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LIST OF NOTATION

R the real line

+ N
R positive half of the real line ( [O,m) )
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INTRODUCTION

The introduction of the concept of asymptotic efficiency of
ctatistical estimators in connection with proposing and developing
<he method of maximum likelihood by R.A. Fisher (Fisher (1922, 1925))
is really the starting point of the esymptotic theory of estimation.
-~istorically, however, Laplace (1774) and Gauss (1809) had made two
Jifferent studies earlier than Fisher both connected with asymptotic
theory of estimation. Fisher considered only consistent asymptotically
normal estimators and measured the asymptotic performance of an esti-
mator by its asymptotic variance. Thus, a consistent asymptotically
normal estimator with least possible asymptotic variance was defined
to be an efficient estimator. Fisher also claimed to have proved that
under certain regularity conditions the maximum likelihood estimator
(MLE) is efficient in the above sense. In the thirties and forties
several authors (Dugue (1936a, 1936b, 1937), Wilks (1938), Neyman (1949)
and others) attempted to obtain a rigerous proof of the efficiency of
the MLE and there was a general belief that there exists an efficient
estimator in the general case which may be obtained by the method of
naximum likelihood. This belief existed until J.L. Hodges produced
in 1951 the ™ revolutionary " examples of " super efficient " esti-
mators (one can see, for example, Ghosh (1985) or Le Cam (1953) uhere
it first appeared). Hodges' example shows that in the usual regular
cases there exist asymptotically normal estimators whose asymptotic

variances are aluays less than or equal to that of the MLE and are

ictly less than that of the MLE at particular values of the para=

er and at these particular values the asymptotic variance may even
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-c made equal to zero. Thus, the MLE is not efficient in the above
cense and indesd, within the class of all asymptotically normal esti-

mators no estimator with minimal asymptotic veriance exists.

However, the ideas of Fisher and the existence of " super
efficient " estimators greatly influenced the development of the
theory of efficient estimation and a modern approach to the theory of
asymptotic efficient estimation emerged in the fundamental paper of
Le Cam (1953). The theory was further developed in the works of Le Cam
(1960, 1964, 1972), Hajek (1970, 1972), Wolfowitz (1965), Mmillar (1983)
and others. This approach uhich reached more or less its final form
in the papers of Hajek (1972) and Le Cam (1972) considers all estimators
in stead of restricting to the class of asymptotically normal estimators
only, but the officiency or the performance of these estimators is
measured in a slightly different way. Millar (1983) presents a very
clear exposition of this theory extending some of the basic results of
Le Cam (1972). A lucid account of this development of Hajek - Le Cam

theory of efficient estimation is aveilable in Ghosh (1985).

For case of exposition, let us consider the case where we have
independent and identically distributed (i.i.d.) observations XjsX,s...sX
with a common distribution Pg , & being a real parameter. Let |<n(’rw)
be the normalizing factor for the given family of distributions. A formal
definition of a normalizing factor is given, for example, in Weiss and
Wolfowitz (1974, p.13). Roughly speaking, ™ This means that the best that any

: - e 4 thi “Lyu
estimator T =T (X,...pX) can estimate & io to within Op(Kn )
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(Weiss and Wolfowitz (1974)). For example, in the regular cases K_
A natural measure of the asymptotic performance of a sequence of estimator

T is given by

Ln g L[k (T, -#)] (€Y
n—wo
where L is an appropriate loss function. In stead of (1), Hajek

(1972) considered the local asymptotic risk (a smooth version of (1)) I

Ege L[k (T -] (@)

R(e , {Tn})=61_i;nu .

as a measure of the performance of {T, } at & and obtained (uncer
regularity conditions) a lower bound to this measure in the class of
all estimators, Following Fabian and Hannan (1982) we consider a
variant of the measure (2)
8
L k(T -] (3)

Ple , {T,}) = lim lim

sup aEas
A—@ n>o e -8l < AK]

Thus an estimator T, for which the local asymptotic risk P& , {Tn} )
(with 1im replaced by 1im) is squal to the local asymptotic minimax
risk

—at
L[KetT, - 80]

p(g) = lim lim inf

sup _1fer
A—o n—wm T I8 -el < AK

n
mey be considered as an efficient estimatoxr.
Hajek's lower bound for R(&, {T }) is given by
>
Ree, {1.})2ELOO (4)
where X is a random variable with distribution N(O, l’l(e)), i(e)

being Fisher's information at & . Following the arguments in his

sroof one can indeed prove the sharper inequality

ple, {1} ) 2p) 2E LX) ()
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In this connection one can sse the remarks following the proofs of (4)
given in Hajek (1972) and Ibragimov and Hasminskii (1961), Fabian and
Hannan (1962) had shown that the bound in (4) is not sharp and may not
be attainable and therefors it seems natural to consider the measure

o(e, {7} ) in stead of R, §7.1 0.

Hajek's inequality (4) was proved under the assumption of
esymptotic normality of the log likelihood ratic. According to Hajek,
" The statisticel essence of regularity consists in the possibility
of replacing the family of distributions by e normal family in a local
asymptotic sense." This notion of regularity known ae local asymptotic
normality (LAN) was developed in the pepers of Le Cam (1953, 1956, 1950).
A fanily of distributions {Pg} (or rather {pg } »n21, Pg being
the n fold product of Py for i.d.d, case) is said to satiefy the
LAN condition at soms particuler valus € 4if it admits the follouing

local asymptotic expension of the likelihood ratio §

da Pl -1/2
—EEA s s fu A @ -l @ e, 0], uen
drg o

uhere 1(8) is a positive finite number and /\ , &, sre random

variables such that

,,Z’,{A\n(e) Iv,;} = o, 1(8))

n
5
e 250,
n
It is important to note that in all these irvestigations the asymptotic

properties of the likelihood ratio (in the neighbourhood of the true



parameter point) play a very crucial role,

In 1872, Lucien Le Cam developed the concept of limiting ex~

periments. The definition of limits of experiments essentially uses

the notion of standard and comparison of iments intro-
duced by Blackwell (1951). The idea is to approximate a statistical
oxporiment €= {py, A e} by a sinpler, knoun and mathenatically
tractable experiment F = {&, A€/\] so that ue can solve the
problem in F and use this solution to solve the problem in E. Us

can use this notion of limiting experiment to obtain a lower bound to
the local ssymptotic minimax risk. A nice account of this approach is
given in Millar (1983). Theorem III.1l.1 in Millar (1983) which is
referred to as Hajek-Le Cam asymptotic minimex theorem states that if

e have a sequence of experiments E” converging to same experiment E,
then the limit of the minimax risk for experiment E" is greater than
or equal to the minimax risk of the limiting experiment (a formal state-

ment of this result is given in Section 1.3). Nou the quantity

inf sup 1 Egr L [ K (T —@t)
TIQ'—Glf_ﬂKnlg [nn ]

can be expressed as the minimax risk for the experiment

n p
€ = {°e+ Ak NS A} » n2 1. If now one can show that this
sequence of experiments converge to some simpls known experiment
£ = {QM HNINEY) }, then the Hajek-Le Cam asymptotic minimax
theorem gives a lower bound to the local asymptotic minimax risk P(e)
which is obtained by computing the minimax risk for the experiment

E= {ﬂ}\é S Elﬁ} (one must verify that the limit of the minimax
of
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risk for

as A —>@ , is the minimax risk for E. Millar (1983,
p. 147-148) gives an argument).

In the regular ceses, the limiting experiment is the Gaussien
shift experiment {N(?\, 18)) tAeRr } . One can easily compute
the minimax tisk for this experiment by e well knoun Bayesian argument

and obtain the inequality (5).

Hauing obteined the lower bound to the local asymptotic risk
one can now give sufficient regularity conditions under which the MLE
and the Bayes ostimators are asymptotically sfficient for a natural

class ef loss fumetions in the sense that the lower bound is atteined

by thess estimators (see, for example, Ibragimov and Hasminskii (1981)).

In the non-regular cases, however, it is usll knoun that the
methed of maximum likelihood does not yield ™ efficient " estimators,
Ueiss and Wolfowltz (1974) studied a family of non-regular eases and
suggested an estimator called maximum probability estimator. It was
shoun that although the MLE is not efficient for these nen-regular
examples, tho meximum probobility estimators uhieh ore equivalent to
the MLE in the regular coses, continue to be officiont (in the sonse of

Weiss and Wolfouitz) in the non-regular cases.

In the present work we study a class of non-regular cases whieh
include the Weiss-Wolfowitz examples and study the problem of efficient
estimation in the Hejek-le Cam approech indicated above. The starting
point of this work is the remark made im Ghosh (1985) about the results

of Weiss and WolPowitz (1974), uhere he suggests that it is worth studying
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the non-regular cases using the Hajek—Le Cam=Millar approach. Ibragimov
and Hasminskii (1981) =lso studied non-regular cases quite extensively

but their methods cre different from ours,

Let { PRiee® } » N2 1, be a sequence of statistical ex—

ts with a real p € . It is noted that in many non -

regular cases, the likelihood ratio

has certain local

asymptotic expansion at all & € ® « In Chapter 1 we obtain our
results assuming such an asymptotic expansion of the likelihood ratic.
It is shoun that the sequence of experiments E| = {P; sk LA c/\}
where /\ is some appropriate interval in R, comnverges to ann" expo=
nential shift experiment M. We consider a wide class of loss functions
and compute the minimax risk in the limiting experiment uhich gives us
a lower bound to the local asymptotic minimex riek P(&) by Hajek =
Le Cem asymptotic minimax theorem. Ue then suggest an estimator which
is shoun to be efficient under certain assumptions. Ue also obtein

a convolution theorem characterizing the class of possible limiting
distributions of " reguler " estimators., It states that the limiting
distribution of any sequence of regular estimators can be expressed

es the convolution of tuo probability distributions = one is the
limiting distribution of the suggested estimator, the other being some
probability measure depending on the choice of the regular estimator.
An alternative proof of the result that the local asymptotic risk of
the suggested estimator is mimimum in the cless of regular estimators

follows es a corollary of the convolution theorem.
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Chapter 2 deels with specific non-regular cases. In this
chapter we apply the results of Chapter 1 for two important classes
of non-reguler exemples. We first consider the case uhere the obser—
vations ere independent and identicaelly distributed with demsity whose
support is an interval depending on € . As a second example we consider
a regression typo model uhere ths cbservations are independent but not
identically distributod. Ue solve the problem of officient estimation
in these cases using the results obtained in Chapter 1. Ue also study
the asymptotic properties of the maximum probability estimators and a
class of Bayes estimators., This chap*~r and Chapter 1 are based on

Samanta (1986a),

In Chapter 3 we prove tie approximate Bayes property of the

estimator suggested in Chapter 1. Ue consider only the i.i.d. case.

1t is well knoun that in the regular ceses, for a wide varisty of
priors, the posterior tends to a normal distribution., This was first
observed by Laplace (1774) and more recently by Bernstein (1917) and
von Mises (1931). .Using this result cne can show that the MLE is
asymptotically equivelent to the Bayss estimators for any prior satis=
fying some mild condition (see, for example, Bickel and Yahav (1969) ,
Chao (1970) or Boruanker et al, (1571)). In Chapter 3 we prove an
analogue of the Bernstein-von Mises theorem in non-regular case, The
limiting posterior distribution is, however, not normal, This result
is then used to study the asymptotic behaviour of the Bayes estimators
and it is shown that the Bayes estimators are asymptotically equivalent

to the estimator suggested in Chapter 1. Ue also use this result to
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obtain a lower bound to the local asymptotic minimax risk. It is noted
that the proofs of the results of Bickel and Yahav (1969), Chao (1870)
and Boruanker et al, (1971) on asymptotic normality of posterior are
based on an assumption which is not satisfied even in the simplest
regular cases. le show that we can obtain their results under & much

weaker assumption. This chapter is based on Samante (1986b), .

In Chapters 1-3, we considered the case uhers there is only
one unknoun real paremeter - & with respect to uhich the problem is
non-reguler, In Chapter 4 we consider the case in which there is an
additional unknoun parameter, say, ® . This type of problems were
studied by Smith (1985), Cheng and Iles (1987) and others but these
authors were concernsd mainly with the problem of obtaining the asymp=
totic distribution of the maximum likelihood estimators or its altor—
netives, Ue here study the problem of efficient estimation from the
Hajek-Le Cam=Millar point of view. It is assumed that the usual Togu-
larity conditions ars satisfied with respect to the additional parameter
9. For simplicity, ue consider only the case in uhich ¢ is a real
perameter. An important result in this situation is that the problem
of estimation of & and ¢ , uhen considered together, are asymptoti=-
cally indspendent and the limiting experiment ie & product of a regular

one and @ non=regular onos



CHAPTER 1

LOCAL ASYMPTOTIC MINIMAX ESTIMATION UNDER AN
ASYMPTOTIC EXPANSION OF LIKELIHOOD RATIO

1.1 INTRODUCTION

Let {fn(.,e-)} (n>1) be a family of densities depending on
a parameter & teking values in (i), where (H) is an open subset of
the real line R. Our problem is to estimate € efficiently. Let {Tn}
be & sequence of estimators of € . We consider the local asymptotic

(maximum) risk

pte, {T.})= 1im  Ln

LK (T - &'))
A—o n—o & 91<AK n=n

-1Fe
" as & messure of the asymptotic performance of the estimator {Tn} at & ,
where L is an appropriate loss function and Kn( 1 @) is the normalizing
factor (see, for example, Weiss and Wolfowitz (1974)) for the given family
of distributions. Thus, an estimator T = for which the local asymptotic
risk P(e, {Tn}) (with lim replaced by lim) is equal to the local asymp—

totic minimax (LAM) risk

Lk (1 -8")

P(e) = lim lim  inf
Ao 1

sup

R T le'-el < AKD
may be considered as an efficient estimator. In this chapter ue consider
the problem of efficient estimation for a class of non-regular cases ad—
mitting certain local asymptotic expansion of the likelihood ratio. In
Section 1,2 we use the results of Millar (1983) to get a sequence of
experiments converging to some exponential shift experiment and then
in Section 1,3 obtain a lower bound to the local asymptotic minimax risk

using the Hajek-Le Cam asymptotic minimax theorem (Millar (1983)). In



Section 1.3 we also suggest an estimator which is shown to be efficient
under certain assumptions. A convolution theorem, which gives the
decomposition of the limiting distribution of a sequence of estimators,

is proved in Section 1.4 using the notion of limiting experiments.

1.2 CONERGENCE OF EXPERIMENTS ASSUMING ASYMPTOTIC EXPANSIONS

Lot {(x" &M, p0 ;8 & @}, n21, be a sequence of statis-
drD
&

tical experiments, where () is an open subset of R. Let denote

3
hst
the derivative of the absolutely continuous component of F’g with res—
2
pect to p; . Fix & € (@. Ue assume that either of the following

two conditions holds a.e. Py .
o

Condition (Al). For any A >0 and some sequence KnTm ’
op { NA (8)) + e (M8 ], i K (2 -8) >
- (1.1)
dP, N
k3 0, if Kn(zn-en) <N,

n
R

uhere Anmn) converges in pg - probability to c(e ) for some
o

c(e,) >0, & converges in PQ - probability to zero, and Z_ is a
o

random variable which does not depend on 60 and for which

te(8g) por all t20.

lm PY (K (2 -8&)>t) =
n—wo % "N °

on (A2). For any A< 0 and some sequence K"Tm ’

oe {NANe) + eine) ] e K () e <A
- (1.2)
N
o, if Kn(zrl -eu) >N,




-3 =

IR *
where An(en) converges in P; - probability to © (8)) for some
Pl 2

*
o - Probability to zero, and Z_ is a

* *

c (&) < 0, € converges in

o n o

random variable uhich does not depend on € and satisfies
»

~te (8,)

»
Lim PO (K (z -€) < t) =e for all t< 0 .
n—>o % " " °

We define experiments

sn={p;°+M;1 tA20} and - {P;u+)\Kr-|l tAg0} .21

We want to study the convergence of these sequences of experiments in

the sense defined as follous (see, for example, Millar (1983)).

