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Chapter 1

Introduction

1.1 Statement of the problem

The sequence of polynomials of a single variable known as the Hermite polynomials

—1)k y O >
() = %M/‘{;—A ), k>,

has many close links with the Normal distribution. Their association goes very deep, and

extends to several connections between the two-variable Hermite polynomials
Hi(lw) = t*hy(/1?), | k> 1,

and the prime example of Gaussian processes, that is Brownian motion, as well. Much
of this connection stems from what we term the time-space harmonic property of these

polynomials for the Brownian motion process. An exact definition of this property follows

later. A natural question that ariscs is, for stochastic processes in general, when do there
exist two-variable polynomials that are time-space harmonic for the process in question,
and in case such polynomials exist, whether they carry algebraic and analytical propertics
analogous to those of the Hermite polynomials.

We have been able to arrive at reasonably satisfactory answers which will be described
in detail. Interestingly enough, the invest igation has raised several new questions some
of which have been answered here while.some others may well be the subject of further
research,

Throughout, we shall assume as given, on some probability space (2, F,P), a process
M = {M,} indexed by a partially ordered ‘time-set’ (T, <) and taking values in some metric
space E. We also fix notation for its natural filtration Fr=0<M;:s <t>. A real-valued

function f on T x E will be called time-space harmonic for M if {f(t,M) :t € T} is an

3



{#1)-martingale. Such functions clearly form a vector space V. For functions in V), their
two arguments are referred o as the ‘time’ and ‘space’ variables, in that order. The object
we shall be interested in studying in this work is the vector subspace of V consisting of only
thos V which are polynomials in the two variablos. We denote this subspace
by P and call its elements time-space harmonic polynomials for M. 1t bears mention
-} or [0,00) and E, the real line

functions

that in a majority of situations, 7 will be cither {0,1,
sts merely of those functions in V which are polynomials in both

R. In such cases, P con
se. Only a fow situations not conforming to this setup will occur
uation, when the time-set

arguments in the usual s

in our investigation. Foremost among these is the multivarias

*} or [0,00) and £ represents some rth Buclidean space. One can

remains either {0,1,-
then extend the results in a natural way to the vector-valued case, that is, as for example
when £ is a Iilbert space.

Let us now state the main problem more explicitly in the setting to occur most frequently,
that is, when 7 s cither the discrete or the continuous time-set and £ = R. As the previous
the study of conditions for a certain degree

discussion suggests, the subject, of this work i
inition makes this clearer. We shall call M

of richness of the class P. The following d
I ially h , or p-harmonisable in short, if for every positive integer k, P

k in the

contains a polynomial of deg pace’ variable. We wish to make it clear right

away that this definition has no connection with the existing notions of harmonisability

to the representability of its covariance function, or equi \
nse (see (13], p. 474-476). The central

M p-harmonisable, and if it is, how

of a process, which
sample functions, as Fourier transforms in a certain s

question we investigate is, when is a stochastic process

are the various propertics of M reflected in a sequence of time-space harmonic polynomials?

1.2 Chief examples known

“There are many known examples of processes possessing this property, the most familiar
ble Hermite poly-

as indicated carlier, the two-vai
Ny
g given by the two-variable Char-

perhaps being Brownian motion, whe

s also p-harmonisable,

nomials (i) form such a sequence. The standard Poisson proces

with a sequence of time-space harmonic polynomials bei

lier polynomi

where {}’s (see [11]) are the Stirling numbers of the second kind. The Gamma process
ble process.

turns out to be yet another example of a p-harmon

1t has recently been established [14] that alongwith an additional hypothesis, the time-



space harmonicicity property of any Ilermite polynomial of order k > 2 (in fact, any

parabolic function) for a continuous mart ingale actually characterizes Brownian motion.

al case k = 2 of this has long been well-known as Lévy’s characterisation. It is

any simple point. process M for which M, — ¢ is a martingale, is necessarily

a standard Poisson proc

The two results last mentioned can be viewed as charaterising the law of a certain

. However, both also

s timo-s

process by a finite scquence of i space harmonic polynomial
depend crucially on ‘path propertics’ of the underlying process such as continuity or purc

Jjump nature of paths, in the sense that the first two (in fact the first three) time-space

harmonic polynomials

we have exhibited respectively for Brownian motion and the Poisson

process agree with one another. One naturally wonders how essential these path properties

are, or in other words, whether one can impose milder conditions, as for example just r.c.l.L.

paths, to obtain a necessary and sullicient condition for a process to be determined upto

law, by a fini We show subsequently that

equence of time-space harmonic polynomials.

the above characterisation problem admits a solution in the affirmative at. least. in a certain

class of Lévy processes. This necessary and sufficient. condition is satisfied, for instance, by

Brownian motion and Poisson process, but not by the Gamma process.
Among the various other connections of Hermite polynomials with Brownian motion,
referred to by saying that Hermite polynomials

one of the most important. is sometimes

play the same role in stochastic culus involving Brownian motion to that played by the

ordinary powers in usual calculus. 1t represents the iterated relation

.
1t 1) = 4 g1 (s, B.)dB, (1.1)

with {B;: ¢ 2 0} a standard Brownian motion. Th

first-glance proof of their time-space harmonic prope

relation, incidentally, serves also as a

ty with reference to Brownian motion.

For the standard Poisson process {N, : ¢ > 0}, a similar property is enjoyed by the
Char

ibed carlier. In analogy with the relation (1.1), we have here

(b M) = ‘[ [ox

where M is the compensated Poisson process defined as My = N; — t.

or polynomials de

Gy (s, M)dM, (1.2)

At this point it may not be inappropriate to point out a significant difference between the
two families of polynomials vis-a-vis the processes they respectively arise from, as detailed
in [18]. The former has the property that if one takes a deterministic function /f on [0,1]
with f§ f%(s)ds = 1, (11) holds, at time £ = 1, with B, replaced by Z, = I3 F(u)dB, for
0 <'s < 1. However, such a recurrence relation does not hold for similar constructs from




the Poisson martingale with the Charlier polynomials. A heuristic justification furnished

by [18] is that in general, linear combinations of Poisson random variables need not have a
Poisson distribution, unlike Gaussian variables.

Bauations (1.1) and (1.2) suggest a construction of time-space harmonic polynomials for

general homogencous Lévy processes along similar lines. Denoting by M any such process,

if one defines recursively the functionals as in (1.1) starting with the basic 0-mean (locally)

square-integrable m:

tingale (M, — EM,), one gets the appropriate analogues of ‘powers’
in the sense that their images in the associated reproducing kernel Hilbert. space do turn
out to be usual powers, modulo constant multiples, and the expansion of the “exponential
martingale” involves precisely these functionals. However, these are in general not space-
time functions, let alone polynomials, of the corresponding martingales, and usually depend

on the full history of the paths. For this reason, they do not enter into our consideration

any further.
We now revert back to similarities between the two families of polynomials (/) and
(Cy)- An important. feature common to them is that they both appoar in the expansion of

a certain function arising out. of the exponentials for the resy ¥

explaz —a?t) = Zm(r 1) i (1.3)

k=0

v
explaz — (1 - ¢*)} = Zc‘k(z,z)%‘ (1.4)
k=0 .

In fact, this phenomenon is actually shared by all homogencous Lévy processes and leads

to a way of constructing such polynomials for them, as well as for their discrete-time coun-

terparts, the partial sums of iid random variables. For the latter, this method is indicated

by Neveu ([15], p. 80), and will be do
{Xo:n 2 1} of iid random variables

ibed here in briel. One rts with a sequence

such that the cumulant generating function (c.g.f.)

() = log E{exp(a X))}

is defined in a neighbourhood of 0; one then expands the function (e, . explaz —

Lp(a)} as a power serics in a :

Now, Fo(-,-) = 1, and for each k 1, Pi(-,+) turns out to be a time-space harmonic
polynomial for M = {M, = Y2, Xj, n > 1} (with My = 0), and it is of degree k in both
vely interchanging the order of

its arguments. The harmonicity of P follows from s1



two operations - namely, that of k-th order partial differentiation at o = 0 and of taking
nditional expectation, on the L martinggle {n(ev, n, My)}. The complete proof
is provided in Chapter 2.

It is more or less obvious that the cqualities (1.3) and (1.4) are due really to the ex-

pansion (1.5). Actually, this idea of expanding the exponential martingale applies also to

the mos es with
differ

yields a

immediate generalisation of the above kind of processes, that is, to process

ences (or increments) independent. but. not. identically distributed (or stationary), and

ry aud ici ndition for p-har; isability of these too. How-

ever, this approach suffers from two major lacunae. Firstly, one has to assume the existence
of moment generating functions (in.g.[.), and secondly, if the differences (or increments) of

M are no longer independent, it is not at all clear how, or if at all, one can modify the

function ¢ to obtain exponential martingales. Thercfore, we adopt an alternative approach.

For discrete M, this approach involves writing out the martingale equality for each of the
polynomials and to equate coeflicients of various powers of M,. This is where the support

condition (S), defined in the next scction, is required. We then use induction to obtain

some repercussion on certain moments, or conditional moments, of M,,.

In continuous-time cascs, the corresponding discrete-time results alongwith suitable ap-

proximation arguments do the needful.

1.3 Main definitions

At this point let us introduce the principal definitions and notations used in the sequel. For
{M; : t € T} where T C R, we define P = P(M) as the class of all
¢ harmonic polynomials P with P(0,0) = 0, and for k > 1,

a real-valued proce

time-spa

Pe=Pi(M) = (P&P:P(La)isof degree k in the variable z},
Pe=Pu(M) = {PePi: cocff(z*) in P(t,7) is a constant free of L},
and P =P(M) = Uy P

Thus the definition of p-harmonisability, restated in terms of these objects, merely requires

cach Py to be nonempty. Analogously, we call a process M restricted p-harmonisable if
Pr(M) # 0 for cach k > 1. Notice that there is no lo

“leading coefficient” of cach clement. of P, 2

of generality in assuming that the

s referred to in its definition, is 1. Henceforth

we do assume this.
We often require M to satisly two conditions, referred to as the moment and support

conditions respectively. The first is of obvious importance in our context :

EM <ooVk>1,1eT (M).

7



Evidently, this condition is cssc M to have any chance of being p-

ial for any proc

harmonisable; but even when this fails, we shall investigate some instances of what we call

partial p-harmonisability (defined in page 11). The second condition is stated in terms of

sequences {M,}. It demands that for every k = 1, there be an infinite number of n’s with

|supp(M,)| > k (8)-

The role of (S)
we make use of it. In brief, we make use of it through the fact that if the support of a

S s arified, however, when

apparent, being mostly technical. 1t will be ¢

random variable X' has morc points than the degree of a polynomial p, then p(X) cannot.

be identically zero unles ity is

p = 0. Although we state it in terms of sequences, its nec

not limited to discrete-time situations alone. We shall usually understand by condition (S)

for a continuous-time process (M) the fulfillment of (S) by the sequence {M,} of random

variables. More precise conditions will be laid down in specific contexts.

1.4 Properties of the polynomials

We now list some propertics of the sequence {Fy : k = 1} of time-space harmonic polyno-

miz stationary

obtained in (1.5) above for processes with iid (or
increments). Let us first note that by definition, in our classes P and P, we only allow
polynomials P with P (0,0) = 0. Thercfore, non-zero constant polynomials are excluded

from both these cla: In other words, every non-zero clement of P or P has to be of
s of the

e {Px: k = 1} as obtained in (1.5), we also need to have a time-space harmonic

degree at least 1 in the variable. However, in order to state the properti

pac

seque

polynomial Fy of degree 0 in the space variable, or in other words, a constant polynomial.

A natural candidate for Fy sugges

ed by the cquation (1.5) is the constant polynomial 1.
Throughout, we shall follow this convention and take Py = 1.

Tor k 2 0, writing Pi(t,
single varia

) =55 o p ()27, where pi, 0 < j < k are polynomials of a

ble, we have,

(i) for cach k > 1, P € Py, that is, p{() = 1;

(i) for every k 2 1, 2e(1,x) = kPe_ (1, x), that is, j p{O(1) =

(iii) for cach k = 1, degPi(-,#) = k and there exists a sequence {hx : k = 1} of real

numbers such that for cach k > 1, # Pu(t,z) = Sk, (HhiPes(t

L<i <k & p50) =S5 Qa0

(iv) for cach k = 1, Py(0,2) =

ke pP(0) =0, 0<j<k;and

8



(v) P = sp{Py : k > 1}, that is, the linear span of {Py : k > 1} is all of P.

It will be convenient to attach suitable names to these properties for future reference
Accordingly, we designate property (%) the restriction property, (i) the Appell property,
(iii) the pseudo-type-zero property, (iv) the unigueness property and (v), the spanning
property. Properties (i), (ii), (iii) and (iv) can be seen to follow from the representa-
tion (1.5) without much difficulty. Our alternative approach, however, will help to bring
out the specific significance of each of these properties. In particular, they will be shown
to be influential in determining various distributional properties of the underlying process
M. These distributional properties will often be stated, in discrete time, in terms of the

difference sequence {X, = M, — M,_; : n > 1} associated to M, and in continuous time,

through its increments My, — M, t,s > 0.

It is not difficult to see that with the convention Py = 1, property (i) implies property
(i). Tf, moreover, M happens to be itself a martingale, one can choose P,(t,z) = z, and in
this case (47) actually implies a slightly stronger property than (i), namely,

(#) for each k > 1, Pe(,z) — z* has degree at most k — 2 (in z), that is, p{”(-) = 1 and
W0 =
A word of explanation is in order for the nomenelature of the properties. (¢) and (v)
are more or less self-explanatory. To explain (i) and (i), we reproduce some work of
Sheffer from [20]. A sequence of (one-variable) polynomials (pi)kso, where px is of degree
k, is called an Appell set if they satisfy p} = kpe_1, (or sometimes py = pe-1), k = 1. In
that sense, if (i) is satisfied, we see that for each t our polynomials (P(t, -
Appell set. [t is well-known that a sequence ()szo i an Appell set if, and only if, there
exists a formal power series A(a) = Y50 ara®/k! such that

))iso forms an

el k
A(a)exp(az) = ;mz) & (16)

again as a formal power series. A is called the determining series of the sequence (px)k»0, or
the determining function, if it actually defines one in some domain. In the case of the Appell
set of polynomials (Pi(t,-))kso obtained from (1.5), the interpretation of this function Ay,
say, which now depends on t, becor:es quite apparent. In this case A, clearly represents the
reciprocal of the m.g.f. of M,. ’

To understand property (iii), we continue to follow Sheffer [20] and recall that more
generally, a sequence (pg)iso of onevariable polynomials with deg(pi) = k is said to be of
type zero if there exists a sequence of numbers c;, i > 1, with ¢; # 0, such that for each
k, kpeoy = 0 eipl) (or sometimes 7e_y = 5, cipl’), where for any function f, f® denotes

9



its i-th derivative. In analogy with the representation (1.6) for Appell polynomials, a type

7010 sequence (pg)r=o satisfics an expansion

k

30 S = By )
k-0 N

where B and h are formal power serics, and h(a) = S22, hga* /k! is the (formal) inverse
of the (again formal) power serics Yy cea® /KL In this case, the polynomials (pi)kso also
satisfy the relation pi(t) = Y57 () hipei (1) for every k > 1. We shall designate this latter

property for the sequence (pe)s

as the pseudo-type-zero property. While the type zero

property implics the pscudo-type-zero property, it turns out that the latter is really only
slightly weaker than the former. In fact, if the pseudo-type-zero property holds with hy 5 0,
then it actually implics the type zero property, and hence these two are equivalent in this
case. Actually, this is the only situation considered in [20].

Returning to our polynomials Py now, what property (iii) really says is that for each

fixed z, the sequence {Pi(-

sk 2 0} is pseudo-type-zero, which explains the name for
property (iii). Thus, while the Appell property, as we call it, refers to the space-derivatives
of our polynomials, the ps

udo-type-zero property concerns derivatives with respect to the
time variable. We shall sce later that in the presence of property (ii), (iii) is equivalent to
the pseudo-type-zero property for the one-variable polynomials p{®, k > 0.

A question that deserves some attention at this point is, whether one cannot actually

get. the time-space harmonic polynomials {Fe(-,z) : k > 0} to satisly the classical type

zero property, rather than the pscudo-type-z

ro property as stated. The answer to this
is ‘no’ in general. To sce why, let us observe that if the sequence {Pe : k > 0} aris

from the expansion (1.5), the formal power series h(e) = Y2, hgo* /k! indeed defines a

function, which is just the negative of ¢, the c.g.f. of M;. Clearly in t tuation hy =0

if, and only if, the first cumulant, or cquivalently, the mean of M) is zero. This happens

to be the case with Brownian motion for ins

ance, so that while the two-variable Hermite

polynomials defined before

atisfly the pseudo-type-zero property, they are not of type zero

in the cl , or Shefler

, sense.

As for (iv), we shall sce that in the presence of (é), it is instrumental in rendering the

choice of the sequence unique. Property (i) is actually stronger than both () and (iv), so

that when (i) holds, it guarantecs uniquencss by itself. However, when we do not. assume

‘To maintain a semblance of uniformity with

(ii), (iv) is required to achicve uniquencs
these cases, we actually make use of (i) to obtain uniqueness in other situations also, even
when (ii) obtains.

Another important distinction needs to be 1 between properties (i) — (iv)

10



and property (v). While the former hold for specific sequences, the latter, on the contrary,
is true irrespective of the choice of the sequence Py € Pi. That is because the existence of
any such sequence implics that for every j > 1 the dimension of Ul Py is exactly j, and
Py, Py, Py are clearly linearly independent clements in it. Actually, we shall see later in
‘Theorems 2.6 and 3.5 that property (i) is more or less of the same character, in that for a
tion (S), if P is nonempty ¥ k = 1, then every P € Py
Py for all

process satisflying the support. co
Pi

must actually belong to Py, i

1.5 Summary of later chapters

The following gives a brief overview of the material of the subsequent. chapters.

t sketch a formal proof of Nevew’s result giving the existence

In discrete time, we firs

of time-space harmonic polynomials of partial sums of iid random variables, and that they

e Neveu's work to derive a necessary

indeed satisfy the stated propertics. Next, we gencralis

n the are only ind

and sufficient. condition for p-harmoni ;w
but not necessarily identically distributed any more. In this case, we actually exhibit a
(i), (i7), (iv) and (v) and
lying process M. This is followed by a necessary
y condition is for M to exhibit not simply
This necessary

unique sequence of polynomials, which satisfies the properti

determines the distribution of the unde:

cral M. However, this neces

condition for ge

p-harmonisability, but that property alongwith an additional hypothesi

Tic-

condition is then shown to entail Markov pmp(-xw for M under some mild additional res

1 for with ind,

tions. i\(‘xl, in analogy with p-ha

ion is furnished for gencral processes to be restricted p-

a and sufli

harmonisable. As a byproduct we obtain, in this case, the equality of the restricted class
of polynomials and the corresponding unrestricted classes. We also show that in all the
tislying (i), it has the spanning property (v), and
These results, which appeared

cases where this sequence can be chosen s

also determines the distribution of A/ upto joint moments.

in (7], form the crux of Chapter 2.

In Chapter 3, parallel results for continuous-time counterparts to the various discre
time cases are first sought and obtained. The first case is that of homogencous Lévy
rete-time processes with iid dif-

, and the polynomials that

processes, which are continuous-time counterparts to di

ferences. These are shown to always exhibit p-har

isted propertics. For general Lévy proces

can be chosen Lo satisfy the .
take as the analogues of partial sums of independent random variables, a condition similar
essary and sullicient for the property under

ari

shown to be ne

to that proved for the latter
study. This condition, translated in terms of the Lévy measure of the process, gives

11



ing analyti

1 problem. For general processcs, an analogous necessary condition

for p-harmonisability holds, and again yiclds Markov property as a corollary with a similar

additional restriction imposed. As in Chapter 2, here too, for gencral processes, a neces

sary

and suflicient. condition is seen to be afforded only by rostricted p-harmonisability, and also

tricted class

the equality between the restricted and unres s of polynomials in this case is

et

We also study certain semi-stable Markov processes [12] in this context. The

technique of intertwined semigroups as set forth in (3], c.g., allows us to obtain some not

s0 well-known examples of p-harmonisable processes such as the Azéma martingale [1] ete..

We also briefly discuss some extensions to multivariate or more general cases.

Next, starting with a p-harmor

udy in Chapter 4 various algebraic
r ramifications on the

propertics of a sequence of time-space harmonic polynomials and th

dis

ribution of the proc

ning with property (ii), we show that this property forces

the conditional moments of the differences (or increments) of the process, given the past,
to be degenerate. A mild additional hypothesis is then s
y (i
shown to yield furthermore their being identically distributed (or

eld independence of these

n o yi

differences (or increments). Next, the proped ), in conjunction with (i) and the same

additional condition,

this

stationary). To prove theorem, however, we adopt an alternative approach to that
employed so far, for reasons explained there. Certain other propertics of the polynomials

such as homogeneity in the two arguments are shown to have some consequences for the

process.

Chapter 5 is reserved for investigating how far the work of the carlier chaptes
be
istence of E|M,|* for some i 2 1 and investigate conditions on M such that P(M) # 0
ability. Partial restricted

can

rried through when the moment condition (M) is relaxed. Instead, we assume the

e

only for 1< k < . This situatiou we refer to as partial p-harmonis

p-harmoni also try to sce how far the other results

ability is analogously defined.  We

obtained previously for a sequence of time-space harmonic ials can be ¢

ve only a finite sequence {P : 1< k < i). We close this chapter

10 this case, where we
with a partial answer a question previously raised | namely, to exhibit a necessary and

sufficient. condition for a Lévy process to be determined in distribution by finitely many

time-space harmonic polynomials. This material in adapted from [16].

