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Chapter 1

Introduction

1.1 Introduction and Summary

Consider the problem of classification of an observation into one of two
specified populations. Fisher’s classification rile, just as several other rules
commonly used in practice, depends only on the ratio of the individual
densitics fi(x),i = 1,2. This led Cox [1966],[27] to model the "posterior
odds" by a simple function . Specifically ,

i (2420) o (22
02(x) fa(x)-

Cox’s logistic discrimination (LGD) rule is then based on the statistic
a+ #'x. This has the advantage that individual densities fi(x) need not
be known and we only need to estimate the parameters o and J3.

Another advantage , which is claimed , is that the family of densitics
satisfying (1.1) is "quite wide". It is this richness of the family that we
intend to explore, since, beyond the multivariate normal distribution and
multivariate discrete distributions following the log-lincar model, no para-
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metric description of this class is available. Some of the ideas developed
here have been introduced by us, in ([91],(92]).
We introduce the following definitions.

Definition 1.1.1 Let a distribution posscss a density fi(x) with re-
spect to measure v. fi(x) € C, some specified class, will be said to



(i) obey the LGD relationship if 3 a density fy(x) with respect to
some measure i, satisfying (1.1).
(ii) admit the LGD if fo(x) given by (1.1) is also in the class C.

Clearly a rule capable of discriminating (in probability) between a pair
of populations only when they belong to cntirely two different classes is
of limited usc if the class of such pairs is large , with at least any one
component of the pair corresponding to an usually encountered distribu-
tion. It is thus essential and important to characterize such pairs (fy, fa) or
cquivalently fy. In this pursuit, a gencral method of characterizing familics
admitting and/ or obeying Cox’s [27] LGD for a given density is obtained
through functional equations in characteristic type functions. The result is
applied to different types and classes of univariate as well as multivariate
distributions. This characterization cnables us to generalize Cox’s LGD to
families even not representable by densities with respect to any mcasure
v, c.g. to the stable and proper infinitcly divisible families. We observe
that almost all distributions f; usually encountered in practice obey the
LGD relationship. Of notable exceptions are the Cauchy ctc. However the
class of distributions for f; admitting LGD is somewhat restrictive. We
recommend that we should not use LGD when any of these distributions
is suspected for fi . Rather a preliminary data analysis, should be carried
out to identify fi more clearly and then accordingly decide on the use of
LGD.

Our characterization exposes a functional relationship among the pa-
rameters which renders the validity of the usually proposed likelihood based
estimation procedures (Anderson, [1982],[5]) theoretically suspect. We present
the proper likelihood cquations and propose a scheme to evaluate the pa-
rameters. The performance of our rule is established to be quite satisfactory
through extensive simulations. LGD is illustrated through two well-known
real life data sets.

We also suggest and explore some new discrimination rules in the con-
text of stable distributions, directional data, and neural networks. For the
case of stable distributions the performance of the rule is studied by using
a new real life data set while for that of directional data we use a well-
known real-lifc data sct available in the literature. We provide a listing of
the source code for various programs developed by us which include both
programs written in C as well as in SPLUS.




Chapter 2

The univariate family
admitting LGD

2.1 Introduction

We take up the problem of characterization of the family of distributions
admitting or obeying the LGD rule in the semiparametric framework devel-
oped by Cox (27], Anderson [5] and others, and in a subsequent chapter we
consider the problem of estimation in the presence of non-orthogonalizable
functional dependence. We also derive results about the form of these de-
pendencics.

As we have already scen, ([92]), that a pair of densities (f,, fy), satisfying
(1.1) involves normalizing constants which arc Laplace transforms, for if
In(fi/f2) = a + @', then

= Cg’xf 3(x)
T JePxfy(x)dx
Thus LGD is intimately connected with the existence of appropriate Laplace
transforms.

With thanks to a Referee, in this connection we briefly review a class of
distributions described as "tilted distributions" or "weighted distributions"
[83][1985]. For a given probability density p(z,6) corresponding to random

variable X' define
w(z, )p(z, §)
L(w(X,a)

fi(x)

p¥(z,0,a) = (2.1)



The weight function w(z, @) can be any arbitrary non- ncgdtwo function
with finite expectation. Rao [83] goes on to describe -biased distribu-
tions where the weight function is |z|. Characterizations for this size-biased
case have been treated in Janardhan and Rao [57)[1983] . However in deal-
ing with LGD we can think of the LGD obeying class as an weighted class
with the weight function exp(a + #'z). But results available in their gen-
cralitics now require further exercises to become specifically applicable to

2 We however, have taken the direct route of attacking this spe-

se ab initio. A characterization for such a spccific class contributes
to the characterizations of gencral weighted distributions significantly - for
the LGD class coincides with the class of distributions which will admit
a representation of a log-lincar ratio-of-density (Fisher-type) discriminant
function.

2.2 Basic Framework

We will need the following domains of the z = ¢ + iy complex plane,
Hy:={z:4y >0}, D:={z:y=0}, Sq ={z: —a<y<b}, (2.2)
where 0 < a, b < co. Morcover, we usc the following classes of functions
My ={¢: mmlyti(: inH, ,contim;mxs in Hy + D, |¢(t)] <1} (2.3)
={peM;y: |4(z)| <1lin H.} (2.4)

We first prove in the next subsection the following results for univariate
analytic characteristic functions (a.c.f.s).
2.2.1 Analytic characteristic functions
Let f stand for the c.f. of the d.f. F. Introducing the functions
Fo(z) = /z AdF(u) € N, fu(z) = /: ddFu) e N, (25)
we get the decomposition
f(t) = f-(t) + fi(t), te R (2.6)

If F(0) = 0, then f = f,. Since F is monotone the following lemma from
the theory of Laplace-Stieltjes transforms plays a considerable role.

8



Lemma 2.2.1 The line of convergence of the integrals defining fy has
a singularity on the imaginary azis. (Scc [86]).

Thus a cf. f is said to be analytic (a.c.f.), if its restriction to some
interval [t < 7 is continuable into the circle about 0 with radius 7. In view
f lemma (2.2.1) and equation (2.6) this case occurs if and only if 0 is no
<ingularity for f,. Hence we immediately obtain

Theorem 2.2.1 To cvery a.c.f. f there corresponds a strip S, 0 <

a. b < oo, in which it is analytic; the points b and -ia, if they are
finite - are singularitics of f. In Sg we have the representation

f(z) = / 7 et dp(u) @7
See [86]. Morcover, such a representation is unique.

Corollary 2.2.1 The c.f. f is analytic if and only if for somer > 0
as T — 00

Tp(z) == 1 = F(z) + F(-z) = O(c™™) (2.8)

The proof uses the fact that th
r. if and only if (2.8) is sati.

intégral (2.7) cxists forz = 1y, y <

(Sce [86]).

2.2.2 Laplace transforms and a.c.f.s

Let F(x) be a probability distribution function. We call F to be Laplace-
transformable or LT (for short), in the strip [u,v], u < v, u,v € IR, if
the integral

/ edF(r) < oo Vy €[u,v] (2.9)

Theorem 2.2.2 F is LT in the strip [—b,a], b, a rcal and finite, if and
only if f is a.c.f. in Sg.

Proof: If F' is LT in [—b, ) then

/mr:y’:dF(a:) < oo, Vye[-b,a]

9



Lot z € Sy, then -Im 2z € [—b, a], and
Lé dR@)] < e ()
Therefore

[f(z)] < /—OW o-Im “udP(u) + LN o-Im = F(u)

< [Temsarw < o

Thercfore

o
f(z) = / A F (u)
Jooo
exists in the strip Sg,.
To prove analyticity we proceed as follows :
Since f(z) exists in the strip Sy, letting z = z + iy, =, y € IR we have
flz) = / ci("i”)“’dF(w)
Jeoo
00 ™
= / eV cos(zw)d F(w) + i/ s e YV sin(zw)dF(w)
Joos Jeoo
=R + il

(say). Consider formally the integrals

R, =1 = /w e V(= sin(zw)) wd F(w)

R, =-1I = /00 e V(= cos(zw)) wdF(w)

y
Let 6 be such that 0 < § < min (a,b). Then
§lw| < SERWS e R

Lety € AC [—a,b] 2 y+6 y—6 € [—a,b] .Then

IR =] < [ er® wldP(w)
1 0 oo
- (8w g . 8w
< b(/_mc VO 4 () F/o ol dF(w)) e

10



Similarly, |R,| = |I,| < co. Note that since the four integrals exist, and
ctually partial derivatives of R, I when the derivatives can be taken
er the integral sign ( which can be done as the above four integrals exist
we have

B, =1, Iy = -L,V(z +iy) € Su

hich implies f(2) is analytic throughout S
If fis a.c.fin Sy, then in Sy, by (2.7) we have the representation

fle) = /o: P (u)
Sctting Re z = 0, we have

fy) = /:V e VdF(u) < oo Vysuchthat —a< y <b
This implics that I is LT in the strip [—b, a].

Corollary 2.2.2 The class of non-Laplace transformable distributions
s characterized by the class N where

N = {[fis ac.f, 0is a singularity for f (2) , z complez} (2.10)

Theorem 2.2.3 Let g, f stand for the c.f.s of the d.f.s G, F respec-
tively. Let F be LT in [—b,a], and hence f be a.c.f. in Sy, Let G, F
he related as

dG(z) o P*dF(z) —if € Su (2.11)
Then g is a.c.f and is given by
f(t = i)
t) = —————= 2.12
g(t) =7 (212)

Proof : Since fis a.c.f,, —if € Sy, f(—if) exists and equals

/ AP (u)

1



and therefore takes positive real values. Now,
dG(u) = c.c™dF(u), ¢ € I
and G a distribution function
= /:dG’(u) = c. /’:c'y"dF(u) =1

o 1 1
T TEondE(n)  F(ig)

Thercfore we have the representation

Let zp = ¢t —if, t € R'. Then 2y € S.. Therefore the integral
oo e
/ dordp(u) = [T A0 R
Jeoo S
exists. Therefore the c.f. g has the representation

cler Blud P (u)

9(t) = /: G () =

F8)
_ [edRe) _ f(t-i8) -
Fi8) F=3)

Note that g is analytic. (See Ramachandran [81]).

2.3 Analytic characteristic functions in L?
TFor the following related results sce Akhiczer, [1988], ([1]).

Definition 2.3.1 The function F(z) (z = z + iy) belongs to the Hardy
class Hy if it is analytic in a half planc y > 0 and satisfies the in-
cquality

M2 sup /m |P(z +iy)|’de < oo (2.13)
=0 J o0

12



Definition 2.3.2 Denote by Hy(a,8) (-0 < @ < 8 < o) the class
of functions F(z) (z = = + iy) analytic in the strip o < y < B and
satisfying the inequality
sup / |F(x + iy)|*dz < oo (2.14)
a<y<p oo
Theorem 2.3.1 Ewery function F(z) of the form
(2) = —— r:‘”f(t):lt (2.15)
where f € L*(0,00), belongs to H,',
Theorem 2.3.2 For cvery function F(z) € Hy there czists a function
€ L*0,00) such that for anyy >0
1 e
F@&) = o= [Tt (s =0ty 2.16
() = o= [ e roe ( ) (216)
Theorem 2.3.3 For cvery function I'(z) € H; there czists a function
f € L*0,00) such that for any y > 0 the Laplace transform

a(s) = " e tg()dt (s = o+ ir) (2.17)

1
7
where o > ¢ and ¢™¢(t) € L*(0,00), is analytic in the planc o > c,
and ®(s) € Hy(c,00).

Definition 2.3.3 An entire function g(z) is called an entire function of
exponential type < A if for any a > 0 there (‘m.sts a constant B = B(a)

such that for any z
lo(2)| < Betid (218)

Theorem 2.3.4 (Paly-Wciner) The class of entire functions g(z) of
cxponential type < A for which

/‘ lg(z)Pdz < oo (2.19)
coincides with the class of functions representable in the form
g(z) = \/2_/ Ho(t)dt, (z =z +iy) (2.20)
where ¢(t) € L*(—A, A).

13



2.4 Conditions guaranteeing analyticity of
c.f.s

In order to apply theorems (2.2.2) and (2.2.3), we nced to check for the
analyticity of the given c.f. f. This can be approached in two different
ways :

(a) We can directly verify the analyticity of f(z), z complex, by either
verifying the Cauchy-Riemann conditions (for analyticity of a function on
the complex domain or tube ) on f(z) or checking if (2.8) holds (so that by
corollary (2.2.1) f(z) is analytic ).

(b) We can verify whether F is LT. Since, if F is LT, then by theo-
rem (2.2.2) f(z) will be analytic in an appropriate domain.

We next present a series of sufficient (and some necessary and sufficient
conditions) for F' to be LT.

For the sake of completeness we state here the Cauchy-Riemann condi-
tions for analytic functions on the complex domain (a spcual casc of the
multivariate holomorphic case).

A function f (2) = u(=z,y) + iv (=, y) is differentiable (analytic) at
apoint z = x + iy if and only if,

(i) both v and v are differentiable at point (z, y) ;

(ii) at point (z, y) the partial derivatives of u aud v satisfy the Cauchy-
Riemann equations

u _Ov Ju v

or 9y ' Oy Oz
2.4.1 Further useful results in a.c.f. theory
For details about the following results sce [86].

Result 2.4.1 Every a.c.f f has a domain of reqularity which is sym-
metric with_respect to the imaginary axis; in this domain we have

f(z) = f(=2).

Result 2.4.2 An a.c.f f pos: the ridge property
fliy) = max |f(t+ @), t € B (2:21)

From the ridge property we obtain by the mazimum modulus principle

14



Result 2.4.3 For an a.c.f. f we have for 0 < r < min (a, b)
max |f(z)| = max (f(ir), f(—ir)) (2.22)

lz|=r
The a.c.f. f is integral if a = b = oo0. This is the case if and only if
(2.8) holds for allr > 0.

Result 2.4.4 An integral function of finite order o > 2 whose czpo-
nent of convergence is less than p cannot be a c.f..

Let now P, stand for a polynomial of degree m. .

Result 2.4.5 (Marcinkicwicz) The function (exp (Pn), m > 2) cannot
be a c.f.

An a.c.f. f belongs to the class D (Dantzig), if
¢ (t) == f(it), [t < min(a,b) (2.23)

defines another a.c.f. Note that an a.c.f. f given on a finite interval is
uniquely defined on IR'.

It happens that f is analytic on a circle K about 0, but f, has not
this property. Then the c.f. clearly exists in a strip Sp (0 < b < o0).
In this case f is called a boundary c.f.. Thus many results valid for a.c.f.
carry over to boundary c.f. and c.f. of non-negative random variables are
cither a.c.f. or boundary c.f..

Now consider functions f analytic in Sa, (or Sg) satisfying result 2.4.2;
they are called ridge functions. A.c.f and boundary c.f. form proper
partial sets of this class. For integral ridge functions satisfying f(0) = 1,
the function f(iy), y € IR', proves real.

Result 2.4.6 An entire ridge function f of finite order having only
real zeros permits the representation

f(z) = coxp(—ds* +ibz) [[(1 -
k

where ap > 0, Y ;> < oo, Imb = 0,d > 0, ¢ # 0 real. This
means that f has at most the order 2.

iz) (2.24)

2
aj

Result 2.4.7 Let f stand for a ridge function of finite order o de-
fined in H,; assume that the cxponent of convergence for the zeros
contained in {z -y > a > 0} is gy < p. Then g < 3.



2.4.2 Sufficient conditions for Laplace transformabil-
ity

A sufficient sct of conditions for a function F(s) to be a Laplace transform

is given by the following theorem :

Result 2.4.8 Let F(s) be analytic over the half-plane Re s > a, and
satisfies the inequality,
Pl <<

Il
where C is a constant. If the integral L7'F(s) is taken over some
vertical line in the half-planc Re s > a, then L7VF(s) = f(t) cxists and
is a continuous function for all t. Morcover, f(t) =0 for ¢t < 0 and
Lf(t) = F(s) at lcast for Re s > a.

(2.25)

Result 2.4.9 Let f(s) be analytic in the strip a < o < 3 and such
that oo
/ | flo + 7 )dr < oo (2.26)

Let
|llim f(e + i) =0 (2.27)

uniformly in cvery closed subinterval of (o < o < f3), and sct

b () = = /"""’ Fls) e ds (a <o <f,—00 < moo)  (2.28)

2mi oo

i(s) = /": g (a) de (@ <o < f)

Definition 2.4.1 A real function k (z, y) which is continuous in the
square (a < @ < b, a <y < b) is of positive type there if for cvery
real functiong (z) continuous in (a < x < b)

// (x,y)é (=) b (y) dedy > 0 (2.29)
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Result 2.4.10 A continuous kernel k (x,y) is of positive type if and
only if for every finite sequence {z;} of distinct numbers of « < r < b)
the quadratic form

Qu =22 k(wi,y)&¢& 2.30)

i=0i=0

is positive (definite or semidefinite).

Result 2.4.11 A nccessary and sufficicnt condition that ti- function
f(x) can be represented in the form

fls) = /‘_w ¢ dalt

where a(t) is non-deercasing and the intcgral converges fora < z < b,
is that f (z) should be analytic there and that the kernel f iz — y)
should be of positive type in the squarc (o < 2z <b.a < 2y < b).
See (101, p 265-275].

2.5 Examples and Applications
2.5.1 Univariate examples

Example 2.5.1 Normal distribution.

1 @ .
filz) = et |z, |yl < 00,0 € R

V2ro

The corresponding c.f. is

#1(t) = explitp —

(CON
=)

We denote the c.f. for fo(z) by ¢,(t) . Therefore

_(e(t—iB)*
2

6alt) = oxp(ilt = if) )/ expli(=igyu — L

17



(CON
2

= exp(it(o?B + p) —

Here there is no need for checking as the resulting c.f. is of the same form
as the original c.f. From straightforward comparison we have that f,(z) is
a normal density with mean p’ = (028 + ) and same variance o? . This
can also be checked directly without going through c.f. s.

Example 2.5.2 Polya Frequency functions

Polya frequency of type II are IHR. The c.f. can be written as
ottt
TI(1 — ié;t)eist

The corresponding analytic extension is

éi(t) = K.

ystiibs

(1 = i62)e7

U(z) = K.

Therefore the corresponding transformed c.f. can be written as
St

<

i(t) = K-m e

i(E-2m 2

(/lz(f)—K 1_1(1

provided 1 — §;4 # 0V j. Therefore the corr('spr)mlmg c.f. @y(t) can be
written as
o HE 3 I Y h —/u,

(G
TI(1 = () e

Therefore for ¢, to be a valid c.f. the only condition to check is:

ho(t) =

~ 2

3
21,

=

S
< oo, given ¥ 6% < oo
g i

Example 2.5.3 Mirtures

18



We first consider finite mixtures . Let ,
f(:n):Za]fl Za]—l
i

Let the c.f. of f;(x) and f(x) be ¥;(t) and ¥(t) respectively and the
corresponding analytic continuations be Vj(z) and V(z). Let the c.f. of
the transformed density be W(t). Then by the lincarity of the Fourier
transform we have

(t) =3 a;¥5(t)
=1
Also for the transformed c.f. W(t) we have
W) =3 a;¥;(t—if)/ > a;¥(—if)
=1 et

or we have a new mixture density with mixing paramecters

4 0(=ip)
a;W;(—if)’

and component densities characterized by the component c.f.s

w(t —if)
U(=if)
Note that the invariance of the new mixture is only dependent on the
invariance propertics of f;’s.
As an example, consider a normal mixture of n populations :

Wi(t) =

F(@) =3 a;N (o)
=1

1,
Dy (t) = Z"z exp(itp; — Et (7)
j=1

o’ . 1,
y(t) = 3 ajoxp(it(p; + (Boy)?) — itlajz)
=1

19



where 4

o exp(B; + 1(Be,)?)
i1 a;exp(Bp, + §F2a?)
Consider now the simplest case of mixture of two populations. Let , f =
a.fi+ (1 =a).f, and let g be the corresponding transformed density. Let
the corresponding parameter for a be ¢. Then

(1= a).Up(=if) ™'

a; =

Y )
where Uy, Uy are analytic continuations of ®;, &, Then
2] U.U, 1
Ja” (U - 0) (o F i)

i.e., inverse of a quadratic in @ and dlwe\ys nonnegative.
For Normal mixtures we find 55

gyt

7( _ l)ca(m-ll.)+(n o) )

0/1?

= *((; . 1)0"’("‘“"‘)‘(”5’”914)((07 —U) + (o = ab)'B)c?
Thercfore :}7; > 0 iff
(U =) + (02— a?)’B <0
or,

2 22
B < (Ui —Uy) (0} - o})
Example 2.5.4 Gamma distribution

aPgP-le-ax

fi(z) = W)—,:n >0
() = (u—_”TP
(= B)"
#a(t) = (=3 —it)”

Note that for 8 < « the transformed c.f. is the c.f. of a gamma distribution.
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Example 2.5.5 Beta distribution

_Tw+a) poipq _ gy
f’(m)_l‘(p-l-‘m(j 1—z)"!

