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CHAPTER 1

INTRODUCTION

Scheduling problems are quite common in nature. They arise
whenever there is a need to plan the execution of various operations
over time. Like many other real life problems such as inventories,
notworks, queuss etc. almost all the scheduling problems can be ropresentod
by appropriate mathematical models. The theory of scheduling is a disciplin:
which doals with the construction of suitable methematical models for
scheduling problems and their analysis. Scheduling theory came into
prominance after Jomnson (1954) had published his work on o flow shop
scheduling problem.

The curtent resesrch work in schoduling theory can be classifisd

two types: (1) on dotorministic modols and (2) on non-doteministic
(stochastic) models. A lergo numbur of cotorministic modols that have beun

dssigned to represent various schoduling probloms are combinatorial in

nature. Unfortunately, the availablc mathomatical tools are not sufficicnt
to dsal with such combinatorial models officiently. For this rcasor, wo
prosently depend wpon branch end bound and heuriskic methods, which are not
officient, to sclve these modsls. Scme of the scheduling problems cen b
formulated as stendard models like integer programming buc the magnitucs

of such formulaticns will be quite large.

Recently, researchurs like Gittins, Glazebrook, Nash, Pinedo, Webor,
Weiss etc. have been fomulating tho schoduling problems with random
processing times as stochastic modsls. The tools and techniquos requircd for
analysing those stochastic models are differont from those of detorministic

mocels. Quite often, the theory of scui-Markov decision procusses is found

usaful in enalysing the stochastic modols which represent tho schoduling

prebloms.



In this thosis, we mainly dsal with the mathcmatical aspects of
detemministic s well as stochastic schoduling problems . We give below AR
brisf accownt of the work that is presentod in this thosis.

Chaptor 11 wsals with detomministic flow shop scheduling problems.

In section 2.2 of Chapter 11 we consider a mory general kind of flow shop
scheduling problens called hybria flow-shop scheduling problums in which

seme of the machines can process simultangously all the jobs that are to bu
procussed, that is, each cne of thom can process all the jobs simultaniously.
Jackson (1956) has considersd a 3-machine, n-job problem of this kind in
which the first and the third (last) machines can process only one job at

o time wrereas the middlo ono can process all the n jobs simultameously

and he has shown that this problem is cquivalent to either of Jotnscn's (19%4)

spocial casus of the (n/3/F/F ) problem. The flow-shops with preparatory

max
oporations (on the floor) of jcbs which do not roquire any processing machin.
can be categorisec as hybrid flow shops. We consider threo types of spocicl
cases of the hybrid flow shop scheculing problem with tho objective of
minimising the total elapsed time (mekespan). We decduce a majority of

flow stop special cases considered in tho litsrature from thess three typos

of spocial cases. For hybrid flow shop problems we dsrive ceminance critaria
and lower bouncs (cn makespan) similar to those of (n/m/F/F ) probloms.

In section 2.3 wo consider @ flow shop scheduling prablem with no
intermsdiate storages (FSNIS). This preblem was first considsrod indopencontly
by Wismor (1972) and Recdy and Ramamurthy (1972). Later Panwalker and
Wollam (1979) have consicered o special case of it assuming that tho proccssing
tinos arc orderod and posod o conjecturs regarding the minimisation of
makespan. For a flow shcp preblem slightly more general than that of

Panwalker and Wollan we cbtain twe results and provo their conjecturs.



In scetion 2.4, we consicer an (Wa/FA )problem in which thy
Processing times arc ordored. This preblem hes boen introducsd by Smith

ot al. (1975). In their oxperimental investigation on this problem,

Panwalker and Khan (1977) have 11 b: d that the oxhibits
@ particular property called convex property. Assuning the convex proporty
to hold truo, thoy have presented an officiont algorithm to solve tho ordsred
(n/m/F/FmEx) problem. This convex property of makespan has not boen
osteblished mathomaticelly so far. We show that the convex property incwud

holcs trus for ordered (3/3/F/F ) problams.

max

In chapterllLwe ceal with n-job, 2-machine non-dsteministic (stochastic)
flow shop scheduling problems in which the processing times are indupencunt
rendom variables.Throughout this chepter ths objective is-to minimisc tho
expected makespan. In section 3.2 we obtain optimelity criteria for

ising tho tod make whon the p times follow geometric

distributions. From this, we dorive the optimality critorin obtained Ly
Cunninghem and Dutta (1973) for the case of exponential cietribulicns. W
elso give an iterative procedure for obtaining the valus of expocte
makespan for & given pemutation schedule.

Section 3.3 deals with general n-job, 2-machine stochastic flowsiop

problem with the objective of minimising tne expected makespan. Optimality

criterion for this objective is obtained first in general terms and latér in

terms of monotone likelihood ratio conditions which are easily verifiable.

A nunber of problems can be solved using MLR optimality criterion. We solve

problemsin which

(1) all processing times on first machine Follow uniform or normal or game
distributions,

(i1) all processing times on second machine follow uniform or normal or qam::

distributions.
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In ssction 3.4 we consicr a problem in which (1) the processing timos
on first machinc follow some known distributions and (2) the processing timcs
on second maching follow exponential distributions (with known pearancters)
and (3) no passing is allowod, that is, the order of procossing is samc on
both tho machinos. It is very difficult to solve this problom by ths
appreach adoptod in sections 3.2 end 3.3. For this reason, we fomulato
the above problem as a finite dynamic programming modsl. This mocsl is
nunsrically tractablo (i) when each procossing time on first machino follow

Erleng distribution with r = 2 end (ii) wher cach proe.ssing time un first

chine follow cithor gamma or uniform distribution and no twe
processing times on sucond machine are icuntically distributcd.

In Chepter 1V, we cpal with parallel-processor stochastic scheduling
probloms. Consicoreblo work has been dono on this kind of schoduling
problems by rescarchers liko Pinsdo, Weiss, Glasbrook, Gittins, Nash, Webor
ote. Wuiss and Pincdo (1980) have considsred a parallel-processor stochastic
schoculing problem in which thure ere 'n' tasks (requiring exponential
emount of processing) to be precessed on 'm' parallel processors (with
different rates of processing). Pre-emptions and switches of & task from
cre processor to another are allowsd. The rate of cost ot time t is a o
function of the sct of uncomploted tesks at thet time. Formulating this
problem as a scmi-Markov docision process the authors have obtained optimality
criteria for twe types of ccet functions. Thoy have given soven important
applicatiors of those two critoria end conjoctursd an optimality crituria
for ancther type of cost function. In section 4.2,ws briofly coscribu this
work of Weiss anc Pinuco (1980) enc disprove their conjocturs by a numsricol
counter oxempls. We crnsidor a two-processor (parallel) scochastic
schoouling problem in which the processing times of the tusks o ono procosscr, sayA,
follow identical cxponontiel distributions with paramster u and on tho

sayB,
cther processog/they follow cifferent exponential distributicnswith paramctors



Aj's. Ve obtain optimal policy that minimises expected flowtine. Later, we
consider a problem in which there are 'a' processors of type A and 'b' proce:

of type B. We obtain optimal policies for four special cases considering the objeot

ives-minimisation of expected flowtime and expectedmakespan. In section 4.3, we
consider & singlo-processor stochastic scheduling problem in which tho
procussor is subject to failurss and repairs. In single-processor
scheduling problems, doterministic as woll as stochastic, it 1s generally
assumed that the processor is available continucusly till tho und of
processing. But,in practicsl situations, ths procossor may break down

while oparating and require repair for somo tims. In our problom we assumv
that tho continuous oporating time eof tho processor, that is, tho timo for
which the processur operatus continuously and tho procussing times of tasks

are exponcntial random variabls

and tha repair tims is a random variable
with finite oxpectation. Pre-smptions arc allowed et ropair complotion
timos. Tho objuctive of this problum is to minimiso tho oxpocted woightud
sun of task complotion timgs. « Formulating this problem as o sumi-Markov
deelsion procuss,we obtain an optimal policy that minimiscs tho ubjuctive

functicn.

finitions and Concepts

Wo dofino belaw ths flow shops that are considersd in Chapturs 11 and
1L and provide definitions and concopts of various torms usod in thuss
flow shops.  For dofinitions of fundamental torms like schodule, fossibls |
schadule, otc. we refer to Conwoy ot al. (1967) and Bakor (1974). In
Chapters II and III, we considsr only non-dslay feasibls schodulos (tho
fuasible schodules in which no machine remains idle unnscsssarily)bocauss
the pbjective is to minimiss thu makespan and we rofer to thom simply as
sehodules. ALl the scheduling problems can be divided into various classes such

@s Job-shop, Flow-shop, Parallel-procussur ,Single-processor e .and cach
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class can again be divided into two swclasses (1) detoministic and
(2) non-dstoministic (stochastic). For cotails of classification, we
nefor to Eonwey et. al (1967), Baker (1974) and Rinnooy . Kan (1976). We
deal with dstemministic flow shep scheduling problems in Chepter ir,
non-csteministic flow shop schoduling problems in Chapter 111 and
parallel processors and single procussor non-dsteministic scheduling
problems in Chaptor IV,

In Chepter II we considsr thres types of dsteministic flow sheps.
The first typc is simple callsd flow-shop and the second and third types
are called flow shop with no intemeciate storages and hybrid flow shop

rospectively.

I Flow-shop : We cefine the flow shp through the following assunptiocns.

Al : Therv ars 'n' Jobs 1,2,...,n to be processed on 'm' machines
MI’MZ""’Mm'

A2 : Job i, 1 <i <n, is aveilable from time a;(> 0) awarcs and mactung

HJ, 1<j<m, is available from timo 85(> 0) cnwerds.

A Job i, 1 <1 <n, requires an amount of timo “ij cn machine
Mj» 1< <0, for sst-us end processing togsthsr Q;jJ 1s callcd
processing tims of jcb i cn maching Mj).

A4 i ALl le‘s are known and fixed.,

A5 : Each jub is procossed on the machines in ths ordor (HA,MZ,..A,M“’).

46+ Interruption of processing of any jcb on any machine is not allowe:,

that is, once a machine Mj starts processing a job i it hus to
process centinuously till the processing requiremsnt of jcb Jonity

is met.



A7 1 Each machine can precass only one job ot a time.
AB : No job can be precessed on moro than one machine simultaniously.
In our flow sheps we clways assuno that oy = 0 for i = 1 to n and

85 =0 for j = 1tom, i.c., all the n jobs and m machines arv availablo

at time t

0.
The matrix P = ((p; ;) is called processing time matrix of ths
flow shop. px.j'E are called ordered processing times whon

(1) forany 1,8(1< 1,8 <m)p; >

i = i sts o
ir 2 Pig fordi= 1 ton if thoro oxists o u,

1 <u<n, such that Pur > Pus and
(2) for any k,2 (1 <k, < MuPyg 2 Pyj for j = 1 tom if thore wxists a
v, 1<V m, such that p > py .
When the processing times arc ordsred ones, ths jobs are gensrally
renunbered such that "lj < Ppj S eee < pnj forl <j <m andths
Jab n (with largest preeessing time on each machins) is callod the largost
deb. We ropresent the index of the largest calumn of the matrix of ordered
processing timos by s.
Let c;, 1 <4 < n, ropresent tho complotion time of jcb i en the last
machine M . Ths cbjectives consicerud in general in flow sheps arc

(1) ninimisation of maximun jcb complotion time : F

(2) minimisation of flow time :

(3) minimisation of weighted flow tims

(4) minimisation of maximun tardiness 2T = max {max(0,c;-d)}
l<i<n
whero  d; is the dus cate of job i, end

(5) minimisation of number of late jcbs Pl =




where

1 otherwise .

Tho problem of scheduling the entire processing of a flow shop in ordor
to mest a give objective is callad flow shop scheduling problem.
Throughout Chapter II, our objective is to minimiso the maximum job
complstion time (mekespan). The n-job, m-machine flow shop scheduling

problem with this objective is denoted as (n/m/F/F ). Carey, ct al. (1976)

have shown that the (n/m/F/F ) problem is NP-complots for m > 3. for rof.
to NP-complste, see Garey et al. (1979). So far, it is not known whothor thore
wxists a polynomially boundsd algorithm for a problem which is NF-complote.
However, it is strongly beliaved by several authors that thors doos not

exist such an algorithm for an NP-completo problam.

In an #-job, m-machine flow shop scheduling problem, a schedulv
bo representod by @ sequonce of m permutations of 1,2,...,n. Under a

schedule f = (7

@ "(1)‘”_, 2y hers 7G) 2 ("x(")'“z(")""'"ﬁ.ﬁ)

for 1< j < m, we procoss the jobs on maching Mj, 1< j < m, in the ordse
(wl(j). nz(j) R nn(’,)). 1f 24 < for 1< j < m whore n is some
permutation of 1,2,...,n, ths schedule f is culled permutetion scheduls
and it can be simply represented by the permutation n. We refer to

pormutation schedules as sequences or permutations. A permutation

= (wl,nz,...,wn) is callad pyramid pormutation whon my < m, < ... < u >
Tpep > +-- > Wy for somo £l < orc on. A pormutation mo= (i, qseessTigyiiy)

is said to be reverse permutation of g = (nl,nz,...,l(n).

II Flow-shop with no i iatc _storages : Considorthe assumption that

Jjobs ars not allowed to wait for processing bofors any machine oxcept the

first one (M), that is, once u job is procussed on a machine Mj(1 < j < m),
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it must be immediately taken up for processing on tho next machine Mj+l'
The flow shep with the above essumption is called flow shop with no
intomodiate storages end dencted as FSNIS. In this flow shop (‘wjth no
intemediate storages)also wo can coneider the same cbjectives as in tho
flow-shep.  Ths problem of scheduling the entire procossing of an

FSNIS in ordsr to meet a given cbjoctive is called flow shop schsduling
prablem with no intemediate storages and denoted as FSNIS problem.

In FSNIS,the pemnutation schedules are the only feasible schocules whon

all the processing times are non zero.

Il Hybrid flow-shop @ The flow shop with the assumption A7 rcplaced

by an assunption that some machines in the set {HI'MZ"" ,Mm} can procuss
ell the n jobs eimulteniously is called hybrid flow shep.  Ie o shop
consisting of n jobe that arm te be processed, a machine which can procuss
all the n jcbe simulteniously is called non-bottleneck machin. A maching

which can process only one jcb st e time is called bottloncck mechinc.

For tybric flow shops the dbjoctives are seme as thoss of tic
flow shep,  In Chepter II, we considsr only the objective of minimising
the makaspan for hybrid flow shops. The problem of schoduling the onfinc
processing of a hybrid flow shop in ordsr to mest a given objective is

cealled hybrid flowshop schoculing prcblem.

In Chaptor 111, we consicer n-job, 2-mechine stochastic flow shp
echeduling prebloms. Stochastic flow shop is e flow shop with the
assumption A, replaced by en assunption that the processing times are
indupencunt tandem variebles. In stochastic flow shops,our jective is

to minimise the uxpectod makespan.
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of general (cdsteministic _and stcchastic) flow shop scheduli

robloms

In gencral flow shop scheduling preblems, o schedule means fixing
an ordor of precessing on cach machine initially et time 0. Wo now
introducs & tem 'pclicy’ tho concept of which is more goneral then that
of schodule.
Let tho tims 0 and jcu completicn times on machines Lu denctod as
docision mements. A pelicy of a genoral flow shp schoduling preblom
is a rule that dctomincs which job is ta be tekon for pracessing on
first mechinu at first cocision mement (time 0) and dstemmines which job
is tc be teken for processing on the machine that is just froe at cach
deciaion moment later depending upon the stato of tho shop (the statc of
Procossing) et that moment. Bolow, we matematicully dsfino those palicics
for n-jcb, 2-machinc flow shop problems.
Let N = {1,2,...,n} and @ = (0,0) UN x R* whore R* = (0,®). Considir
o one-one mepping HE,(k,x); F,(2,5)] = (b, ) from MNuxaxNxgqte
N' x N' where N' = {0,1,2,...,n} such that
(a) when (k,x) # (0,0)
(k,2) for any F if (&,y) # (0,0)
h{E,(k,x); F (2,y)] = (k,3),jeF, if F # ¢, (&,y) = (0,0)
(k,0) if F = ¢, (2,y) = (0,0)

(b) wren E # ¢, (k,x) = (0,0)
(i,2), icE for any F if (2,y) # (0,0)
hLE,(k,x); Fy(2,y)] = (1,3),i¢F, jeF, if F # ¢,(8,y) = (0,0)
(i,0), icE, if F = ¢, (£,y) = (0,0)
(e) when E = ¢,(k,x) = (0,0)
{(0,2) for any F if (&,y) # (0,0)
hLE, (kyx)5F,(2,y)] = j(n,a’),icr, if F # ¢, (2,y) = (0,0)
Z (0,0) if F =g, (£,y) = (0,0)
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We intorpret below the mapping 'h'ss a ruls for assigning tho jobs
to the two machincs.

Wo cen represent the state of tho 2-maching flow shep at time t
by [E,(k,x);F,(2,y)] whero F is the sct of jcbs that arv waiting for
processing befere first machine ot time t and k is the job that has boon

ng processoc on first machine at timo ©

processod for time x ond is still be
and tho semo ciscription holds for F and (2,y) on sccend machine. At cach
Jeb ceamplotion time on first (second) machine (k,x) = (0,00((%,y) = (0,0)).
Thus the sst 2V x g x 2V x @ roprosents the state space (the set of all
states) of the shep. Interpreting h es the job essignod to first machin.
and h, es the job essigned to second machine (end O ss assignment of nc
Job) we can follow tho mepping h as a rule fcr assigning the jcbs to the

machines in the two machine flow shop. Lot

H= (W/his & cne-one mapping fram 2% x o x 2V x @ to N’ x N'}

satisfying the conditions (o), (b) and ()}

A sequence f = (f of 2n mappings bolonging to H

RS TERE PNy
is called & pelicy. Tho palicy f is said to be followsd for schoculing

the proccssing when the mepping fi» 0<i <201, is followod as o ruls

for assigning jobs at ith cecision mcment.

arks

: Ths policies are cofinod in such a way that uncer any pelicy

no machine is icle us ling as there is at loast one job waiting boforo it.
In e given gereral flow shop scheduling problem, For any schodule we can
find a pelicy wuch that tho coursi of procossing is samo under beth the
policy end the sctooule. Thus, the cluss of pelicics is wicer then the class

of schecules. In citeministic flow sheps, tho state of thy shop and the

action (assigrment of jubs) to be teken at any cweision mament can be
deteminud at time O for any policy enc thorefore cach policy corresponcs £o
@ schadule.  But in stcchastic case 1t is not so since tho processing times

are random variablcs.
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CHAPTER 11

DETERMINISTIC FLOW SHOP SCHEDULING PROBLEMS

2.1 Introduction

In this chapter, we coel with deterministic flow shop scheduling

problems in which the objective is to minimisc tho mekespan. Thoso
probloms, donotod as (n/m/F/F ), have drawn tho attention of & largo
number of researchers since Johnson (1954) solved tho (n/2/F/F ) problem
and two spocial ceses of the (n/3/F/F ) problom. Garey, et. al. (1976)
have shown that the (n/m/F/F_ ) problem is NP-complets for m > 3. In the
literaturc, thore are mainly thros ways to doal with tho (o/m/E/E D)
problem, (1) doveloping houristic rulos for obtaining a ncer optimal
solution, (2) doveloping branch and bound procedures for obtaining an
Gxact optimal solution and (3) considering sclvabls spocial cases (spocial
cases which can bo solved by a polynomially bounded elgorithm). For
roference to various heuristic rules, sco Giglio and Wagnor (1964),
Palmer (1965), Mc Mahon and Burton (1967), Campbell, ot. al (1970), Ashour
(1970), Dannsnbring (1977) and Achuthan (1980). For tho (/3/F/F D
problem, Achuthan (1980) has comparsd the officisncivs of all thoso
heuristics computationally. For branch and bound procedurss, we rofor to
Lomnicki (1965), Ignall and Schrage (1965), Brown and Lomnicki (1966).
The solvablo special cases of (n/m/r/rmax) problom have besn considarod by
a large number of ressarchers. In thoso special casos,the processing
timos oxhibit soms kind of relationship which is exploited for doveloping
a polynomially bounded algorithm.

From a practical point of view, thero is no doubt that developmont

of algorithms is morc important than consideration of spocial casss.
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Novertheless, one should not look down upon solvable spocial casos for
threo reasons,(1) when these spocial cases erise in practical situations,
tho problem can bo solved very efficiently, (2) thoy aro somotimes uscful
in developing algorithma like heuristics and branch and bound procedurds
and (3) tho study of special casce enhanccs tho understanding of the
problem.

We givo bolow a bricf account of the work done in this chaptor.
In section 2.2,ws consider hybrid flow shop echeduling problems with the
objoctive of minimising ths makospon. e deduce a large number of spocial

cases of the (n/m/F/F ) problom from thess oroblems In soction

max
2.3 ,we considor a flow shop schoduling problem withne intermodiato
storages (FSNIS), which is slightly more gonerel than ordored FSNIS
problem. Ve prove a conjecturs (posed by Panwalker and Wollam (1979) far
OFSNIS problom) and further obtein two more results. In soction 3.4,

wo consicsr orderad flow shop scheduling problem and prove & conjecturo

(posad by Panwalksr end Khan (1977)) for 3 x 3 case. ’

2.2 Hybrid Flow ghop Scheduling Problems

Introduc

In this section, we consider hybrid flow shop schoduling probloms
with the objective of minimising the makespan. First, wo considor throo
types of epecial casee of a hybrid flow shop problem in which the
bottlenock and non-bottlerock machines are at alternate stages. Wo
doduce a majority of special casos of the (n/m/F/F__ ) problem (considrod
in the litorature) as subcases of these thres typos of hybrid flow shop
probloms. Noxt, wo dorive dominence criteria (with regard to bottlunuck
machines) and lower bounds similar to thass of the (n/m/F/F ) problom.

Wo finally show that the hybrid flow shop problem considersd at tho
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beginning of the section represent the cntire class of hybrid flow shop

schoduling problems with tho objoctive of minimising the makospan.

Descrip! and Notation :

First, we consider a hybrid flow shop scheduling problem H in which

(i) the number of machines is 2m-1, m > 1. -

(ii)  the machines at odd numbered stages (1,3,5,...,2m-1) are all

bottleck machines.

(iii) tho machines at even numborod stagos (2,4,6,...,2naro all
non-bottleneck machinos.