The last chapter contains miscellancous examples and some counterexamples. The latter

illustrate the efficiency of our results, in that they establish that the hypotheses imposed

to prove many of these are indeed essen The examples are of known, and less well-

known, processes with the p-harmonisability property, and of processes that are finitely

polynomially determined, in the sense described in Chapter 5. A somewhat exceptional

case arises from the ‘me;

sure’ on path space developed by Hochberg [8]. We show that this

12



cuse. Finally,

‘measure’ admits time-space polynomials that are ‘harmonic’ in a certain s
a few special cases are dealt with in more detail, and a few of the time-space harmonic

ted in various o

polynomials | nples



Chapter 2

Results in Discrete Time

2.1 Brief exposition of Neveu’s method

In this chapter we observe conditions for p-harmonisability of discrete-time processes. As

mentioned in the previous chapter, the simplest, les of p-harmonisabl ses in

discrete time are processes arising out. of iid summands. Our first. theorem pertains to this
case.

Practically all of this theorem follows from the next two as a special case. Nonetheless
we give a proof chiefly because this result was already known. The method, due to Neveu,
is different. from our arguments in the subscquent. results, and it uses an added assumption,
namely, that of the existence of a certain m.g.[.. However, this assumption is not necessary
for the main assertion of the theorem to hold good, as will be shown by our later work.

In the statement, we tacitly assume that the distribution of X; is not degenerate. Notice

that this guarantees the fulfilment of the condition (8) by the process M.

Theorem 2.1 Supposc {X, : n > 1} is a sequence of independent and identically

distributed random variables with X having finite moment gencrating function in

a nondegenerate open neighbourhood of ' of 0. Set My = 0 and M, = ¥, Xi,

w> 1. Then the pro
(P € P(M) : k 2 1} satisfying the prope
time p-harmonisable process for which Py(N) = Po(M) ¥ k > 1, then N has same
distribution as M.

s M is p-harmonisable, and there cxists a unique sequence

i)- (v). Purther, if N is any discrete-

Proof : Let us denote the c.g.f. of X, or in other words the logarithm of its m.g.[., by ¢,
defined on I'. Then we have (o) = Y2, wa*/k!, where for k& > 1, the number Y is the

k-th cumulant of X7,



Define, for t > 0, z € R and « € I', the function

o b,z

= explaz — tp(a)}.

It is easy to see that V o € I, the function 7)(a, -, ) is time-space harmonic for M. In fact,

(ev,n, M) is called the exponen

ial martingale.

Now, expand 1) as power serics in o :

(e tyz) = [l+i
k=1

= []+i

k=1

= [Hki

=1

For every t > 0 and 2 € R, this expansion is valid for « € I'. One easily reads off from the

above calculation that for all k > 1, the cocflicient. Pi(t, ) of o* /k! in the above cxpansion
is a polynomial in ¢ and z, and furthermore, that it is of degree k in both ¢ and z.
To sce that the sequence {Py : k > 1} satisfics the properties (i)- (iv), we go back to

the discussion on page 9 in section 1.4, where the expansion (1.5) led to these propertics.

Specifically, (i) and (iv) follow just by inspection. For (ii), one differentiates the function

ents of of on both sides. In the

7 with respect. to the variable  and collects the coeflic
same way, differentiation with respect to ¢ leads to the property (iiz).

As far as the spanning property (v) and the propetty of determination of the distribution
of M are coucerned, the proofs are no different. from the same propertics when M has only
independent. but not necessarily identically distributed differences. These cases are treated

The only

subsequently in Theorem 2.3, so we skip the details for these two properti
difference here is that owing to the existence of the m.g.f. of M, the distribution of M is
determined by {Px(M)} entirely and not just upto moments, unlike in Theorem 2.3. For if

N is any process as in the hypothesis, then it will follow by the arguments of Theorem 2.3
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that ¥ n > 0, EN} = EM} for every k > 1, and as a result, V,, admits a m.g.f. which
is indeed the same as that of M,. It follows that NV also has iid differences with the same
common distribution as those of 3.

Let us just show now that each P, k > 1, is time-space harmonic for A7. First of all,
by the Mean Value Theorem, one has, for every k > 1, and for any t >0, z € R, a € I,

o (21)

k=1
nentn) = 3 Pt2) 5 = G 0 (e ), 2)
j=0 N B
where 1(!) denotes the k-th partial derivative (with respect to a) of n and ox(t, z) lies be-
tween 0 and a. Now, it is not difficult to see that n*)(a, t, z) = Qi(a, t, z)n(a, t, =) where Qi
is a polynomial of degree at most k in both ¢ and z, say Qu(a, £, z) = ko ko gis(a)t’z’.
Further, the coefficients g;;(a) are just some constant multiples of products of various
powers of derivatives of ¢ upto order &.

Let us choose § > 0 such that [~6,6] € I'. Then the function ¢, along with all its
derivatives is bounded on (—6,6). This implies the existence of a constant Cy for each
t > 0and k > 1, such that t*|g.:(a)] < Cix and e () < Cyx for all @ € (=6,6) and
0<ij<k

Observe also that for every j > 1, there exists a constant D; such that for all a € (—6,5)
and all 2 € R, |27e"| < D;max{e~%%,¢%}. Combining all these facts, it follows that

for each n > 1 and k = 1, there exists a constant A, such that for all a € (=6,5),
}, and the latter is an integrable random variable

7@ (e, n, Myp)| < Ay - max{e=¢Mn 5
by our choice of §.
Going back to the equation (2.1) with k = 1 now, we ses that for [a| < ,

0" (@, My), m, Mn_)[ < Apy - max{e M1, 8M1},

&

(n(ee,n, My) — 1)

Applying DCT for conditional expectations (given F,-1) and making use of the fact that

Pi(n—1, M),

J(a.n.M,) is an (F,)-martingale, we get

E(A(n M)[Fa] = B lim ~(n(a,n M) = D5

= lm L EGen M1 F) - 1)

Lontan -1 M) 1)

is, P is time-space harmonic for M. The proof for harmonicity of each Py, k > 1, can

+ be completed by induction usi=z the fact that for each k > 1,

k! = o
Pe(n, My) = lim = [n(a.n, My) = 3 Pj(n, M) u
= !

)
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2.2 Independent summands

above kind are processes with dif-
ally distributed. In this case, it

The most i i isation of cesses of t

ferences that are i but not ssarily id
may be noted that the support condition (S) means simply that infinitely many of the

Our result describes a

differences are nondegencrate. This is the case we next address.
ent. condition for p-harmonisability of such p . But let us first

ary and suffic

make a remark that will be useful in the proof of the theorem and also in the sequel.

Remark 2.1 If q is any polynomial of a single variable then there cxists a unique one-
variable polynomial p such that for cach n > 1,

S a®). (2.2)
i

P

Morcover, this polynomial p satisfics p(0) = 0. Throughout, starting from a one-variable
polynomial g, when we talk of defining a polynomial p by the formula (2.2), we actually

refer to this unique polynomial.

Theorem 2.2 Supposc M = {M, : n > 0} has independent difference sequence {Xo :
nz 1} and satisfics conditions (M) and (S). Then Py is non-cmpty for all k> 1, if
and only if for cach k > 1, B(X,}) is a polynomial in n.

Proof : Denote bx(n) = E(X,X) ¥ k, n. Note first that Vj > 0,V n > 1,

L b5i(m).

B, = BY (’f)/\t.:,.x,f VAl = 3 ({
= =

Now any two-variable polynomial P (-,z) of degree k in 2 with £ (0,0) = 0 can be written
as P (. ¥ _opi(t)z 7 where p;(), 0 < j < k, are polynomials of a single variable, and
P0(0) = 0. Given such a polynomial P, it belongs to class Py if and only if V> 1,

x i
P(n=1,Mu_y) = B[P (n, M,)|F0y] = Zp}(n)z(i) M) bi(n) as.,
= =
that is,
s x J
SO Miapn—1) = S MY (i)pi(n)b; (n)  as. (2.3)
= = e
We now proceed to prove the “only if” part of the theorem; we use induction argument.
Clearly by(n) = 1. To show that bi(-) is a polynomial for a general k > 1, we assume, as

17



induction hypothesis, that for all j < k — 1, the b;(-)’s are polynomials. Since P is non-
empty, there is a polynomial P (t,z) = Y5-0P;(t)z7 as above, so that the equation (2.3) is
satisfied. But this is a polynomial equation in M, of degree k, 5o in view of the “support”
condition (S), we must have, for infinitely many n’s, the equality

k r
mn-1) =3 (]) Pi()by-s(m) @4)
. j=i

foreachi,0<i < k. However, for cach i with 1 < i < k, the R.H.S. of (2.4) is a polynomial
in n by induction hypothesis while the L.ILS. is so anyway, and therefore, equality (2.4)
holds actually for all n 2 1. We next show that for i = 0 also, equality (2.4) is true for all
72 1. Tor that consider the process {Q, : n > 0} defined as Qo = 0 and for n. > 1,

k k
0 = [ - Sh0 (I)J + 3 p(m)M.
1: =1 j=1

=1 j
Using the formula for B(M,J|7,-1) as obtained above, it is quite casy to sec that {Qu:
™2 0} is an (F,)-martingale, and hence o also is {P (n, M) = Qu : n 2 0}. But for cach
n2 1, P(n, My) = Qu = po(n) + ity 55, p;(0) b;(1), which is non-random. Therefore,
P (n,Ma) = Qu= P (0, Mo) = Qo = 0 for all n > 1, which means that

n k
() = =373 pi() bi()
=1 j=1
for all n, and consequently,
k
Po(n—=1) = 3" p;(n) bj(n) = po(n) for all n.
=
This last equality is nothing but (2.4) for i = 0. Thus we have proved that for every n > 1,
k-1
Pr(n) be(n) = po(n — 1) = 3" b;(n) p;(n). (2.5)
=0

But appealing to equation (2.4) for i = k, one casily obtains that py(n) must be a constant
ver n. This proves that bx(n) is a polynomial in n and completes the induction.

As for the “if” part, we show non-emptiness of the Py’s by constructing explicitly, for
cach k 21, a polynomial P, € Py. For k = 1, we take Py(t,) = o + p{(t), where "
s defined through the relation (2.2) in Remark 2.1 by p{)(n) = S, [—by(1)]. The two-
variable function Py is evidently a polynomial in ¢ and , with degree 1 in z. Time-space
farmonicity of Py for M is a consequence of the independence of the differences (Xo)us1.

18



For k > 2, we take Py(t,2) = 2% pM (1)
() = 1, and having obtained P for i+ 1

e defined

where the p®, 0 <4 ar
< k, where

<k
recursively as follows <J

0<i<k—2 p* is defined, 4

in Remark 2.1 by the formula

W) = 3 [~ ﬁ (1)% ,(1)115*’(1)], n>1,

ferl
or, equivalently,
K ,.
k) S k) o
PBmy=- 3 ({) SR, nx1, (2.6)
j=itl 1=1
Pe(t, ) thus defined is therefore a polynomial jointly in the variables ¢t and z. Also Py(t, z)
is of degree k in z. To sce therclore that Py & Py, that is, {Pe(n, M) : n > 0} is an
(Fn)-martingale, we merely observe that. the p{*’s satisfy, by the manner in which they are
defined, the relations

Pm—1) = pP(m), andforo<i<k—1,
ks
Wo-1 = B+ 3 (Z)bﬂ(mpﬁ-k’(na;
J=i+l
that is, for all 4, 0 < i < k,
®) (i ®
pn—1) = Z(i)bi_,(n)p; (n) 2.7
=

50 that cquation (2.3) holds as an identity for all n > 1. ]

We now make a couple of remarks. The last two of these will facilitate the comparison
of these results with their respective continuous-time counterparts. A little algebra will
convince the reader of their truth.

Remark 2.2 The necessary and suffici

nt. condition in the foregoing theorem can be seen
to be trivially satisficd by partial sums of iid random variables. Here, cach of the moments
EX} are simply constant. polynomials.

Remark 2.3 Although the conclusion of Theorem 2.2 was stated in terms of the difference
sequence X', it casily translates into the following equivalent condition on the moments of
M : namely, E(M,) be a polynomial in n for cach k > 1. Putting down in this form allows

us to readily compare it with the continuous-time Theorem 3.2.



Remark 2.4 Another uscful point to note is that the fallout of assuming p-harmonisability
can be put in terms of the moments of the multi-s tep differences My, — M,, also. In fact,
a

an cquivalent form of the conclusion of the above theorem is that for each k > 1, there is
two-variable polynomial b such that ¥ m, 1 > 1, B(Mpyn — M)* = be(m, ). This is casy
iand and by induction on m on the other.

to check by the relation b = b(1,1 — 1) on one

actual existence of a unique sequence of time-space harmonic polyno-

At this point, t

listed carlier is called fo

mials with the proport

ce and

Theorem 2.3 If a pro M with ind ¥
condition (S) is p-harmonisable, then there cxists a unique sequence {Pe€Pr:k>1}
ies (i), (i) and (iv) are satisfied. Also, this sequence {Py : k > 1}
the law of M upto all joint moments of its

such that the proper

satisfics the property (v) and determine

fini

-dimensional distributions.

Froof : Let us continue to denote be(n) = E(X %), k, n > 0. We prove that the polynomials
{Pe: k> 1} chosen in the proof of the dircet part in Theorem 2.2 above, themselves satisfy
the stated propertics. We shall repeatedly make use of the relations (2.4), (2.5) ete.

in the

proof of that theorem.

Property (i, te from the definition. For property (ii), since dP;(t. z)/dx =
1= Py(t,2), we have simply to chock that ¥V k > 2, ¥ 1 < i

M) = kp0 (). (2.8)

(k) —

downward induction on i : equation (2.8) is clearly satisticd for i = k, since p{*) =
- Now fix any i with 1 < < k — 1 and assume, by way of induction hypothesis,
, (2.8) holds (with j replacing i). Then for all n > 1,

int for. cach j with i +1 < j < k

x B
e = -3 ,(JL) Zb, NOYISIOR by (2.6),
et}
x
= 5 1( ) Ln, N0 7,.“ D(), by induction hypothesis,
)
x
-y ( )Lb, RO aRION
frd)
= kp¥*0m), again by (2.6).

to the Remark 2.1 which implies that t

“To show that the property (iv) holds, we
definition, the polynomials p®, 0 < i < k — 1, k > 1, satisfy p®(0) = 0. This, alonzw

property (i), gives property (i
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Next, we prove the spanning property (v) : suppose P € P and write P (t,z) =
o pi(t)a’. Denoting a; = p;(0) for 1 < i < k, we claim that P = >k aiP, or equiva-
lently, that for all j with 0 < J<ky

p= 3 apl? (2.9)
=

First of all, as argued before in the proof of Theorem 2.2, the fact that P € P itsell ensures
that, for infinitely many n’s, equation (2.1) holds for all 4, 0 < i < k. In particular, with
i=kin (24), we obtain py(n— 1) = pi(n) for infinitely many n. But py is a polynomial,
s0 we must actually have px(n) = constant. = pi(0) for all n > 1. Further, since the by's
are known to be polynomials, therefore, for 0 < i < k — 1 also, both sides of (2.1) are
polynomials in n, hence (2.1) holds actually for all n. This means that, for 0 <i < k— 1,

& N

n() =pi(0) = 3 (’) > bW (1) (210)
S\ S

We now prove the claim (2.9) by downward induction on j : since pe(n) = p(0) for all n > 1

and p) = 1, (2.9) clearly holds for j = k. For 0 < j < k-1, we have, by equation (2.10)

and by induction hypothesis,

.k 5
P = 4= 3 (})bw(nza".p‘?""(t>

I=limjt1

& m - n
= pPm)- 3 an 2_(;)21,‘,,(1),){"’)(1)

=i i

.
= P+ Y anm) by (26)
me=jh1

k
= 3w,
e
completing the proof of claim (2.9) and property (v).
We now show that our chosen sequence {F} is indeed the only sequence satisfying the
property (iv). In fact, we prove that if for k > 1, P € Px(M) is such that P(0.z) = 5*.
rty of our sequence, we can write P = Y5 o, F,. but

then P = P, By the spanning prop
then, we would have =% = P(0,4) = 5., 0;P(0,2) = ©% | aiz® ¥ 2. This means ax = 1

and a; =0 for 1 < < k, which implies P = P,




Finally, {F; : k > 1}, determines the f3’s (which are necessarily polynomials by the

“only if” part of Theorem 2.2) recursively from equation (2.5) by

b(n) = pff*

k1
Y =1) = S 0p®) vE>1, w21, (2.11)
=
and finite-dimensional joint moments of A7 are but linear combinations of products of these
numbers, ]

Remark 2.5 It turns out that under the hypothesis of the previous theorem, any sequence
{Pc € Pe : k > 1}, and not just the one chosen in the proof, possesses the spanning
property (v) and also determines the moments of the underlying process. For the former,
the observation that for every j > 1, Ui P has dimension j suffices, as we argued in
page 11 in Chapter 1. As for the latter property, owing to the support condition (S), the
harmonicity of {P} would force cquation (2.5), and consequently, equation (2.11) to be
satisfied. In contrast, It is only property (iv) that results in the uniqueness of our chosen

sequence.

2.3 The general case : Markov property

While for sums of independent. variables, the previous theorem gives a necessary and suffi-
such a nice characterisation becomes unavailable for
slightly
more than just p-harmonisability needs to be assumed. In the next section, however, we

cient. condition for p-harmonisability,

general discrete-time proc: Ins ary condition. Beside

cad, we get only a nece

shall rectify the situation somewhat by considering what we call restricted p-harmonisability

in the next scction. First, let us describe the necessary condition for p-harmonisability of

general processes.

Theorem 2.4 Suppose for a process M = {M, :n > 0} the classes Po(M), k > 1, are
cach nonempty. Supposc further that for all n > 1 and for cach k > 1, there is a

member P € Py such that P (n.

, as @ polynomial in = alone, is of degree czactly k.

Then, for cvery k 2 1 and n > 1, there cxists a onc-variable polynomial c* of
degree at most k such that E(M¥|7,_,)

k(Myo1) almost surely.

Proof : We prove the result. by induction on k. We have to first prove that the conclusion
is valid for k=1. Choose and fix a n > 1. By the hypothesis of the theorem, 3 polynomials
1 and po with pi(n) # 0 such that Py(t,#) = py (1) + po(t) is in Py (M). Then,

Pi(n =) M1+ po(n = 1) = E (p1(0) My + po(n) |Faz1) = pr(n) (M| Fuer) + po(n),
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50 that 1
E(My|Fi1) = o) [p1(n = )My = {po(n) = po(n — 1)},
a polynomial of degree at most 1 in M, ..
Now for k > 2 and any n > 1, choose a P € Py satisfying the hypothesis of the theorem.

This means that if we write P (t,2) = Y% 4 p;(t)27, then pe(n) # 0. By the time-space
harmonicicity of P, we got,

k
Sp =ML = P(n—1,M,)
=0

k

= E[P(n,M\)|Fy] = Z pi(n) B(MJ|F,-1)
=

-

= Y i) (M- 1) + pe(n) B(MFF,-1) by induction hypothesis,

i
LS

50 that E(M,f|F,i-1) = ck(My-1) where & () is the polynomial of degree at most k defined
by

)= —— [i})'(n C)si— S,,.@.)(,J (z)]. (2.12)
= 2 Zrd

This completes the proof. ]

Remark 2.6 The necessary condition in the last theorem could also be put in the form :
Vn21, k21,3 apolynomial d¥ of degree at most k such that

B(Xf|F) = di(Maoy) a.s

Remark 2.7 Under the hypothesis of the previous theorem, we have, as a more general
consequence, for all k, m and n the existence of a polynomial ck,u such that E(ME, | F,) =
¢k, (M,,) almost, surely.

Remark 2.8 As a special case, when the same polynomial can be used for all ¢ > 0,
that is, when, ¥ k > 1, 3 Py € Py(M) such that V £ > 0, degree of Py(t,-) is &, we can
actually claim that the scquence {Py : k > 1) also determines the law of M upto moments
of f.d. dlsmhlxuum; That is because, from the fact EP(t, M) = 0 for all k > 1, we have
EM, =~ p{)(n)/p{"(n), and more generally,

EM} = — Lp(‘“)(n] EM;.
P (n) i1
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£,k 2 1} are all determined by the {(p{ :1 < j <
k.k > 1}, or equivalently, by the sequence { Py : k > 1}.

Thus the one-dimensional moments {Ea*

To get all moments of L.d. laws of higher dimensions, one proceeds as follows. Firstly,
for 1< ny < ngand any ki > 1, ky > 1, one has, using the notation of Remark 2.7,

E {M AT *f} =E [,\/,ﬁln(l\l“iﬁu )} =

ny "

5 (Ma)]

which is again determined by the sequence {Pe}. The extension to E [M,.’j' M,‘,;'H-M,ﬁ']

can be completed using induction on 7.

As a Corollary to Theorem 2.4, we derive Markov property for M albeit, under an extra

condition. This condition is needed merely to enforce that for all n > 1, the conditional
distribution of X,, given 7, j, be uniquely determined by its moments, that is, by the
conditional moments B(X ¥|F, ).

Corollary 2.4.1 Let M be a process salisfying the hypotheses of Theorem 2.4. 1f,
morcover, for alln > 1, M, has finitc m.q.J. in the interval (—8,,6,) for some 6, > 0,
then M is Markov.