Definition. et "= {(s", 8™, o, 7\:/\} ,n>1 and
e= {(s,8), PR €A} be experiments uith parameter set /\ . Then

n

E" converges to E if for every finite subset {”1'75""'7}} of A,

da.

2{(B By e} 2 1)

K
where "= 3 @)
i=1

The Following proposition provides a simple method for checking
convergence of experiments .

Proposition (Millar). Let E = {u;‘\} , €= {a, ] bo experi-
nents with paramster set /\ . Suppose there exists A & /\ such that
for each A& /\ 0, is absolutely continuous uith respect to Oy
and u;‘\ is contiguous to u; . Then E" converges to E if for °

any finite subset {)\1.7\2,..?,7\‘(} of N,



El

da:

.
' d\]7\(>l “A} .
N o

Let "?\,9 (N2> 0) denots a probability on R with density
o

J:{(%o e =) | ] =>1:{(§Z%D -

}\O

. o(e,) @M | ror x>,
Q. x) =
) o, for x <A,

*
and Gy o (A< 0) donote a probability on W uith dansity
o

*
- o, )e™® @D | ror x<n,

ar g (x) =
e, o, for x2A.
Then we have the following result 2

Theorem 1. (i) Under condition (Al), the sequence of experiments

n

€" comwerges to E = {u,\:xgu}.

(ii) Under condition (A2), the scquence of experiments E
» @,
corverges to E = {07\ NS 0} R
(Vo write § a o 0} inplace of Q d Oy g )
o upite just Oy and Oy inplace of Gy and Oyg ).
Proof. We will give the proof for case (i) only. The proof of
case (ii) is exactly similar.
P = phl -
sot QR =PQ 4 ag-L -
o n
It is given thet for all A2 0,

dl]; _ {sxp (V) on 8.

aa] o, otheruise



n
whers Y —2> Ac(e,) and G0(B ) —> exp(- Ac(8))) e n—>w.

This gives us
day .
Al N
'Z{uu“ Iuo} = Ji{d% Iﬂn} .
o

ddl.
Since Eg (d—u7‘) =1, by a result on contiguity (referred to as LeCam's
o Mo
1st lemma in Hajek and Sidak (1967)) it follows that u: is contiguous

to Q7 for all A>0.

Further, using the asymptotic expansion (1.l) again we can prove that for

0N SN < we <N,

25 ) g 2,

@ odq a”
) ) )

Hence by the above proposition of Millar the theorem is proved. //

Remark 1.1 Contiguity plays an important role in the proof of

the above theorem. Millar's results cannot be applied if Pg ., -1
o n

is not contiguous to P{  and it is usually very difficult to solve

°
the problem if contiguity does mot hold. In the proof of the above
theorem we have seen that condition (Al) implies contiguity. Now
suppose (1.1) holds for all A >0, where A\ (&) and € are as in
condition (Al) and Z_ is a sequence of random variables such that

&L {Kn(Zn -8l P;B} converges weakly to some arbitrary distribution.

Then to have contiguity we must have



1 n - > 1) = te(8)
lim Py (Kn(zn en) t) =@ o

forall t20.,
n—o o

This follows from a result on contiguity.

Remark 1

«2.+. If condition (A1) is replaced by the Follouing
stronger condition &

*
(A1) For any real u and v such that u< v ,

&2 -
QB + \!Kn .

exp { (v =wAE) +e } i K (2 -8) >,

* -1
8, *ukg o, otheruise ,

vhere An(én) and € are as in (A1), but the corvergence is with

Tespact to pgu W,(:l and Z is such that

n g ~v—u)o(® )
Pé°+uKnI[Kn(Zn—eD)>v] - & o,

then .procesding as above the sequence of oxperiments {g LAkt re m}
o n
may be shown to converge to the expsriment {u,\. re n} .

From now onuards, we will consider only the case where condition
(A1) is satisfied. The treatment for the case uhere condition (A2) holde
is similar with obvious modifications.

1.3 LOWER BOUND FOR ASYMPTOTIC RISK AND AN EFFICIENT ESTIMATOR
In this section we obtein a lowsr bound to the local asymptotic
minimex risk using Theorem 1 and the Hajek-Le Cam asymptotic minimex

theorem (stated below) and suggest an estimator for which the local
asymptotic risk is equal to this lower bound.



For completeness, we state below the decision theoretic set up

of the Hajek-Le Cam ssymptotic minimex theorem.

Suppose ue heve en experiment £ = {(3,5), Py 166 @} and
& decislon space D, Wo assume D to be a seperable metric space and
let D be the Borel sigma field on D. A procedure b is a Markov

kernel of (5, §)/ (D, D), i.e.,
for each x € S, b(x,.) is a probability on (D, "))
and for sach A €0, b(.,A) is S~ measurable,

Such procedures are also knoun as rendomized decision rules in Statistical
Decision Theory.

Lot us now cansider a loss function L(&, d) on (D x D. Ue
assume that L is nonnegative and for each € , L(&, d) is a lover semi-
continucue function of d. The risk function of a procedure b is then

given by

#o, 0 = f J e, ) s ngen .

In order to compactify the collection of all procedures, Le Cam (1955)
introduced the notion of generalized procedures. We consider the Banach
space M of all finite signed measures on (S, §), with the total variation
norme Let V_ be the collection of all finite linear combinations of the
form Zay by , uhere a's ore real and for sach i, Lii €M is absolutely
continuous with respect to some Pg , € € (@ . We then define V = V(E)
to be the closure of V, in M. Let C(0) denote the Bamach space of

all bounded continuous real valued functions on D, with supremum norm.
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Definition. A generalized procedure is defined to be a bilinear

form on V x €(D) such that
(1) b is positive, i.e., b(k,c) 20 if K20, c 20
(11) an{Uye) 1 £ M Nalie
(138) (1) = WK iF B3 0.
Any Markov kernel procedure b(x, dy) is also a generalized procedurs
if we define
by ©) = [fe(y) b(x, dy) 1dx) .
The risk function of a generalized procedure b is defined as
Plb®) = sup bRy, c)
uhere the supremum is over all c € C(D) such that o(y) < L(€, y).
The collection of all generalized procedure is now compact with respect
to the topology of pointuise convergence.

In general it is not true that all generalized procedures are
given by Markov kernels, However, for meny important statistical experi-
ments_ it is true, Consider, for example, the Gaussian shift experiment
{n), e R} =G, say, vith decision space D = R. It is a well
knoun result that in this case all gencralized procedures are given by
Markov kermels (Millar (1983, page 131)). Nou this result can be used
to shou that tho same is true also for the limiting experiment
e= {o, A2 0} defined in Section 1.2,Ue first note that there exist
probabilities iy M, on (R,03) such that U(E) and V(G) are iso-

metrically iscmorphic to Ll(u.l) and LZ(AZ) respectively (ses Millar
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(1983, page 61)). fore specifically, ue can chosse Ly to be O  and
M, tobe N(0,1). Nou using the Pact that M, is symmetric about zero
end the restziction of K, on R is equivelent to U, it can bo shoun
that all generalized procedures on LL(N—l) x C(R) are given by Markov
kernels.

Us now state the Hajek-Le Cam asymptotic minimax theorem as given
inMillar (1983, Ch. III). Supposs uo have experiments E" = {(s",g,a0A €A},
n>1 and E= {(s,g),uﬂ, NeA} . Let D be a fixed decision space
and L a loss fPunction on A\ x D. Let pn(b,)\) and P(byA) be the risk
functions of a progedure b in the decision theoretic structure (£7,0,L)
and (E,D,L) respactively. Then e have

Theoren (Hajek-Le Cam esymptotic minimax theorem)s If E" con=

verges to E, then :
im inf sup P _(byA) > inf sup P(b,N)
o b A " b A

L
n
where the infimum in either side is over all generalized procedures for

the corresponding experiment.

Ue now coneider the problem of estimating € uwhen condition (AL)

holds for a1l & & (H) .

Definition. A loss function of the farm L(8,a) = L(& ~a) is

said to be subcorvex if L satisfies the following conditions:
(1) L(x) 20 for all x
(48) L(x) = L(1x1) fer all x
(1) {x fLx) e} is closed and convex for all ¢ > 0,
ALl the loss functions considered in this paper will be assumed to be

subcomnvex.
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Lemma 1. Under assumption (Al), for any subconvex loss function Ly

1im im  inf  sup afe L [K (T ~8&)
A>®n—>oT [@-6]<aT? (%ot 1
n o! = My
2 AP s (s, N (13)
5 0< A<m

where the infimum in left hand side is over all estimators Tn of &,
the infimum in right hend side is over ell randomized (Markov kernel)
prooedures for the experiment E with decision space as R and para=

meter space a8 [0, @), and p(6,\) is the risk of the procedure 8 at A with
loss function L.
Proof. The proof is similar to that of Theorem VII,2.6 of Millar

(1983). For any A >0, the sequence of expsriments E: = {ﬂ;‘\. 0LALA }
converges to E, = {u}‘, 0XN<A} . Hence by tho Hajek-Le Cam ssymptotic
minimex theorem and a change of variable we heve

Lo inf ewp B L[K (T =8)
o T e -e <A ® [T = 9]

= lm irf sup ~LL[K(T =®) =7
= @ T SR %ot My [ketry -2 I

Iv

inf sup  P(byA)
b O<AZA
¢here the infimun is over all gensralized procedures for the limlting

experiment ..

Let us now denote by /7, (A() the sot of all probability
measures K on [0,A] ( [0,m)) with finite support. For any pro=
ssdure b, we define P(b,i) = [(b,\)d (A). Then using an ordinary

=inimax thecrem (Theorem III.1,3 in Millar (1983)) we have



~11 -

lim  inf sup P(b,N)
A=>® b 0SALA

= im  inf sup  P(byk)
40

A= o
= 1im sup  inf P(b,u)
A= @ ueM, b

= sup inf P(b,u) [since T/ M as Aw> @]
LEM b

= inf sup P(bykt)
b ueM

= inf s P(byN) o

up
b 0 sw
The result now follous because for the experiment E, all generalized
procedures are given by Markov kernels. /f
Ws will now compute the minimex risk given in tha right hand
side of (1.3). We will use & well-known technique of finding minimax
risk,
We assume that
C(1) £y L(X =) =/L(x - a)d Q(x) exists and is finite for
o
some a and thers exists b= b(8 ) such that

L(X - b(ec)) = izf [ao L(X = a) = RQ0 » say.

C(ii) For every € > 0, thore exists N > 0 such that for all
a€t R,
[
_(J L(x = a)d 0(x) > R“u -t .

C(11i) b(8) is a continuous function of & »
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Lemma 2. For any subconvex loss function satisfying conditions
c(i) and c(ii), we have

) @ ~c(8,)x
ug(‘ Disy\smp(é,m = /u L(x - h(QD))c(Qo)s dx

minimax risk in the left hand side is as described in Lemma 1.

Proof. We shall exhibit a sequence T of prior distributions

"
on [0, ®) and show that
Un  inf 2(6,T,) 2 Ry (1.4)
M=> o & o

uhere the infimum in the left hand side is over all randomized (Markov
kernel) procedures and t(é,’(m) is the Bayes risk of & with respect
to the prior T, .
s choose T, as the uniform distribution over the interval
N *
(0yM)s Let €>0 and N be such that [ L(x =a)d G (x) 2Ry =&
(] o o
for all a. Proceeding as in Ferguson (1967, Section 4.5, p.172) we

can prove that for eny M > N and any nonrandomized decision ruls & ,

Y M -
wormy) 2 (g = o) Bt

Therefare,for any M > N, £(65%,) > (Rg = &) & =8 for a1l * randomized ®
procedures & uhich are probabilitiss over the space of non-randomized
decision rules. This proves (1.4) using a result on equivalence of two
methods of randomization (see, for example, Wald and Wolfowitz (1951)).
Since X = b(&.) is an equalizer rule uith constant risk RQD s the

lemma is proved. f/
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Now, from Lemma 1 and Lemma 2 we get the following results

Theorem 2. Under assumption (A1), for any subcomvex 10ss function

L satisfying C(i) and C(ii),
1im Lin inf  sup gL | K (T ~@)
Ao i > T |e-ec|_<_m<n1°[" n =]

(e,)
2 [ - sy etey o g

Bemark. To prove Theorem 2, we need not assume that Z (in
Condition (Al)) is indspendsnt of €, « Indsed, we may replace the set
-8 >
{Kn(Zn 8 > 7\} by {"n 7\) s uhere T is a Tendom variable such
that
-ta(eo)

Lm Po(t >t) =¢ for all t>0 .
n == @ o n

Cur problem is now to search for an estimator 8, for uhich
Lm  Un  inf  eup afs LK (T, -9 ]
A=>on—=>o T le-ehtgAKn
(1.8)

= Uunm up sup afs LK (8, -8)] rforalle e ®
A=>on —wle -9 1< Ak

Definition. An estimator & = for uhich (1,5) holds is said to

be & locally asymptotically minimex (LAM) estimator of € .
1t Folloue from Theorem 2 that an estimator 8 for uhich

lim lim sup LB LTk (B -4)
A=onowo =g gt L0N ]
~<(8,)x

= ZL(X = 6(8)) o(8 e dx
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is a locally asymptotically minimex estimator.

Let us now consider the case for which condition (Al) is satis=
fiod for all @, € () . Condition (A1) ensures the existonce of a
sequence of statistics 2 for which K (Z =8 ) corvorges in dis~
tribution (under PJ ) to a random variable X with distribution Q.
o

Definition.

A sequence of estimetors T = is seid to be regular
at & € (@ if for some probability distribution G,
~1y ¢ o0
D{:{Kn(rn -8, - Ak %S, )\Kn-\l} = 6 @ n=ao
unifornly in {IAl < c} for any c > 0.

Theor;

em.3. Suppose condition (A1) holds for all € & @ and
the sequence of statistics 2~ is reguler at all valuss &, in (@ .

set 8 =z -kLpz) .

n - “n "% n’

Then the following results hold:

(i) For any bounded subconvex loss function satisPying conditions
C(1), c(11i) (condition C(1i) is satisfied for bounded loss function)s én
is LAM.

(11) Suppose that for some © >0 ,

lim  lim sp LEK (B -8 <@ (1.6)
A=>@ n =& -8 | < AK .

for all 8 € (H) . Then for any subconvox loss function L eatisfying
conditions C€(i), C(ii) and C(iii) for uhich

L(u) € 8(1+ [ul®) for all u€ R
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for some B8 >0 and 0< s < r, we have

i lim sup e LK (B8 -&)
R N L R AR et [#a®n ]

= _[L(x - r;.(ea))nan’BD for all & & (@)
enc hence & is LAM.
Progf. Fix A > 0. Under the conditions of the thecrem for any
8, ¢ @ end for any seguence {8, ] eatisfying K (8 -8)1<A,
Lt =e )] [ 20 -

Since b(8) is continuous in & , b(Z) comverges in PJ =~ probability
n
to b(&)). Thus,

n
Lik8, -2 |p9n}:>£{x - 58,
uhere X s a random variable uith distribution Q5 .
()
Us shall nou prove that

OC{L [k 8, -e)] | 2 g:z { L(X - b(Gn))} . (1.7)

Teke any t 2 0. 8, = {x LX) < t} is closed convex subset of R,
since the Lebesgue measure of the boundary of any convex set is zero,
8, 1s & continuity set uith rospect to tho distribution of X - b(8,)

and we have
un pg L[k, -e)] < ¢)
n—ao %

n -
= lim P [k (& ~8)es
o Qn n'n n tj
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u°’6u< {x t(x-bg)) e8,})

uu'ea(th SL(x=be)) £ t)) .