For this problem, we use the following notation. Lot N = {1,2,...,n}
be the sat of n jobs to bo processed and M)sMyieanns M tha bottlenack mechii

at stages 1,3,.....,(2m-1) and WysWoseeasW | tho non-bottlensck machinus

at stages 2,4,.,...,2(m-1) respectively. Lot Pijr 1 <i < nand

1<Jsm, be tho processing time of job i on machine Mj and g5, 1< 1 < n

ij
and 1< < m-l, tho procesaing timo of job i on machino W . We can

Tepresent tho processing timc matrix. P of this problem as

P = (FIDIPZUZ .es Pm—l Qm—l Fm)

opT T
Whers P = (py s Pyjaecespny) for 1<y <moand Q) = (ayj,ay5,eeeq, )

for 1 < j <m-1. Yo conoto this hybrid flow shop problem H by
(n/2n-1/F/F ).
As in the casc oi (n/m/F/r’max) problem, we restrict our attention

edulss bscause it is very difficult to

to the set of pormutation sc
doal with non-pormutstion schedules. The makespan for a pormutation
(permutation scheduls) 1 = ('nl,nz,...,-nn) of the problem H is

given by



- S R
T(n) = max [ P, + q .+ V p + q
B SR YT I B S S L =S A
(2.2.1)
'f n-1
et P+ 1.
vy Tl sy T

Wo cen easily vorify this by mathcmatical induction on n and m.
For any partial permutation (iy,i,,...,i,) of 1,2,...,n and any u and v

l<uxvsem, lot

s 6,1 s,
CC(iy,in,00a,3 )5u,v) = max ) opg+) a o+ § p o
172 k uce sy (v Geu P GEu 1 g ipd Y
1 ;
- Qg eeet P .
vy 13 3=y d

Then, we can write for any arbitrary permutation m

Tm = omax D@0 + ca50y,0,)
1Cup<up<ecagu, j<am

P RTINS

where T(n'D, e = c("(l);x,ul) and D (DG @)

The hybrid flow shop problem H' with the sams set of jobs as abovs
and machino ordor M W M . ... W, M, W M| is callod tho rovors

T (%) for any permutation n whore 7% is

problem of H. Note that 1(m) =
the reverss pormutation of 7 and T (n') is tho makespan for the pormutation
m of tho problem H'. Thy processing time matrix of tho problum H' is

= . ) _
Y= (P Q) Py eee PP e call BT tho roverso matrix of F.
In the (n/m/F/F_

«) problem, & path of tho processing timc matrix
represents, according to Szwarc (1978), a scquonce of (men-1) positiors
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ch position (r

starting from (1,1) and onding with (n,m) such that o
of ths suquence is follawod by withur (r+l, s) or (r,s+l). For tho

hybrid flow shop problem H,we consider a subsct (I) of paths of P in
which each path contains only ono position of sach of the (m-1) colunns

Q),0y,...,0, 1. We ropresent the sot I' mathematically as

T = 10y (1,v1),0,(v)5vy) seeeso (v 1um)/1 € vy < Vo< ues Vo1 <0}

whore o (k,2) =((3,K), (i,k"), (i,kel), (3,00 )e.u(d,8-1), (3,251, (£,4))
for 1<i<n and 1<k <# <mand (i,j') is the i th position of
column QJ. ~

For a pormutation m= (1),7p,.++,1,) Of 1,2,...,n and a path t of P
let s(m,T) represent the sum of clemonts on the path T of the matrix 7 P o
where 7P is the matrix obtainod from P by erranging tho rows of P
in the ordor ("1'“2""”’n)' It is casy to sceo that for o fixud T, tho
problem of minimising s(w,1) over tho sct of pormutations is an assignmont
problem. Vi can writc

T = mex  s(n,1)
Tel
If T(M) = s(n,*) for a path t% ¢ T, then the path * is called a critical
_path. For sach spocial case of the problem H considered lator, ths
critical path takos one of the following scven skapos (givon by Szwarc
(1978)).
(1) (2) 3) — (4)

DR RD ROR DRD



(5) 6) )

RDRD DRDK RORDR

The lotters R and D denote tho horizontal and vertical sognunts.

Spocial Cases
Garoy, ot. al. (1976) have shown that the gomoral (n/w/f/F )

problem which is a particular casc of tho problom H is NP-complete. This

means that it is very unlikely to duvelop e polynomially boundud nlgoritim

for solving the problom H. In this kind of situation, th. attention

will ganerally bo focussed on finding efficiont lowsr bouncs which
be usod in branch and bound procodurs for solving the problem. Quit o of
in roal lifo, the processing times of the flow shop oxhibit some kind
of explicit relationship among themsolves. Somotimos, we can Gusily o
sclve tho problem exploiting this rolationship without using any

enumcration procedure which involvos a lot of computational work. I

this soction, we consicer various kinds of rolationship wmong the proc suic
timos of H und explorc the possibilitiss of solving ths problom undor tho-
8¢  rolationships.

We first introcucs two classcs A and B of matrices( consisting of

©dd numbor of columns ) which arc helpful in obtaining varicus spocial

cases.

Dufinition of A and B Classss : A matrix P (as describod above) is

said to beling to class A(B) if
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¢ )(mf1 ¢ § )
P+ P .+ )+ 3 b
Zz md g1 51 Py a? Tyt Pagm

(2.2.3)

- n

= § p g+
=1 Mt

for any pormutetion m = (ny,mp, ey )

Tho exprossion on the right hand side of the above equation can b

r9placed by a(n,t, 1) (slr,ep ) whero 1,1 =(0y(1,1),05(1,1), .0 s0, (1,1,

0p(1im) and ;= (0,(1,m), o(mm), ax(mm),..., o (m,m).

i B% )
The reverse matrix P = (Pm Qm-—l Pm—l e Pz Ql ll) of

Remark 2

P bolongs to B(A) iff P belongs to A(B). A matrix of single column

can be considered to belong to A and B.
We now give necessary snd sufficiont conditions for P to bulong to

A and B classes.

Ths necossary anc sufficient conditions for P to bolong

Theorem
to A are
v v
kZI (b + ag) > k£1 P ier + 950 (2.2.4)
for any i,j, 1<i,j<n, i#j and 1<v <ml,
Proof : First, wo show that tho inequalitics (2.2.4) => P ¢ A -
v

Consicor an arbitrary path 1 = (ul(l,vl), 05(viavy)yenn, oV 1om)
and an arbitrary permutation n of 1,2,...,n. We can casily soo that
slmyt) < B(n,Tl) by incqualitics (2.2.4), whore 1) = {0,(1,1), 0,(1,v,),
03(vzovs) wee o v om). Similarly s(n,t)) < s(n,1,) by incquelitics
(2.2.4) whore 1, = €01 (1,1),0,(1,1),05(1,v5),0,(v5,v,) -en 0, (v, |,m)
i.0., s(m,t) < “(”"z)'

Ropoating this argument successively, we Finally got

8(m,1) < slu,t, )

where T, = (0y(1,1), 0,(1,1),..., o 1(1,1), 0 (1,m). Since T and 7
n-1 1 2 n-1 n
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are arbitrery, it now follows from the above inoquality that T(m) = s(m,T, ;)
for any permutation n. Therefore P e A.
(1,1),

By comparing T(n) with s(x,n), whore n = €0y (1,1),0,(1, 1), 000,

00-1(1:¥), o (v,m), 1 < v <m, for sach pormutation 7, wo can show that
PeA = tho inequalities (2.2.4).
Corollary 2.2.3 : Ths necessery and sufficient conditions for P to tulong
to tho B are

m-1 m-1

Z Py 193, 2 %‘v (pjk + qu) (2.2.5)

for any i,5, 1 <i,j<n, i#j and 1 <v<ml

Proof @ Ono can casily soo by Thooran 2.2.2 thot tho inoqualitios
(2.2.5) <= the nocassury end sufficient conditions for P to bulong
to A <==>T"ch <P ¢ B. Thorefore the inequalitios (2.2.5) arc
necessury and sufficient conditions for P to bolong to the class D.
Note that tho conditions (2.2.4) and (2.2.5) arc gencralisations of
Forward and Backward Daminance conditions introducod Ly Arthanari (1974)

For tho (n/u/F/F, ) problon.

Corollary 2.2.4 : Lot the metrix P boleng to A(B).  Thon

(1) A sub-matrix of orcer r x (2m-1) of P obtained by choosing any
rows of P alsc belongs to A(B).
(2) The sub-matrix obtainud by doloting the last (first)zk, k < m,

colunns of P again belongs to A(B).
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Bolow wo Uso tho classos A and B in order to obtain throo typos of

special cascs of (n/(2m-1)F/F

nlex) problem. In all the spocial casos obtained

below, the procossing tims matrix P can be partitioned column-wise in such

a way that each submatrix bolongs to A & B.

Typo I Spocial Casos
In this typo of special cases, tho procossing time matrix P is

partitionsd as

[IECICEN
whero

(1) _ p 9

v = PRy, e Py By P
and (

5(2)  _

£ = Cre G v Foog G P
such that

PO na D AU B

We considor all tha four cases of this typ

w eI TC N
@ R T
) PO 5 5P R e
) P G, B

end show that T(n) takos a simplo fomm in cach casc.

Thoorem 2.2.5 : Under tho pertition © = (pC1): 2}y

= _(2) &

(1) P e AP eA =

T E ] E K n m

Tm) =mex [ T p +(5p +3q Jelp 1+ B +q ..
icven is1 it J=2 "I ng myJd igv mykel jgk*z Ted "nJ_l(z 2.6)

and tho eritical path is of tho shapo DROR for any pormutation n=(ny,mymm,




i) P AP L F
e

- v 1 m-1
T(m) = mex [ J py, + ( P+ ) oq )+ P 1 (2.2.7)
Ieven 1510 Mil T jEz myd j%l ni? L mm

and tho critical path is of tho shape DRD for any pormutation

1= Gapamgeenem)

Giy P 5, D 7 o

3 kil ; i "
T = J (py g+ Dwmax [ Jp ,+q +Tp . 1+ (o sq .0
Js1 MM Tyven if1 MK T k5L P j:uiﬁz Mg d=1

(2.2.8)

and the critical path is of the shaps RDRDR for any pormutation
W= (nyangenes)

Gv P g, @ f o

m-1

p.

- k=1 v
T = Jp, +a Dvmax [ § p_ o+ (]
RES DU TS A DIt B L MR EOO I W

and the critical path is of ths shapo KDRD for any pormu

LN R

Proof = (1) Lot P X aae 2D LR For any arbicrary pormutacion

M= (m,mysens,m)y we can writc

T = mex (CLCrg gy ensm D31,k + . |+ CLGT 1 s eyn dskel,])
1<ven 1’72 v .ka v lv+i n

(2.2.10)

whero



-1 .
L i ¥
A )
- [ Qe [
Jewg T2d Jwy T2d EE R
and
W, w1
C[(nv.nwl....,wn);kd,m; max ) Y q

[
keloww <eceon cam Ekel T jlier Tyd

n-1

Wo have

v k
Cllnpmgoeenn, ikl = § o v § (p
SR AL

and

dz Prgd ™ -0

P2 %
€

n n
CLGy Ty oo oo dsied,m] = Prig1t L
ifv M J
sinco
New tho roquircd rosult fcllows frem tho substitution of tho above simplo
forns of CL(nj,my,-eym )31,k] and Ll yseeesm)s kel,m] in cquation

(2.2.10). It is cbvious from tho oquation (2.2.6) that tho critical
path is of the shaps DRDR.

Froofs of (ii), (iii) and (iv) erc similar.
Type II Special Casc
In this special caso, the processing time metrix P is partition ! os
[ (F(“:Pk:F‘Z))

1)
PR = Py, Proy Q)



and

p(2) _
L = (0 Py Qe o0 Py
such that

GDip) e B oana (PP D) ¢ AL

Thoorom 2.2.6 ¢ Undor tho abovo partition of P

- Kil l’zi !i
Tm = (. +a D+ T p .= (b . +aq ) (2.2.11)
RES SR U C R U LRV R P B i

for any pemuteticn y = (1(1,112,...,“”) .

Proof : Lot m = (my,mp,..-,m ) Lo an arbitrary pormutation. W con writu

T@m) = 1232’" {CLCuysmgseensty,)s 1, kIHCLCny o1 g peeesmy)sh,m) = ok

(2.2.12)
Wo have
k-1 v -1y -
. . . 60 SN
Clmyamyseansm )il k] = jgl (pnl-) + q"lJ) + 121 p“ik since (i P e
and
) i
Cl(ny s, preeom dikom] = § b+ (b -+q ).
v? vl n’? FEVRLFLIMIST-WIe S )

Substitution of thuss simplo foms of CL(my,T,,eeeym, )il,k] and
P 1’72 /ity

C{(nv,wwl,...,wn);k,mJ in the oquation (2.2.12) gives the requirsd rosuli.

Proposition 2.2.6(a) : Tho equation (2.2.11) implics

(F’(”;Pk) c B and (Pk:6_’<2}) ¢ A.

Proof : Wo can casily prove this by comparing, for cach parmutntions,T(x)
with 8(m,t,) for 1 < u < k-1 whers ¢, = (01(1,0),0,(u,k),05(k,K) eeuo 3 (i,k),
:n(k,m)) and with B(W,nv) for kel < v <m whoro n, = (ol(l,k),oz(k,k)

ces o (kKD o 1K), o (vam).



Type 111 Speciel Ceses

In this type of spocial cases wo partition the procossing time matrix

Pash = PV P e 5)) wrore B = e, .. by,

a(2) | 3 .
P = (P,«1 ak+l Pﬂ.—l Ql—l) and P = (ﬂl Pl+l %.1 Pm) or

e (PWip 5 Diq ) were B - (ppa ... Pt G y)

PO = @ Py Gy oe 7)ot TP 2 By @) e P, e consicor
tho casos

W BV R, 3P ed, 05 R

@ s, ¢ o, (0,73 ¢ a

undor the portition P = (F1:q . I;(Z):P‘L:}-’(”) and

G Py eb, D) e, PO R

) (5(1):Fk) ¢ 3, (Pk:F(Z)) en, P cp
under tho partition P = (F“’:Pk:F(Z):uE:F(’)),

Sclow wo obtein simplo form of T(n) for each case.

Thcorom 2.2.9 : Under the partition P = (P :p(2):p (5(3))

@ B e h, P ¢ B, ®#) ca =

- v 2=1 ‘R,—l n m
?17):123; L 12'1 Pt ng Prd * 351 Wit ).gv Py ?jgl-ri')"nj*q"nj"l)

(2.2.13)
anc the critical path is of the shape DRDR for any permutation

T2 Gapmyeeeen).
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o FD B, @iy e, 7)) A =
T(n)

kil( ‘Z/ Zil Lil o
ST (p v Jemax [ ) p_, + b )

sE1 T Wk Pk T e Pryd Tk Sl

n m
+7 P 1 0+ ) G +aq . ) (2.2.14)
FEVRE S JEael ) TRl

and tho critical path is of tho shepc KDRDR for any pormutation

LI

Proof : (1) Lot m = (np,my,...,m) bo an atbitraty purmutation. W cen

writo
Tm) = mex [C(n'51,k) + q |+ Cln" skel,2) + Cnsa,m)=F ] (2.2.15)
1<u<v<m u %
whoro
T s (pageee ) 1 = Gigmgs oeeen)
and
TS g e T -
Wo havo
¢ y -} 5 s 7
Cln's1,k) = b+ 1 (G q ) since PP ¢ R
35y Tyl 52 T -1
( ) ) f 5(2) -
Cln"skel,2) = cea D §op, sinee PPy e
md T’ T ik, Prge 2
and
Cn™5,m) ? 7o« - ) sinco (P,:P$)) ¢ A
a™iL,m) = P + p_ . +q ._,) since A €
FEVRLILIRE X A .

The required result follows from the substitution of above simple forms

of C(n'51,k), c(u";k+1,2) ond C(n™;L,m) in cquation (2.2.15). From tho

structure of maekespan given in (2.2.13) it is clear that the critical path

is of thc shape DRDR.



Proof of (ii) is similar to the above one.

Theorem 2.2.10 : Under tho partition 7 = (F(:p (%) :703))
Gi Wi o, (08D ca, P R =

T

k-1

v 2
=1 A e max [ ) y 2 )
B Pt ) R NS
FE Rt S I FUIIR C R B it

¥ (2.2.16)
+ G, +aq ) .2
seber Pred T -y

and tho criticel path is of the shaps RDRDR for any pormutation

LN CITR PIPPR NN

(iv) (E(I)H’k) B, (P By ch, B e =

T(n
k=1

Do+ max [ (
) Leven 121 Py Xkol md g

m-Z—l n
+( Q D+¥ p 1 (z.z.D)
FE ,-Zv

and the critical path is of tho shape RDRD for any pormutation

= (mpamy wee T

Proof : Writing
Tn) = max (Gt 1K+C(" K, R)-p, kq p + (a5 Ael,m) ]
l<ucv<m kTR
<usval . (2.2.18)
whero ', and 1™ aro as given above, wo can casily prove (iii) and
(iv) as in Theorem 2.2.9.
The solution procedurss of ths above throe types of spscial casus of

the hybrid flow shop problem H are similar to those of Szwarc (1978).
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We shall now give briefly modified Szwarc's solution procedurcs For type I,
type I1 and type 111 special cases of hybrid flowshop problem according to the

shape of critical path.

1. Shape of critical path is DR : Find the job whose sum of processing times on

machines Wy, M, W, ,..., M, is least. Any sequence with this job at the end i

optimal.

2. Shape of critical path is RD : This case can be solved by considering its

reverse problem for which the shape of critical path is DR.
J- Shape of critical path is KDR with the sequent D oceuring on column P i Let
5(1,0), i # j, be a permutation of 1,2,cc0,n with i(j) in the first (last) place

N gue
and the remaining integers in the increasing order. There are (2 ) such

permutations and the one that gives minimun makespan among Lhese is oplimal.

#- Shape of critical path is DKD : Solve by Jolnson's method Lhe W/2/t7w, 0

problem with Py + U+ Py v v Qg and Q)+ P v Gy # oo v P as first

matrix.  The sequence oblained in Unis wy

and second columns of processing Lime

is optimal.

“- Shape of critical path is RDRD with First D scqment oceuring on colun P

“olve by Johnson's method the (n/2/F/F, ) problem with Pyt eee Py + Gy

of

QAP ) +er Up_1*P, s First and second columns.  Suppose, without los

senerality, the sequence obtained in this way is (1,2,...,n). Let S¢ = 1y,

i-1, i+l,...n)/1<i<n}. The sequence that gives minimum makespan in the

et S is optimal. . o

- Shape of eritical path is DRUR : This case can be solved by considering its

reverse problem for which the shape of critical path is KDRD.

7. Shape of critical path is RDRDR with first O segment occuring on column P

Kk

second D segment occuring on column Py + Solve by Johnson's method, the

2/ ' P 4 oot + a ¢ P .ot Pooas first
2/V/E L) problem with Pt et -1ty A QP e e Py as

* second columns.  Suppose withoul loss of generality, the sequence obtaincd

7 this way ds (1,2,...,n). Now if the procedure suggested for RDR shape is

“#plied, we obtain optimal sequence.



Doduction of Various (n/m/F/Fmax) Spocial Casos

Wo now daduce various special casus of the (n/m/F/F ) problom from

max
tho abova spicial cusos of hybrid flow shop problem. First, we intrcduc.
tHo elusson of matricos A und B which erc halpful in classifying «

majority of (n/m/F/F ) epucial casus.

Dofinition of A und B : A metrix P=((p, ) is seid to bolong to

—2nitdon of A und B
class A(B) 1f

nxm

n n
T(m) = f Prp *+ Y X P Y
i=1 i J=z

¥
Tad 551 LTSI

FUr any permutation 1 = (i ,mn, ee.,m ) whoro
1772 1Ty

T(m) = max (Y o .+
levisvos cog v g S

Lot P bo the procussing time matrix of an (n/m/F/F_ ) problim. Then 1(n)

max
gives tho makuspan of this problem for tho pormutation . The inoqualitics
(2.2.4) ((2.2.5)) with %Yy = 0 aro the nweossary and sufficiont conditions

for P to bulong to A(B).

N - m-1
Rmark 2.2.11 ¢ P ¢ A(B) <= P e A(B) and T(m) = T(x) - )y
RES!

Giyjf9jforlcicnand 1<j<m-1where P is as given corlior and

39; @ constant.  Consuquuntly, tho nocussary and sufficicat conditions give::
in Thoorom 2.2.2 (Corcllary 2.2.3) arc squivalunt tu the nuecssary and

sufficiont conditions for P to bolong to A(B) whon a; = If ¥ bulongs

- A(B), a sub-matrix of P obtainod by choosing any k rows (1 < k < n) of P

n bslongs to A(B) and & sub-matrix of P ubtainod by doloting last (first)

« c.lumns of P again balongs to A(B).



Golow, we considor thres types of (n/m/F/F ) speciel casos.

Type 1 Spocial Casos
In this typo of (n/m/F/f, ) spocial casos,tho processing Limo matrix

P can bo partitioned (colunn-wisc) as P = (P(1): #(2)) guch that P ana
p(2) ¢ a\Je. Tho four exhaustive casos of this typs erc

@ D, #@cn

@ p(1) A, (2 g

) oW g, pBca

and

@ D cp, b2 cp.

Tho cases (1), (3) and (4) havo been considorod by Remamurthy and

Prasad (1978) whervas casa (2) has beon considorod by Grabowski and
(1975). For sub-cases of the above four cesss, sco Juhnson (19%4),
Nabeshima (1961) and (1977), Arthanari, et. al. (1971) , Arthunari (1974),
Burdyuk (1969), Gupta (1975), Szwarc (1974), (1977) and (1978). Tho suuple
forms that T(n) tukes in the above casss (1), (2), (3) and (4) cen bo
cbteined from cquetions (2.2.6), (2.2.7), (2.2.8) and (2.2.9) by subsiituziig

a3 = 0-

komark 2.2.12 ¢ In the above four cases (1), (2), (3) and (4) tho critieal
path takos tho shapss DROR, DRD, RDRDR, and RDRD rospoctively. W can cusily

so6 this by tho simple forms of T(y) in tho above casvs.

Iype 11 _Spocinl Case
In this spacial caso,ths proccssing timo matrix P can bo portifion.d

sa Pz (PPip, 2Py guen thet @EPipy v ana P en s
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casc has boun considored by Grabowski and Sislo (1975). For sub-c:

of this, suc Archeneri (1974), Burdyuk (1969) and Szware (1978).

Remark 2.2.12 : 1In the above typs 11 spocial case, the critical path
vokos tho shaps ROR.  This has bown proved vury sesily first by Runcmurchy

and Prasad (1978) und later by Szwerc (1979).

Typs 111 Spscial Casos

In this type of special cascs, the procossing time matrix P eun bo

purtitioned as P = (P(l):P(Z):Pi:PU)) such that PP ¢ 4 U g, (P(Z):"L) e b
and (P,:P3)) caor b= (P(l):Pk:P(’)) such that (P(D:I’k) o B,
* PP e n ana ) ¢ g UJB.The tour cases.f this type are
W e ca @i ‘wkw‘”) cA
@ ¢ o, 0P co, @) s
urder the partition P = (P(l):P(Z):PE:P(})) and
@ Wiy es, @@ a2 4
@ Wiy cs,  w @) ca, O g
under ths partition P = (P(l):Pk:P(z):PO)). Ty

Trese cases have boon considored only by Ramamurthy and Prasad (1978).