Proof : For cach n > 1, let us denote by Q,(,-) a version of the regular conditional
distribution of M, given 7, . Then, we have that [ ¢#Q,(-, dz) = E(¢M|F, ) < oo as.
for all ¢ € (=8,,6,). This, by a standard result. in probability theory (see e.g. (2], p. 408),
that, almost surely, Qu.(-d#) is determined by its moments {fz*Q,(-, dz) =
K(Myo1) i k 2 2}, which are functions of M,y alone, by Theorem 2.4. This means that Q,

guarantec

is almost surely equal to (a version of) the r.c.d. of M, given M,_; alone. Using repeatedly

this fact and the smoothing property of conditional expectations one obtains the Markov

property for M (not. necessarily time homogencous)! L]

2.4 The restriction condition

Evidently, general discrete-time y esS0s present. a hat unhappy picture with regard

to p-harmonisability, as opposed to those with independent. diff . This di

is pinpointed by the contrast between Theorems 2.2 and 2.4. While the former yields a
necessary and sufflicient. condition for p-harmonisability at one go, in the latter, only a
necessary condition is available, and that too only at the cost of an extra hypothesis. This
extra hypothesis, one may note, is a condition imposed on the “leading coefficient” (in
the space variable) of clements of P. This leads us to suspect that a condition on these

21



leading ients of time-space harmonic polynomials is what is required to arrive at a

stimony to this. Here, we

more satisfactory answer. Indeed, our next Theorem 2.5 bears
bility, instead of p-harmonisability, for a general discrete-

consider restricted p-harmon

time process and obtain a necessary and suflicient condition.
Theorem 2.5 Lor « process M = {M,n > 0} with difference sequence {X,), the
classes Py(M) arc non-cmply for all k > 1, if and only if for cach k > 1, there is a
two-variable polynomial Bi(t,z) of degree at most k—1 in z, such that E(X}|F,_,) =
Bi(n, My1) almost surely for all n.

Inthis case, if M morcover satisfics condition (S), then there czists a unique
sequence {Py € Py k > 1} so that the propertics (iv) and (v) are satisfied. Further,
this sequence Py : k 2 1} determines the law of M upto all moments of ils finite

dimensional di:

ributions.

Proof: As in Theorem 2.2, we prove the “only if” part first and do so by means of induction
on k. Since Py is non-empty, there exists a P € Py of the form P (t,z) = kT pi(t)
1, the fact that Py # @ itself implics that (M, — EM,) is a martingale, and that
EM, is a polynomial in n, so that we can clearly take B(n,) = EM, — EM,_, = EX,.

Now for k > 2, by employing calculations similar to those in the proof of Theorem 2.2, we

have, for all n > 1,

k=1 . [N
opsm =DM = BHE) + Z(i)w,:,,n(x,f*'m.,,)
=

+ S nmY (J) M B R,

i0 =0

yields,

which by induction hypothe:

ko1 kel gy
=ML, = BOWHE) + Y (k) M,y Biei(n, M-y)
=0 =1 \"

kel ; ‘
+ o)y (;)"\".,fq Bioj(n,Mu-1)  a.s.
o

=
that is, B(X{Fuo1) = Bi(n, My_1) as. ¥ n 2 1, where By(t,z) is the two-variable poly-
nomial given by

s

k=1 1 .
Bis) = 3 {,),.(», S (;)]),(I)]i,-,](l,r
=

k=1 k :
}zf -y (‘_)Iik_,(t,z)x

= i=1



For the “if” part too, we follow the same route as in the corresponding part in Theo-
rom 2.2. First of all, note that since for cach k > 1, By(t, z) is of degree at most k — 1 in z,

Bi(t,z) does not involve # at all and thus is just a one variable polynomial in t. In other
words, Bi(t,) = Bi(1,0), so that E(N,|#, 1) = By(n, M, 1) = Bj(n,0) which is non-
random, which means E(X,,) = B(X,|%, 1) = B(n, 0). If now the one-variable polynomial
w0 s dv[mul, as in Remark 2.1, by the formula p{(n) = S5 [=By(LO)], n > 1, then
clearly pf(n) = ~EM, for all n 2 1. It follows that (M,.+p.(,"(n,)) is an (F,)-martingale.
8o, Pi(t,x) =+ p{ (1) is in P, and the latter is thercfore non-cmpty.

For k 2 2, we show that Py is non-empty by again explicitly constructing one-variable
]xulynomm]s # 8,0 < i < k, such that Pu(l, ) = 5% p{9()27 € Pr. The definition is

again recussive: p{Y

1, and for 0 < j < k — 1, having obtained p® for j +1 < i < &, we

define p ), as in Remark 2.1, by the formula

Moy = { > L ( )A‘.’(I)b;:;‘(n] forn > 1,

=0 m=y 1

riable polynomials obtained from Bi, 1 < i < k, by writing

where the 0} arc the one-
Bi(t#) = $575 bi(1)27. That the polynomial B thus defined does indeed belong to P can

be checked casily using the following recurrence relation :

Pm-1) = ) +Z Z ( )ps‘)(n 7 ()

=0 m=j+1

As for the next part, let us first. observe by definition, our chosen polynomials {P}
satisfy (iv). Now, if P (1,2) = 55, p;(1)z7 and P € Py, then the condition (S), the
martingale property of {P (n, A1,)} and the condition

E(X;|Fuet) = LU(")M“ | as VYa>landix1,
=

together imply that. for infinitely many n’s, pe(n — 1) = py(n); and for 0 < j < k—1,

pi(n=1) = pi(n) -+ Z Z ( )pm(n)b (n).
i=0m=jt1
But since in cach of the above equations, both sides are polynomials in n, cquality must
, k, one can show exactly in the
0a:P;, where the {P; i > 1}
are as defined carlicr. This proves that the sequence {Fy : k > 1} chosen above spans P.

hold actually for all n. Now choosing a; = p;(0), i = 0, 1,

same way as in the proof of () in Theorem 2.2, that"P = S
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This same argument. also serves to ensure uniqueness in view of (i), For if P = Y%
has P(0,z) = 0 for 1 <i<k,sothat P = Py.

The proof of the characteriz:

*, then ag =1 and a;

ion of finite-di 1 follows by the smoothi

property of conditional expectations, and our previous calculations, since any such moment
E[M{ME . M) reduces to the expe

i
determined by the Bys and consequently in turn by the P’s, and one-dimens

ation of a polynomial in A, with coefficients

ional moments

can easily be derived from the s by an induction argument. ]

Remark 2.9 Just as in Theorem 2.3, the properties (v) and determination of the finite-

dimensional moments are shared by any sequence {P, € Py : k > 1} whatsoever, but. it is

property (7v) that renders the choice unique.

Remark 2.10 The conclusion of Theorem 2.5 was cast. in terms of the conditional moments

of the differences (X,). Again, for convenicuce in comparison with the continuous-time
case, we recast it in terms of the conditional moments of (M,,) itsell and claim that the
following is equivalent. to it : for every k > 1, there exists a two-variable polynomial Gy (- -)
ich that E(M,|F_1) = Cr(n, Mpy) V k > 1.

sy 1o sce : given Bi’s, we have

> (j) Bj(t,z)z k7.

=1

with Cr(-,2) having o* as leading term in ., s

One side of the implication is ¢

Ci(t,
“The other side follows by induction from the above one :

k 2k ke
St =32 () Bt

=1

Bi(t,x) = Ci(t.

Remark 2.11 Alternatively, we can state the result either in terms of the conditional

moments of the multi-step diflerences : V k, 3 By, a three-variable polynomial of degree at

most k — 1 in the third variable, such that ¥ m, n, k,

B((Myin — M5 = Br(m,n, M) a.s;

z) having

or in terms of those of A/ as : V k, 3 Cy, a three-variable polynomial, Ci(-,

leading term z*, such that ¥ m, n, k,
E(ME,IF) = Cu(mn, M) as..

part of Theorem 2.5

Remark 2.12 The connection between Theorem 2.4 and the convers
is worth comment. Clearly, the Fy’s described in the latter are themselves candidates for
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the choice required in the former, for cach 1. In fact, in equation (2.12) on page 23 one has
Pr(n) =1, and the conclusion of Theorem 2.5 can be seen to follow from this by induction

on k. However, we prefer the dircet calculations in spite of the partial repetition, since

these, first of all, are tractable, and secondly, scom to clarify the proof better.

One fallout of the theorem just proved scems important enough to deserve a separate
statement. Its proof follows trivially from the spanning property.

Theorem 2.6 If, for a process M satisfying (S), the classes Pr(M) are non-emply
Jorall k > 1, then for cvery k> 1, Pr(M) = Pu(M).

Remark 2.13 The assumption that P(A) # 0 is critical for the conclusion of the theorom;
in general, one may have Px(M) = 0 but Py(M) # 0. An cxample in section 6.2 in the last
chapter will bear this out.



Chapter 3

Counterparts in Continuous Time

3.1 A preliminary lemma

In the previous chapter, we investigated conditions for p-harmonisability of discrete-time
processes. In the present one, counterparts in similar situations in continuous time are
developed. As mentioned before, our general plan is to use the discrete-time results obtained
before and appropriate approximation arguments. To make these approximations work, we
naturally need to impose a regularity condition of some kind on the paths of the process M
under consideration. We assume throughout our process M to have r.c.LL. (right continuous
with left limits) paths. This path property, although not essential as we shall sce later, will
facilitate simpler proofs. As before, our process M always starts at 0, that is, My = 0.

Starting with such a process M, we define, for every N > 1, the discrete-time process
MO = (a0 0),
and denote its natural filtration by (G™)), that is,
M =a<cM™0<i<usn>o0.

With this groundwork, we present. a lemma which will be needed an cssential ingredient.

in many of our arguments that follow.
Lemma 3.1 Supposc t = j/m is a positive rational. Then, for any integrable random
variable X,
B(X|7) = fim B(X|G{)
o0

where, for each 1> 1, Ny=2"m.
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Proof : The assertion follows as a dircet. consequence of Lévy’s Upward Theorem ([2],
P 492), once we show that as I = oo, the o-fields G increase to . That s, we mean

o show that G € G for all 12 1, and that 7 = vis,6 8P, Since for any j > 0

we have j /Ny = 2j /Ny, the first part is immediate.. For the sccond part, we observe that

for any s with 0 < s < 1, there is a sequence of positive integers j; with j; < tNy, { > 1;

such that ji/N; decreases to s as [ ] oo As a consequence of the right-continuity of the
s measurable with respect to v,\,gm,’)‘

paths, we have My = limg., M5y, M, therefore,
0. Of cour

inasmuch as cach A &

My is measurable with respect to G for every [,
G

and therefore also wit h respect. to Vi) G, shows F; = o< M : s < t> is contained

in Vis G50, Trivially, Vi G4 ¢ 7, 1.(»,..<-enmb

c two are cqual. ]

3.2 Lévy processes

‘Theorem 3.1, our first result in continuous time,

As explained in the introductory chapte

is the analogue to Theorem 2.1. It applies 10 homogeneous Lévy processes, which are the

ime counterparts of partial sums of iid random variables. For us, a Lévy process

continuous-

with independent. increments with no fixed discontinuities and having r.c.l.l.

(right continuous with left. limits) paths. The last assumption, although not. always included

in the definition of Lévy processes, is not overl ]y restrictive since such a modification always

s leaves

s for separable pr ses with inds 1 and taking
the property of p-harmonisability (or the lack of it) undisturbed. A lmmogcncous Lévy
process is one which is homogencous as a Markov process, that is, whose increments are
stationary apart from being independent.

shall sometimes require property (S) to be

Given a continuous-time process M, we

satisfied by the discrete-time process (My,) for certain sequences (4,) of times, but unlike in

rather

discrete time, an exact cquivalent condition to cover precisely for these situations

difficult to find. Consequently we impose a condition that suffices for our arguments (o go
through, namely, (S) be satisfied by the discrete-time process M) = {M, : n > 0}. This
is what we call (S) in the case of continuous time processes.

Clearly, a homogencous Lévy process, unless it is doterministic, always satisfies (S)

defined not only in th but in fact through any arbitrary increasing sequence of time

points (1) whatsoever. The moment. condition (M) remains unchanged from the discrete

time situation.

Theorem 3.1 Let M = {M, : t > 0} be a homogencous Lévy process with My = 0
that Eexp(aMy) < oo for all @ € T where T' is

satisfying the condition (S),
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some nonempty open neighbouhood of 0. Then there cxists a unique sequence {Py €
Pe(M) : k 2 1} satisfying the propertics (i)~ (v). Morcover, any process N for which
Pr(N) = Pe(M) for all k > 1 must have the same distribution as that of M.

s M) = {‘\t a :n > 0} defined earlier, with
is, the conditions

Proof : Consider the discrete-time proc

their natural filtrations G5V, For every N > 1, M) s,

|,y hypothes

ement of Theorem 3.1. Thus, for each ' > 1, there exists a unique sequence

in the st
(M € PUM™) k2 1) s
Nzt (PN My s> 0
the polynomials P = P arc timespace harmonic for the continuous-time M, that is,
{(Pe(t, M) + £ 2 0} is an (F)-martingale for overy k > 1.

Fix a k 2 1. We first show the martingale equality E(Py(s, M,)|F.) = Py(t, M), for
m and t = j/m where i, j

isfyiug (i)- (v). This of course means that for every
s a (G5))-martingale for cach k 2 1. We prove that

0 <t < s, when t and s are rationals. We can always write s = i
and m are positive integers with i > j. For every { > 1, let Ny be as in Lemma 3.1. Consider
the polynomials P(u,z) = P{M(uNyx), k > 1. By construction, By € Po(MM) and
they also satisfy the conditions (i) (v). In particular, since (iv) is satisfied, uniqueness in
us that for all k 2 1, Py = Pe. Thus, Pe( fs, Myyw,) = P(N’)(n MMyisa
pently, P(t, My) = E(Pi(s, M.)IGS?). The martingale property
follows now on taking limit as ¢ [ oo and applying Lemma 3.1.

Theorem 3.1 tells

(GM)-martingale; co

For general 0 < ¢ < s, take sequences 1, | t, s, | 8, bu < sy, with each t, and s, being
rational. By our argument. for rational times, Py(sn, Ms,) is a reversed martingale. But by
the hypotheses of the theorem, BPy(s,, M,,)2, being some polynomial in sy, is bounded.

Hence Py(sy, My,) is an L2bounded rev martingale. Therefore it converges in L2, so

also in L', as nn — o0o. Now, by the right-continuity of paths, we have

Pi(s, M) * i Pr(sa, M) E Jim Pe(sn, Ms,,).

Similarly, Pu(t, M,) £ T,y Pi(tu, M) Therefore, using the smoothing property of

conditional expectations,

E(Pi(s, MIF) = lim B(Pi(sa, My, )| 7))
= Jim E(E(Pu(sn, M.,)|F2)|7)
1. 0 E(Py(tu, My, )IF0) = Pi(t, My).

By choice, the sequence {Py} satisfies (i) - (iv). That it is the only sequence to satisfy
(iv) s a consequence of the support. condition (S) as we have defined it. The property (v)
also follows since the sequence spans the obviously Jarger space P(M ().
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Finally, the determination of the distribution of M by the sequence of time-space har-

monic polynomials is due simply to the fact that they determine the moments of M. For

these moments themselves determine its m.g.f. ¢(a) = Eexp(aM;), a € T, and the joint

m.gf. of a typical finite-dimensional distribution is
Ecxp (a1 My, + apMy, + - + o, My,)

= Eexp (Z aiMy + 3 ai(Myy, — Myy) + -+ + ay (M, — A/L))
1 =

= ¢(X i) e (Z“x(lz - n)) et p(an(ty = ).
= i
where » > 1,0 <ty <1y < ... < Ly and o, @,... 0 € T. This determines the joint
distribution of M\, My, ..., M,,, and thereby, since 7, t1, tg, ..., t, are arbitrary, the law

of M. . []

Remark 3.1 One could also have proved the theorem by expanding the exponential mar-

tingale like Theorem 2.1 in discrete time. We prefer, however, to give the method of
approximation in full since this is what will be required in most of our subsequent results

in continuous time.

Remark 3.2 Barring the determination of the distribution of M in its entirety, the con-

dition on the existence of m.g.f. | redundant, since Theorem 3.1 becomes wholly a

mere special case of Theorem 3.2. The finite-dimensional Jjoint moments can still be deduced

from the polynomials, in the following way. The moments of M, being determined by { P},

(M= M,)*) = E(ME,)

it follows that so are those of each M,. This leads to the momen

being determined, and these in turn, to the joint moments

B(MS M)

BN
E (M My, + (M, — M) =Y (’;_I)E(M‘f‘”)E(M,i W-
=

Higher di ional moments follow anal ly. The ition on existence of the m.g.f.

was used only to allow for the application of the discrete-time Theorem 2.1 directly.

The next theorem applics to general Lévy processes. This is our continuous-time ana-

logue to Theorem 2.2. Here, let us describe one condition that suffices to ensure (S) as
defined carlier, as well as by any sequence {M,, } whenever 0 < t; < t3 < .... This condition
is that ¥ 0 < s < t, M, — M, is a nonconstant random variable. In other words, we demand

that no increment of the process have a degenerate distribution.
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Theorem 3.2 Let M = {M; : t 2 0} be a Lévy process with My = 0 satisfying con-
ditions the conditions (M) and (S). Then Pu(M) # 0V k > 1 if, and only if, EM*
is @ polynomial in L for cvery k > 1. In such a case, there cxists a unique sequence
{PeePiik>1), s
fies the property (v) and dete;

sfying the propertics (i), (i) and (iv). This sequence also satis-

the law of M upto moments of finite-dimensional

distributions.

Proof : For the “if” part, consider as before, for N > 1, the discrete-time processes M (),
which are all processes with independent. differences. By hypothesis, cach of them satisfies
the hypotheses of Theorem 2.2. Hence for cach N > 1, there exists a unique sequence
(P e M ™) k> 1y s
argument s in the proof of Theorem 3.1, we can conclude that P = P belongs to Pi(M)

isfying (i), (ii) and (iv). Then, following cxactly the same

for every k > 1.

Clearly the sequence {F} s:

isfics (i), (ii) and (iv). (v) also follows since the sequence
spans the obviously larger space P(M (1)), Property (i) guarantees uniqueness. Also, by
virtue of (i), the moments of cach M, can be determined inductively from this sequence
using simply the fact that EP(t, M;) = 0. This is enough to determine all the moments of
finite-dimensional joint distributions, using independence of the increments.

For the converse part, oue first. needs to note I,ha.! any sequence {P € Pi(M) : k > 1}
has to satisfy the property (i). That can be scen by writing, as in Theorem 2.2, P (t,z) =
Ek

the relation (2.3) from the martingale condition, one gets hiere for 0 < ¢ < s,

i Mipi(t) = LAI Z ( ),;]( YE(Ms — M)’ a.s.
=

op;i(t)z7 where p;(), 0 < j < k, are polynomials of a single variable. Then just like

and applying the support condition (S), for 1 < i < k,

ko
) = <{) P3(s) B(M, — M)
=

in analogy to equation (2.1). Taking i = &, it follows that p is a constant, or that Py € Py.
The conclusion now follows on using induction on k and using the fact that EP(t, M,) =
0 for all £ > 0 and k > 1. L

Remark 3.3 Let us note that the point of Remark 2.3 following Theorem 2.2 now becomes
clear as it renders the analogy between the discrete and continuous-time cases evident.

Actually, here too, the conclusion of the previous theorem can be stated in terms of the
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moments of the increments of M. A little algebra allows us to put it in the equivalent form:

for each k 2 1, there exists a polynomial by in two variables such that E (M4, — M)* =
bi(s,t).

3.3 A question in terms of the Lévy measure and its reso-
lution

It is well-known that

s is a o-finite measure on [0, 00) x {R\ {0}},
bution of the sizes of its jumps. We now

ociated to a Lévy proces:

called its Lévy measure, which governs the dist
put the conclusion of the previous theorem for a p-harmonisable Lévy process M in terms

of this object. Denoting its Lévy measure by m, it is well-k that the ch istic

function ¢, of M, can be represented as follows: for o € R,

6(0) = Bexp(iaM,)
K2

i ;";2 ym([o, 1] ® du)]

- . 3 1
= exp [i:m(L) - # + / (=1 -
= expun(a) say,

for continuous functions s and o2, the latter being nomenclative and increasing in addition.
They represent, respectively, the mean and variance functions of the ‘Gaussian part’ of M.

The functions 11, 0 and the measure m together determine the ribution M uniquely.
Now, the moments of M; are nothing but various derivatives of the above function at 0,

multiplied by powers of i. Suppose now that for every ¢, the m.g.f. of M, exists in a neigh-

bourhood of 0. One

the c.g.f. of M, in this neighbourhood. One can now casily show that. p-harmonisability of

an then write the m.g.f. as exp h(—ia). Denote by py(ar) = Y (—ia)

M, which is equivalent to cach moment. of My being a polynomial in ¢, translates actually
to each derivative of g, at 0 being a polynomial in t. To prove this involves an induction
on the order of the moment and making use of the fact ¢,(0) = 1 appropriately. This
gives us another equivalent. formulation of p-harmonisability of M, namely that each of the
cumulants of M, be polynomials in 1.

Now, these derivatives are given by

i
1+ u

GL0) = () + / w((0,1) @ du), @1 (0) = o2(t) + / wm((0, 1] ® du),

and for k > 2,
w®0) = /u‘m([u,/] ® du).



Two questions arise at. this juncture. First, the above equations tell us that for a p-
harmonisable Lévy process, each of the ‘moments’ from the third onwards of the projection
of its Lévy measure on (0,4 must be a polynomial in ¢. Since this projection is in general

ouly a finite measure on R\ {0} and not necessarily a probability, ¢ of course have
to be interpreted as just the integrals of the powers u u*, k > 1. If we impose sufficient
conditions to ensure that the tail of the sequence of moments determines the measure (as
for example the existence of its ‘moment generating function’ in a neighbourhood of 0), we
can ask what we can infer about the projection, and hence the Lévy measure itself, from
this phenomenon? Secondly, can we, in part icular, conclude in this case that the first two
moments of this projection as also the integral of the function u — u/(1 + u?), are also
polynomials in ¢?