Hence (1.7) is proved.
Now

lim sup el [k (B -@)
n—=o |e-eﬂ|_<_AK;19[““ J

= nLi._n'J)mE L [ka&, =e)]

for some sequence {sn} s N 21, satisfying IK (8 =8)| < A.
The proof of the lst part of the theorem is now obvious. Ue will now

prove the 2nd part of the theorem. We are given that

a r
lim By, K (B ~8) <w.
o % non T

Since L(u) £ B(1+ |ul®) for all u € R, there exists € >0
such that for some B8y, B, > 0 4
€
[Kw] <8 + 8 WF forall uer.

Therefore we have

- o - e 5 —a) T
um gy [L(x (8 -6) <8+ Lim B, K (8 ~&))
n_>m9nL(nn W) ] 17 % Hn E Ka(Eh =€

<o o
This together with (1.7) proves the theorem. f/

Remark 3.,1. Part (i) of Theorem 3 holds for any sequence of

zsgular estimators & for uhich K (8 - &) corverges in distribution

. n - -~ e .
(under peu) to X = b(8)) (X~q)) for all & & @
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Remark 3,2. It is interesting to note that condition (Al) itself

implies that for all A 2 0O,
i,

N . n s : . n
This follows from the fact that Peu s Knl is contiguous to Pen .

implies that (1.8) holds for all real A .

-1 n
L = MK TR })\N—l)] = 9 . (1.8)
o n

Similarly condition (“)w
Moreover, under uniform versions of condition (Al) and (Al)*, uhere the
convergance of €. are uniform in A and (u,v) belonging to compact
sets, the comvergence (1.8) may be shoun to be uniform for all A in
compact sets.

Remark 3.3. The LAM estimator here depends on the loss function
chosen whereas in the regular case it is possible to find LAM estimators

not depending on the loss function.

1.4 A CONJOLUTION THEOREM

Ue shall now try to characterize the class of possible limiting
distributions of appropriately normalized estimators. We shall consider
only the class of estimators T (uhich includes all regular estimators)

for which
=1y, pn — >
QZ{KH(Tn -~ - Ak °5 )\K;I} = © forell A20 (1.9

vhere G is some probability distribution not depending on A o
The convelution theorem was first proved by Hajek (1970) and
Inagaki (1970) for regular cases. Consider, for example, the case when

the observations are i..d. uith a density f(x,®), @€ R . Let T
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be any regular estimetor of © based on a sample of size n. Thon under
the usual sssumptions of the Tegular case, the limiting distribution Gy
of /H(T -8) isa convolution of N(O, 17%(8)) and some othar pro-
bability distribution K which depends on the choice of the estimator

T, (1(8) denotes the Fisher information). Since comvolution " sproads
aut mess " Gy ie more spread out than N(O, 17%#)) and thus, an esti~-
mator T, for uhich the measure L is unit mass at {0 (i.0., the
limiting distribution Gy is u(o, 1'1(9))) may be considered as an effi-
ciont estimator. The comvolution theorem can also be used to obtain lower
bound for asymptotic risk of estimators.

Hajek (1970) proved his result for the regular cases. A simpler
proof, due to Bickel, is given in Roussas (1872). A more genersl result
based on the notion of limiting experiment is proved in Millar (1983) using
Kakutani's fixed point theorem. The proof was originally sketched in
Le Cam (1972),

In the non-regular case whore condition (Al) holds we have the
following thecrem.

Theorem 4. Suppose condition (A1) holds. Then for any estimator

T, satisfying (1.9), the limiting distribution G of K (T, =&) under

Pg  is a convolution of Q  and somo probability distribution K
o
depending on Z‘Tnj :
=q »
G =0 *p.
To prove Theorem 4, we shall use @ slightly different version

of the corvolution theorem, than the one given in Millar (1983, Ch,III),
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which we state and prove below (For an alternative proof of Theorem 4

see Ibragimov and Hasminskii (1981, Ch.)).

Theorem (Millar). Let

{6n e, az0}, 21,
£={(R,4B), U, N20} bestatistical experinents (/3 derotes the

Borel 0-field on R). NAssume E" converges to E. Suppose R~ is a

sequence of statistics on (" , §") taking values in R. Assume further

i) there is a family of probabilities { Gy, A2 u'} on (R, 43)
such that for each A >0,

L{na} =

i) O is concentrated on R* and is absolutely continuous with

respect to Lebesgue measure. Also the number O belongs to the support of UO.
111) Q,(R) = G (A= N), G,(A) =G (A= 2) for all A0 andall A ed3.

Then there is a probability K on R such that

= »
Gy =0, * K.

Proof. Let = {(®,03), 6,y N2 0} . Then by an argunent

given in Millar (1983, p.98) there exists a Markov kernel K of

N
collection of all Markov kernels K of (R, B3)AR,d)

(RyB)/Ryd3) such thst G, =KQ, for all A20. Let X' be the
such that

G, = KQ, for all A20,
For all g > 0, we define a map K —> gk as

oK(x,h) = K(xra, Ava), A €43, x & Ry ke K .

Then R, is a compact convex subset of a lineer topological space.

Also, the family {g fg2 D} is a commuting family of continuous
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linesr mappings uhich map K into itself. Therefore, by Markov—
Kakutani fixed point theorem (see Dunford Schuartz, Vol. I, p. 456)

there exists K & K such that
gk=K forall g20

s for every M € V(E), every Borel set A and every g > 0,

fgk(x,k)du(x) = [kn)an ) -

Since V(E) = L;()/) for some probability 3 with support R" uhich is

equivalent to the Lebesgue measure, this implies for every g > 0 and A €43,

K(x,A) = K(x+gy, A+g) a.e. x2>0.

Therefore, by Fubini's theorem there exists a null set N such that

for x g N, x >0, {K(x,A) = K(x+0, A+g) forall A aﬁ’} a.e. g > 0.
Ue nou choose a sequence a_ |0, o € N® for all n.
such that for all g ¥ N, g 20,

For all n 21, there is a null set N

Ko, + 9, A+ o) =K(q, A) for all ned3 .

Therefore, for all x § N+ a  , x 20

K(x, A+x) = K(a, A+a) for all A& 3.

Let N_= U (N +a).
° > M N
Then N_ is a null set and for any X,y >0 such that x § Ny sy 7Ny

we have

ned3 .

K(xy A+x) =K(y, A+y) for all
and note that x, y § N, implies

To see this choose < X, ¥

X,y § N +a, and hence K(x, A+x) =K(a, A+a) =K(yy A+y) .
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Suppose the common value is K(A),

Laeey For all x § Ny K(xoA+x) = 1(A) for all A& (F .
This implies

K (x38) =K (x,(A=x)*x) = B(A=x) for all A & 3, for all x [N
and therafore,

AR = SKOxah) dty(x) = [ iA-x) day(x) .
Simce L is a probability this proves the theorsme ff/

Proof - of Theorem 4.

ne S . s fa .
comtger "= fa) 1x20) €= {n}\.xga} )
Rn = KH(TI’\ -90) ’
where 07\ is a8 defined earlier in this section

and Q)

N -1 for A20.
GU+N«n -

It is easy to ses that all the conditions of the above theorem

are satisfied and hence

for some probability K on R. f/

Corollary. Under the conditions of Theorem 4, for any sequence

of estimetors T = satisfying (1.9), we have

Lo g L [%a(Ta -e)] 2 un gy L (KB, = 2]

uhere L is a loss function satisfying the conditions given in Theorsm 3.



£oof. By convolution theorem

N =
L L[k (T, =8] 1 P%i Lt + BN
where X and & ere independent rendon veriables and X ~v Q_ .
Using Fatou's lenma

im  E,

LIk (T ~8)] 2ELX+E)
s L[e (T, -] zeltrs

= [E LowE ()
2 ELUX - b(e)

. & -e)].
0%, oG]

1

1,5 STATEMENT OF RESULTS UNDER CONDITION (A2)

In Sectionsl3endl.4ue considered only the cases when condition
(Al) holds. Procesding in an exactly similar manner We can prove results
for the case uhen condition (A2) is satisfied. In thie eection we only

state these results.

Part (ii) of Theorem 1 states that the sequence of experiments

N L Of comverges to the experiment = { A Ag D} ,
where G ie defined o8 in Sectionl.2, This fact togethor uith tho Hajeke
Le Cem asymptotio minimex theorem gives us a lower bound to the local
asymptotic minimax risk.

Ue consider a subcomvex loss function L satisfying the Pollouing
conditione.
(1) gt Lx = a) = fL(x - 8)d,(x) exists and is finite for

o

some @ and thers exists b = b(8 ) such that
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Eg* L(x - b(eo)) =inf Eg* L(X - 2) = g 1 say
o a o o

*
C7(44) For every € >0, there exists N > 0 such that for

all a€ R,
9 *
fL(X-a)dQu(x)zﬁe -
- ()

c™(141) 6(8) 1s o continuous function of & .
Ue now have the folloutng thecrems.

Iheoxen:2(a). Under sssumption (A2), Por any subconvex loss
funotion L satisfying C'(1) and c™(i1),

Lm  lin inf eup o LK (T -8)
A—>mn—>an|9-eD|5Axn'°'Ea (kalTa =]

*
.. - (& )x
2=/ Ux=-pe)) ce) e = ° ax
- o 3
‘o

A locally esymptotically minimex estimator of & is suggested in the
follouwing theorem$

Theorem 3(a). Suppose condition (A2) holds for all 6, @
and the sequence of etatistics Z_ is regular at all 8 in@® .

2 » .
Set B =2 -Kn'l b(Z:). Then both part (i) and pert (ii) of Theorem 3

hold uith Q_ replaced by G .
The corwolution theorem can be stated as follous &

Theoren 4(a). Suppose condition (A2) holde. Let T, be any
sstimator for uhich

-1y, on _
I{Kn(Tn -8, = M) PQQ*N(;J‘} = © forall AZO
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where G is some probability distribution not depending on A. Then
G 4is a convolution of I]: and some probability distribution K depend=
ing on IT"} .

*
G=0Q *u.



CHAPTER 2

EXAMPLES OF NON-REGULAR CASES

2.1 INTRODUCTION
In Chapter 1 we obtained our results for a class of non-regular
cases admitting certain local asymptotic expansion of the likelihood ratio.
In this chepter we apply the results of Chapter 1 for the estimation probe
lem in tuo important classes of non~regular examples. In Section 2.2 we
coneider the oese uhere the observations are indspendent and identicelly
distributed uith density uhose support is an interval which is monotonic
in @ . InSection 2.3 we consider a regression type model. Us verify
that in both these cases the locel asymptotic expansion (Al) or (A2) of
Chapter 1 is valid and hence the conclusions of all the theorems of
Chapter 1 hold. In Sections 2.4 and 2,5 ue study the esymptotic proper—

* ties of the maximum probability estimator and e class of Bayes estimators.

2,2 INDC?ENDENT AND IDENTICALLY DISTRIBUTED 0BSERVATIONS

Lot X;9%;peeesX  be i.i.d. observations, sach X, having density
f(x48) on R uwith respect to tho Lebesgue measurs, where & € (@) 2n cpon
subset of R. We assume that f(x,8) is strictly positive for all x

in a closed interval (bounded or unbounded) S$(&) depending on & and is
zero outside S(8). Lot A,(8), A,(8), (R < A)) be the boundaries of
5(®). Ue consider the following cases :

Case-I. The support S(8) is nonincreasing in @, i.e.y S(8,) Cs(é,.)

whenever 52 >Gl .
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Gasp LI. The support S(8) is nondecreasing in @, i.e., 5(8,) Ds(8;)

uhenever €, > &, .
We now meke the following assumptions on the density f(x,@) (Weiss
and Uolfouitz (1974) have similar assumptions when they study properties

of maximum probability estimators

1. /\l(e«) and Az(e) are continuously differentisble functions of

© (if not infinity).
2. On the set {(x,e) ixe 5(9)} » P(x,8) 1is jointly continuous
in (x,8)

2

(x48) log £(x,8)

3. The derivetives ag; ' -a-ig—r(i exist for all (xs8)
R4

in {(x®) Tay(8) < x < ny(e) ) o
4, For all &, € (@), there exists a neighbourhood N(e,) of &,

and a constant D(€ ) > 0 such that for all @ € Ne,)

‘ azlug £{x,8)
¢

for all x for which the derivetive exists.

- Jlog F(X,€)

T

2 o(e)

5. Forall &¢ (@, & =c(®) 4is finite and not

equal to zero.

In all the above non-regular cases we can obtain an asymptotic
n i
dapP Gu " Mnl
expansion of the likelihood ratic -
»

@&
o

stany €, & @ ond for

ell A in an eppropriate subset A of R . Here PJ is the n-fold pro-

duct of the measure Py with density f(x48). For Case I, A= [0,m)
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and for Case 1I, = (=®.,0] . In either of the cases, for all 8 ¢ (i

and AE A, :e 4 AL is absolutely continuous with Tespect to P; .

Expanding st & by Taylor's theorem we get

n

eomnl Ll Jlog (X, ,8) l@ 2 g alog r(xi,e) 15
=A= +

LN M=) o® o 2t o8t PR®

o

= : 5 2 X
on By —{(xl,..,xn),eacn *y8(Ay(8)5 e NN (R (8 2, Ay(o ¢ n"))}
= : 2 2
- {5 $each X;S(Ay(egk Dy (8¢ Z.\))}
(i.ey on the set uhers the Teylor's expansion is possible)

where @'(X) 1lies between € and & +2 )
noe -] o n

& + A" - .
and =0 e.0. P, on B .
n ° RN
ELIA o »
o
n Jlog F(X,,8)
_1 1 -
Moo, A8 =% T =5 o —>cte) aw. Py
= o
by strong lew of large numbers.
By assumption 4,
2 .
n 5 log f(X »8)
L et L =0 as. P
o=l o€ n o

- >
The set B can ba expressed s {n(z (x) =& N}
K} *
SLn(zn(x) -8) < ?\} but the form of Z_~ or Z  dopends on Ay (®)

and A,(8).

We shall now consider cases with different possible Al' “2'
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Case I(a). S(8) is an unbounded interval
Leoes 5(8) = [A)(6),@) or 5(8) = (=, Ay(e)]
uhere Al is a monotonic nondecreasing function of € and A2 is a
monotonic nonincreasing function of & . For simplicity, let us first

consider the simple case uhere 5(€) = [&, w),

. . A
In this case, B, ={(X),..0X )7 each xe®+2, @)}
={x :n(mn-@u)>>\5 yA20,
where U= min(X X,

...,Xn).
Thus the esymptotic expansion (1.1) of Chapter 1 holds. For any sequenes

{én} satisfying |n(<an -ea)x £C and for any t >0,

Bn+ ﬁ
n n
rg [n(h’n -e) > t] = [1 -/ f(x,@n)de
n @
n
£
o
and n / Flx® Y —> £(8 8 ) t.
€,
n

Thus assumption (A1) of Chapter 1 holds with Z_ =U_ uhich is regular
and o(8) = F(8, @) and hence conditions of all the theorems in Chapter 1
are satisfied. For erbitrary A;, A, ue can dsfine A’l'l, Azl as in case
1(b) or II(b) and proceed in & similar manner,
Case I(b). $(8) = [A,(8), Ay(8)] uith A}(8) 2 0 and A3(®) < 0.
Here .
B = x‘A(e+-’-‘)<>( <A(9+l‘) for 1 =1y244ee9n
nyA PR D E A
M N
= s L + = >
ff'“n>A1(°o+ 25V < Ay(8, n)j s A20

uhere Uy = min(Xy Xy peeesX )y V= max(Xy X peeesX Do
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if Al’ AZ are strictly monotonic functions,they possess unique inverse

1 -] . "
Aty Azt and B can be expressed as %5 Doz, -8) > 7\} with

BN
2, = nin {"Il(“n” At}

Here o(8) = AL(8)F(A,(8),8) ~ AL(&IF(A,(8),8) > 0.