¢ Tho simple forins that T(n) takes in the Lyps 111 spacial cascs

Zeearks 2.2.14 :
10, (2), (3) and (4) can be obtained from the equations (2.2.13), (2.2.14),

(2.2.16) and (2.2.17) respectively by taking G3j = 0. In tn: above typo L1I

e=ses (1), (2), (3) and (4) the critical puth tekcs tho shapus UKDR, ROKDEK,

RO and RORD rospuctivoly . This can b. wasily scon by the simpls forw of



The abovo typo I, typu I1 and type IIl special casos of the
("/"'/F/Fmax) problem can bu directly obtainod from typo 1, type II
and typo 111 spocial cases of the problem H (discussed in provious
sub-section) rospectively by assuming 9 = 9 for 1 <i<n and
1<j<ml

Remarks 2.2.15 : The above discussion of (n/m/F/fmux) spocial cascs

is based on the unpublished work of Remamurthy and Prasad (1976).
Szwarc (1978) has considered ssven (n/m/F/anx) special cases basad

on ths shaps of critical path and gavs solution procedurss for solving
them. 1In ocach of these seven cases,ths critical path tukos one of tho
seven shapus given in previous sub-soction. Incidontally, tho sclution
Procsdure of Szwarc (1978) for any cesc is valid only whon cach D
sagmont of tho critical path occurs on a particular column for wvory

permutation of rows. Though Szwerc (1978) has not oxplicitly assumcc

this condition, it has buen implicitly used in solution procedur

In fact, by Remarks 2.2.12, 2.2.13 and 2.2.14 all the above (n/w/f/F )

spocial casos which are based cn algebraic conditions on processing
times can be considered to be sub-cases of Szwarc's (1978) critical path-
basad seven spocial casos. However, it is botter to visuslizo tho
special cases algebraically because there is no othor way to check that
tho critical path takes e particular shape for evory parmutation of rows
of a given processing timc matrix. The advantage of Szwarc's (1978)
critical peth upprosch is that it onablus ono to classify e largo numbor

of special caesus in such & way thut wach cless of spocial cases can bo

solved by one of Szwarc's (1978) solution procodures.
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Dominancs Critsria and Lower Bounds

Deminanco critoria For the (n/m/F/F ) problem, Szwarc (1971), Smith and
Dudok (1967), Ignall and Schrage (1965), Gupta (1975) and Mc Mohan (1969)
have derived cortain dominanco criteria which can be efficiently ussd in
branch and bound proceduro to climinato some of the nodss and reduce
consequently the computational work involvod in the procudure. Bulow,

wo show that for tho hybrid flow shop preblem H also theso dominanco
criteria (with rogerd to the bottleneck machines) hold.

) (1)

Lot = (m,my, Gripatigyeeestip),s

,1,) be @ permutation end n

B e ) and 9 = (rgy e ein)e

mg),

r"t
(Wo follow tho convention that (my,.--,m,)

r+1’ 8+17"

ywhen u > v). Wo can writo

= eec TGP0 + ca®@iuv + e S

1cugvewsn

svow) + Clnt5w,m) ]

(2.2.19)
For reforcnco,sco pags 15.

Proposition 2.2.16 : Let ¢ and o' bo two partial pormutations cont

tho samc eloments. Then

To',u) < T(o,u) for l<uczm (2.2.20)
implics T(o'm < T(om
where m is o partial pormutation such that o[)m = ¢ snd o {jn = N.

(We ropresent tho sot of clemonts of a partial permutation n by n itself.)

Under the condition (2.2.20), the set of pormutations of

the typs ' ... dominates tho sct of pormutations of tho type o .

Proposition 2.2.17 : Let o ba a partial permutation and kg (k#2) e N-o.
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Then - B
T(okisu) = T(oksu) < py, for 1<us<v <m  (2.2.21)
implies Tokin'n") < T(otm'kn")
any

where n' and 7" aro/two disjoint partial pormutations such that

T = N-(oU{k,2}).

Under the condition (2.2.21)' the sot of pormutations

of tho typs okg dominates the sot of permutations of the typs o

Proposition 2.2.18 : For o,k and &  given in proposition 2.2.17,
Tokit,u) - T(of,0) < pg, for 1<us<u (2.2.22)
implies T(okam) < T(ofnk) for any partial pormutation n satisfying

al) (oka) = ¢ and © \J (oke) = N.

Under the condition (2.2.22),tho sst of pormutations of
the typo okL ... dominates the st of pormutationsof tho typo of ... k.
Propusition 19 57 For any fixed k2 e N, k#2,
C((k&)5u,v) < C((xk)5u,v) (2.2.23)

for 1 <u<vem implies T(n'kun") < T(n'fka") for any disjoint partial

pormutations n' and 1" satisfying 1', "< N-{kg} and o' U U (k20 =

Under the condition (2.2.23),the sot of permutations

of the typo ... k& dominatos tho sot of pormutations of the fypo...k....

Proposition 2.2.20  For any fixod k,% e N, k £ ¢,
C(ke)su,v) = CURI5u,v) <y, (2.2.24)
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for 1<u<v<w<m dmplies T(m'kin"n™) < T(n'Ln"kn™) for any
disjoint partial permutations m', 1" and 1" satisfying n',n", ©" C

N = {8} and nt Ut U U e = N

Under the condition (2.2.24),the sot of permutations

of tho typo . «kfseoo.. dominates the set of pormutations of tho type

[N P RN
By tho critical path approsch Szwarc (1978) has proved the above domina-
nou criteria for the (n/m/F/F ) problom. Using tho aquation (2.2.19)

and following the proofs of Szwarc (1978),we cen casily show all tho

abovo implications.

Lower Bounds : In the literaturo, several authors have dovelopud branch
and bound procadure with difforont kinds of lower bounds (on makospan)
to solve tho (n/m/F/F ) problom. We can find a fino classification of
all those lowor bounds in Lagowig ot. al. (1978). On tho sams lincs as
in tho caso of (n/m/F/F, ) problom wo can derivo various lowsr bounds
for tho (n/20-1/F/F, ) rproblem and dovelop brench and bound procodurcs

using thoss lowcr bounds for solving tho problon. For oxamplo, wo give

telow two types of lower bounds on makespan for tho (n/Zm-l/r/Fm ")
probiom H.
l: Lot L an arbitrary purtial permutation and 1ot
_ " =1 §
LBI(o,u) = T(o,u) + max | ) gt i win(p; 0;00 ]
KkeN-o u ie N-o U{K}

for 1 <u<m-land

LBI(o,m) = T(aym) + ) p
, (g Pk



Thon LBI(o) = max LBJ(o,u) is a lowor bound un the makospan for cach
<u<nm
completion of G- This bound is a gencralisation of ths job-bassd bound
given by Mc Mahon ct al. (1967) for (n/m/F/F ) problom.
Lower bound 2 :  Let LB(o,u) = min o + F(N-oju,m) for 1 <u <m-1
ido
iu

- u-1
hore d, = T(o,k ) it d F(N-0; is tho
whore lr:axu (T(o,k) + j;k (p”ﬂlu)] and  F(N-o;u,m) is th

minimun makespan of an (n/2/F/F ) problem with N-g s tho sot of jobs

m-1 m
and  § (py.+q;i) and ) (p; .+q; . ;) as procossing times of job i,icN-o,
by iy FENRTRC N :

on firet and second machines respuctively.

Lot
LB(g,m) = min  d; o+ Eops
iho M ido
and
LB(o) = max LB(o,u) .
1<u<m

Wo can casily sce that LB(o) < T(on) for every complotion on of o,

that is, LB(g) is & lower bound on the makespan for cach completion of o .
This is & gonoralisation of a machino-based bound given in the classifica-
tion of Legowig, ot. al. (1978). Similarly,all the remaining lowsr bounds

suggosted for (n/m/F/F ) problem can be casily gonoralieod for

@

(n/20-1/F fF ) problom.

General Hybrid Flow-Shop Schoduling Provism

Until now, wo have considerad only o particular hybrid flow shop
scheduling problem (H) which consists of bottlonock and non-bottlencek
mochines at alternato stages with o rustriction that the machinos ot tho

first end the last stages arc bottloneck machinus. We now show that any



hybrid flow-shop schoduling problom (with the objoctive of minimising
tho makespan) consisting of at lesst ons bottlonock machino is equivalont
to the pz'ublam?or a special cese of it.

Considsr & 2k-stage,n-job hybrid flow shop scheduling problem H'

(2k-1) and k

consisting of k bottlsnock machines at stages 1,3,5,

non-bottlonoek machings at stages 2,4,6,...,2k. Lot ths procossing

img i ' P o= P P s P 3 g -
ting matrix of H' be P' = (F1QP)0, «.. PO, whore P 's and Q's ar.
as duscribod carlier. The makespan (T'(w)) of H' for an artitrary
pormutation m= (my,my,...,m) can be writton as
THm) = mex {T((mymy,een,m ) k) + q )
L<ven 12 v ik
where T (("1"2 nv),k) is es dofinod carlier. This con bo wnsily
verifiod by mathamatical induction on k end n. It is sasy to sus that
Tt(n) = T(x) for eny pormutation  whon m = kel ard Po= 0. Thoroforo
the problom H' is oquivalont to tho spocial caso of H whore m = kel ond

Pm = 0.

Remark 2.2.21 : For any fixed permutation m, the complotion time of a
Job i(l<i<n), that is, tho timo at which the job i comes out of tho lost
machine, nood not be samo in tho problom H' and thy corrosponding
spocial casc of H. In fact, for any fixed pormutation the complotion
time of & job i in tho problem H' is loss than or oqual to that in tho
corresponding spocial case of H but the maximum job completion time is
sano in both tho problems.

Consider a 2k-stago;n-job hybrid flow-shop schoduling probiem H*

consisting of k bottlaneck machinas at stagos 2,4,6,...,2k and k non-bos

nock machinos at stagos 1,3,5,... (2k-1).
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Lot the procussing timo matrix of H" bo P" = (U) PoQoPy «ov PLOQP )
wharo P = (pygaPg g eeeiPyy) and Q) = (ayjr Gpjoeeendyy) for 1oy sk
and pij(qjj) is tho processing time of job i on jth bottloneck (non-bottluncck)

mechine. For any pormutation m = (ny,mp, - ©T), WO can write tho makospan

T(n) of H' as
Tr) = mex {a, g+ CC(nyemyygseneony)i2oke D))
levem TV

where C((ﬂv,...,nn); 2,k+1) is as defined warlicr. This can bo cusily

vorificd by mathomatical induction on k and n. It is casy to sou that

(1) = T(x) for any pormutation m whon m = kel and Py = 0. Thorofur.
tho problem H' is cquivalent to tho spocial case of H whoru m = kel and
Pz 0.
L =0

Consadur @ (2k-1)-stago, n-job hybrid flow shop prublom H'™ consisting
of K-1 bottlonock machines st stuges 2,4,6 ... and k non-buttlonoek
machinus at stagus 1,3,5,..., 2k-1. Assunc that k > Zand 1ot the processing
+ 5 mat o " & P = ) - o Al 1.'s aro
time mutrax of H' be P (P8, P whuro pj's and 0's ur

,1 ), Wo can writo

as given wbove.  For any pormutution mo= (mp,mp, -

the completion timo of vth  job in the permutation m as
uus

T,(m) = max {q + CCCam e )32,k + q
v 1<ucy 1|ul 1 v "vk

whoro C(nu,nml,...,wv);z,k) is as definod sarlicr, since

,m,)32,k)} is tho complution tims of v th

max  {q_ ; + Clu,my, ;s
Lcogy Tt wTued

Jjcb in tho permutation 7 on the last buttlenuck machine. Now wo can

writy tho makespan T™ (1) of H" for & permutation m = (m),my,..-,1,) o8



T = max (g 4 S0y, aeeeom )i 2,k) + Q) -
Teugven T wurl v n K

e can easily verify that T"(n) = T(n) for any pormucation 7 whon m = kel

and Py = P 0, Therofore tho problom H'™ is equivalent to the spocial
cess of H whors m = k+l and Pl = Pm = 0.
ark 2,2.22 @ The problems H, H', H" and H"™ togsthor roprosent tho

ass of hybrid flow-shop scheduling problems consisting of botllencck

< non-bottlenock machincs at altornate stages.

: If there are more than one non-bottlensck machinos

Zemark 2.2.
“ctweon any two successive bottlensck machinus in & given hybrid flow shop
Totlom, thess non-bottlenock machinus can bu combinud as a single

cen-tottlonpck machins. If therc is no non-bottlonock maching botwoo:

successive bottlenack machings wo can assung that butwoon those two
sccessive bottlonsck machines thoru is ono non-bottlunock machine on
“nich tho processing time of cach job is zoro.

Since tha hybrid flow shop problem without — any bottlonack machinus
s trivial,wo classify only thosc probloms which consist of at loast ono
=cttlinock meching as hybrid flow shop problams. Wo can formulats an

~/m/F/F ) problem as an (n/2m-1/F/F

max ) hybri¢ flow shop problem

max
Sy Rorurks  2.2.23,  We can easily soo by Hemarks 2.2.22 and 2.2.23 that
=< crotlome H, MY, H' end H™ reprosunt tho class of all hybrid flow shop
s=cloms. Finally, wo conclurc that ony hybrid flow shos problem is

1

ont to the problom H or a special case of it.

s Flow Sheps with No Intormediate Storages

ction

In this soction, wo tr flow chopswith no intormediato storagos.



In practical life, there aro some flow shops in which job arc not allow.d
tu wait et any intermodiate  stagos. For exampls, in motal precossing
industrivs tho metel should bg rollod immodiatoly aftor it bocomos rod

not  othorwise the rolling will be extremoly difficult. Ono can Find

= good illustretion of no waiting at intermadiate stagus in computor

systums in which tho processing stagos arc munory unit, contral procossing
enit and input-cutput unit. Wisnor (1972) has comsidersd an n-job,
m-machine scheduling problem with ne intormediate storagss, with tho
tjeetivo of minimising tho mokuspan. In this problem,cach job is to Lo
processed on m machines in a particular ordor and this order nood not bo

tho sumo for all jobs. Wismor hes formulatod this problom as a travelling
salosman problem. Reddy and Ramamurthy (1972) have indupondently considurcd
2n P-job, m-machine flow shop scheculing problem with no intormediato
storages (FSNIS), with tho same objoctive as above and formulatod it es o
trevelling salsman problem. Bascd on the work of Gilmore and Gowary (1964),

they  havo shown that thore oxists & solution mothod roquiring 0(n?) stops

minimiso thu mekospen for two-machine FSNIS problom. Lator, Panwalkar

Wollam (1979) have consicdored an OFSNIS problem (FSNIS with ordored

srocussing timos) with tho objoctive of minimising thsmakospan. Tho

thors have posed & conjecturc for thu OFSNIS problem and have solved the
OFSNIS apecial cascs.

We consider a spocial caso of FSNIS problem which is slightly moro
ceneral than OFSNIS problem and obtain two results similar to thoso of
“enwallar and Wollam (1979). Using thusc two results, we finally show
that ths conjecture posed by Penwallar and Wollam (for OFSNIS problem

7clds under a slightly more genoral sct-up. In this section, the words

s.quence! erd 'pormutation' ure synonymously us
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Notation snd Proliminary Results

Lot N = {1,2,...,n} bo the set of n jobs to be processsd ar
MMy +.. M tho maching ordor. Lot Pijp bgisn and 1<j<m,

riprusent tho procossing tims of job i on maching My Lot

n
Ok = pyy + ’"“"{“'(Piz"’kl)'(pxz*Pi}'Pkl“’kz"“"jzz Wy o))

Y _
and Dik B le Pjp for l<ak<cn, 14k
D;k is the idle tims of ths first machine aftor processing thy job 1 an
bofore teking up the job k in any permutation scheduls in which the job k
immsdiately follows job i. Wo can reprosont T(w), the makespan for o

purmutation (permutution schudulo) 1 = (n),u,,,..‘,wn)y s

w
T =0 +D + e #D + ) p (2.5.1)
Mlz  Taly "n-1"n §s1 )

semark 2.3.1 ¢ For an FSNIS problom, ths permutation schodules are the

iy fuasibls schadulus whon all tho procossing times arv positive. If

sums uf the processing times arc 2010, we have to comsider, in adoition to
~ormutation achodules, the nun-premutation feasiblc schedulos alsc in order
fiinimiso the makospan ovor tho sut of schodulos. Howovor, we considor

iy the purmutation schodules bocause of the complox naturo of tho

fci-permutaticn schedulos.

Roady and Kamamurthy (1972) have furmulated the FSNIS

nemarks  2.3.2
»Toblom with ths objective of minimising tho makospan as an (n+l)-city

travelling salssman problem. We can sce this by the equation (2.3.1).

T FSNIS problom under considoration is ©quivelont to e travelling

selesman problom with (nel) citivs 0,1,2,....,n und distonces



(DU for lci,jen, i#j
d. . :ju for i=0, 1<j<n
i s
n
Yo for l<i<n, j=o.
hep AR
Lot
i
. o= D!+ (b = pss)
ki ik T L Pl T Py
and
o . )
Ci = Chg* by for 1<iksn, ifk.

[ * Ladll) arc - 3 o i R——— "
Noto that Cj; = D whore Djj's arc the idlo times of tho machire M
in tho roverso problom. Using tho above equations we can also roprosont

T(n) as

n
T(n) = D + D + .t D, + 3 p +C +C -
LSLE I P Te-1r jz1o Mpd Tala-1 Ta-1 -2
+C cesC for 2<r <n-l (2.3.2)
"n-1 "n-2 Trel Tr
or
¥ ¢
Tm) = ¥ p .+C + eev + C . 2.3.3)
1 M) Teln 2"y

From the equation (2.3.3), wo can easily sco that T(m) = T*(n%) whore Tx(r%)

is the mak.spen of tho revorss problem for the pormutation w* = (7

ar'la-1

ceee Tig, nl) and  min T(w) = min T*(n). Therefors, any FSNIS
m w

problom and its corresponding roverse protlem are cquivalont when tho
Stjsctive is to rinimise thy makospan.

Panwalklr snc Wollam (1979) have considered two typus of ordurcd FSNIS
problem (FSNIS with orderud procossing times), (1) typs A problem in which

pnzpiJ for 1

In

i<n oand 1<j<m end (2) typs B problom in which



A
Pip2 Py for 1<i<n and 1<j <m Tho authors have shown that
the ordar of non-incruasing processing times (LPT soquenco) minimisvs
tho makespan for typo A problem whorces in typo B problem tho ordor of
non-decroasing processing timas (SPT soquonce) gives the minimun makospan.
Finally the authors have conjecturod that for sny ordored FSNIS problem
(with ths objsctive of minimising the makcspan), thore oxists an optimal
solution which is a pyramid psrmutation.
Wo considor a spocial case of FSNIS problem in which the procossing
timos pj;'e satisfy
(3)  forany ik e N, pyj> Pj for 1< <mif thore uxists o
u, 1 <u<m, such that p, > and

"iu ” Py

(15)  thure oxists i s, 1< s <m, such that p;_ > pjj for lcica
and 1< j<m.

We conots this problom by OFSNIS. Noto that thc OFSNIS problom is

slightly more gurcrel than the OFSNIS (crdored FSNIS) protlem.  We assun.

thet the jobs ary ramod 1n the nun-decrussing order of. precgs$ing times.

Lomma 2.3.3 : For OFSNIS problom with s

(1) Dy = 0 for i<k , (2.3.4)
o , , s .
(1) Df > 05y )+ D) for i>k+l, (2.3.5)
¥ )
(111) Py for i>1, (2.3.6
REF I
. . .
(1v) L R TognE Choe1 * Pt gt
(2.3.7)

for any permutation m = (m),my,..0,m ) with m # 6 .
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Proof:(i) For i <k and 2<h<m, wo have

h h-1 h-1
R A T

since pkllpkapij for 1 <j<m

i,
Dy, = 0.
(11) W have o
) V. _ o N
Plicy * Pogi = mex{0iPypmPy 1 oPi2*Pi3 P11 iy 2 ""J.Z;pij Pio1 g1}

n
jzz(Pi—ij P g1t

+ max{0,P5 3 9 "P1 P11 2 Pio1 3 T Prer

In order to prove O} ; | + D} ;| < DI, it is cnough to show that (a) for

any hy and hy, Z < hj,h,) < m, therc oxists & hy,2 < hy < m, such that

Ill h.
ng Py5Piy jo1) *J.Zz (Piyj = Py jo1) szz P3Py j-1)

and (b)

~z

h
J’Zz (pyjPyy o) < A Py Py j_l)‘

h
J_ZZ (pi__l_i-pk.,_1 ) 5j§z (pm-pkj_l) for 2<h<m.

Censador any hy and hy, 2 < hy,h, < m.

Casc 1 ¢ hl > hz-

"o havu
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hy h, o
_,gz ®357Pi1 j-1) +j§2 (Pi1j= Prjo1) ¥

;1 n§-1 n%-x

= Pym Pj = Pii11- o

e I R O - Bt
;1 r}-x n§-1

= Py =Py s 40 + P P - P. i
ske CarPeam) T LB T T e
hy

= j.zz (PyjPy jo1 ) ®inco by 1g > Py 2Py forlsysm

Case 2.

hy < hy-
In this casc, wo have
h

1

ng (pij=Pioy jo1) 'sz P17 Prjer)

hy

2
Pij=Pa-11 *JZ Pi1j ~ Z

< J_; (pij—pkj_l) e L S for 1<j<n

Now, wo cun writy, for any hy and hy, 2 < hy,hy <m,

hy - hy hy
jgz Gg57Ps1 jor) * JZZ (i1 5= P g-1) ijgz ®57Prjor)
h h
whero hy = max(hy,hy). It is obvious that JZZ("iJ“"i‘l -1 )ijzz(;)iJ—gij‘l
h h
and J_Zz(pi_”-pk 1) = sz Py 5Py jo1 ) 81NCE byj > Py 52 Py for s

Thorofors D)

1 2 D5 g + D_gy for i > kel



From inoquality (2.3.5) it follows trivially thet
D}, 2 Dy; g +Dj ) 5o+ =ee + Dlyyy fori> k+l (2.3.8)

ik = Tii-

(iii) Forany h, 2 <h<m, wo have

h m m m m
sz (psj=Pyj1) = sz pij—_]gz "u'(jzmlpij‘jzh PgtPi)
" n

sineu by 2Py $pyy for 1<j<m

It is obvious that

Thorefore

(iv) Comsicer un erbitrary pormutation n = (nl,nz,.-.,nn) with

i o have D' . 2 e
£, 1<x<n. W hav D"r"nlzn""'fn"’l 2

1. = n for o fixs
Ty or

D(;’nl Dy, by irsquality (2.3.8). If r+2 <n and m ., <1 o,
thon

D'

+D! = D! by the squation (2.3.4)
TrTrel "r+l"re2  Trfrel

20, g, BN T < Mg
' . .
20y e O (2.3.8)



cas >
Incasy Mg,y > Mryp

+0 3D beewtl L, 4D -
Trel ez — 2L Toad®? Tral TrelTear”t Tre2*! Tra2
(by inoquality (2.3.8))
=D 4D HeeutD
nn-1 1 n-2 “nz“ a2 "

similarly wion ©+3 < ¢

0! + 0 +5 DD + veut D!
Tepel | Tpel Tpez ez Tres o nelonele-2 Tra3*! Trys - ¢

Ropeating this argument successivoly, we finally get

+ D! oo otD

'
R n-1 n-2

. '
D et D, 2PN

+ D! + '
TrTeel  Tralre2 "n-1"n Tt T

which inplics the insquality (2.3.7).