This latter question is ticd up with another one in the sense that an affirmative answer
to it would lead to the following result. It would mean that if a Lévy process M is p-

harmonisable, the functions /u(t) and o(t) are also polynomials, and that the Caussian and
pure jump parts in the canonical decomposition of M are both individually p-harmonisable.
Notice that the sole fact of their being mutually independent. is not enough to assert this
~ indeed, although by virtue of Theorem 3.2 the sum of two indepondent Lévy processes is
p-harmonisable if each of them is s0, the converse need not hold. A simple counterexample
can be obtained just by adding a non-polynomial deterministic function from one of the

component. processes and subtracting the same function from the other, rendering them

Il mutually independent Lévy processes, but no longer p-harmonisable, with the sum

obviously remaining the same. Going back now to the question as to whether the Gaussian
and pure jump parts of a p-harmonisable Lévy process are separately p-harmonisable, the

answer turns out to be in the negative in general. We prove this using a transformation

which converts the Lévy measure to what is known as ‘Kolmogorov measure’. It is the Borel
measure L on [0,00) x K defined as

L(A) = /A do(1) + /‘ wPm(d ® du),

where A € [0,00) x R is Borel, and Ay = {1 € [0, 00) : (£,0) € A} is the O-section of A.
The representation of the characteristic function in terms of the Kolmogorov measure
L takes the form (see 9], page 152)

log E(e ™M) = jaun(1) + / <M> L([0,t] ® du) 3.1

The integrand in the sccond line is defined at u = 0 by the limiting value as u — 0.
Here, 1(t) = EM, is the mean function. The distribution of the process is determined
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alternatively by the function » and the measure L. An extremely important property of
L is that ¥ k > 1, the k-th cumulant of M, cquals [uk=2L((0,1] ® du). In particular,
E|M/|* < oo if and only if this integral is finite. Applying this fact to k = 2, we get that
the total mass ([0, 4] © K) is precisely the variance of My. This decomposes nicely fnto the
variances of the components of M, as follows:

1) = L(0,1] @ {0})

is the variance of the Gaussian part, while the residual L([0,1] ® (R\ {0})) accounts for the

variance of the pure jump part.

We now define a Lévy process M by setting »(-) = 0 and

1 1
L(4) ‘/,, [mayw(.m) + (1 - J(—L)) &(du)] at
for Borel A C [0,00) x R, where 9(t) = 1+1% ¢ > 0 and for any z € R, 6, denotes the
d bability at o Bssentially, this means that L is supported on the graphs of

the two functions g(t) and the constant function 0, and the mass on each of these has the
time-derivative, or density, (9(t)) " and (1- (1)) respectively. We return in Chapter 5
to Lévy processes whose Kolmogorov measures admit densities with respect. to time.

The process M defined as above is p-harmonisable, since for every k > 1, the k-th

cumulant ¢(t) of M, is a polynomial in L. We have ¢;(t) = 0, ¢;(t) oquals

L([n,:]&m):/ﬂ' [ﬁﬂc(l_ﬁ)}m

and for k > 2,
(t) = /u‘ 21[0, 4]  du)
[ 2o s = [,

a polynomial in ¢.
However, the Gaussian part, while having mean 0, has the non-polynomial variance
function fj dt/ {1 — (1/g(s))}, which means that it cannot be p-harmonisable. Naturally,

the same is true automatically for can the pure jump part.

We resume the programme of finding analogues of discrete-time results in continuous

time. For general processes, a parallel to Theorem 2.4 is prosented in Theorem 3.3. Again,

milar additional condition imposed. It

Markov property follows as a corollary, with a s

turns out that for both these results, it is casier to give for a direct proof than the one using

approximation from discrete-time.
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Theorem 3.3 Suppose Jor a continuous-time process M, Py £ ¢ ¥ k > 1, and for all
k21 and t >0, there is a Py € Py with Plea(t,+) being of degree exactly k. Then
Jor cvery t,s > 0 and k > 1, there caists a polynomial df, of degrec at most k such

that E(MX | F7) = df (M) a.s..

Proof : Fix t,s > 0. Let us temporarily write as P the polynomial Pliegrsy as in the
= Y5 opi(u)z/, we have pi(t + s) # 0. We now

statement of the theorem. Thus, if P(u,

use induction to prove the result. :

k k
pOM = P M) = E(P( 4 s, M| ) = o pit+ ) E(M, | 7)
=0 =0
=
= opi(+ ) d] (M) + pult + 5) E(ME|F)

so that B(Mf, |7) = df (M,) where

& k-1
1
df (2) = ——— pi(t) 2! — pi(t +s) di |
)= sy |20 P :
is a polynomial of degree at most k. u

Corollary 3.3.1 Suppose M satisfics the conditions of the above theorem and Jor all
>0, there exists & > 0 such that M, has finite m.g.f. in (~6,,6,). Then M is Markoo.

ete-time case. The one point to note here is that the
$>0and k > 1 depend only on M, and hence

Proof : The proof is similar to the disc
conditional moments E(M | ) for each
30 does the conditional distribution of M, , given 7, this distribution being determined by

s nothing but. Markov

its moments; that is, the conditional moments just referred to.
property. [ ]
3.4 The restriction condition in continuous time

Just as in the discrete-time case, for general continuous time processes also, we have a nec-
ed p-harmonisability, in analogy to Theorem 2.5.

essary and sufficient condition for restr
Here, M = (M, : t > 0}

any continuous-time process with r.c.Ll. paths.

Theorem 3.4 If M is a process satisfying (M) and (S), then PeM) #0V k21 if
and only if for cach k > 1, there caists a threc-variable polynomial Cy. with Cy(-, - z)
having z* as its leading term in x, such that Jor allt, s > 0, E(M,|7) = C(t, s, My).

37



In this case, any scquence (P, € Py : k > 1} satisfics (v), determines the distribu-
tion of M upto moments of finite-dimensional joint distributions, and imposing (iv)

in addition renders it unique.

Proof : The arguments used in the proof are quite similar to those used to prove Theo-
First we define, just as in that theorem, the discrete-time processes M ™) and

rem
their natural filtrations G for every N > 1.

Now, for the “if” part, we take recourse to Remark 2.10 following Theorem 2.5 in the
previous chapter where an equivalent. condition to the necessary and sufficient condition in
the statement of Theorem 2.5 was given. We claim that the hypothesis of the “if” part
ensures that for cach N, the process {M,{" : n > 1} satisfics this condition. Indeed, using

the smoothing property of conditional expectations, we have

E{(MMAg) = BEMY |70)i0)

L fn—-1 1
e ('N ,N,M%r.)=ok(n.M,f’)’,’)

if one defines, for NV fixed, Dyl = Cu(F', % =), a polynomial of degree exactly k
in z and the leading term in & having cocfficient, free of t. This establishes our claim.
Thus, for cach N and k, we have Pu(M ™) # 0. Now, the choice P € By(M ™), the
identification of R (1) with BO(4 ) using uniqueness (note that M) satisfics (S)),
and the time-space harmonic property of P = P for M, first over the rational time-sot
and finally over all ¢ € [0,00), follow exactly in the same way as in the proof of the dircct

part of Theorem 3.2.

For the converse part, given {Fy € Py(M)}, exactly as in Theorem 2.5, first observe
that if P(t,z) = 2 + p(1), then EP, (t, M) = 0 implies that EM, = —p(t), a polynomial in
t. Therefore, V s, > 0,

E(Myis|7) = My — BEM, + EMyys = Cy(1, 5, M),
where Cy(t,s,2) = 2 + p(t) — p(t + s). Thus the conclusion is valid for k = 1. Now, for
k> 1, writing Pe(t,2) = 2% + 5570 p;(1)27, we get from the martingale condition

k-1 k-1
E(MAIF) = M} + 3 p(0M7 = 3 ps(e + 5)B (M7 (3.2)
=0 =0

and our claim follows by induction on k. .
It remains to show that {Py : k > 1} satisfies the required properties. Properties (i)

and (v) as also the claim on uniqueness are immediate as in Theorem 3.2,
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We have left. to show now just that. { P} determines EMS M - M whenever m > 1
0 <l <tz <ty and ks > 1. We only prove it for m = 1 and m = 2 since these

two cases seem sulliciently illustrative. The first case is casily disposed of upon observing
EPj(t, M) = 0¥ j and using induction on kj. Now, we have
EMAME = BIMME(MSF,))

= E[M}"Cy,(t2 ~ 1,11, M,)] using Theorem 3.4,

and the sought equality now follows from the case m = 1 since the Ci’s are determined
completely by the polynomials P This last. claim can be proved by induction on k as
follows. Writing Py(t,z) = 525, p(1)ad, we have Cy(t,s,5) = 5 (EMyys — EM,), and
for k > 2, we have

3 3
YoM = M) = B +s Mu)IF) = 3 o0+ ) B |F)
=1 : =

k
= Zpﬁ”(lﬂ-s}("j(l,s,.\h)
=0

= Cultys, M) + 3 p®(t + 5) Cj(t, 5, My), whence
=

Cilt,s,2) = =20+ 9)C5(t, 5,5))

which can be obtained from {P; : 1 ]

We observe next the analogue of Theorem 2.6 as an immediate consequence of the last
theoren.

Theorem 3.5 If M satisfics (S) and Py(M) £ 0 for all k > 1, then P(M) = P(M)
Jor cach k > 1. :

Proof : Thi )
alincar combination of the polynomials from the canonical sequence {Pe € Pu(M) : k> 1},
must belong to P(M), that is, P(M) C P(M). But P(M) C P(M) anyway, therefore
P(M) =P(0M). 1t follows that for cach & > 1, Py(M) = Py(M). L]

consequence of the spanning property: any P € P(M), being

again an ca

3.5 Semi-stable Markov processes

We now observe some conncctions between p-harmonisability of Markov processes and what

is known as the semi-stability property as developed in [12], and also see some examples.
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Let us first recall the definition of the latter property. A process {M, : t > 0} with My =0 is
s {M : t > 0} and {c”M, :

¢ 2 0} have the same distribution. For homogencous Markov processes (82, (F2)i20, (P*)ax0)

called semi-stable of index 3 > 0/if for every ¢ > 0, the proces

state space, the above definition of semi-stability implies (and

with the half-line [0, 00)
in fact is equivalent to) the equality of the laws of (M) under P# and of (c#M,) under
P/ forall ¢ > 0 and all z. T
pa(z, A) = p(z/c”, AfcP).

A fact worth recording here is that if (P) is a sequence of time-space harmonic poly-

means, for the transition function p(-,-) of M, that

nomials for a semi-stable Markov process M, of any order f, then so is the sequence of
polynomials (Py) defined as P = Pi(ct,¢Pz) for any ¢ > 0. Let us now assumethat

nditions for uni for this are met (sec Theorem 4.6 in the next chapter

for the details). This means, comparing the coefficients of z* on both sides using property

(i), we have Pi(t,x) = e Pe(t, #) = iz Pe(et, ¢Pz) for all ¢ > 0. In particular, for all ¢ > 0,

Pe(t,z 7= tPEpi( i

where p is the one-variable polynomial Pi(1,-). A property of this type for a two-variable

polynomial is usually referred to as its / % ity in the two ents, or sometimes
in one argument and a power of the other, the index in the latter being called the order
of homogeneity of the polynomial. It can be casily scen that a polynomial P with leading
term z* in 2 is homogencous of order 8, that is, homogencous in t# and z, if and only if
P(ct,cPz) = cPXP(t,2) for all ¢, ¢ and #. Ilence, if for a process M one has for every k,
a polynomial of the above kind which is time-space harmonic for M, then by virtue of the
characterization of its distribution by these polynomials, one should expect the processes
(Ma)izo and (¢”Mi)i>0 to be identically distributed, or in other words, M to be semi-stable!
This, indeed, turns out to be true under certain conditions, and we give a rigorous proof of

this in the next chapter, stating the uceded conditions.

Let us proceed now to describe in detail how to obtain time-space harmonic polynomials

for certain semi-stable Markov pro For this purpose, we essentially look for a function

@x, for every X > 0, such that ¢(M;) ¢ is a martingale. Towards that end, we first seck
to solve the equation

(3.3)

Aps + Ay =
where A is the infinitesimal generator of A,

The example we treat here is that of the square (M,) of the Bessel process with dimension
2a, say, which forms, as a varics, the only family of semi-stable Markov processes with
continuous paths as remarked in [3] (page 77). Its gencrator, at least on the domain of
twice continuously differentiable functions [, is given by Af = 2z [ + 2a f'. Actually, for
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our purpose, solving the equation (3.3) for any one particular value of a is good enough
because time-space harmonic polynomials obtained for one value of a give rise to those for
the other values as well, as we shall sce later. We consider the value a = }, in which case
the function @x(z) = cos(V/2Az) can be easily seen to be a solution to (3.3). Semi-stability
of the process manifests in the fact that we have a choice satisfying ¢x(z) = ¢1(Az). Now,
the standard power series expansion cos = 280(=0%)/klgives éa(z) = S50 GEFE -
in A:

This allows us to expand the function ¢,(z) €* as a power ser
(=22)7t*7

At .
P Zk Z k=7

Now, exchanging, as before, the orders of the cperanom of conditional expectation and

k-fold partial differentiation, we obtain that {Fi(t,z) = k! oo (5 ’;,; 2l k> 1}isa
of time-space harmonic pol jals for M.

The above construction of time-space harmonic polynomials is merely an illustration

of the method outlined, since our choice of a makes M to be BES*(1), or simply the

square of one-dimensional Brownian motion. Thus one could have taken just the sequence
Pe(t,z) = Hyl(t, /=), k > 1, where {H} are the Hermite polynomials. However, this
method is applicable for general h Markov processes too, if the solution to (3.3)

is ‘well-behaved’ with respect to ). in the sense of admitting a power series expansion.
s can be obtained

Now, p-harmonisability of sore other semi-stable Markov process
from this process, using what is known as the intertwining relation between them [3]. By an
intertwining relation between two Markov semigroups (P;) and (Qq), or the corresponding
processes, we mean the existence of an operator A such that AP, = Q;A ¥V t. In some
Ze “multiplicative kernel” for a random variable Z, that

cases, this operator A is given by 1
is, Af(z) = Ef(Z). In such a czse, if P (t,z) = Y% p;(t)a7 is a timg-space harmonic

polynomial for the process correspcading to the semigroup (P;), then Q (¢, z) = AP(t,z)
Sk o p;(t)EZ7 27 is one for the process with semigroup (Q). This fact is easy to verify

from the definition.
We present in the final chapter some examples of processes whose semigroups are in-
tertwined with that of the square of the Bessel process. We also present some explicit

calculations in this context.

3.6 Multivariate and vector-valued processes

The p-harmonisability question hzs been dealt more or less exhaustively for real-valued
processes {M,}. Now, as was indiczzed in the introduction, we raise the same question for
processes M taking values in som¢ R™ where m > 1, or in a more general Hilbert space
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take up the former, to be referred to in the sequel as the multivariate, or
multidimensional, case. °
Recall our definition of the space V of all time-space harmonic functions. A natural

extension from the carlicr set-up to this case suggests P to stand for the set of all polynomials

P of 7 +1 variables for which clubbing together the last 7 coordinates into one, we have
P () € V. We now introduce the analogues in this case to the objects Py and Py for

univariate processes, and rephrase the definitions for p-harmonisability and restric

harmonisability, respectively, in terms of these beforo procecding further.

By the degree of an r-variable polynomial p, we mean an r-index k = (k;, ky, -
v#y) = ki for 1 <i < v and coeff(zf1zf2 ... zkr) £ 0.
This differs from the usual definition of degree as 3 k; for such polynomials, but allows

such that deg p(zy, - -,z g, -,

(ASEEN
us to present our result more succinetly. Now for an r-dimensional process M and for a
multi-index k = (k1 kz, -+, k), we define

Pu = {P(t,x) € P(M) : deg.P(1, ) = k}.

Since there are polynomials to which we can not assign degrees in the above sense, it is

clear that we may not have P = Uy Py in this case. However, all polynomials in » variables

are lincar combinations of polynomials to which we do assign a degree, and we deem this
fact enough justification to call M p-harmonisable if Py happens to be nonvoid for each
7-index k.

te-time r-dimensional

ing, observation is that if M is a discr
components M@ = {M;,, :n>0},1<i<r is

A trivial, but perhaps inte;

p-harmon , then each of its

ble proc

50 in one dimension. This is because

0,-0(M).

MO 1<i<y,
cen to be true, that is, p-harmonisability

Is the converse true ? In the special case that the component. proc

are mutually independent, the convers
for cach M ) implics that for M too. Indeed, if for 1 < i < 7, Pig, € Pi(M @), then the
polynomial P defined as P(t, 21,3y, ..., ,) = [Tjey P (L) is in Pe(M).

Thus
of the various results we have for one-dimensional processes, simply by rewriting the same
s with iid differences (or

o s casily s

if one assumes the independence of the components M @, one gots counterparts

results for the component procos 5, in terms of M. Process

stationary independent increments) satisfying the moment condition, for instance, can be

easily shown to be p-har Similarly, for processes with simply independent differ-

ences (or increments), one has a necessary and sufficient. condition for p-harmonisability. In
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condition, put in terms of the moments of the process M itself, is just

ke

discrete time, this
that for all k), ky, ..., k >0, [T, E(A

) be a polynomial in n. This is because

B(MBMS, - M%) = BOMS) B(ME) ... B(M%),

a polynomial in n if cach of the factors We have thus in analogy to Theorem 2.2 the

following
Theorem 3.6 For a process M = {(My, Myp,---, My,) : n > 0} with independent
components MO = (M;)u=1, 1 < i < r, and with independent differences, p-
harmonisability of M is lent to the condition that for all ky,ky, -+ k, > 0,
E(M {5, M2, ME) be a polynomial in n.

One can also develop parallels of the various algebraic conditions considered for uni-
variate processes. One would first have an obvious analogue to the restriction condition,
assuming which for a sequence, of more appropriately, an array of time-space harmonic
polynomials {F € Py : x an 7-index} leads to a counterpart of Theorem 2.5. Analogues
to the other propertics, whose fallouts in the one-dimensional case are st udied in the next
chapter, are also possible to obtain, alongwith counterparts of the corresponding results.
Naturally, one also has the counterparts of all these in continuous time too.

The case that remains to be considered is when the state space E is a separable Hilbert

lifi fe ioned

space M, and we bricfly describe here the required in the
definitions in this case. By a pure polynomial of degree k on M we mean a function of the
type h¥(x) = REI (2) =< vy, 5 SM< mpz SR L < o Sk where » 21, Y ki=k

vr € M. Two-variable polynomials on 7' x H now stand simply for (finitc)

and v, vy,
linear combinations of products of powers of ¢ and pure polynomials on 7. P is now defined
in the sclf-evident way.

We firs
we have adopted, in the light of 6] (page 534). A pure polynomial on 7 in our sense

provide a more detailed explanation for the definition of bivariate poly

would be an example of what are termed there as homogencous polynomials on #, namely,

I stands for a multilinear function. A general

functious of the type I (z, ., 2) whel

of these h polynomials.

polynomial was defined there as a lincar
sider, instead

However, a certain fact was al

implicitly mentioned, and motivated us to co:
of general polynomials, the functions we have denoted h¥. First, identify the space of the
-fold tensor product-power of . It now
k; and the

functions determined by k-linear forms with the
becomes clear that the £¥’s form an orthonormal basis for this space if k = 31
5 of M. Fixing such a basis A of H, we now

vi’s are chosen from a fixed orthonormal ba



define

={P(,)€EV:P(t,z) = pr(t)h{(z),pf(-) polynomial}
<k

k

and call M p-harmonisable if this object P¥ is non-empty for all » > 1, v; € A and k; 2 0.

However, we require one more property of the orthonormal basis A in order to be able
to extend to this case our previous results. This property, quite similar to the criterion of
independence of the co-ordinates M @) in the multidimensional case, is that the processes
< v,M, >, v € A, be mutually independent. With this condition, one easily derives
analogues to our results in the one-dimensional case. We mention the simplest one, when

the discrete-time process M has independent differences.

Theorem 3.7 Suppose M is an H-valued process with independent differences and
A is @ basis such that < v, M, >. v € A, are independent processes. Then, for any
fiwed v > 1, Plifrede £0 for allv € A, ki > 0, if and only if ERSES (M) is a

polynomial in n for all v; € A, k, > 0.

The analogues of the algebraic properties (7) = (v) and their ramifications are again
routine but cumbersome. All that is involved is that the corresponding properties be sat-
isfied by the individual processes < v, M, > for all v € A. One can, of course, also obtain

continuous-time versions.
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Chapter 4

Algebraic and Analytical
Properties

4.1 The Appell condition

This chapter is devoted to bringing out the interconnections between various algebraic and

analytical propertics possessed by sequences of time-space harmonic polynomials and dis-

tributional propertics of the process they arise from. One side of this connection we have

already come across, in the carlicr chapters, where specific distributional properties for the

1 1iff

process, such as iid difference sequence, or even just indey , or i ents,

were shown to result in propertios like (i), (1) and (i) for the time-space harmonic poly-

nomials. We also observed the ramification of the restriction property (i) on the process,

in that a necessary and sufficient condition was derived for restricted p-harmonisable of a

given process. Now we concentrate on the reverse side, that is, to determine what the listed
algebraic conditions on the polynomials, other than (i), mean for the process.
The first theorem in this context. demonstrates the fallout of assuming the Appell condi-

tion (it). This culminates nicely in a corollary which shows that (i) forces the summands

to be independent in the presence of a mild additional hypott Recall our adopted

convention that Py = 1.

