq”"’

By induction hypothesis, applying the expressions for R(P__.) and R(P__,), we get,

m=1 m=2
R(Pm) — qm—~1 + E (1'1'1—[) piqm"i“l _ P‘q [qm-z + E (m-i-l) Piqm_z_i] + pqm_l
=1 1=1
ot mer
— qm—l + (IT.I*-I) p1qm—1—1 - X (I’l‘l—l) pnqm—l
1=1 =2
m = =
= q™! + (m-1) 1:\»(:]“"2 + 2 (m-i) p‘”q“"“*”
=2
m = =
= q"™ + 2 (m-i+1) p'q™ *

1=1
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6.4.3 Cycle (C)

We consider the network with n nodes, connected in a cyclic structure. Here also
we assume that all nodes have independent and identical failure rate q (=1 - p).

n-1 .
Theorem 6.4 : R( C, )=q" + 2 np'qQ"" +p" forn > 4.

i=1

Proof : Similar to that of theorem 6.3. | *

6.4.4 Star (S)

We consider a network with n nodes, where (n—1) of the nodes are attached only
to one particular single node.

Let the reliability of the central node be p, (=1 —q,) and that of every other node
be p (=1-q). We also assume that node failures are mutually independent.

Theorem 6.5 : R(S_)=q,q" '+ (n-1)q, pq" >+ p,.

Proof : Follows from a direct application of theorem 6.1. *

Corollary 6.1 : For p,=p, R(S")=q"+ (n-1) pq""' + p.

6.4.5 Wheel (W )

The wheel Wn with n nodes is defined as

W =K +C__ where ‘+’ denotes the join operation [Ha69].

I 7

n-2 )
Theorem 6.6 : R(W ) =p, +q,q"' +q, Z(n-1)pg"" + p"q,
1 =1

Proof : Follows from a direct application of theorem 6.1. L

n-2 . .
Corollary 6.2 : For q,=q, R(W )=p+q"+ Z(n-1) p' qQ" " +p"lq

i =1
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n-1 i
From Theorems 6.3 and 6.4, R(C)-R(P) = X (i-1) p'q™*

i =1

which is quite significant for small values of q and large n; although there is just
one extra link in C..

Again, bothP_and S_ are one-connected and they have the same number of links.
But for small q, R(S ) > R(P ). However there will be heavy congestion of traffic
in the central node.

6.5 Reliabilites of Some More Networks

In the previous chapter we found the analytical expressions of certain simple network
topologies, by application of Theorem 6.1. In this chapter we consider some more
complicated network graphs and try to get some expressions for their reliabilities.

6.5.1 Complete m-ary Tree (T_ )

Let T _ denote a complete m-ary tree with height n, i.e, with 1+ m+m?®+...+ m"
= [(m"*! — 1) / (m—-1)] nodes.

Here we assume that all the nodes have identical failure rate q=1-p. Let v be
the root of the tree.

R(T_)=pP(T__is connected |L)+qP(T__is connected|L?),

Given that the root is dead, the tree can be connected if and only if all but one
of the subtrees of the root are totally dead and the remaining one is connected (it

may also be totally dead).
_ m"-1 (m"*1-1)/(m-1)
So, P(T_  is connected | L) =mR(T_ ) (q )= (m-1) (g )

When the root v is alive, the tree is connected if and only if all the non-null sub-
trees have their root nodes alive.

So, P(T_  isconnected|L )

rool

m " i(m"=1)/(m-1) —i

= 2 (Mg [p-P(T, _, is connected|L_ )]
1=
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- (m"-1)/(m-1) m
=[p.P(T,,, is connected IL_)+q

Thus we can compute R(T_ ) and R(T_ |L, ) recursively using R(T__,) and
R(T

m,.n-1 | rn-::t) :

_ (m"-1)/(m-1) _m
Now, let f =P(T_ is connected|L )= [pf,_,+q

1/ ~1)/(m-1
e p m=pf +q(m )/(m—1)

n-1

"-1)/(m-1
Let xk e fklfm' Sﬂ, xn =p (xn_I)m + q (m”-1)/(m-1)

(m"-1)/(m-1) (m"-1)/(m-1)

Dividing both sides by g

Y, = (/) [y,_,]” + 1 ...(6.1)

and substituting y_=x_/q

Starting from the initial value of y , y can thus be very easily computed from eqn.
(6.1).

For all practical values of p (0.5<p<1), (p/q)[y__,]" >>1 after a few steps of
recursion. As a result, we may ignore the ‘+1’ term beyond a certain wvalue of n.
As an example, the percentage errors in the computed reliability of a binary tree,
of height 6 (m =2, n=6) for different values of p, are listed in Table 6.1. The
‘cut-off n” in Table 6.1 is the value of n from which we neglect the ‘+1° term to
compute y .

Table 6.1 : Percentage error in the reliability for different p and cut-off n

cut-ﬂﬁ'\p 0.5 0.6 0.7
2 9.39 3.22 0.32
3 0.22 9x10-3 6x10°3
4 2x10+4 1x107 0.00
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Figure 6.2 : Modified ladder network

6.5.2 Ladder (L)

We want to find the reliability of the modified ladder (Figure 6.2) graph of length
n, i.e., 2n nodes.

Let R_= Reliability of L .

Define |1 = Probability that L_ is connected and it has length m, where, by ‘length
m’ we mean that if we breadthwise collapse the ladder, or whatever
part of it is alive, it produces a continuous line of length m.

I

Then, R_ P(L_ is connected)

n
= P(L_ is connected and has length i) + q°"

i=1

n =
_El (n+1-1i)q2™V ] + g2 ... (6.2)
1=

So, to get R_ it is enough to compute 1, i3> 1.

Define s_ = Probability that L is connected, has length m and v, is alive.
So, I =pl_  +pgqs_ ., for m>2 ' ... (6.3)
Also for m > 2, s =plpl_ _,+4as__,]

p’l.,+pPalpP*l,_, +pPqs,.,]

m-1 L
p> _El I . (pq )™+ (pq)™'s,
=
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m-1 _
= p’ _El P L+ (™ p [As s, =p]

From equation (6.3) we get, |  =pl_ +pgs_

Putting the value of s_ from equation (6.4), we get,

m-1

lpey =P 1, + P Ei ()™ |, + p (pq)™

We define, 1,=1/p

m
Then, 1_ . =p? Eﬂ (P@)™ L +pql_
1

Dividing both sides by (pq)™*' and putting lk;’(pq)k= t, we get,

m
t = w X t+t m>2,
m+1 i m
i=0
where w = p/q.

So, t — t

m m-1 = ( lm-l - tm—i ) + W tln—-l

= t =(2+w)t -t for m = 3.

m-2
Let G(x) be the generating function for the t’s. G(x) = Z t X'

iz0
So, [1-(2+w)x+x*] G(x)

... (6.4)

...(6.5)

...(6.6)

=t, + [t, — (2+W) t]x+[t,— (2+w) t, + t] xX? [By equation (6.6)]

So, G(x)={tn+[tl—(2+w)tﬂ]x+[tz-(2+w)tl+tn]x2}f{1—(2+w)x+x2}

Now, puttiing the values of 1,1
t,= 1/p
t, =1+ 1/g
t,=(1+2q)/q*

, and 1, we get,

So, G(x)=[C,+ C, x + C, x*]/ [1 = (24+W) x + x7]
where C, =1,
C, =t —(2+w)t,
and C,=t,—(2+w)t +t,
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Now, (2+w)* -4 >0,asw>0

So the roots of the denominator of G(x) are real. Let the roots be r and r..

Hence,

1/ [(x-r)(x-1)]= = f x, where f = [r,** = "'/ [(r,r,)"*! (r,- )]
i=0 :

Therefore, G(X)=[C,+Cx+Cx*][ = £ x' ]
i =0 “

But, G(x) = 2 t x'
120

So, for i22, t=C,£+C f +C,f,

6.5.3 End-Connected Strings

Here, we consider a network in the form of m strings of length k+2 each, where
the extreme points of all the strings are common and no other node is common
between two strings. Let us call this structure G'.

Assume that all the nodes have identical failure-rate q =1 - p.

Let the two end points be u and v.

There are three possible cases, depending on the nodes u and wv.

Case I : Both u and v alive.

Given that both the nodes are alive, G' can be connected if and only if at least
one of the strings is completely alive and for all incomplete strings they have two

connected components (which, may be null), connected with u and v.

So, the probability of G being connected in this case is,
m * -
[, =X (P) p* ™
im1

= [p*+ ™ - £
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where f = Probability that a string of length k is incomplete

and its components are starting from one of the
extreme nodes.

k
=2 (k+1-j)p ¢
j=1

Case Il : Only one of u and v is alive.

Given that only one of u and v is alive, G may be connected, only if all the strings
are connected from the specified live node.
So, the probability of G" being connected in this case is

k.
o, =[ = pg< )™
1| =0

Case IIl : Both u and v are dead.

Given that both u and v are dead, the network may remain connected if either all
but one of the strings are totally dead and the last one has exactly one connected
component or all of the m strings are totally dead.

So, the probability of G° being connected in this case is

k
[, =m g™ 3 (k+1-j)p q" +q™
j=1

So the probability of G* being connected is,

R(G") = p? I, + 2pq. I1, + q*. I,
This structure may be generalized by considering links which are not strings (say,
by introducing a bypass in the string). We may also consider cases, when all the

paths between u and v may not be of the same type. This way we may find
reliabilities of some structures like tree-machine, Binomial graph [RRKS83], etc.
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6.6 Conclusion

In the definition of the term ‘operational” we considered only the subgraphs which
are connected. Another approach may be to assign certain weights to all subgraphs,
depending on some measure of local connectedness, rather than considering global

connectedness. These weights may be assigned depending on the number of
components or the percentage of possible communications achieved, etc. But such

a measure of reliability would be quite difficult to compute.
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Chapter 7
Self-Routable Permutations in Benes Network

7.1 Introduction

Multistage Interconnection Networks (MIN’s) are used in multiprocessor systems to
interconnect the different modules (PE’s and/or memory modules) dynamically. An
NxN Benes Network is a well-known rearrangeable MIN that can connect its N
inputs to its N outputs in all possible ways. The recursive structure of an NxN
Benes network B(n) is shown in figure 7.1, (n = log,N). The best known routing
algorithm for an arbitrary permutation in a Benes Network is of time-complexity
O(Nn) on a uniprocessor system [Wa68], compared to its propagation delay O(n)
only. Even with parallel algorithms for switch set-up, the time needed to realize
an arbitrary permutation in a Benes network is dominated by the set-up time [NS82].

However, many useful permutations, often required in parallel processing
environments are self-routable [Le78], [NS81a], [Na89], [BR88] in a Benes network,
in the sense that as the vector of data passes through the network, the two-state
switches are controlled on the fly by the destination tags of the inputs to the

respective switches. Lenfant proposed a simple routing algorithm for some Frequently
Used Bijections [Le78], namely the FUB family (|FUB| is O(2°")). Nassimi and

Inputs Outputs

Stages : 0 1 .. (2n-3) (2n-2)

Figure 7.1 : An NxN Benes Network B(n), n=log N



Sahni [NS8la] proposed an O(n) algorithm that routes the BPC (Bit-Permute
Complement) class of permutations (|BPC|=n!2") and IQ (Inverse Omega) class

of permutations (|IQ|=2""?). Nassimi [Na89] also developed a fault-tolerant routing
scheme for BPC class of permutations. Boppana and Raghavendra [BR88] solved

the problem for LC (Linear-Complement) class of permutations ( |LC| is O (2"1)), which
also routes the I€2 class of permutations as well.