Mair Results

Theorem 2.3.4 : For OFSNIS problem with s = 1, LPT soquence p*=(n,i=1,.w,2,1)

minimises ths makespan.
Proof : Conseicer an arbitrary sequence, say, ¢ = ("1’"2""’"n)' We have

T(n) =

+e.04D!
4

i
+ P
n-1"n j=2 "nd

n
Y pyy+0D 4+
351 417 Tmmy mams

n n
TE% = T by * Oy Dy mezteeDpy + L Py
151 2 '

which imply
n

n
T(m)-T(p*) = D! _ +D! 4D (D! 40! vutD) =T g
(m)=T(p) LI A W I Opn-1*%0-1 nez-*P21 )+Jzzpnnj Jz 5]




Cose 1 : m = n-
i 3 ~T(p* P he.aaD? = (D! +e..4D)

In this case, T(m)-T(p*) > 0"1“; w"n-—l“n [ 50
+ DL 1 # DL g * eee + Dy by insquality (2.3.6)
20

Cosy 2 : 1= 1.

- . . DY - (O > ”
Now T()=T(p¥) 2 D #D! |\ otewnt Dy =(Cf 1ol 1 oeenealy 1)

(by inequality (2.3.7))

= 0.
Casc 3 : L k#1,n.

ol '

In this case, T(n)-T(p*) > (U] _+ et 10t 0y ey )

-1 n=2

(g 1™ Dh ) g e+ Uy )

(Ly tho inequalitics (2.3.5), (2.3.6) and (2.3.7
= 0.
Thoroforu T(n) > T(p*) for any arbitrary sequonce 1 i.o., p* is an optimal

solution.

Corollary 2.3.5 @ For OFSNIS problom with s = m, SPT ssquonce p = (1,2,.e.,1)

minimisos tho makespan.

Proof : The reverso problem of OFSNIS problem with s = m is an OFSNIS o
iroblim with s = 1, for which LPT soquonce p¥ is optimel. Thorefore SiT

waquenct | is optinel for OFSNIS problom with s = m.

Romark 2.3.6 : All the above results have becn obtained by Panwalka T and
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Viollem (1979)  for OFSNIS problem. We now consider OFSNIS problem with no
rostriction on s.  Panwalkar anc Wollam (1979) havo conjectured that for
ary OFSNIS problem, the sot of pyremid pemutations contains an optimol

solution.
Using tho T heorvm 2.3.4 and Corollary 2.3.5we show that tho conjecturs

of Panwalkar and Wollam holds for OFSNIS problom elso.

: For any OFSNIS problem, the st of pyramid pomutations

Theorom 2

contains en optimal solution.

¢ Sinco the conjucturs is truo for s = 1 and m by Theorem 2.3.4 and

Fro

Corollary 2.3.5, it is enough to consicer tho cass 8 = t, 1 < ¢ < m.

Lot
t
Yk = X (0,05 97Py ) P3P 3 Y Py re "jgz(pij_“k -1}
and
m-1
= a0 Py 1P im P 1 P2 PP a1 'Jgt““kf“iyfz 3
for i,k e N, i £ k.
For any i,k ¢ N, i # k,
Uik 2 ¢0f and Cly > (CF; . (2.3.9)
One can woeily verify thot Djs DI for § <k wnd 0 = Of for k < 1
Consicer an arbitrary sequenco 1 = (nl.nz,....nn) with @, =n for
for @ fixed v, 1 <T < n.  We can write
r-1
= 0!
HUR AT
f )
+( b+ C! +C! +eaatl! + [P
J§t n " Tl "n-1"n-2 e iSrel ’S‘) 0L,



: 48 :
whore

t
o

-

r-1
(] p_ g+ 0 + D teear O + )
FERC I N P N g 5k g

and

= (] pm.ftc'“n" «

Note that I) is tho makespan corresponding to a ssqusnco Gryamigsen i gm)
of the  OFSNIS problem cbteined from tho original problom by igroring

tho machinos My ), M o, ... M_ and tho jobs 1 Similarly

T+1’ Tps2? *ct Tt
I, is tho makespan corrasponding to the soquence €0y Mgy greeesmy) OF
tho OFSNIS problem cbtained from tho original problem by ignoring tho
achines MI’MZ""‘Mt»l and tho jobs TysToseeesTy_j- We con wesily sco, by

Thoorem 2.3.2 and Corollery 2

1) 2 Ty(a")
end
I, 2 Ty
~rore T(q')  (T,(")) is the makespan of tho furmur (latter) OFSNIS

Froblem for the SPT(LPT) sequence ' (q") of jobs my,my,

ESTURLUR N

Tpezrteeay) deoes TG 2 Th(Q) + T,0a")=p e

Using (2.3.8), wo can casily sce that

@)+ Ty(@M=pyy = T(ayGymn a0 @ e q)

SRR (Aydgennay 1) = ' ond (D,au 16y e eerdn) = At

Trerefore, T(n) > 1(q1q2...qr_ln Gp,p e G) where (‘41"2""'%4 My qeee
-+ Q) is pyremid pemutation. Similarly we can show that T(m) > T(p)

)=
=oen = nand/T(p*) when m) = n. Hence it is cnough to considir tho sot

-7 pyramid pemutstions fcr minimising the mekespan of OFSNIS problom.
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Rumark 2.3.7 :  Tho rosults of this soction are from the author's

tachnicul roport, "On flowshop schoduling problom with no in-process
waiting", No. 7940, December 1979, Indian Statistical Instituto, Dolhi
Contrs. S.P.Rana und R.K.Arora huvo considerod, in "Schoduling in o

suni-orcered flowshop without intermodistc quouos", AIIE Transactions,

Vo

12, pp. 263-272, Soptombor, 1980 , an FSNIS problom in which tho
Procossing timos ure requirod to satisfy only tho condition that for uny

k and 2(1 < k,2 < 1), p, for 1 < j < mif thoro oxists a v, 1 <v <m,

ki 2 Puj
suech that py, > p, . For this problem which is obviously more genoral than
OFSNIS problem, Renu and Arora have obtained a rosult (Thoorem 1 of Rana
and Arora (1980)) from which tho conjocture cf Panwalkar and Wollam (1971)

follows as a spucisl caso. Tho author has obtained tho results of this

suction entiroly indopondont of Rune and Arora. Rana and Arol 8 approact
is completoly differont from thet of the author, which is originally duo

to Panwelkar and Wollam (1979). Moreover, Theorem 2.3.4 and Corollary 2.3.5
which huve lod to thu proof of ths conjocturs (of this soction) have not

buun given in kana and Arora (1980).

2.4 (Ordored Flow Shop Scheduling Problems

Intro.

ctaon

In this scction, we consider an ordorcd (n/m/F/F ) problom. Smith
vt. 8l. (1975) have introducud this problum pointing cut its practical
basis. In a study on ordered (n/m/r/rme)‘) problems, Panwalkar and Khan
(1977) have numorically observed a convex proporty of tho makospan with
Tuspect to tho position of tho largest job in tho pormutation. Assuming tho
convox property to hold true, Panwalkar and Khan (1977) have prosontod an

<fficient algorithm to solve the orderod (n/m/F/F ) problsm.  In this

max

scetion, our main intorest is to establish tho convox propurty cbsorved by

Panwalkar and Khan. Wi

(3/3/%/F
max

show that tho convox proporty indesd holds for thy

) problom.



Proliminary Results
Smith ut. al. (1975) have obtaincd the following rusult for tho

ordoeroc (n/m/F/F ax) Problem .

Thecrom 2.4.1 (Smith, ot. al. (1975)) :. For an ordorod (n/m/F/f,. ). Rroblen

with s = 1(m), tho permutation (n,n-1,...,2,1)((1,2,...,n)) is optimal.

Later, Smith cc. nl. (1976) have proved the following intorcsting rosult.

)

Theorem 2.4.2 (Switn, ct. ol. (1976)) : For any orderod (n/u/F/F

problem, the set of pyramic permutations contains an optimal solution.
Moreover, Smith et. al. (1976) have prosonted an algorithm to vvaluatc

a1l 2™

pyramid pormutations and suggostuc incorporation of branch and
bound technique for furthor improvemont.

Let Sl‘ be b

f 11 jyramid pormutations with the largest job n
in the r th place and T, represent tho minimun mekospan over tho sot S
Panwalker and Khan (1977) have tandemly generated 200 orderod (n/m/F/F, )
problems and obsorvod in all of them that thore oxists en intoger k,
1<k<n, such that

T T
PSS

x .
T <

1 eee <Th (2.64.1)

v
=%

+1

For a pormutetion m = (m),my,e.,m ) of the problem undor considoration,

wo have
Y z i
() = max (8 b+ b teees b
o myd = L.
Lowpwo<eew jam = 1 19 , "2 JEw g T
(2.4.2)

In orcor to prove the Thoorem 2.4.1,Smith et. al. (1975) huve obis

a rosult that for an ordorcd (n/m/F/F ) problem with s = 1(m), T(v) <T(v')

(T(v) > T(v')) whero v = (vx,vz,...,vi_l,v Vi Viepre v

whon v, = n.

'z
= V1 VsV Vi peeeyv
vtE vy, i-10 Ve Vir Viez B
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Remerk 2.4.3 : By tho above montioned rosult of Smith ot. al. (1975),

WO can casily swe that for an ordercd (n/m/F/F ) problem with s = 1(m)

max’
T T T (T 2 Ty 2002 T8 (2.4.3)

In the following theorem, we prove the convex property for ordered (}/J/’F/ﬁ'max)
problem.

Thoorem 2.4.4 3 For a 3 x 3 ordorud flowshop problem

T3 < max(1§,73) (2.4.4)

Proof : For s = 1(3), tho inequality (2.4.4) holds trivially by Remark
2.4.3. So, we consider only tho case s = 2. Note that tho jobs arc namsd
in tho increasing ordor of procossing tinos, that is, p; < by < Py
for j = 1,2 and 3.

Lot Tl,Ti,Tg and T, be th. mokospans corrosponding to tho purmutaticns
(3,2,1), (1,3,2), (2,3,1) and (1,2,3) rospoctivuly. Since tho largust
oloment (precsssing timo) P3p is common in all makespans, wo can ignory

this clement for the purposc of comparing makespans. Thus, wo got

b3z + max(P33+bo3:Pp9*003P22%012) -+ P13s

1=
Ty = max(p)y 4040354073001 *P31 P33

+P231P1 1P 12*P22*P 237 P11*P31*P22*P o3 )
T3 = max(oyy+pypt033#P130P) P31 P33P 30P2)

*022*P12*P13:P21*P31*P 120130

Ty = max(py ) 4P p*P330P 11021 P2 P30 P11+ P21 P31 455 -



Ty = min(Ty, Ty, T3

Case (1) :+ Py, 2 P52 Py for i=1,23,

Suppose

* o

Ty >0y (2.4.5)
We shall ncw prove, in four exhaustive cases, that T; > T;
Case (a) 3 Pz < P33s Pyp < Py~

In this case, we have

Ty = Psy*PsztPy3tPyys  Tp = PuptP*Pistinse

s < * *
It is obvious that Tl > Ti ie. T.\ > TZ'

Casg (b) : Py > P33s Pyp < Pgye

Hore,we have

Ty = P3ytPgp*Pa3tPys 8Nd T) = Py tPaythostPys

. P
which imply Ty > T, .

Case (e) P,y < P330 Pyp > Py -

Hore,we havo
Ty = P3p+Py3+ mex(PyepysiPoptPyp)
Ty = Py*Pos+ max(pypiiy)) + Py

= Py P 3*P33+ max(Pyyaps))

and Ty = py)pyy + mex(pyo+bo,yaPp) +hsy )



IfRi7 Siesys

Ll e
3772 = P317Pyy*Py3=Pos+ Max(Py3+py300540) ) = P33oPs)

2 Py3-m Py

>0
o

diow, Tils T
Othorwise, we havo by inoquality (2.4.5)

-1, 20
which inplios p,) + Py3 + Pyy = Pyy = (P1y + Ppp) 2 O
i.e.

Uh Ry R s P 2 0

Now it is casy to scoc that

1772 2 B317P 1 *P 37R3t(P33+0p3) 0y 5035

SR PaRR o

> 0 by ineéquelity (2.4.6) ,

Caso ()25 pyy > gz P35> Pay v

In this case,wo have y
Ty = P31+Pgp+hy3#max(pys,py))

T2 = Paa*Pag*Pa3* mex(pyy,pyy)

= Ppy*Pop*P) 3mex(py3,P) o)

and Ty = py1+P1o*Pop*Ps3 -

3

-
Iv
-

If pyy <Py Ty-T3 2 pyy-py 20 dea.

(2.4.6)



Othorwiss, we have, by inequality (2.4.5)

75-7530

which implics 2 7Pt Pyt P2 0.

Now it oasily follows that

Ty = Tp2 83 Py v byy = mex (ppys b))

Case (2 for i=1,2,3,

Piz 2 Piy 2 Py3
1t is vasy to sso by cess (1) that ths condition (2.4.4) holds
for the roverss freblem,  Consequently it holds for the criginil

problom also.  Henco the result.

+ Even theuch tho above rosult is small, it throws souc

light on tho velidityof the convex property using which Panwalkar ard
Khan (1977) have covoleped a good algorithm for solving tho

Urtuled (r,/’m/r/'r‘nmx) problum.



CHAPTER I11
n-J0B, 2-MACHINE STOCHASTIC FLOW SHOP SCHEDULING PROBLEMS

3.1 Introduction

In this chapter, we deal with n-job, two-machine (nx2) stochastic
flow shop scheduling problems with the cbjective of minimising the
expscted makespan. Wo have considered in previous cheptor the detemministic
flow shop scheduling probleme in which the processing times are essumcd to
be known end fixed. But this assumption doss not hold always. In some
practical situations,the processing times are random following somi Know:
probebilistic laws. In such cases tha objectives are gonorally in tums
of expucted valucs. Wy give bolow a brief account of tho work done on
stochastic Flow shop scheduling problems. Mekino (1965) wus the first to
considur thy stochastic flow shop schoduling problems. Makino hus considurud
two-job, two-machine and twe-job, thres-machinc stcchastic flow shop probloms
in which the proccssing times are assumcd to bo indepsndent random variablus
following exponential distributions with known parameters. The cbjoctive
of thesc problums is to minimise tho cxpectsd mukespan. Lator, Talwar (1967)
has conjectured an optimal rule for schoculing the jobs so as to minimisc
the expectsd makospan for nx2 stochastic flow shop probloms with uxpon.intial
processing times. Bagga (1970) hes shown that Talwar's conjocturo is truc
for n < 4. Cunninghem and Dutta (1973) hev rigorously proved tho optimality
of Talwar's rule and gavié a recursive method for cbtaining the valuc of
sxpected makespan for @ given permutation schodule. The above authors havo
considsred only the class of schedules while dealing with stochastic flow
shop problems. For a stochastic flow shop problem, the cless of policics

are, as mentioned in Chaptoer I, wider than tha class of sctedules and "



thofore ic is pr

<r te consider the class of policies instead of th
class of schoaules.  Unfortunately, the problom bocames very complox whon
we «val with policics. For this roason,we rostrict our attention to tho
class of schsdulus in ell sections of this chapter except.tho last onu in
which wo fomulats o stochastic flow shop preblom as a finite dynumic
programming problom.
In soction 3.2, we consicer two nx2 stochastic flow shop probloms -
(I)with ell the processing times following goumstric distributions and
(11) with procussing times on one machine following goanstric distributions
@nd thoss on the other machine being icentically distributed and wo dtain
cptimal sclutiors for both the problems. We dorive the optimel solutico
(tor axpunential case) of Cunningham and Dutta (1973) using the cptamol
sclution of tho preblem 1. In section 3.3, we dorive optimality criterin
1n generel tems for the case in which the processing timos follow sume
known distritutions. in scction 3.4, we considor an nx2 stochastic flow
shep problim in which (i) tho procsssing times on first machine follow

somu krown distributions, (ii) the pro

seing timos on second machinc
fellow uxpononticl distributions with knewn paramoturs and (i1i) no-passing
is allowsd, Vo forulato this problom s o finite dynamic programning
Fretlems  The words 'sequonce' and'pormutationure synonymously used in
ihis chaptor.

n i For nx2 stochastic flow shop schoduling problems, we roprosont
the First machine Ly A und the swcond onu by B. Thy proccssing timos of
Jub i, 1< i <0, onmachinus A and B aro reprosuntod by A; and B, rospectivoly.

Tho

cctud makespon for a pumutation (pumutation schodule)

- = (1:1,112,. +»m) ds given by

" . ¥ 2 13
T = Elwex {§ A+ § LIRS (5.2

1<ken PR
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k n
Wo know that ths cxpression max { § A+ ) B} gives the makospan
lcken i=l i isk M3

of dstomministic flow shop for the permutation mi, when A ‘s and B 's aro
dotorministic. We cen cesily verify that it holds for stochastic cose aiso.
For the problom with the cbjoctive of minimising the oxpectod makespan,
Cunningham and Dutto (1973) ghowed that the sot of purmutation schedules
dominates the sut of non-pemmutotion schodules, that is, it is onough tc
consider only tho permutstion schodules in order to minimise tho oxpoetud
makespan over the set of schecules. Therofora, wo consider, in scctions

3.2 end 3.3, only the pormutations scheculos and obtain a permutation . p

such that

T(p) = min T(w)
nes

€S o

where S is the sut of all permut

ions of 1,2,...,0.

3.2 The Flow Shop With Goomctric Processing Timcs

Introducti

In this scction, we shall study an p-job, 2-maching (nx2) stochastie
flow shop scheduling preblem with processing times fallowing guomutric
distributions, with the objective of minimising the expectod makuspan.
As mentionod earlier, we restrict our attention to the set of schedules .

Wi first obtein o statisticel rosult and deduco throe corollerics

frem it. Using thess corollaries, we obtain, for the problem under consi
ration, an optimal schedule that minimises the expscted mekespen. Also
we give an optimal schedule for the case whoTe the procsssing timos on oin

maching are identically distributed ond those on tho other maching

follow gecmotric distributions. We shall derive Cumningham and Dutta's
(1973) optimality crituria (for exporential casa) using the abovo optimal

schodules and soms limiting arguncnts. Finally we present a rocursive
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mothod for obtaining tho value of expected makespan for a  given
pormmutation schodule of the problem under consideration. In the problom
considcrod above ,  we meke two more edditionsl assumptions-(1) tims
proceeds in discrwte steps, i.o., t takes values 0,1,2...... and
(2) 81l the processing times follow geanstric distributions with known
perametors.

Lot A; and By, 1 < < n, follow goonotric distributicns with kaown

paramctors o, and b, O < ap,b; < 1, rospectively. o have
" . -1
PlA; = o] = ux(l-u,‘) ’
P8, = m] = bi(l—l‘i)""l for m= 1,2,...8nd 1 < i < n.

Preliminary Rusults
Lomma 3.2,1 ¢ Lst XI’XZ'Yi aed Vz bs ind:pendent discrete random veriubles

following geometric distribution with parancters ry,r,,s; and s,,rospoctivoly.

Then

E[min(asX #X,, baY 14Y,, X1, Y,) T 2 ELmin(asX j+Xp,beY +Y,, X5 Y1) 1, (3.2.2) .
1~ l--x‘2

for all real velues of a and b, if 15 2 T,
e ~92

Proof : First we prove the lomma for any integer values of a and b .

It is wnough to show that

Po(aX4X) > My DY )4V, > mX) > m,Y, > m)

2

2 P (aX Xy 2 m, DaY4Y, > mXy 2 my Yy > m)

1+ 2 Y = 1
for any integer valuss of a,b and m whon
1-r) 1-r,

Ts, 2 T- .




Py(m) = P (avXy+X, > mbaY Y, 2 my Xy 2 mYy > m)
and po(m) = P (awXyeXy > mbaY Yy > my Xy 2 myYy > m .

Sinco X},Xp,Y) and Y, are indspendent, we can writo

Pym) = le(m) Pyz(m)

and
Py(m) = P (m) P (m)
2 2 Y1
where
le(m) 2P (aXpaXy 2 mXy 2 W),
sz(m) = P (aXyXy 2 mXy 2 m)
Py (m) = P (baY #¥y 2 WY 2 m)
1
and Py (m) = P (BeYyeYy 2 m,Y, > m)
2
and m is an intoger.
Cass 1 : (a>0,b>0).
We bave
MOE Q-rp™t
_ m-1
P = (1-1,) ,
- m-1
Py = (1-8)
ond Py (m) = <x-u2>""1, for m > 1
2
and vx1<m) = sz(m) = Pyl(m) = Pyz(m) =1 form<0 .

Honee Py(m) = P,(m) for m < 0.

P (m) 1-r) 1-r, w1
ol (et VigmD1 for mz
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It is obvious that f’l(m) > Pz(m) for m > 1

whan
1-r) s 1-r,
1-s;, = I-s =
1 2
) . -1y 1-r,
Honee £1(m) > P,(m) for all m whon s, > s, °
Cass 2 : (a < U,b>0).
for a<m<O,
m-a-1 .
le(m) = 121 P Xy > m-a-i)P «(X)=i) + P (X > m-a-1)

£y (1or, )™ L p (g y™Ent
r

17 T2
= flr),ry,0;m), say .
Similerly, P (m) = f(rz,rl,e;m) for a <m < 0. It is easy to sco that
2
f(rl,rz,a;m) = F(rz,rl,s;m) .

We have Po(m)=1=P (m) for m<O
"1 Y2 -

and Pe(m)=1=P () for mca.
1 X2

Honce Py(m) = Py(n) for all m < 0.

