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The soul's dark cottage, battercd and decaycd,

Lets in new light through chinks that Time has made.
Stronger by weakness, wiser men become

As they drawn near to their cternal home:

Leaving the old, both worlds at oncc they view,

That stand upon the threshold of the now.

Bdmund Waller
'0f the Last Verscs in the Book!
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CHAPTER 1

INTRODUCTION ¢

THRESHOLD ORIER OF A SWITCHING
FUNCTION

'There i1s nothing more difficult to take in
hand, more perilous to conduct, or more un-
certain in its success, than to teke the
lead in the introduction of a new order of

things.

t
Nicolo Machiavelli
Translation: W.K. Marriott

1.0 Summary

Linear-input elements or threshold elements are
briefly discussed and their limitations are pointed out.
The concept of Threshold order of a Switching Function is

introduced, and some networks that realize a switching
function of threshold order r @&re. proposeds The need for
a non-linear-input logic is pointed out, quoting several
authors. A summary of the results in the subsequent

Chapters is presented.
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1.1 On Line&r-Input Logic

Recent developments in the hardware of switching
oircuits have produced considerszble intcrest in a new kind
of switching element, called a threshold cloment, or &
linear-input element. Before these developments, the
AND OR gates or the NAND  or NCR gates werc used as the
basic logical buildins Blocks by the computer desismer,
since they offéred cheaper and e&sicr means of construc-
tions Threshold logic elemehts &secom to offer a more con-
venient set of building blocks, gincoe a given amount of
logical circuitry could be realiscd with much fewer
threshold gates than AND/OR, or NAND or NOR gates and
hence would be more economical, reliable and would ; ermit
morc easy maintcnances PFurtbher, the threshold gate has
been found to have wide applications in the studies on
artificial intelligence such as the construction of
communication and decision networks, pattern classifiers,

learning machines, probability transformoers and decoders.

Another reason for interest in threshold logic
is that it offers a satisfactory mcthod to construct a
mathematical model of neuron, the decision clement in the

human central mnervous systum.
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Threshold logic has been studiecd under very many
different names such as linearly separable logiec,majority

decision logic, #oting logic and linear input logic.

A threshold 1ogic element consists of a set of n
binary inputs X1y Xggweey X, ON which weights
81y Boyesey B (real numbers) are applied; these are cone
nected to an algebraic adder whose output goes to a discri-
minator with a threshold T (= - ao); the output of the
discriminator is true if its input is > a, @and is false if

its input is < a,e This is explained in Fige lele In

other words, a threshold logic

Discriminator L% 7
Threshold T !

Figo lel
Threshold Logic Gate

gate computes a (binary) threshold function f of n

(binary) inputs X1s Xgseeey X, Where a threshold function

is a binary function for which real numbers 8518y y8oyae. ;8



exist such that

£(x)sXgyee.yX,) is truc if a +i§1 ay%, >0
(1.1)

f(xl,xz,...,xn) is falsc if , +.ul a;x; < 0.
1= i
The a; (i £0) arc called  weigh®is, and -a  is the
thresholdes Geometrically, a thresheld function is a swite

ching function whose true vertices are separated from its

false verticcs by an (nel) dimensional hyperplance

Bxtensive work has becn done and is being done on
the theory end applications of thrcshold logice Winder

tc*], [40) vbriefly reviews the work on threshold losgice

It is interesting to note that the threshold
functions form only a very small proportion of the sct of
switching functions, and as n dincreases this proportion
decreascs, as shown in the following table (first three

columns from Winder [41]).
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Table lel

Number of Threshold Punctions

No. of No. of?ﬁﬁidhing No. of

inputs PFunctions Threshold Proportion
22n Fuﬁcﬁions
0 2 2 1
1 4 4 1
2 16 14 0.875
3 256 104  0.40625
4 65536 1882 0.0287
b+ 443 x 1007 94572  0.21993 x 10%
6 ~ 148 x 1¢° 15028184  0,834900 x 10717
38 28

7 ~ 3¢4 x 10 8378070864 04246413800 x 10

Hence, apgrt from the complex problems of testing and
realization of gwitching functions by a single threshold
element whenever possible, a major problem is the realiza-
tion of a given arbitrary switching functinon as a network
of threshold gétes in an economical manner. Although the
problems of the first kind have been solved to a great

axtent, those of the second kind are still largely unsolved.



Threshold functions, being reslizable as a linear
combination of inputs, can be justifiably called linear-

input functions. Hence non-threshold functions can other-

wige be called non=lincareinput functions.

1.2 Probability Distributions o 2inary Variables

one of the main mathematical tools for the study of
switching functions, particularly the threchold functions,
is the representation of such functions in various parame-
fric forms. Several such repressntation theories arc
available in the literaturc. In linear-input logic and
more 80 in the non-linear-input logic, such representatinns
-not only of switching functions but also of nrobability
distributions of the input vectors - play a major role.

The probability distributions, in fact, play a dual role:

(1) In problems of a stochastic nature, for inse

tance,in information and coding problems, they

enter quitc naturally and incvitablye

(2) Probabilistic methods lead to deterministic results,
for instance, in the characterization of thresheld functions

and in the reprusentation of functions of binary variables,



Hente, in Ghapter 2, we gather some results on the repre-
sentation of realevalued functions of binary variables,
taking perticular interest in sWwitching functions and pro-
bability disfributions. We also prove some results regard-
ing such representations which will be of use in subse-

quent Chapters.

The literature on threshold logic abounds in results
which show, from a number of viewpoints, the strong con-
. nections between threshold functions and independently
distributed inputss The main part of this report shows
that the connections’between switching functions and
probability distributions are much deeper in the sense
that a switching function of threshold order r corres-
ponde. ¢o g probability distribution of order r (See
Definition 5.2), from these several viewpointse. Minsky
and Selfridge [28] have noted the severity of the inde-
pendence assumption and point out the need for considera-
tion of higher-order joint probabilities. However, they
do not seem to formulate it specifically, nor do they
consider the minimal choice of joint probabilities (such as
we have done in terms of the order of the distribution)
and hence have not noted the connection between threshold

order and order of probability distribution.
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1e3 _Need for a Non-Linear-Input Togic

Several research workere on threshold logic have
realized the limitations of threshold logic in some situa-
tions, and have felt the need for a more zeneral fixed logic
like the one we present here, ' We quotc below relevant por-

tions from some of these authors:

Chow [8] who presented 'an equivalence between
threshold functions and statisfical,recognition with
independent distribution! writes t',.. recognition with
statistiocal independence represents merely a special case
of statistical recognition, in the same sense that thresh-
hold functions constitute a very small subset of the set
of all Boolean functions.' He further sw:-ests that 'in
considerin;; recognition schemes, we should not be confined

to vases of statistical independence ouly.'

Hawkins in his review of Self-Organizing Systems
[13]: Minsky and Selfridge discuss the assumptions of
independence and state'that, in its absence, the only
alternative appears to be the calculation of higher-order

ibint prohebilities,
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The last remark serves to point up what is probably
the central problem in statistical recognition and lear-
ning network synthesise This is the selection and analysis
of suitable nonlinear function of input variables. It is
apparent that the simple linear expansion «e...- will
frequently be inadequate to approximate an arbitrary out-
put function. However, general criteria do not exist for
the selection of more complex functions of inputs which
idemlly should be as few in number as possible, readily
ﬁechanized, aﬁd capable of modification in such a way

that over-all network learning will occurs'

Mays [24, pe3): 'As a result of studyin; threshold
logic several geometric and algebraic concepts were gene-
rated to help explain the limitations of threshold logicCe..
the concepts do shed light on the limitations of threshold
logic and they are included in this report with the hope
that some other researcher will find them useful ... One
of the concepts is that the input variables to a threshold-
logic device span only (n+l) dimensions, whereas all
possible gwitching functions span 2 Qdimensions. It is
suggested that one way to realize more functions would be

to use fixed logic to generate inputs that would span
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more than (n+l) dimensionss,'

While discussing the usc of a threshold function for
a recognition procedure with independencc assumptions,
Winder [40, ppe 5, 6] writes: 'Saul Amarel (RCA Laboratories)
has sug-oested to me that the {ndependence assurption is a
severe one, and that only a small proportion of threshold
functions might actually be realized by the above proce=-
dure .. ceons Thus we have shown that for any interesting
threshold fuﬁctions, with equi-probable input combinations.
the independence assumptions in fact don't hold. The
theorem can probably be extended to more general input

distributions ~-possibly to arbitrary distributions.!

le4e  Definition of Threshold Crder

We present, in this report, another approach to the
problem of realization of non-lincar input functions. This
approach consgists in the introduction of fixed logic gates
which are similar to threshold gates but are more gencral,

The main features of auch a gate are:



(1)

(2)

(3)

(4)

«lle

its properties are quite similar fo those of

a threshold gate,

i1t covers the complete set of swltching

functions, including the threshold functions,

it is a natural generalization of the con- -

cept of a threshold function,

& measure of the complexity of 2 switohing
function in terms of its non-linearity of
inputs is available in what is called its

threshold order; this helps to realize the

function in an optimal network,

We define g threshold function of order r as

follows:!

Definition l.1: A switching function f(xl,xz,..., xn) of

n binary variables Xy Xgreeey X is said to be a

$hreshold function of order r (0 <r < n), if there

exists a set of

r

=1 4+n + (g ) o+ cee + (2) (1.2)
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real numbers.

3
siuch that

n n
W+ &L WX, + N 0w Xe X3 + eoee +
0 4a 171 1,<iy=1 i, iy,

n .

+ & w X X, eee X > 0

1o ¢lnCes. ¢, =1 Iplgeeein T Ty L
1<% 1,

if f is true, (1e3)
[ ] 1t t 1 <O

if £ 4is falsc.

Definition le2: The gsmallest integer r satisfying
(1.3) is called the threshold order of the switching

function £

Remark 1,14 A threshold function, according to our

terminology, is a threshold function of order 1.

Remark l.2: Since the definition regquires r < n, the
question arises whether svery switehin, fimeition has a

threshold orisre. ,In the sequel, we give an affirmative
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answere In what follows, we use interchangeably the terms

'awitching function of threshold order r' and 'threshold

function of order r.!

Even though any two arbitrary values can be uwsed for
inputs as well as outputs, we would find it convenient to
use two sets of values O, 1§ =1, +ls Throughout this
report, we uge the notation x4 when the values are
0, 1 and ¥y whep the values are + 1. We denote the

output by f when it 48 O or 1 and F when it is + 1.

Hence

Ya = 2x, =~ 1, 7
: 1 f (1.4)

F =2f =1, |

Example lel:t Consider & 3-variable switching function

f(x) ( = f(xl, Xo) XE))’ given by the normal form

X Ky o+ Xy X (145)

( ii is complement of x;)¢ It is well known [26] that

a function which cannot be expressed in a normal form,
without involving both x; or X, for any i, cammot be

a threshold functione Here £ is not a threshold function.

However, £ 1is a threshold function of order 2, since it



satisfies conditions (1.3) if we choose
& = = 2j 8= 0, 8570, a;=4j 8),=4, ay;==4, 85;= 0.

4 .
\l‘ ;/

This is shown in Table 1.2 below, where

T(x) = T(xl,xz,xz) = 8+ Xy Hag Xy Han Xt

8 9% Xo g g X Xog sy XXy o (Le7)

Table 1.2

Exanple of a S8econdeorder Threshold Function

Xg X Xp

=
fAv]
o

" xékl x)  T(x)

W3
oy

-2

jav]

H H f B O O O o
HF O~ o o = = o o
= o H O M © + o
= H O O O O O o
= o o o =+ o o o
H O H O O O o O
e N e I S e S e

1

fodd
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The idea of using product terms in a functional
expansion to produce none~linear-input functions 1is natural
and indeed has occurred to some previous workers. In his
celebrated review psper, Héwkins [13] discusses this problem
and prements a brief review. Huffman [16] and von Heerden
[14] use such an expansion in their work on coding problems.
However, none of these authors has investigated the minimum
such set of product functions and hence has not reduced the
complications *f the representations. Further, they are
éoncerned with essentially Boolean operations, whereas our
treatment i in terms of real algebraic operations, which
are particularly suited.to problems of realization. The
main contribution of the present work is the reduction of
such complexity by introducing the threshold order, which
has minimal properties in terms of such product functions.
This answers the point raised by Hawkins [13] 'general

criteria do not exist for the selection of more complex

function of inputs cent

Kaszerman [18] has suggested a non-linear summation
threshold device, somewhat similar to the one presented
here, However, he has not formulatcd any theory but has
just given a method of generating a non-linear surface

that would separate the true and false vertices of a
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switching functions As we shall show in Chapter 4, his
method leads to very inoptimal (as he has himself admiticd)
implementation, frqm the point of v%ew of the number of
terms inw lved in the surface and of the weighting factors
for inputs. This is owing to higs failure to take intn
account the threshold crder of the function, which, as we
ghow, 1s the most natural starting point of a non-linear
summation threshold device. Mattson [23] alse discusses
tbe application of product function in a non-linear

expansion.