In these earlier works, the authors started from some known classes of permutations
and developed suitable self-routing strategies for each. In effect, we just know about
some classes of permutations, self-routable by some known technique. But the
applicability of the different self-routing techniques developed so far is yet to be
fully explored. In fact, there exists many more permutations that are routable by
the existing self routing algorithms; but these characterizations are not yet complete.
Again, to route any arbitrary permutation P by any of these routing techniques, firstly
we are to recognize whether or not P belongs to the permutation class routable by
it (tdentification problem). As a result, the overall routing complexity may increase.
Moreover, these algorithms require some extra hardware facilities in the switches
of Benes network to decide which of the two inputs to a switch should be used

for setting it.

In this chapter, we tackle the problem in a more realistic way. We classify the self-
routable permutations into four categories, namely :
i) Top-Control Routable set of permutations (TCR),
ii) Bottom-Control Routable set of permutations (BCR),
iii) Least-Control Routable set of permutations (LCR)
and iv) Highest-Control Routable set of permutations (HCR).

We will show that each of these classes contain at least 2"(2"? + n! — 1) permutations
which is much more than the size of any one of the classes FUB, BPC, IQ or
LC. Thus our results will produce a better characterization of the permutations that
are passable by the different self-routing algorithms. Howewver, our characterization
is also far from complete. Each of the above classes actually contains many more
permutations. In fact, this lower bound of 2°(2™? + n! — 1) is the size of the
intersection of all classes (i.e., TCR, BCR, LCR and HCR) considered here.

We also develop an algorithm that will detect whether any NxN permutation P
belongs to any of the four classes or not. If it is routable by any of the four self-
routing algorithms, this algorithm also determines at the same time the controls
necessary for the routing of P. That is, the identification problem and switch-setting,
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both are done by this algorithm. This algorithm can be implemented on a multi-
processor system with a time complexity O(n). The routing technique does not require
any additional hardware facility in the switching elements of the Benes network,
as in the cases of the other self-routing techniques mentioned earlier. Even in the
presence of some faults in the network, our algorithm can easily be modified to
generate the necessary controls for routing P through the faulty network.

The idea of Group Transformations on permutations developed earlier [DBD90],
finds some interesting applications on the self-routable sets of permutations. It helps
us to find a one-to-one correspondence between the permutations in the set TCR
(LCR) with those in BCR (HCR). Moreover, it leads us to develop a new self-
routing algorithm for all the permutations of the BPCL class [DBD90], which is
the set of permutations generated from BP (bit-permute) permutations, by the
application of all possible group transformations. The BPCL class includes many
important classes of permutations; the BPC class and the LC class are subsets of
the BPCL class. An algorithm is already presented in [DBD90], to test whether any
given permutation P belongs to BPCL or not. We have utilized the outputs of that
algorithm to route the permutations in the BPCL class with a time complexity O(n)
on a multiprocessor system.

7.2 Classification of Self-Routable Permutations in a Benes
Network

In n-stage 2" x 2" blocking MIN's, like omega, baseline, inverse-omega, reverse
baseline etc., a unique path exists between any input-output pair [WF80]. For a switch
at any stage i, O<i<n-1, let x . ... x, x, be one of the destination tags. Then
the switch is set by the bit X, where j depends only on i. Therefore it is evident
that a permutation P is passable by the network, if and only if, for each switch
at any stage i, the X, bits of the destination tags attached to its two inputs are

complement of each other. For reverse baseline network, j=I.

However, a Benes network consists of a baseline network followed by a reverse-
baseline network with the last stage of baseline and the first stage of reverse baseline
being merged together. The routing through the reverse-baseline section, l.e., the
last n-stages of the Benes network, must follow the normal destination tag routing
scheme. We are to determine the routing strategy for the first (n—1) stages only,
so that ulllimately it becomes passable through the network.

- 80 -



- Eﬂ Sm Iflm [gml

fy

10 . -
S

0 — |
5. 2-m=
S13

@ g

[
</

Stages : 1 2 3 4

Figure 7.2 : An 8x8 Benes Network and the Numbering of the Switches for Stages i <n-1

We will assume that a switch at stage i is denoted by Sij, where O<i<n-2 and
0 <j<N/2 and the destination tags attached to the two inputs of a particular switch
S;; are identified as T, (the top one) and B;; (the bottom one) respectively. For
an 8x8 Benes network, the numbering of the switches are shown in figure 7.2.

In self-routing algorithms, the setting of a switch is done locally using the destination
tags of its two inputs. We shall concentrate on algorithms in which one of the two
destination tags is selected using a global property (say, that of the top input or
the lesser of the two destination values etc.). This input will be called the R-input.
One particular bit of the R-input is chosen, depending on the stage in which the
switch lies and that bit is used for setting the switch. This particalar bit will be
referred to as the R-bit.

For the classes of self-routable permutations, discussed here, whatever be the R-
input at any stage i, 0 < i < n-2, the R-bit is the bit x. of the destination tag
X__ - X. oo X, X, Of the R-input.

Definition : In an NxN Benes network the self-routing algorithms considered here
are of the following types :

i) TCR (Top Control Routing) algorithm, if the R-input is T,

ii) BCR (Bottom Control Routing) algorithm, if the R-input is B,

iii) LCR (Least Control Routing) algorithm, if the R-input is min[Tij, Bij]
and iv) HCR (Highest Control Routing) algorithm, if the R-input is max[Tij, Bij].
Figures 7.3 - 7.6 show examples of these routing schemes for different permutations.
[We will represent an NxN permutation by the sequence of outputs corresponding
to the sequence of inputs (012 ... N-1).]
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Destination tags

000
010

111
011

1

Destination tags

010
000

110
001

011
111

101
100

Figure 7.4 : Routing of Permutation P: (2061 3 754) by Bottom-Control-Routing
(At Any Stage-i, 0 < i < 2, the Underlined Input Bit Determines the Switchsetting)
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Figure 7.3 : Routing of Permutation P: (0216 73 45) by Top-Control-Routing
(At Any Stage-i, 0 < i < 2, the Underlined Input Bit Determines the Switchsetting)
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Destination tags

10 010 001,
10 101
100 101 010
010 | 101 |
111 110 — 110 P
110
00 101
100 001
101
011 111
001 011 100
011 111 100 110
110
00L 001 011 111 111

Figure 7.5 : Routing of Permutation P: (0427 536 1) by Least-Control-Routing
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(At Any Stage-i, 0 < i < 2, the Underlined Input Bit Determines the Switchsetting)
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Figure 7.6 : Routing of Permutation P: (0425 63 7 1) by Highest-Control-Routing
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Remark : For each of the permutations P shown in examples 7.3 - 7.6, it can be
verified that no self-rouitng strategy, other than that chosen, from the above four
types can successfully route P. In other words, none of the classes TCR, BCR, LCR
or HCR is contained in any of the other ones.

Definition : A permutation will be called Top / Bottomn | Least /| Highest Control
Routable if it can be routed on an NxN Benes network using the Top /Bottom /
Least / Highest Control Routing scheme.

Among the four classes of permutations mentioned above, the classes TCR and LCR
have already been introduced earlier [NS81a], [BR88]. Nassimi and Sahni [NS81a]
have shown that a rich class of permutations, namely the F class, that includes the
BPC class, IQ class and also the five classes of permutations considered by Lenfant
[Le78], is top control routable, i.e., TCR D F. Boppana and Raghavendra studied
the LC (Linear-Complement) and IQ class of permutations, which are least control
routable [BR88]. The four simplest self-routing strategies as defined above, extend
the set of self-routable permutations beyond these known classes. Here follows some
interesting properties of the classes which finally lead us to develop the general
algorithm for routing a given permutation P, if P belongs to any of the self-routable
classes, mentioned above.

Definition : In an NxN Benes network, the set of Free-choice Self-Routable (FSR)
permutations is defined as the intersection of TCR, BCR, LCR and HCR.

Example 7.1 : The permutation P = (0145 326 7) is routable in the 8x8 Benes
network by any one of the proposed self-routing algorithms, namely the top-control,
bottom-control, least-control and highest-control. Therefore, P € FSR.

Definition : In an NxN Benes network, the set of R-invariant Self-Routable (RSR)
pérmutatinns is defined as the subset of FSR, which leads to the switch settings
that are invariant with the nature of the R-inputs (i.e., top/bottom /least/highest).
In other words, the R-bits of the two inputs of any switch will be complementary
to each other for a permutation belonging to RSR.

Example 7.2 : The permutation P = (2574 6103) is R-invariant self-routable in
a Benes network, i.e., P & RSR.

Theorem. 7.1 : For an NxN Benes network, the cardinality of RSR is 2N"2
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Proof: Let RSR_ = theset of R-invariant self-routable permutations in a 2% x 2* Benes
network. Let P = (p, P, --- Py ) 30d Q= (95 9y +++ 9nj2- ) be two elements of
RSR__, where N = 2% Take a permutation = = (2p, 2q,+1 2p, 2q,+1 ... 2py, ,
2qu,-, 1) of N elements. Refering to Fig. 7.1, we can see that if we route x in
an NxN Benes network by R-invariant self-routing scheme, the required permutations
(after dropping the LSB) to the top and bottom half of the stage 1 would be P
and Q respectively. Since P, QERSR__,, they are R-invariant self-routable through
the top and bottom N/2 x N/2 Benes networks respectively. At the last stage, the
two inputs with the same destination tag (with respect to B__,), will combine at
a switch, as shown in Fig. 7.1. Append a ‘0” (‘1") at the LSB position of the
destination tag of the line coming from the top half (bottom half). They are again
R-invarinat self-routable in the last stage.

Now if we interchange 2i and (2i+1)-th positions of 7t, 0< i < N/2-1, it still remains
RSR. For any two given P, QERSR__, we get 2" such permutations in RSR_.
Let us take two different pairs (P, Q) and (P’, Q", where P, Q, P, Q"€ RSR__..
Say, P and P’ differ at the i-th position. Let the elements at the i-th position of
P and P’ be x and vy, respectively. Then, in the permutations x of size N generated
by (P, Q), the positions 2i and 2i+1 will contain 2x and an odd number. Similarly,
the positions 2i and 2i+1 of ', generated by (P', Q"), will contain 2y and an odd
number. Thus 7t and s’ will always be different. Hence for each distinct pair of

elements in RSR we can generate 2M? distinct permutations of size N.

n-1°
Let 7t = (rg, I;5«r5 Ty y
i, 0 <i< N/2, one of r,, and 1, | is even and the other is odd. Let the even value
be x, and the odd value bey, Take p,=x,/2 and q, = (y,~1)/2. Then, P = (P, P, -
Pnjz- 1) and Q=(q,9, - 9y ,) Must be two permutations in RSR__.. Now, m can

) be a permutation in RSR . Since m is in RSR, for every

be constructed from P and Q, by our technique. That is, our method of constructing
permutations in RSR_ from those in RSR _, covers the whole set RSR .

Il

N/2
So, [RSR | = 2"*(|RSR__,|)*

— EHJ'I zﬂﬂ (lRSRn_gl)‘

- ZH.-'Z .(n=-1) (lRSRlDHﬂ
ZHH.{n-I} . 2HI3

EHIE; n

Hence, |P | = 2N | - K
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Theorem 7.2 : In an NxN Benes network, the set of R-invarinat self-routable
permutations is actually the I€2 set of permutations.

