Component Importance
In A Consecutive-k-out-of-n:F System

ARVIND SETH
Indian Statistical Institute
New Delhi

Thesis submitted to the Indian Statistical Institute
for the degree of Doctor of Philosophy



ACKNOWLEDGEMENTS

[ am thankful to Dr. K. G. Ramamurthy, Indian Statistical Institute,
for introducing me to this subject and the interdisciplinary approach to
problem solving, He has always been & source of motivation and encour-
agement in my endeavours. I take this opportunity to express my special
debt of gratitude for his excellent guidance and inspiring supervision of my

thesis.

I am grateful to Dr. . R. Mohan, Indian Statistical Institute, for going

through my thesis and offering helpful suggestions and comments.

I would like to thauk all my colleagues in the SQC & OR unit and other
friends for creating 8 stimulating environment and extending a fine spirit

of cooperation.

Finally, I thank my parents and family for their continued support and

encouragement.



Contents

Synopysis i

1 Preliminaries

11 Introduction. . ........ ..o 1
1.2 System Representation . . . .................. 4
13 SimpleGames. .. .........ovveveeninns 1
1.4 Reliability Function . ..................... 13
1.5 Power and Importance . . . . ... ..o 16

2 Structural Importance

21 Introduction. .. ......ovv i 26
22 Structural Matrix . . . ... . 21
23 Propertiesof T ... .o v 33
24 Importance and Structural Matrix . ............. 3

3 A Consecutive-k-out-of-n:F System
31 Imtroduction. . ..o v 43
32 Minimal Pathand Cut Sets . ... .............. 46
33 Structure and Reliability Functions . . . ... ........ 49



3.4 Component Importance . .. ........ ... . ... 51

3.5 Structural Matrix . . .. ............ ... ... 54
3.6 Complexity . ... ...ttt 61
4 Component Importance in a Consecutive-2-out-of-n:F System
41 Imtroduction. ... .........coo 62
42 PathSetsandSwings . .................... 63
4.3 Birnbaum Importance Measure . . . ... .......... 83
4.4 Barlow-Proschan Structural Measure . . . .. ........ 91
4.5 Cut Importance Ranking . . ................. 102

5 Component Importance in a Consecutive-3-out-of-n:F System

51 Imtroduction. .. ......... ..o 105
52 PathSets . .......... .. ... 106
B3 SWINEE . oot e e 109
5.4 Birnbaum Structural Importance . . .. ........... 119
5.5 Barlow-Proschan Structural Importance . . ......... 127
5.6 Cut Importance Ranking . .................. 143
57 GeneralResults . . ... ........ ...y 146
Tables 147

References 165



A Synopsis of the Dissertation on

Component Importance
In a Consecutive-k-out-of-n:F System

Reliability theory has acquired a special signifi during the last few
decades. It is mainly b of rapid ad in technology which
has given rise to plex and sophisti d sy ‘These sy suf-

fer from design flaws and weaknesses and their failures not only result in
monetary loss but also pose a serious threat to human life and national se-
curity. Hence product reliability and safety is of paramount importance to
us. Since system effectiveness can be optimised during design and develop-

ment phases, it therefore calls for a detailed reliability i ing program
during initial stages. Often we find that due to lack of non-availabilty of
relmblhty data, the design and reliability engineers are handicapped and

no ive is possible during system development phases.

In such situations, it is of a great practical significance to know the relative

importance of components of the system so that proper allocation of the

e

resources can be made with a view to optimise system

Different measures have been proposed in the reliability theory to quan-
tify the relative importance of components in the system. These measures
can be classified as structural importance measures or reliability importance
measures. Structural importance measures require only the knowledge of

the structure function of a system whereas reliability importance measures



require additional information about component reliabilities.

A similar problem is encountered in other fields like game theory. In
game theory, simple games are often used for modelling voting situations.
The problem of quantifying the power of a player in simple games was
first considered by Shapley and Shubik [47] in 1954 and they defined the
Shapley-Shubik power index which was rediscovered in reliability theory by
Barlow and Proschan [4] in 1975 as a measure of structural importance of
Banzhaf 2] while analysing legal and constitutional problems

defined another power index of a player in 1965 which was rediscovered by
Birnbaum (8] in 1969 as a measure of structural importance of components.
In reliability theory, a consecutive-k-out-of-n:F system has been studied

4

dered and i p

since 1980. It consists of n linearly
The system fails if and only if it has at least k consecutive failed compo-

nents. This system finds applicati in tel icati pipeline net-
work, design of integrated circuits etc. Griffith and Govindarajulu [26] first

considered the problem of calculating Birnbaum’s measure of reliability

importance of p ts in a ive-k-out-of-n:F system. Papas-
tavridis [39] also studied this problem and incorrectly asserted that for the
i.i.d. case, the most important components are located in the middle of the
sequence of components. We give a counterexample to show that his result
is not correct. It can be shown that in a consecutive-2-out-of-6:F system
component 2 has more Birnbaum reliability importance than component 3.
This provided the main background and motivation for studying the com-
ponent importance in a consecutive-k-out-of-n:F system and consequently

resulted in this dissertation. It is divided into five chapters.
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Chapter 1 covers the preliminaries needed for und ding the work

done. Section 2 includ h Y , dual structures and related
results. Section 3 provides a brief introduction to the simple games and
highlights its similarities with semi-coherent structures. Section 4 defines
reliability function and presents related results. Shapley-Shubik power in-
dex (or Barlow-Proschan structural measure of component importance) and
Banzhaf power index (or Birnbaum structural measure of component im-
portance) of a player in case of simple games are defined in Section 5. In
addition, we also describe Birnbaum reliability and Barlow-Proschan relia-
bility importance measures and Butler ’s cut importance ranking [15].

Chapters 2, 3, 4 and 5 mainly present the work of the author.

In Chapter 2 we examine the general problem of structural importance
of components in a coherent system and present an unified and a new
approach for calculating different measures. This is done by defining a
structural matrix using the simple form of a coherent structure in Section
2. We also show how the structural matrix of a dual structure can be
obtained from a given structural matrix. The two matrices are connected
by a transformation matrix which is also defined here. Section 3 stud-
ies some properties of the transformation matrix including its eigenvalues
and eigenvectors. Section 4 shows how the different structural measures of
importance can be obtained using the structural matrix.

Chapter 3 starts with a review of a consecutive-k-out-of-n:F system and
Section 2 provides a necessary and sufficient condition for a path set to

be a minimal path set. The problem of obtaining recurrence relationship



for the structure and reliability fi ions is idered in the next Section.

We provide here a simple approach for determining them. In Section 4 we
examine the incorrect result of Papastavridis [39), provide a counterexample
and point out the mistakes in his proof. Section 5 presents a recursive

procedure for obtaining the structural matrix of the dual structure of a

consecutive-k-out-of-n:F system. Section 6 id the p ional
efforts and space requirements needed for calculating the structural matrix
of the dual of a consecutive-k-out-of-n:F system.

Chapter 4 deals with the study of component importance in a consecutive-
2-out-of-n:F system. Section 2 examines the path sets and swings and it is
shown that they follow Fibonacci sequences with different initial conditions.
We prove a number of results on path sets and swings of components. In
Section 3 we study Birnbaum reliability and Birnbaum structural impor-
tance and also give a general formula for calculating system reliability. The

main result that follows is: Let £(i, n) represent the Birnbaum structural

importance of p t §ina ive-2-out-of-n:F system and fur-
ther assume that n, and n, are the largested even and odd integers smaller
than or equal to (n + 1)/2, respectively. Then

() Bali,n) = foln+1—i,n)fori=1,2,...,nandn > 2
(i) B2(2,n) > Ba(4,1) >+ > fa(na,n) forn > 7

(iii) Bo(1,n) < Ba(3,n) < -+- < By(ny,n) forn > 6

(iv) BaA(2t,n) > fa(2t —1,n)fort > 1,2t <nyandn>3
(v) Ba(2t,n) > Ba(2t +1,n) fort > 1,2t +1 < ny and n > 5.
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This implies that component 2 has the maximum Birnbaum structural im-
portance and component 1 the minimum Birnbaum structural importance.
It also provides a complete ranking of the components. Section 4 deals with
the study of Barlow-Proschan structural importance measure and provides
a procedure for calculating it. It is shown that Barlow-Proschan structural
importance ranking is identical to the Birnbaum structural importance
ranking. In Section 5 it is further shown that Butler cut importance rank-
ing and Birnbaum reliability importance ranking (for iid. components)
are also same as Birnbaum structural importance ranking. Hence it follows
that in a consecutive-2-out-of-n:F system component rankings provided by
the Birnbaum reliability importance measure, Birnbaum structural impor-
tance measure, Barlow-Proschan structural importance measure and Butler
cut importance ranking are all identical.

In Chapter 5 we study the importance of components in a consecutive-3-
out-of-n:F system. Section 2 highlights the properties of path sets and their

relationship with Trib i seq! (or Fibonacci sequences of order 3).

Section 3 gives the properties of swings and considers the difference in

swings b two ive comp ts and provides conditions under
which component i will have more swings than component i + 1. Section
4 deals with Birnbaum structural importance and gives a general formula
for computing the path sets and using this we develop a necessary and
sufficient condition for a component to have more Birnbaum structural
importance than other components. It is also shown that component 3and

component 1 have the maximum and the minimum Birnbaum structural



importance, respectively. We also provide a heuristic procedure for ranking
of components which matches with the Birnbaum structural ranking under
certain assumptions. Section 5 is devoted to the study of Barlow-Proschan
structural importance and gives a procedure for calculating it. It is shown
that in this case also component 3 has the maximum and component 1

the minimum Barlow-Proschan structural importance. In Section 6 it is

further proved that comp t 3 and p t 1 have the maximum
and the mimimum cut importance ranking, respectively and that the same
result also holds for Birnbaum reliability importance measure in case of
iid. components. In the last section we mention some results of this
chapter which can be easily extended for k¥ > 4. In particular one can
show that component k has the maximum and component 1 the minimum
importance as per Birnbaum structural, Barlow-Proschan structural and

Birnbaum reliability importance measures (for i.i.d. components) and cut

importance ranking in a consecutive-k-out-of-n:F system.
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Chapter 1

Preliminaries

1.1 Introduction

Because of rapid advancement in technology more and more complex and
sophisticated systems or equipments are being researched, designed, man-
ufactured and put to use in different fields like defence, space exploration
and commercial and domestic applications. The pace is fast growing due
to stiff competition, consumer awareness and stringent legal requirements.
These man-made systems suffer from design flaws, mistakes made during
manufacture and lack of perfection and often result in failures. Most fail-
ures have economic consequences in the form of downtime cost, repair or
replacement costs, penalties and delays apart from other intangible losses.
But in case of nuclear power plants, aircraft systems, medical equipments
and safety devices the loss is not only monetary but also poses hazardous

and dangerous conditions to human life. In view of this, product safety



has become a major topic of public debate and issue. It is therefore ab-

lutety essential and y to carry out detailed reliability analysis of
the product in order to identify causes behind the failures and to eliminate
or control their effect [6].

In fact the need for reliable system was first recognised during World
War II because of problems arising out of unreliable equipments supplied to
defence forces . In the late 1940s and early 1950s, reliability engineering ap-
peared on the scene and came to focus when reliability was precisely defined
and it became possible to measure and evaluate system reliability. Theory
of statistics and probability provided the foundation for its development.

Reliability is essentially a design parameter and can be optimised dur-
ing product development phases. At the beginning of system development,

reliability and design engineers are required to translate overall system per-

formance targets into individual p t reliability requi make
allocation of resources and to evaluate system reliability. Initially, reliabil-
ity achieved is much lower than what is needed. Different approaches and
techniques are used to identify design weaknesses and component failures

that could have critical effect on system functioning. However, these inves-

tigations for system imp heavily depend on the past experience of
the personnel designing the system because generally no reliability data are

ilable for q itative t. In a nutshell, we observe that in the

initial stages of system development a reliability engineer, is faced with the
up hill task of allocating available resources to optimise measures of system
effectiveness and design parameters in the absence of reliability data. Mea-

sures of system effectiveness may be related to its reliability, maintenance
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cost and safety of operations etc. For a highly complex system, formal op-
timisation may not be possible. In such cases, it would to be appropriate
to concentrate the limited resources on a small subset of components that

are considered most critical to system performance. It is based on the in-

tuitive r ing that not all p are equally important to system
performance and some components play a bigger role than others.
Different measures have been proposed to quantify the relative impor-
tance of components with respect to the given system and to provide com-
ponent ranking in the order of importance. These measures can be classi-
fied as structural importance measures and reliability importance measures.
Structural measures require only the knowledge about the way different
component states affect the state of the system, that is, we need to know
only the structure function of the system. On the other hand, the reliability
importance measures require the additional information about component
reliabilities. Structural measures of importance are more suitable during
system design and development phases. Birnbaum (8] in 1969 first sug-
gested two measures of importance. One is purely structural and the other
reliability based. Barlow and Proschan [4] in 1975 also proposed structural
and reliability measures. Butler [14] and [15] has recommended component
ranking procedure using cut sets when component reliabilities are high.
Several other authors have suggested different measures (35, [36] and (4].
Although system reliability is primarily concerned with physical systems
to improve the performance of mechnical, electrical and electronic systems,
it is now serving as an input to the development of systems like, agricultural,

biological, economic, social, political and computer software etc. In game

3



theory, simple games are used for modelling voting situations. It is well
known that conceptually semi-coherent structures and simple games are
the same [16]. In fact, Shapley and Shubik [47] in 1954 first considered the
problem of quantifying the power of a player and developed the Shapley-
Shubik power index which was rediscovered by Barlow and Proschan in
1975 in reliability theory as a measure of structural importance. Similarily,
Banzhaf [2] in 1965 defined another power index for simple games which was

rediscovered by Birnbaum in 1969 as a measure of structural importance.

1.2 System Representation

A system is assumed to be composed of a number of components (or sub-
systems ) that work together to achieve a specific objective or perform a
specific function. For making reliability analysis of a system, we need to
know how the performance of the components affects the performance of
the system. We shall assume that a system can either perform or fail to ac-
complish a given task. Similarly, components also can either perform or fail
to perform an assigned task. Thus we are concerned with a situation where
the system as well as its components can be only in either of the two pos-
sible states—functioning or failed. We assume that the state of the system
deterministically depends on the states of its components. To model this,
we shall use Boolean functions which are referred to as structure functions
in reliability theory.

Structure Function : Consider a system or structure of n intercon-

nected components with serial numbers assigned to them from the set,



N = {1,2,...,n}. To represent the state of components, we assign a bi-

nary indicator variable z; to component i:

1 if component i is functioning

0 if component i is failed

fori=1,2,...,n. Similarly, we define the binary variable y to indicate the
state of the system
1 if the system is functioning

y =
0 if the system is failed.

The assumption that the state of the system is completely determined by
the state of the components implies the existence of a Boolean function
f: B> — B such that y = f(x) where x = (21,22,---,%a) is the vector
of component states and B = {0,1}. The function f is called a structure

function.

Each n-tuple, x = (z,22,...,2,) with z; = 0 or 1 fori=1,2,...,n
corresponds to a vector of component states or a state vector and can
assume any one of the 2" values represented by the vertices of the unit

n—cube, that is, x € B". We shall use the following notations:

(Li,x) = (21,22, - Zimy 1, Zigny - - 1 Za)
(0;,x) = (21, 22,. .., 2i=1,0, Zis1, - - s Zn)
(0 X) = (21,22, -, Bic1s 5 Tidy - s Zn)

0=(0,0,...,0) and 1 = (1,1,...,1).



Definition 1: Component i € N is called irrelevant to the system if
and only if f(1;,x) = f(0;,x) for all (;,x) otherwise, it is called relevant.
We note that an irrelevant component can never directly cause the system

failure.

Since the knowledge of the structure function is equivalent to the knowl-
edge of the structure of the system, we shall be using the term ‘structure
f on N’ to mean the structure function f of the system consisting of n

components from the set N = {1,2,...,n}.

1.2.1 Coherent System

We expect a system to function when all its components function and fail
when all its components fail, that is, f(1) = 1 and f(0) = 0. Also it is
expected that if the performance of a component is improved the system
performance does not deteriorate. This leads us to the concept of monotone
structure.

Monotone structure : Let f be a structure on N. We say f is mono-
tone if X,y € B” and x > y = f(x) > f(y) where x > y means co-
ordinate-wise inequality with at least one strict inequality. That is, f is
non-decreasing in each co-ordinate.

Semi-coherent structure : A structure f on N is called semi-coherent
if

(i) f is monotone on B*

(id) £(0) =0 and f(1) = 1.



Coherent structure : A semi-coherent structure f on N is called a co-
herent structure if all its components are relevant. The number of compo-
nents in the coherent structure is called the order of the system. Coherent
structures were first introduced by Birnbaum, Esary and Saunders [9]. For
detailed exposition see Barlow and Proschan(3], Kaufmann [32] and Rama-
murthy [43].

Minimal Path Sets and Cut Sets

Corresponding to any state vector x € B”, we define the sets
Cy(x) = {i:i€Nandz =1}and
Co(x) == {i:i€Nandz =0}

Definition 2: A vector x € B" such that f(x) = 1(0) is called a path
vector (cut vector) and Ci(x) (Co(x)) is called the corresponding path set

(cut set).

A minimal path vector is a path vector x such that y <x = fly)=0.
The corresponding minimal path set is Cy(x). Physically, a minimal path
set is a minimal set of components whose functioning is sufficient to ensure

the functioning of the system.

A minimal cut vector is a cut vector x such that y > x = f(y) = 1.
The corresponding minimal cut set is Co(x). Physically, a minimal cut set
is the minimal set of components whose failure causes the system failure.
We denote by a(f) and 7(f) the collections of minimal path and cut sets

of f, respectively.



Dual Structure :

Definition 3: Let f be a structure on N. Its dual f? is another

structure on N defined by

fP(x)=1—f(1—x) for all x € B".

Example 1: A series structure functions if and only if each component

functions. For this system the structure function is given by

f(x)=]]=z forallxeB™
i1

Example 2: A parallel structure functions if any only if at least one of
its component functions. Its structure function is given by
fx)=1-J[(1—=2) forallxe B
=1
Example 3: A k-out-of-n structure functions if and only if at least k
of its components function. The structure function is given by
1 T,k

f(x) =
0 if Th,a<k

Example 4: The dual of a series (parallel) structure is a parallel (se-
ries) structure. The dual of a k-out-of-n structure is a (n-k+1)-out-of-n

structure.



We now state, without proofs, some relevant results of coherent and
semi-coherent structures which we shall be using. Proofs are given in (3],
[32] and [43].

Theorem 1 Let f be a semi-coherent structure on N. A subset S of N is
a path (cut) set of f if and only if SNT # ¢ for every T € v(f) (T € a(f))-

Theorem 2 If f is a coherent structure on N then

N = U P= Q.
Pea(f) Qex(f)

Theorem 3 Let f be a semi-coherent siructure on N. Minimal path (cut)
sets of a coherent system completely determine its siructure function f and

vice versa.

Theorem 4 For every semi-coherent structure f on N we have

fxy=1- I a-Jl=)= II @ -TI1-=))

Sea(f) €S sexf) €s
for all x € B™.

Simple Form of a Structure

Definition 4: A fuaction g : R* — R is called multilinear (linear in
each variable) if it can be expressed in the form

9wy, wm) = Y Cs[Lu;

SCN ;€S
where N = {1,2,...,n} and Cs’s are constants. When S = @ we take

Miesy; =1



Theorem 5 A siracture f on N can be ezpressed as

f(x)= zasn-‘!,

SCN  jeS

where a'ss are some integer constants.

The expression Zscy as[ljes 2; is known as the simple form of the struc-

ture function on N.

Theorem 6 The simple form of a structure f on N is unigue.

Theorem 7 Any sirscture f of order n is o linear composition of two

structures of order ot most equal to (n — 1), that is,
f(x) = zif(1i,x) + (1 - 2:)£(0:, x)
forallx € B* andi=1,2,...,n.

This representation is called the pivotal decomposition of the structure

function. By repeated application of this theorem, we obtain

f = ¥ [Te40 -2 £y,

yeBr ;=1
Theorem 8 If f is any structure function on N and f© is its dual struc-
ture, then
(i) f is monotone <> f° is monotone
(11) f is semi-cokerent <=> fP is semi-coherent

10



(i) f is coherent <=> f© is coherent.

Theorem 9 Let f be a structure function on N. f AC N, then A is a
path (cut) set of f <=> A is cut (path) set of fP.

Theorem 10 For any structure f on N we have

a(fP) = 7(f) and 7(f°) = a(f).

1.3 Simple Games

Game theory is concerned with analysis of conflicting situations of interest
to various parties and designing optimum strategies. It is of a great inter-
est to Political and Social scientists. In game theory, the concept of simple
games was first introduced by John Von Neumann and Oskar Morgensten
[50] in 1944. Basically, a simple game is a competitive situation in which
two or more participants called players are required to make a decision in
a conflicting situation and co-operation between the players is permitted.
Any group of players called coalition can freely enter into a binding agree-
ment. It is known which coalitions are capable of winning. For example, a
group of individuals must collectively decide whether to accept or reject a
bill or proposal. Each individual either votes in favour (yes) or against the
proposal (no). It is known [16] that there exists a close analogy between
reliability system and simple games. The functioning or failure of a sys-

tem is equivalent to accepting or rejecting the bill. Similarly functioning

11



or failure of a component is equivalent to voting yes or no by a player. Let
N = {1,2,...,n} be the set of players and let 2¥ denote the power set of

N. We use a characteristic function to represent a simple game.

Definition 5: A simple game on N is represented by a characteristic

function © : 2V — {0,1} such that
(i) e(@) =0
(ii) O(N) =1
(iii) ©(T) > ©(S) whenever N 2 T D .

A subset S C N is called a coalition. A coalition S is said to be a winning
(losing) if ©(S) = 1(0). A coalition S is called blocking if (N — S) = 0.
A winning (blocking) coalition S is called a minimal winning (blocking)
coalition if T C § implies ©(T) = 0 (O(N — T) = 1).