For arbitrary A, A, ue define AW =sw {8 1A @) Sui
ond ahw) =swf e ta@) 2v] .

ein f

1,2

. A A
{5 HINCERO R RN B for s

Then 8] o

- (gt 2 nieg v s e )

= {afw) 2o, alt) < 2]

- {n(z, =8, 2 A} where z =min {ATKE, AW T
Thus the asymptotic expansion (1.1) holds a.e. Pg .«

)
For erbitrary Ay, A,y c(8) nmay not be nonzero for all & . Us

consider only the case where c(8) >0 for all & . If, for example, at

least for one 1, AJ(8) > 0 for all &, this condition is satisfied.
Now for any sequence {en} satisfying In(& -8 )igC for any
C>0,and for any t20,

pgn[n(zn -e) 2 t]

e A8 .

= I.l - f (%8 Jdx = ] f(x.en)dx]

o) TR

n 2'%n o

—_— et i s e,

. Al(en+ <)
onme, [ e yon ]|
n—>wo W)
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' R (
EAYe)(A (8,),8)) ~ b A(e IF(Ay (8 ) @)
=tole).
Thus assunption (A1) of Chepter 1 and the assumption of regularity of z,
hold and hence the conclusions of all the theorems in Chapter 1 hald.
Case II(a). 5(€) is an unbounded interval, i.e., 5(8) = (7))
or 5(0) = (=, A(8)] and AL(8) < 0, AL(8) 20 for all b (D).
Procesding as in case T(a) we can prove that condition (A2) of
Chepterlis satisfied for some Z uhich is regular,
Cese LI(b). S(2) = [a,(8), Ay(8)] with AI(8) < O and AL(8) 2 0
. A X
iy e A n (8 + D) A<
for all o (@D. Here 8 {1 tu > ngter By, v <onge; :)}y AL 0,
uheze U,V are as defined sarlicr and
o) = a}(8)r(A,(8),8) = A3(8)7(1,(8)48) < 0 ror all & ¢ (@ .
Ue consider only the cases uhere co(@) < 0 for all @ & ().
-1y . 3
Ue define ATNw) = anf {8 I a(e) < vl
54) = o {8 2 ay0) 2 v}
Then proceeding as in Case I(b) we can prove that condition A(2) is

" - -1, -1
satisfied uith Z_ = mex iﬁ\l (W), a3 (v“)} and this Z is regular.

2.3 REGRESSION TYPE MODEL

Uo now consider an exanple uhere tho observations Xy pkyseserX
are independent but not identically distributed. We consider the model

X

g(t) & + ey v = 1,25000n

where Bt's are i.i.d. random variables having a common density f(x)
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such that f(x) > 0 for x 2 0 and f(x) = 0 for x < 0, ond g(t), t = 1,2500e

are values of a non=stochastic variable, We consider only the casc where

(t)'s are positive. Let K= tglg(t). We make the following assumptions.
RL P(x) is continuous on [0y@) and tuice
differentiable on (0,m )s
Rz () [1(1og £)!(x) IF(x)ex < @
(6) [1(3s8 KR IF(R)ex < @
R3 For all A20,

g . -
% tilgz(t) Sup{l(log )" (eyra)<(1og £ (e) 1l < ag xlmia%:(t)l«n}
n

=

corwerges to 0 in probability.

R4 Rs n=>m ,

(

2

n
max g(t)/ T g(t) =>0.
&Hen 1

2
and (0) 2288 o
2
K
n
‘ssumption R4 is satisfied if, for example, we teke o(t) =t or any
solynomial in & . Assumption R3 is satisfied for almost all the usual

#ases s

us pix & & (@ » the paramster space. Let Pg be the joint
crobabdlity distribution of XjseeesX  under € ., Expanding at éa

—y Taylor's theorem e get for ell A2 0,
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n
"peu + }«;1 n

lag == T (=o())(log P)1(X,~ o(t)e)
d t=1

n
+ 25 3 6105 1%~ o(0)eL),
2Kn =1

=7\An+ €.y ssy
~1
on B =[x 2 sle)e, + A, t=12y00n]
= [k min X_/g(t) =€) >Ar
["15@ NEOREISESS I

uhere @' lies betwesn ©_ and & + KT
n o -] n

n
L n .
and —2—f =0 ee. P on B, .
dPg o
o

Ue shall now verify the follouing &

pn
(n) An 2> £(0)
"
(8) e, > 0
© 7§ (3,00 = & M) forau A0

€
where A , € and B, oTe 28 above.

(R) follows from condition R2(2), the lau of large numbers for
weighted average (see, for example, Jamison, Orey and Pruitt (1965)),

condition R4(b) and the fact that = [(1og £)(x)P(x)ax = £(0).
Condition R2(b) implies that
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o0
%2 A(8) (208 1" (X, - 9(408,) —L5 0
P t o .
n
(8) now follous from condition R3.
To prove (c) we use the following result o
Lemma. Coneider a double sequence of real numbers {am} .oIr
e i

n
(1) st je; | —>0, (i1) % |, | is bounded and (i11) T a,_ —> a
Kign 1N = 0 1= 40 '
n -
then (L-a ) =™,
4 in
PY ( ) Trl! (g(t)u)
N = -
ouy £ (8, X [1 FlgsTey J uhere F 1is the distribution

function for f. Using continuity of f at 0 and condition R4(a) we

can prove that

noalt)
b};lr(m u) ~u f(0) =0,

Thus (C) is verified to be true.

Also the random varisble Z_ = min X _/o(t) is obviously regular
" Ktgn

since in this case the distribution of Z ~~& doss not depend on & .

2.4 ASYMPTOTIC PROPERTIES OF MAXIMUM PROBABILITY ESTIMATORS

Ueiss and Wolfouitz (1974) studied the efficiensy of maximum
probability estimators (m.p.e) for many non-regular cases. They also
considered a gensral case and indesd proved that the mepeos is LAM
under certain reasonable assumptions. In this section we shall first
Prove the same result for the family of non-regular cases given in the

previous sections by shouing that the lower bound to the local asymptotie
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minimax risk is attained by the m.p.e. Ue shall consider only O-l

loss functions.

Lx) = 0, if X1 <=,
{ (2.1)

otherwise ,

where © is some positive number.

For all the nonreguler ceses given in the previous sections,

undsr

the sot on thich the joint density of the observations X,,.
6 is positive,can b oxpressed os either (a) {X 12 28] o
(b) {x :z:ie} « Proceeding as in Welss and Wolfouitz (1974) e cen
find statistics ¥ uhich are asymptotically ® squivelent ™ (ses dis-
cussion Pollowing (3.4) in Ueiss and Uolfouitz (1974)) to the mup.s.

> -1
For Case (2) ,& =2 =-rk ™,
P -1
and for l:aae(b),en—zn+ K
uhere K= is the normalizing factor.
[ —o(8,)x
Us shall consider only ¢ e (a). For case (a), [ L(x=b)o(8,)e
0

is minimized at b =1 , Thus,using results of the previous sections, for

6, e(@ andall A>0,

n s 2t L [ntz, - m;l -9)]

_sw
N> o -8 | <K

© = o(& )x
= [ Lx =x)e8de o ax
0
- c(8,)
= fn(@u)s R

2r

and hence the estimator B’n is LAM. The treatment of Case (b) is

similar.
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Ua shall now prove that the mp.s. 8 (), if it exists, is equi-
valent to the estimator 8 (=2 - rK;l) suggested in Chapter 1 in the
sense that their differsnce converges to zero in probability (see Theorem 1,
balow),

Ue coneider the sst up of Chapter 1. Let f (x,8) be the density

of Py uith respect to come dominating O-finite measure on A"

« We con=

sider only Cese (a) and assune that the follouing condition holds aws. Pg

()
el

(A1)" Forany A€ R,

A = {Bxp NA(8) +E (MB ), 1F K (2 =) >N,

- N
0, 1 K (2 -8 )<,
n
Fo 7t
uhere AN = ©—L. for A€ R, 2 isa randon variable
)
eﬂ
satisfying
z, 02 8, as. PQ
o
n -tc(eu)
and L P) [K(Z-9°)>t:] = forall £20,
n=>wo ol M0
n
p%
A8 > o(8,) for some o(é,) >0
n
PQ
and e 2 o.

Thus under assumption (A1) , for a1l A< O,
n
AN =exp { NA (8) + 8 (M8 )] as. %5,
on

s, r(e)
and hence for all A< D,/\n()\) —_— e

o
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Ue here assume that
(81) zoa( AN = eM(e°) for all A< O .
1t is to be noted that the above conditions hold for all the non-regulaer
ceses considered in Sections 2.2 and 2.3.
Now, the maximum probability estimator gn(r) with respect to

the loss function (2.1) is that value of d for which the integral

ey a0
over the set [d - rK;l, d+ :«;13 is a maximum.
Here X = denotes the observation at the n~th stage. Ue assume that
?.(x@) is jointly measurable in (x,8) and a measurable m.p.e. Tan(n)
exists.
Theorem 1. Suppose that the sequence gkn(§n -€.,)} is relatively
compact under {r’g } . Then under essumptions (A1) and (81),
(3
n
‘e

o 2 -1 & o
K (B ~8) =K (2 ~xK = =8) >0 as n=—>® .

To prove this theorem we need the following lemma,

Lemna. Set for A€ R,

exp(e(® )N , if K (2 =8) >N,

AT =
o, i K (2 =8) <N,

Then for any A€ R,
&, AN =AML —> 0 e n—>w .
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Proof of the lemma. Tho result follows from the fact that

on

* o
IAN =A (N —=— 0
and A (M) and /\:‘(A) are uniformly integrable.
This is proved in Ibregimov and Hasminskii (1981) for all A 2> 0. Using

condition (BL) it can be proved for oll A< 0 in a similer manner.

Proof of Jheorem 1. Ue use the idea of the proof of Theorem 4 in
Jaganathan (1962), We shall prove that for all & > 0 ,
n = Q.
nm P Ux(s -8 ) ~K (2 -1 -e)|>6J=D.
o B0 Pe [ Knltn = 8g) =Kz, ==&,
Given € > 0, ue chooss K > 0 sufficiently lerge such that for all n,

n 5 e
Péu[lxn(en-so)x >k-z] <f

n £
and Péc[”‘n(zn"”“n -6 >k =x] <3

Thus it 1s snough to prove thet for all sufficiently lerge n,

Pg (A <% (2.2)

o
wara A= { K (B, =8) ~K (z, - me)1>6,
Axn(é'" )ik, K (2 - rK;l = )1 & Ker }

sines £y 1ALN SATNIS L+ oxelele )
the above lemma implies that i Eeﬂ INGY - /\:(k)l d\ — 0
and therefore Eéo[-f: AN AT ] =0 . (2.3)

Now, 1f we set

oy = [K,B, =00 =51 KB, =20 + 5]
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-1 -1
[kn(zn Tt me) -y K (2 - e ) r]
e have 8 (C [-kk] 5 & (C [K,K] whenever A~ occurs and hence

(2.3) implies that

[/ TALN = NESTIINE N 5> 0 for i=1,2, (2.4)
An 5 o
Now suppose that (2.2) is not true.
Then 5 (A) 2% (2.5)
o

for infinitely many values of n.

From the definition of A(A) it can be shoun that uhen the

event An occurs we have
ot JSA oy e J AT e
& 8

where a_ is a positive real number not depending on n.

Then (2.5) implies that for some a >0,
ag / //\:(M a< ) S AT e
A B. A B2
n 1 n

for infinitely many values of n.
This together with (2.4) implies that

[ SAm a< [ JAM o (2.6)
An By A B

for infinitely many values of n.

On the other hand, from the definition of m.pese

-1

ffn(xn.ec+m ) ff( + M)
By T (X80 FX fe)

dh
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i.e., f _/ JANCN IS / f AN dan
An Bl An E2

for all n, contradicting (2.6).
Thus (2.2) is true and hence the theorem is proved. ///
Remark. The result (Theorem 1) can also be proved for any loss
function of the form
L(x) =L(ix1) =m, if X1 >r,
<m, if IXi<r,
for any M, r > 0. The maximum probability estimate for such a loss

function is defined to be that value of d for which the integral

ﬂ'n - UK (4 =8N] r(x . e) e

is a maximum., The proof follous the same lines as the proof of Theorem 1.

2.5 ASYMPTOTIC PROPERTIES OF BAYES ESTINATORS FOR REGRESSION TYPE MODEL
The asymptotic properties of Bayes estimators were studied in
Ibragimov and Hasminskii (1981) for a large family of non-regular cases
when the observations are independent and identically distributed. In
this section we consider the regression model of Section 2.3 and using a
general result on the asymptotic behaviour of the Bayes estimators
(Theorem 1.10,2 in Ibragimov and Hasminskii (1981, Ch. 1)) we prove the
efficiency of the Bayes estimators. For this we make the following
assumptions in addition to the assumptions R1-RA made in Section 2.3

RS There exist positive constants a, M), M, such that for all x 2

a
£x) < myp o+ my X7

0,
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.
R6 There exists a constant C > 0 such that for all n2> 1,
n
1 *
(T e/ / max  o(t) 2¢* .
=1 <t<n

(Condition R6 is satisfied, for example, when g(t) is some polynomial
in t).

Uhen the parameter set () is unbounded we make the following
assumption

R7 ff‘l/z (x =2 aex < [em] ©
for all h and for some « >0, C) >0,

We now consider the family {én} of Bayes estimators with respect
to the loss function L(K;l(e - a)) and some prior density gq. Ue assume
that L is a subconvex loss function possessing a polynomial majorant and

satisfying the following condition :

@
(0
(©) o(b) = [ L(x-p)f(0)e (®%4x 16 rintte for some b and
0
attains its minimum at the unique point b .
Let O be the set of continuous positive functions on R possess-
ing @ polynomial majorant.

Theorem 2. Let 5n be a Bayes estimator with respect to 2 prior

density q € U and a loss function L(Kn(e- - a)), where L is a continuous
subconvex function possessing a polynomial majorant and satisfying condition
(C). Then under conditions R1-R7, the Bayes estimator & = is asymptotically
efficient for estimating € in the sense that uniformly in & belonging to
any compact subset of (@) ,

g -0] = [ u 0o~ (0%
nlimEeL[Kn(e-n-e] _fa L(x = b))f(0)e dx



— 41 -

where the right hand side is the lower bound to the asymptotic risk of

an estimator obtained in Theorem 2 of Chapter 1.

To prove this theorem we shall need a general Tesult on asymp—
totic behaviour of the Bayes estimators due to Ibragimov and Hasminskil
(1981, Ch. I). For easy reference we state below the set up and the

result of Ibragimov and Hasminskii.
Suppose e have a sequence of experiments £" = { (8" A", Py » & © ®}

where () is an open subset of R , k > 1.
Ue set

/\n,e(”) =

uhere K (f@) is some normalizing factor. The random function JAMIR(D)
»

is defined on the set U =K (G -&). Below ue shall derote by G the

set of femilies {g (y)] of functions g_ with the following properties
n n

(1) For each fixed n 21, g (y)t@ is a positive function on [0,0).
-a,(y)
(2) For any N >0, lm y'e "
—o
n—>o

The following theorem is due to Ibragimov and Hasminskii (1981, Ch. I).

Theorem (Ibragimov_and Hasminskii). Let & be a Bayes estimator

uith respect to a prior demsity q € @ and the loss function L(Kn(G -a)),

shere L is a continuous subconvex loss function possessing a polynomial

sajorant. Assumo that the random functions /\

r"@(u) possess the
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Pollouing propertics :
(1) For any compect set K'(C (@) thore correspond nonnegative
mumbers  a(K) = a and B(K) = 8 and functions g::(y) =9, {gnj £G such

that

(1.1) For some @ > 0 and for all ® €K ,

2
~ (n)jAlf2 2 a.
s - 17 M AR )- ATu) | < s
Jug ISR [y (<R 4 I
Uity U e
(1.2) For all @ €K and u € um9
(n) A 122 -5, (lul)
g A Helw g e .
(2) Tho Pinite dimensional distributions of the random functions

Apglu) unifornly in & & K corverge to the finite dimensional distri=
butionsef the rendom functions A g(u) = A(u) .