For m>0,

m-a-1 . :
- m-a-i-1 i-1 f-a-1
= igm (1-r,) ry(1-ry) + (1-ry)

(1ot )™ - ry ™
s et T T2

1
= (1-r1)""1 a(ry,1,,0), say -

m-1
2)

Similarly, P_ (m) = (1-r g(r,,r,,a) for m > 0.
Xy 2’71



Hore also tha equality g(rl,rz,a) = g(xz,rl,ﬂ) holds
= -1 - m-1
Pyl(m) = (l-s’) and Pyz(m) = (l—az) for
Therefore

Py () 1-r) l-r, m-1
ol I1¢ =, 3/ ‘T_"‘z )] for m > 0.

It is obvious that Pl(m) 2 Pz(m) for m > 0 when

1-ry . 1-r,
) 2 -5,
1-ry 1-r,
Hence P (m) » Py(m) for all m when =, > l'-—s;

Caso 3 : (a3 0,b <0).

true.

m>0 .

The argument for this case is similar to the above one.

Cese 4 : (a <« 0,b «0),

For this case, Px (m) =P, (m), P_ (m) = P_ (m) for
1 X2 141 Y2

and P = (1-r1>’"'1 o(ry,ry,0)
PXZ(M) = (Q-r)) g(rz,rl,a)
Pn('“) = (-8))™7 gloy,8,.0)
and
Fyz(m) (1—a g‘sz,al,b),

It is casy to verify that

Pym} 3 Py(m) for all m,

when
1—1‘1 R 1-1‘2
1-31 - I-sz

for m> 1.



Thereforo
Efmin(anX 1+, LY 1+, X1, ¥,) T 2 Bl minCaeX +Xy, ba¥ 1 4Y5, %5, ) ],
when

l—rl l-r,

1-8; = l—az
Now,it is sasy to sce that ths above statement holds for any real valuos

of & and b. -

Corollary 3.2.2 : If Xl and XZ(VJ and VZ) in Lemma 3.2.1 eru idontical an
follow somo gonoral distribution,
E[min(aeX +Xo,baY 475, X),¥5) ] > E[min(oeX j+Xy,beY 1 4Y,,X,,Y ) ]
for all rual valuss of a and b if 8) > 8,(r) <),
Proof : If X; and X, ero i.i.d. random variables, it is onough to show thad
Py2(m) > I1y1(m) ¥ m when 8) > 8,.
This follows by the argument similar to the oneé in Lemma 3.2.1. Similarly

if Vl and VZ arc i.i.d. random variables, the inequality(3.2.2)holds for

Corollary 3.2.3 ¢ Lst X),X,,Y; and Y, bo indopendent diserote random

varisbles following geomotric distribution with paramters rj,r,,s; and s,

rospoctively. Lot 1 and 22 be two random variables which are indspend

of X1,X,,Y; anct Y,.  Then
E[min{Z)+X +X,, Z,+Y |+

X1 ¥p}] 2 EDmin {Z)#X 14Xy, Zy+¥ 145, X, Y 1)

if
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Proof : Since Zl and ZZ are indspondont of xl’XZ’vl and Yz, ono can

862, by icmna 3.2.1 that the above statomont is truo,

Corollary 3.2.4 : If )(1 and XZ(VI and VZ) in tho Corollary 3.2.3 arc

i.i.d. random variebles,
ELAN{Zy+X)+X ) Zye 1 4¥p, Xy, Yo} 2 ELMANGZ X 1Ky 20 ¥ Y, X0 1)

for 8y > 8,(r) <r,) .

Main Results

In tho following thoorem, we obtain an optimal scquonce that minimisce

the expected makospan of the problem undur consideration.

Theor

3.2.5 : A soquence p = (p),p,,.e,p,) sutisfying tho inoquality
1-a

<C <.<C minimizos tho expectod makespan.

c whoras C,
P) = Py i

n

,n).  Ths corresponding

Proof : Consider the sequenca v = (1,2,

cxpectsd maksspan is given by

, K n
T(v) = E[ mox { ) A B.}] .
l<k<n 121 it jzk it

Supposs €y > € ) For a fixed i,1 < i < n-l. We can writo
k

n
max  { Zl Ay »izk B8;} = max(nAiw\iﬂ,G»ei«xid,H¢A{aiﬂmux(Aid,bi>)

lcken i

whore
i Paef
F=§ A+ x ( A+ B) ,
371 e2eken gmivz J 0 E Y
lf .\El n
G= max ( A+ B)) + B
lek<i-1 =1 0 Sk Y J:J{vz J
and
iil n
H = A+ B..
FE R J:§+2 J
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Note that  J =0 ifn, <n

Hunce

max ZA+ZB}

1<k<n  j=1
Heh +A g —H-B G-H-A B, ,~
A HA BB+ mex (FoH=B =B ) GelAg =Ry =D, =Ag 1)
M~A1+Ai+l+u{uhl - mxn(Z A *Anl’[ +3 ’uux"\nl' )
whore

= H-G and ZZ = H-F .

Now we havs, for the sequoence v,

T(v) = E(H) +
= ELmAn(Z e ey o 2ol LA 00
Similarly,for thessquence v' = (1,2...i-1, i+l,1,i42,...,n), which is °
cbtained from v by intorchanging i and i+l, we have
v = B + >
i i Vil
= EImin(Z iy o ZywBiely 0,0 )T
T(v)=T(v') = [[mm(z ARG 2y A “1)
— E[min(Z)+Ag+hy 1,248, 4B; 10A; 0,00
Since C, > C; ) and Z) end Z, are independont of Ag,A; 4, B; and By ),

wo have, by Corollery 3.2.3,

TV 2 T,

Since the roletion C, is transitive, it is casy to ses that the

12 Cin

soquonce p  for which C < C_ < ... <C_  holds minimisss thy uxpootic
PL= PpT T Pq

mekespan.



Corollary 3.2.6 If all Ai's (Bi's) are identical following some gencral
distribution and all Bj's (Ai's) following geomotric distributions as

mentioned above, a sequonce T satisfying conditions b < b < ...< b
1 27 T T

T Ty

By applying Corollary 3.2.4 instead of Corollary 3.2.3 in Theorem 3.2.5

(a >a ...>a ) is an optimal onc.
n

ane can casily verify this result.

Remarks : In the nx2 stochastic flow shop scheduling problem considsred
sbove, we heve assumed that all procecsing timss ere discrote random
variables following geomotric distributions. This wssumption is not now in
stochastic scheduling theory. For reference, see Glazebrook (1979).
Cunningham and Dutta's (1973) rosult for exponentisl caso cen casily be

proved on the seme lines as above.

Cunningham _and Dutta's Optimality Criteria

Now, we cbtain two results and prove Cunninghem and Dutta's optimality
criteria(for minimizing xpocted makespan of nx2 flow shop scheduling probleim

with oxponontiel prucossing times) using thoso results and Theorem 3.2.5.

Lemng 3.2.7 : Lot @3,05,..0,005 byyby,eee,b bo Finite positive numbors
such that
ay - by >ay -by > .ee >a by (3.2.3)

Then we can construct sequences {ay,}, {ag}ls «-- {8} {5y}, {0y }seees

m=1,2 ... in such a way that

(@) O0<a,,b

im? Pip <Lilgi<n ¥m<e

()  ag, >0, by >0, may >0y, mby sb, 1<i<n, 88 mo o,

(y)  there oxists an integer M such thet



Proof : Wo prove this Lomma, separatoly, for two cascs.

Casg 1 : a)-by > ay-b, >

Consider an intoger N > mux(al,az,...,an,bl,bz,...,bn). Lot

a, b,

i _ i : (
agp = by somlcicn, ¥YmaN (3.2.4)
Now tho condition (B) is satisfied. We can chooso some valucs for a; ., by,

1 <i<n,m <N so that the condition (a) is elso satisfied. Using(3.2.4)

it is easy to find en integer M(> N) such that

_—1—81,“ < l—am <o < -1-6 ¥m>M
by = 1—52'“ = =T1-b =
Caso 2 : There exists at least one egquality in(3.2.3).
Considor any fixed i end i+l, i+l < n. Given two sequencos (ﬂi*]['\]'
{b;,),} satisfying the conditions (a) and
a; c b.
N i+l i+l _ i+l
Gadn = Th * T2 Phem ST Y2 N
whoro Nhlls a positivo intogor and €4 @ finitu nor-negative valuo, wo
construct two sequences {ulm] N {bu"} in such & way that thoy sutisfy the
conditions (o) and (B) and the four soquences {aj,},{b; }s{ay 4 b and {bg o)
togethor setisfy tho condition (y).
Lot L ail’;d - .H]": tegtE where g > U if
gy - agab, + ey, 2 05 othirkdse, op = 0. Now, wo can vasily find an

integer N, such that

<1l ¥m>N .
=
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(3.2.6)

= -
W nZ
b il
by = T and by y s ¥ m y N = max(Ng Ny ).
(3.2.7)
Noto that
P N | PR 5 W £
w2 ™ 2
< =
3 = 5
1.2 g2
w W

1 N + by 1
2P ) )+ ey (= ) g leymb=Cey by P )
(3.2.8)
b, b,
1
(agby 1-a;,105) = ¢;(1- =4y ¢y (1 - ) <0, (3.2.9)

for any positive integer m.

We have cithor aj=b; > 85,4 - bi’l oer ﬂ{-bj =85 " bj&1

Using (3.2.8) or (3.2.9) according as aj-b; > a; )-b; ) or a;
and (3.2.7),we can find an integor (m > N) such that

1-a
i+lm Yoo M.
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Starting with i+l = n and c = 0, we can construct, by the abovo procudurs,

sequEnces {elm}, (hlm}, ctepacaney (sm) (bnm) satisfying the conditions

(a),(8) and (y)-

ommg 3.2.8 : Lot AjAg,.. Al

random varisbles and (Ag} , (B} m = 1,2 ... sequsnces of guemstric random

5 Byl be indepondont exponential

variables converging in distribution to Ay and B respuctivoly for

i=1ton. Assums that for cach m, A,

A Bggreees B 8

3
o’ “lm' l'Zm’ St e

aro dofined on sampla space {% 2 ...} and aro indopendont.

'’ m
Lot
k n
T o= E(max (] A + o8, 0
o lcken  af1 MM azk M
and
foa, e
T o= B[ mex A+ 0.1,
N lcken @51 M3 itk Mi
whore w = (“‘1"‘2""'”n) 1s purmutation of 1,2,...,0.
Then T, = x:zg Tw ¥ @2 M implies T, = min T, whoro M is a positive

intogor and S is the set of all permutations of 1,2,...,0.

Proof : First, we prove that T o+ T~ as m+ o for any arbitrary

permutation w. Consider the permutation p = (1,2,...,n). Uy tho assumption

£ o i G =l e )
that A, Aguse e sAns Opgr Dgpree+oBpy 47 indopundant for sach m, Few

in law
o) -

R (Ayohgse

Aol Byreesly)

(Agas Agareeer
as M- @,
Now, by means of an argument involving charsctoristic functicns, it is unvy

to see that

Uy Uggreeortyn) (“1’“2""""k) as m+ ©
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d

whers +  donotss convergonce in low or in Jistribution, uj,'s aro lincor
>mb). ions ¢ A R 18 coeyb @ ;'s arc o same

combinations of Ayg, ApgsesssAes Bpgsliygs eyl 000 uj's arc tha son

lingar combiraticns of Aj,Ay,... A0, .,

Bin's- In particular, it follows that

<A G as Ujn'e of Aim s and

d
Fa0) > F(x),

where Fm(x) = P[ulm S XUy < Xpeee,y < x]

end  F(x) = P[ul S XpUy < Xpenesly < x],
i.e.,

o

max(uh, U s "“’km) - mnx(ul,uz,...,uk). (3.2.10)

Now, take . k = n and

for j = 1,2,...,n.

It is tasy to sce that

. n
nmx(ulm, Upps +ees u"") ile A + igl (LI
and

€L oo Cupse s t) (2] = ELmoxCugy - epy 0%

e
<t n e 3ot

i=1

e 2 2 2
< 2[EC 121 A+ ELC 121 8571

e 2
=) (=5 - )
151 mfal
1
v 2y _ 1
R o o
2
- « -
n? 12
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where Ay 8 and bim § are parameters of Alm s and Uim 8 and arc < «  Vm.

Also

lim LL|mux(ulm PR
mow

Therefors

sup €[ |max(u
n

s N (3.2.11)

Delow,we shall seats o cevergsncs thoorom of Chung(1968 )(p. 88, Thooram

4.5.2) which is uscful in showing Clmax(u

e 3 Yn) T LLn:ux(uJ,...,un)]

as m » «,

Statomont of the Thoorem: If X} convergos in distribution te X end for

some p > 0, sup E[|xm|f’] <M< w, thon for cach r < p 9]
m
Lim ECIX D) = €(X|T) <o,
o
If r is positive intoger,then wo replace (X% and  [X|T above by Xp una X
By the above thsorom, it follows from (3.2.10) and (3.2.11) that

Efmex Uyt ee e supy) ) > Elmax (up,u,,0e0,u)] as mos o .

Tpm - Tp as m -+ o«

Similarly, for any arbitrary permutation w of 1,2,...,n,

T > T as m > w
win w

It is casy to soo thetl =min T if T+ T for any permutation and
v T wn T

Tom = ™o T, ¥m>M whorom is a pusitivo integor.
weS

Thoorem 3.2.9 :

Lot ApAgseeeyfns D),8,,000,8 be indopencent exponontial

random variablos with paramotors' a),a,,...,a ; Blabysesesly, respectivoly

and a  -b  >a - ceeza, -b, . Then
v ~V}" Vn

T,o= win .
weS
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Proof & Lot (g} s Ay} veees (AT (B3, (8, eeny (B} bo soquoncos
of gecmotric random variablos converging in distribution to A),Ay,...,A,

Gys Byinlly, rospoctively. Assuno that for sach m, Ay, Ayy weey As

By Dgpse-e sl @56 dofined on sample spaco (=, 2, ...} and cro
indepencont By Loma 3.2.7 wa can construct scquencss {ay ) 5 {ag,}y +ves 0,

by} {byedseen, b}, m = 1,2,..., satisfying the conditions (a) and (§)

in such a way that thore exists an integor M such that

Lo, g 18, o ey o )

oy ST S T vaa M (3.2.12)
vim v v m
1 2 n

Lot thoss sequunces {ag ) , (b}, 1 < i <n be paramoters of (A} , {U; )

1 < i <n, ruspoctively. Then, by Theorem 3.2.5 it follows that

S G Vmz M

‘v
weS

Honce, by Lomma 5.2.8, it fcllows that

T, = min T,
Voowes "

Calculetion of tiw valuo of expectod makespan for a_given scquence

We consicer the state of tho flow shop at time t = 0 and job
completion times on both tho machinos. Suppose a job & is being procossud
on machins A at a job complotion time (7) on machine B. Duo to tho
momoryless property of geometric distribution, the residusl processing
time raquirod by the job & on maching A at time T again follows geometric
distribution with tho seme paremctor a, and thorofors thy job 2 can bo
considered to bu waiting for processing on machin A st time t. Tho
above argument holds for proceesing of jobs on muching 0 also. Now, we
cen represent tho stato of the flow shop at a job complotion timo T

by (U,V) where U &N is ths set of jobs waiting for processing boforc
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machine A and V & N-U tho sot of jobs waiting for processing bufuru
mechine 0 at time T.

Let m= (n),my, +evy ) bo a given sequonce. Without loss of
gonerality we assuns that m = (1,2,...,n). Undsr this soquence (pormutation
schoduls) m, wo process the jobs in the order (1,2,...,n) on each machinu.
Lot E(U,V) denoto ths oxpectod mekespan from a job completion timo 1 ciwerds
under the sequence m where (U,V) is tho state of the flow shop at timo .
Wo can write

E(U,V) = E[min(Al,Uk)] + P(A, < BEWU-{1}, V [VRE3))

+ P(A, > B)) EQU,V = {K}) + P(AS=B)EU-{&), Vi) (k) - m)\

for U,V £ ¢, i
EU,) = E(R) + E(U-{23,{2)) for U £ ¢, (
E(¢,V) = § E(Uj) for V£ ¢ and J
eV (3.213)
E(g,0) = O,

whore % and k are the jobs with loast indices in the scte U and V rospuctivoly.

Since Ay and 0, 1 < i < n, follow goomstric distributions with parancters
a; and b (with means 1/a; and 1/b;) respctively, wo can mowrits th

Cquetion (3.2.13)as

1 a, (1-b,) b (1ma) i
Bu,v = b, e, E(U-{2}, VU (2}) + F(U,V-{K})
P
EEET E(U-{2}, VUJ{R} - {k}) for UV # ¢,
EU,9) = -+ EU-{2},08) for U £ ¢, |
1)

E(,V) = for V£ ¢ K

e (5.{.1/4)

E(4,¢) = O .
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Uncer the sequence 11, at any job camplotion timo,U wnd V ure of tho forw

U = {&,4+l,c0eyn}, V= {kkel,eon2-1}, 1<k <t <n

°

E
<
"

{4,4+1,.00yn}, V=g, <2 <n

or U = ¢, V= {kktl,es,n}, 1<k <n

ot U = ¢, V=g

Therufors, considering only the states of tho above fom wo can solve tho
equations 3.2.14 iteratively and obtain the valus of E(N,¢) which gives
the expectod makespan for the ssquence m. We can also apply this mothod for
obtaining the valus of expected makespan for a given soquoence when tho
processing timus Ai‘a and l'i s follow exponential distributions with known

paramctors.
The results of this section are from tresad (1960).

3.3 The Flow Shop with Gencral Precegsing Time:

Introduction

So far, only twe typos of distributicns, viz., uxponontisl and
goomstric distribe.ions are considorcd for tho nx2 stochustic flow shop
schoduling problem. Now, wo mako an attompt on general distributions and
cbtain optimality critoria in goncral terms for minimising tho oxpocted
mekospan.  wk abo denive ,;atmmg enilinza im broeady mondtims Licdihond
Natis dmd deduce Sunal Spreial cades.

Under certain conditions, we obtain optimal policy when all A 's
follow uniform or normal or gamma distributions and all B 's follow

uniform or normal or gamma distributions.
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Proliminary Results
Firet, we obtuin two statistical results which aro ussful in obtuining
the optimality criteria for the nx2 flow shop problem with general procossing

times.

Lomma 3.3.1 ¢ Given any four nor-nogative incdependent T.ov.'s xl,xz,vl and
Y,, the inequality(3.2.2)holds undsr tho following four conditions.

M) a(1,2) : P, < 8, XpK, > ) 2 PX] < £,X#X, > tec) ¥ e > 0, € > 0,

(2) &2(1,2) s P(Y Ty Yy, > t+c) > P(v2 <Y, > t+c) ¥ c>0, £t >0,

1
G) By(1L,2) : Px <) <P(X, <B) VE  and

(&) By(1,2) 5 P(Y, <& < P(Y, <) Ve

Proof : It is cnough to show that
P[min(mxlz,xz, beY+Y,, X),Y,) > t]

2 PImin(a+X#X,, b+Y 4Y,,%,,Y)) > t] ¥ a,b and t, (3.3.1)

undur the given four conditions.
Ve can writo

PLmAnCasX X, bAY)eY,, X1,Y,) > €]

= PlasXpeXy > t, X) > £] PLUAY4Y, > £, ¥, > €] (3.3.2)



and PLmin(aeX 14Xy, b +Y,, X,,¥)) > t]
= PLaskpaky > €, X, > £] PLbY e, > €Y > ] (3.3.3)

since X) and X, arc independunt of Yy and Y,.

Wo PTCVE ths incquality(3.3.1)by showing that

PLask +X, > £,X) > L] 2 PlaskpeX, > £, X, > t] (5.3.4)
¥ aand £ under the condition &;(1,2) and él(l,z) and
PLLAY Y, >y Yy > 8] |-'[;(-,+v1+vz Bk ¥y = €] (3.2.9)

¥V boand £ undor tho conditions B61,2) cnd 52(1,2),

Comsider tho invquality (3.3.4). Wo can easily sco that this
inequality tolds by tho condition By(1,2) for all values of & whon @ > O.

Lot us assunc & = - ¢ whon ¢ is a positive numbor.

We writo
PLavX 4K, > £,X) > t] = PIX 4%, > tee, Xy > t]

> ).

= PIXX, > bw o] =P < £XpeX

Ssimilarly,

tor e = PIXy < £,X)4K, > el .

PLawk ok, > €4, > €] = PLX )X, ,

Now it follows by ) (1,2) that

PLasX+X, > £,X) > €] 2 PawXp#X, > £,X, > t]

Similarly by the same arguments it holds under the conditions
F,(1,2) and §,(1,2) that

POV +Y oot Yoo b] 2 P[beYy+Y, > b, ¥y > L]
amd himee Gz fimema .



£ U anc V bo any two rancom variables independont

Corollary 3.3.2 :
of Xy, Xy, ¥y and Y, of Leama 3.3.1. Thon
ELmin(UeX #X, VY #Y5 5 X1,V 2 ELmin(UaX j+X, ,VaY 1 #Y5,X 5 ,¥)) ]

wnder the four conditions given in lemma 3.3.1.

Proof : Preof is similar to that of Corollary 3.2.3.

Now, we consider the nx2 flow shop scheculing preblom with proecssing
timos following some known distributions. Let

@ (i,§), 1<iyem i £,
represont the condition

PLAj < €, Apthy > trel 2 PLA; < &y Agshy > tec] for c© > 0 and € > 0.
and a,(i,J) Teprosent tho condition

o . y e
POy < €U0 > teed 2 PLO; sty 1y + By > tee] for e > 0 and t > 0.

8(1,3), By(3,3), 1 < d,3 < npd £,
represent the conditions
P(A; <8) <P(A; <t) ¥t and P(By<t) <P(B; <©) Ve

respectively.

Main Results

In th following thoorem,we obtain optimality critoria for minimising
tho expectod mukcspan of the problom undsr consideration.
Thoorem 3.3.3 : Undir ths assumptions
(1) for any pair (i,3), 1 <i,J <n, & #J, either tho sue of conditions
ay(1,3), ay(i,3), £1(i,4) ond (15(1,3) or ths sot of conditions ay(dya),

ap(3,1), 83(3,1) and £,(3,3) teld.



T

(2) the conditions o, and a, are transitive, a sequence p = (pyPgresesPy)
satisfying o (p;,p; ;) and Bk(pj,pi‘l) for k = 1,2 and 1 < i < n minimises
the expected makespan.
Proof : By applying Corollary 3.3.2 instead of 3.2.3 in Theorem 3 2.5 we can
easily prove this result.

Since the conditions o (i,j) and g (i,]) ere not easily verifiuble, we
shall now give optimality criteria in terms of easily verifiable monotone likelil
ratio (MLR) conditions that imply o (i,j) and g (i,j). First we shall derive

a simple result which is useful in obtaining the required optimality criteria.

Lemma 3.3.4 For any non-negative independent r.v.'s, X,,X,, Y, and Y, with
densities F(x), f,(x), g)(x) and g,(x) respectively, the conditions

& ((1,2) and §, (1,2), k = 1,2 of Lemma 35.5.1 hold when the following HLR
conditions hold.