Dual Simple Game

Given a simple game on N, we associate with it another simple game as in

the case of reliability theory.

Definition 6: Let © be a simple game on N. The dual 6% of 6 is
another simple game on N defined by
©P(5) =1— (N — S) for all coalitions S.
A player i in a simple game © on N is called a dummy if (S U {i}) =
(S — {i}) for all coalitions S.



Simple games are essentially semi-coherent structures stated in a differ-

ent format. The correspond b the terminology of reliability and

game theory [44] is as follows:

Reliability Theory | Game Theory

(i) | Component Player or Voter

(ii) | Structure functi Ch istic functi
(iii) | Path set Winning coalition
(iv) | Cut set Blocking coalition

(v) | Irrelevant component | Dummy player

1.4 Reliability Function

We consider the stochastic nature of the components of the system and
describe how system reliability can be evaluated using component reliabil-
ities. Reliability of a system is defined as the probability that the system
will perform its intended function for at least a specified time period under

specified envi tal diti we that the system as well as
its components cannot be repaired.
At any given instant of time ¢, we consider the state of the component
i € N and define the binary random variable X;(t) fori =1,2,...,n by
Xi(t) = { 1 if component i functions at time ¢
0  if component i is failed at time t.
Let X(t) = (X(t), Xa(t), - - -, Xn(t)), be the vector of component states at
time ¢. If we assume that the component i has the life distribution Gi(t),

13



then the reliability of this p at time ¢ is the probability that the

component is functioning at time ¢ and is given by
P[Xi(t) =1] = E[Xi(t)] =1 - Gi(t) = Gi(t) = pi

where E[X(t)] represents the expected value of the random variable X;(t),
P[A] denotes the probability of an event A and p;’s are called the component
reliabilities. When the design of a system is known, then the state vector
X(t) determines the siate of the system at time ¢. Let f(X(t)) be the

d variable rep ing the state of the system and defined as
1  if the system functions at time ¢
f(X@) = . . .
0 if the system is failed at time t.

‘We shall that the are independent, that is, Xi(t),

fori =1,2,...,n are independent binary random variables, then the system
reliability, h(p) is a function of component reliabilities, and it is given at

time ¢ by
PF(X(1) = 1] = E[f(X(2))] = h(G(2)) = h(p)

where G(t) = (G1(t), Gs(t), .-, Ga(t)), pi = Gi(t) and p = (1, P2, -+, Pn)
is the vector of component reliabilities. To simplify the notation, hereafter,
we shall avoid the use of direct reference to time point ¢ and hence suppress
t and write only X; to mean X;(¢) and so on. We shall throughout assume
that X3, X,, ..., X, are independent binary random variables unless stated
otherwise. If p, = p; = -+ = p, = p we shall denote the system reliability

function by A(p).

14



Definition 7: The reliability function of a structure f on N is the
function & : [0,1]" — [0, 1] defined as

h(p) = PUA(X) = 1] = BIf(X)].
Example 5: For a series structure
h(p)= E(X1-Xa---Xn) =p1-p2°* Pn-
Example 6: For a parallel structure
hp)=E {1 -g(1 - x.-)] =1-(1=p)(1—p2) - (1=pa):

Theorem 11 The reliability function, h(p) of a structure f on N can also

be defined as the mulilinear extension of f over the entire wnit n-cube [37].

In game theory, the reliability function is referred as Owen’s multilinear

[87] of the ch istic fi ion of a game.

Th 12 The following identity holds for the reliability function, h(p)

of any stracture f on N fori=1,2,...,n and p € [0,1]"
h(p) = pih(1;, P) + (1 — p)h(0;, P)

where h(1;,p) = Elf(L, X)) =E[f(X1, Xa, ..., Xic1y 1, Xiny - ooy X,)] and
h(0;, p) = E[£(0;,X)] =E[f(X1, X3, -+, Xic1,0, X, -, Xa)]. This rep-

resentation is called the pivotal decomposition of the reliability function.

15



Theorem 13 Let h(p) be the reliability function of a structure f on N.
We then have for i € N and p € (0,1)"
8hi
%)~ Bis, %)~ 10,
= h(L;,p) = h(0;P)-

Theorem 14 Reliability fanction h(p) of e monotone structure is mono-

tone.

1.5 Power and Importance

In simple games a problem of considerable interest is that of obtaining nu-
merical indices to represent the voting power of an individual player or
the amount of influence a player has on the outcome of the game. Intu-
itively, the power of a player is his ability to change the outcome of the
game by changing his voting pattern. In reliability theory also a similar

Jared

problem is encountered while identifying p ts that are
important from the viewpoint of system performance. Quantification of
relative importance of components on the basis of their contribution to
system performance is extremely useful for design and reliability engineers.
Mensures which are based only on the structural form of the system are

3 d

called structural importance or time indep and

if additional inf ion on the p t reliabilities is available we can

compute what are known as reliability importance measures, We now de-
scribe some of the frequently used measures in simple games and reliability

theory and point out the similarities between them.
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1.5.1 Power of a Player

The two most traditional and widely used quantitative measures of power
in game theory and political sciences are Shapley-Shubik power index and

Bangzhaf power index.
Shapley-Shubik Power Index

In the context of simple games, Shapley and Shubik [47] for the first
time in 1954 developed a numerical index which can be interpreted directly
in terms of the a priori ability of the player to affect the outcome of a game.

Definition 8: Let © be a simple game on N and consider the ordering
of N as representing the order in which players of N will join a coalition

in support of some issue. The player whose joining turns the developing

coalition from a losing coalition into & winning coalition is called pivotal
for that ordering. Shapley-Shubik power index ¥(i), for player i, is the
probability that player i is pivotal under the ion that all the ibl

n! ordering are equiprobable.
Absolute Banzhaf Power Index

John F.Banzhaf [2] suggested a different power index in 1965 in con-
nection with studies of legal and constitutional issues arising out of U.S.

Supreme Court verdict of One Person One Vote in 1960s. His index gained

1.

wide acceptance and helped in settling many legal p
Definition 9: Let © be a simple game on N. A pair of sets of the
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form (T, T — {i}) such that ©(T) =1 and ©(T —{i}) =0 is called & swing
for player i. Let S(i) denote the number of swings for player i € N, then
absolute Banzhaf power index A(i), for player i € N is defined by [45] and
(38]

B = 3.

It can be interpreted as the probability that player i will be a swinger, that
is, his vote will make a difference between winning and losing under the
that all coaliti are equally likely.

Remarks :
(i) Obviously for a dummy player B(i) = ¥(i)) =0
(i) T%, ¥(@) =1

Shapley-Shubik power index, ¥(i) can also be expressed in terms number
of swings for player i, if the size of the swing is taken into account as can

be seen from the next theorem and for its proof see [43] and [4].

Theorem 15 Let © be a simple game on N. Then for i € N the Shapley-
Shubik power indez ¥(i) is given by

W) = i_——(“l)”.(!"“)! 5G,1)

where S(i,t) denotes the number of swings of size 1 for player i.



The above theorem shows that Shapley-Shubik power index. ¥(i) is a
weighted linear function of the number of swings of.diﬂ'erent sizes for player
i and the weights depend on the size of the swing whereas absolute Banzhaf
power index attaches a common weight of 2%,— to all swings of different

sizes for player i.

1.5.2 Relative Importance of Components

Diffe have been proposed for quantification of component im-

portance. We describe here some rel Theses can

be classified as structural importance and reliability importance measures.

Structural Importance Measures
Structural measures do not require any information about component re-
liabilities and can be calculated using only the structure function of the
system. Shapley-Shubik and abeolute Banzhaf power indices were redis-
covered in reliability as structural measures of component importance.

Let f be a semi-coherent structure on N. We say (1;,x) is & critical
path vector for component i if f(1;,x) =1 and f(0;,x) = 0 or equivalently
f(1i,x) — £(0;,x) = 1.

Birnbaum Structural M
Birnbaum ([8] suggested the following structural importance measure for

component i € N
- 1
BG) = L1 x) = £(05, %)) 55
where summation is over all (2,,2; ..., 2;_1, Zi41 - . ., Zs) belonging to B*~*.
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It can be easily seen that it is the same as the absolute Banzhaf power

index for player i in a simple game.

Barlow-Proschan structural Measure

Assume that initially all p are functioning . Consider an ordering
(i.e., a per ion) of the el of N as rep ing the order in which
comp fail. The p whose failure causes the failure of the
system (that is, a ition from the functioning state to the failed state)

is called the pivotal component of that ordering. The Barlow-Proschan

measure of structural importance is the probability that t i is
pivotal under the assumption that all n! orderings are equiprobable. We
note that Barlow-Proschan structural measure is the same as the Shapley-

Shubik power index.

Remark : In fact Barlow and Proschan [4] have defined structural

importance of p 1, a8 the probability that it causes system failure
under the ption that p life distributions are i.i.d. random
variables.

Reliability Importance Measures
Relative importance of components can also be determined by using the
structure function and the component reliabilities. Birnbaum (8] and Bar-
low and Proschan [4] have each proposed reliability importance measures.
These measures make use of probabilistic information about the compo-
nents of the system.

Let f be a semi-coherent structure on N and p = (p1,p2,-..,Pn) be the
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vector of component reliabilities. Suppose h(p) represents the reliability

function of a structure f on N.

Birnbaum Reliability Importance Measure
Let A(i, k) denote the Birbaum reliability importance of component i. It
is defined by
E[f(1:,X) - £(0;, X)]
h(Li, p) — h(0;, p)-

B, k)

Because of Theorem 13, we note that

oh(p)
Opi

Obviously, for a coherent system 0 < fB(i,h) < 1 for i = 1,2,...,n and

B, k) =

n > 1

Example 7: Consider the series system. We then have

h(p) = p1-pa---pa and (i ) = ZoB) - BO),

Pi pi
Hence the component having the minimum reliability is the most important
to the system and the most reliabl p t has the llest reliability
importance.

Example 8: For the parallel system, we have

he) = 1-[1a-p)

=l
n

and A(i,h) = JI(1-»)

I#
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H"i:l(l - b))
(1-p)

Hence the component having the maximum reliability is the most important

to system functioning.

Both the structural measures described earlier are related to Birnbaum

reliability measures and can be obtained as follows (4] and [38]:
(i) ¥(i) = 5 [h(Li, p) — 2(0:, p)l dp
(OFOEE" ] W—_—
Barlow-Proschan Reliability Importance Measure
This requires the life time distribution of each component. Let G; be the life

time distribution of component i for i = 1,2...,n, then Barlow-Proschan

reliability ¥(i, h) of p iis

¥(i,h) = P[Component i causes system failure |
= [ b0, T - b0, T(®) ] dGitt)

where G(t) = (Gi(1),Galt), ... ,Ga(t))-

Butler Cut Importance Ranking

Both the structural measures described so far are in some sense unbiased
and can be derived from Birnbaum reliability importance measure if we

assume that all components have the same reliability p and in one case
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we take p = 0.5 and the other average over [0,1]. In practice, component
reliability may not be close to 0.5 or even 0.5 on an average. Thus, these
two measures may present a misleading picture about relative importance
of p if the p t reliability is high or low. Keeping this

in view, Butler [14] & [15] developed a ranking that is biased in favour of

high reliability. It is not a measure, but provides a complete ranking of
components. It is based on cut sets of the system. It is also related to
Birnbaum reliability ranking for high values of p.

Definition 10: Let f be a coherent structure on N and v(f) be the

llection of all its minimal cut sets. p the dinality of the set

+(f) is m. For each u € N, let £ denote the number of collections
of i distinct minimal cuts such that the union of each collection contains

exactly j p ts and includes comp t u for i = 1,2,...,m and

j=1,2,...,n. We define the vector b*) = (57,8, ) where

m
B = (-1

=1
We say component u is more cut-important than component k denoted
by u >. k if and only if b® > b® where > is the lexicographically
greater than sign and components u and k are said to be equally cut-
important, denoted by u =. k if and only if b® = b®. Thus relative cut
importance ranking of components in the order of importance is given by

the lexicographic ordering of bO.
E: le 9: Consider a coh t structure f on N = {1,2,3,4,5} with

() = ({3}, {1,2}, {4,5}} -
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(i) Foru=1lor2
t@P=1,t%=1t%=11t%=1adb™=(0,1,-1,-1,1).
(i) Foru=3

t@W=1tW=21t%=1andb™=(1,0,-20,1).

) Foru=4orb
t@=1tP=1,tP=1tL=1andb™=(0,1,-1,-1,1).
This implies that 3 >.1=.2=.4=.5.

We give the relationship b t-importance ranking and Birnbaum

reliability importance ranking [15].

Theorem 16 Let f be a coherent struciure on N. Assuming that all com-

ponents have the same reliability p, then for each i € N, we have
B, h(p)) = ib&"(l —pp
where
806, h(p)) = h(Li,p) — h(0:,p) = Blf(1,X) = £(0:, X))

The above theorem implies that Birnbaum reliability importance can be
written as a polynomial in (1 — p) and for high values of p the lowest order
terms in the polynomial dominate the rest. Since i >, k <= B — bR

0 <= B(i, h(p)) > B(k, h(p)) for all p sufficient close to one, it follows that

24



Birnbaum reliability importance ranking is identical to Butler ’s cut impor-
tance ranking when p is sufficient close to one. In most cases, components
ranking can be known by determining the first non-zero element in b") and

other elements in b(") are computed only if necessary.

1.5.8 Other Measures of Importance

In reliabiliy theory some more measures of component importance are avail-
able, for details see [4], [35], [36] and [1].

In this dissertation, we shall be mainly concerned with Birnbaum struc-
tural importance measure, Barlow-Proshan measure of structural impor-
tance, Butler’s cut importance ranking and Birnbum reliability importance

measure for i.i.d. components.
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Chapter 2

Structural Importance

2.1 Introduction

When the component reliabilities are not known structural measures play
s crucial role in identification of weak points in the system design. These
measures are useful during system development stages where lack of ade-
quate reliability data is a common feature. In such situations, component
-anking is done using the structure function only and the corresponding
measures are called measures of structural importance. Different structural
measures of importance have been suggested in the literature using pivotal
components, critical path vectors and swings etc. We present an unified
and a new approach for calculating the different structural measures using
:he structural matrix. In Section 2 we introduce the concept of a structural
matrix of a structure function and establish the relationship between the

siructural matrix of a structure and its dual using a transformation ma-
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trix. Section 3 gives the properties of the transformation matrix. Section
4 explains how the structural importance of components can be obtained

from the structural matrix.

2.2 Structural Matrix

Recall that a measure of structural importance of a component in a system

is the extent to which the f ioning or fi ioning of the

affects the fu ioning or non-functioning of the system. Various structural

measures have been proposed in the literature. To present an unified treat-
ment of theses measures, we consider the probabilistic approach and define
the relative importance of component i in a semi-coherent structure f on
N as

IL(f) = E[f(1:, X) = £(0, X)].

Though different structural measures can be directly studied by con-
sidering f(1;,X), f(0;,X) and the probabilistic framework assumed, for
elegant presentation and easy analysis, we introduce the concept of a struc-
tural matrix.

In this section, we first define the structural matrix of a structure using
its simple form and show how the structural matrix of the dual structure
can be obtained by making a linear transformation on the structural matrix

of a structure.

Let f be a structure on N = {1,2,...,n} and suppose its simple form
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fx)= Y as J[ =, forall xe{0,1}".
SCN j€S§
"= define the collections

A;;={S|SC N,i€Sand |S] = j}

cri=1,2,...,nand j=1,2,...,n. Obviously, A;; denotes the collection

={ subsets of N which contain the component i and are of cardinality j.

Definition 1:. We denote the structural matrix of f by M(f) and

z=fine it as a square matrix of order n with elements given by
M(f)=((m(£)ij))= 3 as
S€A;;

Example 1 : Consider the system of components described in Figure 2.1.

Figure 2.1:

Its simple form is
f(2) = 212324 + 212325 + 222374 + 22375 — 71227375
—Z 1 ZoT3Ty — T1T3T4T5 — ToT3T4T5 + T1T2T324T 5.
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Consider the case when i = 1 and j = 3. It follows from the simple
form that ag = 1 for § = {1,3,4} or {1,3,56} and as = 0 for other S C N.
Hence we have m(f);3 = 2. Similarly for i = 2 and j = 4, we have ag = —1
for {1,2,3,5} or {1,2,3,4} or {2,3,4,5} and a5 = 0 for remaining S C N.
This gives us m(f)z = —3. In fact the complete structural matrix M(f) is

given by

002 -3 1
002 -3 1
M(f)=|0 0 4 -4 1
002 -3 1
002 -31

Simple form of the dual structure
To get the structural matrix of the dual of a structure, we first show how

to obtain its simple form from the simple form of a structure f on N.

Theorem 1 Let f be a semi-coherent structure on N = {1,2,...,n} with

its simple form as

= ¥ as I 2

SCN jeS
and let the simple form of the dual of structure f be

fD(X) = E bsnzr

SCN  jes
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We then have

i 0 if S5=80
s =
(_1)Isl+1 zT;saT if S#80

Proof : We know that
fP(x)=1-f(1 —x) for each x € {0,1}"

where 1 =(1,1,...,1). It follows that

stnz,=l— Ea—rn(]—z,)

SCN  j€S TCN  j€T

Px) = 1= Y ar L (-1)¥ ][] =5
sCT JES

TCN

1-3 [(—1)"'1'121] > ar

SCN jes | T35
= 1+ () Y ar T =
SCN T35 j €S
Hence the required result holds.

Example 2 :

We can easily verify that the simple form of the dual of the structure

considered in Example 1 is

fP(x) = 23+ 2122 + 2425 — 212223

—Z3T4 Ty — T1T2T4T5 + T1Z2232425.
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2.2.1 Structural Matrix of the dual Structure

We can obtain the structural matrix of the dual structure f © from its simple
form. We now show how it can be obtained from M(f). Before doing this,

we first define a transformation matrix 7'

Transformation Matrix

It is a square matrix, 7, of order n such that T, = ((ti;)) where
o (37]) mrizi
= Jj=1

0 fori<j

ti;
fori=1,2,...,nand j =1,2,...,n.

Example 3 :

We give here transformation matrices for n=2 to 5

1 0 0
10
o= Ts=|1 -1 0
1 -1
|1 -2 1
1 0 0 00
100
1 -10 0 0
1 -10
= Ts={1 -21 0 0
1 -210
1 =33 -10
1 -3 3 -1
1 -4 6 -4 1

Theorem 2 If M(f) and M(fP) are the structural matrices of the siruc-

ture functions f and fO respectively, then
M(fP)=MUT .
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Proof : Let

fx)= Y as[[2;, and fP(x)= 3 ba]]2;.

SCN  jeS SCN  j€s

we then have from Theorem 1

m(fP)j= ¥ bs= X (F1Y' e =

se Aij se Aij L2s
Y T Y et ¥ e+t “L]
S € A; LeAs:s LeAs:j+1 LEAs:j+(n—j)

where Ag, = {L: L D S and |L| = r} and |As,| = (:_]]), and total
number of elements being summed is 2"’ (n - 11) . We can write
=

vy (o))

1 i
r=0S5€ A4 (,"—

m(f2);;
J+r—1

- g(—w-‘(’:fi;l) T es.

S€Aiiar

-1

i and of cardinality (r + j) that occur in 3 z a;, taking repetition into
S€A:; L2S

account and (”'_1) gives the number of distinct super sets of S withi € §

-1 —j
Here (" ) (" J) gives the total number of super sets of S containing
J r

and of cardinality (j + r). It follows that
+
moy = 2 (T mi e
=0
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= Smnu (7)) i

k=5
-1

_1) =0 for k < j, hence

and since (k

J

D - (k-1

m(fP); = Yom(f (<17 (j_l)
=1

= Y m(f)ik thj

k=1
This implies that M(f°) = M(f)T.
Example 4 : We can easily check that for Example 2

01 -1 -1 1
01 -1 -1 1
M(fP)=|10 -2 0 1
01 -1 -1 1
01 -1 -1 1

and also that M(f°) = M(f)T.

2.3 Properties of T,
In this section we give some properties of the transformation matrix.

Theorem 3 T? = I, forn > 0 where I, is the identily matriz of order n.
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Proof: Let T = (({;;)), we then have
& i\ (k1)
weEe () (o) e

Case 1: When i = j, we have

e (i) (e
i—1
k—1

Hence #; = (=1)*2 =1.

-1
)=0&ndfork<i,(?_l)=0.

and since for k > i, (

k-1

Case 2: Whenj>i,k§iﬁk<jand(, 1)=02mdforl:>i,
i-

i —1
we have ('

B 1) =0, hence #;; = 0.

Case 3: when i > j, we have

wegerer ()

(a) J‘>kﬁ(j:ll) = 0 and hence {;; = 0.

(b) j<k=1%; = g(_l)h_n(_l)_,_,(;:ll)(f:ll)
(Jii)é(,iiji)(—w—:

(D)o
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Hence the theorem is established.
Remark : We have from the above theorem
1. T;'=Ta
2. M(f) = M(f°) T,.

Theorem 4 Let [z] denote the largest integer less than or equal to z. We

then have
1. det T, = (=1)*/3
2. The characteristic polynomial Pr (z) of T, is given by

(= + 1)/ (2 — 1)n-[nlﬂl

Lo

. o(T,) = {1, -1} where o(T,) is the spectrum of T,,.
4. The minimal polynomial Qr,(z) of T, is given by

Qr(z)=(z-1)(z+1)

5. The algebraic and the geometric multiplicity of +1 and —1 are n —
[n/2] and [n/2], respectively.

Proof :

1. Since 7}, is a lower triangular matrix, we have det(7,) = [I\=, ti and

we know that t;; = (—1)*~?, hence det(Z,) = (—1)I*/2.
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Since the characteristic polynomial, Pr, of Ty, is given by

N

Pr.(z) =det(zln — Tn) .

Hence Pr (z)=(z— 1)/ (2 4 1)/3,

£

Trivally o(T}) = {1, -1}

'S

. Consider the polynomial (z—1)(z+1) = 22—1 and since T2 — I, = 0,
it follows that the polynomial z> — 1 annihilates T, and the required
result follows from Horn & Johnson (30].