Theorem 4.1 Suppose M is a process salisfying condition (S) with difference se-
quence X. If Pu(M) # 0 for all k > 1 and a sequence {Py € Py : k > 1} can be
chosen so as to salisfy the Appell property (i), then for cach k > 1 and alln > 1,

E(XHFu-1) is non-random. Morcover, such a sequence {Pe : k > 1} satisfics the

propertics (i) and (v), and, is the unique sequence to also satisfy (iv). Further, any



sequence {P € Pu(M) : k > 1} determines the of the finite-di
distributions of M.

Proof : First, remember our convention that Fy = 1. Now, let us write, for each k > 0,
Pilt,x) = Top{ ()27 as before. Now, we recall that. property (i) for the soquence
{Pe:k =1} is equivalent to: Vk>1,1<j <k,

- ok (ANg
3§ = kT = ) = EpED o hercfore, by repetition, M= (j)rff @)
J .

This means, in particular, that p{” = p{” = 1 for all k > 1. Thus the sequence (P, : k > 1}
satisfics property (7). Clearly, for cach k > 1, P € Py, so that the hypothesis of Theorem 2.5
is valid. Therefore, for cach k > 1, 3 a polynomial By(t,z) = ShI0 ()27, so that
E(X Fu1) = Be(n, Myoy) as. for all n > 1.

In particular, B (X, 1) = Bi(n, My_1) = by(n) as., that is, E(X,|Fu_1) is almost
ity of Pi(t,@) =z + pi (),
that is to say, from the martingale property of {Py(n, M,)}, we actually get. by() = p{ (t
1) ="
to show that ¥ k > 2, the polynomial By is free from its second argument, that is, ¥ i,
1<i<k—1,0k=0.

surely non-random. We also note here that from the harmoni

(t). To prove now that for all k > 2, E(X;¥|F,1) is non-random, we merely have

We use induction on k. For k = 2, this is casy to verify directly. Indeed, using the

martingale property of {Py(n, M,)}, and the fact that p2 = 1, one gots
ML+ o= )My 4 pP (- 1)
= E[M? + pPm)a, + PO Fn]
= ML+ 2M B IF ) B (X2F) 4 02 (0) (Mo + B (Yl Fa )] + 52 ()
= MLy 2M () + 00 My 4 63(0) + p (1) Mooy + pP ()83 () + 5P ()
M+ [263(m) 4+ B30) + ()] M+ 6300) + 5P ) () + 5 ).
In this, we can equate cocfficients of M,_; on both sides, in view of (S). This yields
80 =920 = 1) = 10 = 200) = 0, wsing 2 = 208 and By(0) = 50— 1) - 0.
Next, let k& > 2 and assume, by way of induction hypothesis, that for all < k and
1< <1—1,b; = 0. This means precisely that for all 1 < I < &, E (,\’,{|f,.,,) = b} almost

surely. Then, from the martingale property of {Py(n, M,)} and the fact that p* = 1, one

casily deduces, in view of (S), that

Viam) = p 0= 1) = pP () — k0Y(n),  andfor 1< < k—
k&
thn) = ,,5.“("_1)7,,5*)(",)_»2 (;)pf“)(n)b;ﬁ(u).

=51
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In the first equation, we use the f

cts that ) = kpl? and 0}(1) = {0 - 1) - pO(1), to
immediately get bf_; = 0.

For 2 < j < k — 2, we get from the sccond equation that

1) = D) - i (’) K i ()

S
{“ D= 1) = Doy - Z (J )u‘*,”(n)bﬁ”(n)]
-
L

by induction hypothesis.

bi(n) =

Finally, again from the second equation above,

o) = pfm = 1) = p0) ~ S ip® ) 6 m)

k
= o0 - 1) = ) — 3kt ) 6 ()
=
k-1

- {,‘: o= 1) = 1) —zpr'w)-bs(n)}
b

sinee 0~ (n) = D — 1) = 5 () — 552 5D () b ().

Next,, we show that the polynomials we have chosen satisfy the properties as claimed
in the statement. We have already observed that { Py} satisfies (i) As for (iv), we show
that were Pi(0,2) to contain any other term than 2, that is, p*(0) # 0 for some j with
0<j < k=1, then the polynomial P,_; would fail to satisfy P; (0 10) = 0, a condition that
was imposed on any member of P. ‘This is because Pe_;(0,0) = pf*9(0) = pO0)/(5).

Uniqueness follows by virtue of (iu) just as in Theorem 2.5,

The proof of the spanning property runs exactly along the same lines as in Theorem 2.3.
For the equation (2.10), which was cru

al in that proof, was derived in turn from the
equation (2.4), and in the latter, the independence of the differencos was used only through
the fact that the conditional moments E(XFF0), n, k> 1, are degenerate, a property
that has already been proved to hold in this theorem.

That the moments of the finite-dimensional Joint distributions are determined by {P:} is
proved by arguments similar to those in Theorem 2.3. First of all, by what has already been
proved, it follows that ¥ n, k > 1, E(X,%) = E(X 1) = t5(n) = b(n), say, a polynomial
inn. It now follows, exactly as in Theorem 2.3, that the sequence { Py : k > 1} determines

the {be} recursively by the equation (2.11). Also, our previous calculations imply that the
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finite-dimensional joint moments of M are but linear combinations of products of the b;’s.
L}
As remarked before, one consequence of the hypothesis in the above theorem is the

independence of the differences. A small price has however to be paid for this in terms of an
s, as was the case with the Markov property following

assumption on the existence of m.g
Theorem 2.4.

Corollary 4.1.1 If, in addition to the hypotheses of Theorem 2.6, each My is known
to have finite m.g.f. in (=6,,6,) for some &, > 0, then the difference sequence asso-

ciated to M is independent.

The proof of this corollary uses arguments used several times in the past, and only a
sketch will suffice. It involves proving simply that for all n > 1, the conditional distri-
bution of X, given F,_; is the same as the unconditional distribution. This, in turn, is
a consequence of its being determined by its moments. To prove the latter requires just
a straightforward repetition of the arzument used in the Corollary 2.4.1 to Theorem 2.4.
We only have to establish that . for every n > 1, admits a finite m.g.f. in some neigh-

bourhood of 0. For this, merely observe that for a such that |a] < min(5,_1,6,)/2, by
Cauchy-Schwartz inequality we have .

E (e7%) < /B (e2040) - E (e=2oMm1) < oo,

Remark 4.1 For future reference. it will be convenient to put the conclusion of this
for every k > 1, ihere exists a polynomial by such that for all n > 1,

theorem as :
tep

E(X [Fu1) = B(X,}) = bi(n) almost surely. Alternatively, in terms of the multi
differences of M, this condition becomes: for each k > 1, there exists a polynomial ¢ in two
variables such that for all m, n > 1. B((Myn— My) | F) = E((Mpen— My)*¥) = ci(m.n)

4.2 The pseudo-type-zero condition

ble process can be ex-
1; ials, the question that

dence of the di of a p-h
time-space harmonic p

Once we see that ind.

pressed in terms of a
naturally arises is, does their furtter being identically distributed, also translate to some
di in the i , the pseudo-type-zero

property of these polynomials? As we i
property (ii), in conjunction with property (ii) for the sequence of time-space harmonic
polynomials, does exactly that. Hcwever, we do not prove this using the direct approach
we have been following so far. This approach involves writing out the martingale equality
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for P and using induction to obtain some repercussion on certain moments, or conditional

moments, at times by ling to the support condition (S) to equate i of var-
ious powers of M,. At first glance, this approach would appear to give us the marginally
stronger result. that (i) and (i) force the conditional moments of X, given 7,y (which
already cqual the corresponding unconditional moments by virtue of (43)), to be free of
n. Assuming the existence of mug.f. as in

lier cases, one could then obtain the desired

conclusion. Oue wight, morcover, expect. the connection of the numbers h; vis-a-vis these

moments to be explicitly revealed.

In contrast, the original ‘exponential martingale’ approach due to Neveu that we follow

here requires the existence of m.g.[s a priori. However, the connection between the numbers

Iy and the moments just spoken of, is brought out by our approach also, since 3 hyak /k!
is established to be the negative of the cumulant generating function of M, and thus hy

ween the

turns out to be the negative of the k-th cumulant of M;. However, the relation |

moments and the cumulants of a random variable is extremely complicated. An idea of the
level of difficulty involved can be had from cquation (5.2) on page 64 where in the absence

of the moment condition (M), the none

tence of the m.g.f. forces us to actually exhibit.

the relationship. Tl erves to indicate that direct calculations would be intractable, or

too cumbersome at any rate.

Instead, power series arguments from [20], suitably adapted to our context, allow us to
derive our result. more casily. The following lemma validates the representation (1.7) for a
sequence {py : k = 1} even when the sequence is pseudo-type-zero and not necessarily of
type zero. .

Lemma 4.1 If {pc: k = 0} is a scquenc
degrec k, then py salisfi

of onc-variable polynomials with pi being of

s the pscudo-type
Jormal power series B(a) = Y32 o byak /k! such that

cro condition if and only if there caists a

N 0
b pe() ko B(a)et )
]
o
where k(o) stands for the formal power series S92, hyo [kl
Proof : The if part is casy to show, for the formal calculation

o dp(t) of A Eop(t) o d tha)) _ tha)
YEEL = 2y Kk = E(H(u){: ) = ) (Bla)e™)

= =
S \k) (‘i (X0} »)
(LX; 7 %«“ T

holds as power series. The rest is just. a matter of equating coefficients of a* on both sides.
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In the only if part, notice that 3 has to be the power series B( 220 e(0)ak kL.

The statement is thus equivalent to proving the relation

o= Pe(t) & X pa(0)

> ‘T(!) k=3 %(1 ) ko thte), (1.2)

Pt i
Let us write pe(t) = 325 o pest7. Then, p; = %8 (0)/j1. But the pseudo-type-zero
property can easily be scen to imply by induction on j that for 1 < j < k

x

—~ [k k—iy

= n,
o - % (u)"’ p> ()
kGt i) .
i i
x > ( @@ ; 7 )> iy Phe— iy tiy)
=1
k
= . [CRE m(t),
(,w)‘ ‘ ) iy iy + iy | P (2)
m=i s
i Vi =m
whence we get
(4.3)
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Now, establishing (4.2) amounts to showing that

Pl;c(!") ok = (i

yar

(e

k=0

L_i

k=0 (
To establish the equality of the two (formal) power series above, it of course suffices to show
both are pgp.

* for all k > 0. For k =

that both sides have identical cocfficients of o
Therefore, we only have to show that ¥ k > 1,

A
Pet) = pro+kl Y
=]




Koo E
= pko+ ﬁ(k T} L Z Z
Fm | g
U

ing the order of summation. That this is true follows from the expression (4.3)

for p,j obtained earlier. L]

Theorem 4.2 Supposc « process M admils a sequence (P : k > 1} of time-space
harmonic polynomials satisfying both conditions (ii) and (iii), and that there cxists
ve 8, such that for cach n > 1, M, has finite m.g.f. in (~8,8). Then M has

independent and identically distributed summands.

a posil

Proof : In view of the representations (1.6) and (1.7) for Appell sets and pseudo-type-zero
sets of polynomials respectively, (ii) and (iii) together enjoin, as formal power series, the
representations

A, 1) = in(ﬁ

=i

where A and B are formal power scrics in o (with cocfficients depending on ¢t and z respec-

tively). Here, Py = 1, as per our carlier convention. Taking z = 0, we have
Ao 1) = B(,0)c™) = g(a)eth@), say,

that.

= gla)e™ e, (4.4)

k=0

Recall from Theorem 4.1 that since { P} satisfies (i), it also satisfies (i) and is indeed the

ouly sequence to do so. Also, the existence of mi.g.fs allows us to apply Corollary 4.1.1, so

that M has independent differences. We can therefore construct its exponential martingale

nla,n, M,) = emMelem) >0, jaf < 6,

where (a,n) = log Eexp(aM,) is the cumulant. generating function of M,, evaluated at

. But then expanding the function 7 above as power series in a,

o

e = 3 Qun,a) &
0 k!

one can show, almost imitating the argument. in the proof of Theorem 2.1, that {Q4} is
also a sequence of time-space harmonic polynomials for M and that it also satisfies the



conditions (i), (i) aud (iv). The uniqueness in Theorem 4.1 therefore yiclds Q = Py for

cach k > 1. Consequently, using the equation (4.4), we get, the formal power series identity

) ()

But. first putting (n, (0,0) and subscquently, just

by ¢(ar,n) = —nh(a). This form of p, of course, immediately yields the identicality of the

0, we get. first that g = 1 followed

distribution of cach member of the difference sequence associated to M. Morcover, it shows
that b actually defines a function in (=6,6) and that —h is actually the common c.g.f. of

the difference

sequence. [

Remark 4.2 If each M, has finite mg.l. in the same open neighbourhood I of 0, it is
conceivable that the fallout of inds 1 li as a result of as: ing the Appell

property (ii) as set out in Corollary 1.1.1 can also be proved using the kind of power series

In this ca

arguments employed in Theorem 4. , the representation (1.6) leads to the

formal power series identity

Ao )™ = P,L(/ :) i (4.5)
k=0
forall £ 20, z € R, where for every 1, A(a,1) = Y2, u,,(f.)ak/kv
‘The convention Py = 1 leads to the condition A(a,0) = 1. Let us denote the c.g.f. of M, in
[ by ¢(-,n). We then have, for n > 1 and o € T, exp (p(ayn)) = S50 () o* /k!, where
m(n) = B(M,), k = 0. But the identity (4.5) says just that ¥ ¢ > 0, z € R and for every
k>0,

a formal power series.

a () = .
L (k:( = Pi(t,2),
= !
€ R, the following formal calculation is valid:

I NS w () ) | ok (& a () E(MJ K
Ao, m)erlen) = E[X& k() MJ « = Z[Z (":_1(;))! (s )J o

o -t porl =t 7!

which means that ¥ n > 1

® [ 1wk o &
S () M| o o
= YE|Y o5 = = =Y ERGMLM) 5 =
= L(. G- 7 } ™ E
For a-€ T', therefore, for all 1> 1, A(a,n) is actually the well-defined function A(a,n) =
exp (= p(a,n)) = {Bexp(aM,)} .

Going back to the equation (4.5) now, we can now claim that for o € I and 7. =1, this

becomes a functional identity (with n replacing t). Therefore, when a € T and n > 1,

0 k N k
oMy—p(om) _ MY~ VA
¢ gj"m(n,,\l,‘) o ’J[«LVLINA.Z"P*.(H,[\I") o
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[3ach element of the sequence on the R.LS. is a martingale over n. The question is
whether s0 is the limit. We have not. been able to settle this question in complete generality.
Clearly, a sufficient condition would be, for example, that the convergence above take place
in L'. This may be achievable by some DCT arguments. To attempt. to prove uniform
integrability seems another option,

I the answer to the question happens to be ‘yes’, then for a € I,

(" Fuy) = Aayn — 1) /A(a,n)

es in the same

would be non-random. This then would yield independence of the differenc
way as in Corollary 4.1.1.

However, our proof enjoys the advantage of being applicable without requiring the as-
sumption of the existence of the m.g.f. of M, for all n in the same neighbourhood. In the
case, for instance, when {X,, : n > 1} are independent with X, having the double expo-

exp(—/2|z|/n), the process M with

nential (or Laplace) distribution with density (v2n)
My
harmonic polynomials satisfying (ii) will ex
the m.g.f. g, (a) = —log(1 — a®n?/2), defined ouly for |a] < v/2/n. In fact our argument
works even under milder conditions, as long as the moments determine the distribution.

0 and difference A will be p-har and a of ti spa

However, X, and consequently, M,, has

That apart, the degeneracy of the conditions of the diff asa

of the Appell condition scoms interesting in itself.

4.3 Continuous time analogues

To describe the conti s-time gues of the results, we invoke the setting
at the beginning of Chapter 3 : A/ = {A/, : £ > 0} denot

tarting at My = 0 and satisfying (M) and (S).

a continuous-time stocl

process with r.c.ll. paths s

Theorem 4.3 If a scquence {P € Pu(M) : k > 1} satisfics the Appell condition (ii),
onal moments E((Myy, — M)*|F) is degenerate.

e also satisfies (i), (iv) and (v), is the unique
ribution of M upto moments of its finite-

then cach of the condi

In this case, the above sequer

sequence o do so, and determines the d

dimensional distributions.
Proof : As before, we prove the conclusion first when ¢, s are rational and then for gencral

values. Recall, for every N > 1, as in Theorem 3.2 the discrete-time process M ™) and its
natural filtration G, and construct the polynomials { P € P(M M) : k > 1) by

Vv t
F(2) = P55 ),



where Py, k > 1, arc as in the hypothesis of the theorem. Clearly, the P{")s also satisfy
(it); therefore we can apply Theorem 4.1 on M ™). More precisely, by the Remark 4.1

following Theorem 4.1, we have the existence of two-variable polynomials {c{™ : k > 1}

such that for every k> 1, m > 1 and n > 1,
nin min

B((0, - a8 KgM) = B, - )% = M, n).

In particular, if £ and s are any two positive rationals, then, choosing integer N > 1 such

that when tN and sN arc integers, we get, for all k > 1,
E((Mers = MYMGN) = E(Mivs — M)¥) = M(sN,LN)

The term in the middle is free from N, and thercfore, the R.1LS., being a function only of
s and (, can be rewritten as a polynomial ¢t in these two. Applying Lemma 3.1 with N,

1> 1 chosen as indicated there, now allows us to conclude
E((Myas = M)¥F) = cx(s,t).

Next, observe that cach (unconditional) moment of M is a polynomial in ¢. This follows
by a simple induction argument from the fact that for all ¢, EPy(t, M;) = EP(0,0) = 0
and recalling that Py € Py ¥ k. This last fact is a consequence of the Appell property (ii),
as in the proof of Theorem 4.1.

Now, for general t and s > 0, tak

rational sequences s, | s and 1, | t. The observation
we just made implics in particular that for every k > 1, (M, 45, — M;,)* is a sequence of
L*-bounded random variables. Of course, they converge almost surely to (M, — M;)*.

But then, the convergence takes place also in L!, whence we have
E((Meys = M)MF) = lim E((Miss, = My,)|F)
= Jio BB ((Mye, = M) *17L,) [7)
= Jim cx(suita) = ci(s,0).
Among the stated properties claimed for {F}, (i) and (iv) as well as the uniquencss

claim follow from merely identifying Py = P’ ¥ k, and applying Theorem 4.1 with the

discrete-time proces

ss MW, (v) follows from the fact that the sequence {P;} span the larger
space P(MM). The proof that {F;} determines the distribution of M in the stated sense
is similar to that in Theorem 3.1. L

The additive property for M upon further assuming the existence of m.g.fs follows

similarly to the discrete-time case as a corollary.



Corollary 4.3.1 Under the hypotheses of Theorem 4.3 and the cxistence of the m.g.f.

of M, in some nontrivial interval around 0 for cach t > 0, M has independent incre-

ments.

Thi;

determined by its moments.

Jjust as before a consequence of the conditional distribution of the increments being

To end the discu

on on the listed properties leading to those for M we have finally

Theorem 4.4 If M admits « of time-space harmonic poly ial isfyi

both the Appell and pscudo-lype-zero conditions, and if Eexp(aM,) < oo for cach
L2 0 in some nonempty interval (—8,8) around 0, then M has stationary independent

inerements.

Proof : The proof gocs exactly along the same lines as that of Theorem 4.2 and hence a

sketch will suffice. Denoting the sequence in the statement by { Py : k > 1}, we construct the
¥ Pi(t, =) ok /k!, which is then shown to be of the form ¢#=+th() This

is where (ii) and (iii) come into p

formal power serics

Next, M alrcady being known to have independent

increments by Corollary 4.3.1, one coustructs the exponential martingale exp(aM; —p(a, t),
where @(+t) is now the c.z.l. of M. Then, expanding (e, t,z) = exp (az — (a,t)) as a
power series in o and invoking uniqueness, we obtain the cquality of (e, t) = —th(a). This

form of ¢ results in the conclusion of the theorem. L]

4.4 Homogeneous sequences of polynomials

We now turn to the property that we call homogeneity for the polynomials whose acquain-

able Markov processes (sce Chapter 3, page 40).

tance we first made in the context of semi-

We recall the definition once again. A two-variable polynomial P (t,z) is said to be ho-

mogeneous in t7 and @ if it is of the form P (1,2) = t%p(z/t7) for some polynomial p of

degree k in a single variable. In such a shall call 8 the order of homogeneity of P.

we
From the above definition, it is immediate that if P(-,-) is a homogeneous polynomial

then its leading term in x must be free of t. However, one can work with a more general

definition of homogencity, which removes this restriction. This is discussed in Remark 4.3.

In the context of a sequence of time-space harmonic polynomials, we say that the whole

sequence is homogencous, if every member is so and the order of homogeneity is the same

s for a

for all of them. We shall scc that a sequence of time-space harmonic polynomiz

process can be homogencous only of orders 3 for which 23 is an integer. When 23 is odd,



it turns out that the distribution of the process is ‘symmetric’ in a certain sense. To be

precise, the ‘odd order o every finite-di

I marginal distribution vanish.
In general, under conditions claborated carlier, homogeneity of time-space harmonic
polynomials yields semi-

ability of the underlying process. This is what one would expect

from our study of semi-stable Markov processes in the preceding chapter. Of course, in
what we have so far derived, time-space harmonic polynomials have, in general, been scen to
determine the law of the corresponding process only upto moments of its finite-dimensional

marginals. Naturally, thercfore, in order to be able at all to conclude anything about the

law of the process itself, w

have to also assume that these moments, in turn, actually
characterize the whole distribution. In other words, a condition like the existence of the
m.g.f. of cach A, needs to be imposed. With this preamble, let us state the first of our two
results. Since the question of the validity of its conclusion does not arise in discrete time,
we raise the is

ue only for continuous-time processes.

Theorem 4.5 Supposc a p-harmonisable continuous time process M satisfies con-

dition (S) and admils a scquence Py € Pe(M) which is homogencous of order f.
Suppose also that the finite-dimensional joint mmnvmc of M determine its distribu-
tion. Then M is semi-stable with indecx 3.