(1) fl(x)/rz(x) is nondecreasing in x

(i1) g;(x)/g,(x) is nonincreasing in x.

Proof : Since X, and X, are non-negative r.v.'s, we can write for

arbitrary t > 0 and c > 0

PIX, < t, X #X, > tae] = PIX) < LX)oX,y > tec]
= J’0 jo L0 Fy(xddx dxy = f J’u 00, () dx

xp st xp <t

X X, > tee xp#x, > tee
= 1 S0 ), dx dx, ;

o o a o 19

Xy <t x, <t

X+X, > t+c
x+x, > tee 1%,

(by interchanging x) and x, in the second term)



Hie -

= fo Jo [F 0
xz__<_t, xl+x2>t+c

0= () Py (x ) Tax

= _[D jo [fl(xl(xl)fz(x2>~fl(x2)Fz(xl)]dxldxz

x,s<t, xp<t

2
*1

1

+x, > t+c

2

* IDID [y (x )Py (xp0=F ) ) F, ) Tax ey
x,<t, x>t

v
c

because the first term is zero whether t > c¢ or not and the second term is
nonnegative since £, (x )/Fy(x)) > £1(x)/Fy(x,) for xp > x).
It can be easily seen that the above HLR condition implies §,(1,2) also

which can be expressed as

t
IR 00-F 00 Jdx
o

We can prove this implication by contraction. Similarly the MLR condition

(ii) implies &2(1,2> and éz(l,z).

Remark 3.3.5 : From Lemmas 3.3.1 and 3.3.4, we conclude that MLR conditions

(i) and (ii) imply the inequality 3.2.2.

Corollary 3.3.6 Let U and V be any two r.v.'s independent of X,,X,, Y and

Y, of Lemma 3.3.4. The MLK conditions (i) and (ii) imply

Y

ELmin(UsX #X,, VY 1 #Yp, XY,) ] 2 ELiin(UsX X, VY oV

I

Proof is similar to that of corollary 3.2.3.



Let us come back to the flowshop problem under consideration.

Suppose

time A, (B.).
140

060 (g3, 1 < i <m,

MLR conditions.

279

is the density function of the proc

2581y

The following theorem gives optimality criteria in terms of

Theorem 3.3.7 : The sequence (py;p,,-++,p,) Winimises the expected makespan

when ﬁi(X)/"3+1(x) is nanxncreas)nq/qr}x//q&“(x) is nondecreasing in x

for 1 <i <n.

Proof :

conditions are transitive, we can easily prove the theore

Using corollary 3.3.6 instcad of

Special c S

Theorem 3.3.7.

normal variables even though normal variables take on negative values.

de shall now give a list of some cases that can be solved using

3.2.3 and noting that the above MLIK

In some of the cases we consider processing times to be

If the mean is sufficiently large and standard deviation is sufficicntly

small, a normal variable can be considered as a nonnegative r.v. los

practical purposes as is done statistical quality control.

Let

ua,x)

&, x)

pla,x)

s<x<a

and O

otherwise



The optimal criteria given in the following

for the sequence (1,2,...,n) to be optimal.

table are sufficient conditions

Case F00 g; (%) Optimal Criteria
1 ulagsx) | ulbysx) and by> by -
2 u(ay3x) @lvy5%) " V] 2y z e 2y,
" s "
3 P(BJ,W B) S By 2 .ee 2By
4 ¢(uy5x) ulby 5%) by < by 2 by zees 2 by
5 " 9(vy5x) " vy 2V 2 2,
6 B p(Bi;X> By £ By seee Sk
7 ploy3%) @) 2 o,z seez g and by 2 by 2. > b,
8 " " v = S
9 " 8 By = <K,
Case 1 A;'s follow uniform and B;'s follow uniform

z N " normal

3 " g ganma

4 A;'s follow normal and B; s follow uniform

5 " " normal

6 g " gamina

7 A's follow ganma and B;'s follow uniform

8 N " normal

9 " " yamma



The above optimal criteria can be easily verified using Theorem 3.3.7
For example, when A , 1 < i <n, follows uniform with interval [s,a;]
i

and B, 1 <i <n, follow normal with mean v, and standard deviation o,

we can easily verify that fx(x)/Fl$l(x) is nonincreasing in x and
gl<><)/gi+l(x) is non-decreasing in x for 1 <i <n. Now it easily
follows from Theorem 3.3.7 that Lhe sequence (1,2,...,n) is optimal.
Remazk 3.3 __ - The optimality critoris of all the thoorcms in

soctions 3.2 and 3.3 hold even whon the mechine B is not available

for time t = z whoro z is 8 r.v. indepondent of all /\i's and ﬂx“‘"

3.4 Firite Dynemic Programming Formulation

Introduction

In this scction, we consicur en mx2 stochastic Flowshop schoduling
problem (P) in which

(1) the processing times A follow samo known distributions ,

(2) tho processing times By's follow oxponontial distributions,
(3) no passing is allowsd and

(4) the objuctive is to minimisc tho oxpoctod makospan.

Wo formulate this problom os a Dynamic Programming (DP) probloum
which wo show is numerically tractablo when A;'s follow
gamma or uniform distributions.
Formulation ss e DP Problom

We follow the semc notation as in soctions 3.2 and 3.3 to don Lo

jobs, machinos and procossing times. Sinco the objoctive is ©o

minimiss the oxpectod makospan we co not allow any machine Lo rumnds

idle as long as thers is at least onc job waiting for process
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it, that is, immodiately after a job is comploted on machino A (B) a
job has to bo taken for procossing (on maching A(B)) from the sut of jobs
waiting for proccssing before A(B). In ths problom P considerod above,

we allow docis.

s only at time t = 0 and et tho complotion timo of
Gach job on cach machino duc tc non-prosmptive restriction. A dscision
at & job completion time on machine A(B) is to choose a job, for: proco-
saing from the sot of jobs waiting for processing bufore A(B).
Bocauss of no-passing assumption the jolis should bu procussud on maching
B in the order in which tiky arc solected for procossing on maching A.
Thoreforo, we noed to take cocisions only at time t = 0 and at cach job
caupletion time on A.

The statc of the flow shop at a job complotion time ¢ an A can bo
roprosontcd by (U,0) when U N is the sot of jobs yot to bo procussod

on machines A and g < N-U a5

quonce of jobs waiting for processing

bofore maching B at timo t = 1. Duo to ths memoryloss propurty of the

exponentiel distributions of processing times B;'s,tho job that is boing
processsd on B at tims T can be taken as the first slomont of o. Wo dnoto
by Eg(U,0) the minimun expocted/from T cwards, required for tho ontir
processing of jobs in U and o, where s = |U|.

Lot o = (i),ip,...,1)). We can write

Ey(U,0) = min [E(A)) + ) pd (U050t ,0ME, (U',0")]
jeu J 8- R
. (U,0")e6;5(U,0) (3.4.1)
and
E(¢,0) = jgc [2CH] (3.4.2)
whoro

GJ(U,O) = UG, Godygreeeaigs 3 )N <k < awld, 4,

and pd(U,03U',0') is the probability that the flow shop is i the

(U',g') et tho complotion ti

of et 3 on maching A whon tho job § 2o

taken for processing on A in the stote (U,o).
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By rocursive method we find the value of E_(N,¢) which gives tho
minimum expected makespan and obtain an optimal policy which minimisss tho

oxpected makospan.

Caleulation of PI(U,05U',0")

It is obvious that kel K
P(U,05U-{3}, {ig,dp seeeriy 1}) = PC Y B < A< J By)
k? Tk+l 241 R T I DY it ¥
for k = 1 to & ’ (3.4.3)
and
" .
P(U,05U-{j},{3}) = PC ) B; <A . (3.4.4)
[ T
hZ

Wo follow tho convention § =0 for h, < h;.
N 2

1
Wo rewrite tho cquation (3.4.3)us

k=1
P(U,050-(J}, (2 5y g eeendg ) = P(hzl By

for k = 1 to 4. (3.4.5)
Thus, the cifficulty of calculating p(U,03U",0') ligs in the calculation
of tho terms r(uvl+ Byt et B"z <A For any vi,vy,eessvyc Noand

1<j<n

The Case of Uniformly Distributed AA.L

Below, wo give a procedurc for calculating tho torms
P(B, ¢a + cee + B, <Ay) when Aj's follow uniform distributions and
by i bj far i# . Asaume that AJ follows uniform distribution with

interval [s,e ], 0 < ) < cj, and B follows oxponontial distribution

J
with parametor b for 1<j<n and by # by for 1 3.
Since Bi's are independont oxponentiel random variables with

difforent by's, wo have



PLB, 'Bv +...+Bv15 t] = 1- d ° (5.4.6)

where

=1
J#i
Wo can easily ses this by finding tho Laplaco transform of the distribution
of Bv + B+ e+ Dv and splitting it into partial fractions and

1 2 &
finding tho inversc Laplace transform of each torm. Sinco ;\J follows

uniform distribution with the intorval LuJ,cj] wo havo
. Lk A
3 \ - 1- .
[Bvl+ B, 4—...+tv SAJ]_I . L -0 }e
) * i (3.6.7)

We can casily calculate the valuo of F[Uv +oaee o+ UV < Ajj using tho
1 &
equation(3.4.7) .

The Case of Ai's Following Gamma Distributions

Now wo give a procedure for calculating the terms PIB, +B  +.ces <A
Vg "3 Vi
when Aj'a follow Gamma distributions. Assumoc that “j’ 1<j<nfellows
Gamma distribution with density

T,
J r-1 -at

a
- A
GO s gyt e
Here also we assume that by # bJ for i # j.

Wo write



T
ad ory-lo-agt
b[nvl + B, 4.8, <A = }f-h-?— t od a

 ad r-1 ‘(“j*"vi)t

4
= 1-) d f —%——-)— ed e de
if1 Vie Tl

Vi
Ga+b ) 3
3Ty

Using this equation wo cen easily calculatu the valus of

o i .
E[Bvl'sz-v e lei AJ] for any vy, VyseeesVy € N, and 1 < j < n.

The Case of A;'s Following Erlang Distributions

Wo now considsr tho casc whoro AJ‘S follow Erlang distributions with
r= <n

=

2. Hore, wo do not assumc by # by for i # j. Assumo that Al <

follows Erlang distribution with dunsity

2, ot
fj(t)=ajt0 s ey > 0.
Vo can write
PLB, B8 veatD < A = G, (t f.(t)de
[ "1* “2‘ + v, < J] L L (8) J( )
whors
Gy (1) = P[Dvl+[) <t
i.e.
@ 2 -a.t
PLB, + By + <o + B, <Aj) = g e) e to J odt
1 V2 Ve T o ¥ J

2 A oxeg
= -8y & Gl(”)la

whora G’i(ﬁ) is tho Laplace transform of ux(t).
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Since all [31.'5 aro indopondent oxponuntial rondom voriablos , W have

Gy (s) -1

and consoquently

d
R Ty "
@ E‘L(S)la:a T

Thersfore

P[Bvlﬁ‘iv

(3.4.08)
1%
Using tho oquations (3.4.8) we can casily calculats the roquircd
probabilities.
Romarks 3.4.1 : For the problem P, pormutation schodules arc the only

feasiblo schedules and the optimal golisy (o) obtained by dynamic proyruing
techniquo is better than or st least @s good as any purmutation schodule.

It is oasy to soo that for ;hupmhl.sm P! obtained from P by rclaxing the
assunption of no-passing, a* is a policy which domirates the st of ail
schodulos. In fact, for tho problem P' thero is no way to minimise

the expoctod maksspan oven over the sot of schedulos. It is nrot known

whothor a* is an optimal policy for tho protlem P also.



CHAPTER 1V

SINGLE-PROCESSOR AND PARALLEL~PROCESSOR STQCHASTIC SCHEDULING PROBLEMS

4.1 Introduction

In this chapter, we first deal with a problem of scheduling tasks

ic

with random processing times on parallel processors. Tho detorminis
version of this problem with various objectives has becn considored by
several authors. For reforence,see Mc Naughton (l95‘)),[uat.mul\ ot. al. (1964)
Arthanari and Ramemurthy (1970), Nabeshima (1971) otc. The parallcl-
processor scheduling problems arc very cammon in practical lifc. In
doterministic casc, most of the problems with objoctivus like mindmisution
of makespen, flow time, weightod eun of completion timos, maximun tardinoss
etc. are shown to be NP-complote and aelgorithine ere being dsv.lopsd to solve

1 oii

those problems whereas in stochastic casc tho attuntion is focus
doriving optimelity criteria for minimising various cost functicns. W
briofly discuss the work that has beon done on stcchastic schoduling.
Weber and Nash (1979) havo considored the fullowing stochastic
scheduling problem. Thore are n identicel sparcs with rendom 1ife time
for meintenance of a scrics roliability system. The distributics of
life timc is assumcd to have monotonc hazard rate. Each componcnt

! to

requirss only one spare at a timo and the numbor of componunts Nusd
cperate the system is a non-decroasing function of timo. At time € = O

@ sparc may have somo age, that is, it might have beun uscd for soms
timo bofore tho start of procoussing. Tho objective of this problem is tu
maximise the expoctod lifo of the systum. The authors have sclved this

problem by cbtaining a policy of assigning sparcs to componcnts, which
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meximisos tho reliability of tho systom at cach tims point. Gluzobrook
(1979) has considered a problem of schoduling tasks with random procossing
times on identical parallol processors. In this problom the nuebor of
processors available is & non cocreusing function of time and procussing
times of tasks follow goometric distributicns. Glazebrock hes minimiscd
tho oxpocted flow time by schodulang the tasks in non-increasing order of
paramstors (of the distributions of procussing times) and hus obtaincd an

optimality critoria for continuous casc with cxponuntial pro

ing timos
when same number of processors are available st any timo. Gittins (1981)
has considercd a problem ‘more general than that of Glazobrook (1979) in
which the distributions of processing times have non-decreasing hazerd ratos.
Under certain conditions, Gittins(1981) has shown that the oxpoctud Flow
time would bo minimiscd by scheduling tho tasks elways in the ordor of
highest hazard rates (non-incroasing hazard rates). When tho tusks arc
identical, this result holds evon if soms of tho tasks arrive aftor the
start of processing.

Brunc and Downcy (1977) have consicurod a problom of scheduling tusks
with oxponential processing times on two identical processors. Tho

objectives considered by thu wuthors sre minimisation of oxpoctod makespin

and oxpected flow timc. No pro-emption is allowod. Formuleting this
problem as o dynamic programning problom,the authors have shown that tho
seloction of tasks (for processing) in non-docreasing order of paremctors
(of the distributions of processing times) minimises tho oxpoctod makospan

order of paramctors mininisos

and the sclection of tasks ir non-incroas
the expocted mokespan. Pinode end Weiss (1979) have considercd tho sanc
problem and gave casy and elogant proofs of the abovu two results.

Tho authors  have further obteinod opiimalaty crituria for bLoth tho
cbjoctives whon the procussing timos follow hypor exponontial distributions

which arc mixturcs of two fixod vxponontials.
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Pinedo (1980) has considered a problem of scheduling n spares with
exponential life times in a two component parallel system so as to maximise
the expected life of the system. Lach spare can be put in either position.
The decision maker is allowed to take risk, that is, no immediate replacement
of a failed component. Pinedo has obtained oplimality criteria for some
special cases of this problem. Weiss and Pinedo (1980) have considered a
very general parallel-processor stochastic scheduling problem. Formulating

it as a semi-Markov decision process, they have obtained optimality criteria

cheduling problems usit

for two types of cost functions and solved various
these criteria.

In section 4.2, we briefly describe the work of Weiss and Pinedo (1980)
and disprove their conjecture by a numerical counter example. We first consider
o two-processor (parallel) stochastic scheduling problem in which the proce-
ssing times of tasks on one processor say A, follow identical exponential
distributions and on the other processor, say b, Lhey follow different
exponential distributions and obtain optimal policies for minimising expected
flow time. Later, we consider a problem which involves 'a’processors of Lype A
and b® processors of type B and obtain optimal policies for four cases. ¥
Finally, in the last section 4.3 we consider a single-processor stochastic
scheduling problem in which the processor is subject to breakdowns and repairs,
with the objective of minimising the expected weighted sum of task completion
times. Formulating this problem as a semi-Markov decision process, we obtain

an optimal policy that minimises the objective under considerution.

4.2 Non-Identical Parallel-Processor Stochastic Scheduling Problems

We first give a brief account of the work of Weiss and Pinedo (1980)

without quoting any theorems.
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The problem consicerc by Weiss and Pinodo (1980) can bo defined
through ths following assumptions:
(1) Thero are n tasks 1,2,...,n to te procosssd and m procossors 1,2,...,m
availabls for procossing ot tims t = 0.
(2) Any proccssor can procoss any task but onc (task) at a time and any
task can b procosscd by only one procossor at a timo.
(3) Interruptions in processing and switches of a task from ono procussor

te anothor aro allowed.

() Tho emount of timo X;; roquired by procossor i, 1 <k <m, to procs

task j (till completion), 1 < j < n, is an exponontial random variahbl.

with peramotur a ;.

(5) Thero exist (mm) nom nogativs values Ay, Agses«yA, and

such that a5 =8 )‘JA

r in which

(6) All x“.'s are indopendunt of cach othor and of the mar

tasks arc assignod to proc.ssors.

(7) An uncomploted task j time st111 roquires tho amount of pre
Bl X; AF At 0o Lo Lo procossud on mehing 3 eontinuouely Tron L
onwards.

(8) The rate of cost at time t is g(U) whore U is tho sot of uncomplotod

tasks at timo t and g is a real valucd set function defined on the ol

of all subsots of the set {1,2,...,n}.

Ths cbjoctive of this protlem is to find a policy that minimiscs thog
total wxpectod cost over [0,«).

The condition that there oxist (n#m) NON-NEgative valuss Xp,d,sesesh
and 8,,8,,...,s, such that o35 = 83 A for 1 <1 <mand b <j <0as
called sepurability condition v g 's. Undor this condition, aj's o




said to bo scparatls. For any separable ayj's,we can vasily find
corresponding )\J'a and s;'s (not uniquely). We cell AJ, 1<j<n, the
complotion rate of task j and sy, 1 < i <m, the spood of processor i. In
tho above problom, Weiss and Pincdo (1980) have considored two important
policies callod SEPT and LEPT. SEPT (LEPT) is & policy which assigns

at any moment the task with largest (shortest) complotion ratc to tho
processor with highest speed, the task with seccnd largest (shortost)
completion rate to the processor with second higheet spocd snd so on.

For tho problem defined above, Weiss and Pinedo have mainly considorod

the following two types of cost function g.

Iypo 1 : For evory US N where N = 1,2,....,n},

(1) g(U) >0 (g(U) =0 for U = ¢)

(2 gU-0}) 2 g(U=(k}) For k8 € U when A > A, and

(3) g(W)-g(U-{k})-g(U-{2}) + g(U-{k,2}) > O for k,% ¢ U.

Type 11: For any USSN, g(U) = h

s h ts <r satis
ol where ho's (0 < ¢ < n) satisfy

6=h <h ho and

1 =

Formulating the above problem as & semi-Markov docision process,tho
authors have shown that tho policy SEPT (LEPT) is optimal for o cost
function of type 1 (1I) enda/vg:vmaevsn interesting applications of thuso
optimal policies. Finally, the authors havo considersd anothor type of
cost function which satisfy, for any USN, jUf > 2 ,

(U)-g(U-{k}) _  q(U={2})-q(U-{k,2})
Sr ®r-1
where r = |U| and ecnjocturcd that for any cost function of this typo the

policy LEPT is optimal.
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Wo now construct o numcrical countoroxampli o show that tho ubov
conjecturs coes not hold.
Let the sct of procussors be {1,2} anc N = (1,2} and 1ut (a,h,) =

(2,2.1), (31,32) = (11,10) and g({1,2}) = 10, g({1}) = 8, a({2}) = Y,

g(¢) = 0. We can easily vorify that this cost function

last typo. The total uxpoctod costs Ty and Tg corrosponding to th. policics

LEPT and SEPT arc given by

PR S 153 DI b W €32 Y PEUCEs)]
L ).1:;14-)\232 )\l&lﬁkz 32 )\2 1 )\1311'1\2 2 )\1 51
. oad2y 2% a1y , (%2
= AS2%A 2% 218220817 M%) Ap8p*Azsy

since Ay <y and

On substituting the ,a{1}, 9{2} and g{1,2},ws Goo

i ] = 0.6095 and T = 0.6077

which imply SEPT is tiottor than LEPT .

Schaculing on Ywo Non-Idontical Proce

In tho stochastic schoduling problom considercd by Woiss and i

(1980), it has boen assumcd that the time requircd by processor i, L < i <o

procoss task j, 1 < J < n, is on oxponuntial random varishlo X wach paro tex

The ot

5 = 8; AJ whore

s and ‘e are aon-nogative valu

is very difficult to solve if tho ssparability condition, o

for 1 <i<m and 1< <n, is rolaxed. For oxample, cor

caso whore tho procossing times

(1) for any K, (1 < k% < Moy, Zag, for ba sm ol fhoin onciie o
U, 1< u<m, such that G >
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(2) for eny 1,5 (1< w8 <m), a2 ay; for 1< <nif thors oxists o

v, 1<vgn, suchthat ay, > ag .-

We have not yet boen able to solve this case oven for m = Z.
In this scction, we considor a two-procossor (parallii) schuduling
problom with thu samo assumptions as in the problom of Wedss and Fircco
(1980) uxcept tho assumpiion (5) which is replaced by an assumptior that
2j
processing tinss of all tasks on ono procossor, say A, arc iduntically

@y =u end ayp = A; for 1<) <n. This assumption moons that the

distributed exponontial random variablcs with paramctor p and thoss on
tho othur procossor, say B, arc oxponontial random variables with

parameters A;'s. We have assumsd in our problem that intorruptions and

switchoe of tasks from ong processor to another arc allowod ot any
Wo firet aseumc that thoy are allowsd only at task complotion times nad

formulato the problem as @ semi-Markov docisinn process. Fullowing on

approach which ig similar to that of Woiss and Pinoco (1980),we of

(1) a policy that minimisos the oxpoctod flow tiw .

Finally, using Murkov decision argunents wo claim that tho optimality

of tho above policy  holdsoven whon interruptions and switchos aro allowod

at any timo.