5. Since every root of Qr,(z) = 2> — 1 = 0 has multiplicity 1, it follows
from Horn & Johnson [30] that T;, is diagonalizable. This implies that
T, is non-defective or equivalently the geometric multiplicity is the

same as the algebraic multiplicity for each eigenvalue [30].

Remark: The eigenspace of T,,' cor ding to the eigenvalue +1(—1) is

orthogonal to the eigenspace of T, corresponding to the eigenvalue (—=1)(+1).
Theorem 5 Let R(A) denote the row space of a matriz A. We then have
(i) R(Tn + I,,) = left eigenspace of T, corresponding to the eigenvalue 1.

(ii) R(T, —I,) = left eigenspace of T, corresponding to the eigenvalue —1.
(iii) R(T,+1)' = right eigenspace of T; corresponding o the eigenvalue 1.

(iv) R(T, — I)* = right eigenspace of T, corresponding to the eigenvalue

=1.
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Proof :

(i) Let x€ R(T,+1,) <= 3 a row vector y € R" such that y(T,,+1,) = x.

Since
x(Tn = 1) =y(To + L) (T - 1) =0

as T2 = I, by Theorem 3, hence we have x(T,, — I,) = 0 or x7T,, = x

which implies that x belongs to left eigensp of T, corresponding to the

eigenvalue 1. Converse part follows from the fact that
n — rank(7,, — I,) = dimension of R(T, + I,)

(ii) The remaining proofs follow on the same lines.

2.4 Importance and Structural Matrix

We have defined the relative importance of component i in a structure f
on N to be
() = E[f(1;, X) = £(0,, X)].

‘We now study the relationship between the relative importance of a com-

ponent in a structure f and its dual structure f°.

Theorem 6 Let f be a structure on N. Then the relative importance of a

component is the same in f and f°.
Proof : We have by definition
L(f) = Elf(1,X) - f(0,.X)]
IL(fP) = ElfP(1,X) - £2(0,, X))
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Since for the dual structure we have
(1, X) = 1-£(0,1-X) and
P0,X) = 1-f(1,1-X)
hence it follows that IL;(f) = IL(f°).

Structural measures of component importance have been studied us-
ing different approaches based on pivotal components, critical path vectors
and swings etc. We now show how different measures can be studied and
calculated using structural matrix.

Birnbaum Structural Measure
Let f be a structure on N and $(i) be the Birnbaum measure of structural

importance of component i in f.

Theorem 7 M(f)p represents the vector of Birnbaum structural impor-
tance of components where p € R™ is a column veclor whose j** co-ordinate
1s given by p; = (1/207 forj=1,2,...,n.

Proof : Let h(p) be the reliability function of structure f on N where
p=(P1,P2,---,Pn) is the vector of component reliabilities, p;’s. We know
that the Birnbaum structural importance of component i, (i), is given by
%h(p)

8pi p=(b,4,4)

IS

BG) =

Let f(z) = z as H z; be the simple form of f.
SCN  j€s
We then have

h(p) = Y as]]p;and

SCN  jes
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Oh(p) _ T e II »

i SCN jés
ieS  j#i
8;([3) = T as(i/pk
Pi lp=(4,4,-4) ;S%NS

= i(x/z)l-‘ > as
e

= Y m(f);; (1/2y7
=1
Hence we have § = M(f)u where 8 is the vector of Birnbaum structural
importance of components in f. Note that u is an eigenvector of T,, corre-

sponding to eigenvalue 1.

Remark : If the binary random variables X, X>, ..., X, are exchange-
able [27] & [31], then M(f)u gives the vector of Birnbaum measure of re-
liability importance where g = (o = 1, 441,...,#n-1)" i8 & column vector
and p; = P[X; = X, =--- = X, = 1]. Note that y is an eigenvector of T,
corresponding to eigenvalue +1.

Barlow-Proschan Structural Measure

Let f be a semi-coherent structrure on N. Barlow-Proschan measure of

structural importance ¥(i) of p i is the probability that compo-
nent i is pivotal under the assumption that all orderings are equally likely

to occur. It can be calculated as follows (see Chapter 1 or [4] and [37])
. i1,
¥(i) = [ [h(1..p) = b0, )] dp
0
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where h(1,,p) = E[f(1;,X)] and h(0;,p) = E[f(0;,X)] under the as-
sumption that X;, X, ... X, arei.i.d. binary random variables with P[X; =
ll=pforallie N.

Theorem 8 Let the column vector p € R™, be defined as p, = 1/j for
i =1,2,...,n. Then M(f)u gives the vector of Barlow-Proschan measure

of structural imporiance of components in f.

Proof : Let the simple form of f be

f(z) = Zﬂsnl,

SCN ;€S

we then have
¥i) = [ hp) —hOup) dp

/( 3 asp¥dp

i€s
B39
1 1
E ﬂsm=z— as
i€s =1 jeSCN

Hence the result follows.

Remark : In this case also the column vector u is an eigenvector of T,

corresponding to the eigenvalue 1.
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Cut Importance Ranking

Butler [15] introduced a structural ranking of the components in terms

of the minimal cut sets of the system. It is applicable when comp
reliabilities are high. Let f be a coherent structure on N and 7(f) be the
collection of all minimal cut sets of f with cardinality m. Component i is
said to be more cut important than component j ifb® = (b(l'), b§‘>, L, B0)
is lexicogmphically greater than b0) = ®,69,...,5)) where BF =

™ (= 1)"1t(") and t(k) denotes the number of collections of u distinct
mnumn] cuts such that the union of each collection contains exactly [ com-
ponents including the component k. It can be calculated using the rela-

tionship (see Theorem 16 of Chapter 1)

E[f(1,X) - £0, %)) = 1870 -y

Theorem 9 Butler’s cut importance ranking of components in a structure
f on N is equivalent to the lezicographic ordering of the rows of the struc-

tural matriz of the dual of a structure f on N.

Proof: Let M(fP) denote the structural matrix of fP and let the simple
form of fP be

Pz)= 3 bs[] =5

SCN  j€s

and hence we have

f(x)—l—stn(l—z,)—l—zbsnz]
N

JES SCN  j€S
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where Z; =1 —2;, for j = 1,2,...,n. This implies that

f(1i,x) = £(0i,x) —[ > bst,} [1“ > ”SH’:J

SCN—{i} €S SCN  s€s

Eb5H’J Z bSHEJ

SCN des SCN-{i} j€S

|
\g!
=
K

This gives us

E[f(1,X) - £(0,X)] = X bsql™!

=1 se¥
15hm3
= Y ¢ 'm(fP),;
3=1

Hence the result follows.

Remark : Let X, X,,..., X, be independent binary random variables
with P[X; = 1] = p, all i € N. Then M(f)p gives the vector of Birnbaum
measure of reliability importance of components in a structure f on N if

we take y; = p*~lfori=1,2,...,n
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Chapter 3

A Consecutive-k-out-of-n:F

System

3.1 Introduction

A consecutive-k-out-of-n:F system consists of n linearly ordered and inter-
connected components such that the system fails if and only if at least k
consecutive components fail. This system finds applications in telecommu-
nication and pipeline network [19], design of integrated circuits [12], and
process control techniques etc. For example, consider a telecommunication
system made-up of a sequence of n relay stations and suppose that a signal
tr}msmiﬂed by station i can be received by the next k stations. If there are
less than k failures at different points in the sequence the signal can still be
transmitted from station 1 to station n and no signal can be transmitted if

there are k or more consecutive failures in the sequence. Similarly, in an oil
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pipeline system with n pumping stations, if a pump fails oil flow will not be
discontinued because the neighbouring pumping stations can take the load.
A conceptual model of a consecutive-k-out-of-n:F system has a number of
applications in the field of Statistical Quality Control. Consider a control
chart application. If a control chart shows a run of eight points out of nine
points on one side of the central line, then the process is declared as out of
statistical control. Similarly, other applications are available in the field of
acceptance sampling. Bollinger and Salvia [12] have given an application

of this model in the design of integrated circuits.

This system is more general than a conventional r-out-of-n:F system
in which the system fails if and only if at least r components fail. In a
consecutive-k-out-of-n:F system, if we take k = 1, this system reduces to

the usual series system and for k = n it becomes the parallel system.

A consecutive-k-out-of-n:F system was first introduced by Kontoleon
[33]. He gave a computer algorithm for calculating system reliability. Chi-
ang and Nu [19] gave a recursive formula for computing system reliability
in O(nk) time and also developed upper and lower bounds for system re-
Liability. Bollinger and Salvia [12] and Bollinger [10] have given a direct
combinatorial method for determining probability of system failure. Der-
man, Lieberman and Ross [21] gave a new set of recursive equations for
system reliability and their method requires O(n?) computing time. They
also considered the problem of sequencing of components in the system 8o

as to maximise system reliability.



J.George Shantikumar [46] was the first one to give an efficient recursive
algorithm for computing system reliability when component reliabilities are
not the same. His algorithm requires a total of (4n — 3k — 1) multiplica-
tions/divisions and (2n — 2k + 1) additions/subtractions. Hwang [28] gave
two different recursive equations using different but simple arguments when
component reliabilities can be different. His methods need O(nk) and O(n)
computing time. His second recursive equation is similar to that of Shan-
tikumar [46]. Chao and Lin [18] considered the i.i.d. case and developed a
Markov of chain model using the concept of taboo probability and gave a
general closed formula for system reliability. They also showed that sytem
reliability tends to exp (—n(1 — p)*) for 1 < k < 4 as n — oo and used
this limit formula for designing a large optimum system. They conjectured
that this limiting result also holds for k¥ > 4. Fu [24] gave a simple proof

to show that their conjecture actually holds for all k¥ > 1.

Bollinger and Salvia [13] studied the consecutive-k-out-of-n:F system
when component life has exponential distribution and taking into account
the actual order of individual failures leading to system failure and devel-

oped an interesting approach for computing moments of life time.

Chen and Hwang [20] gave the following direct formula for computing
system failure probability

("1 +ng+ -+ "k) pE"' q,-zfn;
IZk AGkg—k) \ P2 Tk

where A(k,j — k) = {(n1,n,...n) : n{s are non-negative integers such
that $X, in, = j — k}.
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Papastavridis and Lambiris [41) assumed that the probability that a
component is working or not working depends on the state of the previ-
ous component and considering the Markov chain model gave a recurrence
relationship for computing system reliability. Fu and Hu [25] studied the
system when the component failure has (k — 1) step Markov dependence
and also deduced the result of chao and Lin [18). Papastavridis and Had-
Jichristos [40] assumed the i.i.d. model and gave a general formula for mean
time to system failure and applied this to the case when components have

Weibull life distributions.

Section 2 provides a necessary and sufficient condition for a path set
to be a minimal path set. In Section 3, we provide a simple approach for
determining the reliability function. In Section 4, we examine the incorrect
result of Papastavridis [39). We give a counterexample and also the mis-
take in his proof. Section 5 presents a recursive procedure for obtaining the
structural matrix of the dual structure of a consecutive-k-out-of-n:F sys-
tem. Section 6 considers the computational efforts and space requirements

needed for calculating the structural matrix of the dual system.

3.2 Minimal Path and Cut Sets

Suppose ¥y, denotes the structure function of a consecutive-k-out-of-n:F
system and let a(k; n) and y(k; n) represent the collection of minimal path
sets and cut sets of a consecutive-k-out-of-n:F system, respectively. Since

a consecutive-k-out-of-n:F system fails if and only if at least k consecutive
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components fails its minimal cut sets are :

~(k;n) :{{i,l'+1,.u,i+k—-l):i=1,2,4,.,n—k+1)
obviously, we have |y(k; n)| = n—k+1. We give the necessary and sufficient
conditions for a minimal path set.

Theorem 1 Let R be a subset of N = {1,2,...,n}, of cardinality r and
let ay,az,...,a, be its ordered elements, that is, 6 < az < -+ < a, then
R € alk;n) if and only if we have

() ai—aia<k fori=12...,r

(i) ap—ai12k+1 for i=12,...,r

where ap =0 and a,4y =n+1.

Proof: We know from Theorem 1 of Chapter 1 that for a semi-coherent
structure on N, a subset R C N is a path set if and only if it has non-empty

intersection with every cut set, that is ,
a(k;n) = {R:RNQ+# 0 for each Q € y(k;n) and R is minimal
with this property }

Let R C N be such that condition (i) holds <= RN Q # @ for all Q€
y(k;n) < R is & path set of &y .

Suppose that condition (ii) also holds that is, aiy; — 6,1 2 k + 1 for
i=1,2,...,r <= if component i is deleted from the path set then R —{i}

is not a path set.
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In principle, Theorem 1 gives us a simple algorithm to determine the

minimal path set from a given path set if we can check that (ii) holds.

Corollary 1:
a(k; k) = {{1},{2},..., {k}}
a(k;2k) = {{1,k+1},{2,k+ 2},..., {k, 2k}}

Corollary 2: If R € a(k;n) then

l.a,>2n—k+1landa,-1 <n—k+1

2 n—kgR=>a,_1<(n—k—-1)=>n¢R.

Corollary 3:
Ifn—k¢&R,then R € a(k;n) <= R € a(k;n —1).

Corollary 4:
Ifn—k € R, then R € a(k;jn) <> R—{n—k+1,...,n} €a(kin—1).

Chan, Chan and Lin [17] have given the following necessary and suffi-
cient condition for a state vector to be a minimal path vector

Lzit@ipm+ -+ 21, i=12,...,.n—k+1

2. zia( > z,z;,) =0 fori=12,...,n

i<ir <ja<i+h—1

where 2o = 1,2,4; = land z,4; = 0, for i = 2,...,k — 1. Condition
1 implies that x is a path vector and condition 2 ensures that it has no

redundant functioning components. These conditions are difficult to apply

and less tractable.
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3.3 Structure and Reliability Functions

Various approaches have been used for obtaining reliability function of a
consecutive-k-out-of-n:F system when components function independently
and have the same reliability. Several authors have obtained recursive for-
mula to compute the exact system reliability. The case of unequal compo-
nent reliabilities was first studied by Shanthikumar [46]. He developed a
recursive algorithm to compute system reliability. Hwang [28] also obtained
exact system reliability. Chan, Chan, & Lin [17] have given an algebraic
approach for obtaining the reliability function.

We give here a simple approach using dual structure to obtain the sys-
tem reliability function when component reliabilities are not same.
Let &4, and ®f, be the structure functions of a consecutive-k-out-

of-n:F system and that of its dual structure, respectively. Suppose that

comp function independently and assume that the reliability of com-
ponent iis p;, fori = 1,2,...,n. Let hg, and hﬂ,, be the reliability functions
associated with @, and ®f,, respectively.

Theorem 2 We have the reliability recurrence relationship for the dual of
a consecutive-k-ont-of-(n+1):F system

n+1
Bsr(Pat1) = hon(@a) +  TI  £i(1 = Proier) (1 = ARnok(Pn-k))
y=n—h+2

where pi = (p1,p2, ..., pi) and n > k.

Proof: Consider the dual structure of a consecutive-k-out-of-(n+1):F sys-

tem and let A; for § = 1,2,...n — k + 2 be the event that components
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i,i+1,...,i 4k —1 work. Suppose that B = 4, UAyU - - U Angsr, We
then have
hgn(pa) = P(B) and
h£n+1(pn+l) = P(BUAn-i43)

= P(B)+ P(An-ks2) — P(BN An_y42)

n+1 n+l
= b+ I p— Il »
j=n—k+3 jen—h+1
a4l
~(1 = Pris)bbmn(Pnr) I 25
J=n—h+2
since
n+l n+l
P(BNAa_r42) = (1 —pn—’(+l)h£n—k(pn-k) H P+ H p;-
j=n—h+3 j=n—k+1

Hence we have

n+l
"fn)([’»ﬂ) = hl[-).n(!’n) + H Pil(1 = Paksr) = (1 —Pn—k—!)hf,n—l.(l’n-t)]

y=n—k+2

n+l
B2 (pa)+ II  Pi(1 = okt (1 = hRni(Pn-k))-
jen—h+3

Remark: It follows on the same lines as Theorem 2 that

n+l
®P, 11 (Xnt) = BLn(%n) + (1 = Znist)(1 = BRsu(xas) I 2

y=n—k+2

where X, = (21,23,...2,) and n > k.
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Theorem 3 The sirxcture function of a consecutive-k-out-of-(n+1):F sys-

tem is given by

n+l
Bhns1(Xn41) = Phn(Xn) — Zacks1Pan-i(xn-s) [ (1—2)).
j=n—h+2

Proof: This follows from the above remark and the fact that for any
structure f on N and its dual structure 2, we have
fx)=1-f°(1-x).

Remark 1: Theorems 2 and 3 are also given in [46] and [17]. We have

presented a different approach for proving them.

Remark 2: For the i.i.d. case with p; = p for all i and ¢ = 1 — p, the

reliability recurrence relationship reduces to

Brn-1(p) = ¢*Phin-k-1(p) for n>k
hin(p) =4 1—-4g* for n=k
1 for k>n2>0.

3.4 Component Importance

Griffith and Govindarajulu [26] for the first time examined the problem of

reliability importance of ponents in a ive-k-out-of-n:F system.
They considered the i.i.d. case and derived an exact expression for system
reliability using a Markov chain model. They then used this expression for

obtaining Birnbaum reliability importance. As an example, they computed
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the Birnbaum reliability importance of components in a consecutive-3-out-

of-8:F system. Their procedure is lengthy and a direct comparison of com-

ponent importance is not possible. This problem was next ideded by
Parastavridis [39]. For the special case of i.i.d. components, he incorrectly
asserted that the most important components are located in the middle

of the sequence of the components. He gave the intuitive reasoning that

there are more number of k-tuples of i p ining a
specific component located nearer to the centre and it is more likely that
failure of this particular component will contribute to the failure of a con-
secutive k-tuples of the components. We now give the results mentioned in
[39].

Let Bi,(i,n) denote the Birnbaum reliability importance measure of

iin a ive-k-out-of-n:F system with i.i.d. components

(p1 =p2=+-- = p, = p) and ¢ = 1 — p. Parastavridis [39] first showed that

(1) Bip(i,n) > Bip(s, n) if and only if hyios(P)hin-i(p) > hij-1(P)hrn-;(P)-
He then goes to prove the following assertion :
(i) Brp(i,n) > Brp(j, n) if and only if |n — 2i| < |n — 2j].

We claim that the assertion (ii) is incorrect. We give the following coun-

terexample in support of our claim:

E le : Consider a tive-k-out-of-n: F system with k = 2

52



and n = 6. Reliability function, h,,(p) for n < 4 is given by:

1 if 0<n<2

1-¢2 if n=2
hon(p) =

1-2¢°+¢ if n=3

1-3¢°+2¢° if n=4

For i = 3 and j = 2, we have
|n—2i] =6 — 6] < |n — 2j| = |6 — 4| whereas
haa(p) X has(p) = han(p) X hou(p) =
(1-)(1-2¢ +¢°) - (1= 3g+2¢°) = —¢’p* < 0.

Hence (ii) is not correct. In fact it can be verified that component 2 has

the maximum Birnbaum reliability importance.

Parastavridis [39] has used induction on n and the following reliability

recurrence relationship to prove his assertion
Ria(p) = hicno1(p) — ¢"Phrn—k-1(p) for n 2 0.

To prove the induction hypothesis, he that his assertion is true for

the consecutive-k-out-of-m:F system for m < n. We claim that this initial
assumption is not correct. Since for m = k < n, the consecutive-k-out-
of-k:F system reduces to a parallel system with k iid. components and
we know that in a parallel system with i.i.d. components all components

have the same Birnbaum reliability importance. Hence the induction is
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not valid in this case. Moreover the reliability recurrence relationship used
is not correct. The correct reliability recurrence relationship is given in

Remark 2 of Theorem 3.

In the remaining chapters, we study the component importance and

ranking in a consecutive-k-out-of-n:F system in details.

3.5 Structural Matrix

For studying the structural importance of components, we require the struc-
tural matrix of the consecutive-k-out-of-n:F system. We present a recursive
procedure for obtaining the structural matrix of the dual of a consecutive-
k-out-of-n:F system.

Let ®f, denote the structure function of the dual of a consecutive-k-

out-of-n:F system and suppose that its simple form is given by

3. (xn) = 3 b I =

SCN  jes
where x, € {0,1}". Its reliability function when p, = p; = --- = p, = p
can written as
kP (p) = o™ p"  where am =3 5.

r=1 SCN
ISt=r

The structural matrix, M(®9,) = ((df;))),.,,. of &7, is by definition

(n) _ (n)
4= ¥
IESCN

1S1m=j
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We first obtain a recursive formula to compute a**V) forr = 1,2,...,n+1,

using the recurrence relationship for hD',L. We have n > k

hlnsa(p) =

n+1
Z n('n+l)pr

r=1
o n+l n+l
hgaea)+ II 2= II »
j=n—h+3 jEn—k+1
n+
_(I-Pn—ku)hf,.—h(l’n—k) H p;
j=n—k+2

n n—k
Zasn) I +P~ — Pk-n — Z as»—h) (pu-k - p"""“)

r=1 r=1

k-1
r n n n—k;
3ol g+ (o +1) p* + (afy —al*H — 1) pH*

r=1

+ 3 [ =l 4 a0 ] B+ ol e
r=k+2
This gives us
al™ if 1<r<k
a™ +1 if r=k
a{mt) = a™ — a("—k) 1 if r=k+1
a™ =" a0 if k+2<r<n
af:'_-:) if r=n+1
We shall now obtain a recursive relationship for the el ts ((d:-;“)))

of the structural m:

atrix of ®,,,, using the recurrence equation for 7, ,,
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and a{"*+V). Consider the recursive relationship for 7.,

n+l
B ii(Xns) = Ba(a) + I = -
jEn—k+2
n+1
—‘Dfu—h(xn-k) H z5
J=n—k+2
Case 1: Forj<k

d§* =0 foralli and n

For n > k and k > 2, we have

n+1
z;
j=n—k+1
n+l
D
+ Pin—i(Xn-k) H z5.
j=n—k+1

Case 2: j=k
a) if 1<i<n—k+1
A ={ 4P +1 i n—k+2<i<n
1 if i=n+1.
Case 3: j=k+1<n
@ -4 if 1<i<n-—k
et P -1 i i=n—k+1
d;; £ o
dP —1-a*™ if n-k+2<i<n
-1 —a"® if i=n+1l

1
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Case 4: j=k+2<n

dP —dg™ +af™ if 1<i<n—k

. P +a"M f i=n—k+1
n+1) _
G o ey o
dP —al ™M 4+al™ if n-k+2<i<n
| _a(;—h)_‘_agn—k) # oiz=n4l
Case5: j=k+r<nandr>3
AP —df ™M 4dn R i 1<i<n—k
(n+1) 4P + a7 if i=n—k+1
g+ =

dP —arM 46" i n—k+2<i<n

-—aﬁ"_k) + a(n_lk) if i=n+1

y—

Case 6: j=n+l1

| AR 1<i<n—k
L R .
a’ if n—k+1<i<n+1

Remark : We can obtain M(®,), the structural matrix of a consecutive-
k-out-of-n:F system from M((I)En) by the using the relationship M(®,,) =

M(®{,)T, as proved in Chapter 2.
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Theorem 4 Let M(®4,.) = ((f;;)) be the structural matriz of a consecntive-
k-out-of-n:F system, then fi; = fay1-i; for any i = 1,2,....n and all

i=12,...,n.