_Th+a &
2= "5y LT

Here we get the transformed c.f. as a power series expansion which how-
cver is no longer a beta distribution. Without evaluating the cocfficients
explicitly in terms of 4 and gamma functions, we find out the normalizing
constant for the new density of the functional form :

2yt

ity T + 4)
+a+ TG+ 1)

Pear=l(1 —

O<z<l1

fo(=

c

where o ST+ )

s T +q+)TG+1)
Example 2.5.6 Invcrse Gaussian

The c.f. is given by

cxp(% (a—(1- 2"‘ )

=)
Hence, the corresponding complex extension is analytic (entire).
(d — va)?
2px

fi(w;d, B,v) =

sz >0

1
Wormerd d.exp(—

Then fo(z) = fi(w;d, 3, /o7 = B). The importance of this distribution in
reliability is duc to its similarity to Hadwiger’s reproduction rate function.

Example 2.5.7 Location family
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The location family is characterized by the functional relationship F(Y) =
F(X — a) where F(.) denotes a distribution function , @ € R! . In terms
of random variables this is equivalent to ¥ = X — a a.c. . Let the
c.f. of X be g(t) , t € R' . Then E(exp(itY)) = EB(exp(itX — ita)) =
exp(—ita).E(exp(itX)). Therefore any member of the family will have c.f.
of the form £(t) xp(—ita).g(t) . From (2.2.3) we have that the general
form of the transformed c.f. for fy(x) is

g(t—if3)
g(=iB)

subject to the condition that g(t) is an a.c.f. Thus if the density corre-
sponding to g(t) is LT the resultant transformed class is also a location
family. If g(t) belongs to some invariance class then the new location class
is also invariant w.r.t. the invariance class.

exp(—ita).

Example 2.5.8 Proper infinitely divisible class

Starting with the Kolmogorov representation ; ie, if v(t) is the c.f. of a
proper infinitely divisible distribution having finite sccond moments then

tog(v(t)) = iat + [ ““f%i“—".du{(u))

where a € I, and K (u) is a distribution function unique up to a numerical
constant. Using (2.2.3) we have the transformed c.f. as

et e — jty — ¢

log(g(t)) = iu.t+»/‘ A(K (1))

"
w1 _
log(g()) = iat + /# UK (W) + it [ (K ()
Note therefore that if the integral
o(B) = / e d(K (u))

ibution characterized by K(u) is LT then g(t) remains
ribution and the resultant log c.f. is :

ie., the di
. of aid. di

cite

log(g(t)) = i(a + c(8))t + / ‘-u.d(l\l(u))
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If K, M belong to some invariance class then g, v both belong to this same
invariance class.
For the Levi-Khintchine representation we have :

itu 1+u

I () = ibt + /(c“" —1- ) (G )
The transformed c.f. is
u?
S dtu B pu__HU .\
In gy = ibt +_/(¢ o T LR (G W)

The right hand side can be written as ibt + I) + I where,

2
L= [t -1- 't“,)Hz‘" (G ()

u?’ u

Note that I, will exist if G(u) is LT .

it [ W%:I(G(u))

Let h(u) = (exp(Bu) — 1) /u. Then

[h(u)] < e -1 >0 Vul <1
[h(u)] < ™ + 1 V[u|>1
Therefore a sufficient condition for the integral to exist is that G be LT.
Example 2.5.9 Stable distributions

The c.f. of non-degencrate members of this class can be written in the
form, (See Zolotarev,[103]) :

Ing(t) = A(ity — |t]°wp(t, o, B))

_J exp(=igBK (a)sgn(t)) if a#1
wp(t,a,f) = { =4 ifln [t|sgn(t) ifa=1

0<a<2,[01<1, <00, A>0, K(a) =a—1+sgn(l —a)
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The two-sided Laplace transforms exist for 3 = 1. a < 2. In the half-plane

Re s > 0, the log- Laplace transform can be wrirten as

InA(s,q,1,7,A) = =A(s7 —ela)s”) if a =1
=A-sy+slns) ifa=1

where, ¢(a) = sgn(1 — a). Thercfore the rransformed c¢.£s can be written
as :

I at) = ~Mity +c(a)|pi"([ 1~ L) Teeen 1) ifa kil

b

t
(ib— t)rau"g)

= A(=ity +1ny/1+ Z:u-,

Note that these are no longer stable.

Example 2.5.10 Koopman-Darmols Erponcntial Familics

These distributions are characterized by the density with canonical pa-
rameter vector 17 and given by

p(z,m) = exp[>_ nLi(x) = A()]h(=)
=1

where Ti(z) are real valued functions of x or in usual terminology the statis-
tics.

The following two cases are possible:

(a) Let Ti(x) = = for at least onc i.

Let w.lo.g. Ti(x) = «. Then if (3 ~ F.7......7¢ is an interior point
of the valid region of the canonical parameter set then the transformed
density exists and belongs to the same family. Thercfore this case admits
LGD.

(b) There cxists no i for which 7;(x)

If the integral [exp(Bz 4 £ n/T)h(x)dr exists then the transformed
density exists but belongs to a s 4+ 1 dimensional exponential family. (Sec
(58] )

Example 2.5.11 Circular distributions for Dircctional data
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We now take up a special class of distributions which violates the usual
structure for distributions used for lincar data as have been dealt with so
far here. These distributions are periodic, have finite support [0, 27) and
model data observed on a circle. These additional constraints of periodicity
and same finite support (0,27) arc thus to be demanded of f,(x) given by
(1.1) also, so that it qualifies at least as a circular distribution. We first
explore to what extent the usual LGD s es such constraints. On onc
hand, this exposes the shortcomings of the use of the LGD directly, while
on the other hand, reveals the possibilities of gencralizations of the LGD
as well as the need for new rules specific to directional data.

We first recall the following results for some common densities defined
on the unit circle. For a detailed treatment see Mardia, [71].

a) The c.f. in these cases are of integer arguments, k, say.

b) let c.f. g(k) = r(k) + ic(k) where r(k) = Re(g(k)) and c(k) =
Im(y(k))

If the infinite series

il(r’(j) +E0)

is convergent, then g(k) corresponds to a density with support 0 < 8 < 27
defined a.c. by

o0,

1 &=
£(0) = E};ng(j)(,w
- Ziw[l +23(r(5).cos(j0) + c(4).sin(j0))]
j=1
i) Point distribution. fi(9) = P(0.=0) = 1. c.f.
by (k) = ikl

transformed c.f.
falk) =
ic identical to the original.
ii) Lattice distribution: For r,m, positive integers |

2
P(9:u+£):p,,r:O,....mf1
m



W.lo.g. letting v = 0, we have the c.f. as

2nirk

m--1
Gi(k) = Y pre™
r=0

me1 m-1
mir(e-in) amir(_if]
Go(k) =Y pec > pec
r=0 r=0

= Z ]):..C%
r=0

This is again lattice with Pp =
i)
prcm

m-1

o PrC

iii) Offsct normal distribution.

Let ¢(z, y; 1, £)be the p.d.f. of the bivariate normal distribution with
mean vector s = (j1,v) and covariance matrix ¥. Let p denote the corre-
lation between the variables and let o and o3 be their variances. Suppose
that ®(z) is the d.f. of N(0,1). Substituting = = rcos ,;y = rsind we
find that the p.d.f. of 8 is given by

PO 11, v, 01,2, p) = (C(0)) " (12,730, T) + aD(O)2(D(0))
x$(a(C(0)) " (jrsin @ — v cos 0)))

a = (0102/1 = p?)7"
c(0) = a*(o} cos® 0 — poioasin 20 + o?sin’ )
D(0) = a?\/C(0)(pos(as cos 0 — poysinb) + voy (o1 5in 0 — po cos 0))

and ¢(z) is the p.d.f. of N(0,1). Therefore the transformed density is
proportional to ¢®p(0; 1, v, a1, B2, p)-

where

iv) Uniform on the unit circle. f1(0) = =
o2k _ ]
Pk = ok
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emikias

08) = = w1
ﬂaﬂﬂ
£0) = 55—

v) Cardioid .

—@)),0< < 2m,|r| <1

Behs 1 + 27 cos(z — )
T e — 171 + 2r cos(a) cos(a + o)
Note that this has a discontinuity at 0.

vi) Triangular .

1 P 4
fi(z) = g7—(.(4— w4 2| — 2)),0 < @ < 27,1 < =
o) el (4 — w?r + 27r|7 — z|)

2(z) = .
# ™ — 1 e™ (43 + n?rf3 — 2ar) + (48 + w°r 3 + 27r)

vii) Wrapped Poisson:

#1(k) = exp(A.e = X)
then
$a(k) = exp(he (A — 1))
:c the new density is again a wrapped Poisson with parameter

X =AW

Remarks. Obscrve that (i), (i) and (vi) admit LGD while the oth-
s do not. Further, it is obvious that the most commonly used circular
ribution, the von Mises or Circular normal distribution, also does not
admit LGD, though it is a member of the two parameter regular exponen-
tial family. However, interestingly we note in passing that generalizations
- rather transformations of data can make observations from a class of
lar distributions amenable to LGD. The unique proper >f the circu-
stributions coupled with the above interesting obs ion, motivated
>ctional data in slightly more

fication problem for dir
details in a later chapter.
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Example 2.5.12 Generalized Pearsonian systcin

Consider the system characterized by the differential equation,
dln fi(z)  P(x)
dx T Q(x)
The transformed system can be characterized by the system
dln fy(z)  P(x) + AQ(x)
dx Q(zx)
If deg(Q) < deg(P) then g is in the system. If deg(Q) > deg(P) then g is
not in the system. Note that in thi: e the support of the original density
has to be finite. However there is no change of support on transformation.
In the classical univariate setup the transformed density does not admit
LGD, ic., goes out of the system for all types except Type IIT .

Example 2.5.13 Rectangular
The density is given by

f1(0) :l. a<f<atc
¢

$1(t) = exp(ita)

jterad _
—1J+it
This gives us a truncated version of an exponential density.

9alt) = explite)

Example 2.5.14 Triangular distribution

The density is given by

file) = 101~

1 — cos(at) exp(3iat) + exp(—Liat)
c.f.dy(t) =2 = 2 2
cboult) a?t? ( %ai)

va> 0|z <a

a

)2

Transformed c.f.

= exp(j(iat + af)) + exp(—3i(iat + af)) B )2
. exp(3af3) + exp(—3af) B+it

b2
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2.5.2 Some consequences of the characterization

We obscrve the following two import.mt. consequences of the formal rela-
tionship arising from theorem (2.2.3), i.

(1) Let ¢y, ¢; be the normalizing factors of the densities f; and v(z)
be the complex extension for the corresponding c.f, then ¢;/c; = ¥(—if)
or equivalently

=) = & fi(2)/¥(=i)
Proof: Set ¢t = 0 in the complex iutcgml W(t —i/3). This gives us a simple
ant of the new density or straight-
Ly without going through the c.f. of

way of evaluating the normalizing cons!
away writing the form of the new dens
the new densit;

(2) The class of non L-transformable densitics . Consider as an example
the standard Cauchy density for f , i.c. ,

fi( ,x € R

. 1
T (1 +a?)

The corresponding c¢.f. @,(t) = exp(—|t]), is not analytic at 0. By corol-
lary (2.2.2) all c.f.s having 0 as a point of singularity arc non-LT.

(3) An important conscquence of the above characterization is that the
actual c.f.s of distributions admitting LGD would be analytic at the origin,
and hence "smooth" in appearance, in graphical representations. This can
serve as graphical tool in identifying whether a given set of data is appro-
priate for LGD or not. We have plotted the c.c.f s (empirical characteristic
functions) of distributions, namely standard normal and Cauchy, in a small
region about the origin, to show that normal indeed shows "smoother" or
"flatter" surfaces for the generalized Laplace transforms (i.c., with complex
arguments) than Cauchy (Figures 1 to 2).
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Chapter 3

The multivariate family
admitting LGD

We extend the results in the one-parameter case to the multiparameter,
multivariate case to characterize families that admit LGD of Cox [27].

3.1 Introduction

We take up the problem of characterizing multiparameter, multivariate
families that admit LGD of Cox [27]. The results here provide extensions
to thosc in the chapter on the univariate case. However, the problem now
becomes both statistically and mathematically more interesting. Further,
our results here are also useful for practitioners in applied multivariate
work and this is illustrated by several standard multivariate multiparameter
cxamples given at the end. Some of these ideas were expounded by us
carlier in ([91], [94)).

3.2 Holomorphic functions of several com-
plex variables

af af _of) 9f _ 1 df+
0z Oz 1(};1/ 9z 2\0x l()J
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Let G be a domain in the space ™ of n complex variables z;.. ... Z. A
continuous (complex-valued) function defined in G is called holomorphic,
if it depends holomorphically on cvery separate variable z;.

The assumption of continuity is unnecessary, because by Hartogs The-
orem cvery separately holomorphic function must be continuous.

Holomorphic functions ® in @* fulfill the Cauchy-Riemann system

PLy
— = j=1,... 3.1
gz =0 d=L..n C)

In the case n > 2 this system is overdetermined.

3.3 Holomorphic multivariate c.f.s

With the complex vectors x = (y,...,%,), y = (y1,---,¥,) we define the
scalar product
(< y) = 2 a7 x| = (x,%)
=1

and the vector Rey = (Reyy,...,Rey,), Imy = (Imy,,...,Imy,). The
Fourier-Sticltjes transform of an n-variate probability law p

7(t) = /‘R"ci("x)p(dx). te " (3.2)

is called the c.f. of p. For f, the uniqueness theorem, the convolution
theorem, and the continuity theorem can be derived.

Definition 3.3.1 Let G be a region in @ containing the point t = 0.
A cf §(t,p) is s to be analytic in the region G if there czists a
function f(t), analytic in G, such that o(t,p) = f(t) fort € GN R* .

The analytical propertics of n-variate c.f. arc determined to a great
extent by the analytical properties of projections. Let e € IR*, |e| = 1
and B C IR an arbitrary Borel set. Then the univariate law corresponding
to the n-variate random variable X is

pe(B) = P((X.¢) € B) (3.3)
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is called the projection of X on the vector e. Obviously, denoting by f and
fe the c.f. of p and p, respectively, we have

fo(t) = f(te), te R (3.4)

The univariate c.f. fe is called the projection of f on the vector e. In
many cases we can restrict ourselves to the study of projections. It is to
be noted that an n-variate d.f. F (n > 1) need not be determined by the
projections on n fixed lincarly independent vectors, but the projections on
all n-dimensional vectors determine F uniquely.

For the study of a.c.f we need the space @™ of all complex vectors z =
(21,-.,2). Let G C IR" be a convex open set. Then we say that

(ze€@"|Imz € G) (3.5)
is the convex tube with basis G.

Theorem 3.3.1 Let f be an a.c.f.. Then it is analytic on a convex
tube and admits the representation

f(z) = / lex) d(p(x)) (3.6)

SR - 0}

on this tube. G is the interior of the sct
(Imz| / X gp(x)) < o0)
- {0}

If v is a point of the boundary of G, then iy is a singular point of f.

From Linnik and Ostrovsky [66] we have

Theorem 3.3.2 Lct ey,...,e, € I be n- lincar independent vectors
and p an n-variate probability law with c.f. f. Assume that the projec-
tions fo,, ..., fe, of f arc analytic in the strips a; < Imt < b;(a; < 0 <
bj,j = 1,...,n), respectively. Then f is an a.c.f. whose basis is the
interior of the conver hull of the vectors ae; and bey, (i = 1,...,n).
Morcover, the integral in the unique representation (3.6) is uni-
formly and absolutely convergent on cvery compact subsct of G.
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Corollary 3.3.1 Let f(z) = f(z1,...,2,) be the c.f. of an n-variate
distribution p. If the functions

f(21,0,...,0), f(0,2,...,0),...,f(0,0,...,2,)
are analytic in the respective regions
|[Imz| < vy, |Iinz| < 1. [ Imoz,| < ry

then f(z) is analytic in the tube
(zlze @,y [Imzl/r; < 1}
=1

Theorem 3.3.3 Let H be somc region in IR containing z = 0. If
the c.f. f(z) is analytic in some region containing the sct {z| Rez =
0, Imz € HY}, then f(z) is analytic in the convex tubular ton G
whose base is the convexr hull of H.

Morcover the representation (3.6) is valid throughout G, with the
integral converging absolutely and uniformly on every compact subsct

of G.

In the multivariate case we call F to be Laplace-transformable or LT in
the domain G C IR, if the integral

/ I*AF(x) < 0, Yy €G (3.7)
Jirn
Theorem 3.3.4 f is an a.c.f. for n-variate distribution function F,

analytic on a convex tube with basis G if and only if F is Laplacc
transformable on G.

Proof: If f is an a.c.f. then by theorem (3.3.1) we have the integral
representation (3.6) is valid, and putting Rez = 0, we have that F' is
Laplace transformable.

If F is LT, then the univariate projections of F are also LT. Thercfore
by theorem (2.2.2),we have that the c.f. of cach univariate projection is an
a.c.f.. By theorems (3.3.3) and (3.3.2) we have that f is an n-variate a.c.f.

Finally we have the multivariate analog of theorem (2.2.3).
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Theorem 3.3.5 Lct g, f stand for the c.f.s of the n-variate d.f.s G, F
respectively. Let F be LT in H C IR*, and hence f be a.c.f. in a tube
with basis H. Let G, F be related as

dG(x) = X dF(x), —if € H,ceR (3.8)

Then g is a.c.f and is given by

ft — )

g(t) = =) (3.9)

Since f is an a.c.f., thcorem (3.3.1) is applicable and the integral represen-
tation is valid. Equation (3.9) thus when substituted in the right hand side
of equation (3.9) gives us g(t).

3.4 Examples and Applications

We will need the following results from classical analytic function theory.
(a) If the function f(z) is analytic in the domain G, then it is continuous
in G. i
(b) If function fi(z) and f(z) arc analytic functions in G, then their
sum and product are also analytic in G, and the function

_ fi(z)
fa(z)

is an analytic function wherever fy(z) # 0

(¢) If w = f(2) is an analytic function in the domain G of the complex
plane, and an analytic function Z = ¢ («) is defined in the range H of its
values in the w plane, then the function F(z) = ¢ (f(z)) is an analytic
function of z in G.

Therefore we have the following results:

(1) f(z) = z, f(z) = a(constant), f(z) = ¢, arc analytic.

Proof: Apply the Cauchy-Riemann conditions.

(2) By (a) and (b), a;2" for a;, z complex, and n < oo is
and hence any finite degree polynomial P,(z) in z is analytic.

(3) e is analytic by (a), (b) and (c).

@ (2)

nalytic in z,
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3.4.1 Some standard multivariate distributions

We now illustrate theorems (3.3.4) and (3.3.5) by the following cxamples.
Sce [58]).

Example 3.4.1 Multivariate normal distribution.

1
(y2m|zl)?

where T is a real, positive definite symmetric matrix. The corresponding
cf is

-0 ) x| |l < oo

falx) =

f(t) = exp(it'y) = %L'E' 't)
We have now to check the analyticity of f(z).
f(z) = exp(iz'p) — %Z'Z “1z)

Now f(z) is of the form ¢*® and hence is analytic.
We denote the c.f. for fi(x) by g (t) . Therefore

g (t) = exp(i(t —if)'pn— %(t —if)ys N (t—if)
(=B = (-5 (=iB))

1
= exp(i(t'(E7'8 +p) — E(t)'z (t)
The resulting c.f. is of the same form as the original c.f. . From
straightforward comparison we have that f(z) is a multivariate normal
density with mean g = (£7!8 4 ) and same covariance matrix ¥ .

Example 3.4.2 Wishart distribution (Sce [58]).

Let, x; € IR™ be an m-variate random vector, with joint multinormal
density :

P(x) = (2m) VI oxpl— s — €V (x, = )
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The m.Le. of V is n~'S where

n

Sk = Y _(wi; = F)(wix — T

i=1

n
T; = 71."Z(Jn,]—ij)
i1

The m.g.f. ( moment generating function ) exists and is given by

W—ll /2w
Elexp tr (© S)] = [m} (3.10)
where
=20y O .. O
o~ Wy e O
Ot e 20,
The characteristic function is
vl (172w .
v+ o

Since m.g.f.
c.f. is analytic
is

, the distribution is Laplace Transformable, and hence its
, in some domain of a complex tube. The complex extension

1 (1/2)0
[L] (3.12)
|[V-1 + iZ|

This is a strictly negative power of a multivariate polynomial in clements of
Z. Therefore the extension is holomorphic in some domain and the roots of
these polynomials denote the singularitics of the extended c.f., - the convex
hull of these singularities is the domain of regularity.

The of singularit,
is an cigenvalue of V Z.

Within the domain of regularity, the c.f. of a Laplace-transformed den-
sity is given as

v Q72w vy /2y
V-1 +i(e —1',]3)[] / LV" + i( AiB)J
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[V-! + B| /2y
V-1 + B + iQ]|
where B is p.d. symmetric rcal matrix.
Note that equation (3.13) is of the same form as equation (3.11) . Thus
the Wishart distribution obeys and admits LGD.

(3.13)

Example 3.4.3 Multivariate Chi-squarce or Generalized Rayleigh.

(Sce [58)).
(a) Joint distribution of S, ..., S,
The c.f. is given by

Elexp (iY_;8;)] = |1 = 2iV D, |*? (3.14)
1

i=

where Dy = diag (t,...,t.).