Problem

We formulato the problem as sumi-Markov ducision procuss us follows

(For rofurcncs to somi-Merkov decision procoss, Ross (L97U), Chapeor 72

Tho state of the systom at timo t is tho sct of uncomplotod vk

at that time. The sot of actions J(U) associatod with a stacu U is civon ly



SUY = (F/F = (onB), anb e Uy a Z B} L (F/0 = (0up),6 « UTE

{£/F = (2,0), « e U}I_1{(0,0)}

An action f = (u,@) is an assignmont of tasks o« acd § to the procossc

A and B respoctively. The 0 in first (socond) position indicates thet ho

procossor  A(B) is not ussignod any task. Tho ceeision moments arv
© = 0 and tosk completion times. The sojourn timo in a stato U under an
action f = (a,g) is an cxponontial random variable with paranuter

(1) (e A if @B #0, ()2 ifa=0,8 £0, (1i1) w if a4 0,

tats U to

g=0, (iv) 0 if a =0 = g. The probability of transition from
state U - {a} (U-{g}) under an action F = (,B) is w/Gery) (A‘_/(LA‘v)\“)).
The rato of cost curing tho sojourn timo in stato U is g(U). Wo assuiv

that g(U) > 0 for U # ¢ and g(g) = 0. Tho discount factor is zerc.

For this semi-Markov docision process, it is onough to consider

only stationary policics in order to minimise tho total axpoctod cost

over [0,@. For roference, sco Ross (1970). A stationary policy is a
policy in which, for any state U, a particuler action f e 3(U) will be
taken whonovor the systom visits the state U, Sinco tho procoss s tini
homogoneous undor e stationary policy m tho total expoctud cost ovor Lim
[t,) undcr m can bo dencted by G (U), where U is tho stato of tha systom
at time t. Lot Gp, ., (U) reprosent tho oxpocted cost over tims [t,®) whin

action f' is tekon in state U at timo t and @ is followsd lator on. For

this semi-Markov docision procass, tho statu space is finite wnd
any policy with finite total oxpoctod cost,tho system would bo absorbud in
tho stato o with probability ono and time till absorption hes finit
ixpectation. So tho Following thoorem of Weiss and Pinodo (1980), which

is originally duo to Strauch (1966), holds for our procoss also.
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Theorem 4.2.1 (Weiss and Pinedo (1980) : (i) There exists a stationary

optimal policy n. (ii) A stationary policy u is optimal if for all U N,
G (W = min G, (V) . (4.2.1)
m Fregy M/

Below, we consider a special case with the cost structure g(u) = [u]| for

5 the tolal expected cust.

USN and we obtain an optimal policy that minimic

Without loss of generality we assume that A} < Ay < -+ Ape

Optimal policy when _q(U) = | U | for U S N.

Let 1 be a stationary policy in which actions are taken at decision moments
as follows:
(i) When there are atleast two uncompleted tasks, the task with smallest A
and the task with largest x are assigned to processors A and B respectividy-
(ii) When there is only one uncompleted task, say j, it is assigned to processor
A(B) 1 > A < Ap)e

For an arbitrary fixed subset U of N, we use the following notation:

G = G (U- o = (K4 > rename the tasks U as
G n“(u), k. b"(U {k}), Crg G“(u {k,%}) and we rename the tasks in U a

1,2,..0,r (= [U]) such that A} <X, < ... <Ay We canwrite

4Gy G
T
(r-1)+uGy +1 G
_ k1 e ke N N
O F —wa = for k # 1,r, (4.2.3)
(2-1)+4G, ¥ Gy
1 W
and
(r=1)+uG g+ 16 ez
WA

Our aim is to show that the above policy m minimises the total expected

cost.  For this purpose, we first prove the following theorem.
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Thoorem 4.

G-C. >0 (4.2.6)

6526 (4.2.7)
and

Ap(6-6) 2 A{(G-G) 2 2y (6-6)) (4.2.8)

for 1 <j<r.

. prove those inoqualitics by induction on r, tho size of U.

Proof @
For r = 2, wo have U= {1,I},

G = (Zru[‘nl*kzrnzl/(;m \2) B

= 1/max(4c, ) and Gy = 1/vmax (A, A)-

Wo can casily verify that G-G, > 0 for j = 1,2 und G, > G} und

s . .
2(G=Cy)=1)(C-G)) =z 0 -

Assumc thot the incqualitics (4.2.6), (4.2.7)and (4.2.8) held
for r < k-l. W now show that thoy held for © = k also.  We have

_(r-1)+unh+xr_1cr_h R (r-D)+uGy,+a G

G -G
©U1 W Ay MW

= L()\r-xr_l)(r—l)+u(p+Ar)Glr+lr_l(u¢hr)ﬁr_1t
= G )y Gtk By )/ Ged ) Gind_y)

> L

r_l)(r—l)w(uﬂr)u“,»Ar_l(,nxr)c“

- .J(mxr_)ﬂslr-xr(mxkl)iﬁ,l_]/(wxr)(uﬂr_l)

(since G by induction hypot

12 < Gp < Crr

> 0 .
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For 2 < j< -1,
Gj—cl = ((r-l)wclJnthr‘«r»J%m.lzﬂrcu))/(mxt)
= (u(GlJ—clz) + xr(txﬁ‘c:“_))/(un,)
> 0 by induction hypothosis.

Trorofore G, > G

5 for 1 <j <r.

1 =
Now, we show that A (G=G_) > A;(G-Gj) > X;(G-Gy) for 1< j <r .
For 1 <j<r, we have

(uﬂl_)[ Ar(ﬂ—Gr)—AJ(G'CJ) 1

= (Ar—AJ)()n)\r)C—)\r()\ _1 * AppthIG AJ(qur)UJ.

G,

= Op AP EeaG+a, BT = A O

= A 0T Gy a6y ) 4)\j(r—1+p(;lJvAtlijr)
1)"‘j(':r“3m)

= )‘r_)‘J*)‘r[Ar‘l(Gr_crr-

* WAR(6y =Gy DA {(61-C, ) ]

> 0 by induction hypathosis.

Similarly, for 1 < j <r

(u«)\r)[xj(c—c.] )-2(G-G)]

PRI ETEEOW r]~)\J[r—1 WCJJ +Ap .’;Jr]

B N e R W |

= + /\XI AJ(C
+ ulx; (G
2 gmag) o+ A6
+ U(AJ(GI—I‘-IJ)—)\Z(GI—GIZ)]
(sipel =Xy 2 =a, ond Gy 2 Gy, by induction hypothusis)

v
=]
c

~

induction hypothosi
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Thurefore AL(G-G) 2 Aj(6-G;) 2 A (6-G)) for 1 < j <.

Nowswe show that G-G. > 0 for 1< j <.

For 1<j<r
4Gy A nr (r-l)wul‘]ﬂ G

Jr

GG, =
J W+ AL W+ AL

= [2(B)-6) ) A (6,6, ) 1/ ()
> 0 by induction hypothicsis.

Vo have (u+A)6 = rapuGyen Gy
and (e )6 = (o) + WGy A Gy

Subtracting tho lsttor oquation from tho formor oni, w.o gor

(“‘*r)(["; ) = —(xt—)rrl)[:‘_d +u(cl-ulr)+xr(1‘

= Apop €Oy )+ IlGy=Gy,)

> 0 by induction hypothesis .

Thersfore G-y 2 0 for 1 <<

Using thoorems 4.2.1 and 4.2.2, we show below that tho policy m is optiic i.

Thoorem 4.2.3 : Tho pelicy m minimiscs tho total expoctod cost.

Proof : Comsidor an arbitrary fixod subsct U of N.  In ordur to prov
the oquation (4.2.1) for this U, we cempare ell the actions in J(U) with
thu action f = (1,r) chovsen by m in tho state U. First we corsidur the
actions of type f' = (a,B) «,B # 0. We ropruscnt [;r,/" (U) by ¢'.
Then we can write

G o= ( r+uGu+XBGL\)/(m>\B)

and G'-G = [r—(n(E—l‘.%)w\r((‘.7[2”),‘ j/(,n)\h}



: 98 a ¢

2 [r-{u(6-6)) + Ar(G—Gr))]/WﬂB)
= 0

since the above inequality holds by theorem 4.2.2 and the equality holds
becawse (u#A )G= © + uGy + A G,. Thus G' > G for ' = (a,B).

Similarly 6' > G for f' = (0,) or (a,0) € J(U). Trerefore G' > G
for f' ¢ J(U). Hence the theorem.

It is obvious that the total expected cost gives the expected flow time.
Therefore the policy n minimises the expected flow time. In the above
semi-Markcv decision process we allow decisions at times 0< 'l < '2 «es where
Ti'e are transition epochs (job completion times in other words). If we

Bllow decisions at times 0 < § <28 < ... <T) < (T} + & < (1) +28< eue <

T,< (T, +6) < (T, +28) < ..., however small § is, the process is still

a semi-Markov decision process for which

(1) the set of stationary policies is the same as above,

(2) the theorem 4.2.1 holds

(3) the policy n minimises the total’ expected cost. This means that
even if we allow interruptions end:switthes of tasks (from one
progessor to another) at times (0,6,28,:c-+, TjrT3+ 6, LTI AR
the policy 7 minimises the expected Flow time.



G for £ = (u,Bl

Therefob

0,8) or (a,0) € HU).

Problem involving two or more processuls under cectain conditions

We shall now consider a problem I'' which is more general Lhan Uhie above

non-identical processors problem in the sense thal there are'a'processors of Uyps

A and'biprocessors of type BB instead of one of each type. [wo objectives (1
minimisation of expected flowtime and (2) minimisalion expected makespan aie
considered for the problem. We shall obtain optimal policies fer the followiy

four cases.

Case o b, Gbjective Condi Lion
1 2 1 to minimise EF1 < min
11 m-1 1 to minimise EMS Wz max A 5
11 1 2 Lo minimise IMS iz max A
v 1 n-1 to minimise EFT boswin A

EFT - Expected Flowtime, EMS-Expected Makespan
First we assume that pre-emptions and switches are allowed only at Lusk
conpletion times and obtain optimal policies for each of the above four cuses.

The decision moments are t = 0 and the task completion times.

Case 1: a=2, b=1l, psmin Ajand the objective 1s to mininise the

expected flowtime.
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Let 7; be a policy in which at each decision moment

1) whon there ere atleast thn.a uncompleted tasks the first two tasks

in the nondecreasing order of )./assxqm:d to type A processors and thec last

task in the same order assigned to type B processor.

(ii) “hop there are only two uncompleted tasks the tesk with smeller
value of ) is essigned to one of the type A processors and the task with
larger value of X assigned to the type B processor.
(iii) When there is a single uncampleted tesk, it is assigned to the type O
processor.

Let C"v.“” represent the expected flowtime under the policy n: from
time t cnwerds when U is the sot of uncomploted tasks at time € (we have (hio
reprusentation since the processing times wre exponential). Lot

G=6 (N, G = (N-{k}) and Gip = Gﬂl(N~(k,i)). Then we have

n+u(G14‘GZ) + 2.6

= Zin, b
or equivalently
u(c—cl)vu(c»cz)’)\n(c_un) = n JIRLNTY
for n> 3,
245G, +A.,G. v
s —L 22 o Gz
Uiy
and
G = 1/ for n=1 oo
Theorem 14.2.1
G26; for jeN [T
Gyj26 for i,jeN,i<j 4o

A 6-G) > ).J(G-[;j) for jeN .28
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Procf : We prove this by inductice on n.- For n = 2, the insqualitics
hold by Thecrem 4.2.2. Let n = 3. Then we have

(2u%a3) [A5(6-G5) =25 (6-6) ]
= (Zu*l))(X,—AZ)G—X)(uwAZ)GB—)J(p0A3—A2)GJ*AZ(H*A})CzﬁuAZGZ
= (A3=Ap) [3+1C #uGo+h365 A5 [2+uC3 42,05, ]
+ ).2[2«“521«)\}1:2}]»x}(uﬂy,\z)crwzcz
= (A3-22) +ul3-2)G3-23653+2,6 1, 1-ur5(G3-6,)
2 (A372p) = uAz(G3-Gp)
(sinco the inequalityy2.s holds for n = 2)
2 0

Proof of the inequality (xJ-AZ)-uAJ(G)-GZL 2 U0 is given Appendix i.
Thus A3(G-G3) > A (G-Gy).
To show the inequality A,(G-G,) > A;(G-G)), we have

(2u+A3) [A5(G=G,) -1} (G-6;) ]
= (Ag=A1) (2urA;)G=x; (#A3) Gy=ud,Gy+A ) (urd3)Govun ) Gy
= (A=A (3410 #G #2363 1-Ap (244165 #2536 ]
+ A (240G y#A5Cy 5 T-ud Gy Gy
= (Az-xl)o)\}[(AZ»AJ)EfAZL)Z”l&;}l]
+ ML= A (G +ho) =AU, wa Gy =h By +a Gy g

2 (AgmAy) + A6 =2 6o-2,G) #2600 )
(since the inequality f-2:45holds for n = 2)

2 W66y 52 (656,50 )
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Froof of the inequality Az(ul-cu)-xl(cz—cu) 2 0 is whown in Agpendix [.
3.

Therefcre the inequality/holds for no= 3. To show Gy 2 Gy. Consider the

f. llowing two equations

(p¢A2)53 = 2 +uGyy + AG3,

(d3)Gy = 2 by + Ay -

From these equations, we get

Q) (C3-6) = (A=A Cy=(a3=Ay) G3p#ia(Gy -Gy )

(37250 (6=G5)) +11(G5y =Gy )

> 0

since the inequalitiest-a-3andy.24yhold for n = 2.
Thus G} > G2. Similarly (32 2 Gy. Therefore the inequalitice (&) hold for
n = 3. We have

3+ 1(6,=6)) + A5(G5-G))

Now it easily follows byya-Sthat G-C} > 0 which implies G-Gz > 0 by (o).

Therefore the inequalitiesy13,y2:\% andy2:\5hold for n = 3.

Assume that the inequelitiesy.2:\3,42:\4 andu21Shold for M= k(> 3).

re now show that it is true for n = k+l also. Let n = k+l. First we
crove the inequalitiesy.24. We have for 3 <ic<n

(2uwd 6 = (=1 G, + Ay Gy

(2uer )Gy = (=) + WGy + uGjy + A Gy -

fzon these equations, we can write
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@0 6,6 = Oyrd )6 + (GG ))

* 163 )M 1B 1Ay

n-1%n-1 ')‘nG.\n

2 A G; + A
2 g2 )6 + L
> 0.

The above three inequalities follow from induction hypothesis. Thus

Gp26; for i3> 3. Onthe same lines, we can show that Gy 26, for

3<icj<n, Gj 2> G2 for j 2> 3 and l’a‘2 351; Therefore the inequalities

Y2:4hold.  For 3 < J < n, we have
(2 ) [ (6-6 )= (66 )=
= (An-x_,.)(2u+xn)c-xn(zm)\n_l)cnﬂj(zuﬂn)cj-xn(ixn-).n_l)nn
= (,\n-;\j)(nwclwczqncn)-An(n~1+ucm+ucnz

*AnGnd -Aa (A=A 106

* Mo1nne) * A‘j(n——r + G 4 n

= (*n"‘_j)*“[("n'*j)ﬁl"n°1n“3‘5u-] * HLOGA)6,

- AnGZn'XJ.GZJ]«'—).n[(Xn_l-AJ)Gn—An_IGnn_1+AJ.GnJ]

>0

by induction hypothesis.
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Similarly

(Zu«)\“)[):n(G-Gn)—).Z(G-GZ) 1

"

L N L W T VLIPS EPW L CW VO T

~ Anck Snnop * Ag0nzd v ML AR)65m0 Gp 6y

2 uLOn=2)65-3,6p 45053

(by induction hypothesis)
= A (Gp=Gy0)-25(Gy-Gg5) )
2 WD (64-C ) A5 (By-Gy) ]
> 0

by induction hypothesis

0n exactly the same lines as cbove, we can see that A (G-G,) > A,(G-G ).

Therefors the inequalities 42.05hold. We have
GGy = [n+n(Gy-Gy) + A (G -G}) 1/ (2usAr,) 2 O

since Gn, G 2 Gy, Now G-G, 2 0 by inequalities (7). Since G, 2 G
for all j, it follows that G_GJ >0 for all j. Hence the theorem.
Y2y
Using Theorem / we shall now show that the policy L5} minimises the

expected flowtime.

Theoremy25: The policy m) minimises the expected flowtime.

Proof : We prove this theorem also by induction on n. For n = 1, the policy
my trivielly minimises the expected flowtime. For n = 2, we have initially
the following set (J) of actions to choose. J={{V,J)|jeN,VEN-{J}IUL(V,C)| ven,
V £ ¢}. An action (V,j) is an essignment of task j to the type G processor

and the task in V to cne of the iy rs.  In an action (V,0), tesks

to

in V arc a
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type B processor.
Consider an action f' = (V,j). Lot G' represent the expected
flowtime when the action f' is chosen at time t = 0 and the policy L5t is

followed later on. Then we have

2+pL G +AG
ey

o s —— e
e

z-{u_zv(c-ul) +25(6-6)))

G'-G = Lc
u+ A

N 2-(u(c.cl)*x2(u-nz)}
- v .
H o+ AJ
(by inequalities 423,421 and 4-2-15)
= 0
since (u+dp)G = 246 +X,G,. Thus G' > G for f' = (V,3). Similarly
G' > G for f' = (V,0), Therefore G' > G for any f' €J,that is, the
policy m is optimal.
Suppose m) is optimal for n < k wherc k is an integer grsater than
or equel to 2. We now show that m) is optimel for n = kel also. Let n = k+l.

The set of ections that can be teken at first decision moment t = O is

3 = {(V,3)] e N, VEN-{§}, V] <2}

U0 |ven, 1< V] <2}
Since m) is optimal for n < k, we follow m) fram second decision momcnt
onwards, whatever action is chosen at time t = 0, in order to minimise
tho expected flowtime. So, it is now cnough to show that m) is beitur than
(stloast as good as) any policy that coincides with m) from seccnd decision

moment onwards. Consider a policy n' which chooses an action f' = (V,j) in
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J at £irst decision moment and caincides with , later on, Let G
represent the expected flowtime for the policy n'. Then we have
neu E G+ AG;
& = iev lx 313
Wy
and
n-{u I (GG (GG
5 (66 366

66 = — Sy
T+ Ay o

f{G-G) ) +u(G-G,) +A,(G-G, )}
2 T+ %

= 0.

42y
The sbove insquality holds by Theorem [ and the last equality holds by 4210
Thus G’ > G. Similerly we can see that G' > G when £ = (V,0). Theioi

m is stleast as good as any policy that coincides with m from second

decision onwards. Honce 1) is optimal.

Cose Il : a=m-1, b =1, u>max Aj and the cbjective is to minimise the
J
expected makespan.
Let m, be a policy in which at each decision moment we assign, emong
the set (U) of uncompleted tasks,
i) the first (m-1) tesks in the nondecreasing order of A to A type
processors and the last task in the same order to the B type processor
when |U| > m N
(ii) all the tasks to A type processors when U] < m-1.
Let G, G end G, represent same terms as earlier with the exception
that m) is replaced by m, and flowtime by makespan.
m-1
6= [l § 66, /TGt if 02 m

and

- % + 17 otherwise.

©
"

i
—

Sl

1
M=
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Theorem424: G 2 G; for l<j<n 4-2:16
620G for lgigm-l <j<n if nxm 4207
An(G=G) > Aj(G-GJJ for 1 <j<n 4218

Proof : For 1.<n <m-l, it is casy to verify G; = G; for i # j,
1 : -

GGy =3n for l<jcn and A (G-C)) 2 A;(G-Gy) for 1< j <n.

Let n=m. Then we cen easily see that Gj = Gy for i #j,

= 1/(p+(n-Dyu} for 1< j <n and consoquantly A (6-Gp) > A;(G-G;)

1&J <n. Thus the inequalitiest 24,4277 and42-18 hold for n < m.
By induction on n, we shall show thet the inequelities hold for n > m.
Suppose the imagualitics hold for n = kwhors k is an integer greater than
or equal to m. . We now show that it is true for n = ksl also. Let no= kel

Then we cen write for 1 < j < m-1
(=D OG- DGR G + A6
< O A LB JEm L G- 1smh_ oA Oy A o L1 6
An-18nn-11

( , mil m-1
= (A =201+ G, + A G J-A_ [l+y G . +
L AL LR S ST

0
* Ajllen 121 G35 * A Gjnl= A (=An )G,

if)
m-1
= ”;Zl [OQ=A IG5 =A 65 #A 165 0+ [, 1=A; )nn n-16nn-1
ity
+ ,\Jcm] + p[(xn—xj)uJ—Anan + AJ. GJm]
2 ulGgay )Gv—x,‘ in * Ai650]
= MIAG ;)25 (G =G ) .
2 WD (64-G 5 0-A (65-C 50 ]

> o
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The last three inequalitics hold by induction hypothesis. Thus
A (6-C) > AJ(G—GJ) for 1< j<m-l. Following the above approach,
we can easily see that X (G-G) > AJ.(G—GJ) for m < j <n.

For 1 < j < m-1, we have

m-1
“"“1)“*)‘n-1lcn = 14y 121 [ Ane16nno1
m
[(m-l)pﬂn]cj = 1+ uigl Gis + MGy, -

ij

From these equations, we get

m=-1
LDt 1 1G-6)) = (g=hy_ )64, 6 *"n-lcnn_lﬂ‘(lgl(“.-.x‘cjx)*(%

n-jn
i
> 0
by induction hypothesis.
On the same lines we can easily see that
Enz[;J for m<j<n 4-2-9
and 626 for  lci<ml<j<n.
We have
m-1
FETE) G + A6, ~ (1w { Gyi *A65)
_ izl
66, = e

> 0

by induction hypothesis. Now G—Gn > 0 by4y218 and consequently G—CJ >0

for 1 <j<n byy2l?andy-2:09. Hence the theorem.

n”

GJ[H

)
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Theorem 42:Ths policy T, winimises the expected makespan.
4-2:11
Proof is similar to that of Theorem / (given at the end). In this case

the set of actions that can be teken at time t = U is given by
J= {03 e N, VEN-(j}, [V] < min (m-1, |N-{3}])}

UIV,00[VEN, 1 < [V] <min (|N], m-1)} .

Case IIf ¢ a=1,b=2, > nax Aj 8nd the objective is to minimise
the expected mekespan.
Let "3 be a policy in which at each decision moment we essign,
among the set (U) of uncompleted tasks,
(1) the first task in the nondecressim order of A to A type processor anc

the last two taeks in the same ordor to  type processors when |U] » 3

(i1) the task with smaller value of A to A type processor and the task

with larger velue of A to one of B type processors when |U| = 2.

(1i1) the task to A type processor when |Uf = 1.
Let G, G and G, reprosent the same terms as in case 11 with tho
exception that m, ie replaced by 3.

Here, wo have

G= (InGped, (G o+ 60/ Cued  #h )

or equivalently

W(G-G)) + A (66, 1) + A (6-G) = 1

(lapGyed 6,/ (urry)

for n=2 and G=1/y for n=l.