Proof : Suppose fi (i, n) represents the Birnbaum reliability importance

of iina ive-k-out-of-n:F system with i.i.d. components

(pr = p2 = -+ = pn = p). It can be shown that Sr,(i, n) = Brp(n+1-1, n).
We know from Remark of Theorem 9 of Chapter 2 that

n
Brpliyn) = Zf"i/‘! where p; =p' ' forj=1,2,...,n.
j=1
It follows that

Z it = E fa+1-ijp’ ", This implies that
j=1 j=1

S (fii = farr—sy)p T = 0 forall p € [0,1).
i=1
Hence we have fi; = fn41-i; forall j =1,2,...,n.

Remark : Using the structural matrix of a consecutive-k-out-of-n:F
system, we can compute the Birnbaun, Barlow-proschan structural impor-

tances and others measures considered as proved in Chapter 2.
Example : We give here the structural matrices of the dual structure

of 8 consecutive-k-out-of-n:F system for (i) k = 2,n = 2 to 8 and (ii)

k=3,n=3t09.
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Structural Matrices of

the Dual Structure of a Consecutive-2-out-of-n:F system

Case:1 k=2
01 -10
01 -1
01 02 —20
02 -1
01 02 —20
n=2 01 -1
n=3 01 -10
n=4
01 -1 -2 3 -1
01 -1 —-11
02 -2 -3 4 -1
02 -2 -11
02 -3 -13 -1
02 -3 01
02 -3 -13 -1
02 -2 -11
02 -2 -34 -1
01 -1 -11]|
n=s 01 -1 -2 3 -1
n=6
01 -1 -4 7 -2 -21
01 -1 -35 -20
02 -2 -7 12 —4 -2 1
02 -2 -58 —30
02 -3 -5 12 -6 —1 1
02 -3 -37-30
02 -3 -4 9 -3 —21
02 -3 25 -20
02 -3 -4 9 -3 -21
02 -3 -37 =30
02 -3 -5 12 -6 -1 1
02 -2 -58 -30
02 -2 -7 12 -4 -2 1
01-1—35-20J
n=i 01—1—47—2—21JB
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Case 2: K=3 (Structural Matrices of the Dual Structure of a

Consecutive-3-out-of-n:F System)

001 -10
001 -1
001 002 -20
00 2 -1
001 003 -20
002 -1
001 002 —-20
aad 002 -1
n=t 001 -10
n=5
001 -10-11
001 -100
002 -20 -11
002 -200
003 -30-11
003 -300
0038 —-40 01
003 -300
003 -30 —-11
002 -200
002 ~-20 -11
001 -100
n=6 001 -10 -11 .
= 001 -10-35 —-20
001 -10 -23 -1
002 -20 -528 =30
002 -20 -3 4 ~1
003 -30 -6 9 -3 0
003 -30 -3 4 -1
003 —40 -37-30
0038 —40 —-13 -1
003 —40 -25 =20
003 —40 -13 -1
003 —40 —-37 -30
003 -30 -3 4 —1
003 -30 —6 9 —30
002 ~-20 -3 4 -1
002 -20 -538 =30
001 -10 -23 -1
= bt 001 -10-35 —-20 .
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3.6 Complexity

‘We examine the space requi and p ional efforts needed for
calculating the structural matrix, M(®£,). In view of Theorem 4, it is
enough to consider the first |n/2] rows of the structural matrix where |z]

denotes the smallest integer greater or equal to z.

Space Requirements : To calculate ((ds-;l + l))), we require the fol-

lowing information

(i) The matrices ((dg‘))) and ((df;-—k)))

(i7) The vectors (u({'), ...,a®™) and (n({'_h), ce as:'__:))

Hence the space requirements are |n/2]n+|(n—k)/2](n—k)+n+(n—k),
and the maximum storage space required is O(n”) since at most n + 1 bits

are required to represent an element of the structural matrix.

Computational Complexity : To calculate [(n + 1)/2)(n + 1) ele-
ments of the matrix ((d}}"")), we require a maximum of two additions/subst-
ractions for each element. Hence the computational steps needed is equal
to 2|(n +1)/2](n + 1), counting each addition/substraction as a step. To

calculate the (n + 1) elements of the vector (a(,"“),. e af.":l‘)

) computa-
tional efforts needed is 2(n + 1). Hence if we consider a structure of size n,
the total complexity efforts needed is bounded by

_@n+)(n+n  2(n+ln
- 6 + 2

(1P+...+n?)+2(1+...n)
that is, the complexity is O(n®).
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Chapter 4

Component Importance in a
Consecutive-2-out-of-n:F

System

4.1 Introduction

We consider a consecutive-2-out-of-n:F system made-up of n linearly or-
dered components with serial numbers assigned from theset N = {1,2,...,n}
and this system fails if and only if there are at least two consecutive
failed components. We are mainly interested in ranking the components
using different measures of importance when component reliabilities are
not known. Measures of importance considered are Birnbaum structural,
Barlow-Proschan structural, Birnbaum reliability and Butler’s cut impor-

tance ranking. For calculating Birnbaum structural importance, we need

62



to study the properties of path sets and swings, which is done in Section
2. In Section 3, we study Birnbaum reliability and Birnbaum structural
importance measures and provide a general formula for calculating system
reliability. We also obtain Birnbaum structural ranking of components.
Section 4 is devoted to the study of Barlow-Proschan structural impor-
tance and provides a procedure for calculating it. Section 5 is concerned
with the study of Butler’s cut importance ranking. An interesting result
that follows from this Chapter is that component rankings provided by
Birnbaum measure of structural importance, Barlow-Proschan structural

measure of importance, Butler’s cut importance ranking and Birnbaum re-

liability importance (for ii.d. p ts) are all identical in a

consecutive-2-out-of-n:F system.

4.2 Path Sets and Swings

Let ®;, denote the structure function of a consecutive-2-out-of-n:F sys-
tem . Suppose X=(z1,22,...,%s) €.B" where B = {0, 1}, denotes the state
vector of components. A path set is a subset of components whose function-
ing ensures that the system functions. Let Py(n) represent the number of
path sets of a consecutive-2-out-of-n:F system . Furthermore, let P(1i,7)
and P;(0;,n) denote the number of path sets of a consecutive-2-out-of-n:F
system with i** component working and not working, respectively. We then

have the result
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Theorem 1
Py(n) = Py(1i, n) + P(0i, n).

Proof : It follows from the fact that a path set of the system either contains

component i € N or it does not contain component i.

Fibonacci Sequence:

A sequence of integers {f,} which is determined by the difference equation
fn=fac1+ fnz, forn>3

with initial conditions f; = a and f; = b is called a Fibonacci sequence
[48]. The numbers a and b are called a starting pair . We derive a for-
mula for obtaining the n** term of the Fibonacci sequence for the sake of

completeness though it is given in [7].

Theorem 2 Let f, be a Fibonacci sequence with fy = a and f, = b. We
then have
f,.————[a(c,—l)+b]+ \/— [a(l- ) — b
where
= 1—+—\/—g and c; = l—:ﬁ
2 2

Proof : Let g(z) denote the generating function of f,, we then have

9(2) = fi + 2fr + 2+ + ST+

z9(2) + zfi + 2fs +-0 + 2o +
z%g(z) = + 22f +0 + @ far +

Or (1—2—2g(e) = fi+2(fa— f) since fays = fo+ fao for n > 3.
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This gives us

_atz(b—a)
@ =30
Let
c —1+‘/§a.ndc _1—\/5
1T T 2T T2
we can then write
1 1
l-z—22 (1-cz)(l - cz)
A B

(1-caz) + (1 —coz)
(A+ B) — z(Ac, + Bcy)
(1 -caz)(l —e2)
this gives A+ B =1and Ac;+ Be; =0or
—C
a—c

<1

A= and B =

G —C

Hence we have

g(z) = Afa+z(b—a)]l —c1z]™ + B a+z(b—a)][l - c2z] ™"

for sufficiently small 2

Ala-t 2(6 = )] (5 fe"] + B [a+ 26— )] @,“’”""

Coefficient of z*~! in g(z) =
Alact +(b—a)f? |+ B[ac™ + (b—a)™?]
C’;-‘ c;—]
= V3 [a(c; — 1) + 8] + %—[a(l —c)—b]).
Remark :

When a = 2 and b = 3, we denote the Fibonacci sequence{f,} by {Fn} and
isgivenby F; =2, F, =3, F3=5, F, =8,
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Theorem 3 The number of path sets, P)(n) of a consecuiive-2-oui-of-
a:F system follows a Fibonacci sequence with initial conditions a = 2, and
b=3, that is, Py(n) = F, .

Proof: Every path set of a consecutive-2-out-of-n:F system must have
either component 1 working or not working. The number of path sets with
component 1 working is P,(1;,n) which equals Py(n — 1). If component 1
is not contained in a path set then component 2 must be present in the
path set. Hence the number of path sets with component 1 not working is

P5(01,n) and since P,(01,n) = Pz(n — 2), for n > 3 hence we have
Py(n) = Py(11,n) + P2(0;,n)
= Py(n—-1)+ P(n—2)forn>3.
Obviously, we have P5(1) = 2, P,(2) = 3. This implies that Py(rn) = F,.

Remark : It is convenient to extend the Fibonacci sequence {F,} to
include the terms for n = 0, —1, —2 where F_; = 0, F_, = 1, Fp = 1 without
loss of generality and we take Py(n) = F, for n > —2. We now show how
the number of path sets, when component i is working or not working can

be calculated using the Fibonacci sequence {F,}.

Theorem 4 The number of path sets, P,(1;,n) of a consecutive-2-out-of-

n:F system with component i functioning is given by F;_, F,_,.
Proof : Consider the sets
Si={y:y €B™" and &y;4(y) = 1}
S;={z:2€ B and ®y,_i(z) =1}
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where ®,;_; and ®,,_; represent the structure functions of a consecutive-2-

out-of-(i-1):F subsystem with components {1,2....,i—1} and a consecutive-

2-out-of-(n-i):F subsy with comp {i+1,...,n} of the original
system, respectively. Now if y€ S; and z€ S, this implies that (y,1,2)
can be written as (1;,x) and we have ®,,(1;,x) = 1. Hence (1;,x) is
a path vector of a consecutive-2-out-of-n:F system with i** component
working. And if ®,,(1;,x) = 1, we then define y=(z,,...,2;;) and
2 = (Zi41,...,2n) and we have $,;_,(y) = 1, and y € B! and also
$,0-i(2) =1 and g € B*~*. Hence y € S; and z € S, and it implies that
Py(1;,n) = Pp(i — 1) Py(n — i) = F;_, F,_; using Theorem 3.

Remark : This result can also be obtained from [26].

Theorem 5 The number of path sels, P»(0;,n) of a conseculive-2-ount-of-

n:F system with i** component not working equals F;_oFn_i_,.

Proof : Let x be a path vector of a consecutive-2-out-of-n:F system with
i** component not working. Hence x = (2, z3,...,%i-1,0,Zi41,...,Z,) and
since x is a path vector it follows that z;_; = 1, 2;4; = 1, 2; + 241 # 0 for
j=1,2,...,i—2and z; + zj41 #0for j =i+ 1,2,...,n— 1. This shows
that (21, 2,...,2i—1) is a path vector for a consecutive-2-out-of-(i-1):F sub-
system with (i — 1) component working and the number of such path
vectors equals P(1;,i — 1). Similarly, = (Zi41,...,2a) is & path vector
for a consecutive-2-out-of-(n-i):F subsystem with first component working
and the number of such path vectors is given by F,_._,. Conversally, if
y = (21,22, ...,%i-1) with z;_; = 1 is a path vector for a consective-2-out-

of-(i-1):F system with the last component working and z = (Zi41,---,2n)

67



with 2,,; = 1 is a path vector for a consecutive-2-out-of-(n-i):F subsystem
with the first component working, then x = (y,0,z) is a path vector of

a consecutive-2-out-of-n:F system with i** component not working. Hence

the result.
We now examine the number of swings a p t hasin a c ive-
2-out-of-n:F system and show how it can be calculated using the extended

Fibonacci sequence {F,}.

4.2.1 Swings

A subset D C N — {i} is called a swing for component i if N — D is a cut
set but DU {i} is a path set of the system. The term Swing is taken from
the terminology of game theory. Let S;(i;n) denote the number of swings
for component i € N in a cosecutive-2-out-of-n:F system. We then have

the following results:
Theorem 6 We have for 1 <i<n
(i) Sy(in) = FiFaoi= FoFh iy
(1)  So(isn) = Fn—2F_oFn i
(i15)  Sa(i,n) = 2Fi Fpi—F,.

Proof: We recall that (1;,x) is a critical path vector or a swing vector for
component i if $5,(1;,x) =1 and P, ,(0;,x) = 0. Hence the total number

of swings for component i equals
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Theorem 9 For a given i > 1, Sy(i;n) is a Fibonacci sequence forn > 1
with initial conditions Sy(1;1) = So(154) and Sy(i:i+ 1) = Sy(2;1+ 1).
Proof: We have from Theorem 6 part (iii), S2(i, n) = 2F;_; F,,—, — F, and
since F;_, is a constant for a given 1 it follows from Theorem 8, that S;(i, n)
is a Fibonacci sequence with the initial conditions given by when n = ¢ and
n = i+ 1 and we have S;(i;4) = S3(1;4) and Sy(s;4 + 1) = Sa(25i + 1)
because of mirror image property.

Remark : For i = 1, it follows that S;(1;n)=F,_3, S2(1;1) = 0 and
Sa(1;2) = Sa(2;2) = 1.
Theorem 10 For a given i > 0, Sx(n;i+ n) is a Fibonacci sequence with
instial conditions So(1;i + 1)=F;_ and So(2;i + 2)=F; + F;_,.
Proof: We have from Theorem 6, part(iii) So(n;i + n) =2F, 1 F, — Fiy,
and it follows from Theorem 8 that Sy(n;i + n) is a Fibonacci sequence as
F, is a constant for a given i and the initial conditions are Sp(1;1+1)=F,_,
and S55(2;2 +1)=F, + Fi_,.
Theorem 11 If {F,} is the extended Fibonacci sequence with F} = 2 and

F, =3, then it satisfies the relationship
Fi1Fiy; — FiFiyjo1 = (-1)'F,  for j2>0.

Proof: We use induction on ¢ and j to prove this. We first prove that it is
true for j = 0,1 and all 1. For j = 0, it is trivally true for all { as F_, = 0.

Now consider the case when j = 1, we need to show that
Fi Fipy — FiF,=(-1)F.; foralli
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(1) Sa(isn) = 3 [@rn(Li,X) — B2a(0i, %))
J

]

Py(1i,n) — Py(0i,n)
= FiyFai—FiyF0iy.
where J = {(21,...Zic1, Tit1,.. - Zn) : 2p € B}.
(i) Si(izm) = ;[t,m(la,x) — ®2,(0;, %))
= Py(1;,n) — Py(0;,n)
= Py(Li,n) = Py(0;,n) + Py(0i,n) — Pa(0;, n)
= Py(n) = 2P(0i,n) = F, — 2F, 2 Fpiy.

(i) S,(i;n) = Py(l;,n) — Py(0;,n)
= 2Py(Li,n) = Pa(n) = 2Fies Far, — F.

Remark : Number of swings of components can also be obtained from
the structural matrix. Let M(®,,) denote the structural matrix of a
consecutive-2-out-of-n:F system, then M(®,,)u gives the vector of com-
ponent swings where u is a column vector with y; = 2" fori =1,2,...,n.
Mirror Image Component
For each component § € N, we define its mirror image component to be the
component (n — i+ 1). Note that mirror image of a component (n + 1)/2
is identical to itself when n is odd. We now show the relationship between

a component and its mirror image.
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Theorem 7 In a consecutive-2-oul-of-n:F system component i and is

mirror image component (n + 1 — i), have the same number of swings.
Proof : It follows from Theorem 8 (iii) since for any i ( 1 < i< n)

Sy(isn) = 2Fi1Fai—Fa and
Sin—i+1Lin) = 2F,_F,—F,

It is interesting to note that number of swings for component i is again
a Fibonacci sequence but with different initial conditions. Before showing
this we first prove a simple result regarding a linear integer combination
of two Fibonacci sequences . In fact, it holds for more than two Fibonacci
sequences as well.
Theorem 8 If {g.} and {hn} are two Fibonacci sequences, then ta(m) =
agn+ Bhmin, where o and B are integers, and m is a non-negative integer,
is a Fibonacci sequence with initial conditions t:(m) = ag: + Bhmsr and
to(m) = ags + Bhmsz.

Proof : We have by definition for n > 3

gn = gn-1+gn-2, and
hmin = Bminci+Bmin—z, form>0andn >3
taoi(m) = ogn-1+ Bhmin-y
ta-2(m) = agn-2+ Bhmin—2, Which gives us
taoi(m) +tae2(m) = agn+ Bhmin = ta(m).
Hence {t,(m)} is a Fibonacci sequence.
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det M; = [det A]'**  for all i

where
Fy F

F;  Fa

M; =

For i=1,

3 2
M,:[ }ﬁdetM1=—landalso det A = —1.
21

Hence the result is true for i = 1. Now assume that it is true for i = p,

that is
det M, = [det A2,
Forr F, 11 Fpy2 F,
Since Mpa=| "7 °F e A A I VA
F, Fo||10 Fpu F,

this gives us
det My4; = det[M, A] = det M, det A = [det AJ"*det A = [det AP,

Hence it is true for all i and j = 1.

Let us now assume that theorem is true up to j = r and for all i, that is
R-1E+r - RF'H»v—l = (_1)'1'1—2'

Take the case for j = r + 1 and we have

FierFigrp1 — FiFiye = FisyFigr + FiciFigro1 = EFigre1 — FiFigr2
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= F,,Fiy, — FiFypa+ FiaFiyeoy — FiFiy, s
since the result is true for j =r —1land j =1
= (F1)'F o+ (-1)F 3
and as {F, } is the extended Fibonacci sequence
= (-1)'F_..
Hence the claim is true for j = r + 1 and the theorem follows.
Remark : The particular case of the above theorem for j = 1 is well
known in the literature [34].
Theorem 12 Forn > 1, we have Sx(n:2n) = F2_;.
Proof : Using Theorem 6 parts (ii) and (iii), we have
Sa(n;2n) = 2Fa Fn— Fy,
= Fon—2Fn2Fa 1.

Hence we can write

Sa(n;2n) = FuyFn— FaoFay
= Fuoa[Fn— Fa2)
= F2,.

Remark : Using the above result, we have 2F, ,F, — %, = F2_,. This
result indicates that for an even number (2n) of components in the system,
the number of swings for component n or n + 1 equals the square of the
number of the path sets for a system with (n—1) components. Furthermore.

we have for the system having an odd number of components the absolute
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difference in the number of swings between the middle most components is

a constant quantity. This result is proved in the next theorem.
Theorem 13 We have forn > 2

|So(n+1;2n+1) — Sp(n; 2n+1)| = 2.
Proof : From Theorem 6 it follows that

San+15;2n+1) = Sa(n;2n+1) = 2FF, = Fongs = 2Fa 1 Fag1 + Fonn
2(F = Faoy Foga] = =2(-1)"

The last step follows from Theorem 11 for j = 1 and i = n, hence the

result holds.

For obtaining the relative ranking of the components, we need to com-

pare the number of swings of different components .
Theorem 14 We have forn > 2
Sa(1;m) — S2(2;n) = —252(1;n —1).
Proof : An application of Theorem 6 gives us
Sy(15n) = So(25n) = 2R F — F, — 2R F, 2+ F,
= 2[F,_ —2F,_)]
= =2F,_4=-25(1,n-1).
The last step follows from Remark of Theorem 9.
Theorem 15 For a fized i in a consecutive-2-oul-of-n:F system, we have
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(i) Sa(i,n) — So(i + 1;n) is a Fibonacci sequence for | < i < n—1 and

n>?2
ii) Soli.n)—Sa(i+1;n) = —[Sali—1;n—2) = Sp(isn—2)] for 2 <i < n—2
and n > 4.

Proof :

(i) Since for a fixed i, S3(i,n) is a Fibonacci sequence and S;(i + 1;n) is
also a Fibonacci sequence, it follows from Theorem 8 that the result
is true.