Proof : In an inverse-omega network, for any permutation P let the destination tags
of two inputs incident on a switch at stage O be x _ X , ... X, X;and y_ y . ..
¥, ¥, For P to be realizable in a single pass, x, and y, must be distinct. After
routing through stage 0, the inputs incident on a switch at stage 1 should differ
in the second least significant bit. In general, for P to be realized in a single pass,
at any stage i, 0 < i <n-1, the destination tags of the lines incident on a switch
at that stage must differ in the i-th least significant bit. This condition is identical
to that for any R-invariant self-routable permutation in a Benes network. Therefore,
it is obvious that the set of RSR permutations in a Benes network is identical to
the set of permutations realizable by an inverse-omega network in a single pass,

i.e., the IQ2 set of permutations. *

Corollary 7.1 : In an NxN Benes network, |[FSR|> 2N"2

Proof : By definition, FSR D RSR. Hence the corollary follows immediately from
theorem 7.1. ¢

Theorem 7.3 : The BPC class of permutations is contained in FSR.

Proof : It has already been proved that BPCC TCR [NS81]. Now let us prove that
BPC C BCR.

We shall prove the result by induction on n. The result can easily be verified for
n=1. Let the result be true for n-1.

Let us consider a permutation P € BPC, described by the bit-permute complement
rule P:(x__ ...x)) = (y,_, - ¥y where (y_ _, ...y, is a permutation of (x__, ... X,),
followed possibly by complementation of some bits. Since (y__, ... y,) without the

complementations is a permutation of (x__ ...x,), there exists k, 0 <k <n-1, such

1

that y_=x, or x, Construct P’ from P such that P': (x__, ... Xg) = (¥y,_, -~ Y, e

Yo)-

Since P’ € BPC, we have P'€ TCR. From the mapping rule of P and P’ it can
be shown that if P=(p,p, p,P;--P, ,P,_,)» then P'=(p, p,P; P, - P,_; P,_,)- In other
words, at the input of switches at stage 0, each switch will have the same pair
of inputs (destination tags) for P and P’, but their order (top or bottom) will be
reversed. Hence, if we route P according to BCR and P’ according to TCR, we

0
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will have the same destination tags at the input of stage 1. It has been shown [NS81]
that, when P' is routed by the top inputs, the two halves of inputs at stage 1 will
again be two BPC’s ignoring the LSB. Therefore, when P is routed by bottom inputs,
stage 1 will similarly have two BPC’s at the two halves of the inputs. Therefore,
by induction, P is Bottom Control Routable.

It has already been shown that LCR D BPC [BR88]. In order to show that BPC
is also in HCR, we observe that for a BPC permutation, the larger of the two
destination values at the inputs of every switch at stage O will consistently be always
at the top or always at the bottom input. Hence, so far as stage 0 is concerned,
routing a BPC by HCR amounts to routing it by either TCR or BCR. Again, routing
a BPC by top or bottom input in stage O generates two BPC’s at stage 1. Hence,
it can be shown by induction that, HCR 2 BPC. .

Lemma 7.1 : A BPC permutation P, generated from a BP permutation P*, belongs
to the I set of permutations, if and only if P* &€ I€.

Proof: For a permutation to be realizable in a single pass in an inverse-omega
network, two destination tags at the input of a switch at stage O should differ in
the LSB. The destination tags at the input of a switch at stage 1 should differ in
at least one of the last two bits and so on. For example, in an 8x8 inverse-omega
network, inputs to a switch at stage 0 should have one even and one odd destination
tag. Similarly, the destination tags of the inputs to any switch at stage 1 (i.e., their
input numbers matching at their MSB only) should differ in at least one of the
the last two bits. We can generalize this observation as follows. In other words,
if the binary representations of two input numbers are identical in the two most
significant bits (i.e., they are incident on the same switch at stage 0), then their
destination tags must be such that they differ in the LSB.

In an inverse-omega network, let us consider a source-destination path S — D. Let
the binary representation of Sand D bes__, ...s ..spandd , ... d, ...d, respectively.

For every k, 0<k <n-1, construct a strings__ ...s, ., d d,  ...d, Two paths conflict

k k-1°
at stage k, 0 <k <n-1 (i.e., they share an output link of some switch at stage k),
if and only if, the two binary strings s__. ...s, ,d, d, , ...d, are same for the two
paths. Therefore, it is evident that if a BP-permutation P* €1€, i.e., all input-output
paths are passable by in inverse-omega network, any BPC-permutation P, generated
from P*, by complementing some definite bits of each output, will also be conflict-
free in that network. Similarly, if a BPC permutation P €12, by the same logic,

the corresponding BP permutation P* will also be contained in IS2. ¢
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Remark : It has already been shown that BP N1Q = identity permutation [NS31].

Corollary 7.2 : |FSR| = 2" (2"? + n! - 1).

Proof : From definition, FSR contains RSR. So, from theorem 7.2 and theorem
7.3 it follows that FSR contains BPCU IQ. Now, | BPNIQ | =1 (the identity
permutation). Therefore, by lemma 7.1, | BPCNIQ | =2° Since | BPC | =2" n!
and | IQ |=2"N2, hence | BPCU IQ | =2° (2" + n! - 1). ¢

Remark : By definition, FSR is the intersection of four classes of self-routable
permutations. Therefore, corollary 7.2 gives a lower bound of the size of each class.

We now state some general characteristics for any permutation P &€ XCR, (X =T/
B/L/H).

The recursive structure of a Benes network B(n), is shown in figure 7.1. It is evident
that at any stage i, there exists 2' disjoint sets of switching elements (each set forms
the O-th stage of a B(n-i). The upper (lower) outputs of the switching elements
belonging to the same set are the inputs to the upper (lower) B(n—-i—1) at the next
stage.

Definition : In a Benes network B(n), for any permutation P € XCR (X =T/B/L/

H), at any stage i, 1 < i <n-1, destination numbers a=a__, ...3a, and b=b__, ... b,
of two inputs of a B(n-i), are said to form a conjugate pair, if a, =bj, for all j's

n-1:=j>Ii.

Remark : In a B(n), for any permutation P € XCR, (X =T/B/L/H), the routing
strategy ensures that at any stage i, O0< i<n, there exist exactly two destination
numbers which form a conjugate pair at the input of a B(n-i).

Theorem 7.4 : In a B(n), for any permutation PEXCR (X = T/B/L/H), at each
stage i, 0 <i<n-1, the two elements a and b of any conjugate pair will satisty
any one of the following three conditions :

i) both are the R-inputs

ii) one element (say a) is the R-input but the other (b) is not; say Xx is the
R-input of the switch corresponding to b; then R-bit(a) = R-bit(x), where R-
bit(m) is the R-bit of the R-input m.
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ili) none of a and b is the R-input; say x and y are the R-inputs of the switches
where other inputs are a and b respectively; then R-bit(x) = R-bit(y).

Proof : Whatever be the self-routing strategy, to make P passable through the
network, we are to route the two elements of each conjugate pair of any B(n-i),
at stage i, 0 < i < n-1, to two different B(n—-i—1)'s at the next stage. It will be
possible, if and only if any one of the three conditions stated in theorem 7.4 is
satisfied. L

7.3 Algorithm for Class Identification and Routing

Given any NxN permutation P, our algorithm will check if P is routable by any
of the self-routing techniques TCR, BCR, LCR or HCR as defined in section 7.2.
If there is a success, i.e., P is routable by one of the techniques, the algorithm
will also generate the corresponding controls for switch setting.

We assume a multi-processor system with N/2 processing elements (PE) numbered
as PE-0, PE-1, ... . Each PE-j, 0<j< N/2, will have two registers Izj and IEj+1
containing the destination tags for the two inputs of the switch Sij. The control-
bit for the switch Sij, O<i<n-2, will be computed at the i-th step of execution
of the algorithm and will be stored in a single-bit register C‘ji in PE-j. Before starting
the execution of the i-th step, the registers lzj and I2j+1 of PE-j will be loaded by
the destination tags of the two inputs of the switch S,. Suppose the input lines of
the switches at stage (i+1) are numbered O, 1, 2, ... N — 1 sequentially from top
to bottom. Hence the output of the switch Sij will go to the two input lines j' and
j'+2°-1 at stage (i+1) where j’ = (2j DIV 2°i-1) 20-i-1 4+ (2j MOD 2™ DIV 2.

In fact j’ (or, j’+ 2" ') is obtained from 2j (or, 2j+1), by circular right shift over
the least significant n-i+1 bits, i.e,, if k=x x_ .. x,x then k'=x_x_ ..x .,
X, X__.. . ... X,, where k= 2j (or, 2j+1) and k' =} (or, j'+2""'). We will represent
this operation on 2j by a function @, i.e., ®(2j) =j'. This function ®, in fact is
the mathematical representation of the interconnection pattern between stage 1 and

stage (i+1) of the Benes network for O<i<n-1.

At each step i, O< i<n-1, each PE performs at most one comparison, one exchange
and two data transfers (which can be done in parallel). Considering all these steps
as a unit computation, the algorithm would have to perform (n-1) computations.
The results from all PE’s should finally be accumulated into a master processor
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to decide if there is a success in routing. If the routing is successful, then all the
PE’s will feed the necessary control vectors to the respective switching elements.

Therefore the total complexity of the algorithm is O(n) only. In case of failure, other
self-routing startegies may be tried. Moreover, the algorithm may be modified a
little to accommodate the trials for all classes of self-routable permutations
sequentially one after another until it achieves a success, or fails in all the cases
when we are to apply the general looping algorithm [Wa68] for routing. The
algorithm for self-routing, algorithm SR, is now described below.

Algorithm SR
Assume M is the specified self-routing strategy (TCR, BCR, LCR or HCR) and x(i)

denotes the i-th bit of the variable x. Get_Bit(x) is a function which returns the
the wvalue of the i-th bit of x.

begin
for any processor j, 0 <j<N/2-1do
begin

Input (M);

for 1 :=0ton-2 do

begin

if M=TCR then C, := Get_Bit(l,)
else if M=BCR then Cji := Get_Bit (I
else begin
if M=LCR then k := least {Iz_i* Izjﬂ}efse k := highest {Izj, Izjﬂ};
if k=1, then C,:= Get_Biti(Izj)efse C,:= Gf:t_Eiti(Isz);
end;
if C.=1then exchauge(lzj, Izjﬂ);
' = @(2)) ;§" = @(2j+1) ; Lo=L; L.:=1

j 2j+1°

2j+1)

end:;

if Get_Bitn(Izj) = Get_Bitn(lzjﬂ) then success := 1 and terminate;
end;
end.

This algorithm can easily be modified to incorporate some more features to tolerate
- certain classes of faults. We will consider the fault model discussed in [Na89]. We
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would assume that the links are fault-free and a switching element may have only
control stuck faults. Further, at each stage i, 0 < i <n-1, there can be a maximum
of 2! faults, with at most one in every B(n-i), i.e., at stage O, there can be at most
one fault; at stage 1, there can be at most two faults, one in each B(n-1), and
so on upto stage (n—-2). In each processor PE-j, 0 <j < N/2, the information about
these faults in Sij will be stored. In case the control-bit, as computed during the
i-th iteration of the loop in algorithm SR, is in conflict with the state of the faulty
switch, the computed control bits for each switch in the same B(n-i) are
complemented. Since at stage i, there will be at most one fault in each B(n-i), we
will get new control bits that will successfully route P through the faulty network.

Example 7.3 : Let us consider the permutation P=(0425 63 71). Its highest-control
routing is shown in figure 7.6. Now, let the switch S,  be stuck at the exchange
mode and S, at the straight mode. With these faults, the control for switch S |
should be reversed. By our technique that will reverse the control for the switch
S,, as well, since both belong to the same B(n-1). However, a stuck-at-straight fault
in S, will not affect the routing, since the control generated by algorithm SR for
this switch also corresponds to the straight mode. The routing of P, in this faulty
situation is shown in figure 7.7.