(b) Joint distribution of ¥; = tS;;V;! (j = 1,...,m) where
S =¥r, X]X; is the Wishart matrix, and V is the variance-covariance
matrix.
The c.f. is
Elexp(it'Y)] = |I, = 2iD(t) V| “/* (3.15)

where D (t) = diag (6, Vy),....t, V],

) is a block-diagonal matrix.
Example 3.4.4 Spherically symmetric class.

Given a random vector y € IR" define the class of distributions F(y) as
follows:

Fly) = {£(x)[x = ry} (3.16
where 7 is a positive real. Letting the c.f. of y be denoted as f{t) we
immediately have from equation (3.16) that the corresponding class of ¢.fs
arc given by

Cly) = {gMlg(t) = f(rt)} 3.17)
Equation (3.17) implics that if f is analytic and hence Laplace Trans-
formable, the entire class C is analytic and hence Laplace Transformable
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3.4.2 Some familiar Reliability models

Given that an abundance of bivariate reliability distributions does exist to
model such life distributions in practice, it scems quite natural to scck tech-
niques to identify a distribution or a class of distributions that may be well
advocated for a new observation. Classification techniques for reliability

models however scem to have been not much dealt with. The fact that most
bivariate reliability models are not members of regular, or even curved, ex-
ponential families makes the usual Fisher’s rule unattractive. Further, one
would prefer a "robust" rule in the face of uncertainty with the competing
spectrum of distributions. With these facts in hand, we started to explore
this arca beginning with ([93]). As applications, we consider the bivariate
exponential distributions of Moran, Freund, the semi-parametric bivariate
expouential family of Kariya and Bilodcau (1993, JRSA), bivariate expo-
nential conditional distributions of Arnold and Strauss (JRSS, B, 1988),
mixture distributions, ctc.

The most important distribution as evidenced in reliability literature is
the exponential distribution, which plays somewhat an analogous role to
that of the Normal Distribution. It forms a kind of boundary between the
IHR and DHR classes. It is casy to verify that the Exponential distribution
admits LGD. We now present some further examples.

Example 3.4.5 Moran’s bivariate cxponetial distribution (Sce [58]).
The c.f. is given by
G (tita) = (1 — itr)(1 —its) + w'tits] ™ (3.18)

where ais strictly positive. The marginals arc cach gamma with parameter
a. The complex extension is

b (z,2) = (1 —iz)(1 —iz) + wzz) (3.19)

=1 —iz —izm— (1—w)zzl™

The right-hand side of equation (3.19) is a quadratic in z, z,, raised to a
strictly negative power, and hence is holomorphic, except at the singulari-
ties i.c. at the roots of the quadratic.
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The singularities are given by
2 = t 4= —! (3.20)
V1 — w? FV1 — w?

Therefore within the domain of regularity, the c.f. of the transformed
density is
1— B + faw? it 1— 0 + Biw?) 8,
1=p1 =B+ (1 -w?)Bifs 1= =B+ (1 —w?)Bi3
(1 —w)tity o
1=0Bi =B+ (1 -w)pif,
Equating the cocfficients of it, it, to 1 we have that if § # 0, then,one
solution is A = By = 3 (say), with 8 = (1 + w?)/(1 — w?), and for this
value of 3 the transformed density is of the same form as the original with
W=t L

1—ity

(3.21)

Example 3.4.6 Frcund’s Bivariate Exponential (Sec [58]).
The c.f. is given by

1 3 «

S S— — (3.22)

o + [ —ity — ity 1—" 175‘,‘
The corresponding complex extension is a rational form (in polynomials )
and hence analytic except at the roots of the denominator. If a,b denote
the shift in the scale parameters, then their relationship is given by

Bi(a —a) (B =) adB) 1

af —a'f aff —'B  a

Example 3.4.7 Bivariate Exponential Conditional Distribution (Arnold-
Strauss, 1988 [12])

The density for the bivariate random vector (X, X3) is given by

=b (3.23)

2
[y, m2) = C(A3) A Az exp [— (Z Aiwi + )\1)\2)\3.121(1)2)] (3.24)
i1

Note that the subfamily defined by
A A2A3 = constant (3.25)
admits LGD.
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Example 3.4.8 Bivariate Semi-paramctric Erponcntial Dependency
Paramcter Family (Bilodeau and Kariya, 1993.[23])

The density function is given by
fo(mr,m2) = Xidyexp[=(Nizy + Aawa)]g(Mim, Apa; 0) (3.26)

The subfamily characterized by the condition that for every fixed (z;, z,),
g(Aimy, Aamy; 0) = constant, is the subfamily which admits LGD.
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Chapter 4

The Pseudo Maximum
Likelihood for LGD

4.1 Introduction

We have already scen in chapters 2 and 3, how a pair of densitics admitting
LGD are constrained by a functional relationship among the parameters of
the two densitics. Characterization when the exact form of density func-
tion is known has already been accomplishied in the previous chapters. The
analytical results obtained hide a siguificant statistical problem - that of
estimation of paramcters on the basis of two training samples in the pres-
ence of non-orthogonalizable functional dependencies among the parame-
ters. Morcover, in the absence of knowledge about the actual functional
form of the densiti nstant, which is an integral ( in fact a
Laplace transform ), involving the parameters of discrimination, has to be
estimated. This led us to investigate Pseudo ML methods beginning with
([90}), but we later had to take an entirely different approach in ([92]).

In general, the estimation for the parameters of the LGD rule are ob-
tained through three types of sampling procedures, which are noted be-
low. As we show, Anderson’s [5] model neglects the dependency referred
to above, to arrive at paramcter estimates which are consistent under ap-
propriate sampling procedures but less efficient ( in terms of asymptotic
variances ), than when the dependencies are considered. A general lemma
is proved from which consistency of Anderson’s [5] estimates follow.

As this chapter proceeds on a gencralization of the Pseudo Maximum

5, 4 normalizing c

%
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Likelihood (PML) procedure of Gong and Samaniego, (19517 {46)) the
procedure developed is called Generalized Pscudo Maximum Likelihood
(GPML).

we assume the following:

1) Let fi, f2 be univariate dens

2) Let fy, f admit D(g) ( Discrimination w.r.t g(x) ) i.c.,

(4.1)

and f,, f; belong to the same family, and 6 € ¢ ™, for some m, and
€ is an open sct.

3) Let B = {0] [, 7% fy(x)dz < oo} be non-singleton.

4) Denote the three partial derivatives of g(6,z) w.r.t. 8 by ¢,9,§
respectively. Let the above partial derivatives exist as also their expecta-
tions over Q.

5) The obscrvations are X = (Xj...., X,.), where the X; are inde-
pendent with probability density cither f(r;,6;) or f(w;,6,) with respect to
Lebesgue measure 1.

4.2 Sampling procedures

In LGD, commonly three types of sampling rules are employed, to yield
data appropriate for the construction of the rule. In the following we give
a brief overview of the three approaches.

There are three common sampling designs (Sce Mclachlan [72]) that
yicld data suitable for estimating 4 : (1) mixture sampling in which a
sample of n = n; + ny members is randomly sclected from the total
population P so that the n; are random (Day and Kerridge [1967], [33]); (2)
separate sampling in which for i = 1,2 a sample of fixed size n; is selected
from G; (Anderson [5], Prentice and Pyke [1979],[79]); and (3) conditional
sampling in which, for j = 1, 2,..., m, n(z;) members of P are selected
at random from all members of P with z = x; (c.g., in bioassay where the
two groups refer to “response” and “no response”). In all three cases we
adopt the notation used for (3) and assume that the n obscrvations take m
different values z; (j = 1, 2,..., m ) with frequency n;(z;) in group G,.
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4.2.1 Conditional sampling

Here n(x;) = ni(x;) + na is random. The likelihood

function for this design is

is fixed and n;

Lo = [[ {Pr [z € G|z = o]} Pr [z € Go|w = ;] ™)
J=1

H [T {a o) 3 (42)
is1je1
From (4.2) we sce that L is a function of ag and # that can be maximized
to obtain maximum likelihood estimal

4.2.2 Mixture sampling

In this case n is fixed and the «; and n(z;) arc now random variables. Let
L(z, G;) = mifi(x) and
f(@) = mfi(z) + mofo(w)

Then the likelihood function is

L H H { L(",, G ) }n.(,,)

[11 ff £ 0 "-W]

151

]

L

i=1j=1

{fl T Ca (o) 1

= Lol (4.3)
Since f;(«) is unspecified, no assumptions are made about the form of f(z),
the density function for the above sampling scheme. We can thercfore

assume that f(z) contains no uscful information about ag and 3. Even
if we knew something about fi(z), the extra information about «g and J
in L would be small compared with that contained in Le. Therefore, as
in conditional sampling maximum likclihood estimates are again found by
maximizing L¢.

In pract we frequently have m = n, that is, all the observations are
different and n,(w;) is 0 or 1
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4.2.3 Separate sampling

Separate sampling is generally the most common sampling situation and
the likelihood function is

= T Ll )

= T IT{ Aoy

i=1j=1
2 L, Gi) s
= O yre
= Ly m"m,™ (4.4)

If 7 and m, arc known, then this model is equivalent to (4.3). However, if
m; and m are unknown, we proceed as follows (Anderson and Blair [1982],
[6]). We assume that = is discrete so that the values of f may be taken as
multinomial probabi . From (1.1) we have

filz) = fo(w) expla + f)

and from (4.4),
= I 22 expli(s)) [ + B ]} (4.5)
I

where p, = fy(x). The problem is to maximize Lg subject to the constraints
that f and f, arc probability functions, namely,

Spo=1 (4.6)

and
> psexple + fz) =1 (4.7)

Using Lagrange multipliers it can be shown that the answer is given by
estimating p, by
N n(x)
Gy = ————~
I ny exp(la + A'z) + ny
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substituting 37, into Lg of (4.5), and then maximizing the resulting expres-
sion

Ly = Leni"ng"™ I [n(s;)]"®

=1
where
2 m
= TTTT 4 i ()} (4.8)
=11
- ny e v + [
Q) = 1y exp(a + f3
ny exp(a + f'z) + ny
_expla + log(n/ny) + fB'z)
exp(a + log(ny/ny) + fz) + 1
and

=1 - i)

we note that g is the same as ¢ () of (4.2), except that ag = a+log(m /m2)
is replaced by a + log(n;/n,). Hence with a correct interpretation of ay,
maximizing L, is equivalent to maximizing Le. We Lave therefore reduced
the problem of maximizing Lg subject to (4.6) and (4.7) to maximizing
Lc again. Prentice and Pyke [79] claim that the restriction to discrete
variables can be dropped, as the above estimates will still have s. actory
propertics for continuous variables. However, Anderson and Blair [1982],(6]
show that for continuous variables, the cstimates are no longer technically

maximum likelihood and suggest an alternative method called penalized
maximum likelihood estimation.

4.3 Consistent and Efficient Estimation

4.3.1 Introduction

Gong and Samanicgo [46] gave an estimation procedure which took into
account functional dependencies which were orthogonalizable (in the sense
that paramcters take values in a certain Cartesian product). Here general-
ization of their ideas to the non-orthogonalizable case is constructed.



4.3.2 Generalized Pseudo-ML

Let Xy, ..., X, be a sequence of random variables as defined above with a
corresponding sequence of o—algebras F, such that X, is F, adapted.

Theorem 4.3.1 Let ¢4 and ¢, be functions such that
B0), ¢u(0) : 2 — R™, andp: (X, ..., X0, du(0),0) = I?

Let there t for cvery positive integer i a sequence of random vee-
tors Zy. € IR™, k =1,2,... such that

V(X Xy 60(0),0) = (X, X, 4(6),0) = Z, (6u(0) = (6)) (4.9)
Zinis bounded a.s. or (p), ¢.(0) — ¢(0) — 0 as. or (p) (4.10)

then

Y(X1, .o, Xy $u(0),0) ~ (X1, .., X $(0),0) — 0 as. or (p) (4.11)

Proof: Since Zj, is a.s. bounded, the convergence of ¢, to ¢ implics

that the right hand side of equation 4.9 converges to 0.
Theorem 4.3.2 Let
#(0), 6u(0): Q — I"
¢u(0) is F, -measurable, and $,(0) — ¢(0) a.s. Let there cxist a fune-
tion h such that

DXy oy Xy u(0),0) = % > h (X, 6u(6),6)

B(Xr, - Xy $(0),0) = %Zh(x‘,mr)),m (4.12)

For given X;, 6, one of the three following conditions hold,
(a) 3 a function d such that

h(Xi, $u(0),0) = h(Xi, 6(0),0) = d(Xi, $.(6), 6(6),0) (6 (0) = 0(6)) (4.13)
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3 a real valued function G(z, ) with finite expectation, such that
[d(X5, ¢4(0), 6(0),0)| < G(X;,6) (4.14)

(b) h(X;,u,0) is differentiable w.r.t. u, Vu € w C Q. There exists a real
valued function M (z,6) with finite expectation, such that

1(,%11, (Xi,u,0)] < M(z,0)Vi,n (4.15)

where w,; ~ i (X, ..., X,,,0) is F-measurable, and ¢(0) < u,; < ¢,,(0).
Then the conchmou of theorem (4.3.1) holds. In particular

DXy X 6u(0),0) = B h(Xy,6(0),6) (4.16)

(c) Condition (4.15) can be replaced by the condition that h(X;, Uni, B)
is uniformly integrable.

proof:

(a) Equation 4.14 implics that the function d is almost surely bounded
(by the Strong Law of Large Numbers).

(b) Since 4 is differentiable, a Taylor expansion upto the first term is
valid, and from equation 4.15 the derivative is a.s. bounded.

(¢) Since h is differentiable, A is continuous, hence, A(X;, up,0) —
h(Xi, $(0),0) as., since u,; — ¢(0) a.s. With uniform integrability,
B(h(X;, upi, 0)) — E(h(X;, $(0),8)) . Therefore by Cezaro limit
1Y B(M(Xi, ui, 0)) — B(h(X.,$(6).6)) < oo

4.4 LGD and its generalizations

We need the following two Martingale convergence and central limit theo-
rems : (Sce Hall and Heyde, [1980],[49]).

Theorem 4.4.1 Let {S, = Y, X;,F,n > 1} be a martingale and
ing scquence of positive r.v. such that U, is
Fu-1-measurable for cach n. If 1 <p <2 then

lim U;'S, = 0 as. (4.17)
on the set {lim,.oo Uy = 00, 3, U7 "B(|X,[P|F; 1) < oc}.
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Theorem 4.4.2 pposc that the probability space (., F,, P.) sup-
ports squarc-integrable r.v.s Sy, S, - - ., Suk,,, and that the S,; arc adapted
to the o-ficlds F;, where Fy C Fuy C ...Fuk, C Fuo Let Xy =
Sui—Suiz1 (Swo = 0) and U2, = Yo X,‘f/. If G, is a sub-o-ficld of F,, lct
Gui = FiU Gy, (the o-ficld generated by F;UG,) and let Gy = {Q,, 8}
denote the trivial o-field. Supposc further that

m;ax}X,”\ 50, E (mfxx X2 )is bounded in n (4.18)
There exists o-ficlds G, € F, and G,- measurable r.v.s u2 such that
Ui, = up =0 (4.19)
2B (XualGuiz1) =5 0, 3B (XilGui) P =5 0, (4.20)
‘ Li,'f[},}ilg,mf P (U, > 8 =1 (4.21)
e S 1, (0, 1) (4.22)
Unn, §

4.4.1 Estimators for normalizing constant and deriva-
tives
Let 3,4, 1<i<n, Iy =1
Xi~Zif 1y =0, P(g(Z)=—~00) =0
~Zyifly=1, B(ly)=1-7>0
Define
¢o = B(7), ¢ = B P g(22), ¢ = B(e)(§(22) +*(Z2))) (4.23)
Let ¢y, ¢y, 9 exist. Define,
¥, 1e0%) Z 1Heﬂ(Xx),']
(#)(),n = = ) ‘Ijl n = e -
ily

S lwe?™ (i + 9%) B
brp = =7 4.24
P2, Tl ( )
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Theorem 4.4.3 Let cquations (4.23) and (4.24) hold. Then
(i) Pldo, > 0) = 1.
(ii) and

Pon = G0, i = b1y Pru = 2, a.s. (4.25)
Fn b
Do D G b (4.26)
Pom P bou o

Proof: (i) w.l.o.g. let 1y = 1. Thercfore,
P(hon =0) < P(1ye?™) = 0) = P(g(Z) = —o0) = 0

and ¢ > 0 by nonncgativeness of exponential function.
(ii) Consider

Z 1y (o — o) = L 1ay(e? = ¢o)
Dol = 1) = 3 1y(eg — )
2 Ly b2n — ¢2) ='Z 1 (e?G — ¢2)

; Liy(d1n — 1) — %2 1 (on — o)
Z Lij (2 — ¢2) — %2 1y(bo. — o)

are all martingales. Hence by theorem (4.4.1) cach of them normalized by

n, converge a.s. to 0. Since 3, 1 /n converge as. to m, part (ii) of theorem
follows.

4.4.2 Construction of the PML equations

Tor our model the log-likelihood is given as

L= 3" 1y(a+ g = n(don+ ) = 3 1 In(do, +0) + 1y n gy, (4.27)



and its derivatives as

_ </’an [l . doi — 1 eV
X = ( gy + 00 1. b T 00 4 ) (4.28)
L Po et
i = (L — 4.29
Y n(l[;] o) 1y. ¢"+L()) (4.29)

Lemma 4.4.1 The following convergences are a.s.

l (Z b0 — D1 _ Z dog — ) o

n Gou -+t Po + cota

(L v’)nnfl—fblnﬁ _ Z g — ¢ 4_—2) -0

b + €T P, do + et gy

1 ’
b (1o + g = In(go, + €)= 3" 15 In(do,e + €O) + L In b,

= X 1jg(a +g = by + ) = 30 1 n(do + €0) + 1y In go) — 0

Proof: o
b0 = Prn _

Pon + ety o + ety

g+ (o — o) — Pin — P
T (o + ) (g ) 0 T )T G 0

Gond = d1n ) Gog = i O

Pon € po, o+ e gy

=(,<,>{ 1 (g_g + (909 = 1) (Do, = 60)
T Ldon + O \ o o (o + ¢ + c0))

Note that
1 1 1 1
o)

<
(dop +e0)) = (do +¢O) = @y




1y(a + g = In(go, + ) = Ly (o, + e0) + L ln dy,,

=1y(a+g) - (1{,‘ + 1) In(do, + ) + 1 ln o, (4.30)

Replacing ¢, by the dummy variable u and differentiating w.r.t. u we
can take the Taylor expansion of equation (4.30) as

1 1 .
- (lfﬁ + 1[»])m + 1“\;" (b0 = o) (4.31)
where

b0 < Ui < o

1 1 1
< max | —, /—~> - —
@0 Do bo
1
ifu>0, ——<e 0
u+ )

Therefore by theorems (4.4.3), (4.3.1), and (4.3.2) the proof of the lemma
is complete.

4.4.3 Consistency of the PMLE
Lemma 4.4.2 For fivedy > 0 let

Y=y ln = In(1 +z) >0 (4.32)
1+ =
Then v reaches its mazimum at z = y.
Proof: )
9 _y 14y
dr = 1+ =
Py oy 1+y
9zt a? (1 4 =)?
31: =0=>z =y
Atz =y
1 1 1
E 1+ z(1 +



Lemma 4.4.3 Lct 1
lim -2 = P
oo

Let u,a 0" fized. Put p/(1—p) = cxp(c). Consider

. (0°0) e a0w) o
(1-p)yp= Py I‘E,W(M) (1 ﬂ)lolém
Then 9 is maximized at
a0 ot 9(0°.3)
Th(®) T (@)
o0t 9(0"2) e+ 9(0.2)

Proof: Enough to put y =

Bo(6°) 7 $o(6)

Define
Li = 1y (a + g = log(do, + ™) + 1 (log do,n — log(do, + €*9))  (4.33)
Lo = 1jy(a+ g = log(¢o + ") + 1 (log do — log(o + €*™9))  (4.34)
o L= 1y, 1',] =y,
n4 T e
Then by lemma (4.4.1)
Ly(,0) — L,(a®,0°) — (Lou(,0) — Lo, (a®,0%) — 0 as.
Now,
(Lou(a,8) = Loa(a®,6°) —
Lo g0 [(Lo‘u((l',ﬁ) — Ly, (a”,0% ] —d, d<0

by lemma (4.4.3), and the convexity of — In(z) .

Hence the local maximums of L, converge in probability (a.s.) to a?, 6°.

Replacing ¢ ., ¢ by 1 we find that in Andersons form the corresponding
local maximums tend not to a?,6° but to a® — log ¢y, 6°.