(3) The random function
_ YA
W(s) = ka(s - u) /k/\”v =
R R

attains its (absolute) minimum at the unique point T(8) .
Then the distribution of K (8 =) converges uniformly in © €K to the

distribution of T(8) and wo have unifermly in € €K ,

. imw Eé“) L[ K (& -8)] =eseN.

Proof of Theorem 2. We verify all the condition$ of the Theorem

(Ibragimov and Hasminskii). Ve fix some & € (). For u €l

n
(X o8) & - o(8) K;l u)

AN ORY -
I, #x- o(8) ©)
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First of all we note that the marginal distributions of the process

/\n'e(u) do not depend on € . Then for any U<y,
12 12
Bl A (i) = A glup) 1*
<2[1- J__}'lfr P oK) (= o0k huy e, ]
22 [0 of #0- songtig) A- s(ot ue]
[stnco tor 0.2 840y 0eeep S 1, 1 =010, ea b é_‘ (1 -p) ]
= ilfwl/l(x - o(ekly) - (k- g(t)Kn.'lul)lz dx L (2.7)
Now
1912 - g(t)k"luz) — e Pk - g(t)K;lul)lz dx .
< firtx = steag) = 00 = glenup) 1
[stnco for any @, > 0 (/& = B2 < ta =81 ]
ol y, © g(;.)K;luz
Pl = g(e) updax +

f1(x = 8) ds [dx

= J
ottty a0y, | ooty

=1 I, » soy.

~
+

(:)K-luz o
nl g fl 1P9(x) 1dx { ds
B T G

< ooy, - ul)_[rJ 1P1(x) 1ex .

of
1, =

<

of

= o(&KH(u, = up) M,y say

® .
where M = fn 1P1(x)1dx < ® by assumption R2(e).
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By assumption RS, for all u; < w, such that |ujl Ry luyl SR
we have
= . a
1) £ oK My, - u) [ml  ny(2m)® .
Therofarosfron (2.7)
1/2 AL
Ala) - At <(u2-u)[m+m +n,2%0 ]
172, 2
ERE swp luy =uyl” Eal/\ (uz) =AY (“1)l < 8(1 +R%)
1ug IRy 1, ISR
for some B> 0 eand for ell & ¢ (.
Thue condition (1.1) of the Theorem (Ibragimov and Hasminekii) is satisfiad.

Now,

oA = t& {1-—f|f1/z(x-g(t)K W = 0001 o}

< oo {3 élﬁrl/‘(x - (et - (0 e

(sinco L =P < o™ .
We choose A > 0 sufficiontly small such that whenever 0 & x £ A
we have f(x) >3 £(0),
For u20, [1#H/2(x = o(e) o) - #2012 ax
J

(oKt
H f P(x)ox
1]

and for U< 0, ﬂflﬂ(x - g(ek MW ™

0
> 1912+ g(e ) = 200 1 ex.
- ‘é(t)K;llul ¥, *
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Flx + g(e)K Liun)dx.
i e

Thus for max g(t)K |u| < A ue have
i

tg AL /Z(u) <o {-3 (1}

(2.8)
Also by assumption R7, for all u € R,
1/2 - 1/n 1] =na
f A\ pieted <[] T [ o)/ k] (2.9)
Fix any © > 0. Ue want to prove that
Lin  jul® gy /\ig(u) 0. (2.10)
ul o 4
n—>wm

From (2.9), for max g(t)n« Liul > ,
Kt<n
r 12
1’ gy /\ne(u)

i (&)/n ()7 -"o
< it e ok m:: ) ] [¢ Talt /maxg ]

- -1 ~natr T 1/n -na
Al AT 12:; g(t)] [Kn/lgzgn ()] [ TraCen) /lgzgng(c)}

-x -natr rrh 1 -na
<cf(e,m [kl (] ™ [T o) /"/12‘;3 o(0)]

(we choose n so large that ~natr < 0)
o

——— i K_<

1/.-. - [since K <n e a(e) ]
T ] :
1Lt<n

2nd this converges to 0 (as n—>m ) by assumption R6. This result and

(2.8) give (2.10).

Vow proceeding as in Section 2.3 we can express /\ _(u) for all u€ R as
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( exp {f(ﬂ)u'i— anl, ir Tn>u ’
/\n'o(u)=

0, if T Su,
n

uhers & —2.5 0 and T, is a random variebloe comverging in dietri-
butica to a rendom vasiable T uith density £(0)e~ <% on (0, ). This
is proved for all u 2 0 in Section 2.3, The proof for u < O is similar
to thet for th cass u 2 0. Then it con be casily shown that the marginal

distributions of the process /\_.(u), u € R converge to the marginal

distributions of the process

( f(Ou
Atw) = iﬂ

, iF TOu,
i TLU.
Also the random function
wie) = fUs = AGwu
attains ite minimum value at the unique point s =7T = bn « Thus all the
conditions of the Theorem (Ibragimov and Hasminskil) are satisfied and

Yheorem 2 is proved. //



CHAPTER 3

THE ASYMPTOTIC SEHAVIOUR OF POSTERIOR DISTRIBUTIONS
AND BAYES ESTIMATORS IN NON-REGULAR CASES

3.1 INTRODUCTION

Lot {x)sx,y..0 ] be independent observations with a common dis-
tribution having a density which depends on @ roal or k-dimensional para—
meter & . Suppose a prior distribution of & is given. Then under
suitable conditions, the posterior distribution of & given the obser-
vations X;s¥,s..ssx, is very close to normal distribution if n is
large. This was first observed by Laplace in 1774 and more recently,
by Bernstein (1917) and also by von Mises (1931) and the result is
referred to as Bernstein - von Mises theorem. For independent and iden—
tically distributed observations a rigorous proof was given by LeCam (1953,
1958) and his result is an improvement over earlier results. Various modi-
fications and extensions of this result have been made by several authors
including Bickel and Yahav (1969), Chao (1970), Borwanker, Kallianpur
and Prakasa Rao (1971). However, none of these authors considered the
non-regular cases. In this chapter we study the limiting behaviour of
posterior distribution and Bayes estimators for a class of non-regular
cases for which the support of the density depends on the parameter & .
The limiting posterior distribution is, however, mot normal. In Section 3.2
ue prove the convergence of the posterior distribution to.some exponential
distribution. The asymptotic behaviour of Bayes estimators is studied in
Section 3.3. In Section 3.4 Bernstein - von Mises theorem in the regular case
is reexamined. It is shown that the results of Bickel and Yahav (1969) and
Chao (1970) can be improved upon by relaxing an assumption and this in-
creases the scope of applicability of their results to include the various

standard examples .
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3.2 LIMIT OF POSTERIOR DISTRIBUTIONS IN NONREGULAR CASES
Ue consider the set up of Section 2.2 (Chapter 2) and in Theorem 1

of this section, find the limit of posterior distributions under two addi-

tional assumptions. Let X),X;sesssX  be a random sample from a dis—

tribution Py with density function f(x, #) on M with respect to

i i 3
Lebesgue measure uhere & € (i), an open interval of R. Ue fix &, ¢ (@ ,

which may be reg as the true point. Ue assume that f(x, &)

is strictly positive for all x in a closed interval (bounded or unbounded)
$(#) depending on € and is zero outside S(&). Let A (8), A, (8)(A) < Ay)
be the boundaries of S(&). As in Section 2.2, we consider the following

cases ©
Case I ¢ The support S(8&) is decreasing in €, i.e.,
s(e,) C s(&)) uhenever &, >&
Case II: The support S(&) is increasing in €, i.e.,
s(e,) D s(al) whenever €, > &) .
We now make the following assumptions on the density f(x, &)
(A1) A,(8) and Ay(8) are continuously differentiable functions
of & (if not infinity).
(A2) On the set {(x, &) txes(@)]} , flx, &) is jointly con-
tinuous in (x, &).

dlog f(x, 8) I log fx, &)

de*

exist for all

(A3) The derivatives

de
(x, &) in {(x, 8) Ia(e) < x< AZ(&)} .
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(a8) For all € & (D), thore exists & neighbourhood n(e) of

&, and a constant D(8 ) > 0 such that for all € € N(eu),
‘_Q_ log £{x, 8) ]<n(6)
d =%

for all x for which the derivative exists.

(A5) For all & & (@D, 59[ a&;,té&_ﬁl} c(8) is finite and

not equal to zero.

(A6) For Caso I
Swp { log £(X,8) = log F(X,8,) L& <8 =5&¢ ®} <o

for sufficiently large & > 0.

For Case II §
sup {1ug (x,0) = log P(X8)) 1@ >e+ 6 B C @} <o

for sufficiently large & > 0.
(A7) lim €, log f(X, & P) = E5 log £(X, €)
P =0 o

where P(x, &, P) is the supremum of f(x, &') with respect to o e@®

uhen 16 =811 <P .
Below we shall prove results for Case I only. The treatment of
Case II is similar.

1t has been shown in Section 2.2 that for Case I, the

aat { Gtoeeerx) 1% € s(e) for i= 1,2,...,n} can be expressed as
{zn(gg) 2 é} for some statistic Z and a slight modification .of z,
is locally ssymptotically minimax estimator of & . Also for this case,

c(€,) 2 0 and hence by (As) c(8,) > 0.
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We now consider a prior probability distribution uith density
M.) with respect to Lebssgus messure. Tho posterior density of &

given the obesrvatione X, sy sesesx  is

f(x , ) A (8)

(B 1x i) = I
lT £(xy» MNM)dN
=1
Uo uill consider the posterior dersity of = n(e =), uhere & =2 —ﬁ

for some b > 0. The posterior density of ¢ = n(@ -én) is given by
» -1 A -1,
Sp{EIxg g peaapx ) = C5W/ (EINE + tn7),
~ ),
i &+ tn )
where V (£) = Trlxgs 8n 7 0 )

— c = (£)NS_ + tnD)dt.
T, 8y Jriond, « e

Note that 17 f(x;, 8) is positive if sach x; € 5(8), i.e., if €< 2 (X).

Thus, /(&) =0 for & >b.

Ue now consider a weight function H(t) = H(|t|) satisfying the

following conditions:

(A8) (&) H(t) 1is nonnegative and there exists € > 0 such that
for all b >0,

o b
LH(U oxp {#(c(8 )~ &)} at +j; H(t) sxp{t(l:(eo)"‘ e )}dt <o
(b) For every u >0 and 6 >0,

Paiad f H(t)MQ 4 tn )t —> 0 awe. a5 n—> @
1£1>6n

Unless otherwise specified, all probability statements are with

P will be omitted if it is

Tespect to Py ~ measure. The phrase a
o

clear from the context.
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Iheoren 1. Consider Case I. Under assumptions (Al) ~ (A7), for
any weight function H

satisfying (AG) and any prior probability density
N.) over (H)

uhich is continuous and positive in en open neighbourhood
of &, ,

im fH(t))g:(nxl,xz,...,xn) -gg (t)]dt =0 a.ws. P,
@ R o

o

0 A
uhere g (Elx geeerx) i the poctorior density of = n(e ~8.) given

the observations X;s%jesay

n
and gy (£) = ( c(8,) exp {c(ec)(e-u)} for t< b,
o
0, otheruise.
Proof. Step 1. It can bo easily shoun that 2 —> 8, a.s. as
n=>wm, For t>b, ) (t) =0,

.9 log F(x, ,&)
For t< b, log yn(c)=§ - e

K N o
for some & lying betusen 8 and en+5

T

Using assumption (AS) and strong law of large numbers

P o log Flxy ©)

—g —> c(8) a.s.
n 1—1 ]eo °

Also

|_ 9 1log (x;s ®) 1O log f(x;, 8)
n

O\e [e;'FE PE Ie

o

az log f(x;, @)
RS

" '
for soma 8 lying betueen € and 8, .

1 e - 3.1)
5;Z| ,9'.1.||en o, | (3.1)
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By assumption (A4), there oxists & > 0 such that uhenever [t| < 6n

the right hend side of (3.1) is (for all sufficiently large n depending

on tho sample peint) lees then or equal to
o
D(eo) 1el -8,
1.8 & o
soe,)(er -8 1+ 18, ~2,1)
o,
so@)iein™ + B -e1)

Lne)(6 + 1B, ~81) .

Since Sn ~>#®_ , given any & >0, uo oan choose 6 >0 sufficiontly

small. so thet for all eufficiently large n,
log Y (t) < t(c(8,)-€)  uhenaver =-éng t <O
and log Y (t) < t(c(8 )+ ) uhenever 0<t<hb
Also for each ty ¥ (t) => )/ (t) a8 n = o
where ¥(t) is given by
V() = exp (tc(en)) for t< b,
o, otheruise .
Step 2. Ue shall prove that for sufficiently small & >0 ,

un [ B PONE, + = V(D) |t = 0 s,
n=>® Fien

We heve
& + 1y~ Ne ) V(&) |de
e H(t)!yn(t))\( o) = Ne ) V( )I

b -
£ HO VR B+ ey e ) e

b
WAL CRSSIACRSIOICS
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For tho first intogral the intogrand is dominated by some inte—
grablo function for sufficiently small 6 > 0 and the intogrand conworgos
to zero for each t & n —> @ . This follows from (3.2), assumption
(#8) and continuity of A at € . Hence by dominated convergence theorem
the first integral corwsrges to zero. The socond intogral also converges

to zero by similar argument.

Step 3. o shall prove that for ell 6 >0,
Lim f HEY | V(BING, + tn)Me ) V(E)[dk = 0 av.
n ->o n
1£1>6n
Ug have
f HO) [V (NGB, + 0y Ne,) V() ot
1£1%6n

[ Y (DHONE + tnat + f NeH(E) Y (t)dt
ton " B #<=5n

=1, % I, (say).

8y integrability of H(t))/(t), the second part I, —converges to zero
»
a.s. Ue shall now prove that thero exists € (6) > 0 such that for all
sufficiently large n,
*
sup )/ (£) < oxp f' ne (6)} as. (33)
t<ebn " "
1f (3.3) is true, I, —> 0 a.s. by sseumption (R8) .
To prove (2,3) we urite
i -1z (x5 8 +5) = log £ (x,,8,)
% 1og V (£) _;iil log Flxgs € +7) = log 5%
10 s
=% {ren 10 8 - 200 0, )]

= A, + 8 (say).
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Tt is o3sy to prove that O ~=> 0 a.s.

~ = 6
For &< -bn, & + tn™ -8 < -3 for all sufficiently large n and

therefore A < s

e-8 <~2"3

-
nE

§ {log Fx;s 8) = log f(x;, en)} .
By assumption (A6) we can get 8, > 6 such that

E,

Swp {mg (X, @) = log £(X, 8)) 16<6 -5 ,8¢ @}( o.
o
set @, = {ee@ te<e, -6
@, ={ec® ie, -0

’

)
«-i).

L+ Yo can get Py > 0 such that

1
°J
L8
o=®¥2

For each & €

Eeu log (X, €, oe) < zen log f(X, GD)

where f(x, &, pe) is as defined sarlier (see (A7)), This is possible by

assumption (A7) and the Pact that

Eeu log F(X, €) < EQO log £(X, 8)) for &#€_ .
Since the et (H); is compact thgro exists a finite number of points

By aeand®y s@lsuch that ji;(ej - ej, 8+ pej) covers (@), and

Eeo log f(X, &5 P ) < Eeu log F(X, €) for § = 1,2,..05k (3.4)
Now for all &< —=6n and for all sufficiently large n,

1] 1
A, < sw 2; 121 [109 £(x;5 ®) = log f(x;, ea)]

- k
ee (3_{_)° u { _ul(ej -
3=

2Byt Dej)} }
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nM:

gmax{-l-

L i@ log f(x;, &) = log flx;s Gu>:|

LN

iz [ogr(x @50 ) = 209 flxga 8)] 03 = L2eeenik }
8y assumption (A6) end (3.4), using strong law of lerge number we can get

£(6) > 0 such that the right hend side is less than = €(3) a.s. for all
sufficiently lerge n. Since 6 —> 0 a.s, this proves (3.5).