Destination tags

000 —— 100 010 001 —— 001 —— o
1
100 — 000
410 110 10
100 100 010
2
010 | 110 - 3
101 001 —— 110
bo1 011
100
110 F—— S — |4
EIIT | 101 ———1— 5
11 000 101
011 000 101 110
111 6
001 i 11— 111 — 111 ¥

Figure 7.7 : Routing of Permutation P= (0425 63 7 1) by Highest-Control-Routing Under
Faults (Example 7.3).
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7.4 Concepts of Equivalence and Closure Sets

As the definitions suggest, the TCR and BCR classes of permutations have similar
characteristics and the same is true for LCR and HCR classes of permutations also.
Actually, the classes TCR and BCR or HCR and LCR exihibit a one-to-one
correspondence with each other. The idea of group transformations developed in
[DBD90] finds some excellent applications in the analysis of the relations between
TCR (HCR) and BCR (LCR). For better understanding, the idea of group
transformations are described in brief in the following subsection.

Definition : For an NxN Benes network, the inputs (outputs) are grouped in different
levels, as shown in figure 7.8. The size of a group at level i is 2\. Two groups
at level 1 are said to be adjacent, if both have the same parent at level (i+1).

Definition : Let a <> b denote : interchange a,b. A group-interchange tX(j:x), (where
X =1 stands for input and X = O refers to output) applied on a permutation P,
interchanges elements of two adjacent groups of inputs (outputs) at level j, O0<j<
n, following the rule k < k+2, x <k <x+2), where x is the least element of the
two groups. This process generates another permutation P'and is denoted by : tX(j:x)
[P] — P

Levels :
n: (0,1, 2, ..., N-2, N-1) Groups
| .~ ]
| | - |
n-1: (0,1, ..., N/2-1) (N/2, N/2+1, ..., N-1) |
I
....... '
l
I
2: (0,1,2,3) (4, 5,6,7) ‘es (N-8, N-7, N-6, N=5) (N-4, N-3, N-2, N-1)
| Adjacent |
— — — 17 groups | |
1: (0, 1) (2, 3) - (N-4, N-3) (N-2, N-1)
|
[ I_Ll I_J_I | 1
0 : 0 1 2 3 ves N-4 N-3 N-2 N-1

Figure 7.8 : The Input (Output) Groups at Different Levels
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Example 7.4 : Consider a permutation P=(7624 0315), and the group-interchange
tI(1:4) such that tI(1:4)[P] — P’; the interchanging input-pairs are : 4<>6 and 5<>7.
Hence P'=(7624 150 3).

Similarly, a group-interchange on output tO(2:0) applied on P generates a
permutation P” given by P"=(3260 475 1). (The output-pairs interchanged are
: 04, 15, 2«6, 3<>7).

Definition : A sequence of input (output) group-interchanges {tX(l:x,); tX(l,:x,);
e 3 tX(1:x )} is said to be ordered, if for i<}, I _-=g:,lj and if | = lj = X< X.
Example 7.5: The sequence {tI(0:0); tI(0:2); tI(1:4)} applied on P transforms it
through the following steps:

P=(76240315) "% 6724 0315)
82 6742 0315
Y 6742 1503).

Definition : Two sequences of input (output) group-interchanges RX, and RX, are
said to be equivalent if for every permutation P, RX, [P]=RX, [P].

Lemma 7.2: An ordered sequence of input (output) group interchanges with repitition
is equivalent to a shorter ordered sequence of group interchanges.

Proof : As the sequence is ordered, any repitition would be consecutive. Also for
any permutation P, tX(x:y), tX(x:y)[P]=P, for X =1or O.

Definition : An input (output) group transformation GX, X =1 or O is an ordered
sequence of input (output) group interchanges without repitition .

Remark : Input group transformation defines an equivalence relation that partitions
the set of all permutations into some equivalence classes. If a permutation P’ is
derivable from another permutation P by the application of some GI, i.e., GI[P]
— P’, we will say that P and P’ belong to the same partition defined by input group
transformation.

Obviously, the same is also true for output group transformations but the partitions
in the two cases may be different i.e., if GO[P] — P’, we will say that P and P’
belong to the same equivalence class defined by output group transformations.
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Lemma 7.3 : For any sequence of input (output) group-interchanges RX = {tX(l,:x,);
tX(1,:x,); ..o 5 tX(1,:x, )} there exists an equivalent input (output) group transformation
GX = {tX(w,:z,); tX(W,:Z,); ... ; tX(W, Z,) }.

Proof : The lemma can be proved by induction on k. The result is trivially true
for k = 1 (basis). Let it be true for k-1 (induction hypothesis).

Without loss of generality let us consider a sequence of input group-interchanges
RI = {tI(l:x,); tI(L:x,); ... 5 (Do 1) ti(l:x )} = {RI; tI(l:x )}, where RI, =
{tI(:x )5 tI(L,:x,)5 «n s I ix )}, L€, the subsequence of group-interchanges upto
(k=1)-th term. By induction hypothesis, RI, can be replaced by an equivalent ordered
sequence : GI = {tl(w,:z)); tI(w,:z,); ... ; tI(w,:z, )}

If 1>w,_, {GI;tI(l:x)} will be the required ordered sequence of input group-
interchanges. If 1 = w,_ , construct {GI; tI(l,:x,)} as above; find all group-
interchanges at level | and reorder them according to increasing values of x 's. If
I, <w, ,, choose i=min. {] |Wj > 1, }. Let GL= {tI{(w;:z); tI(w,, :z, s ...; tI(w,_:Zz )}
Let p be the output corresponding to the input x_, in the permutation GL,[I], I being
the identity permutation. Then {tl(w :z); ... ; tI(w, ;:z ); tI(l :p); GI,} will be the
equivalent ordered sequence. If tI(l :p) is preceeded by some other group-interchanges
at the same level, they have to be ordered from left to right with increasing values
of p's. Thus an equivalent ordered sequence upto the k-th term always exists.

The same will be true for any sequence of output group-interchanges as well. @

Example 7.6 : Consider a sequence of input group-interchanges : {tI(0:4); tI(1:0);
tI(0:2)}. The equivalent input group transformation can be generated as follows :
first we create a sequence {tI(0:4); tI(O:p); tI(1:0)}, where p is the output
corresponding to the input 2 in tI(1:0)[I], i.e., p=0; thus we get {tI(0:4); tI(0:0);
tI(1:0)}. Rearranging the two tl's at level 0, we finally get, {tI(0:0); tI(0:4); tI(1:0)}
which is the equivalent input group transformation.

To transform a given permutation into another, a suitable ordered sequence of group-
interchanges may or may not exist; but whenever it exists, it is unique. To prove
this, we introduce the notion of input (output) clusters.

Definition : Given a permutation P, an input (output) cluster CX(j,x), (X =1 for

input cluster and O for output cluster), is defined as the sequence of inputs (outputs)
corresponding to the outputs (inputs) of the group at level j, whose least output
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(input) is x.

The set of input (output) clusters at level j, denoted by SCX(j) is the collection
of all input (output) clusters at level j.

Example 7.7 : For the permutation P=(67421503),
CO(2,0) = (6,7,4,2), CI(2,4) = (2,5,0,1); SCO(1)= {(6,7), (4,2), (1,5), (0,3)}.

Lemma 7.4: A group-interchange on inputs (outputs) tX(j:x), for all i's, O<i<
J, keeps the sets of output (input) clusters SCX(i) of a permutation unaltered; for
1 >j, the elements of any output (input) cluster are preserved, but the sequence may

change.

Proof: Without loss of generality, consider only input group-interchanges. Let an
input group interchange tI(j:x), applied on a permutation P, result some other
permutation P’. From the definition of group-interchange, it follows that the output
clusters CO(j, x) and CO(j, x+2)) for P (P") will be identical to output clusters CO(j,
x+2) and CO(j, x) for P’ (P) respectively. But the set SCO(j) will remain same for
both P and P’. Thus the lemma is proved for all i's, 0 <i<j. For i>j, the claim
trivially follows. 4

Theorem 7.5 : For two different input (output) group transformations GX and GX/,
GX|[P] = GX'[P], for any P.

Proof: Let us consider two different input group transformations GI = {tI{(w,:z,);
ti(w,:z,); ... ; tl(w,:z, )} and GI' = {tI{(l :x,); tI(1,:x,); ... ; tI(1_:x_)}. Since GI and GI'
are different, for some p, tI(w,:z;) = tI(l:x;). Without loss of generality, we may
assume that tl(w :z )= tI(l:x,). Let w <1 . Since in GI', all group interchanges are
in levels j>1,, by lemma 7.4, the set of output clusters at level w +1 in GI'[P]
will remain same as that in P. But in GI[P] it will be different. If w_ > 1, similar
, = X,; this also results GI[P]= GI'[P]. The claim
similarly follows for output group-interchanges. \ 4

argument works. Lastly, if w =1, z

Definition : Given any permutation P, let SX(P), X =1 or O, denote the set of all
permutations derivable from P by the application of all possible input (output) group
transformations. Then SX(P) is said to be the input (output) equivalence set of P.

Lemma 7.5 : Given any permutation P, the cardinality of its input (output)
equivalence set SX(P) is 2", X =1orO.
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Proof: For an NxN system, at any level j we can apply input group interchanges
independently on 2°0*D groups. Hence the total number of distinct sequences of

input group interchanges at that level is 2"0*D), By lemma 7.3 and theorem 7.5, we

get the total number of distinct input group transformations for this system as

> zn-t'_i-lrl]n — 2”—1‘
j=0,n-1

Now by theorem 7.4, we get that from any permutation P, by the application of
all possible input group transformations we can generate a set of 2N! permutations,
which is the input equivalence set SI(P).

The same is true for output equivalence set SO(P) also. 4

So far we considered input (output) group-interchanges in isolation. Simultaneous
application of both in appropriate order now leads to the concept of group-
transformation that explores some new guidelines of routing in interconnection

networks.

Definition : A group-transformation T is defined as a sequence of an output group
transformation followed by an input group transformation (any one may be a null
sequence also).

Example 7.8 : A group-transformation T = {tO(0:0), tI(1:4)} applied on P will
transform P in the following way :

10(0:0) t(1:4)
P=(7264 0315) — PP=(7264 1305) — P"=(7264 051 3)

It is easy to show that for any random sequence of input and output group-
interchanges, there exists a group-transformation which imparts same effect on any
permutation. This follows from a similar argument as in lemma 7.3. Thus it is
sufficient to consider group-transformations as defined above.

Group-transformation induces an equivalence partition on the set of all permutations.
If a permutation P’ is derivable from another permutation P by applying some group-
transformation T, i.e., if T [P] — P’, we say that P'~ P (P’ is related to P) and
it is easy to see that '™ is an equivalence relationship.

Definition : Given a permutation P, let C(P) denote the set of permutations derivable
from P by the application of all possible group-transformations. Then C(P) is said
to be the closure set of P.
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Note that C(P) is a superset of SI(P) as well as of SO(P).

Theorem 7.6 : The same optimal routing algorithm may be applied for routing all
the permutations belonging to the same closure set.

Proof : See [DBD90]. ' 2

These ideas about group transformations, are already introduced in [DBD90], mainly
to resolve the problem of optimal routing in blocking log,N stage, full-access and
unique-path MIN's, such as baseline, omega, inverse-omega, etc. The group-
transformation rules described above are actually applicable for baseline network
only. But it has been shown in [DBD90], that these ideas are general and can be
extended to any full-access unique-path MIN.

Now, it is interesting to note that these concepts of equivalence classes and closure
sets find an application in self-routing of permutations in Benes network. The
following section gives the details.