Thus in case of LGD, the conditional and mixture sampling will yicld
consistent solutions but the separate sampling scheme, may not.
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4.4.4 Asymptotic normality

Lemma 4.4.4 Let X,,..., X, be a scquence of i.4.d random variables.
Let Z,, denote the mazimum of Xy, ..., X,. Let E(|X:|¥) < oo. Then

P(|z,]>¢) < keN' (4.35)

nE (X[}

ek ’

Proof. Since Z, is nothing but the n-th order statistic,
B(1Z.J") < nE(X]*)

Applying the general form of Markov Incquality, the lemma follows.
For L, we have

L p
Yl < b Vi— max|X,,| -0 (4.36)
For Ly we have
Blnax |Xuf) € nB(X}) = 7, ce R, (4.37)

implies I(max; |X,;|*) is bounded in n.
It is casily verified that

Lemma 4.4.5

Lo g [% + (nX,“)(nX,“)} =0 (4.38)
Gt 0 [‘)ZX’“ + nK,(nX,,J] (4.39)
oo [% + <m,)(nxv..>] -0 (4.40)
yoxy {L};’“ + (nY,‘,)ZJ =0 (4.41)



From lemma (4.4.5) we have that
B (L, + L.L,) =

Let L,L,L,H .. denote the log-likelihood, the first and sccond derivative
with respect to 8 of the log-likelihood. Then

Lo (O 6(00)) = L(6°, 05,;(9"))
= L(8, 6u(6")(00 = 6°) + (Lu(6; 6(6)) = Lu(0%, 6 (0°))) (0 = 6°)
where 6° < 0, < 0,. If
6, — 0° a.s. or in (p)

then B .

(Ln(03 60(0,)) = Lu(6°, 64(6°))) — ©
i.c., converges to the identically zero matrix. Let E‘,mgulm =m 0<7 <1
Then,

bog — &1 (1 — bog —

Epar(Xu) = *(7' (d' +L()) —e™(1—mEi(= +¢())) (4.42)
Boun(t) = LrE ) 1 () =0 ()
oot itni) =4 (rE o + ) ¢ T e+ T )

- 1 (909 — ©1)(90g — 1)’
i X S@EE(—— ) 4.
Bt (XX = (n B (L (4.44)
. 1 (doi — é1)
B0 o = (g By (o L 4.45
Ep o0 (XpiYoi) = (m e 7 1 0 (4.45)
1 ¢
Egpa(Y5) = ﬁﬂﬁl(m) (4.46)
For Andersons model
B . Goeota s
X = ;(1m-1+6(_) 1. 1+{,()) (4.47)
1 1 crta
i = —(U— — lypo———— (4.
Yai n(l[‘] 1+ el L 1+ erts (442)
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At 0°,a° — In ¢y (0°)

P (2. g.cmts
Xui = 7,_(lm-% o T Mg o (4.49)
VR v o ety .
T = 71.(1"]'% + el ~ g by +coota (4.50)
Epe(Xu) = 0 Epo(Yu) =0 (4.51)
(60g) (¢0g)'
Ego,00 (XX, O 4.52
por (%) = g By (452)
; - (é0g9)
Ep oo (XniYoi) = 1rL (</:u+c<?) (4.53)
_ 1 [2) .
Epao(Y2) = FWL,(T o) (4.54)
By lemma (4.4.1)
Lu(6°, ¢ (60°) = Lo (6°, 60 (6°)) — Oas.
(6%, $u(6°) = Lo(°, 60(6%)) — Oas.
By theorem (4.4.2) .
a6, u(6) ~ N(0.5) @55)

where ¥ = E (L,,)
For the asymptotic variance-covariance matrix for L, we have when
6erm,

x( Baty DRy
D= (- oo (4.56)
n ( R on

Note that the ¥ for Andersons form (say £4) can be found out simply
by substituting ¢; = 0 in the ¥ (say S¢pui) in equation (4.56). Thus
Yepmi — L4 is non-negative definite, if the matrix

Llog ™ Jop e ’w o
T g ﬂn m..h' (4.57;
W

@
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is non-negative definite. Hence in this case, since X4 is positive definite,

Sabur, — ' is non-positive definite, by C.R.Rao,[1974], ([82], p 70).
Hence, the above result can be summarized as follows :

Theorem 4.4.4 Let 6, denote the solution of t/Lc GPML cquations, (

i.c., L"(Q,,‘(,)“ 6,)) = 0. Then 0, is strongly consistent for 6° and

Vi(0, = 6°) ~ N (0, ) (4.58)

where

5 = B (L)
Morcover the GPML solution 0, has asymptotic variance less than
that in. Andersons procedure under appropriate condilions.

4.5 Computational considerations

4.5.1 Existence of solution

Onc advantage of the GPML method as developed here is that with ap-
propriate choice of the sample group, on whose basis the estimator for the
normalizing constant is constructed, always ensures a solution, i.c., a finite
solution, regardless of any hyperplane separability or other data singularity
that causes the ML method to break down.

Thus if the estimator for the normalizing constant is constructed on the
sample, which for a given § (i.c., in a + z) gives a greater estimate (in
magnitude) than the other group, then a finite solution for the ML always
exis This is because the GPML cquations are finite for [|8]] = 0, and
approach 0 as ||8]| — oo.

4.5.2 Methods of Estimation
For LGD we have two forms : LGDP given as follows
a+fx—logd(B), $(3) = /ﬂ L), o= log:—; (4.59)

Casc 1. ¢(f) known as a function of 4. Estimate &, [9 by minimizing

. otgx \MOD gy ) ‘
Gorem) (vem) o
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Casc 2. Form of ¢(/3) is unknown as a function of 3, but some cstimator
& of ¢ is available. Estimate &, [ﬁ by minimizing

n cotBx m(x:) (;(/3) n2(Xi) )
(55 =) o (458

The other form is as given by Anderson [5], et al. which we denote by
LGDA, as follows :

o+ Ax (4.62)
Estimate &, A by minimizing
cortAx (%) 1 na (%)
1—[ (1 + e A ) (1 +(3"”j'x) (4.63)

5.3 Simulation studies and AER

In the following tables we give in summarized form the results of simula-
tion studies undertaken on distributions. The underlying relationship is
assumed to be of the form In fi/ « + Az in the case of LGDA. We
denote the LGDP as In f1/fa = a —Indé + F'= where ¢ is the appropriate
normalizing constant, which is estimated.

Misclassification probabilitics arc in gencral difficult to compute as the
cstimates cannot be obtained in closed form. They nced computation in-
tensive estimation.

In the tables, ap denotes a—1In¢. We also consider apparent error rates,
(AERSs) i.c., cstimated errors of misclassification when the estimated rule
is used to (,ldsslfy observations from the training samples, (sce McLachlan
[72]). & denotes estimated a and A denotes estimated 4. The subscripts -
and P denotes estimators corresponding to Anderson’s [5], and the GPML
(as developed by us) respectively.
wle I (Normal, o = 0.5, 3 = 1)

Sample | No. of dop Ba AER | No. of
Size Runs | (average) | (average) | (av) | Iter.(av)
15 50 1.2 1.6 0.51 29
30 50 0.89 1.45 0.5 24
40 50 0.8 1.34 0.45 24
60 50 0.7 1.3 0.43 22
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Table II. (Normal, a = 0.7, 3 = 1)

Sample | No. of Gog Ba AER No. of
Size Runs | (average) | (average) | (av Iter.(av)

15 50 1.1 1.61 0.5 30

30 50 0.8 1.4 0.5 26

40 50 0.79 1.34 0.46 25

60 50 0.79 1.3 0.44 24.2

Table III. (Normal, a = 0.7, 8 = 1.2)

Sample | No. of G&a Ba AER No. of
Size Runs | (average) | (average) | (av) | Iter.(av)

15 50 . 1.62 0.52 30

30 50 0.9 1.42 0.5 26

40 50 0.82 1.4 0.45 24

60 50 0.71 1.4 0.43 23

Table IP. (Normal, a = 0.5, 8 = 1)

Sample | No. of Gap Br AER No. of
Size Runs | (average) | (average) | (av) | Iter.(av)

15 50 0.8 1.4 0.41 21

30 50 0.7 1.25 0.39 17

40 50 0.56 1.12 0.35 12

60 50 0.5 1.1 0.35 11




Table IIP. (Normal, o = 0.7, 8 = 1)

Sample | No. of &p Br AER No. of
Size Runs | (average) | (average) | (av) | Iter.(av)

15 50 0.9 1.45 0.41 21

30 50 0.8 1.26 0.4 17

40 50 0.7 1.13 0.35 13

60 50 0.7 1.1 0.35 12

Table IIIP. (Normal, a = 0.7, § = 1.2)

Sample | No. of ap Pr AER | No. of
Size Runs | (average) | (average) | (av) | Iter.(av)

15 50 0.8 1.52 0.43 20

30 50 0.7 1.4 0.4 16

40 50 0.55 1.35 0.4 13

60 50 0.5 1.33 0.33 11

Table I. (Exponential, « = 0.5, 3 = 1)

Sample | No. of Gog Ba AER | No. of
Size Runs | (average) | (average) | (av) | Iter.(av)

15 50 1.9 1.8 0.6 30

30 50 1.2 1.6 0.5 24

40 50 0.9 1.5 0.45 24

60 50 0.7 1.5 0.43 22




Table II. (Exponential, a = 0.7, 8 = 1)

Sample | No. of [ Ba AER No. of
Sizc Runs | (average) | (average) | (av) | Iter.(av)

15 50 1.3 1.6 0.57 29

30 50 1.2 1.45 0.52 26

40 50 1.2 1.4 0.48 25

60 50 0.79 1.35 0.46 24

Table III. (Exponential, o = 0.7, 3 = 1.2)

Sample | No. of Aa Ba AER | No. of
Size Runs | (average) | (average) | (av) | Iter.(av)

15 50 0.8 1.72 0.5 29

30 50 0.6 1.64 0.4 25

40 50 0.5 1.6 0.4 24

60 50 0.5 1.5 0.37 19

Table IP. (Exponential, a = 0.5, 8 = 1)

Sample | No. of ap yers AER No. of
Size Runs | (average) | (average) | (av) | Iter.(av)

15 50 0.8 1.4 0.41 21

30 50 0.7 1.25 0.39 17

40 50 0.56 1.12 0.35 12

60 50 0.5 1.1 0.35 11
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Table ITP. (Exponential, a = 0.7, f = 1)

Sample | No. of ap Br AER | No. of
Size Runs | (average) | (average) | (av) | Iter.(av)
15 50 0.9 1.45 0.41 21
30 50 0.8 1.26 0.4 17
40 50 0.7 1.13 0.35 13
60 50 0.7 11 0.35 12|

Table IIIP. (Exponential, a = 0.7, 3 = 1.2)

Sample | No. of ap Bp AER | No. of
Size Runs | (average) | (average) | (av) | Iter.(av)
15 50 0.95 1.7 0.45 17
30 50 0.84 1.3 0.45 15
40 50 0.72 1.3 0.4
60 50 0.71 1.24 0.4 10 |

4.6 Real life examples

Applying GPML on some of the real llfc examples cited by Cox [27] the
results are as follows :

(i) For the data referred to in table 4 of Cox [1962],[26] obtains & = 0.413
and 3 = 0.904. GPML yiclds & = 0.4 and £ = 0.94.

(ii) For the data referred to in table 1 of Hodges [1958],(52] and referred
to in Cox, ([27])) obtains 3 = 0.62. GPML yields 3 = 0. 64. Hodges obtains
for table 2 in thL same paper, 4 = 1.21. GPML yields B =122

Although the comparisons have been made under the assumption that
the underlying distributions admit LGD, initial tests to check admission
have not been carried out. The "closeness" of the stimators may be due to
poor scparation of the two groups as also departures from the criteria for
admitting LGD.
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Chapter 5
GPML through Amarts

5.1 Introduction

In this chapter, we introduce amarts and exhibit that the results obtained
in the carlier chapters can be concisely and elegantly represented in terms
of amarts. Towards this end we recall below certain propertics and results
on amarts. For further details, sce Edgar and Sucheston ([35]).

5.1.1 Amarts : definitions and results

Let D denote cither N or —N, i.e. the sct of positive or negative integers.
Let {F.},ep be an increasing family of sub-sigma algebras of F. The set
of bounded stopping times will be denoted by T}.

Definition 5.1.1 Let {X,},.,, be an integrable family of random vari-
ables which is adapted to {F,},.,- We call {X,, F.},cp an amart iff
the net (B X)) er is convergent.

Definition 5.1.2 Let {X,}, , be adapted to {Futuep- We say that
{Xatep is T-uniformly integrable if the sct {X.}, p is uniformnly in-
tegrable, i.c. if for any given € > 0 there exists Ay, such that

sup I | X[ I{|{X,| > A} <eVA > X (5.1)

Remark Every T-uniformly integrable sequence is also uniformly inte-
grable. Every uniformly integrable amart is T-uniformly integrable.
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Lemma 5.1.1 Let {X,.},.p be an amart. Then B (X,).cp is bounded.

Proposition 5.1.1 A lincar combination, mazimum, minimum. and

cutoffs of L' bounded amarts (in the casc of D = N are amarts. If
supy I |X,| < oo, then

[Xul, X0 X0 Xl
are L' bounded amarts.

sup I |X;| < oo, sup |X,| < oo, a.c.
e

Proposition 5.1.2 Let {X,},.,, be an amart for the increasing family
{Futnep of o-algebras. Let {G.},.;, be another increasing family of
a-algebras with G, C F,Nn € D. Then Y, I (X,|G,) is an amart for
G-

Proposition 5.1.3 Let {Z,},., be an amart for {F,},.p, such that
limy, oo B( (Z,|Fn) = 0, a.c. for all m € N. Then:

I sup |E(Z.|F.)| < 00 Vm

B(Zu|Fw) — 0inL'Vm
imFE|Z,| = 0
7eT
Z, — Oa.c. and in L'

(Z:)rer is uniformly integrable

Proposition 5.1.4 Suppose X,, = Y| Y; is an amart. Assume that
sup I (Y?) < oo
Then (1/n) X,, converges a.c..

Result 5.1.1 Every martingale is an amart.
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Result 5.1.2 If {X,, %}

amart.

wep s an amart, then {|X,|, Fu},ep is also an

Result 5.1.3 Let {X,},., be an adapted sequence and supposc that
E sup, |X,| < co. The following statements are cquivalent:
(i) X, conv 1| — oco.

(#i) {Xubuen i

Result 5.1.4 Let {X,},., be an adapted sequence and T-uniformly
integrable. The following statements are equivalent:

(i) X, converges a.s. as |n| — 0.

(i) {X.},ep is an amart.

a.s.

an amart.

Result 5.1.5 Let {X,, Fu},op be an amart. If D = N assumec in
addition, that {X,},.y is L'-bounded. Let ¢ : B — R be a function
such that

(i) ¢ is continuous and

(i6) lim, ., ®2 and lim,._ o %) caist and are finite. Then, {$(X,), Fa}uep
is an L'-bounded amart.

Result 5.1.6 (Ricsz decomposition for amarts) Let { X, Fo},en be an
amart. Then X, can be uniquely written as X,, = Y, 4 Z,, where
{Y,, Fubuen is a martingale and {Z,, F,.},y s a T-uniformly intcgrable
amart, such that Z, — 0 a.s. and in L.

Further, the unique martingale {Y,, Fu},cn s the L limit of {B(Xn|F.)}
asm — 0.

5.2 PML with estimated functionals

5.2.1 The basic framework

Lot {X,, (0, £(8)), Fu}ew be a martingale, for all 0 € ©. Lot 0, fi (6,)
be {Fu},en adapted.
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5.2.2 Convergence and related results

Theorem 5.2.1 Let for all 0 € O,
(©) n(fu(0) — £(9)) be a F, adapted martingale, with E f,(0) = f(0).
(i) The following decomposition holds :

X (0, £u(0)) — X (0, £(0)) = Y. (0)-(fu(0) — £(0)) (52)

with Y, an adapted sequence uniformly in 6.
) There ts a F, adapted martingale Z,, such that |Y,| < Z,
a.s., and lim, F Z,/n < oo.

Then X,.(0, f,.(0)) is an amart. Further, the diffecrence of the unique
martingale in the Ricsz decomposition of the given amart from the
martingale X,, (6, f(0)) is a martingale which a.s. converges to 0.

Proof: Since X, (6, f(0)) is a martingale, and hence an amart by re-
sult (5.1.1). Now from (5.2)

Y 0.0 — so)) = 20

< ";f").wfnga) ~ o)

But since Z, is a martingale, Z,/n converges by the strong law for mar-
tingales to its expectation which by (iii) is finite. This same argument
repeated with —Z, as a lower bound, shows that 2@ as. bounded.

On the other hand n(f,,(0) — f(6)) being a martingale converges a.s. by
the martingale convergence theorem. (We could also treat it as a particular
casc of amarts and hence deduce the above from the amart convergence
theorem.).

Since the right hand side of (5.2) converges a.s., we have that the sum of
the right hand side with a martingale (and hence an amart) also converges
a.s. and hence that X, (8, f,.(6)) converges a.s. as |n| — oo.

This also shows that E(sup, |X.| (0, f.(0))) < oo. Hence by proposi-
tion (5.1.3), the proof of amart is completed.

Once the amart proof is complete, we have from the Riesz decomposition
of the amart (result 5.1.6), that X, (f,.) can be uniquely decomposed as the
sum of a martingale and a Doob potential. Taking the limits of conditional
expectations as given in result (5.1.6), we have that the unique martingale

n(fu(0) = £(9))

65



in the Ricsz decomposition is the sum of the martingale X, (f) and a
potential bounded by a 0-sum martingale, and which therefore converges
a.s. 0.

Theorem 5.2.2 Let {X,, (0), Fuluep be an amart (martingalc), uni-
formly in 0. Let there cxist an adapted scquence Y, such that {Y,(0). Fu} e
is an amart, and

K"{’@ < Y, (0) as. (5.3)

then {2220 F.}. ., is also an amart (nartingale).

Proof: The inequality in (5.3) is the condition for interchangeability of
the partial derivative and the integral sign. From clementary properties of
conditional expectations, we have

9X,, (0) OB (X, (9] Fu) (X (0)] Fon)
o

B 1m) = 96 - 90

Hence if X,,(0) is an amart (martingale) %(,';%Q is also an amart (mar-
tingale).

The above two stated theorems show that by replacing X, () in the
above, by the log-likelihoods (as under’GPML) with estimated functionals
of parameters and their derivatives, the entire GPML theory developed so
far can be expressed in terms of amarts.
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Chapter 6

On Quantile Based
Discrimination In Stable
Distributions

6.1 Introduction.

We consider the problem of classification of an observation from one of two

strictly a-stable populations (a # 1), based on a training sample composed

of observations ( with known group inclusions) from the two populations.
We require the following adaptations from results in Zolotarev, [103].

Theorem 6.1.1 For an a-stable (« # 1) random variable Y with ad-
missible paramecter quadruple (o, B,7,A), there exists an unique rep-
resentation such that

Y(o, 8,7, A) £ MY (,8,0,1) + Ay (6.1)
Theorem 6.1.2 Let Y(a, 81,71, M) and Y (e, By, 72, Ay) be two indepen-
dent a-stable random variables. Then Y (o, B1,1, A1) — Y (@, B2,72, A2)
is distributed as Y (o, B,7,A) where X = A+ X A8 = M8 — A
A=A - A
6.2 Construction of the classification rule
Let dij = Y(a, Bivis hi) = Y (o, 8,75, ) (6.2)
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Therefore-d; = Y(a,0,0,2X;) (6.3)
ABi= AiBy A = A '
=2 2T A+ Ay), (6.4
Nt Mt 1+ ), i # (6.4)
For a # 1, The tail probability of a standard stable distribution at 0.
F(0) has a closed form expression, i.c.,

di; = Y(a,

F(O) = 1-30

1 K(w) -
- ﬂT) (6.5)

Let Yi’s be strictly stable. Let 3 = (A — A2f82)/(A1 + X2). Then, by
cequation (6.1)

di = (22)7°Y (,0,0,1), dij = (A + )Y (e, (j — 9)B,0,1)

Therofore P(dy > 0) = P(Y(a,0,0,1) > 0) = %
1
Lot = Pldy >0). Thenpn = 3 = pi 66)
1 N )
Pd;>0) = 51 + (J*')/j K )) = pjj (6.7)

Note that piy +pa = 1.

6.2.1 The statistic G,,;

Let, for a given real r.v. Z, 1z be the indicator function of the event
{Z > 0}. Let {Xy, i =1,2;k =1,...,n;}, be two samples from scrictly a-
stable distributions - with admis 'xblc parameter quadruples (o, 8;,0,Ai), i
1,2. Let Y be a new observation (unclasified ) from one of the two given
populations. Define,

[ .
Gui = 72’1)(_\ al (6.8)

The classification rule can now be formulated as follows:
1 1
1“5 — G| < ]5 — Gh2| assign to Population I

o.w. assign to Population 2
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A corresponding modification to account for inclusion probabilitics is
1 1 . .
If 7\'1\5 = Gl < 7rg\§ — G,.| assign to Population I

o.w. assign to Population 2

Remark

At this point although nothing can be said about non-strictly stable
distributions in general, a few simple manipulations with the integral rep-
resentations of the distribution functions of stable distributions as given
by Zolotarcv, shows that the above procedure can be applied to the non
strictly stable distributions given by a < 1, 8 < 1 and a > 1, i.c. the
classes for which pyy # 0.5.

6.2.2 The distribution of the G,,;

From cquation (6.8), we have that cach indicator in the defining equation
follows a binomial distribution, taking the value 1 with probability p, where

p=L(lx,-v)i=12 (6.9)

Note that p takes one of the values py;’s.
The exact distribution is found out by considering the distribution of
the number of X;i’s that are greater than Y.