Step 4. We shall now prove the theorem using the results proved

in otep 2 and step 3. The results proved in Step 2 and otep 3 imply that

SHo) [y e+ B - Ne) V() |e =0 o .5
Putting H(t) =1 uwhich satisfies (AB) trivially, we get
= [y B = ne ) Y (e
Ne)
- 335 wo bc(én)} . )

Hence

rgH(t)Ig:(tlxl,xzy....xn) - gec(t)fdt
< fuoet] v gy wh - Ko YR]e
+ fH(t)[ ey - eley) o { -bete) ] [V(dae

and these tuo terms comverge to zero a.s. by (3.5) and (3.8). M/

Remark 1. If condition (A6) is not satisfied,we can still get
a weaker version of the theorem. In such cases it can be proved that
under assumptions (Al) — (A5), there exists 6 > 0 such that for any
prior probability demsity N.) over (8, - 6y B+ &) which is
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continuous and positive in a neighbourhood of € , and for any weight
function H satisfying (A8) (a), we have
. ) *
1in [ 6heixgennx) =gy (D]t =0 ass.
n—w g o

*
where gn(tlxly....xn) and gg (t) ere as defined earlier. See Theorem 1(a)
of Section 3,3 in this context.

Remark 2. Assumption (A7) is given in Wald (1949) as a lemma and

is proved therein under mild conditions. The idea of the proof of (3.3)
in step 3 is essentially due to Wald (1949),.

Remark 3. Assumption (AB) (a) is satisfied for the functions

M) = 16", 20, 1¢ [18" Ne)d® < @ for sons integer m 2 O, then
(AB) (b) is satisfied Por the function H(t) = Itlm (see, for example,

Boruanker et al. (1971) or Basawa and Prakasa Rao (1980)).

3.3 ASYMPTOTIC BEHAVIOUR OF BAYES CSTIMATORS

In this section, we shall give applications of Theorem 1 to the
asymptotic theory of Bayes estimation. Ue considsr the set up of
Section 3.2, Let L(.) be a loss function. Since n is the normalizing
factar in this caso,.it is reasonable to specify the less by L(n(T =-®))
uhen T, is the estimator. Now a Bayes estimator & = is en estimator
which minimizes

ke =g (o1 s eix e G

with respect to a & ({) for all sequences (><:L
gn(elxl.....xn) denotes the posterior density of & given XpseessX .

Ue shall here assume thet such a measurable Bayes estimator &, of &

exists.
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Thoorom 2, Consider Case I and suppose that assumptions (Al) =

(A7) ere satisfied. Lst the prior probability density be positive and
continuous in an open neighbourhood of €, . Let gr‘ bo a Bayes esti-
mator of € with respect to a loss fumction L(.) satisfying the follow—
ing conditions :

(1

L(t) = L(~t) 20 for o1l ¢t
and L(t) is o nondecroasing function of  [t]
(i1) L is lower semi~continuous
ieeey {EIL(E) S0 } is closed for all ¢ >0
@
(iii) / L(t~b)c(8) exp {- c(e)t} dt  has e strict minimum at
0
b=1b(€) >0 and b(€) is a continuous function of &
(iv) Condition (AB) is satisfied uith H(t) replaced by L(t) .
Then as n =>®
P
(a) n(& -8) —> 0 a.ws.

b(Zn)
= and Zn is as defined in Section 3.2.

uhere B =12
s n n

(b) 8 —> 8, aws.
- ny
and L{n(en -eo)ipeo} = zix - b(ec)}
where X is a random variable with a distribution having density

P(x) = { (8, )exp {-n(@u)x} , if x>0,

o, otheruise.

© [T BT 5 (rmmymnei )
- (& ) o( (6 )t ] dt
>]’: L(t=b(8 (8 ) oxp {-ce-c }

uhere gn(.lxl,...,xn) is the posterior density as defined in Section 3.2.
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Thoorem 2. ° : Case I and suppose that assumptions (A1) —

(A7) eare satisfiec. tie prior probability density bo positive and

continuous in an cien neighbourhood of €, . Let 8 be o Bayes ceti-

mator of € wuith respect to & loss funmction L(.) satisfying the follow—
ing conditions :

(1) L(t) =L(=t) 20 for 211 ¢

and L(t) is o nondocreasing function of  |t|

(i1) L is lower semi-continuous

ieoey fEIl(E) < } is closed for all © >0

@
(111) [ L(t-b)e(8) oxp {- c(e):} gt has a strict minimum at
0

b=1b(€8) >0 and b(&) is a continuous function of ©
(iv) Condition (AB) is satisfied with H(t) replaced by L(t) .
Then as n =

(o) n(E -8) — 1 as.

w(z )
whore B =27 = -l
n=%n n

and Z_ is as defined in Section 3.2.
(b) 8 —> 8, a.ws.
N - n - g
and DC{n(en -e) lpeD} = ;C{x b(en)}
whers X is a random variable with a distribution having density
£(x) = { (8, )oxp {- c(eu)x)} , if x>0,

o, otherwise.

(e) [L [n&~e)] g (Bix s rennsx Yo
—_ L( Ne(e) e (&)t ! dt
>/u: (t=b(8)c(e) oxp {-c - }

where gn(.|x1,...,xn) is the posterior density as defined in Section 3.2,
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Proof. The proof is similar to the proof given in Borwanker,

Kallianpur and Prakasa Rao (1571).

By Theorom 1, we have

nu_n;mfL(t){g:(tlxl,xz,...,xn) - Qeu(t)|dt =0 as.

. 0
uhere gfn(mxl «eesx)) $o the posterior demsity of t = n(& - &%) given

0y otherwise.

X seaepX
preeerXy

" (e )
e =2, -— ang gen(t) = { o8 )exp {E(%N"’”("a)} for < b(8.),

Since 5n minimizes (3.7) with respect to o, using the above fact ue

T L [oB, =0)] o fbixgrenar )
n =>m

— «
< nli)mme [n(®) -8)] g (81 senepx )0
= nEi;mm fl.(t)g:(ﬂxl,...,xn)dt
b(s,)
= f Lt)e(e ) | :(60)(t-b(§n))} at
to
®
-/ Leba))e(8 ) § (8,0t ] .
0

To prove (c) it is now enough to prove

ng_%mfl. [nE, =®)] 9 (@1xseeerx )8

@ -
2 [ Hemble)e(e Jaxe { (o) } a

P
e urite V= n(@ -67) .

get

(3.8)

(3.9)
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We first prove the theorem assuming that

In v 1<o aws. (3.10)

.., Py [EE Wi <m:( =1.
o

U take any sequence (x;sXpses.) from this st of Py - probability ono.
o

Let v be a point in the limit sot of V (x). Suppose v 7 0. Let {ni}

be a subsequence such that lim v (x) =v. Then
i
M/L [ny(e, -] o, (8l1xppeeepx )&
A L i
= L [L(t+ ] g: (i) gaeepx, Jdt
FR ] i
*
—)fM LE+ V) gy (Bixgpeaenx Jdt
i FRNY i
u(& )
2 [ Uesiste)on { o) - ue)) } ot

-m
o®

f L [t - (ale) + W] o(8) exp {-c(&u)t} dt
0

®
> / L = 68 )e(e,)) e { (@)t at. by assumtion (11).
o

Thus, begause of (3.8) v must bs equal to zero.
Therefors we have

V,=>0 e n-—>o as. (3.11)
and hence (3,9) is proved (Proceeding as above,replacing {ni} by {n}).
Since b(.) is continuous n(8 - 6% —> 0 a.s.

This together with (3.11) proves (a).
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Since 2 =—> &, a.e. and n(Z ~®,) converges in distribution to
the random variable X described in Theorem 2 (ses Chapter 2), (b) is

an easy consequence of (a).
We shall now prove (3.10),
Stppose (3.10) 4o not true. iue., Py [ Tin Wl =w] >0,
Toke any sequence (xl,xz....) from the above set of positive probability.
Then given any M > 0 , there exists a subsequence V"L such that

W, 1 >0 forall 121,
0y =

Then
[L N (& =8)] g (8 | X.yeeepx )b
[y ng J A it ny
> f LWe+v )t (¢ Ydt
2 o HE T Voo (e Kpeety
IRy *
4
My *
f LOE+ 3o (1 Xppeengx_ )dt
/n @', 1 g
[
n n
Since 161 < g o IV, 1> My wo have f6+ V12 (b1 + 5
s 1
> ] L(t#1)g" (& [ X;yeuepx_ Ydt  (Choosing M > 1)
= n; 1 ng
wrg
=3
Therefore,

Tn D& =) g (8 | X peeerx 0.
H_)QI n -J n pARARA

me n(& -8)] o (&1 x )

> L(t+l)gg (t)dt .
1t < °

ol=
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M —>o 1t <

Lim / n HEl)gg (£)at
Ry e

b(eo)
= j_m ECESLCRE {c(@p)(t-b(euﬁ} dt

b(& )
>f : HedeeJoxe { (s, )(t-be,)} ot by assumption (it1).

Thue, for all sequences (x,,

s202) in @ set of positive Py - probability,
o

T;{:,.'m fL [n&, e ] g e 1 x %)

n

(8,)
>[: L(B)o(8) oxp { o8 )(t=b(e)) } dt

-fm L(t=b(&_))c(8) exp {-tc(a ) at.
o "o o o’ |

But this is impossible by relation (3.8).
Thus (3.10) is proved and this completes the proof. /f

tioned in Remark 1 that even if assump~

Remark. It is already

tion (A6) ie not satisfied, we can get @ weaker version of Theorem l.
Using this result and proceeding as in the proof of Theorem 2 we san prove
that 1f 3’" ie o Bayes estimator with respect to any prior over a small
neighbourhood of the true parameter point én (as described in Remark 1),
then it is asymptotically equivalsnt to Sn(aa defined in Theorem 2) in

the sense that

ne -8)—>0 as n—>o aws.
n ~ %
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Us shall now give another application of the result on the limi-
ting behaviour of the posterior distribution and the posterior risk. A
lower bound te the local asymptotic minimex risk was obtained in Chepter 1.
Ue can obtain the seme lower bound using the following theorem (Theorem 2(a))
on the limit of posterior risk.

Us assume that assumptions (Al) =~ (A5) hold. We consider a loss
function L(.) satisfying conditions (i) ~ (iii) of Theorem 2. Ue also
assume

(AB)(a'). There exists € >0 such that for all b > 0 and all

€ in a neighbourhood of & ,
(t)exp o(e)- dt + Yexp o(#) + &) @
[ (e t(c(8)~ €) L(t t(c(®) + € dt< @,
fm { } fg ( { }

Then we have the following result.
Theoren 2(a). There exists « >0 such that if §_ is a Bayes
estinator uith Tespoct to any prior probability density over (8- a, &+ a)
vhich is positive, boundad and continuaus on (& - a, 6+ a), uhere a is
any number in (O, “o)' then for all & e(eﬂ- oy B+ a)y
08 ~8) >0 aw. P,
n = %n &

and [L [ 08 -8)] 9. (B1 xypeern)a B —>jz We-s(e)e(elone { c(o)t} o

2.8, Py
- b(z ) .
vhero 8 =72 "FL and g (Bl X yeeepx ) is the posterior density

as defined earlier.
The proof of this result is exactly similar to the proof of

Theorem 2 except that in stead of using Theorem 1, we here use the
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following result.

Theoren 1(a). Under the above assumptions, there exists aj > 0
such that for all a &(0, @ ) and for any prior probability density I
over (ea —ay e @) which is positive, bounded and continuous on

(9ﬂ -a, 8+ @), we have for all & € (eﬂ ~a, &+ a),
B
1in SO g (El xpyeeerx ) = gg(t) at = 0 aus. P
e R n 1 n) T % &

*
where gn(tl xl,...,xn) and g&(t) are as defined earlier.

Proof. The proof is similar to the proof of Theorem 1 and we
use the same motations.
For t > b, 'Vn(t) =0

dlog fx;, &)

LN
For t< by, log Y (t) =t .+ T lgr
n n e

i=1 de n

a A -1
v +
uhere & lies betueen & =—and & + tn .

By strong law of large numbers,

Dlog Flx;s &)

iz 5 — o(8) a.s. P -
F’: D log Flx;s &) | _izal"g (x5 8) l
n de o de

Fros 100 @)
3¢’ n |

lies between €] and & .

<tz

= a
"o + - -8
Now, 181 ~ 8,1 < ItIn B -8l 18 -8,

@ -8l < itinT o+ § -8l .
h < n
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Let €>0 be as in condition (AB)(a'). Since 8 —>& a.s. Py, ue
can choose & > 0 such that for all & & (8, -6, 8 + 6) and for all

sufficiently large n (depending on the sample point),

log ¥ (t) < t(c(8) - €) uhenever -6ng t< 0

log V¥ (t) < t(c(8) + €) uhenever 0<t<h
Also for each t, ¥ (t) —> V() as. Py
where )/ (t) is given by

V(t) = (exp(tc(8)) for t< b,

0, otheruise.
Then as in step 2 of the proof of Theorem 1,

- Ne) YV (E)|dt =0 a.s. Py .

. UV (ONE + £n
n—>wo It] £ 6n

for all & 5(9D -6, 8 + 8).
If we take @< 6/2, then for any prior A over (& =0, & +a),
the set on which ’}/n(t) is defined will be a subset of { £l £ 5n} for
all sufficiently large n a.s. Pg , uhere & is any number in (8, -a, 8 + a)

and therefore we have

Suw |y onE, + tn) - Ne) V(e lde =0 sian P -

The rest of the proof is exactly the same as step 4 of the proof of

Theorem 1. //
We shall now use Theorem 2(a) to find a lower bound to the local

asymptotic minimax risk. Let a be as in Theorem 2(a). For any a €(0, au),
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Mo inf s £y L i (T, —e)}

> Mmf&_aseL{n(gn»a)} Ne) de

where the infimun in the left hand side is over all sstimators T,
of & , M&) dis any prior demsity over (ec-l @ 5+ o) as stated in

Thecrem 2(a) and §‘n is the correcponding Beyes estimator.

Let gn(Bl XypeeesX ) be the posterior density end n(x) be the

marginal density of x= (x

8000 = [L{nE= B} 5 Blxperem e B .

eosx)e Ve urite

Then we have

Ln inf s Eo L {n(T" -e)}

lim gn(x) dn(x)

6+
° g

in o { 6l ; Ne) @

> o , { 1in En(i‘)} Ne) oo [_Ey Fatou's lamma]'

== £
_/e-u n=®
o

Qu‘f' -2

=f A(®)N®) & [ ey Theoren 2(a) ]
6ﬂ_ a

where A(8) =/: L(t - b(8)) e(&) exp { - c(é)t} dt.
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8u+ o
Under mild conditicn, lim / HONOEERICH]
=
| —-a

o
(ue hers choose 2ppropriate A).
Thus we have the following lousr bound to the local asymptotic minimax
Tisk ©

lim  linm inf swp By L {n(T, -9)}

@=>0n=So T l®-8iia

2 [ U -bey) ofs,) exe { - u(eu)c} dt.

o>

3.6 REGULAR CASE

Us now reexamine tho Bernstein-von Mises theorem in regular cases.
Consider the set up of Pickel and Yshav (1969) or Chao (1970). Ue have 2
random sample X)sX,sesesX, from a distribution Py having a domsity
7(x, ©) dopending on a real paremster €, uhere € & (H) , an open interval
of R. Lot & be the true perameter point. Ue make the follouing

assumptions .

(81) Ve are given a Bayes prior measure /\Non (@) and /A hes a
density A uith respect to tho Lebasgue measure uhich is continuous end
positive in an open neighbourhood of & o

¢ 2
log #{x, ©) log £(x, ©)
(82) 2 and ) 9
BN Y
in € for almost all x.

exist and are continuous

2
2 log f(x, &)
(83) g Sw
o j D¢
for some € >0 .