A ddcision element to realize a threshold functicn
of order r 1is illustratod in Figs. 1.2 and 1.3, in which
a threshold function of second order, in three inputs, is
considcereds As 3 netWork, the memory is distributed in
the element of Fize le2 and localized in Fire 1e3. Theses
arc based on_tﬁe networks proprsed by Gose (12], for
the computationkrealfvalued functions of binary inputs.
Pigele2 15 similar to the model of Kaszerman [18] for the
non=linear summati-mn threshold devices A threshold element
of order r of n inpﬁts can be constructed in an

analogous manners
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1e5 Summary of Results

The investigation feported in these pages 1is an
attempt towards the removal of such severe agsumptions and tow-
ards the development of a theory, that has so far been limited to
small class of switching functions, namely threshold func-

tions, to handle any switching function.

In Chapter 2, we review various theorieg of represen-
tations of switching functions and probability distributions,
and present the connections between them. Here we genera-

lize the notion of dhow parameters and prove its connection

to Golomb parameters.

In Chapter 3, we examine the various kinds of depen=-
dence as appliqd to a system of binary variables. In parti-
cular, we introduce the notions of dependence of order
logical, linear and stochastic ~ and examine the intercon-
nections betwéen theme We derive the structure of a set of
logically r~dependent binary variables in terms of the
number of pointse We also show that stochastic dependence
of order r implies logical dependence of oider 2 r, which
in turn implies linear dependence of order 2 re Even
though these results are not used for the particular kind of

non-linear threshold device we are discussing, they are
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uceful as necessary conditions for stochastie depndence,
which is related to such non~linerrity in terms of inputs,
of switching functions. Further, these results ar~ in the

same spirit as generalization from order 1 to order r.

In Chapter 4, we first present some immediate conse-
quences of the definition of a threshold functicn of order
re Then we examine the relationship to a2 non-linear summa-
tion device proposcd by Kaszerman[18) and show how
our theory rosults in a better realization of the function.
Then we go on to the problems of characterizations of a
threshold function of order r and show (1) the characteri-
zing property of Chow paramncters (2) the realization wilh
Chebyshev approximations and (3) the validity of the
Ho=Kashyap algorithm for testing and realization. We present an
enumeration and a tabulation of switching functions of three
inoute, by their threshold order.

In Chapter 5, we consider the application of the
threshold logic gate of order r to such problems as
pattern recognition and decoding. We show that the recog-
nition with statisticel dapendence of order r (different
from the concepf of Chapter 3) reguires a threshold gate of

order st most re We also show that a threshold gate of

order r c=2n be used as a decoder in the presence of

dependent noise of order r.



CHAPTER _2

REPRESENTATIONS OF FUNCTIONS
OF BINARY VARTABLES

' N-thing can pleasc many, and please long, but
just representations of a general naturc.
Particular manners can be known to few, and,
therefore, few only can judge how nearly they

are copled,’

Samuel Johnson
'"Preface to Shakespgare.

240 Summary

The results of Partanen on the represcntation of
switching functions and probability distributions using
Borlean algebra dpe presented, Then the results of Bahadur
are presented, which start with the vector space V of
real-valued functions on the set of 2" points of n
binary variables and construct: an orthonormal basis using
probabilistic methodses. It is shown that the basis obtained

by €oleman to represent a switching function is a particular
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1.

case of tnise Switching funclions snd probability ~igtri-
butinns are par'i;icula‘;ly studied usiﬁg this represcentatione.
Some results based on this fremework are derived Jor use

in subseruant éhﬁptmrs. The Rademacher-Falel: functions as
basis of V  and parameters of a switching fwiction defined
by Moleub arz thon presented. The concept of Thow parameter:s
of a switeling function is extended to a sctb of oh nara-
meuvers The relationshirzs between all thes- represento-
ticng are procerteds Inecidentally, 2 simple prool in Tiven

for a result of Gose wused in his adaptie nctwork.

Several examples are worked out.



241 Introduction

The study of realwvalued functions of n binary
variables X = (xl, Xoyeeny xn)"is greatly facilitated by
different representations of such functions. The starting
point of such representations is the consideration of the
space of such functions a8 a vector space and the deter-
mination of suitable bases for the vector space. 1In
this chapter, we disc¢uss three such bases; one is obtained

with the help of Boolean algebra and thus éonsiders only swit-

ching functions; the second due to Bahadur [B] is obtained
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on the basis of some probhabilistic considerations, and,
although it is particularly suited to ropresent switching
functions and probability functions, it takes into account
all realevalued functions; the third, which is the well-
¥nown work of Rademacher and Walsh\[ll}, {z2]), 2lso deals
with real-valued functions and is 1dcal to represent swit-
ching functicnss The second and third bases are related

in the scnse that 2 particular case of the sccond leads %o
the. same representation as the third in the easc of switching

functionse

Nambiar [32) presonts a discussion of th: represen=

tation of probability distributione and their cpnroximations.

In Scction 23 (Theorems 246 and 2.7) we derive some
results in the framework of Bahsadur's, for uce in subsce-

guent chapters.

In Section 245, we present a generalization of Chow
parameters (Definition 2.6) associated with a switching
function and prove its relationship (Theorem 2.3) to the

other parametric representations of switching functionse.

In Section 246, on the hasis of thease results, we

give g gimple proof of a result of Gosc f1¢] which he uses
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in an adaptive network proposed by hime.

The results of Partanen (351 thoush not uscd subse-
‘quently have been summarised in Section 2.2, in view of the
fact that these are available in a psychology publication and hen-
¢e mzy notv be ridely knowm to switéhing theorin i, 1t further

enables us to give a fairly complete account of the results

available on the representation of switching functions.

242 Boolean Algebraic Representation

Most of the results presented in this Secticn are

found in Partanen [35].

Consider a Boolean algebra B gencrated by a scet of

n binary variables X1s Xogeery X , under *the opera-

tions (E) (sum modulo 2 addition) ande (Boolean multiplicas

tion)s We omit e in what follows; for example, xy for

Xey» Then B 1is a vector space over GF (2).

DEFINITION Z241: An element of B 1s said to be a basic

element if it can be expressed as a product of n distinct

factors, each factor being either x; or Xy
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n . .
There are 27 such basic clements of R, densted by

p{n) . (bé“), pln) bén), coo, p (2e1)

1 n) )
oMy
and it ean be shown thet

IHEOREM 2,1: The set of basic elemrmts is a basis of the

vector space B |

Using the notation X for the Xroneeker product of
: . n ; . v
two matrices, b( ) can be writton recwysively in an

elegant form as follows:

- japd
1 ! 1 ‘ . () 'Y - X .
! ):zgx | (1) o (1) (X1) . (242)
\*L i
For instance b(z) = (% X X., X X, )
(o N ] = }‘.1 X2 [} Xl Xz 5 Xl Xg 9 le{;:} .

Another interesting set of elements is what is known

as the set ol sum variables denoted by

a(n) = (aén) , a§n>, aén),..\, a(n)“); (243)

o'

defined reccursively as follows:
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(1) _ 9\3 (1) _ (1 )
@)

/ il-
(1) _ (i~1) L (1-1) 0
8 = a > = + a X [ 4 (2.4)
1 i
/
. (2) _
For instancc, a = (0, X1y Xgy Xy + Xg) o

The relation between 2™ and ™) is exhibited

by
mEREN 2,20 &™) = ap(®y 2 _ g ) (2.5)
0 0 A, } n "
where Al = , A, = 1wl ~1—l A, = i1 Ti-l
01 1 T L A
- i=l i=1 1=l i-1

ol
The set B 1is just the set of 2% switching func-

tions of n wvariables., Hence any switching function is
expressible uniquely as a combination of components of
b(n) with coefficients O or 1. This is the familiar

normal form obtainable from the prime implicant table,

Let us now consider probability distributions on X,
the set of 2% points x = (xl, Xgyeony xn). It is clear

that the joint probability distribution of (xl,xz,...,xn)



is completely specified by a set of 2%-1 parameters, since
the total of the functionevalues over the sample space is 1.
There are many methods cof specifying the parameters.. One
of these ig the set of probabilities associated with the

basic elements, that is,

A
p(n)~Pr )b}n) = 3] s K =0, 1, 2y00., 2 =1
(2.6)
(n) _
suvject to E/: pf = 1.
et ™ = (), p) pl) péﬁ; ). (247)

-
-~

It is easy to see that the 2™ events b/((n) = 1, correspond

to 2% elements of the sample space X of 27 points,

Let q reprresenl similar probabilities on the sum

variabless That is,

R I N O q(gzl) (248)

where q}n) = Pr. % a}(‘“ = 173 . (2.9)

Then th» relationship hetween q(n) and p(n) is:



1} -Nn
and P(n) o ;( Hn('q_ - qn)’ (2'11)
P11 . H, . |
where H, = ’ ; Hy = i=1 i=1 I
S By =g

2¢3 Bahadur's Representation

The results of this Section are mainly based on the
work of Bahadur [2]+
2"

i o

The set of real-«valued functions on X 1is a
dimensional vector space V over the realse A Dbasis of

V is constructed in the foliéwing mannerd Let

0 <oy <1, i =1,2,¢.., ne

Consider the functions

(2412)
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Let

) =€/1; Zlyﬁz,oo-,Zn; Bllz,...,zn_lzn; zlzgzs...;

-~

Cori ByBgrery By 4 (2413)

.

be 2 functions in Ve A probability distribution

p*(x) is defined on X as

N 1-xy
p*(x) = E;; 0" (1 -a) (2414)

~ fadef

made up of independent binomial components. Then
Ep* (Zi) = O,Varb*(zi) =1, i=1,2,e.., n. (2415)
An inner product is defined on V as

(f, 8) =B, (fg ), £ ,gEV. (2.16)
P

Then

THEOREM 2.4: S 1is an orthonormal basis of V.

The coefficients rq corresponding to s€ S, in

the representation of any function f with S 1is given



rg = I f(x) s(x) p*(x), (2417)
x€ X

f=0,1, 2,..., 21,

By choosing a4 = %-, and denoting zy by y; in this
case, we have Yy = ?,xi-l and thus ¥y = +1 if Xi=l
end y, = -1 if xi=0. So all the elements of S take
-1' and . +1 valueses In this case we denote S8 by ©S*,.
This is very convenient to represent switching functions,
Representating r in this case by d, the correspondence

between d and p 1is given hy

d = pTHn . (2418)

This basis is independently obtained by Coleman [9]

and is written in the alternative form

K. % #K X, +eeet+ K
(w1) #1+ 2¥*tert Fnfn (2419)

’
kl’ k2,000, kn = O or 1.

Let us consider the representation of an arbitrary proba-

bility distribution p(x) on X. TFor this, let us choose
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g L.
ay = Pr,{ X, =1 l p(x)J y i=1,2,4e., n.

(2420)
Cerefder  p(x)|p*(x)e Then
. . n
91 = Ep(sk), = 0,1,2y00., 2 -1 & (2.21)
Thus 8; = 0, 1 =1,2,40., n (that is, those associated
with 84 = Xy Xgyeen, xn). Hence

THEOREM 2.5 A probability distribution p(x) has a

representation

- oo — ——— T To—

p(x)
m)=l+j

9. . . Z- Zo o.»Z. L3 (2.22)

n~Ms

2]
I

W e eare

Since any function has a representation in terms of
elements of &, we can also represent a probability dis-
N p(x)

tribution by the parameters of log p(x) or log I

provided p(x) > 0, for all x€ X.

DEFINITION 242: The parameters vy defined in (2.21)

are called the correlation parameters associated with the

probability distribution p(x).



We now prove some new resgsults which will be of use in

the following chapters.

THEOREM 246: The set of functions

T -"-'-{1; Xl, Xz,'-.,xni Xlxg,..a,Xn_lxn;XlXZXB,...;...,

veo; X1X2"”xn§ (2.23)

is a basis of V,

Proof: The matrix A representing the functions h(®)e€T

as linear combinations of g(x)€ S is obtained as followg.