Proof : From the definition of homogencity, it is clear that we can write Pe(t,z) =
Shock it Dz for some constants ckj with cxx # 0. Hence, dividing by cxg, if nec-
os

ary, we can assume without loss of gencrality that P, € Px(M). Thus we can invoke
Theorem 3.4 to claim the equivalence of the law of any process having the same time-space
harmonic polynomials with that of Af. Now, fix a ¢ > 0. For each k > 1, let us look at the

(Fu)-martingale

k
Pilet, Ma) = 3 ep b= pps
=t
= Pt Ma/c?).

This means time-space harmonicity of cach P for the process M = {M/c? : t > 0} and
hence, in view of our carlier observation, the equivalence of the latter in law to M. This is

but semi-stability of index 3 of M rephrased. L]

Remark 4.3 We have considered homogencous polynomials only of a particular form,
one that ensures that such a polynomial, if harmonic for a process M, always belongs to
the rest

ricted class P(M). However, as mentioned carlier, a more general definition of



homogeneity is possible. We define a tw

var

ble polynomial P to be homogencous if there
exist a positive number f3, a non-negative integer m and a one-variable polynomial p of
degree k, say, such that P (t,2) = t%™p(z/1#) for every t and z. We still call 4 the order
of homogeneity of P. It is clear from the definition that p(z) = P (1,2). A sequence of
two-variable polynomials is homogencous of order 3 if each of its members is so, and they

all have also the same m.

It can be seen casily that the proof of the above theorem goes through with little

change oven if thi

general definition of homogencity is applied in the statement. The only

difference here is that in order to claim that the moments of the underlying process M are

determined by the seq > of 1 space harmonic poly ials, we have to take recourse
to the Remark 2.8 rather than Theorem 3.

. Of course, the process M no longer remains
restricted p-harmonisable.

The next theorem is to the ffect that the time-space harmonic polynomials of a re-
stricted p-harmonisable semi-stable Markov process of index  can be chosen to be homo-

geneous of order @, In this

sense, it is a converse to the previous Theorem 4.5.

Theorem 4.6 Supposc a restricted p-harmonisable process M is semi-stable of index
8. Then there caists a sequence { Py € Py(M) : k > 1} which is homogencous of order

8.

Proof : Suppose (Py) is the unique of time-space harmonic polynomials for M as

in Theorem 3.4. Let us fix any ¢ > 0. Consider the two processes (M, = ¢#M, : ¢ > 0), and
(M, = Mg : 2 0). We know that they arc equivalent. in law. Now we also know that for
every k > 1, the two-variable polynomial Py defined as Pi(t,z) = Py(ct, z) is time-space
(t,2) = ™ Pi(t,z/cP) is so for M. However, the
1) also. But then, both the sequences satisly (i), as

harmonic for M, while Py defined as Py

equivalence of the laws forces Py € Pi()
well as the uniquencss requirement of Theorem 3.4. Thus, it follows that for every k > 1,

Py = Py, that is, Py(ct, z) = ¢#* P(t,z/c”). Now, since ¢ was arbitrary, this gives,

Pit,z) = Pe(t-1.2)
: z
= R, i % pi( 7))
where py is the one-variable polynomial (1, ). ]

Remark 4.4 At this point a very natural question is, whether it is possible to drop the

restriction condition () on M and obtain a ‘e of poly ials h in the

ible.

more general sense of Remark 4.3. In contrast to Theorem 4.5, in general it is not po:



The reason behind this is that when the sequence of fime-space harmonic polynomials does

not satisfy (i), we do not have any condition that ensures uniqueness. As a result, the
argument of Theorem 4.6 falls through.

In the final theorem in this context, we again go back to the original definition of

homogeneity. This theorem demonstrates that a p-harmonisable process M, discrete-time or

continuous-time, cannot admnit a sequence of time-space harmonic poly

with arbitrary order of of homogenci

ible orders of homogencity are only thoso
lar, this implies that for a p-harmonisable
ability can only be a g of

The pos

B’s for which for which 24 is an integer. In partic

continuous time semi-stable Markov proce the index of semi

the above kind.

When 23 is an odd integer, it turns out that the distribution of the process is symmetric,

albeit only upto moments, that is, all its ‘odd order moments’ vanish; to be precise,

BMaf ] =0
ke
tly assumed that M is not the constant (=

whenever 7 2 1,0 < &) <l < ... <, and k; arc non-negative integers with ky +kp +- -

being odd. In the statement it has been ta

My = 0) process. Obviously, this can in particular be secured by the imposing the “support

condition” (S) on M.

Theorem 4.7 If M admits h % i pace harmonic poly tals of index

B, then 23 is an integer. If 26 is an odd integer, then every finite-dimensional joint

distribution of M i. mmetric about 0, in the sense of moments, as defined above.

Proof : Let us write as P € Py the sequence of polynomials referred to in the statement of
the theorem. We saw carlier that our definition of homogeneity entails each Py to satisfy
the property (i), i.e. to belong to the res

cted class Py, We can thus write

Pi(l =)

z+et? (4.6)

So, if ¢19 # 0, then from (4.6), 4 has to be an integer for Py to be at all a polynomial in
the first. place. If, on the other hand, ¢;9 = 0, then M is itselfl a martingale. Now, let us
look at

Pa(t, + a1tz + cpt .

Again, if at least one of ¢21 and ¢z is non-zero, we have nothing to prove. We simply

because in that case, (M?) is

note now that the contingency cz; = 20 = 0 is not possible,
but this is impossible unless M, = M = 0, a possibility we have already

also a martingal

discounted.



Suppose now that 26 is odd and proceed to prove the symmetry, as asserted. Let us

dispose of the discrete-time case first. We are to prove that for every r > 1, B{MJ1 -+ M}r] =

0 whenever and ki, ..., k, are non-negative integers with ky + - - + ky odd. Clearly there

is 10 loss of generality in assuming that m, = 1, ny .y = 7 by interpolating, if

necessary, a few zeroes aniong the k;’s. We use induction in two stages : first, fixing r =1,
on ki, and then on 7. Writing Py(t,2) = Y2, cx;t P4~z

odd clearly implies that ¢ ; = 0 whenever & — 5

as before, the hypothesis 23 is

s odd because, in that case, B(k — j) is
a non-intege:

In particular, when & is odd, Py(t, =) does not have any term with an even
power of z, including any ‘c

nstant’, or

free, terms. The induction in the first stage now
clearly follows from the mere fact that for all odd k, EP4(1, M) = 0, and on taking into
account ci # 0.

For the sccond stage, we need a preliminary observation. Recall (refer to Remark 2.10)
the existence of two-variable polynomials Ci(-, ) with Cg(-,z) having o* as its leading term
ng E(M,F| 1) = Ci(n, Mu1) k, n > 1. Indeed, this is
Pr(M) being non-empty for all k. We now claim that Ci(-,z) does not contain any term

in z, sa just a consequence of

with a power 2% of 2 where k —

5 odd, and prove this by induction. For k = 1, this can
be scen Lo be true

sing the fact that Py(r,

does not. contain z-free term, implying that
M itsclf is a martingale. 1f now k > 1 and if C;(-,-) satisfies our claim for 1 < j < k, then
from the martingale property of Pe(n, M) = Sk even i, 0 €D MJ, we have

D e —1) I = S e nPEDE(M|F, )
k-~ even k- j even
= X aynENEMIF) + arB(MEF).
J<k.k-jeven
So assuming ¢ x = 1 now, which is no loss of generality, we have
BMEF) = ME + 3 (= 1P EDIML — nPEDE(M|F, ),
ke

+ Y el = 1)PE g pPEDC(n, 2)),
<k k—Feven

or, Ci(n,s

which, by induction hypothes

s, can be easily scen to be free of powers of # with index

differing from k by an odd number. For the induction in the second stage, we can now write
E[M{ M- MF) = EEMOME . MM ME R
= E[MJ'M* ... MBS E(MS|Fy))
= E[MPME . MEFCL(r, M)

ions of the same kind as the L.H.S. with » — 1

This, being a lincar combination of expres

replacing 7, equals 0 by induction hypoth



The continuous-time case follows from the discrete-time one by the usual approximation
procedure. First, when 1, L, ..., t, are rat ional, then the discrete-time case applies with

an appropriate M ™). Finally, approximation of E [M M .. M) in L' by expressions
4 tz 'y

of the same type, but with (41, ts,...,1,) replaced by rational r-tuples (L b2, -0 )
with £;,, | t; for 1 <4 < 7 using L:-boundedness, yiclds our result. ]
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Chapter 5

Partial p-harmonisability

5.1 Counterparts of previous results

In this chapter, we replace the assumption of the moment condition (M) by the condition
of the existence of only finitely many moments and try to see to what extent our previous

results remain valid. [t turns out that in nearly all cases, the same proofs are applicable.

The only point to remenmber is that non-emptiness, or otherwise, of each Py affects, and is in

turn al d by, moments or conditional moments of order upto k alone. In the sequel, the

order of a moment B(M M/ - M) of a finite-dimensional joint distribution is defined

as 30 kj. Also, as always, we keep on using the convention Py = 1. The counterparts of the

disc

cte-time Theorems 2.1, 2.2, 2.4 and 2.5 are as follows. The proofs here being identical

with those those in Chapter 2, are omitted here.

Theorem 5.1 Supposc {N, : n > 1} is a seq of i lent and id

distributed random variables with N, having a nondegencrate distribution with first
i moments finite. Set My =0 and M, =Y} | Xy, n > 1. Then the process M admits
@ unique sequence {Py € P(M) 11 < k (i) ~ (v), with

, if cach Py is time-space harmonic

i} sati

ying the prope

the obvious appropriale interpretation. Furthe

Jor a pr

N, then N must have the same moments as those of M, upto order i.

Theorem 5.2 If {M, :n > 0} is a process with independent difference sequence

(X}

and satisfying the support condition (S), then a necessary and sufficient condition

Jor cach Py with 1 < k <i to be non-cmpty is that E(X,¥) be a polynomial in n for
allk, 1< k<

In that case, there

s unique {Py € P 1< k <) such that (i), (i) and (iv)
hold. Also, {Py:1 < k < i} spans Uy Py and determines {(B(X¥) 1 n> 1,1 <k <i}.
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Theorem 5.3 Suppose M is a process for which Py(M) is non-cmpty for every 1 <

k <. Suppose, morcover, thal for cach n > 1 and cach k, 1 < k < i, there caists

P € Py such that P (n,z), as a polynomial in @ alone, is of degree czactly k. Then,

Jor every n 2 1 and k, 1 < k < i, there exists a polynomial ¢k of degree at most k

such that E(MHF,1) = ck(My 1) almost surely.

Theorem 5.4 [or any process M, Pi(M) is non-empty for all 1 < k < i if, and only
if, Jor cach 1 < k < i, there cwists a two-variable polynomial By(t,z), of degrec at
(N Fu) = Beln, My ) acs., for alln > 1.

If further M satisfics (S), then there cxists unique Py € Py for 1 < k < i satisfying
the property (iv) for 1 < k <i. Any sequence {Py € Py:1 < k < i} spans Uy, Pi. In
particular, Pe(M) = Pp(M) Jor cvery 1<k <i.

most k—1 in z, so that

In continuous time too, the Theorems 3.1, 3.2, 3.3 and 3.4 have their counterparts in

tl tup, whose proofs are again omitted.

Theorem 5.5 Let M = {M, : t > 0} be a homogencous Lévy process with My = 0
satisfying the condition (S). Supposc Ecxp(aM;) < oo for all & € T where T is
some nonemply open neighbouhood of 0. Then there esists a unique sequence {Py €
Pe(M) : k 2 1} satisfying the propertics (i)-
any process N for which Py(N) = Pp(M) for all 1 < k < i must have the same

Jinite-dimensional joint moments as that of M, upto order i.

(iv), and spanning Uy_P. Moreover,

Theorem 5.6 If M is a Lévy process with My = 0 satisfying (S), then Pe(M) # 0 for
cach 1 <k <i if and only if EM* is a polynomial in t for 1< k < i.
In this case, there cxists a unique sequence {Py € Py : 1 < k < i} satisfying (i) -

(v). Any such sequence determines the first i moments of each M,.

Theorem 5.7 Let M be a continuous-time process for which Po(M) # 0 for 1 <k <i
and for cach 1 < k <i and cvery L > 0, there exists P € Py with P(t,-) being of degree
cxactly k. Then for all t,s > 0,1 < k < i, there exists a polynomial df, of degrec at

most k such that B(MA | F) = df (M) a.s

Theorem 5.8 I'or a process M satisfying (S), Pu(M) # @ for every 1 < k < i if
and only if for each 1 < k < i, U
property that for all t, s > 0, Ci(t,s,,) has degréc k and leading cocfficient 1, such
that B(Mk |7) = Ci(t, s, M,).

¢ caists a threc-variable polynomial Cy with the




In this case, any sequence {Py € Py : 1 < k < i} spans Uj_, P, and consequently.
Pu(M) = Pu(M) for each 1 <k < i. Imposing (iv) in addition renders this sequence
unique.

Concerning the interplay of various properties of sequences of time-space harmonic poly-
ss, we have next the counterpart of the discrete-time

tisfying the property (ii).

nomials and the underlying proce
Theorem 4.1, which deals with sequences

Theorem 5.9 If for a process M satisfying (S), Pu(M) # 0 for each 1 < k < i. and
Py € P, 1 < k <4, can be chosen such that property (i) holds, then for each1 < k <i
and all n, B(X,}|F,_,) is non-random.

In this case, this sequence satisfies (i), spans Uy_, Py, and is the unique sequence
to also satisfy (). Any sequence {Pi € Py : 1 < k < i} determines the finite-
dimensional joint moments of M., upto order i.

Its continuous-time version is an analogue to Theorem 4.3.

Theorem 5.10 If M satisfies (S) and {Pi € Po(M) : 1 < k < i} satisfies the Appell
condition (ii), then each of the conditional moments E((Mevs — M)*|F), 1 < k <,
s, t >0, is degenerate.
In this case, the above sequence also satisfies (i) and (iv) for 1 < k < i, is the
unique sequence to do so, and spans Uy_,Pi. Any such sequence also determines the
ite-di 1 joint s of M, upto order i.

The final discrete-time theorem pertains to the pseudo-type-zero condition (i) and

is thus the counterpart to Theorem 4.2. For this, however, we need to develop a little

preliminary background.
i1 < k < i} of polynomials of a single variable, with py being of

Given a set {pj :
degree k, and with pg = 1, satis £ the pseudo-type-zero property with the finite sequence
hy, ha,... h;, we first prove thai it is possible to extend it to a full infinite sequence

{pi : k = 1} still satisfying the saze property. This can be done with the original finite

sequence {hx,1 < k < i} being augmented to an infinite sequence in any way whatsoever.
Suppose pi(t) = 5o p;t/, k > 1, where the pij, 0 < j < k, are given for k < i
and to be worked out for k > i. Recall the equation (4.3) which gives, for 1 < j < k,

prs in terms of the pig for 0 < i < k — j. That condition is clearly both necessary and
for

sufficient for the pseudo-type-zero rroperty of the {pi}. Therefore, if we arbitrarily fi
ly define py; for 1 < j < k using exactly the same

k > i, the numbers pi o and recu:
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formula (4.3), the resulting polynomials pi(t) = S¥. pijt7, k > i will continue to satisfy
the pseudo-type-zero condition. It is implicit that the arbitrarily augmented sequence {hg}

is being used in the definition (4.3) when k > i.

Now, given a discrete time process M and a finite sequence {Py € Pa(M) : 1< k < i}
satisfying both the Appell aud pseudo-type-zero properties (i) and (i) for 1 < k < i,
consider the one-variable polynomials pf?, where Pe(t,z) = S5 (0)ed, 1 < k < i,

Then, (i) implics that the set {p{) : 1
with the same sequence (hx,1 < k < ). Extend this set to a full sequence {p{ : k > 1}

In

< i} satisfies the pseudo-type-zero property

satislying the pseudo-type-zero property, as described above, by augmenting the partial

sequence (hx) by zeroes, that is, defining hx = 0V k > i + 1. We already have, by virtue

of (i) and in turn by (iv), that pro = 0 for 1 < k < i, and for k > i too, we choose the

numbers pro = 0. Now set, for k > i, Pe(t, SE o pP (027, where for 1 < j < k,
k, ky. (k-

#00 = (e o).

This extended sequence {Py : k > 1} now s

fics both the properties (7i) and (2

therefore, as in the proof of Theorem 4.2 we have the formal power serics representation
— a* thi
ST P(tom) T o= et (5.1)
K
o
where h(a) = S, hwa*/kl = Si_, hea*/k!
We know that when the m.g.f. of a random variable exis

5 in some neighbourhood of 0,
the cumulants ;. are defined through the c.g.l.. However, the cumulants of order upto k
are also algebraically expressible in terms of the first k moments, and conversely. In other
words, for every k > 1, there is a one-to-one function fi : R¥ — R¥ such that if for a random
variable (equivalently, any probability distribution on R) for which the m.g.f. exists in an
open neighbourhood of 0, 1 = (..., j54) and 5 = (y1,-..,%) denote respectively the
Ji(i2). Naturally, 1 = f7'(7). Explicitly,

moments and cumulants of order upto k, then 7

TR e S

m!
1 !

j,..) iy g (5.2)

b
SN =5

j .
and gy = ZI > (jl 7 ; )%I...,,u_ (5.3)
YT Unedm

G gm=i

The point to note lere is that this relationship is ‘universal’, that is, the distribution of the

underlying random variable does not affect the function fi. Let us continue to call, even
k moments finite, the co-ordinates of the

in the case when a random variable has only fir
vector v = fi() the first k ‘cumulants’ of that random variable.
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Perhaps, a more natural way to define the ‘cumulants’ would be through the charac-
teristic function in the following way. In a neighbourhood of 0 where the c.f. is bounded

away from -1, one could define the logarithm of the c.f. by choosing any branch of the log

function. It can be proved that the resulting function, just like the c.f., has just as many

These derivatives, multi-

derivatives at 0 as the underlying random variable has moments
plied by suitable powers of i, can be defined as the cumulants. Of course, one may show by
similar, though involved, calculations that this definition would agree with the one given

carlier, that is, through the relationships (5.2) and (5.3).

Next, we formalise somewhat. the fact. that the moments of a sum of independent random

variables can be derived from those of the summands. Specifically, lot Z1, Za, ..., Zy be
independent random variables, and Z = S, Z, where n > 1. Let k > 1, and suppose
E|Zi|* < oo for 1 < 1 < n. Then, writing BZ/ as juj, 1 <1< n, 1 < j < k, we claim that

there exists a function g, x : R"* — R such that

(EZV EZ%,..., EZ‘) = Gk (00 ke a2 oy k)

This function g, « is also ‘universal’ in the same sense as fi.

ely the sum of those of X7,
tisfy

Now, let. us observe that inasmuch as the c.g.f. of Z is prec

1< 1< n, provided they exist, the functions f and g, must s

S0 ank(Gu)) = S (G rjen) + S (Qrzg)rejan) + - + S (i<

Recall now from Theorem 5.9 that the Appell property (i) implies that for each 1 <
k < i and for every n, E (.\’,ﬂ}‘,.,‘) =E (\*) = bi(n), say, a polynomial in n. It follows
2ok Sk B(VAXS LX) = T, E(X,’“) provided the

an be seen by applying the smoothing property of

that whenever 1 < kg,
L.LS. is defined. This
pectations. One further concludes, writing mg,, =EM} for 1 <k <i and n > 1, that

m = g (b (1), 61, by (), -, bi(n))

where my, = (m);4oi, 7 2 1. In particular, thercfore, the first i ‘cumulants’ of M, are
given by

fi(ma) = fi 0 gas(b(1), b(2), ..., b(n)) = fjf,(b(t)). (5.4)
1=1

where by = ((bk(1))

Now, we know that the polynomials Py, 1 < k < i, determine the moments Mgy

1 < k <. This allows us to express them also in terms of the cocfficients of the polynomials

9, which, as we have shown above, are determined by hg, 1 < k < i because of the



choice p§7(0) = pry = 0. To be specific, using the fact EPy(n, M,) = 0, we get 0 =

¥ e 1 gk (e
0P = s+ SE (B)pS P m, whence we get.

M =3 (‘") p9m,
J J :

“This recursive relation establishes what. we Jjust. claimed.
& ) R

My (9§ (0)1cksis and (he)izies are all in one-to-one correspondence with one another.

We are interested in that between the first. and the last of thes

Thus, the four sequences f;(m,,),

But then, appealing to equation (5.1), as in Theorem 4.2, we must conclude that
Si(m,) = —n(hy, hoy oo h).

This yiclds, in conjunction with equality (5.4), that

if. (b(1) = =0 (hy, hay ..oy By).
=

Since this is true for all n > 1, it follows that

Si(000) = = (ha, b, -, By,

which is free of n, and hence that so is b(n). We are thus led to the

Theorem 5.11 If M is a discre

-time process with difference sequence X such that
ts a scquence {Pe € Po(M) : 1 < k < i) satisfying both the Appell and
pseudo-type-zcro conditions (ii) and (iii), then the condilional moments B (x,ﬂf,.,.)

or 1 < k <4 equal the e almost surely, and they
v Y
are free of n.

there ¢

We put the conclusion in a slightly modified o

uivalent. form for ease in visualising the
counterpart in continuous tim

. This formulation is in terms of the multi-s ep differenc
that for all m, 12 1, 1<k < iy B (M — MMFL) = B (Mo — M) = E (M
Naturally, for all 1 < k < 4, the latter is a polynomial in'm.