‘:1e-e°|<z.ee® <o
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(Ba) aws. Py whers 8 is a maximun Likelihood
estimator.
- az log f(x, &)
(es) (&) = ~ £y ( v le. ) is a finite positive
o Qe o

number.,

(86) lim E, log f(x, @, P) = £, log f(X, &)
pe>0 o o .

f(xy ®y P) is as defined in sssumption (AG),

where

(87) . sup {hq (X, 8) = log (X, &) : & -8 1 >8,8¢ ®} <o

for sufficiently large & > 0,

Us consider a nonnegetive weight function H(t) = H(It]) satisfying the
following conditions.

(B8)(a) There exists € > 0 such that

2
fH(t)axp {"T (1(e,) = e)} dt<® .
(b) Forall u>0 and 6 >0,

e f rl(c)M€n+ )it =0 aws. a8 n->w.
Jn

1€l > 6/

The follouing theorem is an improvement over the Tesults of Bicksl
and Yahav (1969) and Chao (1970) (see discussions following the proof).

Theorem 3. Under assumptions (81) - (87), for any weight function

4 satisfying (B88),

-1 "
%)) =O(I7(8,)y t)Idt = 0 aws. Peo

un S HE 1ghCix,
n=->o R

shera g:(mxl, 1%,) 18 the posterior density of t = /n(é =& ) given

observations Xjseeepx, and ®(v, £) is tho density of the normal diem

tribution with mean zero and variance v.
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Proof. The posterior distribution can be written as

op(bixypeeerx) = €1V (ONE, + ta/2)

n
M F(x,, 8+ tn72/2) .
shere V(0 =D fyn(m(én + e Py,
AN 8)

We shall only prove that for all & > 0, there exists &(8) > 0

such that uhemever [t| > 6 /n , for all sufficiently large n,

n
5 2, {300 10y 8, v o0 10 10, 8} < =o(8) aws. (3.2)

The remaining part of the proof is similar to that given in Bickel and
Yahav (1969) or Boruanker, Kallianpur and Prakasa Rao (1971). To prove
(3.12) ve use the same argument as is used in the proof for non-regular
case (see step 3 in the proof of Theorem 1), Ue first note that for

61 >6 /A, B, + =t -0,1>% for a1l surriciently lerge n and
therefere, ﬁ

i )::15 log (x,, 3n +fﬁ) = log F(xg, eu)}

't

Sup é{i 3 log P(x;, ©) = log #(x,, éo)}.
B -6 1>2
“e then get 6 > 6 such that

Eéu sup {lug F(X48) - log F(X8.) ¢ nf-eﬂ: >6,,8¢ ®}< 0
stting ®u={ée® : re—é=|>éog

={és® -9 ré—ecls_éb}




-89 -

and proceeding as in step 3 in the proof of Thecrem 1, we can get a

finite nunber of points @, €,s...s®, & (D) and open neighboushoods

(8 284+ By )y § = 1i2yeenk forning a cover of @, such that
3
E, ) log r(x,ej.pe )< Eec log f(X,Gu) FOr § = 152y00eeKe (3.13)
Then for all t in Zm >6 Jn }and all sufficiently large n ,
19 s -1/2
5 121{109 Plxgs &+ tn ) = log fxgs en)}

LN
SMax{ = 5 {Sup 109?()(,9)-109?()(,9)}:
§"’1=1{es®‘j i 1’7o

EX

n
N f1om 10 207 )= 209 £, @) }oa

From this,(3.12) follows by sssumption (87), relation (3.13) and strong
law of lerge numbers //
The proofs of Bernstein-von Mises theorem given in Bickel and
Yahav (1569) and Chao (1970) are based on the assumption
sw ;lng £(X/8)= log F(X¢)) 1 16 =8 1 >6, 88 ®f< o
° for all & > 0. (3.14)

Borwanker, Kallianpur end Prakasa Rao (1971) proved their results under a
Markov-process analogue of the above assunption. Here the above assumption
1o replaced by the wesker sssumption (87) and a rgasonable essumption (B86)
(uhich is proved in Wald (1948) under mild conditions). The assumption
(3.18) 1 not setisfied for the usual reguler cases. Consider, for
example, the normal distribution with mean € and variance 1, uhich is

a standard example of regular case.
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2
f(x,8) = —axp{-*’x-G)},-m<x<m,-m <0< e

Let us take GD - U « Then

sep { 1og £(x,8) - 1og #(x,8) 18 <8, -0 1

2 .
= {1 Lif X< =6,
X -85, i x>-6.
This implies that
) { _ 5y« -
Een Swp { log f(X48) = log f(x,eo) ie<e -6 } >0

and hence Eg Sip {lcg P(X®) - log F(X,) I 18 ~8 1>5 } >0
o

for all sufficiently small & >0 ,

As another example consider

P(xs0) =& ¢~ &%

Take éu =1l. Then

,0<x<m ; 6>0.

Sup{lug £(X/8) - log P(X,8) 16 <8 -5/2
= (=log X =1+ X, if ><>1_6 s
{ log(1=6) + 6 X, if X < -1—_3 (for 6 < 1),
It is now casy to shou that
£ S {lug (X8) = log P(X8,) 16 <8 -5} >0
° for all sufficiently small & > 0 ,

Similerly for many other regular cases, the left hand side of

(3.14) can ba shoun to be greater than zero for sufficiently small 6 > 0.

However, condition (87) is satisfisd in most of the usual situations,



CHAPTER 4

ESTIMATION IN MULTIPARAMETER CASE

4.1 INTRODUCTION

In the previous chapters, we considered the case where there is
only one unknoun real paramster € uwith respect to uhich ths problem is
non~reguler, In this chepter we consider the case in uhich there is an
additional unknoun peremcter, say, ¢. A typical exumple is the case of
i..d. observations from a distribution with density

. f(x8,9) = o(x~0,9)

where. . g(xs?) is, for every ¢, a density on [0,m)(we assume g(0,9) > 0)
This type of problems were studied by Smith (1985), Cheng and Iles (1987)
and othere but these authors were concerned mainly with the problem of
obtaining the asymptotic distribution of the maximum likelihood estimators
or its alternatives. ‘We here study the problem of efficient estimation
from the Hajek-Le Cam-Millar point of vieu as outlined in Chapter 1 (and
also in the introductory chapter), that is, we obtain a lower bound to
the (local) esymptotic risk and suggest an estimator which attains this
lower bound. It is essumed that the usual regulerity conditions are
satisfied uith respect to the additional parameter ®. For simplicity,
we consider only the case in which ¢ 1is a real paremeter. An important
result in this situation ie that the problem of estimation of & and @,
uhen considered together, are asymptotically independent and the limiting
experiment is a product of a regular one and @ non-regular one. In
Section 4.2 we obtain a limiting experiment which ie the product of the
Gaussian shift axperiment and the limiting experiment obtained in

Chapter 1, Using this we also obtain a lower bound to the asymptotic
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risk. In Section 4.3 we consider the sxample of independent and identi-

cally distributed observationsand suggest an officisnt estimator.

4.2 LOWER BOUND FOR ASYMPTOTIC RISK UNDER AN ASYMPTOTIC EXPANSION OF
LIKELIHOOD RATIO

Let {(g“. Myl ®, 0 s@} , n2>1, bo a soquence af
£ ¥
statistical experiments uhere () and (D are open subsets of R. Ue
fix 8 e @ end 9o e P .
Ug set

n
4 + L, o wunt?

,u. 20, v ER,

AW . (uv) = /\n(u.V) =
o

5
@y dP,
o 2519,

and meke the following assumption

(R) For any u20andv &R, uo have a.s. P;a' o,
N (uw) = o {u alogi0,) + vl (0,0 )= % v1g (0) + 5 }
[ p{ "% ' %o?e!"2 Ve o nf’
woT >,
0 T <u,
where o(8 @) >0, 0< I, (¢ ) < ® arc constants, € , L\n end T ero
random variables such that
n
e 0
e —22s o
(D) = (L)
"o
whers A\ ~ n(o, g (9,))s T has a distribution uith density

o
o(6,0) oo § - c(eoﬂ’n)x} on (0,®) and [\ and T are independant.
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\ noo_on E e
Ue set uu'v —-Pen + un 1’ 9, + vn 1/2 o

From now onwards, we shall urite just o, L\n and I in place of
c(eo, @D), An(an, ou) and leo(cpn) respectively. Unless otheruise
steted, ell probability statements cre uith respect to Pg 9 *
o’ Yo
Lemna 1. Under assumption (A), for any u>0 and v ER ,
an, is contiguous to af .
,

uyv °
Proof. For any u>0 and v ER, by assumption (A) wo have
L 12
/\n(u,v)—-> op(uc+tvA =72 1) L >y
1.2
Efowe (uc+va -3 1) e >l
TS 1.2 e
= E[exp(vA ZV I)} o
=1,
Hence by a result on contiguity (referred to as Le Cam's lst lemma in

Hajek and Sidak (1967)) the result follows. /4

Remark. It is more natural to replace the assumption of asymp—

totic independence of An and T by the assumption of contiguity of

Gy, to Q)  becauss it is this result of contiguity uhich is used to
v ,

obtain a limiting experiment (ses Theorem 1 below), Indeed, we have the

follouing result &

Lemna:2. Suppose that for any u2 0 and v R, ue have

n
2.8, P,
®os

/\n= oxp {'uc-vaﬂ—-;—v2I+C“},1f T, >

T <
0, T <u,
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where ¢ >0, 0< I < ® are constants and & An

and T are
n
random varisblos such that € converges in p; "
0o
zero and the distribution of (A , T ) converges weakly to some biveriate

~ probability to

distribution. Then the following tuo statements are equivalent,
(1) Forall u20, vER,
u’L‘,,u is contiguous to n;"o .
@ (D) Lo (8,70
uhere A and T are independent random variables as described in assumpe

tion (A).

Proof. That (ii) implies (1) is proved above (Lemma 1). Suppose

now (1) holde. Putting v = 0 and using & result on contiguity (a son-—
verse of Le Cam's lst lemna) one can easily show that
T2,
» n
J+
supposs (A, T ) == (A, 1) .
»

Ue shell prove that /\" ~ N(0,I) ahd is independent of T. By state=

ment (1) and a result on contiguity (used above), for all u > 0 and

VER ,
£ Eaxp(u:wva“-%vz PR >u)] =1
*»
.60y E [st e > u)] = exp(-u-:d—-;-vz 1)
N 1.2 .
teeu £[6 syl T E[exp(-z-v 1 3, "")1 .

This implies
»
VA 1) = oxp(3 v?1)  for all u20, v ER.

»
Thue, A" and T are independent and A~ N(0,1). g/
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Let us now denote by nugv(u 20U, v ER) 2 probability on ®?

uith donsity

Gy (xay) = ((c exp {-—c(x - u)} (@) 12 o i--z”(y*I)z} ,

it x>u,

’ otheruise.
We define experiments

" = {US’V :uzﬂ,vtlﬁs yn21,

£ ={mu’v :uzu,uan} .

Then we have the following result &

Theorem 1. Under assumption (A), the sequence of cxperiments

E" converges to E.

Proof. To prove this we uee Millar's proposition stated in

n n
Section 1.2. Hence Qu'" is contiguous to uo,n and Qu,v is
absolutely continuous with respect to Qu,u for all u>0 and v R,

By assumption (A) for eny (u,v) ER™ xR ,
L d—D”r:'-”- Q" }- (uec+vA-2421) 1
ol DS S L{owtu e z c>uwl -
040

q 050

q
Since the distribution of = under Q is sama as that of
00

1.2y,
exp(uc+vA -5v°1) Lz > ) ue have

3

+
Similarly it is easy to verify that for (ul,ul),...,(uk.vk) ER xR ,

a” (@
Z{g 16} > Lae s,



-6 -

n n
@ @ ey @
£ ( Uy uk,vk> o :>I{< upavy UtV -
i e — )0, e ) | %00
@, E 0,0 oy0

The result now follows from Millar's proposition. //

Ue shall mow obtain a lower bound to the local asymptotic minimax
risk using Theorem 1 and the Hajek-Le Cam asymptotic minimax thoorem (stated
in Section 1.3). Us consider a subconvex loss function uhich is defined as

follows &

Definition. A loss function L (ky a) =L (£ ~2), £ty 2 € w2,
is said to be subconvex if L satisfies the following conditions

(1) Lx) 20 forall xe W

N 2
(ii) L(xl,xz) = L(|x1|,\x2[) for all x = (xl,xz) € R
(111) {x :L(x) < c} is closed and convex for all c > 0.
We have the following lemma I

Lemma 3. Under assumption (A), for any subconvex loss function L,

) EtnB, =), i@ - )

inf sup
(eh,&n) B, <8< B AN 1
0 -9 1A, n
> inf s, R(S, w) (4.1)
i

5 uc Rx
where the infimum in the left hand side is over all estimators (én, wn) of
(&, @), the infimum in the Tight hand side is over all randomized (Markov
and R(8,\) is the risk of the

kernel) procedures for the experiment E

procedure 6 at u = (uj,u,) with loss function L.

Ue omit the proof since it is similar to the proof of Lemma 1 of

Section 1.3.
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=
5

shall now compute the minimax risk given in the right hand side

of (41). Ue use the same technique ts was used in Sectian 1.3,

We 2gaume that

C(i) EL(X ~ b, Y) oxists and is finite for some b, whore X

has a distribution with density c e %% on {0,@) and Y- n(o, I-l)

(c, I are as in sssunption (A)),
Also there exists b_=b (8 & ) such that
s~ %0700

EL(X =b,Y)= inf EL(X = b, Y) =R y say .
o o o

C(if) For every & >0, there exists N > 0 such that for all
bys B, ER,

N
_f:fu"(""’ry = By) dFy(x) dF (y) 2 R -E .

Remark 1. Conditions (i) and C(ii) hold if, for example, L is

bounded. For an unbounded subcorvex loss function, the cenditions are

satisfied if we assume that L is continuous and nondecreasing in X1

and %1 .

Remark 2. Ue note that

inf EL(X ~ by ¥ = b)) =inf EL(X = b, ¥) .
b “ b

18

This can be proved using Anderson's lemma (see, for example; Ibragimov and
Hesminskii, p. 157),

Lemma 4. For any subconvex loss function satisfying conditions

C(1) and €(ii), we have

inf s, R(6, u) T EL(X ~ b, )
6 ue KxR
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uhere the minimax risk in the left hand side is as doscribed in Lemna 3.

Eroof. As in the proof of Lemma 2 of Scction 1.3 we shall exhibit

8 sequence Ty of prior distributions on R’ xR and show that

Lin inf £(6, T,) > R
Mo 6 °

uhere the infimum in the left hand side is over all non-randomized decision
rule &(X,¥) = (T{X,Y), V(Xy¥)) and ©(6,%,) is the Bayes risk of & with

respoct to the prior T, . This will prove the result (as in the proof of

Lemma 2 of Section 1.3).