(ii) We have

Sa(isn) = So(i+ Lin) = 2[Fioy Faoi — FiFain]

=2[Fiy(Focicy + Fai2) = (Fioy + Fip)Fa_ioh]

=2[Fio1 Fooimz = FicaFamii]

= —[So(i — Lin=2) = Sa(isn — 2)].
Theorem 16 Let m be the smallest integer greater than or equal to n/2.
We then have for2<r<mandn>3

Sa(r;n) — Sa(1;n) = 252(157) Sa(l;n—r + 1),
Proof : For r = 2, using Theorem 14. we have
Sx(2;n) = Sa(1;n) = 2S,(Ln — 1)

and since S3(1,2) = 1, it follows that the result is true for r = 2 and assume

that it is true for r < p < m. Let r = p+ 1 < m, and we have
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Sa(p+1;n) = Ss(p;n — 1) + Sp(p — 1;n — 2) from Theorem 10 or 6.
Since the hypothesis is true for p and p — 1
= S5,(1;n—1) +25,(1;p)S2(lin=1~p+ 1)
+ S(1in—2)+2S5(L;p—1)So(lin—2—-(p—1)+1)
= Sx(150) +2[S2(1;p) + Sa(Lip = DS Lin = (p+1) +11)
= S55(1;n) +28,(1;p+1)S2(1;n = (p+ 1) + 1).

This implies that result is true for p + 1 and hence our claim holds.

Remark : Because of mirror image property, it is enough to consider
the first m components of the system for purpose of comparison and rank-
ing.

Theorem 17 Let m be the smallest integer greater than or equal to n/2.
Then for 1 <r<m—1 and n >4, we have

Sa(rin) = So(r + 1;n) = 2(=1)"Sy(1;n — 2r + 1) = 2(=1) Fagr 2.
Proof : The claim is true for r = 1 according to Theorem 14 and by using
Theorem 15, we have for r > 2 and n > 4

Sa(rsn) — So(r +1in) = —[Sa(r — 1;n — 2) — Sao(rin — 2)].
By repeated application of Theorem 15 we have
Sa(rin) — Sa(r+ 1in) = (=1)"Sx(r — (r—1)in —2(r — 1))
= S(r=(r—=1)+Lin—2(r—1))}
= (—1)""[S2(15n — 2r + 2) — Sy(25n — 2r + 2))
=(=1)2 Sy(l;n — 2r + 1).
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The last step follows from Theorem 14.
Theorem 18 Let m be the smallest integer greater than or equal to n/2.
Sy(rin) = Sy(1;n+ 1)+ Sy(r—2;n—4) for 3<r<mandn > 5.
Proof : Using Theorem 16 and Theorem 6, we get
Sarin) = Sy(Lin) +25:(157) Sa(lim —r +1)
=Fas+2F,_3 Fuyy 88 (S5(1,n) = Foos)
=Fog— Fasy +2F, 901 Facs(r-2)

=S(1;n+1) + So(r — 2;n — 4).
Theorem 19 Let m be the smallest integer greater than or equal to n/2.
Then

(i) For odd snteger r such that 3<r<mandn>5

Sy(1;n)=Sa(rin) = —2[Sa(1: n—2)+S2(1;n—6)+- - +S2(1:n—2(r=2))].
(ii) For even integer r such that4 <r <mandn>7

S2(1;n) = Sy(rsn) =

=2(S5(1;n = 2) + Sa(1;n = 6) + -+ Sa(;n = 2(r — 2))] + So(1,n = 2r + 3)
Proof : Since by Theorem 17, we have for 1 <j <m
Sa(jsn) = S2(i + 1n) = 2=1)Sp(15n = 25 + 1)
adding them for j = 1,2,...,(r — 1) such that » < m, we have
'Z[s, (55m) = Sa(j + 15n)] —22 1YS5(1;n =25 +1).
=1

This gives us the required results after simplification.
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Theorem 20 Let m be the smallest integer greater than or equal 1o n/2,

then the following resuits hold:
(i) So(r+1;n) — Sp(r;n) > 0 for odd r < m and n > 3.
(1) So(r+1;n) — Sa(r;n) < 0 for even r < m andn > 5.

(i) S2(1;n) < S2(3;n) < --- < Sa(my;n) where my 13 the largest odd

number less than or equal to m and n > 5.

(iv) S2(25n) > Sa(4;5n) > -+ > Sy(mg;n) where my is the largest even

number less than or equal to m and n > 7.
Proof :
(i) and (ii) trivially follow from Theorem 17.
(iii) It is enough to show that
S5(2d + 3;n) — Sa(2d + 1;n) > 0 where 2d +3 < m;
using Theorem 17 for r = 2d + 1 < m; and r = 2d + 2 < my, we have
S2(2d + 1) — Sy(2d + 2;n) = (—1)%H128,(1;n — 2(2d + 1) + 1)
$3(2d + 2 ) — Sy(2d + 3;n) = (=1)%+225,(1in — 2(2d + 2) + 1).
Adding them we get
Sa(2d + 15n) — Sa(2d + 3;n) = 2[Sa(1in —4d — 3) — Sa(1;n — 4d = 1)]

=2[Fsd—6 = Fasa-a] < 0.



(iv) Using Theorem 17 for r = 2d < m; and r = 2d + 1 < m;, we have
Sa(2d;n) — Sa(2d + 15n) =(=1)*2S(1:n—4d +1)
Sy(2d + 150) — Sy(2d + 2;n) = (—1)%*1 2S,(1;n — 4d — 1)

Adding them we get
Sa(2d;n) — S5(2d + 2;n) =2[S,(1;n —4d + 1) — Sy(1;n — 4d — 1)]
> 0.

An Alternative Approach

We now consider the Fibonacci sequence {t,} given by the starting pair
a =1and b = 1, the sequence generated is 1,1,2,3,5,8,13,21,... and is
connected to the {F,} by the relation {F,} = {tn42},n > 1. We first study
some related properties of {t,} and show its relevance to the number of

swings and provide an alternative proof for Theorem 20

Let g, = t—'i-ﬂ- and lim,_.., g» = G where G = l—i.zﬁ and is called the
Golden Ratio [48]. We prove the following results.

Theorem 21 We have

(i) 9o < G for odd n and g, > G for even n

(ii) |gn — G| is a strictly decreasing function of n
(iii) goq > gn for alln > 2d and

(iv) gog—1 < gn for alln > 2d.



Proof :

(i) From Theorem 2, we know that explicit formula for t, is given by
Lo L[ (1B
= 2 2

, we can then write

It follows that

Now since —1 < a < 0, it implies that g, < G for all odd n and g, > G

for all even n. Hence the result holds.

(i)
lo™**  _ Jel"(1 = o™ — ||+ a”|a])
T—amtl (1 —am)(1 —am+?)
_ o1 =20 —|al)

(1—am)(1—am)
Obviously, R.H.S. is greater than zero, when n is even. Consider the

case when n is odd, i.e., n =2d + 1, ford > 0

la(1 = 2]a*** — o)
(I —am)(1 —am*)
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la~(1 = 2]a® — |a)

7 A= — o)

> 0.
The above inequality follows because
1-2)af?—|a| >1-2x(0.4)>-04=1-072>0

as |a| < 0.4. Hence it follows that |g, — G| is a strictly decreasing function
of n.

(i) & (iv)

Since g, -G =G(l —« and — 1 < a <0

it follows that for any positive integer i, we have

G(1 - a)a®(1 - o?)
920 ~ g2(i41) = m > 0 and

_ G -a)e* (e —1) ;
G2i41 — G2i-1 = m‘_—,) >0
Hence it implies that
(i) 92> 9o+ >G for r>1landi>1
(i) G > gagi4r)-1 > g2im1 for r>1landi> 1.
It follows that
1. goi>g, for n>2iandi>1

2. goic1 < gn for n>2iandi> 1.
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Fue . .
Remark : Since g, = t—’fﬂ = F"—] and g, — G, it implies that the

n n—2

ratio of number of path sets of a consecutive-2-out-of-n+1:F system to that

of a consecutive-2-out-of-n:F system tends to the Golden ratio.

We now show that the problem of ranking of components using swings

is the same as ranking of terms of the sequence {g,}.

Theorem 22 Lei m be the smallest integer greater than or equal to n/2.
Then ranking of the first m components in a consecutive-2-out-of-n:F sys-
tem based on number of swings of a component, is the same as ranking of

first m terms of the sequence {gn}.
Proof : We have from Theorem 6 (ii)

Sa(iyn) = So(i+1,n) = 2Fio1Fasica — FicaFaoic1)

= 2Uigta —titnoi

t tn—
= Uit ( t:l _ ,; -+1)
0 n—i

= 2itni(gi — gn-i)-

Thus S,(i,n) is greater than or equal to or less than S,(i+1, n) accordingly,
as g; is greater than or equal to or less than g, ;. For 1 <i<m=n—i>i
hence it follows from Theorem 21 that g, > g, for even i < m and g; < gn—,

for odd i < m. Also note that
55(2i,n) — S2(2i + 2,n) = 2tntn_2i-1(g2i — gn—2i-1) for 21 +2 < m
S5(2i 4 1,n) — S2(2i — 1,n) = 2ts_stn_i(gn-2i — gai-1) for 2i +1 < m.
and 2i + 2 < m = n — 2i — 1 > 2i. Hence the required result follows.
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(ii) This follows on the same lines as part(i) above.

We now show how to calculate the Birnbaum reliability importance measure

using the reliability function, h;.(p).

Remark : When p; = pfori=1,2,...,n, we shall denote 8, p(i,n) by
32p(i,n). We take hon(p) =1 for —2<n <0.

Theorem 24 We have for a consecutive-2-out-of-n:F system
(i) h2n(Li,P) = hoia(P1, P2, - -, Pic1) Bon—i(Pid1, Piv2, - .-, Pn)

(i) hon(0, P) = hay—2(p1, P2, - - -, Piz2) h2n—ic1(Piv2, Piva, - Pn)

where hy;_1(p1, P2, .-, pi—1) denote the reliability function of a consecutive-
2-out-of-(i-1):F subsystem consisting of first (i —1) components of the orig-
inal system and hou_i(Pit1,Pis2s- -, Pn) Tepresents the reliability function
of a consecutive-2-out-of-(n-1):F subsystem composed of last (n — i) compo-
nents of the original system. ho;_5(p1,pa, ..., Pic2) and o i 1 (Pis2,Pidss- -+ Pn)

are defined similarly.
Proof :

(i) Since a consecutive-2-out-of-n:F system with i component function-
ing, will work when and only when the consecutive-2-out-of-(i-1):F
subsystem consisting of first (i — 1) components of the original sys-
tem, functions as well as the consecutive-2-out-of-(n-i):F subsystem

consisting of last (n —1) components of the original system, functions.
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4.3 Birnbaum Importance Measure

In this section we examine the Birnbaum reliability importance and the

Birnbaum structural importance measures.
Birnbaum Reliability Importance :

Let ho,(p) denote the reliability function of a consecutive-2-out-of-
n:F system where p = (p1,ps,...,p,) is the vector of component relia-
bilities. Obviously, E[®3(x)] = hon(p), E[®2(1i,%)] = han(l,, p), and
E[®2,0(0;,%)] = han(0:, )

Theorem 23 Let B, p(i,n) denote the Birnbaum measure of reliability im-
portance of component i in a consecutive-2-out-of-n:F system, we then have

for pi €(0,1)

() Baplivm) = ﬁ{hzn(lup)—hzn(l’n
() Baplim) = f[hz.n(p)—hg.nw,.ml.

Proof :
(i)  We have from Theorem 7 of Chapter 1 (the pivotal decomposition
Theorem of a structure function),
Don(x) = 2,P4(1;,x) + (1 — 2,)®,,(0,,x). Hence
h2n(P) = Pih2n(1iP) + (1= pi)haa(0;, p) and
han(P) = hon(1i,P) = (1= pi)lh2n(0: P) = hon(1,, P)]

and the result follows since 82,p(i, n) = hy,(1i,p) — hon(0;, P).
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Hence we have under the assumption of independent functioning of

the components .
how(Li, P) = houc1(p1, P2, -+ -1 Pic1) h2nei(Pis1, Pit2, - - -, Pn)
Remark : It also follows from [26] and [39].

(ii) A consecutive-2-out-of-n:F system with i** component not working will

function if and only if the following two conditions hold:

1. The consecutive-2-out-of-(i-1):F subsystem works, and component

(i — 1) works . This reliability is given by hy;_1(1lioy,p1,P2, - - -, Pi-2)-

2. The consecutive-2-out-of-(n-i):F subsystem consisting of components
{i+1,...,n} works and component (i + 1) works. The reliability of
such a subsystem equals ko n_i(1i41, Pit2, -+ Pn). Since we have

hos-1(Lic1,P1, P2, - - - Piz2) = haica(p1, P2, - - ., Pic2) and

hom—i(Lis1, Pis2 - -, Pn) = hapoic1(Pis2,- - -, Pn), the result follows.

Reliability Function :

The reliability function of a consecutive-2-out-of-n:F system with i.i.d.
components can be calculated using the theorem stated next. Let p be the

common reliability of components and ¢ =1 — p.

Theorem 25 we have for a consecutive-2-out-of-n:F system

n+2 n+2
{ 2pq } B { ~2pg }
VT +4pg—p VPP +apg+p
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Proof : Let H(z,p) be the generating function of hy,(p), we then have
H(z,p) = hoo(p) + haa(p)z  + hoa(p)a®  + has(p)e®  +--
pzH(z,p) = hao(p)zp + hap(p)e®p  + haa(p)e’p  +-:-
pgz*H(z,p) = hao(p)2’pg + haa(p)z’pg +---

Or H(z,p)l—pz—pgz’]=1+z(l—p)=1+2q

since hyn42(p) = Phons1(p) + pahoa(p) and hyi(p) = 1 for 0 <i < 2.
1+2g
Hence H(z,p) = r_—m
Roots of the equation pgz®+ pz — 1 = 0 are:

_ P+ VPP Am _—p— VP +dpg
A= VA= and
2pg 2pq

-1 -1
At+de=—, Mho=—,
q pq

A=A = VP +ipg and as in Feller [22]

Pq
a b
han(p) = F + A’,‘T
where
- 1+gh _ 1p(l/g+A) _ Az
2pghi+p M+ (M +1/g)  (Aa—A)p
and

1+gh

= = —————. Hence
2pgd; +p  p(A2— A1)

hanlp) = —P |2 A
PP Fapg [N X5H

n+2 n+2
1 { 2pq } _ { —2pg }
VP +4pq [\VPP+4pg—p VPP +ipg+p
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Remark : It follows from the above theorem that

4 1 n+2 —1 n+2]

hon(1/2) = —= |{ —=—— —y .

i f[{f-l} () ]
Birnbaum Structural Importance

We can use Birnbaum measure of structural importance when compo-
nent reliabilities are not known to determine importance of components.
This measure can be expressed in terms of the number of swings. Let
Ba(i,n) represent the Birnbaum measure of structural importance of com-

ponent i in a consecutive-2-out-of-n:F system.
Theorem 26 We have for a consecutive-2-out-of-n:F system

@ Baim) = 2B

o
R
It Byfimy = 22bnz1) ———ﬂ?(i’;_ 2 forn>2.

Proof :

(i) By definition, we have
= 1
Bali,n) = ;[¢2,n(1n x) — ‘I’z.n(onx)]F
using Theorem 6 we have
Sa(i,n)
on—1

where J = {(21,....Zic1, Tis1y- 1 Zn)

. =0or 1}.
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(ii) This follows from part (i) and Theorem 6 since we have
Sa(iyn) = 2L F i~ F,
= F,—2F_F, .
(i) Since we know that Sy(i,n) for a fixed i, 1l <i<nandn >3isa
Fibonacci sequence, it follows that
Sa(f,n) = Sa(i,n — 1) + So(3, n — 2), hence
. 1, . 1.
Ba(i,n) = 5/92(', n—-1)+ 5;197('»" -2).

Theorem 27 For components i,j € N (j # i) of a consecutive-2-out-of-

n:F system, we have

(@) Ba(isn) = Ba(iym)] = haa(1i,1/2) = han(15,1/2)

(#9) = hyn(05,1/2) = hya(0;,1/2)
(i) = BE.(1,1/2) = h2.(1;,1/2)
Gv) = h2(0,1/2) - B,(0,1/2).

where h%,(p) denotes the reliability function of the dual of a consecutive

-2-out-of-n:F system.

Proof: Since we know that £,(i,n) = B21/2(, n) (from Chapter 1) and

from Theorem 23, we have

Balisn) = m[h,n(l.,l/z) han(1/2)]

= 1/.L,U-:n(l/z) h2(0:,1/2))
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(i) and (ii) follow immediately for this.

(iii) and (iv) follow from the fact that a component i has the same
relative importance in a structure and in its dual structure or directly from

the definition of the dual structure.

Theorem 28 Forn > 3 we have

Bali=ln=1) frli-2,n-2)
2 + 22

Pa(iyn) = for3<i<n.
Proof : It follows from Theorems 10 and 26 for i > 2.

Theorem 29 Lei m be the smallest integer greater than or equal to n/2,

we then have

Ba(iyn) — Bo(i+ 1,n) = 271,)‘ [han-2i-2(1/2)] for i< m.

Proof : From Theorems 17 and 26, we have for i < m

Bali,n) — Bali +1,n) (Z1)'25(L,n - 20 +1)

on1
B2(l,n—2i+1)
(= )—“2’,:(,—])*'*

using Theorems 23 and 24

= 2,__, (hamezi(1/2) = hapziss(1/2)]

= Clhana/2),

Remark : Feller [22] has given a very good approximation for the reliability

function, hy.(p) which is quite appropriate even for small n. Using this,
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we can write

where z = 1.236067( a root of the equation z° —8z +8=10)

Theorem 30 Let ny and n, be the largest even and odd integers smaller

than or egual to (n + 1)/2, respectively. We then have

(@) Ba2ym) > Pa(4,n) > > fa(ngn) forn 27
(i)  Ba(l,n) < Pa3,n)<--- < fa(my,n) forn 25
(1) Ba(2t,m) — B2(2t—1,n)>0fort>1,2t<n,andn>3
(iv)  Ba(2t,n) — B2(2t+1,n)>0for2t+1<n;andn>5
(v)  Ba(iym) = faln+1—in).

Proof: These results follow from Theorems 20 or 22 and 23 and the mirror

image property.

This theorem shows that component 2 (or its mirror image component)
has the maximum Birnbaum structural importance and component 1 (or its
mirror image component) the minimum Birnbaum structural importance
in a consecutive-2-out-of-n:F system whereas Papastavridis [39] has incor-
rectly asserted that in a consecutive-k-out-of-n:F system the component
nearer to the centre has more Birnbaum importance. It also provides a

complete Birnbaum structural ranking of components.

Table 4.1 gives the Birnbaum measure of structural importance for com-

ponents in a consecutive-2-out-n:F system for n=2 to 20.

90



4.4 Barlow-Proschan Structural Measure

So far we have studied the path sets and swings without any reference to the
number of components in the path sets that is, ignoring the size of path sets
and here we take this aspect into account and study the Barlow-Proschan

structural importance measure.

Theorem 31 Let go(n,r) denote the number of path sets of a consecutive-
2-out-of-n:F system with r failed components or equivalently (n — r) com-
ponents functioning, that is, path sets of size (n —r). We then have
n—r+ 1)

= (°7"
Proof : It is well known in combinatorics theory [6] and [7] that the number
of ways in which s plus signs and ¢ minus signs can be placed in a row such
that no two minus signs are adjacent is, (’ ';' 1). Hence, it follows that
ga(n,r) = (n—:-{- 1),

Remark : Since the number of path sets of a consecutive-2-out-of-n:
F system follows the Fibonacci sequence {F,} with Fo=1,F, =2,F, =3

hence trivially, we have

- l<~§/’1 (n —rt 1)

r=0 r
where (x] denotes the largest integer not greater than z.

Theorem 32 Let Ln(z) = $2,2" (") be the generating function of

(”':“) we then have the recurrence relationship
Lnt2(2) = Lny1(2) + 2La(2), for n > 0.
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Proof : Let g;(n,r);= the number of path sets with r failed components
and the n** component working of a consecutive-2-out-of-n:F system and
g2(n, r)o = the number of path sets with r failed components and n** com-

ponent not working of a consecutive-2-out-of-n:F system. Obviously,

gn+2,r) = gn+2,rh+g(n+2r)
= gn+1,r)+go(n+1,r—1)
= go(n+1,r)+go(n,r —1).
we have

n+2

Lpya(z) = Zg;(n +2,i) 2', since go(n+2,i) =0, fori >n+2
=0

n+2
= Zqu(n +1,i)z' + ga(n,i — 1)z']
=0

n+l ntl
= 2 ga(n+L,d)z' + 2 E ga(n,i— 1)z
=0 =1

= Lp41(2z) + zLa(z) hence the result holds.

Remark : Obviously Lo(z) = 1, Ly(z) = 1+ z. We define L_;(z) =1 and
Li(z) = 0 for i < —2. We then have L,(z) = Ln_1(z) +zLn_o(z) forn > 0.
Theorem 33 We have for a consecstive-t-out-of-n:F system

hon(p) = p"Lala/P)
where hyn(p) denotes the reliability function of a tive-2-out-of-n:F

system annfy is the component reliability and it is assumed that all compo-

nents have the same reliability and function independently and ¢ =1—p.
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Proof: Since (" s + 1) gives the number of path sets with r failed com-

ponents, we have

hoa(p) = 3 (" _:+ l)p”"q'
=0

[

=p ); (" - : * 1)(q/P)’ = p"La(a/p).

Theorem 34

L

Proof: Let H(y,z) = £32, La(z)y" be the generating function of Ln(z).