1o

Theorem 5.12 If M = {M, : £ = 0} is a continuous-time parameter process admitting

@ sequence of time-space harmonic polynomials {Py : 1 < k < i} for some i > 1,
satisfying both conditions (ii) and (i then for every 1 < k < i and t, s > 0,
E ((M‘“ - M,)"m) —-E (Mf) almost surcly.
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The proof involves the same approximation argument used before and the idea is as

follows. Theorem 5.1 applicd to the discrete-time M ™) for a suitable V, and then applying

Lemma 3.1 would mean that the statement holds when s and ¢ are rationals. Using L2-

boundedness and right continuity of paths, the result follows. We also observe in passing

that the function of s in the R.ILS. is a polynomial.

5.2 A characterisation : the homogeneous case

In page 5 in the first chapter, we raised the question of obtaining a characterisation of

processes whose laws are determined by finitely many time-space harmonic polynomials.

Let us consider the following more general question.

Given a class C of procosses, let

G [MEC:TE2 150 hat Pi(M) #DV1<j <k and
T forany Y € C.Pi(Y) = PM)VI<j<k = YIM

The members of C are called the finitely polynomially determined (fpd for short) processes
in C. We also refer to them as being k-polynomially determined, or k-pd, where k > 1 is as

in the definition. A natural question is for which classes C is a complete description of its

fpd members, or equivalently, of €, available? Our aim in this and the next two sections,
of

Lévy , the first consisting of the | ones and the second a more general

is to present a couple of examples of C for which this is possible. Both these are clas

class. Although the former class is already contained in the latter, it is quite instructive,

and much simpler, 1o treat this case separately.

Thus, we first deal with the homogencous Lévy processes, that is, those for whom the
increments are stationary and independent. Let. us recall from chapter 3 the version (3.1)
of the Lévy-Khintchine representation that was used to prove the non-equivalence of the
p-harmonisability of a Lévy process and that of its i For b

Lévy processes, the representation takes the form

iow 1

o

log(B(cioM)) = imrl+l,./ ( )l(du) (5.5)

+L/(c“’"—1— 1?1;2)11(du) (5.6)

where 2 € R, 0 > 0, v € R is the mean of the random variable M; and and 7 and [ are
finite measureson R, the former having no mass at 0. The product measures dt ® 7(du)
and dt ® I(du) are respecti

y the ‘Lévy measure’ and ‘Kolmogorov measure’ of M. The
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integrand in (5.5) is defined at u = 0 by the limiting value. The explicit relation between

the measures { and 7 is given by

1(A) = 14(0) + /A R

7)

where A € B(R). We re
¥ k> 1, the k-th cumulant of M; equal

all the important. property of I, to be used subsequently, that
s [k (du).

Before stating out characterisation, we need to make one more observation. Given a

Lévy process M, adding another independent 0-mean Lévy process leaves its mean function
unchanged. This means that that there are always infinitely many Lévy processes with the
same Py. Clearly, therefore, we can not expect to have any characterisation not using at
least Py. We may therefore assume without loss of generality that any Lévy process M
under consideration satisfics BAJ? < oo.

‘We may now state

is fpd if and only if the measure 1), or
ed.

Theorem 5.13 A homogencous Lévy process

cquivalently, the measure 1, is finitely suppor

Proof : It is immediate from the relation (5.7) that whenever the measure m has finite
support, so has the measure [ and conversely. In our proof, we work with the measure L.

Suppose first that supp (1) is finite. Then we can write
L= piby, (5.8)

for some N > 1, where p; > 0 fori =1,... are distinct real numbers. Ior a real

a, 8q refers to the point mass supported at a. To prove the Gf’ part of the theorem, we have
to exhibit a k such that the distribution of M is uniquely determined, among homogeneous
Lévy processes, by {P;(M): 1 < j < k}. Our choice is k = 2N +2.

s with P;(Y) = P;(M) forcach 1 < j < 2N +2.
We then prove Y £ M. Clearly, for this we

Suppose Y is a homogencous L

'y proc

ame mean and

¢ to show that Y has the s

Kolmogorov measure as M, or in other words, that 1y = vy and ly = ly.

We know, from Theorem 5.6, that P;(Y) = P;(M), 1 < j < 2N +2, implies the equality
of the first 2V 4 2 moments of ¥; and My, which, in turn implies that of their respective
first 2N + 2 cumulants. In view of the property of I we described previously, this entails

v =vy and /r»jl,\,(rlu) =/u71y(du) forj =0,1,...,2N. 5.9)
k A

Notice now that for any measure L on K, and rcal numbers ay, as, ...ay, the integral

Jo T2y (u = a;)? L(du) can be expressed as a function only of the constants aj,...,ay and
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the “moments” (including the zeroeth) [y w/L(du) of L, 0 < j < 2N, provided they exist.
This implics,
/H(uﬁ, 21y (due) /H(u—rj)llM(du) —o,
where we have used equation (5.9) to obtain the first equality and equation (5.8) for the
sccond. It follows that .
Ly ({r1. .. ra}) = 0.

In other words, Iy can be written as

N

Iy =Y plibn,
=

for some non-negative numbers g}, 1 <i < N.

N. From the form of {a and ly, equation (5.9)

We now claim that pj = p; for 1 < i <
tells us that

N
Sl = Ln.,v j=01,

This can be expressed as Ap = Ap', where

1 1 ”n Py

n ™ P2 ¥
A= 2 | andp'= ,

L ! Py Py

The matrix A, being a Vandermonde matrix, is non-singular in particular. This yields
p = p and completes the proof of this part of the theorem.

For the converse, suppose that for a homogencous Lévy process M, the measure is not
finitely supported. Fix any & > 1. We shall exhibit another homogencous Lévy process Y,
with a law distinet from that of M, with P;(Y) = P;(M) for 1 < j < k.

Since by assumption, supp (!) is infinite, we can certainly pick k distinct clements
71,72, .+, i from it. By the definition of support, there exist open neighbourhoods A; of
Ty =1,2,...,k with I(4;) > 0 and A; N A; = 0. Now consider the following real vector
space of signed measures on the Borel o-field B(R) on R.

K
v {/1 Sp(A) =D Gl(ANA) c ERAE B(JR)}.

i=1
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has dimension k. Define now the lincar map

This is clearly isomorphic to B¥ and henc

AV RF g
AQw) = (/,L(.m),_/ up(du), ...,‘/uk’z/z(du)).

Since the range of A is a subspace of R¥~, its dimension is at most (k — 1). The nullity of

A must therefore be at least. 1. Choose a non-zero element. in the null space of A, say
«
w(A) =3 Gl(ANA).
=
We can, of course, choose 2 so that || < 1 for all 1 < i < k. We now define
T(A) = I(A) + (A), A € B(w).

Clearly Tis a positive measure, and since 2 is non-zero, L # I. Define the homogencous Lévy
process y by setting 1y = 1y and using the Kolmogorov measure L(dt, du) = dt ® I(du).

Thus ¥ % M. But on the other hand, for o
/uu’uu) :/u/[(llu) + /u’/:(du) :/u’l(du).

This implics that EYY = EAf{, and in turn, that P;(Y) = P;(M), for all 1 < j < 2N +2.

ch j = 0,1,...,2N, we have

It is natural to ask what our result exactly mean for the underlying process. It means

that a homogencous Lévy process is fpd if, and only if, its jumps, when they occur, can have

ouly in a fixed finite set. For the Lévy measure (sce [9], page 145) is nothing but a

multiple of the “jump distribution” of the proc The latter has a complicated definition

in general. However, finitely supported jump distributions conform to the definition as the

distribution of the “first jump”.

5.3 Preliminaries for the general case

To present the counterpart of the characterisation for general Lévy processes, we require a

few preliminary results. First recapitulate the ‘Lévy-Khintchine’ ropr fon (3.1)

log (™M) = (1) — "l"‘(' /(pmk ym((0, 1] ® du)

1 + u2
o) +/ (%) L0, 1] ® du)

where m aud L are respectively the Lévy measure and Kolmogorov measure of M.

70



The class C of processes that we consider hiere consists of those Lévy processes for which

the Kolmogorov measure admits a ‘derivative’ [ in the sense that [ is a transition measure

on [0,00) x B satisfying
L([0,1] x A) = [ U(s, A)ds V120, AcB.
In this case, it can be checked that. moreover,
/ JdL = / F( )it du)dt
whenever f :[0,00) x K — K is a function such that cither side is well-defined. We designate
1 as “derivative measurc’ of A1.

This class C is fairly large, containing such examples as Gaussian Lévy processes, whose

Kolmogorov measures are of the type L(dl, du) = do*(t);e(du). Other members of the

class include h

1 Poisson (see page 84). Naturally, €

being a vector space, any Lévy process which arises as the independent. sum of two proces
of the above kinds, also belongs to C.

It should be noted that € contains all homogencous Lévy processes, for which I(t,-) =

1(-). The necessary and suflicient condition characterising elements of € that we get would
therefore naturally be expected to be in terms of I(+,+). It appears quite difficult even to

formulate this, or a similar condition, in terms of the Kolmogorov measure L (or the Lévy

measure m) instead of I. In fact, this scems to be precisely the stumbling block in obtaining

a characterisation, among all Lévy processes, of those which are [pd.

We first take up the following all-important Lemma 5.1. But first let us briefly touch

on a heuris

tic justification for expecting it to be true. If for a substantial set of points
(£}, U(t,) were supported on more than k points, then like in the homogeneous case, it
. Thi
case, to define the law of

could not be determined uniquely from the first & moments of the proc exactly

what Lemma 5.1 formaliscs. However, unlike in the homogeneous

another Lévy process in C, one has to handle not just the distribution of one single random

variable, but that of the whole process; that is, define a different. Kolmogorov measure, or
equivalently, derivative measure I which would keep the first k moments of the process intact.
“The crux of the matter lies naturally in constructing I while retaining its measurability with
respect to its first argument. This requires a variant of a certain result of Descriptive Set
Theory, known as Novikov’s Sclection Theorem. The exact form in which we use it here is
stated as
o

Theorem 5.14 Suppose U is a Standard Borel space and V a o-compactgPolish space,

and B C U x V a Borel set whose projection onto U is the whole of U, that is,
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Hy(B) = U. Suppose further that the scctions B, of B, z € U, are all closed. Then
there is a Borel measurable function g: U — V whose graph is contained in B, that

is, g(z) € B.Vao e U.

This form of the theorem can casily be derived from its usual form (see [10] page 220,
on V is dropped, and instead, it

Theorem 28.8), in which the condition of o-compacty
is assumed that all the scctions B3, of I3 are compact, The passage from this result. to ours
is achieved through patching up the sclections over countably many compact subsets.

For the rest of this chapter, a Lévy process will always mean an clement. of class c,
that is, one whose Kolmogorov measure admits a derivative measure in the sense described

carlier. Also, when we talk of such a process being determined in distribution, we only

mean that no other member of C shares its law.

Lemma 5.1 Supposc the Lévy process M of class C is determined in distribution by
{Pj(M) :1 <7 <k} where k> 1. Then Jor any version of I, the set T C [0,00) defined
by T = {t>0

[supp (I(t,-))] > k} is Borel and has zero lebesgue measure.

Proof: Start with any version of I, and construct. the set 7' as in the statement. Towards the
tatement, define, for cach 1 > 1and j € 7, the Borel sets A, = {¢ : U(t, (4r, 451) > 0.

For each n > 1, the possibly +oco-valued function f,, on [0, 00) defincd as

Ju(8) = 3014, (1)

firs

is measurable. Clearly, for cach t, f,(t) is increasing in n, hence f = limy, f,(£) exits and
is measurable also. (Observe f(t) = oo whenever f,(1) = oo for some n). Finally, we just
s Borel. In fact, f(t) is exactly

the cardinality of the support of (1, ) in casc the latter is finite. The first statement is thus

have to note that 7'= {1 : f(t) > k}, which implics that T

established.
For the sccond statement, suppose if possible that £(T) > 0 where £ denotes the lebesgue
measure ou the line. Now note that the hypothesis of the lemma implies that M has

s al least upto k. Thercfore, for cach ¢, fi [y lul’ (s, du)ds < oo,

{I, : /\uw(:.,du) = +oo}

=TNA". Then clearly, £(T) = £(T) > 0. We
now apply Theorem 5.14 to produce a contradiction. Choose for U the set T', and for V'

finite moments of orde
0<j<k-

. In particular, the set

is a Borel set of zero lebesgue measure. Sot



the following subsct of the separable Banach space Cp(R) of real-valued bounded continuous

functions defined on the real line, ipped with the usual sup norm, to be denoted

Il lIsup. For each n > 1, lot
Vi={f € )« If Iy < n W llsup < .

where [1fl, = 1£(0)]
by the Arzela-Ascoli Theorem (sce [1], page 267,
the union of the closures (in Cy(R)) of the Vi’s. To define the set B, we introduce a

sup, gy LGHOL e Vs are cach relatively compact in €y, (K)
"heorem 6.4), and we take V to be

definition and a notation : for © € T, define the linear map A¢ : V — R*¥1 as A(f) =
(Ja @)Wt du))y. ;. sy Also, notice that V C L((t,)) and denote the corresponding
norm by ||+ [|.. Define now B = {(t, f) € T'x V : Af =0, § < ||Iflle € 1}. To show both
that B is Borel and that its sections [ are closed in V, we usc the following

Lemma 5.2 Both the maps (t, [) = A f and |||}, as functions on TxV are measurable
ccond [ fized, and continuous in the lulter fiving

in the first argument t keeping the
the former. In particular, they are both jointly measurable on T x V.

The proof of Lemma 5.2 follows after that of the present one, which we continue assuming the
former. Obviously, as a result, 3 is the intersection of two Borel n the product 7' x V,
therefore Borel itsclf. Next, for every fixed t € T, By = {f : Af =0} {f: § < |/l <1},

is the intersection of two closed sets (cach being the inverse image of a closed set under a

continuous map), hence is itself closed.

T, or equivalently, that B is nonempty for all t € 7

It remains to show that [;(8) =
PFix a t € T. Denote the support of I[(t,-) by S;. By definition of 7', S, contains at least k
or space Vi = {[15, : f € V}. It is not difficult to show, using
|Si] = k, that V; has thus dimension at least k.

points. Consider now the vee

We now define, for t € T, a lincar map ¢ : Vi, — R¥1, as ¢(v) = Af where v = flg,,
J € V. This map is well-defined, since if for some g € V, v = glg, also, then Ag = A f.

Further, ¢ has a nontrivial kernel, its range being of strictly smaller dimension than its

domain. Choosing any nonzcro element v = f1g, in the kernel and sca]ml, it appropriately
sothat } <suplv| <1, weget f € Bi. Thus Bi#0VteT.

Applying Theorem 5.14 thercfore, we get. a ‘measurable sclection’ i : 7 — V such that
h(t)e BiYteT.
f = f(u), w € % Thus the measurability of h means precisely that ¥ u € R, the map

Now, the Borel o-ficld on V' is also generated by the ‘evaluation maps’

t s h(t.u) (defined as h(f) evaluated at u), is measurable. But for every , h(t) € V is

known to be continuous, thercfore h x R — R is jointly measurable.
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Define now, using this function h, the new derivative measure I and Kolmogorov measure

Las
tydu) = 1(t,du)lp(t) + (1 + h(t, w)i(t, du)1(t), and
Ly = / (L, du)dt for Borel A C [0,00) x R.
Ja

is

The fact. that ¥ t € 7, |h(t,u)| < 1 for I(t,-)-a.c. u, ensures that L is a measure. Thi

the Kolmogorov measure of our candidate for
mean function as that of A, Then, for all s > 0 and 0 < j < k-2,

/u’L([D.R]@ du) = /".u/ufi(:,,du)
o
- /" - dl/u’l(/,.du)+/“yvxlnfdl/u7(1 + h(t, w)i(t, du)
- /mv»mvl_vlu [t e + / Ry )
+Amwl‘[”/’M(('“)I(/'d”)

- /d(/u'l(l.du) (by construction of k)
o )

a Lévy process Y. We retain for ¥ the same

= /u’L({n,s] ® du);

that is, Y has the same 1 and ly, the same as M upto order
k. This means P;(Y) = P;(M) for 1 < j < k. However, L # L, which can be seen as
follows. First of all, since £(7) > 0, there is a fg > 0, such that £(7 N [0, to]) > 0. Denoting
Ty = TN[0, ty], consider the Borel set A C [0, 1y] x R defined as A = {(t,u) : t € To, h(t,u) >
0}. Since A C [0,40] x K, clearly L(A) < co. Ou the other hand, since for cach t € T,
I1ACt,)le = 1/2 and [ h(t.u)i(t, du) = 0, we must have I(t, {u : h(t,u) > 0}) > 0. This,
along with £(7) > 0, implics that

L(A) = 1(A) + /: dt / (I, w)0) 1(t, du) > L(A).

N .
Thus ¥ # M, contradicting the hypothesis. ]

Proof of Lemma 5.2 : Virst, fixing t € T, take a sequence f, — f in V. That Aify — Af
casily follows by DCT as f, has to be uniformly bounded, and each v/, 1 < j < k is
integrable with respect to I(1, du). Thus [ — A f is i on V. For me: ili

with respect to ¢, observe that L [ g(u)l(f,du) is measurable when g is an indicator, and

hence when it is simple. Now approximating both the positive and negative parts of each
of the functions uw/, 1 < j < k, by simple functions and using MCT, the conclusion follows.
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For the map (, f) — [|flj. also. similar arguments apply : if fu — fin V', then fu — f
in Lo(I(¢, ), therefore || fulle — [If]l:- Next, if f € L=(U(t,")), then f € LP(I(t,-)) ¥ p > 1.
Denoting the norm on the latter space as ||+ ||pe, it is not too difficult to show, progressively
for simple g and for general g, that the map ¢ + ||gll,. is measurable ¥ g € L2(I(t.-)).
Finally, observe that ]|, = limy.c [|f ]l This yields the required measurability.

Also, using the separability of V, each of the above maps can be proved to be Borel
measurable on the product space 7' x V. In fact, if {f.} is a dense set in V/, for each j > 1,
let { D,y ;. n > 1} denote the partition of V' formed by disjointifying the balls B, = B(fu, })
over n. Thus for any map g : 7 x \" — R measurable in the first coordinate and continuous

in the second, one can write

9t f) =

lim 37 g(t, £)1,,(0),
nzl

showing thereby that g is product-measurable.

5.4 The characterisation : the general case

Before stating the theorem for a general Lévy process M belonging to the class C, that is,
the class of Lévy processes whose Kolmogorov measures admit a derivative measure, let us
see, for such M, what Py(M) being non-empty means in terms of the derivative measure
L. Recall that P;(M) # @, 1 < j < k, if and only if the cumulant functions c;(t) and
cj(t) = [u/"2L([0,t] ® du), 2 < j < k, are polynomials in ¢. It can be shown that this is
equivalent to ¢;(t) being a polynomial, and the functions t +— [u/l(t,du), 0 < j < k—

being polynomials in ¢ almost everywhere. Here and in the sequel, when we say that a

function is a polynomial in t almas: everywhere, we mean the existence of a polynomial in

t with which the stated function agrees for almost every t > 0.

Theorem 5.15 Let M be a Lévy process of the class C. Then

(a) If there exist an integer k > 1 and a measurable function (z1,..., %k P1,-- - Pk) :
[0,00) — B¥ x [0,00)% such t3at
o for each 0 < j < 2k, pi(t){z:(t)}7 is a polynomial in t almost every-
where. and

o U(t.du) = 3!

then M is fpd in C.

pi(t) b5y 2u), t =0, is a version of the derivative measure,
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(b) Conversely, if M is [pd inC, and is determiried by {P;(M),1 < j < k}, then there
cxisls a measurable function (wy,z2,..., %k, p1,p2, -, pi) © [0,00) — R¥ x [0,00)*

such that a version of the derivative measure associated with M is given by

k.
Uty du) = 37 pi(t) 85y (du).
i=1

Proof : The proof of part (a) is quite similar to the corresponding part. in the |

case. If Lis indeed of the given form, then {P; : 1 < j < 2k + 2} determines the law
of M. First of all, the two conditions imply that ¥ 1 < j < 2k + 2, the j-th cumulant
of My is a polynomial in . This ensures that P;(M) # @ for 1 < j < 2k + 2. If now
Y is another Lévy process of the class C such that P;(Y) = P;(M) for 1 < j < 2k +2,
then for every £ > 0, the moments, or cquivalently, cumulants, of order upto 2k + 2 of ¥;
agree with those of Af,. Denote the mean function, Kolmogorov measure and derivative
measure for ¥ by 7, L and I respectively. Then (1) = (1) = (1), and ¥ 0 < j < 2k
and ¢ > 0, [ulL([0,1] @ du) = [u/L([0.1] ® du). Tt follows that for almost all £ > 0,
Jull(t,du) = [ull(t,du), 0 < j < 2k, and conscquently that

. . ,
/H (= (0 () = [ T] (w250 10, d)
s 1 s

By the same argument as in the proof of the i’ part of Theorem 5.13, this proves [ =

and therefore L = L, implying ¥ £ M. Thus {P; : 1 < j < 2k + 2} characterises M.

now entails the existence of a positive integer

Let us now prove part (b). The hypoth
k such that {P;(M),1 < j < k}, determines the law of M. We may thus apply Lemma 5.1.
Cousider any version of I and the set. 7 as defined in its proof. For ¢ € T redefine i(t,-) as

an arbitrary measure v = 55, 6, supported on k points. The resulting transition function

still remains a version of /. Now recall, for ¢ > 0, the notation S for the support of Ut,-).
By our construction, |S,| < k 7t > 0. Let us partition [0,00) by the cardinality of S, that

is, let

J={t=0:8]| =3}, 1<j<k.
By the same argument used to prove 7" (of Lemma 5.1) is Borel, one can conclude that so
is cach 7;. Notice that 7' = (U5, 7})".