Y is a linear combination of

The function yil yiz... 1

the 29 functions ‘constructed from x. ,X

eey, X, 1in the
iy’ e T

» , L ]
1o

same mamner as (2.23), that is,

and the coefficients are

(«1)9 335 -2(2,1,40.1)5 25(3,1,00, 1) 50050527 5

Let us dencte the set like (2.24) obtained from the
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variable in any t€ T, by Mt' and also, lct

- - A (
Mp = M {xil, Xy 0 43 , (2426)

Removing the powers of 2 from each column of the matrix A

thus obtained, we have a term

n
N = 3 i(?):ngn’l (2427)

n .
i=1

Let a matriyx B be given recursively by

{.Ml 0 (B, © )
By = B J , Bigm {“B. . (2428)
—— - 1 1'
Por instance,
T 0 0o 0 0 0 o0 0]
L 1 0 0 0 0 0 ©
-1 0 1 0 0 0 0 o0
1 -1 -1 1 0 0 0 0
B3 = (2429)
-1 0 0 0 1 0 0 o0
1 -1 0 0 -1 1 0 0
1 0 «1 0 1 0 =1 0
L1 1 -1 -1 11 -1 |




-35e

The matrix B corresponds to the order

{l;Xl,Xz,Xl_‘C?,Xz,XlXS,ngg, XlXZX'S, s o ;Xlxgn . Xn 3. (2.50)

Let B;‘l be a matrix obtained from Bn by a rearrangement
of the rows of B to correspond to the order of (2.23).
Then

A=2" BX {2.31)

B, (or BX) can be reduced to a o x 2™ unit matrix by

elementary row operations 0f subtracting from thc row

corresponding to X, X, e.. X, all the rows correspon-

ding to elements of (2.,24). Hence the set of functions

T is linearly independent.
Hence Theorem 2e6.

TLet P, (x) denote the joint distribution of
4 .
, X. yeeey X, ) for t€ T. Also let
:1.2 1

(x.
1
Ty

1
Py (x)

TT(x) = Py (%) By (Feeep; ()
1 2 Ty

L] (2032)
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Conzidering

py(x) LT p;()
-H.JG(X) as b - *#]fy ’ 1-3.33)
plpz' [ ] cpn

(V' = l, 2,“0., I'_t_)

and using Theorem 2.5, we have

T =1 + IEM 91 gf(x), te T*, (2.34)
M,

where T* = T - %xl,xgr)..g, X‘n} . (2435)
Tt

Let Sen (%) = (-1) °. 2436)

The following theorem expresses p(x) in terms of

distributions of lower order.

THROREM 2,7: Tor a probability distribution p(x) on X,

- e e o o—— a———

p(x) n . ' n i,
e = («1) [(n=1l) - = pX (-1) 77, -
o* (%) G222 1, <ig<eeedi, iydg...(x
1 “ J
(2437)
Proof: @ase (i): No 9, 4 ...i. is zero, j 2 2.
1te j

Consider the lincar trancformation o on the voctor snace

V, defined by

hY

i
/

1



¢l z By ees zi]:nii

i TigT ] 1lgee-

0'[ 2122 ' Zn] = lez ee e Zno (2-58)

let B 3{15 nlz’ ﬂ13,00-; 7[123,- .\.«;...;...;leg...zngo

(2439)
Because of (24.74), the square matrix of order 2 = n

of ¢ with respect to A as well as B is

r—-/
1 0 0 0 0 0 W & o o o 0]
1 %,0 0 0O O . . . . . 0
1 O 925 O O O . . L] . . O
1 0 0 931 0 0 . . . . . 0
. [ L e L] [] . . L] . [} .
MNa . (2!‘40)
1 912 925 951 0 . . 9125 0 . 0
L] . . [ L) [ ] [ . [ . [} L]

X
and with reference to B as basis o [ -—-3(——2—-] is



E= (1; 912, Qgs,".v; 9123;...;"';".; 912.'.11)'
(2441)
M can be reduced by elementary row operations to a
diagonal matrix with 1 and the 9's, the row operations
are subtractidéns from the row corresponding to

X; X, es. X, , all the rows corresponding to (2.24).
1 1 "
Hence it is non-singular if and only if none of the 9's

iz zero. Now

fﬂ—l i O O pos L] ~O . e e Of
1 1l
- O O ¢ s s L] L ] e o0 o O
e T2
1 vy
- O O LN . . . L ] O
92 Y23
} l
- 0 0 : LN ) . . . . 0
% % |
» . [ [] L .. ° . .e .
M"'l== ] . . ] . N [} L] . -
» I [ ] . se o0 f ] [} » L ]
2 -1 ~l » 1
g . g"' . LB O O L O
gl?s, 123 123 123 g123
. . . ’ L) . . . s e .
1 1 -1 1
| Voss Y1oma Y1034 91234
L 4 [ [ ] » ” 00 ] . [ ] s [ ]
0 0 0 e e e e 1

“12.42)
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-1 (x) (x).
(o3 o ( g;—cc-)—) =.""§T,‘m ’

and with reference to B, this is

& e OS Bt (0 B FT N BRSNS TOUE PR 5 DLy IR
(2443)

Hence the theorem for case (i)e

Cage (1i): Some &, . are zero j > 2.
———-—S-——)- illzcoo ij ! —

Congider th= linear transformation o restricted to these

g(x) € 8, for which Qg # 0. The matrix M is of the same form
as before, excepting that the rows and columns corresponding

to the g for which 9830 are absent. "Let ¥ be a

vector in which the element corresponding %o g= 0 1s absent,
fhen M as before, is nonesingular and T is of the ‘
same form except that the rows and columns corresponding to

Qg = 0 are ahsents Then

E L w (c1)P0(n-1); 1,1,00015 wlyel,oeeeljor.(-1)0 810, . .n)
(2.44)



J
+ (~1) [(5-=1); (=1) 1 (2445)
over the over the set M% .
set for cenerated by g
which for which ¢ =0
9g=o &

Since, by case (i)

L =) [ (-1)

:}_1120 J
over these My generated by
X, X, oeoX ]
174, ij
(24486)
+ 9 . (%),
iliZ' ® al:,
and 9. . .
1112.4.1j = 0,
-l n . 3 . n
g = (1) {(n-1)5 (-1) -7 e, ]
over all il’iz""i;
(2447)

Hence therrem for Case (ii) as well.

Hence Theorem 267%..

2e¢4 Rademacher-Walsh Representation

A set of 2% functions arc defined on +he half-open

interval [0, 1) as follows:



r (t) =1, 0<t<1

1

rl(t).-:l, 0<t <=

. &

= -1, %5‘0(1;

and () = 2%, 0t <3
= 2t- 1; 0<t<1

r,($) = r; (M), 0 <t <1,

[N
]
=t
lav]
e
=

Defining inner product on the space V ag

1
(f, g) = [ f(t)g(t)at, £, geV,
o .

the (n+l) functions r,(%), 1 =0, 1, 2,..., n and

their distinct products r., T, eeo 7, 5 J =0,1,2,e..,n
J

(j = 0 gives constant 1) form an orthonormal basis of

V8], * Thesc functions are constants on the o™ intervals

( Kﬁ'é t < Ki% )s £ =0,1, 2,0.., 271, and can be
2 2

obtained by assigning value 1 in one interval and ~1 in the
otherss The cocfficients of this basis are obtained with

the help of parameters defined by Golomb [11] as follows:
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DEFINITION 244: The measure of a switehing function £,

f$4

denoted by mif), is the number of points at which it takes

the true value, or, in owr" notation,

ni{f] = = P35 Xosesey %) (2.48)
X€EX ‘ -

IEFINITION 2,5: The 2% parameters defined by

g(xilxiz.. .xi.k) = m['f(})xil(j')xig(f)...(?)xik]
(2449)

i) < dy < aey <y,

(k=0 gives m[fl.),

arc called the Golomb parameters of the switching function

1.
It is known [11] that the coefficients of the Rademacher-

Malsh expancion ave obtained as

g ")k
€§(X. Xy o X ) -2 ] (r.50)
o i, i ix ’

and these are the same as the d parameters of Colemnan in
(2,18)s This is obtained by considering the range of the
Rademacher=~ialeh functions as {—l, 125 instead of }ZO, 1%

and equating the coefficients to the Golomb coefficients.
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7+5 Chow Parameters

 Chow [4] défined o set of (n+l) parameters for a
switching function and proved that theme parametors are
characteristic of threshold functionse We define a set of
oft paranmeters similar to these to characterize any switching
function completely by its threshold order (sec Chapter 1,

Definition 1,2, Chapter € , Scction 1).

Tet F (r = 2f-1, yi = 2x; =1 ) denote

211-'.[‘

a switching funetion on the pointes obtained by the

valuation yi1= yiz = e mY, o o= l. Iet the set of 2F
i r

valuations of 1,0 Yy oees ¥y be denoted by Yiliq---i
T & r

The following Lemmes are obtained immediately.

LEMMA 2¥1
" [Fyilgiz"'_iizi ' m[F&il?f2.'lﬁilt"%iai_
- f_fﬁ??lyizr..yii-lyij+1il: yir]. e

LEMMA 242
m[Fyilyiz.f.%E®J+m[Fyilyisz,yir] = 27T (2.52)




LEMIA 243

Z m F - zn-r . ":
(y y Vs YR y.) { yi yi "".Yj- ] (2 35)
il ) 12 * 1. 1 72 r
€ Y. . . .

Ve e o PO, conm

DEFILKITION 2.8 The 2" Chow parameters are given by

ch(y., . eesy, )= b (V. ¥ oe-y, )F
11 12 lI‘ (yi ’yi g @& 0 ’yi ) 11 12 11" yilyiz * .yir
1 2 r ( )
€Y 2e54
iligtct ir
ll < i?‘ ( a0 < ir, I' = l,g,oae, 1’1.
and oh(yo) = n{Fr] ~ gn=1 (2455)

We now nrove a result relating dhow parameters to the

coefficients of the Coleman basis (2.19).

THEOREM 2.8:

. _ on-l
“h(yilyig"'yir) =2 dilig... i, (2456)
where 4., . is the coefficient of s Vi eV in
idoe. iy Tt

the Coleman basis,




Proof: 2" 4. foeeei S DY Yy 0Ty F(y)

1110 r 1 -2 r
= Y. Vi weoYa n{F IulF ]
i.vi i V. y 0o .y y j ooV
1 —2 r 1l o 1r i, i,
= E .y. y. ...Vy. HILF ]
i-Jvi i Vi Vi ese¥.
1 2 r iy 12 v,
- Z y y- .-oy- 2n—r- m(F J
i,71 i Yy Ty oo ¥
1 -2 T i1 12 ir

using Lemma 242,
=2 DYV, ¥, eee ¥ n{F ]
ll 12 ir yllyizo-cyi

[ since Z y. y. oe.y, =01
~iy%1, ir

= 2ch (y, ¥; eee ¥, )
il i2 ir
Hence the Theorem.

The Theorem given below follows from the orthogonality

of the various bases:

THEOREM 2.9: If cpl (x), £ =0, 1, 2,e.., 271 are the

elements of any of the bases of Bahadur, Coleman, and

Rademacher—Walsh, and if

f(x) = ?‘ak_fﬁ;f%{_ (2457)

then the least square approximation of f(x) by any subset

of ?I(x), say,‘by ?IQ\X), i=1,2, .., k 1is given by




k
; (x). .

246  An Alternative Proof of Gose's Result

Gooe [12] has suggested an adaptive netw rk for produ-
cing real-valued functions of binary inputse An important
factor that helps to make the network adaptive is that the
two transformations Tl and T2 that he defincs are inver-
ses of each other. His proof is rather long and we give a

short proof of this fact using the Coleman basis.

Define linear transformation Ty and T, «n V "8

follows:
n 2 owy = (f,8) =27 = (f2), ge % (2.59)
> xc X
w is a 2%-vector.
Ty f(x) = Z wx)elx), x€ X (2460)

gE o*

f(x) is a 2%-vector.