Hence we have

H(y,z) = Lo(z) + Li(z)y + Laz)y* + Ls(2)y®* +---
Hy,z)y = Lo(x)y + Li(@)y* + Li(z)y® +--
H(y,z)zy> = Lo(z)zy® + Li(z)zy® +---
Using Theorem 32, we have H(y,z)[1 —y —zy*| =1+ 2y
__1t=
H(y,z)= e ——

The two roots of the quadratic equation zy®> + y — 1 = 0 are:

_Cl+Vitdr , _ -1-Vitde
= ;A=

X 2z 2z

and we have

1 Vitiz
Mtda= -, ,\1-,\,=_:"_,
and  Adg=—1.
1+zy _ —(/z+y) _ A B

Let H =] = = —=
et H(y2) 1—y—2y* y+y/z—1/z /\1—y+/\z—v
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this gives us

Ao =)+ By —9) == +9)
A= 2) = ~(2 + ) = Xz or A= da/ (A = })

1
B —Ag) = -—(; 4+ X)) =X or B=X1/(A1— A)

_ 1 A

o) =3 [A, /\:—v] - Hence
- A

It follows [48] La(z) = 71-%31; [:\?_ﬁ + :\;‘%]

1 1
Vitaz [x;“ - A;‘“] o

1 2 n+2 —2z n+2
Lo(z) = ———— |[{ = - e——
& = Ay [{,/1+4z—1} {\/1+ e+1} ]
Remark: It follows from Theorems 33 and 34 that

R

Theorem 35 Let ¥,(i,n) be the Barlow-Proschan measure of stractural
imporiance of component i (i = 1,2...,2) in a consecutive-2-oui-of-n:F

system. We then have

Balim) = ot [ 2 [ Lsla/p) Lani(a/)] do

where the constant a is chosen such that TTa, ¥,(i,n) = 1.
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Proof: It is well known (refer Chapter 1) or see Owen [38] and Barlow-
Proschan [4] that

1
¥alin) = [ [han(lip) = han(0,p)ldp

and from Theorem 23 we know that

Bap(iy n) = hoa(Li, p) = hon(0i,p) = [hoa(Li, p) — hz,n(r)]ﬁ~

By Theorem 24, we have hg n(1i, p) = hsi-1(p)ha,n-i(p). Now using Theorem

33, we obtain

Wain) = [ 2 [ sl e/ 00" = 2" Laal)] dp

I

Tl
a +/o 2 [P Li=s(a/p) La-i(a/p)] dp
Since p”/qLn(g/p) does not depend on i and using the fact that ©7., ¥,(i,n) =
1, we can determine the constant a.
Remark : Obviously ¥,(i,n) = ¥o(n+1—1i,n).

Example : Calculation of Barlow-Proschan structural impor-

tance.

We have

Lo(z) =1, Li(z)=1+z, Ly(z) =142z
Liy(z) =1+ 3z +2* Ly(z) =1+ 4z + 32

Ls(z) =1+ 5z + 622 + 2%, Le¢(z) =1+ 62 + 1022 + 42°

Let the number of components in the system be five that is, n = 5. We

then have
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Lo(z)La(z) = 1+ 42+ 32?
Li(z)Ls(z) = 1+4z+42°+2°

Lay(2)Ly(z) = 144z +42°

Since ¥(i,n) = a + /o "1/q [p""L._x(q/p)L,._.(q/P)] dp

we obtain
¥,(1,5) = a+ f3(4p° + 3p°q)dp =a+}
¥y(2,5)= o+ [l(4p°+4p%q+pgP)dp =a+1+}+5
¥,(3,5) = a+ J3(4p° +4p°q)dp =a+1+1

As ¥,(i,n) = ¥3(n+ 1 —i,n), we can calculate a from T ¥(i,n) = 1.
This gives us a = —=17/15

7 17 12
o(1,5) = (5,5) = g5, ¥a(2,5) = ¥a(4,5) = g5 and ¥:(3,8) = oo

Table 4.2 presents the Barlow-Proschan structural importance of compo-
nents for n = 2 to 20.

In order to compare Barlow-Proschan structural importance of different
components, we first study the nature and properties of the polynomial
Lioa(z)Ln-i(2)-

Theorem 36 Let
4
Po(2) = Lic1(2) Ln-i(2) = Z a2’ fori=1,2,...,n
=1

where d denotes the degree of the polynomial Pin(z). We then have
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(%) d= n/2 when n is even

(i) d= [n/2] when iis odd and n is also odd

(317) d=[(n+1)/2] when i is even and n is odd

(iv) a;; = 1 for j=0 and all i
(v) a;;= n-—1 forj=1andalli

(vi) @i; = Gny1-ij alljand i
where [x] denotes the largest integer less than or equal to x.
Proof : Since La(2) = T7%o ("77*")2" where m = [%£}], hence the
degree of the polynomial P,,(z) = L;_y(2) Ln—i(z) is equal to
i+1
[ )+ [h]

(i) When n = 2t and i = 2p, it implies that

d=+ S e p bt p=t=ny2

When n = 2t and i = 2p — 1 , we then have

-1 2t—-(2p-1 1
d=[2p2 1+ (P2 Lx J=p-1+t-p+1=t=n/2

(ii) When n = (2t — 1) and i = (2p — 1), we have

2p—1, 20—1—2p+1+1
d={p2 ]+ 2’ J=p—14t—p=t—1=[n/2)
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(iii) When n = 2t — 1 and i = 2p, we have

n+1
— )

20—1-2p+1
——2”——]=p+t p=[—

d=(2)+]

(iv) Since P, a(z) = Li~1(2)Ln-i(z) we have from Theorem 31

e () PE )

It follows that

a5 =3 (‘:') (" - i+j1_—r(j~ r))

=0

and for j=0 , we have for i = 1,2,...,n

(i)

(v) For j=1, we have from part (iv) for i = 1,2,...,n

Lfi—r\(n—i+r .
any = Z( . )( 1—p =n—1foraalli

r=0

()7 + (3907

= n—1foralli.

(vi) Since P, n(2) = Pa_i41,n(z) hence the required result follows.
Theorem 37 For integeri > 2 and i < 2£L we have
Li-2(2) Ln—i-1(2) = Li-1(2) Ln—i-3(z) = (—1)"*'2' Ln_i—2(2).
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Proof: We have from Theorem 32 for integer i > 2 and £ < "2-1’4
Lia(@)Lnica(2) = Lics(2) Lnoiz2(2) =
Li—o(2) [Lni-2(2) + 2Ln_i_s(2)] = [Li—2(2) + 2Li_s(2)] Ln_i2(2)
= z[Li-a(2)Ln—i=3(z) = Li—3(2) Ln—i-2(2)]
= z[{Li_s(2) + 2Li—s(2)} Ln-i-3(z) = Li=3(z) {Ln—i=3(2) + zLn—i-s(2)}]
= 2®[Li—a(2)Ln-i=3(2) = Li=s(2) Ln—i~4(2)]
2° [Lio(2) Lni_s(2z) — Li_s(2)Lni—s(2)]. R d use of this gives

Case 1: When i = 2t (even)< (n + 1)/2, we have
Li—2(2)Ln-i-1(z) = Li-1(2) Ln—i-2(2)
= 2% (L ag1y(@) nicamae-1)(#) — Limia(0-1)(@) Enmica-a-1)(2)]
= 2%V [Lo(2) La-2i41(2) — L1(2) Ln-2i(2)]
= 2% ([Ly_gi41(2) = Ln-2i(2) — 2Ln2i(2)]
= 2%V ([zLn_gi1(2) — 2Ln-2i()]
= 2% Ly gi1(2) = Lacai(z)] = 27" [~z Ln2i-2(2)]
= = 2'Lp_2i2(2).
Case 2 : When i = 2t + 1 (odd) < (n +1)/2, we have
Li-2(2)Ln-i-1(z) = Li-1(2) Ln-i-2(2)
= 2 [Li-a(2) Lp-i-s(2) — Lv—b(z)Lv\—i—i(')]
= gD [L_-_,_,(,_,)(z)L,._-,_,(._.)(z) — Lics-ae-1)(2) Lnci-a—ae-1)(2))
= "7 [(1+ 2)Ln-2i(2) — Lo(2) Ln-2i41(2)]
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F [Ln-2i(2) = Ln-2i41(2) + 2 Ln-2(z)]

= 2" [~2Lp2i-1(2) + 2Ln-2i(2)] = 2* [Ln_2i(2) — Ln-2i-1(2)]

2L, i o(2) = ' Ln_gioa(z).
Theorem 38 We have
ai; = aj; fori > j > 2 and integer i < (n +1)/2.
Proof: Since we have
Li@)bnnicr(@) = [Lins(#) + 2Liva(2)] Lnmi(2) = 2Lnsal2)]
= Liy(2)Loi(z) +
2 [Liza(2) Lnioa(2) = Licy(2) Lnoica(2)]

and using the Theorem 37, we have

Li@) Ln-i-1(2) = Los(2)Lami(@) + (1) 12" Lo ais(2).
This implies that
Pisin(z) = Pn(2) + (—2)"* Lo_gi_a(2).

Hence it follows that a;41; = a; for j <iand i+1 < (n+1)/2.
Remark: It follows from the above theorem that for (n+1)/2>i > j > 2
and i and j integers

(0TS =R 00T

r=0



Theorem 39 Let ¥,(i,n) be the Barlow-Proschan meassre of siructural
imporiance for componenti (i = 1,2,...,n) in a consecative-2-oul-of-n:F

system, We then have
(i) ¥o(i,n) =¥y(n+1—1i,n) foralli=1,2,...,n
(ii) ¥a(2t,n) > ¥o(2t —1,n) fort > 1,2t <ny andn >3
(i) ¥(2t,n) > ¥y(2t+1,n) for2t+1<n; andn>5
(iv) ¥2(2,n) > Uy(4,n) > -+ > ¥y(ng,m) forn > 7
(v) ¥2(1,n) < ¥y(3,n) < --- < ¥y(ny,n) < ¥y(ng,n) forn >5
where ny (n,) is the largest even (odd) number less than or equal to (n+1)/2.
Proof:
(i) We know from Theorem 35 that
1
V,(i,n) =a +/o é [p""L'-x(q/p)L,._.(q/p)} dp

and since P, ,(2) = Pn41-in(2), the required result follows.
(ii)& (iii) Using Theorem 35, we get

¥y(i+1,n)-¥y(i,n) = /o ' gfq:’_ [Li(g/P) Ln-i-1(a/P) — Li-1(a/p) La-i(a/p)] dp

and according to Theorem 38, we have for integer i such that i +1 <
(n+1)/2

Li(a/P)Ln-i-1(a/p)~Li-1(a/p) Ln-i(a/p) = (=1)"*(a/p)'* Ln-2i-2(a/P).
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Hence it follows that for i‘+ 1 < (n+1)/2, we have

>0 forodd i

. ¥o(i+ 1,n) — ¥y(iyn) =
<0 for eveni.

(iv) & (v) We have from Theorem 38 for i +1 < (n + 1)/2

Li(@)Lpi—1(2) = Liey(2) Ln-i(2) = (—2)*'Lpsi_s(2)
Liy(2)Lp-i(2) — Li—3(2) Lp-isa(2) (=2)'Lp-2i(=).
And adding these two equations, we get
Li(@)Ln—i-1(2) = Li-2(2) La—iss(2) = (—2)Lo_zics(2).

]

Hence for 2< and i +1 < (n+1)/2

. . >0 for even 1
Wo(i+1,n)—¥o(i—1,n) =
<0 for odd i.

since 'L, _5_1(z) > 0 if z = g/p and p € (0,1)

It follows that in a consecutive-2-out-of-n:F system, Barlow-Proschan

structural ranking is identical to Birnbaum structural ranking.

4.5 Cut Importance Ranking

We consider here, Butler’s structural ranking of component in a consecutive-
2-out-of-n:F system. This ranking is based on minimal cut sets and provides

a complete ordering of all components relative to their importance. It is
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licable when the p reliability is high. This ranking is the same

a8 lexicographic ordering of the rows of the structural matrix of the dual
of a given structure (see Theorem 9 of Chapter 1)

When component i is more (less) cut important than component j in a
consecutive-2-out-of-n:F system, we represent this fact by i>. j (i<.j) and
if both are equally cut important by i =, j. The next theorem provides a
complete structural cut importance ranking of all components.

Th 40 Ina tive-2-oxt-of-n:F system, we have

(1) i=.(n—i+1) forn>2
(i1) 2>.4>68>.: >y forn 2T
(333) 1<.8<5<. +<.ny forn>56
(iv) r>.r—1 forevenr <n;andn>3

(v) r>.r+1 forevenrandr+1<mn;

where ny (ny) denotes the largest even (odd) number less than or egual o
(n+1)/2.

Proof : Since the cut-importance ranking is same as Birnbaum reliability
importance ranking for a sufficiently high value of component reliability
(see Theorem 16 of Chapter 1) and we know that Birnbaum reliability

importance of p iina 2-out-of-n:F system with i.i.d.

components is given by Theorem 23
s 1
Bay(iyn) = a=pn [h2,n(1i, p) = han(p)]

(11_;:) [P Lis(a/p) La-ila/p) — P"La(a/p)]
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from Theorems 24 and 33. Hence the required results follow on the same
lines a8 Theorem 39.

‘We now summarise the main results of this Chapter.

Th 41 Fora tive-2-out-of-n:F system the rankings of com-

ponents provided by the following are identical

(1) Birnbawm stractural importarce meassre

(2) Barlow-Proschan sirsctsral importance measure

(8) Bstler’s cut importance ranking

(4) Birnbawm reliability importance measure in case of i.i.d. components.

Proof: It follows from Theorems 23, 30, 33, 39 and 40.
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Chapter 5

Component Importance in a
Consecutive-3-out-of-n:F

System

5.1 Introduction

This chapter is devoted to the study of structural importance of compo-
nents in a consecutive-3-out-of-n:F system. Section 2 highlights the prop-
erties of path sets and establishes their relationships with Trib i se-

quences. Section 3 studies the properties of swings and the difference in

swings between two i p ts in the system and develops

conditions under which component i will have more swings than compo-
nent i + 1. Section 4 is concerned with Birnbaum structural importance

and gives a general formula for calculating number of path sets. It also
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gives necessary and sufficient conditions for a component i to have more

power than component j. It is proved that p t 3 has the
and 1 the mini Birnb structural importance. We also

give a heuristic procedure for ranking of components based upon propor-
tionate error which matches with the Bimbaum structural ranking under
certain assumptions. In Section 5, we analyse Barlow-Proshan structural
importance measure and provide a procedure for its calculation. It shown
that in this case also, 3 has the i and p 1 the

minimum Barlow-Proschan structural importance. Butler’s cut importance
ranking is covered in Section 6. Using the structural matrix, we provide the
complete cut importance ranking of components for n up to 20. We also
cover Birnbaum reliability importance measure in this Section. In the last
Section we mention results of this chapter which can be easily generalised
to any k > 4.

5.2 Path Sets

t-of-n:F

Let &, ,(z) represent the structure fanction of a ive-3
system. Suppose that Py(n) denotes the number of path sets of the system
and let Py(1;,n) and P;(0;, n) represent the number of path sets with the i**
component working and not working of a consecutive-3-of-out-n:F system,

respectively.
Theorem 1 We Aave
Py(n) = Py(1;,n) + Ps(0;, n).
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Proof: Same as that of Theorem 1 of Chapter 4.

Tribonacci Sequence

We now define a Tribonacci sequence (23] and show that Py(n) is a
Tribonacci sequence.

Definition : A of i {fn} determined by the difference

equation
Jn=fac1+ faca+ fa-s, forn>3
with the initial conditions f; = «, fo = § and fs = v is called a Tribonacci
or a Fib i seq of order 8 [11] and [49). We consider the
Tribonacci sequence {T,} with T3 =2, T, =4and Ty =1T7.

Theorem 2 The number of patk sets, Ps(n) of a comsecwiive-3-oui-of-n:

F system follow the Tribonaccs sequence {T,}.

Proof : Let the number of path vectors with the first component working
be Py(1;, n), the number of path vectors with the first component not work-
ing and the second component working be Ps(0,,1;,n) and the number of
path vectors with the first and the second component not working but the
third component working be Py(0;, 03,13, n). Then obviously, we have for
n>3

Py(n) = Py(11,n) + P3(01,13,n) + P3(0,05 15, 1)
Py(n — 1) + Ps(n —2) + Ps(n - 3).

Trivially, we have Py(1) = 2, P3(2) = 4, Ps(3) = 7. Hence P3y(n) =T,
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Without loss of generality, we extend the Tribonacci sequence {T.} by
adding the terms 7_, = 0, T_, = 1, and Tp = 1. We now use the Tribonacci
sequence {7} to determine P5(1;,n), Ps(0;, n) and the number of swings.

‘Theorem 3 Fori > 1, we have
() P(li,n) =T Toei.

@)  Ps(0i,n) = TicaTn—ic1 + TimsTnmic1 + TicaTnica

Proof:
(i) The proof follows on the same lines as Theorem 4 of Chapter 4.

(ii) Consider a vector of component states (z1,2,...,2») With z; = 0.
This vector can be a path vector of the system if and only if

(a) (21,...,%i-1) is & path vector with z;_; = 1 of a consecutive-

$-out-of-(i-1):F subeys de-up of comp {Lyeenyi=

1} and (Zi41,...,2a) is & path vector, with z;y; = 1, of a
3-out-of-(n-i):F sub de-up of Pp

{i +1,...,n} of the original system. Hence the number of

path vectors of a consecutive-3-out-of-n:F system of the type
241 =1,2;=0and z;_, = 1 equals T, ;T,, ;.
Or

(b) (21,-..,%i-1) with z,_; = 0 and z;_; = 1 is a path vector of

a ive-3-out-of-(i-1):F sut and (Zi41,- - - Za) With

241 = 1is a path vector of a consecutive-3-out-of-(n-i):F subsys-

tem, respectively. Hence there are T;_sT,_;_; path vectors of a
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consecutive-3-out-of-n:F system with z;_; = 1,2z;_; = 0,2, =0

and 24, = 1.
Or
(c) (z1,...,i-1) with z;_; = 1 is a path vector of a consecutive-

3-out-of-(i-1):F subsystem, and (2;41,...2,) with z;;; = 0 and
Z;43 = 1 is & path vector of a consecutive-3-out-of- (n-i):F sub-
system. Hence a consecutive $-out-of-n:F system has T;_,T,_;_,

path vectors with z;_y = 1,z; = 0,241 = 0,42 = 1.

It follows from the above that Py(0;, n) = T;—3Ta—im1+Ti-sTh—i1+
Ti-aTneiza.

Remark : Obviously, we have for 1 <i<n

T=TiaTai+Tica Thicy + Tics Tpmia + Tica T s

5.3 Swings

Let Ss(i,n) denote the ber of swings of comp t i € N in a consecutive-

3-out-of-n:F system. As in the case of a consecutive-2-out-of-n:F system,

we have
Theorem 4 Ss(i,n) = 2T, T,_; — T..
Proof : We know that

< Si(iyn) = 3 [(1 = 2)][@sa(Lis X) — B5,n (0, X))
xeon
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( by pivotal decomposition theorem)
= 3 [@sal(Liyx) = B50(x)]
xesn
= 2R(L,n) - P(n)
= 2L3Tai — To.
It trivially, follows from the above theorem that component i and n —i+ 1
have the same number of swings. Hence the mirror image property holds
in this case also.
Theorem & Forn > i and i > 1, S(i,n) is a Tribonacci sequence with
the initial conditions Ss(1,4), S3(2,i + 1) and Ss(8,i +2).

Theorem 8 For anyt > 0, Sy(n,n+t) follows a Tribonacci sequence with
the initial conditions Ss(1,1+1),S35(2,2 +1) and S5(3,3 +1).

Theorem 7 Fori > j > 1, and n > i, Ss(i,n) — Ss(j,n) is a Tribomacci

sequence.

Proof : Theorems 5, 6 and 7 follow from the fact that a linear integer
combination of two or more Tribonacci sequences is also a Tribonacci se-

quence.
Theorem 8 Forn > i and i > 3, we have

Ss(i,n) = Ss(i —1,n — 1) + Ss(i — 2, — 2) + Ss(i — 8,n — 8).
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Proof : Since Ss(i,n) = 2T;1Tn—; — T,, i € N and using the fact that
{T,} is the Txib i the required result implies immediately.

Remark : Theorem 8 also follows from Theorem 6.

We now consider the swings for component i and (i + 1) and show how
this difference in the swing can be calculated using Tribonacci sequence.
We also give the conditions under which component i has more swings than

component (i + 1). To do this, we first define the difference matrix D.
Definition : We define the difference matrix D as
D = ((dij)) where dij = S3(i,5 + j) — Ss(i + 1,i +J)

forj>1andi>1.

The elements of the matrix can be obtained using the theorem stated next.

Theorem 9 The elements of the difference matriz have the following prop-
erties :
(f) digyn = 2[Tie1Tipr — T-T:]
(i) dicyy = 2[TieoTi = TiaTica]
Gi) &y =—d,
(lv) & =0
(v) divs; = digay +digr;+ dij
(vi)  diges =dijaatdntd;
(vii) &y =—2T;4
(vit) &y = 4Ty
(iz) dyy =-2~4T;+ T

111



Proof:
(i) By definition, we have

digsr = Ss(i, 20 +1) = Ss(i + 1, 2i + 1) = 2[T;1Tiys — TiT}).

(ii) It easily follows from part (i).

(iii) We have by definition

dii = S85(j,i+35) = Ss(i +1,i +3)
= S3(i+1,i+ j) — Ss(i,i + j) (due to mirror-image property)
=—d;.

(iv) It follows from part (iii) that d;; = 0.

(v) By definition, we have
diya +digaj +dij =S8s(i+2,i+j+2)=S(i+3,i+j+2)
+S3((+1,i+4+1)=S(i+2,i+5+1)
+S3(i,i+7) = Ss(i+1,i+ )
Using Theorem 8 we get
digaj +digr; +d =Ss(i+38,i4+;+38)—~Sy(i+4,i+j+3)

=diysj-
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(vi) We have
dijeza+diga+di; =Ss(,i+ji+2)—S(+Li+i+2)
+Ss(i,i+ji+1)—Ss(i+1,i+j+1)
+ Ss(i, i+ ) — Ss(i+1,i+j)
=Ss(i,i+j+3)—Ss(i+1,i+j+3)
=d; j43.
(vii) Since
dy; = Ss(1,j+1) = S5(2,j + 1) and using Theorem 4
= AT Ty~ i) = ~2Tje.
(viii) We have by definition
dyj = Ss(2,j+2)—Ss(3,j+2)
=2[NT; — ToT;]
= 2[27; - 4T;,]
= —4T;_,.
(ix) We have by definition
ds; = Ss(3,j+3)—Ss(4,7+3)
= 21T — BsTy-a) = 24T, — TT5-1]
since {7} is a Tribonacci sequence
= 2[—4Tj—y + T

Remark : The above theorem implies that diagonal elements of the matrix, D

are zero and its row and col 3! ts form a Trib i with

different initial conditions. The complete matrix can be obtained from the
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following generator matrix

From this, we can easily write the Dyys and it is given by:

-2 -2 -4 -8 —-14 -26
-4 -4 -8 —16 —28 —52
6 10 16 32 58

-6 0 -2 -8 —10 -20
-10 2 o0 -8 6 —14

N N O o
® b A o o
o

8 16 —~16 8 8 0 16 24
14 28 -32 10 6 -16 0 —10

Here, each row and column a Trib i seq with initial

conditions given by the first three elements of a row or a column.