7.5 Group Transformations and Self-Routable Permutations

The following lemmas state some results on the cardinalities of the four self-routable
classes of permutations.

Lemma 7.6 : The cardinality of the set of TCR permutations is exactly equal to
the cardinality of the set of BCR permutations.

Proof: Let us consider a permutation P &€ TCR and route it by top control routing
technique. Now, let us apply input group interchanges tI(0:x), for all possible values
of x, on P that transforms it into P’. It will essentially exchange the two inputs
i.e., the destination tags Tu;- and Bﬂj of all the switches Sﬂj, for 0<j<N/2. Since
P was routable by top control, if we route P’ by bottom control technique, the
switches Slj" for 0 <j<N/2, will all have the same values as they havei for P under
top control routing.

Therefore, it is easy to see that if we apply all the input group interchanges tI(j:x),
for 0<j<n and for each j, with all possible values of x, on P to transform it into
P*, say, then if P is top control routable, P* will be bottom control routable.

Therefore by theorem 7.5, for each P& TCR, there exists a unique P* in the set
BCR. It proves the lemma. \ 4
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"Example7.9: Let P=(0216 7345), PETCR, its routing is shown in figure 7.3.
Now let us generate P* from P by the input group transformation, {tI(2:0), tI(1:0),
tI(1:4), t1(0:0), tI(0:2), tI(0:4), tI(0:6)}[P] — P¥, i.e., P*=(5437 61 20). Note that
P*eBCR.

Lemma 7.7 : The cardinality of the set of LCR permutations is exactly equal to
that of the set of HCR permutations.

Proof: Let us consider a permutation PELCR and route it through the Benes network
by least control routing technique.

Now let us apply output group interchanges {tO(n-1:0)}[P], to generate P’, it will
just complement the MSB of each destination tag of P in P’, with all other bits
unchanged. To route P’, we will find that for all the switches S, for 0<j<
N/2, the highest and least inputs will interchange their positions (top and bottom).
Since in P’, the LSB's of the destination tags remain the same as they were in P,
if we route P’ by highest control technique, the switches S]j for 0<j<N/2, will
have the same input (top or bottom) as their least input.

Therefore, if we apply output group interchanges {tO(i:x)}, for O<i<n and for
each i, we include all possible values of x, P will generate P*, such that if PE
LCR, P* € HCR.

Again by theorem 7.5, for a given P, P* is unique. Hence follows the lemma. ¢

Example 7.10 : Let us consider a permutation P=(0427 5361), where PELCR,
the routing is shown in figure 7.5.

Now let us transform P to P* in the following way :

{1O(2:0), tO(1:0), tO(1:4), tO(0:0), tI(0:2), tO(0:4), tO(0:6)}[P] — P*, where P* = (7 3
50 241 6). Note that P* € HCR.

In [BR88], it has been mentioned that the least-control self-routing technique is
applicable to LC (Linear-Complement) class of -permutations as well as IQ
permutations. Here, it has been shown that the IQ2 permutations are routable by all
the four classes of self-routing strategies discussed above. The following theorem
states an interesting property of LCR and HCR classes.
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Theorem 7.7 : If a permutation P € LCR (HCR), then any permutation P’ € SI(P)
also belong to LCR (HCR), where SI(P) is the input equivalence set of P.

Proof : Let us route both P and P’ by least control routing technique in the first
n stages. After that P is obviously routable by destination tag. What we have to
show is that P' is also routable by destination tag.

We note certain similarities in the sets of inputs to the different stages of the network.
By lemma 7.2, the output clusters of P and P’ are the same. In particular, in both
the cases, the set of output clusters at level 1 are the same. The routing algorithms
are the same and so also are the pairings at all the switches. So an input which
is routed through the upper link in P, will also be routed through the upper link
in P’. The set of inputs which are routed through the upper link in stage 0 forms
the input set for the top half of stage 1. So, both P and P’ will have the same
set of inputs for the top half (and also the bottom half) of stage 1.

Let us think of the inputs to stage 1, also as a permutation. Let the permutations
corresponding to P and P’ be P{l} and P'{l} respectively. We observe that the sets
of output clusters of P, and P’ are the same. Take the output clusters of size
2% in P ,, (say, the top half). This is formed by the upper links of an output cluster
of size 2¥*! of P. This output cluster of P is also present somewhere in P’ (by
lemma 7.1). Now consider the inputs, routed through the upper links of that output
cluster of P'. It forms an output cluster of size 2¥ in P’m. This output cluster of

P'm is the same as the output cluster of P{I} we started with.

If we repeat the above arguments, it is clear that at stage i, the output clusters at
level i, are not only the same, but also in same position with respect to the inputs.
Also, in general the set of output clusters of P{i} and P’m are the same. From this,
we see that, the input pairs to all the switches of stage (n-1) are the same for
P, and P .1 Since P,y is passable, so is Py

It 1s evident that the same will be true for any permutation routable by highest
control technique. ’ 2

Definition : Let C represent any class of permutations, then CE is defined as the
union of all input equivalence classes generated by the permutations PEC, and is

denoted by, CE = U SI(P).
YPeEC
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Corollary 7.3 : Any permutation P& CE where C= LE U IQ, is routable by least-

control routing technique.

Proof: Follows directly from theorem 7.6, since LC and IS2 classes are routable
by least-control routing technique. ¢

The following subsection presents the analysis of a prticular subset of CE, namely
the BPE class.

7.5.1 BPE (Bit-Permute Equivalent) Class of Permutation

BP (bit-permute) class of permutations [Le78] is a typical subset of L (linear) class
of permutations [DBD90]. For any permutation P € BP, for all input I (binary
representation 1 _ ... 1 ) and output O (binary representation O O __,...O,), the non-
singular binary matrix Q___ that satisfies OT = QxI7, is essentially the identity matrix,
with some rows interchanged. The efffect is that for P, for all input-output pair
I & O, E}j= I, for 1<j,k<n and Di=Dj fori=j.

Definition : The BPE (bit-permute equivalent) class of permutations is the union
of all the permutations generated by each P& BP, by the application of all possible

input group transformations.

Remark : Since BP is a subset of L, BPE is a subset of CE.

Example 7.11: Given a permutation P° € BP, determined by the rule, LLLI, — L1 I,
i.e., P°=(0246 1357), generate P by the application of T = {tI(1:0), tI(0:6), tI(0:4),
tI(0:2)} on P’, i.e., T[P']—=P. Hence P=(6402 31 735), whose routing is shown
in figure 7.3. Note that, P € BPE.

Lemma 7.8 : Let P, and P, denote two distinct BP-permutations. Then there does
not exist any input group transformation GI such that GI[P ] =P,.

Proof : LetP :1 I ..1, -0O ,,0O , ..0O ,andP, I I ..1 —

2
O,1,20,42,2 - O, Where y;, = X for 1<i,j<n and y, =y, for k=1, 2.

Now say y, =y,=X%, for 1<j<m, 1 <i<n. Then it is easy to see that both P,
and P, will have the same sets of output clusters at all levels I<m. But, at level
(m+1) the output clusters are different and by lemma 7.1, no input group
transformation can make them equal. Hence follows the lemma. L
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Lemma 7.9 : | BPE | = n! 2", as | BP| = nl

Proof : Follows from lemma 7.7. *

Given any permutation P, we present an algorithm BPE-ID, that will decide whether
P €BPE or not and will output the BP that generates P by input group transformation.
If it is successful, we can immediately route it by LCR or HCR technique.

Lemma 7.10 : A permutation P is a BP permutation iff:

a) the outputs (inputs) X(k) and X(k+2') corresponding to the least inputs
(outputs) k and k+2' of two adjacent input (output) groups at level i, differ
in a unique bit position for all possible values of k and i.

b) the output (input) X(k) corresponding to the least element k of an input
(output) group at level i, is the least element of the output (input) cluster CX(i,k)
for all possible values of i and k.

Proof : Since a BP permutation is defined by a definite bit-permute rule, any BP
will satisfy the above conditions.

If any permutation P satisfies the above rules, we can easily construct a unique
BP-rule to describe P. Since, a permutation PE BPE is the outcome of an input
group transformation on a BP P*, by lemma 7.4, the elements of the output clusters
are same in P* and P. Our algorithm checks P for condition b) of lemma 7.10,
first at level 1 and rearranges the output clusters CO(1,x), if necessary, by applying
tI(0:x) and for all clusters it also checks condition a). If it succeeds, it proceeds

to higher levels. Ultimately it results a BP at level n or fails at an intermediate
level. 4

Algorithm BPE-ID

The permutation P is stored in the form of an array OUT(.), where OUT(i) stores
the output corresponding to the input i.

1. For k=1 to n, repeat
1.1 d=|OUT(0) - OUT(2k-1)|
If d =2j,0 <j < n, OUTPUT "P is not in BPE" and terminate.
1.2 For p=0to 2n-k -1
1.2.1 Find the least element | of OUT(p.2k) and OUT(p.2k+2k-1)
1.2.2 If 1=0OUT(p.2k+2k-1) apply tl(k—1: p.2Kk).
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1.2.3IfOUT(p.2k+2k-1)-OUT(p.2k) =d,then OUTPUT "P isnotin BPE"
and terminate.
1.2.4 Next p.
1.3 Nextk
2. OUTPUT the string OUT that represents the generator BP and terminate.

Complexity Analysis of the Algorithm BPE-ID:

At any stage k, 1 <k <n, our algorithm compares two outputs OUT(x) and OUT(x
+ 2% and if necessary, it applies tI(k—1:x), where x = p.2* for O<p<2"® - 1.
For each p, an extra comparison is needed to check condition a) of lemma 7.6.
Therefore, at stage k, it will require 2°**! comparisons and N/2 input interchanges
in the worst case.

n
The total number of comparisons involved is £ (2"**! + N/2).
k=1

Hence the complexity of the algorithm is O(N logN) on a uniprocessor system. But

the comparisons and interchanges at each level can be performed in parallel using
a system with N/2 PE's. This will reduce the complexity of the algorithm to

O(log N) only.

Remark : The BPE (bit-permute-equivalent) class of permutations are routable by
both least-control and highest-control techniques, since BP's are routable by both

(theorem 7.6).

Lemma 7.11 : |LCR N HCR| > n! 2N,

Proof : Clear from the remark above, since |BPE|= n! 2N *

7.5.2 BPCL (Bit-Permute Closure) Class of Permutations

The idea of closure sets have already been introduced in [DBD90]. Now, with the
self-routing of BPE class of permutations in Benes network, we are interested to
know, whether any self-routing strategy can be developed for a much larger class
of permutations, namely the BPCL class [DBD90], defined below.

Definition : The BPCL (bit-permute closure) set of permutations is defined as :
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BPCL = U Closure (P).
¥ PEBP

Example7.12: Let us consider a permutation P=(2064 751 3). Note that {tO(1:4),
tI( 0:0), tI(1:4)} [P] — P*, where P*=(0246 1357) is a BP, defined by the bit-
permute rule, x, x, x, — X, Xg X, Therefore P*"P*, i.e., P & BPCL.

It has been established in [DBD90], that the BP generated from a given P is unique,
or in other words, the closure sets generated from the BP's are all disjoint.

Routing of BPCL Permutations in Benes Network

Benes network, as mentioned earlier, comprises of a baseline network, followed by
a reverse baseline network. Now, these two networks are not only topologically
equivalent but also the interconnection between stages of the two are such that they

realize the same set of permutations. It results in same group interchange rules for
both [DBD90], i.e., the same group interchange rules developed for baseline network
are applicable for reverse baseline network.