THEOREM 2.8: (Gose [12]): T, and T, ere inverses of each

other.
Pronf: Since S8* is a basis, the weiphts ascociated with

f(x) in (2.59) are unique. Thus from bhe w, of (2.59) used

D

in (2.60) we got
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f(x)s Thus T1T2 is the identity transformations Hence

Iy = TIl or Tl = Tgl. Alternatively, the images of BE B*

by the trandformation T, ere o™ basic elements y}n) of B
defined in (241) but over the field of real numbers. These
fun¢tions take values 1 at one point\of the 2" .oints and O
on the rests Thus they are lincarly independents Hence T,
is hon~-ginguldrs The images of elements of b(n) by T, can
be easily scen to be the clements of &%, Hence T, is the
inverse of T4

R¢7  Examples

o————

We present examples of the various parametric repre-
sentions of switching functions and probability distribu-

tions, discussed in the previous sectionse

Table 241
3=input Switching and Probability Functions

K X Xy Xy T ¥ Py Do Pz

0 0 0 0 0 =1 o185  .2500 1250
10 0 1 1 1 .125 1250  .1250
2 0 1 0 0 <1  .125  .0625  .0625
3 0 1 1 0 -1  .185  .0625  .06%25
4 1 0 0 0 =1  .125 0625  ,0625
5 1 0 1 1 1 .125  .0625  .0625
6 1 1 0 1 1 .125  .1250 .1250
7 1 1 1 1 1 125 42500  .3750
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Pand f are same functi~ns; with different truth values.
In terms of the basis (2.1) f 1is represenfed by
0, 0, 0, 1, 1, 1; 0, 1) since’
£ =% X%, + :>c15'c2x'3 + XXXy F XpXgXy s
Noting that the pés of {(247) are the same as the columns
ofa.probabiiity distribution, the q4s of (248) are obtained

from p, in Table 2.1 as

(0345, 5§ o37B5 o5; §375, «25; o5).

Now let us consider the Geleman basis.

Table 242

Goleman Basis

o — . T g B e

0 1 2 3 4 5 6 7
0 1 -1 -1 &l 1 1 1 -1
1 1 -1 -1 1 -1 -1 -1 1
2 1 -1 1 -1 -1 -1 1 1
3 1 -1 1 1 -1 1 -1 -1
4 1 1 -1 -1 -1 1 1 1
5 1 1 ~1 1 -1 -1 1 -1
6 1 1 1 -1 1 -1 -1 -1
7 1 1 1 1 1 1 1 1

o ————— -
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The coefficients for the Coleman basis for various func-

tions are given by:

s £ (45 2,0, 2; 2, -2, 0; 0)
P % (03 4, 0, 4; 4, -4, 0; 0)
Py % (1, 0, 0, 0; 0, 0, 0; O)
Po g;%re (165 0, 0, 0; 8, 4, 4; 0)

log o Pp = - %(7.8628; 0, 0, 0 =1.0160,-0,6020, =0.6020;0).

Notice that both p; and p, yield -P(Xié 1) = 32‘-,

i=1, 2, 3 and hence 2, =y; and so the representation

by (R+22) is the same as by Coleman basiss For ps, the

probabilities P(xi= 1) are

P(xi =1) = 0.625, 1 =1, 2, 3.

The Bahadur basis is constructed in Table 243



v

Bahadur Basis

peanesy

1 Zl z2 z3 zlz2 zzz3 zgzl 212225
0 1 047748 047748 087748 046003 Q066003 046003 064661
1l 1 07748 Q7748 «le2913 046003 =le0005 «1.0005 «047702
2 1 0e7748 «=1.2913 047748 «140005 ~1.0005 046003 =0,7752
3 1 0e7748 w1e2913 wle2913 =3,0008 11,6675 ~1.0005 1.291¢
4 1 ~142913 00,7748 Qe7748 =1e¢0005 .0,6003 =1,0005 00,7762
5 1 =1e2913 0.7748 «142913 «1,0005 ~1,0705 1.6675 142919
6 1 =1e2913 =1e2913 047748 146675 =1.0005 =-1,0005 1.291%
7 1 «le2913 «le2913 «1a2913 146675 146875 146675 =2,1532
Then
n Xy l-xi
p*(x) = T ] (0.625) = (0.375)
1=l
and

Sé%%) = (1; 0, O, 0; 0.6336, 044669, 0.4G69; -0.6021)e

Let us now compute the Golomb parameters of f

as follows:
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Table 2e4

Uomputation of Golomb Parameters

&) T(E) () fé;; OmeEE) a7 (2%,
e .

X X X3 £ Xy x2 xs x % ()%
" ‘Xs 1 =73
0O 00 00 0 o0 0 0 © 0 0
100 1 1 1 1 0 1 0 0 0
20100 0 1 o 1 1 0 1
3 01 10 O 1 1 1 0 1 0
4 1 0 0 0 1 0 0 1 0 1 1
5 1 011 0 1 6 o0 o0 1 1
61101 0 0 1 1 0 0 1
7 1111 0 0 O 1 1 1 0

The Golomb parameters are:
(45 2, 4, 2; 6§ 2, 4; 4)

Prom this dne gets the Rademacher~Walsh coefficients using
(2450) as ¢

& (0 4, 0, 4; ¢, -2, 0; 0)
which are the same as the d-coefficients obtained from Coleman
basis for F+' The Chow parameters are obtained as:

(03 2, 0, 25 2, =2, O3 O).
These are seen to satisfy the relations (2450) and

(2454) = (2456)



CHAPTER 3

DEPBUDENCE OF HWITCHING FUNCTIONS

Independence? That's middle clasd blasphemys
We are all dependent on ore annther, every

goul of us on earth'.

George Bernard Shaw
'Pygmalion’

3¢0 Summary

The notions of linear, logical and gtochastic depen-
dence, of n dichotomies, of order r < n, are introduced.
The connections between linear, logical and stochastic
dependence are investigateds Thig includes generalizations
of some well-known results on logical independence and the
result that logical independence is a necessary consegquence
of stochastic independence, of a system of dichotomies.

The concepts of logical independence and dependence have
been applied to switching functions and relay-contact net-

work by previous authors.

-52-
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3¢l Introduction

In previous discussiong,we have used the terms 'binary

- variables! gehérally‘tb mean "inputs}and, 'switching function'to
generally mean output. However,~the inputs can themselw

ves be considered trivial switching functions and hence as
outputes Since the discussion in this Chapter does not
differentiate inputs and outputs, we avoid these two terms in

preference to a common term 'dichotomies'.

Several notions of independence of mathematical
objects exist, each one finding use in different contexts.
Many of these notions are of special significance when
applied to a system of dichotomies. Kjellberg {19] gives
an account of the results in this regard and discusses
several interegting connections between the notions of
logical, stochastic, linear and functional independence
of a system of dichotomiess He also indicates an applica-
tion of these notions to relay-contact network. He reports
that an interpretation of independence has been applied to

switching functions by Muller [29].
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"It is shown by Kjellberg [19] that 'logical independencs
of a system of dichotomies is a necessary condition for the
stochastic independence of the corresponding events'. This
nmeang that if a system of n dichotomies ie stochastically

n . .
combinations

independent, then, it is necessary that all 2
of values have non~zero probabilities. We investigate here
the situation in which logical independence, and, as a con-
gequence, stochagtic independence is lost, and present some
methods of describing the strength of the dependence=logical
as well as stochastic. The notion of logical dependence of
order r ( { n) of n dichotomies is straightforward, and
applies to a system of partitions of a set § just as well

as to 3 system of dichotomiese The notion of stochastic
dependence of order r (< n) which applies to n dichotomous
variables, 1s introduced with the help of a result of Bahadur
on the representation of the joint probability distribution
of n dichotomies. In other words, we investigatc here the
dependence of functions defined on the subsets of 2

points of n dichotomous varisbles.

After preéenting some general conseqguences of the
definition of logical dependence of order r, we proceéd to
present results connecting linear and logical dependence

and stochastic and logical dependenccs We show that linear



dependence of order r 1is a necessary consequcnce of logical
dependence of order r, and that logical dependence of order
at least r is a necessgary consequence of stochastic depen-
dence of order r. This gives an idea of the naturc of pos-
sible probability distributions that can bve defined on sub~
gets, of various kinds, of the set of all ol possible
combinations of n dichotomiese As in the case of indepen-
dence, the converse is not true that logical dependence of
order r implies stochastic dependcnce of order 1rj; however,
~a probability distribution which gives stochastic dependence
of order r, can be found on dichotomies which are logically
dependent of order r. Finally, we define another kind of
stochagtic dependence of order r and investigate the nature

of logical dependence associated with it

3.2 Logical Dependence

We extend the nction of logical independence, restric-

ting our attention to finite setse

DEFINITION 3.1: Consider a finite set B partitioned into a

gystem of n disjoint nonempty subects as follews:



i i i

A? 11Aé = ¢, the null se%, if j # h.

Then we say that thig system of partitions is logically

dependent of order v (or logically r-dependent) if

(1) any arbitrary collection of components, one from each
of any collection of r(g.n) partitions is nonempty and

(i1) at least one collection of components, one from each of
any collecticn of (r+l) partitions is empty.

Tor r =n, (ii) is understood to be wvacuous.

 REMARK 3el. If the system of partitions E is logically

n-dependent, then the system is logically independént.

REMARK 342» A system is logically r-dependent, if any-sub-
system with 1 partitions is logically independent and at
least one subw-system of (r+l) partitions is not logically

independent.

REMARK 343s The logical dependence of a system of dichotomies

X9 Xgyeeey Xn will be viewed with reference to a narticular

kind of partition. Let X be the set of 2% vectors

X = (xl’ Xzyﬁ_oe, Xn). LC“{'J .A.- _ X, alld



i )
Ay = {x = (xl, Xgyeeo, xn) Xy = O] (3.2)
_A; = {x = (Xl, ngto [} Xn) . Xl = 13 (0303)
such that
_ 4l i
| A=A; U 4 (3e4)
Obviously,
i i
Ay noAy =90 (345)

DET'INITION 3.2. A set A of vectors of n dichotomous

variables is said to be logically r-dependent, if the system
of n partitions
A:AéUA:Ll, i =1,2,008’ ig} (3.6)

is logically r-dependent.

Set Order nf lLogical
o ___ Depndenre
1). X ¢ 2% points (xl, Xor ooy x,) n
2). 0 0
3)s (0, Oyeus, O) 0
4)y (1, 1yeeey 1) 0
5)a (0, 0y0..y O)(L, Lyees, 1) 1

One can talk of the order of logical dependence of n
dichotomous variables Xp9 Xoseeoy X with rcference to a

probability distribution on X ag follows:
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DEFINITION 343 A set of n dichotomous variables

X1 ngc.., Xy with a probability distribution

p(xl, Xpseeey xh) is said to be logically r-dependent if the

get A = %{(xl, Xo9 e0ey xn): p(xl, Xpyaet xn) > 0 g is

logically r-dependent.

This definition will be useful in connecting logical
and stochostic dependence of dichotomies,

We shall now present some immediate consequences of the
foregaing definitions, which are direct generalizations of
the results on independence found in Kjellberg [19]; we omit

the proofs, since they are fairly straight-forward:

THEOREM 3el. If a system of n partitions is logically

r-dependent, then the order of logical dependence of any sub-

system of £ partltlons is f if f £ r, and > r if I§

and there is dt least one sub-system of (r+l) partltlono,‘

which is logiqally r-denendents,

THEQRFM 3.2 o If a system of n partitions of a set E divide

, the
E into Myy Moyees, mn components, and if ? system is logie-

cally redependent, then E must contain at least

max m%@i oo My (2a7)

i1<12<ooc <ir
= 1,2,.-,1’1

elements.



THEOREM 343, If a system of n dichotomies is logically

r-dependent, then the set must contain at least o' elements,

or the order of logical dependence of a system of dichotomies

with p elements is at most 1og2p.

THEOREM 34, The order of logical dependence of a Set of

switching functions (excluding the constants O and 1) on a

logically r-dependent set of dichotomies is < re.

THEOREM 3.5: Bvery function in a set of logically r-dependent

switching functions on a logically r~dependent set of dicho-

tomies takes the values O and l,each for at least 2r-1

combinations of values of the variables.

THEOREM 3.6: A product of pl.:r) functions (or their

complements) of a set of logically r-dependent switching func-

tions on a logically r-dependent set of dichotomies takes the

valueg O and 1, each for at least o'"P combinations of values

of the variables,.

REMARK 344: Let% Upy Ugseee, U, be a set of logically

redependent switching functions on a set of logically
r-dependent dichotomies Xiy Xggerey X 9 Then, in general,
Xyy Xgyeery X and U, e Ugyeesy U are not one-to-one
functionse
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EXAMPLES 32  Consider the case n=3, The se% of points
A= (0, 0, 1), (O, 1, 0), (2, O, O), (2, 1, 1) 1is n
logically 2-dependent sete. If a probability distribution is
defined on (xl, Xo9 XS) such that these four points carry
positive probabilities, say, % each, and the other points
carry zero probability, then we would say that under this
probability distribution, (xl, Xoy Xz) 15 a set of logically

2~dependent dichotomiese Consider two sets of switching

functions fl’ fz, f3 and 811 8oy 83 O A as follows:

X Xy Xy £, T I g 8 83
0 0 1 1 1 1 1 11
0 1 0 0 0 0 1 o 0
1 0 0 0 o 1 0 10
1 1 1 1 0 1 0 01

fl’ fz, f3 arc logically ledependent, 813 Bor 8z are logi~
cally 2-dependent, sincc the set of values is the same as
Ae In this cese, if one of 811 By 8z does not take wvalues
O or 1, at least at two points, then it is not possible for
them to be 2-dependent, Tﬁe product of any two functions

of B11 Bor 8 takes values O or 1 at least at oue point,



333 Logical and Linear Depedence

We introduce the notion of linear dependence of order

r and emtablish its relation to logical dependence of order r.