Theorem 10 We have

() disajn = =(dij + dipaj + digr i) forj 21
() Tibdioaee =0 fori>1
Proof:

(i) It follows from the definition of d;; that

disajtr = —[Ss(F+3,i+j+38)—Ss(i+2,i+j+83)

and using Theorems 5 and 8, that is
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di+7.:+1 =

—[Sa(i+2,i+j+2)+ Ss(i+Li+j+ 1)+ S(i,i+j)
—Ss(i4+2,i+j+2)+Sa(i+2,i+j+1)+ Ss(i+2,i+j)]
—[Ss(,i+7)+ Ss(i+1,i+j+1)—Ss(i+2,i+j+1)
=Sy(i + 2,i +j)]
~[Ss(iyi+7) = Ss(i+ 1,0+ )+ Ss(i+1,i+j+1)
=Sy(i+2,i+j+1)+Ss(i+1,i+]) = Ss(i+2,i+])]

=[dij + disaj + disaja]-

(ii) Ti6di—r14- = 0 since d;; = —d;; according to Theorem 9.

Theorem 11 Fort > 0, we have the result

diire = digrisenr + digziserz + dissisees.

Proof: It follows from the definition of d;; and Theorem 8 that

digsiptes = Ss(i+8,2i+1+6) = Sy(i+4,2i+1+6)

Sy(i+8,2i+t+5)+ S3(i+3,2i +1+4)+Ss(i +3,2i +1+3)

—[Sa(i+ 3,2+t +5)+ Ss(i+2,2i +t +4) + Ss(i+ 1,21 + 1+ 3)]

and

diggisess = Soli+2,2+1+4) — Ss(i+3,2t + +4). Hence

dipairtsz +dipsivers = Ss(i+3,2i+1+3) — Ss(i +1,2i +1+3)

using Theorem 8, we get
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= S5(i+2,2i+1+2)+S(i+L,2i+1+1)
+S5(4,2i +t) — Ss(i+ 1,21 +1+2)
—S3(i+1,2i+t+1) — Ss(i+1,2i +1)

Since diy1i4t41 = Ss(i +1,2i +¢ + 2) — Ss(i + 2,2 + ¢ + 2), this implies
that
dipripesr +digaipera + dizsipeas = Ss(i,2i+1) — Ss(i41,2i+1)
= dijse
Hence the theorem follows.

Remark : The above theorem implies that each upper diagonal of
the diffe matrix rep a Trib i in the backward

direction, that is a sequence of the type {t.} where t, = to41 +tas2 +tass-
Theorem 12 Let G; = d; 41, we then have for j > 0
diisj = T;-3Gi — Tj-3Gia
where {T,} is the extended Tribonacci sequence.
Proof : Since we have
Gi = dijpr = Sa(i,2i +1) = Ss(i + 1,2i + 1) = 2 [TiesTons — T

and as per Theorem 9 di; = 0, and dij-y = —di1i = —Gi-1. It follows

from Theorem 9 (iv) and (vi) that
diip2 =digpn +di +diisa = = Giea + Gie
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Hence the result is true for j = 0,1 and 288 T.s = 0,7_, = 0,T_; =1 and
T, = 1. Assume that result is true for j < t and consider the case when
j =t+1. We have from Theorem 9 (vi)
dijrerr = dijae + diipemr + dijise2
since the hypothesis is true for j <t
= Ti3Gi — Tt=3Gi-1 + Ti-sGi — T-4Gi1
+Tt-4Gi — Tt-5Gia
= Gi(Ti-a+ Tt-s + Ti-s) — Gica(Tt-s + Tis + Tis)
= GiTt-1 = GiarTi-a.
Since {T,} is the Tribonacci sequence, the result is true for j = t+1. Hence
the theorem follows.
Theorem 13 We have
() dj=0,forj2>21 fG=Gin=
(i) dij >0 for j > i+2, if Giey < 0 and G; > 0 but not both equal to 0
(i) d; >0 forj 2 i+2, if Gi 2 Giy 2 0 but both not zero.

Proof : This follows trivially from Theorem 12

‘We now prove that component 3 or its mirror image component has the
maximum number of swings and component 1 or n has the minimum of
swings.

Theorem 14 We have for a consecutive-3-out-of-n:F system
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() Si(1,m) < Si(iyn) for2<i<n-1, and n > 3.

(i)  S3(8,n) > Ss(,n) fori#3,n—~2,1<i<nandn>3.

Proof :

(i) Since for a fixed i (# 1,n) Ss(i,n) —

Ss(1,n) is a Tribonacci sequence

with the following initial conditions:

(a) S3(i,i) = S3(1,4) =
(®) Ss(i,i+1)~Ss(1,i+1) =

(¢) Ss(iyi+2)—Ss(1,i+2) =

0
Ss(2,i +1)— Ss(1,i+1)
—dy;i >0
Ss3(8,i+2)— Ss(1,i+2)
Ss(3,i+2) — S5s(2,i +2)

+ S3(2,i+2) — S3(1,i+2)
—dazi = dy,i41 >0

since dy; and dy 4, are negative (Theorem 9), the result follows.

(ii) Since Ss(3,n) — Ss(i,n) is a Tribonacci sequence for a given i (#

8,n — 2) and its initial conditions are:

(a) S3(8,1) — Ss(4,3) =
®) SH(B,i+1)-SiGi+1) =

(6) Ss(8,i+2) = Ssli,i+2) .=

Since Ss(i,n) = Ss(n+1—i,n).

S3(8,1) — Ss(1,4) > 0 (from part (i)
S3(8,i+1) — S3(2,i +1)

—dgj-1 >0

Ss(8,i+2)— S53(8,i+2)=0

As all the initial conditions are non-negative and at least one condi-

tion is positive the required result is immediate.
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5.4 Birnbaum Structural Importance

Here we study the Birnbaum structural importance of components in
a consecutive-3-out-of-n:F system and develop a necessary and suffi-
cient condition for component i to have more importance than com-
ponent j. We also provide an efficient heuristic procedure for ranking
components based on proportionate error. We first give a general
formula for calculating the number of path sets
Theorem 15 We have for a consecutive-3-out-of-n:F system

Ty =ta] where t, = g(l/a)"
where Jz[ denotes the closest integer o z, 0 is the real root of the
equation 1 —z—2?—z°=0andp= 3%_—_4

Proof : Consider the Tribonacci sequence {7, } with the initial con-
ditions, To = 1,7} = 2 and 7, = 4. Let its generating function be

G(y). We then have

Gly) =T + Twy + T + Tay® +---+ Tay" +
Gy = Ty + T + To® +-+ Tay™ +
Gl)y* = Toy* + T’ +-+ Toay™ +-
Gw)y® = Toy® +---+ Tasy +

Or(1-y— ¢ - )G =To+ (i ~To)y + (T = Tz — To)y”
since T, = Tp—y + Ta2 + T—s for n > 0. This gives us
1+y+y°
G| = ——.
(v) 1-y-v-9°
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Let y,, ¥ and y; represent the roots of the equation (1—y—y*—y°) =
0. It then follows from Feller [22] that

P1 P2 Ps
6w = w-v " m-v -9
where p; = —Lt ¥+ 1)

—1 -2y — 34?7
and since y; # 1 for any i we can write
o= —Utu Ay
g (—1-2y -3y —w)
1-y

= ————=—— and

T 14y -3y

(asl—yi—y? -9y’ =0)
_ 1-w
T o2—4y

Since (1 — ;)(1 — ¥ — y? — ¥?) = O, this gives us that 1 —2y; +yf =0

ory? = 3&1’;1 Hence we can write
i

] fori=1,2,3.

‘We have for sufficiently small y

1 1
=—[x+l+(l)’+~-]
vi—y wl T w

it follows that we can express

P1 Pz Ps
T, = + T+ .
"= n P
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Let f(y) = 1 —y — 4> — y°. It can be easily seen that the equation
f(y) = 0 has one positive root and the remaining roots are not real.
Suppose y; = 0 is the positive root. Then .5436 < ¢ < .5437 since
#(.5436) > 0 and f(.5437) < 0. Let the remaining two roots be y; =
a+ b and y3 = a — ib. It follows that

viays =0(a® +b*) =1ora*+ > =1/

nya+ vays + s =200 +a’ + 6 =1
and y1+yp+ys=0+2a=-1.

This gives us

1+96 ,_3-¢6°
-3 and b= 0

a=

It implies that we can now write

1\~ P2 Ps3
T, = (_) Y B . N
P\ * (a+ib)™*! + (a —ib)™*?

where
1446 ' 93
= - — b= B
a 2 3

and y; = a + ib, we have

Sincepg=6m_4
Y2 —

-2 _ —2
6p2—1 =g iby—4 = (6a—4) +i6b

_ —2[(6a —4) — i6d]
= (6a— 4)7 + 365

121



Similarly, we have 6p; — 1 = —2((6a —) 4++36‘£b .

(6a — 4
Let
Pa P3
e = +
A A

_ 1[—2(6a—4)+il2b )
= (6a—2) + 362 T 1] (a+ib)

1 [—Z(Ga —4) —i12b
6

— §p)~(»+1)
Ba— )5+ 865 | l] (a=ib)

_ 1[-=2(6a—4)+i12b +1 cos(n + 1)¢ —isin(n + 1)¢
(6a — 4)* + 3652 b1

—2(6a — 4) — i12b
(8a — 4)? + 365

+_ cos(n + 1)¢ + isin(n + 1)¢]

pntl

-

This implies that we have

P2
en = F + ll"“ = [C; cos(n + 1)¢ + Cy sin(n + 1)¢] ,.n-n =h, =)

where h, = C;cos(n + 1)¢ + Cssin(n + 1)¢,

—4(6a — 4) Cy = 1b
(sa—4)=+z'sbn * 73T (6a — 4)° + 366

6=
and ¢ = tanh(b/a), a = —(1+6)/2, b =35 and r? = a? + 5.
We have (6a — 4)° + 365 = [6(30 +7)7 + 9(3 — 6%)] %
[86° + 3367 + 496 + 27] %

[246° + 406 + 36] %
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since 6* =1 —6 — 02 we can write

1[ (66+14)8

3 |2a87+ 406 +36 T

G =
562+ 90 + 6
1262 + 200 + 18
450 S
2462 + 400 + 36

We now obtain a bound on h,. we have

and Cs = 0

|Cacos(n +1)¢ + Cssin(n +1)$| < C; +Cs < C2+5Cs as 5> 1

and consider

1002 + 186 + 12 3—6°
2467 4 400 + 36 ' 2462 + 400 + 36

C+bC; =

962 + 1860 + 15
24602 + 406 + 36~

— 92> + 182415 :
Let g(z) = 2—,—'*'——*—“ T a0s 1 36 with .5436 < z < .5437. We have

dg(z) _ 24(—32° —32+2)
dz  (242% + 40z + 36)?

d d
and f;(:) Je=s436 < 0 and also —"’i(;'l Jem.sa37 < 0.

It implies that g(z) is a decreasing function on (.5436,.5437) and

9(z) < g(.5436) = .4238 for = € (.5436, .5437).

Since, we can write
1
Ty=th+en=tn+V0 (VO h, as :-’:a
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where t, = %1(1/0)" and h, = Cpcos(n + 1)¢ + Cssin(n + 1)¢, it

follows that
[T — tal = V8 (VB)" ha] < Ca +bCs < 0.4233 2 6<1.
Hence we have T, =]t,[ and the theorem is established .

Let B(i, n) denote the Birnbaum structural importance of component

i in a consecutive-3-out-of-n:F system.

Theorem 16 We have for a consecutive-3-out-of-n:F system

) S(i,
aim = 2En
_ 2Ty Tu-i = T
- gn—1 :

Proof : It easily foliows from the definition of Birnbaum structural

importance and Theorem 4.

Theorem 17 For i, j(# i) < m, Bs(i,n) > Bs(j,n) if and only if for
n>5

h;_,6‘"+h.._.5”“+é'%'l"—"-6“" > h,--;&"‘+h._,-6“‘-'+!l’—":"—"6““
where m denotes the smallest integer greater then or equal 1o n/2.
Proof: We have from Theorem 15

T, = to+V0 (VO he
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. { L YOk }
2

hn o
= fieke]
where A = & and 6= V0 6.
Let h(z) = 685_?14' and we get
dh(z) _ 2 >
dz ~ (6z—4)?
it follows that h(6) = = = p: is an increasing function on
(.5436,.5437) and 0.61809 < p; < 0.6185. Since .5436 < # < .5437,
it implies that 0.4007 < § < 0.40091 and 0.61809 < p; < 0.6185 and

hence
0.61809

0.40091
We know from Theorem 16 that

= 1.5417

Bs(i,n) > Bs(j,n) <= TieaTuei > Tja T

That is
hyy 871 hpi6™
t.‘_,l,,_‘-{ly+ :\ }{+ X }>
t,-_,l,._,{l+h’%}{ h"—&—}«:»
. =1 n—
{1.,."'_-:\"__}{1.;%..} {1+_c_§’_}{1+ﬁ:ar_}

+%sﬂ > hiy 6 tha 6

=3 gn—1,

_1h,,
< hi 16 4R, h”T
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Theorem 18 In a consecutive-3-out-of-n.F system
(i) Bs(3,n) > Bs(i,n) fori# 3,i<m andn >4
(ii) Bs(1,n) < Bs(i,n) for2<i<m andn >4

where m denotes the smallest integer greater than or equal to n/2.

Proof : It follows from Theorem 14.

Theorem 18 implies that component 3 or its mirror image compo-
nent has the maximum Birnbaum structural importance and compo-
nent 1 the minimum Birnbaum structural importance. For n = 3 all
components have the same Birnbaum structural importance since for

n = k = 3 the system reduces to a parallel structure. For n = 4

2 and p 3 have the same Birnbaum structural

importance. Table 5.1 gives the Birnbaum structural importance of
components for 1 < 1 < m and n = 3 to 20 where m denotes the
smallest integer greater than or equal to n/2. Table 5.3 presents the
Birnbaum structural ranking of components. It can be seen that for
n = 21 and 22 components 8 r%nd 11 have the same rank. Similarly
components 11 and 12 have the same rank for n=25 and 26 and in
case of n=29 and 30, components 14 and 15 have the same rank. This
shows that for k = 3 ties occur in the ranks of first m components of

the system whereas such a thing was not found for the case of k& = 2.
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Heuristic Ranking

binined

Exact Birnbaum structural ranking of p can be
by using Theorem 17 or 16. However it would involve the number
of components in the system n. When n — i and n — j are large
and i, < m, the dominating terms in the necessary and sufficient
condition of Theorem 17 are h;_;6* and h;16~}, as 0 < § < 1
and |hy| < 0.43 where m denotes the smallest integer greater than or
equal to n/2. Hence (i, n) is expected to be more than f3(j, n) if
hi—16'=' > h;_,6'71. It follows that ranking of the first m components
based on h;_16"! ( or proportionate error =h,_;&1A~! ) for lagre

n — i should match with the exact Birnbaum structural ranking.

Comparison with exact ranking

Table 5.4 presents the heuristic ranking of components for n up to 30.
It can be seen that the component ranking based on proportionate
error is in agreement with the exact ranking in aimost all cases and in
case of extreme ranks the agreement between the heuristic and exact

ranking is complete. The difference in ranks is of at most one step.

5.5 Barlow-Proschan Structural Impor-

tance

Having studied the Birbaum structural importance, we now wish to

study the Barlow-Proschan structural importance of components. Let
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g3(n, 1) denote the number of path sets with i failed componeats (or
n — i components working) in a consecutive-3-out-of-n:F system. We
obtain a recurrence relationship for gs(n,i) and use its generating
function to calculate system reliability and Barlow-Proschan struc-
tural importance measure. It is also proved that component 3 has

the maximum and component 1 the minimum Barlow-Proschan struc-

tural importance.

Theorem 19 Let gs(n, i) denote the number of path sets with i failed
components (or path sets of size n — i) of a consecutive-3-out-of-n:F

sysiem, we then have forn >4 and i >3

93(n,é) = gs(n — 1,i) + gs(n — 2,i — 1) + gs(n — 3,i — 2)
with the initial conditions gs(n,0) = 1, gs(n,1) = n and gs(n,2) =
()-

Proof: For n > 4, let g3(n,i). denote the number of path sets of
a consecutive-3-out-of-n:F system with i failed components, u being
the largest index of the component that is working in all these path

sets. Obviously, we have for i > 3

93(n,9) = gs(n,9)a + gs(n, i)n1 + g3(n, )n_2
gs(n—1,i) + gs(n —2,i = 1) + gs(n — 3,i — 2).

Trivially, we have gs(n,i) = (':) for 0 < i < 2 and g3(n,i) = 0 for
i>n.

128



Remark: Without loss of generality we take g3(0, 0) = 1. and g3(n,i) =

0 for i < 0. We have

(5) gs(n,i) = y;(n—l,i)+g3(n-—2,|'—1)+93(nj—3,|'—2),n23

(1) Tn =

Y gs(n,i) forn >0

i=0

Theorem 20 Let L,(z) = £32,9s(n,i)z", we then have

Lnss(2) = Laya(2) + 2Lpsr(2) + 2°La(z) n 20

with the initial conditions Li(z) = (1+2)' for 0 <i<2.

Proof: We have for n > 0

Lays(z) =

n+3
Eg,(n+3,i)z' as gs(n+3,i) =0fori >n+3
=0

32 las(n +2,0) + gsln + 1,i = 1)+ ga(mi = 2)] =

=0

n+2 n+2
S gsn+2,i)z' +23 ga(n+1,i— 1)z*?
=1

V=0

n+2
+2? E gs(n,i — 2)z*2

=0
nt2 n+l X
S gs(n+2,)2' +2 3 gs(n+1,i)2"
=0

=0

+223 " ga(n, i)z’

=0

Lnsa(2) + 2Lati(z) + 2° La(z)
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as ga(n,i) = 0 for i > n or i < 0. Obviously, we have

=0

Ln(z)=z":(?)z'=(l+z)" for 0 <n <2

Without loes of generality, we take L_;(z) = 1 and Li(z) = 0 for
i < —2. This implies that Ln(z) = Ln—1(2) + 2Ln-2(2) + 2*Ln-2(2)
forn > 0.

Example : For 0 < n < 8, gs(n, i) is given by the (n,i)** element of

the matrix

156 16 6 0 0
21 30 19 3 00
8 28 50 45 16 1 0 0

B I T N
Y
~
o

e e e e e

Obviously upper diagonal elements are zero.

Theorem 21

The degree of La(z) =2r if n=3r
=2r+1 if n=3r+1
=2 +2 if n=3r+2
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Proof: Since we have Lo(z) = 0, Li(z) = 142, Ly(z) = 1+2z+22,
and Ls(z) = 1+ 3z + 322, trivially, the result is true forn = 0,1,2,3

and suppose that it is true for n + 2 and consider the case for n + 3.
(i) Let n = 3r. By the induction hypothesis we have
degree of Lpia(z) =2r +2
degree of zLp41(z) = 2r + 2
degree of 2°L,3(z) = 2r + 2
hence degree of Lnys(z) = 2r +2 = 2(r 4+ 1).

(i) Let n=3r+1. B of the induction hypoth

degree of Ln4s(z) = Maz{2(r+1),2r +38,2r +1+2}
2r+3=2(r+1)+1

(iii) Let n = 3r + 2. It follows from the induction hypothesis that

degree of Lays(z) = Max {2(r+1)+1,2(r+ 1)+ 1,2(r +1) + 2}

I

2(r+1)+2

Theorem 22 Let hs,(p) represent the reliability function of a
consecutive-3-out-of-n:F system where p is the vector of compo-

nent reliabilities. We then have

(1) hsu(1i,P) = hoica(pr1, Py - -, Pic1) X hsai(Pivs, -5 Pn)-
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(i) Bap(i,n) = 1/(1 = pi} [h3n(Li, P) = h3a(P)] for pi € (0,1)

where B3 p(i, n) denotes the Birnbaum reliability importance

of comp tiina tive-3-out-of-n:F system.
(i) han(p) = p"Lala/p) for the iid. case (py =p2 =" =
Pn=p)

Theorem 23 Let ¥s(i,n) denote the Barlow-Proschan siruc-

tural importance of P 141 in a com tive-3-out-of-n:F

system. Then
¥5m) = [ (1/) [ Lica(a/p)Lansla/p) = 2" Lala/p)] dp-

Proof of Theorem 22 and 23 follows on the same lines as that
of the corresponding Theorems for the consecutive-2-out-of-n:F

system.