Theorem 7.8 : Given any permutation P &€ BPCL, there exists a P’ € SO(P), such
that P' € BPE. If we route P’ by LCR (HCR) through the first (n—1) stages of the
Benes network and next at the input of n-th stage, we recover P by the application
of output group interchanges GO’, such that GO'[P'] — P, on the destination tags
and route it by normal destination tag routing through the rest of the network, it

will ultimately route P through the Benes network,

Proof : For any permutation P& BPCL, there exists a group transformation T, such
that T[P] — P*, where P* € BP. Now, by definition, T is a sequence of an output
group transformation GO, followed by an input group transformation GI, i.e., GO[P]
— P’ and GI[P'] — P*. As, the input (output) group transformations result an
equivalence relation, it 1S obvious that there exist i1nput (output) group
transformations, to generate P from P* in a reverse way- GI'[P*] — P' and GO'[P’]
— P. Since P* € BP, P* € LCR (HCR), by theorem 7.2. Now P’ & SI(P*) and
therefore, P' € LCR (HCR), by theorem 7.7.

Let us route P' by LLCR through the first (n—1) stages of the Benes network. That
will result a permutation, say P” at the input of n-th stage of the Benes network.
The rest part of the network is essentially a reverse baseline network and P” is
passable through it without conflict, since P’ € LCR. Now let us transform P" by,
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GO'[P"] —P" and route it through the remaining stages. Since P” is routable through
the reverse baseline network, so is P”, by theorem 7.6.

Next, we are to prove that this routing technique, essentially realizes P on the Benes
network.

Note that if we would not apply GO’ at the input of n-th stage, we will simply
realize P’ on Benes network. Now, since GO'[P'] — P, the routing technique will
ultimately realize P.

Therefore, to route a permutation P &€ BPCL, we may transform it into P’ € BPE
and route it through the first (n—1) stages of the Benes network by least (highest)
control algorithm and next at the input of the reverse baseline network, we apply
GO’ on the destination tags to recover P and route it through the following stages.
The switch settings obtained by this technique, essentially will route P through the
Benes network. 4

Next, we develop an algorithm that will check if a given permutation P &€ BPCL
and if yes, it will generate a P’ € BPE. It will also result GO’, where GO'[P'] —
P, in terms of an output node correspondece between P’ and P.

Algorithm BPCL-Routing:

The given permutation P is represented as an array IN(.) and OUT(.), where IN(i)
is the input corresponding to the output i in P and OUT(i) stores the output
corresponding to input i. N(.) is another array that stores the output node
correspondence between P’ and P. N(i) =j, indicates that the output i in P’ is replaced
by output j in P. Initially N(i) =i, for O<i< N.

1. For k=1 to n do
1.1 For p=0 to (2"* - 1) do
1.1.1  If IN(p.2%) > IN(p.2*+ 2%1) then apply tO(k—1:p.2¥) and modify IN(.),
OUT(.) and N(i) accordingly.
1.2.2 Next p.
1.2 Next k
2. For k=1 to n do
2.1 d = |OUT(0) — OUT(2* )| '
If (d=2, ¥V 0<j<n) then OUTPUT ‘P is not in BPCL’’ and terminate.
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22For p=0 to 2°*-1 do
2.2.1 If |[OUT(p.2* + 2¥!) — OUT(p.2¥)| = d, then OUTPUT *‘P is not in
BPCL”’ and terminate. |
2.2.2 Next p
2.3 Next k
3. OUTPUT the arrays OUT(.), (which is the BPE) and N(.) (the output node
correspondence) and terminate.

In step 1, we are applying necessary output group interchanges on P, so that the
transformed permutation P’ may satisfy condition b) of lemma 7.10 for input clusters.
Step 2 is necessary to check if P € BPE. The computations involved are very much
similar to those in algorithm BPE-ID and it is easy to see that the time complexity
of the algorithm is O(N log N) in a uniprocessor system and can be implemented
in a parallel system with time complexity O(logN) only.

Example 7.13 : Let us consider a permutation P — BPCL, given by, P=(5324
061 7), such that, {tO(1:0), tI(0:0), tI(1:0)}[P] — P*, where, P*=(0415 2637),
is a BP, defined by the BP-rule, x, X, X, —> X, X, X,. Our algorithm will result P’

02
=(0451 6273) and N()=(54 673201).

Note that P' € BPE. Therefore it is least control (highest control) routable. To route
P, we present P’ at the input of Benes network and route it by least control routing
technique through the first (n—1) stages, namely stages 0 to (n—2). Now at the input
of stage (n—1), the destination tags are changed according to N(.) and route it through
the remaining stages by normal destination tag routing. It will finally realize P in
Benes network. Figure 7.9 shows the complete routing of P.

7.6 Conclusion

In this chapter, we propose four simple self-routing strategies for N x N Benes
network. It is shown that the union of the BPC and IQ class of permutations with
cardinality 2" (2¥2 4+ n! — 1) is a subset of the intersection of all the four classes
of permutations routable by the proposed self-routing strategies. It implies that 27
(2N2 4 n! — 1) is the lower bound for the cardinality of any class of self-routable
permutations, considered here. The enumeration of the exact cardinality of each class
is still an open problem. But by the application of the theory of equivalence classes
as presented in [DBD90], we establish the facts that [TCR|=[BCR|, |[LCR|=[HCR|
and that |[LCR NHCR|>n!2""!. Next we develop an algorithm, with time complexity
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Figure 7.9 : Routing of Permutation P=(5324 061 7) of Example 7.13.
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O(n) that will identify if any given permutation PES,, where S, is a self-routable
class of permutations mentioned here and also generates the necessary controls for
routing of P. We also mention how easily the algorithm can be modified to generate

the controls even in presence of some faults in the network.

Finally, we outline an O(n) routing technique for BPCL class of permutations
[DBD90]. This class actually covers a large number of permutations. It includes
the BPC, BPE, LC and LE classes of permutations.

If we allow combinations of S.'s for routing in different stages i, 0 <i<n-2, the
set of self-routable permutations can be extended further. Moreover, we can
generalize our results to any other (2n-1)-stage MIN's, such as (2n-1)-stage shuffle-

exchange network etc.
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Chapter 8
Multi-Layered Non-Blocking MIN's

H

8.1 Introduction

Depending upon the capability of a dynamic interconnection network (IN) to achieve
different permutations of input-output combinations, dynamic IN's may be classified
into a) blocking and b) non-blocking. In some IN's a particular pattern of connection
between input and output lines may not be possible. Such IN's are called blocking
networks, the others are called non-blocking networks. If we assume that input-output
connection requirements are coming one by one, in some non-blocking networks
it may so happen that a particular input-output connection request can not be satisfied
till some of the existing connections finish their communications. But by rearranging
the existing connections, it is possible to accommodate all the existing input-output
connections as well as the new request. In other words, the network can realize
all possible permutations of input-output connections, but in a partially connected
state it may not be possible to incorporate a new request with disturbing the existing
connections. Such IN's are called the rearrangeable IN's. Benes network is a well-
known rearrangeable MIN. Another possible classification of non-blocking IN's is
due to Benes [Be62]. If a network is always non-blocking, it is called non-blocking
in the strict sense. If a network has blocking states but the blocking states can be
avoided by some technique (say, by suitable routing) the network is called non-
blocking in the wide sense. Rearrangeable networks are non-blocking in the wide
SENSsE.

Though non-blocking networks are better from the point of view of performances,
they are more expensive too. Two examples of networks non-blocking in the strict
sense, are crossbar [Fe81] and Clos networks [CI53]. In a crossbar network, the
hardware cost is O(N?) for N inputs and N outputs. In a 3-stage Clos network C(n,
m, r), the number of crosspoints for n=VN is, 6N¥?>-3N, i.e., O(N*?). Compared
to this, an NxN Benes network, which is rearrangeable, has cost O(N log,N). Another
network non-blocking in the strict sense, is the Cantor network [Ca71]. Cantor
network consists of several layers of NxN Benes networks. Each input line is
connected to all the corresponding positions in the different layers. Similarly each
output line is connected to all the multiple layers.



In this chapter, we propose a model for analyzing the blocking / non-blocking
behavior of a Multistage Interconnection Network (MIN). We also introduce a
concept of routing-dependent non-blocking behavior of networks and show that a
single-layer routing-dependent MIN with 2x2 switches needs at least (N — 1) stages,
resulting into Q(N?) hardware cost. We then show that log,N such layers of Benes
network are necessary and sufficient to make the IN non-blocking in the strict sense,
irrespective of the routing strategy. The non-blocking layered Benes network requires
N(log,N)? number of 2x2 switches as opposed to O(N?) hardware complexity of
crossbar network or O(N*?) cost of Clos network. The fan-out/fan-in at each input
output line is however, log N. We also propose a routing hardware for the above
network. Routing through the layered Benes network is performed by a combinatorial
circuit, whose different stages are suitably pipelined. This routing hardware requires
additional O(N) 2 to 1 multiplexers, 1 to 2 demultiplexers and a bank of circulating
shift registers with a total of N log,N bits of information. Due to the pipelined
operation, the routing time is limited to be of the same order as the delay through
2 log,N stages of 2x2 switches.

We also find the minimum number of layers for making a multi-layered Baseline
network and a (2 log,N - 1)-stage shuffle-exchange network non-blocking,
independent of the routing strategy.

8.2 The Underlying Model and Some Basic Results

In this work, we shall concentrate on MINs with the following properties :

i) Only 2x2 switching elements are used.

ii) Connections are only among switches in consecutive stages.

iii) Switches can only be in straight mode or in exchange mode.

1v) Requests for input-output connections arrive one by one and they are serviced
immediately without any queuing.

The number of input lines (source) and output-lines (destination) will generally be
denoted by N. The sources will be denoted by S, O0<i<N -1, and destinations
T, O0<i<N-1. A state of a network is a description of the existing paths. We
shall call a state blocking if a request for connection between any free input line
and a free output line cannot be served. A non-blocking state is one which is not
blocking. Here we note that in' a non-blocking state only the next request for
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connection is guaranteed to be served. But from a non-blocking state, the network
can go into a blocking state. A state will be called leading to blocking if there
exists a sequence of requests for connection set-up and interleaved with requests
for connection release, such that starting from that state, this sequence leads the
network into a blocking state. We define an all-busy state to be one in which all
the input lines are busy in communicating with the output lines. Two paths of a
network are said to meet at a switch, if the two input lines to the switch belong
to these two paths.

Lemma 8.1: In an all-busy state, if any two paths do not meet at some switch,
the state is leading to blocking.

Proof : Let P, and P, be the two paths which do not meet at any switch. Let the
sources and destinations of P, and P, be (S, Tj) and (S, TT) respectively. Consider
the transitions in which the paths P, and P, are released after communication. We
claim that the source S, cannot be connected to destination TF. Since P, and P, do
not meet at any switch, for every switch at least one of the lines will belong to
an existing path (note that we start from an all-busy state). Thus, none of the switch
settings can be changed, without disturbing the existing paths. But in the existing
switch setting S. can only be connected to Tj. ¢

Lemma 8.2 : In any state of a network, if two paths do not meet at some switch,
the state is leading to blocking.

Proof : Take any sequence of requests for setting-up connections (without any request
for release) among all the currently free sources and the currently free destinations.
If this sequence cannot be satisfied, our claim is vindicated. If the sequence of
requests is satisfied, we have an all-busy state with two paths not meeting at any
switch. Hence, the result follows from lemma 8.1. *

8.2.1 Routing-Dependent Non-Blocking MINSs

The existing concept of the non-blocking behavior of networks do not concern about
any particular routing strategy. We call a network non-blocking when no input-output
connection request can ever be blocked, irrespective of the specific routing strategy
used for the network. In contrast to these networks, one can design a network which
has blocking states, but the blocking states can be avoided through proper routing.
In other words, if a particular routing discipline is followed, it can be shown that
one would never reach a blocking state.
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Figure 8.1 : An example of a routing dependent MIN

Example 8.1 : Consider the network in figure 8.1, with the switches numbered as
shown in the figure. We note that the network becomes blocking, only if all of
the intermediate switches, i.e., Sw,, Sw,, Sw, and Sw, are set to the same mode
(straight or exchange). One can design a routing strategy such that blocking states
are avoided. So, the network in figure 8.1 is routing-dependent non-blocking but
not routing-independent non-blocking.