DEFINITION 344 A set A of n dichotomies Xy Xgyeeoy Xy is

said to be linearly dependent of order r if in the vector

space of real-valued functions defined on A < X, any subset

of r of the dichotomies is linearly independent.

ROMARK 3e5¢ When r=m, X1y Koy eery X, are linearly

independent,

THEQRTEM 3e47: A set of dichotomies defined on & logically

independent set isilinearly independent.

Proof: If a set A is logically independent, then A = X
and hence the set of functions (2,23%) defined on X is inde-

pendentyin particular X1y Xpgess, X aTE independents Hernce
Theorem 3e7s '

THEORUM 348, A'set of dichotomies defined on a logically

r-dependent set is Linearly r~dependent.

Proof: If a set A is linearly redependent, then it contning
at least 2rpoints. Let VA be the vector spece of real-
valued functions defined on A.’ The dimension of VA is

2 &+ The set of real-valued functions on any r of the

dichotomies 1s a subset of V. Since any set of r
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dichotomies 1s logically independent, any set of r dicho-
tomies is linearly independent, in fact, any set of 2T func-

tions of the form (2424) is linearly independent.

Hence Theorem 3.8,

3+4 Togical and Stochastic Dependence

DEFINITION 349: The order of stoechastic dependence of a

set A of dichotomies (A € X) with a probability distribution

p(x) on it, is the co-order of p(x) extended to X by con-

sidering p(x) = 0 for all x € X= A.

REMARK 3,6: The usual notion of stochastic independence is
obtained when the order of stochastic dependence is equal
to O or 1l

The following Theorems show that the order and co-order
are related to the joint distribution function of subsets of
the n dichotomies and we give explicit expressions in terms
af the joint distributionse They follow casily from the

steps of the preef of Theorem 2e47.

THEOREM 349 ¢« If a probability distribution p(x) on X is

of order r, then




p(x) - -1 .
-1, — = (o) (D)D)
p* (%) i=r+l
Nel .
i=r+l iyKig<ae.<i, AR
/ J
JLr (3.8)

THEQREM 3410+ If a probability distribution p(x) om X is

of co-order r, then

(x) :
L (e1)™ [(me1) % (-1)7 € 5 5 ]
p* (x) il<12<co-<ij 1R b
i>r (2e9)

Theorem 3+411 below connects stochastic and logical
dependence of order T

IEMMA 3.1 (Kjellberg [19]): Logical independence of a system

of dichotomies is a necessary condition for their stochastic

indepeandence.

Proof: Easily follows from Theorem Z45.

THEOREM 3e.11l. If a system of dichotomies is stochastically

r-dependent, then the order of its logical dependence is

at least r.




roof: Since all 9. \
S —— 41112'000,1:}

=0 for j {r, all sets of
r or less of dichotomies are stochastically independent by
Theorem 343 or by(2e34.).llence any set 6f r(or less) dicho-
tomies is 'logically independent, by Lemma 3s1l. Ilence by

Remark 342, the order of logical dependence is at least 1T

The following Theorem brings out a fezture of the pro-
bability under a certain kind of logical dependence, which in

a sense is complementary to logical dependence of order r,.

THEOREM 3.12: If a system of dichotomies under a probability

distribution is such that any set of r of the dichotomies

is logically dependent, then at a set of points in X,

pg(x) = 0 for all g for which $ > r (including p(x)).

Proof: For a choice of r dichotomies, there are 2T
posgible intersections, ati least one of which has a zero pro-

bability. Let Dg be the set of dichotomies of the rF

varisbles in g, Let

g g g
dg " (Xilg Xiz gas ey Xir ) 8 Dg. (5.10)
d g
"Then let A% be the intersection of the subsets one from

g
each of the rg partitions of X according to the value

combination dg, that is,
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d 8 ré . &
g 1 ~ 2. o~ e
A = A - \ ebe . . (3.11)
g 1 A, Ai-rg

T
Tet Dag be the set of 2 & combinations of the (n—rg)

dichotomies not contained in g, for a given set of values dg
d

for the r dichotomies in ge Bach set A £ contains

Nl
exackly o 8 of tne ¥ Richatquaug vectors, given by
fixing the values of the rg dichotomies X%l,xgg,...,xf
r

| Ner g
and by taking all 2 € combinations of the remaining

dichotomiecse If this system of dichotomies is to be logically

ner
dependent, then at least 2 & points have to carry zero

probabllity. So, if each set of r dichotomies is to be logi-
cally dependent, then such a condition is to be satisfied for
any combination of r dichotomies. This implies that for

any g with ‘rgar, p(x) assigns zero probability to a set of

points M4 for a particular dg. Hence at any point =x€ M} ,
g g

p(x) =0 and p (x) = I p(x) = 0. Since all sets of
g XD
g

(r+3) dichotomies are also logically dependent in this case,

.pg(x) =0 for r, > re

Hence Theorem 3e12e
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COROLLARY 341 If a system of dichotomies under a probability

distribution of order r is such that any set of (r+l) of

the dichotomies is logically depsndent, then at = set of

points in X,

am—

J
X . [(—l) “iliz
<12<0 [ ] l<lj
j L

—t

i (x)] = constant. (3.32)
J

i)

Proof: For x:gMﬁ by Theoraem 267,
g

il<in<...<i. s1Tert ettt
< J
j<r
(3e13)
Using Theorem 3.9, we get
n—l . n .
3 (D1 + DLz ()] 2 0wy g ()
i=h+l. i=r+l i‘(i .0u<i- '1 2 j
172 j
J£r |
= Oo (5014)
Hence PN (—1)j T, . = conste
b P AP, TN
i1<12<..‘<ij’ 172 J
jgr
n"l i
B (=1)"(i=1)
e lmrdl for all X€ DY (3415)
-1 = (D) “

i=r+l
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Hence Corollary 3.l1.

REMARK 3i7: We have ectablided in this Chapter
that logmical dependence implies lin<tar dependence.
The converse however is not true. For example, consi-
der the set of four pointe A = -{(O, 0, 1), (0, 1, 0),

(1, 0, 0), (1, 1, 1) § and the set of dichotomies on 4,
£

1 (19 0, 0, O), f2 = (Os 1, O, 0)9 f3 = (Oy 0, 1, O),

f

i

4 = (0, 0, 0, 1) which are linearly 4-devcndent;

Wowever, they arc mot logically 4-dependent.

REMARK 3.8: Similarly, logical dependence does not
imply stochastic dependences For, one can construct
any number of hrobability distributions ( say, with
probability % for (0, Q,eis, O) and., n._...l,ll._,,.

_ 2(27-1)
for the rest.) ) ' which make Xp, Xgyeee X,

stochastically dependent but légically independeont,

. . 1
{moy,—with-prebability 2 for (0,0, Bt~

ror 1c

PP -



CHAPTER 4

FROPERTIES AND CHARACTERIZATIONS
OF THRESHOLD ORDER

'The business of a poet, said Imlac, is to
examine, not the individual, but the species,
to remark general properties and large appea-
rancec. He does not number the streaks of

the tulip'.

Samuel Johnson

'"Rasselaos!

4,0 Summary

Some simple properties of a threshold function of
order r are presented. Characterizations of a threshold
function of order r through Chow parameters, Chebyshoev
approximatisn and Ho-Kashyap algorithm are given, which
lead %o the solution of testing and realization problems.

A comparigon of thesc tecliniques is made with the
Kaszerman's procedure of developing a non-~linear surface
for reslivzing a switching functién and it is shown that

our technigues are superior. Enumeration and tabulatien of
thresheld function of order 3 are givens, Somc comments

und prcblems are presented at the end.

58 -
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4,1 Simple Properties

The theory of testing and realigzation of a threshold
function of order r follows very closely the corresponding
theory of threshold functionse This is achieved by taking
the orthogonal functions, which are products of input
variables. The only change that is needed for the case of
a threshold function of order r is that the matrices,
,ineqﬁalities, etce, are to be augmented by these functions
of order < r, that is, functions which,are products of
£ r input variables. A number of proofs of results of
this Chapter are similarzghe proofs for case r= 1;.hencé
we do not present in this Chapter, proofs of such theorems,
but give appropriate references, where the case r=1 1is
discussed.

Since the two sets of values {;O, 1‘% and .g-l, l%
are used for inputs and outputs, in differcnt contexts,w
we present in Theorem 4.1 Dbelow the relation between the
weight vectors of a threshold function of order r for

these two cases.

Towards this, we describe a matrix An as follows:

: B, 0
B, = | %0 Big | (4,1)
11 L+ -B, B,
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39

J
which can be obtained from the order set out in (2.30). Then

Bach row of the matrix B, corresponds to an 14 i 000 1

multiply all elements of this row by 2d o get matrix A .
The row corresponding o i1 i? .o ij contains zero after

the tj—th terme Let giliz"'ij denote this vector of b

glementse.

THEOREM 4,41 Tet f beﬂg,threshold function of oyder T

realized by a set of +, weights denoted by a vector

Then with the truth values +1, F is a thre-

i y
e o S ha i .

2"0 j
r
shold function of order/realized by the weights

e ot i m

W
11i

. . . = A . W . R (4.2)
111200'13» illz.lcij 1112..olj

b

Cigp < ees iy 0 << 7o

iy < i

Proof: By (2.31), the matrix that represcnts the linear

transformation from (2.30) to similar set of functions in

¥y is A . Hencc the function

r
2 pN W. . . X
§ 'y . . 1 l .'nl-
J=0 11<12<...<1j 172 J

. X, oo X,
11 12 lj

L.

= Z z 8., s . ‘;. . . y. y-
1112-o-lj lllzootlj 11 12

s e y-
L

=%z bili?...ij Yilyiz""yii' (443)

Hence Theorem 4el .
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EXAMPLE 4,1: The function. x;X, + ;chs, a threshold function

2
of decond order is realized by the weights

l
5-2 0, 0, 4; 4, -4, 0 ]

~

w5 Wl, W2, W39

The relevant rows of the matrix A3 in this case ares

Byt 1 (1 0o 0o o 0 0 0 0

, 'é’l : % (@t 1 0 o 0 0 0 0
%/2 : -]é“- (1o 1 0 o0 0 0 0)
Byt z 1 1 1 1 0 0 o0 0)
”53 : % 1 o o 0 1 0 0o 0)
Bgst ¥ (1 1 0 0o 1 1 0 0
331: % (1 o 1 o 1 0 1 0).

The b coefficients are hence

(03 1, O, 13 1, =1, O)e

Let v(r> denote a vector of tr functions
X- Xio’.. X., ¥ il < iz < [ < ijg Oijsr’

(for 3 = 0, this is 1)« Let Vl(f) be the set of true

vertices of a switching function f and Vo(f) the set of
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false vertices,

1.

Then we have the following results as for case r = 1.
A threshold function of order r can be realized with
integral weights. That is, a switching function

£lx;) Xgreeey x,) is a threshold function of order

r, if and only if there exist tr integers,

N L] I\I- L] I\To : g e 00 N’: L3 - (4.4.)

il < iz < 0. K ir,

(denoted by a t_-vector N(T)),
such that on the true vertices Vi{), végz s oy Vég;
() vi? <1, i=1, 2,00, n, (445)
and on thc false vertices Vé{)’ Vég)"°'9 Vé;;
y () vég) >0, J =1, Byaes, n, (4.6)
N, + 0y = 2™

The threshold order is an intrinsic property of the
switeching function and thus does not depend upon the
choice of truth velues for the inputs and outputse.
Any pair of numbers can be chosen for inputs and

outputs and the function retains its threshold order.
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4.

O

and

imply

G

a?;-

Theorem 441 gives a method of obtaining weights

from (0, 1) system to (-1, +1) system.

The dual and complement of a threshold function of

order r are also of threshold order r.