P(nGoy = k) = (Zf) P (L= (6.10)

n;

PG~ = 1) = (5) 0FQ-pr e =, k= 5]+ 611)

6.3 A Real Life Example

6.3.1 Description of the data set

The original data set provided to us by Prof. S.T. Rachev, consisted of share
prices of a certain category, over a period of time, which are transformed
by taking scquential differences of natural logarithms of cach share price
as is usually donc in cconometric studies of price phenomena (See Mittnik,
Rachev [1993],(73]). The justification for dividing the set into two samples
is on the basis of a "changepoint" from "bullish" to "bearish" tendencies.
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6.3.2 Construction of the rule

A bricef description of the SPLUS functions and program parts used is given
below :

Total samples size is 614. nsampl gives the breakpoint at which the
sample is partitioned. This is sct to be 320. prlog is the transformed
data sct which is created by taking the successive differences of the log of
the input vector of raw data.

f <- function(u,sam,nsam)
{q <- length(sam[sam > u])/nsam
qr

This actually gives the empirical tail probability at u based on sample
sam . pl, p2 arc estimates of population inclusion probabilities.

fq <- function(x,d1,d2)
{q1 <- f(x,sampl,nsampl)

q2 <- f(x,samp2,nsamp2)
val <- (di*abs(q1-0.5)) - (d2*abs(q2-0.5))
vall} .

The function £q actually constructs the rule which is of the form
1 1
r(r) = dl|q(z) — 5\ — d2.|q(z) — §| (6.12)

The first plot (Figure 3) shows a comparison of the constructed rule
with and without considering inclusion probabilities. The lighter line, Rule
1, shows the rule without and the darker one, Rule 2, shows it with the
inclusion probabilitics

The sccond plot (Figure 4) shows a comparison of the log-tails of the
two empirical distribution functions. From a well known result in stable
distributions, (Sce Samorodnitsky and Taqqu, [1994],(88]) the negative of
the log-tail asymptotically goes to the index « of the underlying a-stable
distribution. This shows a difference in the indices of the two distributions
The lighter line shows the first sample and the darker one shows the second
sample.
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Rough estimates were obtained by considering the upper extreme 1/10-
th of cach sample.

AERs were obtained using  esterr function. This function first com-
putes samplewise error estimates propl, prop2 and then combines them
to obtain the combined sample AER ( prop3 ).

6.3.3 Further comparison w.r.t. sample homogeneity

Incorporating a C-routine supplied by Prof. S.T.Rachev ([80]) to estimate
the paramcter quadruples of a stable distribution, a C-routine developed
by the authc culates the AER obtained from the rule constructed, and
the corresponding parameter estimates for the assumed underlying stable
populations, given the choice of subsamples ( input by the user ).

Rachev’s estimator fails for certain ranges, for which however the rule
can still be constructed but no comparisons can be made as to sample
homogencity. Incidentally some of these regions appear to give the lowest
AER’s.

Varying these subsample choices, we report the following : ( ¢ is the
transformed "scale" factor, (A of Zolotarev [103]) and & is the trans-
formed "shift", as in Rachev, [80].

First pair of subsamples ,

subsample-1 lower limit = 288 (i.e., starting from data n0.288 of original
sct), upper limit = 429

subsample-2 lower limit = 430, upper limit = 500

crror cstimate for 1-st sample = 0.414286, for 2-nd sample = 0.528571
Jfor combined sample = 0.312796.

parameter cstimates for subsample-1

a = 1.694558 ,3 = 0.227588, ¢ = 0.021124, § = —0.006073.

parameter estimates for subsample-2

a = 1.641819, § = —0.094336, ¢ = 0.017767, § = —0.002327.

Second pair of subsampl

subsample-1 lower limit = 250, upper limit = 450

subsample-2 lower limit = 451, upper limit = 600

crror estimate for 1-st sample = 0.483221, for 2-nd sample = 0.469799
Jfor combined sample = 0.406877.

parameter estimates for subsample-1

a = 1.585061, 3 = —0.191576, ¢ = 0.017243 ,6 = —0.003982.
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parameter cstimates for subsample-2
a = 1.637159, 3 = —0.270756, ¢ = 0.016563, § = 0.001094.

6.3.4 Conclusions

Shifting the breakpoint back from 320 to 200 reduces the AER to about
0.33, which combined with the corresponding graphical comparison of the
indices of the two subsamples. cs that retrogression of the breakpoint
reduces the index heterogencity between the two groups and hence the rule
performs better.

6.4 Fisher Type Discrimination rules

Since, in general closed form expressions for the stable densities in terms
of clementary functions are not available, it is difficult to visualize den-
sity ratio type discriminant functions. However, Zolotarcv [103] gives an
analytical form containing definite integrals, which can be used as basis

for constructing approximations to the actual density ratios. This method,
though comptation intensive, suffers from theorctical difficulties - notably
absence of conclusive results about the existence of expectations of deriva-
tives of log-densitics of stable distributions.

From the computational viewpoint, using the GPML framework as de-

veloped by us, we can also incorporate this density-ratio in a LGD-type
GPML framework.

6.4.1 Representation of Stable densities

The following representations are from Zolotarev [103] :

Theorem 6.4.1 Let

(o) =sgn(l—a),0 =4 * =0 sgnx
Let,
sm( )((/) + 0) ™5 cos 3((a— 1)¢ + af)

cos 2 cos I

U,(6,0) =
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w(1+ B¢)

T "XP( (¢ + )t(\n »g)
2

U9, 3) = 5

2cos

Then the densitics of standard stable distributions can be written as
Sfollows:
1) If a #1,|8] < 1,2 # 0 then,

« !
L UL (6,07) exp(—
21 —a ./m Ua(@,07) exp(

g(w,a,B) = Ua(6,0")dé (6.13)

2) If a = 1,|8] # 0,Va,
9,1, 8) = 2“; / Uilon B oxp(=c 50 b A (6.14)
Fa#l,z=0,

1 Wﬂl{(a))
@

1
90,0, 3) = ;r(l + I cos( (6.15)

4) a=1,8=0 corresponds to the Cauchy distribution.

6.4.2 Construction of the Discrimination rules
Let h(x;a1,01,02,8) = h(xa,8) = h(x)

g(z,aq, By)
g(z, v, Ba)

o) 2= () - (1) e

We first consider standard stable distributions and classify them into
three major groups by the form of their density representations under ()

h(z) =

within these groups.

Next we replace the integrals in the numerator and denominator by
composite quadrature formulae i.c., divide the range of integration into
several subintervals and applying a simple quadrature formula to cach of
them.



If the underlying distributional parameters are already known we simply
substitute these values in the computed ratios, or use estimated values of
the parameters from the sample derived from either empirical c.f.s or other
methods.

Since the quadrature formulae occurring in the numerator and denom-
inator can be computed with arbitrary acy, we have a simple though
computationally intensive method of discrimination in stable distributions.
It thus only remains to present h(z) explicitly.

Denote

1) fora#1,2#0,|3| <1

Va(#) = Ua(,0°) exp (=[] &TU, (¢,0°)) (6.16)

where, —0* < ¢ <1
2) for a =1, # 0,Vx,

Vi(¢) = Ui(¢, 8) exp(—e 3 U1(, 8)) (6.17)

We sometimes use the notation V,, or Vi for short , cquivalently.
Denote :

Lo :

1 1
v, 1o, 1 = Vi()d:

[, Val@)to, Tuate) = [ Vit)ds

‘We now present i(z) explicitly. Note that several cases are possible:

Da#l,z#0, |A]<1, |4l <1

MM%’%.;H:% if @ #0
; ot} (6.18)
APy if z=o0

() =

1#0, Vz

8
I
[
=

Do) = 122G (6.19)
18]
Bar#l, au=1,[61<1, f#0
]3] o T 0 () . .
hy(x) = ——— |zt .c? L ifz#0 16.20)
4 11—y T, (= a '
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1 1 ™ 1 . N
S (1 + :) cos (591) o 7 =0 (6.21)
Remarks
We observe that by using the form of the ratio of the densities. and
estimating in the usual GPML iterative schemes, we can arrive at estimators
of stable paramecter quadruples as well as the rule simultancously.



Chapter 7

Directional data

7.1 Introduction

Suppose we have observations as directional data [see e.g., Mardia [71];

Rao (currently Jammalamadaka, S.R.) [84]} from two distinct (identifiable)

populations on the unit circle. We need to classify a new observation as

belonging to one of these two populations, using the given data as needed.
Let the past observations be denoted by

by i=12j=1....m

Let the new observation be denoted by 6. Assume that the sample mean
directions are given by B, i=1,2

In the usual linear setup, for the multivariate or univariate Normal
distribution the Fisher type discriminant (which coincides with the LGD
for same variances and the Quadratic LGD (Anderson [3]) if variances are
different) can be viewed as a quadratic distance function i.e., with variance-
covariance matrix playing the role of the metric tensor. As we show in the
folowing, a similar coincidence occurs in a class of directional distributions.

The basic idea is to find out the average "distance" ( in an appropriate
sense) from the new observation to the observations in the two xnown
groups. If the distance from one group is less than from the cther. then
the new observation is classified as belonging to the "closex" pepulation
These ideas formed the nucleus of an invited lecture (Roy . and were
later elaborated by us.




7.1.1 The distance measure

The simplest distance that can be used is the arc-length, which in the case
of the unit circle is equivalent to the radian measure subtended at the center
of the circle, i.c., the value of the observation in radians.

But to be a proper distance on the circle, the distance measure must
be rotationally invariant, both in terms of magnitude as well as sense of
rotation. Thus if we have to consider the arc-length in terms of radian
mceasure, we have to transform it in a suitable way, i.c., take absolute value
of the difference in angles, modulus 27, We may also have to consider the
minimum of the two arclengths into which two points on the circle divides
a circle.

These problems do not arise if instead of the arc-length we consider
the length of the chord cut off by the two points on the circle. This is
always non-negative, invariant under rotation, both in magnitude and dis-
placement. As we shall see, this particular form has also other attractive
riptive measures in circular

propertics due to its similarity to known desc
distributions.

We appreciate the remarks of a Referce and observe that the use of
chord length as a descriptive measure is quite natural and may have been in
use for long. However, our extensive scarch for a chord-based classification
rule in the prevailing literature proved futile and thus, to our knowledge,
the approach in the following section scems to be the maiden attempt in
this direction.

7.2 Construction of the rule
7.2.1 Properties of the chord length as a distance
measure

Let two points on the unit circle be denoted by 6;,0,. Then the square of
the chord-length between the two is given by 2 (1— cos(6, — 6,)). Based on
this we take the distance measure as

dij = 1 — cos(0; — 0;) (7.1)

Note that d;; has the following propertics : It is always non-negative, sym-
metric in its indices and is invariant under rotation.
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7.2.2 The average distance of a point from a group

The average distance d;(0) of 0 from the group i, is given by
1
i) =1 - - > cos(6; — 0) (7.2)
5 5

Note that this is similar to the sample circular variance with a shift in the
mean direction. Let

1 1 —m— _
C = ;Zcosl),,, 5= ;Zsiuﬂu, R =\/C} +5., tanf; =
g L)

7.2.3 The rule
Let the new observation to classify be 0. Let dy; be the distance of 6 from
the group i circular mean ;. Define D(0) = do(0) — doa(6). Let ¢ be

arcal constant. The classification rule is given by

If D(0) > ¢ assign to Population 1

assign to population 2 o.w. (7.3)
Now D(§) = (cos(fa) — cos(61)) cos 8 + (sin(dy) — sin(6y))sin@  (7.4)
sin(fy) — sin(d;)

Let tanf, = (7.5)

cos(f,) — cos(0;)

Then equation (7.4) can be written as

D(0) = /2 —2cos(0, — 0,) cos(0 — 6p) (7.6)

Note that by equation (7.5), there will be two sloutions for 6.
The classification rule (7.3) can now be now given in an cquivalent form
as
If cos(0—0p) > ¢ assign to Population 1

~1
~

assign to population 2 0.w.

where ¢’ is an appropriate constant.
The rule as given by equation (7.7) simply partitions the circle into
sectors (of width 180° if ¢ = 0. In this casce, explicitly, the sectors can be
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specified as one semicircle having 6y as its midpoint, and the complementary
arc.

Remark 1. Note that if the sample mean directions arc cqual, unequal
variances have no cffect on the rule. In this case 6 is simply the mean
direction itself.

Remark 2. When the sample mean directions are not equal, the vari-
ances affect. 0.

7.3 A modification of the rule

For a brief review of the background of this scction, sce Mardia,[1973]([71]).
The A(x) as used here is the ratio of the Bessel functions Io(x) and I, (k).
Li(x)
As) = 5
To(x)
For a complete derivation of A(k), its relevance for the Von-Mises distri-
bution, and some uscful propertics, sce Mardia,[1973] as referred to above.
In fact for the Von Mises population, I is asymptotically A(x).
Note that 1/2xR* approximates the integral [ A(x)ds by a triangle.
A better approximation can be obtained by directly considering the dif-
ference [* A(x)ds which can be taken in terms of the trapezoidal rule as

A
1/2 (A(s1) + A(r2)) (k2 = ).

Let Vi = D(6,,Vs = D(0,, i.c., V; is the average intragroup "distance"
from cach other of obser in group or sample i. Note that V; is
nothing but the sample circular variance for sample i. Define the intra-

ions

group average d; from the sample mean direction as

di=1- L%

n;

os(0; — 0o) (7.8)
Note that dy; =1 — It, = V.

Let Di(0) = ay(doy(6) — Y+ 3

1 s
%) — aa(doy —

din + dy
2

ation rule is given by
If Di(®) > 0 assign to Population 1
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assign to population 2 o.w. (7.9)
Now D;(0) reduces to

(azcos(fy) — ajcos(B))) cos O + (agsin(@y) — a;sin(f;)) sind

1
+§(m — ) (R + IRy) (7.10)
Let

— a;sin(6,))

tanfy = =
o — aycos(f)

(7.11)
Note that by equation (7.11), there will be two sloutions for 6.

Assuming an underlying population of the Von Mises family, ( i.c.,
M (K1, 1), and M (s, 1), we note that given the parameters, the standard
Fisher type rule would have the form

Inlo(ky) — Indy(ka) + (x)cos(sn) — Ky cos(pz)) cos(f)

+ (kysin(py) — Ko sin(p)) sin(0) + 3 (7.12)

InZo(k1) — Wnlo(kz) + /w7 + K3 — 2m1m9 cos(y — pia)

Ko Sin jiy — £ sin g
x cos(f — tan g S Bt C Y 0§

)+8 (7.13)

Putting a; = &; in cquation (7.10) and observing that

K2 COS [1y — K COS [1)

L dy(e) = Ax)

dk
we have,
Inly(k) = fA(n)th
Note also that . A(x)
< =1 A%k) - 2
{IKA(N.) =1- A%k) .

and hence that for small change in &, the order of change in A(x) is icss
than that of k. Thercfore,

I Zy(sy) = In Iy (sy) = / A(r)dss ~ %[A(K,l) + Ak (52 — 52
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Note that, if £; and &y are very close to cach other. asymptotically
equation (7. 10) approximates ( strongly converges ) to the corres prvnxinw
portion of equation (7.13). Thus although we have kept the rule ble
by introducing the constants a;’s, a recommended choice is that which is
found by substituting the pairs

Rio = ANI); AR) = Iu

7.4  Exact distribution of D(0)

The distribution of § conditional on R is Von Mises with mean direction p
and concentration parameter £22. The joint distribution of C' = Rcos 6,5 =
Rsin0 is given by

7(,8) = CC 1S 5 (O 4 §2) (7.14)

0 (“i
ribution on the n-—-dimensional hypersphere [71}.
U = a, cos aycosby, V = asin) —a, sin by,
1, is given by

Here ¢, is the uniform di
The joint distribution of
given IRy, I,

et os(un) 3 bty cos(rua)
(2m)2 0o (Ka Iy ) o (w2 1T)

By cos(un) 52 +sg Ry cos(pi2)) cos(02) (1 Ry sinur) 2+, By i () sin(02)

fUv) =

></
Jo,

Combining this with equation 7.14, we have the joint distribution of (C, S, U, V)
(where cos(0) = C and sin(0) = S, given Ry, Ry, oy, iy to be

Ry cos(ur)
(2m)* Lo (K) Lo(w1 1) To(R2Rs)
% (1) /,, o cos(pu) 32 2y cos(yuz)) con(02)
Joy

o Ity cos(piz) L+ cos(0—
¢ bzt cos(jiz) 57+ cos(0—p)

f(C,8U, V)=

c(mlt‘. bm(m):x‘ 1 iy Ry sin(p)) sin(02) (7.15)

To get the distribution of the statistic, the conditional density in cqua-
tion (7.15) multiplicd by the joint distribution Ay, (1)) h,, (R2) (for definition
of h,(R) sce Mardia [71]) has to be integrated over regions of the form
d=aCU+ (1 —a)SV.
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7.5 Efficiency of the Rule

As is apparent, closed form expressions for error probabilitics do not exist
and the actual values have to be numerically computed for cach pair of
training samples.

In the following tables 1y = 0. ERR; denotes the calculated error
probability from the exact distribution of the modified statistic as given
above, ERR;, denot wlculated error probability from the Fisher type
ratio of density di ion rule. AR, denotes the apparent error rate
from the modified statistic as given above, AER, denotes the apparent
crror rate from the Fisher type ratio of density discrimination rule.

ny =10

ny| g2 | #1 | ma | | s | B | Ry | BRR, | AER, | ERR, | ALR,
10 0.1 ]01]0.1] 0.05 [0.12]0.09 | 0.09 | 015 | 0.19 | 0.13 | 0.25
10[0.2]01 (0.1 0.05 [0.17[0.091 | 0.089 | 0.14 | 0.16 | 0.14 | 0.25
10 [ 0.3 [ 0.1 [ 0.1 ] 0.05 [0.26]0.091 | 0.09 | 0.137 | 0.15 | 0.146 | 0.24
10 [ 0.4 [ 0.1 0.1 | 0.055 [ 0.36 | 0092 0.091 | 0.135 | 0.148 | 0.145 | 0.24
10|05 [01[0.1] 0.05 | 0.48[0.093]0.092] 013 | 0.14 | 0.148 | 0.21
n = 10
Ny | gy | w1 | Ra | i | jia | B | By | ERRy | ALR, | ERE, | AR,
10[0.1]0.1/0.2 0.05 [0.12] 0.09 [-0.18 | 015 | 0.17 | 025 | 03
100201027 0.05 [0.17]0.091] 019 | 0.14 | 0.16 | 0.22 | 0.26
100301 [0.2] 0.05 |0.26]0.091 | 0.19 | 0.132 | 0.145 | 02 | 0.25
10 [ 0.4 0.1 0.2 0.055 | 0.36 [ 0.092 | 0.192 | 0.129 | 0.14 | 0.19 | 0.24
10 [ 0.5 [ 0.1 0.2 0.05 | 0.48 [0.0930.192 | 0.126 | 0.134 | 0.18 | 0.22
ny =10
W | o | #i | R | i | s | B | R | BRIy | AER, | BRI, | AER,
10|01 [01]0.3]0.05 [0.12] 0.09 | 0.28 | 016 | 0.17 | 025 | 03
10 [ 020103 0.05 [0.17 | 0.091 [0.289 | 0.14 | 0.16 | 0.22 | 0.26
10 (0.3 (0.1 03] 0.05 |0.2610.091| 029 | 0.132 | 0.145 | 0.2 | 0.25
10| 0.4 [ 0.1 [ 0.3 0.055 [ 0.36 | 0.092]0.291 | 0.129 | 0.14 | 0.19 | 0.24
10 0.5 [ 011037 0.05 [ 048 | 0.0937] 0202 0.126 | 0.134 | 0.18 | 0.22




7.6 A Real-life Example

We now consider the data on pigeon-homing, as referred to in Mardia 71,
pp 156-157, in which the internal clocks of 10 birds were reset by 6 hours
clockwise while the clocks of 9 birds were left unaltered. Assuming that the
underlying distributions are Von-Mises with equal concentration parame-
ters (as in Mardia, [71] p 157), we run a SPLUS program that cla
cach observation in the two samples on the basis of the remaining obscr-
vations, by comparing the average chord-length distance from cach group
The program is included in chapter 10.

The output is apparent error rate (AER), which is 0.0 for control group,

0.25 for experimental group, 0.117 for combined sample.
The apparent crror rates (sample misclassification probabilitics) show
that the rule correctly clas s all the observations in the control group,

and 75% in the experimental group.

7.7 Similarity with LGD

In the above discussion, the modified rule can casily be identified as a semi-
parametric rule which approaches the Fisher type rule (ratio of densities )
when the underlying populations are Von Mises and they are close to cach
other in terms of population paramecter.

Since LGD models the ratio of densitics, in the case, when the log ratio
is linear, we find that a simple generalization of LGD in particular can be
used to discriminate between two Von Mises populations, since the log-ratio
in this case is lincar on the sine and cosine transformation of 8. This also
bypasses the rather computationally tricky problem of having to estimate
K, A(x) and their logarithms, as the constant term in the expression of the
LGD subsumes all the Bessel function terms. This can also be approached
from GPML. The rule as given above by us based on chord lengths, however
need not assume independence of the lincar components of the Logistic rule.