Such a network can be grouped into the general category of "non-blocking in the
wide-sense" [Be62]. However, we designate these networks as routing-dependent
non-blocking networks (to distinguish them from the non-blocking in the strict-sense
networks) so that the behavior of such networks can be truly reflected through this

classification.

Theorem 8.1 : For N inputs (N > 2), it is not possible to design a single-layered
strictly non-blocking MIN.

Proof: Take any single-layered MIN. We claim that there exists a state of the
network in which two of the paths do not meet at any switch. We can construct
these two paths as follows. First we choose two input lines which are not incident
on the same switch. We can always do this, as we have more than one switch at
each stage (as N > 2). After constructing the paths non-intersecting upto 1 stages
(i>1), we have two paths leading upto two different switches at stage i. From these
two switches there are 4 outgoing lines. Hence, they must go to at least two different
switches. So we can always extend the path upto stage (i+1). Once we have two
paths which do not meet at any switch, we can set the rest of the switches arbitrarily,
to make the state all-busy. Now, it follows from lemma 8.1, that this state of the
network is leading to blocking. In other words, the network can be blocked. ¢

In a network, when a particular routing strategy is followed, starting from an initial
state the network may not go to all possible states, but only a subset of the total
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set of states. We shall call these states as the valid states of the network, with respect
to the routing strategy and the initial state. We observe that for a network to be
routing-dependent non-blocking, the valid states can neither be blocking nor leading
to blocking.

Theorem 8.2 : A single-layered routing-dependent non-blocking MIN with N inputs
has at least (N — 1) stages. |

Proof: Take any valid all-busy state of the network. Consider the path from source
S,. Since the state is not leading to blocking, this path must meet all (N — 1) other

paths at some switch or the other. Since at any stage the path goes through a single
switch, it can meet at most one new path at each stage. So there must be at least

(N - 1) stages. .

Corollary : A single-layered routing dependent non-blocking MIN needs Q(N?)
hardware cost. In other words, the cost is at least that of a crossbar network.

8.3 Analysis of Blockage in Benes and Shuffle-Exchange
Networks

In this section, first we discuss the blocking properties of a Benes network. In the
sub-sections 8.3.1 and 8.3.2, unless otherwise mentioned, by a network we shall

mean a Benes network.
8.3.1 Blocking Properties of Single-Layered Benes Network

We assume that the stages of the network are numbered as 0O onwards from the

input side.

Definition : By ‘Middle Boxes” we shall mean the switches in stage n-1 (=log,N
— 1). The middle boxes will be denoted by M, 1 < i < N/2-1. Figure 8.2 shows
the middle boxes for the Benes network with N = 8.

Notation : S. < 'I‘J will denote a path connecting source S. to destination ’I‘J

Definition : Let P be a path already set up in a network. For a new path from
S, to T, we define the blockage due to P as,
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bl(P, i <> j) = The number of middle boxes which can not be reached from S, and
/or those from which T, can not be reached because of P.

Definition : For a new path between S, and Tj to be set up in network, we define

the total blockage in the network as

BL(i <> j) = The number of middle boxes which cannot be reached from S; and
/ or those from which Tj can not be reached because of the existing
paths in the network.

Lemma 83 :LetP, P, ..., P_be the existing paths in the network. Then
K
BL(i <> j) < 3 bl(P, i == j).
' t=1
Proof: Let S be the set of middle boxes which are blocked by the path P. Then,
k k k
BL(i<=j)=| US| <X |S,| =Zbl(P, i <)) ¢
t=1 t=1 t=1

Theorem 8.3: A path from S to Tj exists if and only if BL(i <= )) < N/2.

Proof : (If part) If BL(i <= j) < N/2, then at least one middle box can be reached
from S, and from that middle box T, can also be reached. So we can set up the
required path between S, and Tj through that middle box.

(Only_if part) If a path between S, and Tj exists, it must be passing through one
of the middle boxes. That middle box can be reached from S. and from that middle

box Tj can also be reached. So,
BL(i < j)<N/2-1<N/2 ¢

Definition : Let P and Q be two non-negative integers, with their n-bit binary
representations as P =p__. p__, .- P,and Q =q _, q,_, - 9g Then the distance
between P and Q is defined as

d(P,Q) =i so that p, = g, and P, = q; for all i+1 < j < n-1.

Example 8.2 : d(3, 4) =d(011,100) =2
d(6, 7) =d(110, 111) = 0.

Definition : Among the middle boxes, we define a group of 2k boxes, k =0, 1, ...,
n—1,as the boxes (M | (i—-1)2* < t < i 2%} fori=1,2,...,2"%L
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Example 8.3 :ForN =16, (M, M)), (M, M,), (M, M,), (M, M) form the groups
of size 2, (M, M,, M,, M,) and (M, M, M,, M) are the groups of size 4.

Remark: It is clear from the definition that different groups of same size are non-
overlapping and taken together they span the complete set of permutations.

Definition : By a group of size 2* around M_, we shall refer to only that group
of middle boxes of size 2 which contains M_.

Lemma 8.4 : The group of size 2* around M_ is {M_ | [m/2¥|2* <t < (|m/2%] + 1)2%}.

Proof : The result follows from the fact that [m/2*|2* < m < ([m/2%] + 1)2k +

Lemma 8.5 : M, and M, belong to the same group of size 2* iff (if and only if)
dd, j) < k.

Proof : The group of 2* around M. and M, are {M, | [i/2"]2" <t < ([i/2%] + 1)2%}
and {M_ | [i/2*| 2" <t < ([j/2*] + 1)2*}. M. and M, belong to the same group of size
2|!;

iff the groups of size 2¥ around M. and M, are the same,
ie., iff [i/2¥] = |j/2¥],
i.e., iff the most significant (n — k) bits of i and j are identical,
i.e., iff d(i, j) < k. \ 4

Lemma 8.6 : For x < y, the group of size 2* around M_ is contained in the group
of size 2¥ around M_.

Proof : The result follows from lemma 8.5. 4

Definition : By Reachability Tree of an input S,, we shall mean the complete binary
tree formed by the all possible lines going out of S. and the relevant switches, upto
the middle stage. The root of the tree is a switch in the first stage and the switches
in the middle stage are the leaves. The different levels of the tree are numbered
from O to n-1 with the root at level 0. The subtrees of any node are called top
and bottom subtrees as they appear in the standard drawing of a Benes network.
Similarly, we can define the reachability tree of an output line.

Example 8.4 : Figure 8.2 shows an example of the reachability trees of the input
lines S, and S; for N = 8.
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Figure 8.2 : The Reachability Tree of S,/ S,

Lemma 8.7 : The subtrees of the reachability trees of S, and S, are identical from
level d(i, k) onwards.

Proof : It is easy to see from the structure of the network that the switches reachable
in the level d(i, k) from S, and S, are same. Hence the result. *

Lemma 8.8 : The leaves of a subtree of a node at level k (0<k<n-2) of reachability
tree form a group of size N/2¥*2

Proof: The proof follows from the structure of the reachability tree. .

Lemma 8.9 : Let P be a path between'S, and T, and passing through M . Then
the middle boxes which can not be reached from S, because of P are

i) the group of size N/24hk+2 ifd(i, k) < n-1

ii) & ifd(i, k) = n-1.

Proof : The reachability trees of S, and S, come together at level d(i, k). So the
path between S, and T, intersects the reachability tree of S, at level d(i, k) and
proceeds through one of the children of that node. Thus, that particular subtree goes
beyond reach from S, because of P. Now, the result follows from lemma 8.8. +

Lemma 8.10 : Let P be a path between S,_ and T, and passing through M _. Then

the middle boxes from which Tj can not be reached because of P are

i) the group of size N/290-nD*2 ifd(j,r) < n-1
i) I ifd(j,r) = n-1.
Proof : Similar to that of lemma 8.9. L 4

Now, combinining lemmas 8.9 and 8.10 we get,
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Theorem 8.4 :Let P be a path from S_to T. Then

bI(P, i == j) = max(|N/24G-0+2| | N/290-0+2]), ¢

Without loss of generality, let us assume that we are trying to set a path between
S, and T,. Then the number of middle boxes that may be blocked for S, are as

follows :

Existing path from Number of middle boxes blocked
S, 2n2
5,/5; E“j
S,/S,/8,/8, 2
Sup/ o/ Sypoy 1
Syl /Syl 0

Existing path to Number of middle boxes blocked

-2

T, 2"
T,/T, 202
T,/ T/ T /T, ga=e
Taa/ -/ T 1
Tynl -/ Ty, 0

8.3.2 Multi-Layered Benes Network

Now suppose we have multiple layers (say, p) of Benes network. In this section
we try to find out the minimum number of layers that will make the network non-
blocking in the strict sense.

Notation : Let BL (0 <= 0) denote the blockage to the path from Sj to T, in the
i-th layer.

The sum of total blockages over all the layers is
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Figure 8.3 : An example showing that (log N — 1) layers of Benes network can be blocking,
for N = 8

BL (0« 0)+BL,(0<0)+ ...+ BLP(IJ - ())
2(1.N/4+2.N/8+4.N/16 + ... + N/4. 1 + N/2. 0)
2(n-1)N/4

(n-1) N/2

A

Now, if there are at least n layers, then in at least one of the layers, say the t-
th layer, BL (0O <= 0) < N/2. Hence a path between S, and T, exists in the t-th layer.

Remark: Notice that we have not assumed any specific routing algorithm to route
the previous paths. So we can claim that in an n-layer NxN Benes network a path
between a free source and a free destination always exists, irrespective of the routing
Strategy.

Now a question that obviously comes to our mind is : ‘Can we have the same
property for less than n layers?’ The answer is : ‘No’. Let us consider the following

example with N = 8.

Example 8.5:If the existing connections are as shown in figure 8.3, then S, <
T, is blocked in both the layers.

In general, we may construct the example as follows :
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Layer1: S =T through upper half in the middle stage.
S. . < T. through lower half in the middle stage.
Layer 2 : <> T, . through first quarter in the middle stage.
through third quarter in the middle stage.
through second quarter in the middle stage.
through fourth quarter in the middle stage.
Layer 3 : T through first octant in the middle stage.
through fifth octant in the middle stage.
through third octant in the middle stage.
through seventh octant in the middle stage.
through second octant in the middle stage.
<> T. through sixth octant in the middle stage.
through fourth octant in the middle stage.
through eighth octant in the middle stage.

Similarly we can construct the connections for the remaining layers.
It can easily be verified that BL(0 <> 0) = N/2 for i=1, 2, ..., n=1.
Thus we have the following theorem :

Theorem 8.5 : log, N layers are necessary and sufficient to make a multi-layered
Benes network non-blocking in the strict sense. ¢

Remark : Here we note that log, N layers of Benes network is nothing but the
Cantor network. Thus in effect we have shown that the minimum layer, strictly non-
blocking multi-layered Benes network is the Cantor network.

8.3.3 Multi-Layered (2 log,N — 1)-Stage Shuffle-Exchange Network

As we have discussed for Benes network, we can similarly define middle boxes
and reachability trees for a (2 log, N — 1)-stage shuffle-exchange network. The
difference will be that the grouping of the middle boxes will be difterent depending
on whether we are looking at them from the input or the output side. But, the logic
for the amount of blockage due to different paths will be similar. We state the
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following theorem without proof.