In fact, all members of a symmetry class of switching
functions, obtained by permutation of wvariables,
complementation of variables, and complementation

of functions, are of the same threshold orders

A switching function is of thresheold order r, if
and only if for any ol non-negative numhers

6, 20 (1 ¢ i <2"), the relations

i 3 (407)
2 cC., = 2 (o] 9 4.7
j=1 1 f=p 41 2

&

n, : n

a 2

b civ§r) = & oiv§r), (4.8)
i=1 i=n +1

8, .
c; =0 for all i =1,2,..., 2",

Let us define tf parameters of a cwitching function

f as follows:
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2TV (e) = (a. . L (0)), 1< p¢ aen € A
1’12,0*‘ J J
0£j<&r
(r)
where a. . . (f) = PN Lo(f). (449)
11121 . olj V(Nl(f) -Llln. . a.l.j

6else Let £ and g be switching functions of n variables.
If
() (£) = ol (e,
-then either both f and g eare of threshold order 1r or

both are not.

6e2. Let f and g Dbe switching functions of n variables,
with a(r>(f) = a(r)(fg). Tf f is of threshold order r,

then g=1£f.

6edse Corollary: Let f and g Dbe ftwo distinct switching
functions of n variables. If a(r)(f) = a(r)(g), then £ is

* threshold order 2 re

6edse Corollary: Tet £ be a threshold function of order

AN If allinﬁtyl] is the same for all (il,ig’."’ij) and

it this 1s true for all j =1, 25¢ce.4 v, then f ig a

symmetric function,

7 I £ io a threshold function of order r, then

f Xilxiz,..., xij’ 0<£jsr, 11< 12< oo <ljg

in a threshold function of order r.
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8e Let n, input combinations yield a value 1 to a
owitching function f and Ny combinations yiecld a value
0 (na + ny  not necessarily o' that is, 'don't care' out-
puts are allowed). Correspondingly let the n >< t,.(n) matrix
of upto rth order product functiéns,be called o - matrix and
oy, X b, (n) matrix be called B-matrix. Adding columns of
ones and zeros to each of these matrices, complementing 8

matrix and adding to «a mabtrix results in a matrix, say of
Then the following is a generalization of Akers' (1] result:
. . * .
A.functlon f (xl Xgyes s Xn) with [“ikj’ i=1,2
r? k = n, +ny is a threshold function of
order r, if and only if[a{k]' when solved as a two-person

i 2‘1,2’000’ .t

'zero-sum»game has a value > 1/2.

This game thenretic solution is a variation of the

linear programming solution, Minnick [27]}, Muroga {31].



-6

4.2 Boundary Matrix

The theory of eliminating redundancy in inequalities
and of partial specification of a truth table in case of
threshold functions has been neatly formulated by Mays [24],
[25), using the concept of a boundary matrix. In this
Section, we note that the concept of a boundary matrix and
these results of Mays, hold for threshold function of order

r with suitable definitionsg

DEFINITION 441. (Mays (241, [25]): A matrix M is called a

boundary matrix with respect to a matrix A if it has the

following properties:

1. The rowg of M arc taken from the rows of A

2e Meg > O implies Aeg > O, for some vector g

Se The number of rows of M is minimum consistent with

the first two conditions.

DEPINITION 442: A matrix M 1is called the boundary matrix

of a threshold function of order r, if it is a boundary

- matrix of the matrix A, defined with respect to the tr

functions,

X, K. oss X. (4410)



Then the following results are obtained by a proof

similar to that of Mays for r= 1.

THECREM 4+2. DThere exists a unique boundary matrix for any

matrix A reprecenting a threshold function of order T

— s . r———

THEOREM 4,3: The rank of the boundary matrix is equal to

the rank of A

The number of rows in the boundary matrix of a threshold
function of order r 15 at least tr. It is possible that
the specification of tr rows of a truth table, completely

specifies a threshold function of order r.
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443 Chebyshev Approximation

An alternative to the realization of threshold Tunction
by solving inzaualities using linear programming is the
Chebyshev aspproximation, as outlined by Kaplan and Winder
(17). We =tive, in this Sectian, appropriate definitions
from which results similar to Kaplan and Winder follow for

the case of bthreshold functions of order ra

DEFINITION 443: The approximation of order =» of o switching

-

function F(y) 1is defined to be the one obtained using the
Colemankoufficients with < r subscripts, that is, using the

first tr subscripts in the Qoleman expansion.

We have ghown that these coelficients can be computed
with the help of the measures of suitable switching functions

on Y and on its subsets.

DEFINITION 444; The approximation of order r of a switching

function definced by

k)

% d, . Ve ¥ eocy ¥
j=o 1, <i <. qi, t1tgt e by T T 1

;) 4
(4el1)

(denoted in vector form by des)
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is said to be best in the Chebyshev sense (C-best of order

r), if

max |f(y) - des.| (4412)
y

is minimume

THEOREM 4.4: (1) A switching function F is a threshold

———

function of order r, if and only if, F has approximation

of order r, with maximum deviation less than one.

(2) P is a threshold function of order r, if and only if,

F is realized by its own C=best approximation of order r.

This enables the foilowing classification of switching

functions,by means of their. threshold orders.

THEOREM 4¢5. Any switching function of n variables is a

threshold function of order r £ n.

Proof: Since any switching function has an exact represen-
tation of order at most n, by (2) of Theorem 444, F is a
threshold function of order at most r1ie

Hence Theorem 465

EXAMPLE 4,3: Consider the 3-input function of Example 4.1,

namely XX, + X, Xge The first order Coleman coefficients are
172 2 73

% 'EQ; 4, 0, 4},
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and the first and secohd order Coleman coefficiznts are

N .
5] {C’; 4, 0, 4; 4, -4, Oé‘

The followins Table shows the realizatinsn by first and second

order weights, denoted by Tl(x) and Tg(x) respectively.

——— - t———".

Bxample of Chebyshev approximation

Ty Ply) Tl(y; mz(y)-um
(=1, =1, =1) -] -1 ~1
(-1, ~1, 1) 1 0 1
(-1, 1, =1) -1 -1 -1
(-1, 1, 1) -1 0 -1
(1, =1, =1) -1 0 -1
(1, -1, 1) 1 1 1
(1, 1, =1) 1 0 1
(1, 1, 1) 1 1 1

It is easy to see that T1 does not realine ¥, whereas T

does. Hence the threshold order of P is

lav}

0o
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4434  Ho-Kashyap Algorithm

Ho and Kashyap (15] recently presented an algorithm
for linear inequalities and applied it to the problem of
threshold realization of a switching function. We show in
thisg Section that their algorithm is applicable to the
problem of realization of a switching function of threshold

order T

Consider a vector u(r) of tr functions

yilyiz L yij’ 11 ( iz < L I < 13-,

(4413)

03 &
Tet F(yl,, Foseees yn) be a switching function with true

vertices

ug), 1 =21, 2, seey n (4414)

and false vertices

u(Bg> [} j -~ l, E,in’ I’l-b. (4"15)

The problem is to find a t.-vector a such that
T u(r) 5 g f=l, 2 (4416)
a uAi ) 1 = » gy naj t e

T .
o ué§> <0, J =1, 2yu0vy ny, (417)



30

or writing, e

Yan {A.18)

we have (4416) and (4.17) as

A a >0

2™ > b &r > 1 (4419)

We gtatc here the

ilo Kashyap Algorithm {15]:

(1) Problem: Mind a(m~vector) and g (N-vector) such that

Aa=2p
’ (4420)
B > O

or
:£ind o and £ > 0, such that

=l aa-gpll® (4421)

is minimized.
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(2) Algorithm: Denoting by A**the generalized inverse of
A,

a(0) = A#i g(0), g(0) > 0, otherwise arbitrary

y(1) = & (i) - ()

a(141) = a(i) + 9 AFF [y(1) + ly(1)1]]
B(1) + oly(1) + |y(1)]].

i

g(i41)

-/
(4422)
This algorithm converges exponentially to the solution, if

one exists, in a finite number of stepss It also tests the

consistency of the set of inequalities,

In our case, m = tr and N = 29,

LEMMA 4¢l: ATA = (2%) . (4423)
(I : unit matrix)

Proof: By Theorem 2.4, the set of functions (2.13)1p
orthonormal under the inner product

g=n % . f(x) g(x) (4424)
x

and hence all the sum of squares of columns of A are oh
and the sum of products of different columns are zero.
Hence Lemma 4els

I

5 - (4425)

Thus A =+ =
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Hence the following algorithms

THEOREM 4.6. The following ic an _algorithm for_testing anil

realization of a threshold function of order r:

ol g i 277

a(0) = -iﬁ AT g(0), (0) > 0, otherwise arbitrary
2 .

A a(i) - gl(i), (4.26)

i

y(i)

ali+l) = a(i) + SATIy(L) + |y(1)]1, 0< 9 <1

il

B(i41) = g(i) + ¢ {y(i)l+ly(i)|]- /

1

iteration chows _that the funciion is realizablc by a thrashold

g g e v - —n - — . o ———e"

function of order re The alsorithm ends when  a(i+l) = ofi)

B LT R e -

— s~ rp— - e w1 52 o

and the ali) at this stage gives the realizing woishta.

————rn - v

T r .
If we choose 7 (0) = {1, 1,e.., 1], them as in the
case r=1, the vector differences between mean vectors of

u, and uy ig the «(0), which is the samo as tho Chow
A F ‘
parame ters discussed in 3cction 25
o the -
EXAMPLE 444: We sholl take / Z-input function X Xg '+ Xg X,

()

considered in Example 4.1,
A= i}, Dy, 6, 7%, n&==4
- 54l -
}3 d O’ 2, l), 4_' ‘(, Il'b bl 4.'0
Applying Ho-Kashyap algorithm for =1, we find that the

function is not of threshold ofder 1, as follows:
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BT(O) = {19 1, 15 1 1, 1,1, 1 %9

1 sl -1 1
1 1 -1 1
1 1 1 -1
A = 1 1 1 -1
-1 ~1 -1 -1
-1 -1 -1 1
| -1 -1 1 1
W -1 -1 1 1J

«T(0) =%§ ?o, -2, 0, 2%.

yT0) = § (4, 0, =4, 0, =4, 0, -4, 0) - (1,1,1,1,1,1,1,1)

(1
=(--2-, "1,"%’ -1, 'g’ -1 '%’O)'

The non-positivity of y(0) shows that the function is not

a8 threshold functions

s 5 P - L. e L s ey
Lo, eonsidering the onso o ro oo 2, wo have



-85

Then, considering the case r = 2, we have

i

SIS, .

-1 -1 1 1 -1 -1
1 1 1 -1 -l 1
-1 1 -1 -1

B
—
-

1 1 1 1 1 1

i

P3N

-1 -1 -1 -1 -1 -1 -1
-1 -1 ~1 -1 -1 1 1
-1 -1 1 -1 1 1. -1

F
1 e

[N

q‘l .
a’(0) = % (0, -2, 0, 2, 2, -2, 0) .

*

§ (2,0,0,0,0,0,0,8) - (1,1,1,1,1,1,1,1)

i

YT(O)
= (O, ~ly =1y =1, =1, =1, =1, O)u
I¥* ()| = (0, 2,1, 1,1, 1, 1, 0)
T T ~
y© (0) « |y*(0)| = (0, 0, 0, 0, O, O, O, O).

Hence (1) = a(0).
Thus the function is of thresgshold cyder 2 and it is realized
by the inputs

% (03 ~2, 0, 2; 2, =2, 0).
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45 Kaszerman's Model

Kaszerman [18] has given the following procedure to
generate a surface for a non-lineatr threshold device for a
switching functions We show in this Section that our concept
of threshold order and its characterizations have resulted
in an optimality in non~-linear realization, that is not

obtained by Kasgerman's proodedure.

Kaszerman's Procedure:
1. Bxpress the switching function as a sum of products

or reduce it to minimum sum form.

2o For each term write an equation of the form
: (n+f <m)
dp, =M= % X, 4+ ¥ x,, m+ ) <n
k 151 1 5=1 4

wherc xi's are the m uncomplemented varinbles

and xjh are the complcmented variables.

Py

3e Then
9 = - l& o (4427)
gives the surfaces

EX/MPLE 445: Consider f = x X5 + il i?. By Kaszerman's

procedure, tlic second-order surface is-obtained as

2 2 1
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The 3oleman coefficients are
(0, 0, 0, 4)
that is, the surface is

1Yo = 4x1x2 - xl - 2x2 + 1

¢ 1
Or =Xy = X, + 2X X, + =

T o
which is the snme as Q gince Xi' = XK. Hence these GLwo

procedures coincide.

EXIMPLE 446+ This example ic intended to show that even
though sometimes the ordersof the renlizing functions arc the
same by the ftwo procedures, ocur procedurc leads %o a better

realization.

Congider the 3-input function KXo + XgXoe

For this
({1=2~X1—X2,
a2 = 1 + x2 - xg.

Thus 91 = - (2 - = %)L+ %y - Xg)

= - 2 4 Xl + ng L xlx2 - XZXB - xgxl.