83



Chapter 8

E.c.f. based estimation

8.1 Introduction

One important consequence of the characterization of pairs of densities
admitting and obeying LGD through c.f.s is that the nature of the charac-
terization makes available well-developed procedures of estimation through
cmpirical ¢.fs (c.c.f). Although the literature mainly is concerned with es-
timation for stable distributions the theory follows through for other classes
of distributions (sce DuMouchel [1973][34], Feurvergher and McDunnough
[1981] [38], Brockwell [1981][24]).

We start with Kellermeir’s [1980] [59] work and proceed to construct
c.c.f. based estimators for LGD parameters.

8.2 Some useful results

Given a sequence of stochastic processes Z, and a function g such that
Vn (2, — i) converges weakly to a 0-mean process. Consider the statistics

S, = sup |Z, (t)|and T}, = /|Z,L(t)\2dG(t)
tejab]

where G is a distribution function. Let Xi,..., X, beLid. e.d.f is F(r) =
N(z)/N, z € R, N(z) = #{X; <z} for 1 <j<n.
1
cof = e t) = / ‘“‘lF,L. - -\ ,11X,, te R
c.c ¢, (t) ] e (z) HL(, e
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Take C*(a, b] to be the Banach space of continuous complex functions on
[a,b] with the norm [[flle = sup,cy [£(8)]-

Result 8.2.1 Let Z, {Z,} be random clements of C*a.b, such that
ViZ, 25 2. Let B C [a,b] and define

S, = sup|Z,(t)], andS = sup|Z(t)]
el ek

then /nS, 2, 5.

Result 8.2.2 Let Z, {Z,} be random clements of C*(a,b]. Let u €
C2[a,b). such that Vt € [a,b] pu(t) # 0 and /n(Z, — p) L, Z. then
VI Zud =) = Re(Z /) |nl.

Result 8.2.3 Let Z, {Z,.} be random clements of C*a,b). Let p €
C*a,b] and /n(Z, — p) -2 Z. Supposc {t € [a.b] |u(t) = [} =
{t1, st} then V()| Zullo — max)<ick | Zu(t)]) — 0 as n — oco.

Result 8.2.4 With the samc notations and assumptions as in re-
sult (8.2.3). we have

Z(t)
11(t:)
Result 8.2.5 Let {Z,(t), t € [0,1]} be a scquence of real Stochastic
Processes, such that /n(Z, — p) — L, Z, where 1 is continuous and
Z is a 0-mcan Gaussian process in [0,1] with covariance function
L Z(t)Z(s) = T(t,s

Let f be a continuously differentiable function with derivative f'.
Let G be a distribution function with support in (0,1]. Define

T, = _/f(z,l(z))dc(z)

Vi1 Zullo = i) = max Re™ 2 ]|

A = [ F(u(0)dG )
ot = [ [ ) (ns)T (e, ) dG ()G (5)

and assume all integrals are well defined. Then /n(T, — M L=
= N(0. 0?) if 62 40 and = is degenerate at 0 if o = 0.




Result 8.2.6 A sufficicnt condition that result (8.2.5) holds for an
arbitrary distribution function G is that 3a > 1 and Q : IR — 0.50)
such that

/Q(t)«iG(i) < 0o and
EIVa(f(Za(t) = ()" < Qt)vn

Result 8.2.7 Let {Y,(t), t € IR}, {Y (1), t € IR} be real Stochastic Pro-
g such that /nY, Ly, in cvery finite interval. Let f be a
continuous function on IR and let G be a distribution function. Definc

T. = [ ()G

M= / FY (1) dG(t)

Assume T, and T arc well defined with probability 1. Furthermore
supposc > 1 such that the scquence of functions E|(f(Y (£)|* is
uniformly integrable w.r.t. G. Then

Do
T, — Tasn — ©

8.3 E.c.f theory for LGD

Note that from the form of the functional relationships as derived in chapter
2, we can have an c.c.f. based estimator for the LGD by minimizing a
certain integral as follows :

ht-ip)

mm L(B) / ‘
fi(=i8)

where w(t) is a distribution function, or equivalently,

ht) -

|du(l) w.r.t 4 (8.1)

min(9) = [||fi0f(=i6) - fult 19 dwote) wre s (52)

By theorem 2.1 of Feuerverger and Murcika [1977] ([38]), with probavil-
ity 1, the c.c.f. converges uniformly to the characteristic function on cevery
bounded interval.



Y.(t) = Ve (t)—c(t)), in t has E(Y,(t)) =
— ¢(t))e(tz). This latter term fully dete
of Y,(t). Define Y (£) to be a zcro mean

s satisfying Y () = Y (—t) and having some

The random complex proc
0, BY,(t))Yu(t2) = (!1 + ta
mines the covariance
complex valued Gaus:
covariance structure as Y, (t).

Cov ReY (t)), ReY (t,)) = %[R(: ety 4 ty) + Re ety — t2)] — Rec(t)Re c(ty)
Cov ReY (), ImY (ty)) = %[Im, c(t) +ts) + Ime(ty — ty)] — Rec(t)) Imc(t,)

CovImY (t;),ImY (l,)) = %[71?13(:(1, “+1y)+ Ree(ty —ta)] — Ime(t)) Ime(ts)

By theorem 3.1 of Feurverger and Murcika [38], the process Y, (¢) converges
weakly to Y(¢) in every finite interval.

Now let 8 € © be an I x 1 parameter and T}, be a k x 1 statistic where
k > 1. Let the random implicit equation F(6,T,) = 0, F : ¢ — R}
hold. Assume that F is continuously differentiable, and 6y denote the actual
0, and let © be an open rectangle. Then, we have from Feuerverger and
McDunnough [37],
Result 8.3.1 (a) If T, — A(6),a.s., F(fo,A(6p)) = 0, and 2]
is invertible, then there caists 6 — 6y, a.s., which is an asymptotic
random root for F.

(b) If T, — N(A6),%), as., F(0o,A(6) = 0, and 20
invertible, and 0— Oy, in pr., is a root of F, then

5 o [9F 00 20N 5 [0F (00 M8))
0,—0) — N (u,[ o } ﬂ[ . ] ) (8.3)

The random implicit equation (8.2), is continuously differentiable as the
integrand is a sccond degree polynomial in exponential and trigonometric
functions. The sccond derivative of the integral at true value 6 is invertible.
and hence by part (a) of result (8.3.1) we have that there exists a consistent
root of equation (8.2). By part (b) of the same we have that t
root is also asymptotically Normal with mean 0 and variance covariance

nsistent

matrix given by

S =Ly
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Chapter 9

Neural Networks

9.1 Introduction

LGD has been used in the recent years extensively in Artificial Neural Net-
works (ANN). The ANN approach towards pattern recognition and clas-
sification starts with the simplest models which basically use the linear
discriminant function. This naturally lends itself to the LGD as a semi-
parametric framework in which at least apparently "less" need be known
about the underlying distributions and the network can be kept concerned
only with the lincar discriminant (cocfficients) parameters of interest.

The standard practice is to assume an external trainer, which adjusts
the different parameters to minimize some sort of penalty for misclassifica-
tion. We show that by considering a more "natural" goal-sccking behaviour
(brain-like) the LGD as used in s ical practice can be implemented as
an ANN.

9.2 The ML-training of Gish

We first review, some results in posterior probability estimation through
ANNS [50].

Let @i = 1,..., N, denote a sct of feature vectors, and that cach r,
belongs to cither class Cy or Cy. We consider the classifier network as being
described by the mapping f(z,0), which is parametrized by 8 and maps
cach @; onto the interval [0,1]. Our goal is the sclection of parameters 4
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such that f(z,6) is an estimate of Py(C,|z), the probability that class C;
has occurred given that we have observed .

In order to model f(z,0), i.c. the posterior probabilitics, we can use
the LGD approach, as follows :

The output of our network f(x,0) will be a sigmoidal transformation of
a function z(z,0), given by the relation

£,0) = ————ee 9.1
1w.0) = (01)
Inverting the sigmoid we have
z(w,0) = Ingivw 9.2)
Thercfore Rl
2,6) = log ~Z12) 9.3
e,0) = s pc ) ©3)

The above equations show that the ANN is in effect modelling the log-
likelihood ratio of the two classes. The direct modeling of the ratio allows
the ANN to be efficient in its use of parameters since cach of the probability

sity functions is not modeled separately as is done with other types of
fiers. .

If we restrict z(z, 0) to be lincar we are in the LGD setup. When viewing
this type of model as an ANN, it constitutes a network with no hidden
layers. In an ANN with a single hidden layer we have (with 0 = (a, 3))

m »
2(5,0) = By +Zﬂ;/\(“n,; + Z(Vw”u,k) 9.4)

i k=1
where A(v) = (1 + exp(—v))~!, @ik, is the Ath of the p components in

input vector z. Also cach of the A-components of the m terms of the sum
represent the output of a node of the hidden layer, with the input weights to
a hidden node being the a terms and the weights of the output node being
the B terms. Thus ANN’s with layers comprise significantly more complex
models than arce usually considered in LGD. The significant consequence of
this additional complexity is that of having more complex partitions of the
feature space.

Another alternative is the inclusion of more complex functional forms
in z(=, 0) itsclf. This can give rise to multiple partitions with a single layer
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9.2.1 Algorithm for ML-training of ANN’s

The usual strategy is to apply the scoring method to different subsets of
the parameters in the ANN while keeping the remaining weights fix
the log-likelihood is maximized in stages, a procedure generally re
as a Gauss-Sicdel iterative method.

With the ANN in its initial state a node from the hidden layer is sclected
and its weights adjusted so as to maximize the likelihood. This change
of wights alters the output that will be generated by this node. Thus
the changes in the weights of the node in the hidden layer is followed by
updating the weights of the output node. Then the next node in the hidden
layer is considered and so on, until all the nodes in the hidden layer have
been updated and then the procedure is repeated. Thus two iterations
go on simultancously - the scoring to update the weights, and the cycling
through the nodes of the ANN.

9.3 The Perceptron

Let X C IR* Let v(X) be a mapping from X onto the set {0,1}. A
predicate is simply a variable statement whose truth or falsity depends on
choice of X, i.c., on ¥(X). A predicate v/ is said to be conjunctively local
of order A if it can be computed by a sct © of predicates ¢ such that each
¢ depends upon no more than & points of I%:

vy 1 (X)) = 1for every ¢pin® or
w(X) = { 0 otherwise ©-5)

Let @ = {¢1,...,¢,} be a family of predicates.
respect to @ if there exists a number 6 and a set of scalars {ag, ..., a4}
such that ¢)(X) = 1 if and only if 31 ay,¢.(X) > 0.

A perceptron can also be defined as a device capable of computing all

Then v is lincar with

predicates that are lincar in some given set @ of partial predicates.

9.3.1 The Gradient Search

Define a gradient descent vector J(a) that is minimized when an appro-
priate a is found. We start with some arbitrarily chosen weight vector a:
and compute the gradient vectr. The iteration proceeds in the direction of
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steepest descent i.c., ax, = ax — prVJ (ax), where py is a positive scale fac-
tor that scts the step size. Small step sizes lead to very slow convergences.
while large step sizes can cause overshooting and divergence. If a guadratic
expansion is valid,

J(a) ~ J(aw) + (V) (@ — a) + %(a — ) D(a— ay)

where D is the matrix of second derivatives (,21‘):' cvaluated at @ = ax. Then
i0a;
combining the above two we have
1 g
J(axi) = J(ar) = pel (VI + épf.(VJ)’DVJ 9.6)

- - . IR
Thercfor to minimize the criterion function J(a), choose px = thf)ll)vr'

Rosenblatt’s Perceptron Convergence theorem states that given an el-
cmentary a-perceptron, a stimulus world W, and any classification C(W)
for which a solution exists; let all stimuli in W occur in any sequence, pro-
vided that cach stimulus must rcoccur in finite time; then beginning from
an arbitrary initial state, an error correction procedure will always yicld a
solution to C(W) in finite time.

9.3.2 The LGD as a Perceptron

Consider a perceptron with a multivariate input X € I?2*. The perceptron
contains a single neuron that takes weighted inputs, sums them, transforms
it by a sigmoidal (logistic) transfer function, and finally puts it through a
hard-limiting output function, i.c., an indicator.

The descent function is taken to be the negative of log-likelihood of the
corresponding LGD model as follows:

Let the transfer function be the logistic sigmoidal transformation

1

909 = T

Note that g s monotone and one-to-one in w'x. Thus a discrimination
rule based on w'x can be equivalently formulated in terms of g(x). Thus the
input to the single neuron is the weighted sum of multivariate components

The perceptron generates an action potential y of value 1 if g(x > ¢ 0
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otherwise. The crror function and hence the gradient descent vector is

taken to be
S i — Lgod)’ (9.7)

Note that by minimizing (9.7) we obtain the hyperplane separating the
scparable regions.

9.3.3 Apparcnt paradoxes

theorem of Rosenblatt, the above perceptron
cs ) In the usual perceptron classificr,
on is a lincar combination of weighted inputs over samples
sified. This leads to a hyperplane separating the data. This
tuation where the ordinary LGD of Anderson [5] fails.

By the perceptron converger
converges in finite time ( in finite pas
the descent funct
that arc misc
is exactly the s

9.4 Klopf’s heterostat

9.4.1 Mathematical model
In Klopf’s model [61] the neuron gencrates an action potential if
S wit)fi(t) > 0(to) (98)

il

where

n = number of synapt:

w;(t) = synaptic transmittancc

fi(t) = frequency measure of the

6(ty) = ncuronal threshold;

t = time; and

to = time clapsed since the generation of the last action potential. 8 The
heterostatic variable # is maximized when ‘heterostasis’ is achieved (i.c.,

inputs to the neuron;
siated with the ith input;
nput intensity at the ith synapse;

the neuron experienced maximal polarization relative to environmental and
Depolarization represents the
positive aspect of polarization, hyperpolarization the negative. A ncuron
is in hetrostasis for the time ¢ to ¢ + 7 if the quantity 277 is maximized:

adaptive mechanism induced constraints).

LT
""" = Digir = Higyr
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- _/("'7(1;,(1,) ~v)dt— ‘/'“Y(v,l(t) ~ )t
:/lL.Y(‘u(t)—'u,)(lt 9.9)

where
Di*™ = amount of depolarization experienced during ¢ to ¢ + 7
H}'"" = amount of hyperpolarization experienced during ¢ to ¢ + 7
v(t) = potential difference across the neuronal membrane,
v, = neuronal resting potential,
vp(t) = w(t) if v(t) > v,, otherwise v,(t) = v,, and
v,(t) = v(t) if v(t) < v,, otherwise v, (t) = v,.

9.4.2 ML and the Heterostat

From the structure of the heterostatic variable, an obvious similarity to
ordinary maximum likclihood is immediately apparent. Think of a situation
where the input signals are arriving in dicrete time and the active( non-rest
component) neuronal potential is changed instantancously by the input and
remains at the changed level until the arrival of the next. Also assume
that the total time alloted for the reception of signals is bounded. Take the
neuronal potential difference v(t) to be the log density ( conditional ) of
the input component, and additionally that the heterostasis is considered
over the entire period of signal arrival

Let total number of samples be n, with n; of population type IT;, i = 1,2.
Without loss of generality assume total time of preliminary (training) signal
arrival to be 1. Assume constant rate of arrival. Thus time difference
between the arrival of consccutive signals is 1/n. Let z be the indicator
of inclusion taking values in the set {1,0,—1}. Here 0 indicates no prior
knowledge about the input cle Unlike other neuronal models since the
heterostat is a goal-secking unit, we can consider the z’s as inputs to the
neuron. However, these z;’s will perform the role of ‘switches’ that alter the
state or configuration of the processing topology within the neuron, they

modify the form of the polarization potentials existing at a given point of
time within the neuron. Mathematically the potential can be written in one
of several equivalent forms. However to bring out the similarity between the
theory developed so far in LGD and the heterostat approach, we consider
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the following form:
1
o0) = 108 ()
Assume that the neuron maximizes its ‘pleasurc’, i.c., the heterostatic vari-

able at the end of regular intervals, in this case 1, and let v, be 0. Thus
the heterostatic variable 1 becomes

1
n= /17(t)rl/. = /lng(mdt>

nq 1
=3 ~log (;f)
oin 142w

9.5 Consequences of the implementation

Assuming that at the end of its optimizing cycle, since the optimum solu-
tions correspond to maximization of 4 - the tendency of the neuron will be
to resist changes in the weight configuration i.c., the neuron will "expect"
any further change in thestate space to be zero. Mathematically this will
take the form of the constraint :

(9.10)

Note statistically this is cquivalent to assuming that the expected deriva-
tives of the log-likelihood are 0’s.

Biologically the capacity of a neuron to speed up any internal processes,
such as weight optimizations has to be limited. Thus in the model the rate
of change of o with respect to weight changes have to be bounded. The
log-logistic potential satisfies this requircment.

The log-logistic potential is a gencralization of possible actual functional
potentials in two distinct ways. First, noting that the trigonometric poly-
nomials arc compact in C[0, 1], and the cos function can be approximated
to arbitrary accuracy ) by lincar combinations of logistic functions. Hence
a heterostat with log-logistic potential is indeed representative of general
functional potentials. Sccondly, as we have already pointed out. rhat thic
class admitting LGD is in fact exactly the class in which log-lincar "Fishcr
Type ) discrimination is allowed.
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The LGD as Heterostat

input layer hidden layer output layer

9.6 An extended model

The above model works by implementing a two pass cycle. In the first
pass optimization occurs in the first hidden layer. In this cycle, the final
outputs and crror cstimates arc based on previously existing weights. In
the sccond cycle, the same input signal is repeated to obtain correct error
estimates. In this cycle, since the same signal pattern repeats no further
optimization takes place, but the error estimator in the second hidden layer,
correctly estimates the apparent error probabilitics.

Note that in cach pass the doubtful cases or unclassified cases, i.c.,
z; = 0, do not cnter the optimization process although they do get classified
at the output end.

The proof for crror estimator node is as follows:

1
n= [od = /10{; (m(u)
_1, 1
SR (o)

==Y log(1+c*)+ Y log(l+c™)
(e} w
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= —mylog(1+e¥) +malog(l+c™¥)

where C indicates the class of signals correctly classified | i.c., yz , and
W the wrong sifications, m,; and m» the corresponding class si

On optimization, we find that

m)
w = log —
My

Together with the restriction that there were no initial doubtful inputs, i.e.,
my + my = n, + ny, = n, we find that non-hard limited output of the error
cstimator gives the correct classification estimates for tha corresponding
signals.
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Chapter 10

Programs and Computational
support

10.1 Introduction

Here the various computer programs used have been detailed with the ap-
propriate source code being supplied. Almost all the programs that have
been developed for the specific purpose of computational work required in
this work has been written in C and compiled in TURBO C. Apart from
programs written in Turbo-C, the statistical package SPLUS (Windows
Version 3.3) has been used. Graphs have been drawn using GNUPLOT
2.2. The GNUPLOT programs here have been designed to output LATEX
output which need to be included in a LATEX document. Commenting
out the set terminal and set output options in the programs will generate
screen outputs.

Here is a brief contents list of the included programs.

l.uni.in The SPLUS program uni.in which computes GPML estimators
and crror probabilities. page 9.

2.Jogis.c C-program that computes the LGD cocfficents for both Ander-
son’s form and GPML. page 101.
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3.combinl.c combinl.c is a C-routine that incorporates the program to
estimate stable parameter quadruples as also the corresponding dis-
crimination rule based on quantiles. page 108.
4.stabfig.c The C-program that gencrates tables for the GNUPLOT pro-

grams "stabl.inp" and "stab2.inp" for stable discrimination. page 123.

5.ecfcomr.inp GNUPLOT program to plot the graph of real parts of ecf of
Normal and Cauchy. The program for imaginary part can be formed
by just replacing the cos terms by sin. page 127.

6.stabl.inp GNUPLOT program to plot the two rules i.c., with and with-
out considering inclusion probabilities. page 128.

7.stab2.inp GNUPLOT program to plot the cstimated log-quantiles for
the two subsamples. page 128.