Ue choose T, ss the uniform distribution over the set (0,M)x(-1,M)

Let € be any positive number and N be such that

Non
/[L(x-bl,y-—bz) dF, (x) daFy (y) 2R, -¢
~ /o

for all by, 4, €R ,

For any non~randomized decision rule (T(X4¥)U(X,¥)) end any m>n ,
(T (Ty0))
n /n
1
= = LT(xay)=uy V(xyy)v) dFy o (x =~ u, y =)
20 [M 0 % v *a¥

Mmom
= —JT[M fn fL[T(xeu,yw) = up V(etupyiv) =] dFy,y (xy) du o

S/

»
=

MHx - .
L|T(= ) =z 4%, V(z,2,) -z, dz, dz, dF, (xyy)
-M+y /x [LCNEVEEN 197 =Bty | @2y dzy dFy

(interchanging the integrals and putting xtu

2y v = 2,)



l‘ Zz-lv"'u ?l
j—z-ff L[zf“ {l L [T(zy0my) 2, Pz 0,)e, ] OF, (x) dF%y)J a, az,

>

N-Nm [zzﬂv

z,
1 I =
pec sy n zf,-m L[xﬂ(zl,zz).zl, y+\/(zl,zz)-¢2}drx(x) dFv(y)}dzl oz,

7,1
N NN
1 r
D e 2
253 f //[ Ju [xfr(zl,zz)ﬂl, yHU(zy,2,) 12] dFy (%) dFv(y)J @z, oz,
(=) NN 0
(ow?
2 7 (Ry =€)
L)

Since € >0 arhitrary, this proves the result. [/
Now, from Lenma 3 and Lemma 4 we get the follouing result

Ihecren 2. Under assumption (A), for eny subcomvex loss functien

L satisfying C(i) end C(i1),

Ln lim  inf aup ;:GWL(n(én -e), /n (6n -9))
= 2 L8
Ao n=o (8,3) 6<6w+ant
1 n7n’ Bl €584y
Az -> ® 9 ~¢ | <A RN /Z
ol 2y

2EUX =b,Y)
uhere X, Y, b aro as given abovo.
4.3 EFFICIENT ESTIMATION IN I.I,D. CASE
In this seotion we consicer & specific family of non-regular ceses
and apply the results of the previcus section to solve the problem of effi-

clent estimation in these cases. Let Xl,)(z, be i.i.d. observations,

each X, having distribution P_ ., & € (), ¢ €@, uith density F(x,8,9)
1 80 =

en R uith respect to Lebesgue measurs, uhere
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f(x@%) >0 for x2e

=0 for x< &
ard @ and P ere open subsets of R
Ve make the following assunptions on the density f(x,8:%) 3

(81) f(x@4@) is jointly continuous in (x,8,0)

on the set
{e) txze ).

(82) ALL partial derivatives upto the second erder of f(x,8,0)

with respect to € and ¢ and the third derivatives

27100 £(x,8,0)
6 Do?

exist for all x > @& ,

(82) ror all (8,9) e () x P ,
log f(x,,E40)
—d
(O 5 0,
r

G
Jlog r(xl,e,wﬂ 2 azlug £{X,80)
and (k) 0< Fo 0 I_ —| "% T <w ,

EXd 1

(84) For all (8,0) & () x & ,
TN N r(x,e,0)

200 ot yh>0

(85) For any (8,,9) & (F) x D , there exists a neighbourhood
W(e 9,) of (8,99,) and Pﬁn'”n- integrabls functions H,(x), irl,..,4, such that
for all (8,0) € u(8 0 ) and all x> e,

2
(e) I_B__lgge_f_é%._e_,ﬂ {_<_ Hy (%)

Flog 7(x,849)
56 50 1 < Hy(x)

& |
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2 105 F(x@y0)
(2) {m_ | 21500

a3lcg F(x,8,9)
(d) ’ 55

I S (%)
Let Pg , demote the n fold product of the probability measure
¢
Poyp » Yo Pix (8,0 ) € (D x P . Unless otherutes spacificd all prom
babllity statements are uith respert to Py 0+ Ue shall shou that under
LR

assumptions (81) ~ (84), the asymptotic expansion as given in (A) of

Seotion 4.2 holds.

Expanding at (60,‘00) by Taylor's theorem, we get for all u20,veER,
leg A\ ()

n " 'y n )
12:'.1109 Xy ot un™ e vy o L‘Ellag (X 4849,

. Dlog r(xi,e,w)l

y . 2leg f(x,8:9) 2 _F100 r(x08)
y i
n B ! * S 2 0 I
OF ) Sl D9 (e0,) 20" ()
2 2
(2 > log 1(x,,00) " 2 log (X ,849)
gy St iy
20 oe @) /i (&)
on the set o = [xi >e + unt

for i =1,2,,
-

i n(zn -en) > u}

"]
where (&n.wn) liss in the interior of the line segment joining (ea,‘ﬂu)

and (eﬂ+ un-l, Oty n'lfz) I

(X Xy s eark ).
Azeo, A (uw) = 0 ‘an €he cet [z, =8 < u]
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It is now easy to shou that

le’qf(f ,e,i). '

=f(& & ,0)>0
) Iy LA
”y ° (eo_,pn) R}
and thereforo
0

1 Qlag f(X,,640) 8

iy 55 | > 2(8,,8,09,) .
(e,,)

By assumption (03) we have

1 Dlog £(X;6,9) N
25 | [ => 80,1, ()
ch{ﬁ 3 (o,0,) | (%-“’c)} > Mg (9
2 Pl
log f(X, 18,0) L
and Ey 2 S - ole -~ 1 (0)
@ (8,0,) o
y alagf(xl,s,w) 12
whera  14(9) = Eg o | gt .

8y assunption (BS) and the law of largs numbers

l

~Flog P(X, 1840)

| 1y leﬂg £(X, 48,9)

1
n® ' } Hn(z - 9,)> )

~ 2 n 2
a9 A
(& %) (8,0.)
n
13
00' ’00
——— O
n
1, 20 0 e0) | A
2k 32 Hnlz =8.) > ) >0
[CEN]
n
2, P,
> log f(xi.e,w)

59
el Jlee ey 0
° (00 ) noe

o
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Now to verify that the asymptotic expansion (A) of Scction 4,2 holds witn

(X 48,0)

— and T =0(z -8),

it remains to shou that

@ =, -

vhere T is a random variable with density r(eu,eu,wo).:xp {- f(oo,ag,wn)x}
on {Cym)
and  (41) An and T, are ssymptoticolly indepandant.
The proof of the convergence of n(\dn -en) of Case I(a) of Section 2.2
allous us to conclude (4).
To prove (i1), ue urite
Dlog Fxe@eP)

EE !
(&,0,)

H(x)

and prove for all a2 0, b ER ,

1

VA
1

= un D Lo H(X) < b (4.2)
N “o'*"o[/ﬁ * ]

1lim

N r
n>o %

THOG) b | (2, -8 2 a}

in three steps?

Let Ynl'YnZ'"”Vnn be indopendent random variables each having
distribution same as the conditionel distribution of H(Xl) given X Zeo +TE] .
Then the left hand side of (4.2) is equal to

n
uaop[ 2xyv cn].
n=o (/™
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Step 1. Let (Y,

2
Hoe V“(Vni) =0,
Ue shall prove thot

2
Jik, >0 and o] —> 190((00) .
Jop, = /o E[H(X]) 1 X 2e + an™ ]
©
Ve [ Hx) T(xy By @) dx
&+ an™t
o
= ’ =1
P (%, 2 +an
e, (1= % )
et an™ ’
/’ HOx) £lxy €y @) Ox
- iy (since (X)) =0 )
== \ 1
P,

-1
o (X, 28 tan)
e 0, 1 =%

2 F(x:8,9)

dx
38 (8,09.)

~1.
X >
Po o (X 28, + an™)
0%

by assurption (34).

2 _ 200y
Also, o = E(H (xl), X 28 N
2 .
—> enix) = 190 @) .
Step 2.

We shall prove that

L {f;(v"‘ -un)//ﬁon} = o) .
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Let Vo=Y =l » i=12,000n.
. . L . -
Then V13V oeeeesV o are dui.d. with E(\/ni) o, E(v“i

Also. for any € >0,

1 2
—E[U_,l
N (wnllz:an/ﬁ)]

e G, =1, -
[( ) =) X X)) =R 1 2€e0 Ja, X, 2@+ an

2 et
On Fe 0 l:Xlzin'*'ﬂn }
(30

~> 0 by dominated convergence theorem.

Hence by the central limit thearem

2"n1

Fon

j = n(0,1) .

From the results proved in step 1 and step 2, We have
L4y ) = mo, 100
N ni} = A

Since the asymptotic distribution of ;_ z N(xi) is also N(O, s (9))
a °

Step 3.

this proves (4.2).

Theorem 2 now gives a lower bound to the local asymptotic minimax
risk, Our next problem is to find efficient estimators of € and @ . A
naturel estimator of € is the sample minimum Zr| + As an estimator of @ ,

PN
e suggest any valus @ uhich maximizes

~ n
Le) = 1lllr(xi, z,9)
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with respect to ® ¢ P . Our estimator then satisfies the equation

3 109 T(9)

BEX

0. (4.3)

Ue now have the following theorem I

yreemX, be i.i.d. observations from a distri-

with density f(x,8,9) satisfying assumptions (81) - (B5) .

n3. Let X

bution

Pe
Ue also sssune that for any (8.,9)) €

x D , there exists a neignbourhood
Me,,0) of (8,0 ) and a Lebesgue-integrable function H(x) such that
for all (#,0) € r.v(eo,wa) and all x > & ,

108y ) < H(X)
Ue consider a loss function L(.) for uhich b = b (€,®) (as defined in
condition C(i) of Section 4.2) is continuous in (8,9) and set
oz, %)

n

Then for all (eu,wu), with Pg o = probability 1 , the equation (443)
|
o
~
acnits a solution ¥ such that

(1) o —=>09 a.ws.

n

5 % -1 8o
(18) Jn @ =-9)) - e, @)L ——> 0

(uhere I (9)) and An= An (9D,wn) are as defined above)

and hence Dzj{ﬁ (R w;u,q,o} = o, 1;1 [CI))

S . -1
(11i) for any sequence {en, 0.} oatisfying 8 <8 St AN

~1/2
and 10 =@ 1< Ay /2 tor any Ay Ay >0,



- 87 -

I{(“@n Se )l F@ me el o 3 =2 {ox -0 V)J}
0r¥n

(vhere X and Y ars random variables as described in Theorem 2)

and hence the estimator (€“, wn) is efficient for any bounded subconvex

loss function L in the sense that

Ln sup g, S -2, (@ -9)
n—ve 6 <E<8 +Aln'lef“’< n n

9 - -1

19 =91 < Ayn 2
= ELX=p8,9), Y) .

Remark. The existence of the integrable function H(x) is assumed

to ensure that the map (8,0) —> Fe,a is continuous with respect to the
Kolmogorov Smirnoy distence so that there exists a strongly consistent sequence
of estimators of (8,9) (see, Ghosh (1983)), Here Fg,o demotes the dis-
tribution function of Pg ¢ .

Prcof of Theorem 3. The proofs of (i) and (ii) are eimilar to the
usual proof of consistency and asymp otic normality of the maximum likelihood
estimators (one can see, for example, Serfling (1980)), Houwsver, the usus}
proofs have a small gap which can be removed by an argument given in Ghosh

(1983).

We fix (Gﬂ,wu) which is regarded as the true parameter point. By

essunptions (82) and (85), we have for all ¢ in a neighbourhood S(P_)

of 9y s
~ 2
1 dleg L(9) ;0 Dlog r(xi,z”,o) | N ’ ) g 3 log r(xi,zn,w) |
1 =13z +2(P -0 —_—
) "= EY) o, " o =1 0? 3

o
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where § is a random variable such that 5] < 1 .

e urite
Dlog T(#)
ERpeinicaitaiy + (@ -9 )B +iw-w)2§c + € (9)
n 29 n o' n 2 o n n
where
L. dlog (X, @
Ay =58 et ——> 0 a.ws.,
¢ @y
1 32 log F(X, 48 ,P)
B p e | s o1 (0) s,
=X o, o
1
Cp=q B H (X)) = EH, (X)) aw.,
() =2 O log f(X;yZ ,9) | 1y Dlog £(X; 8 ,0) |
e =iz R
" " EX e, " =X 9,

2
D log f(X,8,9)

1
-2 @-0)3 |.
" ° d¢* )

o

Since 2 > & a.s. for any fixed ¢ in S(¢), € —> 0 a..
by assumption (B5).
3 =0 -
Let € >0 be given such that € < IQO(UD)/ E H(Xl) and @) =@ - ¢,
= € lisi R
9, =0+ & liain S(9)

Then

109 19)

12 | 12,

= I (@) e | <A1 +E B+I_(9)] +FEC + €|
|n Y ) 90 o ! n n Bn o 2 n n

and
Slog (@)

E l
"o

3
+ yea(og) elcn e gy 190«70» 3% v e,
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Now, on a set of probability one, for all suffi

iently large n

AL+ &
(L} 18+ 1

1.2 3
BIEEE: 3 o
(01 + 5 & + 16,1 <31 (9) ©
o o
and tnorefore,

1 2 log L(9)
> 0 and = m—m———

= I
€ n DY 9 +e
o

log L(

Since —— is continuous in @ , the intorval (9 ~ & , @+ €)

[
conteins a solution of the cquation (4.3).

Following Serfling (1980) we shall now chooss a particuler solution
ah.e of the equation (4.3), lying in [9) =, @ + €] and construct a
sequence of estimators 75n using these { @n';, €>0 } . Ve remove
the gap in the proof given in Serfling (as pointed out in Ghosh (1983)) by
using @ strongly consistent sequence of estimators w: . Under our essump-
tions, such a sequance @ mey be obbained by using Le Cam's construction

(Ghosh (1983)) .,

We define

-~ N 2 log L(P)

Vo= —26 <V LO + 28, =D} .
i n SY 2T

e
We note that on a set of probability one, for all sufficiently large n,
" " _ -
_ 26, ¢ o -e,0 +&
[wn 26, ¢+ 25] D [,oﬂ oo ]
and hence the set
2 log L(®) 3
—_— =0
EX) J

is nonempty . Uo can now define a sequence @ = as in Serfling (1980)

{ r
iw:w'-25<w<w*+zs,
n ="="n

~
such that @ =~ ——> @ a.e. Pg . This proves (i) .
o
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To prove (ii) we urite

A
3 2log L(®) . N A2 ~ N
-1 = At e (@ —0)+ssc (@ -0+ e (B) (4)

Y

Since

Sz, -8

by assumption (AS) we have
o0

3
) [0}
n e @) ——=> 0.

Also, since

~
P ==>0, aw. B —> -1 n(oo) 2esey O > EH (X)) aws.,

we have from (4.4)
on

> -1 A ®a%
Ja @, -0 -1 () &, —=2> 0.

This proves (ii) .
Ue shall now prove (iii). We first note that for any Ajs Ay, >0,

n-ﬁm“("@n -8), /@, -9)

lim sup
n—>® €& <8LE4A
0=" =%
12
19 =0,1 < Mn
(4.5)

- 1im E,
n—> o °n

WnB - ), /a5, -0
n

for some sequence (en, «0n) satisfying
-1/2
- <R .
On 91 £ Apn

<8 +A a7t and

We write

uhere
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e can nou easily verify

(1) I/{An(un,vnh P‘;‘D"pu} , 21 is relatively conpact
and

2 T i pn

(2) for any subsequence {m} ( {n} for unich Ji{/\m(um,vm)] 90,’5.?
converges to sons distribution F, ue have [ xdf(x) =1 .

To do this, we use the Taylor's series expansion of log /\n(un,vn)
and proceed exactly as is done in the verification of the asymptotic expan-

sion (A).

Hence P is contiguous to P,

n
0 8,:%

From (ii) we have
I{(ﬂ(ﬁ,;%) ) /R @ -9 p;o""u} = Liw- bu.V)} .

. . " : s a8 "~
Uo can find the limit of the joint distribution of n(8 ~e.), /o (¥ -9 )
and A (u,v) under P . Ve asstme without loss of generality
nn’n 6014470
that {un} and {v“} are convergant sequences and use the fact that
s . . -1, n
- .
o (¢, -9.) is asynptotically equivalent to I%w“) An . Since Pen'wn
is contiguous to Pg , , by @ uell knoun result on contiguity (Roussas
o’ o
(1972, p.33, Theorem 7.1)) we have
s 5 n =
L@, —es Fdy —enleg o b= L{x=vn)
(The theorem in Roussas (1972) states the result for the case when tuo
sequences of probabilities {vn} and {v;‘j aro contiguous to each
other, It is easy to see that his proof works also for the case when only
{P;‘j is contiguous to {pn} )

Since L is bounded and subconvex, the result now follows from (4.5). /f/
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