The Coleman ceoefficients £ r this function are

14 ¢
'§ 'E‘--Q; 1, O, 2; 1, "1’ "1.; O),

which lead to the coefficients of x  functions as
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1 ©
B %-—l; 0, 0, 2§ 1§ =1, 03 o%’
that is, the surface is;
ig = -1l 4+ 2x, + RX Xy - BXo¥ 5 4

which is much simpler, for realizing, than ¢1, since it

contains less number of input functions and smaller weights.

EXAMPLE 447° Now we give an example in which Kaszerman's

procedure constructs a surface of order higher than the

threshold order of a switching function.

Consider the switching function of 3-inputs,

- o -
K o Xzt XXy + XX

Kaszerman's surface is

e

i

-2 - X, = Xg)(l + Xy - XS)(3 - X = Xy - XS)

it

- 6+4x1+ 2x2+ 6x5~3x2x5— 4x3x1 + x1x2x3,
which is a third order surface.

However, the Coleman coefficients are

3 (131, =1, 13 3, -1, 1; 1)

and the first and second order coefficients realize the

function &s shown below,
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Table 4.2

A function of Threshold ordcr 2,

of 3-inputs

— ~ F 7 " Realization
(0, 0, 0) 1 ,_ e |
(0, 0, 1) L o

(0, 1, 0) ( o

o b 0 -5/8

(1, 0, 0) o e

(1, 0, 1) L e

(1, 1, 0) ) /s

(1, 1, 1) . /e

v .

The function is a second order function and is realized by
(13 1, =1, 1; 3, =1, 1),

which is considerably simpler than ¢1.

Since we have shown that our procedure uses the thresh-
old order andiﬁlso cquivalent to the prosramming approach of
minimizing the total wuight, it is cleayr that thoere arce no
cases in which the realizing function by our proccdure will

have greater weights or of greater order of surface.
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4.6 Miscellaneous Comments and Problems

So far, we have eonfined our attention to only such
problems of realization as are solved by the solution of a
set of inequalities and variations of this solution such as
line ar programming, game theory ané Chehyshev approximation.
The generalization to an case of order r was achieved by
suitably taking the orthogonal functions. There are many
other aspects of threshold logic, the generalizations of
which to the caée of order r are equally, if not more,
interesting where this technique is not of use. We have not
been able to get the mathematical framework that would make
this generalization easys For instance, the most elegant
nececsary condition fér linear separability,namely, unateness
[26], should have correspondence to something like unateness

of order r, one way of defining which would be as follows:

DEFINITION 4.5: A switching function is said to be unate in

(xil, Xg -eeey xi ), (r <n), if there is a normal expansion
r

2
in which whenever all these 1r vwvariables occur together in

- -

a term they occur: in only one of the 2T possible products of

uncompiemented and complemented variabless
EXAMPLE 448: The function of four variables

Xy



a1y}

Ll o

is unate in (11, %,) whereas

e T, b Xy X :
Xp Mg Xg Xy b Xy Xy Xg X,

[ (9

is not unate in (XT9 XKoo

—— o u —

DEFINITION 4,6: A switching function is said tc be unate

, A e . , n Y .
of order r if it is unate in evorv set of (r) combinations

R e - — . et

of r wariables oul of n.

EXAMPLE 449: The function

, 'Kf' X - -
g ¥z * Xy * Xy Fy X5 Xy

. X
1
is not unate of ovorder 2 and

X Ko X, + %o X, X, X
R T T I

is unate of order 2.
It is o be noted that a function which iz unate of

order v need not be unote of order < r and a funntlon

unatae of order r 13 vmate of order 7r+l.

EXAMPLE 4,10: The function

is unate of order 2 Dbut not of order 1.



=93

Then w2 have a problem which is a generalization of

the celebrated result of MclNaughton [26:

PROBLEM 441: Is a threshold function of order 1 necessa-

rily unate of order r?

An alternative-way to derive results for threshold
functions of order r, using the orthogonal functions,
appears to be the use of the results of a threshold funce
tion to' the tr-l inputs obtained by products upto order
re These two approaches are different because in the former
case, the problem is a complete specification of outputs
on g input-combinations and in the latter case 1t is a

partially specified one of ot input combinations out of
Ztr’l being specified. It may be possible to solve some
problemgof order r by viewing this as 'don't care' at tle

t -1
other 2 T . of pointse.

The theory is very similar to the theory of multi-
plexing of inputs introduced by von Neumann [33], where
with n 4nputs and k multiples, in the space of 27K
inputs, the switching function is defined only on oht points.
On the other hand, multiplexing schemes for threshold ele-

ments of order r may be developed on lines similar to

Pierce [36] and 14u and 14u [211].
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One of the greatelt advantagses of threshold gates is
that a number of switching functions can be expressed as o
combination of simple threshold gateses " In a similar fashion
it may be posgsible to realize a switching function more
economically by combination of gates of order onc or more.
In this connecction, we feel that the 8888 with which a
switching function is realilzed as a combination of threshold
gates, should have something to do with its thresho%? order.,
It is clear that any switching function is fealizedzﬁ%reshold
gates at two levels since any switching function can be
written in terms of AND/®R gates. But, in general, such a
realization necds many inputs at the second level. The

problem would be made simpler if the following problem is

solvede.

PROBLEM 6e42: Ig it possgible to realize any threshold func-
tion of order r of n inputs, at two levels, with n or

less inputs in the first level and r or less inputs in
the Bocond level ?

There is an interesting generalization of threshold
function by Ereoli amnd Mercurio{10] that is different from

OUrs .
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DEFINITION 447 { 10] ¢ ., A switching function of n

inputs Xys KXgyeory Xy is said to be a function with m

thresholds ty, tpyeiey t

if there exist real numbers

m’
Wy Woseesy W, such that (defining t = -, t ;= + o),
n
B < i:z:l WX, by, 1= 1,2,000, mele (4.28)

It is immediately clear that any switching function
has a maximum of 2™ thresholds. Also, a threshold function
has a single threshold. This definition still retains the
linearity of the inputs and hence from thc point of view of
circuitryissimpler than a threshold function of order > 1.So0
then?hroblem is to find out if it is possible to realigze
arbltrary switching functions with less than o™ {hresholds
and to find the number of thresholds., Since any switching
function is completely characterized by 2l paramcters
and n parameters are already chosen as the weights it
appears that it is possible to restrict the number of
thresholds to 2"-n. Tor the same reason, it also appears
that it is impossible to realize arbitrary switching func-
tions with just n thresholds. A pilere of interesting
work in this direction has been done by Ercoli and Mercurio

[10]s Then a problem tc be investigated is the connection
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between the threshold order of a switching function and

the number of thresholds of a switching function.

Owing to the pimilarity of the notwork of a threshold
function of order r 1o the nctwork of Gose [12] for any
real-valued function of inputs, this network can be made

Teettre in A manner analogougs to Cose's.

4e7 Inumeration and Tabulation

. . W R

Table-look-up has teen found to be one simple way of
testing and realization of threshold functionss Such tables
of threshold functions have becen computed uphto 7 inputs,.
Muroga, Todn and Kendo [30] present tables upto six inputs

and Yinder [41], {42] presents tables of n inputs.

These authors have utilized a number of pronertics of
threshold functions to simplify the computations and pre-
sentation of such tables. In this section, we present an
epumeration and tabulation of switching functions of

three inputs by their threshold orders

The only simplifying idea that we have used is the
symmetry type of switching function introduced by Golomb
11)se Since functiongbelonging to the same symmetry class
have the same threshold order, we have
(1) olasgified the 256 functions into 14 symmetry classes,

{2) computed the parametors for one function of each classy
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(3 found the threshold order of this function. This helps
us ~to enutmerate the number of functions with each threshold
order. The results are preserted below,
Denoting a switching function by fhe vertices with the out-
put 1 we have the followihg tables
Tahle 4.3

Table of Threshold Functions of order r.

o e 1 v

et e

Class i St fomotions O-peremcter T epaor
1 % 2 (-8 o0, 0, 0, 0, 0, 0, 0) 0
IT %, 16 (26,=2,~2,~2,=2,-2,=2,=2) 1
171 20;7 8 (-4, 0, 0, 0, 4, 4, 4, 0) 2
IV %5 4 24 (-4, 0,~4,=4, 0, 4, 0, 0) 1
v v4,7 24 (-4, 4, 0, 0, 0, 4, 0, 4) 2
VI 20’4,7 48 (=2, 2,-7,-2,-2, 2, 2,-2) 2
VII zb’4’5 48 (=2, 2,-6,-2,-2, 2, 2,-2) 1
VIII 20’3,5 16 (m2,=2,=2, 2,=2, 2, 2,-6) 2
IX 2055,4'7 6 (o, o0, 0,0,08, 0, 0)
X 20’4,5,7 24 ( 0, 4,-4, 0, 0, 4, 4, 0) 2
XL %y q,2;3 6 ( 0,~8, 0, 0, O, 0, 0, 0) 1
XIT Z4 1 9.9 24 ( 0,~4, 0, 0, 4, O, 4, 4) 2
XIII 20’1,2,4_ 8 ( 0y~4,-4,-4, 0, 0, 0, 4) 1
XIV 21’2’4’7 2 (o0, 0, 00 0, O, 0, 0, 8) 3

Total 256

—- ———
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This yields the following table.

Table 4.4

Enumeration of Threshold Function of Z-inputs

Thresh?ld No. of functions
order
0 2
1 102
o 150
3 2

Total 256




CHAPTER 5

APPLICATIONS OF THRESHOLD ORDER
TO DEPENDENT INPUTS

'The bearings of this observation lays in the

application on it.'

Bunsby

'Dombey and Son'

9540 Summary

In this chapter, we consider the application of a
threshold gate of order r té such problems as pattern
recognition and deocodings We show that the recognition
with statistical dependence or order r (different from
the concept in Chapter 3) requires a threshold gate of order
at most re. We also show that a threshold gate of order r
can be used as a decoder in the case of dependent noide of

order T
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5¢1 Introduction

Decpite the wide variety of applications of threshold
gates, particularly in problems of a4 stbéhasﬁic nature, such
as pattern recognition, coding and deeoding networks, and,
probability transformers, a major disadvantage of a threshold
gate has been that it can be generally used only in the
presence of independent noise., This is owing to the fact
that threshold functions form a very small proportion of
éwitching functions. In Chapter 1, we have elaborated this

point already.

Hence there is a need to find logic gates mere com-
plicated than a threshold gate, which can handle dependent
noise but the complications of which should bhe minimal
in the sense that with less and less dependence of noise,
the gate should be less and less complicated. We show here
thet this is precisely achieved using our notion of threshold
order, by defining the order of stochastic dependence of

inputs and by relating the two.

The results obtained in this Chapter aye generaliza-
tions of the rs-ults of Chow [7] and of Yassey (28], with
decoding
regard to statistical recognition and threshold/respectively.

The relaxation of the assumption of independent distributionc



-101~-

is achieved by an application of the results of Bahadur
{21, in defining the order of stochastic dependences

Chow's 'equivalence! between threshold functions and inde-
pendent noise is then generalized to that Wetween threshold
functions of order r and statistical rcecognition with

noise of ordor Te

The term 'equivalence' is to be interpreted as follows:
If binary n-tuples are subject to a certain independent noise,
they can afterwards be best classified (given certain condi-
tional statistics) by a threshold gate. As we shall show
below this 'equivalence' is not to be interpreted to mean
that threshold gates cannot be used to discriminate in the
presence of non-independent noise, nor, in a more general
way, that 'noise of order r' requires threshold gates of
order r, for classification; it means that a noise of

order r rTequircs a threshold gate of order at most r.

It appesars that the possibility of the usc of the
results of Bahadur in relaxing the assumptions of indepen-
dent components made by Winder and Chow is suggested in the

‘recent book by Nilsson [3 pe62). However, hc does not
appear to have formulated the concept of the order of a

probability distribution.
Braverman [3] reviews theories of pattern recognition

and Sheng [37] applies threshold gate to probability trans-

formers.
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He2 Definitions

By Theorem 244, for a probability distribution p(x),
which i8 non-zcro at every point x€ X, log p(x) can be
uniguely expressed as a lincar combination of the sct of
functions S, and let us denote the coofficicents by A with

corresponding suffixes.

DEFINITION 5e1l: A is called a log=-corrzlation

ili eeel

)
(]

parameter of ordor r, with rcferencclto S

DEFINITION 5,.2° A distribution on the set X of n-dimen-

sional binary vectors x = (Xl’ Xgy ey xn) is said to he of
order r (r <n), if all its log-correlation paramecters of
order >r are zero and at least one of the log-corr:lation

parameters of order r is not zero,.