8.dird.in The SPLUS program segment dird.in which computes Apparent
Error Rates (AERs) for the first simple chord rule when applied to

the vanishing angles of the homing pigecons as given by the data cited
in Mardia [71] pp 156-157. page 129.
uni.in

#sink("outfile.dat",append=TRUE)

#sink() #output to the terminal
#warnings("outfilel.dat")

n <- 20; dimen <- 2; pr <- 0.5; gpsiz <- 1

theta <- array(l:dimen,c(1));beta <- array(1i:dimen,c(1))
thetain <- array(1l:dimen,c(1));ebeta <- array(1:dimen,c(1))
x <- array(i:n,c(1));ind <- array(i:n,c(1))

thetain[1] <- O;thetain[2] <- 1.2
pr <- exp(thetain[1]); pr <- pr/(i+pr)

#rexp(n, rate=lambda) : exponential with mean 1/lambda
#rgamma(n, shape) :sample of size n with shape

#runif(n, min=0, max=1) # uniform from [min,max]
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for(i in 1:n) { ind[i] <- rbinom(1,size=gpsiz,pr’6 >
# ind = O for 1-st popn, 1 for 2-nd popn

mean? <- 0; sd2 <- 1

meanl <- mean2 + (sd2 * sd2 * thetain[2]);
sdl <- sd2

for(i in 1:n)

{if( ind[i] == 1)

{ x[i] <- rnorm(1, mean2, sd2)
}

else

{ x[i] <- thetain[2]+ rnorm(1,meani,sd1)}}
for(i in 1:n){ 1 <- c(ind[i],x[i])
write(l,file="outfilel.dat",append=T)};
n2 <- 0
for(i in 1:n){ n2 <- n2 + ind(il}
# computation of likelihood in PML form
uscnt <- O;assign("x",x,frame=1)
liklihdus <- function(theta)
{ uscnt <- uscnt + 1; ealpha <- exp(theta[1])
for(i in 1:n){ ebetali] <- exp(x[il*thetal[2])
¥;
phi <- 0
for(i in 1:n){if(ind[i] == 1)
{phi <- phi + ebetalill}}

phi <- phi/n2; like <- 1; pbyeal <- phi / ealpha

# computation of likelihood starts here

for(i in 1:n){ term <- ebetal[i]/(pbyeal + ebetalil)

term <- ((1 - (2*ind[il]))*term) + ind[i]

like <- likexterm}

like <- (-1) * like;like}

for(i in 1:dimen) {thetalil <- O}
minvalus <- nlmin(liklihdus, theta, print.level=1,

max.fcal=50, max.iter=50)

cat("alphahat betahat in PML form \n",
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file="outfilel.dat",append=TRUE)
write(minvalus,file="outfilel.dat", append=TRUE)
soln <- minvalus[1]

sol <- unlist(soln,recursive=T,use.names=F)

for(i in 1:n){ebetalil] <- exp(x[il*sol(2])
phi <- O
for(i in 1:m){if(ind[i] == 1)
{phi <- phi + ebetalil}}
phi <- phi/n2;
1nphi <- log(phi)
errind <- O;solnphi <- sol[1] - 1lnphi
for (i in 1:n){ erind <- 1
if(solnphi + (sol[2]*x[i]) > 0) {erind <- 0}

if(erind + ind[i] == 1){errind <- errind +1}
X
aerus <- errind/n
cat("\n AER in PML = ",file="c:/spr/tt/outfilel.dat"”,

append=TRUE)
write(aerus,file="c:/spr/tt/outfilel.dat",append=TRUE)
cat("\n The PML rule is \n",
file="c:/spr/tt/outfilel.dat",append=TRUE)
write(c(solnphi, sol[2]),
file="c:/spr/tt/outfilel.dat",append=TRUE)
# computation of likelihood in Andersons form
ancnt <- O; assign("x",x,frame=1)
liklihdan <- function(theta)
{ ancnt <- ancnt + 1; ealpha <- exp(thetal1])
for(i in 1:n){ ebetali] <- exp(x[il*thetal[2])}
like <- 1;
pbyeal <- 1.0 / ealpha
# computation of likelihood starts here
for(i in 1:n)
{ term <- ebetal[il/(pbyeal + ebetalil)
term <- ((1 - (2*ind[i]))*term) + ind[i]
like <- like*term}

100



like <- (-1) * like; like
¥
for(i in 1:dimen) {thetal[i] <- 0}
minvalan <- nlmin(liklihdan, theta, print.level=1,
max.fcal=50, max.iter=50)
cat("alphahat betahat in Andersons form\n",
file="c:/spr/tt/outfilel.dat",append=TRUE)
write(minvalan,"c:/spr/tt/outfilel.dat", append=TRUE)
soln <- minvalan[1]
sol <- unlist(soln,recursive=T,use.names=F)

errind <- 0
for (i in 1:n)
{ erind <- 1
if(sol[1] + (sol[2]*x[i]) > 0) {erind <- O}
if(erind + ind[i] == 1){errind <- errind +1}
b
aerus <- errind/n
cat("\n AER in Anderson’s = ",
file="c:/spr/tt/outfilel.dat",append=TRUE)
write(aerus,file="c:/spr/tt/outfilel.dat",append=TRUE)

logis.c

#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include"supdir.h"
#include"supdir.c"
#include"optim.h"
#include"optim.c"

main(int argc,char *argv(])

{

/* void real_dat(int argc,char *argv[]);*/
void simul_dat(int argc,char *argv(]);
simul_dat(argc,argv);
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/%

void real_dat(int argc,char *argv[])
{ FILE *datfile,*outfile;
double temp,**par;
int i,count,*ncol;
char *data;

double funand(double *x,double *#*par);

void dfunand(double *xx, double *df,double **par);

double funsupr(double *x,double **par);

void dfunsupr(double *xx, double *df,double **par);

void init_estim(double **par,double (*fun)(double *x,double **par),
void (*dfun)(double *xx,double *df,double **par),char head[]);

data = argv[1];

if (data == NULL)

{

printf ("\n%s [datafile] [outfile]\n",argv(0]);exit(0);

datfile = fopen(data,"r");
if (datfile == NULL)
{ printf("No such file exists. Try again.\n");
exit(0);}
count=0;
while( fscanf(datfile,"/1f",&temp) != EOF)
{count++;}
fclose(datfile);
printf ("\ninput data size = %d\n",count);
ncol=v_ialloc(count+2);
for (i i<count+2;i++)*(ncol+i)=1;
par=mat_alloc(count+2,ncol)
printf ("\nType 1-st sample size \n");
scanf ("%1f",&temp) ;
*(xpar)=temp;
*(*(par+1))=((double) count) - (x(*par)) ;
printf ("\n* (*par) = %1f *(x(par+1)) = %1f\n",*(*par),*(*(par+1)));
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datfile = fopen(data,"r");
for(i=0;i<count;i++)

{

fscanf (datfile,"%1f",&temp);
*(x(par+i+2)) = temp;

}

fclose(datfile);

outfile=fopen("logis.out","w");

fprintf(outfile,"\nComparison of Anderson’s and Roy’s Method\n");
fclose(outfile);

init_estim(par,funand,dfunand, "By Anderson’s Method");
init_estim(par, funsupr,dfunsupr, "By Roy’s Method");

}

*/

void simul_dat(int argc, char *argv[])
{ FILE *datfile,*outfile;
double temp,**par,beta;
int i,count,ni,*ncol;
char *data;

double funand(double *x,double **par);
void dfunand(double *xx, double *df,double **par);
double funsupr(double *x,double **par);

void dfunsupr(double *xx, double *df,double **par);
void init_estim(double **par,double (*fun)(double *x,double *xpar),
void (*dfun) (double #*xx,double *df,double **par),char head(]);

data = argv([1];
if (data == NULL)

{
printf("\n%s [datafile] [outfile]\n",argv[0]);
exit(0); }
datfile = fopen(data,"r");
if (datfile == NULL)
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{printf("No such file exists. Try again.\n");
exit(0);}
count=0;
while( fscanf(datfile,"%1f",&temp) != EOF)
{count++;}
fclose(datfile);
printf("\ninput data size = %d\n",count);
ncol=v_ialloc(count+2);
for(i=0;i<count+2;i++) *(ncol+i)=1;
par=mat_alloc(count+2,ncol);

printf("\nType 1-st sample size \n");

scanf ("%1f",&temp) ;

*(*par)=temp;
*(x(par+1))=((double) count) - (* (xpar)) ;

printf ("\nn1=Y1f, n2=Y%1f\n",*(*par),*(x(par+1)));
datfile = fopen(data,"r");
for(i=0;i<count;i++)
{fscanf(datfile,"%1f",&temp);

*(x(par+i+2)) = temp;

printf("\n data [%d] =%1f\n",i,*(*(par+i+2)));
}

fclose(datfile);

ni=(int) (x(*par));
printf("\nType beta value \n");
scanf ("41£",&beta);
for(i=0;i<n1;i++)

*(*(par+i+2)) += beta;

outfile=fopen("logis.out","w");

fprintf(outfile,"\nComparison of Anderson’s and Roy’s Method\n");
fclose(outfile);

init_estim(par,funand,dfunand, "By Anderson’s Method");
init_estim(par,funsupr,dfunsupr,"By Roy’s Method");

}
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void init_estim(double **par,double (*fun)(double *x,double **par),
void (*dfun)(double *xx,double *df,double **par),char head(])
{

FILE *outfile;

double *p,ftol,*fret;

int i,n,*iter;

ftol=1.0e-6;

p=v_alloc(2);

fret=v_alloc(1);

iter=v_ialloc(1);

n=2;

outfile=fopen("logis.out","a");
fprintf(outfile,"\n%s\n",head) ;

for(i=0;i<n;i++) *(p+i)=0.0;
frprmn(p,n,ftol,iter,fret, (*fun), (*dfun) ,par);
for(i=0;i<n;i++){

printf("\n theta(%d] = %1f\n",i,*(p+i));
fprintf(outfile,"\n thetal%d] = %1f\n",i,*(p+i));
} .
printf("\n No.of iterations = %d\n",*iter);
fprintf(outfile,"\n No.of iterations = %d\n",*iter);
fclose(outfile);

free(fret);

free(iter);

free(p);

¥

double funand(double *x,double **par)
{int n1,n2,i,n;
double val,temp;
nl =(int) (*(*par));
n2 =(int) (*(*(par+1)));
val=0.0;n=n1+n2;
for(i=0;i<n;i++){
temp = *x + (*x(x+1) *(*(x(par+i+2))));
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if(i<n1) val += temp;
val -= log(1.0+exp(temp));}
return(-val);}

void dfunand(double *x, double *df,double **par)
{int n1,n2,i,n;

double temp,templ;

nl =(int) (*x(*par));

n2 =(int) (*(x(par+1)));

n=ni+n2;

*df=0.0;

*(df+1)=0.0;

for(i=0;i<n;i++){

temp = *x + (*(x+1) *(x(x(par+i+2))) ) ;
templ= 1.0/(1.0+exp(temp));

if (i<n1){

*df += templ;

*x(df+1) += (x(x(par+i+2)))*templ;
} else {

*df -= exp(temp)*templ;

*(df+1) -= exp(temp)*(x(x(par+i+2)))*templ;
}}

*df= -(*df);

*(df+1)= -(x(df+1));}

double funsupr(double *x,double **par)

{int n1,n2,i,n;

double val,temp,*phi,*sampl;

void phi_hat(double *samp,int samp_siz,double *thet,double *phi);

nl =(int) (*x(*par));

n2 =(int) (x(x(par+1)));
sampi=v_alloc(n2);
for(i=0;i<n2;i++)
*(sampl+i)=x(*(par+ni+2+i));
val=0.0;

n=nl+n2;
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phi=v_alloc(2);
phi_hat (sampl,n2,x,phi);

for(i=0;i<n;i++){

temp = *x + (x(x+1) *(*(*(par+i+2))));
if (i<n1) {val += temp;}

else

{val += log(xphi);}

val -= log((*phi)+exp(temp));

} free(sampl);

return(-val);

}

void phi_hat(double #*samp,int sampsiz,double *thet,double *phi)
{

int i;

double vall,val2,temp;
vall=val2=0.0;
for(i=0;i<sampsiz;i++){

temp = exp(*(thet+1) *(*(samp+i)));
vall += temp;

val2 += temp# (*(samp+i));

}

vall/=(double)sampsiz;
val2/=(double)sampsiz;

*phi=vall;

*(phi+1)=val2;}

void df\msupr(double *x, double *df,double **par)

{int n1,n2,i,n;

double temp,*phi,*sampi;

void phi_hat(double *samp,int samp_siz,double *thet,double *phi);
nl =(int) (*(*par));

n2 =(int) (*(x(par+1)));

n=nl+n2;

*df=0.0;

*(df+1)=0.0;
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sampl=v_alloc(n2);
for(i=0;i<n2;i++)
*(sampl+i)=x(x(par+ni+2+i));
phi=v_alloc(2);

phi_hat(sampl,n2,x,phi);
for(i=0;i<n;i++){
temp = exp(*x + (x(x+1) *(*x(x(par+i+2)))));
if (i<n1){
*df += (*phi)/((*phi)+temp);
*(df+1) += ((xphi)*(*(*x(par+i+2)))-(*(phi+1)))/((*phi)+temp);
} else {
*df -= temp/((*phi)+temp);
*(df+1) -= temp* ((*phi)*(*(*(par+i+2)))
- (*(phi+1)))/((*phi)+temp) ;
T
printf("\n*df = %1f , *(df+1) = %1f\n",*df,*(df+1));
*df=-(*df);
*(df+1) = -(x(df+1));
free(phi);

combinl.c

#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<time.h>

main(argc,argv)
int argc;
char *argv[];
{ FILE *datfile;
double #*stk, *stock,*samp[2],*rnstab,q[2];
double *param,*prop,*est_par,ind,x,val,*test_smp[2];
float temp;
int i,j,k,count,cnt,lim,range;
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int *1limits(2],length;

char *data;
void estimate(int smp_no, double *stk,int range,
double *est_par);

void stabgen(double *rnstab,double *par,int length);
void error_calc(double *samp [21,
double *test[2],int *1limits[2],

int *limits1[2], double *prop, double *param);

void err_print(int argc,char *argv[],double *prop,
int *limits([2]);

void est_print(int argc,char *argv[],
double *est_par,int j);

double absol(double x, double y);
double square(double x, double y);

data = argv([i];

if (data == NULL)
{
printf("combin [datafile] [outfilel\n");
exit(0);
}
datfile = fopen(data,"r");
if (datfile == NULL)
{
printf("No such file exists. Try again.\n");
exit(0);
}
count=0;
while( fscanf(datfile,"%f",&temp) != EOF)
{count++;}
rewind(datfile);

stock = (double *)malloc(count*sizeof(double));
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for(i=0;i<count;i++)
{ fscanf(datfile,"%f",&temp);
*(stock+i) = (double) temp;
b
printf("\nTotal no. of data points in file = %d\n",
for(i=0;i<2;i++){
limits[i] = (int *)malloc(3*sizeof(int));
}
*limits [0]=*limits[1]=1;
*(1imits[0]+1)=*(limits[1]+1)=count;
if (arge > 2)

printf("\nType 1-st sample starting lower limit\n");
scanf ("%d",&k) ;

*1imits [0]=k;

printf ("\nType 1-st sample end, upper limit\n");
scanf ("%d",&k) ;

*(limits [0]+1)=k;

printf("\nType 2-nd sample starting lower limit\n");
scanf ("%d",&k) ;

*limits[1]=k; B

printf("\nType 2-nd sample end, upper limit\n");
scanf ("%d",&k) ;

*(limits[1]+1)=k;

};

for(j=0;j<2;j++){

*(1imits [j1+2)=*(limits[j1+1)-*limits[j];

samp[j] = (double *) malloc(*(limits[j]+2)+*sizeof (double));
b

for(j=0;j<2;j++)
for(i=0;i< *(1imits[j1+2);i++)
{ *(samp[jl+i)=log(*(stock+i+1+ *limits[j]))

-log(*(stock+i+ *1imits[j1));}
b
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fclose(datfile);

param = (double *)malloc(3*sizeof (double));
*param=0.5;

*(param+1)=1.0;

*(param+2)=1.0;

/* param pints to (0) - pivot value (default 0.5)
(1) - scale factor of 1-st component
(2) - scale factor of 2-nd component*/
prop= (double *)malloc(3*sizeof(double));
*(prop+2)=0.0;
error_calc(samp,samp,limits,limits,prop,param);
err_print(argc,argv,prop,limits);
est_par = (double *)malloc(4*sizeof(double));

for(j=0;j<2;j++)

range=+(limits [j]1+2);
stk=(double *)malloc(rangex*sizeof (double));

for(i=0;i<range;i++){*(stk+i)=+(samp[jl+i);}
estimate(j,stk,range,est_par);
est_print(argc,argv,est_par,j);

free(stk);

length=range;

rnstab = (double *)malloc(length*sizeof (double));
stabgen(rnstab,est_par,length);
estimate(j+2,rnstab,length,est_par);

test_smp[j] = (double *)malloc(length*sizeof (double));
for(i=0;i<length;i++){*(test_smp[jl+i)=*(rnstab+i);}
free(rnstab);

est_print(argc,argv,est_par,j+2);

¥
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error_calc(samp,test_smp,limits,limits,prop,param);
err_print(argc,argv,prop,limits);

}

void err_print(int argc,char *argv([],double *prop,
int *limits[2])
{ FILE *outfile;
printf("\n");
printf("error estimate for
1-st sample = %1f\n",*prop);
printf("error estimate for
2-nd sample = %1f\n",*(prop+1));
printf("error estimate for
combined sample = %1f\n",*(prop+2));
printf("sample_1 lower limit = %d\n",*1limits[0]);
printf("sample_1 upper limit = %d\n",*(limits[0]+1));
printf("sample_2 lower limit = %d\n",*limits([1]);
printf("sample_2 upper limit = %d\n",*(limits[1]+1));

if(argec == 3)

{ outfile = fopen(argv[2],"a"); .
fprintf (outfile,"\n");
fprintf(outfile,"error estimate for

1-st sample = %1f\n",*prop);
fprintf(outfile,"error estimate for

2-nd sample = %1lf\n",*(prop+1));
fprintf(outfile,"error estimate for
combined sample = %1f\n",*(prop+2));
fprintf(outfile,"sample_1 lower limit
= %d\n",*1limits[0]);

fprintf (outfile,"sample_1 upper limit

= %d\n",*(limits[0]+1));

fprintf(outfile, "sample_2 lower limit

= %d\n",*1imits[1]);

fprintf(outfile, "sample_2 upper limit

= %d\n",*(1imits[1]+1));

fclose(outfile);
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X
}

void est_print(int argc,char *argv(],

double *est_par,int j)

{FILE *outfile;

printf("\n parameter estimates for sample_%d\n",j);
printf("alpha = %1f\n",*est_par);
printf("beta = %1f\n",*(est_par+1));

printf("c = %1f\n",*(est_par+2));

printf("delta = %1f\n",*(est_par+3));

if(argc == 3)
{ outfile = fopen(argv[2],"a");
fprintf(outfile,"\n parameter estimates
for sample_%d\n",j);
fprintf(outfile,"alpha = %1f\n",*est_par);
fprintf(outfile,"beta = %1f\n",*(est_par+1));
fprintf(outfile,"c = %A1f\n",*(est_par+2));
fprintf(outfile,"delta = %1f\n",*(est_par+3));
fclose(outfile);
¥
X

void error_calc(double *samp[2],

double *test[2],int *1limits[2],

int *1imits1(2],double *prop, double *param)
{int j,i,jj,ii,cnt,lim,limi;

double q[2],x,ind,level=0.0,val;
double absol(double x, double y);
for(j=0;3<2;3j++)

{

ind = (double) (1-(2%3));
im=*(limits1[j]+2);
;i<lim;i++)
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{ x=x(test[j1+i);

for(jj ji<2;33+9){
qljj1=0; Llimi=+(limits[jjl+2);
for(ii=0;ii<liml;ii++)
{if(x > *(samp[jjl+iid){q[jjl +=1.0;3};
¥
qljjl /= (double) 1limi;
}

val = absol(q[0],*param)-absol(q[1],*param);
if (indx(val-level) > 0.0)

{cnt++;};}

*(prop+j)= ((double) cnt)/((double) lim);
*(prop+2) += (double) cnt;

*(prop+2) /= (double) (*(limits[0]+2)+ *(limits[1]1+2));
¥

double absol(double x, double y)
{return(fabs(x-y));}

double square(double x, double y)
{return( (x-y)*(x-y));}

void stabgen(double *rnstab,double *par,int length)
{FILE *rstab;
int i;
double uil,u2,vi,v2,v3,w,phi,phiO;
double kalpha,val,pi_by2,pi=3.14159;
pi_by2=pi/2.0;
randomize();
kalpha=*par;
if (kalpha > 1.0){kalpha -= 2.0;};
phiO=(-1.0)*pi_by2* *(par+1) *kalpha/(*par);
rstab= fopen("stabvar","a");
if (xpar != 1.0)
{for(i=0;i<length;i++)
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{
ul= rand();
ul /= (double) 32767;
u2= rand();
u2 /= (double) 32767;
w=(-1.0)*log(ul);
phi=pi*(u2-0.5);
val=xpar *(phi-phiO);
vl = cos(phi-val)/w;
v2 = sin(val);
v3 = cos(phi);
val = exp( (log(vixv3))/(xpar));
val /= v1; val *=v2;
val *= *(par+2);
val += *(par+3)/(x(par+2));
*(rnstab+i)=val;
fprintf(rstab,"\n *rnstab = %1f\n",*(rnstab+i));

}
¥;
if (xpar == 1.0)
{
for(i=0;i<length;i++)
{

ul= rand();
ul /= (double) 32767;
u2= rand();
u2/= (double) 32767;
w=(-1.0)*Llog(ul);
phi=pi*(u2-0.5);
v1=2.0% *(par+1)/pi;
v2= 1.0+(v1*phi);
*(rnstab+i)=(v2*tan(phi))-(vi*log(wxcos(phi) /v2));
b
X
X

void estimate(int smp_no, double *stk,
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int range,double *est_par)
{ double x_95,x_75,x_50,x_25,x_05;
int i_95,i_75,i1_50,i_25,i_05;
double na,nb,nc,nd,x;
float temp;
int i,j,k,count;
double a,b,c,d,*aa;
int mycompare(double *x, double *y);
double interpolate(double, double,
double,double,double);

void table_1i(double x, double y, double *aa);
double table_2(double, double);
double table_3(double, double);

aa = (double *) malloc(2*sizeof(double));
count=range;
gsort(stk,count,sizeof (double) ,mycompare) ;
x = (double) (2.0%*count*.05+1.0)*.5;
i_05 = (int) x;
x_05 = interpolate((double)i_O5,*(stk+i_05-1),
(double)i_05+1,*(stk+i_05),x);
x = (double) (2.0*count*.25+1.0)*.5;
i_25 = (int) x;
x_25 = interpolate((double)i_25,*(stk+i_25-1),
(double)i_25+1,*(stk+i_25),%x);
x = (double) (2.0*count*.5+1.0)*.5;
i_50 = (int) x;
x_50 = interpolate((double)i_50,*(stk+i_50-1),
(double)i_50+1,*(stk+i_50),x);
x = (double) (2.0%countx.75+1.0)*.5;
i_75 = (int)x;
x_75 = interpolate((double)i_75,*(stk+i_75-1),
(double)i_75+1,*(stk+i_75),x);
x = (double) (2.0*count*.95+1.0)*.5;
i_95 = (int) x;
x_95 = interpolate((double)i_95,*(stk+i_95-1),
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(double)i_95+1,*(stk+i_95),x);
na = (x_95 - x_05)/(x_75 - x_25);
nb = (x_95 + x_05 - 2.0%x_50)/(x_95 - x_05);
table_1(na,nb,aa);
a=*aa; b=*(aa+l);
nc = table_2(a,b);
c = (x_75 - x_25)/nc;
nd = table_3(a,b);
d = x_50 + c*nd - bxc*tan(3.14159265*a/2.0);
printf("\n parameter estimates for sample_%d\n",smp_no);
printf("alpha = %1f\n",a);
printf("beta = %1f\n",b);
printf("c = %1f\n",c);
printf("delta = %1f\n",d);
*est_par=a;
*(est_par+1)=b;
*(est_par+2)=c;
*(est_par+3)=d;
}

int mycompare (double *x,double xy)
{
if ( (¥x - *y) > 0 ) {return(1);}
else {if ((*x -*y) <0) return (-1);};
return(0);
¥
double interpolate(x1,yl,x2,y2,x)
double x1,y1,x2,y2,x;
{ double tmp;
tmp = y1 + (x- x1)*(y2 - y1)/(x2 - x1);
return(tmp);}

void table_1( double x, double y, double *aa)

{
int i,j,pt_x=14,pt_y=6;
double a_1,a_2,b_1,b_2,a,b;
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double
2.0
1.916
808
729
664
563
484
391
279
128
029
.896

[ SN T T

double

OO0 O0OO0OO0O0O0O0O0O0OO0O0O0
OCO0OO0OO0OO0CO0O0O0O0O0OO0O0O0

data_1[] = {2.0

»2
»1

[ R T SR U SN UNN

.0

.924
813
.730
.663
560
.480
.386
.273
.121
.021

.892
.812
.695
.590

data_2[] = {0.0,2
.0,1.592,3.39,1.0,1.0,1.0,1.