Theorem 4.28 ¢

G_)_Gj for 1<Jj<n 4.2.20

Gj 26 for l<jgn y.2.21
min{(6-Gp) e An_y{6-G, )1 2 Aj(6-6) for 1< <n-l

z 2 L..],.)_‘l

if n>3 and )‘Z(G‘G2) > )‘I(G—Gl) if n=

Proof : We prove the theorem by inductius ol $e for n = 2 the above

inequalities can be easily verified.

tet n=3,. Then we have
G = (1+uulﬂ202+x3l53)/(u~x2+>\3)

. TGy a0y LGy +AsGys
ey v
Uiy v Ay
1.142/“ R Irledg/u
U+AZ ;ﬂ-)x;

= () (uehy) (urdy)

> 0. -

Similarly, G}—GZ = (A;-Az)/(u*)\z)(u«»}‘}) >0 and szﬁl = (GB-ISJ.)—(C}--[S2

Thus the inequalitiesy2.2lhold for n = 3. We have v

23(6-65)-2,(6-C,)

A Py
3 . G 2
=gy [1-(uany) (G5-6,) ] - e 3[1+)‘)(G}—G2)]

since GZ = Gl. Now we can write



+ 113:

(u#Ag#g) A3 (6-65)-2,(6-6,)] = (A5=Ag)-A5(u+2),) (G5-G,)
= Ogma) (A5 (ue23g) / (uwd ) (u+d5)
> 0.
We have Ay(6-G,) 2 A)(G-G)) since Ay > A) and Gy = Gy Thus the
inequalitiesy-22%hold for n = 3. Now we can easily see that G-G‘i >0
for 1<j<3.
Suppose the inequalitiesf2.20,4221 and 4.22%hold for n = k(z 3).

We shall now show that it is true for n = k+l alsc. Let n = k+l. Then

we have for 1< j <n-2

(m—kn_lﬂ.n)[).“(G-G“)-)\J(G—Gj) ]

= Onh ) Qe A )G=A Gk gk, )60k O=hy_p)Gwh s Gady_p =4, )

expanding (u+d_;+A )G and rearranging all the terms on the right

hend side, we can write
(uun_lun)[xn(c-cn)—xj(c.cj)]

= WG ARG NGy 65T+ Ay LA 106y

-X)6 - +; 6 ]

* A5 Gy 1 AN oA 8 A 5 G+ Ay By

J N~
> 0

by induction hypothesis, that is, A (G-G) > )\j(G~GJ) for 1< j <n-2.



Similarly,
Quer 1 ¥An) (A (G=G)-A) (G=G)) ]

= HEOGAEIAG #2615 1+ Ay LOG2)6 1A o

+ ACho12] + AT 7260 A0 2 Copz + Ay Byl

v

BlOG-AIG A Gy + A)6,0

(by induction hypothesis)

Iv

“[(’*n‘*z)cx"‘ncln + 26951

0.

v

s
The last inequality holds by indyction hypothdis and the previous onc

holds since -A) > - A, and G)-G), > 0. Following the same lines
as above, we can show that An_l(c-Gn_l) > AJ.(G-GJ) for 1 < j < n-2 and

An1(G=G,_3) 2 Ay (G-G)). We can write
Gedg_g*hq 1060 = 14uGnyman 28nn 2 An-1%nn-1
(uwhy_1#A,)6) = LG+, 16y, + A Gy

From these equations, we get

(ur_p*An_) (G,-C))

n-2

=[0G A0 2261208102802 1* 21 Crn~C1no1) 0 Gy 6120

2 Ogan 2061081, *+ AnzCnn-z
% Ogrq 2)617M 810 *+ X280z

by induction hypothesis. So G, > G. On the same lincs we can casily

see that
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G126 6526 for 1cj<n2 .

Gu2 65 for 1<jcn2. 4.2.23

G-G) = (1 + >vn-1(Gn-l‘cl)"‘n(cn'ul))/(““n_l"‘n)

> 0

eand GG, 2.0 end G-G ) >0 since min{r,(G-G), A, ) (66 )} > Ay(G-G,)
It now follows fromg2.23 that G—GJ. 20 for 1< j<n-2. Hence the thecrcm.
Theorem 4.29: The policy w3 minimises the expected makespan.

Proof is similar to that of Theoremy2.5. The set of acticns that can
be taken initially at time t = O is given by

o= (G e N, VEN-GY, V] < 23U omve N, 15| < 2

In a0 action (j,V), we assign take j to A type processor and tasks in V
to 8 type processors. Zero indicates no assignment of any task to A type
processor.  For n = 1,2 and 3, we can easily verify, as in Theoremy2,5 that

the policy my is optimal. For n > 3 we use induction method as in Theorcmya.s.
Caso IV : a=1, b=ml, y<min Aj and the objective is to minimise
the expected flowtime.
Let 1, be a policy in which at each decision moment. We assign, among
the set (U) of uncompleted tasks,
(i) the first task in the non-dscreasing order of A to A type procossor

and the lest (m-1) tasks in the saie order to B type processors when [U[ » m



ST H
(ii) all the tasks to B type processars when Ul < m-l.
the Aarme bvms
Let G, G and 9 reprssent/es in Case I with the exception that

m is replaced by e Now, we have

"
n+ucl+jzh A G

G = ———— for n>m
we §oay
FE
n
where h = n-m+2 and G = J 1/a; forn <m-l.
izl

Theorem §.2.-10 i
6>G, for l<jgn - 4.2.2Y4
Gﬁcl for l<jgen 4.2.25

A (GG > AJ(C~GJ) for 1<j<k<n if n<n
and

N(B-6) 2 Aj(6=6)) for 1<) <n-m2 <k <n 4.2.26
otherwise.
Proof : We prove the theorem by induction on n, It is easy to verify

the above inequalities hold for n <m-1. Let n =m. Then we have

n n
G = (nHG, + 2;6;)/(u + A
1 sZz 44 izz =

n
6 = igl Uag - 1/).J for 1<j<n.
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For 1< <k <n, we have

A (G-Gk)-).j (G-GJ.)

= ’—[nxkﬂﬂk(c <G )+A 2 23 (G; ~Gk)-(nAJmAJ(Gl~GJ)
M Z A

n
A sz 266,01

1 (RN
) = Oy + 1;—1 Oyox) + iZZ O3]

n
(by swstituting G = T Iy -1/, for 1<t <n)
Lyn ) ==

(A =2
—kL (n-u/a) = (1-1)]

H*+) A
izz*

20

since ¢ A Thus ).k(G—Gk) > AJ(G-GJ) for 1<j<k<n, Itis
obvious that Gj > Gl for 1<j < n and consequently G-Gl > 0, Since
Ak(G-Gk) > AJ.(G-GJ.) for j <k it now follows that G-GJ. 20forlcjcn.
Suppose the inequalities4.2.24,42.25 and 42 26hold for n = K(z m). We
shall now show that it is true for n = kel also. Let n = k+l. Then we have

for l<j<hgcksn
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2
o+ izh AP I (86, )-2;(6-C ) ]
a
= Oy E AIG-A G+ T lii)ﬁk-)\k(xk>Ah_1)Gk
izh-.
itk
w1 oA
+ A+ )6,
J izh 2d
= (Ak-)\j)[nﬂ,c + Z 23641~ ).k[n~l + UGy + Z

izh-
ifk

]
%

n
+ '\j (=1 +u Gjl + i:ih Ay Bji]‘ )‘k()‘k'lh-l)ck

n
(,\k~xj) + u[(Ak-A )El‘)‘kﬁlk')\] 1J] i:in ;‘i[o‘k»‘j)c1
i#k

= NS+ A G 5T ML A PGA, g Gy A jG)
3 o
by induction hypothesis.

To show Gj 26, for h<j<n, consider the equations

n

(u + A6y = (n-1) + Gy
1Zn—1 I zh_
i#j i#y
n n

(u+ A )G, = (n-1) + WGy, + A G
iZh 171 12 J.Zh i Tli

Substracting the later equation from the former one and applying induction

hypothesis, we get
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n
(o + 1zn-1 2656 = Q=2 6A 81+ Ana1 Gin-1
i#y

E (}‘j')‘h-l)nl‘;‘jnm + Ano1 Gipel

> 0

by induction hypothesis. Similarly, we can show Gy > Gy for 1<j<h and
G >G for 1<j<h. 4227

It is casy to see that G-G) » O end consequently G-Gj 2 O for hgJ<w

by inequalities 4-2.26.G-C; > 0 for 1< J <h since GG > U and

G2 Gy fur l<J<h  Hence the thcorem.

Theorem ga.i:The policy m, minimises the cxpected Flowtime .

Proof : We prove the theorem by induction on n. 1t is obvicus that LA
is optimal for n = l. Suppose it is true for n = k. We shall now show that
it ie true for n = k+l also. Let n = k+l. The set of actions that can bu

taken at time t = O is given by
3 = {(§,V)]JeN, VEN-{3}, [V] < min(|N-{3}{,m-1)}
U (@, |vsN,1<1v| < min (|N], m-1 )}

Lot G' ropsesent the expected flowtime when en action F' = (3,V) in J

is teken at time t = 0 end m, is followed later on. We can write

{ .G,
{n o+ uGy + igv 23630/ +i§v A

(u+ I2)E-6) =n - (u(c-cj) + § (661 -
ieV ieV
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If n < ml, then

(u o+ izvxi)(ﬂ'-ﬁ) = n-(p/)z1 + |V}
2 1-uny
0.

v

If n>m, then

n
v A E'-6) 2 ne{u{G-Gy) + | A;(G-C))}
ieV i=h

= 0

4.2.10
The above ineguality bolds by Theorem f and the equality holds sincc

n n
(u+ 3 A)6=n+uGy+ § A6
izh iz=h

Similarly, we can see that G' > G when f' = (0,V). Therefore m,
is optimal for n = k+l also. Hence m, is optimal for any n.

So far, we have shown that the policies my,m,,my and m, are optimal
for the cases I, II, III and IV of the problem P' respectively whon the
pre-emptions and switches are allowed only at task completion times. Using
semi-Markov decision arguments as earlier, we can
casily see that the above policies are optimal for the respective cases
even when pre-emptions and switches arc allowed et times
§< 26 < e, <Ty T+ 8Ty +28 <. <Ty<Ty+dc<., whore

Tys Tps -+ @re task completion times.



Remarks 4.2.12 :

In view of the above results we conjecture that for the problem wilh o'
processors of type A and 'b' processors of type B, the expected flowtime
(expected makespan) is minimised by the policies 31(52) when

min Ay > (max AJ. < u), where By and g, are as described below:

Bl is a policy in which at any decision moment

(1) when the number (r) of uncompleted tasks is atleast ath, lust b Lasks

in the non-decreasing order of A are assigned to processors of type U

and first a tasks in the suue order assigned to pro s of type A
im (he Monchewanimg aden of 2
(i1) when b <r < asb, the last b tasks/arve assigied to processors of
type B and the remaining tasks assigned to processors of type A
(ii1) when r < b, all tasks are assigned to processors of type B.

Lﬁz is a policy in which at any decision moment

s atlea

(1) when the number (r) of uncompleted tasks L oa+ b, first

a tasks in the non-decreasing order of \ an agsigned to processors
of type A and the last b tasks in the same order assigued to processor

of type B &

(ii) when a <r<a=+b, first a ta

Inthe non-decreasing order of A
are assigned to processors of type A and the remaining tasks

assigned to type B

(iii) when r < a, all tasks are assigned Lo processors of type A,
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EXPEcted cost givgs the—expected

flow time.
time. In the above gefii-Markov de:

at times

the policy

even if we allow 1

the _ ctod-fdew Line.

4.3 Single-Processor Stochastic Scheduling Problem

Introduction

In this section, we consider a single-processor stochastic scheduling
problem in which the processor is subject to breakdowns and repairs. Lt
is generally assumed in scheduling theory that the processor never breaks

down. However, in many practical situations it is quite common that i
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procossor broaksdgwn occesionally whilo operating and its repair roquircs
cortain amount of timc. Ths continuous operating timo and tho ropeir ims
of the proccssor and procossing times of thu tusks may all bo ron-dotormi-
nistic.

Our problom is to find, undor this onvironmunt, a policy
that minimisos the expected weightod sum of tesk completion timos. Wo

cofine tha problem through the following assumptions.

(1) Thero arc n tasks 1,2,...,n to bs processsd on a singls proc

(2) Only onc task can be processsd at a timo.

(38) The processor is subjoct to breakdowns and repairs-

(3b) Initially at time t = O the processor is in operating conditivo.

(3c). Tho longth Y; of i th period over which thu procossor cpurates
continuously follows exponential distribution with paramcts: .
for i > 1, 104, all Vi'e aro dduntically distribuce
oxponential rancom variables.

(3d) The length Zj of i th ropmir period, 1> 1, s a F.v. with

expectation 6( < w) and all Z;'s wro identically distributod.

(4)  The amount of proccssing time Xj that o Job g, 1€ 50, suguizes

is an ouxponential random variabic with parametor A].

(5) Sot-up timos are assumod to bvo Zo@o.

(6) All tho random variablcs doscribod above urc mutually indog

(7)  Pro-omptions are allowod only at the timo of complotion of ropoai

() Cost ej iu incurrod on task § (1< < n) por unit cime cill the
tusk j is complutod.
The objective of this problom is to mininisc thu total uxpoctud cost.

By assunpticn (7) we allow docisions as to assign a task to tho

procousser

nt task completion times and also whonover tho ropeir of tho procossor is

v die

complated.  In order to formulato tho problem as a semi-Hor
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procuss, wo allow dscisions at failure times onlso which arc immaterial in

view of cecisiuns at ropair complotion timcs.

Formulation es s Somi-Markov Docision Process

Tho state of the systom at tims t is (U,s) whore U is tho sot of
uncompleted tasks at time t and § = 0 if the procossor is Loing ropairod
at time t and § = 1 othorwisc. Tho statc at tins ¢ = 0 is (N,1) whoro
N = {1,2,...,n}. The set of actions J(U,§) associnted with o state
U,8), U= (11,12,...,ir), is defined as J(U,8) = (0,8),0,,000,0 ) duue,

nt of tesk

3,8 = LU0}, An action k e 3(U,8), k £ U; is an assigom
k € U to the processor. The action k = 0 means no assignmonc of tasks oo
the processor.

Lot PKL(U,8), (U',8')] reprosent tho probubility of trensition
from & statu (U,8) to a stats (U',§') under tho action k. These trancicicn

probabilitics are givan as
P00, (U171 =1 for ke 3(U,0)

ML, W07 = T
k

a LU0, W=k, = —E for & 3(U,1)
ana (WD, @-00,D] = o o ke,

where A, =

Let Tk(U,é) reprosent the sojourn time in a state (U,8) under the action k.
These sojourn timos TX(U,d)'s are given os
™U,00 = 2 for k e I(U,0)

T9U,1)

.,
=<

™W,1) = min(X,,Y) for k e J(U,1) and Kk £ 0

~tore Y is an exponential random variablo with paremoter p and Z a r.ov.

fcllowing the distribution of z; Cost 2¢is incurred per unit time

iel



123

during the sojourn timo T(U,8) and the discount factor o is zorc.

For a semi-Markov decision procoss it is enough to consider tho
stationary policies in order to minimisc the oxpected cost. For
referencs, see Rose (1970), Chapter 7. Thereforo, we rostrict our
attention to the sot (C ) of all stationary policies. Sincu the uctivns
tuken in the states of tho typs (U,0) do not effect tho total uxpoctod

cost we consicor only ths stationary policies in which the actions

choosen in tho states (U,0) and (U,1) arc same for cuch US

roprosent  the set of all such staticnery policics. It is chvicus chat
a stationary policy in Cﬂs which takes the action 0 in statos (U,0) and

(U,1) for a particular U # ¢ gives total expoctsd cost =,  Thorofos.,

W tako fho

wo consider. only the stationary policics of € whach ¢

mefit the sobl of such

action 0 in any state (U,8), U £ &, Lot us oo
stationary policics by Ch.

A policy F of € takus somo action
(non-zero) in both tho states (U,0) and (U,1) for cach U £ ¢, that is,
tho policy f takos an action corresponding to the sst U only. The
policies of c;H can Lo divided into two kinds (1) pemutation policics
and (ii) non-pormutation policics. A pomutation policy f is a stationory
policy to which there corrasponds a permutation n = (np,ig,...,m) of b

1 arc renumborad

sloments of N such that when the Glements my,my,«ex 1,

as 1,2,...,n rospoctively the policy f takes an sction Kk = min j in
a stats (U,6), U # ¢. The pormutation policy f can bo s;mplyJ:gyrcaqnt4d
Ly tho corrosponding permutation m. Tho policics other thau tho
pomutation policivs in the sot Co . are called non-pomutation policios.
Below, wo illustrate permutation and ron-permutation policics for

N = {1,2,3}.
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Pormutation policy : Lot k ropresunt the action choosun corresponding

to U. A policy (of c;s) in which

k = 2 for U = {1,2,3}
k = 2 for u = {1,2}
k = 2 for U = {2,3}
k = 3 for u = (1,3}

is a pormutation policy. Tho underlying pormutation of the policy

is (2,3,1).

Non-pernutation policy : A policy (of CI) in which

k = 2 for U = {1,2,3)
k = 1 for U = (1,2
k = 3 four u = {2,5)
kK = 3 for u = {1,3}
is a non-pcrmutation policy.
Under & policy f of Cf_ tho systum moves from o given set U of
cardinality r(z 1) to n sct U' of cardinality -1 uniquoly. So, for

ery non-permutation policy f,we can find a corrusponding pormutation
policy f' such that the proccsscs under f and £' are identical. W can
find such a correspondence in the above given illuscraticns. Thorofore

tho total

=< consider only tho permutation policics in order tu minimi
xpucted cost.

Lot G (U,1) represent tho total expocted cost over tho intorval
[t,) under & pormutation (pormutation policy) m =(m),m,...,n.) whon
(U,1) is ths state of the systom at time t. We simply reproscnt
G (N,1) by G,. In the theorem given bolow, wo obtain an optimal

permutation that minimiscs G" over the sot (S) of all pormutations.
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say j, for processing initially

Lemna 1 Suppose we choose a Lusk,
at time t = 0 and process it until its complelion without precmption. Let

r 14,0
TJ represent the time at which the task j is completed. [hen E0T5) ,—fli’
J

Proof : Using renewal concept, we can write

[U_]J = E[min (xj,v1)] +ELZ) + IJ] r(xJ > Vl)
O+E(T )
R 1 . [ i Iu
W WA

i.e. r[rJ]: (1+u0)/AJ-

Theorem 4.3.2 : If ¢ > AL e A, for a sequence
- PlApl PPy = PPy
P = PpPyyeeespy)s then G o= min G
s e S
Proof : Considor an arbitrary fixed pormutation 1 - CN

Without loss of gonurality we mssum. that 1 = (1,2,...,0). W can write

Q) + 6 (N=(1},1)

icN
(sinco the state is (N-{1},1) at compiotion
tine T,

01 oel %wﬁ + 6 (N-(1},1) by Leama 4.3.1
ieN 1

Applying the abovu argumcnts ropeatodly,ws Finally get

'Z‘ pon) E 140 g 146 14,0
G =[ c.] + [ c.] teeat [ o B (e )it
T R isz 1A i=n-1 TAq0 A

c
i = ey 1,1 CEPNY I L,
w0y G2 (1y6) [,\1 + ey( N A2) “"’“"(Al TRt a0

Therefore, for any arbitrary pormutation s = (81,85000,8.) wo hav.

n
by = Amiddl Y e, (3—+ 3 v oiie sy
2=1 g Gl

Y2
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Givon Bysfigeee e, aRd bl'hz‘""bm’ a; and bi >0 for 1 <ig<m,

furiction h(n) definod on ths sot of purmutetions of 1,2,...m as

)
h(n) = u b
01 T sl T

where o = (nl,ﬂz,...,nm) ig minimisud by « pormutstion v = (vl,v2y : "’Vn)
b b

by
1

which satisfius —x<

1

« For roforence, sio Mo Neughton

(19%9).
Now, we can wasily sos thet Gs is minimiscd by the pormutation p.
G.E.D.
From tho curlicr argumonis and the above thooram, we conclud. that
thy total cxpoctsd cost will be minimisod if the tasks arc procissod

without pre-omptions 1n tho non-incroasing ordour of LJ )‘_1'

uomavk 4.3.4 ¢ The optionul pelicy that minumiscs the totol wxpectud

cost is indopondonc of the nuture of ropalr tams and tho viluo of poranotor
pe I the tasks are procoss: d without Pro=-umptions in the nef-incroasing
wrdor of LN Aj’ whure wJ, 1<) <n, is thy weaght assoeiotod with jib 1,

thon the oxpoctud woightod sum of completion times would be minimisod,
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APPENDIX A

2ol 2/AgRs )y
37 ¢ " = M

iy,

(uwdy) (ueh3) (Gy-G,)
= 20324 uludz) /Ay + AgQurdg) /Ay =u(edg) /g3 (e, ) /Ay
= (A;-Az) + u(u+A3)/A2 - u(p+l2)/k}+(x3—kz)(l~p/A1)
= TOgighighy + 12050 + uO3-8) Ak (gmag) (/)
= (AJ-AZ)[(MMZ)(u*A;)/AZ)\} + 1-u/dy )

1 1wy
Tpus, GGy = (Agmap)f W*m) .

Now, we have
(y=2g) -r3(65-6,)

. 1 1 1-u/)y
= uA;(X;-Az)Eix; - {T* [eTwimw 11

1-u/xy L-u/xy

= Ws0gma))0 vl (‘mzilm,il

> 0 since Ay 2 %) and 1/M; > l/(pﬂz)(uﬂ}).



11331
AFPENDIX B
UM (G- 213165650

, 2"‘3"331"321)} 3 25y y)

iy Wy T At o

KZhg + Q37hg) = 2y = Oge3)) Vuwrg)

Hhgmdy)/ (i)

tv
[~}



"INDIAN STATISTICAL INSTITUTE LIBRARY
Processing slip

BOULGB..eeereierensnnesrersvenssns P/E/G date., 23 .l 2.‘ Q-S/ Ace. mT{éS/

Author....’;'fﬂ.&&ﬁ!’ .............. E@ﬁ?]ﬂ/’ﬂ
Titlo..N... .S L.... ...@fmfavl.s;lm & 5@.%&5/’&
Seh I"r\[r/ﬁ’ Pxeoblems.

OHECKING @ Call no.

1 In libracyjoatlier ed./later ed. |

2 Earlier volumes/nos. of
the series in lib. [

3 Now title | |
Suggested/Approved by . —
2.3 1220 S
Note :
Signature & date
OLASSIFICATION :
Class no. x-ref,
Scrutiny report : Signature & date
Class no. § x-ref.
Note :
Signature & date
OATALOGUING ;
1 Main Card |_ |

2 Supp. Cards ( Subject/Title/Series/Added antrlea/Shelf Liat ) [ Total no. of

4 Cards filed |

Note :
Signature & date