REMARK 541l. Theorem 244 establishes the existence {(and

uniqueness) of the order of any probability distribution on

X and that the order is < n.

the
REMARK 5¢2. Onc might think that natural way to formulate

this definition is in terms of correlation parameters. Our
object in using log~correlation parameters, is, of course,
tolretain the correspondence between dependance of order r
and threshold function of order re However, this defini-

tion may not appear unnatural to statisticians, who would
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realize the dominant role played by log density throughout
statistical theoryi As obterved by Bahadur [Bi, indepen-
dence is dependence of order 0,in which case this defini-
tion ig clearly the same in terms of density or log density,
that is, in terms of correlation parameters or log=-correla-

tion parameterse

5¢3 Stochastic Dependence a&nB Threshold Order

Consider an alphabet with two characters ay and g
each represented by a binary vector x = (xl, Xopeeny xn).
Being subject to noise, x is s random variable on the
sample spacc X of o vectors of the n-dimensional
cube, The probability distribution of x depends on the
alphabet &, and we denotc by P(x|a,) the conditional
probability distribution of x given a, s and by p, the a
priori probability that character. a, occurs, k=1,2 .

A recognition rule of Chow [ %], {7 ], based on statistical
decision approach is to identify pattern =x as character
a1 if

R(X) =1

and as character ag, if

R(X) = 0
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where
S 1 if pyPlx]a) 2 p, Blxla,)
R(x) = i | (541)
Lo if pPx[a) < pyPlxlay).

The following is a generaligation of Chow's theorem
71,
THEOREM Hel: A switching function f(xl, Xoywery xn) is of

threshold order 1, if and only if, there exist a binomial

distribution p = (pl, pz) and two conditional probability

s

distributions P(x|a;) or order r; and P(x|a,) of order

Toy neither of which vanishes at any point x€ X, such that

- ——

maxe (ry, ry) = and that their associated recognition

At - g g et 8

function is f(xl, Xogesey xn).
Proof: (i) 'If' part:

Let pi)s 2= olay), o) =1 - g,

(5¢2)
i=l, 2,..0, n, k=1,2.
and
I
s X, lex.
P*(xlak) = (aik)) T (1 - a§k)) T, (5¢3)
1=l

Consider
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log [P(x|a, )/P* (x| )].~ (544)
By %’ k=1,2.

This can be written uniquely as a linear combination of

2 functions § of (2¢13)s Thesc 'z' functions are
again linear combinations of thc corresponding 'x‘ func-
tions. By Theorem 2.6, expression (5e4) can be written
uniquely‘as a linear combination of functions T of (2.23).

Let the coefficients be

k), . (k k k), . (k k k
e, R I ) L
... igz‘ (5¢5)

k = 1,2'

Hence if (5e4) is of order ri» then in (5¢5) all Db's with
more than Ty guffixes vanishe. The rest of the proof con-~
sists in taking log on the right side of (H.1l) using this
fact, and, in verifying that R(x) is of threshold order

ry, T =max. (v, rz).' Thus log [p P(xla,)] is equal to

1o )

1o T log g0 4 % 1 b(k)
e UL +i>:x Og“m""*

. |
+ = bgk)x. + by b(k) Xe Xy +oeeo 4
i=1 * 7 iy, 1te 31 1p

T . (%)

X, X ese X N
17 <lgdansd i igigee.iy M1, i,

+
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and F being a recognition function, it satislies (1e3), the

condition for a threshold function of order r, if we definc

b, = (1)_ . (2)
wy = log 5y * ii ;og Eigy # (b " = 30, (Ba0)
(2) (1)
B~/ (1 - B (
w, = log —F L ) L2y (847
s (1 - gy i

A

(1) (2) , B
i1, (biliz* biliz)’ R (/
L o8 o e 1(5.8)
'v
= (n(1) (2) : .
Widgeaoi, = B ol " biliz...ir)’ SALCALLEACY

i],i?,o.o, ir = 1, 2,0--, Yie -«

(11) '"nly if' part:

This part is established by showing that, given w's,
(5e6)=(5e8) are consistent with a sct of p's and B's

between . 0 and 1, and a set of b's.
Pirstly, let us choosce

8i?) =

1
2
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and
9§1)= 1/{1 «+ exps-%ﬁ& e (bil)hb§2)) %] . (579)

All the Db's except bO can be arbitrarily chosen for one

digtribution and for the other

(1) +those with a single suffix can be arbitrarily chosen
and

(1i) +the rest except bo can be obtained from (5.8) since
w's arc given,

Since

P(xlak) = P*(xlak)eXp. bék) exps 8, k =1,2,

where 3, arc sums generated by the aforesaid b coeffi-
cients. Clearly P(xlal) and P(xlaz) are > 0, since each

component is > O« Then let us choose

bél) =-log, [ = P*(xlal) eXDe Sl], (5.10)
béz) = - log, { = P*(x|a2) eXpe sz], (511)
so that
% B =% P = 1.
z xlal) z (xlag)

Then let us choose
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R YT Iy
expelw = { b "= b7 Je 1 P4

0

eXpe LW, -'{‘bél) -~ Db
2

Then P(xlal) and P(xlu?) according to this choice arc
indeed probability distributions and p's and g's clearly
lic between O and 1, all consistent with (5.0)-(5,8).

Hence Theorem Sele

SMARK ¢3! A convenient choice of arbitrary b  values

is indeed zerc, in which case, choosing the second distri-

bution for such & choice we obtain
P(xla?) = o™ (541%)

which means that bég) = 0 and the distribution iy uniform.
REMARK 5e¢4: Chow's theorem falls out as a particular casc

r=1.

REMARK 55t The orthonormality of the basis is not used
in the proof since our concern is only the existoence.
However, if one desircs to compute the b eoefficicnts, the
ofthonormality is to be used, the cocfficients of the 2
functions are the inner products of log [P(x)|P*(x)] with

the corresponding 2z functionse
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RPMARK 5e6 Given a threshold function of order r, this
theorem ensures the sxlstence of one set of conditional
probability distributions of order S Te .HoweVer, there may
exist other conditional probability distributions of order

> v, for which the given threshold function of order r may
be a recognition functione. Thus it is possible to use thre-
sbold gate of order r for noise of order more than rj; in
particular, it is possible to use (first order) threshold
gate to discriminate in the presence of non-independent

noises

Using Bayes' law, Winder[40] obtains a correspondence
between statistical recognition'with independently distri-
buted inpute and threshold functions at any confidernce
level /o > %. Working on similar lines as above we obtain
a gimilar correspondence between distribution of order T

and thresghold gate of order re We classify a pattern

into a particular class, if given an observation ¢,
Pr (£ (x) =1) > A. (5414)

Bayes' law leads to

Prx=¢ | £fx) =1) > A %)Zﬂ‘ (5415)
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Prix=¢) = Pr(x=r|f(x) = 1) Pr(f{x) = 1)
+ P(x=r|f(x) = 0) Prif(x) = 0) s | (5416)

@ sce that by taking logarithms this results in a threshold

function of order T,

9¢4 An Bxample

Consider the case n =3 and 2 switching function

given by the weighits

Kaplan-Vindcr theorcem chows that this function is not of
first threshold order, since the first order weights, which
are the same as the ones given above, do not realize the

functione

Choosz all b(z) except bﬁg) as zeros Also, chooge
b§l) = bél) = bél} =,0. Then, we have, by (5.8),

1 L 1 <. 2
:E?)) = 4, b( ) @ = 4y bél) = 0, and by (b’.ll), b(g ) = O.

Thus, P(Xlag) = %. By (549), we have
a§1) = ﬁ%l) = 1| (1 + expe. 4) = 040180, ﬁél) = 045,

Thus a{l) , aél) = 0.9890, aél) = 0s5. Then (5410) gives

bél> = -0.376396, (5.,12) gives py = lep, = 0.9991082;



Py = 040008215

Thusg
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P(xlal) = P*(xial). exp.[u0.376596'+ 4% Xp = 4x2x3].

Then the recognition furiction is computed in Table 5Hl.l.

—

Table Bel

Computing th: Recognition Function

x  £(x) P(x|a) Plxlay) pFlala) pPlxlay) R(x)
(0,0,0) 0 04000111 03125 040001109 0,0001114 O
(0,0,1) 1 0.006065 0,125 0.006060 0s0001114 1
(0,1,0) O 0000111 0,125 0,0001109 0.,0001114 O
(0,1,1) O 04000111 0,125 0.0001109 0.0001114 O
(1,0,0) 0 04000111 0.125 040001109 0.,0001114 0
(1,0,1) 1 0¥330908 0,125 0.330643 0.0001114 1
(1,1,0) 1 04331186 0,125 04330921 0.0001114 1
(1,1,1) 1 04330908 0,125 04330643 0,0001114 1

It is easily scen that TF(x)

verifies Theorcm 5.1.

is the same as

R(x)o

This
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5e 8 Threshold Decoding

Massey (22] nhas shown that a threshold lo~ic gate
can be used to instrument certain decoding rules for a
binary memoryless channel with additive noise. His decoding
rule is based on the averase prohability of error as a
criteriom of goodness and is hence a posteriori probability

decoding or simply APP decoding. Considering a noise

Sequence €y ; 25y eery I, the decoding algorithm will
assign to “m (m = 1,2404., n), that value ¥ for which tlie
conditional probability
- ?
Prtom==V IéAi%j

is a maximum where Ai is a composite parity check,
i =1, 2yee., J, orthouonal on oh (for definition see

[22], Pe 6).

We drop here the assumption of independence of the
neoise sequence and generalize this result showing that a
threshold gate of order 1 can be used to instrument APP

decoding rules for a binary channel with noise, dependent

of order .

Assuming that the joint distribution of Ai condi=-

tionally on 9y = 1 and o, = 0 are of order r4 and  rg

(4
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respectively with r = maxe (rl, rz), the following
Theorem is obtained by the same techniques as in

Scotion 5.3 based on the proof of Massey [27].

THEORFM 5#42¢ Tor a binary channel with additive noibe, the

APP decoding rule is: If the conditional probability dis-

tribution of the orthogohal parity thecks Ay mlﬂﬂfﬂﬁ

given & =1 and ém = 0 are of orders ¥y and  r,

s .

respectively, with r = paxi.£r14 rp), then choose e,

using a threshold function of order r, given by the

S —— s . -t o ¢ —

weights (5¢6) = (5 8), where .py and p, are a priori

—— v —————r ) o——— v ————

—— - ——— 2" 7o e

probabilities of e =1 and - = 0 respectively, and
b with superscripts 1 and 2 are respectively the coeffi-~
cients in the expancion of log [ A, | e, = 1] and

[&x |
log L 4 | s = 0} ana By )= P(x = 0| o e, = 1) and

5§2)= P(x; =0 | e = 0)

REMARK Se7: It may be possible to prove that the order

of the conditional distributions of Ai given @ = 1
and Qmao 48 less than or equal to the order of the distri-
bution of the noise sequence @15 Gogeccy @, o In such

a case, only the assumption of order r of the noise

pequence will do for the Theorem.
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RELATED WORK

In Chapter § (page 101, last paragraph), we refer tn
Nilsson's book [34] regarding the relaxation of the assump-
tion of independence using Bahadur's results. Dr. Laveen
Kanal has kindly pointed out to the author that Bahadur's
expansion was first introduced to the pattern recosnition-
threshold logic community by him in the papers [43] - [46].
Dre. Kanal writes: s.. the relevance of Bahadur's expansion
to threshold functions both for the case of statistically
independent and dependent inputs was pointed out in [43]
and also mentioned in [44]+ The reasons which make
approaches similar to that of Bahadur's unsuitable for
practical applicaficns were briefly deécribed in [45] and
have been prescnted in greater detail in [46]% The auther
regrets having overlooked Dr. Kanal's papers. Even though
Dr. Kanal does not appear to explicitly introduce the notion
of threshold order and prove a thecorem like out Theorem 5.1,
the idea of the use of Bahadur's expansion in this context
is found in his papers, The author is thankful to

Dr. XKanal for his comments.
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After writing this dissertation, I came to know
of the recent work of Haring [47] in which he proves a
number of {nteresting results on 'multiple~ threshold
threshold functions' discussed in our pases 94~96 connec-
ting 1t to a threshold function with a larger number of
inputs. Dr. llaring informed the author that Spann of
Massachusetts Institute of Technology, 1n his doctoral
digsertation has cestablished ddme connectionsd between
these multi-threshold elem=hts and threshold orders
Spann’seems to have called a threshold function of order
r as a muitiple-weight threshold function. The guthor

had not yet had access to thie results of Spann.
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