.759
.482
.360
.253
.203
.165
.136
.109
.096
.082
.074
.064
.056

double nu_x[]
3.5,4.0,5.0,6.0,8.0,10.0,15.0,25.0};
= {0.0,0.1,0.2,0.3,0.5,0.7,1.0};

double nu_y[]

1.924
1.829
1.737
1.663
1.553
,1.471
1.378
1.266
1.114
1.014
, .887
, -806
s .692
, .588

,1.8 ,1.0

,1.048  ,1.694
, .76 ,1.232
, .518 , .823
, .41 , .632
, .332  , .499
, 271, .404
, .216 , .323
, .19 , .284
, .163 , .243
, 147, .22

, .128  , .191
, L112 ., .167

= {2.439,2.5,2.6,2.

,2.0

.924
.829
.745
.668
.548
.460
.364
.250
101
.004
.883
.801
.689
.586

[ I T e R

.160,1.0,
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,2.0

.924
829
745
676
547
448
337
210
067
974
.855
.780
676
579,

[T S S S

2.0

.924
.829
.745
.676

.438
318
.184
027

.823 ,
.756 ,
.656 ,
.563 ,

orhrrRRRRR

1.0,1.0,1.0,1.0

o
s1.
o

.229
1.575
,1.244
, .943
, .689
, .539
, 472
, 2412
, 377
, .33
, -285

7,2.8,3.

S
]
& ®

0,3.2,

[ I = TS U VUSRS,

924

318

ocoooo

.195
.917
.759
.596
.482
.362
.274



if (x < 2.439)

{ a=2.0; b = y; return;}
else if ( fabs(y) > 1.0)
{
b = (y/fabs(y));
i=0;

while(i < 15)
{

if (x < nu_x[il)
{ pt_x = i-1;

break;
b
i+ ¥}
a = interpolate(nu_x[pt_x],data_1[7*pt_x+6],

nu_x[pt_x +1],
data_1[7*pt_x+13],x);

return;
¥
else
{ i=0;

while (i<15)
{

if (x < nu_x[i])
{
pPt_x = i-1;
break;
b
A4+
3}
3=0;
while (j< 7)
{
if (fabs(y) < nu_y[jl)
{ Pty = j-1;
break;
b

J++;
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¥

a_l=interpolate(nu_x[pt_x],data_1[7*pt_x+pt_yl,
nu_x[pt_x+1],data_1[7*pt_x+pt_y+7],x);

a_2=interpolate(nu_x[pt_x],data_1[7*pt_x+pt_y+1],

nu_x[pt_x+1],data_1[7*pt_x+pt_y+8],x);
a=interpolate(nu_y[pt_y],a_1,nu_y(pt_y+1],a_2,fabs(y));
b_i=interpolate(nu_x[pt_x],data_2[7*pt_x+pt_y],

nu_x[pt_x+1],data_2[7*pt_x+pt_y+7],x);

b_2=interpolate(nu_x[pt_x],data_2[7*pt_x+pt_y+1],

nu_x[pt_x+1],data_2[7*pt_x+pt_y+8],x);
b=interpolate(nu_y[pt_yl,b_1,nu_ylpt_y+1],b_2,fabs(y));
if (b > 1.0) b =1.0;

b =

*aa=

>

(y/fabs(y))* b;
*(aa+1)=b;

a;

double table_2(x,y)

double x,y;
{

int i,j,pt_x=15,pt_y=4;
double ncl,nc2,nc3;

double datal(]

.914
.921
.927
.933
.939
946
.955
.965
.980
000
04
098
189
.337
.588 ,3.

NRORNRDNONN BB R R R B

PMNRORNNNR R R RRBR R R R

967

.984
.007
.040
.085
.149
.244
.392
.635

073

OéwwNMMMI\JMMHMHHH

double nu_a[l= {2

= {1.908
.915
.922
.930
.940
.952

916
927
943
962
988
022
067

.125
.205

311
461

.676
.004

542

.534

,1.908 ,1.908

,1.918 ,1.921
,1.936  ,1.947
,1.961  ,1.987
,1.997  ,2.043
,2.045 ,2.116
,2.106 ,2.211
,2.188 ,2.333
,2.294  ,2.491
,2.435 ,2.696
,2.624 ,2.973
,2.886 ,3.356
,3.265 ,3.912
,3.844 ,4.775
,4.808 ,6.247
,6.636 ,9.144
.8,

,1.908

,1.908

1.7,1.6,1.5,1.4,1.3,1.2,
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1.1,1.0,.9,.8,.7,.6,.5};
double nu_b[l= {0.0,0.25,0.5,0.75,1.03};
i=0;
while (i<16)
{ ifC x > nu_alil)
{ pt_x = i-1; break;
¥
i++;
b
3=0;
while (j<5)
{
if ( fabs(y) < nu_b[(jl)
{ pt_y=j-1;
break;
T
JH+s
¥
ncl =interpolate(nu_alpt_x],datal[S*pt_x+pt_yl,
nu_al[pt_x+1],data[5*pt_x+pt_y+5],x);
nc2 =interpolate(nu_alpt_x],data[5*pt_x+pt_y+1],
nu_al[pt_x+1],data[5*pt_x+pt_y+6],x);
nc3 =interpolate(nu_blpt_yl,ncl,nu_blpt_y+1],nc2,fabs(y));
return(nc3);}

double table_3(x,y)
double x,y;

{ int i,j,pta=15,ptb=4;
double ndi1,nd2,nd3;
double dat[]={0.0 ,0.0 ,0.0 ,0.0 ,0.0 .
0.0 ,-.017 ,-.032 ,-.049 ,-.064
0.0 ,-.030 ,-.061 ,-.092 ,-.123
0.0 ,-.043 ,-.088 ,-.132 ,-.179
0.0 ,-.056 ,-.111 ,-.170 ,-.232
0.0 ,-.066 ,-.134 ,-.206 ,-.283
0.0 ,-.075 ,-.154 ,-.241 ,-.335
0.0 ,-.084 ,-.173 ,-.276 ,-.390
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0. ,—--192 .310 ,-.447 B
0. ,-.208 346 ,-.508 B
0. ,-.223 383 ,-.576 A
0. ,--237 424 ,-.652 B
0. ,-.250 ,--469 ,=-742 ¥
0. ,-.262 520 .853 B
0. 5272 ,-.581 997 K
0. »=--279 ,-.659 ,-1.198 };

double nua[l={2.0,1.9,1.8,1.7,1.6,1.5,1.4,1.3,1.2,1.1,1.0,
.9,.8,.7,.6,.5};
double nub[]1={0.0,0.25,0.50,0.75,1.00};

i=0;
while(i<16)
{

if( x > nualil)
{ pta = i-1;
break;
b
i++;
T
j=0;
while(j<5)
{ if( fabs(y) < nub[jl)
{ ptb =j-1; break; }
s
b
ndl = interpolate(nualptal,dat[5*pta+ptb]l,
nua[pta+1],dat [S*pta+ptb+5],x);
nd2 = interpolate(nual(ptal,dat[S*pta+ptb+1],
nua(pta+1] ,dat [5*pta+ptb+6],x);
nd3 = interpolate(nub[ptb]l,ndl,nublptb+1],nd2,fabs(y)>;
nd3 = (y/fabs(y))*nd3;
return(nd3);
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stabfig.c

#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#include<time.h>
#include"supdir.h"
#include"supdir.c"

main(int argc,char *argv[])

{

FILE *datfile,*outfilel,*outfile2,*outfile3;
double *stack, *stock, *samp[2];
double #*param,x,val;
double temp,left,rt,h,xx;
int i,j,k,start,stop,count,cnt,len,range, *sampdim;
int x_1lim;
char *data;

double rulel(double *samp[2],double x,double *par);
double rule2(double *samp[2],double x,double *par);
void up_order(double *samp,int sampdim);

double gtile(double *samp,double, x,int sampdim);

data = argv([1];
if (data == NULL)

printf("combin [datafile] [outfile]\n");
exit(0);

X
datfile = fopen(data,"r");
if (datfile == NULL)

printf("No such file exists. Try again.\n");
exit(0);
b

count=0;
while( fscanf(datfile,"%1f",&temp) != EOF)
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{count++;}

rewind(datfile);

stock = v_alloc(count);

for(i=0;i<count;i++)

{ fscanf (datfile,"}1f",&temp);
x(stock+i) = log(temp);

printf("\nTotal no. of data points in file = %d\n",cournz.

stack=v_alloc(count-1);

for(i=0;i<count-1;i++)
*(stack+i)=*(stock+i+1) - (*x(stock+i));
free(stock);

sampdim=v_ialloc(2);
for(i=0;1<2;i++){
printf("\nType %d-st sample starting lower limit\n",i+1);
scanf ("%d",&start);
printf("\nType %d-st sample end, upper limit\n",i+1);
scanf ("%d",&stop) ;
len=stop-start+l;
*(sampdim+i)=len;
samp[i]=v_alloc(len);

for(j=0; j<len;j++) *(samp[i]+j)=*(stack+start—1+j);
¥
fclose(datfile);

up_order (samp [0] , *sampdim) ;

up_order (samp[1],*(sampdim+1)) ;

for(i=0;i<*sampdim;i++)

printf("\nsamp[0] +%d =%1f\n",i,*(samp[0]+i));

left= *samp[0] > *samp[1] ? *samp[0] : *samp[1];

rt= *(samp[0]+(*sampdim)-1) < *(samp[1]+(*(sampdim+1))-1) 7
*(samp [0] + (*sampdim)-1) : *(samp[1]+(*(sampdim+1))-1);
printf("\nleft = %1f, rt = %1f\n",left,rt);

param=v_alloc(2);
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*param = (double) *sampdim;
*(param+1)=(double) *(sampdim+1);
x_1im=50;
h=(rt-left)/((double)x_lim);
xx=left;
outfileil=fopen("stplotl.dat","w");
for(i=0;i<x_lim;i++)

{

fprintf(outfilel,"%1f %1f %1f\n",xx,rulel(samp,xx,param),
rule2(samp,xx,param)) ;

xx+=h;

}
outfile2=fopen("stplot2.dat","w");
for(i=0;i<*sampdim-1;i++)

xx=x(samp [0]+1) ;
fprintf(outfile2,"%1f %1f\n",xx,-log(qtile(samp[0],xx,*sampdin)));

outfile3=fopen("stplot3.dat","w");

for(i=0;i<*(sampdim+1)-1;i++)

{

xx=*(samp [1]+1) ;

fprintf (outfiled,"41f %1f\n",xx,-log(qtile(samp(1],xx,*(sampdin+1))));
}r

double rulel(double *samp[2],double x,double *par)
{

int i,n1,n2;

double val,npl,np2,n;

ni=(int) (xpar);

n2=(int) (x(par+1));

n= (x(par+1))+(*par);

npi=np2=0.0;

for(i=0;i<ni;i++)

npl *(samp[0]+i) >x ? 1.0 : 0.0;
;i<n2;i++)




np2 += *(samp[1l+i) >x ? 1.0 : 0.0;
npl /=n;

np2 /=n;
val=fabs(np2-0.5)-fabs(np1-0.5);
return(val);

¥

double rule2(double *samp_ 2. ,double x,double *par)
{

int i,ni1,n2;

double val,npl,np2,n,pil,pi2

ni=(int) (*par);
n2=(int) (*(par+1));
n= (*(par+1))+(*par)
pil= *par/n;
pi2=x(par+1)/n;

npl=np2=0.0;

for(i=0;i<ni;i++)

npl += *x(samp[0J+i) >x 7 1.0 : I.C;
for(i=0;i<n2;i++)

np2 += *(samp[1]+i) >x ? 1.0 : 2.Z;

npl /=n;

np2 /=n;
val=(pi2*fabs(np2-0.5))-(pil*fabs(npi-C
return(val);

}

double qtile(double *samp,double x,int sampdim)

int i;

double val=0.0;

for (i=0;i<sampdim;i++)

val += *(samp+i) >x ? 1.0 : 0.0;
val /=(double)sampdim;
return(val) ;
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}

void up_order(double *samp,int sampdim)

{

int i,j,k;

double temp;

for(i=0;i<sampdim;i++)

{for(j=i+1; j<sampdim; j++)

{if (*(samp+j) < *(samp+i)){temp=+*(samp+j)
*(samp+j)=*(samp+i) ;
*(samp+i)=temp;

3}

ecfcomr.inp

set terminal latex

set output "ecfr.tex"

set size 4.7/5.,3.8/3.

#set format xy "$%g$

set title "Figure 1. Plot of real parts of e.c.f of Normal and Cauchy."
set xlabel "$x$" -1,-1

set ylabel "$y$" 1,-1

set zlabel "$Re \phi (x+\mbox{i}ly)$" -1
set nokey

set label "Normal" at 0.25,0.25,1.15
set label "Cauchy" at 0.25,0.25,1.1
#set xtics

x1=0.150289049572354

.44738274462592

1.2834786708003
0.924228233319889
x5=0.82362118260394
x6=0.399613675386185
x7=-0.384365934425452
x8=-1.21272501905165
x9=0.729908355095443
x10=1.26577318735458
0.384118949439741
.7T79717426386718
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y3=-0.931442798351007

y4=0.89859960887145

y5=1.45644941243947

y6=2.33519940686864

y7=-0.553710415077411

y8=0.690911363405423

¥y9=2.17043384864147

y10=-1.89370528544057

normal(x,y)=((exp(-y*x1)*cos (x*x1))+(exp(-y*x2)*cos(x*x2))\
+(exp(-y*x3)*cos (x*x3) )+ (exp (-y*x4) *xcos (x*x4) )\

+(exp (-y*x5)*cos (x*x5) )+ (exp (-y*x6) *cos (x*x6))\

+(exp (-y*x7)*cos (x*x7) )+ (exp (-y*x8) *cos (x*x8))\

+(exp (-y*x9) *cos (x*x9) )+ (exp (-y*x10) *cos(x*x10))) /10.0
cauchy (x,y)=((exp(-y*y1) *cos(x*y1))+(exp(-y*y2)*cos (x*y2))\
+(exp(-y*y3)*cos (xxy3))+(exp(-y*y4)*cos (xxy4))+\

(exp (-y*y5) *cos (x*y5))+(exp(-y*y6)*cos(x*y6))\
+(exp(-y*y7)*cos(xxy7))+(exp(-y*y8) *xcos (x*xy8))\
+(exp(-y*y9) *cos (x*y9))+(exp(-y*y10) *cos (x*y10)))/10.0
splot [-0.1:0.1] [-0.1:0.1] normal(x,y), cauchy(x,y)

stabl.inp

set terminal latex

set output "stabrl.tex"

set size 4.5/5.,3.8/3.

#set format xy "$%g$

set title "Figure 1. Plot of two classification rules"
set xlabel "$x$" 0,-1

set ylabel "$rule\;value$" -6

set nokey

set label "Rule 1 ----" at 0.08,0.12

set label "Rule 2 {\bf ----}" at 0.08,0.1

set xtics -0.14,0.04

plot "stplotl.dat" using 1:2 w 1,"stplotl.dat" using 1:3 w 1

stab2.inp

set terminal latex



set output "stabr2.tex"

set size 4.5/5.,3.5/3.

#set format xy "$%g$

set title "Figure 4. Plot of -log(quantile) for two samples"”
set xlabel "$x$" 0,-2

set ylabel "$-log(quantile)$" -7

set nokey
set label "1st sample (1-320) \ \ ---- " at 0.18,6 left
set label "2nd sample (321-614) {\bf ----}" at 0.18,5.5 left

#set xtics
plot "stplot2.dat" w 1,"stplot3.dat" w 1

dird.in

nl <- 9

n2 <- 8

x1<- rep(0,n1)

x2<- rep(0,n2)
chord<-function(theta,x)
{1-mean(cos(x-rep(theta,length(x))))}

x1[1]<-75
x1[2]<-75
x1[3]<-80
x1[41<-80
x1[5]<-80
x1[6]<-95
x1[71<-130
x1[8]<-170
x1[9]<-210
x2[1]<-10
x2[2]<-50
x2[3]<-55
x2[4]<-65
x2[5]<-90
x2[6]1<-285
x2[7]<-325
x2[8]<-355
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x1 <- x1%3.14159/180
x2 <- x2x3.14159/180

cbar<- function(x)

{mean(cos(x))}

sbar<- function(x)

{mean(sin(x))}
rbar<- function(x)
{sbar(x)/cbar(x)}
popind<-function(theta,x1,x2,a,b,d)
{if( axchord(theta,x1) > b*chord(theta,x2)+d ) u<-0 else u <-1
u}

aer<-function(x1,x2,a,b,d)
{errpro<-rep(0,3)
nl <- length(x1)
n2 <- length(x2)

for(i in 1:n1)

{

y <- x1lx1 != x1[i]]
u<-popind(x1[il,y,x2,a,b,d)-1
errpro[1] <- errpro[1]+(u*u)

}
for(i in 1:n2)
{

y <- x2[x2 != x2[i]]

errpro[2] <- errpro[2])+popind(x2[il,x1,y,a,b,d)

errpro[3] <- (errpro[i]+errpro[2])/(n1+n2)
errpro[1] <- errpro(i]/ni
errpro[2] <- errpro[2]/n2

errpro

¥
aer(x1,x2,1,1,0)
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Chapter 11

Figures

11.1 Introduction

The figures shown here were all drawn using GNUPLOT programs which
can be used to produce LATEX files. Figure 1 shows a 3-d surface plot of
the real parts of ¢.c.fs (extended to the complex plane i.c., the generalized
Fourier Transform) of Normal and Cauchy (scale factors 1 and shift param-
cters 0). Figure 2 shows the imaginary part for the same set of variates
generated. The underlying variates were generated using the SPLUS rnorm
and rstab functions. Just 10 data points show the difference between the
two distributions.

Figure 3 compares the quantile based rules with and without considering
inclusion probabilitics.

Figure 4 shows that the initial breakpoint to separate the two samples
from the original datasct is not quite justified taking the two samples to be
homogencous with respect to the index or a.
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Tigure 1. Plot of real parts of c.c.f of Normal and Cauchy Normnal
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Figure 3. Plot of two classification rules
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Tigure 4. Plot of -log(quantile) for two samples
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