For ¢ € Tj, order the clements of S, as (1) < #a(t) < ... < @(t), and denote the
I(t,-)-measures of these points by (1), p2(t),. .., pj(t) respectively. Also, for j+1 <4 < k,
let () = 2;(t) + 1 and pi(t) = 0. For t € T = (US_,Ty)%, st z;(t) = yi and pi(t) = 1,
1<i<

. With these notations, it follows that

.
(COEDIAOLE
=
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We now need o prove that the real-valued functions #;(t), and the non-negative func-
tions py(1), are all measurable. 1t suflices to show the measurability of these functions only

on US_,7j. First we deal with the z;’s. It is enough to show that each z; is measurable on
cach 7}, and that too, ouly for i < j.

Fix j 2 1. By the definition of support of a measure, S, = supp (I(t,-)) is closed, and,
@1(t) = inf S, for every t € 7). Thercfore,

{te

U(t, (—00,4)) = 0} .

1) 2 0} = Nyeg {1 €

This means that the function y : 75 — K is measurable. Next, if j > 2, then

={teT; J:‘(f)zu)U{(l,éT].

and the sccond set can be written as

() < a}n{t €Ty:aa(t) > u}},

{teTiia() <a}n N {{teTj: m(t) 2 q} Ut € Ty: it (q,a)) = 0}} .

Thus z3 is measurable on 75, In similar fashion, it can be shown that the rest of the

functions zi(t), 1 < i < j. are cacli measurable on 7. Now the task remains to show that
the p;’s are also measu

1 1 . 1 P éL) JUt, du)
zi(t)  w(t) Pa(t) Jul(t, du)
O () B 10) pa(t) | = | JuRi, du)

N v sk .'(/) m,'(:) fu""’l(l,du)

The matrix M on the left is nonsingular, being a Vandermonde matrix, and since each of
its elements is a measurable function of ¢, so is cach clement of its inverse. Each element of
the vector v on the right is also surable, by

pproximating the ions w/ by simple
functions. It follows that the clements pi of M~y are also measurable.

This concludes the proof of the theorem. |

Remark 5.1 The form of the derivative of m we referred to carlicr will also be the same
as that of I, only, whereas the former puts no m,

at’[0,00) x {0}, the latter will in general

do s0, unless the Gaussian part of the proc s deterministic.

Given the form of the derivative measure, it.

natural to speculate what can be said
about the exact nature of the functions z; and p;, 1 < i < k. Some possible forms in the
case k =2 are :
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1.2 (t), 22(t), p1(t) = 0 aud pa(t) = 0 are polynomials,

2. (1) = a(t) + V), =2(t) = a(t) — VBE), pi(t) = o(t) + d(t) VB{) and po(t) =
o(t) = d(t)/b(T), where a, b, ¢ and d are polynomials so chosen that ¢ 2 dv/b are both
non-negative on [0, 00)

3. @ (t) = a(t)b(t). wx(t) = e(t)b(t), pi(t) = d(t)/b(t), and pa(t) = (t)/b(t). Here, a,
6>0,c.d>0and ¢ >0 are polynomials such that bj(d + c).

In all these examples, the underlying proc

s is itsell p-harmonisable. That does not

mean of course that any {pd process

is also p-harmonisable, as the following example, also
in the case k = 2, bears out

wi(t) = (L4 3)71 () = (14047, pi(t) = (1 + 12)°, and py(t) = (1 +t4)5. Then
the cumulants of the underlying process arc polynomial functions only upto the order
7 and not beyond.

In the final chapter we investigate the fulfilment, and otherwise, of our necessary and
sullicient condition by some standard proces
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Chapter 6

Examples and Counterexamples

6.1 Hochberg’s measure

For homogencous Lévy processes or partial sums of fid random variables, Neveu’s method

of obtaining time-space harmonic polynomials, as illustrated, for example in the proof of

Theorem 2.1, essentially consists of expanding the exponential martingale n(a, ¢, M) =

exp (aM, = t5(a)) as a power series in o, where @ is the c.g.f. of My, The time-space
harmonic polynomials then arise arise from this expansion. In this section, we ask what
happens if we try to extend this construction to the case when the function  is not quite
a valid c.o.f. but possibly a more general function. We succeed in doing so for certain
functiors 2 which we describe in the sequel. Naturally, since there is no genuine probability
distribution for which » is the c.g.l, the polynomials so obtained do not correspond to

any bonafide “stochastic process”. Iowever, one can still interpret them as time-space

harmonic polynomials if one extends the notion of processes in a certain sense, as described
by Hochberg [8]. First, we reproduce here his work in part.

Since a process is in effect characterized by a probability measure on a suitable path
space, we normally take the construction of such a incasure as being equivalent to defin-
ing a process. In [8], Hochberg defined, on certain subsets of the path space (2,F) =
(R, Bl09)) 4 class of set, functions P with P(Q) = 1, cach of which, while resemblant, of
a measure in many ways, is not quite one. Nonetheless, we continue to call these ‘measures’
following his terminology.

To explain the construction, we recall some facts for a process M with stationary inde-

pendent increments
0, say E expaif; = exp L(a). Then the mgf. of M, is B expaM; = exp{tL(a)}. More-
over, L extends analytically in a neighbourhood of 0, continues on the imaginary axis, and

tarting at 0. Suppose the m.g.[. of My is defined in an interval around
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admits the representation

iou
1+u?

L(ia) = mio - X & /(n"'”— - JiAwW),  a€Rr,
where m € R, v > 0 and A is a finite measure. Also,

Bexplia\) = expltL(io)], o €R,

is the characteristic function of M, Hence, perforce exptL(ia)] is a positive definite function
on K. Again, the law of the process can be recovered from L via the transition function
P(-y-1) defined as

Ptz A) = p(1.0. 4 - P{M € A-zx}, t>0, z€R, A€ B(R).

Of course, L(a) = a®/2 is a well-known special case which corresponds to Brownian
Motion. However, it is not difficult to sce that L(a) = —a?, or more generally, L(a) =
(=1)""a®, 0> 1, do not. arise in the above construction, simply because the condition of
positive definiteness of exp[tL(ia)] fails. Starting precisely with one of these functions as L,

Hochberyg defined the ransition densities as the inverse Fourier transforms of exp(tL(ia)) :

st i) g,

These are real-valued functions, although not non-negative, of the Schwarz class with total

integral 1 and satisfying the Chapman-Kolmogorov equation. The signed measure P was

now consistently defined on finite-dimensional cylinder sets by

Pla) = /‘I“‘“ Db (e =) Py (@1 — Tpoy)dzyday - - day

N ) EBLEZ10< 1 <ty < <ty B € BF,

where X, L > 0, are the coordinate functions on E%%), However, unlike the traditional set-
up, here P is of unbounded variation on every nonempty finite-dimensional cylinder. P is
L Xy, > for fixed 0 <
y additive on the fields G = Ugs1Uozt <t <o <tr ety tgnty)»

clearly countably additive on every o-field G, 1,y = o< Xy, X+
by <2 <+ < tg, but only finit

£> 0, which means it does not extend to a measure on B2%). Thus many usual notions,
in particular that of “martingales”, have to be redefined appropriately. This is what we
proceed to do now. We emphasise that we consider only integrals, or “expectations”, of

functions of finitely many coordinates, and interpret these as just the integrals with respect

to the restriction of P on the o-ficld generated by those coordinates.

Thus, we call an ()-adapted process (M,) a martingale if
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a) ¥ t >0, M; is G-measurable and P-integrable,
L) Y 0<t<s, A€ G, [y MudP = [ MdP

ed as measurability with respect to a constituent

Gi-measurability here is to be interpr
-field Gy, 5, Of Gr. Althougl in case P is a probability, this definition restricts the
ss of martingales, it is casy to sce that any (G,)-‘adapted’ martingale is of this type. For
«elf a martingale in this sense. Py, Py cte. are defined in the obvious

cla

example, () is

way.

We now exploit. Nevew's idea [15] to exhibit time-space harmonic polynomials for P in

ponential martingale” actually qualifies to be

the above seuse. Firstly, we show that the

s0 designated in this case, i.o. whenever 0 < g <ty < -+ <l < s < t, B € BY,

Xi-tle)  gp = / coXamsll@)gp,

/((x,. Kig X)) S XX )eny

or

~1)P1-1,(y — 7k)

L pemcnten =) pc o=
VD iy diry - - dagdy

/;/;} P @)1 (o2 = 21) - Pyt (28 = Zr-1)Ps—1 (2 — 2k)
U dy diy - dagda.

This equality is seen as follows: L.ILS.
/x/;; P @)Py— (@2 = 21) - Pyt (2 = Tr-1)
< / Piesly = 215 = ) ) o)) 2214
< dady
= [/ m,(u)m, (= 51) -+ Pt (@5 = T )Pamiy (5 = 78)
. dogds /N Py — 7))y

= R.ILS. since the last integral is 1.

csla) gy

A routine interchange of the order of integrals and k-fold partial differentiation now estab-

ence of harmonic polynomials for P.

lishes our claim regarding the exis

It is clear that the above construction goes through word for word if instead of one of
the candidates above, we take for L a (nonnegative) linear combination of these. Further,
since the pol. jals arisc out of an expansion like (1.5), they possess the properties (2

(iv) and also determine P through L. We summarise the final outcome in the following
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Theorem 6.1 Let L be an cven polynomial of the form
L(a) =¥ cxa™ 2= 3 dpat,
=t -

where cx, di > 0. Denote by P the signed measure defined as above. Then the
Cunder P has the p-har bility property. Pol ials Py, €
Pi, k21, can be chosen satisfying (i) — (iv) and they determine P.

coordinate ‘proce

6.2 Counterexamples

With regard to the results proved =o far in this thesis, a fairly natural question that could
arise is whether the various conditions imposed in these are indeed indispensable? We give
in this section a few counterxamples to show that in the absence of some of these conditions,
the respective results indeed fail.

The fi

obtained in for each P; 1o be non-cmipty for o general discrete-time process. It may be

result in this vein relates to Theorem 2.4, In it, a necessary condition was

d if the samie iz not a sufficient condition as well. Our aim here is to establish the

wonde:

contrary: that is. we produce a process M such that ¥ k > 1, E(M,¥|F,_,) is a polynomial
in M,_; of degree at most k for cach 1, but Py(M) is empty for some (actually, for every)
k 2 2. The definition is via Tulcea’s 0, and for n > 1,
the conditional distribution of My, given %, j to be N(My_1,¢*(1 + M2.,)). Then trite
caleulations show that for every k 2 1 and n > 1, B(M,|F,_1) = ck(M,;) where cach c&

ix a polynomial of degree at most k. but that Py(M), for instance, is empty.

Theorem; we only specify Mo

Our next exaniple is that of a process A = {M,} with independent difference sequence
{X.} for which

=10. but Py 0. We define M through the independent X,,’s as follows:

and X, =0 for n > 2.

X :{ 12 with probability z/f;

whenever p(-) is a polynomial with p(0) = 0, P (t,z) = p()(a? + 2 — 2) € Pr(M). Of
course, it is the violation of the support condition (S) here that makes this possible, since

Then clearly, M, = My = X} ¥ n > 1. It is now casy to check that Py(M) = 0, but

Theorem 2.3 tells us that for a process with independent differences, (S) ensures P = Py
for every k.

Our next result is to the effect that even (S) is not sufficient to guarantee this for

with ind lent i . As such, it pertains to Theorem 2.6 where (S)

of {Pj 11 < j <k} was shown to imply that P;(M) = P;(M)

and the non-emiptin
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V1<) <k We furnish a counterexample to show that even in the presence of (S), it is
possible 1o have Py empty even though P is not. We address the case k = 3 and prove,
in fact, that whenever po, pi, p2 and py are one-variable polynomials with po(0) = 0, and

s having no positive integer as a root, then there exists a martingale M, with My = 0,

such that the two-variable polynomial P (1,2) = Y% pi(n)a is in P3(M). Note merely
that ¥ 2 € R, there is a probability measure P on R, supported on two points, such that
Sy P#(dy) = 0,1 or z,
mass (14a2)~! at a, and a(1+a2)" " at —a; !, where a, is the s
a4, = (+ VaZ£1)/2. Now, given polynomials p;, 0 < i < 3 s above, define, for n.2 1,
the function
1 4
Snz) = m((m(n 1) = pa(m))a® + (pa(n = 1) = pa(n))z*
3
H(py(n = 1) = pi(n) = 3ps(n))z + po(n = 1) = po(n) = p2(m)}-

Consider now the process M = {M, : n > 0} defined as My, = ¥ig Xi, where Xo =0 and
for n. > 1, P/0WMa-) s the conditional di

usual the o-field o < M; 1 i < n>, n > 0. The existence of such a proc

«cording as i =1, 2 or 3. In fact P* is the distribution putting

rictly positive real number

ribution of X,, given F,.1, with 7, denoting as

s is again guaranteed
by Tulcea’s Theoren. Clearly, M satisfies the support condition (S). Finally, using the fact
that for every n > 1, B(X,1F.-1) =0, 1 or f(n, My_1) according as i =1, 2 or 3, it is now
not. difficult to check that both M as well as {P (n, My) : n > 0} are martingales, where
P (-,-) is the polynomial as defined above. It is also casy to sec that {M2+M,—n:n>0}
is a martingale, showing that P2(M) # @ and thereby that Po(M) = Py(M).

Incidentally, this method, applied to the

. p2=band
3+ bM,2 +

e with pi’s constant, say py =

ps = a #0, also proves the cxistence of a martingale M = {M,} such that {a

eM,} is also a martingale.

6.3 Examples of polynomially harmonisable processes

As might be expected, the most common of p-harmonisable | arise from
. We ha

in detail in the first chapter. In this s

the class of homogencous Lévy pro already discussed the cases of Brownian

ction we take a look at

motion and Poisson proce

some other examples.
In discrete time, for the symmetric simple random walk (M,), the function giving the

exponential martingalc is

Waymz) = explaz)(secha)” = exp(az) exp(an)(exp2a +1)7"
273 B (@ + m)ak /Kt
k=0
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where B is the k-th Buler polynomial of order n. This allows us to identify Py(n,z) as
EM (@ 4 n)j2,

While for standard Brownian motion, the Hermite polynomials Hy are time-space har-
monic, for Brownian motion with drift.  and diffusion o2, we get. the polynomials Hy(at, (z—
nt)).

For the Poisson process witls intensity X, our polynomial sequence is Cy(At, 2).

1€ 3 is the non-homogeneous Compound Poisson process with intensity function ()

and jump-size distribution J*, then simple caleulations yield
i .
E (e :ox]){((w(l) n / Ms)ds / (@ =1 —iau)ﬁ‘(du)}
S b A

where 1(t) = [ A(s)ds [ u/(du) is the mean function. This says that in this case, the
Kolmogorov measure is given by L(dt,du) = MNt)u2F(du)dt, which, naturally, means that
L admits a derivative measure given by :

Uty du) = N1)u* F(du), t>0. (6.1)

It now follows that A/ is p-harmouisable if and only if A(-) is a polynomial function and

all moments of I are finite. It is possible, though cumbersome, to explicitly get a sequence
{Pe € Pi sk 2 1} in this case from the above representation.

We now consider a few examples of p-harmonisable processes arising out, of intertwinings

of Markov semigroups and calculate the resulting polynomials. Some examples of random
variables which lead to semigroups intertwined with that of the square M of the Bessel

process of dimension 2a, say, in the way that was described in page 41 are :
® Z=Zup ~ 3qp haas a beta distribution with parameters a and b,
* Z=2Zayp, where Z: ~ 5, has a gamma distribution with parameter c.

In the former case, we recover the semigroup of another Bessel process, this time of dimen-
sion 2b, and in the latter, a semigroup of a certain process detailed in [21] with “increasing
saw-teeth” paths.

The above procedure also allows one to obtain time-space harmonic polynomials for
Azema’s martingale (sce e.g. [22)), M; = sign(B)yE= g, t > 0, where B is a Brownian
motion and g, is the last hitting time of 0 by B before time t. Its semigroup is intertwined
with that of Brownian motion by the multiplicative kernel for the random variable denoted
{my : 0 < u < 1} called “Brownian
meander”. m; has what is known as a Rayleigh distribution, with density z exp(-2%/2),
z20.

mi, arising as the terminal value of the proc
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Chapter 15 of [22], in the context of Chaotic Representation Property, also presents
an alternative, or direct, proof of the p-harmonisability of the process M, as also of cach
member of the class of “Bmery’s martingales”. In fact, Theorem 15.2 there makes it possible
to directly apply our Theorem 3.4.

The specific polynomials that we get from the method Jjust outlined are:

* Azema’s martingale : The semigroup of M, is intertwined with that of Brownian

motion by the multiplicative kernel of the random variable my. We have,

k
o — gk (B
Emf =2 r(2 +1),
whenee i
Pult. #) = BH, (1, mia Z Iﬂr( +1)h‘(¢)11
=

areasequence of time-space harmonic polynomials for M where Hy(t, z) = TX_o h5(t)27

are the Hermite polynomi

© BES?(20) : M, hias semigroup intertwined with that of BES?(1) by the random vari-
able Zyy25 ~ By
(1/2)x

(1/2+b)’

where for any real number y, (y) stands for the ascending factorial y(y + 1)+ (y +

B2, =

k=1). So the time-space harmonic polynomials we get. for Bessel process of dimension

2b are given by

(212,085
= @G+ 12,6

The final example in this context is that of the process M whose semigroup is in-
tertwined with that of the square of BES() by Z = 2Zy1p ~ wiapp Here,
EZk =

, 80 that

N (=)0 b 1/2) R
- (k) (25)!(k = 5!

Pty

z
j=0

At the stage of writing thi is, it has come to our notice that in [17], the time-

th
space harmonic polynomials of certain Lévy are described in greater

detail. However, the emphasis there is on describing comprehensively those examples in
which these polynomials are also orthogonal, or in other words, sequences {Qx} such that
Qi(t, My) and Q;(t, My) are uncorrclated for j # k. In brief, this method consists in a
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change of variable in the exponential martingale. Thus one chooses a function a = g(g)

and rewrites equation (1.5) as

e D)ot ZQ"(" ,) -

say. One then
{Qx} satisfi

Appell property. A description of orthogonal polynomials satislying the type zero property,

a suitable g such that {Q,} are orthogonal. Note that the sequence

the pseudo-typezero property in both arguments, but. not necessarily the

due to Meixner, is now used 10 characterise all such examples. Iere, we satisly ourselves

with the observation that these polynomials also arise as linear combinations of those that

we have described

6.4  Finitely polynomially determined Lévy processes

We now consider examples and counterexamples of finitely polynomially determined Lévy

proce . We choose our examples mostly in the homogencous setting, and a few from the

class € of general Lévy processes admitting a derivative measure. More general examples

are not too difficult to construct. First, recall the necessary and sufficient condition for a
homogeneous Lévy process to be fpd; namely, the measure 7, or equivalently, the measure

U guiding the jump distribution of the process, be finitely supported.

The notation here is that of the equations (5.5) and (5.6) of section 5.2.

* 2-pd Processes. The only 2-pd Lévy processes M are those which are deterministic,

that is, such that Af, identically cquals a polynomial p(t), ¢ > 0. Clearly, then, ()

v(t) = p(t), *(1) = 0 and m = L = 0. The two time-space harmonic polynomia
=2~ p(t) and Py(t,2) = (= - p(t)) .

characterising such a process are P;(t, 2

* Brownian Motion. Ior Brownian motion, it is well-known that the measure 7(du) =
0, and hence I(du) = &, supported at the single point 0. Thus the first four Hermite

polynomials
I(tz) =2, Hy(l,z) —3tz,  and
Hy(t,z) + 412,

determine it uniquely among all homogencous Lévy proc Actually four is the

polynomials required to do so. An example

number of time-space harmoni

of another homogencous Lévy process for which the first three time-space harmonic




polynomials agree with thosc of Brownian motion, is specified by the following :
1
v=0, and I=(6.+8).

‘The point is that this homogencous Lévy process will have the same cumulants as
those of Brownian motion upto order 3.
Wern

determined.  More generally, any gau

note hiere that Brownian motion with a constant drift is also four-polynomially

u Lévy process, with mean and variance

functions being polynomials. is 4-pd.

* Poisson Process. In this case, v = X and { = \§;. Here too, the first four Poisson-
Charlier polynomials

i)

Cy(t,z) =

Caltyz) = (& = M) = 6X(z = ) — ANtz — At) + 3(Ae)? = At.

(= A2 = M,

Mo Gtz

&= M) — Bz = ML) — M, and

are necessar,

and sufficient to characterise the Poisson process among all homogeneous
A dif

harmonic polynomials matching those of the Poisson process is given by

Lévy proc ¢ process with the first three time-space

et homogencous Lé

r=X and l= %(6\, +62).

For the nonhomogencous compound Poisson process, it can casily be seen, using the
representation (6.1) in page 84, that it is fpd if, and only if, the jump-size distribution
I is finitely supported and the intensity function A(t) is a polynomial; and that in

this case, it is actually (2k 4 2)-pd where k > 1 is the cardinality of the support of 7.

e In all the examples at the end of Chapter 5, the respective processes are 6-pd.

» Gamma Process. This is a counterexample in contrast 1o all the previous oncs.
Here v = a/ and

1(du) = aue  du, u>0

which is clearly not finitely supported. Therefore the Gamma process is not fpd.
o Finally, we present an example of a homogencous Lévy process which is not even

infinitely polynomially determined, let alone.being fpd. Take 1 = 0 and as I(du),

any distribution that is not determined by its moments, e.g. (see [5], page 224)

I(du) Vi1 = asin Ya)du, w20, for some 0 < a < 1.
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If M) denotes the homogencous Lévy process defined by this, then for all k > 1,
P(M @) would be the same for cach @, 0 < a < 1. Of course, the M have different
distributions for distinct values of a.
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