5.5.1 Calculation of Barlow-Proschan Struc-

tural Measure

We can calculate Barlow-Proschan measure of structural impor-

tance for different components using Theorem 23. We have

¥y(i,n)

j) "(1/q) [P"*Li-s(a/P) Laila/P) — 7"La(a/p)] dp

a+ [ (/09" Lios(a/p) Ln-i(a/p)dp

]

a+/‘[‘§)n~ =G+ =1 g
4 P
0 j=1
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where a is a constant to be determined such that 37, ¥;3(i,n) =
1 and d(i, n) is the degree of the polynomial
dim)
Liy(2)Lni(z) = 3 a2 -
j=o
Note that a;o = 1 for all i and n. Also we have from beta function

VoG- gy = (R = DG =D
/op GH+1gi-1 gp = o

Example : Let n = 7. We have
Lo(z) = 1, Li(z) = 1+2, and La(z) = 1 + 2z + 2
Ly(z) = 1+43z+32%, Li(z)=1+4z+62"+22°
Ls(z) = 1+5z+ 102>+ 72> +z*
Le(z) = 1+ 6z+ 152 + 162> + 6z*
Li(z) = 1+7z+ 212+ 302° + 192* + 32°.
Fori=1
Lo(z)Le(z) = 1 + 6z + 152> + 162> + 6z*
and this gives us
(17 = a+ [ [6p°+ 1690 + 165°7 + 6p°¢"] dp
= “+$[8X5!+15X4!x1!+16x3!x2!
+6 x 2! x 8]
= a+ é[720+360+192+7z}

1344
720 °

= a+
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Fori=2
Ly(z)Ls(z) = 1+ 6z+ 162> +17z° +8z* +2° and
1 1 5 4 3 2.3 4
¥5(2,7) = a+a/° [Gp +15p*q + 17p°¢* + 8p°¢ +pq]dp

1
= — ! ! 1 x 2!
a4 oo [6 X B+ 15 x 41 4+17 x 31 x 2
+8 x 213! + 41]
1404

= a+ ——

720
Similarly

1 1
¥(3,7) = a+ —6—'./0 [pr + 16p*q + 18p°¢* + 10p°¢° + 2pq‘] dp

1
= a+a[6x6!+15x~ﬂ+18X3!2!

+10 x 213! +2 x 4]

= a+ —1—(1464)
- 720

and

1
¥(4,7) = a+ /0 [6175 + 16p*q + 18p°¢ + 9p’q’] dp

1404
= a+—r

720
since ©7_, ¥3(7,7) = 1 and ¥53(i, n) = ¥5(n — i+ 1,n) hence, we
can calculate the constat a from

+ 2688 + 2808 + 2928 + 1404 _
720 -

Ta 1
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This gives us

9108
== —1.80714 and hence we have
¥y(1,7) =¥,(7,7) = 300/5040
¥5(2,7) =¥,(6,7) =1720/5040
¥y(3,7) =¥,(5,7) = 1140/5040

Wy(4,7) = 720/5040.
Table 5.2 gives the Barlow-Proschan structural importance of

components for n=3 to 20.

Theorem 24 Consider the polynomial

Pin(2) = Liy(2) Ln-i(2z) = ‘(f)“-’j‘”-

j=o
We then have
(i) a;= (n]— 1) for j =0,1,2 and for alli =1,2,...,n.

(i) aij=aj; fori>j>8,i<mandn>5

wehere m is smallest integer greater than or equal to n/2.

Proof :
46) An—i)

(i) Let Liy(z) = Y a;2’ and Lny(2) = > b2
=0 =0

&in)
we have Pin(z) = Li—y(2)Ln-i(z) = Y ai;2’. This implies
3=0

J
a; = Za,b,_, fori=1,2,...,m.

r=0
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ap = agby=1
a3y = ahy+abp=n—it+i-1l=n-1

(3 (707600
- ()

Since we have ag = by = 1,

o= () = () e
== (37 == (2

(ii) Since the coefficients of the polynomial P, ,(z) depend on

k]
&
I}

the values of i and n, we therefore prefer to use the notation
i,n)
Pin(2) = Lica(2)Loi(a) = 3 o=’
j=0
For n = 5, we have

Ps(z) = 1+42+62°+22° ifi=3

Forn=26
Pg(z) = 1+52+102°+92°+32*, ifi=3
Forn=17

P.a(z) = 1+6z+ 152+ 182>+ 10z* +22%, if i =3
Poa(z) = 1+6z+ 152>+ 182°+92*, if i =4
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It follows from the above that the result is true for n = 5,6
(vacuously) and 7. Assume that it is true for all values of n upto
r—1 (r > 8). Consider

FPir(z) = Liy(z)L,_i(z) for integer i < (r +1)/2

Li_y(2)[Ly—i-1(2) + zL,—ia(z) + 2*L,_i_3(2)]
Pi,_1(z) + zP,,-2(z) + 2°P, ,—3(2).

Hence it follows that

- r— r—3,
670 +ali +alid.

af;) =

As the induction hypothesis is true up to (r—1), we get for j > 5

—1 -2 -3
o) =af™ +al) , +al5),
and also for i = j
ng;) = ng;_‘) + a;:;_’,) + a;:,__’g)

- -2 -3
i+ a5 a5,

For j = 3,4 the same argument works as aﬂ;)

(';2). Hence the result is true for all n > 5.

=r—1landaly =

We now show that component 3 has the maximum and compo-

nent 1 the mini Barlow- Proschan structural importance in

a consecutive-3-out-of-n:F system.
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Theorem 26 Let W(i,n,z) = Ly(z)Ln-3(z) — Li—1(2)Lp—i(2).

We then have for a positive integer, n > 4 and z > 0
W(i,n,z) >0 foranyi#0 orn+1
and the strict inequality holds for i £ 3, n — 2.
Proof : We have from Theorem 20 for n > 0
Lo(2) = Ly_y(2) + 2Lo—3(2) + 2*La_s(2z)
where Li(z) =(1+z)' for0<n <2, L_;(z) =1and L(z) =0

for i < —2. We use induction on n to prove the resuit.

For n = 4, W(i,n,z) = La(z)L1(z) — Li—1(2)Ls—i(z). This gives

us

(1+2) if i<—landi>6
—z—322—-2° if i=0,5
Wi, 4,2) = o
23 if i=1,4
0 if i=23

For n =5, W(i,n,z) = La(z)La(z) — Li-1(z)Ls—i(z). It follows
that
1+ if i<-1landi>7

—z—4z>—-32° if i=0,6

W(i,5,2) = 22+ 2! if i=1,5
23+ 2t if i=24
0 if i=3
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For n = 6, W(i,n,z) = Ly(z)Ls(z)— Li—1(z)Le—i(z) and we have

Ly(z)Ls(z) if i<-1andi>8

—z—522—T72>—38z* if i=0,7

W(i,8,2) = { 2(2° +2*) if i=1,6
z° +2* if i=25
0 i i=3,4

For n =7, W(i,n,z) = Ly(z)Ls(z) — Li—1(z)L7—(z) and we

have

La(z)La(2) if i<—landi>9

—z—622—122°— 92 —2° if i=0,8

2z° + 4z* + 22° if i=1,7
W(i,7,2z) =

z3 + 2z% - 28 if i=2,6

0 if i=3,5

z* + 22° if i=4

It follows from the above that the stated result is true for n =
4,5,6,7 and suppose that it is true all values of n upto r — 1
(r > 8) and consider W (i, r,z) for integer i > 1and i #r +1
W(i,rz) = La(z)L,—s(z) — Li-1(z)L,—i(z)

= Ly(2)[L,—4(z) + 2L,_s(2) + 2°L,—s(2)]

— [Lica(z) + zLi_s(2) + 2° Li_4(2)] L, —i(2)
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[L3(2) Lr—4(2) = Liza(2) L,—i(2)] + 2[Lo(2) L,_s(2)
—Li—s(2)L,~i()] + 2*[La(2) Lr—s(2) — Li—s(2) L,—i(2)]
W(i-1,r—1,2)+eW(i—2,r—2,2)
+2°W(i—3,r—3,z)

since the induction hypothesis is true for upto r — 1 it follows
that W(i,r,2z) > 0 for i # 1,2, and 3. For i = 1,2 and 3 we

prove this separately . For i = 1 we have

W(i,rnz) =

Fori=2

W(i,r z)

Ly(2)L,—3(2) — Lo(2) Ly-1(2)

Ly(2)L,-s(z) — L,—s(2)

(1 +22 +2°)L,_s(z) = L,_a(z) — zL,_s(z) — 2°L,_4(z)
(1 +2+2")L,_5(2) — Ly-3(z) — 2*L,—4(2)
(1+2+2%)L,_3(2) — Ly—s(z) — 2L,_4(2)

~2°L,_5(2) — 2°L,_s(2)

2(1+2)L,—3(z) — 2(1 + 2) Ly —4(2z) — 2°L,_5(2)

2(1 + z)[Ly-3(2) = L,—4(2)] — 2*L,_s(2)
2(1+2)[zL,_5(z) + 2’ L,—e(2)] — 2*L,_5(2)

2(1+ 2)2°L,_¢(z) + 2°L,_5(2) > 0(z > 0).

= Ly(2)L,_s(2) — Lioy(2)L,—i(=)
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Ly(2z)L,—3(z) ~ Li(z)L,-a(z)

1+ 2)[(1 + 2) L, _s(z) — L,—a(2)]

(14 2)[z°L,—¢(2z)] > 0 (r > 8 and z > 0)

]

For i = 3 trivially, we have W (i,r,z) = 0. And for i < —1
W(i,r,z) = Ly(z)L,—s(z) > 0 (as z > 0)
and Lj(z) =0 for j < —2.
Since by hypothesis for t < r ~ 1, W (i,t,2) > 0 for i # 8,1 — 2
it follows that
W(i,r,z) = W(i-1,r—1,2)+2W (i-2,r~2, 2)+2*W(i—3,r-3,2) > 0
for i # 3,7 + 1. This completes the proof.
Theorem 26 Let U(i,n,z) = Li_y(z)Ln—i(2z) — La_1(z). For
any n > 4, we then have
U(i,n,z) >0 for2<i<n-—1.
Proof : Forn=4
UGiyn,z) = Liy(z)Lii(z) — Ls(z)
Ly(2z)La(z) — Ly(z) = 2> if i=2,3

]

For n=5
U(iyn,z) = Li_y(z)Ls-i(z) - Lu(2)
Uliyn,z) = Ly(z)Ls(z) — Li(z) =2° if i=2,4
UGiyn,2) = Ly(2)Ly(2) — Lu(z) = 22° +2* if i=3
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Forn=¢6
U(i,n,z) = Li-i(z)Le-i(z) — Ls(2)
U(i,n,z) = Ly(z)Lu(z)— Ls(z) =2°+2* if i=2,5
U(i,n,2) = La(z)Ls(z)— Ls(z) = 22> +2z* if i=3,4
Forn=17
U(i,n,z) = Li1(2)L1-i(z) — Le(z)
U(i,n,z) = Li(z)Ls(z) — Le(z) =2°(1 +2)* if i=2,6
U(i,n,z) = La(z)Li(z) — Le(z) = 22>+ 42* +22° if i=3,5
UGiyn,2) = Ls(z)Ls(z) — Le(z) = 22° +3z* if i=4
Hence the theorem is true for n = 4,5,6 and 7. Assume that it

is true for n = r — 1 and consider the case forn =r > 8
U(i,r,2) = Li1(2)Ls—i(z) — L,—s(2)
= Liy(2)[Ly—i—s(2) + 2L,_;—3(z) + 2*L,_;_3(2)]
—[L,-a(z) + 2L, —3(z) + L, —4(2)]
= [Li=a(2) Ly-1-i(2) — Lr—a(2)] + 2[Li1(2) Ly -2-i(=)
—L,_s(z)] + 2*[Li—1(2) Ly—3—i(2) — L,—a(2)]
= U(i,r—1,2)+2U(i,r — 2,2) + 22U (i, r — 8,2).
Since by the induction hypothesis the result is true upto r — 1,
this implies
U(i,r,z) >0 for22>i>r—2
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Fori=r—1wehave U(r —1,rz) = L,_3(z)L1(2z) — L,_1(z) =
2°L,_s(z) = U(2,r,z). Hence U(i,r,z) > 0for 1 <i < r-—1
and the theorem follows.
Theorem 27 In a consecutive-3-out-of-n:F system for n > 4
(i) component $ or its mirror image component has the maxzi-
mum Barlow-Proschan structural importance
(1) component 1 or its mirror image component has the rini-

mum Barlow-Proschan structural importance.

Proof: In view of Theorem 23, we have

¥s(i,n)

It

[ /0 Lims(a/p) En-slaf) — 2" Lala/p)ldp

a+ [ (/0" Lins(a/p) Ln-sla/pVldp

Il

where a is a constant such that 37, ¥5(i,n) = 1. The required

results follow from Theorems 25 and 26.

5.6 Cut Importance Ranking

Cut importance ranking of components is based on the minimal
cut sets and provides a complete ranking of components in the

system. It is applicable for when component reliability is high.
Theorem 28 For a consecxtive-3-out-of-n:F system, we have

(G)i=c(n+1-1)
(i) i>. 1 for2<i<mandn>4
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(iii 3>.ifori#n—2andn>4

where i >. j (i =, j) denotes that component i is more (equal)
cut important than component j and m denotes the smallest in-
leger greater than or equal to n/2.

Proof : It follows from Theorems 23,25 and 26 and the result
the cut importance ranking is the same as Birnbaum reliability
ranking for high value of components reliability (see Theorem 16
of Chapter 1).

Thus component 3 has the maximum cut importance and com-
ponent 1 the minimum cut importance ranking for n > 5. The
complete cut importance ranking for all components can be ob-
tained by lexicographically ordering the rows of the structural
matrix of the dual of a consecutive-3-out-of-n:F system as proved
in Chapter 2. We obtained the recurrence relationship for cal-
culating the structural matrix of the dual of a consecutive-k-
out-of-n:F system in Chapter 3. Using this we can find the cut
importance ranking of all components. The ranking so obtained
for n upto 20 is given in Table 5.6. This ranking does not com-
pletely match with the ranking given by the other two structural
importance measures considered.

Theorem 29 Let a consecutive-3-out-of-n:F system have i.i.d.
components (py = p; =+ = p, = p). Then component 8 has the
mazimum and component 1 the minimum Birnbaum reliability

importance for n > 4 and all p € (0,1)-
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Proof : It follows from Theorems 22, 25 and 26.

For k = 3 Tables 5.3, 5.5 and 5.6 provide the Birnbaum struc-
tural importance ranking (n=3 to 30), Barlow-Proschan struc-
tural ranking (n=3 to 30) and cut importance ranking (n=3
to 20), respectively. Comparing them we find that the three
ranking are not the same for all n. For example, in case of
n = 13 Birnbsum and Barlow-Proschan structural importance
rankings are identical whereas cut importance ranking for com-
ponent 5 and 7 does not match other two rankings. Similarly

for n = 18 Birnbaum structural and cut importance rankings

are the same for all p ts but p ts 8 and 9 have
different Barlow-Proschan structural ranking. However all the
three structural importance rankings have the following pattern

for5<n <30
=1, =2and i,_; =6,i, =3

where i; denotes the minimum component importance rank. We
haved proved that i; = 1 and i, = 3 8as per all measures con-
sidered and it can be easily checked that Bsp(2,1) > Bsp(1,n).
Hence we make the conjecture that for k = 3 the second most
important component is 6 or its mirror image component for

n> 12
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5.7 General Results

In this section, we mention some results of a consecutive-3-out-
of-n:F system which can be easily extended to a consecutive-k-
out-of-n:F system for k > 4. By defining a Fibonacci sequence
of order k [11] and [49], we can generalize all results of section
5.2 and 5.8 but for Theorem 38 part (ii). Similarly Theorems 186,
18, 22, 24, 27, 28 and 29 can be generalised for k > 4.

This would imply that component k has the maximum and

1 the minimum, Birnbaum structural importance,

P

Barlow-Proschan structural importance, Birnbaum reliability im-
portance in case of i.i.d. components and Butler cut importance

ranking.
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&) 09857002041 Q17367 019165 L0186 01865 018646 018684 018669 018677

n 007075017632 014067 L0155 01493 DISLES .0IS08S OISIL LISI0E 015108




PABLE &, 2: BARLOW = PRUSUILA S TRUCTURAL  THPURTANGE OF COMPO:
IN A CONSECUTIVE - 2 ~UT ~OF- n:F SYSTEY

COMPONENT

2 )] 4 S [} ! 8 9

2 - 500000
1 lekbhT
4 . 166667
5 116667
) +100000
7 083333
R 072619
9 .063889
10 057143
1l .151622
12 L16707h
13 L0632%
14 139999
15 L7193
16 BRI
1 32607
18 .030709
19 029017
20 4027500

166667

33333

+283333 200000

2216667 183333

2183333150000 166667

195952 1321431139286

L136508 116210 ,123413 119841

2121032104365 109524 107936

+108766 094480 098845 .0972%8 .0980%

2098701 086364 089935 088781 089141

2090332079510 082540 .081%%6 081927 08174k

2083253 .073668 07625 075461 .075724 074

-077192 068623 070862 07019 070416 .010332 ,07037¢
071965064225 066181 06515 065195 L0hS L0657 %

-067358 060355 062080 06194 081746 061696 061716 061704
«063315 05925 058457 058037 .0%8164 058123 L0813 05813
0972 053864 055234 L0868 L0976 05941 05495 054949 054951

036517 L0114 052347 ,052025 L0211 052089 052098 4052095 ,052096

1



TABLE 5,1: BLRNBAUM STRUCTURAL INPURTANCE OF LOMPUNENTS
IN A CONSECUTIVE-3-0UT- OF- n:F SYSTEM

COMPONENT
1 1 3 4 5 6 1 8 9 10

3

4

,2500000 2500000

21250000 3750000

21250000 2500000, 5000000

1250000 2500000 3750000

1093750 2343750 359370 12656250

101525 2109375 ,3359375 2578125

0937500 11953125 3046875 2421875 2500000

0859375 1796875 2812500 12187500 12343750

0791016 1650391 2587891 ,2021484 2119141 2197266

0727539 11518555 ,2377930 1660352 1938008 1987305

0668945 1396484 2187500 1708984 1801738 1835938 1796875

0615234 1284180 2011719 1572266 1655273 1689453 1166015

05579 11181030 1849976 1445923 1522627 1552124 127710 1533813

0520325 1086121 1701355 1329651 1400452 1427917 1403503 1411438

0478516 0998840 1564636 11220839 1287842 1313171 1291199 1296692 1298828
0640063 0918579 1438906 (1124573 1184387 120781 1187439 1192932 1193237
0404701 0844765 1323260 1034203 11089211 1110573 1091957 1097069 1097755 1096230

0312181 0776882 1216346 0951099 1001682 1021328 1004238 1008854 100951 1008311




TAWY

IERY

LRREU

IN A CONSECUTIVE= 3-OUT-0F- mF SYSTEM

COMPONENT
n 1 1 3 4 5 b 1 8 [ 1
] (33333333, 33333333
4 08333333 41666667
508333333 16666667 30000000
b J08333333 16666667 25000000
! OS81 4285716 12619068 14285704
8 OSST163 11309524 19642857 113690476
9 04761905 10119048 16071429 12500000 13095238
0 06166667 08928571 14285714 10714286 11904762
il 0377349 07940115 112702020 09805195 10321068 10916306
1 033073 07204185 11370851 08346609 09462462 0983137
13 03138528 0659264 110362713 08189033 08634401 088761 08556999
1 02896825 0603535 09466089 L07%2973 07947330 0812041 07950938
15 02687313 05384138 08722666 L01050172 07373460 07496115 07317067 07618137
16 L000%I1 05192724 0808959 06586053 06868271 06382046 08862998 06912948
7 23652 08519% 07539266 06181457 0642718k DBSITSN0 LOBA3ITE3 0648403 06471861
18 00206127 06552670 07038081 03822650 06041042 06127900 06046315 06072955 06072261
19 00081307 L0GI8T434 06633977 0303179 0597829 L0STISHOT L0S03196 05726845 05729742 05720168
Jul 01969653 L0K050960 06257087 03207027 05391525 L0%461355 0598918 L0SALTEL3 0S20%1 0415250




TABLE - 5.3
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TABLE - 5.4

Heuristic Ranking of Components in
a Consecutive-3-out-of-n:F System

n Increasing order of importance ]
13 Bf1 2 4 7 5 6 3
H|l1 2 4 57 &6 3
21 B[1 2 4 5 7 10 8 =11 9 6 3
Hi1 2 45710 11 8 9 6 3
22 B{1 2 4 5 7 10 8 =11 9 6 3
Hl1 2 4 5 7 10 11 8 9 6 3
28 B|1 2 45 7 10 11 8 =12 9 6 3
Hi1 2 4 5 7 10 12 11 8 9 6 3
25 Bl1 2 4 5 7 10 13 11 =12 8 9 6 3
Hi1 2 4 57 10 13 12 11 8 9 6 3
26 B|1 2 4 5 7 10 13 11 =12 8 9 6 3
H|1 2 4 5 7 10 13 12 11 8 9 6 3
29 B|1 2 4 5 7 10 13 14 =15 12 11 8 9 6 3
H{1 2 4 5 7 10 13 15 14 12 11 8 9 6 3

For remaining values of n < 30 the heuristic ranking is identical to
Birnbaum structural importance ranking.

Where

B: denotes the Birnbaum structural importance ranking

H: denotes the Heuristic ranking.
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TABLE - 5.5

Barlow-Proschan Structural Importance Ranking
of C ts in a Co tive-3-out-of-n:F System

P

Increasing order of importance

n

5 123

6 1 23

7 1 2 4 3

8 1 2 4 3

9 1 2 4 5 38

10 1 2 45 3

11 1 2 4 5 6 3

12 1 2 4 6 6 3

13 12475 6 3

14 1 2 45 7 6 3

15 1 2 457 8 6 3

16 1 2 475 8 6 3

17 12 457 8 9 6 3

18 1 2 457 9 8 6 3

19 1 2 45 7 10 8 9 6 3

20 1 2 45 7 10 8 9 6 3

21 1 2 4 5 7 10 11 8 9 6 3

22 1 2 4 5 7 10 11 8 9 6 3

23 1 2 4 5 7 10 11 12 8 9 6 3

24 1 2 4 5 7 10 12 11 8 9 6 3

25 1 2 4 5 7 10 13 12 1 8 9 6 3
26 1 2 4 5 7 10 18 12 1 8 9 6 8
27 1 2 4 5 7 10 13 14 12 11 8 9 6 3
28 1 2 4 5 7 10 13 14 12 11 8 9 6 3
29 1 2 4 5 7 10 13 14 =15 12 11 8 9 6 3
30 1 2 4 5 7 10 13 15 14 12 11 8 9 6 38
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TABLE — 5.6

Butler’s Cut Importance Ranking of Components in
a Consecutive-3-out-of-n:F System

Increasing order of Importance
3

o
9

T e e e b b e b e b e
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L L )
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