Theorem 8.6 : log, N layers are necessary and sufficient to make a multi-layered
(2log, N — 1)-stage shuffle-exchange network routing-independent non-blocking. ¢

8.4 Routing in Multi-Layered Benes Network

As we have already seen, log,N layers of NxN Benes network is non-blocking. So
the existence of a path between a free source and a free destination is always
guaranteed in one of the layers. But how do we find such a path? In each layer
we find out whether a path between the required source and destination exists or
not. This can be done in parallel over the layers. So, the problem of finding a path
in a multi-layered Benes network boils down to that of finding out whether in a
particular layer a path between the required source-destination pair exists or not.
The information we shall need is about the existing paths in that layer.

We shall keep the information regarding the blockage in a layer, in terms of the
reachability trees of different sources and destinations. Suppose we want to set a
path between S. and Tj. Any existing path will intersect the reachability tree of S,
at certain level and block one of the subtrees under that level. For each node of
the reachability tree (excepting the leaves), we shall keep 2 bits of information, about
whether the top and the bottom subtrees of that node are blocked or not. If a subtree
is blocked, the corresponding bit is set to '1' else to 0. We can get a path between
S. and Tj, if a middle box is reachable from both S, and Tj. In order to impose
this condition that the middle box should be reachable from both the source and
the destination, we take the reachability trees of S. and Tj. The two trees are identical
in structure. We generate a new tree by 'OR'ing the informations in the corresponding
nodes in the two trees. Now, if we can find a path from the root to a leaf, the
middle box corresponding to that leaf gives us the required path. In order to make
the searching back-track free, we first the preprocess the resulting tree as follows.
Starting from the leaf level, we make the value corresponding to a subtree 1, if
both the children of that subtree are blocked. Aftér the preprocessing is done we
OR the two bits at the root. If the resultant bit is 1, there is no path available.
If the result is 0, at least one bit must be 0. We go to one subtree which is not
blocked. Since the value at that the root of that subtree is 0, at at least one subtree
should not be blocked. Proceeding in this fashion, we can reach the root. Figure
8.4, shows an example of the above procedure.
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d) Resultant tree e) After preprocessing

Figure 8.4 : An example illustrating the basic algorithm for finding a path in one layer of
Benes network
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We observe that the reachability trees of different sources intermingle with one
another and all taken together topologically they form the first half of the Benes
network, i.e., the baseline network. Similarly, the reachability trees of the different
destinations form the reverse baseline network. So, instead of keeping the information
corresponding to each reachability tree, we may keep, the information corresponding
to each node to indicate whether the top and the bottom subtrees of that node are
blocked or not. The whole information for the reachability trees for the different
sources may be kept in a matrix [aij], i=0,.., n-1, j=0,..., N—-1, such that the
i-th row in the matrix corresponds to the information regarding the switches in stage
i of the network. The 0-th row contains 2 bits of information corresponding to the
root node of every reachability tree, i.e., 2 bits for each group of 2 inputs. The
1-st row will contain 4 bits corresponding to each group of size 4, i.e., the first
level of the reachability trees of the two input lines of every switch. In general,
we have the information regarding the level j of the reachability tree of S, in the
elements a, through a, where k = 2J**[i DIV 2/*'] and t = k + 27" — 1. Note
that a similar matrix B = [hij] may be kept corresponding to the reachability trees
from the destination side.

In actual implementation, we store the matrices A and B in two banks of circulating
shift registers. Figure 8.5 shows a schematic diagram of the routing hardware. The
registers R, ..., ngm_2 hold the information about the resultant reachability tree
after 'OR'ing the reachability trees for the inputs and outputs. R, is a 2*1.bit register
holding the information about the nodes at level i of the reachability tree. The
registers will be set by appropriately gating the clock pulses. C.'s are the outputs
of a modulo (log,N — 1) counter. C. takes value 1 during the interval of counting

the i-th pulse and the (i + 1)-th pulse by the counter.

8.5 Layered Baseline Network

We define the groups of input lines and groups of output lines in the same way
as the groups of middle boxes defined earlier. The reachability tree is also defined
in the same way as in the case of Benes network. From the structure of the network,
it is easy to see that two inputs in the same group of 2! should be connected to
two outputs belonging to two different groups of size N/2. Again, two inputs from
the same group of 2? (and not same 2!) should go to outputs in different groups
of size N/4. In general we can say,
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Lemma 8.11 : Paths between S, <> T, and S, <> T are conflicting if and only if
d(i, k) +d(, r) < n-1.

Proof : The reachability trees from S, and S, meet at level d(i, k). So the path from
S, blocks a group of N/29-®*2 switch boxes at the last stage, i.e., N/2G-+1 oytput-
Imes for S, and vice versa. So the paths will be conflicting if and only if T; and
T belong to the same group of N/29(-K*l (- gn-dG.l)-1y

i.e.,,d(j, r)<n-d(i, k)-1

i.e., d(i, k)+d(j, ) <n-1. *

Without loss of generality, let us assume that we are trying to set up a path between
S, and T,. An existing path between S, and Tj will block the required path if d(i,
0) +d(j, 0) <n—-1. Now we try to maximize the number of conflicting paths. So
we try to sets of S_ and T, such that d(x, 0) + d(y, 0) = n — 2. Now, if d(x, 0) =k,
then there are 2* many possible values of x. Again we have d(j,0)=n-k- 2. So
number of possible values of y is 2°*%2 Since we have to choose one x and one
y for a path, the number of conflicting paths with d(i, 0) =k is min(2%, 2°*1), Varying
over different possible values of k, we find the number of paths conflicting with
S,<> T, as

n-2 R
> min(2k, 2mk-2),
k=0

The above sum can be simplified as follows :

CASE I:niseven (n=2m).
n-2
> min(25, 2"%2) =1+ 24+ . #2240 g om2 4 4
k=0

=2(2" -1) -2m1
=3 2m1 _ 9,

CASEIl: n is odd (n=2m + 1)

n-2
> min(2% 2" %) =1+ 2+ . +2m 2 2m 1 g om-l g om-2 4
k=0

= 2m+l _ o,

This gives us the maximum number of paths that may be conflicting with S, <
T, which, in turn, is the maximum number of layers that may be blocked in a
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multi-layered baseline network. So if we have one more layer, we can always
guarantee the availability of at least one path. Hence, we have the following

theorem :

Theorem 8.7 : L layers are sufficient to make a multi-layered NxN (N = 2") baseline
network non-blocking in the strict sense, where

3.2m-1 _ ifn=2m
L={ )
. 2m+l _ 4 ifn=2m+1. ¢

Remark: It is also quite clear from the above discussion that L layers are necessary,
if we want to make the network non-blocking independent of the routing strategy.

8.6 Conclusion

In this chapter, we have analyzed blocking / non-blocking behavior of MIN's. We
have introduced the concept of routing-dependent MIN's. We have shown that in
single-layered MIN's, it is not possible to construct networks non-blocking in the
strict sense, and a single-layered routing-dependent non-blocking MIN has cost
Q(N?). In multi-layered strictly non-blocking MIN's, we have found out for general
values of N, the minimum number of layers required for making multi-layered Benes,
(2log,N — 1)-stage shuffle-exchange and baseline network non-blocking in the strict
sense. Further work in this line may be carried out on the following problems :
1) finding routing-dependent multi-layered networks, and 2) finding the minimum
number of layers required to make a general k-stage shuffle-exchange network non-
blocking in the strict sense and optimizing the cost over the values of k.
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Chapter 9
Conclusion

An interconnection network plays a very vital role in the recent age of fast and
efficient computing. The speed and efficiency of the network depend heavily on
the interconnection network chosen. In this thesis, we have discussed many aspects
of the interconnection networks. For both static and dynamic interconnection
networks, we have addressed some of the problems of recent research interests among

the present-day computer scientists.

In the area of static interconnection networks, we have firstdiscussed some problems
related to the distributed loop networks. For a given value of the number of nodes,
we have suggested some criteria for the design of loop networks, having minimum
diameter over the different choices of jump-size. We have also proposed an algorithm
for routing a message from one node to another, along a shortest path. We have
also shown that our proposed algorithm gives a path of length not more than one
over the optimal, in the event of a single node or link failure. Further research
in this area may be carried out in the following directions :

1) Deriving an analytical formula for the diameter of G(N; 1, s),
ii) Design of optimal loop networks for all values of N,

iii) Optimal routing under single as well as multiple faults,

iv) Analysis of generalized loop networks G(N; 1, S5 8, «ee 5 S, ) €tC.

One of the most important and popular static network topologies is the binary
hypercube. In this thesis, we have proposed some modifications over the hypercube
connection pattern, so as to decrease the diameter but maintaining the other desirable
properties. We have shown that by addition of some extra links (bridges) or by
exchanging some of the link pairs (twists), we can reduce the diameter of the
hypercube upto half of its original value. The number of bridges added or the number
of link pairs exchanged is pretty small, compared to the total number of links in
the graph. We have also proposed algorithms for node-to-node routing in bridged
and twisted hypercubes. Other types of routing, viz., a) broadcast, b) scattering, and
c) all-pair-broadcast, in the bridged and twisted hypercubes, constitute interesting
topics of further studies. Design of efficient algorithms for solving various real-life
problems on the bridged or twisted hypercubes will also be an interesting area of

research.



For some applications it may be needed that a hamiltonian cycle be present in the
network topology. For such purposes, ring network is an ideal topology. But, in
case of a node or a link failure, the ring ceases to be hamiltonian. We have proposed
a new network topology, that is hamiltonian, and remains hamiltonian even in the
presense of a single node or single link failure. Among all networks which are 1-
node-deleted-hamiltonian and 1-link-deleted-hamiltonian, our proposed topology has
the minimum number of links. In this direction, one may try to find network graphs,
which have certain pre-specified topologies (say, hypercube or complete binary tree)
in the presence of a single fault or, in general, k faults.

For the analysis of a network topology, measure of its fault-tolerance is of wvital
interest. Fault-tolerance of a network graph is measured either by the connectivity
or by using a stochastic fault model. We have found a recursive formla for the
evaluation of the network reliability under a stochastic model. We have also derived
analytical expressions for the reliabilities of some standard network graphs.

In the area of dynamic interconnection networks, Benes network is a very popular
multistage interconnection network. It has a propagation delay of O(log,N).
Compared to this, the standard looping algorithm for routing a permutation in the
Benes network takes O(N log,N) time. But some permutations are self-routable, i.e.,
their switch settings can be achieved in a distributed manner, with every switch
being set independently depending only on its two inputs. We have considered four
classes of self-routing algorithms and have discussed some of their properties. We
have classified, to some extent, the permutations routable by them. We have also
extended the self-routing strategy to cover a large set of permutations called the
BPCL class of permutations. The complete classification of the self-routable
permutations is an important direction for further work. Finding self—rduting
algorithms, for permutations thus far not covered, is another topic for future research.

Finally, for building networks which are non-blocking in the strict sense, we have
proposed multiple layers of different standard MIN's (Benes, (2n-1)-stage shuffle-
exchange, baseline). We have calculated the minimum number of layers that will
make them non-blocking in the strict sense. Multilayered Benes network, optimized
over the number of layers, turns out to be the existing Cantor network. We have
proposed a routing hardware for the routing in the Cantor network. Minimizing the
number of layers for k-stage shuffle-exchange network and then minimizing the total
number of switches over k is an interesting unsolved problem. One may also try
to design routing-dependent multilayered MIN's.
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